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Preface 

Fuzzy set theory is a powerful mathematical tool for dealing with uncertainty 
connected with the imprecision of states, perceptions, preferences, etc. With the 
rise of an intelligent era in human society, fuzzy sets and related applications 
have become increasingly active research topics in various fields. These are widely 
scattered over many disciplines, such as algebraic structures, artificial intelligence, 
computer science, control engineering, data mining, decision analysis, expert 
systems, management science, non-classical logic, operations research, pattern 
recognition, and robotics, among others. 

Fuzzy optimization is a well-known topic in manufacturing and management 
organizations in artificial intelligence, so establishing general and operable fuzzy 
optimization methods is essential in both theory and application. In 1965, Zadeh 
originated the concept of fuzzy sets, which formed the foundation for describing and 
processing uncertain information. Later, much progress was made in both theory and 
application. The fuzzy numbers, an essential part of the fuzzy set, are prevalent in 
describing uncertain phenomena in actual problems. It has been suggested for many 
fuzzy optimizations, control, data analysis, etc. 

Due to the advancement of fuzzy logic/mathematics, decision-making problems 
have become more realistic. Several sophisticated and intelligent systems have been 
developed to solve them. Lots of fuzzy operators are developed to solve fuzzy 
decision-making problems. Since the real world is full of uncertainty, many real-
life problems are modeled as problems of operations research, and lots of problems 
in inventory management are solved using fuzzy optimization techniques along with 
game theory, project management problems, linear and nonlinear problems, and 
many others. On the other hand, many optimizations and decision-making problems 
are modeled as fuzzy graphs. Recently, many daily life problems have been solved 
using the concept of fuzzy graph theory. 

The book starts with some fundamental concepts of fuzzy logic, fuzzy optimiza-
tion problems, and decision-making problems, which are used in the subsequent 
chapters. The chapters include the recent development of fuzzy optimization 
techniques, fuzzy decision-making methods, different fuzzy operators and their 
applications, the use of graph theory to solve optimization problems, some problems
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in operations research in a fuzzy environment, etc. Each chapter also discusses 
some keys and representative applications. Fuzzy optimization and decision-making 
paved the way for professionals to build many rule-based expert systems. In the 
literature, many papers are available on the proposed title, but only a few books are 
available on the same topic. The authors have made a real contribution to putting 
things together into a comprehensive book. 

The book offers an excellent reference guide for advanced undergraduate and 
graduate students, researchers, and professionals in mathematics, engineering, and 
computer science, and an inspiring read for all researchers interested in new 
developments in fuzzy logic, fuzzy optimization, decision-making, and operations 
research. 

A brief contribution of each chapter is given in the following. 
In Chap. 1, the fundamental issues of classical optimization and fuzzy optimiza-

tion are discussed. There is clarity about the feasible and optimal solutions for 
classical optimization problems, but the conventional concepts need to be validated 
for fuzzy optimization, and hence new definitions are proposed. The single objective 
and multi-objective optimization problems for classical and fuzzy environments are 
discussed. Some modern optimization techniques, viz. genetic algorithms, particle 
swarm optimization, neural network, etc., are applied to solve such problems. Many 
parameters are associated with optimization problems and may contain multiple 
objective functions; some conflict. For such problems, Pareto’s optimal solution is 
determined. Sometimes it is necessary to find the combined effect of the parameters 
in the solution. To combine the parameters, we need an aggregation process. 
Recently, many excellent aggregation methods have been available in the literature. 
Apart from the aggregation process, the t-norms and t-conorms-based operators are 
used to solve decision-making problems. Some of these operators are studied. 

In Chap. 2, the natural notion of adequacy is formulated. In practice, there 
is often a need to describe the relation y = f (x) between two quantities in the 
algorithmic form: e.g., the control value y needs to be described corresponding 
to the given input x, or to predict the future value y based on the current value x. 
In many such cases, expert knowledge is available about the desired dependence, 
but experts can only describe their knowledge by using imprecise (“fuzzy”) words 
from a natural language. Methodologies for transforming such knowledge into an 
algorithm y = f (x) are known as fuzzy methodologies. Several fuzzy methodologies 
exist; a natural question is: which of them is the most adequate? In this chapter, the 
natural notion of adequacy is formulated. If the expert rules are formulated based 
on some functions y = f (x), then the methodology should reconstruct this function 
as accurately as possible. We show that none of the existing fuzzy methodologies is 
the most adequate in this sense, and we describe a new fuzzy methodology that is 
the most adequate. 

Chapter 3 deals with measurement-related ideas which are used for decision-
making problems. Ultimately, all our knowledge about the world comes from 
observations and measurements. An important part of this knowledge comes directly 
from observations and measurements. For example, when a person becomes sick, 
we can measure this person’s body temperature, blood pressure, etc. and thus,
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Preface vii

usually get a good understanding of the problem. In addition, a significant part 
of our knowledge comes from experts who – inspired by previous observations 
and measurements – supplement the measurement results with their estimates. 
For example, a skilled medical doctor can supplement the measurement results 
with his/her experience-based intuition. Measurements have existed for several 
millennia, and many effective techniques have been developed for processing 
measurement results. In contrast, processing and expert opinions are reasonably new 
fields with many open problems. A natural idea is thus to see if measurement-related 
ideas can help to use expert knowledge as well. In this chapter, we discuss three case 
studies where such help turned out to be possible. 

Chapter 4 is devoted to fuzzy control theory. One of the main objectives of fuzzy 
control is to translate expert rules – formulated in imprecise (“fuzzy”) words from 
natural language – into a precise control strategy. This translation is usually done in 
two steps. First, we apply a fuzzy control methodology to get a rough approximation 
of the expert’s control strategy, and then we tune the resulting fuzzy control system. 
The first step (getting a rough approximation) is well analyzed. Having an expert’s 
intuitive understanding enables us to use soft computing techniques to perform in 
this step. At this first step, we only use expert rules. Then, we test the resulting 
control on a real or simulated system and tune the resulting control based on the 
results of this testing. This second (tuning) step is much more difficult: we no 
longer have any expert understanding of which tuning is better, and therefore, 
soft computing techniques are not that helpful. In this chapter, we proposed a 
particular case of the tuning problem as a traditional optimization problem and 
solve it by using traditional (“hard computing“) techniques. In a practical industrial 
control example, we show that the resulting fusion of soft computing (for a rough 
approximation) and hard computing (for tuning) leads to high-quality control. 

Chapter 5 deals with the framework of the transportation problem. Such problems 
are structured on the basis of parameters like supply, demand, cost, and quantity. 
Noys, the tech-savvy consumers globally enjoy the ease and comfortso-calledo 
called “delivery apps” which make these parameters uncertain and imprecise and 
hence crisp parameters are unable to handle or represent such situations. The more 
flexible and generalized fuzzy number, namely the interval-valued intuitionistic 
fuzzy number, can come in handy to the decision-maker for efficient representation 
of all these parameters. However, the purpose of the decision-maker is not only 
to minimize the transportation cost while delivering the article of trade but also 
to minimize the other associated costs. Many authors have worked with fully 
intuitionistic fuzzy multi-objective transportation problems with standard linear 
objective functions with and without using interval-valued intuitionistic fuzzy 
numbers. 

This work proposes a comprehensive novel fully interval-valued intuitionistic 
fuzzy multi-objective indefinite quadratic transportation problem. The indefinite 
quadratic objective function being a product of two linear factors is capable of 
minimizing each of the factors simultaneously. The authenticity of the model is 
exhibited through a real-life problem scripted by the food industry. The first objec-
tive minimizes the transportation cost and the depreciation cost simultaneously. In
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the second objective, simultaneous minimization of the packaging cost and the 
associated wastage cost is targeted. The problem is solved through a proposed 
and existing methodology. The results obtained are discussed, and future work 
concludes the chapter. 

Chapter 6 discusses project management in a fuzzy environment. Fuzzy logic is 
a very powerful tool to handle non-random uncertain problems. On the other hand, 
in project management, many issues are uncertain, particularly the time duration to 
complete an activity. It is very difficult to estimate the exact completion time of an 
activity, i.e., total completion time of a project. It happens due to the lack of material 
available in time, availability of labor, etc. So, in this chapter, an activity’s time 
duration is assumed as a triangular fuzzy number (TFN). By considering the TFN 
as the weight of an activity, the possible completion time of a project is determined 
using the network analysis technique. An algorithm is designed to find such time. 
An example also illustrates the algorithm. 

In Chap. 7, the concept of generalized Hukuhara (gH)-global subdifferential for 
interval-valued function (IVF) is proposed. To define this concept, we propose the 
notions of gH-lower and gH-upper global directional derivatives for IVFs. A few 
results on the characteristics of gH-lower and gH-upper global subdifferential are 
studied. Next, a result on the gH-directional derivative of the maximum of compa-
rable IVFs is derived. In the sequel, the gH-lower subdifferential is compared with 
gH-Fréchet subdifferential, gH-proximal subdifferential, and gH-subdifferential for 
IVFs. Thereafter, a necessary and sufficient condition for obtaining an efficient 
solution to an interval optimization problem (IOP) with the help of gH-lower global 
subdifferential is given. 

Chapter 8 discusses a new approach for determining an initial basic feasible 
solution for both balanced and unbalanced transportation problems. The trans-
portation problem exposes its complexity and inconsistency. When the total of all 
sources’ supplies equals the sum of all destinations’ requests, it is called a balanced 
transportation problem. When the total of all sources’ supplies does not meet the 
sum of all destinations’ demands, it is called an unbalanced transportation problem. 
Here we present a novel approach for determining an initial basic feasible solution 
for both balanced and unbalanced transportation problems. Appears to involve the 
max-min method, which has resulted from the transportation problem. It has various 
approaches to solving the transportation problem. This chapter finds a suitable 
defuzzification method to convert hexagonal fuzzy numbers to crisp numbers to 
get the minimum cost. 

In Chap. 9, matrix games are investigated in view of healthcare problems. 
Data privacy and cyber threats are becoming increasingly common in healthcare 
organizations. Defending against these uncertain digital attacks is today’s highest 
challenge. Cyber security aims to prevent the theft and damage of all categories of 
classified data. These uncertain problems can be designed as matrix games, with 
attackers and defenders considered as players. Concerning fuzzy sets/intuitionistic 
fuzzy sets or ordinary intervals, interval-valued picture fuzzy numbers can be a 
great way to deal with such uncertain circumstances. Using a matrix game, this 
chapter examines cyber threat-related issues in the healthcare sector, and interval-
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valued picture fuzzy numbers are utilized as the players’ payoffs. Two nonlinear 
mathematical programming models with multi-objective functions are constructed 
and converted into linear programming models with crisp objectives utilizing the 
weighted average approach. The LINGO platform solves the problems, and the 
optimal solutions are obtained. In the cyber threat issue, we present a practical 
example of how to choose the optimal strategies for the medical data controller of 
a healthcare institution. For the value 0.5 of the parameter, the numerical example 
shows that the defender can successfully defend the digital attack by 44–59% and 
failed by 6–14%. There exists an indeterminacy of countering the attack by 7–16%. 

Chapter 10 discusses the minimization of span in L(3, 1)-labeling for a particular 
type of intersection graph. The interval graph is a very useful subclass of intersection 
graphs. This class of graphs have many applications for solving real-life problems. 
One such real-life problem is L(3, 1)-labeling of the graph. In this chapter, L(3, 1)-
labeling of the interval graph is considered. The L(3, 1)-labeling of a graph 
G = (V,E) is a function τ : V → {0, 1, 2, . . . } so that |τ (x) − τ (y) | ≥ 3 if  d(x, y) = 1 
and |τ (x) − τ (y) | ≥ 1 if d(x, y) = 2. The L(3, 1)-labeling number λ3, 1(G) of G is  
the smallest non-negative integer m, so  G has a L(3, 1)-labeling of span m. In this 
chapter, L(3, 1)-labeling of interval graphs is studied and has found good results. It 
is shown that λ3, 1(G) ≤ 4Δ − 1 for the interval graph, where Δ is the maximum 
degree of the graph G. Also, an algorithm is designed to label an interval graph by 
L(3, 1)-labeling. The running time of the proposed algorithm is also calculated. 

Chapter 11 proposes a novel class of neutrosophic sets, combining intuitionistic, 
neutrosophic, and Pythagorean neutrosophic sets. In addition to identifying their 
most significant characteristics, their connections and separations are discussed. 
Comparing them with other neutrosophic sets in the literature demonstrates their 
significance. This example shows that every NSS is a GNSS, but the converse 
is not true. Additionally, the pre- and post-images of GNSS are discussed by 
demonstrating the theory behind these sets with sickness diagnosis as an example. 
The newly developed category of sets has a wider range of applications than earlier 
neutrosophic sets by comparing its outcomes with those reported in the literature. 
Generalized neutrosophic sets will have more applications than other sets. 

In Chap. 12, the balanced neutrosophic graph is studied and applied to solve a 
real-life problem. The neutrosophic graph is an extension of the intuitionistic fuzzy 
graph. A neutrosophic graph is a necessary tool for handling real-life problems, so 
studying neutrosophic graphs is welcomed. In this study, a balanced neutrosophic 
graph is used, and in this graph, we propose an application of alliances of some 
information technology companies. 

In Chap. 13, Hamy mean (HM) information is used to solve decision-making 
problems. To derive the best preference from the collection of preferences, decision-
making information is one of the most important and dominant techniques to 
evaluate most problems in real-life dilemmas. HM information is also used for 
aggregating the bundled information into a singleton set computed based on alge-
braic laws. The main influence of this theory is to propose Dombi operational laws 
for complex intuitionistic fuzzy (CIF) information and try to construct the theory 
of HM information based on Dombi t-norm and t-conorm under the consideration
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of CIF information, called CIF Dombi HM (CIFDHM), CIF weighted Dombi 
HM (CIFWDHM), CIF Dombi dual HM (CIFDDHM), and CIF weighted Dombi 
dual HM (CIFWDDHM) operators. Further, some valuable properties and results 
for the presented information in the investigated analysis are studied. Moreover, 
MADM “multi-attribute decision-making” information is utilized in this manuscript 
based on pioneered operators and some examples are given to justify the worth 
and dominancy of the evaluated information. Finally, comparing the evaluated 
information with some other old or prevailing information enhances the derived 
operators’ quality. 

Linear Diophantine fuzzy set (LDFS) is studied in Chap. 14. The LDFS is an 
integral part of the decision-making process under uncertain environments; because 
of its amazing quality of having a vast portrayal zone for authorized doublets, the 
LDFS theory expands the region of fuzzy information that may be obtained by 
using reference parameters. Because the real world is inaccurate, and there needs 
to be more knowledge, assessing and picking the best option can be challenging 
and unexpectedly difficult. The primary goal is to guide decision-makers through 
the process of selecting the best option inside a linear Diophantine fuzzy context. 
The four new aggregation operators (AOs): the “linear Diophantine fuzzy weighted 
average (LDFWA) operator, linear Diophantine fuzzy ordered weighted average 
(LDFOWA) operator, linear Diophantine fuzzy weighted geometric (LDFWG) 
operator, and linear Diophantine fuzzy ordered weighted geometric (LDFOWG) 
operator.” The proposed model is then validated using a clear example of linear 
Diophantine fuzzy content. This demonstrates the utility and applicability of the 
suggested strategy. 

Chapter 15 deals with some decision-making that comes from the real world. 
Uncertainty is inherent in decision-making (DM) problems that occur in real-world 
situations. Numerous methods have been devised, but the idea of a fuzzy set (FS) has 
shown to be the most effective. When it comes to solving DM problems, like multi-
criteria decision-making (MCDM), FS has shown to be highly ground-breaking. 
There has been made more advancement in this area. Herzberg’s two-factor theory 
inspired the newly proposed hyperbolic fuzzy set (HFS). In this study, a novel 
HFS-based scoring function is presented. Based on HFS, the Minkowski distance 
is introduced. Last but not least, a TOPSIS method is constructed based on HFS 
using the distance measure with some applications. 

Chapter 16 deals with the TOPSIS method to solve decision-making problems. 
The technique for order preference by similarity to ideal solution (TOPSIS) is 
celebrated for solving decision-making problems. The Pythagorean fuzzy set gener-
alizes the intuitionistic fuzzy set, which can deal with uncertain and incomplete 
information more appropriately. The motivation of the study is to develop an 
improved TOPSIS technique in a trapezoidal Pythagorean fuzzy environment, 
which can handle real-life decision-making problems more effectively and robustly. 
This chapter defines trapezoidal Pythagorean fuzzy numbers and discusses their 
various algebraic properties. Then, new distance functions have been defined 
for the trapezoidal Pythagorean fuzzy environment, which calculates the relative 
closeness coefficient. Furthermore, an aggregation operator is introduced. This
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trapezoidal Pythagorean fuzzy weighted arithmetic operator is used to develop an 
improved TOPSIS technique based on new distance functions under the trapezoidal 
Pythagorean fuzzy environment. The newly developed TOPSIS technique has been 
demonstrated and applied to select the best institute/college. Finally, comparative 
and sensitivity analyses are given to discuss the advantages and reliability of the 
proposed technique. 

Chapter 17 describes the theory of prioritized Aczel–Alsina aggregation oper-
ators for complex intuitionistic fuzzy (CIF) information. Prioritized aggregation 
operators are very famous and reliable because they can help us aggregate infor-
mation collection into a singleton set. Furthermore, the derived theory of Aczel 
and Alsina has received valuable and dominant attention from many scholars. In 
this chapter, the theory of prioritized Aczel–Alsina aggregation operators for CIF 
information, such as CIF-prioritized Aczel–Alsina averaging (CIFPAAA), CIF-
prioritized Aczel–Alsina ordered averaging (CIFPAAOA), CIF-prioritized Aczel– 
Alsina geometric (CIFPAAG), and CIF-prioritized Aczel–Alsina ordered geometric 
(CIFPAAOG) operators, are discussed. Moreover, various properties and special 
cases of the derived work are also examined. Additionally, we expose a MADM 
“multi-attribute decision-making” technique under the consideration of derived 
operators. Finally, we illustrated various examples for comparing proposed and 
existing operators to show the supremacy and validity of the invented theory. 

In Chap.18, a new approach of intuitionistic fuzzy distance is developed and used 
to predict maternal complications. The problem of maternal complications is preva-
lent in developing nations. Every pregnant woman is entitled to good reproductive 
health to enhance safe delivery. In this work, we applied the intuitionistic fuzzy 
distance measure approach to predict maternal complications. A new approach of 
intuitionistic fuzzy distance is developed and characterized by certain theoretical 
results. Owing to the prevalence of maternal complications in developing nations, 
we deployed the developed intuitionistic fuzzy distance approach for the prediction 
of maternal complications to avoid maternal mortality during childbirth. Also, there 
is an improved value in the probability results compared to the previous methods. 

Chapter 19 investigates fuzzy pre-predicator model. The current mathematical 
model is an understanding of the mathematical explanation of different global 
environmental challenges. The modeling of prey-predator dynamics has garnered 
the most attention from scientists and ecologists in recent years. The majority of 
ecologists who study the subject make the assumption that ecological parameters 
are well understood. The unpredictability in the model can arise for several 
reasons, including human error, faulty data supply, climatic changes, and other 
environmental elements, etc. altering the real situation. The fuzzy fractional diabetes 
model is studied in Caputo’s sense, where the initial populations are taken to be 
a fuzzy number, to address this issue. The proposed method, known as the gH 
(generalized Hukuhara), derived the idea to clarify the fuzzy suggested system. The 
leading model is converted into a set of differential equations with a parametric 
form of when this approach is used in the fuzzy prey-predator system. Here, only 
two scenarios are analyzed in which prey G(t) and predator I(t) populations are both 
gH type-I and gH type-II differentiable. The stability conditions of non-negative
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feasible steady states have been examined in a fuzzy environment. Finally, thorough 
numerical simulations are performed to validate all the analytical results. 

T-spherical fuzzy sets (T-SFSs) have fascinated the desire of researchers in a 
wide range of domains and it is discussed in Chap. 20. The striking framework of 
the T-SFS is keen to offer the larger inclination domain for modeling ambiguous 
information deploying the degrees of membership, neutral and non-membership. 
Further, T-SFSs prevail over the theories of spherical and Pythagorean fuzzy sets 
owing to their broader space, adjustable parameter, flexible structure, and influential 
design. The information measures a significant part of the literature and are crucial 
and beneficial tools widely applied in making decisions, mining data, diagnosing 
medical things, and recognizing patterns. This chapter aims to expand the literature 
on T-SFSs by introducing many innovative T-spherical fuzzy sets’ information mea-
sures: distance, similarity, entropy, and inclusion. We investigate the relationship 
between distance, similarity, entropy, and inclusion measures for T-spherical fuzzy 
sets. Another achievement of this research is to establish a systematic transformation 
of information measures, measure distance, measure similarity, measure entropy, 
and measure inclusion for the T-SFSs. To accomplish this aim, a new formula for 
information measures of T-SFSs has been provided. To demonstrate the criteria 
of the measures, we employ them to recognize patterns, building materials, and 
diagnosis of the medical things. Additionally, a comparison between traditional 
and novel similarity measures is described in terms of counterintuitive cases. The 
outcomes demonstrate that the innovative information measures do not include any 
absurd cases. 

Chapter 21 proposes a decision-making process which is used in the disaster 
management system and medical diagnosis using Pythagorean fuzzy information. 
Pythagorean fuzzy correlation coefficient (PFCC) is a trustworthy information 
measure to determine sundry real-world decision-making problems. Some authors 
have worked on methods for calculating PFCC, notwithstanding some limitations 
which bother accuracy and reliability. In this chapter, two methods for calculating 
PFCC are developed in a quest to obtain more reliable methods. The methods 
are adorned with the traditional attributes of the Pythagorean fuzzy set (PFS) to 
forestall any possibility of exclusive error. Some theoretic results based on the new 
methods are buttressed in consonant with the attributes of the classical correlation 
coefficient. To demonstrate the new methods’ resourcefulness, real-world problems 
like disaster control and medical diagnosis are resolved using Pythagorean fuzzy 
data. The attractiveness of the new methods is portrayed in comparative analysis 
involving other methods of PFCC to justify the relevance of the new methods as 
reliable PFCC methods. 

In Chap. 22, the q-Rung neutrosophic interval-valued soft set (q-Rung NSIVSS) 
is a generalization of the interval-valued fuzzy soft set (IVFSS), and the fuzzy soft 
set (FSS) is discussed extensively. The q-Rung NSIVSS aggregation was discussed 
through TOPSIS aggregated operation (AO). The TOPSIS method is an effective 
method for multi-criteria group decision-making (MCGDM), which is an extension 
of FSS. The objective is to find an ideal positive and negative solution based on q-
Rung NSIVSS, aggregating TOPSIS, using a score function. Optimal alternatives
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are presented to determine closeness values. To strengthen our conclusions, we 
provide practical examples. This results in the outcome of the models for which q is 
provided. Comparing the existing models to those that have been proposed allows 
us to measure the validity and usefulness of the models under consideration. The 
most recent discoveries have a great deal of fascination and interest. 

Chapter 23 deals with the MADM problems using a cosine trigonometric neutro-
sophic normal interval-valued set. Some novel methods to solve multiple attribute 
decision-making (MADM) problems using a cosine trigonometric neutrosophic 
normal interval-valued set (CTri-NNIVS) are introduced. A new concept of cosine 
trigonometric neutrosophic interval-valued set (NIVS) is introduced, generalizing 
trigonometric neutrosophic set and NIVS. Our discussion focuses on aggregate 
operations. We introduce a novel topic of cosine trigonometric neutrosophic 
normal interval-valued (CTri-NNIV) weighted averaging (CTriNNIVWA), CTri-
NNIV weighted geometric (CTri-NNIVWG), CTri-NNIV generalized weighted 
averaging (CTri-GNNIVWA), and CTri-NNIV generalized weighted geometric 
(CTri-GNNIVWG). In addition, an algorithmic interaction with the MADM through 
these operators is designed. The appropriateness of the Hamming distance was 
discussed, which are discussed in more detail in the examples. As a final part 
of this chapter, some of the properties of these sets using different operations 
are discussed. Furthermore, the effectiveness and reliability of the models are 
demonstrated through comparison with existing models. Finally, the relationship 
is extended by showing some motivating details and attractive results for operators 
using CTri-NNIVWA, CTri-NNIVWG, CTri-GNNIVWA, and CTri-GNNIVWG. 

Chapter 24 defines a new score function for interval-valued spherical fuzzy 
(IVFS) sets. The IVSF sets are effective for dealing with uncertainty due to their 
broader space. The score functions are commonly used to distinguish the IVSF 
sets. But, the existing score functions of IVSF sets need to distinguish the IVSF 
sets properly. So, this chapter aims to introduce a noble score function within the 
IVSF context and apply it to multi-attribute group decision-making (MAGDM). 
Also, we establish that the proposed score function easily overcomes the limitations 
of the current score functions. Then, we develop Euclidean distance measures in 
the context of an IVSF environment. Next, we extend the weighted distance-based 
approximation (WDBA) under IVSF information to solve MAGDM problems. 
The analytical hierarchy process to estimate the weights of decision experts is 
utilized. We develop the entropy method to determine the attribute weights, utilizing 
the proposed score function. Then, we solve a supplier selection problem for a 
renowned textile manufacturing company to illustrate the practicality and efficiency 
of the proposed model. In the numerical example, we consider five suppliers 
and the six important attributes by taking the opinions of three decision experts. 
According to the findings of this study, the first supplier is the best for the textile 
manufacturing industry. Finally, we compared the results to several existing methods 
to demonstrate the feasibility of our model. 

In Chap. 25, a cubic fuzzy graph is investigated and solved a fuzzy optimization 
problem. These graphs stand as a fuzzy graph type with two fuzzy membership 
and interval-valued membership values, which is a combination of two different
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fuzzy values that allow the ambiguous and uncertain variables modeling, where 
the same format expression is not feasible. In this research, we introduce two 
important parameters related to the vertices of a graph, i.e., the dominating set and 
vertex covering in a cubic fuzzy graph, and some of their features were considered. 
These concepts are developed on some special cubic fuzzy graphs. Accordingly, 
the domination and vertex covering numbers are shown as real numbers. This has 
caused a better comparison in the results, and the effect of the resulting number 
has been seen to be the same in different memberships. Also, some features of 
dominating set and vertex covering have been studied in complete cubic fuzzy 
graphs. Finally, an application of these concepts in a decision-making problem is 
presented. 

Chapter 26 studies a production inventory model where the manufacturing 
system manufactures only perfect quality products within a fractional part of the 
production duration in the initial stage of production because of in-control state in 
this stage but produces a mixture of imperfect and perfect quality products within 
the remaining part of the production time as it becomes out-of-control state due 
to several factors such as labors, machinery breakdown, etc. During the out-of-
control state, to sustain the system’s reliability, a development cost depending on 
the reliability parameter of the system as well as time has been incorporated. Here, 
the material cost of the product depends on the reliability of the product. And 
the production cost depends on material cost, development cost, and tool or die 
cost. Again, customer requirement depends on product reliability, selling price, and 
advertisement to stimulate customer. Under these considerations, a profit function of 
the model has been constructed to investigate the feasibility of our model optimizing 
the parameters connected with the reliability of a production process. Ultimately, 
a numerical illustration has been made to study the practicability of the model. A 
sensitivity analysis has been done to show the impact of various parameters involved 
in the profit function. From the numerical discussion, it is noticed that product 
reliability impacts raising the demand and, henceforth, increasing the profit. It is 
also seen that the manufacturing reliability parameter λ reduces as the selling price 
rises, which explores that the demand is reduced for more selling prices. Again, the 
decrease in demand rate implies that the production rate is decreased, for which the 
production reliability of the system is increased. 

Chapter 27 considers the stock management system, which is the most significant 
consideration in the industry of deteriorating goods such as drugs, pharmaceuticals, 
eatables, and blood. It is important to use preservation technology to keep them 
useful for a long time. Many inventory models consider deterioration and use 
preservation technologies to monitor deterioration. This chapter is a contribution 
involving continuous and instantaneous degradation in which demand is assumed 
to be exponential, and shortages are not permitted. Preservation technology is used 
to keep deterioration under control. In most cases, it is optional to make an exact 
determination of the various costs that are linked with the model. As a result, to get 
a rough approximation of the results, we first used a method that needed to be more 
precise than others, called the fuzzy approach. Then the problem is made crisp using 
the defuzzification technique. In both the crisp and fuzzy scenarios, a mathematical
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formulation is created and solved with a differentiation tool to determine the 
procedure that achieves the result with the lowest total cost. For justification of the 
model, numerical illustrations are provided. Managerial perspectives and parameter 
observations are obtained by keeping one parameter constant while modifying the 
others. The effect of changes in total cost, economic order quantity, and optimal 
time on input parameters is investigated. 

Chapter 28 mainly focuses on the economic ordered quantity (EOQ) model 
under both crisp and uncertain scenarios. Here the uncertainty or the vagueness 
is clearly described using triangular intuitionistic fuzzy numbers. The chapter has 
developed the removal area technique to de-intuitificate the triangular intuitionistic 
fuzzy number. In this respect, an EOQ model is considered where price and stock 
depend on demand with backlogging, shortages, and inflation. The model has 
considered two situations for the trade credit period. First, if the supplier arrives 
to collect the money before the stock end, and second, if the supplier arrives 
after the completion of the stock. The model is optimized under both situations, 
and the result is developed for different periods of the arrival of the supplier. A 
numerical simulation has been performed to check the optimality of the model in 
different situations. In this chapter, a comparative study is made for both crisp and 
intuitionistic values, and it is observed that the model works well by applying the 
de-intuitification technique. Also, a sensitivity analysis is carried out to understand 
the effect of the key parameters under an optimal situation. 

Chapter 29 is about a new approach to developing a general EOQ model where 
the demand rate is considered a Triangular Cloudy Fuzzy Neutrosophic (TCFN) 
set. In this chapter, the various membership functions/grades of the components of 
a TCFN set are defined, and fuzzify the model. Then we find the ultimate score 
value of the neutrosophic fuzzy elements when the components are dependent on 
each other and associated with the standard and non-standard fuzzy set. Then the 
defuzzify technique is applied to the model to get the equivalent classical problem 
of the neutrosophic model, and we find the solution using a nonlinear optimization 
procedure. Then we clearly compare the results of different models like Crisp, 
general fuzzy, and TCFN through a table for proper understanding. At the end of the 
whole study, we came to the conclusion that considering the TCFN environment for 
solving any inventory problem is very appropriate and realistic for a decision-maker 
in the progression of a business. Also, sensitivity analysis and graphical illustrations 
are made to properly justify the new fuzzy approach. 

In Chap. 30, the EOQ model with a fixed goal to reduce the costs as much 
as possible has been modeled as imprecise decision-making with an acceptance-
rejection dilemma in the manager’s mind. The intuitionistic fuzzy set theory extends 
the notion of fuzzy set theory in a more generalized way, including the sense of 
belongingness (acceptance) and non-belongingness (rejection). A decision-making 
phenomenon may go through a vague situation with the dilemma of acceptance 
and rejection. An economic order quantity (EOQ) model having a fixed goal 
to reduce the costs as much as possible can be a model of imprecise decision-
making with an acceptance-rejection dilemma in the manager’s mind. Thus, an 
EOQ model may be considered in an intuitionistic fuzzy uncertain environment.
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In a situation where the parameters and decision variables are imprecise in the 
intuitionistic fuzzy type, it is better to describe the uncertain model with the help 
of intuitionistic fuzzy calculus. Thus, this chapter aims to discuss the classical 
EOQ model in uncertain intuitionistic fuzzy phenomena. The intuitionistic fuzzy 
differential equation approach is considered to describe the fuzzy model. Here, 
the demand and costs are taken as triangular intuitionistic fuzzy numbers (TIFN). 
Also, a new defuzzification technique is established in this chapter which is used 
to compare the results obtained for crisp and intuitionistic fuzzy models. The 
intuitionistic fuzzy environment with (i) differentiability of q(t) appears to offer 
the best result for the cost minimization goal among the three discussed approaches, 
whereas the intuitionistic fuzzy environment with (ii) differentiability of q(t) reveals 
the worst result, according to the numerical analysis. 

Chapter 31 discusses the solution of the second-order linear difference equation 
in an Intuitionistic fuzzy environment. Fuzzy intuitionistic sets illustrate the idea of 
ambiguity using degrees of belongingness and non-belongingness. Discrete changes 
in parameters are represented using difference equations. The extension principle 
scheme solves the intuitionistic fuzzy linear difference equation. It is detailed 
and covers all scenarios for solving a second-order linear difference equation 
with intuitionistic-valued beginning information. An appropriate application and 
numerical examples are given to demonstrate the suggested theory. To the author’s 
knowledge, the second-order difference equation is solved in an intuitionistic 
fuzzy environment. The coefficients and initial conditions are taken as triangular 
intuitionistic fuzzy numbers. 

Cooperative games with transferable utilities are studied in Chap. 32. This a  
probabilistic framework: call them probabilistic games. In this setup, each coalition 
has some probability of formation and the worth of the grand coalition is the 
expectation over its sub-coalitions due to this probability distribution. We propose 
the Shapley function for the class of probabilistic games. A special sub-class 
of probabilistic games is studied, and the Shapley function for this subclass is 
characterized. In this special subclass, players make coalitions sequentially. Prior 
knowledge about their compatibility with one another in a preceding coalition is 
used to predict the worth of the succeeding coalitions. This is a natural assumption 
and needs to be studied in the literature. 
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Chapter 1 
Fundamentals of Fuzzy Optimization 
and Decision-Making Problems 

Madhumangal Pal , Chiranjibe Jana , and Anushree Bhattacharya 

1 Optimization Problems 

Optimization is derived from the Latin word Optimus, meaning “the best.” The 
optimization problems are very important types of problems of mathematics, 
engineering, and many other files, which find the “best” solution among all pos-
sible solutions. Generally, optimization problems occur in mathematics, computer 
science, economics, business, etc. These problems are generally divided into two 
categories based on the nature of the variables. The variables are classified as 
continuous and discrete. 

The general form of a continuous optimization problem is 

Find .X =

⎛
⎜⎜⎜⎝

x1

x2
...

xn

⎞
⎟⎟⎟⎠ which Optimize .f (X). 

subject to the constraint 
.gj (X) ≤ 0, . j = 1, 2, . . . , m

and .hi(X) = 0, . i = 1, 2, . . . , p

.X ≥ 0. 
where .f : Rn → R is the objective function to be optimized based on n number of 
variables represented by the vector X, 
.gj (x) ≤ 0 are the inequality constraints, 
.hi(x) = 0 are the equality constraints, and obviously 
.m ≥ 0 and .p ≥ 0. 
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If .m = p = 0, i.e., the problem has no constraints. This kind of problem is known 
as an unconstrained optimization problem, and finding a solution to this type of 
problem is generally straightforward. 

The optimization is either maximization or minimization. The expression “Opti-
mize .f (X)” is known as the objective function. This function may be single 
or multiple. Any maximization problem can be transferred into a minimization 
problem by multiplying the objective function by .(−1). Therefore, the standard 
optimization problem is considered as minimization problem. Also, the objective 
function(s) or constraint(s) may be linear or nonlinear. If all the objective functions 
and constraints are linear, the problem is called a linear problem. If at least one 
of the objective functions or constraints is nonlinear, then the problem is called 
nonlinear. Depending on the type (linear or nonlinear) of the objective functions 
and/or constraints, the optimization problems are classified into different categories. 
Some optimization problems are stated below.

● Convex programming. This problem investigates the situation when the objective 
function is concave (maximization) or convex (minimization) and the set of 
constraint is convex. This problem is considered as a special case of nonlinear 
programming or a generalization/extension of linear or convex quadratic pro-
gramming.

● Linear programming (LP). This is a special form of convex programming 
problem. In this type of optimization problem, the objective function is linear, 
and also all the constraints are linear with inequalities and/or equalities. The set 
of constraints forms a bounded or unbounded convex polyhedron.

● Nonlinear programming. This type of problem investigates the problem where 
the constraints or objective function or both contain nonlinear terms. This 
problem is not necessarily a convex program.

● Integer programming (IP). The integer programming problem (IPP) is a special 
type of linear program, where some or all variables are integers. If the values of 
all variables are integers, then the problem is said to be pure IPP. If at least one 
variable is not an integer, the problem is called mixed IPP. This is not a convex 
program. Generally, finding a solution of an IPP is much more difficult than the 
LP problem.

● Quadratic programming. In this problem, the objective function is a quadratic 
expression of the variables, and the feasible region is defined by linear equalities 
and inequalities. This is a type of convex programming for a specific quadratic 
forms.

● Fractional programming. This optimization problem determines the optimum 
value of the ratios of two nonlinear functions.

● Second-order cone programming (SOCP). This is a special type of convex 
program that includes a specific type of quadratic programs.

● Semidefinite programming problem (SDP). This is a very important subfield of 
the convex optimization problem in which the variables are semidefinite matrices. 
This is a generalization of convex quadratic and linear programming.
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● Conic programming. This is a general form of convex programming problem. 
With the proper type of cone, the LP, SDP, and SOCP are nothing but conic 
programs.

● Combinatorial optimization. This optimization problem deals with problems in 
which the set of feasible solutions is discrete, and if it is not discrete, then it can 
be converted to a discrete feasible set.

● Stochastic programming. When some of the parameters or constraints are random 
uncertain, then the problem is formulated as a stochastic programming problem. 
This type of formulation is required when the random (noisy) function has to 
measure or when the inputs are random in the search process.

● Robust optimization. This is similar to a stochastic programming problem. In 
this formulation, uncertainty is captured in the data underlying the optimization 
problem. This problem aims to find the solutions when all possible realizations 
of the uncertainties can be defined with the help of an uncertainty set.

● Heuristics and metaheuristics. This is a search-based method. Generally, this 
method does not give the guarantee for the optimal solution which is to be 
determined. Basically, heuristic methods are used to find approximate solutions 
for a large class of complex and large optimization problems.

● Constraint satisfaction. In this type of problem, the objective function is constant. 
Generally, the constraint satisfaction problem occurs in artificial intelligence, 
especially in automated reasoning.

● Geometric programming. This is an optimization method. In this method, the 
equality constraints are in the form of monomials, and the objective function and 
the inequality constraints are in the form of posynomials and are converted into 
a convex programming problem.

● Calculus of variations. This method is very good and determines the best way 
to achieve some goal. Generally, it finds a surface or a curve, which optimizes a 
specific problem.

● Optimal control theory. This is the extended theory of calculus of variations. In 
addition, some control variables or policies are optimized.

● Dynamic programming. Dynamic programming is used to solve a large problem 
by breaking it up into smaller subproblems. The method is used to solve 
conventional problems as well as stochastic optimization problems. The original 
problem is solved stage-wise using the Bellman principle. 

These are some optimization problems that frequently occur in mathematics as 
well as economics, computer science, management, etc. Many other optimization 
problems are also available in different fields. 

Like different optimization problems, many optimization methods are developed 
based on the nature and type of the objective function(s) and constraints and the 
type of objective function(s), constraints, and variables.
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2 Development of Optimization Problems 

Several optimization methods have been developed since the days of Newton. The 
simplest optimization problem contains only one objective function with a single 
variable and no constraints. To find the optimal solution of this problem, the method 
based on differential calculus was due to the contribution of Newton and Leibnitz. 
The calculus of variations were laid by Bernoulli, Lagrange, Euler, and Weierstrass. 
The method of optimization for constrained problem was due to Lagrange. Cauchy 
introduced the method of steepest descent for unconstrained optimization problems. 

The development of optimization techniques was related with “Blackelt Circus” 
during the second world war. The development of optimization theory was accel-
erated due to the availability of high-speed computers during the middle of the 
twentieth century. 

In 1960s, massive developments in numerical optimization processes for uncon-
strained optimization problems were done in the UK. In 1947, Dantzig developed 
the simplex method for solving linear programming problems. In 1957, Bellman 
studied the principle of optimality for the dynamic programming method. These 
methods are used for the constrained optimization problem. In 1951, the nec-
essary and sufficient conditions for the optimal solution were defined by Kuhn 
and Tucker. In the early 1960s, Zoutendijk and Rosen investigated nonlinear 
programming problems. Carroll, Fiacco, and Mecormick presented some techniques 
for constrained optimization to be reduced to unconstrained optimization. During 
the 1960s, Duffin, Zener, and Peterson proposed the geometric programming 
method. Gomory developed the method for solving IPP and mixed IPP. Dantzing, 
Charnes, and Cooper developed chance-constrained programming for independent 
and customarily distributed parameters and variables. In 1928, Charnes and Cooper 
studied the goal programming method for solving multi-objective optimization 
problems. Von Neumann laid down the foundation of game theory, and the critical 
path method and PERT for project management problems using network analysis 
were developed between 1957 and 1958. 

3 Classical Optimization Techniques 

In these techniques, it is assumed that the given function to be optimized is twice 
differentiable with respect to variables and, also, the derivatives are continuous. 
There are three fundamental problems that are solved by the classical optimization 
methods, i.e.: 

(i) the function contains only one variable 
(ii) the function contains multiple variables without constraint 

(iii) the function contains multiple variables with equality or/and inequality con-
straints.
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Lagrange’s multipliers are used for problems (single-valued or multi-valued) 
with equality constraints. The well-known Kuhn-Tucker conditions are applied to 
determine the optimum solutions for problems with inequality constraints. These 
methods generate a system of nonlinear simultaneous equations that are hard to 
solve. 

One of the famous single linear objective functions and multiple linear inequality 
constraint problems is the LP problem. To solve this problem, many methods are 
developed, viz., simplex method, revised simplex method, dual-simplex method, 
two-phase method, decomposition principle, Karmarkar method, etc. 

It is obvious that the solution LP is easy, compared to nonlinear programming 
problems. Two types of methods are developed for the one-dimensional mini-
mization method: elimination or search method and interpolation method. The 
famous search methods are the golden section method, Fibonacci search method, 
unrestricted search method, exhaustive search method, etc. On the other hand, in 
the interpolation method, the derivative-free technique is the quadratic interpolation 
method, and the derivative-based method is a cubic interpolation, direct root 
method, etc. 

The unconstrained minimization problems can be solved by direct search 
methods (derivative-free) and descent methods (with derivative). The direct search 
methods include the random search method, pattern search methods (Powell’s 
method, Hooke and Jeeves method), Rosenbrock’s method, etc., whereas descent 
methods include steepest descent method, conjugate gradient method, Newton’s 
method, variable metric method, etc. 

If the problem contains at least one constraint, then two types of methods are 
available, viz., direct and indirect. The direct methods are Heuristic search methods, 
constraint approximation methods, method of feasible directions, etc. The indirect 
methods are penalty function methods, exterior penalty function method, interior 
penalty function method, etc. 

3.1 Multi-Objective Programming Problems 

In many real-life situations, it is seen that the objective functions are more than one. 
The above methods mainly apply to optimizing a single objective function. 

Multi-objective optimization, also called multicriteria optimization, multi-
objective programming problem, vector optimization problem, multi-attribute 
optimization problem or Pareto optimization, etc., is a widely used programming 
problem of multiple criteria decision-making that is concerned with mathematical 
optimization problems involving more than one objective function to be optimized 
together. This kind of problem occurs in many fields of science, business, 
economics, engineering, logistics, etc., where optimal decisions are to be taken 
based on the different criteria, and most of the time, the criterion are of 
conflicting nature. Minimizing travelling cost while minimizing travel time and 
maximizing comfort while minimizing cost for a car are examples of multi-
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objective optimization problems with conflicting objective functions. In general, 
for a nontrivial multi-objective problem, multiple solutions exist that optimize all 
the objective functions simultaneously. For this situation, the objective functions 
are called conflicting. In this case, a particular type of solution is known as Pareto 
optimal solution. Suppose the value of some objective functions cannot be improved 
without degrading the value of other objective functions. In that case, such a solution 
is known as Pareto optimal, nondominated, Pareto efficient, or non-inferior. For 
these types of problems, multiple Pareto optimal solutions may exist, all of which 
are considered equally significant. The multi-objective problems occur in many 
different situations with specific goals and philosophies. 

For these problems, new methods are devised. For multi-objective optimization 
problems, generally, attempt is made to transform the multi-objective problem into 
a single-objective problem. The widespread techniques are: 

(i) Weighted sum method 
(ii) Weighted product method 

(iii) Global criteria method 
(iv) Fuzzy programming method 
(v) Weighted min-max method 

(vi) Goal programming method 

Recently, some methods have been developed to find optimal solutions of large 
and complex optimization problems. These methods are completely computer 
dependent and follow the behaviors of biological systems and animals. In the 
following section, four such methods, viz., (i) genetic algorithm, (ii) particle swarm 
optimization, (iii) ant-colony optimization, and (iv) neural network, are discussed. 

4 Modern Optimization Techniques 

4.1 Neural Network 

For the very first, the main theoretical base with an efficient preliminary idea for 
contemporary neural networks was independently developed by Alexander Bain [2] 
(1873) and William James [16] (1890). For the first time, in 1943, neural networks 
were introduced with the help of Walter Pitts and Warren McCullough [40], who 
are researchers in Chicago. Deep learning algorithms have their heart for simulated 
neural networks, and machine learning also has artificial neural networks (ANNs) 
as a subset. Inspired by the structure of the human brain and the way of mimicking 
of biological units called neurons between one another, this name is followed for the 
neural network. A circuit or a network constructed with biological neurons is called 
a neural network, and so artificial neurons or nodes will be composed to form an 
artificial neural network. The weights between the nodes in a network of artificial 
neurons are taken as the same as the connections of the biological neuron in the
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modelling process. A positive weight presents an excitatory connection, where a 
negative value marks an inhibitory connection. All existing inputs are altered with 
the help of weight, and then all are summed up. The activation executes all the 
process as a linear combination. An activation function controls the final amplitude 
of the output of the system. As an example, it is generally seen that output is 
obtained with its acceptance range between 0 and 1; sometimes, the said range could 
be between . −1 and 1. 

Different types of node layers are present in artificial neural networks (ANNs): 
firstly, a layer for input data, then one or more hidden layers to be performed, and 
lastly a layer for output data. A node activates when the corresponding output is 
more than the predefined threshold value, and then the data is sent to the next layer 
of that particular network. Otherwise, there is no data flow to that network’s next 
layer. 

Figure 1.1 shows the whole system of multi-layer in ANNs. 
Alexander Bain [2] and William James [16] together independently proposed 

the idea of theoretical preliminaries and basic concepts for contemporary neural 
networks. They showed in their study the entire interactions between neurons within 
the human brain resulting in thoughts and body activity. In the network of an ANN, 
an independent linear regression model is present for each individual node, and the 
models are composed of data for input, output, and a bias (a threshold value). The 
formula is as follows: 

. 
∑

mizi + bias = m1z1 + m2z2 + m3z3 + bias.

.Output = g(x), which is 1 if .
∑

mizi + b ≥ 0 and it is 0 if .
∑

mizi + b < 0. 
After determining a layer for input, all the weights for that network are assigned. 

The importance of any variable for a network will be evaluated with the help of these 
assigned weights; that is, greater values will reflect more contributions significantly 

Fig. 1.1 Representation of 
ANNs



8 M. Pal et al.

to the output compared to other data for inputs. After multiplying all data for inputs 
with their corresponding weights, all are to be summed up. Afterword, an activation 
function will pass the data and determine the output. If the output value dominates 
the threshold value, then the node is activated, and data is passed to the next layer in 
the network. The output of this resulting node is taken as an input for the next node. 
This process of passing data from one layer to the next makes this neural network a 
feed-forward network. 

Neural networks can be classified into different types and applied in various 
situations. They are: 

1. Feed-forward neural networks: These types of networks are often known 
as MLPs and are a multi-layer perceptron. It is very important to mark that 
many sigmoid neurons are to be comprised to construct such type of network 
considering the fact that many real-world problems are found as nonlinear types. 

2. Convolution neural networks: The structure is quite close to feed-forward 
networks. Computer vision, image recognition, and pattern recognition can be 
done with the help of this network. 

3. Recurrent neural networks: In this network, feedback loops act as identifiers. 
These types of learning algorithms are leveraged to make predictions about future 
outcomes like sales forecasting or stock market predictions based on time-series 
data. 

There are various types of recent improvements in ANN. It is well-known that 
theory of BCM, Synaptic plasticity mechanisms are very important in biophysical 
models for clear understanding and these are widely used in neuroscience as well as 
in computer science. 

New research is ongoing to better understand the algorithms of the computational 
process used in the brain. Among many mechanisms of data processing techniques, 
some recent biological evidence for neural back-propagation and radial basis 
networks have been obtained. 

4.2 Genetic Algorithm 

In the year of 1992, John Holland, with his collaborators [13], for the first time 
have introduced the concept of the genetic algorithm (GA) for adaptation in natural 
and artificial systems. In their work, GA is developed as a model of biological 
evolution on the basis of Charles Darwin’s theory of natural selection. GA is one 
of the larger evolutionary algorithms, which is a meta-heuristic technique, and the 
motivation of the natural selection technique invents it. In the application area of 
operations research and computer science, GA is a very fruitful tool. On the basis 
of the mechanisms for biologically inspired operators like crossover, mutation, and 
selection, high-quality solutions to search problems and optimization problems are 
generated by the use of GA. The theory of evolution guarantees that replacing 
the weak individuals, the fittest (sometimes known as chromosomes) will survive,
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and GA is fully based on this theory. By using mutations of genes and crossover 
process, replacement of individuals will occur, and the best chromosomes among 
the population will be called as parent chromosomes, whereas child chromosomes 
are those new chromosomes, which are obtained by manipulation and cloning. In 
this manner, by evolving all the individuals present in the population, more and 
more fit, and good individuals are selected. 

Starting by choosing a randomly generated individual of a population, an iterative 
process is going on for this evolution, and a generation is termed for the population 
obtained in each iteration. For solving an optimization problem by using GA, the 
worth of the objective function is taken as a fitness value. If a level of satisfaction 
has been reached or the number of generations which to be generated is highest, 
then the process of GA is usually terminated for that population. The requirements 
of a GA are: 

(A) The solution domain is to be represented by a genetic form, 
(B) To obtain the solution domain, a function for indicating fitness will be set up. 

Sometimes, a problem contains a large number of possible solutions and 
depending on the nature of the problem, the population size is varied. To define 
a fitness expression for some problems, it is tough and sometimes looks impossible; 
in these situations, to find the fitness function value of a phenotype, a simulation 
process or interactive genetic algorithms may be used. 

There are mainly four basic steps for the execution process of GA. These steps 
are illustrated as follows. 

1. Initialization 
At the first stage, allowing the whole search space of possible solutions, an initial 
population is randomly generated, although, sometimes, it is seen that the area 
for finding optimal solutions is fixed up and the considered primary solution is 
intentionally initiated in that particular region. 

2. Selection 
To reproduce a new generation, selecting a part of the existing population is 
mandatory for every successive iteration. Based on the fitness process using fitness 
function, individual solutions are selected for finding fitter solutions, which are more 
likely to be opted for survival. As the existing processes are very time-taking, a 
method is to be liked, which involves a random sample of the population. Over 
the genetic representation, the fitness function is defined, and the quality of the 
represented solution is measured with the help of this function. Depending on the 
types of problems, a function to measure the fitness of an objective is selected. 

3. Genetic Operators 
Reproducing a second-generation population for the individual solutions from those 
selected is the next step. This step will be performed with the help of crossover and 
genetic mutation operator. For each new solution to be obtained, a pair of “parent” 
solutions is found for breeding from the pool selected earlier. Combining some basic 
shares of different characteristics of the “parent” solutions and using the methods
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of mutations, and cross-over, we have obtained a “child” solution. For every new 
child, new parents opt, and until a new population of solutions with the appropriate 
size is produced, the process is continued. A different generation with respect to the 
initial one may result, made by new chromosomes by the said procedure. Various 
types of opinions exist in the literature for genetic operators depending on the 
importance of mutation versus crossover concept. 

4. Heuristics 
To make the process of calculation more easier or faster or robust, other heuristics 
may be used. The diversity in a population is encouraged by the special heuristic 
crossover between solutions corresponding to the candidates, and these are similar 
in their nature. Also, this process has an important role in preventing a convergence 
to a less optimal solution. 

Usually, the generalization process is repeated until a termination condition has 
been satisfied. Some of the obvious terminating conditions are: 

(i) Satisfying minimum criterion, a solution is obtained. 
(ii) With the predefined number of generations, a fixed quantity is obtained. 

(iii) Fixed amount of money or time for computation, i.e., allocated budget is held 
out. 

(iv) Manual inspection. 
(v) The highest-ranking value of fitness function for the solution has been reached, 

or a decision is made that no better results can be produced by any successive 
iteration process. 

There are variants of chromosome representation techniques for GA in literature. 

(a) Simple Chromosome Representation 
In this representation, every chromosome is presented by a bit string, and it is the 
most straightforward algorithm in all variations. 

(b) Elitism 
Unalterably, a practical variant of the generation process is to take the best 
characteristics from the present generation to carry over to the next generation for 
constructing a new population. In the deduction of solutions using the GA technique, 
the quality should not be compromised from generation to generation. 

(c) Parallel Implementations 
It comes in two different ways. A population is assumed on every node of the 
computer, and among the nodes, there is a migration of individuals in coarse-grained 
parallel GAs. 

(d) Adaptive GAs 
One of the promising and significant variants of GA with adaptive parameters is 
adaptive GAs. The obtained convergence speed of GA and the degree of solution 
accuracy are to be determined by the probabilities of crossover and mutation. 

Also, the parent fields of GA are stochastic optimization, evolutionary algo-
rithms, and evolutionary computing.
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4.3 Ant Colony Optimization 

To overcome the limitations of the already existing mathematical model in terms 
of size and computational time complexity, to get better quality solutions to 
optimization problems, an ant colony optimization method has been introduced. 
Dorigo [9] has proposed the ant colony optimization (ACO) as a meta-heuristic on 
the basis of the realistic behavior of ants in our daily life in the year 1992. Solving 
computational problems in computer science and operations research, ACO is a 
probabilistic technique that can be modified to obtain good graph paths. Inspired 
by the actions of real ants, artificial ants are designed, and they stand for the multi-
agent method’s parameters. Often in such models of ACO, in real life, biological 
ants communicate to each other by the help of a pheromone, and this particular 
technique is used on the whole. With the real-life optimization techniques for 
vehicle routing and Internet routing, a mechanism is made for choosing numerous 
tasks of optimization, which involves some sort of graph by combining the local 
search algorithms and artificial ants. 

In the broader sense of view, a model-based search is performed by ACO, and 
it reflects some similarities to the estimation of any distribution algorithm. Initially, 
based on searching practices for the shortest path between a stock of food and its 
colony, the proposed ACO was developed for finding an optimal path in a graph. 
When there are two choices for different routes, one of which is shorter than the 
other for searching their food of a colony of ants, then they randomly choose one 
of the routes. On the other hand, choosing the shorter route to reach their food, it 
is very easy to those particular ants to go back and forth more frequently between 
their foods and anthill. 

In ACO algorithms, for the purpose finding out good solutions corresponding to a 
supplied optimization problem, artificial ants work as simple computational agents. 
To apply the ACO algorithm, firstly the considered problem has to be converted into 
a problem to find the shortest path on a weighted graph. Every ant of the colony 
has stochastically constructed a solution in the first step of every iteration, i.e., the 
ordering of edges in the graph must be maintained. The second step of the method 
involves comparing different paths picked up by various ants. Finally, in the last 
step, an upgradation of the pheromone levels for every edge is done. 

In ACO algorithm for weighted graphs, a very important task is the edge selection 
process. For moving through the graph, there is a need to construct a solution 
by every ant in the colony. Depending on the pheromone level as well as the 
corresponding length of every edge, an ant will choose the next edge for its journey. 
In the completion time for finding solutions for every ant, decreasing or increasing 
the trail levels associated with being chosen as a part of “bad” or “good” solutions, 
the trails are usually up. 

At every step of the ACO algorithm associated with a perfect transitional 
solution, there must be a move from state x to state y of each ant. By computing a set 
.Aδ(x) consisting of all feasible solutions from its current state, each ant . δ will move 
to one of these possibilities. The attractiveness .ηxy of the moves has been computed
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with the help of advantages of some heuristic indication for that move, and the past 
skilled experience for making that specific move is indicated by the trail level .ζxy of 
the move. Depending on the combination of these two values, the probability .pδ

xy of 
moving from state x to state y has been determined for ant . δ. 

Generally, the .δ-th movement of an ant from state x to state y with the following 
expression of probability, 

. pδ
xy = (ζ α

xy)(η
β
xy)∑

z∈allowedx
(ζ α

xz)(η
β
xz)

,

where .ζxy is the deposited amount of pheromone to transit from state x to y. Also, . α
is a parameter to control the influence of . ζxy ; .ηxy having the value of .α > 0, which 

is the desirability of state transition xy (a prior knowledge, typically .
1

dxy

, where d 

is the distance); .β ≥ 1 is a parameter to control the influence of . ηxy ; .ζxz and . ηxz

represent the trail level and attractiveness for the other possible state transitions. 
There are various types of ACO algorithms. They are: 

(i) Ant colony system, 
(ii) Elitist ant system, 

(iii) ACO involving recursion, 
(iv) Ant colony that is orthogonal and continuous, 
(v) Parallel ant colony optimization, 

(vi) Ant system that uses optimization on the basis of ranking, 
(vii) Ant system that involves max-min optimization technique. 

ACO algorithms have its applicability in many fields of ranging problems from 
quadratic assignment to protein folding, combinatorial optimization problem, and 
routing vehicles, and a lot of modified techniques have been chosen for stochastic 
problems, dynamic problems in real variables, and parallel implementations. To find 
near-optimal solutions for traveling salesman problem, the ACO algorithm is also a 
very useful method. Another fields and topics for the application of ACO are: 

(a) For picking up and making a delivery in the problem of vehicle routing, 
(b) Scheduling problems for different shops and corresponding jobs, 
(c) Resource-constrained project scheduling problem, 
(d) Capacitated vehicle routing problem, 
(e) Ordering problem which is sequential in nature, 
(f) Generalized assignment problem, 
(g) Frequency assignment problem, 
(h) Set cover problem, 
(i) Maximum independent set problem.
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4.4 Particle Swarm Optimization 

Particle swarm optimization (PSO) is one of the most useful bio-inspired algorithms. 
This technique is based on population behavior and simulation method of some flock 
of birds or fish [19]. In the solution space, searching for an optimal solution, it is 
an excellent and simple technique. The need for only the objective function reflects 
the different nature of this technique from other optimization algorithms. Also, it is 
independent of the gradient or any differential representation of the objective. The 
process of PSO algorithm to the considered optimization problem guarantees that a 
candidate solution must maintain the characteristics of a swarm. 

In 1995, Kennedy and Eberhart proposed PSO method firstly. As per the belief of 
a sociologist, a school of fish or a flock of birds can be benefited by the experience 
of all other members of the group. By way of explanation, in the time of flying of 
a group of birds, they are searching for food in at random manner, for instance, to 
obtain the best hunt for the entire flock, their overall discoveries for this purpose 
can be shared by all members. Any decision-maker can simulate the gesture of a 
congregation of birds, and one can also imagine that in a high-dimensional space 
for finding an optimal solution, every bird should be very helpful. In the space, the 
best solution is the obtained best solution by the group. On a multi-dimensional 
vector space, for a defined function, one can find out the minimum or maximum by 
using PSO in the best way. 

On the basis of the position and velocity of an individual particle in a search 
space, PSO algorithm searches optimally possible solutions, which are updated in 
each iteration according to the particle’s best position, i.e., personal best position, 
and the other is the entire swarm’s best-known position named as global best. 

In 1998, Shi and Eberhart [35] demonstrated good performance for single-
objective problems by PSO algorithm. After that, for the conflicting multi-objective 
problems in which possible candidate solutions can be obtained in the form of 
Pareto form, the MOPSO was proposed by Coello and Lechuga in 2002. MOPSO is 
constructed on the primary technique used in PSO. The position and velocity vector 
equations of PSO remain the same in MOPSO. Now, let us illustrate the PSO in 
detail. 

In PSO, each candidate solution is referred to as a particle. Each particle 
represents an n-dimensional point in the search space if the considered optimization 
problem has n variables. A fitness function is used to evaluate the fitness or quality 
of a particle in the swarm. The way of choosing the optimal solution for a particle 
is highly quantified by the fitness function. Depending on two things (one is the 
distance from the best particle of the swarm [20], and the other is the distance of a 
particular particle from its own personal best position), each particle has modified 
its position and flown through search space. Actually, to measure how close the 
candidate of the swarm is to the global optimum, a fitness function has been applied. 
The following information is maintained by each particle i:
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(i) . pi indicating the present position of the individual node; 
(ii) . vi representing the present velocity of the individual node; 

(iii) . xi standing for the personal best position of the individual node. 

In the swarm, a particle i has visited so far and attained various positions. One 
particular position where the fitness function has the highest value for that particle 
is referred to as the personal best position of the same. The personal best position, 
therefore, serves as a kind of experience and memory, which helps in the future to 
find the global best for the entire swarm. If . χ denotes the objective function, then at 
a time step t , the personal best of a particle is updated as the following function: 

. xi(t + 1) =
{

xi(t) if χ(pi(t + 1) ≥ χ(xi(t)))

pi(t + 1) if χ(pi(t + 1) < χ(xi(t))).

The exchange of information between members of a flock or swarm is one 
of the unique principles of PSO. This technique is beneficial to build a memory 
for adjusting the personal best positions of the particles toward the global best 
by determining the best particle (s), or position (s) in the swarm. The ring and 
star topologies are the very first social topologies. It is remarkably seen that 
communication between all existing particles is allowed in the star topology. 
Generally, the best PSO is referred to the resulting algorithm. On the other hand, 
overlapping neighborhoods of particles are defined by the ring topology. Particles 
in a neighborhood communicate to identify the best in that neighborhood. All 
neighborhood particles then adjust toward neighborhood best or local best particle. 
The obtained algorithm is generally known as the best PSO. Recently, more complex 
social topologies have been investigated by Kennedy and Mendes [21], of which the 
von Neumann topology can be considered as an efficient alternative. 

From the entire swarm, the best particle is found with the help of the following 
expression in the best PSO model, 

. x̂(t) ∈ {x0, x1, x2, . . . , xs} = min{χ(x0(t)), χ(x1(t)), . . . , χ(xs(t))},

where s is the total number of particles in the swarm. 
In reality, many parameters, functions, etc. are not certain due to the incomplete 

availability of the information. The uncertainty may be random or non-random. 
The random uncertainties deal with probability theory and have many theories and 
relatively old. The non-random uncertainly deals with fuzzy mathematics/logic, and 
few theories were developed after the invention of fuzzy sets in 1965. The region 
of non-random uncertainty is large than the random uncertainty. A common region 
of random and non-random uncertainty is also seen in some real-life problems. For 
non-random optimization or fuzzy optimization, several methods have been devised 
during the last four decades.
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5 Fuzzy Optimization 

A fuzzy optimization problem (FOP) is a mathematical problem/model involving 
transitional uncertainty and/or information deficiency uncertainty. Some authors 
refer to these terms as uncertainties, ambiguity, and vagueness. The transitional 
uncertainty belongs to fuzzy set theory. On the other hand, uncertainty occurs due 
to information deficiency and is the subject of possibility theory. The term “tall” is 
the transitional uncertainty, while “tall man” is the information deficiency. 

