Chapter 14 ®)
Linear Diophantine Fuzzy Information Qe
Aggregation with Multi-criteria
Decision-Making

H. M. A. Farid and Muhammad Riaz

1 Introduction

The act of selecting steps to take after compiling relevant information and analyzing
the relative merits of several potential solutions is known as decision-making.
Establishing pertinent information and identifying available alternatives are the first
two stages of a decision-making process that should be carried out according to
a step-by-step methodology. Depending on the objectives and available options,
the decision-making process may be either strategically, tactically, or operational.
Since the beginning of the twentieth century, one of the most significant chal-
lenges faced by society has been confusing and inaccurate information. In several
areas, such as economics, administration, psychology, mathematics, engineering,
cognitive systems, and autonomous systems, data aggregation is a crucial phase in
the decision-making process. Knowledge of the alternative has traditionally been
conceptualized by individuals as a restricted amount or linguistic number. On
the other hand, it is difficult to synthesize the information due to the substantial
ambiguity involved. The multi-criteria decision-making (MCDM) approach is a
frequently used intellectual activity instrument whose primary objective is to pick
from a restricted number of possibilities based on the details provided by decision-
makers (DMs). The MCDM approach, on the other hand, is prone to becoming
ambiguous and inaccurate. This is because it integrates the complexity of human
reasoning skills, making it difficult for DMs to engage in the review process in
an accurate manner. In addition to addressing the issue of uncertainty, Zadeh [1]
was a pioneer in developing fuzzy set theory. It is imperative that a solution be
found for this issue. Atanassov [2] developed the “intuitionistic fuzzy set (IFS).”
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Yager [3-5] introduced “Pythagorean fuzzy set (PFS)” as an extended form of IFS.
Yager added some generalizations to the IFS and PFS, and he developed the concept
of the “q-rung orthopair fuzzy set (q-ROFS)” [6]. A constraint of the q-ROFS is
that the sum of qth membership degree (MSD) power and non-membership degree
(NMSD) power might be equal to or less than one. Riaz and Hashmi established
the notion of the linear Diophantine fuzzy set (LDFS) [17]. After the advent of
this notion, a number of academics were drawn to it and began working in this
field.

Xu et al. [7-9] gave some Aos related to IFS. Wei et al. [11], Feng et al.
[14], Mahmood et al. [10], Zhang et al. [12], Zhao et al. [13], Garg [15], and
Rahman et al. [16] introduced many AOs for different extensions of fuzzy sets.
Some work related to AOs and graph structures can be seen in [18, 19]. Extensive
work related to bipolar fuzzy set is given in [20, 21]. Feng et al. [22] proposed
some novel score functions related to orthopair fuzzy set. Senapati and Yager
proposed Fermatean fuzzy set as the extension of IFS [23]. Smarandache proposed
a novel idea of neutrosophic set [24, 25]. Farid and Riaz introduced some Einstein
interacting geometric AOs for g-ROFSs [26]. Many AOs for “linear Diophantine
fuzzy numbers” are given in [27, 28]. Ashraf et al. proposed some distance metric
for cubic picture fuzzy set [29, 30]. Saha et al. [31, 32] introduced some hybrid
AOs for different extensions of fuzzy set. Wei and Zhang [33] gave some single-
valued neutrosophic Bonferroni power AOs. Riaz et al. proposed a number of AOs,
including Einstein prioritized [35], interactive [36], hybrid [34], and prioritized with
PDs [37]. Some extra-ordinary work related to proposed work is given in [38—
41]. Ejegwa and Davvaz proposed the improved composite relation for q-ROFSs
[42]. Ejegwa and Ahemen introduced some enhanced IF similarity measures [43].
Ejegwa et al. described the Pythagorean fuzzy correlation approach from a statistical
standpoint [44]. Jana et al. [45] gave the notion of picture fuzzy Dombi AOs. Naeem
et al. [46] presented some features related to topology in m-polarity PFSs. Peng et al.
[47] proposed upgraded “single valued neutrosophic number” (SVNN) operations
and established their associated AOs. Nancy and Garg [48] established AOs by
employing Frank operations. Liu et al. [49] developed some AOs for SVNNs based
on “Hamacher operations.” Farid and Riaz [50] proposed Einstein interactive AOs
for SVNNSs. Zhang et al. [51] provided the AOs in the context of an “interval-valued
neutrosophic set.” Wu et al. [52] developed the prioritized AOs with SVNNs. Wei
[53] proposed some similarity measures, Singh [54] idea of correlation coefficients,
and Son [55] gave some clustering method for picture fuzzy set.

Multi-criteria decision-making (MCDM) is a method used to evaluate and select
the best option among a set of alternatives based on multiple criteria. It is a powerful
tool for decision-makers, as it allows for the consideration of multiple factors that
may have an impact on the success of a decision. MCDM has been applied in a
wide range of fields, including agriculture, where it can be used to make important
decisions related to crop selection, land use, irrigation systems, and more.

One of the main advantages of MCDM in agriculture is that it takes into account
the multiple and often conflicting objectives that farmers and other stakeholders
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may have. For example, when selecting a crop to plant, a farmer may consider
factors such as expected yield, market demand, and pest resistance. Each of these
factors may have different levels of importance to the farmer, and MCDM allows
for the weighting of these factors to reflect this. Additionally, MCDM can be used
to evaluate the trade-offs between different factors, such as the relationship between
yield and water use efficiency.

Another important use of MCDM in agriculture is in land use planning. MCDM
can be used to evaluate different land use options and determine the best option
based on multiple criteria such as economic profitability, environmental sustain-
ability, and social acceptability. This can be particularly useful in situations where
there is a need to balance competing interests such as urbanization and agricultural
production.

MCDM can also be used in irrigation systems. In this case, the farmer can
evaluate different irrigation options based on criteria such as water use efficiency,
cost, and impact on the environment. Additionally, MCDM can be used to evaluate
the trade-offs between different irrigation options, such as the relationship between
cost and water use efficiency. This can be particularly useful in areas where water is
scarce, and farmers need to make decisions about how to use water resources in the
most efficient and sustainable way.

Furthermore, MCDM can be used in the context of climate change, where
farmers need to make decisions about crop selection, irrigation systems, and land
use in the face of changing weather patterns, rising temperatures, and increased
water scarcity. MCDM allows for the consideration of multiple factors such as crop
resilience, water use efficiency, and environmental impact, which can help farmers
make more informed decisions about how to adapt to changing conditions.

MCDM is an important tool for decision-making in agriculture. It allows for
the consideration of multiple and often conflicting objectives, and it can be used
to evaluate the trade-offs between different factors. This makes MCDM a valuable
tool for farmers and other stakeholders in the agricultural sector, as it can help them
make more informed decisions that balance economic profitability, environmental
sustainability, and social acceptability. The main objectives of the manuscript are as
follows:

* Some basic AOs are proposed for the aggregation of linear Diophantine fuzzy
information.

* The essential properties of proposed AOs are also examined.

