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Abstract. While a variety of new concepts and methods arised from Optimal
Transport theory recently in the literature, they are somewhat theoretical for
empirical researchers, including statisticians and econometricians. This tutorial
paper aims at elaborating on one of these new concepts and methods, namely
multivariate quantile functions, in order to invite empirical researchers to take a
closer look at this new concept to apply to their empirical works, such as multi-
variate quantile regression.

Keywords: Gradient of convex functions · Multivariate quantiles · Optimal
transport · Quantile regression

1 Introduction

Motivated by economics issues, in 1942, Kantorovich reformulated (and solved) the
unsolved “Optimal Transport” (OT) problem of Gaspard Monge (1781) and got the
Nobel Prize in Economics (shared with Koopmans) in 1975, for their contributions to
optimal allocation of resources.

Recently, it was “discovered” that OT provides a variety of modern methods for
economics. This tutorial paper focuses only on one of these modern methods, namely
multivariate quantile functions for quantile regression and related topics.

Mean linear regression models are possible (as it is obvious how to generalize the
mean of a random variable to the mean of a random vector) and are useful when deal-
ing with multivariate distribution functions. Now, over 40 years since univariate quan-
tile regression was invented (Koenker and Bassett [5]), can we extend it to multivari-
ate quantile regression in some acceptable way? Of course, like multivariate mean lin-
ear regressions, multivariate quantile regressions should be very useful in a variety of
contexts.

Since there is no total order relation on R
d when d > 1, a direct extension of uni-

variate quantile functions to higher dimensions is hopeless. Thus, in order to obtain a
“correct” way to generalize univariate quantile functions, we must look for some other
ways. Generalizations of mathematical concepts appear often in mathematics. When
Lotfi Zadeh generalized crisp sets to fuzzy sets, he cannot do it directly, so he took
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an equivalent definition of a crisp set, namely its indicator function which is a func-
tion taking only values 0 and 1, and extend it to the unit interval [0,1]. To view Kol-
mogorov probability theory as a special case of quantum probability theory, we can
take an equivalent representation of finite standard probability, namely, identifying a
random variable, an event, and a probability measure, as diagonal matrices, and then
extend them to arbitrary self adjoint matrices.

Now, in the above spirit, to generalize a univariate quantile function F [−1](.) :
[0,1]→ R, defined as F [−1](u)= inf{x ∈ R :F(x)≥ u}, of a real-valued random variable
X with distribution function F , we look at some appropriate equivalent representation.

Note that, since we are going to derive a characterization of a univariate quantile
function in the setting of Optimal Transport theory, we denote it as F [−1] instead of
F−1 to avoid a possible confusion with the set-valued set-function T −1(.) : 2R → 2[0,1]

of a map T (.) : [0,1] → R, pushing the uniform probability measure du on [0,1] to a
probability measure on B(R), since actually, for T = F [−1], we have dF = T#du =
du◦T −1!

The first characteristic property of F [−1](.) is this: If U is a random variable, uni-
formly distributed on the unit interval [0,1], then the random variable F [−1](U) has

the same distribution F as X , which is the basis of simulations. But saying that X
D=

F [−1](U) simply means that the probability “law” of X , written as dF(−∞,x]) = F(x),
is the probability measure on B(R) obtained from the uniform probability du on
B([0,1]) via du ◦ (F [−1])−1, written as F [−1]#du = dF (a notation we will use in the
context of Optimal Transport Theory), meaning “The transport map F [−1] : [0,1] → R

pushes the probability du on [0,1] forward to the probability dF on R”.
There is another property of F [−1](.), kind of “hidden”, since we did not use it often.
From the explicit definition of F [−1](u), it is clear that the function F [−1](.) is mono-

tone non decreasing on R, i.e., if x ≤ y then F [−1](x) ≤ F [−1](y), with is equivalent to:
for any x,y ∈ R, we have

(F [−1](x)−F [−1](y))(x− y) ≥ 0

and which can be generalized to higher dimensions (needed for our subsequent
analysis), as follows. A function g(.) : R

d → R
d is monotone (non decreasing) if, for

any x,y ∈ R
d , we have

<g(x)−g(y),x− y> ≥ 0

where <., .> denotes the scalar product on R
d .

These two properties characterize the univariate quantile function F [−1](.) : [0,1]→
R. Thus, we should expect that a function QF(.) : [0,1]d → R

d is “called” the (multi-
variate) quantile function of the multivariate distribution function F(.) : R

d → [0,1] if
it possess these two “extended” properties, namely

(i) QF is monotone non decreasing on R
d (in the above equivalent sense),

(ii) QF pushes the uniform probability du on [0,1]d forward to the probability dF on
R

d , in symbol QF#du = dF .
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Having these requirements, let’s see if we can get a candidate for QF in some “sim-
ple” way. To simplify the notations, consider the case where the dimension d = 2.

Thus, let F(.) : R
2 → [0,1] a bivariate distribution of the random vector X =

(X1,X2), so that

F(x1,x2) = P(X1 ≤ x1,X2 ≤ x2) = c(F1(x1),F2(x2))

where c(., .) : [0,1]2 → [0,1] is a bivariate copula capturing the dependence structure
between the components of X .

The mean of the random vector X = (X1,X2)′ is defined componentwise, as a mean
vector, namely EX = (EX1,EX2)′ (transpose).

Can we define bivariate quantile function componentwise?
Let QF(.) : [0,1]2 → R

2 be defined as, for u = (u1,u2) ∈ [0,1]2, QF(u) =
(F [−1]

1 (u1),F
[−1]
2 (u2))′.

a) Monotonicity is satisfied: let v = (v1,v2), we have

<QF(u)−QF(v),u− v>=

[(F [−1]
1 (u1)−F [−1]

1 (v1))(u1 − v1)][(F
[−1]
2 (u2)−F [−1]

2 (v2))(u2 − v2)] ≥ 0

since both F [−1]
1 ,F [−1]

2 are monotone.

b) How about QF#du
?= dF? We have

QF#du((−∞,a]× (−∞,b]) = du{u : Q−1
F ((−∞,a]× (−∞,b])} =

du{u : F [−1]
1 (u1) ≤ a,F [−1]

2 (u2) ≤ b} = du{u : u1 ≤ F1(a),u2 ≤ F2(b)} =

F1(a)F2(b) �= F(a,b)

unless X = (X1,X2) has independent components, i.e., X1,X2 are independent. This

is, in fact, expected since the componentwise definition QF(u) = (F [−1]
1 (u1),F

[−1]
2 (u2))′

ignores the dependence structure of X1 and X2 (given by copulas).

Thus, QF#du �= dF , i.e., X
D
�= dF , in general, meaning that QF(u) =

(F [−1]
1 (u1),F

[−1]
2 (u2))′ is not a good candidate for what we could call a bivariate quan-

tile function, a counterpart of univariate quantile function.
It turns out that a correct candidate for a multivariate quantile function came from

an area of mathematics called Optimal Transport (OT) theory, in 2016. See Carlier et
al. [2,3].

Let μ ,ν be two Borel probability measures on R
d , d ≥ 1. A transport map sending

μ to ν is a map T (.) : R
d → R

d , such that ν(.) = μ ◦T −1(.), i.e., T#μ = ν .
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Of course, for d = 1, and μ = du, uniform on [0,1] and ν = dF , for arbitrary distri-
bution function F on R, the quantile function F [−1](.) is a transport map sending du to
dF .

Moreover, F [−1] is the unique monotone transport map (there are other transport
maps, but F [−1] is the only one which is monotone).

Since monotonicity and measure-preserving # are concepts which are valid in any
dimensions, the question of interest to us is: “Is there a unique monotone transport map
on R

d for μ = du, uniform on [0,1]d , and arbitrary ν = dF?”. If the answer to it is yes,
then we get our desired multivariate quantile function! The answer is in fact yes.

McCann Theorem (McCann [7]). Let F(.) : Rd → [0,1] be an arbitrary multivariate dis-
tribution function, then there exists a unique gradient ∇ϕ(.) : [0,1]d → R

d of some
convex function ϕ(.) : [0,1]d → R (ϕ is not unique, but ∇ϕ is unique) such that
∇ϕ#du = dF , where du is the uniform probability measure on [0,1]d .

Let’s elaborate a bit on McCann’s Theorem. In dimension 1, let ν = dF where F is
the uniform distribution on the interval [1,2], i.e.,

F(x) =

⎧
⎨

⎩

0 for x < 1
x for 1 ≤ x ≤ 2
1 for x > 2

Then we know that F [−1](.) : [0,1]→ R is F [−1](u) = 1+u which is monotone (non
decreasing) since its derivative is positive. It is the derivative of the convex function
ϕ(u) = 1

2 (1+u)2. And of course, F [−1]#du = dF.
In dimension 1, the graph of a convex function lies above the tangent at each point

x where the function is differentiable (a convex function is differentiable almost every-
where, with respect to the Lebesgue measure on R), and as such its (a.e.) derivative is
monotone non decreasing.

In dimension d > 1, the gradient is the vector of partial derivatives of the multi-
variate function. The whole graph of a convex function on R

d lies above each tangent
hyperplane at each point where it is differentiable, as a consequence, the gradient ∇ϕ of
the convex function ϕ is monotone non decreasing in the sense that, for any x,y ∈ R

d ,
we have

<∇ϕ(x)−∇ϕ(y),x− y> ≥ 0

McCann’s theorem is an existence theorem, it does not tell us how to obtain explic-
itly the multivariate quantile function in dimension d > 1. In other words, it is not a
“constructive” theorem. There is much more work to do to get a “constructive” result,
and we need it for applications.

It is precisely here that OT comes in.
In 1781, Gaspard Monge [8] considered the following problem. Let μ ,ν be two

probability measures on X ,Y ⊆ R
3, respectively. Let c(., .) : X ×Y → R

+ be a
“cost” function (of moving the mass μ on X to the mass ν on Y , think about “supply
and demand”). A transport map T (.) : X → Y is a map such that T#μ = ν . The
Monge’s problem (MP) is to find a transport map T ∗ which is optimal, with respect to
the cost c, in the sense that it minimizes the total cost, i.e.,
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T ∗ = argmin{
∫

X
c(x,T (x))dμ(x) : T : T#μ = ν}

This optimization problem is very difficult to study since the objective function
is not linear in T , and the constraint set is not convex. This is why the problem was
dormant for 200 years. Then, in 1942, Kantorovich, motivated by economic problems,
solved it, earning him a Nobel Prize in Economics.

The (MP) might not even have solutions! So first of all, when a mathematician faces
a such problem, she will enlarge the domain to have solutions, just like considering
complex plane for solutions of equations, or extending pure (deterministic) strategies in
games to mixed (random) strategies to have Nash equilibrium.

Kantorovich observed that if T is a solution of (MP), then γT = μ ◦ (I,T )−1 is a
joint probability measure on X ×Y admitting μ and ν as its marginal measures, i.e.,
γT (A×Y ) = μ(A), and γT (Y ×B) = ν(B), for any A ∈B(X ), B ∈B(Y ). Therefore,
the set of all joint probability measures with μ and ν as marginal measures, denoted as
Π(μ ,ν), is larger than the set of transport maps in (MP). Note that, by (I,T ), where
I is the identity map on X , I(x) = x, we mean the map (I,T )(.) : X → X ×Y ,
(I,T )(x) = (x,T (x)), so that (I,T )−1(.) : 2X ×Y → 2X .

The Kantorovich problem (KP) is this. Find the optimal transport plan π∗ ∈
Π(μ ,ν) such that

π∗ = argmin{
∫

X ×Y
c(x,y)dπ(x,y) : π ∈ Π(μ ,ν)}

If a solution π∗ of (KP) is of the form γT = μ ◦ (I,T )−1, then, in it, T is a solution
for (MP).