Before discussing the fuzzy optimization, we will define the fuzzy optimization 
problem and its difficulties. 

The general FOP is considered as follows: 
The fuzzy objective function is 

. ˜optimize z̃ = f̃ (̃c, x) (1.1) 

subject to fuzzy constraints 

.̃gi(x, ãi ) R̃i b̃i i ∈ Λ = {1, 2, . . . , m} (1.2) 

where . ̃Ri and .i ∈ Λ are the fuzzy relations and the tilde . ̃ represents fuzzy and/or 
possibilistic quantities or relationships that is to be clearly defined in the problem. 
In case of fuzzy uncertainty the tilde, . ̃ notation is used, while for possibilistic 
uncertainty, this notation is changed to circumflex .̂. In Eq. (1.1), . ̃c is a known vector 
of uncertainty parameters, and x is the unknown variables whose values are to 
be determined by the problem. These variables are called the “decision variables” 
because the objective function’s optimum value depends on these variables, and 
their values are to be determined. The variable x is generally a certain quantity, but 
in some cases, it may be uncertain. For example, the quantity x may be the amount 
of quantity to be transported from a manufacturing point to a destination (demand 
point or stockist point, etc.) point, or x may be the travel time from one point to 
another point, etc. 

A particular case of Eq. (1.1) is a fuzzy linear programming problem (FLP 
problem), where the functions f and . gi are linear. The FLP problem is denoted 
as 

. ˜maximize z̃ = c̃1x1+̃c̃2x2+̃ · · · +̃c̃nxn. (1.3) 

subject to . (1.4)

ãi1x1+̃ãi2x2+̃ · · · +̃ãinxn R̃i b̃i , i  ∈ Λ. (1.5) 

xj ≥ 0, j  ∈ {1, 2, . . . , n}. (1.6) 

Let .Λ = {1, 2, . . . , m}, .m > 1, . Λ be called the index set. Also, let . F = {μi :
i ∈ Λ} be the set of membership functions of a fuzzy subset . Rn. Suppose X be a
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subset of . Rn in which .supp(μi) ⊂ X for all .i ∈ Λ. The members of X are said to 
be decision variables. 

A decision variable .xWP is called a weak Pareto maximum (WPM), if there exists 
no .y ∈ X, such that 

.μi(xWP ) < μi(y) for all i ∈ Λ. (1.7) 

A decision variable . xP is called a Pareto maximum (PM), if there exists no . y ∈
X, such that 

. μi(xP ) ≤ μi(y) for all i ∈ Λ, (1.8)

μi(xWP ) < μi(y) for all i ∈ Λ.

A decision .xSP is called a strong Pareto maximum (SPM), if there is no . y ∈ X

and .y �= xSP , such that 

.μi(xSP ) ≤ μi(y) for all i ∈ Λ. (1.9) 

The set of all PM, WPM, and SPM are denoted, respectively, by . XP , .XWP , and 
.XSP . The elements of .XWP ∪ XP ∪ XSP are known as Pareto optimal solutions or 
decisions. 

There is an excellent inclusive relationship among these three solutions, i.e., 

. XSP ⊂ XP ⊂ XWP .

Fuzzy optimization, which deals with both fuzzy and possibilistic uncertainty, 
is one of the newest optimization areas of research. This is a parallel field of 
stochastic optimization, but here non-random uncertainty is considered. The work 
on fuzzy optimization started in 1970 after publication of the fundamental work of 
Bellman and Zadeh [4]. After three years, another paper was published on fuzzy 
optimization by Tanaka et al. [1, 37]. Tanaka, Okuda, and Asai operationalize the 
theoretical approach developed by Bellman and Zadeh. Independently, in 1974, 
Zimmermann was presented a paper at the ORSA/TIMS conference in Puerto 
Rico [51] that operationalized the Bellman and Zadeh approach and also largely 
simplified and clarified fuzzy optimization, and hence the Zimmermann approach 
become a standard work in this time. In this same period, a good description of fuzzy 
optimization is written in the book by Negoita and Ralescu [31]. In 1976, Negoita 
and Sularia [32] described a set containment approach for a fuzzy optimization 
problem. Two books with edited papers [6, 18] and several authored books on fuzzy 
optimization are published [3, 22, 27, 28, 33, 36]. Four decades of fuzzy optimization 
research have developed a wide range of applications. The following researches 
cover applications [6, 18] and [3, 10, 11, 14, 15, 17, 23–25, 34, 38, 41, 42]. In [26], 
Lodwick and Untiedt presented a good survey of fuzzy optimization problems.
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6 Formulation of Fuzzy Mathematical Programming 
Problem 

Let .F(R) be the set of all fuzzy quantities. Recall the terms of Eq. (1.1). Let the 
functions .f, gi be such that .f : Rn × C → R, .gi : Rn × Pi → R, where . C,Pi

are sets of parameters. Also, the membership functions for the fuzzy parameters 
.̃c, ãi , b̃i are defined as .μc̃ : C → [0, 1], .μãi

: Pi → [0, 1] and .μb̃i
: R → [0, 1], for  

all .i ∈ Λ. 
. ̃Ri , .i ∈ Λ are the fuzzy relations used to compare both sides of the constraints. 
The finding of maximization/minimization in fuzzy optimization is not a simple 

task and needs some new mathematics. The more difficult issue is that the fuzzy 
values of the objective function are not linearly ordered, and to find the optimum 
value of the objective function, a suitable ordering on .F(R) is required. Also, a new 
concept of a “feasible solution” and “optimal solution” is required. 

For a given .x ∈ Rn and .̃ai ∈ F(Pi ) by Zadeh’s extension principle, .̃gi(x, ãi ) is a 
fuzzy extension of .gi(x, .), and its membership value is given by 

.μg̃i
(x, ãi )(s) =

{
sup{μãi

(a) : a ∈ Pi , gi(x, a) = s} if g−1
i (x, s) �= ∅

0 otherwise
(1.10) 

for each .s ∈ R, where .g−1
i (x, s) = {a ∈ Pi : gi(x, a) = s}. 

The fuzzy relation . ̃Ri for comparing two elements of .F(R) are the extensions of 
valued relations on . R, i.e., the conventional inequality . ≤ and . ≥. 

Ultimately, .̃gi(x, ãi ) ∈ F(R), and this quantity is to be “compared” with fuzzy 
quantity . ̃bi over the relation . ̃Ri for all .i ∈ Λ. This is known as a fuzzy comparison. 

As a particular case, if T is a t-norm and . ̃Ri is a T -fuzzy extension of the relation 
. Ri , then the membership function of the ith constraints is given by 

. μR̃i

(
g̃i (x, ãi ), b̃i

) = sup{T (
μRi

(p, q), T (μg̃i (x,̃ai )(p), μb̃i
(q))

) : p, q,∈ R}
= sup{T (

μg̃i(x,̃ai )(p), μb̃i
(q)

) : p Ri q} (1.11) 

6.1 Feasible Solutions of Optimization Problem 

Using the extension principle, the fuzzy relation . ̃Ri is considered the usual equality 
relation “=” or inequality relations “. ≤” and “. ≥”. It is observed that T -fuzzy 
extensions of relational operators (=, . ≤, . ≥) have some disadvantages, and based 
on the problem, many fuzzy relations are defined for comparison of fuzzy numbers. 

A subset .X̃ ∈ Rn whose membership function is denoted by .μX̃ for all . x ∈ Rn

and is defined as 

.μX̃(x) = A
(
μR̃1

(g̃1(x, ã1, b̃1), . . . , μR̃m
(g̃m(x, ãm, b̃m))

)
(1.12)
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which is said to be the feasible solution of the FMP problem stated in Eq. (1.1). 
A vector .x ∈ [X̃]α , .α ∈ [0, 1], is said to be .α-feasible solution of the problem 

Eq. (1.1). 
A vector .x ∈ Rn such that .μX̃(x) = height of .(X̃) is known as max-feasible 

solution. (The height of a fuzzy set is the maximum membership value of an element 
of the set). 

It is observed that the feasible solution of an FMP is a fuzzy set. The interpre-
tation of .μX̃(x) depends on the nature of the uncertain parameters involved in the 
FMP. The membership value of . ̃Xi is given by 

. μX̃i
(x) = μR̃i

(g̃i(x, ãi ), b̃i ).

The fuzzy set . ̃X can be considered as the ith fuzzy constraint. Note that the 
aggregation operator A aggregates all the fuzzy constraints into the feasible 
solution (1.12). 

7 Decision-Making Problem 

In a decision-making problem, generally, multiple alternatives and multiple criteria 
(they may be conflicting in nature) are provided; among them, we have to choose the 
best alternative(s). The criteria play the role of constraints. The problem may have 
one or more objective functions. Suppose the set of alternatives is . A = {a1, a2, . . .}
(it may be finite or infinite), and the set of criteria is .C = {c1, . . . , cn} and a group 
of (people) experts .G = {e1, . . . , em}. 

Many different methods are devised to solve such types of problems based 
on alternatives, criteria, and experts. These methods have different names. Such 
names are multi-criteria decision-making (MCDM) and multi-criteria decision aid 
(MCDA). The MCDA approach concentrates on the tools that help a decision-
maker understand, capture, and analyze the distinction among the alternatives. On 
the other hand, in MCDM, it is assumed that the decision-making method can be 
formalized and concentrated on tools to describe this method. Thus, MCDM is a 
kind of descriptive method. 

Within MCDM and MCDA, there are two main classified problems, viz., 
multi-objective decision-making (MODM) and multi-attribute decision-making 
(MADM), two main areas can be distinguished. In MODM, the number of 
alternatives is infinite, i.e., the region of alternatives is a continuum. On the other 
hand, in MADM, the number of alternatives is finite. MADM is also referred to 
as MCDM. In MODM problems, there are one or more (usually more than one) 
functions which are to be optimized to satisfy the criteria/constraints, and these 
problems are generally solved using the available optimization methods. 

In both types of problems (MCDM and MADM), during decision-making, a set 
of rules are formed based on the predefined set of alternatives (generally finite) and
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a set of criteria. It is assumed that a preference is defined over the alternatives. Many 
techniques have been developed for assigning preferences on each criterion in the 
last few years. The most used approaches are: 

1. Utility functions: Utility functions are defined over alternatives, and it has a fixed 
range. The larger value associated with an alternative is more preferable. 

2. Preference relations: Preference relations are binary, which satisfies a pair of 
alternatives and identifies which one is preferred over the other. 

Let us consider an example to explain the terms alternatives, criteria, preferences, 
etc. 

Suppose we would like to buy a mobile phone. The alternatives are .A = {iPhone, 
Samsung. }, and criteria as per buyer need .C = {price, security, camera’s quality. }. 

Now, we represent the buyer’s preference for the alternatives with the help of util-
ity functions, i.e., with the help of the functions . Uprice, Usecurity, Ucamera’s quality
or with the help of preference relations, i.e., .Rprice, Rsecurity, Rcamera’s quality. 

For explanation, let us assume that 
Utility functions: 

iPhone: . Uprice = 0.7, Usecurity = 0.9, Ucamera’s quality = 0.4
Samsung: . Uprice = 0.5, Usecurity = 0.4, Ucamera’s quality = 0.8

Preference relations 

– Price: Rprice(iPhone, Samsung),¬Rprice(Samsung, iPhone) 
– Security: Rsecurity(iPhone, Samsung),¬Rsecurity(Samsung, iPhone) 
– Security: Rcamera’s quality(Samsung, iPhone),¬Rcamera’s quality 

(iPhone, Samsung) 

To find the best choice, a new function is defined. Let Dc(x, y) be such function. 
This function prefers x to y with retrospect to the criteria c. The decision can be 
taken by constructing an aggregate preference function/operator Dc that combines 
different criteria. Once this function/operator Dc is built, the selection of the best 
alternative can easily be done. 

Many such functions/operators based on t-norms and t-conorms are now avail-
able in literature. Few of them are discussed in the next section. The new functions 
which combine the utility functions and the preference relations are known as 
aggregation functions or aggregation operators. 

8 t-Norms and t-Conorms-Based Operators 

Recently, a lot of triangular norms (t-norms) and triangular conorms (t-conorms or 
s-norm) have been defined by several researchers, and based on these, several types 
of decision-making problems have been solved. These norms are used as operators.
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The t-norms and t-conorms are two fundamental operations, and these operations 
generalize the logical conjunction and logical disjunction to fuzzy logic and are 
used to solve multi-criteria decision-making problems. Any expression can’t be a 
t-norms or t-conorms; they must satisfy some criteria. The formal definitions are 
given below. 

The t-norm is a binary operation .T : [0, 1] × [0, 1] → [0, 1], which satisfies the 
following conditions: 

(i) .T (α, β) = T (β, α) (commutativity) 
(ii) .T (α, T (β, γ )) = T (T (α, β), γ ) (associativity) 

(iii) .β ≤ γ ⇒ T (α, β) ≤ T (α, γ ) (monotonicity) 
(iv) .T (α, 1) = α (neutral element 1) 

The t-norm is a commutative, associative, monotone binary operation. 

Examples of three fundamental t-norms: 

.TM(α, β) = min(α, β) (minimum or Gödel t-norm) 

.TP (α, β) = αβ̇ (product t-norm) 

.TL(α, β) = max(α + β − 1, 0) (Lukasiewicz t-norm) 

Another interesting t-norm defined by M.J. Frank in the late 1970s is a parametric 
family for the parameter .0 ≤ μ ≤ ∞ defined as 

. T F
μ (α, β) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

TM(α, β), if μ = 0
TP (α, β), if μ = 1
TL(α, β), if μ = ∞
logμ

(
1 + (μα−1)(μβ−1)

μ−1

)
, otherwise.

The triangular conorm S (also known as t-conorm or s-norm) is defined below: 

(i) .S(α, β) = S(β, α) (commutativity) 
(ii) .S(α, S(β, γ )) = S(S(α, β), γ ) (associativity) 

(iii) .β ≤ γ ⇒ S(α, β) ≤ S(α, γ ) (monotonicity) 
(iv) .S(α, 0) = α (neutral element 0). 

Note that the neutral element for s-norm is 0, unlike 1 of t-norm, but all other 
conditions remain the same. 

The very standard t-conorms are: 

.SM(α, β) = max(α, β) (maximum or Gödel t-conorm) 

.SP (α, β) = α + β − αβ̇ (product t-conorm, probabilistic sum) 

.SL(α, β) = min(α + β, 1) (Lukasiewicz t-conorm, bounded sum)). 

There is a relationship between t-norm and t-conorms; if T is a t-norm, then 
.S(α, β) = 1 − T (1 − α, 1 − β) is a t-conorm, and vice versa. That is, .(T , S) is a 
dual pair of a t-norm and a t-conorm. 

An element . α is called idempotents of a t-norm T if .T (α, α) = α. The trivial 
idempotents elements are 0 and 1. A t-norm is said to be Archimedean if each
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element of the sequence .αn, n ∈ N, .α1 < 1, and .αn+1 = T (αn, αn) converges to 
0. If, for a continuous t-norm, there is no idempotents between 0 and 1, then this t-
norm is called Archimedean. A continuous Archimedean t-norm is said to be strict 
if .T (α, α) > 0 for all .α > 0. If a continuous Archimedean t-norm is not strict, it is 
nilpotent. 

If . T ∗ is a t-norm and .h : [0, 1] → [0, 1] is an increasing bijective function, then 

. T (α, β) = h−1(T ∗(h(α), h(β)))

is a t-norm. 
The frequently used operators to solve decision-making problems are due to 

Dombi, Hamacher, Yager, Einstein, and many others. 

8.1 Dombi Operations 

Let . α and . β be any two real numbers. The Dombi norms and conorms are defined 
as: 

.Dom(α, β) = 1

1 + {( 1−α
α

)
 + (
1−β
β

)
}1/

(1.13) 

.Domc(α, β) = 1 − 1

1 + {( α
1−α

)
 + (
β

1−β
)
}1/


(1.14) 

where .
 ≥ 1 is a parameter and .(α, β) ∈ [0, 1] × [0, 1]. 

8.2 Hamacher Operations 

Let . α and . β be any two real numbers with a parameter . 
. The Hamacher norms and 
conorms are defined as follows: 

.HT (α, β) = αβ


 + (1 − 
)(α + β − αβ)
. (1.15) 

HS(α, β) = 
α + β − (2 − 
)αβ 

1 − (1 − 
)αβ 
(1.16)
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8.3 Einstein Operators 

The Einstein operations serve as examples of t-norms and t-conorms, including the 
Einstein product and Einstein sum. These are their definitions: 

Definition 1 ([49]) Einstein product .
⊗

and Einstein sum .
⊕

between two real 
numbers . α and . β are defined below. 

.α ⊕E β = α + β

1 + α.β
(1.17) 

.α ⊗E β = α.β

1 + (1 − α).(1 − β)
(1.18) 

where for all .(α, β) ∈ [0, 1] × [0, 1]. 
Let .f (α) be the function assigned to the conjunctive operator .k(α, β) and . g(α)

be another function assigned to the disjunctive operator .d(α, β). Zadeh mentioned 
that for the disjunctive (conjunctive) operators, a series of several operators can 
be constructed, whose limit is the max (min) operator. Suppose .f (α) is a given 
operator; using the concept of negation operator, a function .g(α) can be given 
from which a disjunctive operator can be generated. There is a good connection 
between disjunctive, conjunctive, and negation operators, which construct the 
necessary and sufficient condition for DeMorgan identity. Then, by using any 
two operators, another operator can be designed. On the construction principle, 
Hamacher’s conditions belong to the DeMorgan class and Yager’s operator system. 
For satisfying the DeMorgan identity, the necessary and sufficient conditions are 
provided as .fℜ(α), which can be designed for every .f (α), so that for the derived 
.Kℜ(α, β) and .dℜ(α, β), . lim

ℜ→∞
Kℜ(α, β) = min(α, β), and . lim

ℜ→∞
dℜ(α, β) =

max(α, β). As Yager’s operator is not reducible, for every . ℜ, there exists a . λ, such 
that .Kℜ(α, β) = 0 in case .α < λ and .β < λ. 

From the general construction, the measurement of fuzziness can be done. 
Fuzzy operators can be appropriately used in many applications of different 
fuzzy measurements. When fuzzy logic/mathematics is used in a decision-making 
problem, the optimum value is only defined along with its degree, i.e., the optimum 
value can’t be measured indeed. It is very helpful to design a system in which one 
can conclude the sharpness of decisions from the sharpness of the applied operators 
and sets. 

Table 1.1 provides the characteristics of the three useful operators defined by 
Hamacher [12], Yager [46], and Dombi [8]. Here negation operator is .n(α) = 1−α. 

1. Dombi operator satisfies all the basic properties such as continuous, conjunctive, 
and disjunctive, while Yager’s operator does not satisfies all these.



1 Fundamentals of Fuzzy Optimization and Decision-Making Problems 23

2. The form of Hamacher operator can be obtained by substituting the parameter . ℜ
(in Table 1.1) for .1/ℜ in the case of conjunctive operator and for .1/(ℜ

′ + 1) in 
case of disjunctive operator. In the resulting transformed form, the condition for 
satisfying the DeMorgan identity is .1/ℜ = 1/(ℜ

′ + 1). This is equivalent to the 
results of Hamacher when .n(α) = 1 − α. 

3. It can be shown that Yager’s formula is equivalent to 

.(i) .1−min

(
1,

(
(1−α)ℜ + (1−β)ℜ

)1/ℜ)
and .(ii) .min

(
1, (αℜ +βℜ

)1ℜ)
. 

4. In the case of all three operators if .ℜ ≤ ℜ
′
, then .kℜ(α, β) ≤ kℜ′(α, β), and 

.dℜ(α, β) ≥ dℜ′(α, β). 
5. In the case of all three operators, . lim

ℜ→0
kℜ(α, β) = 0, and . lim

ℜ→0
dℜ(α, β) = 1. 

The above discussion shows that Dombi operators are more general than 
Hamacher and Yager operators. 

8.4 Power Averaging (PA) Operator 

Suppose . αj , .j = 1, 2, . . . , n is a set of crisp numbers. The PA operator [47] is a  
mapping .PA : (R+)n → R

+ defined as: 

. PA(α1, α2, . . . , αn) =

n∑
j=1

(1 + T (αj ))αj

n∑
j=1

(1 + T (αj ))

,

where .T (αj ) =
n∑

i=1,j �=i

supp(αj , βi), .j = 1, 2, . . . , n and .supp(αj , αi) is the 

support degree of . αj from . αi . It satisfies the criteria as follows: (i) . supp(αj , αi) ∈
[0, 1], (ii) .supp(αj , αi) = supp(αi, αj ), and (iii) .supp(αi, αj ) ≥ supp(αk, αl) if 
.|αi − αj | < |αk − αl |. 

8.5 Prioritized Average (PA) Operator 

The prioritized average operator (PA) is the first time defined by Yager [48]. Let 
.D = {D1,D2 . . . , Dr} be a set of attributes, which have a prioritized relation 
between the attributes by the linear ordering .D1 � D2 � D3 �, . . . ,� Dr , which 
imply that .Dφ has a higher prioritized than . Dθ , if . φ < θ . The value of .Ds(p) is the
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performance of any alternative p under attribute . Dφ , which satisfies .Dφ(p) ∈ [0, 1]. 
If 

.PA(Dr(p)) =
r∑

s=1

ψsDs(p) (1.19) 

where .ψg = h̄g
r∑

g=1
h̄g

, .h̄g =
g−1∏
b=1

Db(p) .(b = 1, 2, . . . , ζ ), .h̄ = 1. Then PA is called 

the average operator. The PA [48] generally used input arguments have exact values. 

8.6 Bonferroni Mean (BM) Operator 

Bonferroni mean, first proposed by Bonferroni, can enable aggregation between the 
max, min operators, and the logical “or” and “and” operators [5]. The following is 
a definition of BM: 

Definition 2 ([5]) Let .p, q ≥ 0 and .αi .i = 1, 2, . . . , n be a collection of non-
negative real numbers, and its aggregation functions defined as follows: 

.BMp,q(α1, α2, . . . , αn) =
⎛
⎝ 1

n(n − 1)

n∑
i,j=1,i �=j

α
p
i α

q
j

⎞
⎠

1
p+q

. (1.20) 

are called Bonferroni mean (BM) operator. 

Definition 3 ([50]) Suppose .p, q > 0, and . αi , .i = 1, 2, . . . , n are a collection of 
non-negative real numbers, then the geometric Bonferroni mean (GBM) operator is 
defined as follows: 

.GBMp,q(α1, α2, . . . , αn) =
⎛
⎝ 1

p + q

n∏
i,j=1,i �=j

(pαi + qαj )

⎞
⎠

1
n(n−1)

. (1.21) 

8.7 Maclaurin Symmetric Mean (MSM) Operator 

The Maclaurin symmetric mean (MSM) operator is a good tool for collecting 
information on the interrelationship between the multi-input arguments. 

Definition 4 Assume .α1, α2, . . . , αn and there is a set of non-zero real numbers. 
The formula of MSM operator is given below.
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.MSM(m)(α1, α2, . . . , αn) =

⎛
⎜⎜⎜⎝

∑
1<i1<i2<...<ik<gr

( m∏
j=1

αj

)

Cm
gr

⎞
⎟⎟⎟⎠

1
m

(1.22) 

where m is a parameter, .m = 1, 2, . . . , gr , . gr showing the number of attributes 
in each partition .pr, i1, i2 and . ik are the set m derived integers .{1, 2, . . . , gr} of 
integers, the binomial coefficient . Cm

gr
, whose expression is .Cm

gr
= gr !

m!(gr−m)! . The  
characteristics of the MSM operator are given below. 

(1) If .αi ≤ βi , .i = 1, 2, . . . , n, then . MSM(m)(α1, α2, . . . , αk) ≤ MSM(m)

.(β1, β2, . . . , . βk)

(2) .min
j

{βj } ≤ MSMm(β1, β2, . . . , βm) ≤ max
j

{βj }. 

8.8 Frank Aggregation Operator 

The triangle norms have been thoroughly investigated, starting from Zadeh pre-
sented max and min operations as a pair of triangular norm and triangular 
conorm. As tools for working with fuzzy sets, we can make use of a variety of 
triangular norms and associated triangular norms, including the product t-norm and 
probabilistic sum t-conorm [45], Lukasiewicz t-norm and t-conorm [7], Einstein t-
norm and t-conorm [44], Hamacher t-norm and t-conorm [30], and triangle norms 
and triangular conorms, which are instances of Frank operations, which include the 
Frank product and Frank sum. 

Definition 5 Frank t-norm and t-conorm is defined below: 

. α ⊕ β = 1 − logδ

(
1 + (

δ1−α − 1)(δ1−β − 1)

δ − 1

)
∀ (α, β) ∈ [0, 1] × [0, 1]

(1.23) 

.α ⊗ β = logδ

(
1 + (

δα − 1)(δβ − 1)

δ − 1

)
∀ (α, β) ∈ [0, 1] × [0, 1] (1.24) 

The following characteristics of the Frank product and Frank sum are highlighted 
[43]. 

.(α ⊕ β) + (α ⊗ β) = α + β. (1.25) 

∂(α ⊕ β) 
∂α 

+ 
∂(α ⊗ β) 

∂β 
= 1. (1.26)
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(1) If .δ → 1, then .α ⊕β → α +β −αβ; the probabilistic product and probabilistic 
sum are reduced from the Frank product and Frank sum 

(2) If .δ → ∞, then .(α ⊕ β) → min(α + β, 1), and .(α ⊗ β) → max(0, α + β − 1); 
the Frank product and Frank sum are reduced to the Lukasiewicz product and 
Lukasiewicz sum, respectively. 

8.9 Heronian Mean (HM) Operator 

Definition 6 ([29]) If H : [0, 1]n → [0, 1] and satisfies 

.H(α1, α2, . . . , αn) = 2

n(n + 1)

n∑
i=1

n∑
j=1

√
αiαj (1.27) 

then the operator H is called Heronian mean (HM) operator. 

Definition 7 ([29]) If Hp,q : [0, 1]n → [0, 1] and p, q ≥ 0 satisfies 

.Hp,q(α1, α2, . . . , αn) =
⎛
⎝ 2

n(n + 1)

n∑
i=1

n∑
j=1

α
p
i α

q
j

⎞
⎠

1
p+q

(1.28) 

then Hp,q is called Heronian mean (HM) operator with parameter (p, q). 
The HM operator possesses the following basic properties: 

(1) Idempotency. Hp,q (α, α, . . . , α)  = α 
(2) Monotonicity. If αi ≤ αj for all j , then Hp,q (α1, α2, . . . , αn) ≤ 

Hp,q (β1, β2, . . . , βn), where αi and βi are arbitrary real numbers. 
(3) Bounded min{α1, α2, . . . , αn} ≤  Hp,q (α1, α2, . . . , αn) ≤ max{α1, α2, . . . , αn}. 
For different values of p, q, we find different forms of Hp,q are as follows: 

(1) If p = q, then Hp,p (α1, α2, . . . , αn) =
(

2 
n(n+1) 

n∑
i=1 

n∑
j=1 

(αiαj )
p

) 1 
2p 

(2) If p = q = 1 
2 , then H 

1 
2 , 

1 
2 (α1, α2, . . . , αn) = H(α1, α2, . . . , αn) =

(
2 

n(n+1) 

n∑
i=1 

n∑
j=1 

√
αiαj

) 1 
2p 

(3) If p = q = 1, then H 1,1(α1, α2, . . . , αn) =
(

1 
n 

n∑
i=1 

νiαi

) 1 
2 

where, νi = 

1 
n+1 (αi + 

n∑
j=1 

αj )
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9 Aggregation Operators 

Recently, many aggregation functions/operators have been defined. These functions 
combine all different data in a single value. Suppose .α1, α2, . . . , αn is a set of 
parameters, and the functions aggregate all these parameters . A in a given domain 
. D. These functions satisfy several interesting properties. 

(i) Idempotency: .A(α, α, . . . , α) = α for all . α ∈ D

(ii) Monotonicity: .A(α1, α2, . . . , αn) ≥ A(α′
1, α

′
2, . . . , α

′
n) for all .αi ≥ α′

i . 
(iii) Symmetry: Let . π be any permutation on .{1, 2, . . . , n}. . A(α1, α2, . . . , αn) =

A(π(α1), π(α2), . . . , π(αn)). 

There are some variations on the definition of aggregation operator. The mono-
tonicity condition is applicable only when the . ≥ operator is defined on the domain. 
Also, some authors define the aggregation operators in such a way that idempotency 
and monotonicity conditions are satisfied in the boundary of the domain only, 
i.e., if the domain is .[0, 1], idempotency condition satisfies only at 0 and 1, i.e., 
.A(0, 0, . . . , 0) = 0, and .A(1, 1, . . . , 1) = 1. 

9.1 Aggregation Operators for Numerical Data 

There are two very simple and well-known such operators arithmetic mean (AM) 
and the weighted mean (WM). In AM, no extra information is required, and in this 
aggregation, all the given data have equal importance. On the other hand, in WM, 
weights are assigned to the given data to indicate the importance or weight of the 
corresponding data. In WM, the aggregation is made with the given weight vector. 
These two aggregation operators are defined below. 

Definition 8 Let .A(α1, α2, . . . , αn) be a set of n attributes or any type of data in . R. 
Then the AM is a function .AM : Rn → R, which is defined as 

.AM(α1, α2, . . . , αn) = 1

n

n∑
i=1

αi. (1.29) 

Definition 9 Let .A(α1, α2, . . . , αn) be a set of n data in . R and the weight vector 
be .ω = (ω1, ω2, . . . , ωn), where .ωi ∈ [0, 1] and .

∑n
i=1 ωi = 1. Then the WM is a 

function .WM : Rn → R defined as 

.WM(α1, α2, . . . , αn) =
n∑

i=1

αiωi. (1.30) 

Similar to WM, another operator called ordered weighting averaging (OWA) 
operator is defined below.
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Definition 10 Let .ω = (ω1, ω2, . . . , ωn), where .ωi ∈ [0, 1], and . 
∑n

i=1 ωi =
1 be the weight vector. Also, let .{π(1), π(2), . . . , π(n)} be a permutation over 
.{1, 2, . . . , n} such that .απ(i−1) ≥ απ(i) for all .i = 1, 2, . . . , n (this ordered implies 
that the data are ordered concerning the permutation . π ). The OWA is a mapping 
.OWA : Rn → R defined as 

.OWA(α1, α2, . . . , αn) =
n∑

i=1

απ(i) ωi . (1.31) 

Notice that both the operators WM and OWA are similar. In OWA, the data is 
considered as ordered, and then the weights are multiplied with it. In a MCDM 
problem, the weights in the WM are assigned to the criteria, while in the OWA, they 
are associated with the data itself or to the relative position of one value with respect 
to the other values. In this means, the decision-maker can introduce different types 
of prior knowledge or different types of information in the aggregation method. 

The OWA and WM are similar and are a linear combination of the data and the 
weights. But in OWA, there is a concept of the ordering of the data; the weights’ 
meanings are different for different aspects. That is, the weight vector . ω in WM 
represents the importance of the criteria, while the weight vector in OWA represents 
the compensation degree. For further explanation, two symbols are used to represent 
two types of weighting vectors. For the sake of simplicity, the weight vectors . ω
and p represent the weights corresponding to the OWA and WM, respectively. The 
properties of both types of weight vectors are the same. In some MCDM problems, 
it is required to simultaneously incorporate the weights for the different criteria and 
a certain degree of compensation. For this purpose, a new operator called WOWA 
(weighted OWA) is introduced. In these operators, two types of operators are used 
together. 

Definition 11 Let . ω and p be two n-dimensional weight vectors. The weighted 
ordered weighted averaging (WOWA) [39] is a mapping . WOWA : R

n → R

defined as 

.WOWAω,p(α1, α2, . . . , αn) =
n∑

i=1

Wi απ(i), (1.32) 

where . π is a permutation over .{1, 2, . . . , n}, and the weight . Wi is defined as 

. Wi = W ∗(
∑
k≤i

pπ(k)) − W ∗(
∑
k<i

pπ(k))

where .W ∗ is a non-decreasing function that is obtained from interpolating the points 

.{(1/n,U1), (2/n,U2), (3/n,U3), . . . , (n/n,Un), (0, 0)}, Ui =
∑
k≤i

ωk.
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Chapter 2 
What Is the Most Adequate Fuzzy 
Methodology? 

Noah Velasco, Olga Kosheleva , and Vladik Kreinovich 

1 Outline 

Question In many practical control situations, we do not have the exact model of 
a system that we need to control, but we have the experience of successful expert 
human controllers. Human controllers often formulate their experience by using 
imprecise (“fuzzy”) words from natural language like “small.” How can we translate 
this expert knowledge into a precise control strategy for an automatic controller? 

A similar problem emerges when we want to use expert rules to predict the future 
state of the worlds. 

To translate imprecise expert statements into precise form, Lotfi Zadeh invented 
a special methodology that he called fuzzy (see, e.g., [1, 2, 4–6, 8]). In this 
methodology, we start by describing each natural-language term A (e.g., “small”) 
by a function that assigns:

• to each possible value x of the corresponding quantity,
• a degree  μA(x) from the interval [0, 1] to which, in the controller’s opinion, this 

value satisfies the corresponding property (e.g., the degree to which the value x 
is small). 

This function is known as a membership function or, alternatively, as a fuzzy set. 
Once we have fuzzy sets corresponding to all relevant natural-language terms and 

we have all natural-language if-then rules provided by the human controllers, we 
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need to transform this information into a precise control strategy. There are several 
different methods for generating such a strategy. A natural question is: Which 
method should we select? In other words, which method is the most adequate? 

WhatWeDo in This Chapter To answer the above question, a natural requirement 
is that if the expert’s if-then rules describe—in fuzzy terms—an actual control 
strategy y = f (x), then the fuzzy methodology should return exactly this 
strategy. Somewhat surprisingly, it turns out that the existing fuzzy methodologies— 
including the very popular Mamdani approach—do not satisfy this requirement. In 
this chapter, we show that this requirement actually leads to a new methodology, a 
methodology that we describe and analyze. 

Structure of This Chapter In Sect. 2, we briefly recall what a fuzzy methodology 
is and which fuzzy methodologies are typically used in practical applications. In 
Sect. 3, we describe a natural criterion for deciding which fuzzy methodology is the 
most adequate, and we show that from the viewpoint of this criterion, none of the 
current methodologies are perfect. In Sect. 4, we describe a methodology which is 
the most adequate according to our natural criterion—and analyze some properties 
of this methodology. 

2 What Is Fuzzy Methodology: A Brief Reminder 

Need for Expert Knowledge In many practical situations, we want to make a 
decision, for example:

• we want to decide what control to apply to a system,
• we want to decide what the patient’s disease is and what dose of what medicine 

should be the best for this patient,
• we want to predict tomorrow’s weather. 

In many such situations, we do not have an accurate model of the system, and thus, 
we cannot formulate this problem in precise terms. What we usually do have is the 
experience of experts:

• we have the experience of human expert controllers who control a plant,
• we have the experience of expert medical doctors who are good in diagnosing 

and treating the patient,
• we have the experience of expert meteorologists who can predict tomorrow’s 

weather in their region with high accuracy. 

It is therefore desirable to use this expert knowledge to design an automatic 
controller and/or an automatic expert system. 

Using Expert Knowledge Is Not Easy Most experts are willing to share their 
expertise, but the problem is that experts often cannot describe their knowledge in



2 What Is the Most Adequate Fuzzy Methodology? 35

precise terms. Instead, they formulate this knowledge in terms of if-then rules that 
use imprecise (“fuzzy”) words from natural language. 

For example, many people know how to drive. So, at first glance, it may seem 
to be an easy task to design a self-driving car: just use the experience of good 
human drivers. However, this is not so easy. An automatic controller would need 
to know what control to apply in each situation. For example, if a car is going on 
a freeway with the speed of 100 km per hour and a car in front of it—which is 
10 m ahead—slows down to 95 km per hour, what should we do? A natural human 
answer is “break a little bit,” but what the automatic controller needs is with how 
many Newtons of force to push the brake pedal and for how many milliseconds— 
and most human drivers cannot provide these numbers. 

Fuzzy Methodology: First Step To perform this challenging task, i.e., to extract 
precise knowledge from the imprecise expert knowledge, Lotfi Zadeh invented a 
new methodology that he called fuzzy. This methodology starts with providing a 
precise description of all natural-language words used by experts. 

For this purpose:

• for each such word A and for each possible value x of the corresponding quantity,
• we ask the expert to mark, on a scale from 0 to 1, to what extent the value x has 

the corresponding property (e.g., to what extent x is small). 

The intent is that:

• mark 1 corresponds to the case when the expert is absolutely sure that x satisfies 
this property,

• mark 0 means that the expert is absolutely sure that x does not satisfy this 
property

• marks between 0 and 1 correspond to intermediate cases. 

The resulting function A(x) that assigns the degree to each value x is called a 
membership function or a fuzzy set. 

Comment Of course, there are infinitely many real numbers x, and we can only ask 
finitely many questions to the expert. So, in practice:

• we ask the expert a finite number of questions, about finitely many values 
x1, . . . , xn, and then

• we use interpolation/extrapolation to estimate the values A(x) for all other values 
x. 

In particular, if we ask the expert to provide:

• the value M for which this user is absolutely sure that this property is satisfied 
(i.e., that A(M) = 1), and

• the values m and m such that outside the interval [m, m], the property is not 
satisfied (i.e., A(x) = 0),
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and use linear interpolation, then we get a frequently used triangular membership 
function. 

If instead of a single value M we get the whole interval
[
M, M

]
on which the 

property A is satisfied, i.e., for which A(M) = 1 for all values M from this interval, 
and we use linear interpolation, then we get trapezoid membership functions. 

Fuzzy Methodology Beyond the First Step: What We Have After the first step, 
to determine the desired dependence y = f (x), we have several expert if-then rules 

. If x is A1 then y is B1.

If x is A2 than y is B2.

. . .

If x is Ak then y is Bk.

where Ai and Bi are natural-language terms that are described by membership 
functions Ai(x) and Bi(y). Based on this information, we want to generate a 
function y = f (x)  that adequately describes these rules. 

Example To illustrate our ideas, let us consider a simple example of controlling a 
thermostat by turning a knob.

• If we turn the knob to the right, the temperature increases.
• If we turn it to the left, the temperature decreases. 

In this example:

• the desired control variable y is the angle on which we turn the knob

• the input x is the difference x def= T − T0 between the actual temperature T and 
the desired temperature T0. 

If the temperature is close to the desired one, i.e., if the difference x is close to 0, 
then we should not change anything, i.e., the control y should be negligible. So, we 
arrive at the first rule: 

If x is negligible, then y should be negligible. 

If the temperature is slightly higher than desired, then we should turn the knob to 
the left a little bit. So, we arrive at the second rule: 

If x is small positive, then y should be small negative. 

Similarly, if the temperature is slightly lower than desired, then we should turn the 
knob to the right a little bit. So, we arrive at the second rule: 

If x is small negative, then y should be small positive. 

We can add more rules, but for simplicity, let us only consider these three rules. The 
restriction to these three rules makes sense in situations when the control is almost 
perfect, and we experience only small deviations from the desired temperature.
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Also, for simplicity, let us consider simple triangular membership functions cor-
responding to “negligible,” “small positive,” and “small negative.” We will denote 
them, correspondingly, by N(x), SP (x), and SN(x). Based on our experience, we 
assume that:

• for “negligible”: the value M = 0 is definitely negligible, and values outside the 
interval [−5, 5] are definitely not negligible;

• for “small positive”: the value M = 5 is definitely small positive, and values 
outside the interval [0, 10] are definitely not small positive: value smaller than 0 
are not positive, and values larger than 10 are not small;

• for “small negative”: the value M = −5 is definitely small negative, and values 
outside the interval [−10, 0] are definitely not small negative—values smaller 
than −10 are not small, and values larger than 0 are not negative. 

In this case, linear interpolation leads to the following triangular membership 
functions, see Fig. 2.1, 2.2 and 2.3. 

Fuzzy Methodologies Beyond the First Step: Examples Let us list the most 
frequently used fuzzy methodologies, i.e., methodologies for transforming fuzzy 
rules into a precise function y = f (x). 

Fuzzy Methodology Beyond the First Step: Mamdani Approach One of the 
most widely used approaches was originally proposed by Mamdani and is, thus, 
known as Mamdani approach. In this approach, we first take into account that for a 
given value x, the value  y is reasonable (R) if:

• either the first rule is applicable, i.e., x is A1 and y is B1,
• or the second rule is applicable, i.e., x is A2 and y is B2. 

We can symbolically describe it as follows: 
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� 
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Fig. 2.1 Membership function corresponding to “negligible”
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Fig. 2.2 Membership function corresponding to “small positive” 
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Fig. 2.3 Membership function corresponding to “small negative” 

. R(y) ⇔ (A1(x) & B1(y)) ∨ (A2(x) & B2(y)) ∨ . . .

To give this formula a numerical meaning, we need to provide the numerical 
meaning to the “and”- and “or”-operations, i.e., in effect, to extend the “and”- and 
“or”-operations of the usual 2-valued logic (with the values “false” (0) are “true” 
(1)) to the whole interval [0, 1]. From the computational viewpoint, the simplest 
such extensions are min and max. Thus, we arrive at the following membership 
function for “reasonable”: 

. R(y) = max(min(A1(x), B1(y)), min(A2(x), B2(y)), . . .)

Our ultimate objective is to come up with a single value y. A reasonable way to 
come up with this value is to minimize the weighted squared difference between 
this value and possible values y, weighted by the degree to which y is possible, i.e.,
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to minimize the following expression: 

. 

∫
R(y) · (y − y)2 dy.

To find the minimizing value y, we can differentiate this expression with respect to 
y and equate the derivative to 0. As a result, we get the following expression: 

. y =
∫

y · R(y) dy
∫

R(y) dy
.

This expression is known as centroid defuzzification. 

Fuzzy Methodology Beyond the First Step: Takagi-Sugeno Approach An 
alternative approach is that we replace each y-membership function Bi(y) by the 
result of its defuzzification, for example, by the centroid value 

. yi =
∫

y · Bi(y) dy
∫

Bi(y) dy
.

In effect, we ignore the fuzziness of y in the rules and consider the following 
simplified rules: 

. If x is A1 then y = y1.

If x is A2 than y = y2.

. . .

If x is Ak then y = yk.

These rules can be treated the same way as in the previous approach, the only 
difference is that now the conclusions of each rule are not fuzzy. In this case, the 
value R(y) is only different from 0 when y coincides with each of the points yi , 
and for each of these values, we have R(yi) = Ai(x). Thus, the centroid formula 
leads to 

. y =
Ʃk

i=1 Ai(x) · yi
Ʃk

i=1 Ai(x)
.

3 How to Decide Which Fuzzy Methodology Is the Most 
Adequate 

Idea Fuzzy methodology transforms rules and membership functions into an exact 
control strategy .f (x); see Fig. 2.4.
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Fig. 2.4 Fuzzy methodology 

rules, 
membership 
functions 

� y = f (x) 

y = f (x) 
rules, 

membership 
functions 

� � y = f (x) 

Fig. 2.5 Fuzzy methodology: ideal case 

Suppose now that we start with the actual function y = f (x). As we have  
mentioned, fuzzy techniques deal with situations when the experts cannot explicitly 
describe this function. Instead, they formulate rules based on this function. In this 
case, a natural requirement is that once we process these rules, we should get back 
the original function y = f (x). This is what we should have in the ideal case; see 
Fig. 2.5. 

The closer the reconstructed function to the original function, the more adequate 
the fuzzy methodology—this is a natural idea of gauging adequacy of different 
methodologies. 

What Do We Mean by Rules Generated by a Function? Suppose that we know 
the function y = f (x)  and that we have fuzzy information about x: namely, that 
x is Ai for some property Ai , which is described by a membership function Ai(x). 
What can we then say about y? How can we describe the corresponding membership 
function Bi(y)? 

The answer to this question is well-known in fuzzy research: it is provided by the 
so-called Zadeh’s extension principle. This answer can be easily explained. Indeed, 
in this case, a real number Y is a possible value of the quantity y if there exists 
a value X which is a possible value of the quantity x and for which f (X)  = Y . 
The degree to which  X is a possible value of the quantity X is determined by the 
corresponding membership function Ai(x) and is, thus, equal to Ai(X). If there is 
only one X for which f (X)  = Y—this value X is then denoted by X = f −1(Y )— 
then Ai(X) = Ai(f −1(Y )) is exactly the degree Bi(Y ) to which Y is a possible 
value of y. So, in this case, we have 

.Bi(y) = Ai(f
−1(x)). (2.1)



2 What Is the Most Adequate Fuzzy Methodology? 41

What if there are several different values of X for which f (X)  = Y ? This  
happens, e.g., when f (x)  = x2, then for each Y , there are two such values X: 
X = 

√
Y and X = −√

Y . In this case, Y is possible if either we have the first of 
these values X or the second of these values X. The simplest way to estimate the 
degree to which an “or”-statement A ∨ B is true based in the degrees a and b to 
which individual statements A and B are true is to use maximum max(a, b). Thus, 
we get 

.Bi(y) = max{Ai(x) : f (x) = y}. (2.2) 

This is exactly the formula that was first produced by Zadeh himself and is, thus, 
called Zadeh’s extension principle. This membership function will be denoted as 
Bi = f (Ai). 

In these terms, the fuzzy methodology is most adequate if, based on the rules 
if x is Ai then y is Bi , where Bi = f (Ai), 

we should be able to reconstruct the original function f (x). 

Important Comment In the following text, we will use the known fact that 
for reasonable membership functions Ai(x)—namely, for all the functions that 
first continuously increase from 0 to 1 and then continuously decrease from 1 to 
0—Zadeh’s extension principle can be reformulated in terms of α-cuts, i.e., sets 

Ai (α) def= {x : Ai(x) ≥ α} and Bi (α) def= {y : Bi(x) ≥ α} for all α ∈ (0, 1]. Namely, 
we have 

. Bi (α) = f (Ai (α)),

where for each set S, by  f (S), we mean 

. f (S)
def= {f (x) : x ∈ S}.

Are Existing Fuzzy Methodologies Most Adequate? A natural question is: Are 
the existing fuzzy methodologies—e.g., the ones described above—most adequate 
in this natural sense? Our answer is No. Let us explain this answer. 

Mamdani Methodology Is Not the Most Adequate (in the Above Sense) Let us 
explain, on a simple example, that Mamdani methodology is not the most adequate, 
i.e., that it does not reconstruct the original function y = f (x). 

Let us consider the above membership functions N(x), SP (x), and SN(x) and a 
simple function f (x)  = −x. In this case, as one can easily check, we have f (N)  = 
N , f (SP )  = SN , and f (SN)  = SP . Thus, the rules generated by this function 
take exactly the form described in the previous section: 

.If x is N then y is N.

If x is SP then y is SN.
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If x is SN , then y is SP. 

Let us consider a small negative value x = −ε, where ε >  0. In this case, 

. N(x) = 1 − ε

5
, P (x) = ε

5
, and SN(x) = 0.

Thus, the reasonable value R(y) is described by the formula 

. R(y) = max
(

min
(
N(y), 1 − ε

5

)
, min

(
SP (y),

ε

5

))
.

The functions min(N(y), 1 − ε/5) and min(SP (y), ε/5) can be represented as 
follows, see Fig. 2.6 and 2.7. 
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Fig. 2.6 Mamdani approach: min(N(y), 1 − ε/5) 
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Fig. 2.7 Mamdani approach: min(SP (y), ε/5



2 What Is the Most Adequate Fuzzy Methodology? 43

� 

� 
1− /5 

� 
� 

� 
� 

� 
� 

� 
� 

/5 

y 

R(y) 

−5 0 5

e 

e 

10  

Fig. 2.8 Mamdani approach: resulting membership function for y 

Thus, the desired function R(y)—which is the maximum of these functions— 
takes the following form: see Fig. 2.8. 

The result of the centroid defuzzification is the ratio of two integrals, so let us 
estimate these integrals. Let us first estimate the denominator

∫
R(y) dy. When ε 

tends to 0, the function R(y) tends to N(y), for which
∫

N(y)  dy  is the area of the 
corresponding triangle with height 1 and base 5 − (−5) = 10, i.e., 

. 
1

2
· 10 · 1 = 5.

Thus, the denominator is equal to 5 + O(ε). 
The integral in the numerator can be represented as the sum of the parts: the 

symmetric part Rsym(y) = Rsym(−y) corresponding to values from y = −5 to  

y = 5 and the remaining part r(y) def= R(y) − Rsym(y). For the symmetric part 
Rsym(y), the integral

∫
y · Rsym(y) dy is 0—since for each y >  0, contributions of 

the terms corresponding to y and to −y cancel each other. Thus, the numerator is 
equal to

∫
y · r(y) dy. For almost all the values y from y = 5 to  y = 10, we have 

r(y) = ε/5, thus in the first approximation 

. 

∫
y · r(y) dy =

∫ 10

5
y · ε

5
dy + o(ε) = ε

5
· 1

2
· y2

|
|
||

10

5
+ o(ε) =

. 
ε

5
· 1

2
· (102 − 52) + o(ε) = 7.5 · ε + o(ε).

Thus, the desired ratio is equal to 

.y =
∫

y · R(y) dy
∫

R(y) dy
= 7.5 · ε + o(ε)

5 + O(ε)
= 1.5 · ε + o(ε).
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This is clearly different from the original value 

. f (x) = f (−ε) = ε.

Takago-Sugeno Approach Is Not the Most Adequate It so happens that for the 
above example when f (x)  = −x and we have N(x), SP (x), and SN(x), Takagi-
Sugeno approach reconstructs the original function. However, for any nonlinear 
function f (x), e.g., for f (x)  = −x+x3, this approach won’t reconstruct the original 
function. 

Indeed, the function reconstructed by this methodology is a linear combination 
of the membership functions corresponding to x. On the interval [0, 5], all the 
membership functions are linear, so their linear combination is also linear—and 
thus, cannot be equal to any nonlinear function. 

Remaining Problem Since none of the existing methodologies is the most ade-
quate, we need to come up with a new most adequate fuzzy methodology. 

4 Toward the Most Adequate Fuzzy Methodology 

What Is Given: Reminder We are given fuzzy rules of the type 
If x is . Ai then y is . Bi , 

for .i = 1, . . . , k, and we know the membership functions .Ai(x) and . Bi(y)

describing these rules. 

What We Want: Reminder We want to make sure that when, for some function 
f (x), we have  Bi = f (Ai) for all i, i.e., we have Bi (α) = f (Ai (α)) for all i and 
for all α, then this methodology should reconstruct the function f (x). This prompts  
the following seemingly natural definition. 

A Seemingly Natural Idea Let us return a function f (x)  for which, for all i and 
for all α, we have  

. Bi (α) = f (Ai (α)).

A Problem with This Idea Expert knowledge is usually approximate. As a result, 
the membership function Bi may be slightly different from f (Ai). In this case, 
we may not have a function f (x)  for which, in the above equation, we have exact 
equality. 

A Natural Solution to This Problem and the Resulting Description of the New 
Fuzzy Methodology In view of the approximate character of expert knowledge, let 
us look for a function f (x)  for which 

.Bi (α) ≈ f (Ai (α)).
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We can interpret these approximate equalities, e.g., by using the usual least squares 
approach (see, e.g., [7]): 

. 
Ʃ

i,α

d2(Bi (α), f (Ai (α))) → min,

where the distance between the two intervals [a, a] and [b, b] can be defined, e.g., 
as the Euclidean distance between the corresponding 2-D points (a, a) and (b, b): 

. d2([a, a], [b, b]) = (a − b)2 + (a − b)2.

Case of Monotonicity In the control situation that we used as an example, the 
desired function f (x)  is decreasing. In general, situations in which the function 
f (x)  is increasing or decreasing are ubiquitous. In such situation, the above 
minimization problem can be simplified. 

To describe this simplification, let us denote the endpoint of the interval Ai (α) 
by Ai(α) and Ai(α), so that 

. Ai (α) = [Ai(α),Ai(α)].

Similarly, let us denote the endpoint of the interval Bi (α) by Bi(α) and Bi(α), so  
that 

. Bi (α) = [Bi(α), Bi(α)].

In these terms, we can explicitly describe the expression for the range f (Ai (α)):

• If the function f (x)  is increasing, then 

.f (Ai (α)) = f ([Ai(α),Ai(α)]) = [f (Ai(α)), f (Ai(α))].

• If the function f (x)  is decreasing, then 

. f (Ai (α)) = f ([Ai(α),Ai(α)]) = [f (Ai(α)), f (Ai(α))].

In this case, the minimized expression becomes simpler:

• If we know that the function f (x)  is increasing, then, according to the proposed 
methodology, we should select the function f (x)  that minimizes the expression 

.

Ʃ

i,α

(Bi(α) − f (Ai(α)))2 +
Ʃ

i,α

(Bi(α) − f (Ai(α)))2.
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• If we know that the function f (x)  is decreasing, then, according to the proposed 
methodology, we should select the function f (x)  that minimizes the expression 

. 
Ʃ

i,α

(Bi(α) − f (Ai(α)))2 +
Ʃ

i,α

(Bi(α) − f (Ai(α)))2.

Often, we look for a function f (x)  as a linear combination of functions from the 
given basis, i.e., as an expression 

. f (x) = C1 · e1(x) + . . . + Cm · em(x),

where the functions ej (x) are given and the coefficients Cj need to be determined. 
For example, we can take e1(x) = 1, e2(x) = x, and ej (x) = xj−1; in this case, 
we are looking for a polynomial function f (x). In this case, the above minimized 
expression becomes quadratic in terms of the unknown coefficients Cj . Thus, 
differentiating with respect to each of these coefficient and equating the derivatives 
to 0, we get an easy-to-solve system of linear equations for finding Cj . 

Case of Several Inputs Sometimes, we have rules whose conditions involve 
several inputs x1, . . . , xn, i.e., rules of the type 

If x1 is Ai1 and . . . and xn is Ain then y is Bi . 
Based on these rules, we need to find an appropriate function y = f (x1, . . . , xn). 

In this case, Zadeh’s extension principle takes the following form: 

. Bi (α) = f (Ai1(α), . . . ,Ain(α)),

where for every tuple of sets S1, . . . ,  Sn, the range f (S1, . . . , Sn) means 

. f (S1, . . . , Sn)
def= {f (x1, . . . , xn) : x1 ∈ S1, . . . , and xn ∈ Sn}.

In this case, according to the proposed methodology, we should select the function 
f (x1, . . . , xn) for which 

. Bi (α) ≈ f (Ai1(α), . . . ,Ain(α))

for all i and for all α, i.e., for example, for which the following expression attains 
the smallest possible value: 

. 
Ʃ

i,α

d2(Bi (α), f (Ai1(α), . . . ,Ain(α))) → min .

Is This New Methodology Indeed the Most Adequate? Of course, by definition, 
if f (Ai) = Bi for all i, then f (x)  is one of the functions satisfying the above 
condition.
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Is this the only function with this property? Not necessarily: if all membership 
functions are constant on some interval [x, x]—e.g., if we consider trapezoid 
functions—then all we can extract from the given information is the range of the 
function f (x)  on this interval, but we cannot uniquely determine how exactly the 
function f (x)  behaves on this interval:

• this function can be linear on this interval,
• it can be nonlinear on this interval, 

the membership functions Bi(x) will be the same. 
However, if we take into account that in control situations similar to the one 

described above, the function f (x)  is either strictly increasing or strictly decreasing, 
then we can prove that the above exception is the only case when we cannot uniquely 
reconstruct the original function f (x): in all other cases, the function f (x)  can be 
uniquely reconstructed. 

Proposition 1 Let A1(x),  . . . ,  An(x) be continuous membership functions on an 
interval [X, X] such that for every value x—except maybe a finite set of values— 
one of these membership functions is either strictly increasing or strictly decreasing 
in some neighborhood of this point. If two continuous functions f (x)  and g(x) are 
both increasing or both decreasing, and we have f (Ai) = g(Ai) for all i, then for 
all x ∈ [X, X], we have f (x)  = g(x). 

Proof Let us show how to prove this proposition for the case when both functions 
f (x)  and g(x) are increasing; the proof for the case when both functions are 
decreasing is similar. Let us take a point x from the given interval, and let us prove 
that f (x)  = g(x). Let Ai(x) be the membership function, which is either strictly 
increasing or strictly decreasing in the vicinity of the point x. As before, let us 
denote the endpoints of the interval Ai (α) by Ai(α) and Ai(α), so that 

. Ai (α) = [Ai(α),Ai(α)].

Since the function f (x)  is increasing, we have 

. f (Ai (α)) = f ([Ai(α),Ai(α)]) = [f (Ai(α)), f (Ai(α))].

Again, without losing generality, we can assume that x belongs to the increasing 
part of Ai(x). In this case, the values f (Ai(α)) strictly increase with α, so there 
exists a value α for which Ai(α) = x. For this value α, we have  

. f (Ai (α)) = [f (x), f (Ai(α))].

Similarly, we have 

. g(Ai (α)) = [g(x), g(Ai(α))].

Since we have f (Ai) = g(Ai), we thus have
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. f (Ai (α)) = g(Ai (α))

for all α, therefore 

. [f (x), f (Ai(α))] = [g(x), g(Ai(α))]

and hence, f (x)  = g(x). 
The equality f (x)  = g(x) is thus proven for all points x with the exception 

of finite many points. For each remaining point, this equality can be proved by 
continuity—since each of these points is a limit of nearby points, which are not in 
this finite list. The proposition is proven. 

Discussion For analytical functions—i.e., functions that can be expanded in Taylor 
series in the neighborhood of each point—we can have even stronger results. 

Proposition 2 Let A1(x),  . . . ,  An(x) be continuous membership functions on an 
interval [X, X], and on an interval [x, x] ⊆ [X, X], one of these membership 
functions is either strictly increasing or strictly decreasing. If two analytical 
functions f (x)  and g(x) are both increasing or both decreasing, and we have 
f (Ai) = g(Ai) for all i, then for all x ∈ [X, X], we have f (x)  = g(x). 

Proof Similarly to the proof of Proposition 1, we can conclude that the functions 
f (x)  and g(x) coincide on the interval [x, x]. It is known that if two analytical func-
tions coincide on some interval, then they are equal everywhere. The proposition is 
proven. 

Discussion: We Should be Cautious When Trying to Extend This Result to 
Functions of Several Variables For functions of two or more variables, the 
new methodology leads to reasonable results if we restrict ourselves to a finite-
parametric family of functions—e.g., to linear combinations of known functions 

. f (x1, . . . , xn) = C1 · e1(x1, . . . , xn) + . . . + Cm · em(x1, . . . , xn),

where 

. e1(x1, . . . , xn), . . . , e1(x1, . . . , xn)

are given functions and C1, . . . , Cm are the coefficients that need to be determined. 
However, it should be mentioned that, in contrast to the 1-D case, if we do 

not impose any such restriction, then, in general, the proposed minimization does 
not determine a unique function f (x1, . . . , xn). Indeed, the desired criterion only 
described the ranges [y 

i (α), yi(α)] of the function f (x1, x2, . . .)  on all α-cuts for 
all rules i = 1, . . . , k. So, all we have is 2k functions of one variable y 

i (α) and 
yi(α), and this information is not sufficient to uniquely determine a function of two 
or more variables.
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What About Type 2? Up to now, we only considered what is usually called type 
1 fuzzy sets, when for each property A and for each value x, the degree to which 
the value x satisfies this property is described by a real number. In practice, just 
like when experts cannot describe the exact values of the corresponding physical 
quantities, they cannot meaningfully describe their degree of confidence by a single 
number. It is more realistic to ask the experts to express each of their degrees of 
confidence by an interval of possible values or even by a fuzzy subset of the interval 
[0, 1]. The function assigning an interval or a fuzzy set to each value x is known as, 
correspondingly, interval-valued fuzzy sets and type 2 fuzzy sets (see, e.g., [4]). 

For rules in which properties Ai and Bi are described by such sets, it is also 
possible to formulate a similar criterion—since both Zadeh’s extension principle 
and its α-cut reformulation can also be naturally extended to the interval-valued and 
type 2 fuzzy cases (see, e.g., [3]). 
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Chapter 3 
How Measurement-Related Ideas Can 
Help Us Use Expert Knowledge When 
Making Decisions: Three Case Studies 

Edgar Daniel Rodriguez Velasquez, Olga Kosheleva , 
and Vladik Kreinovich 

1 Introduction 

1.1 Using Expert Knowledge Is Important, But How? 

To make an adequate decision, we need to have as much information about the 
corresponding situation as possible. For example, in pavement engineering, we need 
to decide–based on the available annual budget–which road segments need to be 
repaired this year and which can be used one more year without repair. To make this 
decision, we need to have an accurate information about the state of different road 
segments. 

In general, large amount of information comes from measurements. However, in 
many areas, it is crucial to also use expert knowledge, for example:

• With all modern medical tests and measurements, doctor’s intuition is still 
crucial.

• In spite of all the successes of self-driving cars, it is still not possible to fully 
replace a human driver. 
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It is therefore important to supplement measurement results with expert estimates. 
The problem with this is that while measurement techniques provide us with 

statistically justified estimates of the values of the corresponding quantities, expert 
estimates usually do not come with such justifications. Because of this, practitioners 
are often reluctant to use expert estimates in their decision-making. 

It is therefore desirable to make expert estimates statistically justified. In this 
chapter, we show, on three case studies, how this can be done. 

1.2 How Can Experts Help? 

In order to explain how expert knowledge can be made statistically justified, let us 
first recall how expert information can supplement measurement results. To do that, 
let us recall that in measurement practice:

• we come up with a parametric model of the corresponding class of phenomena,
• we test this model—to make sure that it provides an adequate description of the 

phenomena
• we use measurements to estimate the parameters corresponding to a given 

situation. 

How can experts help?

• experts can (and often do) provide such a model
• experts can (and do) provide estimates of the corresponding parameters. 

1.3 Why Is This Useful? 

In terms of a model: the currently used model often comes from a semi-empirical 
study. Such curve-fitting models are not very convincing, this can be overfitting. 
Experts’ knowledge and intuition can help separate explainable models from curve-
fitting results. 

In terms of expert estimations: experts may not be accurate as measurements, but 
they are often faster and cheaper to use. They also supplement measurement results, 
this making the resulting estimates more accurate. 