* Decision-making algorithm based on proposed Aos is also explained.

* Numerical example related to agriculture land selection is also given to show the
practical implication of proposed algorithm.

This format is maintained for the remainder of the paper. In the second portion,
we will talk about some essential LDFS concepts. The third section offers several
potential AOs for LDFNs. In Sect.4, an MCDM framework is shown for the
recommended AOs. Section 5 has a test scenario with numerical information. The
most important findings from the research are discussed in the sixth section.
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2 Preliminary

In this part, we will go over some of the most fundamental aspects of LDFS.

Definition 1 ([17]) An LDFS R" in X can be characterized by
R ={(Z, (¢ gr (E), 0" gr (), (J Ve (8), 6" e () : & € X},

where £7 g (E), NV g (E), N2 (8), €7 r(8) € [0, 1] are the MSD, the NMSD,
and the corresponding reference parameters (RPs), respectively. Moreover,

0< FNp(E)+ €7 (E) <1,
and
0< I8 (B)T R (B) + €7 pr(EnVpr (E) < 1
for all & € X. The LDFS
Ry ={(&,(1,0),(1,0) : & € X}
is recognized the “absolute LDFS” in X. The LDFS
R; ={(&,(0,1),(0, 1)) : & € X}

is recognized the “null LDFS” in X.

Modeling or categorization certain structures can be accomplished with the help of
the RPs. We are able to describe a wide variety of systems by altering the fundamen-
tal significance of the RPs. Moreover, ngr (E)wr- (&) = 1— (/xR, (BN pr(E)+
EY pr(E)nY gr (&)) is called the “indeterminacy degree” and its corresponding RP
of Z to R".

It is very evident that our suggested conception is more appropriate and
advanced, and it includes a range of RPs. This procedure is applicable to a wide
range of projects, including those in the fields of industry, medicine, cognitive
computing, and MCDM.

Definition 2 ([17]) A “linear Diophantine fuzzy number” (LDFN) is the form of
9 = (¢ he, 1V 6), (fx-lg, €7 <)) having the given characteristics:

(1) 0= {T‘[g, 77U‘|§, /Njg,%yjs <1.
2) 0= /N‘[g + %V < 1.
(3) 0 = /N‘[gé‘rjg +(€y-i§77u-|§ < 1.
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Definition 3 ([17]) Consider 15 = (({" ¢, n¥4¢), / q¢» €7 <)) is the LDFN,

and then the “score function” (SF) §(T9) is defined by "(TS) : LDFN(X) —
[—1, 1] and given by

1
B = J1E 3 =) + (INqe =€V,

where LD F N (X) is the collection of LDFNs on X.

Definition 4 ([17]) Consider 15 = ((¢" 56, NV ¢, / —¢» €7 <)) is the LDFN,
and then the “accuracy function” is defined by ¢ : LDFN(X) — [0, 1] and given
as

v = [ () 4 e e

Definition 5 ([17]) Let 75; = ((¢%;, n}) /Nl, %7 1)) be an LDFN and X > 0.
Then:

* -[gi:(<nvlvgrl)s<%y17jxl))
s X = (- A - TR - A= NE D).
N R R S NP AN AN

Definition 6 ([17]) Let T; = ((¢7;, n%;). (_Z~;. €7 )) be two LDFNs with i =
1, 2. Then:

e TSI LT ST <Yy, I < IR, EY 0 <67

s =16 =Y = n2/1—/xz7<5y1_%y‘

T T = (CT T =TT ) (I + N, = N N,
CV 167 2)).

T @ T = (€8T Y+ 0y = ntinva), (IR IR, 6+ €7
—€71672)).

Definition 7 ([17]) Let 1¢; = ((¢%;, n";). (", €7})) be the assemblage of
LDFNs with i € A. Then:
e Y= ((sup{’,, mfn (sup /Ni, jni‘f%)).

i 1S

ieA ieA
e N T = ((jnf £%;, supnY; 1nf IR sup €7, ))

ieA ied ieA ieA
There are many AOs for the aggregation of LDFNs, namely, Einstein AOs [28],
prioritized AOs [27], and fairly AOs [56].

Definition 8 ([28]) Consider ¢ 1 = T3, "9, (F N:],‘57’;,)) the agglomera-
tion of LDFNs and %° = (W, ‘H‘*g, .. SR“n)T be the weight vector (WV)

n
with >~ M7 = 1. Then “linear Diophantine fuzzy Einstein weighted average
J=1
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(LDFEWA) operator” is defined as

LDFEWA(IY, by, b, ..., hy) =

n
Z.‘R“A-Igj = Sﬁ“l.gﬁ’{ D¢ ?ﬁ‘sz.gﬁg De R3.6v3 Dg ... g ?ﬁ*‘n.gﬁz.
J=1

In LDFEWA operator, we use %t~ as a WV and 7157 are the LDFNs, where J =

1,2,...,n.

Theorem 1 ([28]) Let 7157 = ({(¢ 5, nV7), (ij, % 1)) be an agglomeration of
n

LDFNs and %% = W31, %9, ..., W57 be the WV with > R¥7 = 1. Then the

J=1
LDFEWA operator can also be written as

LDFEWAS, B, ... BY)
_ << M5+ ¢m)™ 7 — 15, (L= ¢"p™
[T5oi (4 7)™+ [T, (- erp™s
DI
2[15- 0"y ° >
T2 2 = D)™ + [They ()™

<1'[’§:1(1 + ij)m“; 15,0 - /RJ)W;
5o (T4 78+ TTh, (1= /N7

2T, v i >>
[T @ = €7 )" + [T (e )3 )

Definition 9 ([28]) Consider 153 = ((¢73.7"7), (_# 5. €71)) is the agglomera-
n

tion of LDFNs and %% = (%%, %5, ..., %3,)7 be the WV with 3 %%y = 1.
=1

Then “linear Diophantine fuzzy Einstein weighted geometric (LDFEWG) operator”

is defined as

LDFEWG((hy, h5, 15, ..., hy) =

n
1—[ N 3T =NV 1. ghf Qe N6 Qe NV3.615 B ... Qe N p.ghy,.
1=1

Theorem 2 [[28]] Let 7151 = ({¢*51, n1"5), (/Rj, €"1)) be the agglomeration
n
of LDFNs and R> = (N>, R, ..., ?ﬁgn)T be the WV with >~ W7 = 1. Then
J=1
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LDFEWG operator can also be written as
LDFEWG(HS, B, ... 1)
"
_ << 2[15-1¢ 7
[T5212 = ¢7p™ 3 + [ (g7 ™S
R RIS
[T52 (0 + 2™ =5, = )" ’>
151 (1 + o)™ 3 + T3, (0 = nvp)™3 [0
R
< 2115, /N
[T5212 = #8145, (7S

ngl 1+ %yl)m% - l_[§=1 a1- %y:)fﬁkj >>
[T (1 + 67D+ [[4_, (1 — €r s

Definition 10 ([27]) Assume that 77 = ((¢%3,7Y7), j*‘],%m) is the
agglomeration of LDFNs, and LDFPWA : $" — § is the mapping. If

v v v

iy fin i
LDFPWA (T, T5,,...75,)= T 7§269 &———"1%,,
ZJ 1’73 ZJ 1 h Zgzl 7341)

then the mapping LDFPWA is called “linear Dlophantme fuzzy prioritized weighted
averaging (LDFPWA) operator,” where fiy = Hk 1%(7%) (Gj=2...,n), iy =
1, and 57 (71%;) is the expectation score function of kth LDFN.