The breakthrough of Kantorovich is this. First of all, unlike (MP), the (KP) always
have solutions since Π(μ ,ν) �= ∅ (the product measure μ ⊗ν is in it).

Next, the (KP) seems “solvable” since its avoids the difficulties of (MP): The objec-
tive function is linear in π , and the constraint set Π(μ ,ν) is convex.

As such, the problem can be solved by duality, i.e., changing an “inf” problem to
a “sup” problem in which constraints are written as (infinite) inequalities, suitable for
using linear programming (invented by Kantorovich himself, 1942, of course, with the
help from George B. Danzig). See Villani [11,12].

The following Sections will explain this program, at least as a gentle introduction,
to obtain a constructive theory of multivariate quantiles functions.

2 A Closer Look at Quantiles

We are familiar with the notion of (univariate) quantiles when considering order statis-
tics, say, in extreme value theory.

While in practice, we are mainly concerned with distributions of order statistics
which are derived soly from the distribution of the population, you may not notice the
extremely important role played by the quantile function of the population, although it
is derived from the population distribution.
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Since the notion of quantile function is essential in various contexts, such as risk
analysis, regression models, but until recently is only available for univariate case, i.e.,
for real-valued random variables, it is desirable to extend it to the multivariate case, i.e.,
for random vectors, for applications.

The search for such an extension finally arrived (in 2016) by looking closely at
the univariate quantile function, triggered by a paper of Brenier [1]. The buzz words
in his paper are “polar factorization” and “Monotone rearrangement” of vector-valued
functions In fact, this paper first triggered a return to Optimal Transport Theory (OT)
since it is precisely in the setting of OT. Specifically, Brenier’s paper is about extension
of the above buzz words from random variables to random vectors.

Let X1,X2, ...,Xn be a random sample drawn from a population X , i.e., the X ′
js are

random variables independent and identically distributed (i.i.d.) as X . These values of
X are in R in any possible order. Suppose we are interested in ordering these observed
values of X , i.e., forming the order statistic X(1) ≤ X(2) ≤ ... ≤ X(n), we can just do it!

Can we do it in some more “sophisticated” way? i.e., providing a map that realizes
such an ordering.

Note that the order statistic X(1) ≤ X(2) ≤ ... ≤ X(n) is a monotone rearrangement
of the values X1,X2, ...,Xn, i.e., arranging the unordered set {X1,X2, ...,Xn} into the
ordered set {X(1) ≤ X(2) ≤ ... ≤ X(n)}. Of course, this is possible since R is totally
ordered. Clearly, there is only one such monotone rearrangement.

It is right here that quantile function is related to order statistics. The empirical
distribution of the sample is

Fn(x) =
1
n

n

∑
j=1

1(−∞,x](Xj)

Let the quantile function of Fn be F [−1]
n . Then

F [−1]
n (u) = X( j) for u ∈ [

j −1
n

,
j
n
)

Thus, the quantile function F [−1]
n (.) (of Fn) realizes the monotone rearrangement of

the observed values of X , noting that F [−1]
n (.) is a monotone non decreasing function.

In fact, we do get a stronger representation than F [−1]#du = dF , a weak represen-
tation of X , sufficient for simulation purpose, namely: there exists a random variable V
distributed uniformly on [0,1] such that X

a.s.= F [−1](V ), a polar factorization of X .
Thus, in summary, the quantile function F [−1] : [0,1] → R provides a polar factor-

ization and a monotone rearrangement for the random variable X .
The next question is: What is the counterpart of F [−1] in higher dimensions?, i.e.,

for X being a random vector, taking values in R
d , with d > 1.

The answer was given in Brenier’s paper, and later generalized by McCann [7].
Now in the Text Approximation Theorems of Mathematical Statistics (Robert J. Ser-

fling,1980), Serfling started (p. 2–3) as: Let F(.) : Rd → [0,1] be the (multivariate) dis-
tribution function of a random vector X = (X1,X2, ...,Xd), defined on (Ω ,A ,P). The
mean of X is defined as the mean vector EX= (EX1,EX2, ...,EXd).



An Invitation to Multivariate Quantiles Arising from Optimal Transport Theory 7

How about quantiles? Well, without explaining why, he considered only the uni-
variate case (d = 1).

We may ask: Why Serfling did not “consider”, in a parallel way with distribution
functions, the notion of quantiles for multivariate distribution functions (but only talked
about means of random vectors)? It turns out that this definition of quantile functions
for univariate distribution functions is “good” for simulations.

The simulation of a univariate random variable X with distribution function F is
based on the fact that X and F [−1](U), where U is the random variable uniformly dis-
tributed on the unit interval [0,1], have the same distribution F . As such, if U = u, then
X = x = F [−1](u) is a simulated observation of X .

Remark. As far as simulation of random variables is concerned, we only need the

“weak” representation of X , namely X
D= F [−1](U), for any F , and uniformly distributed

U on [0,1]. This representation is termed “weak” since the two random variables X and
F [−1](U) are “equal” only in distribution, i.e., having the same distribution, and not
necessarily equal almost surely (with probability one) which is a stronger condition. We
will see later that there exists some random variable V ∼ U such that X

a.s.= F [−1](V ).

How about simulations of random vectors? i.e., how to simulate random vectors
when we do not have the counterpart notion of quantiles for multivariate distribution
functions? In the above mentioned Text, simulation of random vectors is carried out as
follows (based on univariate quantile functions only). We elaborate on it in the simple
case of dimension two.

Let X = (X1,X2) with marginal distribution functions F1,F2, and joint distribution
F . The simulation of X = (X1,X2) is based on the Rosenblatt transformation (1952).
Let F(x1,x2) = F1(x1)F(x2|x1), define (x1,x2) ∈ R

2 → (u1,u2) ∈ [0,1]2 by

u1 = F1(x1),u2 = F(x2|x1)
The intent is to generate u1,u2 independently from a uniform distribution du on

[0,1], then solve the above system of equations (with known marginal and conditional

distribution functions of course) to get x1 =F [−1]
1 (u1), x2 =F [−1]

X2|X1
(u2), and “view” them

as simulated values for X1,X2. This can be justified if, e.g., F [−1]
1 ◦F1 = I (identity), and

X1,X2 obtained this way is distributed as F . This requires that F is continuous, so that
the Rosenblatt transformation produces (U1,U2) uniformly on [0,1]2.

If X1,X2 are independent, i.e., F(x1,x2) = F1(x1)F2(x2), then the simulation process

is justified since then the vector (F [−1]
1 (u1),F

[−1]
X2

(u2))′ : [0,1]2 → R
2 pushes the uniform

measure du on [0,1]2 to dF on R
2.

Thus, (F [−1]
1 (.),F [−1]

X2
(.))′ acts like a multivariate quantile function QF(.) : [0,1]2 →

R
2: monotone and QF#du= dF .
As a final note, observe that for d = 1, the univariate distribution function F and

its quantile function F [−1] (of a real-valued random variable X) are referred to as its
rank and quantile functions, respectively. If F is continuous, then F(X) is uniformly
distributed on [0,1]. By McCann’s theorem applied to d = 1, F [−1] is the (a.e.) unique
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monotone map from [0,1] to R such that F [−1]#du = dF , and if, in addition, F has a
finite second moment, then

F [−1] = argmin{E(U −T (U))2 : T#du = dF}
where U is the random variable uniformly distributed on [0,1].
McCann’s theorem for d ≥ 1 affirms the existence and uniqueness of a “multivari-

ate” quantile function QF(.) : [0,1]d → R
d , monotone and QF#du = dF , and if, in

addition, F has a finite second moment, then

QF = argmin{E||U −T (U)||2 : T#du= dF}

3 Characterization of Univariate Quantile Functions

The notion of (univariate) quantiles is useful in various statistical analyses, mainly in
univariate quantile regression (Koenker and Bassett [5]) which was developed based on
characterizations of other quantities (for computation purposes).

The application of univariate quantile functions to simulations turns out to have a
deeper effect.

Recall that a real-valued random variable X is a measurable map from Ω → R,
where its source of uncertainty is the “background” probability space (Ω ,A ,P) and
its range space is the measurable space (R,B(R)), and where X represents a measure-
preserving map transporting the probability measure P, from its source of uncertainty,
to its “law” PX on its observation space (R,B(R)), i.e. P ◦ X−1 = PX . We also denote
the law of X as PX = dF , where dF((−∞,x]) = F(x).

Is there some other concrete and equivalent source of uncertainty that can replace
(Ω ,A ,P) and a measure-preserving map T (.) from it to (R,B(R),PX )?

We are asking for another representation of X . The following is well known in
simulations. If F [−1](.) : [0,1] → R is the univariate quantile function of X (or of F),
and U is a random variable uniformly distributed on [0,1], then the random variable

F [−1] ◦U : Ω → R has the same distribution F , i.e., X
D= F [−1] ◦U . Thus, if we know F ,

we can simulate X , i.e., obtaining simulated data from X : pick a random number u in
[0,1], then F [−1](u) = x is an outcome from X . Note that this “concrete” specification
of X (with its source on uncertainty being ([0,1],B([0,1],du)) is used for simulation
purpose.

Proof of X
D= F [−1] ◦U . Let’s clarify first the following. If Y = T (X), then

P(Y ∈ A) = P(T (X) ∈ A) = P(X ∈ T −1(A))

so that PY (A) = PX (T −1(A)). Thus, X
D= F [−1] ◦U means, for any A ∈ B(R), we

have dF(A) = du((F [−1])−1(A), where du denotes the probability measure of U.
As stated earlier, for probability measures on (R,B(R)), it suffices to consider A of

the form A = (−∞,x]. We have
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(F [−1])−1((−∞,x]) = {u ∈ [0,1] : F [−1](u) ∈ (−∞,x]} =

{u ∈ [0,1] : F [−1](u) ≤ x} = {u ∈ [0,1] : F(x) ≥ u}
since

F [−1](u) ≤ x ⇐⇒ F(x) ≥ u

therefore,

du{(F [−1])−1((−∞,x])} = du{{u ∈ [0,1] : F(x) ≥ u}} =

F(x) = dF((−∞,x])

Thus, we have the“concrete” probability space ([0,1],B([0,1]),du), replacing the
abstract (Ω ,A ,P), and the polar factorization X = F [−1](U) (by analogy of polar fac-
torization of complex numbers, or of matrices) which requires the quantile function
F [−1](.) : [0,1] → R, which is a measure-preserving map, pushing the probability mea-
sure du on [0,1] to the probability measure dF on R. (in symbol dF = (F [−1])#du).

Remark. Following the standard notations in Optimal Transport Theory, when a map
T is a push forward for a probability μ to a probability measure ν , i.e., ν = μT −1, we

write ν = T#μ . Thus, X
D= F [−1](U) means dF = F [−1]#du.

The univariate quantile function F [−1] satisfies two properties:

(1) F [−1] is monotone (non decreasing), and hence the derivative of some convex func-
tion,

(2) dF = (F [−1])#du: it pushs du forward to dF .

These properties are well known, but what is “new” is that they characterize uni-
variate quantile functions, in the sense that they are obtained from an “abstract” setting,
without evoking the total order of the underlying space R in the explicit definition of
F [−1].

Specifically, there is only one map T (.) : [0,1]→ R satisfying these two conditions.
In other words, if a map T (.) : [0,1]→ R is monotone (non decreasing) and dF = T#du,
then it is F [−1](.).