1.4 But How Exactly Can We Use Expert Knowledge to 
Supplement Measurement Results? 

From the common-sense viewpoint, expert knowledge is useful. But how can we 
include expert estimates into a measurement-based framework, with its precise 
justifications?
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A natural idea is to treat an expert as a measuring instrument and to calibrate 
the expert similarly to how we calibrate measuring instruments. Thus, we can get a 
statistically justified estimate for the accuracy of expert-generated numbers. 

Moreover, we can use this calibration to improve the expert’s estimates. This is 
similar to how, once we know the instrument’s bias, we can subtract it and get more 
accurate results. 

1.5 Three Case Studies 

To illustrate the above general ideas, we provide three case studies.

• In the first case study, we show that application of usual linear calibration to 
experts can be helpful.

• In the second case study, we provide an example of useful nonlinear calibration.
• The third case study explains how expert knowledge can make semi-empirical 

models more convincing. 

Comment Preliminary results of the three test studies first appeared in [3, 44, 46]. 

2 First Case Study: Measurement-Type “Calibration” of 
Expert Estimates Improves Their Accuracy and Their 
Usability: Pavement Engineering 

2.1 Experts Are Often Used for Estimation 

Sometimes, experts are used because no measuring instruments can replace these 
experts. For example, in dermatology, estimates of a skilled expert are often a more 
accurate result than the results of applying algorithms to measurement results. This 
is one of the main reasons why, in spite of numerous experts systems, human doctors 
are still needed and still valued. 

In other cases, in principle, we can use automatic systems, but experts are still 
much cheaper to use. An example of such situation is pavement engineering. In 
principle, we can use an expensive automatic vision-based system to gauge the 
condition of the pavement. However, it is much cheaper–and faster–to use human 
raters. 

2.2 Expert Estimates Are Often Very Imprecise 

Humans rarely have a skill of accurately evaluating the values of different quantities. 
For example, it is well known that humans drastically overestimate small probabil-



54 E. D. Rodriguez Velasquez et al.

ities. Correspondingly, humans underestimate the probabilities which are close to 1 
(see, e.g., [16] and references therein). 

Since most people’s estimates are very inaccurate, it is difficult to find good 
expert estimators. It is well known that there is a high competition to get into medical 
schools. Even in pavement engineering, finding a good rater is difficult. 

2.3 It Is Difficult to Find Good Experts: Example from 
Pavement Engineering 

Roads are extremely important for our civilization, and most of them are very 
heavily used. Because of this use, pavements deteriorate, and they need maintenance 
and repairs. Keeping roads in good shape is expensive. It is therefore important to 
be able to get a good understanding of the state of different road segments.

• On the one hand, if we underestimate the seriousness of a pavement fault and 
do not repair it, the road will deteriorate further, and future repairs will be much 
more expensive.

• On the other hand, if we overestimate the seriousness of a fault and spend 
resources repairing it, we thus waste resources that could have been used more 
productively. 

Many different types of fault occur: cracks, potholes, swellings and depressions, etc. 
All these faults decrease the pavement quality, so the quality of a pavement depends 
on the degree to which all these faults occur. Engineers have accumulated a lot of 
records of road segments with different faults, records that show how these faults 
evolved with time and how long it took for these road segments to become unusable 
(and need repairs). Based on these records, they have come up with a complex 
formula that uses the overall lengths and orientation of the cracks, the area and depth 
of potholes, the area and height of swellings, and other numerical quantities into a 
single characteristic. This characteristic helps gauge how long the road segment will 
survive under the given traffic volume. This characteristic is known as the Pavement 
Condition Index (PCI). The complex algorithm for computing PCI is described in 
the standard [7] (see also [10, 40–42]). 

As we have mentioned, in principle, it is possible to measure all these charac-
teristics and compute the resulting value of the PCI index, but this would be very 
expensive. Because of this, in practice, pavement engineering relies on expert raters 
who can estimate PCI without performing all these measurements. Candidate raters 
are tested to make sure that they indeed provide accurate PCI estimates. To gauge the 
accuracy of a rater candidate, many locations across the USA use criteria developed 
by the Metropolitan Transportation Commission (MTC) of California [29]. 

A crucial part of the rater certification is a field survey exam. In this exam, a 
rater evaluates 24 test sites that have been previously evaluated by expert raters. 
Candidate’s PCI values are then compared with the PCI values of the expert rater.
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The expert’s values are taken as the ground truth (GT). To certify, the rater must 
satisfy the following two criteria:

• at least for 50% of the evaluated sites, the difference should not exceed 8 points
• at least for 88% of the evaluated sites, the difference should not exceed 18 points. 

MTC provided a sample of 18 typical candidates. Out of these candidates, only five 
(28%) satisfied both criteria and, thus, passed the exam and can be used as raters. 

Problems

• What can we do to increase the number of available experts?
• And for those who have been selected as experts, can we improve the accuracy 

of their estimates? 

2.4 Calibration 

We are interested in situations when expert serve, in effect, as measuring instru-
ments. 

Measuring instruments are usually much more accurate then human experts. Still, 
they are sometimes not very accurate. Even when they are originally reasonably 
accurate, in time, their accuracy decreases. 

When the measuring instrument becomes not very accurate, we do not necessar-
ily throw it away. For example, supposed that before we step on the scales, the scales 
already show 10 pounds. We do not necessarily throw away these scales: instead, 
we adjust the starting point. 

When a household device for measuring blood pressure starts producing weird 
results, the manufacturers do not advise the customers to throw it away and to buy a 
new one; they advise the customers to come to a doctor’s office and to calibrate the 
customer’s instrument. 

In general, calibration is a routine procedure for measuring instruments (see, e.g., 
[45]). In this procedure, we measure the same quantities:

• by using our measuring instruments—resulting in the values .x1, . . . , xn

• by using a much more accurate (“standard”) measuring instrument—resulting in 
the values .s1, . . . , sn. 

In many cases–like in the above scales example–the main problem is the bias. We 
compensate for the bias by subtracting the estimated value. The resulting corrected 
values .xi +b are closer to the ground-truth . si . A reasonable way to estimate the bias 

is to use the least squares method [45, 48]: . 
n∑

i=1
((xi + b) − si)

2 → min .

In some cases, there is also a relative systematic error, when each value is 
under- or overestimated by a certain percentage. To compensate for this under- and 
overestimation, we need to multiply by an appropriate constant. For example, if all 
the values are overestimated by 10%, then each ground-truth value . si is replaced by
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the biased value .si + 0.1 · si = 1.1 · si . To compensate for this relative bias, we thus 
need to multiply all the measurement results by .1/1.1. 

In general, to compensate for the relative bias, we need to replace the original 
measurement results . xi by corrected values .a · xi for some a. To compensate for 
both absolute and relative biases, we replace . xi with .a · xi + b. 

The values a and b can be found by the least squares method: 

. 

n∑

i=1

((a · xi + b) − si)
2 → min .

After that, instead of using the original measurement result x produced by the 
measuring instrument, we calibrate it into a more accurate value 

. x′ = a · x + b.

In addition to such a linear calibration, it is sometimes beneficial to use nonlinear 
calibration. Sometimes, a quadratic or cubic calibration is used—which leads to 
more accurate measurement results. In many practical situations, it is also beneficial 

to use fractional-linear re-scaling .x′ = a · x + b

1 + c · x
; see, e.g., [18–20, 26, 27, 31]. 

2.5 Idea: Let Us Calibrate Experts 

A natural idea is that since experts serve as measuring instruments, we can similarly 
calibrate the experts. Namely, instead of using the original expert estimates:

• we first re-scale the original expert estimates in accordance with the appropriate 
calibration function

• we use these re-scaled values instead of the original expert estimates. 

As a result–just like for measuring instruments–we will hopefully get more accurate 
estimates. 

In some situations, when for some experts their original estimates were not very 
accurate, we may end up with re-scaled estimates of acceptable quality, so we can 
use these experts. 

2.6 Such Calibration Is Indeed Helpful 

A good example of the efficiency of such calibration is expert’s estimations of small 
probabilities. According to Kahneman and Tversky [16], these estimates . ei are way 
off. 

However, the values .e′
i = a · sin2(b · ei) are much more accurate (see, e.g., 

[21–24]). Namely, for .pi < 20%:
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• the worst-case difference between the original estimates . ei and the actual 
probabilities was 8.6%—more than 40% of the original probability value

• the worst-case difference between the re-scaled estimates . e′
i and the probabilities 

. pi is 0.7%—which is 3.5% of the original probability value, and is, thus, an order 
of magnitude more accurate. 

2.7 We Applied Our Idea to Pavement Engineering 

We started with the 18 rater candidates from the original MTC sample. In the 
original test, only five of these candidates passed the exam: rater candidates R6, 
R8, R9, R14, and R15. 

Originally, the rater’s ratings . ri were compared with the 24 corresponding 
ground-truth values . si . Instead, we first found the values a and b that minimize 

the sum of the squares .
24∑

i=1
((a · ri + b) − si)

2. Then, we used the re-scaled values 

.r ′
i = a · ri + b to compare with the ground truth. 

2.8 As a Result, More Experts Are Selected 

Based on the re-scaled ratings, four more candidates passed the test: candidates 
R1, R3, R5, and R11. This means that these four folks can now be used for rating 
pavement conditions. 

Of course, instead of using their original ratings . ri , we first need to re-scale these 
ratings to .r ′

i = a · ri + b for this rater’s a and b. As a result, we can accept nine 
raters. Thus, the acceptance rate is now no longer .5/18 ≈ 28%; it is .9/18 = 50%. 

2.9 For Most Originally Selected Experts, Re-scaling Leads to 
More Accurate Estimates 

After re-scaling, one of the originally accepted candidates–R9–no longer fits. For 
this rater, we can use his original ratings. 

For the remaining four originally selected raters, re-scaling improves the accu-
racy of their estimates:

• for R6, the mean square rating error decreases from 11.21 points to 10.01 
points—a decrease of 9.9%;

• for R8, the mean square rating error decreases from 10.00 points to 8.66 points— 
a decrease of 6.4%;
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• for R14, the mean square rating error decreases from 8.62 to 6.95 points—a 
decrease of 19.4%

• for R15, the mean square rating error decreases from 6.47 points to 6.21 points— 
a decrease of 4.0%. 

Comment Similarly good results were consistently achieved for several other 
groups of rater candidates. 

3 Second Case Study: Relationship Between Measurement 
Results and Expert Estimates of Cumulative Quantities, on 
the Example of Pavement Roughness 

3.1 Cumulative Quantities 

Many physical quantities can be measured directly, e.g., we can directly measure 
mass, acceleration, and force. However, we are often interested in cumulative 
quantities that combine values corresponding to different moments of time and/or 
different locations. For example, when we are studying public health or pollution 
or economic characteristics, we are often interested in characteristics describing the 
whole city, the whole region, and the whole country. 

3.2 Formulation of the Problem 

Cumulative characteristics are not easy to measure. To measure each such char-
acteristic, we need to perform a large number of measurements and then use an 
appropriate algorithm to combine these results into a single value. 

Such measurements are complicated. So, we often have to supplement the 
measurement results with expert estimates. To process such data, it is desirable to 
describe both estimates in the same scale:

• to estimate the actual value of the corresponding quantity based on the expert 
estimate

• vice versa, to estimate the expert estimate based on the actual value of the 
quantity. 

3.3 Case Study: Estimating Pavement Roughness 

Estimating road roughness is an important problem. Indeed, road pavements need 
to be maintained and repaired. Both maintenance and repair are expensive. So, to
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make a good decision on which road segments to repair this year, it is desirable to 
estimate the pavement roughness as accurately as possible.

• If we overestimate the road roughness, we will waste money on “repairing” an 
already good road.

• If we underestimate the road roughness, the road segment will be left unrepaired 
and deteriorate further. As a result, the cost of future repair will skyrocket. 

The standard way to measure the pavement roughness is to use the International 
Roughness Index (IRI) (see, e.g., [6, 11, 12, 47]). This measure of roughness is 
recommended by the US standards [6, 11, 12]. 

Crudely speaking, IRI describes the effect of the pavement roughness on a 
standardized model of a vehicle. Measuring IRI is not easy, because the real vehicles 
differ from this standardized model. As a result, we measure roughness by some 
instruments and use these measurements to estimate IRI. For example, we can:

• perform measurements by driving an available vehicle along this road segment,
• extract the local roughness characteristics from the effect of the pavement on this 

vehicle
• estimate the effect of the same pavement on the standardized vehicle. 

In view of this difficulty, in many cases, practitioners rely on expert estimates of 
the pavement roughness. The corresponding measure–estimated on a scale from 0 
to 5–is known as the present serviceability rating (PSR) (see, e.g., [5, 13]). 

3.4 Empirical Relation Between Measurement Results and 
Expert Estimates 

The empirical relation between PSR and IRI is described by the formula: 

. PSR = 5 · exp(−0.0041 · IRI).

This formula was first proposed by B. Al-Omari and M. Darter in [4], and it still 
remains actively used in pavement engineering (see, e.g., [8, 13, 38, 39]). It works 
much better than many previously proposed alternative formulas, such as 

. PSR = a + b · √IRI

proposed in [30]. However, it is not clear why namely this formula works so well.
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3.5 What We Do in This Section 

We propose a possible explanation for the above empirical formula. This explana-
tion will be general: it will apply to all possible cases of cumulative quantities. 

We will come up with a general formula .y = f (x) that describes how a 
subjective estimate y of a cumulative quantity depends on the result x of its 
measurement. 

As a case study, we will use gauging road roughness. 

3.6 Main Idea 

In general, the numerical value of a subjective estimate depends on the scale. In 
road roughness estimates, we usually use a 0–5 scale. In other applications, it may 
be more customary to use 0–10 or 0–1 scale. 

A usual way to transform between the two scales is to multiply all the values 
by a corresponding factor. For example, to transform from 0–10 to 0–1 scale, we 
multiply all the values by .λ = 0.1. In other transitions, we can use transformations 
.y → λ · y with different re-scaling factors . λ. 

There is no major advantage in selecting a specific scale. So, subjective estimates 
are defined modulo such a re-scaling transformation . y → λ · y.

At first glance, the result of measuring a cumulative quantity may look uniquely 
determined. However, a detailed analysis shows that there is some non-uniqueness 
here as well. Indeed, the result of a cumulative measurement comes from combining 
values measured at different moments of time and/or values corresponding to 
different spatial locations. For each individual measurement, the probability of a 
sensor’s malfunction may be low. However, often, we perform a large number of 
measurements. So, some of them bound to be caused by such malfunctions and are, 
thus, outliers. 

It is well known that even a single outlier can drastically change the average. 
So, to avoid such influence, the usual algorithms first filter out possible outliers. 
This filtering is not an exact science; we can set up slightly different thresholds for 
detecting an outlier, slightly different threshold for allowed number of remaining 
outliers, etc. 

We may get a computation result that only takes actual signals into account. With 
a different setting, we may get a different result, affected by a few outliers. 

Let’s denote the average value of an outlier is L and the average number of 
such outliers is n. Then, the second scheme, in effect, adds a constant .n · L to the 
cumulative value computed by the first scheme. 

Yes, there is also some random deviation. However, when the number n is 
reasonably large, then, due to the large numbers theorem, these deviations average 
out, and we get approximately the mean value (see, e.g., [48])—just like when we
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flip a coin many (N ) times, the overall number of times when it falls head will be 
close to . 0.5 · N.

So, the measured value of a cumulative quantity is defined modulo an addition 
of some value: 

. x → x + a for some constant a.

3.7 Motivation for Invariance 

We do not know exactly what is the ideal threshold, so we have no reason to select 
a specific shift as ideal. It is therefore reasonable to require that the desired formula 
.y = f (x) not depend on the choice of such a shift, i.e., that the corresponding 
dependence not change if we simply replace x with . x′ = x + a.

Of course, we cannot just require that .f (x) = f (x+a) for all x and all a. Indeed, 
in this case, the function .f (x) will simply be a constant, but y increases with x. But  
this is clearly not how invariance is usually defined. For example, for many physical 
interactions, there is no fixed unit of time. So, formulas should not change if we 
simply change a unit for measuring time: .t ′ = λ · t. The formula .d = v · t relating 
the distance d, the velocity v, and the time t should not change. We want to make 
this formula true when time is measured in the new units. So, we may need to also 
appropriately change the units of other related quantities. 

In the above example, we need to appropriately change the unit for measuring 
velocity, so that not only time units are changed, e.g., from hours to second, but 
velocities are also changed from km/hour to km/sec. 

So, if we re-scale x, the formula .y = f (x) should remain valid if we 
appropriately re-scale y. As we have mentioned earlier, possible re-scalings of the 
subjective estimate y have the form .y → y′ = λ · y. Thus, for each a, there exists 
.λ(a) (depending on a) for which .y = f (x) implies that .y′ = f (x′), where 

. x′ def= x + a and y′ def= λ · y.

Definition A monotonic function .f (x) is called unit-invariant if for every real 
number a, there exists a positive real number .λ(a) for which, for each x and y:

• if .y = f (x),

• then .y′ = f (x′), where .x′ def= x + a and .y′ def= λ(a) · y. 

Proposition A function .f (x) is unit-invariant if and only if it has the form 

. f (x) = C · exp(−b · x) for some C and b.

Comment For road roughness, this result explains the empirical formula.
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Proof It is easy to check that every function .y = f (x) = C · exp(−b · x) is indeed 
unit-invariant. 

Indeed, for each a, we have  

. f (x′) = f (x + a) = C · exp(−b · (x + a)) =

. C · exp(−b · x − b · a) = λ(a) · C · exp(−b · x).

Here we denoted .λ(a)
def= exp(−b · a). Thus here, indeed, .y = f (x) implies that 

. y′ = f (x′).
Vice versa, let us assume that the function .f (x) is unit-invariant. Then, for each 

a, the condition .y = f (x) implies that .y′ = f (x′), i.e., that . λ(a) · y = f (x + a).

Substituting .y = f (x) into this equality, we conclude that . f (x + a) = λ(a) · f (x).

It is known (see, e.g., [2]) that every monotonic solution of this functional equation 
has the form 

. f (x) = C · exp(−b · x) for some C and b.

The proposition is proven. 

3.8 Conclusions of This Section 

In pavement engineering, to make a good decision, it is important to accurately 
gauge the quality of road segments. Such estimates help us decide how to best 
distribute the available resources between different road segments. So, proper and 
timely maintenance is performed on road segments whose quality has deteriorated, 
thus, to avoid future costly repairs of untreated road segments. 

The standard way to gauge the quality of a road segment is International 
Roughness Index (IRI). It requires a large amount of costly measurements. As a 
result, it is not practically possible to regularly measure IRI of all road segments. 
So, IRI measurements are usually restricted to major roads. 

For local roads, we need to have an indirect way to estimate their quality. To 
estimate the quality of a road segment, we combine user estimates of different 
segment properties into a single index known as Present Serviceability Rating 
(PSR). 

There is an empirical formula relating IRI and PSR. However, one of the 
limitations of this formula is that it is purely heuristic. This formula lacks a 
theoretical explanation, and thus, the practitioners may be not fully trusting its 
results. In this section, we provide such a theoretical explanation. We hope that 
the resulting increased trust in this formula will help enhance its use. Thus, it will 
help make road management decisions.
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4 Third Case Study: Normalization-Invariant Fuzzy Logic 
Operations Explain Empirical Success of Student 
Distributions in Describing Measurement Uncertainty 

4.1 Traditional Engineering Approach to Measurement 
Uncertainty 

Traditionally, in engineering applications, it is assumed that each measurement error 
is normally distributed (see, e.g., [45]). 

This assumption makes perfect sense from the practical viewpoint: it has been 
shown that for the majority of measuring instruments, the measurement error is 
indeed normally distributed (see, e.g., [36, 37]). It also makes sense from the 
theoretical viewpoint, since in many cases, the measurement error comes from a 
joint effect of many independent small components, and according to the Central 
Limit Theorem (see, e.g., [48]), for the large number of components, the resulting 
distribution is indeed close to Gaussian. 

Another explanation: we only have partial information about the distribution. 
Often, we only know the first and the second moments. The first moment–mean– 
represents a bias. If we know the bias, we can always subtract it from the 
measurement result. Thus, re-calibrated measuring instrument will have 0 mean. 
So, we can always safely assume that the mean is 0. Then, the second moment is 
simply the variance .V = σ 2. 

There are many distributions with 0 mean and given . σ . For example, we can have 
a distribution in which we have . σ and .−σ with probability 1/2 each. However, such 
a distribution creates a false certainty—that no other values of x are possible. Out 
of all such distributions, it makes sense to select the one which maximally preserves 
the uncertainty. 

Uncertainty can be gauged by average number of binary questions needed to 
determine x with accuracy . ε. It is described by entropy . S = − ∫

ρ(x)·log2(ρ(x)) dx

(see, e.g., [15, 33]). Out of all distributions .ρ(x) with mean 0 and given . σ , the  
entropy is the largest for normal .ρ(x). 

4.2 Need for Heavy-Tailed Distributions 

For the normal distribution, 

. ρ(x) = 1√
2π · σ

· exp

(

− x2

2σ 2

)

.

The “tails”–values corresponding to large . |x|–are very light, practically negligible.
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Often, .ρ(x) decreases much slower, as .ρ(x) ∼ c · x−α; see, e.g., [25, 43]. We 
cannot have .ρ(x) = c ·x−α , since .

∫ ∞
0 x−α dx = +∞, and we want .

∫
ρ(x) dx = 1. 

Often, the measurement error is well represented by a Student distribution 
.ρS(x) = (a + b · x2)−ν . This is true in geodesy and in other applications as 
well. This distribution is even recommended by the International Organization for 
Standardization (ISO) [14]. 

4.3 What We Do 

How to explain the empirical success of Student’s distribution .ρS(x)? In this section, 
we show that a natural fuzzy-logic-based ([9, 17, 28, 34, 35, 49]) formalization of 
commonsense requirements leads to .ρS(x). 

Our idea is to use the fact that uncertainty means that the first value is possible 
and the second value is possible, etc. Let’s select .ρ(x) with the largest degree to 
which all the values are possible. 

It is reasonable to use fuzzy logic to describe degrees of possibility. An expert 
marks his/her degree by selecting a number from the interval .[0, 1]. 

4.4 Need for Normalization 

For “small,” we are absolutely sure that 0 is small: .μsmall(0) = 1 and 
.max

x
μsmall(x) = 1. For “medium,” there is no x with .μmed(x) = 1, so  

.max
x

μmed(x) < 1. 

A usual way to deal with such situations is to normalize .μ(x) into . μ′(x) =
μ(x)

max
y

μ(y)
. Normalization is also performed when we get additional information. 

Example: suppose that we knew that x is small and then we learn an additional 
information—that .x ≥ 5. Then, .μnew(x) = μsmall(x) for .x ≥ 5 and . μnew(x) = 0
for .x < 5, and .max

x
μnew(x) < 1. So, to get a normalized function, we need to 

normalize these values .μnew(x). 
Normalization is also needed when experts use probabilities to come up with 

the degrees. Indeed, the larger the .ρ(x), the more probable it is to observe a value 
close to x. Thus, it is reasonable to take the degrees .μ(x) proportional to .ρ(x): 

.μ(x) = c · ρ(x). Normalization leads to .μ(x) = ρ(x)

max
y

ρ(y)
. Vice versa, if we have 

the result .μ(x) of normalizing a pdf, we can reconstruct .ρ(x) as .ρ(x) = μ(x)
∫

μ(y) dy
.
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4.5 How to Combine Degrees 

For each x, we get a degree to which x is possible. We want to compute the degree to 
which . x1 is possible and . x2 is possible, etc. So, we need to apply an “and”-operation 
(t-norm) to the corresponding degrees. 

A natural idea is to use normalization-invariant t-norms. We can compute the 
normalized degree of confidence in a statement .A & B in two different ways:

• we can normalize .f&(a, b) to .λ · f&(a, b);
• we can first normalize a and b and then apply an “and”-operation: .f&(λ ·a, λ ·b). 

It’s reasonable to require that we get the same estimate: . f&(λ·a, λ·b) = λ·f&(a, b).

It is known that strict Archimedean t-norms .f&(a, b) = f −1(f (a) + f (b)) are 
universal approximators (see, e.g., [32]). So, we can safely assume that . f& is strict 
Archimedean: 

. c = f&(a, b) ⇔ f (c) = f (a) + f (b).

Thus, invariance means that .f (c) = f (a)+f (b) implies .f (λ·c) = f (λ·a)+f (λ·b). 
So, for every . λ, the transformation .T : f (a) → f (λ · a) is additive: . T (A + B) =
T (A) + T (B). 

It is known (see, e.g., [1, 2]) that every monotonic additive function is linear. 
Thus, .f (λ · a) = c(λ) · f (a) for all a and . λ. For monotonic .f (a), this implies 
.f (a) = C · a−α (see, e.g., [32]). So, .f (c) = f (a) + f (b) implies . C · c−α =
C · a−α + C · b−α , and .c = f&(a, b) = (a−α + b−α)−1/α . 

4.6 Deriving Student Distribution 

We want to maximize the degree 

. f&(μ(x1), μ(x2), . . .) = ((μ(x1))
−α + (μ(x2))

−α + . . .)−1/α.

The function .a 
→ a−α is decreasing. So, maximizing .f&(μ(x1), . . .) is equivalent 
to minimizing the sum .(μ(x1))

−α + (μ(x2))
−α + . . . In the limit, this sum tends 

to .I
def= ∫

(μ(x))−α dx. So, we minimize I under constrains .
∫

x · ρ(x) dx = 0 and 

.
∫

x2 · ρ(x) dx = σ 2, where .ρ(x) = μ(x)
∫

μ(y) dy
. Thus, we minimize . 

∫
(μ(x))−α dx

under constraints 

. 

∫

x · μ(x) dx = 0 and
∫

x2 · μ(x) dx − σ 2 ·
∫

μ(x) dx = 0.

Lagrange multiplier method leads to minimizing
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. 

∫

(μ(x))−α dx + λ1 ·
∫

x · μ(x) dx+

. λ2 ·
(∫

x2 · μ(x) dx − σ 2 ·
∫

μ(x) dx

)

→ min .

Equating the derivative w.r.t. .μ(x) to 0, we get: 

. − α · (μ(x))−α−1 + λ1 · x + λ2 · x2 − λ2 · σ 2 = 0.

Thus, .μ(x) = (a0 + a1 · x + a2 · x2)−ν , for .ν = 1/(α + 1). 
For .ρ(x) = c · μ(x), we get .ρ(x) = c · (a0 + a1 · x + a2 · x2)−ν . So, . ρ(x) =

c · (a2 · (x − x0)
2 + c1)

−ν . This .ρ(x) is symmetric w.r.t. . x0, so, the mean is . x0. We  
know that the mean is 0, so .x0 = 0, and .ρ(x) = const · (1 + a2 · x2)−ν : exactly 
Student’s .ρS(x)! 

Example Hamacher t-norm (see, e.g., [9, 17, 28, 34, 35]) has the following form: 

. f&(a, b) = a · b

a + b − a · b
.

For small a and b, it is asymptotically equivalent to 

. 
a · b

a + b
= 1

1

a
+ 1

b

= (a−1 + b−1)−1.

In this case, we have . α = 1, so .ν = 1/2, and the corresponding probability 
distribution has–asymptotically–the form .ρ(x) = const · (1 + a2 · x2)−1/2. 

5 Conclusions and Future Work 

5.1 Why Do We Need to Use Expert Knowledge 

One of the main objectives of science and engineering is to help us make important 
decisions. To make a reasonable decision, we need to have a good knowledge of the 
corresponding situation, i.e., a good knowledge of the values of the quantities that 
describe the situation. The more information we have, the better decision we can 
make. 

In many practical situations, this information comes from measurements. For 
this information, measurement techniques provide justified statistical estimates 
of the quantities of interest. In addition to measurement results, we often have
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expert estimates. These estimates provide an additional information about the 
corresponding quantities. 

5.2 Challenges Related to the Use of Expert Knowledge 

One of the main challenges related to the use of expert knowledge is that, in contrast 
to measurement results, expert estimates are usually not statistically justified. 
Because of this, practitioners are often reluctant to use them. 

5.3 Measurement-Related Ideas Can Help 

In view of the above challenge, it is desirable to utilize measurement-related ideas 
–ideas that lead to statistically justified conclusions– to process expert knowledge. 
In this chapter, we provided three case studies explaining how this can be done. 

One way to solve this problem is to calibrate an expert—the same way we 
calibrate measuring instruments. In the first two case studies, we showed that such 
a calibration indeed leads to useful results. 

The third case study provides an example of another use of expert knowledge 
in knowledge processing: namely, expert knowledge can be used to make semi-
empirical measurement models more explainable—and, thus, more reliable. 

5.4 Future Work 

In this chapter, we barely scratched the surface. There are many effective 
measurement-related techniques and ideas, and we hope that after proper 
modifications, these ideas can be used to process expert knowledge as well. 

6 Auxiliary Results for Sect. 2 

6.1 First Auxiliary Result: Why 50%? 

In the MTC procedure, as the first threshold, we consider the accuracy with which 
we should have at least 50% of the measurements. In other words, we compare the 
median of the empirical distribution with some threshold. But why 50%? Why not 
select a value corresponding to, say, 40% or 60%?
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The only explanation that MTC provides is that selecting 50% leads to empiri-
cally the best results. But why? Here is our explanation. 

We want to find a parameter describing the distribution of expert’s approximation 
errors. This may be the standard deviation, and this may be some other appropriate 
parameter. We want the relative accuracy with which we determine these parameters 
to be as good as possible. 

We estimate this parameter based on a frequency f that corresponds to some 
probability p. It is known (see, e.g., [48]) that after n observations, .f − p is 
approximately normally distributed, with 0 mean and 

. σ [p] =
√

p · (1 − p)

n
.

We can measure the relative accuracy both:

• with respect to the probability p of the original event
• with respect to the probability .1 − p of the opposite event. 

We want both relative accuracies to be as small as possible. The relative accuracy 
with which we can find the desired probability p is equal to 

. 
σ [p]
p

=
√

1 − p

n · p
=

√
1

n
·
(

1

p
− 1

)

.

Similarly, the relative accuracy with which we can find the probability .1−p is equal 
to 

. 
σ [p]
1 − p

=
√

p

n · (1 − p)
=

√
1

n
·
(

1

1 − p
− 1

)

.

We need to make sure that the largest of these two values is as small as possible. 
One can check that the largest of these two values is 

. 

√
1

n
·
(

max

(
1

p
,

1

1 − p

)

− 1

)

=

. 

√
1

n
·
(

1

min(p, 1 − p)
− 1

)

.

This expression is a decreasing function of .min(p, 1 − p). Thus, for the relative 
standard deviation to be as small as possible, .min(p, 1 − p) must be as large as 
possible.
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This expression grows from 0 to 0.5 when p increases from 0 to 0.5 and then 
decreases to 0. Thus, its maximum is attained when .p = 0.5—and this is exactly 
what MTC recommends. So, we have a theoretical explanation for this empirically 
successful recommendation. 

6.2 Why 88% 

There are many different independent reasons why an expert estimate may differ 
from the actual value, so the expert uncertainty can be represented as a sum of a 
large number of small independent random variables. It is known–see, e.g., [48]– 
that, under reasonable condition, the distribution of such a sum is close to normal. 
This result is known as the central limit theorem. Thus, we can safely assume that 
the distribution of expert uncertainty is normal. 

For a normal distribution with 0 mean, if the probability for the value to be within 
.±8 is 50%, then the probability for the value to be within .±18 is indeed close to 
88%. This explains the second part of the MTC test. 

Comment In both cases, our explanations seem to be simple and natural. We would 
not be surprised if it turns out that, when selecting the corresponding numbers, the 
authors of the MTC test were inspired not only by the empirical evidence but also 
by similar simple theoretical ideas. 
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Chapter 4 
On Fusion of Soft and Hard Computing: 
Traditional (“Hard Computing”) 
Optimal Rescaling Techniques Simplify 
Fuzzy Control 

Hugh F. VanLandingham and Vladik Kreinovich 

1 Introduction 

1.1 Fuzzy Control: One of the Most Successful Soft Computing 
Techniques 

In most industrial applications, we want to control the corresponding industrial 
processes in such a way as to maximize the output within certain (physical 
and economical) restrictions. When the corresponding mathematical description 
is linear, we can use well-known optimal control techniques to find the optimal 
control strategy. In reality, however, most industrial processes are nonlinear. For 
nonlinear control problems, the situation is much more complicated: there are good 
recipes which often work, but, alas, there is still no general methods of generating an 
optimal (or even a reasonably good) control (see, e.g., [10]). (For a formal proof that 
the corresponding optimization problems are computationally difficult (NP-hard), 
see, e.g., [6] and references therein.) 

If for a certain industrial process no known technique leads to a good quality 
control, what can we do? Usually, the very fact that this process is actually used 
in the industry means that this process is reasonably well controlled by human 
controllers. Therefore, if we want to automate this control, we must somehow 
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transform the knowledge of these expert controllers (operators) into an automatic 
control strategy. 

The necessity for such a transformation was one of the main motivations behind 
one of the most successful soft computing techniques—fuzzy control. Specifically, 
our goal is to describe a function which takes the sensor inputs .x1, . . . , xn (numbers) 
and generates the (numerical) value of the control effort u. Unfortunately, expert 
operators cannot formulate their expertise in these terms. Instead, they describe 
their control strategy by using uncertain (“fuzzy”) statements of the type “if the 
obstacle is straight ahead, the distance to it is small, and the velocity of the car is 
medium, press the brakes hard.” Fuzzy control is a methodology which translates 
such statements into precise formulas for control. Fuzzy control was started by L. 
Zadeh and E. H. Mamdani [3, 8, 22, 23] in the framework of Zadeh’s fuzzy set theory 
[21]. For the state of fuzzy systems and fuzzy control, the reader is referred, e.g., to 
[2, 5, 7, 9, 13–17]. 

1.2 Tuning Is Necessary 

Fuzzy control methodology usually consists of two steps: 

• First, we apply a routine fuzzy control methodology to get a rough approximation 
to the expert’s control strategy. 

• Then, we test the resulting control on real or simulated system and tune the 
resulting fuzzy control system based on the results of this testing. 

The first step usually starts with assigning membership functions to all the terms 
that the expert uses in his rules (in our sample phrase, these words are “small,” 
“medium,” and “hard”). Most software packages for fuzzy control are based on 
(usually triangular) membership functions whose domains have equally spaced 
endpoints. For example, we can fix a neutral value N (usually, .N = 0) and a number 
. � and take: 

• “negligible” with the domain .[N − �,N + �]; 
• “small positive” with the domain .[N,N + 2�]; 
• “medium positive” with the domain .[N + �,N + 3�], etc.  
Correspondingly: 

• “small negative” has the domain .[N − 2�,N ]; 
• “medium negative” has the domain .[N − 3�,N − �], etc.  
Once an interval .[a −�, a +�] is given, then we can take a triangular membership 
function .μ(x) which:
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• is equal to 0 outside this interval; 
• is equal to 1 for . x = a

• is linear on each of the intervals .[a − �, a] and .[a, a + �]. 
Usually, when we test the resulting control on a real or simulated system, this control 
is not perfect, so a further tuning is necessary based on the results of this testing. 

1.3 Usually, Soft Computing Techniques Are Used For Tuning, 
But This May Not Be the Best Idea 

Often, soft computing techniques such as neural networks or genetic algorithms 
are used for tuning fuzzy control. This is done mainly by tuning the corresponding 
membership functions. The results are usually reasonable, but this tuning often takes 
lots of time; for example, several thousand iterations are typical for neural networks. 

How come soft computing techniques are so good for getting a rough approx-
imation, but these same techniques are not so good for improving (tuning) this 
approximation? The explanation is very simple: 

• On the first step (getting a rough approximation), the fact that we have an expert’s 
intuitive understanding enables us to use soft computing techniques to perform 
this step. 

• In contrast, on the second (tuning) step, we no longer have any expert under-
standing of which tuning is better; as a result, soft computing techniques are not 
that helpful. 

1.4 Natural Idea: Let’s Use Hard Computing for Tuning 

Since soft computing techniques do not work that well for tuning, we propose to 
supplement themwith more traditional (“hard computing”) optimization techniques. 
In this chapter, we show that we can formulate an important particular case of 
the tuning problem as a traditional optimization problem and solve it by using 
traditional (“hard computing”) techniques. We also show, on a practical industrial 
control example, that the resulting fusion of 

• soft computing (for a rough approximation) 
• hard computing (for tuning) 

does lead to a high-quality control. 

Comment Preliminary results of our research first appeared in [20].
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2 Rescaling: An Important Particular Case of Tuning 

2.1 Rescaling: Physical Motivations 

In some cases, there are physical reasons why the use of membership functions with 
equally spaced domains does not work well. For example, if the control variable u 
is always positive (e.g., if we control the flow of some substance into a reactor), 
then negative values (that will be eventually generated by an equal spacing method) 
simply make no sense. 

A natural idea is to choose another scale .̃u = f (u) to represent the control 
variable u, so that equal spacing will work fine for . ̃u. This idea is in good 
accordance with our common-sense description of physical processes; let us give 
a few examples. 

From the physical viewpoint, it is quite possible to describe the strength of an 
earthquake by its energy, but when we talk about its consequences, it is much more 
convenient to use a logarithmic scale (called Richter scale). 

Nonlinear scales are used to describe amplifiers and noise (decibels, in electrical 
engineering). 

A nonlinear scale is used to describe hardness of minerals in geosciences, etc. 
(For a general survey of different scales and rescalings, see [18].) 
In our case, we want to design such a scale that for .f (u) the equally spaced 

endpoints .N − k · � and .N + k · � would make sense for all integers k. Therefore, 
we are looking for a function .f (u), whose domain is the set of all positive values 
and whose range is the set of all possible real numbers. In mathematical notations, 
f must map .(0,∞) onto .(−∞,∞). There are lots of such functions, and evidently 
not all of them will improve the control. So we arrive at the following problem: 

2.2 The Main Problem: Informally 

Which rescaling .f : (0,∞) → (−∞,∞) should we choose? 

2.3 What We Are Planning to Do 

In this chapter, we do the following: 

• first, we formulate the problem of choosing the best rescaling function .f (u) as a 
mathematical optimization problem; 

• then, we solve this optimization problem under some reasonable optimality 
criteria; as a result, we get an optimal function .f (u); 

• finally, we show that the use of this optimal rescaling function really improves 
fuzzy control.
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3 Toward the Use of Hard Computing: Motivations 
of the Proposed Formal Description of the Problem 

3.1 Why Is This Problem Difficult? 

We want to find a scaling function .f (u) that is the best in some reasonable sense. In 
other words, we want to find a scaling function for which some characteristic . I (f )

attains the value that corresponds to the best performance of the resulting fuzzy 
control. 

As examples of such characteristics, we can take: 

• an average running time of the algorithm, 
• smoothness of the resulting control; 
• stability of the resulting control, etc. 

A seemingly natural approach is to describe this characteristic in precise terms 
and solve the corresponding optimization problem. Alas, life is not so simple. The 
problem is that even for the simplest linear plants (controlled systems), we do not 
know how to compute any of these possible characteristics for a give rescaling .f (u). 
How can we find .f (u) for which .I (f ) is optimal if we cannot compute .I (f ) even 
for a single function .f (u)? There does not seem to be a likely answer. 

However, we will show that this problem is solvable (and give the solution). 

Comment To solve this problem, we use a general idea described in the book [12]; 
this book also contains applications of similar optimization methods to other soft 
computing techniques such as fuzzy logic, neural networks, genetic algorithms, etc. 

3.2 Some Rescalings Preserve Equal Spacing 

Let us first show that not all physically meaningful rescalings help. 
Indeed, in order to get numerical values of the variable u (e.g., of the spatial 

coordinate x), we must fix a starting point (origin) and a measuring unit (e.g., meter). 
In principle, we could as well choose feet to describe length. 

If we change the unit, then some things change, e.g., the numerical values of all 
the coordinates change: x meters are equal to .λ · x feet, where . λ is the number of 
feet in 1 meter. 

On the other hand, some things do not change, e.g., when we change the 
measuring unit, equally spaced intervals remain equally spaced. 

Similarly, we could choose a different initial point for measuring the x coordi-
nate. If we take, as a new initial point, a point which previously had a coordinate . x0
(so that now its coordinate is 0), then, similarly, on one hand, the numerical values 
of the points’ coordinates change from x to .x − x0; on the other hand, intervals that
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had equal length in the old scale (x) will still have equal length if we measure then 
in the new scale (.x − x0). 

We can also change both the measuring unit and the starting point. This way we 
arrive at a transformation .x → λ · x + x0. 

Summarizing: if x is a reasonable scale–in the sense that equally spaced 
membership functions lead to a reasonably good control–then the same is true 
for an arbitrary scale of the type .λ · x + x0, where .λ > 0, and . x0 is a real 
number. The reason is that if we have a sequence of equally spaced intervals 
.[N + k · �,N + (k + 1) · �], then these intervals will remain equally spaces after 
these linear rescalings .x → λ ·x +x0: namely, these intervals will turn into intervals 
.[˜N + k · ˜�, ˜N + (k + 1) · ˜�], where .˜N = λ · N + x0 and .˜� = λ�. 

3.3 We Must Choose a Family of Scaling Functions, Not a 
Single Function 

Let us now consider a scale u for which equal spacing does not work. Assume that 
.u → f (u) is a transformation after which equal spacing becomes applicable. This 
means that if we use .f (u) as a new scale, then equal spacings work fine. But as we 
have just shown, for any .λ > 0 and . x0 equal spacing will also work fine for the scale 
.λ · f (u) + x0. 

Therefore, if .f (u) is a function that transforms the initial scale into a scale, for 
which equal spacing works fine, then for every .λ > 0 and . x0, the function . ˜f (u) =
λ · f (u) + x0 has the same desired property. 

This means that there is no way to pick one function .f (u), because with any 
function .f (u), the whole family of functions .λ · f (u) + x0 has the same property. 
Therefore, desired functions form a 2-parametric family .{λ·f (u)+x0}λ>0,x0 . Hence, 
instead of choosing a single function, we must formulate a problem of choosing a 
family. 

3.4 Which Family Is the Best? 

Among all such families, we want to choose the best one. In formalizing what “the 
best” means, we follow the general idea described in [12]. The criteria to choose 
may be computational simplicity, stability, or smoothness of the resulting control, 
etc. 

In mathematical optimization problems, numerical criteria are most frequently 
used, where to every family, we assign some value expressing its performance and 
choose a family for which this value is maximal.
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However, it is not necessary to restrict ourselves to such numeric criteria only. 
For example, if we have several different families that lead to the same average 
stability characteristics T , we can choose between them the one that leads to the 
maximal smoothness characteristics P . In this case, the actual criterion that we use 
to compare two families is not numerical, but more complicated. For example, we 
may say that a family . �1 is better than the family . �2 if and only if either . T (�1) <

T (�2) or .T (�1) = T (�2) and .P(�1) < P (�2). 
A criterion can be even more complicated. What a criterion must do is to allow 

us for every pair of families to tell whether the first family is better with respect to 
this criterion (we’ll denote it by .�2 < �1) or the second is better (.�1 < �2) or  
these families have the same quality in the sense of this criterion (we’ll denote it by 
.�1 ∼ �2). 

3.5 The Criterion for Choosing the Best Family Must Be 
Consistent 

Of course, it is necessary to demand that these choices be consistent: e.g., if . �1 <

�2 and .�2 < �3, then .�1 < �3. 

3.6 The Criterion Must Be Final 

Another natural demand is that this criterion must be final in the sense that it must 
choose a unique optimal family (i.e., a family that is better with respect to this 
criterion than any other family). 

The reason for this demand is very simple: 
If a criterion does not choose any family at all, then it is of no use. 
If several different families are “the best” according to this criterion, then we 

still have a problem choosing the absolute “best” family. Therefore, we need some 
additional criterion for that choice. 

For example, if several families turn out to have the same stability characteristics, 
we can choose, among them, a family with maximal smoothness. So what we 
actually do in this case is abandon that criterion for which there were several “best” 
families and consider a new “composite” criterion instead: . �1 is better than . �2
according to this new criterion if either it was better according to the old criterion, 
or, according to the old criterion, they had the same quality, and . �1 is better than 
. �2 according to the additional criterion. 

In other words, if a criterion does not allow us to choose a unique best family, 
it means that this criterion is not ultimate; we have to modify it until we arrive at a 
final criterion that will have that property.
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3.7 The Criterion Must Be Reasonably Invariant 

We have already discussed the effect of changing units in a new scale .f (u). But  
it is also possible to change units in the original scale, in which the control u is 
described. If we use a unit that is c times smaller, then a control whose numeric 
value in the original scale was u will now have the numeric value cu. For example, 
if we initially measured the flux of a substance (e.g., rocket fuel) into the reactor by 
kg/sec, we can now switch to lb/sec. 

Comment There is no physical sense in changing the starting point for u, because 
we consider the control variable that takes only positive values, and so 0 is a fixed 
value, corresponding to the minimal possible control. 

We are looking for the universal rescaling method, which will be applicable to 
any reasonable situation (we do not want it to be adjustable to the situation, because 
the whole purpose of this rescaling is to avoid time-consuming adjustments). 
Suppose now that we first used kg/sec, compared two different scaling functions 
.f (u) and . ˜f (u), and it turned out that .f (u) is better (or, to be more precise, that 
the family .� = {λ · f (u) + x0} is better than the family .˜� = {λ · ˜f (u) + x0}). 
It sounds reasonable to expect that the relative quality of the two scaling functions 
should not depend on what units we used for u. So we expect that when we apply 
the same methods, but with the values of control expressed in lb/sec, then the results 
of applying .f (u) will still be better than the results of applying . ˜f (u). 

The result of applying the function .f (u) to the control in lb/sec can be expressed 
in old units (kg/sec) as .f (c · u), where c is a ratio of these two units. So the result 
of applying the rescaling function .f (u) to the data in new units (lb/sec) coincides 
with the result of applying a new scaling function .fc(u) = f (c · u) to the control in 
old units (kg/sec). So, we conclude that if .f (u) is better than . ˜f (u), then .fc(u) must 
be better than . ˜fc(u), where .fc(u) = f (c · u), and . ˜fc(u) = ˜f (c · u). This must be 
true for every c because we could use not only kg/sec or lb/sec but arbitrary units as 
well. 

Now we are ready for the formal definitions. 

4 Definitions and the Main Result 

Definition 1 By a rescaling function (or a rescaling, for short), we mean a strictly 
monotonic function that maps the set of all positive real numbers (0,∞) onto the 
set of all real numbers (−∞,+∞). 

Definition 2 We say that two rescalings f (u)  and ˜f (u)  are equivalent if ˜f (u)  = 
λ · f (u) + x0 for some positive constant λ and for some real number x0.
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Comment As we have already mentioned, if we apply two equivalent rescalings, 
we will get two scales that are either both leading to a good control or are both 
inadequate. 

Definition 3 By a family, we mean the set of functions {λ ·f (u)+ x0}, where f (u)  
is a fixed rescaling, λ runs over all positive real numbers, and x0 runs over all real 
numbers. The set of all families will be denoted by S. 

Definition 4 A pair of relations (<,∼) is called consistent if it satisfies the 
following conditions: 

• if F <  G  and G < H , then F <  H ; 
• F ∼ F ; 
• if F ∼ G, then G ∼ F ; 
• if F ∼ G and G ∼ H , then F ∼ H ; 
• if F <  G  and G ∼ H , then F <  H ; 
• if F ∼ G and G < H , then F <  H ; 
• if F <  G, then it is not true that G < F  or F ∼ G. 

Definition 5 Assume a set A is given. Its elements will be called alternatives. By  
an optimality criterion, we mean a consistent pair (<,∼) of relations on the set A 
of all alternatives. If G < F , we say that F is better than G; if F ∼ G, we say that 
the alternatives F and G are equivalent with respect to this criterion. 

Definition 6 We say that an alternative F is optimal (or the best) with respect to a 
criterion (<,∼) if for every other alternative G, either G < F  or F ∼ G. 

Definition 7 We say that a criterion is final if there exists an optimal alternative, 
and this optimal alternative is unique. 

Comment In the present chapter, we consider optimality criteria on the set S of all 
families. 

Definition 8 By a result of a unit change in a function f (u)  to a unit that is c >  0 
times smaller, we mean a function fc(u) = f (c  · u). 

Definition 9 By the result of a unit change in a family � by c >  0, we mean the 
set of all the functions that are obtained by this unit change from f ∈ �. This result 
will be denoted by c · �. 

Definition 10 We say that an optimality criterion on F is unit-invariant if for every 
two families � and ˜� and for every number c >  0 the following two conditions are 
true: 

• if ˜� < �, then c · ˜� < c  · �; 
• if � ∼ ˜�, then c · � ∼ c · ˜�. 

Theorem 1 If a family � is optimal in the sense of some optimality criterion that is 
final and unit-invariant, then every rescaling f (u)  from � is equivalent to f (u)  = 
ln(u).
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Comments 

• This result means that the optimal rescalings are of the type γ · ln(u) + α for 
some real numbers γ >  0 and α. 

• For reader’s convenience, the proof is given in the last section. 
• This is not just a theoretical result: it came from the experience of one of 

the authors (HFV) to design a control for chemical reaction within a constant 
volume, non-adiabatic, continuously stirred tank reactor (CSTR). The model that 
describes the CSTR is described by the following system of differential equations 
(see, e.g., [11]): 

. ẋ1 = −x1 + D · a · (1 − x1) · exp
(

x2

1 + x2
γ

)

;

. ẋ2 = −x2 + B · D · a · (1 − x1) · exp
(

x2

1 + x2
γ

)

− u · (x2 − xc),

where: 

– x1 is the conversion rate; 
– x2 is the (dimensionless) temperature 
– u is the (dimensionless) heat transfer coefficient. 

The objective of the control is to stabilize the system (i.e., bring it closer to the 
equilibrium point). 
Without the rescaling, we got a fuzzy control whose quality was even worse 
than that of a PID controller. However, when we applied a logarithmic rescaling 
x2 → X = ln(x2) and used membership functions with equal spacing for X, 
the resulting control became comparable to the results of applying the intelligent 
“gain scheduled” (nonlinear) PID controller [4, 11]. In other words, we got the 
control that was as good as the one generated by the state-of-art traditional 
control theory with respect to stability and controllability of the plant. Moreover, 
it turned out that the resulting control is computationally simpler than the 
traditional fuzzy control. The details of this case study were published in [19]. 

5 Proof of the Main Result 

The idea of this proof is as follows: first we prove that the optimal family is unit-
invariant (in Part 1), and from that, in Part 2, we conclude that an arbitrary function 
f from . � satisfies a certain functional equation; the solutions to this equation are 
known, and this completes the proof.



4 Rescaling Techniques Simplify Fuzzy Control 83

1. Let us first prove that the optimal family .�opt exists and is unit-invariant in the 
sense that .�opt = c · �opt for all .c > 0. 

Indeed, we assumed that the optimality criterion is final; therefore, there exists 
a unique optimal family .�opt . Let’s now prove that this optimal family is unit-
invariant (this proof is practically the same as in [12]). The fact that .�opt is optimal 
means that for every other . �, either .� < �opt or .�opt ∼ �. If .�opt ∼ � for some 
.� �= �opt , then from the definition of the optimality criterion, we can easily deduce 
that . � is also optimal, which contradicts the fact that there is only one optimal 
family. So for every . �, either .� < �opt or .�opt = �. 

Take an arbitrary c, and apply this conclusion to .� = c · �opt . If  . c · �opt =
� < �opt , then from the invariance of the optimality criterion (condition ii)), we 
conclude that .�opt < c−1 · �opt , and that conclusion contradicts the choice of 
.�opt as the optimal family. So .� = c · �opt < �opt is impossible, and therefore 
.�opt = �, i.e., .�opt = c · �opt , and the optimal family is really unit-invariant. 

2. Let us now deduce the actual form of the functions .f (u) from the optimal family 
.�opt . 

If .f (u) is such a function, then the result .f (c · u) of changing the unit of u to a c 
times smaller unit belongs to .c · �opt ; so, due to Part 1 of this proof, the function 
.f (c · u) also belongs to the family .�opt . 

By the definition of a family, all its functions can be obtained from each other 
by a linear transformation .λ · f (u) + x0; therefore, .f (c · u) = λ · f (u) + x0 for 
some . λ and . x0. The corresponding values . λ and . x0 depend on c; so, we arrive at the 
following functional equation for .f (u): 

. f (c · u) = λ(c) · f (u) + x0(c).

In the survey on functional equations [1], the solutions of this equation are not 
explicitly given, but a for a similar functional equation 

. f (x + y) = f (x) · h(y) + k(y),

all solutions are enumerated in Corollary 1 to Theorem 1 from Section 3.1.2 of [1]: 
they are .f (x) = γ ·x +α and .f (x) = γ · exp(c ·x)+α, where .γ �= 0, .c �= 0, and . α

are arbitrary constants. To use this result, let us reduce our equation to the one with 
known solutions. 

The only difference between these two equations is that we have a product and 
we need a sum. There is a well-known way to reduce product to a sum: turn to 
logarithms, because .ln(a · b) = ln(a) + ln(b). Let us introduce new variables . X =
ln(u) and .Y = ln(c). In terms of these new variables, .u = exp(X) and .c = exp(Y ). 
Substituting these values into our functional equation and taking into consideration 
that 

. exp(X) · exp(Y ) = exp(X + Y ),
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we conclude that 

. F(X + Y ) = H(Y) · F(X) + K(Y),

where we denoted 

. F(X)
def= f (exp(X)), H(Y )

def= λ(exp(Y )),

. K(Y)
def= x0(exp(Y )).

So, according to the above-cited result, either 

. F(X) = γ · X + α,

or .F(X) = γ · exp(c · X) + α. 
From .F(X) = f (exp(X)), we conclude that .f (u) = F(ln(u)); therefore, either 

.f (u) = γ ·ln(u)+α or .f (u) = γ ·exp(c ·ln(u))+α = γ ·uc+α. In the second case, 
the function .f (u) maps .(0,∞) onto the interval .(α,∞), and we defined a rescaling 
as a function whose values run over all possible real numbers. So the second case 
is impossible, and .f (u) = γ · ln(u) + α, which means that .f (u) is equivalent to a 
logarithm. Q.E.D. 

6 Conclusions 

One of the most successful examples of soft computing is fuzzy control. One of 
the important steps in designing a fuzzy control is the choice of the membership 
functions for all the terms that the experts use. This choice strongly influences the 
quality of the resulting control. 

For simple controlled systems, it is sufficient to have equally spaced membership 
functions, i.e., functions that have similar shape (usually triangular or trapezoid) and 
are located in intervals of equal length 

. . . . , [N − �,N + �], [N,N + 2�], [N + �,N + 3�], . . .

For complicated systems, this choice does not lead to a good fuzzy control, so 
it is necessary to tune the membership functions. This tuning is usually done by 
using soft computing techniques such as neural networks or genetic algorithms. 
Such tuning is, however, a very time-consuming procedure. We show that traditional 
(“hard computing”) optimization techniques lead to a faster tuning. 

Specifically, we consider the case when equally spaced membership functions 
are inadequate because the control variable u can take only positive values. Such
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situations occur, for example, when we control the flux of the substances into a 
chemical reactor (e.g., the flux of fuel into an engine). Our idea is to “rescale” this 
variable, i.e., to use a new variable .̃u = f (u), and to choose a function .f (u) in such 
a way that we can apply membership functions, which are equally spaced in . ̃u. 

We give a mathematical proof that the optimal rescaling is logarithmic (. f (u) =
a·ln(u)+b). We also show on a real-life example of a nonlinear chemical reactor that 
the resulting fuzzy control, without any further tuning of membership functions, can 
be comparable in quality with the best state-of-art nonlinear controls of traditional 
control theory. 

Acknowledgments The authors are greatly thankful to the anonymous referees for valuable 
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1 Introduction 

With the advent of mobile-based apps, many have started ordering food, groceries, 
household items, tech items, and many other commodities from their phones. 
Today’s customer wants the deliveries with the blink of an eye—whenever and 
wherever. The ease and the comfort which these apps provide is one side of the 
picture, i.e., the consumer side. On the other side, the provider or the in charge of 
these deliveries is always uncertain in judgment of the supply, the demand, and the 
amount of the commodity to be delivered. 

Talking about the cost of transportation, there are many factors which effect these 
costs like route and climate conditions, infrastructure requirements, duration, fuel 
costs, etc. Merely transporting the commodity is not the only agenda, but doing it 
safely, without any damage, is also important. However, due to some unavoidable 
reasons like expiry, leakage, breakage, negligence, etc., there is an associated 
depreciation cost (damage cost) during transportation. A deeper dig into the market 
situation also tells us that the DM not only has to minimize the transportation and 
depreciation cost but also has to focus on other objectives. For effective decision-
making during transportation, understanding the packaging budget and packaging 
cost is also important. This includes design and prototyping cost, material, printing, 
die-cutting, embossing, lamination, etc. Different types of packaging material are 
used, for example, cardboard boxes, bubble wraps, Styrofoam, air-filled pillows, 
etc. But with packaging comes a lot of wastage due to poor packaging design, ill-
trained staff, poor infrastructure, etc. which adds up to what we call as the wastage 
cost. Also, once the package reaches the customer, the packaging material is mostly 
discarded straightaway. This material which may or may not be biodegradable 
dramatically acts as pollutants such as litter, landfill space, water pollutant, etc. 

Transport managers after identifying these vulnerable areas must work in sync 
to optimize the transportation and packaging process such that the needs of the 
customers are also met and damage to the climate is also mitigated. Minimal 
and efficient packaging will reduce material use, hence lesser packaging cost and 
minimal waste and better space utilization in the transport vehicle leading to overall 
lesser fuel usage and lesser transportation cost. Thus, it is imperative to have a 
transportation model which aims at minimal and efficient packaging along with 
minimized transportation and damage cost. The parameters of this model, viz., 
supply, demand, cost, and quantity, must be of such a nature which is able to handle 
uncertainties and impreciseness efficiently. 

Gauging the above situation in an entirety, the authors are motivated to sculpt 
the above situation into a novel fully intuitionistic fuzzy interval-valued multi-
objective indefinite quadratic TP. Parameters here such as supply, demand, cost 
coefficients, and the variables by nature being imprecise and unconfirmed all are 
taken to be IVIFNs. We take the objectives to be indefinite quadratic where each 
function is a product of two linear factors and hence simultaneous minimization 
of each factor is achieved. In the first objective, simultaneous minimization of
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the transportation and depreciation cost is targeted, while the second focuses on 
simultaneous minimization of packaging cost and the associated wastage cost. 
Applicability of the model is shown through a TP pertaining to the food industry. 

2 Literature Review 

As discussed in the above section, the parameters of a real-life TP with crisp 
parameters are unable to handle situations of ambiguity and uncertainty. Therefore, 
appropriate non-crisp parameters must be used. Since conception, fuzzy sets 
introduced by Zadeh [15] have been extensively used in the field of TPs as they 
associate with each element of the set the membership degree (acceptance level) 
[2, 24, 29]. 

In 1986, [13] proposed the IF set which is more reliable than the fuzzy set 
as the former also associates the degree of nonmembership (nonacceptance level) 
along with the degree of membership. Solution of IFTP using linear programming 
was given in [7], while [6] gave the concept of pareto-optimal solution for fixed-
charge solid TP under IF environment. Zero-point maximum allocation method was 
proposed by Sharma [20] to solve IFTP. Not only restricted to TPs, the application 
of TIFNs in bi-matrix games can also be seen in [22, 23]. 

To answer how to handle the situations when even these degrees are not available 
as exact values because of some hesitation, the idea of IVIF sets was established 
by Atanassov [14] where the more flexible approach of depicting membership and 
nonmembership values by intervals was adopted. Bharati and Singh [33] solved TP  
under IVIF environment. Recently, a multi-objective multi-item four-dimensional 
green TP in IVIF environment was solved in [8], and IVIFTP of type 2 was solved 
by Choudhary and Yadav [1]. 

For more than one clashing objective, an MOTP is considered. Diaz [12] 
described efficient solutions of MOTP in 1979. Nomani et al. [18] gave a weighted 
approach based on goal programming strategy to solve MOTP, while [10] solved  
rough MOTP. Fuzzy approach was exploited by Li and Lai [16] to solve MOTP.  
Ahmad and Adhami [9] solved multi-objective nonlinear TP with fuzzy parameters. 

The formulation of the objective functions whether single objective or multi-
objective wholly depends on the requirements of the DM whether he considers 
fixed-charge or fractional or any other form of objective function. Bhatia [11] 
formulated indefinite quadratic solid TP. A bilevel TP with indefinite quadratic 
objective functions for vaccine transportation was formulated by Singh et al. [4]. 
Recently, [31] solved TP for IV trapezoidal IFNs, while [5] solved neutrosophic 
multi-objective green four-dimensional fixed-charge TP. Joshi et al. [35] solved  
multi-objective linear fractional TP under neutrosophic environment. 

Literature related to work of researchers on fully IFTP with different types of 
OFs is shown in Table 5.1.
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Table 5.1 Literature review 

Author and Fully Type of IFN Interval-valued Type of objective 

citation IF used IFN used function MOTP 

Mahmoodirad et al. [3] � Triangular Standard 

El Sayed and 
Abo-Sinna [17]

� Trapezoidal Fractional �

Ghosh et al. [32] � Triangular Fixed-charge solid 

Kumar and Hussain [27] � Triangular Standard 

Mahajan and Gupta [34] � Triangular Standard �

Bagheri et al. [19] � Triangular Standard �

Anukokila and 
Radhakrishnan [25]

� Trapezoidal Fractional 

Jalil et al. [28] � Triangular Solid �

Giri et al. [26] � Triangular Fixed-charge 
multi-item solid 

Malik and Gupta [21] � Triangular � Standard �

Proposed work � Triangular � Indefinite 
quadratic

�

Here onward, the paper proceeds as follows: In Sect. 3, we briefly state the 
preliminaries which includes basic definitions and some arithmetic operations. 
Section 4 establishes the FIVIFMOIQTP. Section 5 gives the proposed solution 
methodology. Section 6 exhibits the practicality of the model through a solved 
numerical example. In Sect. 7, we solve the numerical using another methodology. 
Section 8 gives the conclusion and future work. 

3 Preliminary 

Definition 1 (IF Set) [13] An IF set  ̂S′ in Y (a universe of discourse) is a triplet 
defined by {(y, μ

Ŝ′(y), ν
Ŝ′(y)) : y ∈ Y }, where μ

Ŝ′ : Y → [0, 1]and ν
Ŝ′ : Y → 

[0, 1], respectively, depict the MF and NMF of the element y ∈ Y being in Ŝ′. They  
satisfy the relation 0 ≤ μ

Ŝ′(y) + ν
Ŝ′(y) ≤ 1∀y ∈ Y . The value of the expression 

1 − μ
Ŝ′(y) − ν

Ŝ′(y) is called the hesitancy degree of the element y ∈ Y to Ŝ′. 