Theorem 3 ([27]) Assuming that 7153 = ({(¢73, nV7), /N €7 1)) is the agglom-
eration of LDFNs, we can find LDFPWA by

LDFPWA(T51,75,,...715,)

—_—n 4]; Zﬁ?
:<<1—]_[J (L —grp X, H 7 313>,

" N znﬁ h " yﬁ
_ — —1 71 | | @y ==
<1 | | (1 BANESSIR A >> (14.2)
Definition 11 ([27]) Assume that 17 = ({77, n"7), /RJ,%V )) is the

agglomeration of LDFNs and LDFPWG : $" — $ is the mapping. If

_ _hy i __
LDFPWG(TT°1, 1°2,...1%,) = ‘lﬂzﬂ:"” ® ‘l%zﬁ:”’j ®..., @ ="
(14.3)
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then the mapping LDFPWG is called “linear Diophantine fuzzy prioritized weighted
geometric (LDFPWG) operator.”

Theorem 4 ([27]) Assuming that 153 = ({(¢73, nV7), (/NJ, €7 7)) is the agglom-
eration of LDFNs, we can find LDFPWG by

LDFPWG(T51, 755, ...735)
_ g
'L'Zj LBy " v N2 R
<<HJ 161 1_1—[:|=1(1_'7 DR,

<1_[j ]/"ZJ LRSI 1(1—%%)2: J>) (14.4)

Definition 12 ([56]) Let 153 = ((¢73,7"7), (_# 3, €7 1)) be the agglomeration
of LDFNs and LDFFWA: .#" — % be a n dimension mapping. If

LDFFWA (T, T2, ... 150 = (001 19800+ T2d ., &0, 76
(14.5)

then the mapping LDFFWA is called “linear Diophantine fuzzy fairly weighted
averaging (LDFFWA) operator,” and here :%~; is the weight vector (WV) of T¢;
with #¥; > 0and Y ¢, RS, = 1.

Theorem 5 ([S6]) Let 157 = ((; 1. 1"1), /Nj, ‘5}’])) be the agglomeration of
LDFNs, and we can also find LDFFWA by

LDFFWA(T, T%,,...,7%,)

1_[! ¢ “3. e T v mf&i
<1nf )" ]z(m)e R (1T =g =)™).

1 l_[e 1(7/ [)%l 1 e T v mxi >
7 - s +]io (2—-¢% —nY ,
21—If:1(§r)"+ne1(v)]ﬂ ( l_[ 1( ) )

I (% " e RY;
<1_[?1(/“)'\:“(\\{#]'[)?1(%%)5"3[ X (1 [l (1= 7% = %7)) ) ,

[T, (7)™ . "
nil(fN')}):?\("-F]_[)ﬁl(%’y.)”‘xi x (1 B Hi:l (1 - /Ni - %Vi) )>’

where WY, is the WV of T15; with W5; > 0and Y 5_; K™ = 1.

Definition 13 ([56]) Let 157 = ((¢73.7"7), (Z™7, €7 1)) be the agglomeration
of LDFNs and LDFFOWA: .#" — .Z be a n dimension mapping. If
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LDFFOWA (T, T%,, ... %)

= (W) % T, B2+ Ty B B+ T, ). (14.6)

then the mapping LDFFOWA is called “linear Diophantine fuzzy fairly ordered
weighted averaging (LDFFOWA) operator,” and here %t%; is the WV of 7I5; with
RN >0and Y5 RS = 1.

ct i 1,2,3, ... n— 1,2,3,....... , 1 is a permutation map s.t. Tgf(H) >
LEY

Theorem 6 ([56]) Let 7157 = ((;‘ 1, 1%1), /RJ, %Vj)) be the agglomeration of
LDFNs, and we can also find LDFFOWA by

LDFFOWA(T11, %5, ..., 1%,)

"y,
e T t TR
1 1_[1‘:1(5 7(1‘)) ﬁ y_ ; N
2 W), e w; O ’
Moi(ee,) "+ () =t

1 l_[f=1 ("UT(z‘) )m\‘i £ T v .‘)t3,-
2 " 0, X 1+,1_[1 (Z_C w1 f(i)) ’
=

H'ZI(U%)“ lJFH?:l(”vfu))

N y N,
(1_/ = E W) )’

=

"Y;
o () ] X(l_
)ww,- ;

<Hf1(fxfo>)h O+ ( @)

[Ti- ( r(l))“\\i _ X(l—
)h‘“i

Hf:l(fNRi))h I ( ()

=

1

(1 - /er - %Vr(i>)m3i)>

where R, is the WV of 1¢; with R; > 0and 3 5| R>; = 1.

Definition 14 ([28]) Consider -igj = ((¢'3.1"7). /NJ,%VJ)) the agglomer-
ation of LDENs and %% = (WY, R, .. S)‘i“,,)T be the weight vector (WV)

n
with Y>> %7 = 1. Then “linear Diophantine fuzzy Einstein weighted average
J=1
(LDFEWA) operator” is defined as

LDFEWA(RY, 15, 15, ... k) =

n
Z R4 T = iﬁ“xl.gﬁ'f Be Sigz.gﬁg B N3.63 D ... Be Ny gl
J=1
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In LDFEWA operator, we use i~ as a WV and 7157 are the LDFNs, where J =
1,2,...,n

Theorem 7 ([28]) Let 717 = ({(¢7 5, nV7), /RJ, V1)) be an agglomeration of
LDFNs and R°> = (SR“l, SR“Z, R ?ﬁ‘sn)T be the WV with Z ‘h“j = 1. Then the
J=1
LDFEWA operator can also be written as
M5+ 27" — 15, = "™
l_[§=1(1 + CTJ)WRJ + Hg—l(l _ er)m*‘; ’
q
2[15 113 - >
15212 — o™ 3 + 52, (pv )™
<H§=1 L+ 8" T3, (1 = /8™
[T+ 278" + [T, (0 = 78

21, ¢y >>
[T521@ — 67" 3 + T[4, (€7 )™

LDFEWAWRS, 1S, ... i) = <<

Definition 15 ([28]) Consider 13 = ({(¢5, n¥3), /N €7 5)) is the agglomer-
ation of LDFNs and R° = (W5, %%,, ..., %,)T be the WV with Z ‘R\‘j = 1.