Of course, that remains to be proved. But before that, let’s announce what we are
going to proceed. Once we prove this characterization of F [−1], we can use it to gen-
eralize to multivariate quantile functions of random vectors, without bother about the
lack of a total order relation on R

d when d > 1, thanks to Optimal Transport Theory (it
is precisely because of OT that Econometricians discover the above characterization of
univariate quantile function for generalization to higher dimensions which is so needed
in applications, but for so long, no such a generalization is available).

Specifically, the two characteristic properties of the univariate quantile function
F [−1] can be addressed on R

d when F [−1] is replaced by a map QF(.) : [0,1]d → R
d

which is monotone (non decreasing) as: for any x,y ∈ [0,1]d ,
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<QF(x)−QF(y),x− y> ≥ 0

where <., .> is the scalar product on R
d . Clearly, the property (2) is meaningful on

any probability spaces.
Note that the property (1) is very important! even, usually we do not emphasize it.

Being a monotone non decreasing function, F [−1] is qualified as the derivative a some
convex function. For example, if F [−1](u) = u+1, then it is the derivative of the convex
function 1

2 (u+1)2. Note that, for a convex function ϕ(.) : Rd → R, its gradient (vector
of partial derivatives) ∇ϕ(.) : Rd → R

d is monotone non decreasing in the above sense.
So what we will do next in this Section is to show the following. Consider the prob-

ability spaces ([0,1],B([0,1]),du), and (R,B(R),dF). While we know that F [−1](.) :
[0,1] → R is a map having two properties (1), (2) above, we need to show two more
things, namely its uniqueness, and optimality. Why? Well, our purpose is to character-
ize F [−1] in a setting (which will be Optimal Transport/OT) suitable for generalizing to
higher dimensions.

Without exaggeration, it can be said that, like Copulae, OT theory will invade statis-
tics of this 21st century!

Uniqueness of F [−1]. Suppose T is a monotone non decreasing map and T#du = dF .
We are going to show that T = F [−1] so that F [−1] is unique.

Proof. By monotonicity of T , we have

(−∞,x] ⊆ T −1((−∞,T (x)])

so that

Fdu(x) = du(−∞,x] ≤ du{T −1((−∞,T (x)]) = dF(−θ ,T (x)] = F(T (x))

and T (x) ≥ F [−1](x).
Suppose the inequality is strict. This means that there exists εo > 0 such that

F(T (x)− ε) ≥ Fdu(x) for every ε ∈ [0,εo]. Also, since T −1((−∞,T (x)− ε) ⊆ (−∞,x),
we have F(T (x)− ε) < Fdu(x). Thus, F(T (x)− ε) = Fdu(x) for any ε ∈ [0,εo]. Note
that F(T (x)− ε) is the value of F which F takes on an interval where it is constant.
But these intervals are a countable quantity, so that the values y j of F on these inter-
vals are also countable. Therefore, the points x where T (x)> F [−1](x) are contained in
∪ j{x : Fdu(x) = y j} which is du–negligible (since du is atomless). As a consequence,
T (x) = F [−1](x), du–almost everywhere.

Remark. More generally, if μ ,ν are Borel probability measures on R, with supports
X ,Y ⊆ R, respectively, with μ atomless, there is a unique, monotone non decreasing

transport map, namely x → F [−1]
ν (Fμ(x)).

Optimality of F [−1]. A transport map (monotone or not) T (.) : [0,1] → R is a measure-
preserving map, i.e., T#du = dF. By optimality, we mean the following. Let c(., .) :
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[0,1]×R → R
+ be a “cost” function (of transporting elements of [0,1] to elements of

R). A transport map T ∗ is optimal, with respect to c if

T ∗ = argmin{
∫ 1

0
c(u,T (u))du : T : T#du = dF}

If the cost function is of the form c(u,x) = h(u − x) with h(.) : R → R strictly
convex (such as h(y) = y2), then, independent of c, F [−1] is optimal, i.e., we got an
explicit formula for the unique monotone transport map, in this one-dimensional case.
We will illustrate this via an example here. With a bit of Optimal Transport theory in
the next Section, we will provide a general theorem in higher dimensions, together with
a dual formulation for the computation of the optimal solution.

Let ([0,1],μ = du), and ([1,2],ν = dv), where dv is uniform on [1,2] (dv = dF),
and F [−1](.) = [0,1]→ R: F [−1](x) = x+1. We will check that it is the unique monotone
and optimal map. Clearly, it is monotone (and is the derivative of some convex function,

e.g., 1
2 (1+x)2). That F [−1]#du = dv because X

D= F [−1](U) whereU � du, and X � dv.
By the above proof of uniqueness, it is the only monotone map pushing du on [0,1] to
dv on [1,2].

It remains to show that it is optimal with respect to convex cost function, such as
c(., .) : [0,1]× [1,2] → R

+, c(u,v) = h(u− v), with h(.) convex, e.g., h(x) = x2.
Let T (.) : [0,1] → [1,2] be a transport map, i.e., T#du = dv, monotone or not. The

total cost of T is

C(T ) =
∫ 1

0
(u−T (u))2du

We have, using Jensen’s inequality (h(EX) ≤ Eh(X)):

C(T ) =
∫ 1

0
h(T (x)− x)dx ≥ h[

∫ 1

0
(T (x)− x)dx] =

h[
∫ 1

0
T (x)dx−

∫ 1

0
xdx] =

Note that the following are non-monotone transport maps: T (x) = 2− x, and

S(x) =
{

x+ 3
2 for x ∈ [0, 12 ]

2− x for x ∈ [ 12 ,1]

with

C(T ) =
∫ 1

0
(x−T2(x))2dx =

∫ 1

0
(2x−2)2dx =

4
3

C(S) =
∫ 1

0
(x−T3(x))2dx =

∫ 1
2

0
(
3
2
)2dx+

∫ 1

1
2

(2x−2)2 =
31
24

whereas
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C(F [−1]) =
∫ 1

0
(x−T1(x))2dx = 1

which is the smallest.
Note that, in the above calculations, we only use the fact that h(.) is (strictly) convex,

but not its specific form. Thus, in fact, F [−1] is optimal with respect to any convex loss.

4 Optimal Transport and Multivariate Quantiles

We elaborate a bit on the theory of Optimal Transport from which to derive multivariate
quantile functions.

As the polar factorization of a real-valued random variable is X
D= F [−1](U), we are

looking for the polar factorization of a random vector X D= Q(U).
We are interested in the question: What could be the counterpart of a univariate

quantile function F [−1] in higher dimensions, i.e., for a multivariate distribution function
F on R

d , with d > 1? The lack of a total order on R
d seems responsible for unsuccessful

attempts in the past.
We are interested in quantile functions of distribution functions for a variety of

reasons. We know very well what is the quantile function F [−1] explicitly of a univari-
ate distribution function F of a random variable X , for arbitrary distribution function,
heavy-tailed or not.

The characterization of F [−1] in Sect. 3 serves as a prototype for a generalization to
higher dimensions. Thus, first, we call upon McCann’s theorem to have the existence of
a unique measure-preserving map T : [0,1]d → R

d , T#du= dF , where du is the uniform
probability measure on [0,1]d , and F is an arbitrary multivariate distribution function
on R

d , with T being monotone. Then, we rely upon Brenier’s theorem to emphasize
that such T in MacCann’s theorem is “optimal” in Monge’s problem (MP) which, in
fact, also optimal in Kantorovich extended problem (KP). While (KP) is “solvable”, we
need a dual formulation to get the solution, via linear programming, and finally obtain
a computable form of our desired transport map which will be our multivariate quantile
function for the multivariate distribution function F on R

d .
In one dimension, the quantile function F [−1] of the univariate distribution function

F (of a real-valued random variable X) is the unique monotone map from [0,1] to R

such that X
D= F [−1](U) (a polar factorization of X), where U is the random variable

uniformly distributed on [0,1], i.e., with FU (u) = u, or with probability measure du on
[0,1], or equivalently dF = du◦ (F [−1] )−1, in symbol. F [−1]#du = dF .

Quick question: Is there a polar factorization for F(.) :Rd → [0,1], with d > 1? The
answer is yes!

McCann’s Theorem. There exists a unique (du-a.e., where du is the uniform probability
measure on [0,1]d) measurable map QF(.) : [0,1]d → R

d which is the gradient of some
convex function ϕ(.) : [0,1]d → R (hence monotone) and such that QF#du = dF (i.e.,
du◦Q−1

F (.) = dF(.)).
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Thus, if we let X be the random vector with multivariate distribution function F on
R

d , and U being the random vector uniformly distributed on the unit cube [0,1]d , then
we have X

D= QF(U).
Note that the multivariate quantile function QF of F on R

d exists for any distri-
bution functions F (just like in dimension 1 where F [−1] is defined regardless whether
dF has finite moments or not). In dimension 1, F [−1](.) : [0,1] → R is monotone and
F [−1]#du = dF , it is ∇ϕ in view of the uniqueness in McCann’s theorem.

When dF has finite second moment, ∇ϕ =F [−1] in McCann’s theorem is “optimal”,
with respect to square loss function, in the following Monge’s problem (MP):

∇ϕ = argmin{
∫ 1

0
(x−T (x))2dx : T#du = dF}

as we have seen in Sect. 3. In fact, F [−1] can be determined as ∇ϕ in the MP above. In
fact, this situation is general (by Brenier’s theorem).

If we are just interested in the existence of vector quantiles (i.e., quantile functions
of random vectors) then McCann’s theorem is enough. However, if we want to use vec-
tor quantiles to conduct, say, multivariate quantile regression, or to define multivariate
(financial) risk measures, then their existence is not enough! We need to determine them
explicitly for applications.

For dimension d > 1, the situation is not simple (!) as the Monge’s minimization is
somewhat intractable because its objective function is not linear in T , and the constraint
set {T : T#du = dF} is not convex. We need to avoid these difficulties by embedding
(MP) into the Kantorovich problem (KP) to use linear programming in its dual formu-
lation. Such a program will help us to “compute” multivariate quantile functions. Thus,
we need to evoke a bit of Optimal Transport (OT) theory.

Roughly speaking, observe that if T is in the constraint set of (MP), then du ◦
(I,T )−1 is a joint probability measure on [0,1]× R having du,dF as marginal mea-
sures, we consider the (larger) convex constraint set Π(du,dF) of all joint measures
with du,dF as marginals, and the linear objective function (in π ∈ Π(du,dF) )

π →
∫

[0,1]×R

c(x,y)dπ(x,y)

and address the Kantorovich problem (KP)

min{
∫

[0,1]×R

c(x,y)dπ(x,y) : π ∈ Π(du,dF)}

which is “tractable”, thanks to duality. If the (KP) has a solution of the form πT =
du◦ (I,T )−1 then T will be a solution of the (MP).

To complete our agenda description, here is what we will proceed. The (MP) is
enlarged to (KP) in view of

{T : T#du = dF) ⊆ Π(du,dF)

by the identification of T with πT = du ◦ (I,T )−1. While the (KP) is linear under
convex constraint set, its constraint set is not expressed as inequalities (in infinitely
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dimensional form). Thus, we need to use duality, i.e., relating the “inf” problem of
(KP) to a “sup” problem whose constraint set is expressed as inequalities, and then
using linear programming to solve it, noting that Kantorovich is the inventor of linear
programming (for solving Monge’s original problem).

While we seek a candidate for a multivariate quantile function of a distribution
function F(.) : R

d → [0,1], generalizing the well-known univariate quantile function
F [−1] : [0,1] → R which is characterized as the unique monotone map pushing the uni-
form probability measure du on [0,1] to dF , namely a unique map QF(.) : [0,1]d → R

d ,
monotone and pushing the uniform probability on [0,1]d to the probability measure dF
on R

d , we have McCann’s theorem affirming the existence and uniqueness of a such
candidate, we still need to obtain it constructively for applications.