Definition 2 (IVIF Set) [14] An IVIF set  ̂S = {(y, μ
Ŝ (y), ν

Ŝ (y)) : y ∈ 
Y }, where μ

Ŝ : Y → I [0, 1]and ν
Ŝ : Y → I [0, 1], respectively, depict the 

interval-valued MF and NMF s.t. Sup(μ
Ŝ (y)) + Sup(ν

Ŝ (y)) ≤ 1 ∀ y ∈ Y . Here, 
I [0, 1] = {[u, v] :  0 ≤ u < v  ≤ 1}. 
Definition 3 (IVTIFN) [1] Denoted by Ĉ = (cU 

1 , c
L 
1 , c2, c

L 
3 , c

U 
3 ), (c

′L 
1 , c

′U 
1 , c2, c

′U 
3 , 

c′L 
3 ), an IVTIFN with its degrees of membership and nonmembership is defined as 

follows:
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. μL

Ĉ
(y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 y = c2,
y−cL

1
c2−cL

1
if cL

1 < y < c2,

cL
3 −y

cL
3 −c2

if c2 < y < cL
3 ,

0 otherwise

&

μU

Ĉ
(y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 y = c2,

y−cU
1

c2−cU
1

if cU
1 < y < c2,

cU
3 −y

cU
3 −c2

if c2 < y < cU
3 ,

0 otherwise

. νL

Ĉ
(y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 y = c2,
c2−y

c2−c′L
1

if c′L
1 < y < c2,

y−c2

c′L
3 −c2

if c2 < y < c′L
3 ,

1 otherwise

&

νU

Ĉ
(y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 y = c2,
c2−y

c2−c′U
1

if c′U
1 < y < c2,

y−c2

c′U
3 −c2

if c2 < y < c′U
3 ,

1 otherwise

where c′L 
1 ≤ c′U 

1 ≤ cU 
1 ≤ cL 

1 ≤ c2 ≤ cL 
3 ≤ cU 

3 ≤ c′U 
3 ≤ c′L 

3 . Graphical 
representation is given in Fig. 5.1. 

Remark 1 A IVTIFN  Ĉ can be reduced to a triangular IFN (cL 
1 , c2, c

L 
3 ), (c

′L 
1 , c2, c

′L 
3 ) 

if c′L 
1 = c′U 

1 , cU 
1 = cL 

1 , c
L 
3 = cU 

3 , c
′U 
3 = c′L 

3 . 

Definition 4 (Arithmetic Operations on IVTIFNs) Malik and Gupta [21] Let  
Ĉ = (cU 

1 , c
L 
1 , c2, c

L 
3 , c

U 
3 ), (c

′L 
1 , c

′U 
1 , c2, c

′U 
3 , c′L 

3 ) and D̂ = (dU 
1 , d

L 
1 , d2, d

L 
3 , d

U 
3 ), 

(d ′L 
1 , d ′U 

1 , d2, d
′U 
3 , d ′L 

3 ) be two IVTIFNs, then 

(a) Ĉ ⊕ D̂ = (cU 
1 + dU 

1 , c
L 
1 + dL 

1 , c2 + d2, c
L 
3 + dL 

3 , c
U 
3 + dU 

3 ), (c
′L 
1 + d ′L 

1 , c′U 
1 + 

d ′U 
1 , c2 + d2, c

′U 
3 + d ′U 

3 , c′L 
3 + d ′L 

3 ). 

(b) Ĉ � D̂ = (cU 
1 − dU 

1 , c
L 
1 − dL 

1 , c2 − d2, c
L 
3 − dL 

3 , c
U 
3 − dU 

3 ), (c
′L 
1 − d ′L 

1 , c′U 
1 − 

d ′U 
1 , c2 − d2, c

′U 
3 − d ′U 

3 , c′L 
3 − d ′L 

3 ).
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Fig. 5.1 Interval-valued triangular IFN 

(c) k Ĉ = 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

{(kcU 
1 , kcL 

1 , kc2, kcL 
3 , kcU 

3 ), 
(kc′L 

1 , kc′U 
1 , kc2, kc′U 

3 , kc′L 
3 )}, if  k  ≥ 0, 

{(kcU 
3 , kcL 

3 , kc2, kcL 
1 , kcU 

1 ), 
(kc′L 

3 , kc′U 
3 , kc2, kc′U 

1 , kc′L 
1 )}, if  k  <  0. 

(d) If c′L 
1 ≥ 0, d ′L 

1 ≥ 0, then 
Ĉ ⊗ D̂ = (cU 

1 d
U 
1 , c

L 
1 d

L 
1 , c2d2, c

L 
3 d

L 
3 , c

U 
3 d

U 
3 ), (c

′L 
1 d

′L 
1 , c′U 

1 d ′U 
1 , c2d2, c

′U 
3 d ′U 

3 , 
c′L 

3 d
′L 
3 ). 

Definition 5 (Equality of Two IVTIFNs) Malik and Gupta [21] Two IVTIFNs, 
Ĉ = (cU 

1 , c
L 
1 , c2, c

L 
3 , c

U 
3 ), (c

′L 
1 , c

′U 
1 , c2, c

′U 
3 , c′L 

3 ) and D̂ = (dU 
1 , d

L 
1 , d2, d

L 
3 , d

U 
3 ), 

(d ′L 
1 , d ′U 

1 , d2, d
′U 
3 , d ′L 

3 ) are considered equal, i.e., Ĉ � D̂ iff 
cU 

1 = dU 
1 , c

L 
1 = dL 

1 , c2 = d2, c
L 
3 = dL 

3 , c
U 
3 = dU 

3 , c
′L 
1 = d ′L 

1 , c′U 
1 = d ′U 

1 , c′U 
3 = 

d ′U 
3 , c′L 

3 = d ′L 
3 . 

Definition 6 (Expected Value) Bharati and Singh [33] Let  Ĉ = (cU 
1 , c

L 
1 , c2, c

L 
3 , 

cU 
3 ), (c

′L 
1 , c

′U 
1 , c2, c

′U 
3 , c′L 

3 ) be a IVTIFN, then its expected value is given by the 
following formula: 

Eval(  ̂C) = (cU 
1 +cL 

1 +c′L 
1 +c′U 

1 +8c2+cL 
3 +cU 

3 +c′U 
3 +c′L 

3 ) 
16 

where Eval is a real-valued linear function defined over the set of all IVIFNs over 
R. 

Definition 7 (Ordering of Two IVTIFNs) Bharati and Singh [33] Let  Ĉ and D̂ be 
two IVTIFNs. Then, 

(a) Ĉ � D̂ ⇔ Eval(  ̂C) ≤ Eval( D̂) 
(b) Ĉ � D̂ ⇔ Eval(  ̂C) ≥ Eval( D̂)
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Definition 8 (Efficient Point/Pareto-Optimal Solution) Chhibber et al. [6] A  
point ˆ̄y is termed as an efficient solution for which no value of ŷ exists in the feasible 
region such that Ẑk(ŷ) � Ẑk( ˆ̄y) ∀ k and Ẑk(ŷ) ≺ Ẑk( ˆ̄y) for at least one k. 

4 Fully Interval-Valued Intuitionistic Fuzzy Multi-objective 
Indefinite Quadratic Transportation Problem 
(FIVIFMOIQTP) 

As discussed previously, real-life situations are not well represented by crisp param-
eters. In this case, we prefer representing them by interval-valued intuitionistic fuzzy 
numbers. Also, single objectives are not sufficient to describe the aims and purposes 
of the DM, and hence an MOTP is preferred. An indefinite quadratic objective 
function being a product of two linear factors can simultaneously minimize each 
factor. An MOTP in which all the parameters such as supply, demand, cost 
parameters, and variables are all IVIFNs and the objectives are indefinite quadratic 
in nature is an FIVIFMOIQTP. It can be mathematically formulated as: 

. (FIVIFMOIQTP)

Min Ẑ1(y) = Ẑ11(y)Ẑ12(y) =
⎛

⎝
m∑

i=1

n∑

j=1

p̂ij ⊗ ŷij

⎞

⎠

⎛

⎝
m∑

i=1

n∑

j=1

q̂ij ⊗ ŷij

⎞

⎠ ,

MinẐ2(y) = Ẑ21(y)Ẑ22(y) =
⎛

⎝
m∑

i=1

n∑

j=1

êij ⊗ ŷij

⎞

⎠

⎛

⎝
m∑

i=1

n∑

j=1

f̂ij ⊗ ŷij

⎞

⎠ ,

...

MinẐK(y) = ẐK1(y)ẐK2(y) =
⎛

⎝
m∑

i=1

n∑

j=1

ûij ⊗ ŷij

⎞

⎠

⎛

⎝
m∑

i=1

n∑

j=1

v̂ij ⊗ ŷij

⎞

⎠ .

subject to

n∑

j=1

ŷij = ŝi ;
m∑

i=1

ŷij = d̂j ; ŷij ≥ 0̂ i = 1, 2, . . . , m, j = 1, 2, . . . , n.

where, .ŝi = (sU
i1, s

L
i1, si2, s

L
i3, s

U
i3), (s

′L
i1 , s′U

i1 , si2, s
′U
i3 , s′L

i3 ) is the IVTIF supply at the 

. ith source and .d̂j = (dU
j1, d

L
j1, dj2, d

L
j3, d

U
j3), (d

′L
j1, d

′U
j1 , dj2, d

′U
j3 , d ′L

j3) is the IVTIF 

demand at the . j th destination. . ̂cij = (cU
ij1, c

L
ij1, cij2, c

L
ij3, c

U
ij3), (c

′L
ij1, c

′U
ij1, cij2, c

′U
ij3,

c′L
ij3) is the IVTIF cost parameters when unit quantity is transported from source i to 

destination j.
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.ŷij = (yU
ij1, y

L
ij1, yij2, y

L
ij3, y

U
ij3), (y

′L
ij1, y

′U
ij1, yij2, y

′U
ij3, y

′L
ij3) is the IVTIF quan-

tity of the goods that is transported from source i to destination j. The feasible region 
of the above problem is a non-empty and bounded set in which each of the linear 
factor is assumed to be positive. Each objective function is both quasi-convex and 
quasi-concave on the feasible region, and thus we obtain the optimal solution at its 
extreme point. 

Feasibility conditions: .ŷij ≥ 0 and .
∑

i ŝi = ∑
j d̂j . 

Applying the Eval function over all the IVTIF components to convert them into 
crisp numbers, we use Definitions 4 and 5. We get a crisp TP, viz., FIVIFMOIQTP-1. 
(FIVIFMOIQTP-1) 

. Min EV al
(
Ẑ1(y)

)
= EV al

(
Ẑ11(y)Ẑ12(y)

)

= EV al

⎛

⎝

⎛

⎝
m∑

i=1

n∑

j=1

p̂ij ⊗ ŷij

⎞

⎠

⎛

⎝
m∑

i=1

n∑

j=1

q̂ij ⊗ ŷij

⎞

⎠

⎞

⎠ ,

. Min EV al
(
Ẑ2(y)

)
= EV al

(
Ẑ21(y)Ẑ22(y)

)

= EV al

⎛

⎝

⎛

⎝
m∑

i=1

n∑

j=1

êij ⊗ ŷij

⎞

⎠

⎛

⎝
m∑

i=1

n∑

j=1

f̂ij ⊗ ŷij

⎞

⎠

⎞

⎠ ,

...

. Min EV al
(
ẐK(y)

)
= EV al

(
ẐK1(y)ẐK2(y)

)

= EV al

⎛

⎝

⎛

⎝
m∑

i=1

n∑

j=1

ûij ⊗ ŷij

⎞

⎠

⎛

⎝
m∑

i=1

n∑

j=1

v̂ij ⊗ ŷij

⎞

⎠

⎞

⎠ .

subject to 

.

∑

j

yU
ij1 = sU

i1,
∑

j

yL
ij1 = sL

i1,
∑

j

yij2 = si2,
∑

j

yL
ij3 = sL

i3,
∑

j

yU
ij3 = sU

i3,

∑

j

y′L
ij1 = s′L

i1 ,
∑

j

y′U
ij1 = s′U

i1 ,
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. 
∑

j

y′U
ij3 = s′U

i3 ,
∑

j

y′L
ij3 = s′L

i3 ,
∑

i

yU
ij1 = dU

i1,
∑

i

yL
ij1 = dL

i1,
∑

i

yij2 = di2,

∑

i

yL
ij3 = dL

i3,
∑

i

yU
ij3 = dU

i3,

. 
∑

i

y′L
ij1 = d ′L

i1 ,
∑

i

y′U
ij1 = d ′U

i1 ,
∑

i

y′U
ij3 = d ′U

i3 ,
∑

i

y′L
ij3 = d ′L

i3 ,

. y′L
ij1 ≥ 0, y′U

ij1 − y′L
ij1 ≥ 0, yU

ij1 − y′U
ij1 ≥ 0, yL

ij1 − yU
ij1 ≥ 0,

yij2 − yL
ij1 ≥ 0, yL

ij3 − yij2 ≥ 0, yU
ij3 − yL

ij3 ≥ 0,

. y′U
ij3 − yU

ij3 ≥ 0, y′L
ij3 − y′U

ij3 ≥ 0, i = 1, 2, . . . , m, j = 1, 2, . . . , n.

Hereafter, we denote .EV al
(
Ẑk(y)

)
= ˆ̂

Zk(y)∀k = 1, 2, . . . , K . 

Theorem 1 The efficient solution of (FIVIFMOIQTP-1) is the efficient solution of 
(FIVIFMOIQTP). 

Proof Let . ŷ∗ = (y∗U
ij1, y

∗L
ij1, y

∗
ij2, y

∗L
ij3, y

∗U
ij3), (y

∗′L
ij1, y

∗′U
ij1, y

∗
ij2, y

∗′U
ij3,

y∗′L
ij3)∀i, j be an efficient solution of FIVIFMOIQTP-1. From feasibility conditions, 

it follows that 

. 
∑

j

y∗U
ij1 = sU

i1,
∑

j

y∗L
ij1 = sL

i1,
∑

j

y∗
ij2 = si2,

∑

j

y∗L
ij3 = sL

i3,

∑

j

y∗U
ij3 = sU

i3,
∑

j

y∗′L
ij1 = s′L

i1 ,
∑

j

y∗′U
ij1 = s′U

i1 ,

. 
∑

j

y∗′U
ij3 = s′U

i3 ,
∑

j

y∗′L
ij3 = s′L

i3 ,
∑

i

y∗U
ij1 = dU

i1,
∑

i

y∗L
ij1 = dL

i1,

∑

i

y∗
ij2 = di2,

∑

i

y∗L
ij3 = dL

i3,
∑

i

y∗U
ij3 = dU

i3,

. 
∑

i

y∗′L
ij1 = d ′L

i1 ,
∑

i

y∗′U
ij1 = d ′U

i1 ,
∑

i

y∗′U
ij3 = d ′U

i3 ,
∑

i

y∗′L
ij3 = d ′L

i3 ,

.y∗′L
ij1 ≥ 0, y∗′U

ij1 − y∗′L
ij1 ≥ 0, y∗U

ij1 − y∗′U
ij1 ≥ 0, y∗L

ij1 − y∗U
ij1 ≥ 0,

y∗
ij2 − y∗L

ij1 ≥ 0, y∗L
ij3 − y∗

ij2 ≥ 0,
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. y∗U
ij3 − y∗L

ij3 ≥ 0, y∗′U
ij3 − y∗U

ij3 ≥ 0, y∗′L
ij3 − y∗′U

ij3 ≥ 0,

i = 1, 2, . . . , m, j = 1, 2, . . . , n.

The above constraints imply 

. 

n∑

j=1

ŷ∗
ij = ŝi ;

m∑

i=1

ŷ∗
ij = d̂j ; ŷ∗

ij � 0̂ i = 1, 2, . . . , m, j = 1, 2, . . . , n.

which in turn imply that . ŷ∗ is a feasible solution of FIVIFMOIQTP. Now, as . ŷ∗ is 
an efficient solution of FIVIFMOIQTP-1, . � any IVTIFN . ˆ̄y s.t. . Eval(Ẑk( ˆ̄y)) ≤
Eval(Ẑk(ŷ

∗)) ∀ k and .Eval(Ẑk( ˆ̄y)) < Eval(Ẑk(ŷ
∗)) for at least one k. Thus, 

Definition 7 yields that . ŷ∗ is an efficient solution of FIVIFMOIQTP as well. 

5 Proposed Solution Methodology 

In this section, we present the following approach to solve (FIVIFMOIQTP). The 
following steps are to be followed: 

Step 1 Divide the problem FIVIFMOIQTP-1 into k subproblems where each 

subproblem is a single objective TP with .kth OF, viz., . EV al
(
ẐK(y)

)
=

ˆ̂
ZK(y) and the constraint sets of (FIVIFMOIQTP-1) above. In the end, 
we will obtain k optimal solutions, . Yk corresponding to the above k 
subproblems. 

Step 2 Find . ˆ̂ZK(Yk) ∀ k and construct the following payoff matrix: 

. 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ˆ̂
Z1(Y1)

ˆ̂
Z2(Y1)

ˆ̂
Z3(Y1) · · · ˆ̂

Zk(Y1)
ˆ̂
Z1(Y2)

ˆ̂
Z2(Y2)

ˆ̂
Z3(Y2) · · · ˆ̂

Zk(Y2)
ˆ̂
Z1(Y3)

ˆ̂
Z2(Y3)

ˆ̂
Z3(Y3) · · · ˆ̂

Zk(Y3)
...

...
...

...
...

ˆ̂
Z1(Yk)

ˆ̂
Z2(Yk)

ˆ̂
Z3(Yk) · · · ˆ̂

Zk(Yk)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Remark 2 The diagonal values of this payoff matrix give the OF values of the . kth

OF, viz., . ˆ̂Zk(y) at its corresponding optimal point . Yk , i.e., . ˆ̂Zk(Yk). The non-diagonal 

values give the OF value .
ˆ̂
Zk(Yr) for .r, k = 1, 2, . . . , K, r �= k. In this payoff matrix, 

we collect all the .k × k OF values calculated not only at their respective optimal 
points . Yk but on the optimal points .Yr, r �= k. Thus, the .kth column of the matrix 
represents the range of values attained by any .kth objective function.
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Step 3 Using the payoff matrix, find the upper bound(least acceptable achieve-

ment level . ˆ̂Uk) and the lower bound(most acceptable achievement level 

. 
ˆ̂
Lk) for formulating the linear MFs for each of the .kth objective function. 

.
ˆ̂
Lk = Min{ ˆ̂

Zk(Yr)} and . ˆ̂Uk = Max{ ˆ̂
Zk(Yr)} where .1 ≤ r ≤ K . 

Step 4 Formulate the upper and lower linear MFs, viz., . ˆ̂μU
k (

ˆ̂
Zk(y)) and 

. ˆ̂μL
k (

ˆ̂
Zk(y)), for each .kth OF using 

. ˆ̂μU
k (

ˆ̂
Zk(y)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 ˆ̂
Zk(y) ≤ ˆ̂

L
μ
k ,

ˆ̂
U

μ
k − ˆ̂

Zk(y)

ˆ̂
U

μ
k − ˆ̂

L
μ
k

ˆ̂
L

μ
k <

ˆ̂
Zk(y) <

ˆ̂
U

μ
k ,

0 ˆ̂
Zk(y) ≥ ˆ̂

U
μ
k .

&

ˆ̂μL
k (

ˆ̂
Zk(y)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 ˆ̂
Zk(Y ) ≤ ˆ̂

L
μ
k ,

η

( ˆ̂
U

μ
k − ˆ̂

Zk(y)

ˆ̂
U

μ
k − ˆ̂

L
μ
k

) ˆ̂
L

μ
k <

ˆ̂
Zk(y) <

ˆ̂
U

μ
k ,

0 ˆ̂
Zk(y) ≥ ˆ̂

U
μ
k .

Formulate the upper and lower linear NMFs, viz., . ˆ̂νU
k (

ˆ̂
Zk(y)) and 

. ˆ̂νL
k (

ˆ̂
Zk(y)) for each .kth OF, using 

. ̂̂νU
k (

ˆ̂
Zk(y)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 ˆ̂
Zk(y) ≤ ˆ̂

Lν
k,ˆ̂

Zk(y)− ˆ̂
Lν

k

ˆ̂
Uν

k − ˆ̂
Lν

k

ˆ̂
Lν

k <
ˆ̂
Zk(y) <

ˆ̂
Uν

k ,

1 ˆ̂
Zk(y) ≥ ˆ̂

Uν
k .

&

ˆ̂νL
k (

ˆ̂
Zk(y)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 ˆ̂
Zk(Y ) ≤ ˆ̂

Lν
k,

η

( ˆ̂
Zk(y)− ˆ̂

Lν
k

ˆ̂
Uν

k − ˆ̂
Lν

k

) ˆ̂
Lν

k <
ˆ̂
Zk(y) <

ˆ̂
Uν

k ,

1 ˆ̂
Zk(y) ≥ ˆ̂

Uν
k .

where .η ∈ [0, 1], k = 1, 2, . . . , K . . ˆ̂Uμ
k = ˆ̂

Uν
k = ˆ̂

Uk , . ˆ̂Lμ
k = ˆ̂

Lk and . ˆ̂Lν
k =

ˆ̂
L

μ
k + t (

ˆ̂
U

μ
k − ˆ̂

L
μ
k ), t ∈ (0, 1). Here, t denotes the tolerance level which 

signifies the extent to which the DM is ready to compromise and accept. 
We can see that the acceptance and the rejection degrees are represented 
as intervals, viz., .[ ˆ̂μL(y), ˆ̂μU(y)] and .[ ˆ̂νL(y), ˆ̂νU (y)], respectively.
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Fig. 5.2 Lower and upper linear MF and NMFs 

Graphically, the above functions can be represented as in Fig. 5.2. 
Step 5 We propose the following model to solve (FIVIFMOIQTP): 

(FIVIFMOIQTP-2) 

. Max [ψλ + (1 − ψ)ξ − ψκ − (1 − ψ)ρ]

s.t. 

. ˆ̂μU
k (

ˆ̂
Zk(y)) ≥ ψλ + (1 − ψ)ξ,

ˆ̂μL
k (

ˆ̂
Zk(y)) ≥ λ,

ˆ̂νU
k (

ˆ̂
Zk(y)) ≤ ψκ + (1 − ψ)ρ,

ˆ̂νL
k (

ˆ̂
Zk(y)) ≤ κ,

ψλ + (1 − ψ)ξ + ψκ + (1 − ψ)ρ ≤ 1,

ξ + ρ ≤ 1; ξ ≥ λ; ρ ≥ κ; λ ≥ κ; ξ ≥ ρ,

0 ≤ ψ ≤ 1; 0 ≤ η ≤ 1; 0 < t < 1; κ ≥ 0,

and all the constraints of (FIVIFMOIQTP-1).

where . λ is the minimum acceptance degree and . κ is the maximum 
rejection. 

Remark 3 (FIVIFMOIQTP-2) can also be simplified further to obtain 
(FIVIFMOIQTP-3) 

.Max [ψ(λ − κ) + (1 − ψ)(ξ − ρ)]
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s.t. 

. 
ˆ̂
U

μ
k − ˆ̂

Zk(y) ≥ (
ˆ̂
U

μ
k − ˆ̂

L
μ
k ) (ψλ + (1 − ψ)ξ) ,

η
( ˆ̂
U

μ
k − ˆ̂

Zk(y)
)

≥
( ˆ̂
U

μ
k − ˆ̂

L
μ
k

)
λ,

ˆ̂
Zk(y) − ˆ̂

Lν
k ≤ (

ˆ̂
Uν

k − ˆ̂
Lν

k) (ψκ + (1 − ψ)ρ) ,

η
( ˆ̂
Zk(y) − ˆ̂

Lν
k

)
≤

( ˆ̂
Uν

k − ˆ̂
Lν

k

)
κ,

ψλ + (1 − ψ)ξ + ψκ + (1 − ψ)ρ ≤ 1,

ξ + ρ ≤ 1; ξ ≥ λ; ρ ≥ κ; λ ≥ κ; ξ ≥ ρ,

0 ≤ ψ ≤ 1; 0 ≤ η ≤ 1; 0 < t < 1; κ ≥ 0,

and all the constraints of (FIVIFMOIQTP-1).

Step 6 The obtained optimal solution . yopt = (yU
ij1, y

L
ij1, yij2, y

L
ij3, y

U
ij3),

.(y′L
ij1, y

′U
ij1, yij2, y

′U
ij3, y

′L
ij3) can be substituted in the each OF, viz., 

.ẐK(y) ∀ k to get the optimal OF value of the proposed (FIVIFMOIQTP). 

6 Numerical Example 

The application of the model is validated through the following numerical example 
taken from the food industry: 

Nowadays, we order food items like juices (bottled/tetra-packed), dairy prod-
ucts like milk/tofu/cheese, frozen meat (temperature-controlled), etc. through any 
delivery app. The DM in order to optimize delivery to all the customers in a 
satisfactory and a legible time identifies a suitable (nearest) supply store which can 
serve requisite destinations efficiently. Consider two supply centers SC1 and SC2 
and three destinations .D1,D2, and D3. As any delivery app is used by multiple 
customers at any point of time, the DM is always unsure of the supply, the demand, 
and the quantity to be transported. Thus, we represent them by IVTIFNs. 

Order placed has to go through packaging and delivery. The objectives under 
focus are: 

• To simultaneously minimize the transportation cost .Ẑ11(y) (due to fuel cost, 
travel duration, road conditions, etc.) and the damage cost .Ẑ12(y) (due to 
spillage, negligence, breakage, etc.) 

• To simultaneously minimize the packaging cost .Ẑ21(y)(due to cartons, bill 
receipt, bubble wraps, etc.) and the associated wastage cost .Ẑ22(y)(due to faulty 
packaging, poor designing, ill-trained staff, excessive filling, etc.)



100 A. Singh et al.

Table 5.2 Related data—FIVIFMOIQTP 

Sources 

Destinations 
D1 D2 D3 Availabilities 

SC1 
p̂11, q̂11 p̂12, q̂12 p̂13, q̂13 ŝ1 

ê11, f̂11 ê12, f̂12 ê13, f̂13 

SC1 
p̂21, q̂21 p̂22, q̂22 p̂23, q̂23 ŝ2 

ê21, f̂21 ê22, f̂22 ê23, f̂23 
Demands d̂1 d̂2 d̂3 ŝ1+ ŝ2 = d̂1+ d̂2+ d̂3 

Thus, we model an MOTP with minimization of two objective functions .Ẑ1(y) and 
.Ẑ2(y) which are indefinite quadratic in nature, i.e., product of two linear factors 
and hence mathematically formulated as .Ẑ1(y) = Ẑ11(y)Ẑ12(y) and . Ẑ2(y) =
Ẑ21(y)Ẑ22(y) as stated above. The cost coefficients by nature being imprecise and 
undetermined in nature are taken to be IVTIFNs. 

Collectively, we can say that a FIVIFMOIQTP has been formulated. Mathemat-
ically stating, 

. Min Ẑ1(y) = Ẑ11(y)Ẑ12(y) =
⎛

⎝
2∑

i=1

3∑

j=1

p̂ij ⊗ ŷij

⎞

⎠

⎛

⎝
2∑

i=1

3∑

j=1

q̂ij ⊗ ŷij

⎞

⎠ ,

. Min Ẑ2(y) = Ẑ21(y)Ẑ22(y) =
⎛

⎝
2∑

i=1

3∑

j=1

êij ⊗ ŷij

⎞

⎠

⎛

⎝
2∑

i=1

3∑

j=1

f̂ij ⊗ ŷij

⎞

⎠

subject to 

. 

3∑

j=1

ŷij = ŝi ;
2∑

i=1

ŷij = d̂j ; ŷij ≥ 0̂.

The related data is shown in Table 5.2 
The values for . p̂ij , . q̂ij , . ̂eij , and . f̂ij for .i = 1, 2 and .j = 1, 2, 3 are as follows: 

.p̂11 = (15, 10, 24, 29, 34), (4, 11, 24, 37, 40), . ̂s1 = (120, 130, 140, 150, 160)

.(100, 110, 140, 170, 180), 
.p̂12 = (35, 44, 49, 57, 60), (29, 34, 49, 64, 69), . ̂s2 = (60, 70, 80, 90, 100),

.(40, 50, 80, 110, 120), 
.p̂13 = (74, 79, 84, 89, 94), (64, 69, 84, 97, 100), 
.p̂21 = (34, 39, 44, 49, 54), (24, 29, 44, 59, 64), . d̂1 = (50, 60, 70, 75, 80),

.(40, 45, 70, 85, 90),
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.p̂22 = (49, 54, 59, 64, 71), (39, 44, 59, 74, 79), . d̂2 = (52, 55, 60, 65, 70),

.(30, 40, 60, 75, 85), 
.p̂23 = (24, 29, 34, 39, 44), (14, 19, 34, 49, 54), . d̂3 = (78, 85, 90, 100, 110),

.(70, 75, 90, 120, 125), 
.q̂11 = (5, 7, 9, 11, 13), (1, 3, 9, 15, 17), 
.q̂12 = (19, 24, 29, 34, 39), (9, 14, 29, 44, 49), 
.q̂13 = (21, 22, 23, 24, 25), (19, 20, 23, 26, 27), 
.q̂21 = (29, 34, 39, 44, 49), (19, 24, 39, 54, 59), 
.q̂22 = (11, 15, 19, 23, 27), (3, 7, 19, 31, 39), 
.q̂23 = (24, 34, 40, 54, 64), (10, 18, 40, 76, 80), 
.ê11 = (4, 5, 6, 7, 8), (2, 3, 6, 9, 12), 
.ê12 = (13, 15, 17, 19, 21), (9, 11, 17, 24, 26), 
.ê13 = (16, 21, 26, 31, 36), (6, 11, 26, 41, 46), 
.ê21 = (19, 20, 21, 22, 23), (17, 18, 21, 24, 25), 
.ê22 = (10, 13, 16, 19, 22), (4, 7, 16, 25, 28), 
.ê23 = (27, 29, 31, 33, 35), (23, 25, 31, 37, 39), 
.f̂11 = (7, 9, 11, 13, 15), (3, 5, 11, 17, 19), 
.f̂12 = (21, 26, 31, 36, 41), (11, 16, 31, 46, 51), 
.f̂13 = (23, 24, 25, 26, 27), (21, 22, 25, 28, 29), 
.f̂21 = (31, 36, 41, 46, 51), (21, 26, 41, 56, 61), 
.f̂22 = (13, 17, 21, 25, 29), (5, 9, 21, 33, 37), 
.f̂23 = (26, 36, 46, 56, 66), (6, 18, 46, 70, 80). 

Solution process as per the algorithm is as follows: 

Step 1 Divide the above problem into two subproblems where each subproblem 

is a single objectve TP with OF as .EV al
(
Ẑ1(y)

)
= ˆ̂

Z1(y) and 

.EV al
(
Ẑ2(y)

)
= ˆ̂

Z2(y) and the constraint sets of (FIVIFMOIQTP-

1) above. In the end, we will obtain two optimal solutions, . Y1 and Y2
corresponding to the above two subproblems. 

Step 2 Construct the payoff matrix by finding the values of . ˆ̂Z1(Y1),
ˆ̂
Z2(Y1),ˆ̂

Z1(Y2), and . ˆ̂Z2(Y2). 

Step 3 From the payoff matrix, we obtain . ˆ̂Uμ
1 = ˆ̂

Uν
1 = 56942010, . ˆ̂Uμ

2 =
ˆ̂
Uν

2 = 26783470, . ˆ̂Lμ
1 = 56287590, . ˆ̂Lμ

2 = 20700150, . ˆ̂Lν
1 = 56287590 +

t (654420), . ˆ̂Lν
2 = 20700150 + t (6083320), 0 < t < 1. 

Step 4 Formulate upper and lower linear MFs and NMFs: 

. ˆ̂μU
1 (

ˆ̂
Z1(Y )) =

⎧
⎪⎪⎨

⎪⎪⎩

1 ˆ̂
Z1(Y ) ≤ ˆ̂

L
μ
1 ,

56942010− ˆ̂
Z1(Y )

654420
ˆ̂
L

μ
1 <

ˆ̂
Z1(Y ) <

ˆ̂
U

μ
1 ,

0 ˆ̂
Z1(Y ) ≥ ˆ̂

U
μ
1 .
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. ˆ̂μL
1 (

ˆ̂
Z1(Y )) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 ˆ̂
Z1(Y ) ≤ ˆ̂

L
μ
1 ,

η

(
56942010− ˆ̂

Z1(Y )
654420

) ˆ̂
L

μ
1 <

ˆ̂
Z1(Y ) <

ˆ̂
U

μ
1 ,

0 ˆ̂
Z1(Y ) ≥ ˆ̂

U
μ
1 .

. ̂̂νU
1 (

ˆ̂
Z1(Y )) =

⎧
⎪⎪⎨

⎪⎪⎩

0 ˆ̂
Z1(Y ) ≤ ˆ̂

Lν
1,ˆ̂

Z1(Y )−[56287590+t (654420)]
(1−t)654420

ˆ̂
Lν

1 <
ˆ̂
Z1(Y ) <

ˆ̂
Uν

1 ,

1 ˆ̂
Z1(Y ) ≥ ˆ̂

Uν
1 .

ˆ̂νL
1 (

ˆ̂
Z1(Y )) =

⎧
⎪⎪⎨

⎪⎪⎩

0 ˆ̂
Z1(Y ) ≤ ˆ̂

Lν
1,

η
ˆ̂
Z1(Y )−[56287590+t (654420)]

(1−t)654420
ˆ̂
Lν

1 <
ˆ̂
Z1(Y ) <

ˆ̂
Uν

1 ,

1 ˆ̂
Z1(Y ) ≥ ˆ̂

Uν
1 .

. ˆ̂μU
2 (

ˆ̂
Z2(Y )) =

⎧
⎪⎪⎨

⎪⎪⎩

1 ˆ̂
Z2(Y ) ≤ ˆ̂

L
μ
2 ,

26783470− ˆ̂
Z2(Y )

6083320
ˆ̂
L

μ
2 <

ˆ̂
Z2(Y ) <

ˆ̂
U

μ
2 ,

0 ˆ̂
Z2(Y ) ≥ ˆ̂

U
μ
2 .

ˆ̂μL
2 (Ẑ2(Y )) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 ˆ̂
Z2(Y ) ≤ ˆ̂

L
μ
2 ,

η

(
26783470− ˆ̂

Z2(Y )
6083320

) ˆ̂
L

μ
2 <

ˆ̂
Z2(Y ) <

ˆ̂
U

μ
2 ,

0 ˆ̂
Z2(Y ) ≥ ˆ̂

U
μ
2 .

. ̂̂νU
2 (Ẑ2(Y )) =

⎧
⎪⎪⎨

⎪⎪⎩

0 ˆ̂
Z2(Y ) ≤ ˆ̂

Lν
2,ˆ̂

Z2(Y )−[20700150+t (6083320)]
(1−t)6083320

ˆ̂
Lν

2 <
ˆ̂
Z2(Y ) <

ˆ̂
Uν

2 ,

1 ˆ̂
Z2(Y ) ≥ ˆ̂

Uν
2 .

ˆ̂νL
2 (Ẑ2(Y )) =

⎧
⎪⎪⎨

⎪⎪⎩

0 ˆ̂
Z2(Y ) ≤ ˆ̂

Lν
2,

η
ˆ̂
Z2(Y )−[20700150+t (6083320)]

(1−t)6083320
ˆ̂
Lν

2 <
ˆ̂
Z2(Y ) <

ˆ̂
Uν

2 ,

1 ˆ̂
Z2(Y ) ≥ ˆ̂

Uν
2 .

Step 5 The final crisp model to be solved is 

.Max [ψ(λ − κ) + (1 − ψ)(ξ − ρ)] (5.1) 

s.t. 

.
ˆ̂
Z1(Y ) + 654420(ψλ + (1 − ψ)ξ) ≤ 56942010,

ˆ̂
Z2(Y ) + 6083320(ψλ + (1 − ψ)ξ) ≤ 26783470, η

ˆ̂
Z1(Y ) + 654420λ

≤ η.56942010,
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η ˆ̂Z2(Y ) + 6083320λ ≤ η.26783470, 

ˆ̂
Z1(Y ) − t (654420) − (1 − t)(ψκ + (1 − ψ)ρ)654420 ≤ 56287590, 

ˆ̂
Z2(Y ) − t (6083320) − (1 − t)(ψκ + (1 − ψ)ρ)6083320 ≤ 20700150, 

η ˆ̂Z1(Y ) − ηt (654420) − κ(1 − t)654420 ≤ η.56287590, 

η ˆ̂Z2(Y ) − ηt (6083320) − κ(1 − t)6083320 ≤ η.20700150, 

ψλ + (1 − ψ)ξ  + ψκ  + (1 − ψ)ρ  ≤ 1, 

ξ + ρ ≤ 1; ξ ≥ λ; ξ ≥ ρ; ρ ≥ κ ≥ 0, λ  ≥ κ ≥ 0, 

0 ≤ ψ ≤ 1; 0 ≤ η ≤ 1; t = 0.11, 

.

∑

j

yU
1j1 = 120,

∑

j

yL
1j1 = 130,

∑

j

y1j2 = 140,
∑

j

yL
1j3 = 150,

∑

j

yU
1j3 = 160,

∑

j

y′L
1j1 = 100,

∑

j

y′U
1j1 = 110,

∑

j

y′U
1j3 = 170,

∑

j

y′L
1j3 = 180,

∑

i

yU
i11 = 50,

∑

i

yL
i11 = 60,

∑

i

yi12 = 70,
∑

i

yL
i13 = 75,

∑

i

yU
i13 = 80,

∑

i

y′L
i11 = 40,

∑

i

y′U
i11 = 45,

∑

i

y′U
i13 = 85,

∑

i

y′L
i13 = 90,

∑

j

yU
2j1 = 60,

∑

j

yL
2j1 = 70,

∑

j

y2j2 = 80,
∑

j

yL
2j3 = 90,

∑

j

yU
2j3 = 100,

∑

j

y′L
2j1 = 40,

∑

j

y′U
2j1 = 50,

∑

j

y′U
2j3 = 110,

∑

j

y′L
2j3 = 120,

∑

i

yU
i21 = 52,

∑

i

yL
i21 = 55,

∑

i

yi22 = 60,
∑

i

yL
i23 = 65,

∑

i

yU
i23 = 70,

∑

i

y′L
i21 = 30,

∑

i

y′U
i21 = 40,

∑

i

y′U
i23 = 75,

∑

i

y′L
i23 = 85,
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∑

i 
yU 
i31 = 78,

∑

i 
yL 
i31 = 85,

∑

i 
yi32 = 90,

∑

i 
yL 
i33 = 100,

∑

i 
yU 
i33 = 110,

∑

i 
y′L 
i31 = 70,

∑

i 
y′U 
i31 = 75,

∑

i 
y′U 
i33 = 120,

∑

i 
y′L 
i33 = 125, 

y′L 
1j1 ≥ 0, y′U 

1j1 − y′L 
1j1 ≥ 0, yU 

1j1 − y′U 
1j1 ≥ 0, yL 

1j1 − yU 
1j1 ≥ 0, 

y1j2 − yL 
1j1 ≥ 0, yL 

1j3 − y1j2 ≥ 0, yU 
1j3 − yL 

1j3 ≥ 0, y′U 
1j3 − yU 

1j3 ≥ 0, 

y′L 
1j3 − y′U 

1j3 ≥ 0, j  = 1, 2, 3, 

y′L 
2j1 ≥ 0, y′U 

2j1 − y′L 
2j1 ≥ 0, yU 

2j1 − y′U 
2j1 ≥ 0, yL 

2j1 − yU 
2j1 ≥ 0, 

y2j2 − yL 
2j1 ≥ 0, yL 

2j3 − y2j2 ≥ 0, yU 
2j3 − yL 

2j3 ≥ 0, y′U 
2j3 − yU 

2j3 ≥ 0, 

y′L 
2j3 − y′U 

2j3 ≥ 0, j  = 1, 2, 3. 

The values of the OF (5.1) for different values of .η,ψ , and .t = 0.11 are 
shown in Table 5.3. 

Step 6 It is clear from Table 5.3 that the maximum value of the OF (5.1) is  
obtained at .(η, ψ) = (0.9, 0.1). 
We obtain the optimal solution as . yopt =
. ŷ11 = (yU

111, y
L
111, y112, y

L
113, y

U
113), (y

′L
111, y

′U
111, y112, y

′U
113, y

′L
113) =

(50, 60, 70, 75, 80), (40, 45, 70, 85, 90), 
. ŷ12 = (yU

121, y
L
121, y122, y

L
123, y

U
123), (y

′L
121, y

′U
121, y122, y

′U
123, y

′L
123) =

(2, 2, 2, 2, 2), (0, 0, 2, 2, 2), 
. ŷ13 = (yU

131, y
L
131, y132, y

L
133, y

U
133), (y

′L
131, y

′U
131, y132, y

′U
133, y

′L
133) =

(68, 68, 68, 73, 78), (60, 65, 68, 83, 88), 
. ŷ21 = (yU

211, y
L
211, y212, y

L
213, y

U
213), (y

′L
211, y

′U
211, y212, y

′U
213, y

′L
213) =

(0, 0, 0, 0, 0), (0, 0, 0, 0, 0), 

Table 5.3 OF values for different values of . η,ψ , and . t = 0.11

↓ 
→ 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 0.91 0.92 0.93 0.94 0.95 0.9599992 0.9700001 0.9800001 0.9900001 

0.2 0.82 0.8400001 0.8600001 0.8800001 0.9000001 0.9200003 0.9400001 0.9600001 0.9800002 

0.3 0.73 0.7600001 0.7900002 0.8200001 0.8500001 0.8800004 0.9100002 0.9400002 0.9700003 

0.4 0.6400001 0.6800002 0.7200003 0.7600001 0.8000002 0.8400006 0.8800002 0.9200002 0.9600003 

0.5 0.5500001 0.6000002 0.6500004 0.7000002 0.7500002 0.8000007 0.8500003 0.9000003 0.9500004 

0.6 0.4600001 0.5200003 0.5800004 0.6400002 0.7000002 0.7600004 0.8200003 0.8800004 0.9400004 

0.7 0.3700001 0.4400001 0.5100005 0.5800002 0.6500003 0.7200010 0.7900004 0.8600004 0.9300005 

0.8 0.2800001 0.3600004 0.4400006 0.5200003 0.6000003 0.6800012 0.7600004 0.8400005 0.9200006 

0.9 0.1900001 0.2800004 0.3700007 0.4600003 0.5500004 0.6400013 0.7300005 0.8200006 0.9100006 

h 

y
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Table 5.4 OF values for the solved numerical 

Objective Optimal value 

function Meaning represented as IFN 

.Ẑ11 Minimized transportation cost (8542, 10015, 11660, 13871, 16408), 

(5310, 6930, 11660, 18539, 21093) 

.Ẑ12 Minimized depreciation cost (2506, 3337, 4234, 5552, 6952), 

(1370, 1895, 4234, 8596, 10201) 

.Ẑ21 Minimized packaging cost (2084, 2940, 3832, 4914, 6106), 

(790, 1380, 3832, 7410, 8947) 

.Ẑ22 Minimized wastage cost (2866, 3737, 4762, 6032, 7472), 

(1590, 2257, 4762, 8860, 10395) 

.Ẑ1 .Ẑ11Ẑ12 (8542, 10015, 11660, 13871, 16408), (5310, 
6930, 11660, 18539, 21093). 

(2506, 3337, 4234, 5552, 6952), (1370, 1895, 
4234, 8596, 10201) 

.Ẑ2 .Ẑ21Ẑ22 (2084, 2940, 3832, 4914, 6106), (790, 1380, 
3832, 7410, 8947). 

(2866, 3737, 4762, 6032, 7472), (1590, 2257, 
4762, 8860, 10395) 

. ŷ22 = (yU
221, y

L
221, y222, y

L
223, y

U
223), (y

′L
221, y

′U
221, y222, y

′U
223, y

′L
223) =

(50, 53, 58, 63, 68), (30, 40, 58, 73, 83), 
. ŷ23 = (yU

231, y
L
231, y232, y

L
233, y

U
233), (y

′L
231, y

′U
231, y232, y

′U
233, y

′L
233) =

(10, 17, 22, 27, 32), (10, 10, 22, 37, 37). 
Substituting these values in the objective functions, we obtain the value 
.Ẑ1 = 56287590 and .Ẑ2 = 20700100 of each objective function. 
Individual OF values represented as IFNs are tabulated in Table 5.4. 

7 Discussion 

We have also solved our numerical problem using the weight-based approach as 
well [30]. The model used is 
(FIVIFMOIQTP-4) 

. Max [ψ(λ − κ) + (1 − ψ)(ξ − ρ) − (w1(d
+
1 + d−

1 ) + w2(d
+
2 + d−

2 ) + · · ·
+ wk(d

+
k + d−

k ))] (5.2) 

s.t. 

.
ˆ̂
Zk(y) − d+

k + d−
k = ˆ̂

Gk,
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d+ 
k , d

− 
k , k  = 1, 2, . . . , K,  

w1 + w2 + . . .  + wk = 1, 

along with the constraints of (FIVIFMOIQTP-3). 

where .w1, w2, . . . , wK are the weights based on the priority levels of objectives 

such that their sum equals one. . ˆ̂G1,
ˆ̂
G2, . . . ,

ˆ̂
GK are the aspiration levels of the . kth

objective function. .d+
k , d−

k are the deviation variables associated with the OF .
ˆ̂
Zk(y). 

The methodology of solving the numerical is the same as in Sect. 6 except for the 
usage of above model FIVIFMOIQTP-4 instead of FIVIFMOIQTP-3. 

Thus, proceeding as before, the value of the OF (5.2) of the above weight-based 
model for different values of .(η, ψ) and using .w1 = 0.2, w2 = 0.8, and . t = 0.3993
is shown in Table 5.5. 

From Table 5.5, it is clear that the maximum value of the OF (5.2) is obtained for 
.η = 0.9, ψ = 0.1. 

Optimal compromise solution so obtained is . yopt =
. ŷ11 = (yU

111, y
L
111, y112, y

L
113, y

U
113), (y

′L
111, y

′U
111, y112, y

′U
113, y

′L
113) =

(50, 60, 70, 75, 80), (40, 45, 70, 85, 90), 
. ŷ12 = (yU

121, y
L
121, y122, y

L
123, y

U
123), (y

′L
121, y

′U
121, y122, y

′U
123, y

′L
123) =

(8, 8, 8, 8, 8), (6, 6, 8, 8, 8), 
. ŷ13 = (yU

131, y
L
131, y132, y

L
133, y

U
133), (y

′L
131, y

′U
131, y132, y

′U
133, y

′L
133) =

(62, 62, 62, 67, 72), (54, 59, 62, 77, 82), 
. ŷ21 = (yU

211, y
L
211, y212, y

L
213, y

U
213), (y

′L
211, y

′U
211, y212, y

′U
213, y

′L
213) =

(0, 0, 0, 0, 0), (0, 0, 0, 0, 0), 
. ŷ22 = (yU

221, y
L
221, y222, y

L
223, y

U
223), (y

′L
221, y

′U
221, y222, y

′U
223, y

′L
223) =

(44, 47, 52, 57, 62), (24, 34, 52, 67, 77), 
. ŷ23 = (yU

231, y
L
231, y232, y

L
233, y

U
233), (y

′L
231, y

′U
231, y232, y

′U
233, y

′L
233) =

(16, 23, 28, 33, 38), (16, 16, 28, 43, 43). 

Table 5.5 OF values for different values of . η,ψ , and . t = 0.3993, w1 = 0.2, w2 = 0.8

↓ 
→

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 Infeasible Infeasible -1681988 Infeasible -1681982 -1681988 Infeasible -1681982 -1681982 

0.2 Infeasible -1681988 -1681988 Infeasible -1689182 -1681988 Infeasible -1681982 -1681982 

0.3 Infeasible -1684131 -1681988 Infeasible -1681982 -1681988 Infeasible -1681982 -1681982 

0.4 Infeasible -1716505 -1704617 Infeasible -1682140 -1681988 Infeasible -1681982 -1681982 

0.5 Infeasible -1747537 -1732330 Infeasible -1703934 -1690656 Infeasible -1681982 -1681982 

0.6 Infeasible -1777315 -1758700 Infeasible -1724351 -1708457 Infeasible -1681982 Infeasible 

0.7 Infeasible -1805927 -1783832 -1763072 -1743520 -1725064 Infeasible Infeasible Infeasible 

0.8 -1865150 -1833448 -1807816 Infeasible -1761553 -1740588 Infeasible Infeasible Infeasible 

0.9 -1902436 -1863887 -1830767 Infeasible -1778557 -1755133 Infeasible -1712759 -1693522 

h 

y
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Table 5.6 OF values for the solved numerical 

Objective Optimal value 

function Meaning represented as IFN 

.Ẑ11 Minimized transportation cost (8158, 9655, 11300, 13529, 16042), 

(4950, 6570, 11300, 18191, 20757) 

.Ẑ12 Minimized depreciation cost (2572, 3463, 4396, 5798, 7258), 

(1352, 1925, 4396, 8974, 14108) 

.Ẑ21 Minimized packaging cost (2168, 3000, 3868, 4926, 6094), 

(922, 1488, 3868, 7380, 8893) 

.Ẑ22 Minimized wastage cost (2932, 3863, 4948, 6278, 7778), 

(1536, 2213, 4948, 9190, 10785) 

.Ẑ1 .Ẑ11Ẑ12 (8158, 9655, 11300, 13529, 16042), (4950, 6570, 
11300, 18191, 20757). 

(2572, 3463, 4396, 5798, 7258), (1352, 1925, 
4396, 8974, 14108) 

.Ẑ2 .Ẑ21Ẑ22 (2168, 3000, 3868, 4926, 6094), (922, 1488, 
3868, 7380, 8893). 

(2932, 3863, 4948, 6278, 7778), (1536, 2213, 
4948, 9190, 10785) 

Substituting these values in the objective functions, we obtain the value . Ẑ1 =
56688120, Ẑ2 = 21636420 of each objective function. Individual OF values 
represented as IFNs are tabulated in Table 5.6. 

8 Conclusion and Future Work 

Uncertainty and lack of judgment have motivated the researchers to use fuzzy sets 
and its extensions in the domain of transportation problems. Many have worked 
on fuzzy sets, IF sets, and single objective/multi-objective TP. In this work, we 
have tried to formulate and solve a FIVIFMOIQTP. The benefit of using an IVIFN 
to represent cost, supply, demand, and quantity is that the degree of acceptance 
and rejection is represented as an interval rather than crisp which gives more 
flexibility and wider range of choice to the DM. An indefinite quadratic objective 
function can simultaneously minimize each of its linear factors. Last but not the least 
incorporating multiple objectives makes the model multifaceted and ready to use in 
any domain of the transportation sector with conflicting objectives. The model is 
also validated using a numerical example and is solved using two approaches with 
the help of the software .LINGO19.0 using Intel Processor i5 with 8 GB RAM on 
64-bit Windows OS. The results are discussed as well. Thus, we have presented a 
comprehensive model which can purposely be reused as per the need of the DM. 
For example, instead of all the parameters as IVIF, the DM can be selective in 
choosing some parameters as crisp; instead of multiple objectives, single objective
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can be taken; and the same solution methodology serves. Some other fields where 
this model fits are the clothing industry and the medical industry where garments, 
medicines, etc. are packed and transported. 

The work can be extended to a bilevel FIVIFMOIQTP where a different objective 
function can be taken at the lower level like fractional or fixed-charge as per the 
choice of the DM. A real-life transportation model with more objective functions, 
sources, and destinations can also be formulated and solved. However, the proposed 
work comes with a limitation that the model will be difficult to handle in case 
pentagonal IFNs or octagonal IFNs are used in place of TIFNs. 
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Chapter 6 
Project Management Using Network 
Analysis in Fuzzy Environment 

Madhumangal Pal 

1 Introduction 

A project is a well-defined sequence of tasks that must be completed to attain a 
certain outcome. It consists of jobs, tasks, or activities, all that be completed to 
finish the project. On the other hand, project management involves skills, methods, 
knowledge, experience, etc. to meet the certain goals as per requirement of the 
project acceptance criteria along with specified parameters. It has some final 
deliverable restriction to a finite time period, budget, and many other related issues. 
Construction of a building, shopping mall highway, and bridge and setting up a 
new mobile network, power plant, research and development work, and production 
and sales of new products are a few examples of the project. A project involves 
many interrelated task (or activities), and all the task should be finished within the 
specific time period, with a specific order (or sequence), and require resources such 
as manpower, materials, money, space, facilities, etc. The main aim of a project is 
to perform all the activities involved in the project in a proper sequence such as the 
following: 

• Complete the project in a predefined time 
• Minimize the following: 

– Total project completion time 
– Total completion time for a specified cost 
– Total cost for a predefined time 
– Total project completion cost 
– Idle resources 
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Therefore, at the beginning, it is required to prepare a sequence of the tasks for 
scheduling and managing all the tasks. The techniques for scheduling, planning, 
and managing complex and large projects are known as network planning, network 
analysis, and network scheduling methods. Since a project is a collection of 
activities and an appropriate sequence of activities is beneficial, a project is 
generally represented as a network (a weighted directed graph). This process has 
the advantage for visualization the entire project containing several tasks. These are 
easily be defined with the help of parameters, such as cost of a task, its completion 
time, and its starting time. The order of the task must be defined. 

Two fundamental planning and control process are available in a network 
analysis to complete a predetermined project. These are PERT (project evaluation 
and review technique) and CPM (critical path method). 

The PERT was developed in 1957 by the US Navy’s Polaris Nuclear Subma-
rine Missile development project. Later, this method is used in different indus-
tries/organizations. The PERT is successfully applied in the organization of the 
Winter Olympics in 1968. This technique has been used for planning different types 
of projects, mainly, when the duration of the activity is probabilistic. This project 
management method determines the real time to complete the entire project. This 
technique is appropriate for complex projects with many non-routine tasks and large 
projects with complex requirements. Until now, more than 200 papers have been 
published related to the PERT, and even then more research is required on this area. 

In 1957 [12], the critical path method (CPM) was developed by the largest 
chemical company known as DuPont Company. Two mathematicians developed 
a method whose target was to avoid the added costs related to the scheduling of 
shutting down and restarting plants. The CPM is originally a scheduling algorithm 
which identifies the critical tasks/activities in the longest sequence of tasks in a 
network. The critical tasks are vital for attending the project deadline. The CPM is 
suitable when a project consists of several interconnected and interdependent tasks, 
repetitive tasks, or projects with strict timelines and deadlines (e.g., building of a 
bridge, software development, etc.). 

Other project management techniques are 

1. Work breakdown structure (WBS): In this method, a big project divided the 
whole work into small tasks which are easily manageable, and this process is 
known as a work breakdown structure. 

2. Scrum: Scrum is a very common technique in the Agile methodology. In this 
method, the project is divided into a series of cycles as sprints. 

3. Scaled Agile framework (SAFe): This process is basically the Agile project 
management implemented at scale. 

4. Kanban: In this method, the work flow of a project is divided into small tasks. 
All these tasks are then organized and displayed such that everybody on the team 
knows the progress of the project. 

5. Gantt: A Gantt chart is basically a bar chart which displayed the project tasks 
over time. It is helpful as it shows which specific work needs to be finished on a 
specified time.
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6. Waterfall: This is an organized and linear approach for managing and controlling 
the projects. 

7. PEP (performance evaluation program): In this method, evaluation can help to 
identify areas of application that need improvement and determine whether the 
project is achieving its goals or objectives. 

2 Stages of Project Management 

The tasks associated in a project are performed in three stages/phases which are 
planning, scheduling, and control. 

2.1 Planning 

In this stage, the objectives of the project are settled, and the assumptions related 
to the project are identified. Also, in this stage, all the tasks or activities or jobs are 
listed, and these must be completed to finish the entire project. 

2.2 Scheduling 

In this process, the activities are ordered according to their appearance. The 
following steps are performed in this phase: 

1. The starting and ending time for each task 
2. The critical path on which the tasks need special care 
3. The float and slack times for other paths which are not critical 

2.3 Controlling 

The controlling stage is performed after completion of the previous two stages. This 
stage involves the following tasks: 

1. Preparing progress reports periodically 
2. Identifying the progress of the project 
3. Analyzing the status 
4. Taking decisions for resource allocation, modification, crashing, etc.
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3 Advantages of Network Analysis 

Several methods are mentioned at the beginning of this chapter for project manage-
ment. But the network analysis technique has the following advantages for project 
management: 

This method shows the interrelationship among activities in the project. It also 
provides a complete idea of controlling the sequence of performance of the tasks. 
It is evident that the pictorial approach is a better process for clarifying verbal 
instructions. This method identifies activities which are critical for a project. The 
manager can forecast the required exact resources from the network corresponding 
to the project and also maintain the resource allocation to attend the critical 
condition and to maintain or minimize the total project completion cost. This 
method also integrates all project components to whatever detail the management 
desires. It connects time to cost, which allows a monetary value which is placed 
when changes are needed. 

3.1 Basic Components of a Network and Some Terminologies 

In a network, the events/nodes and activities (also known as jobs and tasks) are the 
fundamental components. 

3.2 Event or Node 

A node or an event or a point is a particular moment that depicts the start or end 
of a single or multiple tasks. This is a position of decision or accomplishment. The 
start and end points of a task are displayed by two nodes, generally known as the 
tail and head events, respectively. Generally, a small circle represents an event; other 
symbols may also be used, viz., rectangles, hexagons, etc. These geometric symbols 
are numbered for unique representations of an activity. Reaching an event means the 
work has been completed up to that event. 

3.3 Activity or Task 

Two nodes are joined by a directed arc or edge representing an activity or a task that 
consumes time duration, money, material, or other types of resources. 

An activity is identified with two nodes called tail (starting event) and head 
(ending event). Usually, two integers, i and j , represent an activity .(i, j) where 
.(i, j) is a directed edge and hence .(i, j) is an ordered pair. The integers i and j
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represent the tail and head of the activity .(i, j) (see in Fig. 6.1). Upper case alphabets 
generally denote the activities. 

Depending on the preference and nature, the activities are classified as follows: 

1. Predecessor Activity: An activity .(i, j) is called predecessor activity if it finished 
before starting of all activities those are end at j . 

2. Successor Activity: An activity .(i, j) is called successor activity if it starts 
immediately after finishing all the activities those are end at i. 

3. Dummy Activity: In a network, there is only one source node and only one 
destination node. Sometimes, it happened that one or more activities finished in a 
nondestination node or there is no successor activity. In this case, a new activity 
is incorporated in the network which joins such type of activity with a destination 
node or any other suitable node; this activity is called dummy activity. The time 
or cost or other resources of this activity is considered as zero. The dotted line 
depicts it in the network diagram. 

3.4 Merge and Burst Events 

If more than one task/activity ends in an event, then the event is called a merge 
event. If one or more activities start from an event, this event is called a burst event 
(see Fig. 6.2). 

3.5 Network 

A network is the complete diagrammatical representation of a project where directed 
edges (arrows) and nodes are connected logically and sequentially that represent 
activities and events. This is nothing but a directed graph with edge weights. 

Fig. 6.1 Activity and 
events/nodes 

Fig. 6.2 Merge and burst 
events
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3.6 Path 

A connected chain of activities and nodes of a network whose starting and ending 
nodes are different is known as a path. 

4 Common Errors in a Network 

The construction of a network is not an easy task. There are some systematic rules 
to the construction of a network. The network must be free from looping, dangling, 
and redundancy. 

4.1 Looping (Cycling) 

The network diagram must be drawn in such a way that it is loopless. If the diagram 
contains one or more loops, then the project cannot be completed and repeated for 
infinite time, cost, etc. Also, if there is a loop in the network, it is impossible to find 
a path from the starting node to the end node. A looping network is given in Fig. 6.3. 

4.2 Dangling 

It is mentioned that no activities can be ended to a node other than destination node. 
This activity disconnects the network and this situation is called as dangling. It 
must be avoided. In this situation, a dummy activity is incorporated to maintain the 
connectivity of the network (see Fig. 6.4). 

Fig. 6.3 Looping 

Fig. 6.4 Dangling
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Fig. 6.5 Redundancy 

4.3 Redundancy 

If in between two nodes there is only a dummy activity, then this dummy activity 
can be removed by merging the end nodes. This is called redundancy (see Fig. 6.5). 

5 Rules to Construct Network 

Generally, the following rules are followed to construct a network: 

1. A unique arrow or directed edge represents each activity. 
2. Crossing between the edges must be avoided. Try to draw straight edges. 
3. Each activity has unique tail and head nodes. 
4. After completion of all activities preceding a node, a new node initiated. 
5. A node occurs only once, i.e., that is, the network is free from any loop. 
6. An activity succeeding in a node cannot be started until all the activities merge 

into this event. 
7. The nodes are numbered with different integers, i.e., two nodes have two 

distinct integers. Therefore, an activity is identified uniquely and unambiguity. 
The number of the starting node of an activity must be less than that of the 
ending node. 

8. For any two nodes, there either is no activity or has only one activity. 
9. Dummy activity must be avoided. It increases the size of the network. So, 

dummy activity will be included only if it is extremely required. That is, 
the unnecessary use of dummy activities will increase the complexity of the 
network. 

10. The project network has unique entry (source) node and unique terminal 
(destination) node. 

5.1 Numbering the Events 

After the construction of the network as per the occurrence of the activities, all the 
nodes are labeled by numbers. There are specific rules for such numbering due to 
D. R. Fulkerson. This numbering reflects the flow of the network:
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(i) Every node has a unique number. 
(ii) Numbering of nodes must be done sequentially from left to right. 
(iii) In a network, there is only one starting event, and the number assigned to that 

event is 1. 
(iv) Delete all edges which are originating from the starting node 1. This will 

generate at least one initial node (no activities merge with it). 
(v) Assign numbers .2, 3, . . . , etc. to these initial nodes. 
(vi) Remove all edges which are originated from these numbered events. This 

again creates new initial nodes. 
(vii) Repeat steps (v) and (vi) until all the nodes get numbered. 

The first step in network analysis is the construction of the network using the 
above rules. The next step is to prepare a planning schedule such that the total project 
completion time is minimum. 

The following notations and symbols are used in the analysis of the network: 

(i) The earliest occurrence time . Ei of each event i, earliest finishing time . Fij , and 
latest beginning time . Bij of each activity .(i, j) given by the edge . eij and latest 
allowable occurrence time of each event i. 