1=1
Then “linear Diophantine fuzzy Einstein weighted geometric (LDFEWG) operator”
is defined as

LDFEWG(H, 1S, 1S, ..., HS) =

n
[]97 3761 = 0516l @ Wa.ehs @ M3.6h ¢ ... @ Ny.hf.
J=1

Theorem 8 ([28]) Ler 1537 = ({¢73, n¥7), jxj, V7)) be the agglomeration of
LDFNs and %5 = (R, 0%, ..., W) be the WV with Z ‘R“J = 1. Then

1=1
LDFEWG operator can also be written as

LDFEWG(HS, K, ... 1)

R
“ (e
[T521 @ = 7)™ + 92, (7™
1—[3121(1 + nvj)ﬂi“: _ ngl - nu:)ﬂi“3>
[T (177" + [T (= )™
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n R
< 21152, 7% 7
[T5212 = 7)™ + [, (s
[T+ 479" =[5, — €79 >>
[T, A+ €71 + 15, — €7 s

AOs are used in a variety of fields to summarize and analyze large sets of data. They
are commonly used in business and finance to summarize financial data, in computer
science and programming to analyze log files and performance metrics, and in data
science and machine learning to extract insights from large datasets.

In business and finance, AOs are used to summarize financial data such as sales
and revenue. For example, a company may use an operator to calculate the total
revenue for a particular product or product line. This information can then be used
to make decisions about pricing, production, and marketing.

In computer science and programming, AOs are used to analyze log files and
performance metrics. For example, a web developer may use an operator to calculate
the average response time of a web server or the number of requests per second.
This information can be used to identify performance bottlenecks and optimize the
performance of the system.

In data science and machine learning, AOs are used to extract insights from large
datasets. For example, a data scientist may use an operator to calculate the average
of a particular variable in a dataset. This information can be used to identify patterns
and trends in the data, which can inform decisions about which variables to include
in a model or which groups to target in a marketing campaign.

In the field of natural language processing, AOs are used to extract insights
from text data. For example, a researcher may use an operator to calculate the
most common words or phrases in a dataset of text. This information can be used
to identify topics or themes in the data, which can inform decisions about which
algorithms to use for text classification or sentiment analysis.

In bioinformatics, AOs are used to summarize and analyze large sets of genetic
data. For example, a researcher may use an operator to calculate the frequency of a
particular genetic variant in a population. This information can be used to identify
genetic risk factors for diseases and inform drug development.

In general, AOs are a powerful tool for extracting insights from large sets of
data. They can be used to summarize data, identify patterns and trends, and inform
decisions across a wide range of fields.

3 Linear Diophantine Fuzzy Aggregation Operators

In this section, we discussed “linear Diophantine fuzzy weighted average (LDFWA)
operator, linear Diophantine fuzzy ordered weighted average (LDFOWA) operator,
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linear Diophantine fuzzy weighted geometric (LDFWG) operator and linear Dio-
phantine fuzzy weighted ordered geometric (LDFOWG) operator.”

3.1 LDFWA Operator

Definition 16 Consider €3 = ((¢73, nV3), (_# N4, €7 1)) is the agglomeration of
LDFNs, and LDFWA : $§* — $ be the mapping.

LDFWA(T¢1, 152, ... 15,) =B 151 @ P", 12 @ ..., BY, 15, (14.7)

Then LDFWA is known as LDFWA operator, where (B |, 375, ..., ?,) be the
weight vector (WV) with the constraint 8% 5 > Oand >, _, P"3 = 1.

We also evaluate LDFWA operator by the following theorem.

Theorem 9 Consider 7157 = ({¢77, n"7), (/NJ, €71)) is the agglomeration of
LDFNs, and we can find LDFWA by

LDFWA(T51, 1%,,...715,)
B —n . y —n U’BVJ
- <<1 B l_[:i=1(1 — ¥, l_[3=1)7 J >

<1 - szl(l o /Rl)wj’ﬁjzliﬁj(pu»' (14.8)

Proof 1t is quite simple for the first assertion to come before Definition 17 and
Theorem 13. The following instances demonstrate this point further:

LDFWA(T1¢1, 755, ...715,)

= <fpy 115-] @D fB)/Z-IS‘Z b..., mynjgn)
—n : =" B
= <<1 — 1_[]:1(1 —¢ J)myj’ 1_[]:177 | J>’
—n =" Y
<n:=1(1 - NP, H::l%ﬂ? ]>>

In order to demonstrate the validity of this theorem, we turned to mathematics
induction.
Forn =2
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Pt = <<1 — (=P nv?n>’<] —3d= /ROW%%V}BV'»

RUSHEES (<1 — (1= "%, ﬂuzmyl>s <1 - = /Nz)mylv%yzmy]»'
Then
myl—[gl @myz—igZ
= <<1 — (=g ¥, ’7”?3V1>» <1 U /Nﬂmyl’%y?ﬂ]»@
<<1 —a- zfz)qul’ nvzqyl>’ <1 — (- j&z)‘ﬁh’%yz‘ﬁyl>>
- <<1 U SN RS B A L ((1 ~(1- z’l)wl)
<(1 —(1— ;rz)myl)’ nu‘]}3y1'n1}‘f>’1>’ <1_(1_/R1)‘13V1+1_(1_/N2)‘B71

- (“ — (- f“o‘*‘y')(l — (- /%)““y')’ ‘”%"‘»

= <<1 — A= P =), n“‘f‘y'.n”‘f“)

<1 — (1= Z3)¥a - /Nz)myl’%y?yl_%y?yl>>

T T\ B INERRE
B <<1_HJ=1(1_§ 7 :‘71_[:‘:177 I >’
e R ve T2 B
(1-TL0- %=, e037))

This demonstrates that Eq. (14.10) is correct for the value of n equal to two; now
assume that Eq. (14.10) is accurate for the value of n equal to k, i.e.,

LDFWA(-lgl, T, ... -lgk)
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—k T
- <<] B 1_[]:1(1 — ¥, szlnvj J>’
—k e o
<1 B HJ=1(1 SEAr J’HJ:l(ﬂ:‘ J>)

Now that n = k + 1, according to the operational laws that govern LDFNs, we
obtain

LDFWA (761, 152, ... 1% 41) = LDFWA(T 1, T2, ... 15%) @ PV 11 +1
ns T = Ly
= <<1 - l_[j=1(l — T ¥, l—[:l:ln 1‘13 J>7
—k N —k ymyj
1- 1_[;[:1(1 -7 ,1_[::1‘5 ] ey
<<1 - = §Ik+l)myk+l7 nukm_’_yllc+l>’ <1 — (1= jxk+1)w"+‘,‘€’”?j{‘“>>
—k
(<l — 1_[]:1(1 — é-rk)‘ﬁyj +1—(1— §rk+1)w"“
—k
— (1 — 1—[::1(1 — ka)‘le> <1 —(1 - §Tk+1)q3yk+l>,
IS e Y —k
Hl_lnvl?gyj'nulalk#) <l B 1_[]:1(1 - ka)m’/; +1-01- /Nk+1)quk+l
—k
— <1 - 1_[:_1(1 — jxk)myj> (1 —(1- /NH])W“')

B Piig
cgyk ] _cgykJr]k-H >)

J=1
IS8 T NP7y T k+1 IS IR LLE SRR L]
1_1_[j=](1_§ k) (=& %40) 71_[:[:177 FAY Ay S| >

i 8 (P Sk TT or 1 B
e ERCEPARLE (RPN b I IR 20 aaR Zout

k+1

—k+1 . — VB
(- TE e )

—kt1 —k+1
‘:BV
<1 - l—[3=1(1 - jNJ)wJ’HJ:lcﬂj j>)
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This shows that for n = k + 1,, Eq. (14.10) holds. Then,

LDFWA(T1¢4, T7%,,...715,)

- (h-Tha-eoa T2
(=TT - v T, e 8))

The next couple of paragraphs will discuss a few of the beneficial qualities that
LDFWA operator has.