The roads leading to them are as follows. First, we extend (MP) to (KP) to make
sure that there are solutions for (KP) which came from solutions of (MP), i.e., of the
form γT = (I,T )#du. For the strict convex loss c(x,y) = h(x − y) with h(t) = t2

2 or t2,
it turns out that there exists uniquely (du-a.e.) an optimal γT for (KP), for which, the
associated T is optimal for (MP). How to determine that T? (which will be our desired
QF ). We need results from duality. The unique optimal pair (ϕ,ϕ∗) of the dual problem,
where ϕ∗ is the c–transform of ϕ , is related to T as T (x) = x− (∇h)−1(∇ϕ(x)) (which
is the gradient of the convex function x → x2

2 − ϕ(x)). Thus, T (.) is determined once
we can determine ϕ in the dual problem.

Example. Let μ = dF and ν = dG on R, and c(x,y) = (x − y)2. Then π∗ =
(F [−1],G[−1])#du, for du uniform on [0,1], is optimal for (KP). Thus, for dF = du, we
have π∗ = (I,G[−1])#du, i.e., π∗ = γT = (I,T )#du, with T = G[−1] optimal for (MP).

As we have elaborated in Sect. 3, the concept of a “transport map” appeared already
from the beginning of probability theory. Indeed, if X is a (real-valued) random variable,
defined on a probability space (Ω ,A ,P), then X acts like a map from Ω to the real
line R (the observed values of X are “outcomes” or results from what happened in
Ω ), transporting the probability measure P on Ω to its law PX on R, in the sense that
PX = PX−1, in symbol X#P = PX .

In fact we have a more concrete transport map which is the (univariate) quantile
function F [−1] which is a map transporting the uniform probability measure du on [0,1]
to PX (or dF) on R, i.e., F [−1]#du = dF (the polar factorization of X). In both settings,
we have a map which preserves probabilities. In other words, X : Ω → R, and F [−1] :
[0,1] → R are measure-preserving maps.

What is optimal transport problem? In 1781 Gaspard Monge considered the fol-
lowing problem. Let (X ,μ),(Y ,ν), withX ,Y ⊆ R

d , say, be two (Borel) probability
spaces, and c(., .) :X ×Y → R

+ be a cost function (of transporting elements ofX to
elements of Y ). Find the best (optimal) preserving map T ∗ which transports μ (mass
distribution) to ν , i.e., T ∗#μ = ν , in the sense of minimizing the total transport cost,
i.e.,

T ∗ = inf{
∫

X
c(x,T (x))dμ(x) : T : T#μ = ν}

In our analysis, we can take X = Y = R
d , ν = dF the probability measure asso-

ciated with the multivariate distribution function F(.) : R
d → [0,1], and μ = du, the
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(non atomic) uniform probability measure on [0,1]d which is considered as on R
d , as

follows.
For d = 1, the distribution of the variable U , uniformly distributed on [0,1] has the

distribution FU (.), and its associated probability measure dFU (−∞,x] = FU (x) = x, for
x ∈ [0,1].

For d > 1, if U is uniformly distributed on [0,1]d , then its distribution function
FU (.) : [0,1]d → [0,1] is

FU (u1,u2, ...,ud) =
d

∏
j=1

u j for (u1,u2, ...,ud) ∈ [0,1]d

i.e., dFU is the product measure with uniformmarginals on [0,1], a special d–copula.
We have seen an example, in Sect. 3, of this problem. Specifically, if (X ,μ),(Y ,ν)

are ([0,1],du) (a nonatomic probability measure with finite second moment), and
(R,dF) (an arbitrary probability measure), respectively, then the Monge’s optimal
transport map with respect to a convex loss function, e.g., c(x,y) = (x− y)2, is F [−1].

Moreover, the optimal transport map F [−1] : [0,1] → R is an unique monotone non
decreasing map, qualifying as the derivative of some convex function on [0,1].

Let’s reexamine this example again. We know in advance that the Monge’s solution
must be F [−1] since the quantile function F [−1] (x) = x+1 (where F(.) is the uniform
distribution function on [1,2]) satisfies the two basic properties of a monotone optimal
map, and in view of the uniqueness of such a map. But can we actually get that explicit
optimal map without knowing the notion of univariate quantile functions? and “define”
F [−1] as such?

Answering the above question opens the door for defining and determining multi-
variate quantile functions.

From Monge to Kantorovich. Since we are only interested in defining multi-
variate quantile functions, we will consider only two specific probability spaces
([0,1]d ,B([0,1]d),du) and (Rd ,B(Rd),dF), where du is the uniform probability mea-
sure on [0,1]d , with uniform distribution function FU on [0,1]d , and dF is the probability
measure associated with the multivariate distribution function F on R

d .
In terms of random variables, we refer to U as the uniform random vector with

distribution FU , and X as the random vector with distribution function F .
We will not need to consider the general theory of Optimal Transport (OT).
For dimension d = 1, we have the explicit form of the univariate quantile function

F [−1] (which is the “solution” of Monge’s problem for convex loss functions), and, we
will have existence and uniqueness of its counterpart in any dimension d > 1, without
evoking OT. However, for computations of Monge’s solutions in higher dimensions, we
need to address them in the setting of OT, in order to use linear programing in a dual
formulation. Thus, we will mention a bit of OT which is beneficial in larger contexts.

The Monge’s problem can be extended to a more general formulation (due to Kan-
torovich) as follows. Let (X ,μ), (Y ,ν) be Borel probability spaces withX , Y ⊆ R

d .
Let c(., .) : X × Y → R

+ be a cost function. Then the solution problem to the
Monge’s problem is an optimal transport map T ∗(.) :X → Y , i.e.,
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T ∗ = argmin{
∫

X
c(x,T (x)dμ(x) : T : T#μ = ν}

In general, Monge’s problem might not even have solutions. And when it does have
solutions, it is not easy to compute them, because the objective function is not linear,
and the constraint set is not convex.

The Kantorovich’s reformulation avoids these difficulties.
Kantorovich’s formulation is based on the idea of enlarging Monge’s problem so

that, first of all, it always has solutions. This is somewhat similar to the introduction of
complex numbers, or more closely to von Neumann’s mixed strategies in game theory
(extending pure (determinist) strategies to random strategies).

Observe that, if T is a transport map, i.e., T#μ = ν (μT −1(.) = ν(.)), then, denoting
by I the identity function on X , γT = (I,T )#μ is the probability measure on X × Y
admitting μ ,ν as marginal measures.

Remark. The map (I,T ) :X → R
2, is defined as (I,T )(x) = (x,T (x)) ∈ R

2.

The joint measure γT = (I,T )#μ is characterized as: for any f (.) :X × Y → R
+,

we have
∫

X ×Y
f (x,y)dγT (x,y) =

∫

X
f (x,T (x))dμ(x)

Proof. Use “standard argument of measure theory”, starting out with f being an indi-
cator function, i.e., f (x,y) = 1A×B(x,y). Then we have

∫

X ×Y
f (x,y)dγT (x,y) =

∫

X ×Y
1A×B(x,y)dγT (x,y) =

∫

A×B
dγT (x,y) =

dμ(I,T )−1(A×B) = dμ(A∩T −1(B)) =
∫

X
1A×B(x,T (x))dμ(x)

Indeed,

(I,T )#μ(A×Y ) = μ(I,T )−1(A×Y ) = μ{x ∈ X : (I,T )(x) ∈ A×Y } =

μ{x ∈ X : (x, ,T (x)) ∈ A×Y } = μ{x ∈ X : x ∈ A} = μ(A)

and

(I,T )#μ(X ×B) = μ(I,T )−1(X ×B) = μ{x ∈ X : (I,T )(x) ∈ X ×B} =

μ{x ∈ X : (x, ,T (x)) ∈ X ×B} = μ{x ∈ X : x ∈ X ,T (x) ∈ B} =

μ{x ∈ X : x ∈ X ,T (x) ∈ B} = μ{x : x ∈ T −1(B)} = ν(B)
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Thus, if c(., .) :X × Y → R
+ be a given cost function, we have

Vc(γT ) =
∫

X ×Y
c(x,y)dγT (x,y) =

∫

X
c(x,T (x)dμ(x) =Vc(T )

where Vc denote the value of the transport plan γT and of the transport map T , with
respect to c.

Thus, Monge’s transport maps are special cases of transport “plans” (i.e., joint prob-
ability measures onX × Y having μ ,ν as marginals).

Thus, if we denote by Π(μ ,ν) the set of joint probability measures on X × Y
having μ ,ν as marginals, then we enlarge the setting of Monge’s problem (MP) in
which Π(μ ,ν) is the solution set for the Kantorovich problem (KP):

min{
∫

X ×Y
c(x,y)dπ(x,y) : π ∈ Π(μ ,ν)}

which always has solutions since Π(μ ,ν) �= ∅ (the product measure μ ⊗ ν ∈
Π(μ ,ν)).

Note that if γT is a solution for (KP), then T is solution for (MP).
For example, if we take μ = du, and ν = dF in dimension 1 (i.e., on R), then γ =

du ◦ (I,F [−1])−1 ∈ Π(μ ,ν), noting that the identity I on [0,1] is the quantile function
of the uniform distribution.

Note that the dependence structure of the random variables U (uniform on [0,1]
with distribution function FU (u) = u) and X (with distribution function F) in the polar
factorization X = F [−1](U) is that U and X are comonotone, i.e., they go up or down
together (the subset {U(ω),X(ω)) : ω ∈ Ω} is totally ordered in R

2, which is the sub-
set {(x,y) ∈ R

2} such that, for any, (x,y),(x′,y′) in it, we have <x − x′,y − y′> ≥ 0).
According the Sklar’s theorem, U and X are comonotone if and only if the copula of
their dependence structure is C (u,v) = u ∧ v. This can be seen as follows. The joint
measure of du,dF is γ = du◦ (I,F [−1])−1, so that the associated joint distribution func-
tion of (U,X) is

H(a,b) = P(U ≤ a,X ≤ b) = γ((−∞,a]× (−∞,b])

then

H(a,b) = dH((−∞,a]× (−∞,b]) = du(I,F [−1])−1((−∞,a]× (−∞,b]) =

du{u : u ≤ a,F [−1](u) ≤ b} = du{u ≤ a,F(b) ≥ u} =

du{u : u ≤ a∧F(b)} = a∧F(b) = FU (a)∧F(b)

so that U and X are comonotone, or, by abuse of language, their joint probability
measure γ = du◦ (I,F [−1])−1 is comonotone.

Therefore, if T is a monotone transport map then its corresponding transport plan
γT = du◦ (I,T )−1is comonotone.
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Remark. In fact, the above can be extended to two variables, namely the joint measure

γ = (F [−]
Y ,F [−1]

X )#du ∈ Π(dFY ,dFX ) is comonotone.

Indeed, let’s verify first that γ = (F [−1]
Y ,F [−1]

X )#du ∈ Π(dFY ,dFX ). We have

γ(A×R) = du((F [−1]
Y ,F [−1]

X )−1(A×R) =

du{u ∈ [0,1] : F [−1]
Y (u),∈ A,F [−1]

X (u) ∈ R} =

du{u ∈ [0,1] : F [−1]
Y (u),∈ A} = F [−1]

Y #du(A) = dFY (A)

Similarly,

γ(R×B) = dFX (B)

Next, we have

H(a,b) = P(Y ≤ a,X ≤ b) = γ((−∞,a]× (−∞,b]) =

du{u ∈ [0,1] : F [−1]
Y (u) ≤ a,F [−1]

X (u) ≤ b} =

du{u ∈ [0,1] : FY (a) ≥ u,FX (b) ≥ u} =

du{u ∈ [0,1] : u ≤ FY (a)∧FX (b)} = FY (a)∧FX (b)

Remark. The space Π(du,dF) can be specified as follows. For F(.) continuous, each
γ ∈ Π(du,dF) is indexed by a (binary) copula C , say γC , since the joint distribution
function HC of γC , i.e., γC = dHC , is HC (u,x) = C (u,F(x)). Thus, each copula C
determines a joint measure γC ∈ Π(du,dF). In particular, for C (u,v) = u ∧ v, we get
γC = du◦ (I,F [−1])−1 (corresponding to the extremal copula). If F(.) is not continuous
(e.g., it’s an empirical distribution) we must include sub-copulas.