(ii) Slack .si = Li − Ei for every event i. An event i is said to be a critical event if 
the slack . si corresponding to it is zero. An activity between two critical events 
given by two adjacent nodes of the network is called a critical activity. 

(iii) The critical path of a project, the network, is the path between the starting event 
and the final event, consisting of the critical events and the critical activities. 
The computation of critical path is a vital step in the sense that the total 
finishing time of the project will vary with the time duration of the activities 
on the critical path and with no others. 

6 Project Management in Uncertain Environment 

A network is a composition of two sets, set of vertices and edges. It is already 
mentioned that a network is nothing but a graph with edges or nodes or both that 
have weights. In fuzzy project management, the nodes (events) are certain and it is 
denoted as V ; the set of edges (activities) . E is a subset of .V × V and the weight 
(time duration) of the edge .(i, j) is uncertain, here TFN; and it is denoted by . ˜tij . 
Finally, a fuzzy network is denoted as .S = (V ,E , t). The nodes are numbered as 
.1, 2, . . . , n; n represents the total number of nodes in the network . S . For any edge 
.(i, j), as per construction process, .i < j . 

Dubois and Prade [8] first analyzed the decision-making problems, viz., shortest-
path problem and PERT/CPM, taking the edge weights as fuzzy numbers. Nayeem 
and Pal [20] developed a unified approach to solving fuzzy shortest-path problems 
with interval numbers and triangular fuzzy numbers (TFNs) as edge weights. 
Chanas and Kamburowski [2] developed a method for solving fuzzy PERT using 
the concept of extended addition and strong level sets. Later, Buckley [1] worked on



6 Project Management Using Network Analysis in Fuzzy Environment 119

fuzzy PERT. Mares et al. [13, 14] introduced the convolution law to aggregate the 
fuzzy numbers. In their method, all possible paths are generated to find the critical 
path, and obviously, it is very time-consuming. Chanas et al. [3, 4] investigated 
network flow problems where each edge has a fuzzy arc length. Chanas and Zielinski 
[5] nicely introduced the CPM in fuzzy networks. In the late 1970s ([21]), the fuzzy 
PERT or the fuzzy CPM was studied, where fuzzy numbers are used to mention the 
weight of the activities. Many papers have been published on fuzzy PERT; some of 
them are as follows: [1–3, 6, 9, 11, 16–19, 23–25]. The approach to the subject in all 
these papers is similar. Mazlum and Günerí [15] studied CPM, PERT, and project 
management using fuzzy logic. 

In project management system, the weights of the activities are time duration, 
costs, etc. All these parameters are appropriately represented by fuzzy numbers. In 
this chapter, the TFNs are considered to represent the time duration, cost, etc. of the 
activities. 

Suppose the time taken to complete a task is about 30 min. That means the chance 
to complete the said task in 30 min is very high. It may be completed in 28 min 
or it may take 33 min. The chance to complete the task from 33 min to 28 min 
gradually decreases. The same thing happens from 33 min to 33 min. This type of 
type duration can be represented by .(28, 30, 33). Generally, a TFN is written in the 
form .(a, b, c). .(b−a) and .(c−b) are referred as left and right spreads. If the spreads 
are less, uncertainty becomes less. A TFN is also written in a mean-spread form as 
.〈m,α, β〉 where .m = b, α = b − a, and β = c − b. Mathematically, a TFN is 
written as 

. μA(x) =

⎧

⎪

⎨

⎪

⎩

x−a
b−a

, if a ≤ x ≤ b

1, if x = b
c−x
c−b

, if b ≤ x ≤ c

The value of the function .μA(x) lies between 0 and 1. The value of the function 
.μA(x) is called a membership value. 

The diagrammatic representation is shown in Fig. 6.6. 

Fig. 6.6 Diagram of 
triangular fuzzy number



120 M. Pal

6.1 Arithmetic of TFNs 

Let .P = 〈m,α, β〉 and .Q = 〈m, γ, δ〉 be two TFNs. 
If .m > 0, then the .P > 0; if .m < 0, .P < 0; and if .m = 0, then .P = 0. 
Then the basic addition and subtraction are defined as 
. P + Q = 〈m + n, α + γ, β + δ〉
. P − Q = 〈m − n, α + δ, β + γ 〉
.P − P = 〈0, α + β, β + α〉. 
Multiplication by a scalar k is given by 

. k.P =
{ 〈km, kα, kβ〉, if k > 0

〈km,−kβ,−kα〉, if k < 0

Product of two TFNs is not an exact TFN, but it is very close to a TFN shown 
below: 

. P.Q �
⎧

⎨

⎩

〈mn,mγ + nα,mδ + nβ〉, if P,Q > 0
〈mn, nα − mδ, nβ − mγ 〉, if P < 0,Q > 0
〈mn,−nβ − mδ,−nα − mγ 〉, if P < 0,Q < 0

The inverse and division are defined as follows: 
If .m �= 0, then 

. P −1 = 〈m,α, β〉−1 = 〈m−1, βm−2, αm−2〉

. 
P

Q
= P.Q−1 = 〈m,α, β〉.〈n−1, δn−2, γ n−2〉 �

〈

m

n
,
mδ + nα

n2
,
mγ + nβ

n2

〉

.

The nth power of the TFN P is given by 

. P n = 〈m,α, β〉n �
{ 〈mn,−nmn−1β,−nmn−1α〉, when n is negative

〈mn, nmn−1α, nmn−1β〉, when n is positive

The fuzzy arithmetic is not the same as the arithmetic of real or complex 
numbers. For arithmetic on TFNs, the following interesting issues are observed. 

(i) Subtraction between the same TFNs produces a symmetric TFN whose mean 
value is zero, and the spreads are the sum of both the spreads of computed 
TFN, i.e., .P − Q = 〈0, a, a〉. 

(ii) The division of a TFN by itself is also a symmetric TFN having a mean value 
one. Inverse and division of a TFN do not exist if its mean value is zero, i.e., 
.P/Q = 〈1, b, b〉. 

(iii) The arithmetics operations addition and multiplication on TFNs follow the 
commutative and associative laws.
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(iv) The distributive laws do not always hold. 
(v) It may be noted that 

(a) . 〈m,α, β〉.〈0, 0, 0〉 = 〈0, 0, 0〉.
(b) . 〈0, α, β〉.〈0, γ, δ〉 = 〈0, 0, 0〉.

Several arithmetic operations are mentioned above. Similarly, the logical oper-
ations, i.e., comparisons of two TFNs, are also available. For this purpose, many 
methods are proposed by researchers. 

6.2 OERI and Acceptance Index 

Comparison between two TFNs is not an easy task, and it is required in many places, 
particularly in decision-making. Several methods are available for this purpose. 
The overall existence ranking index (OERI) is one of the best methods. In this 
method, the deconvolution technique is used to avoid the double inclusion of fuzzy 
uncertainties in the fuzzy PERT system. 

In this chapter, the acceptance index is used for ranking TFNs. Sengupta and 
Pal [22] proposed an acceptance index for ranking of interval numbers. Nayeem 
and Pal [20] developed a similar technique ranking of TFNs. This ranking index is 
much more efficient and mathematically equivalent to the OERI for the ranking of 
TFNs. Also, the deconvolution process is used here. 

Definition 1 Suppose .μ−1
P (t) and .μ−1

Q (t) be two inverse membership functions of 
the fuzzy numbers P and Q, along with a given existence level t . The OERI for the 
numbers P and Q is given below: 

. OERI (P,Q) = OERI (P ) − OERI (Q), where

OERI (P ) =
∫ 1

0
[χ(t)L(t)μ−1

PL
(t) + (1 − χ(t))R(t)μ−1

PR
(t)]dt, (6.1) 

where .L(t) and .R(t) are the subjective weights for the left and right parts of P . . χ(t)

and .1 − χ(t), .χ(t) ∈ [0, 1] represent the subjective weights at the existence level t . 
The subjective weighting functions .L(t), R(t), and .χ(t) are considered by the 

decision-maker based on the problem and own opinion. In [7], various aspects 
of weighting functions are discussed. Depending on the decision-maker’s attitude, 
different weighting functions are available. 

In the indifferent point of view, .χ(t) = 1
2 and .L(t) = R(t) = 1. 

In the optimistic point of view, .χ(t) = 1 − 1
2 t and .L(t) = R(t) = 1. 

In case of optimistic point of view, .χ(t) = 1 − 1
2 t and .L(t) = R(t) = 1. 

In case of a pessimistic point of view, .χ(t) = 1
2 t and .L(t) = R(t) = 1.
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For comparison of two TFNs, many methods are proposed, among them the 
following method introduced by Nayeem and Pal is more realistic. Nayeem and 
Pal defined the acceptability index denoted by .A -index. 

Definition 2 The acceptability index, i.e., .A -index of the proposition “ . ̃p =
〈p, α, β〉 is preferred to .̃q = 〈q, γ, δ〉” is given by 

.A (p̃ ≺ q̃) = q − p

β + γ
· (6.2) 

Using this .A -index, the following ranking orders are defined. 

Definition 3 If .A (p̃ ≺ q̃) ≥ 1, then . ̃p is called totally dominating over . ̃q in 
minimization sense, and for maximization sense, the fact is converse, and this is 
denoted by .p̃ ≺ q̃. 

Definition 4 If . 0 < A (p̃ ≺ q̃) < 1, then in the sense of minimization, . ̃p is called 
“partially dominating” over . ̃q and in the sense of maximization . ̃q is called ‘partially 
dominating’ over . ̃p. This phenomena is denoted by .p̃ ≺P q̃. 

On the other hand, a pessimistic decision-maker would prefer the number left 
end whose support is smaller than that of the other and an optimistic decision-maker 
would prefer the number right end of whose support is greater than that of the other. 

Now, the membership functions of a TFN .˜P = 〈p, α, β〉 are given by 

. μPL
(t) = t − (p − α)

α
for p − α ≤ t ≤ p

and μPR
(t) = (p + β) − t

β
for p ≤ t ≤ p + β

so that .μ−1
PL

(t) = (p − α) + αt and .μ−1
PR

(t) = (p + β) − βt . 
The .OERI (P ) proposed by Chang and Lee for the appropriate choice of 

weighting functions is given by 

. 
1

2

∫ 1

0
(p + α + αt + p + β − βt)dt = p − α − β

4

in case of indifferent view. 
Similarly, for optimistic and pessimistic views, it takes the values . OERI (P ) =

p − 5α − β

12
and .p − α − 5β

12
, respectively. 

Thus, .OERI (Q) for the TFN .˜Q = 〈q, γ, δ〉 is given by . q − γ − δ

4
, q −

5γ − δ

12
, q − γ − 5δ

12
, respectively, for the three views. 

Thus, for indifferent view, .˜P < ˜Q if 
.OERI (˜P) < OERI (˜Q)
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. , i.e.. p − α − β

4
< q − γ − δ

4

. , i.e., p − q <
(α − β) − (γ − δ)

4

. i.e. p − q <
α + δ

4
− β + γ

4

., i.e.,
q − p

β + γ
>

1

4

(

1 − α + δ

β + γ

)

. (6.3) 

Similarly, for the optimistic view, .˜P < ˜Q if 

.
q − p

β + γ
>

1

12

(

1 − 5
α + δ

β + γ

)

(6.4) 

and for pessimistic view, .˜P < ˜Q if 

.
q − p

β + γ
>

1

12

(

5 − α + δ

β + γ

)

. (6.5) 

In this approach, .˜P ≺ ˜Q if 

.
q − p

β + γ
≥ 1 (6.6) 

and .˜P ≺P
˜Q if 

.0 <
q − p

β + γ
< 1 (6.7) 

The choice depends on the decision-makers’ view of optimism or pessimism in 
case of 

.
q − p

β + γ
= 0, i.e., p = q. (6.8) 

From Eqs. (6.6), (6.7), and (6.8), it is obvious that the importance is given on the 
points p and q where the membership value is 1 attained by . ˜P and . ˜Q, respectively. 
From Eq. (6.6), it is clear that when .˜P ≺ ˜Q, .p + β lies left to .q − γ , and (6.7) 
guarantees that p always lies on the left of q when .˜P ≺P

˜Q. 

But since .
α + δ

β + γ
is a positive quantity, it must be noted from (6.3), (6.4), 

and (6.5) that the right-hand side of each of the inequalities may not be a nonnegative 
quantity. Thus, .˜P < ˜Q even if .p > q. Again, if (6.6) holds, all of (6.3), (6.4), 
and (6.5) hold. Also, the time to compare two TFNs is less than other proposed 
methods.
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6.3 Deconvolution 

The extended subtraction for two L-R fuzzy numbers .˜P = (pm, pL, pR)LR and 
.˜Q = (qm, qL, qR)LR is defined as .˜P 
 ˜Q = (pm − qm, pL + qR, pR + qL)LR . 

Notice that during subtraction, the uncertainty will increase, even both the TFNs 
are the same. If we add two TFNs . ˜P and . ˜Q and then subtract . ˜Q from the sum, then 
the mean value is the same as the mean value of . ˜P , but spreads are added two times. 
Extended subtraction method is used to avoid double inclusion. For this purpose, the 
deconvolution approach discussed in [10] is used in the backward pass calculation 
in fuzzy CPM. 

The backward extended subtraction or deconvolution (denoted by . [−]) for  two  
L-R fuzzy numbers .˜P = (pm, pL, pR)LR and .˜Q = (qm, qL, qR)LR is defined as 
. ˜P [−]˜Q = (pm − qm, pL − qL, pR − qR)LR.

There is a big controversy in the deconvolution of fuzzy numbers. Note that the 
left and/or right spreads may be negative, and as per the definition of TFNs, these 
spreads must be nonnegative. It is obvious that if any one spreads is negative, then 
there is a question about the existence of the TFN. Particularly, this number does not 
exist. But, here, we are interested in comparing or ranking the fuzzy numbers. So 
for this application point of view, the existence or nonexistence of the fuzzy number 
can be ignored if an appropriate ranking method is used. 

There is a drawback to use deconvolution in fuzzy numbers. The result obtained 
by applying the deconvolution is not necessary a valid fuzzy number. But we are 
only concentrated in the ranking or comparison of the results; the problem of 
existence or nonexistence does not matter if an appropriate ranking process is used. 

During deconvolution, a spread may become negative, and this spread can be 
transferred to an equivalent nonnegative spread using the following method: 

(a) The mean value, i.e., the point where the fuzzy number attains the membership 

value 1, is transformed to .lm =
∫

w

[μ−1
AL

(w) − μ−1
BL

(w)]dw. 

(b) The left and right spreads are transformed to .lL = lm − (am − bm) and . lR =
(aR − bR) − lL, respectively. 

(ii) If .aL − bL ≥ 0 and .aR − bR < 0, then 

(a) The mode is transformed to .rm =
∫

w

[μ−1
AR

(w) − μ−1
BR

(w)]dw. 

(b) The left and right spreads are transformed to .rR = (am − bm) − rm and . rL =
(aL − bL) − rR , respectively. 

For triangular fuzzy numbers, . lm and . rm are given by . lm = (am − bm) − 1

2
(aL −

bL) and .rm = (am − bm) + 1

2
(aR − bR) so that . lL = −1

2
(aL − bL), lR = (aR −

bR) + 1

2
(aL − bL), and .rL = (aL − bL) + 1

2
(aR − bR), rR = −1

2
(aR − bR).
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If .(aL − bL) and .(aR − bR) are both negative, then the mean value remains 
unchanged, and the left spread and right spread are changed to .−(aR − bR) and 
.−(aL − bL), respectively. 

7 Critical Path Analysis in Fuzzy Environment 

After construction of the network, the analysis of the time, cots, etc. are needed for 
planning of different activities of the project. In fuzzy environment, the activities 
are also fuzzy, which means their time durations or costs are fuzzy numbers. 
Here, TFNs are assumed as the weighs activities’ weights (time duration, cost, 
etc.) that the activities are certain, but their weights are uncertain. The events are 
certain. No weight is associated with any event, so events are completely certain. 
So in the project management system, the constructed network is certain; only the 
weights on the edges are uncertain, in this case, TFNs. This problem can be solved 
using the existing method for the crisp network by defuzzifing the weights on the 
edges to the crisp numbers. But the original information on the edges will be lost 
during defuzzification. So, we need a separate method which will handle the fuzzy 
numbers. In this chapter, such a new method is discussed. 

The main objective of the network analysis is the preparation of the planning 
schedule of the project. In such a planning schedule, the following factors are 
included: 

(i) Project finishing time. 
(ii) Earliest starting time of each activity. 
(iii) Latest starting time of an activity without delaying. 
(iv) Float for all activities. This is the time duration by which the completion of an 

activity can be delayed, but the total completion time of the project remains the 
same. 

(v) Computation of critical activities and the corresponding critical path. 

7.1 Notation 

Some useful notations are listed below: 

• . eij is the .(i, j)th edge or activity. 
• . ˜Ei is the earliest occurrence time of the event i, i.e., it is the earliest time at which 

the event i can occur without changing the total project completion time. 
• . ˜Li is the latest occurrence time in which the event i can start without affecting 

the total project completion time. 
• . ˜tij time duration of the activity . eij . 
• .˜LSij is the latest starting time of the activity . eij

• .˜EF ij is the earliest finishing time of activity . eij .
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The proposed method to find a critical path has two steps, viz., (a) forward pass 
calculations and (b) backward pass calculations. 

7.2 Forward Pass Calculations 

In this step, the computation starts from the starting event . (s, numbered as 1), 
continues to the events in an increasing number of event, and ends at the destination 
event (t). At each event, the earliest starting and ending times are determined for 
each activity. The steps are written below: 

The main steps for forward pass calculation are mentioned below: 
Initially, .˜E1 = 0, i = l. 
The earlier occurrence time of the event j for all nodes j is given by 

. ˜Ej = m̃axi{˜EF ij } = m̃axi{˜Ei +˜tij }

for all immediate predecessor activities of the node j . 
Notice that to find . ˜Ej , addition of TFNs and the finding of maximum of TFNs are 

involved. These steps involved new (fuzzy) arithmetic and comparison operations. 
The final value, i.e., . ˜En, gives the length of the critical path, which is nothing but 
the completion time of the project. But the critical activities and critical path are 
determined by backward pass calculations. 

7.3 Backward Pass Calculations 

In this step, the calculation starts from the terminal event. The process is repeated 
through the event in a decreasing order and ends at initial event 1. At each node 
(event), the latest allowable occurrence time . ˜Li for all i is computed. 

The main computations in this step are the following: 
Initially, .˜Ln = ˜En, j = n: 

. ˜Li = ˜mini{˜LSij } = ˜minj {˜Lj [−]˜tij }

for all immediate successor activities of the node i. 
The critical nodes can be determined by calculating the values of . ˜Li for all i. If  

.˜Ei = ˜Li for some .i = 1, 2, . . . , n, then node i is critical. However, the computation 
of . ˜Li for all i is not enough to find critical activities and critical paths. For this 
purpose, we need to find out more information, viz., floats and slack.
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7.4 Computation of Floats and Slack Times 

The floats are of three types, viz., total float, free float and independent float. These 
parameters depend on the earliest and latest event times, and a formal definition is 
also given. After drawing the network and labeling, the earliest and latest times for 
each event are calculated. Then the next step is to compute the slack time of each 
event and floats of each activity. The float suggests us how much time one can delay 
the activity by retaining the same project completion time. 

The total float for an activity . eij is denoted by .T Fij and is determined by 
.˜T F ij = ˜LSij − ˜ESij or .˜T F ij = ˜LF ij − ˜EF ij or .˜T F ij = ˜Lj − (˜Ei +˜tij ) as 

.˜Lj = ˜LF ij and .˜EF ij = ˜Ei +˜tij . 
For any activity, the free float is either zero or any positive number less than total 

float. Free float has one interesting use. It is used for rescheduling activities with 
minimum changing of earlier schedule. 

If .˜IF ij is negative, then it is taken as zero. 
In terms of different types of times and floats, the critical event and critical 

activity are defined as follows: 
An event i is called critical if its slack is zero, i.e., .˜Ei = ˜Li . 
An activity . eij is called critical if its total float is zero, i.e., .˜LSij = ˜ESij or . ˜LF ij =
˜EF ij . 
If an activity is not critical, it is called noncritical. 

8 The Algorithm 

This section presents an algorithm for determining the critical path for a network 
whose edge weights are TFNs. The forward process involves extended addition 
TFNs, and the backward process involves using backward extended subtraction, 
i.e., deconvolution of TFNs. 

Let .G = (V ,E ) be a network corresponding to the given project. The nodes are 
numbered as .v1, v2, . . . , vn and . E is the set of edges . eij . The weight of the edge 
. eij is denoted as . ˜tij , and it is a TFN. It is already mentioned that . ˜Ei and . ˜Li are the 
earliest occurrence time and latest allowable occurrence time of the event i. Again,  
.˜EF ij and .˜LSij are the earliest finishing time and latest starting time of the edge . eij : 

ALGORITHM FUZZYPROJ. (G, n, s, t,P)

Input: A project network .G = (V ,E ) with n nodes. s and t represent the source 
and sink nodes, and .[˜tij ]n×n is the adjacency matrix of G. 
Output: A critical path . P from s to t . 
Step 1: //forward pass calculation// 

Step 1.1: Initially, .j ← s, .˜Ej = ˜0, where, .˜0 = 〈0, 0, 0〉, the zero TFN and 
.V ∗ = V − {s}. 
Step 1.2: while .V ∗ �= φ do
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Calculate .˜EF ij = ˜Ej ⊕˜tj i for all j such that .eji ∈ E . 
Find .˜EF ij∗ = ˜maxj∈P(i)

˜EF ij , where .P(i) is the set of events 
immediately preceding the node i. 
Set .˜Ei ← ˜EF ij∗ and .V ∗ ← V ∗ − {i}. 

endwhile; 
Step 2: //backward pass computation// 

Step 2.1: Initially, .j ← t and . ˜Lj ← ˜Ej , V
∗ = {t}.

Step 2.2: While .V ∗ �= V do 
Find .˜LSij = ˜Lj [−]˜tij for all j such that .eij ∈ E . 

Compute .d˜LSij∗ = ˜minj∈S(i)
˜LSij , where .S(i) is the set 

of events immediately following the node i. Update . ˜Li ←
˜LSij∗ and .V ∗ ← V ∗ ∪ {i}. 

endwhile; 
Step 3: //calculation of slack// 

for all .i ∈ V do 
. ˜SKi = ˜Li[−]˜Ei.

endfor; 
Step 4: //computation of critical path// 

Step 4.1: .i ← s,P ← φ. 
Step 4.2: while .i �= t do 

Compute .d˜SKj∗ = ˜minj∈N(i)
˜SKj , where .N(i) is the neighbor of i. 

Set .P ← P ∪ eij∗ and .i ← j∗. 
endwhile; 

END FUZZYPROJ 

9 An Illustrative 

To illustrate the proposed process, we consider a project network shown in Fig. 6.7. 
In this network, the duration of the activities is considered as TFNs. The same 
procedure applies to other types of fuzzy numbers also. 

If the left and right spreads are set to zero, then using CPM for a crisp network, 
the critical path is obtained as .1 → 3 .→ 4 → 6 → 7. 

Applying our proposed algorithm, one can determine the critical path as follows: 
Initially, .˜E1 = 〈0, 0, 0〉. 

.˜E2 = ˜E1 ⊕˜tij = 〈0, 0, 0〉 ⊕ 〈20, 2, 3〉 = 〈20, 2, 3〉, 

.˜E3 = ˜E1 ⊕˜tij = 〈0, 0, 0〉 ⊕ 〈23, 4, 5〉 = 〈23, 4, 5〉. 
So, . ˜EF 41 = ˜E1 ⊕˜t14 = 〈0, 0, 0〉 ⊕ 〈8, 2, 4〉 = 〈8, 2, 4〉
and .˜EF 43 = ˜E3 ⊕˜t34 = 〈23, 4, 5〉 ⊕ 〈16, 3, 4〉 = 〈39, 7, 9〉. 

There are two paths to reach the node 4. 
Now, .A (˜EF 41 ≺ ˜EF 43) = 39−8

4+7 > 1. So, .˜EF 43 totally dominates .˜EF 41. 
Now, the earliest fuzzy starting time . ˜E4 for the node 4 is obtained as follows: 

.˜E4 = m̃ax{˜EF 41, ˜EF 43} = 〈39, 7, 9〉.
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Fig. 6.7 A network with TFNs as project duration 

. ˜EF 52 = ˜E2 ⊕˜t25 = 〈20, 2, 3〉 ⊕ 〈19, 3, 4〉 = 〈39, 5, 7〉
.˜EF 54 = ˜E4 ⊕˜t45 = 〈39, 7, 9〉 ⊕ 〈1, 0, 2〉 = 〈40, 7, 11〉. 
Now, .A (˜EF 52 ≺ ˜EF 54) = 40−39

7+7 < 1. So, .˜EF 52 ≺P
˜EF 54. 

.˜E5 = m̃ax{˜EF 54, ˜EF 52} = ˜EF 52 = 〈40, 7, 11〉. 
. ˜EF 65 = ˜E5 ⊕˜t56 = 〈40, 7, 11〉 ⊕ 〈0, 0, 0〉 = 〈40, 7, 11〉
.˜EF 64 = ˜E4 ⊕˜t46 = 〈39, 7, 9〉 ⊕ 〈18, 3, 5〉 = 〈57, 10, 14〉. 

Now, .A (˜EF 65 ≺ ˜EF 64) = 57−40
11+10 < 1. So, .˜EF 65 ≺P

˜EF 64. 
.˜E6 = m̃ax{˜EF 65, ˜EF 64} = ˜EF 64 = 〈57, 10, 14〉. 

. ˜EF 73 = ˜E3 ⊕˜t37 = 〈23, 4, 5〉 ⊕ 〈44, 4, 6〉 = 〈67, 8, 11〉

.˜EF 76 = ˜E6 ⊕˜t67 = 〈57, 10, 14〉 ⊕ 〈10, 2, 3〉 = 〈67, 12, 17〉. . ˜EF 75 = ˜E5 ⊕˜t57 =
〈40, 7, 11〉 ⊕ 〈4, 2, 1〉 = 〈44, 9, 12〉. 

Obviously, .˜EF 75 ≺ ˜EF 73 and .˜EF 75 ≺ ˜EF 76. 
But, . A (˜EF 73 ≺ ˜EF 76) = 0.
In this case, the mean values of .˜EF 73 and .˜EF 76 are both the same, but spreads 

are different. Here, two cases arise. 
For optimistic point of view, .˜E7 = 〈67, 12, 17〉, and for pessimistic point of view, 

.˜E7 = 〈67, 8, 11〉. 
Using these two views, the . ˜Lj s are calculated. 

Optimistic Case 
In this case, .˜E7 = 〈67, 12, 17〉. 

Now, . ˜LS67 = ˜L7[−]˜t67 = 〈67, 12, 17〉[−]〈10, 2, 3〉 = 〈57, 10, 14〉
.˜L6 = ˜LS67 = 〈57, 10, 14〉. 
. ˜LS37 = ˜L7[−]˜t37 = 〈67, 12, 17〉[−]〈44, 4, 6〉 = 〈23, 8, 11〉
. ˜L3 = ˜LS37 = 〈23, 8, 11〉
. ˜LS57 = ˜L7[−]˜t57 = 〈67, 12, 17〉[−]〈4, 2, 1〉 = 〈63, 10, 16〉
. ˜LS56 = ˜L6[−]˜t56 = 〈57, 10, 14〉[−]〈0, 0, 0〉 = 〈57, 10, 14〉
. ˜L5 = ˜min{˜LS57, ˜LS56} = ˜LS37 = 〈57, 10, 14〉
. ˜LS46 = ˜L6[−]˜t46 = 〈57, 10, 14〉[−]〈18, 3, 5〉 = 〈39, 7, 9〉
.˜LS45 = ˜L5[−]˜t45 = 〈57, 10, 14〉[−]〈1, 0, 2〉 = 〈56, 10, 12〉
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. ˜L4 = ˜min{˜LS46, ˜LS45} = ˜LS46 = 〈39, 7, 9〉

. ˜LS37 = ˜L7[−]˜t37 = 〈67, 12, 17〉[−]〈44, 4, 6〉 = 〈23, 8, 11〉

. ˜LS34 = ˜L4[−]˜t34 = 〈39, 7, 9〉[−]〈16, 3, 4〉 = 〈23, 4, 5〉
Here, the mean values of these two TFNs are the same, but their spreads are 
different. In optimistic point of view, 
. ˜L3 = 〈23, 4, 5〉
. ˜LS25 = ˜L5[−]˜t25 = 〈57, 10, 14〉[−]〈19, 3, 4〉 = 〈38, 7, 10〉
. ˜L2 = 〈38, 7, 10〉
. ˜LS12 = ˜L2[−]˜t12 = 〈38, 7, 10〉[−]〈20, 2, 3〉 = 〈18, 5, 7〉
. ˜LS13 = ˜L3[−]˜t13 = 〈23, 4, 5〉[−]〈23, 4, 5〉 = 〈0, 0, 0〉
. ˜LS14 = ˜L4[−]˜t14 = 〈39, 7, 9〉[−]〈8, 2, 4〉 = 〈31, 5, 5〉
. ˜L1 = ˜min{˜LS12, ˜LS13, ˜LS14} = ˜LS13 = 〈0, 0, 0〉
Slakes for Each Node . ˜SK1 = ˜L1[−]˜E1 = 〈0, 0, 0〉[−]〈0, 0, 0〉 = 〈0, 0, 0〉

. ˜SK2 = ˜L2[−]˜E2 = 〈38, 7, 10〉[−]〈20, 2, 3〉 = 〈18, 5, 7〉

. ˜SK3 = ˜L3[−]˜E3 = 〈23, 4, 5〉[−]〈23, 4, 5〉 = 〈0, 0, 0〉

. ˜SK4 = ˜L4[−]˜E4 = 〈39, 7, 9〉[−]〈39, 7, 9〉 = 〈0, 0, 0〉

. ˜SK5 = ˜L5[−]˜E5 = 〈57, 10, 14〉[−]〈40, 7, 11〉 = 〈17, 3, 3〉

. ˜SK6 = ˜L2[−]˜E6 = 〈57, 10, 14〉[−]〈57, 10, 14〉 = 〈0, 0, 0〉

.˜SK7 = ˜L7[−]˜E7 = 〈67, 12, 17〉[−]〈67, 12, 17〉 = 〈0, 0, 0〉. 
Thus, the critical path is .1 → 3 → 4 → 6 → 7. This critical path drawn in bold 

line is shown in Fig. 6.8. 

Pessimistic Case In this case, .˜E7 = 〈67, 8, 11〉. 
Now, . ˜LS67 = ˜L7[−]˜t67 = 〈67, 8, 11〉[−]〈10, 2, 3〉 = 〈57, 6, 8〉

.˜L6 = ˜LS67 = 〈57, 6, 8〉. 

. ˜LS57 = ˜L7[−]˜t57 = 〈67, 8, 11〉[−]〈4, 2, 1〉 = 〈63, 6, 10〉

. ˜LS56 = ˜L6[−]˜t56 = 〈57, 6, 8〉[−]〈0, 0, 0〉 = 〈57, 6, 8〉

. ˜L5 = ˜min{˜LS57, ˜LS56} = ˜LS37 = 〈57, 6, 8〉

. ˜LS46 = ˜L6[−]˜t46 = 〈57, 6, 8〉[−]〈18, 3, 5〉 = 〈39, 3, 3〉

Fig. 6.8 The optimistic critical path for the network of Fig. 6.7
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. ˜LS45 = ˜L5[−]˜t45 = 〈57, 6, 8〉[−]〈1, 0, 2〉 = 〈56, 6, 6〉

. ˜L4 = ˜min{˜LS46, ˜LS45} = ˜LS46 = 〈39, 3, 3〉

. ˜LS37 = ˜L7[−]˜t37 = 〈67, 8, 11〉[−]〈44, 4, 6〉 = 〈23, 4, 5〉

. ˜LS34 = ˜L4[−]˜t34 = 〈39, 3, 3〉[−]〈16, 3, 4〉 = 〈23, 0,−1〉
Here, the mean values of these two TFNs are the same. Note that the right spread 
is negative and the left one is 0. So, using the deconvolution technique, this TFN is 
replaced by .〈23, 1, 0〉. In a pessimistic point of view, 
. ˜L3 = 〈23, 4, 5〉
. ˜LS25 = ˜L5[−]˜t25 = 〈38, 3, 4〉
. ˜L2 = 〈38, 3, 4〉
. ˜LS12 = ˜L2[−]˜t12 = 〈38, 3, 4〉[−]〈20, 2, 3〉 = 〈18, 1, 1〉
. ˜LS13 = ˜L3[−]˜t13 = 〈23, 4, 5〉[−]〈23, 4, 5〉 = 〈0, 0, 0〉
.˜LS14 = ˜L4[−]˜t14 = 〈39, 3, 3〉[−]〈8, 2, 4〉 = 〈31, 1,−1〉 = 〈30.5, 0.5, 0.5〉 by 
deconvolution 
. ˜L1 = ˜min{˜LS12, ˜LS13, ˜LS14} = ˜LS13 = 〈0, 0, 0〉
Slakes for Each Node . ˜SK1 = ˜L1[−]˜E1 = 〈0, 0, 0〉[−]〈0, 0, 0〉 = 〈0, 0, 0〉
. ˜SK2 = ˜L2[−]˜E2 = 〈38, 3, 4〉[−]〈20, 2, 3〉 = 〈18, 1, 1〉
. ˜SK3 = ˜L3[−]˜E3 = 〈23, 4, 5〉[−]〈23, 4, 5〉 = 〈0, 0, 0〉
.˜SK4 = ˜L4[−]˜E4 = 〈39, 3, 3〉[−]〈39, 7, 9〉 = 〈0,−4,−6〉 = 〈0, 6, 4〉 by 
deconvolution 
. ˜SK5 = ˜L5[−]˜E5 = 〈57, 6, 8〉[−]〈40, 7, 11〉 = 〈17,−1,−3〉 = 〈17, 3, 1〉
. ˜SK6 = ˜L2[−]˜E6 = 〈57, 6, 8〉[−]〈57, 10, 14〉 == 〈0,−4,−6〉 = 〈0, 6, 4〉
.˜SK7 = ˜L7[−]˜E7 = 〈67, 8, 11〉[−]〈67, 8, 11〉 = 〈0, 0, 0〉. 

Thus, another critical path is .1 → 3 → 7. This critical path is drawn in a blue 
bold line shown in Fig. 6.9. 

See that for this simple network, there are two alternative paths whose lengths 
are .〈67, 12, 17〉 and .〈67, 8, 11〉. In these two TFNs, the mean values are the same, 
while spreads are different. The proposed method is also valid for crisp weights of 

Fig. 6.9 The pessimistic critical path for the network of Fig. 6.7
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the edges. If both the weights are set to zero, the entire problem becomes a problem 
on a crisp graph. This is the beauty of working with fuzzy numbers. 

In a crisp network, all the weights of the edges are real numbers. But in this 
problem, the weights of the edges are considered as TFNs. On the other hand, in a 
probabilistic network, the duration on the activities is represented in terms of three 
expected times, viz., optimistic, pessimistic, and most likely. In this representation, 
three different times (real numbers) are considered. So, for a probabilistic network, 
the length of the critical path is not certain; it is expected. But in the fuzzy network, 
the length of the critical path is a fuzzy number, which gives the possibility to 
complete the project. 

10 Conclusion 

In reality, the time duration to complete an activity is, in general, uncertain. So, 
here, the duration of an activity is taken as a triangular fuzzy number. For this 
project, the possible completion time is calculated. The most probable time and 
the maximum time needed to finish the project are determined. Also, the minimum 
time to complete the project is computed. The same method is applied to other types 
of fuzzy numbers, such as interval numbers, trapezoidal fuzzy numbers, pentagonal 
fuzzy numbers, etc. 
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Chapter 7 
Generalized Hukuhara Global 
Subdifferentiability in Interval 
Optimization Problems 

Anshika, Krishan Kumar, and Debdas Ghosh 

1 Introduction 

Various fields of optimization such as nonlinear applied analysis, variational analy-
sis, etc., have faced significant evolution over the last few decades. Convex analysis 
[23] plays a vital role in the development of nonlinear optimization. However, 
the local properties of nonsmooth nonconvex functions are not necessarily global. 
Due to these drawbacks of convex analysis, various subdifferentials, along with 
different directional derivatives, asymptotic functions, and conjugation procedures 
were defined for different classes of nonconvex functions (see [1, 4, 22, 24]). 

The first fundamentals on interval arithmetic were discussed by Moore [21] in  
1966. However, there were a few demerits of the proposed arithmetic difference (see 
[16]). Due to this, for the difference of compact intervals, Hukuhara [16] introduced 
a new rule known as H -difference or the Hukuhara difference of intervals. However, 
this definition suffers certain drawbacks (see [5]). Despite of that, Wu [26] presented 
the notions of limit, continuity, and differentiability of IVFs. After that, Markov 
[20] introduced a new nonstandard subtraction which helped in removing the 
deformity of H -differentiability and proposed the generalized calculus on intervals. 
Subsequently, Stefaninni and Bede [25] defined a concept of gH -difference or 
generalized Hukuhara difference of intervals which provides an additive inverse for 
all pairs of compact intervals (which fails in previously defined differences). 

The calculus of IVFs performs an important part in observing the optimality 
and smoothness of an IVF. At first, Hukuhara [16] used  H -difference of intervals 
to define the notion of differentiability of IVFs. However, the H -differentiability 
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possesses certain demerits (see [5]). After the commencement of the gH -difference 
of IVFs, Stefaninni and Bede [25] proposed the idea of gH -differentiability for 
IVFs. Thereafter, Chalco-Cano et al. [5] proposed various concepts on the calculus 
of IVFs. One can note that the linear orderedness property fails for intervals. 
Therefore, the ordering of intervals is necessary to study the arithmetic of intervals. 
Due to this, Ishibuchi and Tanaka [17] observed partial ordering structures and 
Ghosh et al. [12] studied the variable ordering relations for intervals with their 
application to IOPs. To extend the calculus on IOPs further, the concepts of gH -
directional derivative, gH -Fréchet derivative, and gH -Gâteaux derivative of IVFs 
were introduced in [10]. Further, the notions of gH -partial derivative and gH -
gradient for IVF were discussed in [8]. Ghosh et al. [8] derived the KKT conditions 
for unconstrained IOPs by considering the geometrical significance of the solutions. 
Many researchers have extended this calculus of IVFs for instance [7, 9, 13, 18, 19] 
and references therein. 

In the analysis of nonsmooth IOPs, it has been observed that very few calculi 
have been developed using gH -subdifferentiability for IVFs (see [2, 3, 18, 19]). 
However, these theories involve the help of convex IVFs, which is insufficient 
in providing adequate information on the local or global efficient solution of 
nonconvex nonsmooth IVFs. Motivated from this, we present the theory on gH -
global subdifferentiability of IVFs. Towards this, we define the notions of gH -lower 
and gH -upper global directional derivatives, which help in defining the notions 
of gH -lower and gH -upper global subdifferentials for IVFs. Also, we present a 
comparison of gH -global subdifferentials with gH -subdifferential, gH -proximal 
subdifferential, and gH -Fréchet subdifferential for IVFs. 

From the literature on IVFs and IOPs (see [2, 6, 8, 10, 11, 19]), it has been 
observed that there is no separate calculus to deal with the class of nonconvex IVFs. 
Also, it can be seen that if the objective function contains the set of minimizers, 
then the Dini directional derivatives fail to provide optimality conditions for IVFs 
[14, 15]. In this chapter, we propose the notions of gH -lower and gH -upper global 
directional derivatives for IVFs, which provides a global view with respect to gH -
Dini directional derivatives. Next, we have shown that the gH -global directional 
derivatives possess some important properties from gH -directional derivatives (see 
Remark 2). In the sequel, we have defined the concepts of gH -lower and gH -
upper global subdifferentials for IVFs. It has been proved that the gH -upper global 
subdifferential equals the gH -upper Dini subdifferential. Finally, with the help 
of gH -lower global subdifferential for IVFs, we have presented the optimality 
conditions to estimate efficient solutions to nonsmooth IOPs. 

The whole work is arranged in the following order. Section 2 covers some 
calculus rules and basic tools for IVFs. In the next Section 3, the  gH -lower and 
gH -upper global directional derivatives for IVFs are proposed. Several important 
characteristics of gH -lower and gH -upper global directional derivatives are given 
in the sequel. The same section presents a relation on the gH -global directional 
derivative of the maximum IVF. In the next Section 4, the notions of gH -lower and 
gH -upper subdifferentials are discussed with the help of gH -lower and gH -upper 
global directional derivatives for IVFs. Next, we have proved that the gH -upper
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global subdifferential equals the upper gH -Dini subdifferential for IVFs. Several 
properties on gH -global subdifferentiability are developed along with calculus 
rules and various comparisons have been performed with other subdifferentials 
for nonconvex IVFs. After that, Section 5 provides the necessary and sufficient 
conditions for ensuring the global efficient solutions to an IOP. Finally, Section 6 
discusses the conclusion and future approaches for the study. 

2 Preludes 

The following notations are used throughout the chapter: 

• . R and . R+ denote the set of real numbers and the set of nonnegative real numbers, 
respectively 

• Bold capital letters refer to the elements of . I (R)

• Bold capital letters with a cap refers to the elements of . I (R)n

• .I (R) refers to the set of all closed and bounded intervals 
• . I (R) = I (R) ∪ {−∞,+∞}
• .B(0, 1) = {x ∈ R

n : ‖x‖ ≤ 1} denotes the closed unit ball in . Rn centered at 
origin 

• . 0 represents the interval .[0, 0]. 

2.1 Fundamental Operations and Dominance Relations on 
Intervals 

Consider two intervals .L = [l, l] and .M = [
m,m

]
. Then, the addition and the 

difference between the two intervals are defined by 

. L ⊕ M = [
l + m, l + m

]
, L � M = [

l − m, l − m
]
, respectively.

Similarly, the product of an interval . L with a real number . δ is defined by 

. δ 	 L = L 	 δ =
{

[δl, δl], if δ ≥ 0

[δl, δl], if δ < 0.

The norm [21] of an interval .L = [l, l] ∈ I (R) and an interval vector . ̂L =
(L1,L2, . . . ,Ln)

� ∈ I (R)n is defined by 

.‖L‖I (R) = max{|l|, |l|} and ‖L̂‖I (R)n =
n∑

i=1

‖Li‖I (R), respectively.
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A real number l, or more appropriately, the singleton set . {l}, can be represented by 
the interval .[l, l]. In this case, interval .L = [l, l] is called a degenerate interval. 
Definition 1 (gH -difference of intervals [25]) Let . L, .M ∈ I (R) such that . L =
[l, l] and .M = [m,m]. Then, the gH -difference between . L and . M, denoted by 
.L �gH M, is defined by 

. L �gH M = [
min{l − m, l − m}, max{l − m, l − m}] .

For the product space .I (R)n = I (R)×I (R)×· · ·×I (R) (n times), the algebraic 
operations are defined as follows. For two elements .̂L = (L1,L2, . . . ,Ln)

� and 
.M̂ = (M1,M2, . . . ,Mn)

� of .I (R)n, the operation .̂L � M̂ is defined by 

. ̂L � M̂ = (L1 � M1,L2 � M2, . . . ,Ln � Mn)
�,

where .� ∈ {⊕,�,�gH }. 
Definition 2 (Dominance of intervals [27]) Let .L = [l, l] and . M = [m,m] ∈
I (R). 

(i) If .l ≤ m and .l ≤ m, then . M is said to be dominated by . L and it is denoted by 
.L � M; 

(ii) If .L � M and .L = M, then . M is said to be strictly dominated by . L it is denoted 
by .L ≺ M. Equivalently, .L ≺ M if and only if 
‘.l < m and .l ≤ m’ or ‘.l ≤ m and .l < m’ or ‘.l < m and .l < m’; 

(iii) If neither .L � M nor .M � L, we say that none of . L and . M dominates the other, 
or . L and . M are not comparable. Equivalently, . L and . M are not comparable if 
either ‘.l < m and .l > m’ or ‘.l > m and .l < m’. 

2.2 Calculus of IVFs 

Throughout the article, assume that . S is a nonempty subset of . Rn, unless stated 
otherwise. 

Definition 3 (.gH -continuous IVF [8]) Let .Θ : S → I (R) be an IVF on . S . Let  
.r̄ ∈ S , and .w ∈ R

n with .r̄ + w ∈ S . The  IVF . Θ is said to be gH -continuous at . ̄r
if 

. lim‖w‖→0

(
Θ(r̄ + w) �gH Θ(r̄)

) = 0.

Definition 4 (gH -derivative [25]) The gH -derivative of an IVF . Θ : R → I (R)

at .r̄ ∈ R is defined by 

.Θ ′(r̄) = lim
w→0

1
w

	 (Θ(r̄ + w) �gH Θ(r̄)), provided the limit exists.
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Definition 5 (Proper IVF) Let .S ⊆ R
n and .Θ : S → I (R) be an extended IVF. 

Then, . Θ is called a proper IVF if there exists .r̄ ∈ S such that 

. Θ(r̄) ≺ +∞ and −∞ ≺ Θ(r) for all r ∈ S ,

Definition 6 (Domain of an IVF) Let .S ⊆ R
n. For an extended IVF . Θ : S →

I (R), the domain of . Θ , denoted as dom . Θ , is defined by 

. dom Θ = {r ∈ S : ‖Θ(r)‖I (R) ≺ +∞}.

Lemma 1 (See [6]) Let . L, .M ∈ .I (R). 

(i) If .L ⊀ M, then . L �gH M ⊀ 0
(ii) If .L ≺ M, then .L �gH M ≺ 0. 

Lemma 2 (See [3]) Let .L, M, and . N be three elements of .I (R). If  . L � M �⇒
L �gH N � M �gH N.

Lemma 3 Let .L, M ∈ I (R). If .L ≺ M ⊕ ε, then .L �gH M ≺ ε. 

Proof Let .L = [l, l], .M = [m,m]. Since .L � M ⊕ ε, then 

. l ≤ m + ε and l ≤ m + ε �⇒ l − m ≤ ε and l − m ≤ ε.

Therefore, .L �gH M ≺ ε. 

Definition 7 (Minimum and Maximum of intervals [3]) Let .Z1,Z2, . . . ,Zp be 
elements of .I (R) with .Z1 � Z2 � · · · � Zp. Then, 

. max{Z1,Z2, . . . ,Zp} = Zp and min{Z1,Z2, . . . ,Zp} = Z1.

Definition 8 (Supremum and infimum of a subset of .I (R) [18]) Let .S ⊆ I (R). 
An interval .Ā ∈ I (R) is called an upper bound of . S if .B � Ā for all . B in . S. Also,  
an upper bound . Ā of . S is called a supremum of . S if 

. Ā � C for all upper bounds C of S ∈ I (R).

Similarly, an interval .Ā ∈ I (R) is called a lower bound of . S if .Ā � B for all . B in . S
and a lower bound . Ā of . S is called an infimum of . S if 

. C � Ā for all lower bounds C of S ∈ I (R).

Definition 9 (Supremum and infimum of an IVF [18]) Let .P ⊆ S and . Θ :
P → I (R) be an extended IVF. Then, the supremum of an IVF . Θ is defined by 

. sup
r∈P

Θ(r) = sup{Θ(r) : r ∈ P}.
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Similarly, the infimum of . Θ , denoted by . inf
r∈P

Θ(r) and defined by 

. inf
r∈P

Θ(r) = inf{Θ(r) : r ∈ P}.

Lemma 4 (See [2]) Let .P ⊆ S and .Θ : P → I (R) be an extended IVF. Then, 
for .P1,P2 ⊆ P with .P1 ⊆ P2 and . δ ≥ 0,

(i) . inf
r∈P2

Θ(r) � inf
r∈P1

Θ(r), 

(ii) . sup
r∈P1

Θ(r) � sup
r∈P2

Θ(r), 

(iii) . inf
r∈P

(δ 	 Θ)(r) = δ 	 inf
r∈P

Θ(r), and 

(iv) . sup
r∈P

(δ 	 Θ)(r) = δ 	 sup
r∈P

Θ(r). 

Definition 10 (Sequence in .I (R)n [11]) An IVF .Θ̂ : N → I (R)n is called a 
sequence in .I (R)n. 

Definition 11 (Convergence of a sequence in .I (R)n [11]) A sequence of interval 
vectors .{Ĝk} in .I (R)n is said to be convergent to an interval vector .Ĝ ∈ I (R)n if 
for every .ε > 0, there exists an .p ∈ N such that 

. ‖Ĝk �gH Ĝ‖I (R)n < ε for each k ≥ p.

The interval vector . ̂G denotes limit of the sequence of interval vectors .{Ĝk} and we 
have . lim

k→∞Ĝk = Ĝ. 

Remark 1 (See [11]) If a sequence of interval vectors .{Ĝk} in .I (R)n converges to 
some interval vector .Ĝ ∈ I (R)n, where .Ĝk = (G1k

,G2k
, . . . ,Gnk

)� and . ̂G =
(G1,G2, . . . ,Gn)

�, then the sequence .{Gjk
} in .I (R) converges to .Gj ∈ I (R) for 

each .j = 1, 2, . . . , n. 

Lemma 5 (See [3]) Let .{Lk} and .{Mk} be two sequences in .I (R)n and . lim
k→∞Lk =

L and . lim
k→∞Mk = M. If .Lk � Mk for each k, then . L � M.

Lemma 6 Let .{Lk} and .{Mk} be two sequences in .I (R)n and .lim inf
k→∞ Lk = L and 

.lim inf
k→∞ Mk = M. If .Lk � Mk for each k, then . L � M.

Proof Let .Lk � Mk for all k, then we have 

. lk ≤ mk and lk ≤ mk

�⇒ lim inf
k→∞ lk ≤ lim inf

k→∞ mk and lim inf
k→∞ lk ≤ lim inf

k→∞ mk

�⇒ l ≤ m and l ≤ m

�⇒ L � M.
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Definition 12 (gH -subgradient [10]) Let .Θ : S → I (R) be a convex IVF on a 
convex set .S ⊆ R

n. An element .Ĝ ∈ I (R)n is called a gH -subgradient of . Θ at 
.r̄ ∈ S if 

. (r − r̄)� 	 Ĝ � Θ(r) �gH Θ(r̄) for each r ∈ S .

Assembling all gH -subgradients of . Θ at .r̄ ∈ S together forms a set called gH -
subdifferential of . Θ at . ̄r and is denoted by .∂Θ(r̄). 

Definition 13 (gH -Dini lower and gH -Dini upper directional derivatives) Let 
.Θ : S → I (R) be an IVF on . S . Then, the gH -Dini lower and gH -Dini upper 
directional derivatives of . Θ at . ̄r in the direction .w ∈ R

n are given by 

. ΘD (r̄)(w) = lim inf
t↓0

1
t

	 (Θ(r̄ + tw) �gH Θ(r̄))

and ΘD (r̄)(w) = lim sup
t↓0

1
t

	 (Θ(r̄ + tw) �gH Θ(r̄)), respectively,

provided the limits exist. 

Definition 14 (gH -lower and gH -upper Dini subdifferentials) Let . Θ : S →
I (R) be a proper IVF and .r̄ ∈ dom . Θ . Then, the gH -lower and gH -upper Dini 
subdifferentials of . Θ at . ̄r ∈ dom . Θ are defined by 

. ∂DΘ(r̄) = {Ĝ ∈ I (R)n : w� 	 Ĝ � ΘD (r̄)(w) for all w ∈ R
n} and

∂DΘ(r̄) = {Ĝ ∈ I (R)n : w� 	 Ĝ � ΘD (r̄)(w) for all w ∈ R
n}, respectively,

provided the limits exist. 

Definition 15 (gH -proximal subdifferentiability for IVF) Let . Θ : S → I (R)

be an IVF on . S . Then, the gH -proximal subdifferential of . Θ at .r̄ ∈ S is defined 
by 

. 

∂PΘ(r̄) =
{
Ĝ ∈ I (R)n : ∃ M>0, δ>0 such that (r − r̄)� 	 Ĝ �gH M‖r − r̄‖2�

Θ(r) �gH Θ(r̄) for every r ∈ B(r̄, δ)

}
.

Definition 16 (gH -Fréchet subdifferentiability for IVF) Let .Θ : S → I (R) be 
an IVF on . S . Then, the gH -Fréchet subdifferential of . Θ at .r̄ ∈ S is defined by 

.∂F Θ(r̄) =
⎧
⎨

⎩
Ĝ ∈ I (R)n : 0 � lim inf

r→0
r =0

1
‖r−r̄‖S

	 (((Θ(r) �gH Θ(r̄)) �gH (r − r̄)� 	 Ĝ)

⎫
⎬

⎭
.
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3 gH -global directional derivative for IVFs 

Definition 17 (gH -upper and gH -lower global directional derivatives for IVF) 
Let Θ : S → I (R) be a proper IVF on S . Then, for every λ >  0, the gH -upper 
and gH -lower global directional derivatives of Θ at r̄ ∈ dom Θ in the direction 
w ∈ Rn are given by 

. ΘGλ(r̄)(w) = sup
0<t≤λ

1
t

	 (Θ(r̄ + tw) �gH Θ(r̄))

and ΘGλ
(r̄)(w) = inf

0<t≤λ

1
t

	 (Θ(r̄ + tw) �gH Θ(r̄)), respectively, provided

the limits exist.

Example 1 We calculate the gH -upper and gH -lower global directional derivatives 
at r̄ = 0 for  the IVF  Θ : [−1, 1] →  I (R) given by 

. Θ(r) = [4r2 − 2r, 2r2 + 1].

The gH -upper global directional derivative of Θ at r̄ = 0, λ = 1, and w ∈ Rn is 

. ΘGλ(0)(w) = sup
0<t≤1

1
t

	 (Θ(tw) �gH Θ(0))

= sup
0<t≤1

1
t

	 ([4t2w2 − 2tw, 2t2w2 + 1] �gH [0, 1])

= sup
0<t≤1

1
t

	 [min{4t2w2 − 2tw, 2t2w2},max{4t2w2 − 2tw, 2t2w2}]

= sup
0<t≤1

[4tw2 − 2w, 2tw2]

= [4w2 − 2w, 2w2],

and the gH -upper global directional derivative of Θ at r̄ = 0, λ = 1, and w ∈ Rn 

is 

.ΘGλ
(0)(w) = inf

0<t≤1

1
t

	 (Θ(tw) �gH Θ(0))

= inf
0<t≤1

1
t

	 ([4t2w2 − 2tw, 2t2w2 + 1] �gH [0, 1])

= inf
0<t≤1

1
t

	 [min{4t2w2 − 2tw, 2t2w2},max{t2w2 − 2tw, 2t2w2}]

= inf
0<t≤1

[4tw2 − 2w, 2tw2]
= [−2, 0] 	 w.
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Fig. 7.1 Geometrical view of gH -upper and gH -lower global directional derivatives of IVF Θ at 
r̄ = 0 

A geometrical view of gH -global directional derivatives of Θ is given in 
Fig. 7.1. The IVFs ΘGλ (0)(w) and ΘGλ (0)(w) are given in Fig. 7.1a and Fig. 7.1b, 
respectively. A combined view of gH -lower and gH -upper global directional 
derivatives of Θ at r̄ = 0 is shown in Fig. 7.1c. 

Lemma 7 Let Θ : S → I (R) be an IVF and r̄ ∈ dom Θ . Then, for every λ >  0 
and w ∈ Rn, we have 

. (α 	 Θ)Gλ(r̄)(w) = α 	 ΘGλ(r̄)(w), where α ≥ 0.

Proof Note that for any λ >  0 and w ∈ Rn, we have  

. (α 	 Θ)Gλ(r̄)(w) = sup
0<t≤λ

1
t

	 ((α 	 Θ)(r̄ + tw) �gH (α 	 Θ)(r̄))

= sup
0<t≤λ

α
t

	 (
Θ(r̄ + tw) �gH Θ(r̄)

)

= α 	
(

sup
0<t≤λ

1
t

	 (
Θ(r̄ + tw) �gH Θ(r̄)

)
)

from (iv) of 

Lemma 4 

= α 	 ΘGλ (r̄)(w).



144 Anshika et al.

Remark 2 It is to be observe that if Θ : S → I (R) is an IVF on S and r̄ ∈ dom 
Θ , then for every λ >  0, γ  >  0, the required assertions hold: 

(i) If γ ≥ λ, then from Definition 8, Definition 9, Definition 17, and Lemma 4, 
and for any w ∈ Rn 

. sup
0<t≤λ

1
t

	 (Θ(r̄ + tw) �gH Θ(r̄)) � sup
0<t≤γ

1
t

	 (Θ(r̄ + tw) �gH Θ(r̄))

�⇒ ΘGλ(r̄)(w) � ΘGγ (r̄)(w)

and inf
0<t≤γ

1
t

	 (Θ(r̄ + tw) �gH Θ(r̄)) � inf
0<t≤λ

1
t

	 (Θ(r̄ + tw) �gH Θ(r̄))

�⇒ ΘGγ
(r̄)(w) � ΘGλ

(r̄)(w).

(ii) In view of Definition 13, and Definition 17, for any w ∈ Rn, we have  

. sup
λ>0

ΘGλ(r̄)(w) = lim
λ→+∞ΘGλ(r̄)(w) = sup

t>0

1
t

	 (Θ(r̄ + tw) �gH Θ(r̄))

and inf
λ>0

ΘGλ(r̄)(w) = lim sup
t↓0

1
t

	 (Θ(r̄ + tw) �gH Θ(r̄)) = ΘD (r̄)(w).

In the similar manner, for any w ∈ Rn, we have  

. sup
λ>0

ΘGλ
(r̄)(w) = lim inf

t↓0 ΘGλ
(r̄)(w) = ΘD (r̄)(w)

and inf
λ>0

ΘGλ
(r̄)(w) = lim

λ→+∞ΘGλ
= inf

t>0

1
t

	 Θ(r̄ + tw) �gH Θ(r̄).

(iii) In view of Definition 8, Definition 9, Definition 13, Definition 17, and 
Lemma 4, for any w ∈ Rn, we have  

. inf
λ>0

ΘGλ
(r̄)(w) � ΘGλ

(r̄)(w) � sup
λ>0

ΘGλ
(r̄)(w)

�⇒ ΘGλ
(r̄)(w) � sup

λ>0
ΘGλ

(r̄)(w)

�⇒ ΘGλ
(r̄)(w) � ΘD (r̄)(w) from (ii) of Remark 2 

and 

. inf
λ>0

ΘGλ(r̄)(w) � ΘGλ(r̄)(w) � sup
λ>0

ΘGλ(r̄)(w)

�⇒ inf
λ>0

ΘGλ(r̄)(w) � ΘGλ(r̄)(w)

�⇒ ΘD (r̄)(w) � ΘGλ(r̄)(w) from (ii) of Remark 2.
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Therefore, in view of the above relations, we conclude that ΘGλ (r̄)(w) �
ΘD (r̄)(w) � ΘD (r̄)(w) � ΘGλ (r̄)(w). 

Lemma 8 Let Θ : S → I (R) be an IVF and r̄ ∈ dom Θ . Then, for every λ >  0 
and w ∈ Rn 

. ΘGλ
(r̄)(αw) = α 	 ΘGλα

(r̄)(w), where α > 0.

Proof Note that for any λ >  0 and w ∈ Rn, we have  

. ΘGλ
(r̄)(αw) = inf

0<t≤λ

1
t

	 (Θ(r̄ + t (αw)) �gH Θ(r̄))

= inf
0<t≤λ

α
αt

	 (
Θ(r̄ + t (αw)) �gH Θ(r̄)

)
for α > 0

= α 	
(

inf
0<t≤λ

1
αt

	 (Θ(r̄ + t (αw)) �gH Θ(r̄))

)
from (iii) of 

Lemma 4 and α >  0 

= α 	
(

inf 
0<tα≤λα 

1 
αt

	 (Θ(r̄ + (tα)w) �gH Θ(r̄))

)
for α >  0 

= α 	
(

inf 
0<γ≤λα 

1 
αt

	 (Θ(r̄ + γw) �gH Θ(r̄))

)
for α >  0 

= α 	 ΘGλα (r̄)(w). 

Therefore, ΘGλ (r̄)(αw) = α 	 ΘGλα (r̄)(w) for all λ >  0, α >  0 and w ∈ Rn. 

Theorem 1 (gH -global directional derivative of the maximum IVF) Let S ⊆ 
R

n and A be any finite set of indices. Let for every i ∈ A, Θ i : S → I (R) be 
a gH -continuous IVF such that Θ i 

Gλ 
(r̄)(w) exists for each r̄ ∈ S . Let for every 

r ∈ S , the  set {Θ i (r) : i ∈ A} is a set of comparable intervals and define 

. Θ(r) = max
i∈A

Θ i (r).

Then, for any r̄ ∈ S and w ∈ S , 

.ΘGλ
(r̄)(w) = max

i∈I (r̄)
Θ i

Gλ
(r̄)(w), where I (r̄) = {i ∈ A : Θ i (r̄) = Θ(r̄)}. (7.1) 

Proof Let r̄ ∈ S and w ∈ S such that r̄ + tw  ∈ S for t >  0. Then, 

. Θ i (r̄ + tw) � Θ(r̄ + tw) for each i ∈ A

or, Θ i (r̄ + tw) �gH Θ(r̄) � Θ(r̄ + tw) �gH Θ(r̄) from Lemma 2, for each i ∈ A 

or, Θ i (r̄ + tw) �gH Θ
i (r̄) � Θ(r̄ + tw) �gH Θ(r̄) for each i ∈ I (r̄)
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or, inf 
0<t≤λ 

1 
t

	 (Θ i (r̄ + tw) �gH Θ
i (r̄)) � inf 

0<t≤λ 
1 
t

	 (Θ(r̄ + tw) �gH Θ(r̄)) 

for each i ∈ I (r̄) 

or, max Θ i 
Gλ 

(r̄)(w) � ΘGλ (r̄)(w) from (iii) of Lemma 4, for each i ∈ I (r̄). 
(7.2) 

Conversely. let us consider a neighbourhood N (r̄) such that I (r)  ⊂ I (r̄) for each 
r ∈ N (r̄). Assume contrarily that there exists a sequence {rk} in S with rk → r̄ 
such that I (rk) ⊂ I (r̄). Choose ik ∈ I (rk) but ik /∈ I (r̄). Since I (rk) is closed, 
ik → ī ∈ I (rk). By  gH -continuity of Θ i , we have  

. Θ ī (rk) = Θ(rk) �⇒ Θ ī (r̄) = Θ(r̄) as k → ∞,

which is a contradiction to ik /∈ I (r̄). Thus, I (r)  ⊂ I (r̄) for all r ∈ N (r̄). 
Consider {tk} ⊂ R+, tk → t and r̄+tkw ∈ N (r̄) for all w ∈ S and t ∈ (0, λ], λ  >  
0. Then, 

. Θ i (r̄) � Θ(r̄) for all i ∈ A

or, Θ(r̄ + tkw) �gH Θ(r̄) � Θ(r̄ + tkw) �gH Θ i (r̄) from Lemma 2, for all i ∈ A 

or, Θ(r̄ + tkw) �gH Θ(r̄) � Θ i (r̄ + tkw) �gH Θ
i (r̄) for all i ∈ I (r̄ + tkw) 

or, inf 
0<t≤λ

(
lim 

k→∞ 

1 

tk
	 (Θ(r̄ + tkw) �gH Θ(r̄))

)

� inf 
0<t≤λ

(
lim 

k→∞ 

1 

tk
	 (Θ i (r̄ + tkw) �gH Θ

i (r̄))

)

from Lemma 5 and for all i ∈ I (r̄) 

or, ΘGλ (r̄)(w) � max Θ i 
Gλ 

(r̄)(w) for all i ∈ I (r̄). (7.3) 

From (7.2) and (7.3), we get ΘGλ (r̄)(w) = max 
i∈I (r̄) 

Θ i 
Gλ 

(r̄)(w). 