Theorem 10 (Idempotency) Assume that 153 = ({73, nV1), (_F "y, €7'1)) is the

. —i1 .
agglomeration of LDFNs, where hy = I—[',izljf(-lgk) (j=2...,n),h =1, and
H(T8}1) is the expectation SF of kth LDFN. If all 7155 are equal, i.e., 757 = 71
forall j, then

LDFWA(T51, 1%,,...715,) = T°.
Proof From Definition 17, we have

LDFWA(T¢1, 19, ... 15) =P¥, T 1PV, 10 @ ..., &RV, 15,
—P T eP, e, e,
=B+ R+ BT
=

Corollary 1 If 7153 = (({3.7"7), (3. €71), j = (1,2,...n) is the agglom-
eration of largest LDFNs, i.e., 157 = ((1, 0), (1, 0)) for all j, then

LDFWA(TS 1, 1%, ... 75, = ((1,0), (1, 0)).

Proof We can easily obtain Corollary similar to Theorem 10.
Theorem 11 (Monotonicity) Assume that 73 = (({73,7V7), ( F 1, €7 1)) and
9% = (¢75, nv3), (/N*, €"3)) are the agglomerations of LDFNs. If {75 > ¢ 73,
n'y <n'sy /R; > 7%, and €V < €71 forall j, then

LDFWA(TI¢1, T2, ... 15,) < LDFWA(TST, 155, ... 150,

Proof Here, (73 > ¢"yand n¥y < nVsforall j. If {75 > ¢7y:
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&=y e 1 -0 <1-¢"
@(1—;f*)‘4’~”:<(1—c ;)‘m

@1‘[: 1(1_§ HF <HJ (1 —¢tp¥s
@’]_HJ (r=c" :>“3V3<1—H: (1= THP
Again:

SNz SN and 67y < € gforall j I 7Ny = N,
6 Nz N el st g
<:>(1_jx*)qgvj<(1_jx )q_gv

¢>1_[j 1(1— )smj<l_[j 1(1_/¢R )R

e 1-[l, (-7 J)‘W:<1—HJ (1= 7¥)¥
Now:

N’ <13

& UHP 1 < (rp¥Fa
& Tl )3 < [Tamy (P ¥
And:

EVI< "3

o (<gy )‘W: < (%ﬂ)/j)‘l?"

N szl(cgy*)‘m: < szl(%yj)‘WJ
Let

¢ = LDFWA(TIq, 152, ...715,)

and

TJ¢* = LDFWA(TST, 7155, ... 150)
We get that Te* > . So,

LDFWA(T¢, 62, ... 1¢,) < LDFWA(TST, 195, ... T90).

Theorem 12 Assume that 753 = (¢T3, 7Y1).( FD1.€71) and F73 =
(3, 93), (Jf:j ///j)) are two families of LDFNs. If r > 0 and [V =
(T pvanpy) / Fy,%yFV)) is an LDFN, then:

1. LDFWACTS 1@ FY, 2@ FY,... S, ®FY) = LDFWA(TS1, 72, ... 15,) @
FV
2. LDFWAGrTS 1, r TS0, ...rT15,) = r LDFWA(TS Y, 755, ... 15,)
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3. LDFWA(TS |®F Y1, TIS2@®F 7o, ... 15,@®F ¥ ) = LDFWA(TS 1, 7155, ... T15,)@®
LDFWA(FY 1, F 72, ...F7p)

4. LDFWAG TS @ FY, rTS,@FY,...@&rTS, ®FY) =r LDFWA(TS, 55, ...
)@ FY

Proof Here, we just proof 1 and 3.
1. Since,

TaeF = ((1 —(1=¢"pd - {t/» v)s n”:n“n),
(1-a-pa- f&”),‘ﬂ:‘ﬂn)).

By Theorem 13,

LDFWA(TS 1 @ F7, 1@ F7,... 15, @ F7)
= (jo-TE (0w —e ) T ) ™)

(0-TT (= 00— ) T (0 79) 7))

= <<(1 — (1 =y V)myjﬁjzl(l - Ct:I)wj» (”UFV)myjﬁ;—1<nuj>wj>’

(00T 0™ ) T (079))

~({o- 0= (-9
()T (2)™)
(0= (= )T (= %) ()T (7))

Now, by operational laws of LDFNss,

LDFWA(T1, 1%, ... 150 @ 17

({0~ Ty 0-e9¥ T, 02),
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<(1 -I1_,0- /Rl)myj’ﬁj_lw?yj>®

(<§‘[F% YIU,L v (fxry’ %yF”))
= (o= (e T (- 9)™ ()T 9)™)
(-0 )T (- 9 ()T (7))
Thus,
LDFWA(TS 1@ F Y, 5@ F Y, ... 15, ®F7) = LDFWA(T¢ 1, 7%, ... 15 )®F 7.
3. According to Theorem 13,

QROFWA(TS | @ 72, T2 F 720 .. 15, @ 17,)
_ (<1 T (0 -epa-e9) I, (mn“;)%>,
(=T (0- 0 -a9) T (™)
= (1T (- o) T (- e9) ™
Mo () T, (9)™)

Now,

LDFWA(TS 1, 7155, ... 775,) ®LDFWA(F ¥ 1, F 2, ... F¥ )

T T Y. TT v B
- <<1 _HJ=1(1 —¢Tp¥ J’leln X J>’

<1 -I1,_,0- /NJ)W]’ﬁHw?V}»@
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((1- Ty - o™= TT,_ o3
L

= ({1 TTe, (- 00) " T (7)™
IT. 1<<m> ML)

(T (=) T, (- )™
I () T (3) ™))

Thus,

LDFWA(TS1 @ F 72, T2 @ F V0, ... 1, D F 7))
= LDFWA(T%, T%2,... 15, ® LDFWA(F 7 1, F72, ... F7p).

3.2 LDFOWA Operator

Definition 17 Consider 17 = ({¢*3, n"7), / N., €7 1)) is the agglomeration of
LDFNs, and LDFOWA : $" — § be the mapping.