For μ ,ν ∈ P(R), set of Borel probability measures on R, a joint measure γ ∈
Π(μ ,ν) is such that γ(A × R) = μ(A), γ(R × B) = ν(B). For example, let C be a
bivariate copula, then γC ∈ Π(μ ,ν) is determined by γC = dHC , where HC (x,y) =
C (Fμ(x),Fν(y)). For μ ,ν ∈ P(Rd), with d > 1, this procedure will need the general-
ization of copulas to vector copulas.

The above characteristics of the univariate quantile function F [−1] is considered
as its definition, i.e., let F be an arbitrary (univariate) distribution function, then its
(univariate) quantile function is the unique monotone non decreasing optimal transport
map between ([0,1],du) and (R,dF) with respect to a convex loss function.

What we have in mind is this. Let (X ,μ),(Y ,ν), with X ,Y ⊆ R
d , d > 1, where

(X ,μ) = ([0,1]d ,du), (Y ,ν) = (Rd ,dF), and c(x,y) = ||x − y||2. If there exists an
unique gradient ∇ϕ (of some convex function (not unique) ϕ : [0,1]d → R) which is
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the optimal transport, then ∇ϕ is defined as the multivariate quantile function of F ,
noting that the gradient ∇ϕ is monotone non decreasing as the generalization of the
same concept in one dimension, i.e., for any x,y ∈ R

d , we have

<∇ϕ(x)−∇ϕ(y),x− y> ≥ 0

where <., .> denotes the scalar product on R
d .

Of course such a result is only an existence result. We need to find ways to compute
it, at least for applications!

Notes on Convex Functions. A function f (.) : R
d → R is said to be convex it for any

x,y ∈ R
d and t ∈ [0,1] we have

f (tx+(1− t)y) ≤ t f (x)+(1− t) f (y)

it is strictly convex if the above inequality is strict.
A convex function is a..e. differentiable. In dimension 1, the graph of a convex func-

tion lies above any tangent to it, and hence its derivative is monotone non decreasing.
For d > 1, the whole graph of f (.) lies above its tangent hyperplane at any xc where it
is differentiable, so as a consequence, it gradient is monotone in the above sense.

The Kantorovich’s reformulation (of Monge’s problem) is this. Find an optimal
transport plan, i.e., a joint measure π∗ ∈ Π(μ ,ν) such that

π∗ = argmin{
∫

X ×Y
c(x,y)dπ(x,y) : π ∈ Π(μ ,ν)}

Now the problem seems solvable since the objective function is linear in π , and the
constraint set is convex.

Note that, although, as far as quantile functions are concerned, we are interested
in transport maps (not necessary transport plans), we still need to evoke Kantorovich’s
formulation in order to compute multivariate quantile functions.

Duality. In order to solve the “inf” problem of (KP) we will transform it into a “sup”
problem (this procedure is referred to as duality, where the “inf” is the primal prob-
lem, and the “sup” is dual problem) where the constraints in the “sup” problem can
be expressed as inequalities (In infinite dimensions). The relations between the primal
and dual problems will allow us to get solution for the primal problem from the dual
problem.

For π ∈ Π(μ ,ν), let

V (π) =
∫

X ×Y
c(x,y)dπ(x,y)

we are going to relate the (KP) P = inf{V (π) : π ∈ Π(μ ,ν)} to a “sup” problem.
For that, first observe that, for suitable function ϕ,ψ defined on X ,Y , respectively,
we have

∫

X ×Y
[ϕ(x)+ψ(y)]dπ(x,y) =

∫

X
ϕ(x)dμ(x)+

∫

Y
ψ(y)dν(y)

Proof. Use “standard argument of measure theory”!
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Thus, for ϕ,ψ such that ϕ(x)+ψ(y) ≤ c(x,y), for all x,y we have
∫

X
ϕ(x)dμ(x)+

∫

Y
ψ(y)dν(y) ≤

∫

X ×Y
c(x,y)dπ(x,y)

Consider

D = sup{
∫

X
ϕ(x)dμ(x)+

∫

Y
ψ(y)dν(y) : (ϕ,ψ) : ϕ(,)+ψ(,) ≤ c(., .)}

then clearly D ≤ P. In fact, D=P which is our desired duality. The dual formulation
has a linear objective function with inequality constraints (suitable for linear program-
ming).

The Kantorovich duality is this (1942). Let

J(ϕ,ψ) = {
∫

X
ϕ(x)dμ(x)+

∫

Y
ψ(y)dν(y)}

Then

P = inf{V (π) : π ∈ Π(μ ,ν)} = sup{J(ϕ,ψ) : ϕ(.)+ψ(.) ≤ c(., .)} = D

The sup on the right hand side is attained.
We study the duality in the case of quadratic cost c(x,y) = 1

2 ||x − y||2, when μ and
ν have finite second moments, i.e.,

∫

Rd
||x||2dμ(x)< ∞,

∫

Rd
||y||2dν(x)< ∞

so that

V (π) =
∫

Rd×Rd

||x− y||2
2

dπ(x,y) ≤
∫

Rd×Rd

||x||2+ ||y||2
2

dπ(x,y)< ∞

From the duality

inf{V (π) : π ∈ Π(μ ,ν)} = sup{J(ϕ,ψ) : ϕ(.)+ψ(.) ≤ c(., .)}
we get, for the (KP) primal problem: The left hand side admits a minimizer, i.e.,

there exists π∗ ∈ Π(μ ,ν) such that

V (π∗) = inf{V (π) : π ∈ Π(μ ,ν)}
As for the dual problem, here ϕ(x)+ψ(y) ≤ c(x,y) means

ϕ(x)+ψ(y) ≤ ||x− y||2
2

=
||x||2
2

+
||y||2
2

−<x,y>

from it, we have
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<x,y> ≤ [
||x||2
2

−ϕ(x)]+ [
||y||2
2

−ψ(x)]

Let

∼
ϕ(x) =

||x||2
2

−ϕ(x),
∼
ψ(x) =

||x||2
2

−ψ(x)

and

M =
∫

Rd
||x||2/2dμ(x)< ∞ +

∫

Rd
||y||2/2dν(x)< ∞

we have

inf{V (π) : π ∈ Π(μ ,ν)} = M − sup{
∫

Rd×Rd
<x,y>dπ(x,y) : π ∈ Π(μ ,ν)}

and

sup{J(ϕ,ψ) : ϕ(.)+ψ(.) ≤ c(., .)} = M − inf{J(ϕ,ψ) : (ϕ,ψ) ∈
∼
Θ}

where

∼
Θ = {(ϕ,ψ) : ∇x,y : ϕ(x)+ψ(y) ≥ <x,y>}

and

<x,y> ≤ [
||x||2
2

−ϕ(x)]+ [
||y||2
2

−ψ(x)]

becomes

sup{
∫

Rd×Rd
<x,y>dπ(x,y) : π ∈ Π(μ ,ν)} = inf{J(ϕ,ψ) : (ϕ,ψ) ∈

∼
Θ}

Let
∼
ϕ(x) = [ ||x||

2

2 −ϕ(x)], and
∼
ψ(y) = [ ||y||

2

2 −ψ(y)], we have the constraint
∼
ϕ(x)+

∼
ψ(y) ≥ <x,y>.

For simplicity, we just drop the symbol ∼ on the functions ϕ,ψ from our writing
(but not from our mind).

Thus, from ϕ(x)+ ψ(y) ≥ <x,y>, we have

ψ(y) ≥ <x,y>−ϕ(x) =⇒ ψ(y) ≥ sup
x

[<x,y>−ϕ(x)] = ϕ∗(y)

so that

J(ϕ,ψ) ≥ J(ϕ,ϕ∗)
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We call (ϕ,ϕ∗) a potential pair. Note that, from

ϕ∗(y) = sup
x

[<x,y>−ϕ(x)]

it follows that ϕ(x) + ϕ∗(y) ≥ <x,y>, i.e., each potential pair (ϕ,ϕ∗) ∈
∼
Θ , the

constraint set of J(ϕ,ψ).
In fact, we have

Theorem. If μ ,ν are (Borel) probability measures on R
d , with finite second moments,

then, with respect to the cost function c(x,y) = 1
2 ||x− y||2,

(i) There exists an potential pair (ϕ,ϕ∗), convex conjugate, minimizing J(ϕ,ψ) on
∼
Θ ,

(ii) If, in addition, μ ia nonatomic, there exists a unique optimal π∗ ∈ Π(μ ,ν) of the
form π∗ = γT ∗ = (IX ,T ∗)#μ , with T ∗ = ∇ϕ unique.

Comments. T ∗ is the unique minimizer of (MP), with the strict convex loss, which is the
gradient of a convex function (hence monotone non decreasing). The optimal potential
pair (ϕ,ϕ∗) is obtained from the dual Kantorovich problem.

Thus, for μ being the uniform probability du on X = [0,1]d , the (Brenier) map
T ∗ (pushing du to dF = ν) is our multivariate quantile function of the multivariate
distribution function F(.) on R

d .
The convex function ϕ is not unique, but the gradient ∇ϕ is unique (μ – a.e.).
Note also that ν = dF could be arbitrary, i.e., having finite second moment or not,

in view of McCann’s theorem.
Important: As you have said, we drop the symbol

∼
ϕ for simplicity, the ϕ in the

theorem is really
∼

ϕ(x) = ||x||2
2 −ϕ(x), i.e.,it is the pair

(
||x||2
2

−ϕ(x),
||y||2
2

−ϕ∗(y))

which solves the Monge-Kantorovich problem, and ϕ is “c–concave” in the sense

that it is the function x → ||x||2
2 −ϕ(x) that is convex. Thus, the explicit formula for T ∗

is

T ∗(x) = x−∇ϕ

which is the gradient of the convex function ||x||2
2 − ϕ(x). If the cost is c(x,y) =

h(x− y) with h(.) : R → R strictly convex, then T ∗(x) = x− (h′)−1(∇ϕ(x)).

Some Examples
(1) Let μ ,ν be probability measures of R, where μ is uniform du on [0,1], and

ν is uniform dv on [1,2]. Then μ is nonatomic, and both μ ,ν have finite second
moments.Let the cost function be c(x,y) = (x−y)2. We are going to verify that the uni-

variate quantile function F [−1]
ν (.) : [0,1] → R of Fν(.) : R → [0,1] is indeed the unique

monotone transport map solving the Monge’s problem (i.e., it is the optimal transport
map).
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We have F [−1]
ν (v) = 1+ v. It’s monotone non decreasing. It is a transport map

pushing du on [0,1] to dv on [1,2]. Indeed, let F [−1]
ν (.) = T (.), and a ∈ [1,2],

(F [−1]
ν )#du((−∞,a]) = du◦T −1((−∞,a]) = du{u : T (u) ≤ a} =

du{u : 1+u ≤ a} = du{u ≤ a−1} = a−1= ν(−∞,a])

From theory, we know that such a map F [−1]
ν (v) = 1+ v with the above two char-

acteristic properties is the unique solution of the Monge’s problem with respect to the
given quadratic loss function, i.e.,

T = argmin{
∫ 1

0
(x−S(x))2dx : S#du = dν}

so let’s verify it. We let c(x− y)2 = h(x− y) where h(.) : R → R, being h(t) = t2, a
convex function.