4 gH -global subdifferentiability for IVFs 

Definition 18 (gH -lower and gH -upper global subdifferentials) Let Θ : S → 
I (R) be a proper IVF and r̄ ∈ dom Θ . Then, for every λ >  0, the gH -lower and 
gH -upper global subdifferentials of Θ at r̄ ∈ dom Θ are defined by 

. ∂Gλ
Θ(r̄) = {Ĝ ∈ I (R)n : w� 	 Ĝ � ΘGλ

(r̄)(w) for all w ∈ B(0, 1)}
and ∂GλΘ(r̄) = {Ĝ ∈ I (R)n : w� 	 Ĝ � ΘGλ(r̄)(w) for all w ∈ B(0, 1)},

respectively.
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Example 2 In this example, we calculate the gH -lower and gH -upper global 
subgradients of an IVF Θ : [−3, 3] →  I (R) given by 

. Θ(r) =
[
sin|r|, |r|

6 + 1
]
at r̄ = 0 and λ = 1.

Let us assume that there exists a G ∈ ∂Gλ Θ(0). Then, for all w ∈ B(0, 1) and for 
λ = 1, we have 

. w 	 G � ΘGλ
(0)(w)

�⇒ w 	 G � inf
0<t≤1

1
t

	 (Θ(tw) �gH Θ(0))

�⇒ w 	 G � inf
0<t≤1

1
t

	
[
sin|tw|, |tw|

6

]

�⇒ w 	 G �
[

inf
0<t≤1

1
t

	 sin|tw|, |w|
6

]

�⇒ w 	 G �
[
0, 1

6

]
	 |w|.

Therefore, there arise the following cases: 

Case (i) For w ≥ 0, we have 

. w 	 G �
[
0, 1

6

]
	 w �⇒ G �

[
0, 1

6

]
.

Case (ii) For w <  0, we have 

. w 	 G �
[
0, 1

6

]
	 (−w) �⇒

[
− 1

6 , 0
]

� G.

Hence, in view of Case (i) and Case (ii), we get 

. ∂Gλ
Θ(0) =

{
G ∈ I (R) :

[
− 1

6 , 0
]

� G �
[
0, 1

6

]}
.

Now, assume that there exists an S ∈ ∂GλΘ(0). Then, for all w ∈ B(0, 1) and for 
λ = 1, we have 

. w 	 S � ΘGλ
(0)(w)

�⇒ w 	 S � sup
0<t≤1

1
t

	 (Θ(tw) �gH Θ(0))

�⇒ w 	 S � sup
0<t≤1

1
t

	
[ |tw|

6 , sin|tw|
]
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�⇒ w 	 S �
[

|w| 
6 , sup 

0<t≤1 

1 
t

	 sin|tw|
]

�⇒ w 	 S �
[
1 
6 , 1

]
	 |w|. 

Therefore, there arise the following cases: 

Case (i) For w ≥ 0, we have 

. w 	 S �
[
1
6 , 1

]
	 w �⇒ S �

[
1
6 , 1

]
.

Case (ii) For w <  0, we have 

. w 	 S �
[
1, 1

6

]
	 (−w) �⇒

[
−1,− 1

6 ,
]

� S.

Hence, in view of Case (i) and Case (ii), we get 

. ∂Gλ
Θ(0) =

{
S ∈ I (R) :

[
−1,− 1

6

]
� S �

[
1
6 , 1

]}
.

The geometrical view of gH -lower and gH -upper global subdifferentiability of 
Θ of Example 2 is given in Fig. 7.2. The  IVF  Θ is shown by the green region. 
For λ = 1 and at r = 0, the two possible gH -lower global subgradients of 
Θ are denoted by G1 and G2 in Fig. 7.2a and the two possible gH -upper global 
subgradients of Θ are denoted by S1 and S2 in Fig. 7.2b. A combined view of both 
gH -lower and gH -upper subgradients of Θ is shown in Fig. 7.2c. 

Theorem 2 Let Θ : S → I (R) be an IVF and r̄ ∈ dom Θ . Then, for every λ >  0, 
the gH -upper global subdifferential equal to the gH -upper Dini subdifferential of 
Θ at r̄ ∈ dom Θ , i.e., 

. ∂GλΘ(r̄) = ∂DΘ(r̄).

Fig. 7.2 Geometrical view of gH -lower and gH -upper subgradients of Θ at r = 0
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Proof Let there exists a Ĝ ∈ ∂GλΘ(r̄). Then, for every λ >  0 and for all w ∈ 
B(0, 1), we have  

. ⇐⇒ w� 	 Ĝ � ΘGλ(r̄)(w)

⇐⇒ w� 	 Ĝ � sup
0<t≤λ

(
1
t

	 (Θ(r̄ + tw) �gH Θ(r̄))
)

⇐⇒ w� 	 Ĝ � inf
λ>0

(

sup
0<t≤λ

(
1
t

	 (Θ(r̄ + tw) �gH Θ(r̄))
))

⇐⇒ w� 	 Ĝ � ΘD (r̄)(w) from (ii) of Remark 2. 

Therefore, we conclude that ∂GλΘ(r̄) = ∂DΘ(r̄). 

Theorem 3 Let Θ : S → I (R) be an IVF and r̄ ∈ dom Θ . Then, for any δ >  0 
and for every w ∈ B(0, δ), we have 

. w� 	 Ĝ � ΘGλ
(r̄)(w) for all Ĝ ∈ ∂Gλδ

Θ(r̄) and for all λ > 0.

Proof Note that for every w ∈ B(0, δ), we can find a w ∈ B(0, 1) such that 
w = pδ with δ >  0. Then, for every λ >  0 and from Lemma 8, we have  

.ΘGλ
(r̄)(w) = ΘGλ

(r̄)(pδ) = δ 	 ΘG λδ(r̄)(p). (7.4) 

Let Ĝ ∈ ∂Gλδ Θ(r̄). Then, for every λ >  0 and for all w ∈ B(0, 1), we have  

. p� 	 Ĝ � ΘGλδ
(r̄)(p)

�⇒ (δp)� 	 Ĝ � δ 	 ΘGλδ
(r̄)(p)

�⇒ w� 	 Ĝ � δ 	 ΘGλδ
(r̄)(w) since w = pδ

�⇒ w� 	 Ĝ � ΘGλ
(r̄)(w) from (7.4). 

Thus, w� 	 Ĝ � ΘGλ (r̄)(p) for all Ĝ ∈ ∂Gλδ Θ(r̄) and for all λ >  0. 

Lemma 9 Let Θ : S → I (R) be an IVF and r̄ ∈ dom Θ . Then, for λ >  0 the 
following relations hold: 

(i) ∂Gλ (δ 	 Θ)(r̄) = δ 	 ∂Gλ Θ(r̄), where δ >  0. 
(ii) If λ1 ≥ λ2 ≥ 0, then ∂Gλ1 

Θ(r̄) ⊆ ∂Gλ2 
Θ(r̄). 

Proof (i) Let Ĝ ∈ δ 	 ∂Gλ Θ(r̄) with λ >  0. Then, we can write Ĝ = δ 	 Ĝ′, 
where Ĝ′ ∈ ∂Gλ Θ(r̄). Thus, for all w ∈ B(0, 1), we have  

. w� 	 Ĝ′ � ΘGλ
(r̄)(w)
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�⇒ w� 	
(
1 
δ

	 Ĝ
)

� ΘGλ (r̄)(w) for δ >  0

�⇒ w� 	 Ĝ � δ 	 inf 
0<t≤λ

(
1 
t

	 (Θ(r̄ + tw) �gH Θ(r̄))
)
for δ >  0

�⇒ w� 	 Ĝ � inf 
0<t≤λ

(
δ 	 1 

t
	 (Θ(r̄ + tw) �gH Θ(r̄))

)
from (iii) 

of Lemma 4 and δ >  0

�⇒ w� 	 Ĝ � inf 
0<t≤λ

(
1 
t

	 ((δ 	 Θ)(r̄ + tw) �gH (δ 	 Θ)(r̄))
)
for δ>0

�⇒ w� 	 Ĝ � (δ 	 Θ)Gλ (r̄)(w)

�⇒ Ĝ ∈ ∂Gλ (δ 	 Θ)(r̄). 

Conversely, assume that Ĝ ∈ ∂Gλ (δ	Θ)(r̄). Then, for λ >  0 and w ∈ B(0, 1), 
we have 

. w� 	 Ĝ � (δ 	 Θ)Gλ
(r̄)(w)

�⇒ w� 	 Ĝ � inf
0<t≤λ

(
1
t

	 (δ 	 Θ(r̄ + tw) �gH δ 	 Θ(r̄))
)

�⇒ 1
δ

	 (w� 	 Ĝ) � inf
0<t≤λ

(
1
t

	 (Θ(r̄ + tw) �gH Θ(r̄))
)

�⇒ 1
δ

	 (w� 	 Ĝ) � ΘGλ
(r̄)(w)

�⇒ 1
δ

	 Ĝ ∈ ∂Gλ
Θ(r̄)

�⇒ Ĝ ∈ δ 	 ∂Gλ
Θ(r̄).

Thus, we conclude that ∂Gλ (δ 	 Θ)(r̄) = δ 	 ∂Gλ Θ(r̄) where δ >  0. 
(ii) Let Ĝ ∈ ∂Gλ1 

Θ(r̄) such that for λ1 > 0 and w ∈ B(0, 1), we have  

. w� 	 Ĝ � ΘGλ1
(r̄)(w)

or, w� 	 Ĝ � ΘGλ1
(r̄)(w) � ΘGλ2

(r̄)(w) from (ii) of Remark 2 

or, Ĝ ∈ ∂Gλ2 
Θ(r̄). 

Therefore, ∂Gλ1 
Θ(r̄) ⊆ ∂Gλ2 

Θ(r̄). 

Theorem 4 Let Θ : S → I (R) be an IVF and r̄ ∈ dom Θ . Let an IVF M(r̄) = 
Θ(ar̄ + b) with a, b ∈ R and a >  0. Then, for λ >  0, we have 

. ∂Gλ
M(r̄) = a 	 ∂Gaλ

Θ(r̄).

Proof Let Ĝ ∈ ∂Gλ
M(r̄) such that for λ >  0 and w ∈ B(0, 1), we have
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. w� 	 Ĝ � MGλ
(r̄)(w)

⇐⇒ w� 	 Ĝ � inf
0<t≤λ

(
1
t

	 (M(r̄ + tw) �gH M(r̄))
)

⇐⇒ w� 	 Ĝ � inf
0<t≤λ

(
1
t

	 (Θ(a(r̄ + tw) + b) �gH Θ(ar̄ + b))
)

⇐⇒ w� 	 Ĝ � inf
0<t≤λ

(
1
t

	 (Θ(ar̄ + b + atw) �gH Θ(ar̄ + b))
)

⇐⇒ w� 	 Ĝ � ΘGλ
(ar̄ + b)(aw)

⇐⇒ w� 	 Ĝ � a 	 ΘGaλ
(ar̄ + b)(w) from Lemma 8 

⇐⇒ 1 
a

	 (w� 	 Ĝ) � ΘGaλ (r̄)(w) 

⇐⇒ 1 
a

	 Ĝ ∈ ∂Gaλ Θ(r̄) 

⇐⇒ Ĝ ∈ a 	 ∂Gaλ Θ(r̄). 

Therefore, we conclude that ∂Gλ
M(r̄) = a 	 ∂Gaλ Θ(r̄) for λ >  0. 

Theorem 5 Let Θ,K : S → I (R) be two proper IVFs and r̄ ∈ dom Θ∩ dom K. 
If Θ = K in an open neighbourhood of r̄ ∈ S , then there exists an λ0 such that 
∂Gλ0 

Θ(r̄) = ∂Gλ0 
K(r̄) for every r ∈ B(r̄, λ0). 

Proof Let r̄ ∈ dom Θ∩ dom K and J be an open neighbourhood of r̄ and Θ(r) = 
K(r) for every r ∈ J . Then, there exists λ0 > 0 such that 

. Θ(r) = K(r) for all r ∈ B(r̄, λ0).

Note that B(r̄, λ0) ⊆ B(r̄, 2λ0) ⊆ J . Then, for all r ∈ B(r̄, λ0), we have  r + tw  ∈ 
B(r̄, 2λ0) for all t ∈ (0, λ0] and w ∈ B(0, 1). Thus, for every r ∈ B(r̄, λ0) and 
for each w ∈ B(0, 1) 

. ΘGλ0
(r)(w) = inf

0<t≤λ0

(
1
t

	 (Θ(r + tw) �gH Θ(r))
)

= inf
0<t≤λ0

(
1
t

	 (K(r + tw) �gH K(r))
)

= KGλ0
(r)(w).

In view of the above relation, we can conclude that ∂Gλ0 
Θ(r̄) = ∂Gλ0 

K(r̄) for all 
r ∈ B(r̄, λ0). 

Theorem 6 (Comparison with other subdifferentials) Let Θ : S → I (R) be 
an IVF on S and r̄ ∈ dom Θ . Then, for λ >  0, we have 

. ∂Θ(r̄) ⊆ ∂Gλ
Θ(r̄) ⊆ ∂PΘ(r̄) ⊆ ∂F Θ(r̄).

Proof First inclusion: Let there exists a Ĝ ∈ ∂Θ(r̄). Then, for all r ∈ S , we have
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. (r − r̄)� 	 Ĝ � Θ(r) �gH Θ(r̄)

�⇒ (tw)� 	 Ĝ � Θ(r̄ + tw) �gH Θ(r̄) for all w ∈ (0, λ], tw

= (r − r̄) ∈ R
n, λ > 0

�⇒ w� 	 Ĝ � inf
0<t≤λ

(
1
t

	 (Θ(r̄ + tw) �gH Θ(r̄))
)
for all w ∈ R

n, λ > 0

�⇒ w� 	 Ĝ � ΘGλ
(r̄) for all w ∈ B(0, 1), λ > 0.

Therefore, Ĝ ∈ ∂Gλ Θ(r̄) for all λ >  0. Thus, ∂Θ(r̄) ⊆ ∂Gλ Θ(r̄) for λ >  0. 
Second inclusion: Let there exists a Ĝ ∈ ∂Gλ Θ(r̄). Then, for every λ >  0 and for 

all w ∈ B(0, 1), we obtain 

. w� 	 Ĝ � ΘGλ
(r̄)

�⇒ w� 	 Ĝ � inf
0<t≤λ

(
1
t

	 (Θ(r̄ + tw) �gH Θ(r̄))
)

�⇒ (tw)� 	 Ĝ � Θ(r̄ + tw) �gH Θ(r̄) for all t ∈ (0, λ], ‖u‖ ≤ 1

�⇒ (r − r̄)� 	 Ĝ � Θ(r) �gH Θ(r̄) for all r ∈ B(r̄, λ).

It is to be observed that for any M >  0, the following relation holds 

. (r − r̄) 	 Ĝ �gH M‖r − r̄‖2 � (r − r̄) 	 Ĝ.

Thus, in view of the above relation, we get 

. (r − r̄)� 	 Ĝ �gH M‖r − r̄‖2 � Θ(r) �gH Θ(r̄) for all r ∈ B(r̄, λ), M > 0.

Therefore, Ĝ(r̄) ∈ ∂PΘ(r̄). Thus, ∂Gλ Θ(r̄) ⊆ ∂PΘ(r̄). 
Third inclusion: Let there exists Ĝ ∈ ∂PΘ(r̄). Then, there exists an M >  0 and 

λ >  0 such that for all r ∈ B(r̄, λ), we have  

. (r − r̄)� 	 Ĝ �gH M‖r − r̄‖2 � Θ(r) �gH Θ(r̄)

�⇒ − M‖r − r̄‖2 � (Θ(r) �gH Θ(r̄)) �gH (r − r̄)� 	 Ĝ from Lemma 3

�⇒ − M‖r − r̄‖ � 1
‖r−r̄‖ 	 ((Θ(r) �gH Θ(r̄)) �gH (r − r̄)� 	 Ĝ)

�⇒ lim inf 
r→0 
r =0 

(−M‖r − r̄‖) � lim inf 
x→0 
r =0 

1
‖r−r̄‖ 	 ((Θ(r) �gH Θ(r̄)) �gH (r−r̄)�	Ĝ) 

from Lemma 6

�⇒ 0 � lim inf 
r→0 
r =0 

1
‖r−r̄‖ 	 ((Θ(r) �gH Θ(r̄)) �gH (r − r̄)� 	 Ĝ).
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Therefore, Ĝ ∈ ∂F Θ(r̄). Thus, ∂PΘ(r̄) ⊆ ∂F Θ(r̄). 

Remark 3 First inclusion: It is to be noted that the first inclusion in Theorem 6 may 
be strict. For instance, consider the IVF Θ : R → I (R) define by 

. Θ(r) =
⎧
⎨

⎩

[
−1,− 1

2

]
	 r ⊕ [1, 2]], r > 0

[0, 0], r ≤ 0.

Let us check ∂Θ(r̄) and ∂Gλ Θ(r̄), where r̄ = 0 and λ = 1. Let us assume that there 
exists a G ∈ ∂Θ(0). Then, for each r ∈ R, we have  

. (r − 0) 	 G � Θ(r) �gH Θ(0)

r 	 G �
⎧
⎨

⎩

[
−1,− 1

2

]
	 r ⊕ [1, 2], r > 0

[0, 0], r ≤ 0.
(7.5) 

Since G ∈ I (R), therefore we have 

Case (a) For 0 ≺ G, the relation 

. r 	 G �
[
−1,− 1

2

]
	 r ⊕ [1, 2] does not hold for any r > 1.

Case (b) For G ≺ 0, the relation 

. r 	 G � [0, 0] does not hold for any r < 0.

Case (c) If G and 0 are not comparable, then the relation 

. r 	 G � [0, 0] does not hold for any r < 0.

Case (d) For G = 0, the relation 

. 0 �
[
−1,− 1

2

]
	 r ⊕ [1, 2] does not hold for any r > 1.

In view of Case (a), Case (b), Case (c), and Case (d), it can be observed that there 
is no G, which satisfies relation 7.5. Thus, we conclude that ∂Θ(0) = ∅. Now, the  
gH -lower global derivative of Θ at r̄ = 0 and λ = 1 is given by
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. ΘGλ
(0)(w) = inf

0<t≤1

1

t
	 (Θ(tw) �gH Θ(0))

=
⎧
⎨

⎩

inf
0<t≤1

1
t

	 (
[
−1,− 1

2

]
	 (tw) ⊕ [1, 2]), w > 0

0, w ≤ 0

=
⎧
⎨

⎩

[
−1,− 1

2

]
	 w ⊕ [1, 2], w > 0

0, w ≤ 0.

Next, let G ∈ ∂Gλ Θ(0) such that for every w ∈ B(0, 1), we have  

. w 	 G � ΘGλ
(0)(w).

Since G ∈ I (R), therefore we have the following cases: 

Case (i) If 0 ≺ G, then the relation 

. w 	 G �
[
−1,− 1

2

]
	 w ⊕ [1, 2] does not hold for w = 1.

Case (ii) If G ≺ 0, then the relation 

. w 	 G � [0, 0] does not hold for any − 1 ≤ w < 0.

Case (iii) If G and 0 are not comparable, then the relation 

. w 	 G � [0, 0] does not hold for any − 1 ≤ w < 0.

Case (iv) If G = 0, then the relation 

. 0 �
[
−1,− 1

2

]
	 w ⊕ [1, 2] holds for every w ∈ B(0, 1).

In view of Case (i), Case (ii), Case (iii), Case (iv), we get ∂Gλ Θ(0) = {[0, 0]}. 
Thus, we conclude that ∂Θ(0) ⊂ ∂Gλ Θ(0). 

Second inclusion: It can be observed that the second inclusion in Theorem 6 may 
be strict. For instance, consider the IVF Θ : R → I (R) define by 

. Θ(r) =
{

[1, 2], r > 0

[0, 0], r ≤ 0.

Let us check ∂Gλ Θ(r̄) and ∂PΘ(r̄) at r̄ = 0 and λ >  0. The gH -lower global 
derivative of Θ at r̄ = 0 is given by
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. ΘGλ
(0)(w) = inf

0<t≤λ

1
t

	 (Θ(tw) �gH Θ(0)) =
⎧
⎨

⎩

inf
0<t≤λ

1
λ

	 [1, 2], w > 0

0, w ≤ 0

=
{

1
λ

	 [1, 2], w > 0

0, w ≤ 0.

Next, let G ∈ ∂Gλ Θ(0) such that for w ∈ B(0, 1), we have  

. w 	 G � ΘGλ
(0)(w)

�⇒ w 	 G �
{

1
λ

	 [1, 2], 0 < w ≤ 1

0, −1 ≤ w ≤ 0.

There arise the following two cases: 

Case (a) For −1 ≤ w ≤ 0, we have 

. w 	 G � [0, 0] �⇒ 0 � G.

Case (b) For 0 < w  ≤ 1, we have 

. w 	G � 1
λ

	[1, 2] �⇒ wg≤1

λ
and wg≤ 1

2λ
�⇒ g ≤ 1

wλ
and g≤ 1

2wλ
.

Since λ >  0 is arbitrary and w ∈ (0, 1], therefore we get G � 1 
λ

	 [1, 2]. 
Therefore, in view of Case (a) and Case (b), we obtain ∂Gλ Θ(0) = {G ∈ I (R) : 

0 � G � 1 
λ

	 [1, 2]}. 
Now, let G ∈ ∂PΘ(0). Then, take M = 1 and λ >  0 such that for all r ∈ B(0, λ), 
we have 

. (r − 0) 	 G �gH |r − 0|2 � Θ(r) �gH Θ(0).

There arise the following two cases: 

Case (i) For −λ ≤ r ≤ 0, we have 

. r 	 G �gH r2 � [0, 0] �⇒ [−λ,−λ] � G.

Case (ii) For 0 < r  ≤ −λ, we have
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. r 	 G �gH [r2, r2] � 1

λ
	 [1, 2] �⇒ rg − r2 ≤ 1

λ
and rg − r2 ≤ 2

λ

�⇒ g ≤ 2√
λ
and g ≤ 2

√
2√
λ

�⇒ G �
[

2√
λ

,
2
√
2√
λ

]

.

Therefore, in view of Case (i) and Case (ii), we obtain 

. ∂PΘ(0) =
{

G ∈ I (R) : [−λ,−λ] � G �
[

2√
λ

,
2
√
2√
λ

]}

.

Thus, we conclude that ∂Gλ Θ(0) ⊂ ∂PΘ(0). 

5 Application in Nonsmooth Nonconvex Optimization 

In this section, we investigate the efficient solutions to the following IOP: 

. inf
x∈S

Θ(r), (7.6) 

where .Θ : S → I (R) is an IVF on . S . 

Definition 19 (Efficient solution [8]) Let .Θ : S → I (R) be an IVF on . S . Then, 
.r̄ ∈ S is an efficient solution to the IOP (7.6) if and only if 

. Θ(r) ⊀ Θ(r̄) for all r ∈ S .

Theorem 7 Let .Θ : S → I (R) be an IVF on . S and .r̄ ∈ S be an efficient point 
of IOP (7.6). Then, for every .λ > 0 and .w ∈ R

n, 

. ΘGλ
(r̄)(w) ⊀ 0.

Proof Let .r̄ ∈ S is an efficient point of IOP (7.6). Therefore, for every .r ∈ S , we  
have 

. Θ(r) ⊀ Θ(r̄)

�⇒ Θ(r̄ + tw) ⊀ Θ(r̄) for each t > 0 and w ∈ R
n

�⇒ Θ(r̄ + tw) �gH Θ(r̄) ⊀ 0 for all t > 0 and w ∈ R
n from (i) of Lemma 1
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�⇒ inf 
0<t≤λ 

1 
t

	 (Θ(r̄ + tw) �gH Θ(r̄)) ⊀ 0 for all t >  0 and w ∈ Rn

�⇒ ΘGλ (r̄)(w) ⊀ 0 for all t >  0 and w ∈ Rn . 

To prove conversely, let us assume contrarily that there exists an .r ∈ S such that 

. Θ(r) ≺ Θ(r̄)

�⇒ Θ(r̄ + tw) ≺ Θ(r̄) for all t > 0 and w ∈ R
n

�⇒ Θ(r̄ + tw) �gH Θ(r̄) ≺ 0 for all t > 0 and w ∈ R
n from (ii) of Lemma 1

�⇒ inf 
0<t≤λ 

1 
t

	 (Θ(r̄ + tw) �gH Θ(r̄)) ≺ 0 for all t >  0 and w ∈ Rn

�⇒ ΘGλ (r̄)(w) ≺ 0 for all t >  0 and w ∈ Rn . 

This is clearly a contradiction to the assumption that .ΘGλ
(r̄)(w) ⊀ 0 for all . t > 0

and .w ∈ R
n. Hence, . ̄r is an efficient point of the IOP (7.6). 

Theorem 8 Let .Θ : S → I (R) be an IVF and .r̄ ∈ dom(. Θ). If .̂0 ∈ ∂Gλ
Θ(r̄) for 

some .r̄ ∈ S and .Θ > 0, where .̂0 ∈ I (R)n, then . ̄r is an efficient solution to the 
IOP (7.6). 

Proof Let .̂0 ∈ ∂Gλ
Θ(r̄). Thus, for .λ > 0 and for all .w ∈ B(0, 1), we have  

. w� 	 0̂ � ΘGλ
(r̄)

�⇒ 0 � inf
0<t≤λ

1
t

	 (Θ(r̄ + tw) �gH Θ(r̄))

�⇒ 0 � Θ(r̄ + tw) �gH Θ(r̄) for all t ∈ (0, λ], ‖u‖ ≤ 1

�⇒ 0 � Θ(r) �gH Θ(r̄) for all r ∈ B(r̄, λ)

�⇒ Θ(r̄) � Θ(r) for all r ∈ B(r̄, λ).

Thus, we get .Θ(r) ⊀ Θ(r̄). Hence, . ̄r is an efficient solution to the IOP (7.6). 

Example 3 In this, we exemplify a verification of the result in Theorem 8. Consider 
the IOP: 

. min
(r1,r2)∈S ⊆R2

Θ(r1, r2) = [1, 2] 	 |r1 − 1| ⊕ [3, 4] 	 |r2| ⊕ [2, 3]. (7.7) 

The IVF . Θ with .θ(r1, r2) = |r1−1|+3|r2|+2 and .θ(r1, r2) = 2|r1−1|+4|r2|+3 are 
depicted with red colour and multi colour in Fig. 7.3. In view of Fig. 7.3, observed 
that .(r̄1, r̄2) = (1, 0) is a weak efficient solution to the IOP (7.7). Observing that
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Fig. 7.3 The IVF . Θ of Example 3 

. 0 = w1 	 0 ⊕ w2 	 0 � ΘGλ
(1, 0)(w) for all λ > 0 and w ∈ B(0, 1)

�⇒ 0 � inf
0<t≤1

1

t
	 ([1, 2] 	 |tw1| ⊕ [3, 4] 	 |tw2|) for all λ>0 and w∈B(0, 1)

�⇒ 0 � [1, 2] 	 |w1| ⊕ [3, 4] 	 |w2| for all λ > 0 and w ∈ B(0, 1).

Therefore, we have . ̂0 = (0, 0) ∈ ∂ΘGλ
(1, 0).

6 Conclusion and future directions 

In this chapter, the notions of gH -lower and gH -upper global directional derivative 
(Definition 17) and the concepts of gH -lower and gH -upper global subdifferentials 
(Definition 18) has been introduced. A relation on the gH -global directional 
derivative of the maximum IVF is reported (Theorem 1). Next, we have observed 
that the upper gH -global subdifferential equals the upper gH -Dini subdifferential 
for IVFs (Theorem 2). Comparison with other subdifferentials has been performed 
(Theorem 6). Finally, two applications of proposed concepts in nonsmooth IOPs are 
given (Theorem 7 and Theorem 8). 

In the future, we shall attempt to find the compactness of gH -lower global 
subdifferential and optimality conditions for constrained and unconstrained interval 
optimization problems. The proposed results are expected to be useful for algorithm
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purposes in nonsmooth programming. Also, a rule of the mean value theorem on the 
gH -global subdifferentiability of IVFs can be presented. 

As an another approach, one may try to extend the proposed results to the 
difference of two approximately star-shaped and gap gH -continuous IVFs. Towards 
this, let .Θ,P : S → I (R) be two IVFs and let .T = Θ �gH P be an IVF, which is 
finite at .r̄ ∈ S and . S be a nonempty subset of . Rn. Consider a constrained IOP: 

.min T(r) subject to r ∈ C , (7.8) 

where . C is a nonempty closed convex subset of . S . Assume that . Θ is approximately 
convex and gH -continuous IVF at .r̄ ∈ C . Then, a necessary condition for . ̄r to be 
an efficient point to the IOP (7.8) on . C is given by 

. ∂Gλ
P(r̄) ⊆ ∂Gλ

Θ(r̄) ⊕ NC (r̄),

where .NC (r̄) is normal cone of . C at . ̄r . The above defined relation will help 
in finding the necessary condition for a max-efficient solution to the following 
maximization IOP: 

. maxP(r) subject to r ∈ C .

Further work can be performed to propose a gH -global subgradient method and its 
convergence to solve the unconstrained IOPs. 

Acknowledgments We express our gratitude to the anonymous reviewers and the editors for their 
valuable comments and suggestions to improve the quality of the paper. D. Ghosh acknowledges 
the research grant MATRICS (MTR/2021/000696) from SERB, India to carry out this research 
work. 

References 

1. Q. H. Ansari, C. S. Lalitha, and M. Mehta, Generalized Convexity, Nonsmooth Variational 
Inequalities, and Nonsmooth Optimization, CRC Press, 2013. 

2. Anshika and D. Ghosh, Interval-valued value function and its application in interval optimiza-
tion problems, Computational and Applied Mathematics, 41(4), 1–26, 2022. 

3. Anshika, D. Ghosh, R. Mesiar, H. R. Yao, and R. S. Chauhan, Generalized Hukuhara 
subdifferential analysis and its application in nonconvex composite interval optimization 
problems, Information Sciences, 622, 771–793, 2023. 

4. A. Cambini and L. Martein, Generalized Convexity and Optimization: Theory and Applica-
tions, volume 616, Springer Science and Business Media, 2008. 

5. Y. Chalco-Cano, A. Rufián-Lizana, H. Román-Flores, and M. D. Jiménez-Gamero, Calculus 
for interval-valued functions using generalized Hukuhara derivative and applications, Fuzzy 
Sets and Systems, 219, 49–67, 2013. 

6. R. S. Chauhan, D. Ghosh, J. Ramik, and A. K. Debnath, Generalized Hukuhara Clarke 
derivative of interval-valued functions and its properties, Soft Computing, 25(23), 14629– 
14643, 2021.



160 Anshika et al.

7. A. K. Debnath and D. Ghosh, Generalized Hukuhara penalty method for optimization problem 
with interval-valued functions and its application in interval-valued portfolio optimization 
problems, Operations Research Letters, 50(5), 602–609, 2022. 

8. D. Ghosh, Newton method to obtain efficient solutions of the optimization problems with 
interval-valued objective functions, Journal of Applied Mathematics and Computing, 53(1–2), 
709–731, 2017. 

9. D. Ghosh, A quasi-Newton method with rank-two update to solve interval optimization 
problems, International Journal of Applied and Computational Mathematics, 3(3), 1719–1738, 
2017. 

10. D. Ghosh, R. S. Chauhan, R. Mesiar, and A. K. Debnath, Generalized Hukuhara Gâteaux 
and Fréchet derivatives of interval-valued functions and their application in optimization with 
interval-valued functions, Information Sciences, 510, 317-340, 2020. 

11. D. Ghosh, A. K. Debnath, R. S. Chauhan, and R. Mesiar, Generalized Hukuhara subgradient 
and its application in optimization problem with interval-valued functions, Sadhana, 47(2), 
1–16, 2022. 

12. D. Ghosh, A. K. Debnath, and W. Pedrycz, A variable and a fixed ordering of intervals 
and their application in optimization with interval-valued functions, International Journal of 
Approximate Reasoning, 121, 187–205, 2020. 

13. D. Ghosh, D. Ghosh, S. K. Bhuiya, and L. K Patra, A saddle point characterization of efficient 
solutions for interval optimization problems, Journal of Applied Mathematics and Computing, 
58(1), 193–217, 2018. 

14. G. Giorgi and S. Komlósi, Dini derivatives in optimization–part I, Rivista di Matematica per le 
Scienze Economiche e Sociali, 15(1), 3–30, 1992. 

15. G. Giorgi and S. Komlósi, Dini derivatives in optimization–part II, Rivista di Matematica per 
le Scienze Economiche e Sociali, 15(1), 3–24, 1993. 

16. M. Hukuhara, Integration des applications mesurables dont la valeur est un compact convexe, 
Funkcialaj Ekvacioj, 10(3), 205–223, 1967. 

17. H. Ishibuchi and H. Tanaka, Multiobjective programming in optimization of the interval 
objective function, European Journal of Operational Research, 48(2), 219–225, 1990. 

18. G. Kumar and D. Ghosh, Ekeland’s variational principle for interval-valued functions, Compu-
tational and Applied Mathematics, 42(1), 1–24, 2023. 

19. K. Kumar, D. Ghosh, and G. Kumar, Weak sharp minima for interval-valued functions and its 
primal-dual characterizations using generalized Hukuhara subdifferentiability, Soft Computing, 
26(19), 10253–10273, 2022. 

20. S. Markov, Calculus for interval functions of a real variable, Computing, 22(4), 325–337, 1979. 
21. R. E. Moore, Interval Analysis, Prentice-Hall Englewood Cliffs, New Jersey, 1966. 
22. J. P. Penot, Are generalized derivatives useful for generalized convex functions? In Generalized 

Convexity, Generalized Monotonicity: Recent Results, Nonconvex Optimization and Its 
Applications, volume 27, 3–59, Springer, Boston, MA, 1998. https://doi.org/10.1007/978-1-
4613-3341-8_10. 

23. R. T. Rockafellar, Convex Analysis, volume 18, Princeton University Press, 1970. 
24. S. Schaible and W. T. Ziemba, Generalized Concavity in Optimization and Economics, volume 

1, New York, London, Academic Press, 1981. 
25. L. Stefanini and B. Bede, Generalized Hukuhara differentiability of interval-valued functions 

and interval differential equations, Nonlinear Analysis: Theory, Methods and Applications, 
71(3–4), 1311–1328, 2009. 

26. H. C. Wu, The Karush–Kuhn–Tucker optimality conditions in an optimization problem with 
interval-valued objective function, European Journal of Operational Research, 176(1), 46–59, 
2007. 

27. H. C. Wu, Wolfe duality for interval-valued optimization, Journal of Optimization Theory and 
Applications, 138(3), 497–509, 2008.

https://doi.org/10.1007/978-1-4613-3341-8_10
https://doi.org/10.1007/978-1-4613-3341-8_10
https://doi.org/10.1007/978-1-4613-3341-8_10
https://doi.org/10.1007/978-1-4613-3341-8_10
https://doi.org/10.1007/978-1-4613-3341-8_10
https://doi.org/10.1007/978-1-4613-3341-8_10
https://doi.org/10.1007/978-1-4613-3341-8_10
https://doi.org/10.1007/978-1-4613-3341-8_10
https://doi.org/10.1007/978-1-4613-3341-8_10
https://doi.org/10.1007/978-1-4613-3341-8_10
https://doi.org/10.1007/978-1-4613-3341-8_10


Chapter 8 
Role of Hexagonal Fuzzy Numbers While 
Applying the Max-Min Concept 
to a Transportation Problem 

V. Tharakeswari, M. Kameswari, P. Mariappan, 
Yegnanarayanan Venkataraman, and Valentina E. Balas 

1 Introduction 

Transportation problem, which is a large network that is constructed in LPP, occurs 
in a variety of situations. The problem’s fundamental notion is to determine the 
lowest total transportation cost to meet destination demand using supply at the 
origin. The transportation problem will be used in several situations, including 
production, capital, scheduling, location, stock management, and employee man-
agement, among others. Many approaches were developed recently to discover 
the best answer to the transportation challenge. Diverse sources contribute to 
varying terminals in such a method that the transportation cost is decreased in the 
transportation problem. Three strategies can be used to obtain a basic workable 
answer: (1) North West Corner method, (2) Least Cost method, and (3) Vogel’s 
Approximation method. 

According to the literature, the Vogel Approximation Method (VAM) approach 
is the best of the three. The Modified Distribution Method (MODI) approach is 
used to determine whether the transportation problem is optimal. The transportation 
issue can be divided into two categories: balanced and unbalanced. A balanced 
transportation problem occurs when the number of sources equals the number of 
demands. If not, it is referred to as an unbalanced transportation problem. If the 
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supply of an item is more than the demand, a dummy column should be added 
to make the situation balanced. If the demand exceeds the supply, the dummy row 
should be added to transform the imbalanced problem into a balanced transportation 
problem. 

Transportation theory is a study of optimal transportation and resource allocation. 
Gaspard Monge, a French mathematician, formulated the Transportation theory in 
1781. In our everyday life, we face a variety of challenges in decision-making, 
such as estimating the cost of money. Real Life problems in the uncertainty theory, 
established by L.A. Zadeh, is highly beneficial for dealing with a large number 
of data [1]. For real-time situations, we must identify the maximum or minimum 
optimum solution. Companies transport their products from the site of manufacture 
to the place of consumption. While each manufacturing site has a finite supply, each 
client has a distinct need that must be addressed. At this stage, transportation models 
are utilized to identify the lowest-cost shipping plan that will suit the customer’s 
needs while staying within certain constraints. 

Amarpeet Kaul and Amit Kumar [2] developed a new strategy for handling a 
transportation fuzzy problem based on the guess that the result is uncertain by 
transportation costs. Chen S [3] investigated whether the membership function for 
regular fuzzy numbers is constrained, and he suggested the idea of a generalized 
fuzzy number. Jain [4] was the first to introduce the ranking of normal fuzzy 
numbers. Klir [5] demonstrated a thorough understanding of fuzzy concept and 
suggested the optimum candidate approach to solve the transportation problem and 
used the centroid ranking methodology to hexagonal fuzzy numbers [6–9]. Nagoor 
Gani& Abdul Razak [10] found a two-stage fuzzy transportation cost minimizing 
in trapezoidal fuzzy numbers for supplies and demands. Bellman & Zadeh [11] 
developed a fuzzy set theory for decision-making for the first time. Ranking fuzzy 
numbers using interval values was introduced by Liou and Wang [12]. Zimmermann 
[13] shows that fuzzy linear programming solutions are always efficient. 

The Transportation problem is concerned with the transportation of items from 
several locations of origin, such as factories, to multiple points of demand, such 
as destinations. Capacity or availability refers to a source’s capacity to produce 
items, whereas needs refer to a fixed element. This chapter tries to find the suitable 
defuzzification method to convert hexagonal fuzzy numbers to find the optimum 
cost. 

2 Preliminaries 

2.1 Definition: (Fuzzy Set) [13] 

Let X be a nonempty set. A fuzzy set of A of X is defined as 
A = {(x, μA(x)) / x ε X}, μA(x) is called membership function.
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2.2 Definition: (Fuzzy Number) [13] 

A fuzzy number is a generalization of a regular real number. Set of each possible 
value has between 0 and 1. 

There exist at least one x ε R with μA(x) = 1 
μA(x) is piecewise continuous 

2.3 Definition: Hexagonal Fuzzy Number [6] 

The hexagonal fuzzy number is denoted as A, where a1, a2, a3, a4, a5, and a6 are 
real numbers. 

μA (x) = 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

0 ≤ x <  a1 

1 
2 

(x−a1) 
(a2−a1) , a1 ≤ x ≤ a2 

1 
2 + 1 

2 
(x−a2) 
(a3−a2) , a2 ≤ x ≤ a3 

1, a3 ≤ x ≤ a4 

1 − 1 
2 

(x−a4) 
(a5−a4) , a4 ≤ x ≤ a5 

1 
2 

(a6−x) 
(a6−a5) , a5 ≤ x ≤ a6 

x >  a6 

The graphical representation of different forms of hexagonal fuzzy number are 
shown in [14] (Figs. 8.1, 8.2, 8.3, and 8.4). 

Fig. 8.1 Nonlinear hexagonal fuzzy number having asymmetry [14]
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Fig. 8.2 Linear hexagonal fuzzy number having symmetry [14] 

Fig. 8.3 Linear hexagonal fuzzy number having asymmetry [14] 

Fig. 8.4 Nonlinear hexagonal fuzzy number having symmetry [12] 

2.4 Definition: (Positive and Negative) [6] 

A hexagonal fuzzy number is AH = (a1, a2, a3, a4, a5, a6) is positive if ai > 0  
for i = 1,2,3..6 and it is negative if ai < 0 for i = 1,2,3..6
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2.5 Arithmetic Operation [6] 

If (A) = (m, n, o, p, q, r) and (B) = (s, t, u, v, w, x) are two fuzzy number. 

Addition: (A) + (B) = (m+ s, n+ t, o+ u, p+ v, q+ w, r+x) 
Subtraction: (A) − (B) = (m−x, n− w, o− v , p− u, q−t, r− s) 
Multiplication: (A) * (B) = (m*s, n * t, o* u, p * v, q*w, r*x) 

2.6 Ranking of Hexagonal Fuzzy Number [15, 16] 

A ranking function R: F (R) ->R, which maps each fuzzy number into a real 
number where a natural order exists, is an effective method for comparing fuzzy 
numbers. F (R) is a set of fuzzy numbers defined on a set of real numbers. 
AH = (a1,a2,a3,a4,a5,a6) and for any two hexagonal fuzzy numbers 

We can compare BH = (b1,b2,b3,b4,b5,b6) to the following: 

(i) AH = BH � R(AH) = R(BH) 
(ii) AH≥ BH � R(AH) ≥ R(BH) 

(iii) AH≤ BH � R(AH) ≤ R(BH) 

2.7 Mathematical Analysis of Fuzzy Transportation 
Problem [7] 

Consider a transportation problem in m origins and n destinations. 
Let ai, (ai ≥ 0) represent the source availability i, and bj, (bj ≥ 0), represent the 

destination j. Let cij denote the cost from source i to destination j. The transportation 
cost from source i to destination j is xij. The challenge then becomes deciding the 
most cost-effective method of the possible amounts of all sources to fulfill demand 
at the destination while keeping overall transportation costs to a minimum. The 
mathematical description of transportation with parameters in the situation when 
total supply equals total demand is defined by 

Min z =
∑m 

i=1 

n∑
j=1 

..cijxij 

Subject to 
n∑

j=1 

.xij = ai; i = 1, 2, . . .  m



166 V. Tharakeswari et al.

m∑
j=1 

.xij = bj; j = 1, 2, . . . n 

m∑
j=1 

.ai = 
n∑

j=1 

.bj; i = 1, 2, . . . m, j = 1, 2, . . . n and Xij ≥ 0 

3 Max Min Method –Algorithm 

All kinds of transportation problems may be solved using the provided strategy. The 
procedure of this method for finding an IBFS is shown below. 

Step 1 
The table can form and check if the sum of the demand equals the sum of the supply 

before proceeding to step 2. 
Step 2 
We convert the fuzzy cost into crisp value using a ranking technique centroid of 

centroid method for the specified transportation problem. 
Step 3 
Divide the cost matrix’s column count by the row-by-row deviation between the 

maximum and minimum to place on the corresponding right side of the column. 
Step 4 
Divide the cost matrix’s row count by the column-by-column deviation between the 

maximum and minimum to place on the corresponding bottom of the row. 
Step 5 
We calculate the corresponding minimal cost value for the greatest of the produced 

values and then assign that cell of the given matrix. If more than one maximum 
value occurs then break the choice arbitrarily. 

Step 6 
Procedures are repeated again and again. Repeat 1 to 5 until all of the allocations 

have been completed. 

4 Numerical Example 

The fuzzy transportation problem is solved using a variety of ranking method 
techniques. 

Example 
Consider the below hexagonal fuzzy transportation problem (Table 8.1).
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Table 8.1 Hexagonal fuzzy number [8] 

D1 D2 D3 Supply 

S1 (3,5,7,9,10,12) (3,7,11,15,19,24) (11,14,17,21,25,30) (7,9,11,13,16,20) 
S2 (7,9,11,14,18,22) (3,5,7,9,10,12) (5,7,10,13,17,21) (6,8,11,14,19,25) 
S3 (2,3,4,6,7,9) (5,7,8,11,14,17) (7,9,11,14,18,22) (9,11,13,15,18,20) 
Demand (6,9,12,15,20,25) (6,7,9,11,13,16) (10,12,14,16,20,24) 

Table 8.2 Converted fuzzy 
number to crisp number using 
the above ranking method 1 
[1, 2] 

D1 D2 D3 Supply 

S1 30 52 78 50 
S2 54 30 48 54 
S3 20 42 54 58 
Demand 58 40 64 Balanced 

Table 8.3 Allocation as per 
the proposed max-min 
method [1, 2] 

D1 D2 D3 Supply (max-min)/3 

S1 30 50 50 78 50 16 
S2 54 30 48 54 8 
S3 20 42 54 58 11.33 
Demand 58 8 40 64 
(max-min)/3 11.33 7.33 10 

4.1 Ranking Method 1 

Fuzzy transportation table is converted into crisp transportation table by using a 
Ranking method 1 (Table 8.2). 

R (AH) = 2 (a2 + a5) 

R(a11) = 2(5 + 10) = 30 
R(a11) = 30, R(a12) = 52, R(a13) = 78 
R(a21) = 54, R(a22) = 30, R(a23) = 48 
R(a31) = 20, R(a32) = 42, R(a33) = 54 

By applying the max-min Method, one can find the maximum of generated values 
and its equivalent minimum cost value for each cost in the prepared matrix. In the 
case of more than one, one can choose any of the maximum resultant benefits as 
shown in (Table 8.3) 

One can observe that the maximum of the treatment is appropriate and so is the 
corresponding minimum value. So, one can assign the cost cell to the supplied value. 
If there are many maximum result values, we can select any of them (Table 8.4). 

The same procedure will be repeated till the final allotment is reached (Table 
8.5).
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Table 8.4 Allocation as per 
the proposed max-min 
method [1, 2] 

D1 D2 D3 Supply (max-min)/3 

S1 3050 52 78 50 – 
S2 54 30 48 54 8 
S3 208 42 54 58 50 11.33 
Demand 58 8 40 64 
(max-min)/2 17 7.33 10 

Table 8.5 Solution [1, 2] D1 D2 D3 Supply 

S1 3050 52 78 50 
S2 54 30 40 4814 54 
S3 20 8 42 5450 58 
Demand 58 40 64 

The Transportation Cost
= (30*50) + (30*40) + (48*14) + (20*8) + (54*50)
= 1500 + 1200 + 672 + 160 + 2700
= 6232

Table 8.6 Converted fuzzy 
number to crisp number using 
the above ranking Method 2 
[1, 2] 

D1 D2 D3 Supply 

S1 15.5 26.5 39 24.83 
S2 26.67 15.5 23.83 26.33 
S3 10 20.83 26.67 29.17 
Demand 28.83 19.83 31.67 

Table 8.7 Allocation as per the proposed max-min method [1, 2] 

D1 D2 D3 Supply (max-min)/3 

S1 15.5 24.83 26.5 39 24.83 7.83 
S2 26.67 15.5 23.83 26.33 3.72 
S3 10 20.83 26.67 29.17 5.56 
Demand 28.83 4 19.83 31.67 
(max-min)/3 5.56 3.67 5.06 

4.2 Ranking Method 2 

Fuzzy transportation table is converted into crisp transportation table by using a 
Ranking method 2 (Tables 8.6 and 8.7). 

R (AH) = 
7 a2 − 2 a1 + a3 + a4 + 6 a5 − a6 

6 

R(a11) = 7(5)−2(3)+7+9+6(10)−12 
6 = 15.5 

R(a11) = 15.5, R(a12) = 26.5, R(a13) = 39 
R(a21) = 26.67, R(a22) = 15.5, R(a23) = 23.83 
R(a31) = 10, R(a32) = 20.83, R(a33) = 26.67
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Table 8.8 Allocation as per the proposed max-min method [1, 2] 

D1 D2 D3 Supply (max-min)/3 

S1 15.5 24.83 26.5 39 24.83 7.83 
S2 26.67 15.5 23.83 26.33 3.72 
S3 10 4 20.83 26.67 29.17 25.17 5.56 
Demand 4 0  19.83 31.67 
(max-min)/2 8.34 2.67 1.42 

Table 8.9 Application of proposed max-min method [1, 2] 

D1 D2 D3 Supply 

S1 15.524.83 26.5 39 24.83 
S2 26.67 15.5 19.83 23.83 6.5 26.33 
S3 10 4 20.83 26.67 25.17 29.17 
Demand 28.83 19.83 31.67 

The Transportation Cost
= (15.5*24.83) + (15.5*19.83) + (23.83*6.5) + (10*4) + (26.67*25.17)
= 384.865 + 307.365 + 154.895 + 40 + 671.2839
= 1558.4089

Table 8.10 Converted fuzzy 
number to crisp number using 
the above ranking method 3 
[1, 2] 

D1 D2 D3 Supply 

S1 71.5 119.78 177.22 113.06 
S2 119.47 71.5 108.47 120.69 
S3 46.44 91.36 119.47 130.17 
Demand 128.64 92.89 142.39 

We find the maximum of the treatment is appropriate, as well as the correspond-
ing minimum value, and then assign the cost cell to the supplied value. If there are 
many maximum result values, we can select any of them (Table 8.8). 

The same procedure will be repeated till the final allotment is reached (Table 
8.9). 

4.3 Ranking Method 3 

Fuzzy transportation table is converted into crisp transportation table by using 
ranking method 3 (Tables 8.10 and 8.11). 

R (AH) =
(
2a1 + 4 a2 + 9 a3 + 9 a4 + 4 a5 + 2 a6 

6
∗ 
11 
6

)

R (a11) =
(
2 (3) + 4 (5) + 9 (7) + 9 (9) + 4 (10) + 2 (12) 

6
∗ 
11 
6

)
= 71.5
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Table 8.11 Allocation as per the proposed max-min method [1, 2] 

D1 D2 D3 Supply (max-min)/3 

S1 71.5 113.06 119.78 177.22 113.06 35.24 
S2 119.47 71.5 108.47 120.69 15.99 
S3 46.44 91.36 119.47 130.17 24.34 
Demand 128.64 15.58 92.89 142.39 
(max-min)/3 24.34 16.09 22.92 

Table 8.12 Allocation as per the proposed max-min method [1, 2] 

D1 D2 D3 Supply (max-min)/3 

S1 71.5 113.06 119.78 177.22 113.06 – 
S2 119.47 71.5 108.47 120.69 15.99 
S3 46.4415.58 91.36 119.47 130.17 24.34 
Demand 128.64 15.58 92.89 142.39 
(max-min)/2 36.52 9.93 5.5 

Table 8.13 Application of proposed max-min method [1, 2] 

D1 D2 D3 Supply 

S1 71.5113.06 119.78 177.22 113.06 
S2 119.47 71.592.89 108.4727.8 120.69 
S3 46.44 15.58 91.36 119.47114.59 130.17 
Demand 128.64 92.89 142.39 

The Transportation Cost
= (71.5*113.06) + (71.5*92.89) + (108.47*27.8) + (46.44*15.58) + (119.47*114.59)
= 8083.79 + 6641.635 + 3015.466 + 723.5352 + 13690.07
= 32154.4935

R(a11) = 71.5, R(a12) = 119.78, R(a13) = 177.22 
R(a21) = 119.47, R(a22) = 71.5, R(a23) = 108.47 
R(a31) = 46.44, R(a32) = 91.36, R(a33) = 119.47 

We find the maximum of the treatment is appropriate, as well as the correspond-
ing minimum value, and then assign the cost cell to the supplied value. If there are 
many maximum result values, we can select any of them (Tables 8.12 and 8.13). 

4.4 Ranking Method 4 

Fuzzy transportation table is converted to crisp transportation table by using ranking 
method 4 (Table 8.14). 

R (AH) = (a6 − a1)
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Table 8.14 Fuzzy number 
conversion to crisp number 
through ranking method 4 [1, 
2] 

D1 D2 D3 Supply 

S1 9 21 19 13 
S2 15 9 16 19 
S3 7 12 15 11 
Demand 19 10 14 Balanced 

Table 8.15 Allocation as per the proposed max-min method [1, 2] 

D1 D2 D3 Supply (max-min)/3 

S1 9 21 19 13 3.33 
S2 15 9 10 16 19 9 2.33 
S3 7 12 15 11 2.67 
Demand 19 10 14 
(max-min)/3 2.67 4 1.33 

Table 8.16 Allocation as per the proposed max-min method [1, 2] 

D1 D2 D3 Supply (max-min)/3 

S1 9 13 21 19 13 3.33 
S2 15 9 10 16 19 9 2.33 
S3 7 12 15 11 2.67 
Demand 19 6 10 14 
(max-min)/2 2.67 4 1.33 

R(a11) = 12 – 3 = 9 
R(a11) = 9, R(a12) = 21, R(a13) = 19 
R(a21) = 15, R(a22) = 9, R(a23) = 16 
R(a31) = 7, R(a32) = 12, R(a33) = 15 

Find for every maximum generated value through the max-min method, the 
equivalent minimum cost value in the prepared matrix. In the case of more than 
one equivalent values, one can break the choice arbitrarily (Table 8.15). 

We find the maximum of the treatment is appropriate, as well as the correspond-
ing minimum value, and then assign the cost cell to the supplied value. If there are 
many maximum result values, we can select any of them (Table 8.16). 

The same procedure will be repeated till the final allotment is reached (Table 
8.17). 

4.5 Ranking Method 5 

Fuzzy transportation table is converted to crisp transportation table by using ranking 
method 5 (Table 8.18).
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Table 8.17 Solution [1, 2] D1 D2 D3 Supply 

S1 9 13 21 19 13 
S2 15 9 10 16 9 19 
S3 7 6 12 15 5 11 
Demand 19 10 14 

The Transportation Cost
= (9*13) + (9*10) + (16*9) + (7*6) + (15*5)
= 117 + 90 + 144 + 42 + 75
= 468

Table 8.18 Fuzzy number 
conversion to crisp number 
through ranking method 4 [1, 
2] 

D1 D2 D3 Supply 

S1 7.67 13.17 19.67 12.67 
S2 13.5 7.67 12.17 13.83 
S3 5.17 10.33 13.5 14.33 
Demand 14.5 10.33 16 Balanced 

Table 8.19 Allocation as per the proposed max-min method [1, 2] 

D1 D2 D3 Supply (max-min)/3 

S1 7.67 12.67 13.17 19.67 12.67 4 
S2 13.5 7.67 12.17 13.83 1.94 
S3 5.17 10.33 13.5 14.33 2.78 
Demand 14.5 1.83 10.33 16 
(max-min)/3 2.78 1.83 2.5 

R (AH) = (a1 + a2 + a3 + a5 + a6) /6 

R(a11) = (3 + 5 + 7 + 9 + 10 + 12) /6 = 7.67 
R(a11) = 7.67, R(a12) = 13.17, R(a13) = 19.67 
R(a21) = 13.5, R(a22) = 7.67, R(a23) = 12.17 
R(a31) = 5.17, R(a32) = 10.33, R(a33) = 13.5 

Find for every maximum generated value through the max-min method, the 
equivalent minimum cost value in the prepared matrix. In the case of more than 
one equivalent values, one can break the choice arbitrarily (Table 8.19). 

We find the maximum of the treatment is appropriate, as well as the correspond-
ing minimum value, and then assign the cost cell to the supplied value. If there are 
many maximum result values, we can select any of them (Table 8.20). 

The same procedure will be repeated till the final allotment is reached (Table 
8.21).
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Table 8.20 Allocation as per the proposed max-min method [1, 2] 

D1 D2 D3 Supply (max-min)/3 

S1 7.67 12.67 13.17 19.67 12.67 – 
S2 13.5 7.67 12.17 13.83 1.94 
S3 5.171.83 10.33 13.5 14.33 12.5 2.78 
Demand 14.5 1.83 10.33 16 
(max-min)/2 4.17 1.33 0.67 

Table 8.21 Solution [1, 2] 

D1 D2 D3 Supply 

S1 7.67 12.67 13.17 19.67 12.67 
S2 13.5 7.67 10.33 12.17 3.5 13.83 
S3 5.17 1.83 10.33 13.5 12.5 14.33 
Demand 14.5 10.33 16 

The Transportation Cost
= (7.67*12.67) + (7.67*10.33) + (12.17*3.5) + (5.17*1.83) + (13.5*12.5)
= 97.1789 + 79.2311 + 42.595 + 9.461 + 168.75)
= 397.2161

Table 8.22 Fuzzy number 
conversion to crisp number 
through ranking method 4 
[1, 2] 

D1 D2 D3 Supply 

S1 2.15 3.64 5.42 3.47 
S2 2.95 2.15 3.36 3.75 
S3 1.42 2.82 2.95 3.96 
Demand 3.96 2.84 4.38 

Table 8.23 Allocation as per the proposed max-min method [1, 2] 

D1 D2 D3 Supply (max-min)/3 

S1 2.153.47 3.64 5.42 3.47 1.09 
S2 2.95 2.15 3.36 3.75 0.40 
S3 1.42 2.82 2.95 3.96 0.51 
Demand 3.96 0.49 2.84 4.38 
(max-min)/3 0.51 0.50 0.82 

4.6 Ranking Method 6 

Fuzzy transportation table is converted to crisp transportation table by using ranking 
method 6 (Tables 8.22 and 8.23). 

R (CC) =
(
2a1 + 3 a2 + 4 a3 + 4 a4 + 3 a5 + 2 a6 

18
∗ 

5 
18

)
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Table 8.24 Allocation as per the proposed max-min method [1, 2] 

D1 D2 D3 Supply (max-min)/3 

S1 2.15 3.47 3.64 5.42 3.47 – 
S2 2.95 2.15 3.36 3.75 0.40 
S3 1.42 0.49 2.82 2.95 3.96 3.47 0.51 
Demand 3.96 0.49 2.84 4.38 
(max-min)/2 0.77 0.33 0.2 

Table 8.25 Allocation as per the proposed max-min method [1, 2] 

D1 D2 D3 Supply 

S1 2.15 3.47 3.64 5.42 3.47 
S2 2.95 2.15 2.84 3.360.91 3.75 
S3 1.42 0.49 2.82 2.953.47 3.96 
Demand 3.96 2.84 4.38 

The Transportation Cost
= (2.15*3.47) + (2.15*2.84) + (3.36*0.91) + (1.42*0.49) + (2.95*3.47)
= 27.5564

Table 8.26 A Comparison of 
existing and proposed 
methods 

Existing method Transportation cost 

Ranking method 1 6232 
Ranking method 2 1558.4089 
Ranking method 3 3254.4935 
Ranking method 4 468 
Ranking method 5 397.2161 
Ranking method 6 27.5564 

R (a11) =
(
2 (3) + 3 (5) + 4 (7) + 4 (9) + 3 (10) + 2 (12) 

18
∗ 

5 
18

)
= 2.15 

R(a11) = 2.15, R(a12) = 3.64, R(a13) = 5.42 
R(a21) = 2.95, R(a22) = 2.15, R(a23) = 3.36 
R(a31) = 1.42, R(a32) = 2.82, R(a33) = 2.95 

We find the maximum of the treatment is appropriate, as well as the correspond-
ing minimum value, and then assign the cost cell to the supplied value. If there are 
many maximum result values, we can select any of them (Tables 8.24, 8.25, and 
8.26). 

5 Conclusion 

We conclude the optimum solution of a fuzzy transportation using hexagonal fuzzy 
numbers to use a ranking technique based on the ranking method 6 to provide 
crisp values, and we recommend that the fuzzy hexagonal transportation problem
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be solved using the proposed max-min method based on the numerical results. This 
approach is quite easy when compared to all other existing ways, and it also achieves 
the minimum transportation cost. 
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Chapter 9 
Development of an Interval Picture Fuzzy 
Matrix Game-Based Approach to 
Combat Cyberthreats in the Healthcare 
Sector 

Shibaji Dutta, Mijanur Rahaman Seikh , and Elsaeed Ammar 

1 Introduction 

By using a matrix game (. MG) [14], rational decision-making can be analyzed in 
real-life situations. In real-world situations, game problems often involve imperfect 
information, incorrect data, and disagreements between opponents. As a result, 
researchers face the greatest challenge when it comes to combating uncertainty in 
real-world situations. 

Every cyberattack drives huge waste of information. To counter an attack, the 
system must be secure sensibly and constructively. Nevertheless, the complexity 
of attacks makes securing the system a challenging task. It is possible to use the 
.MG theory to control such scenarios, and the digital attackers and system protectors 
can be interpreted as players in the game. Protectors and attackers pay off in terms 
of how much destruction is caused by the attackers and how much success is 
achieved by defending against them. Due to the uncertainty and vagueness of attack 
and defense mechanisms, decision-makers face a great difficulty to estimate their 
payoffs precisely. 

1.1 Motivation and Objectives 

The general model of .MG uses crisp numbers; however, there always occur some 
degree of imprecision in the opposition’s predictions in the game problem. Fuzzy 
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sets (FSs) represent uncertainty better than crisp data. For each element in FS, a 
degree of membership (DOM) is allotted. To describe the complicated scenarios, 
.MG problems in uncertain environments utilize FSs as payoffs. Atanassov [17] 
modified the version of FSs and first proposed the concepts of intuitionistic fuzzy 
sets (IFSs). For each element, the DOM and the degree of non-membership (DON) 
are both considered by an IFS. The IFS explores uncertainty more accurately and 
explicitly than the FS. 