LDFOWA (TS, 1%, ... 15) =R ey @B 2 6 @ - .-, OB, o),
(14.9)

where (o(1),0(2),...,0(n)) is a permutation of (1,2,...,n), such that
ng(rq) > 754, for any r. Then LDFOWA is known as LDFOWA operator,
where (BY(,BY,,...,BY,) be the WV with the constraint ¥y > 0 and

Yho1 By =1

We might also think about LDFOWA by employing the theorem following.
Theorem 13 Consider 7163 = ((¢73,nV1), (_#Y5, €71)) is the agglomeration of
LDFNs, and we can find LDFWA by

LDFOWA(T%1, 1%, ...71%,)
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—n —— Y]
= <<1 - ]_[le(l — TP, H;:1"U23m>’
—n % v 7T RUS
<1 ol | RGP s 1—[:[:1%;/0(],)». o

Theorem 14 (Monot0n1c1ty) Assume that 163 = (¢T3, 1V1), (D1, €7 1)) and
={(¢"3. " j jxj, €"3)) are the agglomerations of LDFNs. If {75 > ¢7 3,
ﬁvﬁ <n'3 /N > 7%, and €V < €71 forall j, then

LDFOWA(T%1, 12, ... 15,) < LDFOWA(T*7, 755, ... 150).

Proof This is the same as Theorem 14.

Theorem 15 Assume that 7531 = (%3, 1n"y), /N €73)) and FV3 =
(¢1, ¢1), (Ji/: ///:)) are two families of LDFNs. If r > 0 and F?V =
(& pron” ) (IS ). €7 pv)) is an LDFN, then:

1. LDFOWA(TS 1®F 7, 1S2®F 7, ... 15,@®F ) = LDFOWA(T%1, 12, ... 715,)@®
FV

2. LDFOWA(rT1,r 15, ...r1%,) =r LDFOWA(TI51, 152, ... 775,)

3. LDFOWA(TS1 @ FY, 05 @ FV,,...05, ® F7,) = LDFOWA(T%, %5,
) @ LDFOWA(FY 1, F72, ... F"y)

4. LDFOWAGTIS\®F 7, rS2@®FY, ... ®rT 15, ®F7) = rLDFOWA(TI5 1, 762, ...
T DFY

3.3 LDFWG Operator

Definition 18 Consider 713 = ((¢"3,n"3). (_F NJ, €7 7)) is the agglomeration of
LDFNs and LDFWG : $" — $ be a mapping.

LDFWG(T¢1, 1%, ... 5, =P 1 @1 2 e .. @1F . (14.11)
Then the mapping LDFWG is called LDFWG operator, where (7 {, BY»,. ... BY,,)

be the WV with the constraint B¥; > Oand >/, B"; = 1.

We may also consider LDFWG using the theorem below based on LDFNs opera-
tional law.

Theorem 16 Assume that 151 = ({73, nV3), (_Z "y, €7 1)) is the agglomeration
of LDFNs, and we can find LDFWG by LDFWG(T51, 155, ...7%,)

_ —n P —n " Y
(Mg -TT 0 -
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<H; 1/““3 I —]_[ _a —%V:)‘WJ». (14.12)

Proof 1t is quite simple for the first assertion to come before Definition 19 and
Theorem 20. The following instances demonstrate this point further:

LDFWG(T¢1, T%,,...715,)
=¥ o1 e, @

= (<ﬁ;=]§’§w3, -1, 0 - n“:)‘mﬂ>,
<ﬁ:—1/N;WJ’ ! _ﬁzzl(l B %}/J)‘WJ»,

In order to demonstrate the validity of this theorem, we turned to mathematics
induction.
Forn =2

—Ig‘m <<§fq} = (=) > </¢R‘J3 L (1—‘6)’1)‘mn>)

_Ig;pyz (<§rﬂ3 1] — (1— nuj)qgv > </Rq3 1 (a _%yj)‘m.»'

Then

T e
= <<;f‘f“yl, -1 —p'p¥n > </W L1-a —%Vl)‘pyl»@
(<c§3 ==y > </“““ L1-a- %V:)‘W]»
=(<;f“‘3y PSR E (1—n“1>‘ml+1—(1—n“;>“’”1—(1—(1—77“1)‘43“)

(1—(1—n“;)"‘3y1>>,< W ‘ /W 1-(1-%"D¥ 141

—(Q=—gr¥r - <1 - _%Vl)qul)<1 —(1- cgyj)‘ﬁy1>>>
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= (<cf“‘3y L= =¥ - n“;)‘ml>,
< 8‘43 1 /Rm | _cg)/l)qyl(l _cg)/j)‘ﬁy1>>
r‘JBV T v_\BY
- ([T ey - Th )
IS R P73 IS H DL
<H3_1j 151 szl(l —¢") J>)

This shows that Eq. (14.14) is true for n = 2, and now assume that Eq. (14.14) holds
forn =k, i.e.,

LDFWG(T¢1, 755, ... 7%)

= —k ,
([Tt =T 0 -w)
<HJ 1/¢Rwj 1_1_[ e _%Vj)wj»'

Now n = k + 1, and by operational laws of LDFNs, we have

LDFWG(T¢1, T2, ... T441) = LDEWG(TS 1, 1%, ... 10 @ T,

(T -
1=1> 3 I=1 a ’
(T 70T o)
=17 1 I=1

(<§.ralk+l 1—(1— 77Uk+1)myk+'>v </Nm M- cgyk+1)‘43 k+1>>

—k —k
B v 4 v
= <<1_[ {r‘B T szl(l — 0¥ 31— k+1)k+l>v

Ing R‘W NP et IS e BY k+1
<H:|=1 A Hj:l(l =TT A =6V k4) >>
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— —k+1
US| v 4
= <<Hj A 1_[3:1(1 —n')¥ j>’
—k+1 —k+1
B v
([ 2= - T - o))

This shows that for n = k 4 1, Eq. (14.10) holds. Then,

LDFWG(T¢, T%,,...75,)
7" BY T v 14
- <<n3=1§ 151 _HJ=1(1 —n")? J>’
—n 3y —_—n v
<l_[ZI:1/¢R3l - l_[:l=1(1 — €)% J>)

A few of LDFWG’s promising properties are described below.
Theorem 17 (Idempotency) Assume that 157 = ({£%3,n"7), /RJ, €77)) is the
agglomeration of LDFNs. If all 71° 7 are equal, i.e., 17 = T1° for all j, then

LDFWG(T51, 165, ...75,) = 5.

Proof From Definition 17, we have

LDFWG(T51,152,... T, = TP 1@ 7 2@..., @1 F
e I B LR R S LR
=5,

Corollary 2 If 7153 = ((¢%3.1V1), (_# 3. €71) j = (1,2,...n) is the agglom-
eration of largest LDFNs, i.e., 157 = ({1, 0), (1, 0)) for all j, then

LDFWG(T51, 1%, ... 15,) = ({1, 0), (1, 0)).