For any transport map S(.) : [0,1] → [1,2], we have

M(S) =
∫ 1

0
(x−S(x))2dx =

∫ 1

0
h(x−S(x))dx

Since h(.) is convex, we have, by Jensen’s inequality (h(EX) ≤ E(h(X)),

M(S) =
∫ 1

0
h(x−S(x))dx ≥ h[

∫ 1

0
(x−S(x))dx] =

h[
∫ 1

0
xdx−

∫ 1

0
S(x))dx] = h[

∫ 1

0
xdx−

∫ 2

1
ydy] = h(

1
2

− 3
2
) = h(−1) = 1=

∫ 1

0
(T (x)− x)2dx = M(T )

since T (x) = x+1. Thus, for any S such that S#μ = ν , M(S) ≥ M(T ).

Notes. In the above calculations, since S#du = dv, we have
∫ 1
0 S(u))du =

∫ 2
1 vdv.

Thus, T (x) = 1+ x = F [−1]
ν (x) in the above example is optimal for the Monge’s

problem with quadratic loss: M(T ) =min{M(S) : S#μ = ν}.
The optimal transport map T (x) = 1+x = F [−1]

ν (x) is unique by Brenier’s theorem,
since it is a monotone and optimal!. It is the derivative of the convex function g(.) :
[0,1] → R, g(x) = 1

2 (1+ x)2.
In general, Brenier’s theorem affirms that the unique monotone and optional trans-

port map T , with respect to the strictly convex h(.), is of the form

T (x) = x− (h′)−1(∇ϕ)

for an optimal potential pair (ϕ,ψ) of the Kantorovich dual problem, noting that
1
2h2(x)−ϕ(x) is the convex function such that T = ∇( 12h2(x)−ϕ(x)).



24 H. T. Nguyen

In our example, with ϕ(x) = −2x,

h(x) = x2 =⇒ h′(x) = 2x =⇒ (h′)−1(x) = x
2 =⇒

T (x) = x− (h′)−1(∇ϕ) = x− (−2)/2= x+1

(2) As for optimality in the Kantorovich formulation, here is a simple example.
Let μ = dF , ν = dG be two probability measures on R, then the transport map (joint

measure with μ ,ν as marginals) π∗ = dH, where H(x,y) is the bivariate distribution
function H(x,y) = H(x)∧G(y) is the optimal joint measure, i.e., with c(x,y) = (x−y)2,

π∗ = argmin{
∫

R2
c(x,y)dπ(x,y) : π ∈ Π(μ ,ν)}

First, let verify that π∗ = dH is indeed in Π(μ ,ν). We have

dH((−∞,a]× (−∞,b]) = H(a,b) = F(a)∧G(b)

It follows that

dH((−∞,a]×R) = F(a)∧G(∞) = F(a) = dF((−∞,a])

Similarly, dH(R× (−∞,b])) = dG((−∞,b]).
Note that, in fact, using copula, it is obvious that H(x,y) = H(x)∧ G(y) is a bona

fide bivariate distribution function on R
2, with marginal distribution functions F and G,

since C (u,v) = u∧ v is a copula!
Also, in fact, we have π∗ = du◦(F [−1],G[−1])−1, i.e., π∗ = (F [−1],G[−1])#du, where

du is uniform on [0,1]. Indeed,

du◦ (F [−1],G[−1])−1((−∞,a]× (−∞,b]) = du{u : F [−1](u) ≤ a,G[−1](u) ≤ b} =

du{u : u ≤ F(a),u ≤ G(b)} = F(a)∧G(b) = H(a,b)

As such, we have

K(π∗) =
∫

R×R

c(x,y)dπ∗(x,y) =
∫ 1

0
(F [−1](u)−G[−1](u))2du

since, in general, when π∗ = du◦ (F [−1],G[−1])−1, we have for any function ς(x,y),

∫

R2
ς(x,y)dπ∗(x,y) =

∫ 1

0
ς(F [−1](u),G[−1](u))du = inf{K(π) : π ∈ Π(μ ,ν)}

The quantity

W2(μ ,ν) = [inf{K(π) : π ∈ Π(μ ,ν)}] 12 = [
∫ 1

0
(F [−1](u)−G[−1](u))2du]

1
2
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is a Wasserstein distance between μ and ν .
(3) Let F and G be two distribution functions on R, and let H(x,y) = F(x)G(y).
What will be the bivariate quantile function QH(., .) : [0,1]2 → R

2 of H, i.e., mono-
tone and QH#du = dH, where du is uniform on [0,1]2.

5 Notes on Multivariate Quantile Regression

Like a blessing, one of the inventors of univariate quantile regression, Roger Koenker
wrote in his recent paper “Quantile Regression 40 years on” the following about multi-
variate quantiles:

“...Despite generating an extensive literature, it is fair to say that no general agree-
ment has emerge... in contrast to the sample mean of d-dimensional vectors, there is
no consensus about an appropriate notion of multivariate median. In an exciting new
development, Carlier, Chernozhukov and Galichon [2] have proposed a vector quantile
regression notion motivated by classical Monge-Kantorovich optimal transport theory”.

Armed with the notion of multivariate quantile functions, we elaborate first on its
application to regression.

Recall that the notion of unconditional (multivariate) quantile functions is this. Let
Y be a random vector with values in R

d . By Lebesgue-Stieltjes ’ theorem, the law of
Y is the Borel probability measure ν on B(Rd) derived from its distribution function
F(.) : Rd → [0,1] as

ν((−∞,y]) = dF((−∞,y]) = F(y)

Note that, only when needed that we will call upon the “background” setting: the
random vector Y is “defined” on a probability space (Ω ,A ,P), so that ν = PY −1, and
F(y) = P(ω ∈ Ω : Y (ω) ≤ y}. In our analysis, the polar factorization Y = QF(U) is
more “concrete” to use, where U is a random vector uniformly distributed on the unit
cube [0,1]d , with probability measure denoted as du, and QF denotes the (multivariate)
quantile function.

The quantile function QF(.) : [0,1]d → R
d is the (a.e.) unique monotone (non

decreasing) map, such that QF#du = dF , or equivalently, dF(.) = du◦Q−1
F (.).

In multivariate regression analysis, besides our “target” random vector Y , we have
another random vector X , taking values in R

k, and playing the role of covariates (or
regressors) of Y . As “usual”, we wish to establish a statistical model relating Y to its
covariates X .

As far as (linear) quantile regression is concerned, the main analysis tool is condi-
tional (multivariate) quantile functions.

It should be noted that the computational aspects in multivariate quantile regression
are expected to be much more complicated than the univariate case. Not only the OT
framework allowed us to generalize appropriately the univariate case to general case, it
provides us with computational methods as well.

As such, to appreciate how OT can help, let’s reformulate univariate conditional
quantile analysis in the language of OT.
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Let Y be a real-valued random variable with distribution FY (.). We keep, in our
mind, the abstract setting: Y is defined on (Ω ,A ,P), but focus on its concrete polar

factorization Y = F [−1]
Y (U).

First, recall that the univariate quantile function F [−1]
Y (.) : [0,1] → R is the pseudo-

inverse of the distribution function FY (since, in general, FY is only monotone non
decreasing, and right continuous, so that it does not have an inverse) defined as

F [−1]
Y (u) = inf{y ∈ R : FY (y) ≥ u}

This is well-defined since ≥ is a total order relation on R. In fact, the infimum is
attained, i.e., the infimum is a minimum.

Some useful properties of F [−1]
Y (.) are as follows.

a) F [−1]
Y (.) is monotone non decreasing, i.e., u ≤ v =⇒ F [−1]

Y (u) ≤ F [−1]
Y (u) (Note

that, strictly increasing means, u < v =⇒ F [−1]
Y (u)< F [−1]

Y (u)).

Proof. For u ≤ v, we have {y ∈ R : FY (y)≥ v} ⊆ {y ∈ R : FY (y)≥ u} and hence inf{y ∈
R : FY (y) ≥ v} ≥ inf{y ∈ R : FY (y) ≥ u}.

b) inf{y ∈ R : FY (y) ≥ u} is attained.

Proof. “inf{y ∈ R : FY (y) ≥ u} is attained” means F [−1]
Y (u) is one of the y such that

FY (y) ≥ u, i.e., FY (F
[−1]

Y (u)) ≥ u.

For each n ≥ 1, by the definition of infimum, there exists yn ∈ R such that FY (yn)≥ u

and yn ≤ F [−1]
Y (u)+ 1

n .
Since FY (.) is nondecreasing, we then have

u ≤ FY (yn) ≤ FY (F
[−1]

Y (u)+
1
n
)

Next, by right continuity of FY , we have

lim
n→∞

FY (F
[−1]

Y (u)+
1
n
) = FY (F

[−1]
Y (u))

so that FY (F
[−1]

Y (u)) ≥ u, since for each n, u ≤ FY (F
[−1]

Y (u)+ 1
n ).

c) A weak representation of Y is this. For any random variable U distributed uni-

formly on [0,1], Y has the same distribution as F [−1]
Y (U) (written as Y

D= F [−1]
Y (U)).

Proof. It suffices to show that

F [−1]
Y (u) ≤ y ⇐⇒ u ≤ FY (y)

since then

P(F [−1]
Y (U) ≤ y) = P(U ≤ FY (y)) = FY (y)

Thus, let’s show the above equivalence.
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If ω ∈ {ω ∈ Ω :U(ω)≤ FY (y)}, i.e.,U(ω)≤ FY (y), then, by definition of F [−1]
Y (.),

F [−1]
Y (U(ω)) ≤ y, and hence

{ω ∈ Ω :U(ω) ≤ FY (y)} ⊆ {ω : F [−1]
Y (U(ω)) ≤ y}

Conversely, if ω ∈ {ω : F [−1]
Y (U(ω)) ≤ y}, i.e., F [−1]

Y (U(ω)) ≤ y, then FY (y+ε) ≥
U(ω) for all ε > 0, and hence FY (y) ≥ U(ω) by right continuity of FY , so that

{ω : F [−1]
Y (U(ω)) ≤ y} ⊆ {ω ∈ Ω :U(ω) ≤ FY (y)}

therefore equality.

Remark. (i) By taking set complement, we also have

F [−1]
Y (u)> y ⇐⇒ u > FY (y)

(ii) The representation is weak since the equality between Y and F [−1]
Y (U) is “in distri-

bution” which is weaker than “almost sure equality”, noting that if Y
a.s.= F [−1]

Y (U)

( a “strong representation”, called the polar factorization of Y ) then Y
D= F [−1]

Y (U).

d) A strong representation of Y . Every time we have a uniform random variable V

on [0,1], Y and F [−1]
Y (V ) have the same distribution. If we look at the joint distribution

π(Y,V ) of (Y,V ), then we see differences among these variables V although they all have
the same uniform distribution du on [0,1]. Indeed, according to Sklar’s theorem, the
joint distribution function H(y,v) of the random vector (Y,V ) is of the form c(FY ,FV )
where c is a (bivariate) copula. Thus, each V is in fact determined by its own copula
c, in other words, these V are indexed by copulas. While they are all in Π(FY ,du),
the set of all joint distributions with the same marginals FY ,FU , there are different by
their associated copulas. Thus, saying that there is a U with distribution du, such that

F [−1]
Y (U) a.s.= Y , we mean a special V , or rather, a special copula c∗ of (Y,V ) such that

we actually have F [−1]
Y (U) = Y .