In some cases, the available facts are always accompanied by contradictory, 
uncertain, and undefined data. It is to be noted that the key concepts of the degree 
of neutrality are absent in FS and IFS theory. Picture fuzzy set (PiFS) [2] is the  
extension of FSs and IFSs. PiFS can model uncertainty using DOM, DON, and the 
degree of indeterminacy (DOI) of elements. 

The interval-valued picture fuzzy sets (IVPiFSs) were submitted for the purpose 
of communicating issues with a set of real numbers in the interval [0,1]. In some 
cases, the DOM, DON, and DOI of a statement cannot be completely described in 
real life but are represented by possible intervals. IVPiFS was conceptualized, and 
the set-theoretic operators of IVPiFS were discussed in Cuong and Hai [3]. The 
next instance of an uncertain situation suggests the superior application of IVPiFS 
in respect of FS or IFS. 

Suppose a medical diagnostic center .Delta diagnose patients with fully automatic 
machines using artificial intelligence and delivers patients’ information online. So, 
there is always a huge data containing confidential information processed digitally 
during a span of time. Hackers choose this period to disorganize the digital system 
and snatch important data from the particular network site of .Delta. In order to 
counter attacks from hackers, the center deployed a digital security agency (DSA). 
As a result, DSA adopts some crucial strategies, like . x1, use of properly trained 
staff on cybersecurity; . x2, use of layered protection system; and . x3, use of updated 
software. There are many ways in which hackers can cause damage. DSA considers 
mainly three different ways such as . y1, phishing; . y2, malware; and . y3, malicious 
mobile applications, from which the attack comes frequently. So, . y1, . y2, and . y3
may be treated as strategies for hackers. .MG can be applied to deal this problem, 
where DSA and hackers are, respectively, Player-I (. Pl1) and Player-II (. Pl2). 

Distinct digital strikes destruct health-related information. Accordingly, the 
DSA wishes to know whether any information has been lost by hackers as a 
result of different attack strategies, mainly considering strategies . y1, . y2, and . y3. 
DSA consulted with different experts (say . A1, . A2, . A3) for their opinions. As a 
result, they presented their perspectives based on the strategies used by the DSA 
during different attacks. Uncertain information always contains some perception 
of “indeterminate” concepts other than “truth” and “falsity.” In such a situation, 
interval-valued picture fuzzy numbers (IVPiFNs) can be used in place of fuzzy 
numbers (FNs) or intuitionistic fuzzy numbers (IFNs). Let the expert “. A3” quantify 
the loss in the form of an IVPiFN as .〈[0.6, 0.7], [0.08, 0.12], [0.06, 0.1]〉, for the 
choice of the strategy . x1 and . y1, respectively, by DSA and the hacker. This explains 
that DSA has 60. % to 70. % positive chance of facing damage, whereas a chance of 
6. % to 10. % occurs to not get any damage. Also, DSA has an indeterminacy of 8. % to



9 Development of an Interval Picture Fuzzy Matrix Game-Based Approach to. . . 179

12. % chance to encounter damage according to “. A3.” These examples demonstrate 
the relevance of using IVPiFN in the context of .MG problems when cyberthreats are 
considered. 

The above example illustrates the difficulty of estimating players’ payoffs when 
there is ambiguous data, differing vague conditions, etc. To grip this condition, the 
payoffs can be considered as IVPiFNs, and it makes the problem more reliable. 
Consequently, uncertainty in . MGs can be countered using IVPiFN. The objectives 
of the present study are augmented as follows: 

(i) To define the concept of .MG problems using IVPiFNs as payoff elements. 
(ii) To formulate a novel solution methodology of the .MG with IVPiFN payoffs. 
(iii) To apply the concept of interval-valued picture fuzzy matrix game for real-

world complex problems. 

1.2 Research Gaps 

IVPiFS empowers a considerable range to express inexplicit circumstances. Even 
though .MG theories have advanced in various directions, no work has been done 
to solve .MG problems using IVPiFN payoffs. For practical necessity, we explore a 
.MG where IVPiFNs are taken as payoffs. 

1.3 Contributions 

As part of this chapter, we construct a .MG that has IVPiFNs as payoffs and defines 
the solution concept to the problem. The applicability and effectiveness of the 
discussed approach are demonstrated by a numerical example of cyberthreats in the 
healthcare sector. In this chapter, we explore how the results obtained are physically 
significant. The present work is mainly composed of the following contributions: 

(i) IVPiFNs are used as payoffs to counter .MG problems. As a result of this 
study, the idea of a reasonable solution, as well as the solution to the . MG
with IVPiFN payoffs, is developed. Also, this chapter defines the concept of 
the score function and accuracy function of IVPiFN. 

(ii) A novel approach is established to get the optimal strategies. Also, we proved 
that the gain floor of the maximizing player cannot exceed the loss ceiling of 
the minimizing player. In addition, we show that there always exists a solution 
to the game problem where payoffs are taken as IVPiFNs. 

(iii) It is preferable to get optimal solutions in the shape of IVPiFNs for each player. 
(iv) To manifest the validity and applicability of the proposed approach, it is 

applied to counter cyberthreat issues in the healthcare sector and find the 
optimal strategies for the medical data controller.
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The rest of this present work can be summed up as follows. Some preliminaries 
on IVPiFS and the order relation of intervals are recalled in Sect. 2. The concept of 
.MG with IVPiFN payoffs is discussed in Sect. 3. The formulation of the mathemat-
ical models and the solution methodology of the game problem are developed in 
Sect. 4. A numerical example relating to the cyberthreat in the healthcare sector is 
illustrated in Sect. 5. The chapter is concluded in Sect. 6. 

1.4 Literature Review 

In this section, we present a survey of the related literature mainly in three 
directions: (i) .MG with fuzzy payoffs, (ii) .MG with intuitionistic fuzzy payoffs, 
and (iii) applications of PiFNs. 

.MG is concerned with the study of conflicting situations that aims to capture 
behavior in strategic situations. There are various kinds of mathematical games 
which have been extensively studied and successfully applied in many fields. 
Nonetheless, it is hard to evaluate payoffs precisely in game circumstances due to 
imprecise information and uncertain comprehension of circumstances. 

(i) In recent years, numerous researchers examined and analyzed fuzzy matrix 
games (.FMGs). To solve .FMGs, Bigdeli et al. [10] utilized nearby interval 
estimation of FNs and solved security games. Based on the Mehar method, 
Verma and Kumar [35] derived the optimal strategy for players. Seikh et al. 
[20] developed an approach to counter the hesitant .FMGs. Seikh et al. [21] 
explored a methodology of solving .MG with dense fuzzy payoffs. Zheng et 
al. [40] studied a fuzzy multi-objective programming approach for . MGs with 
payoffs of fuzzy rough numbers. Brikaa et al. [19] utilized the Mehar approach 
to solve . MGs with triangular dual hesitant fuzzy payoffs. 

(ii) The IFS is a generalized way to express impreciseness in the payoffs. .MG with 
IFN entries is solved by Ambika methods developed by Verma and Kumar 
[36]. Naqvi et al. [7] solved game problems where symmetric triangular I-
fuzzy numbers are treated as payoff matrix entries. Verma and Aggarwal 
[30] discussed basic results and solution methodologies for game problems 
where payoffs are taken as linguistic IFNs. Kha et al. [13] developed a 
novel equilibrium solution concept for intuitionistic fuzzy .MG considering 
the proportion mix of possibility and necessity expectations. Zheng et al. [41] 
studied a resolving indeterminacy approach to solving multi-criteria zero-sum 
.MG with intuitionistic fuzzy goals. Seikh and Dutta [25] executed a technique 
using intuitionistic fuzzy optimization for solving problems arising in .MGs. Li  
[6] used interval-valued intuitionistic fuzzy sets (IVIFSs) as payoffs in a game 
problem and studied the solution procedure of the game. Xia [27] considered 
the interval-valued intuitionistic fuzzy numbers (IVIFNs) as players’ payoff 
in a .MG and developed a solution methodology depending on Archimedean 
t-conorm and t-norm.
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(iii) In the literature, a lot of work have been done using PiFSs. For example, Cuong 
[2] established some properties of PiFSs and defined the distance measures 
between PiFSs. Cuong and Hai [3] defined different operations on PiFSs, like 
negations, conjunctions, and disjunctions. Wei [9] developed the procedure to 
find the similarity between PiFSs. Jana et al. [5] addressed Dombi aggregation 
operators for PiFSs and used them to deal with the MADM process. Sing [29] 
studied the correlation coefficient of PiFS. Wang and Li [31] conceptualized 
the picture hesitant fuzzy set and applied it to decision-making problems. 
Seikh and Mandal [24] proposed some picture fuzzy aggregation operators 
based on Frank t-norm and t-conorm. Wang et al. [18] developed a multi-
criteria decision-making framework for risk ranking of energy performance 
contracting projects under picture fuzzy environment. Meksavang et al. [28] 
utilized the ordered weighted distance operators and aggregate the picture 
fuzzy information in a modified VIKOR technique. 

However, our study in this chapter is significantly different from other aforesaid 
works. Table 9.1 shows how our present work is different from the existing models. 

2 Preliminaries 

This section recaps some fundamental definitions and preliminary concepts related 
to IVPiFNs. The score function and accuracy function of IVPiFN are also defined 
here. 

Definition 1 (Interval-Valued Picture Fuzzy Number (IVPiFN) [3]) Let . Ω( �=
φ) be the universe. An interval-valued picture fuzzy set (IVPiFS) . 

˜̃
P in . Ω is defined 

as . ˜̃P =
{
〈ξ, τ ˜̃

P
(ξ), ω ˜̃

P
(ξ), ν ˜̃

P
(ξ)〉|ξ ∈ Ω

}
, where .τ ˜̃

P
(ξ), .ω ˜̃

P
(ξ), and .ν ˜̃

P
(ξ) are 

subsets of [0, 1], and .sup(τ ˜̃
P
(ξ)) + sup(ω ˜̃

P
(ξ)) + sup(ν ˜̃

P
(ξ)) ≤ 1. 

The intervals .τ ˜̃
P
(ξ), .ω ˜̃

P
(ξ), and .ν ˜̃

P
(ξ) are, respectively, the DOM, DOI, 

and DON of .ξ ∈ Ω . Thus, the IVPiFS may be concisely written as 

.
˜̃

P =
{
〈ξ, [τ−(ξ), τ+(ξ)], [ω−(ξ), ω+(ξ)], [ν−(ξ), ν+(ξ)]〉|ξ ∈ Ω

}
, where 

.0 ≤ τ−(ξ) ≤ τ+(ξ) ≤ 1, .0 ≤ ω−(ξ) ≤ ω+(ξ) ≤ 1, .0 ≤ ν−(ξ) ≤ ν+(ξ) ≤ 1 and 

.τ+(ξ) + ω+(ξ) + ν+(ξ) ≤ 1. 
For any element .ξ ∈ Ω , the triplet .〈τ ˜̃

P
(ξ), ω ˜̃

P
(ξ), ν ˜̃

P
(ξ)〉 is known 

as IVPiFN. For convenience, .〈τ ˜̃
P
(ξ), ω ˜̃

P
(ξ), ν ˜̃

P
(ξ)〉 is often represented by 

.〈[τ−, τ+], [ω−, ω+], [ν−, ν+]〉, where .[τ−, τ+], .[ω−, ω+], and .[ν−, ν+] are 
subsets of [0,1] and .τ+ + ω+ + ν+ ≤ 1. 

Definition 2 (Operations for IVPiFNs [3]) Assume that . ˜̃P1=〈[τ−
1 , τ+

1 ], [ω−
1 , ω+

1 ],
[ν−

1 , ν+
1 ]〉 and .

˜̃
P2 = 〈[τ−

2 , τ+
2 ], [ω−

2 , ω+
2 ], [ν−

2 , ν+
2 ]〉 are two IVPiFNs and .α > 0 is 

a real number. Then
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Table 9.1 Comparison of the presented model with the existing models in the literature 

Articles Types of payoff 
values 

Zero-
sum/non-
zero-sum 
game 

Method 
used/Approach 

Application area 

Seikh and Dutta 
[26] 

Interval-valued 
neutrosophic 
number 

Zero sum Linear programming 
approach 

Counter 
cybersecurity 

An and Li [15] Intuitionistic fuzzy 
number 

Non-Zero 
sum r 

Linear programming 
approach 

Company 
development 
strategy choice 
problem 

Seikh et al. [21] Dense fuzzy set Zero sum Linear programming 
approach 

Media share 
problem 

Xia [27] Interval-valued 
intuitionistic fuzzy 
number 

Zero sum Based on weighted 
average operator 

Problem of 
production right of a 
product 

Naqvi et al. [7] Triangular I-fuzzy 
number 

Zero sum Aspiration level 
approach 

Voting share 
problem 

Seikh et al. [20] Hesitant fuzzy set Zero sum Lexicographic 
method 

Market share 
problem 

Mi et al. [39] Probabilistic 
linguistic 
information 

Zero sum Based on the linear 
interpolation method 

Forest management 

Xue et al. [38] Hesitant fuzzy set Zero sum Ambika method Counter-terrorism 
issue 

Seikh et al. [22] Type-2 fuzzy 
variable 

Zero sum Based on type 
reduction 

Plastic ban problem 

Verma and 
Aggarwal [30] 

Linguistic 
intuitionistic fuzzy 
numbers 

Zero sum Linear programming 
approach 

3D printer 
marketing problem 

Karmakar et al. 
[34] 

Type-2 intuitionistic 
fuzzy set 

Zero sum Composite relative 
degree of payoffs 

Bio-gas 
implementation 

Fei and Li [37] Interval number Non-zero 
sum 

Bilinear 
programming 
approach 

Tourism planning 
management 

The proposed 
approach 

Interval-valued 
picture fuzzy 
number 

Zero sum Weighted average 
approach 

Counter-cyberthreat 
issue in healthcare 
sector 

(i) . ˜̃P1 ⊆ ˜̃
P2 ⇐⇒ τ−

1 ≤ τ−
2 , τ+

1 ≤ τ+
2 , ω−

1 ≥ ω−
2 , ω+

1 ≥ ω+
2 , ν−

1 ≥ ν−
2 , ν+

1 ≥
ν+
2 . 

(ii) . ˜̃P1 = ˜̃
P2 ⇐⇒ τ−

1 = τ−
2 , τ+

1 = τ+
2 , ω−

1 = ω−
2 , ω+

1 = ω+
2 , ν−

1 = ν−
2 , ν+

1 = ν+
2 . 

(iii) . ˜̃P1+ ˜̃
P2 = 〈[τ−

1 +τ−
2 −τ−

1 τ−
2 , τ+

1 +τ+
2 −τ+

1 τ+
2 ], [ω−

1 ω−
2 , ω+

1 ω+
2 ], [ν−

1 ν−
2 ,

ν+
1 ν+

2 ]〉.
(iv) .α ˜̃

P1 = 〈[1 − (1 − τ−
1 )

α
, 1 − (1 − τ+

1 )
α], [(ω−

1 )α, (ω+
1 )α], [(ν−

1 )α, (ν+
1 )α]〉.
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Definition 3 (Score Function and Accuracy Function of IVPiFN) For the 

IVPiFN . ˜̃P = 〈[τ−, τ+], [ω−, ω+], [ν−, ν+]〉, the score function .Υ (
˜̃

P) and the 

accuracy function .Ψ (
˜̃

P) can be obtained as follows: 

. Υ (
˜̃
P) = 1

4
(2 + τ− + τ+ − 2 ω− − 2 ω+ − ν− − ν+),

Ψ (
˜̃

P) = 1

2
{τ−+τ+−ω+(1−τ+) − ω−(1−τ−) − ν+(1 − ω+) − ν−(1 − ω−)}.

For two IVPiFNs . 
˜̃

P1 and . 
˜̃

P2, the ranking order relation is constructed as follows: 

(i) .Υ (
˜̃

P1) > Υ (
˜̃

P2) .⇒ .
˜̃

P1 �p
˜̃

P2; 

(ii) .Υ (
˜̃

P1) = Υ (
˜̃

P2), and .Ψ (
˜̃

P1) > Ψ (
˜̃

P2) .⇒ .
˜̃

P1 �p
˜̃

P2; 

(iii) .Υ (
˜̃

P1) = Υ (
˜̃

P2), and .Ψ (
˜̃

P1) = Ψ (
˜̃

P2) .⇒ . 
˜̃

P1 �p
˜̃

P2.

Here “. �p” and “. �p” express the usual meaning of “larger than” and “equal to,” 
respectively, in picture fuzzy environment. 

The following order relation of interval numbers is used to develop the solution 
methodology. 

Definition 4 (Order Relation for Ordinary Interval Numbers [11]) Let . Î1 =
[I1−, I1

+] and .Î2 = [I2−, I2
+] be two intervals. Then .Î1 ≤ Î2 ⇔ I1

− ≤ I2
−, and 

. I1
+ ≤ I2

+.

2.1 Notations 

The following notations are used to develop the model. 

Units Illustrations 

. ˜̃P = 〈[τ−, τ+], [ω−, ω+], [ν−, ν+]〉 IVPiFN 

.Υ (  ̃̃P) Score function of . ˜̃P 

.Ψ (  ̃̃P) Accuracy function of . ˜̃P 

. ˜̃E(ā, b̄) Expected payoff for Player-I 

.ā∗ maximin strategy for player-I 

.b̄∗ minimax strategy for player-II 

. ˜̃η∗ Gain-floor of Player-I 

.
˜̃
ζ ∗ Loss-ceiling of Player II 

.〈[τmn
−, τmn

+], [ωmn
−, ωmn

+], [νmn
−, νmn

+]〉 Pay-offs with IVPiFNs 
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3 Matrix Games with IVPiFN Payoffs 

Let .Θ1 = {1, 2, . . . , y} and .Θ2 = {1, 2, . . . , z} be two index sets and . S1 = {εm,m ∈
Θ1} and .S2 = {βn, n ∈ Θ2} contain all the possible pure strategies for . Pl1 and . Pl2, 
respectively. 

Suppose . Pl1 gains a payoff representing an IVPiFN 

. 〈(εm, βn), [τ−(εm, βn), τ
+(εm, βn)], [ω−(εm, βn), ω

+(εm, βn)],
[ν−(εm, βn), ν

+(εm, βn)]〉,

for selecting the pure strategies . εm and . βn by .Pl1 and .Pl2 respectively, which is 
shortly written as .〈[τ−, τ+], [ω−, ω+], [ν−, ν+]〉. Here, the negative of the IVPiFN 
.〈[τ−, τ+], [ω−, ω+], [ν−, ν+]〉 is the payoff for . Pl2. 

Thus, a .MG with IVPiFN entries is compactly written as 

. Ñ = (〈[τmn
−, τmn

+], [ωmn
−, ωmn

+], [νmn
−, νmn

+]〉)y×z.

The matrix . Ñ is usually conceived as the payoff matrix for . Pl1. From now on, 
the two-person .MG with payoff matrix . Ñ is supposed to call as an interval-valued 
picture fuzzy matrix game (IVPiFMG) . Ñ . 

Suppose that .Pl1 and .Pl2 select .εm ∈ S1 and .βn ∈ S2 with probability . am

and . bn, respectively. If .
y∑

m=1
am = 1 and .

z∑
n=1

bn = 1, then . ̄a = (a1, a2, . . . , ay)

and .b̄ = (b1, b2, . . . , bz) are said to be the mixed strategies for .Pl1 and . Pl2, 

respectively. Let .Δ1 =
{
ā = (a1, a2, . . . , ay) ∈ ℜy

+ :
y∑

m=1
am = 1

}
and 

.Δ2 =
{
b̄ = (b1, b2, . . . , bz) ∈ ℜz+ :

z∑
n=1

bn = 1
}
be the collections of all possible 

mixed strategies for . Pl1 and . Pl2, respectively. 

For .(ā, b̄) ∈ Δ1 × Δ2, the expected payoff (.
˜̃
E(ā, b̄)) for  . Pl1 can be enumerated 

as 

. 
˜̃
E(ā, b̄) = āT Ñ b̄ =

y∑
m=1

z∑
n=1

〈[τmn
−, τmn

+], [ωmn
−, ωmn

+], [νmn
−, νmn

+]〉ambn

=
〈[
1 −

z∏
n=1

y∏
m=1

(1 − τmn
−)

ambn
, 1 −

z∏
n=1

y∏
m=1

(1 − τmn
+)ambn

]
,

[ z∏
n=1

y∏
m=1

(ωmn
−)

ambn
,

z∏
n=1

y∏
m=1

(ωmn
+)ambn

]
,
[ z∏

n=1

y∏
m=1

(νmn
−)ambn,

z∏
n=1

y∏
m=1

(νmn
+)ambn

]〉
. (9.1)
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It is clear that . ˜̃E(ā, b̄) is an IVPiFN. 
Following Owen [8] and Definition 2, if for  some .(ā0, b̄0) ∈ Δ1 × Δ2, such that 

. ̄aT
0 Ñ b̄0 = max

ā∈Δ1
min
b̄∈Δ2

{āTÑ b̄} = min
b̄∈Δ2

max
ā∈Δ1

{āTÑ b̄},

then . ̄a0 and . ̄b0 are the optimal strategies for . Pl1 and . Pl2, respectively. In this case, 
.āT
0 Ñ b̄0 is considered to be the value of IVPiFMG . Ñ . 
By using Definition 2 and Eq. (9.1), we can convert the optimization problem of 

.āT
0 Ñ b̄0 to a mathematical programming problem with multi-objective functions . χ , 

. δ, and . κ , where 

. χ =
[
1 −

z∏
n=1

y∏
m=1

(1 − τmn
−)ambn, 1 −

z∏
n=1

y∏
m=1

(1 − τmn
+)ambn

]
,

δ =
[ z∏

n=1

y∏
m=1

(ωmn
−)ambn,

z∏
n=1

y∏
m=1

(ωmn
+)ambn

]
,

and κ =
[ z∏

n=1

y∏
m=1

(νmn
−)ambn,

z∏
n=1

y∏
m=1

(νmn
+)ambn

]
.

A reasonable solution for .FMG was conceptualized by Bector et al. . Following is 
an extension of the idea of a reasonable solution for IVPiFMG. 

Definition 5 If for .ā∗ ∈ Δ1 and .b̄∗ ∈ Δ2, .ā∗Ñ b̄ ⊂ ˜̃
P1 and .āÑ b̄∗ ⊃ ˜̃

P2 hold for any 

IVPiFNs . ˜̃P1, . 
˜̃

P2 and for any .ā ∈ Δ1 and .b̄ ∈ Δ2, then . ̄a∗, and . ̄b∗ are, respectively, 

the reasonable values for .Pl1 and . Pl2. The triplet .(ā∗, b̄∗, ˜̃
P1,

˜̃
P2) represents the 

reasonable solution of the IVPiFMG . Ñ . 

The concept of the reasonable solution, as defined above, and the concept of the 
solution of IVPiFMG . Ñ are different. The notion of the solution of IVPiFMG . Ñ is 
defined below. 

Definition 6 Let . ˜̃P1∗ ∈ L1 and .
˜̃

P2∗ ∈ L2, where . L1 and . L2 are the collections of 

reasonable values for . Pl1 and . Pl2, respectively. If there does not exist such . 
˜̃

P1
′ ∈

L1 (
˜̃

P1
′ �= ˜̃

P1∗) and . ˜̃P2
′ ∈ L2 (

˜̃
P2

′ �= ˜̃
P2∗) for which . ˜̃P1∗ ⊂ ˜̃

P1
′
and . ˜̃P2∗ ⊃ ˜̃

P2
′
, 

then .(ā∗, b̄∗, ˜̃
P1∗, ˜̃

P2∗) is considered to be the solution of the IVPiFMG . Ñ . 
Here . ̄a∗ is the maximin strategy for .Pl1 and . ̄b∗ is the minimax strategy for 

. Pl2. .
˜̃

P1∗ and . ˜̃P2∗ are recognized as the values of the IVPiFMG for .Pl1 and . Pl2, 
respectively. 

For . Pl1, the minimum of the expected values . ˜̃η can be determined as
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. ˜̃η =
〈[

σ−, σ+]
,
[
γ −, γ +]

,
[
�−, �+]〉

= min
b̄∈Δ2

˜̃
E(ā, b̄)

=
〈
min
b̄∈Δ2

{[
1 −

z∏
n=1

y∏
m=1

(1 − τmn
−)ambn, 1 −

z∏
n=1

y∏
m=1

(1 − τmn
+)ambn

]}
,

max
b̄∈Δ2

{[ z∏
n=1

y∏
m=1

(ωmn
−)ambn,

z∏
n=1

y∏
m=1

(ωmn
+)ambn

]}
,

max
b̄∈Δ2

{[ z∏
n=1

y∏
m=1

(νmn
−)ambn,

z∏
n=1

y∏
m=1

(νmn
+)ambn

]}〉
.

It implies that . ˜̃η is a function of . ̄a. In order to maximize . ˜̃η, . Pl1 should choose a 
mixed strategy .ā∗ ∈ Δ1 and obtain 

. ˜̃η∗ =
〈[

σ∗−, σ∗+]
,
[
γ∗−, γ∗+]

,
[
�∗−, �∗+]〉

= max
ā∈Δ1

min
b̄∈Δ2

˜̃
E(ā, b̄)

=
〈
max
ā∈Δ1

min
b̄∈Δ2

{[
1 −

z∏
n=1

y∏
m=1

(1 − τmn
−)ambn, 1 −

z∏
n=1

y∏
m=1

(1 − τmn
+)ambn

]}
,

min
ā∈Δ1

max
b̄∈Δ2

{[ z∏
n=1

y∏
m=1

(ωmn
−)ambn,

z∏
n=1

y∏
m=1

(ωmn
+)ambn

]}
,

min
ā∈Δ1

max
b̄∈Δ2

{[ z∏
n=1

y∏
m=1

(νmn
−)ambn,

z∏
n=1

y∏
m=1

(νmn
+)ambn

]}〉
.

(9.2) 

Here, . ̄a∗ and . ˜̃η∗ are, respectively, the maximin strategy and the gain floor for . Pl1. 

For . Pl2, the maximum of the expected loss ( . ̃̃ζ ) can be determined as follows: 

.
˜̃
ζ =

〈[
ξ−, ξ+]

,
[
η−, η+]

,
[
ψ−, ψ+]〉

= max
ā∈Δ1

˜̃
E(ā, b̄)

=
〈
max
ā∈Δ1

{[
1 −

z∏
n=1

y∏
m=1

(1 − τmn
−)ambn, 1 −

z∏
n=1

y∏
m=1

(1 − τmn
+)ambn

]}
,

min
ā∈Δ1

{[ z∏
n=1

y∏
m=1

(ωmn
−)ambn,

z∏
n=1

y∏
m=1

(ωmn
+)ambn

]}
,
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min
ā∈Δ1

{[ z∏
n=1 

y∏
m=1 

(νmn
−)ambn , 

z∏
n=1 

y∏
m=1 

(νmn
+)ambn

]}〉
. 

Clearly . ̃̃ζ depends on . ̄b. For this reason, . Pl2 should consider a mixed strategy 

.b̄∗ ∈ Δ2, so that . ̃̃ζ will be minimum. So, . Pl2 try to obtain . ̃̃ζ ∗, where 

. ̃̃ζ ∗ =
〈[

ξ∗−, ξ∗+]
,
[
η∗−, η∗+]

,
[
ψ∗−, ψ∗+]〉

= min
b̄∈Δ2

max
ā∈Δ1

˜̃
E(ā, b̄)

=
〈
min
b̄∈Δ2

max
ā∈Δ1

{[
1 −

z∏
n=1

y∏
m=1

(1 − τmn
−)ambn, 1 −

z∏
n=1

y∏
m=1

(1 − τmn
+)ambn

]}
,

max
b̄∈Δ2

min
ā∈Δ1

{[ z∏
n=1

y∏
m=1

(ωmn
−)ambn,

z∏
n=1

y∏
m=1

(ωmn
+)ambn

]}
,

max
b̄∈Δ2

min
ā∈Δ1

{[ z∏
n=1

y∏
m=1

(νmn
−)ambn,

z∏
n=1

y∏
m=1

(νmn
+)ambn

]}〉
. (9.3) 

Here, . ̄b∗ and . ̃̃ζ ∗ are, respectively, the minimax strategy and the loss ceiling for . Pl2. 
As in a crisp game situation, the next theorem proves that the gain floor (. ˜̃η∗) of  

. Pl1 cannot exceed the loss ceiling (. ̃̃ζ ∗) of . Pl2. 

Theorem 1 For IVPiFMG, the relation . ˜̃η∗ ⊆ ˜̃
ζ ∗ is valid. 

Proof It is clear that for any .ā ∈ Δ1 and .b̄ ∈ Δ2, 

. min
b̄∈Δ2

{
1 −

z∏
n=1

y∏
m=1

(1 − τmn
−)ambn

}
≤ 1 −

z∏
n=1

y∏
m=1

(1 − τmn
−)ambn

≤ max
ā∈Δ1

{
1 −

z∏
n=1

y∏
m=1

(1 − τmn
−)ambn

}
.

Hence, 

. min
b̄∈Δ2

{
1 −

z∏
n=1

y∏
m=1

(1 − τmn
−)ambn

}
≤ min

b̄∈Δ2

max
ā∈Δ1

{
1 −

z∏
n=1

y∏
m=1

(1 − τmn
−)ambn

}
.

Therefore we have,
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. max
ā∈Δ1

min
b̄∈Δ2

{
1−

z∏
n=1

y∏
m=1

(1−τmn
−)ambn

}
≤ min

b̄∈Δ2

max
ā∈Δ1

{
1−

z∏
n=1

y∏
m=1

(1−τmn
−)ambn

}
.

(9.4) 
Similarly, it also implies that 

. max
ā∈Δ1

min
b̄∈Δ2

{
1−

z∏
n=1

y∏
m=1

(1−τmn
+)ambn

}
≤ min

b̄∈Δ2

max
ā∈Δ1

{
1−

z∏
n=1

y∏
m=1

(1 − τmn
+)ambn

}
.

(9.5) 
Using Definition (2) and Eqs. (9.4) and (9.5), we have  

. max
ā∈Δ1

min
b̄∈Δ2

{[
1 −

z∏
n=1

y∏
m=1

(1 − τmn
−)ambn, 1 −

z∏
n=1

y∏
m=1

(1 − τmn
+)ambn

]}

≤ min
b̄∈Δ2

max
ā∈Δ1

{[
1 −

z∏
n=1

y∏
m=1

(1 − τmn
−)ambn, 1 −

z∏
n=1

y∏
m=1

(1 − τmn
+)ambn

]}
.

(9.6) 

Again for any .ā ∈ Δ1 and .b̄ ∈ Δ2, we have  

. max
b̄∈Δ2

{ z∏
n=1

y∏
m=1

(ωmn
−)ambn

}
≥

z∏
n=1

y∏
m=1

(ωmn
−)ambn ≥ min

ā∈Δ1

{ z∏
n=1

y∏
m=1

(ωmn
−)ambn

}

and 

. max
b̄∈Δ2

{ z∏
n=1

y∏
m=1

(νmn
−)ambn

}
≥

z∏
n=1

y∏
m=1

(νmn
−)ambn ≥ min

ā∈Δ1

{ z∏
n=1

y∏
m=1

(νmn
−)ambn

}
.

Therefore, we have 

. min
ā∈Δ1

max
b̄∈Δ2

{ z∏
n=1

y∏
m=1

(ωmn
−)ambn

}
≥ max

b̄∈Δ2

min
ā∈Δ1

{ z∏
n=1

y∏
m=1

(ωmn
−)ambn

}
(9.7) 

and 

. min
ā∈Δ1

max
b̄∈Δ2

{ z∏
n=1

y∏
m=1

(νmn
−)ambn

}
≥ max

b̄∈Δ2

min
ā∈Δ1

{ z∏
n=1

y∏
m=1

(νmn
−)ambn

}
. (9.8) 

In a similar fashion, it follows that
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. min
ā∈Δ1

max
b̄∈Δ2

{ z∏
n=1

y∏
m=1

(ωmn
+)ambn

}
≥ max

b̄∈Δ2

min
ā∈Δ1

{ z∏
n=1

y∏
m=1

(ωmn
+)ambn

}
(9.9) 

and 

. min
ā∈Δ1

max
b̄∈Δ2

{ z∏
n=1

y∏
m=1

(νmn
+)ambn

}
≥ max

b̄∈Δ2

min
ā∈Δ1

{ z∏
n=1

y∏
m=1

(νmn
+)ambn

}
. (9.10) 

From Eqs. (9.7) and (9.9), we can write 

. min
ā∈Δ1

max
b̄∈Δ2

{[ z∏
n=1

y∏
m=1

(ωmn
−)ambn,

z∏
n=1

y∏
m=1

(ωmn
+)ambn

]}

≥ max
b̄∈Δ2

min
ā∈Δ1

{[ z∏
n=1

y∏
m=1

(ωmn
−)ambn,

z∏
n=1

y∏
m=1

(ωmn
+)ambn

]}
. (9.11) 

Again, using Eqs. (9.8) and (9.10), we have,  

. min
ā∈Δ1

max
b̄∈Δ2

{[ z∏
n=1

y∏
m=1

(νmn
−)ambn,

z∏
n=1

y∏
m=1

(νmn
+)ambn

]}

≥ max
b̄∈Δ2

min
ā∈Δ1

{[ z∏
n=1

y∏
m=1

(νmn
−)ambn,

z∏
n=1

y∏
m=1

(νmn
+)ambn

]}
. (9.12) 

Using Eqs. (9.6), (9.11) and (9.12), it follows that 

. max
ā∈Δ1

min
b̄∈Δ2

{〈[
1 −

z∏
n=1

y∏
m=1

(1 − τmn
−)ambn, 1 −

z∏
n=1

y∏
m=1

(1 − τmn
+)ambn

]
,

[ z∏
n=1

y∏
m=1

(ωmn
−)ambn,

z∏
n=1

y∏
m=1

(ωmn
+)ambn

]
,
[ z∏

n=1

y∏
m=1

(νmn
−)ambn,

z∏
n=1

y∏
m=1

(νmn
+)ambn

]〉}

≤ min
b̄∈Δ2

max
ā∈Δ1

{〈[
1 −

z∏
n=1

y∏
m=1

(1 − τmn
−)ambn,

1 −
z∏

n=1

y∏
m=1

(1 − τmn
+)ambn

]
,



190 S. Dutta et al.

[ z∏
n=1 

y∏
m=1 

(ωmn
−)ambn , 

z∏
n=1 

y∏
m=1 

(ωmn
+)ambn

]
,
[ z∏

n=1 

y∏
m=1 

(νmn
−)ambn , 

z∏
n=1 

y∏
m=1 

(νmn
+)ambn

]〉}
. 

Using Definition 2, we have, . ˜̃η∗ ⊆ ˜̃
ζ ∗. ��

4 Mathematical Model and Solution Approach for IVPiFMG 

The following sections describe the formulation of the model and the solution 
procedure for IVPiFMG. The solution procedure has been developed based on the 
work of [6, 26]. 

For . Pl1, the mathematical programming model with multi-objective functions as 
given in Eq. (9.13) is constructed considering Eq. (9.2) and Definitions 5 and 6. 

. max
{[

σ−, σ+]}
,min

{[
γ −, γ +]}

,min
{[

�−, �+]}

subject to
[
1 −

z∏
n=1

y∏
m=1

(1 − τmn
−)ambn, 1 −

z∏
n=1

y∏
m=1

(1 − τmn
+)ambn

]

≥
[
σ−, σ+]

, for any b̄ ∈ Δ2

[ z∏
n=1

y∏
m=1

(ωmn
−)ambn,

z∏
n=1

y∏
m=1

(ωmn
+)ambn

]
≤

[
γ −, γ +]

, for any b̄∈Δ2

[ z∏
n=1

y∏
m=1

(νmn
−)ambn,

z∏
n=1

y∏
m=1

(νmn
+)ambn

]
≤

[
�−, �+]

, for any b̄∈Δ2

y∑
m=1

am = 1, am ≥ 0, m ∈ Θ1

σ− ≥ 0, σ+ ≥ 0, γ − ≥ 0, γ + ≥ 0, ς− ≥ 0, ς+ ≥ 0,

0 ≤ σ+ + γ + + ς+ ≤ 1, (9.13) 

where .σ− = min
b̄∈Δ2

{
1 −

z∏
n=1

y∏
m=1

(1 − τmn
−)ambn

}
, . σ+ = min

b̄∈Δ2

{
1 −

z∏
n=1

y∏
m=1

(1 −

τmn
+)ambn

}
,
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.γ − = max
b̄∈Δ2

{ z∏
n=1

y∏
m=1

(ωmn
−)ambn

}
, .γ + = max

b̄∈Δ2

{ z∏
n=1

y∏
m=1

(ωmn
+)ambn

}
, . �− =

max
b̄∈Δ2

{ z∏
n=1

y∏
m=1

(νmn
−)ambn

}

and . �+ = max
b̄∈Δ2

{ z∏
n=1

y∏
m=1

(νmn
+)ambn

}
.

By solving Eq. (9.13), we can obtain the maximin strategy . ̄a∗ and the gain floor 

. ˜̃η∗ =
〈[

σ∗−, σ∗+
]
,
[
γ∗−, γ∗+

]
,
[
�∗−, �∗+

]〉
for . Pl1. 

It is evident that the maximization of .[σ−, σ+] in Eq. (9.13) is similar to the 
minimization of .[1 − σ+, 1 − σ−], and it is also similar to the minimization of 
.[ln(1 − σ+), ln(1 − σ−)] for .0 ≤ σ−, σ+ < 1. So, the maximization of . [σ−, σ+]
is equivalent to the minimization of .[ln(1− σ+), ln(1− σ−)] for .0 ≤ σ−, σ+ < 1. 

In a similar manner, we can write the minimization of .[γ −, γ +], and . [�−, �+]
are, respectively, equivalent to the minimization of .[ln γ −, ln γ +] and .[ln �−, ln �+], 
for .0 < γ −, γ +, �−, �+ < 1. 

Now as the objective functions .[ln γ −, ln γ +] and .[ln �−, ln �+] have the similar 

importance, the average of these two functions .
[
ln γ −+ln �−

2 ,
ln γ ++ln �+

2

]
is taken 

into consideration. 
Therefore, the three objective functions in Eq. (9.13) can be aggregated using the 

weighted average method as follows: 

. min
[
μ ln(1 − σ+) + (1 − μ)

( ln γ − + ln �−

2

)
, μ ln(1 − σ−)

+(1 − μ)
( ln γ + + ln �+

2

)]
, (9.14) 

where .μ ∈ [0, 1] is a weight value, which is to be chosen by the players for 
optimization. 

Using the interval order relation as defined in Definition 4, the constraints in 
Eq. (9.13) can be written as follows: 

. 

z∏
n=1

y∏
m=1

(1 − τmn
−)ambn ≤ 1 − σ−,

z∏
n=1

y∏
m=1

(1 − τmn
+)ambn ≤ 1 − σ+,

. 

z∏
n=1

y∏
m=1

(ωmn
−)ambn ≤ γ −,

z∏
n=1

y∏
m=1

(ωmn
+)ambn ≤ γ +,

.

z∏
n=1

y∏
m=1

(νmn
−)ambn ≤ �−,

z∏
n=1

y∏
m=1

(νmn
+)ambn ≤ �+,
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which are equivalent to the following inequalities: 

. 

z∑
n=1

y∑
m=1

ambn ln(1−τmn
−)≤ ln(1−σ−),

z∑
n=1

y∑
m=1

ambn ln(1 − τmn
+)≤ ln(1 − σ+),

. 

z∑
n=1

y∑
m=1

ambn ln(ωmn
−) ≤ ln γ −,

z∑
n=1

y∑
m=1

ambn ln(ωmn
+) ≤ ln γ +,

. 

z∑
n=1

y∑
m=1

ambnln(νmn
−) ≤ ln �−,

z∑
n=1

y∑
m=1

ambn ln(νmn
+) ≤ ln �+,

for . 0 < τmn
−, τmn

+, ωmn
−, ωmn

+, νmn
−, νmn

+, σ−, σ+, γ −, γ +, �−, �+ < 1.
Therefore, using the weighted average method, the constraints in Eq. (9.13) can 

be aggregated as follows: 

. 

z∑
n=1

y∑
m=1

[
μ ln(1 − τmn

+) + (1 − μ)
( ln(ωmn

−) + ln(νmn
−)

2

)]
ambn

≤ μ ln(1 − σ+) + (1 − μ)
( ln γ − + ln �−

2

)
, for any b̄ ∈ Δ2

z∑
n=1

y∑
m=1

[
μ ln(1 − τmn

−) + (1 − μ)
( ln(ωmn

+) + ln(νmn
+)

2

)]
ambn

≤ μ ln(1 − σ−) + (1 − μ)
( ln γ + + ln �+

2

)
, for any b̄ ∈ Δ2

y∑
m=1

am = 1, am ≥ 0, m ∈ Θ1

σ− ≥ 0, σ+ ≥ 0, γ − > 0, γ + > 0, �− > 0, �+ > 0, σ+ + γ + + �+ ≤ 1.

(9.15) 

Using Eqs. (9.14) and (9.15), Eq. (9.13) is changed into the following Eq. (9.16). 

. min
{[

μ ln(1 − σ+) + (1 − μ)
( ln γ − + ln �−

2

)
, μ ln(1 − σ−)

+(1 − μ)
( ln γ + + ln �+

2

)]}
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subject to 
z∑

n=1 

y∑
m=1

[
μ ln(1 − τmn

+) + (1 − μ)
( ln(ωmn

−) + ln(νmn
−) 

2

)]
ambn 

≤ μ ln(1 − σ+) + (1 − μ)
( ln γ − + ln �− 

2

)
, for any b̄ ∈ Δ2 

z∑
n=1 

y∑
m=1

[
μ ln(1 − τmn

−) + (1 − μ)
( ln(ωmn

+) + ln(νmn
+) 

2

)]
ambn 

≤ μ ln(1 − σ−) + (1 − μ)
( ln γ + + ln �+ 

2

)
, for any b̄ ∈ Δ2 

y∑
m=1 

am = 1, am ≥ 0, m  ∈ Θ1 

σ− ≥ 0, σ+ ≥ 0, γ  − > 0, γ  + > 0, �− > 0,

�+ > 0, σ+ + γ + + �+ ≤ 1. (9.16) 

Let .θ− = μ ln(1 − σ+) + (1 − μ)
(
ln γ −+ln �−

2

)
and . θ+ = μ ln(1 − σ−) + (1 −

μ)
(
ln γ ++ln �+

2

)
. Then, .θ− ≤ 0 and .θ+ ≤ 0 as .μ ∈ [0, 1], .0 < 1 − σ+ ≤ 1, 

.0 < γ − ≤ 1, .0 < �− ≤ 1, .0 < 1 − σ− ≤ 1, .0 < γ + ≤ 1, and . 0 < �+ ≤ 1.
Thus, Eq. (9.16) changes to Eq. (9.17) as follows: 

. min
{[

θ−, θ+]}

subject to
z∑

n=1

y∑
m=1

[
μ ln(1 − τmn

+) + (1 − μ)
( ln(ωmn

−) + ln(νmn
−)

2

)]
ambn

≤ θ−, for any b̄ ∈ Δ2

z∑
n=1

y∑
m=1

[
μ ln(1 − τmn

−) + (1 − μ)
( ln(ωmn

+) + ln(νmn
+)

2

)]
ambn

≤ θ+, for any b̄ ∈ Δ2

y∑
m=1

am = 1, am ≥ 0, m ∈ Θ1

θ− ≤ 0, θ+ ≤ 0, (9.17) 

except for .τmn
− = 1, .τmn

+ = 1, .ωmn
− = 0, .ωmn

+ = 0, .νmn
− = 0, and . νmn

+ = 0.
Due to the finite nature of . Δ2, it creates perception to consider only the extreme 

points of . Δ2 within the constraints of Eq. (9.17). Therefore, Eq. (9.17) changes to 
the following Eq. (9.18):
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. min
{[

θ−, θ+]}

subject to
y∑

m=1

[
μ ln(1 − τmn

+) + (1 − μ)
( ln(ωmn

−) + ln(νmn
−)

2

)]
am

≤ θ−, n ∈ Θ2

y∑
m=1

[
μ ln(1 − τmn

−) + (1 − μ)
( ln(ωmn

+) + ln(νmn
+)

2

)]
am

≤ θ+, n ∈ Θ2

y∑
m=1

am = 1, am ≥ 0, m ∈ Θ1

θ− ≤ 0, θ+ ≤ 0, (9.18) 

Here Eq. (9.18) is an interval-valued programming problem and can be solved by the 
method proposed in [11]. We follow the methodology proposed in [6] to deal with 
the interval-valued objective function of Eq. (9.18). Let  .θ = θ− + θ+. As  . θ− ≤ 0
and .θ+ ≤ 0, .θ ≤ 0. Hence, Eq. (9.18) changed into the following Eq. (9.19): 

. min
{
θ
}

subject to
y∑

m=1

[
μ ln(1−τmn

+)+(1−μ)
( ln(ωmn

−)+ ln(νmn
−)

2

)
+μ ln(1−τmn

−)

+ (1−μ)
( ln(ωmn

+)+ ln(νmn
+)

2

)]
am ≤ θ, n ∈ Θ2

y∑
m=1

am = 1, am ≥ 0, m ∈ Θ1

θ ≤ 0

(9.19) 

except for .τmn
− = 1, .τmn

+ = 1, .ωmn
− = 0, .ωmn

+ = 0, .νmn
− = 0, and . νmn

+ = 0.
Clearly, the optimal strategies for . Pl1 will be obtained by solving Eq. (9.19) for 

distinct .μ ∈ [0, 1] using existing simplex methods. 
Earlier, for . Pl2, the following mathematical programming problem with multi-

objective functions as given in Eq. (9.20) is formulated to obtain the minimax 

strategy . ̄q∗ and the loss-ceiling . ̃̃ζ ∗ =
〈[

ξ∗−, ξ∗+
]
,
[
η∗−, η∗+

]
,
[
ψ∗−, ψ∗+

]〉

considering Eq. (9.3) and Definitions 5 and 6.
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. min
{[

ξ−, ξ+]}
,max

{[
η−, η+]}

,max
{[

ψ−, ψ+]}

subject to
[
1 −

z∏
n=1

y∏
m=1

(1 − τmn
−)ambn , 1 −

z∏
n=1

y∏
m=1

(1 − τmn
+)ambn

]

≤
[
ξ−, ξ+], for any ā ∈ Δ1

[ z∏
n=1

y∏
m=1

(ωmn
−)ambn ,

z∏
n=1

y∏
m=1

(ωmn
+)ambn

]
≥

[
η−, η+]

, for any ā ∈ Δ1

[ z∏
n=1

y∏
m=1

(νmn
−)ambn ,

z∏
n=1

y∏
m=1

(νmn
+)ambn

]
≥

[
ψ−, ψ+]

, for any ā ∈ Δ1

z∑
n=1

bn = 1, bn ≥ 0, n ∈ Θ2

ξ− ≥ 0, ξ+ ≥ 0, η− ≥ 0, η+ ≥ 0, ψ− ≥ 0, ψ+ ≥ 0,

0 ≤ ξ+ + η+ + ψ+ ≤ 1, (9.20) 

where .ξ− = max
ā∈Δ1

{
1 −

z∏
n=1

y∏
m=1

(1 − τmn
−)ambn

}
, . ξ+ = max

ā∈Δ1

{
1 −

z∏
n=1

y∏
m=1

(1 −
τmn

+)ambn

}
, 

.η− = min
ā∈Δ1

{ z∏
n=1

y∏
m=1

(ωmn
−)ambn

}
, .η+ = min

ā∈Δ1

{ z∏
n=1

y∏
m=1

(ωmn
+)ambn

}
, . ψ− =

min
ā∈Δ1

{ z∏
n=1

y∏
m=1

(νmn
−)ambn

}

and . ψ+ = min
ā∈Δ1

{ z∏
n=1

y∏
m=1

(νmn
+)ambn

}
.

Previously, using the weighted average approach, the objective functions and 
the constraints of Eq. (9.20) can be aggregated and transformed into the following 
Eq. (9.21): 

. max
{[

μ ln(1 − ξ+) + (1 − μ)
( ln η− + lnψ−

2

)
, μ ln(1 − ξ−)

+(1 − μ)
( ln η+ + lnψ+

2

)]}

subject to
z∑

n=1

y∑
m=1

[
μ ln(1 − τmn

+) + (1 − μ)
( ln(ωmn

−) + ln(νmn
−)

2

)]
ambn

≥μ ln(1 − ξ+) + (1 − μ)
( ln η− + lnψ−

2

)
, for any ā∈Δ1
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z∑
n=1 

y∑
m=1

[
μ ln((1 − τmn

−) + (1 − μ)
( ln(ωmn

+) + ln(νmn
+) 

2

)]
ambn 

≥μ ln(1 − ξ−) + (1 − μ)
( ln η+ + ln ψ+ 

2

)
, for any ā∈Δ1 

z∑
n=1 

bn = 1, bn ≥ 0, n  ∈ Θ2 

ξ− ≥ 0, ξ+ ≥ 0, η− ≥ 0, η+ ≥ 0, ψ− ≥ 0, ψ+ ≥ 0, 

0 ≤ ξ+ + η+ + ψ+ ≤ 1. (9.21) 

Let .φ− = μ ln(1 − ξ+) + (1 − μ)
(
ln η−+lnψ−

2

)
, and . φ+ = μ ln(1 − ξ−) +

(1 − μ)
(
ln η++lnψ+

2

)
. Then, .φ− ≤ 0 and .φ+ ≤ 0 as .μ ∈ [0, 1], .0 < 1 − ξ+ ≤ 1, 

.0 < η− ≤ 1, .0 < ψ− ≤ 1, .0 < 1 − ξ− ≤ 1, .0 < η+ ≤ 1, and .0 < ψ+ ≤ 1. Then, 
Eq. (9.21) changes to Eq. (9.22). 

. max
{[

φ−, φ+]}

subject to
z∑

n=1

y∑
m=1

[
μ ln(1 − τmn

+) + (1 − μ)
( ln(ωmn

−) + ln(νmn
−)

2

)]
ambn

≥ φ−, for any ā ∈ Δ1

z∑
n=1

y∑
m=1

[
μ ln((1 − τmn

−) + (1 − μ)
( ln(ωmn

+) + ln(νmn
+)

2

)]
ambn

≥ φ+, for any ā ∈ Δ1

z∑
n=1

bn = 1, bn ≥ 0, n ∈ Θ2

φ− ≤ 0, φ+ ≤ 0. (9.22) 

Due to the finite nature of . Δ1, a perception is created to examine only the extreme 
points of . Δ1 within the constraints of Eq. (9.22). As a result, Eq. (9.22) can be 
transformed into Eq. (9.23) as follows: 

. max
{[

φ−, φ+]}

subject to
z∑

n=1

[
μ ln(1−τmn

+) + (1−μ)
( ln(ωmn

−) + ln(νmn
−)

2

)]
bn≥φ−, m∈Θ1
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z∑
n=1

[
μ ln((1−τmn

−)+(1−μ)
( ln(ωmn

+)+ ln(νmn
+) 

2

)]
bn≥φ+, m∈Θ1 

z∑
n=1 

bn = 1, bn ≥ 0, n  ∈ Θ2 

φ− ≤ 0, φ+ ≤ 0. 

(9.23) 

Based on the  work  of  [6], we investigate the remaining solution method. 
Let .φ = φ− +φ+. As .φ− ≤ 0 and .φ+ ≤ 0, .φ ≤ 0. Therefore, Eq. (9.23) reduced 

to Eq. (9.24). 

. max
{
φ
}

subject to
z∑

n=1

[
μ ln(1−τmn

+)+(1−μ)
( ln(ωmn

−)+ ln(νmn
−)

2

)
+μ ln(1−τmn

−)

+(1 − μ)
( ln(ωmn

+) + ln(νmn
+)

2

)]
bn ≥ φ, m ∈ Θ1

z∑
n=1

bn = 1, bn ≥ 0, n ∈ Θ2

φ ≤ 0,

(9.24) 

except for .τmn
− = 1, .τmn

− = 1, .ωmn
− = 0, .ωmn

+ = 0, .νmn
− = 0, and .νmn

+ = 0. 
It is to be noted that the optimal strategies for . Pl2 will be obtained by solving 

Eq. (9.24) for distinct .μ ∈ [0, 1] by way of existing simplex methods. 
In Theorem 2, we establish that there always exists a solution to an IVPiFMG. 

Theorem 2 There always exists a solution .(ā∗, b̄∗, āT∗ Ñ b̄∗) for the IVPiFMG . Ñ , 
for different .μ ∈ (0, 1). 

Proof Clearly, the problems as in Eqs. (9.19) and (9.24) are considered to be the 
primal-dual problems for different values of .μ ∈ (0, 1), in the game problem where 
the payoff matrix is 

.

(
μ ln(1 − τmn

+) + (1 − μ)
( ln(ωmn

−) + ln(νmn
−)

2

)
+ μ ln(1 − τmn

−)

+ (1 − μ)
( ln(ωmn

+) + ln(νmn
+)

2

))
y×z

,
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for any value of .μ ∈ (0, 1). 
According to Owen [8], it follows that Eqs. (9.19) and (9.24) always provide 

optimal solutions .(ā∗, θ∗) and .(b̄∗, φ∗), respectively. So, for any given weight . μ ∈
(0, 1), IVPiFMG . Ñ has a solution .(ā∗, b̄∗, āT∗ Ñ b̄∗). ��

The solution methodology can be described in the following steps: 

Step 1: Consider an IVPiFMG. 
Step 2: Construct Eqs. (9.13) and (9.20) for . Pl1 and . Pl2, respectively, with interval-

valued multi-objective functions. 
Step 3: Applying the weighted average method, transform Eqs. (9.13) and (9.20) 

into Eqs. (9.19) and (9.24), respectively, with crisp objective function. 
Step 4: Solve Eqs. (9.19) and (9.24) in LINGO platform for different .μ ∈ (0, 1), 

and obtain the optimal strategies . ̄a∗ and . ̄b∗ for . Pl1 and . Pl2, respectively. 

5 Numerical Illustration 

Medical institutions are concerned about the increased risk of cyberthreats. As 
the healthcare sector continues to serve life-critical facilities to improve treatment 
with new technologies, cyberattackers are looking to exploit vulnerabilities that 
are coupled with these changes. Cyberattackers in the healthcare sector can have 
ramifications beyond financial loss and breach of privacy, as the loss of patient data 
can put lives at risk. Here, we consider the following instance of game problem 
between digital attacker and the protector of the system in the medical sector and 
execute the corresponding optimal solutions applying the presented methodology. 
Also, the obtained results are analyzed. 

Assume that the medical data controller (MDC) wants to prevent hackers from 
gaining access to patients’ information. Any malicious strike can be used by hackers 
to steal data. In real time, it can be challenging to predict the paths of digital strikes. 
The job of the MDC is to defend against such digital attacks. MDC considers 
three main paths from which the attack comes frequently such as . ρ1, ransomware; 
. ρ2, healthcare-related mobile applications; and . ρ3, medical devices. This implies 
that . ρ1, . ρ2, and . ρ3 may be the main strategies of the cyberattackers to disturb 
the personal health-related data of the patients. To control such attacks, the MDC 
takes main strategies such as . σ1, use of updated software and operating systems; 
. σ2, training of staff periodically; and . σ3, proper records disposal. This type of 
problem can be mitigated using . MG, where MDC and hackers are referred to 
as defenders and attackers, respectively. It is possible to consider the MDC and 
cyberattackers as Player-I (. Pl1) and Player-II (.Pl2), respectively, in the context of 
the game problem. It may be taken that the defender’s defense success rate is the 
payoff for . Pl1. Considering all the strategies defined above, the MDC is unable 
to forecast defense success rates precisely because there is always some level of 
uncertainty in cybersecurity. As a result of the MDC’s estimates, the outcomes are 
referred to as follows in terms of linguistic terms:
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Table 9.2 Associated 
IVPiFN with linguistic term 

Linguistic term IVPiFN 

Very High . 〈[0.75, 0.85], [0.05, 0.1], [0.01, 0.04]〉
High . 〈[0.65, 0.8], [0.01, 0.05], [0.01, 0.03]〉
Slightly High . 〈[0.45, 0.6], [0.1, 0.2], [0.05, 0.15]〉
Medium . 〈[0.15, 0.25], [0.2, 0.3], [0.3, 0.4]〉
Slightly Low . 〈[0.25, 0.4], [0.1, 0.2], [0.2, 0.35]〉
Low . 〈[0.08, 0.1], [0.25, 0.35], [0.4, 0.55]〉
Very Low . 〈[0.01, 0.03], [0.3, 0.4], [0.49, 0.56]〉

. ρ1 ρ2 ρ3

Ñ =
σ1

σ2

σ3

⎛
⎝

Very High Slightly High Medium
Low High Slightly High

Slightly Low Very Low High

⎞
⎠ .

The corresponding link between linguistic terms and IVPiFNs is enlisted in 
Table 9.2. In this case, the payoff matrix . Ñ is formed following Table 9.2. 

. ρ1 ρ2 ρ3

Ñ =
σ1

σ2

σ3

⎛
⎜⎜⎝

〈[0.75, 0.85], [0.05, 0.1], [0.01, 0.04]〉 〈[0.45, 0.6], [0.1, 0.2], [0.05, 0.15]〉 〈[0.15, 0.25], [0.2, 0.3], [0.3, 0.4]〉
〈[0.08, 0.1], [0.25, 0.35], [0.4, 0.55]〉 〈[0.65, 0.8], [0.01, 0.05], [0.01, 0.03]〉 〈[0.45, 0.6], [0.1, 0.2], [0.05, 0.15]〉
〈[0.25, 0.4], [0.1, 0.2], [0.2, 0.35]〉 〈[0.01, 0.03], [0.3, 0.4], [0.49, 0.56]〉 〈[0.65, 0.8], [0.01, 0.05], [0.01, 0.03]〉

⎞
⎟⎟⎠ .

Here, the payoff .〈[0.75, 0.85], [0.05, 0.1], [0.01, 0.04]〉 indicates the defense 
success rate according to the strategies . σ1 and . ρ1 chosen by . Pl1 and . Pl2, respec-
tively. In this scenario, .Pl1 can defend against the attack successfully by 75. % to 
85. % and failed to defend successfully by 1. % to 4. %. There is an indeterminacy 
of 5. % to 10. % for .Pl1 when it comes to the defense success rate. There are also 
equivalent clarifications for other payoffs of . Ñ . 

5.1 The Solution Procedure and Result Discussion 

In this section, we follow Eqs. (9.19) and (9.24) as discussed earlier to obtain the 
optimal solutions for .Pl1 and . Pl2, respectively. Thus, Eqs. (9.25) and (9.26) are 
formulated for . Pl1 and . Pl2, respectively. 

. min{θ}
subject to

[
μ ln 0.0375 +

(1 − μ

2

)
ln 0.000002

]
a1
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+
[
μ ln 0.828 +

(1 − μ 
2

)
ln 0.01925

]
a2 

+
[
μ ln 0.45 +

(1 − μ 
2

)
ln 0.0014

]
a3 ≤ θ,

[
μ ln 0.22 +

(1 − μ 
2

)
ln 0.00015

]
a1 

+
[
μ ln 0.07 +

(1 − μ 
2

)
ln 0.00000015

]
a2 

+
[
μ ln 0.9603 +

(1 − μ 
2

)
ln 0.032928

]
a3 ≤ θ,

[
μ ln 0.6375 +

(1 − μ 
2

)
ln 0.0072

]
a1 

+
[
μ ln 0.22 +

(1 − μ 
2

)
ln 0.00015

]
a2 

+
[
μ ln 0.07 +

(1 − μ 
2

)
ln 0.00000015

]
a3 ≤ θ,  

a1 + a2 + a3 = 1, a1, a2, a3 ≥ 0, 

θ ≤ 0, (9.25) 

and, 

. max{φ}
subject to

[
μ ln 0.0375 +

(1 − μ

2

)
ln 0.000002

]
b1

+
[
μ ln 0.22 +

(1 − μ

2

)
ln 0.00015

]
b2

+
[
μ ln 0.6375 +

(1 − μ

2

)
ln 0.0072

]
b3 ≥ φ,

[
μ ln 0.828 +

(1 − μ

2

)
ln 0.01925

]
b1

+
[
μ ln 0.07 +

(1 − μ

2

)
ln 0.00000015

]
b2

+
[
μ ln 0.22 + (

1 − μ

2

)
ln 0.00015

]
b3 ≥ φ,

[
μ ln 0.45 +

(1 − μ

2

)
ln 0.0014

]
b1

+
[
μ ln 0.9603 +

(1 − μ

2

)
ln 0.032928

]
b2
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+
[
μ ln 0.07 +

(1 − μ 
2

)
ln 0.00000015

]
b3 ≥ φ, 

b1 + b2 + b3 = 1, b1, b2, b3 ≥ 0. 

φ ≤ 0 (9.26) 

To obtain the optimal solutions, Eqs. (9.25) and (9.26) are solved for different 
values of .μ ∈ (0, 1) using LINGO software, version 17.0 in a machine with 
processor- Intel-Core (TM) i3, RAM-4GB. The obtained optimal solutions are 
shown in Table 9.3. 

In Table 9.3, maximin strategies (. ̄a∗) for  .Pl1 and minimax strategies (. ̄b∗) for  
.Pl2 are enlisted, and the corresponding expected payoffs (. ˜̃E(ā∗, b̄∗) = āT∗ Ñ b̄∗) 
are obtained. For instance, when .μ = 0.5, .ā∗ = (0.4249, 0.2819, 0.2932)T is the 
maximin strategy for . Pl1, and .b̄∗ = (0.3227, 0.2794, 0.3979)T is the minimax strat-

egy for . Pl2. . 
˜̃
E(ā∗, b̄∗) = 〈[0.4492, 0.5915], [0.0775, 0.1654], [0.0658, 0.1465]〉

is the corresponding expected payoff for . Pl1. Also, this result implies that the 
defender consider the strategy . σ1,. σ2, and . σ3 with probabilities 0.4249, 0.2819, and 
0.2932, respectively, and the attacker choose strategy . ρ1, . ρ2, and . ρ3, respectively, 
for optimal solution. There is a 44.92. % to 59.15. % chance that the defender 
can successfully defend the attack in this case. Furthermore, the defender cannot 
successfully defend the attack by 6.58. % to 14.65. % and is indeterminate about 
defending it successfully by 7.75. % to 16.54. %. 