Proof We can easily obtain Corollary similar to Theorem 10.

Theorem 18 Assume that 751 = ((("1,7Y1).(F 1, €71) and F73 =
(3, 01), (Ji/j //lj)) are two families of LDFNs. If r > 0 and [V =
(SIS MINGA pvs @7 pr)) isan LDFN, then:

1. LDFWG(S 1@ F7, 5@ FY,... 15, ®FY) = LDFWG(T51, 192, ... 15,0 @
FV
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2. LDFWG(rT51, 718, ...r715,) = r LDFWG(TS1, 55, ... 15,)

3. LDFWG(TIS1@F Y1, T12@F V2, ... 12 ®F V) = LDFWG(TS 1, 7155, ... 715,)
®LDFWG(FY 1, F72,...F"y)

4. LDFWGGTIS 1@ FY, r15,@F7, ... @rTS, ®FY) =r LDFWG(T, 15, ...
Y-Vl

Proof The proof of this theorem is the same as Theorem 15.
Theorem 19 (Monotomczty) Assume that 157 = ((£%1, 1), /Rj, €7 3)) and

=({(¢73, nY 3 jxj, €"'3)) are the agglomerations of LDFNs. If (75 > ¢y,
77“3 <nYs /N > 7%, and €75 < €71 forall j, then

LDFWG(T¢1, 12, ... 15,) < LDFWG(TI¢%, 155, ... 715%)

Proof Here, nV3 > nVyand (7] < ¢"yforall j. If ¥ > n¥y:
Sn'iznlye 1 -n"3<1—-n";
& (=P < (1 =y ¥’
& T (1= < Tl 14— ¥
<1>1—1_[:| (=¥ < 1—1_[] ((I=n" )Smj-
And:
€75 >¢77and g8 < gN forall j.IECVE > €7
@%V >6"161-6"]<1-%¢7;
& (1 _<gy*)‘43": <(1—=¢rp¥
o 1‘[: 1(1 _%y*)‘lﬂn < 1‘[: e _%y])‘w
1Tl =€7 %1 <1 =[], (1 —675H¥ 1,
Now:
IS¢ e TR < @y
& [Tm1 G HP 3 <2, TP,
And:

R*SjN
& (/N*)WJ < (¥,

& T (DY < o (8P,
Let

95 = LDFWG(T%4, 755, ...775,)

and

T¢* = LDEWG(T¢F, 5%, ... 15%).
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We get that Te* > <. So,

LDFWG(Ty, TI¢,, ... 715,) < LDFWG(TST, 755, ... 195,

3.4 LDFOWG Operator

Definition 19 Consider 13 = ({71, n"3), (_# ™3, €7 1)) is the agglomeration of
LDFNsand LDFOWG : $* — $ be a mapping

LDFOWG(T1, ... ) = Bl @ TR @ ... @0y, (14.13)
where (o(1),0(2),...,0(n)) is a permutation of (1,2,...,n), such that

¢ or—1) = ng(,), for any r. Then the mapping LDFOWG is called LDFOWG
operator, where (B% |, 375, ..., BY,,) be the WV with the constraint *?; > 0 and

Y Pi=1
We may also consider LDFOWG using the theorem below based on LDFNs
operational law.

Theorem 20 Assume that 153 = ((¢"3.7"3), (_Z ™y, €7 1)) is the agglomeration
of LDFNs, and we can find LDFOWG by LDFOWG(¢1, 152, ... 7%,)

— T rgpyj 1 T 1 v SBVJ
N szlg o)’ _szl( =176 (j)) )
— ) .
<HJ_1/33/§’ - szl(l - ngcr(j))my]>)- (14.14)

Theorem 21 (Monotonicity) Assume that 73 = (({3,7V7), (F 1, €73)) and
97 = ((¢75. V5, (N, €"3)) are the agglomerations of LDFNs. If {75 > ¢7 3,
v’y <nvs /Né > 7%, and €75 < €71 forall j, then

LDFOWG(T1, 7155, ... 715,) < LDFOWG(TS%, 7155, ... 15%).

Theorem 22 Assume that 131 = ((£'3.7Y3).( "3, €71) and FV3 =
(3, 01), (A, A7) are two families of LDFNs. If r > 0 and FY =
(& pron” ) (IS py . €7 pv)) is an LDFN, then:

1. LDFOWG(TS1®FY, 52®F7,... 15,®F7) = LDFOWG(T%1, 155, ... 715,)
DFrY

2. LDFOWG(rT1¢1,r 5, ...r15,) = r LDFOWG(T51, 55, ...715,)

3. LDFOWG(IS 1 ® FY 1, 12 @ FYo,... 05, ®FY,) = LDFOWG(T51, 755, ...
160) @ LDFOWG(FY 1, F V2, ... F7y)
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4. LDFOWG@rS (®F Y, r15@®F Y, ... ®r15,®FY) = rLDFOWG(T% 1, %2, ...
) FY

4 Proposed Methodology Based on Developed AOs

Let 77 = {931, 932, el ﬂjm} and 9¢ = {%Y, gv;, e, {!”u,f} be the alternatives
and criterion, respectively. DM offered his judgement matrix D = (N]lkj)mxn, in

which NE‘. stands for the alternate .77; € 77 as per the parameter %Vf e &¢ by
DM. The matrix D has converted into “normalized matrix” by the given formula

Y = (gﬂf])‘)mxn:,

R jex
(gﬂg’)mxn = { kl]_ ¢
ij’

(14.15)
J € T,

where (NE.?)“ denotes the compliment of N'lk
The MCDM will be updated to include the suggested operators, which will make
the previously described processes necessary.

Algorithm

Step 1:
Acquire the judgment matrix D = (N]}‘j)mx,, based on LDFNs from DMs.

ga g;Z
T W0t (I8 € ) (%12 0¥ 120, (I 15, €7 12))
TH | (€1, nY a0 (D5, €7 21)) (720, 1V22), (I 50, €7 22))

T LTt 1) (LIS € ) (T s 1 m2)s (I 0 €7 )

""" ((CTln’ nvln>v (/Rlyp %yln»
""" (<§T2n’ 77U2n>’ (sznv %V2n>)

""" T mns 1 mn)s (/Rmn’ 7 mn))

Step 2:
There is no need for normalization if all indicators are of the same kind. The matrix
D has amended to “transforming response matrix, ¥ = (gﬁf»(';-),,,>< »~ by Eq. 14.15.
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Step 3:

Aggregate 9?5 for all alternates .77; by utilizing the LDFWA (LDFWG) operator.
& = LDFWA(S"H, ¢"5, ... ¢"F ) or

%% = LDFWG(s"Y], ¢"%, ... ¢").

Step 4:

Compute the score against all the alternatives.

Step 5:

The SF was used to classify the alternatives, and the most appropriate option was
chosen.