Let’s elaborate a bit more on “Strong representation”, i.e., equality between random
variables in the “almost surely” (with probability one) sense.

The question is: is there a random variable V ∗ distributed as U , i.e., uniformly on

[0,1] such that F [−1]
Y (V ∗) a.s.= Y?

The answer is affirmative. Its proof will shed light on how actually to “construct”
such a random variable.

Proof. Let FY be the distribution function of Y .

(i) If FY is strictly increasing, then FY and F [−1]
Y are bijections with FY = (F [−1]

Y )−1.

Define V ∗(ω) = FY (Y (ω)), then F [−1]
Y (V ∗(ω)) = Y (ω), and V ∗ is uniform on [0,1]

since

P(ω :V ∗(ω) ≤ u) = P(ω : FY (Y (ω)) ≤ u) =

P(ω : Y (ω) ≤ F [−1]
Y (u)) = FY (F

[−1]
Y (u)) = u
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(ii) If FY is not strictly increasing, the announced V ∗ is constructed as follows.
Let AY = {y ∈ R : P(ω : Y (ω) = y)> 0} �= ∅.

For any y ∈ AY , define a uniform random variable Vy on {u ∈ [0,1] : F [−1]
Y (u) = y}.

Then define

V ∗(ω) = FY (Y (ω))1(Y (ω)/∈AY ) +VY (ω)1(Y (ω)∈AY )

Then V ∗ is distributed uniformly on [0,1], and F [−1]
Y (V ∗) a.s.= Y .

Next, you may ask: What does it mean by, say, minimizing an objective function
over a collection of random variables? i.e., the solution of the optimization problem is
a random variable?

Well, remember how mean linear regression was originated? When predicting a
random variable Y from a covariate X , using mean squared error, we seek the best
random variable built from X , i.e., minimizing the objective function E(Y − ϕ(X))2

over all random variables Z of the form ϕ(X), i.e., a function of X . And, of course, the
solution is the special random variable E(Y |X).

e) For any distribution function FY on R, FY ◦F [−1]
Y (u) ≥ u, for any u ∈ [0,1],

If FY is continuous then FY ◦ F [−1]
Y (.) = Identity on [0,1], and FY (Y ) is distributed

uniformly on [0,1],
FY is continuous if and only if F [−1]

Y is strictly increasing; FY is strictly increasing if

and only if F [−1]
Y is continuous,

If FY is continuous and strictly increasing then F [−1]
Y is the inverse of FY :

(F [−1]
Y )−1 = FY .

A quick recap of univariate quantile regression.
Let X be a real-valued random variable with distribution function F . Unlike

moments, quantiles exist for any distributions (heavy-tailed or not). Quantiles are used
to define financial risk measures, such as Value-At-Risk which is F [−1](α), (P(X >
F [−1](α)) = 1−α), and in Linear Quantile regression models.

The α – quantile qα(F) minimizes the objective function

a → Eρα(Y −a) =
∫

R

ρα(y−a)dF(y) =
∫

R

(y−a)[α −1(−∞,a)(y)]dF(y)

where

ρα(u) = u[α −1(u≤0)] =
{−(1−α)u for u < 0

αu for u ≥ 0

i.e.,

qα(F) = argmin
a

Eρα(Y −a)

and hence its sample α− quantile qα(Fn) is

argmin
a

n

∑
i=1

ρα(Yi −a)
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leading to the following plausible conditional quantile estimator. Since the condi-
tional α−quantile qα(Y |X) minimizes the LAD loss, i.e., minimizing Eρα(Y − ϕ(X))
over all possible ϕ(X), if we specify qα(Y |X) linearly, i.e., qα(Y |X) = Xθ(α), then the

coefficient θ(α) could be estimated by the extremum estimator
ˆ

qα(Y |X) =
ˆ
θ(α) which

is

argmin
θ

n

∑
i=1

ρα(Yi −Xiθ) = argmin
θ

n

∑
i=1

(Yi −Xiθ)[α −1(Yi−Xiθ<0)]

for data (Xi,Yi), i = 1,2, ...,n, drawn from (X ,Y ).
What is important is this. The quantile function F [−1](.) (which is left continuous)

satisfies the following: For a > 0 and b ∈ R,

qα(aX +b) = aqα(X)+b

i.e.,

F [−1]
aX+b(α) = aF [−1]

X (α)+b

That is, F [−1](α) is affine equivariant (the transformation x → ax+b is an affine trans-
formation): the quantile representation of a point after affine transformation agrees with
its original quantile representation similarly transformed.

This invariance properly is essential to use the quantile regression

Y = βα X + εα

since, given X , suppose we model qα(Y |X) = βα X , then we have

qα(Y |X) = qα(βα X + εα) = βα X +qα(εα |X) = βα X

when we impose the condition qα(εα |X) = 0. In other words,

Y = βα X + εα ...with qα(εα |X) = 0

is equivalent to qα(Y |X) = βα X .
Note, however, that unlike the mean, in general, qα(X +Y ) �= qα(X)+qα(Y )
For α = 1

2 , the median F−1( 12 ) minimizes E|X − a| over a ∈ R. How about other
α ∈ (0,1)?

Remark. We need to figure out an objective function for F [−1](α) to minimize also to
suggest an extremum estimator for it.

Now, observe that the median minimizes also the objective function (risk) 1
2E|X −a|

whose loss function is

1
2
|x−a| =

{− 1
2 (x−a) for (x−a)< 0

1
2 (x−a) for (x−a) ≥ 0

or
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1
2
|x−a| = (x−a)[

1
2

−1(x−a<0)]

This observation leads to other loss functions generalizing

(x−a)[
1
2

−1(x−a<0)] = ρ 1
2
(x−a) =

1
2
|x−a|

where ρ 1
2
(u) = |u|

2 , by replacing
1
2 by an arbitrary α ∈ (0,1) in (x−a)[ 12 −1(x−a<0)],

namely

Lα(x,a) = ρα(x−a) = (x−a)[α −1(x−a)<0)]

Note that ρα(u) = u[α −1(u<0)] is a nonnegative function.

Theorem. The α–quantile of X minimizes Eρα(X −a) over a ∈ R.

Proof. As a function of a, the objective (associated risk) function

Eρα(X −a) = α[EX −a]−
∫ a

−∞
(x−a)dF(x) =

α[EX −a]−
∫ a

−∞
xdF(x)+a

∫ a

−∞
dF(x)

is differentiable with (assuming for simplicity that F is absolutely continuous)

d(Eρα(X −a))
da

= −α −a
dF
dx

(a)+a
dF
dx

(a)+
∫ a

−∞

dF
dx

(x)dx = F(a)−α

Since F(.) is nondecreasing, the function a → F(a)− α is increasing, so that the
function a → Eρα(X −a) is convex. As such, the first order condition

d(Eρα(X −a))
da

= F(a)−α = 0

implies that the minimum of Eρα(X − a) over a is attained at F(a) = α , i.e., a =
F−1(α), the α−quantile of F . In other words, the α−quantile F−1(α) minimizes the
risk Eρα(X −a) over a.

Remark. Thus, since F [−1](α)minimizes Eρα(X −a), its empirical counterpart (sam-

ple quantile), namely
ˆ

an = inf{x ∈ R : F [−1]
n (x) ≥ α}, minimizes

∫

R

ρα(x−a)dFn(x) =
1
n

n

∑
i=1

ρα(Xi −a)

Note that, unlike moments, quantiles existent for any kind of distributions including
heavy-tailed ones. Note also that, unlike (x − a)2, the function a → ρα(X − a) is not
differentiable at any a ∈ R. However, it is continuous and convex.
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A similar result for conditional quantiles is this. First, the conditional distribution
of Y given X = x is FY |X=x(y|x) = P(Y ≤ y|X = x) = E[1(Y≤y)|X = x). Its α–quantile is
simply

qY |X (α) = F [−1]
Y |X (α) = inf{x ∈ R : FY |X (x) ≥ α}

where,

FY |X (y) = P(Y ≤ y|X) = E(1(Y≤y)|X)

which always exists, since, for each y ∈ R, the random variable 1(Y≤y) is bounded,
and hence the conditional expectation E(1(Y≤y)|X) exists (as a Radon-Nikodym deriva-
tive).

Theorem. The conditional α–quantile of Y given X minimizes Eρα(Y − ϕ(X)) over
all possible ϕ(X).

Proof. Indeed, using the same proof for unconditional quantiles, qα(Y |X = x) mini-
mizes E[ρα(Y − a)|X = x] so that (integrating over PX ) the function x → qα(Y |X = x)
minimizes Eρα(Y −ϕ(X)). Q.E.D.

For applications, a linear conditional quantile model is

Y = β (α)X + εα

where qεα |X (α) = 0.

Remark. Another useful application of quantiles. The one dimensional notion of quan-
tiles plays an interesting role in connections with copulas, OT, with applications to
production theory in econometrics. What is the “rationale” of the Coob-Douglas pro-
duction function?

Recall that the Cobb-Douglas production function (in one dimensional case) is of
the form

Φ(., .) : R×R → [0,∞),Φ(x,y) = xayb

with x,y,a,b ≥ 0.
In econometrics, Φ represents the technological relationship between the amount of

two inputs such as labor (X) and physical capital (Y ), and the amount of outputs that
can be produced by these inputs. In the context of OT, it can model the situation where
we wish to assign managers (characterized by scalar characteristic/ talent/ X) to firms
(characterized by their market capitalization Y ). Consider the case where the number of
managers is the same as the number of firms. Of course, an “optimal” assignment is
the one which should produce the maximum of outputs (say, surplus).

The economic value generated by a manager with talent x, when working for a firm
with size y, is the production output Φ(x,y).

Let P,Q denote the distribution of X ,Y , respectively on R. An assignment of man-
agers to firms is a transport map T such that T (X) = Y , in distribution. That constraint
means that each manager is assigned only to one firm.
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The total value created is E[Φ(X ,T (X)] = E[XT (X)].
It is intuitive to view an optimal assignment should be such that most talented man-

agers will run largest firms. in other words, the variables X ,Y should be comonotone
(varying in the same way). This desirable property could be realized when the produc-
tion function Φ(x,y) possesses some appropriate condition.

If we look at the Cobb-Douglas production function, then we see that ∂ 2Φ(x,y)
∂x∂y ≥ 0,

a property that we call supermodularity.

Remark. This property is similar to affiliation in the theory of common value auctions,
where it is reasonable to assume that the bidders’ (latent) are called affiliated.

This so since it is expected that a high value of one bidder’s estimate (of the auc-
tioned object) makes high values of the other estimates more likely.

Now, for a uniform distribution U on [0,1], we have F [−1]
P (U) ∼ P. This univariate

transport is generalized, say, to two dimensions as follows.
Let U,V be two uniform random variables on [0,1], then for π ∈ M (P,Q), we have

(F [−1]
P (U),F [−1]

Q (V )) ∼ π

where the joint distribution of (U,V ) is a copula. And the OT problem is formulated
as

sup
λ∈M (U,V )

Eλ [Φ(F [−1]
P (U),F [−1]

Q (V ))]

i.e., an extremal copula problem.
Thus, X ,Y are comonotone if there is U uniform on [0,1] such that X =

F [−1]
P (U),Y = F [−1]

Q (U).
It is well known that the copula associated with comonotone variables X ,Y is

C(u,v) =min(u,v).
An important theoretical result is this.

Theorem. If the surplus (production) function Φ is supermodular, then the OT problem

sup
π∈M (P,Q)

Eπ [Φ(X ,Y )]

has a solution. In particular, if P has no mass points, then F−1
Q ◦FP(x) = T (x) is an

optimal transport map satisfied Y = T (X).
Looking back at Cobb-Douglas production function, the above result indicates that

it is optimal to match higher talented managers to larger firms (and less talented man-
agers to smaller firms).

Just like a complex number z = x+ iy that can be written in polar coordinates as z =
reiθ , a random variable Y with distribution F can be “factored” as Y

D= F−1(U), called a
polar factorization of Y . It is this polar factorization which is the appropriate equivalent
representation for univariate quantile function to be extended to higher dimensions, as
Y = ∇ϕ(U), when Y is a random vector in R

d ,d ≥ 2, U is uniformly distributed on
[0,1]d , and ∇ϕ is the gradient of a (unique) convex function ϕ : [0,1]d → R.
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Specifically, the vector quantile of a multivariate distribution function F is the gra-
dient of a convex function, and its justification is within Optimal Transport Theory.

If X is a k–dimensional random vector, then the conditional vector quantile of Y
given X = x is the multivariate quantile of the random vector Y |X = x.

Not only for a parallel with mean linear regression, but in view of natural applica-
tions, it seems desirable to extend univariate quantile regression model to multivariate
quantile regression.

There are many different approaches to defining the notion of multivariate (vec-
tor) quantile, but the BEST one is the (recent, 2016) approach based upon OT that we
recommend, and elaborate now.

Quoting R. Koenker, with respect to multivariate extension of one dimensional
quantiles: “...Despite generating an extensive literature, it is fair to say that no general
agreement has emerged....” In contrast to the sample mean of d− dimensional vectors,
there is no consensus about an appropriate notion of multivariate median.

Remark on Orders in R
d . The problem seems to be the lack of a natural total order

on R
d . The Pareto order, (x1,x2, ...,xd) ≤ (y1,y2, ...,yd) if and only if xi ≤ yi for all

i = 1,2, ...,d, is only a partial (but not total) order. The lexicographic order (used in
dictionary) is a total order on R

d where components can be ranked as to importance. It
is defined as follows. (x1,x2, ...,xd) ≤ (y1,y2, ...,yd) if x1 < y1, or x1 = y1 and x2 < y2,
or x1 = y1,x2 = y2 and x3 < y3, or...or xi = yi, i = 1,2, ...,d − 1 and xd < yd , or xi =
yi, i = 1,2, ...,d.

Why the problem of extending univariate quantiles to multivariate quantiles so diffi-
cult? Well, we have just said it “there is no natural total order relation on R

d for d > 1”.
The extension problem is difficult since we tried to extend the univariate quantile

directly from its definition. In history of mathematics, often when we face an extension
problem, such as fuzzy sets, quantum probability, and even “extension of transport maps
to transport plans” in OT (!), while we cannot directly extend an existing notion, we look
for some equivalent representation of it which can be extended. In the case of univariate
quantile, perhaps mathematicians have this “extension methodology” in mind, but it
was not easy to find an equivalent representation of univariate quantile which can be
extended.

Finally, the extension problem was found in 2016, thanks to OT! It was R. Koenker
himself to announce it.

It is impossible to generalize this one dimensional quantile function to R
d , with

d > 1, since there is no (natural) total order relation of R
d , if we try to generalize this

function so defined. In other words, we cannot “directly” generalize this concept. We
could try to generalize it “indirectly”?

Remember, how Kantorovich generalized Monge’s OT formulation? For example,
how to generalize a permutation σ (a pure assignment) on (1,2, ...,n} to transport plan?

We cannot do it “directly”, so we search for an equivalent representation of σ , i.e.,
looking for some indirect way. An equivalent representation (an one-to-one map) of a
permutation is a permutation matrix to be generalized.

We could do the same thing to generalize quantiles. Perhaps, the difficulty is to find
a “canonical” equivalent representation for the quantile map F−1(.) which could be
extended.
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Perhaps, it was so since an equivalent representation of F [−1](.) is somewhat “hid-
den”!

Although we all know that F [−1](.) is basic for simulations because ifU is a random
variable, uniformly distributed on [0,1], then the random variable F [−1](U) = F [−1] ◦U
has F(.) as its distribution.

Note again that, while the polar factorization of a random variable is used for sim-
ulations, it is somewhat hidden (latent) in quantile regression analysis (not needed).

Thus, a characteristic of F [−1](.) : [0,1] → R is that it transports the uniform distri-
bution U on [0,1] to dF on R, in the “language” of OT, in other words, the quantile
function F [−1](.) is a transport map in OT theory. Is it an equivalent representation for
quantiles? Not obviously!

Any way, what seems to be missing is that the probability space ([0,1],U ) is hidden
in the “background”: When we define F [−1](.), we did not (in fact, need) mention it at
all. Only it surface after, for simulations.

It is hidden, but it’s there! in the language OT, we need to involve the “background”
([0,1],U ) to describe F [−1](.) as a transport map.

So let say this. The quantile function F [−1](.) : [0,1]→ R is a transport map pushing
U forward to dF .

If this is an equivalent representation of F [−1](.) in the context of OT, then we hope
to be able to say this.

Let X : Ω → R
d with multivariate distribution function F(.) : Rd → [0,1]. Then the

quantile map of F is QF(.) : [0,1]d → R
d , defined as the transport map pushing forward

the uniform probability on [0,1]d to dF on R
d .

We proceed now to justify the above definition of multivariate (vector) quantiles, to
specify it, to give meaning to it, to provide examples, to define conditional multivariate
quantiles, and multivariate quantile regression.

If we look closerly at the notion of (univariate) quantile function F [−1] of a ran-
dom variable X with distribution function F , then we realize something fundamental in

Monte Carlo (simulation), namely F [−1](U) D= X , for a random variable U , uniformly
distributed on [0,1].

The upshot is this. Rather than “look” at the very definition of F [−1](.), we could

“look” at F [−1](.) as a map from [0,1] to R, having the property that F [−1](U) D= X .
Specifically, consider (X ,μ) = ([0,1],u), where u is the uniform probability mea-

sure on [0,1], and (Y ,ν) = (R,dF). Then we realize that F [−1](.) :X → Y is a trans-
port map (of Monge!).

However, in order to say that F [−1](.) is characterized by such an OT map, we need
to show that it is the only transport map in this OT formulation.

Next, for extending this to the multivariate case, we need to show that in the
extended OT formulation, namely (X ,μ) = ([0,1]n,un), where un is the uniform prob-
ability measure on the unit cube [0,1]n, and (Y ,ν) = (Rn,dFn), where Fn(.) is the
multivariate distribution function on R

n, there is a unique transport map.
If it is so, then the unique transport map between ([0,1]n,un) and (Rn,dFn) can be

used as the multivariate quantile function of the distribution Fn.
It turns out that we do have a theoretical result confirming the above! Thanks to

McCann [7].
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Theorem. (McCann, 1995). Let μ , ν be two probability measures on R
n, with μ being

continuous (i.e., it has no mass points, or equivalently, its associate distribution function
is continuous on R

n, e.g., uniform measure on unit cube). Then there is a measurable
map T (.) : R

n → R
n which is the gradient of some convex function ϕ , and such that

ν = μT −1 (equivalently, T (X) =Y , where X ∼ μ ,Y ∼ ν). Moreover, T is unique μ–a.s.

Remark. The gradient of a multivariate (differentiable) function (ϕ : R
n → R) is the

vector of its partial derivatives. If ϕ is differentiable, i.e., having first order partial
derivatives, then ϕ is convex if and only if for any x,y ∈ R

n, we have <∇ϕ(x)−
∇ϕ(y),x−y> ≥ 0 (gradient monotonicity). For n = 1, a differentiable convex function
has nondecreasing derivative.

The Theorem says that if X ∼ μ , then there is a unique convex function ϕ such that
its gradient ∇ϕ(X) ∼ ν , i.e.,∇ϕ(.) is a transport map.

Let’s elaborate a bit on this fundamental theorem.
For n = 1, consider (X ,μ) = ([0,1],u), noting that the uniform measure u is con-

tinuous, and (Y ,ν) = (R,dF). The quantile function F [−1](.) : [0,1] → R, which is
non decreasing, and transporting u to dF , because F [−1](U) ∼ dF . The quantile func-
tion F−1 is nondecreasing and hence is the derivative of a convex function. Thus, F [−1]

fits perfectly McCann’s Theorem, and hence is a (a.s.) unique transport map.
Note that if μ is an arbitrary continuous probability measure on R

d with associate

multivariate distribution function Fμ , then the transport map is F [−1]
ν ◦Fμ(x) = ϕ ′(x).

Thus, the univariate quantile function F [−1](.) : [0,1] → R with its equivalent rep-
resentation as a transport map pushing forward the uniform measure on [0,1] to the
probability measure dF on R, can be extended to higher dimensions, as THE trans-
port map being the gradient ∇ϕ of some convex function ϕ on R

n (∇ϕ push forward
([0,1]n,un) to (Rn,dFn).

The d−quantile function of a multivariate distribution function F(.) : R
d → [0,1]

is the gradient ∇ϕ : [0,1]d → R
d , of some convex function ϕ : [0,1]d → R, such that

∇ϕ(U) ∼ dF , where U is the uniform random vector on [0,1]d .
The above map ∇ϕ (Brenier map) is the map between dU (uniform probability

measure on the unit cube [0,1]d) and dF .
In one dimension, ∇ϕ is F [−1](.) : [0,1] → R (a nondecreasing function, such that

F−1(U) ∼ F).
Let X ,Y be random vectors on R

d , R
k with distribution F , G, respectively. Then

the conditional multivariate quantile function of Y |X = x is the Brenier map between
dU on [0,1]d and the conditional probability measure of Y |X = x, i.e., the multivariate
quantile of the conditional distribution.

Specifically, the conditional quantile function of Y |X = x is ∇ϕx where ϕx(.) is a
convex function on [0,1]d with Y = ∇ϕX (U).

Note that there are many attempts to define multivariate quantiles in the literature,
but as R. Koenker said, this approach based on OT seems the best! mainly because
it capture two basic properties of the univariate quantile function F [−1](.) : [0,1] → R

(as a kind of “inverse” of F , with a precise meaning, e.g., of median), namely F [−1](.)
is a monotone (nondecreasing) function, and F [−1](U) = Y (where Y ∼ dF). This is



36 H. T. Nguyen

so because, as the gradient of a convex function, ∇ϕ is the natural generalization of
monotonicity in one dimension case, and Y = ∇ϕX (U) when X is a covariate.

Let QY |X (u|x) be the conditional (multivariate) quantile of Y |X = x at level u ∈
[0,1]d . A linear model for it is

QY |X (u|x) = βo(u)T g(x)

so that we have the representation

Y = βo(U)T g(X)

with U |X ∼ uniform [0,1]d , β (u) is k ×d matrix (X ∈ R
k).

This formulation leads to a linear programming to computing β (u) both for popu-
lation and sample settings.

Remark. Why do we need to consider multivariate quantile regression?

Well, let’s spell it out loud again. At the “beginning”, Gaussian models made
statisticians to center their attention only on the mean, and conditional mean of vari-
ables of interest. Then it was discovered that linear (univariate) quantile regression can
address more issues in economics. However, we only have univariate quantile regres-
sion (Koenker & Bassett, 1982). As such, even we are really interested in, say, how
household expenditures affect total income, we can only look at a specific component
of household expenditures, e.g., food expenditure, one among 9 possible components of
household expenditures: Food, Clothing, Housing, Heating and Lighting, Tools, Edu-
cation, Safety, Medical care, Services. A multivariate (d = 9) quantile regression is
desirable, and now possible!

Multivariate quantile functions are useful in a variety of fields, see e.g., Galichon
[4], Matzkin [6], Panaretos and Zemel [9], Santambrogio [10].
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