5 MCDM Example

Multi-criteria decision-making (MCDM) is a useful tool for agricultural decision-
making as it allows for the consideration of multiple conflicting objectives and
constraints. These may include economic, environmental, and social factors. The
use of MCDM can lead to more sustainable and efficient farming practices, as well
as improved decision-making for farmers and policymakers.

Some specific applications of MCDM in agriculture include:

* Land use planning: MCDM can be used to evaluate and compare different land
use options, such as crop rotation, irrigation systems, and conservation practices.
This can help farmers and policymakers make more informed decisions about
how to use land resources in a sustainable and efficient way.

* Crop selection: MCDM can be used to evaluate and compare different crop
options, taking into account factors such as yield, profitability, water usage, and
environmental impact. This can help farmers make more informed decisions
about which crops to grow, leading to increased productivity and sustainability.

» Livestock management: MCDM can be used to evaluate and compare different
livestock management options, such as feed management, breeding strategies,
and disease control. This can help farmers make more informed decisions about
how to raise and manage livestock in a sustainable and efficient way.

*  Water management: MCDM can be used to evaluate and compare different water
management options, such as irrigation systems, water storage, and conservation
practices. This can help farmers and policymakers make more informed decisions
about how to use water resources in a sustainable and efficient way.

* Climate change mitigation: MCDM can be used to evaluate and compare differ-
ent mitigation options, such as crop rotation, irrigation systems, and conservation
practices. This can help farmers and policymakers make more informed decisions
about how to adapt to and mitigate the impacts of climate change.

It is important to note that MCDM is not a one-size-fits-all solution and that the
specific method used will depend on the specific problem being addressed and the
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available data. Additionally, it is important to involve stakeholders in the decision-
making process to ensure that the results are socially acceptable.

MCDM is a useful tool for agricultural decision-making as it allows for the
consideration of multiple conflicting objectives and constraints. Its applications in
agriculture include land use planning, crop selection, livestock management, water
management, and climate change mitigation. It can lead to more sustainable and
efficient farming practices, as well as improved decision-making for farmers and
policymakers. However, it is important to use appropriate method and involving
stakeholders in the decision-making process.

Agriculture is a significant contributor to Pakistan’s economy, accounting for
18.9 percent of the country’s gross domestic product and employing 42.3 percent
of the labor force. In addition to this, it is a significant source of revenues from
international commerce, and it encourages growth in a variety of other areas. To
boost development in this field, the public authority is focusing on aiding small
and marginalized ranchers and pushing limited scope creative solutions. The sixth
population and housing census that was conducted in Pakistan in 2017 revealed
that the country’s overall population is expanding at a pace of 2.4 percent on an
annual basis. Demand for goods produced by agriculture is expected to rise as a
result of the fast population expansion. The current administration is centered on
advancing this area and has begun various measures, for example, crop expansion,
decreasing increase rates, proficient utilization of water, and advancement of high
worth yields including biotechnology, agribusiness credit advancement, subsidized
manure costs, and modest power for negritude wells. As a result, this current area’s
exhibition expanded complicated after undergoing moderate and slowed expansion
over the previous 13 years.

Consider the decision-making challenge of determining the best agricultural
land. Assume the agglomeration of choices, 7 31, T3, T35, and T 34, also
considering four criterions, p™,= irrigation, p",= cost, p";=soil, and p",=
processing industry and market. Assuming that the criteria were weighted as
(0.25,0.40, 0.20, 0.15).

Algorithm

5.1 With LDFWA Operator

Step 1:

Obtain matrix D = (R%)mxn by DM, which is shown in Table 14.2.

Step 2:

In this case, f!”vz{ criteria are cost type criteria that all are the benefits types, so there
is need of normalization. Normalized LDF-decision matrix is given in Table 14.1.
Step 3:

Aggregate the LDF values RS ; for all 7 3 using LDFWA operator, given in
Table 14.3.
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Talb'e 1;:3 LDF-aggregated 25, | (10596248, 0.760098), (0.32997, 0.175855))
vates # 25, | ((0.769462, 0.522578), (0.523542, 0.612701))
55 | ((0.503278, 0.624946), (0.708147, 0.613116))
54 | ((0.482460, 0.581847), (0.532108, 0.399725))
Step 4:

Compute the score for all LDF-aggregated values RS;.
CURS ) = 0.497566
CU%5,) = 0.539431
€% 3) = 0.493341
RS 4) = 0.508249

Step 5:
Ranks according to SFs.

Ry = RSy = B\ = B°5.
So,
T 73, 71~ 70

s 32 is the best alternative among all other alternatives.

5.2  With LDFWG Operator

Step 1:

Obtain matrix D = (k‘C]}‘{j)mX » by DM, which is shown in Table 14.4.

Step 2:

In this case, ?2{ criteria are cost type criteria that all are the benefits types, so there
is need of normalization. Normalized LDF-decision matrix is given in Table 14.5.
Step 3:

Aggregate the LDF values 25; ; for all 7 3 using LDFWG operator, given in
Table 14.6.

Step 4:

Compute the score for all LDF-aggregated values x°;.

GRS ) = 0.476266
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Talb'e 19‘}:96 LDF-aggregated 25, | ((0.547045,0.771117), (0.315797, 0.18666))
vates # 5, | ((0.581468, 0.547835), (0.469927, 0.700454))
55 | ((0.442722, 0.812834), (0.547528, 0.796085))
54 | ((0.461491, 0.670541), (0.503649, 0.468701))
>l apS.N
CI( RS ) = 0.480777
G %#S5) = 0.345333
CU#S 4) = 0.456474.
Step 5:

Ranks according to SFs.

RSy = B\ = B4 = X5,
So,

TN = T = 7 - 7

T 32 is the best alternative among all other alternatives.

6 Conclusion

MCDM is a significant real-world decision issue, and its most fundamental and
essential research is the expression of imprecise information. IFSs, PFSs, and
g-ROFSs are all effective methods for handling fuzzy information. LDFSs are
more generic than IFS, PES, and q-ROFS due to their ability to loosen the
severe limitations of IFS, PFS, and q-ROFS by considering RPs. MCDM is a
crucial subfield in operation research. This assignment’s techniques mostly rely
on the nature of the issue being evaluated. Our everyday occurrences include
unpredictability, imprecision, and obscurity. Existing structures were constructed
on the basis of the concept that decision-makers (DMs) consider specific limitations
while assessing various choices and qualities. However, this kind of situation makes
it difficult for DMs to allocate MSDs and NMSDs; therefore, they do so with
different constraints. LDFS is a novel method to uncertainty and decision-making
issues that incorporates pairs of RPs versus MSDs and NMSDs in order to loosen
these limits. We have used LDFSs to assess the validity of DMs’ knowledge
in the basic framework and to remove any distortion in the decision analysis.
The significant advantage of including RPs into the examination is to reduce the
likelihood of theoretical knowledge-based MSD and NMSD-related mistakes. In
addition, we have developed a number of AOs, including the LDFWA operator and
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the LDFWG operator. Numerous intriguing aspects of the suggested operators are
investigated, and their illustration is convincingly shown.
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