Table 9.3 Optimal solutions of Eqs. (9.25) and (9.26) 

Value of .μ . ̄aT∗ , .b̄
T∗ . ˜̃E(ā∗, b̄∗) .Υ (  ̃̃E(ā∗, b̄∗)) 

0.1 (0.4593,0.2534,0.2873), .〈[0.4554, 0.5964], [0.0794, 0.1666], 〉 0.5871 

(0.3552,0.2793,0.3656) . 〈[0.0653, 0.1463]〉
0.2 (0.4518,0.2594,0.2888), .〈[0.4539, 0.5951], [0.0790, 0.1664], 〉 0.5866 

(0.3480,0.2795,0.3725) . 〈[0.0655, 0.1465]〉
0.3 (0.4437,0.2661,0.2902), .〈[0.4523, 0.5939], [0.0786, 0.1662], 〉 0.5861 

(0.3403,0.2797,0.38) . 〈[0.0656, 0.1466]〉
0.4 (0.4347,0.2736,0.2917), .〈[0.4507, 0.5926], [0.0781, 0.1658], 〉 0.5858 

(0.3319,0.2797,0.3884) . 〈[0.0658, 0.1466]〉
0.5 (0.4249,0.2819,0.2932), .〈[0.4492, 0.5915], [0.0775, 0.1654], 〉 0.5857 

(0.3227,0.2794,0.3979) . 〈[0.0658, 0.1465]〉
0.6 (0.4141,0.2913,0.2946), .〈[0.4477, 0.5904], [0.0769, 0.1649], ]〉 0.5856 

(0.3126,0.2787,0.4087) . 〈[0.0658, 0.1463]〉
0.7 (0.4021,0.3021,0.2958), .〈[0.4463, 0.5895], [0.0761, 0.1643], 〉 0.5859 

(0.3015,0.2776,0.4209) . 〈[0.0657, 0.1459]〉
0.8 (0.3887,0.3145,0.2968), .〈[0.4451, 0.5889], [0.0752, 0.1636], 〉 0.5864 

(0.2893,0.2755,0.4352) . 〈[0.0655, 0.1454]〉
0.9 (0.3737,0.3291,0.2972), .〈[0.4441, 0.5885], [0.0742, 0.1627], 〉 0.5873 

(0.2759,0.2723,0.4518) .〈[0.0651, 0.1446]〉
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Fig. 9.1 The values of score function of the expected payoffs for distinct . μ

There is an effect of changing . μ value on the score function values of the 
expected payoffs as reflected in Table 9.3 and Fig. 9.1. There is no significant impact 
of a small change in . μ on the score function values of the expected payoffs. This 
suggests the sensitivity of the discussed method. 

5.2 Comparison of the Proposed Approach 

Xia [27] developed .MG problems considering payoffs as IVIFNs based on the 
weighted average operator. Naqvi et al. [7] studied .MG with triangular I-fuzzy 
numbers as payoff entries. Verma and Aggarwal [30] utilized linguistic IFNs as 
payoffs and applied the linear programming approach to counter .MG problems. 
Karmakar et al. [34] considered type-2 IFSs as payoffs of the players and used 
the idea of composite relative degree to solve .MG problems. In real scenarios, the 
views of decision-makers have multiple answers, like acceptance, unbiased, non-
acceptance, and refusal, and those cannot be answered using an interval-valued 
fuzzy set or IVIFS or interval numbers. In practical considerations, the DOM, 
DON, and DOI of a statement cannot be completely described, but they can be 
modeled as intervals. A set of numbers in the real unit interval is used in the IVPiFS 
to communicate issues. The proposed approach gives a direction to counter the 
cyberthreat issue in the healthcare sector as a game problem, where the digital 
attackers and the defenders of such attacks are taken as players. The respective 
payoffs of the players are considered as IVPiFN. A novel approach is developed to
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solve the game problem with IVPiFN payoffs. So, the proposed approach to solving 
IVPiFMG is an extension of the existing works [7, 27, 30, 34]. 

The obtained optimal solutions suggest adopting mixed strategies rather than 
pure strategies. The medical data controller can use the present study to make 
decisions so that they can minimize the damage to important health information. 
The recommended strategies may vary to some extent depending on what the players 
decide to change in the evaluation data of the payoff matrix. 

6 Conclusion 

In many areas of game theory, .MGs with uncertain facts are a major research 
field. IVPiFN considers more information in the form of interval-valued DOM, 
DOI, and DON than FS/IFS. Our aim in this chapter is to develop the solution 
process of IVPiFMG for dealing with cyberthreat-related issues. As a first attempt, 
this work solves .MG problems in which attackers and defenders are modeled as 
players, with IVPiFNs representing the payoffs. First, the formal representation of 
the IVPiFMG problem is developed. Two different problems with multi-objective 
functions are countered using the weighted average approach, and the optimal 
solutions are obtained. The idea of reasonable solution and the solution of IVPiFMG 
are conceptualized in this chapter. Also, the score function and the accuracy function 
for IVPiFN are defined. It is proved that for IVPiFMG, . Pl′1s gain-floor does not 
exceed . Pl′2s loss-ceiling. Also, we have shown that IVPiFMG always has a solution. 
We illustrate the applicability of this methodology by presenting a numerical 
example. Optimal solutions are discussed in terms of their physical significance. 

The discussed methodology has a few limitations as well. As the proposed 
method considers the formation of problems with multi-objective functions, it 
cannot determine the solution to the game problem directly. Furthermore, this 
proposed methodology has the limitation that the optimal solutions are extremely 
dependent on the choice of parameter . μ, which is difficult for the decision-maker to 
choose the best solution. It should also be noted that the physical significance of the 
obtained results is discussed depending on the defined score function. But different 
score functions may produce different results. 

The proposed methodology may be used to solve non-zero-sum games in the 
future. The present study is between two persons, and future research can focus 
on solving multi-player games in picture fuzzy environment. Also, the present 
study is dependent on the value of the parameter . μ. So, to choose the player’s 
best preferences scientifically, further study is needed. The proposed method 
can be extended by utilizing the other extended version of fuzzy language such 
as neutrosophic sets [12] and pythagorean fuzzy set [32, 33]. A lot of real-
life problems can be addressed using the proposed approach, such as ecological 
management [16], plastic ban problem [22], telecom market share problem [23], 
biogas-plant implementation problem [34], smart transportation [4], cybersecurity-
related problem [26], and management problem [1].
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Chapter 10 
Minimization of Span in .L(3, 1)-Labeling 
for a Particular Type of Intersection 
Graphs 

Jasminara Khatun, Sk Amanathulla, and Sheng-Lung Peng 

1 Introduction 

Graph labelling problems are widely investigated due to their practical significance. 
The FAP  stands for the “frequency assignment problem,” which entails allocating 
frequencies to all radio transmitters in a way that prevents interference by assigning 
frequencies to each transmitter that are far enough apart from one another. This 
problem is formulated as a graph vertex coloring problem by Hale [10]. The major 
goal of this issue is to reduce the span (highest label used). .λ3,1-number of G is 
the smallest span over all feasible labelling functions of the .L(3, 1)-labeling and 
is indicated by the symbol .λ3,1(G). .L(3, 1)-labeling of a graph .G = (V ,E) is a 
function .τ : V → {0, 1, 2, . . .} so that .|τ(x) − τ(y)| ≥ 3 if .d(x, y) = 1 and 
.|τ(x)−τ(y)| ≥ 1 if .d(x, y) = 2. After completion of L(3,1)-labeling of the graphs, 
the highest label is the span of the graph, denoted by . λ. 

FAP  has been studied in the following papers: [15, 16, 22, 26–35]. We have 
focused our attention on .L(3, 1)-labeling of paths and interval graphs. For any graph 
G, .λ0,1(G) ≤ �2 − � [11], and .λ2,1(G) ≤ �2 + � − 2 [5]. In [12], Khan et al. 
have shown that .� − 1 ≤ λ0,1(G) ≤ � for the cactus graph. In [17] intersection 
graphs are discussed. The problem is simple for a path . Pn with n vertices. It is easily 
verified that .λ0,1(P1)=.λ0,1(P2) = 0, .λ0,1(Pn) = 1 for .n ≥ 3 [13]. When the starting 
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and ending vertices of . Pn are merged, then . Pn becomes .Cn−1. For path . λ1,1(P2) = 1
and .λ1,1(Pn) = 2 for each .n ≥ 3, and .λ1,1(Cn) is 2 if n is a multiple of 3, and it is 
3 otherwise [1]. In [4] Calamoneri et al. proved that .λh,k(G) ≤ max. (h, 2k)� + hw

for a circular-arc graph (CA-graph). In [19] Paul et al. show that . λ2,1(G) ≤ � + w

for interval graph (I -graph) and that .λ2,1(G) ≤ � + 3w for CA-graph. Also, Paul 
et al. have studied .L(0, 1)-labeling on I -graph [18] and .L(2, 1)-labeling of I -graph 
[19]. Recently, Amanathulla et al. proved that .λ0,1(G) ≤ � and .λ1,1(G) ≤ 2� [23] 
and .λ3,2,1(G) ≤ 9� − 6 and .λ4,3,2,1(G) ≤ 16� − 12 [24] for  CA-graphs. They 
also have invested .L(h1, h2, . . . , hm)-labeling of I -graphs [25]. 

The upper bound of .L(h, k)-labeling of various types of graphs is displayed in 
the table below. 

Graphs .L(h, k)-labeling numbers 

General graphs .0 ≤ λ0,1 ≤ �2 − � [2] 

.� ≤ λ1,1 ≤ �2 [37] 

.� + 1 ≤ λ2,1 ≤ �2 + � − 2 [8, 9] 

Paths .λ0,1(Pn) =0 or 1 [13] 

.λ1,1(Pn) =1 or 2 [1] 

.λ2,1(Pn) =2, 3 or 4 [9] 

Cycles For .n ≥ 3, .λ0,1(Cn) =1 or 2 [2] 

For .n ≥ 3, .λ1,1(Cn) =2 or 3 [1] 

For .n ≥ 3, .λ2,1(Cn) = 4 [9] 

Complete .λ1,1(kn) = n − 1 [6] 

Complete bipartite .λ1,1(Km,n) = m + n − 1 [6] 

Planar .λ1,1(G) ≤ � 5
3� + 1� + 77 [14] 

.λ2,1(G) ≤ 2� + 35 [36] 

.λ2,1(G) ≤ 5
3� + 95 [14] 

.λh,k(G) ≤ k� 5
3�� + 18h + 77k − 18 [14] 

Interval .λ2,1(G) ≤ � + w [19] 

Circular-arc .λh,k(G) ≤ max{h, 2k}� + hω [4] 

.λ2,1(G) ≤ � + 3w [19] 

Permutation .λ0,1(G) ≤ 2� − 2 [3] 

.λ0,1(G) ≤ � − 1 [21] 

.λ1,1(G) ≤ 3� − 2 [3] 

.λ2,1(G) ≤ max{4� − 2, 5� − 8} [20] 

.λ2,1(G) ≤ 5� − 2 [3] 

Very recently, Ghosh et al. have studied .L(3, 1)-labeling of some simple graphs 
[7]. The applications of .L(3, 1)-labeling in real life motivate us to consider .L(3, 1)-
labeling problems on I -graphs, and we obtain good results for it, which is . λ3,1(G) ≤
4� − 1 for I -graph G. Beside this, we have designed an efficient algorithm for 
labeling an I -graph by .L(3, 1)-labeling. Additionally, the proposed algorithm’s 
execution time is calculated.
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The remaining part of the chapter is divided into the following sections. Section 2 
presents a few notations and definitions. The .L(3, 1)-labeling problem of I -graphs 
is covered in Sect. 3. Section 4 is for the conclusion. 

2 Preliminaries and Notations 

In this chapter, we consider the graph as simple and finite. A graph G, where . G =
(V ,E), .V = {v1, v2, . . . , vn}, is called a path, denoted by . Pn, iff  .(vi, vi+1) ∈ E, 
where .1 ≤ i ≤ n−1 (see Fig. 10.2). I -graph is an important subclass of intersection 
graph. 

Definition 1 (I -Graph) The undirected graph .G = (V ,E) is a I -graph if the 
vertex set V can be put into one-to-one correspondence with a set of intervals I 
on the real line R such that two vertices are adjacent in G iff their corresponding 
intervals have non-empty intersection. 

It is to be noticed that a vertex . vj and an interval . Ij are one and the same thing. 
Figure 10.1 displayed an interval representation and its corresponding I -graph. 

Notations Let G be an I -graph with n vertices and .I = {I1, I2, . . . , In}, be the  
corresponding set of intervals. Here we give some notations that are used in this 
article. 

1. .L(Ip): the collection of labels that are used to label the interval . Ip before labeling 
. Ip, for any .Ip ∈ I . 

2. .L1
31(Ip): the  set of  .L(3, 1)-labels that are used to label the vertices at distance 1 

from . Ip, before labeling . Ip, for any .Ip ∈ I . 
3. .L2

31(Ip): the  set of  .L(3, 1)-labels that are used to label the vertices at distance 2 
from . Ip, before labeling . Ip, for any .Ip ∈ I . 

4. .Lvl
31(1, Ip): the collection of valid labels that can be used to label . Ip before 

labeling . Ip and meet the adjacency requirement of .L(3, 1)-labeling, for any 
interval .Ip ∈ I . 

5. .Lvl
31(2, Ip): the collection of valid labels that can be used to label . Ip before 

labeling . Ip and meet the requirement of .L(3, 1)-labeling, for any interval .Ip ∈ I . 
6. . τj : the label of the interval . Ij , for any interval .Ij ∈ I . 
7. L: the label set. 

Fig. 10.1 A set of intervals and its associated I -graph
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3 L(3, 1)-Labeling of I -Graphs 

Several lemmas connected to the suggested problem are presented in this section. 
Additionally, an algorithm is created for .L(3, 1)-labeling of I -graphs. 

Lemma 1 For any I -graph G, .|L2
31(Ip)| ≤ � − 1, for any interval .Ip ∈ I of G. 

Proof Let G be a n-vertex I -graph. Starting with the interval on the left, we label 
the graph. Let . vp be the vertex corresponding to the interval . Ip of the I -graph G. 
Suppose in a stage the intervals .I1, I2, . . . , Ip−1 (for .p = 2, 3, . . . , n) are already 
labeled by .L(3, 1)-labeling and the remaining intervals are not label. 

Let .|L2
31(Ip)| = q. This means that the intervals at a distance of two from the 

interval . Ip were labelled using separate .L(2, 1)-labels a total of q times. There is an 
interval . Iα (in Fig. 10.2) that is adjacent to at most . � intervals of G since . � is the 
degree of the I -graph G. In Fig. 10.3, . Iα is adjacent to .Ik, Iβ, Ik21 , Ik22 . There are 
several intervals (.Iβ, Ik21 , Ik22 in Fig. 10.3) that are two distances from . Ik , but there 
is at least one interval (. Ip in Fig. 10.3) that is not two distances from . Ip. Because of 
this, .q ≤ � − 1, i.e., .|L2

31(Ip)| ≤ � − 1. 

Observation 1 For an I -graph G, .Li(Ip) ⊆ L(Ip), for every interval . Ip of G and 
.i = 1, 2. 

Observation 2 For an I -graph G, .|L1
31(Ip)| ≤ �, for every interval .Ip ∈ I of G. 

Theorem 1 For any I -graph G, the  .L(3, 1)-labeling number .λ3,1(G) is at most 
.4� − 1. 

Fig. 10.2 A set of intervals 

Fig. 10.3 An interval representation and the associated I -graph
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Proof Let the graph G have n vertices and let .I = {I1, I2, . . . , In}, where . Ip is the 
interval corresponding to the . vp G. In accordance with their ascending subscripts, 
we will label the intervals. 

Assume that .L(Ip) = {0, 1 . . . , 4� − 1} and that .Ip ∈ I . We can say that 
.|L(Ip)| = 4� if the set .L(Ip) is sufficient to label all the intervals corresponding 
to all the vertices of the graph G meeting .L(3, 1)-labeling criterion. We take into 
account a scenario in which the intervals .I1, I2, . . . , Ip−1, for  .p = 2, 3 . . . , n are 
already labeled and .Ip, Ip+1, . . . , In are not labeled. We wish to label the interval 
l . Ip in this instance. The fact that .|L1

31(Ip)| ≤ � is known (by Observation 2). As 
a result, the requirement of distance one of .L(3, 1)-labeling is satisfied in the worst 
scenario, where .4� − 3� = � labels of the set .L(Ip) are accessible. 

Since .|L2
31(Ip)| ≤ � − 1 (By Lemma 1), it follows that in the worst case, 

at least one label of the set .L(Ip) that satisfies the .L(3, 1)-labeling condition is 
accessible. We can label any interval of the I -graph G satisfying the .L(3, 1)-labeling 
requirement by using simply the label of the set .L(Ip) because . Ip is arbitrarily 
chosen. If we label the interval . Ip by .L(3, 1)-labeling and take .L(Ip) such that 
.L(Ip) ⊂ {0, 1 . . . , 4�−1}, then it follows that the set .L(Ip)may or may not contain 
a label meeting the .L(3, 1)-labeling requirement. Therefore, .λ3,1(G) ≤ 4�−1. The  
.L(3, 1)-labeling number for I -graph is therefore .4� − 1 at most. 

3.1 Algorithm for L(3,1)-Labeling of I -Graphs 

This section describes the algorithm we created to compute the set. We suppose that 
certain intervals (those with indexes of .p < j ) are labelled by .L(3, 1)-labeling and 
some intervals (those with indexes of .p ≥ j ) are not labelled. 

Algorithm V LL31 
Input: Ip , L1 

31(Ip), L2 
31(Ip) for p = 2, 3, . . . , n. 

Output: Lvl 
31(k, Ip) for k = 1, 2; p = 2, 3, . . . , n. 

Step 1: for i = 1 to  s, where  s = max{L(Ip)} +  3 
for j = 1 to |L1 

31(Ip)| 
let lj be j th element of L1 

31(Ip) 
if |i − lj | ≥  3, then add i to the set Lvl 

31(1, Ip); 
end for; 

end for; 
Step 2: for m = 1 to  |Lvl 

31(1, Ip)| 
for n = 1 to |L2 

31(Ip)| 
Let rm and sn be the elements of Lvl 

31(1, Ip) and L2 
31(Ip), respectively; 

if |rm − sn| ≥ 1, then add rm to the set Lvl 
31(2, Ik); 

end for; 
end for; 

end V LL31. 
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Lemma 2 Algorithm V LL31 computes the set .Lvl
31(k, Ip) accurately for . k = 1, 2

and its running time is .O(�2). 

Proof Each element .i ∈ Lvl
31(1, Ip) differs from . rl by at least 3 for each . rl ∈

L1
31(Ip) according to algorithm V LL31. So .|i − rl | ≥ 3 for each . i ∈ Lvl

31(1, Ip)

and for each .lr ∈ L1
31(Ip). Therefore, the set .Lvl

31(1, Ip) is correctly computed by 
algorithm V LL31 for each .Ik ∈ I , .p = 2, 3, . . . , n. Again, according to the above 
algorithm, every element . lα of .Lvl

31(2, Ip) differs from . lβ by at least 1 for each 
.lβ ∈ L2

31(Ip). So .|lm − qn| ≥ 2 for all .lm ∈ Lvl
31(2, Ip) and for all .qn ∈ L1

31(Ip), and 
.|lm − qn| ≥ 1 for all .lm ∈ Lvl

31(2, Ip) and for all .qn ∈ L2
31(Ip). Hence, algorithm 

V LL31 correctly computes .Lvl
31(k, Ip) for every .k = 1, 2. 

Since, . |L| be cardinality of the label set L, so  .|Li(Ip)| ≤ |L| for .i = 1, 2 and 
.Ip ∈ I , and also .r ≤ 4� + 2, where .r = max{L(Ip)} + 3. So  .Lvl

31(1, Ip) is 
computed by using at most .(4� + 2)|L| times, i.e., using .O(�|L|) times. Again, 
.|Lvl

31(2, In)| ≤ (4� + 2), so  .Lvl
31(2, Ip) is computed using at most . (4� + 2)|L|

times, i.e., using .O(�|L|) times. Since .|L| ≤ 4� + 2, the overall time complexity 
for algorithm V LL31 is .O(�2). 

Lemma 3 For every I -graph G, .Lvl
31(1, Ip) is the largest non-empty set of labels 

meeting the requirement at distance one of .L(3, 1)-labeling, where .l ≤ s for all 
.l ∈ Lvl

31(1, Ip), .s = max{L(Ip)} + 3, for any .Ip ∈ I . 

Proof Since .L1
31(Ip) ⊆ L(Ip) (by Observation 1) and .s = max{L(Ip)} + 3, so  

.|s − li | ≥ 3 for any .li ∈ L1
31(Ip). So  .s ∈ Lvl

31(1, Ip), so, the set .Lvl
31(1, Ip) is 

non empty. Let A be arbitrary labeled set satisfying adjacency condition of .L(3, 1)-
labeling, where .l ≤ s for any .l ∈ A, .s = max{L(Ip)} + 3. Let  a be an element 
in the set A. Then .|a − li | ≥ 3 for any .li ∈ L1

31(Ip). So, .a ∈ Lvl
31(1, Ip). Thus, 

.a ∈ A implies .a ∈ Lvl
31(1, Ip). Therefore, .A ⊆ Lvl

31(1, Ip). Since A is arbitrary, 
.Lvl
31(1, Ip) is the largest non-empty set of labels meeting the adjacency requirement 

of .L(3, 1)-labeling, such that .l ≤ s for all .l ∈ Lvl
31(1, Ip) and .s = max{L(Ip)} + 3, 

for any .Ip ∈ I . 

Lemma 4 For every I -graph G, .Lvl
31(2, Ip) is the largest non-empty set of labels 

meeting .L(3, 1)-labeling requirement, where .l ≤ s for all .l ∈ Lvl
31(1, Ip) and . s =

max{L(Ip)} + 3, for any .Ip ∈ I . 

Proof Since .Li(Ip) ⊆ L(Ip), for .i = 1, 2 (by Observation 1), . s = max{L(Ip)}+3
and so .|s−lq | ≥ 3 for any .lq ∈ Li(Ip), .i = 1, 2, i.e., .|s−lq | ≥ 3 for all . lq ∈ L1

31(Ip)

and .|s − lq | ≥ 1 for all .lq ∈ L2
31(Ip). So  s is the valid .L(3, 1)-label of . Ip, and 

.s ∈ Lvl
31(2, Ip). This implies that .Lvl

31(2, Ip) is a non-empty set. Let A be an arbitrary 
set of labels satisfying .L(3, 1)-labeling conditions, where .l ≤ s for all .l ∈ A and 
.s = max{L(Ip)} + 3 . Also, let .a ∈ A. Then .|a − lq | ≥ 3 for any .lq ∈ L1

31(Ip), 
and .|a − lt | ≥ 1 for any .lt ∈ L2

31(Ip) . Thus, .a ∈ Lvl
31(2, Ip). Therefore, . a ∈ A

implies .a ∈ Lvl
31(2, Ip). So  .A ⊆ Lvl

31(2, Ip). Since A is arbitrary, .Lvl
31(2, Ip) is the
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maximal non-empty set of labels meeting .L(3, 1)-labeling requirement, .l ≤ s for 
every .l ∈ Lvl

31(2, Ip) and .s = max{L(Ip)} + 3, for every .Ip ∈ I . 

Algorithm L31 
Input: The set I = {I1, I2, . . . , In} and Lvl 

31(t, Ip) for p = 2, 3, . . . , n  and t = 1, 2. 
Output: τp , the  L(3, 1)-label of Ip , p = 1, 2, . . . , n. 

Step 1: (Initialization) 
τ1 = 0; 
L(I2) = {0}; 

Step 2: for p = 2 to  n − 1 
τp = min{Lvl 

31(2, Ip)}; 
L(Ip+1) = L(Ip) ∪ {τp}; 

end for; 
Step 3: τn = min{Lvl 

31(2, In)}; 
Step 4: L = L(In) ∪ {τn}; 

end L31. 

Theorem 2 Any I -graph is correctly labelled by the algorithm L31 using .L(3, 1)-
labeling. 

Proof Let G be any n vertices I -graph. Let .I = {I1, I2, . . . , In}, also let  .τ1 = 0, 
.L(I2) = {0}. If .n = 1, then .L(I2) is sufficient for labeling the graph, and obviously, 
.λ3,1(G) = 0. 

If .n > 1, then .L(I2) is insufficient to label the graph G by .L(3, 1)-labeling, 
because .L(I2) only has one label and additional labels are needed in this situation. 
We take into account a case in which the intervals .I1, I2, . . . , Ip−1 are already 
labeled for .p = 2, 3, . . . , n. In such case, we want to label . Ip by labelling with 
.L(3, 1). We are aware that .Lvl

31(1, Ip) is the maximal non-empty set that meets 
the criterion of distance one of .L(3, 1)-labeling and .Lvl

31(2, Ip) is the maximal 
non-empty set satisfying .L(3, 1)-labeling, where .l ≤ s for all . l ∈ Lvl

31(k, Ip)

and .s = max{L(Ip)} + 3 for any .Ip ∈ I and .k = 1, 2 (by Lemma 3 and 
Lemma 4). There is once more no label that is .l ≤ s and .l /∈ Lvl

31(2, Ip) that 
satisfies the .L(3, 1)-labeling condition. Since . Ip is less than or equal to s and 
satisfies the .L(3, 1)-labeling criterion, the set of labels .Lvl

31(2, Ip) is the only valid 
label for . Ip. Since we want to label the interval . Ip by .L(3, 1)-labeling, so .τp = q, 
where .q = min{Lvl

31(2, Ip)}. Since no label less than q meets the .L(3, 1)-labeling 
criterion, q is the least label for . Ip. Since . Ip is arbitrary, the graph G can be labelled 
using the fewest labels that meet the .L(3, 1)-labeling requirement, with the result 
that .λ3,1(G) = max{L(In) ∪ {τn}}. 
Theorem 3 The time complexity of Algorithm L31 is .O(n�2). 

Proof In Algorithm L31, our target is to find the least possible label for every 
interval . Ip. By our algorithm . τp, the  .L(3, 1)-label of . Ip can be computed if
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.Lvl
31(2, Ip) is computed. Now by Lemma 2, .Lvl

31(2, Ip) can be computed in . O(�2)

time. Since we need to find .Lvl
31(3, Ip) for .p = 2, 3, . . . , n, so the running time of 

Algorithm L31 is .O((n − 1)�2), i.e., .O(n�2). 

3.2 Illustration of the Algorithm L31 

Let us consider an I -graph with 10 vertices (see Fig. 10.3), and label this graph by 
Algorithm L31 (see Fig. 10.4). 

For this graph, the set of intervals, .I = {I1, I2, . . . , I10} and .� = 5. . τj , the label 
of the vertex . Ij , for .j = 1, 2, . . . , 10. 

Initialized .τ1 = 0, .L(I2) = {0}. 
Iteration 1: For .k = 2. 
.L1
31(I2) = {0}, . L2

31(I2) = ∅
.Lvl
31(1, I2) = {3}, . Lvl

31(2, I2) = {3}
Therefore, .τ2 = min{Lvl

31(2, I2)} = 3 and 
.L(I3) = L(I2) ∪ {τ2} = {0} ∪ {3} = {0, 3}. 
Iteration 2: For .k = 3. 
.L1
31(I3) = {0, 3}, . L2

31(I3) = ∅
.Lvl
31(1, I3) = {6}, . Lvl

31(2, I3) = {6}
Therefore, .τ3 = min{Lvl

31(2, I3)} = 6 and 
.L(I4) = L(I3) ∪ {τ3} = {0, 3} ∪ {6} = {0, 3, 6}. 

Fig. 10.4 The I -graph in Fig. 10.3 labeled by L(3, 1)-labeling. The label of the associated vertices 
is represented by the number inside the circle
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Iteration 3: For .k = 4. 
.L1
31(I4) = {6}, . L2

31(I2) = {0, 3}
.Lvl
31(1, I4) = {0, 1, 2, 3, 9}, . Lvl

31(2, I4) = {1, 2, 9}
Therefore, .τ4 = min{Lvl

31(2, I4)} = 1 and 
.L(I5) = L(I4) ∪ {τ4} = {0, 1, 3, 6}. 
Iteration 4: For .k = 5. 
.L1
31(I5) = {1, 6}, . L2

31(I5) = {0, 3}
.Lvl
31(1, I5) = {9}, . Lvl

31(2, I5) = {9}
Therefore, .τ5 = min{Lvl

31(2, I5)} = 9 and 
.L(I6) = L(I5) ∪ {τ5} = {0, 1, 3, 6, 9}. 
Iteration 5: For .k = 6. 
.L1
31(I6) = {1, 9}, . L2

31(I6) = {6}
.Lvl
31(1, I6) = {4, 5, 6, 12}, . Lvl

31(2, I6) = {4, 5, 12}
Therefore, .τ6 = min{Lvl

31(2, I6)} = 4 and 
.L(I7) = L(I6) ∪ {τ6} = {0, 1, 3, 4, 6, 9}. 
Iteration 6: For .k = 7. 
.L1
31(I7) = {4}, . L2

31(I7) = {1, 9}
.Lvl
31(1, I7) = {0, 1, 7, 8, 9, 10, 11, 12}, . Lvl

31(2, I7) = {0, 7, 8, 10, 11, 12}
Therefore, .τ7 = min{Lvl

31(2, I7)} = 0 and 
.L(I8) = L(I7) ∪ {τ7} = {0, 1, 3, 4, 6, 9}. 
Iteration 7: For .k = 8. 
.L1
31(I8) = {0, 4}, . L2

31(I8) = {1, 9}
.Lvl
31(1, I8) = {7, 8, 9, 10, 11, 12}, . Lvl

31(2, I8) = {7, 8, 10, 11, 12}
Therefore, .τ8 = min{Lvl

31(2, I8)} = 7 and 
.L(I9) = L(I8) ∪ {τ8} = {0, 1, 3, 4, 6, 7, 9}. 
Iteration 8: For .k = 9. 
.L1
31(I9) = {4, 7}, . L2

31(I9) = {0, 1, 9}
.Lvl
31(1, I9) = {0, 1, 10, 11, 12}, . Lvl

31(2, I9) = {10, 11, 12}
Therefore, .τ9 = min{Lvl

31(2, I9)} = 10 and 
.L(I10) = L(I9) ∪ {τ9} = {0, 1, 3, 4, 6, 7, 9, 10}. 
Iteration 9: For .k = 10. 
.L1
31(I10) = {7, 10}, . L2

31(I10) = {0, 4}
.Lvl
31(1, I10) = {0, 1, 2, 3, 4, 13}, . Lvl

31(2, I10) = {1, 2, 3, 13}
Therefore, .τ10 = min{Lvl

31(2, I10)} = 1. 
Below are the vertices and the labels of the associated vertices: 

Vertices .I1 .I2 .I3 .I4 .I5 .I6 .I7 .I8 .I9 . I10

.L(3, 1)-labels 0 3 6 1 9 4 0 7 10 1
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4 Conclusion 

There are just a few classes of graphs for which the .L(3, 1)-labeling result is 
accessible, despite the fact that .L(3, 1)-labeling issues have been researched in the 
past. A decent upper bound for .L(3, 1)-labeling is obviously desirable for other 
classes of graphs. We explored .L(3, 1)-labeling of I -graphs in this chapter and 
established that .λ3,1(G) ≤ 4�−1 for I -graphs G. Additionally, we have developed 
a successful technique for labelling an I -graph using the .L(3, 1)-labeling. The 
proposed algorithm has a .O(n�2) running time. There is a scope for the researcher 
to develop a new upper bound on the problem because our result is not exact. 

Acknowledgments The authors are greatly thankful to the anonymous referees and editors for 
their valuable suggestions. 
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Chapter 11 
Generalized Neutrosophic Sets and Their 
Applications for Aggregated Operators 
Based on Diagnostic Disease Problem 

M. Palanikumar, M. Suguna, and Chiranjibe Jana 

1 Introduction 

According to [12] the separation between Pythagorean fuzzy sets is investigated, 
while [23] analyzes the Hamming and Euclidean distances and their application to 
fuzzy sets. As a result of Cantor’s work and [4], set theory was established between 
1874 and 1888. In the past, the set was used differently than it is now. Classical 
set theory deals with these sets. In fuzzy set (FS) theory, crisp sets cannot address 
problems involving uncertainty. According to Zadeh’s 1965 article [31], the fuzzy 
set theory was first introduced in 1965. In many daily life domains, uncertainty 
exists, which Zadeh dealt with for the first time by using fuzzy sets (FSs). Fuzzy 
sets can partially contain the elements of the entire universe. Each element of a set 
has a measure of membership in the set. Fuzzy sets were first described as alpha 
level sets by H. T. Nguyen in 1978 after introducing the concept of . α level sets 
[13]. It is now possible to compute linguistic variables using FSs, calculate linguistic 
probabilities, perform fuzzy number math, and expand relations’ domains according 
to the extension principle. In addition, it was discovered that this set method was 
simpler to use than functional approach strategies. To explore additional uses for 
the FSs, Zadeh created the notion of linguistic variables in [32]. There are FS 
applications in almost all branches of mathematics nowadays [1, 2]. A FS, however, 
does not consider the problem of determining whether an element belongs to a set 
or not. To accommodate the intuitionistic FS (IFS), Atanassov devised the concept 
of IFS [3] to deal with the uncertainty of information and transform it into a more 
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accurate form, IFS with two independent capabilities, namely, truth presentation 
and false enrollment values. To handle partial, ambiguous, and contradictory data, 
Smarandache expanded FSs to neutrosophic sets (NSs) with three enrollment 
qualities: truth, indeterminacy, and falsehood. Atanassov’s IFS hypothesis, L-FS 
hypothesis, and fuzzy set hypothesis are all extended by the multi-FS hypothesis. 
Pythagorean fuzzy set (PFS) introduced by Yager [29] and their application to multi-
criteria decision-making problems [30]. The PFSs were generalized to Pythagorean 
soft rough sets by Hussain et al. [9]; other works can be found in [33] and [34]. 

A recent study by Fei et al. [8] employed Pythagorean fuzzy numbers (PFNs) 
and interval-valued Pythagorean fuzzy numbers (IVPFNs) to describe information 
with greater uncertainties in multi-criteria decision-making (MCDM). According to 
Cruz et al., the PFS can also be generalized through a single positive integer [5]. The 
literature categorizes FSs into two categories: PFSs and IFSs. They are connected 
even though they are used independently. It is not possible to use these sets in a 
wide variety of ways. It is possible for IFSs to participate in functions exhibiting 
linear geometrical characteristics, whereas PFSs require their discourse functions to 
meet Pythagorean criteria. Functions can behave linearly or quadratically in some 
cases. There is a clear demonstration of the limitations of Example 1 on both the 
IFS and PFS levels. In this work, we demonstrate their increasingly broad class, not 
only combining their consolidated and distinctive properties but also going beyond 
them. Our definition of a novel class of sets is based on two provided non-negative 
integers, m and p. In addition to combining the characteristics of the IFS and the 
PFS, they also possess several unique traits of their own. GNSSs are currently called 
generalized neutronosophic sets (GNSSs). These are generalizations of the many 
IFS and PFS classes. The example clearly illustrates the rationale and justification 
for including GNSSs 1. It is used to study the mathematical treatment of many 
physical processes and systems using GNSSs. Currently, fuzzy sets are being 
generalized in a way that will be helpful and useful to research models of these 
systems. A novel theory of logic and sets called neurophilosophic logic has been 
proposed recently. Neutosophy is the study of the neutral mind and serves as the 
main line of demarcation between IFS and FS. NSS was introduced by Smarandache 
[28]. It assesses each claim’s level of veracity, ambiguity, and truthfulness. In 
the NSS set, every aspect of the cosmos has a level of certainty, ambiguity, and 
untruth between .[0, 1]. It has been proven philosophically that NSS exists. Smaran-
dache et al. [11] first described the Pythagorean neutrosophic interval-valued set 
(PNSIVS). 

A single-valued NSS is applied to context analysis [27] and medical diagnostics, 
according to [25]. According to Ejegwa, extended distance measures for IFSs, 
such as Hamming, Euclidean, normalized Hamming, and normalized Euclidean 
distances, can be applied to both multi-attribute and multi-criteria decision-making 
situations [6]. Based on what has already been published, we find that the majority 
of the distance functions for PNSNIVSs are generalizations of Pythagorean neutro-
sophic interval-valued sets (PNSIVS). MCDM approaches are used to evaluate the 
items against a number of contradictory quantitative and/or qualitative criteria, as 
described in [22]. As opposed to offering advice about which option is best, these
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strategies help decision-makers choose which option best suits their needs [24]. 
The uniqueness of MCDM approaches lies in their elimination of trial-and-error 
methodologies. A setting defined by cutting-edge competition and unique, com-
plicated high-tech solutions relies on them for evaluating, choosing, categorizing, 
and prioritizing goals. A MCDM experiment designed and produced, as well as 
evaluated and selected, the most suitable approaches [10]. The goal of the MCDM 
is to select the most desirable option from a constrained set of options based on 
predefined characteristics or criteria [26]. In a recent study, Palanikumar et al. [15– 
21] studied many algebraic structures and its applications for MCDM. To present 
the concept of GNSSs, their characteristics, and their applications methodically, 
we divided our work into six sections. Section 1 describes how our research will 
be presented. In Sect. 2, we discuss the concept of GNSSs, their characteristics, 
and their applications in a methodical way. The definition of and properties of 
GNSSs are discussed in Sect. 3. In Sect. 4, we examine the generalized neutrosophic 
relations (GNSRs) defined by the GNSSs and demonstrate how these relations can 
be applied. 

2 Preliminary 

In this section, we will quickly go over a few of the foundational words we will need 
for our future studies. 

Definition 1 Let X be a non-empty set; a FS G in X is characterized by a 
membership function .ΞG : X → [0, 1] such that 

.ΞG(ε) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if ε ∈ X,

0 if ε /∈ X,

(0, 1) if ε lies between in X.

(11.1) 

We write .G = {〈ε,ΞG(ε)〉|ε ∈ X}. The set  X is the universe of the discourse. 

Definition 2 An IFS G in X is defined as a set of the form 

.G = {〈ε,ΞG(ε), ΥG(ε)〉|ε ∈ X} (11.2) 

characterized by a membership function .ΞG(ε) : X → [0, 1] and a non-
membership function .ΥG(ε) : X → [0, 1]. These functions define, respectively, 
the degree of membership and the degree of non-membership of an element . ε ∈ X

to G, which is a subset of X. Moreover, for every .ε ∈ X, .0 ≤ ΞG(ε) + ΥG(ε) ≤ 1, 
and we define for each G in X, 

.ΠG(ε) = 1 − ΞG(ε) − ΥG(ε) (11.3)
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as the hesitation margin of . ε in X for the fuzzy set G. .ΠG(ε) measures the degree 
of indeterminacy of . ε ∈ X, to the set  G, and its value lies in .[0, 1]. .ΠG(ε) expresses 
the lack of knowledge whether .ε ∈ X or .ε /∈ X. In this way, 

.ΞG(ε) + ΥG(ε) + ΠG(ε) = 1. (11.4) 

Definition 3 ([7]) Let X be the universe; a PFS G in X is an object of the form 

.G = {〈ε,ΞG(ε), ΥG(ε)〉|ε ∈ X} (11.5) 

where the functions .ΞG(ε) : X → [0, 1] and .ΥG(ε) : X → [0, 1] are, respectively, 
the membership and non-membership functions, satisfying the property, 

.0 ≤ (ΞG(ε))2 + (ΥG(ε))2 ≤ 1 (11.6) 

. ∀ .ε ∈ X. In this case, the hesitation margin of . ε in X is defined by 

.ΠG(ε) =
√

1 − (ΞG(ε)2 + ΥG(ε) + ΩG(ε))2. (11.7) 

The value .ΠG(ε) explains whether .ε ∈ X or .ε /∈ X. So, 

.(ΞG(ε))2 + (ΥG(ε))2 + (ΠG(ε))2 = 1. (11.8) 

Generally, for all .ε ∈ X, .ΞX(ε) = 1, and .Ξ∅(ε) = 0, but in the presence of 
uncertainty, the value .ΞG(ε) models to what extent . ε is in G. That is, .ΞG is 
also called the possibility function of G. All the usual sets without a membership 
function are called crisp sets. 

3 Generalized Neutrosophic Sets 

Definition 4 Let X be the universal, and m, p and n are the non-negative integers; 
then a generalized neutrosophic set G in X is defined as 

.G = {〈ε,ΞG(ε), ΥG(ε),ΩG(ε)〉 : ε ∈ X}; (11.9) 

the functions ΞG(ε) : X → [0, 1], ΥG(ε) : X → [0, 1], and ΩG(ε) : X → [0, 1] 
specify the degree of truth, the degree of indeterminacy, and the degree of false 
membership of the element ε ∈ X to G, respectively, which is a subset of X, and 
∀ε ∈ X: 

.0 ≤ (
ΞG(ε)

)m + (
ΥG(ε)

)p + (
ΩG(ε)

)n ≤ 2. (11.10)
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In this case, the generalized neutrosophic set index of ε in X is defined as 

.ΠG(ε) = lcm(m,p,n)

√

2 −
((

ΞG(ε)
)m + (

ΥG(ε)
)p + (

ΩG(ε)
)n

)
, (11.11) 

ΠG(ε) ∈ [0, 1] and 

.
(
ΞG(ε)

)m + (
ΥG(ε)

)p + (
ΩG(ε)

)n + (
ΠG(ε)

)lcm(m,p,n) = 2. (11.12) 

When ΠG(ε) = 0, then ΞG(ε)m + ΥG(ε)p + ΩG(ε)n = 1. lcm(m, p, n) means the 
least common multiple of m, p, and n. Here  m, p, and n are non-negative integers. 
Let Π denote the uncertainty or a lack of commitment associated with the mem-
bership, indeterminacy, and non-membership degrees of ε ∈ X. The generalized 
neutrosophic sets over the sets X will be represented by GNSS(m,p,n)(ε). 

Example 1 The value of a membership function ΞG at a point ε of the set G is 
ΞG(ε) = 0.9, the degree of indeterminacy function ΞG at a point ε of the set G 
is ΞG(ε) = 0.8, and the non-membership function ΥG at ε is ΥG(ε) = 0.95. This 
problem is not studied by both the NSSs and PNSs, respectively, on the grounds 
that ΞG(ε) + ΥG(ε) + ΩG(ε) > 2, and (ΞG(ε))2 + (ΥG(ε))2 + (ΩG(ε))2 < 2; 
however, this problem is studied by the generalized neutrosophic sets as (ΞG(ε))m+ 
(ΥG(ε))p + (ΩG(ε))n < 2, for m ≥ 2 and p >  2 and n >  2 vice versa, e.g., 
(ΞG(ε))3 + (ΥG(ε))3 + (ΩG(ε))3 < 2. 

Remark 1 

1. Because multiple values of m, p, and n can be used to serve the needs of different 
users, this class of sets is known as the generalized neutrosophic sets. 

2. The classical set or the crisp set is what we obtain when m, p, and n are all 0 .  
3. The intuitionistic fuzzy set(IFSs) is what remains when one of the integers m, p, 

and n is 0 and the other is 1. Without loss of generality, if m = 1 and p = 0 
n = 1, then Eqs. 11.11 and 11.12 leave a non-empty set G with a membership 
function ΞG and non-membership function called the IFSs. Also, if m = 1 and 
p = 1 n = 1, then Eqs. 11.11 and 11.12 leave with a membership function ΞG, 
indeterminacy function, and non-membership function called the NSSs. Hence, 
NSSs are a particular instance of generalized neutrosophic sets. 

4. When p = 0, n = 0, and m is any positive integer, Eq. 11.11 arrived, ΞG(ε)m = 
1, which implies ΞG(ε) = 1 that each element of X is in G. 

5. The well-known neutrosophic sets (NSSs) result when m, p and n are all 1. 
6. The case of the Pythagorean neutrosophic sets (PyNSSs) arises when m, p and n 

are all equal to 2. 
7. We get the generalized neutrosophic sets (GNSS (m,p,n)) when m, p and n have 

different positive values. 

Scope of generalized neutrosophic sets for selected values of Ξ , Υ ,Ω and Π . We  
can make decision from Table 11.1. 

We can make decision from Table 11.2.
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Table 11.1 Comparison of 
different sets of the class of 
GNSS 

Sets GNSSs Form m p n Π 
NSSs GFS(1,1,1) 1 1 1 0.8062 

PYNSSs GFS(2,2,2) 2 2 2 0.5937 

GNSSs GFS(2,3,2) 2 3 2 0.5544 

GNSSs GFS(3,2,2) 3 2 2 0.5210 

GNSSs GFS(3,3,3) 3 3 3 0.9919 

Table 11.2 Difference among different generalized neutrosophic sets 

GNSS(1,1,1)(NSS) GNSS(2,2,2)(PyNSS) GNSS(2,3,2) 

Ξ + Υ + Ω ≤ 2 Ξ + Υ + Ω ≤ 2 or  
Ξ + Υ + Ω ≥ 2 

same as in GNSS(2,2,2)(PyNSS) 

0 ≤ (Ξ + Υ + Ω) ≤ 2 0 ≤ Ξ2 + Υ 2 + Ω2 ≤ 2 0 ≤ Ξm + Υ p + Ωn ≤ 2 

Π = 2 − (Ξ + Υ + Ω) Π = √
2 − (Ξ2 + Υ 2 + Ω2) Π = lcm(m,p,n)

√
2 − (Ξm + Υ p + Ωn) 

Π + Ξ + Υ + Ω = 2 Π2 + Ξ2 + Υ 2 + Ω2 = 2 Πlcm(m,p,n) + Ξm + Υ p + Ωn = 2 

Theorem 1 Every NSSs is expressed in terms of the GNSS for suitable values of 
m,p, and n. 

Proof Very obvious, as is evident from Remarks (1) to (6). 

Every GNSS(m,p,n)(ε) is GNSS(l,q,r)(ε), where l ≥ m and q ≥ p,r ≥ n, but  
the converse does not follow by the following example. 

Example 2 Let G ∈ GNSSm,p,n({ε}). If  ΞG(ε) = 0.69, ΥG(ε) = 0.8 and 
ΩG(ε) = 0.94, then for m = 2, p = 2,n = 2, (0.69)2 + (0.8)2 + (0.94)2 < 2. 
Moreover, for m = 3, p = 3 and n = 3 or  n = 3, (0.69)m + (0.8)p + (0.94)n < 2. 
This implies that G ∈ GNSS(m,p,n)(ε) for m ≥ 2, p ≥ 2 and n >  2, but G is not 
NSSs. 

Theorem 2 Let X = {εi} be the universal i = 1, · · ·  , n, and H ∈ 
GNSS(m,p,n)(ε). If  ΠH (εi) = 0, then 

1. |ΞH (εi)| =  m
√|2 − (ΥH (εi)p + ΩH (εi)n)|. 

2. |ΥH (εi)| =  p
√|2 − (ΞH (εi)m + ΩH (εi)n)|. 

3. |ΥH (εi)| =  n
√|2 − (ΞH (εi)m + ΥH (εi)p)|. 

Proof 

1. Since ΠG(εi) = 0, so ΞG(ε)m + ΥG(ε)p + ΩG(ε)n = 2. This implies that 
ΞG(ε)m = 2 −ΥG(ε)p − ΩG(ε)n, |ΞG(ε)|m = |2 − ΥG(ε)p − ΩG(ε)n|. Hence, 
|ΞG(ε)| =  m

√|2 − ΥG(ε)p − ΩG(ε)n|. Similarly to prove other parts. 

Example 3 Suppose G ∈ GNSS(m,p,n)(ε) and ΥG(εi) = 0.85,ΩG(εi) = 0.78. If 

m = 2, p = 3,n = 2, then |ΞG(εi)| =  2
√

| ((0.85)3) + ((0.76)2
) − 2| = 0.89. Thus, 

(ΞG(xi))
2 + (ΥG(εi))

3 + (ΩG(εi))
2 = 2 implies that ΠG(εi) = 0.
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3.1 Basic Operations of GNSSs 

Now, we define some important operations for union, intersection, complementa-
tion, sum, and product based on GNSSs. 

Definition 5 Let .G ∈ GNSS(m,p,n)(ε); then the complement of G is defined as 
.Gc = 〈ε,ΩG(ε), ΥG(ε),ΞG(ε)〉, for .ε ∈ X. 

Definition 6 If G and H are two sets in .GNSS(m,p,n)(ε), then their union and 
intersection are defined as follows: 

1. . G∪H = {〈
ε, max

(
ΞG(ε),ΞH (ε)

)
, min

(
ΥG(ε), ΥH (ε)

)
, min

(
ΩG(ε),ΩH (ε)

)〉 :
ε ∈ X

}
.

2. . G∩H = {〈
ε, min

(
ΞG(ε),ΞH (ε)

)
, max

(
ΥG(ε), ΥH (ε)

)
, max

(
ΩG(ε),ΩH (ε)

)〉 :
ε ∈ X

}
.

Definition 7 Let .G ∈ GNSS(m,p,n)(ε); then the score function of G is defined as 

. s(G) = (ΞG(ε))m + (ΥG(ε))p − (ΩG(ε))n,

.s(G) ∈ [−1, 1], for any positive integers m, p, and n. 

Definition 8 Let .G ∈ GNSS(m,p,n)(ε); then the accuracy function of G is defined 
as 

. a(G) = (
ΞG(ε)

)m + (
ΥG(ε)

)p + (
ΩG(ε)

)n

for .a(G) ∈ [0, 1], for any positive integers m, p, and n. 

Theorem 3 Let .G ∈ GNSS(m,p,n)(ε); then the following relations validate . ∀ε ∈
X: 

1. .s(G) = 2 . ⇐⇒
(a) . ΞG(ε) = m

√|(−ΥG(ε))p + ΩG(ε))n) + 2)|
(b) . ΥG(ε) = p

√|(−ΞG(ε))m + ΩG(ε))n) + 2)|
(c) . ΩG(ε) = n

√|(ΞG(ε))m + ΥG(ε))p) − 2)|
2. .s(G) = −2 . ⇐⇒

(a) . ΞG(ε) = m
√|(−ΥG(ε))p + ΩG(ε))n − 2)|

(b) . ΥG(ε) = p
√|(−ΞG(ε))m + ΩG(ε))n − 2)|

(c) . ΩG(ε) = n
√|(ΞG(ε))m + ΥG(ε))n + 2|)

Proof 

1. We suppose that .s(G) = 2. Now, .2 = (
ΞG(ε)

)m + (
ΥG(ε)

)p − (
ΩG(ε)

)n. 
Therefore, 

.
(
ΥG(ε)

)p = (
( − ΞG(ε)

)m + (
ΩG(ε)

)n
) + 2 and . 

∣
∣(ΥG(ε)

)p| = |(( −
ΞG(ε)

)m| + |(ΩG(ε)
)n

)| + 2.
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Thus .ΥG(ε) = .
p

√∣
∣(−ΞG(ε)

)m + (
ΩG(ε)

)n
) + 2|, .∀ε ∈ X. 

The converse follows immediately. 
2. Suppose .s(G) = −2, then, .−2 = (

ΞG(ε)
)m + (

(
ΥG(ε)

)p − (
ΩG(ε)

)n
), . ⇒

(
ΥG(ε)

)p = (
(−ΞG(ε)

)m +(
ΩG(ε)

)n
)−2. . ⇒ |(ΥG(ε)

)p| = (|(−ΞG(ε)
)m|+

|(ΩG(ε)
)n

)| − 2. 

Thus, .ΥG(ε) = p

√∣
∣(−ΞG(ε)

)m + (
ΩG(ε)

)n + 2|, .∀ε ∈ X. 
Converse of the theorem follows immediately. 

Theorem 4 Let .G ∈ GNSS(m,p,n)(ε); then, .∀ε ∈ X; hence, the following 
statements are valid: 

1. .a(G) = 2 ⇐⇒ ΠG(ε) = 0, 
2. (a) . a(G) = 0 ⇐⇒ |ΞG(ε)| = |ΥG(ε)p + ΩG(ε)n|1/m

(b) . a(G) = 0 ⇐⇒ |ΥG(ε)| = |ΞG(ε)m + ΩG(ε)n|1/p

(c) .a(G) = 0 ⇐⇒ |ΩG(ε)| = |ΞG(ε)m + ΥG(ε)p|1/n. 

Proof 

1. Suppose .a(G) = 2, Now,  

. (ΞG(ε))m + (ΥG(ε))p + (ΩG(ε))n = 2,

Since 

. ΠG(ε) = lcm(m,p,n)
√

2 − [ΞG(ε)m + ΥG(ε)p + ΩG(ε)n],

so .ΠG(ε) = 0. Conversely, assume that .ΠG(ε) = 0, then, 

. (ΞG(ε))m + (ΥG(ε))p + (ΩG(ε))n = 2 ⇐⇒ a(G) = 2.

2. Suppose .a(G) = 0.Now, .ΞG(ε)m = −ΥG(ε)p − ΩG(ε)n . ⇐⇒ . |ΞG(ε)| =
|ΥG(ε)p + ΩG(ε)n|1/m.

Definition 9 Let .G,H ∈ GNSS(m,p,n)(ε). Then .G = H ⇐⇒ ΞG(ε) = ΞH (ε), 
.ΥG(ε) = ΥH (ε), and.ΩG(ε) = ΩH (ε), .∀ε ∈ X. . G ⊆ H ⇐⇒ ΞG(ε) ≤ ΞH (ε)

and .ΥG(ε) ≥ ΥH (ε) and .ΩG(ε) ≥ ΩH (ε), .∀ε ∈ X. .G ⊂ H ⇐⇒ G ⊆ H and 
.G �= H . 

Definition 10 Let .G,H ∈ GNSS(m,p,n)(ε); then G and H are said to be 
comparable if .G ⊆ H or .H ⊆ G. 

Theorem 5 Let .G,H ∈ GNSS(m,p,n)(ε); then the following properties hold: 

1. .s(G) = s(H)
(
.a(G) = a(H)

)
. ⇐⇒ .G = H

(
.G = H

)
, 

2. .s(G) ≤ s(H)
(
.a(G) ≤ a(H)

)
. ⇐⇒ .G ⊆ H

(
.G ⊆ H

)
, 

3. .s(G) < s(H)
(
.a(G) < a(H)

)
. ⇐⇒ .G ⊆ H and .G �= H

(
.G ⊆ H and 

.G �= H
)
. 

Proof Straightforward.
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4 Relations on Generalized Neutrosophic Sets(GNSSs) 

Generalized neutrosophic relations (GNSRs) are generalized neutrosophic sets R. In  
generalized neutrosophic sets, .G × H is defined as .G ⊆ X to .H ⊆ Y . In Cartesian 
terms, a relation is a non-empty subset of .X × Y . As a result, every component 
of .G × H is mapped to .[0, 1] by way of the relation R. A GNSS can be viewed 
as a generalization of a GFS or an NSS. In addition to neutrosophic relations, the 
concept has been extended to GNSSs. 

Definition 11 Let .h : X → Y be the neutrosophic function such that . L ∈
GNSS(m,p,n)(ε) and .M ∈ GNSS(m,p,n)(η), then 

1. the image of L denoted by .h(L) is a .GNSS(m,p,n) of Y characterized, respec-
tively, by the membership, indeterminacy, and non-membership functions as 
follows: 

. Ξh(L)(η) =
⎧
⎨

⎩

�
ε∈h−1(η)

ΞL(ε), h−1(η) �= ∅,

0, otherwise,

. Υh(L)(η) =
⎧
⎨

⎩

�
ε∈h−1(η)

ΥL(ε), h−1(η) �= ∅,

1, otherwise,

. Ωh(L)(η) =
⎧
⎨

⎩

�
ε∈h−1(η)

ΩL(ε), h−1(η) �= ∅,

1, otherwise,

for each . η ∈ Y . Also,  

. 0 ≤ Ξh(L)(η)m + Υh(L)(η)p + Ωh(L)(η)n ≤ 2.

In this case, the degree of refusal of .η ∈ Y to .h(L) is defined as 

. Πh(L)(η) = lcm(m,p,n)

√

2 −
((

Ξh(L)(η))m + (Υh(L)(η))p + (Ωh(L)(η)n)
))

.

(11.13) 

2. the inverse image of M denoted by .h−1(M) is a .GNSS(m,p,n) of X characterized, 
respectively, by the membership, indeterminacy, and non-membership functions: 
.Ξh−1(M)(ε) = ΞM

(
h(ε)

)
, and .Υh−1(M)(ε) = ΥM

(
h(ε)

)
, . Ωh−1(M)(ε) =

ΩM

(
h(ε)

)
,∀ε ∈ X.

Also, the sum of .
(
Ξh−1(M)(ε)

)m, .
(
Υh−1(M)(ε)

)p and .
(
Ωh−1(M)(ε)

)n in .[0, 1]. 
The degree of refusal of .ε ∈ X to .h−1(M) is given by
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. Πh−1(M)(ε) = lcm(m,p,n)

√

2 −
(
(Ξh−1(M)(ε))

m + (Υh−1(M)(ε))
p + (Ωh−1(M)(ε))

n
)
.

(11.14) 

Definition 12 Let X and Y be any two non-empty sets. Then a (GNSR) from X to 
Y is denoted by .R(ε → η), and it is defined as follows: 

.0 ≤ (ΞR(ε, η))m + (ΥR(ε, η))p + (ΩR(ε, η))n ≤ 2. (11.15) 

The degree of refusal .(ε, η) of the product .X × Y to R is defined as 

. ΠR(ε, η) = lcm(m,p,n)

√

2 −
((

ΞR(ε, η)
)m + (ΥR(ε, η))p + (ΩR(ε, η))n

)
.

(11.16) 

For our convenience .R(ε → η) by R. 

Definition 13 Suppose that .L ∈ GNSS(m,p,n)(ε). Then we define the relation R 
and set L is a .GNSS(m,p,n) M of Y is denoted by .M = R ∗ L, and it is defined as 
follows: 

.ΞM(η) = max
ε

(min[ΞL(ε),ΞR(ε, η)]), (11.17) 

and 

.ΥM(η) = min
ε

(max[ΥL(ε), ΥR(ε, η)]), (11.18) 

.ΩM(η) = min
ε

(max[ΩL(ε),ΩR(ε, η)]), (11.19) 

. ∀ .ε ∈ X and .η ∈ Y .Thus M satisfies GNSS and the degree of refusal as usual. 

Definition 14 We define the max-min-max composition of two GNSRs . Q(ε → η)

and .R(η → σ), denoted by .R ∗ Q as a GNSR from the set X to Z. The relation 
.R ∗ Q is defined as follows: 

.ΞR∗Q(ε, σ ) = max
η

(
min[ΞQ(ε, η),ΞR(η, σ )]), (11.20) 

and 

.ΥR∗Q(ε, σ ) = min
η

(
max[ΥQ(ε, η), ΥR(η, σ )]), (11.21) 

.ΩR∗Q(ε, σ ) = min
η

(
max[ΩQ(ε, η),ΩR(η, σ )]), (11.22)
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. ∀ .(ε, σ ) ∈ X × Z and .∀η ∈ Y , satisfying the condition 

.0 ≤ (ΞR∗Q(ε, σ ))m + (
(ΥR∗Q(ε, σ )

)p + (
ΩR∗Q(ε, σ )

)n ≤ 2. (11.23) 

The refusal degree of the point .(ε, σ ) of .X × Z to .R ∗ Q is defined as 

. ΠR∗Q(ε, σ )= lcm(m,p,n)

√

2 −
(
(ΞR∗Q(ε, σ ))m + (

ΥR∗Q(ε, σ )
)p + (

ΩR∗Q(ε, σ )
)n

)
.

(11.24) 

Theorem 6 Let .R1 ∈ GNSR(L,M) and .R2 ∈ GNSR(M,N); then composition 
.R1 ∗ R2 is an GNSR from L to N . 

Proof Straightforward. 

There are several algorithms in the literature to calculate the .R ∗ Q We define as 

. R ∗ Q = ΞR∗Q(ε, σ ) + (ΥR∗Q(ε, σ )(ΠR∗Q(ε, σ ))

− ΩR∗Q(ε, σ )ΠR∗Q(ε, σ ),∀(ε, σ ) ∈ X × Z. (11.25) 

4.1 Diagnostic Disease Problem 

1. Clinical diagnosis(D1): 
A clinical examination is performed instead of diagnostic testing to make a 
diagnosis based only on symptoms and physical manifestations. Diagnosing a 
disease, condition, or injury is done based on a patient’s signs and symptoms, 
medical history, and physical exam findings. Additional tests, such as blood tests, 
imaging tests, and biopsies, may be conducted once a clinical diagnosis has been 
established. 

2. Laboratory diagnosis(D2): 
The diagnosis depends more on the results of tests or lab work than on 

the patient’s physical examination. When diagnosing an infectious disease, for 
instance, signs and symptoms, laboratory findings, and the organism’s traits must 
all be considered. 

3. Principal diagnosis(D3): 
It is the medical condition that most accurately describes the patient’s major 
complaint or treatment needs. There are many patients who have multiple 
diagnoses. A doctor can only make a primary diagnosis after performing all the 
required tests and examinations. It clarifies why a patient was initially admitted 
to the hospital. A primary diagnosis differs from an admitted diagnostic, which 
describes the patient’s condition at the time of admission without relying on 
formal testing.
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4. Admitting diagnosis(D4): 
The diagnosis that most accurately describes the patient’s complaint or what 
treatment they require. Multiple diagnoses are common among patients. A 
doctor can only provide a primary diagnosis after all the necessary tests and 
examinations have been completed. In addition, it clarifies the main reason a 
patient was admitted to the hospital in the first place. Primary diagnoses differ 
from admitted diagnoses, which characterize a patient’s condition at the time of 
hospital admission without formal testing. 

5. Diagnostic imaging(D5): 
The single medical diagnosis that most accurately describes a patient’s main 
complaint or what treatments they need. Many patients have multiple diagnoses. 
After all tests and examinations have been completed, a doctor can only make a 
primary diagnosis. A patient’s primary reason for being admitted to the hospital 
is clarified. In contrast to an admitting diagnosis, a primary diagnosis describes 
a patient’s condition at the time of admission without using formal testing. 

Diagonize the following diseases by the above five diagnoses. 

1. Urinary tract infection 
Since clinicians frequently base their diagnoses on a single symptom or sign, it 
is crucial that they are aware of the pretest probability. In addition to identifying 
the pathogenic microorganism(s) and determining their reaction to different 
medications, bacterial cultures continue to be essential for the diagnosis of UTIs. 
Urinary tract infections can be detected quickly and easily using MRI and CT 
scans because of their excellent image quality. 

2. Pneumonia 
To diagnose pneumonia, a clinical history, physical examination, and/or labo-
ratory tests are typically used. In most clinical recommendations, chest X-rays 
(CXRs), which can differentiate pneumonia from other respiratory tract illnesses, 
are the most reliable method for diagnosing pneumonia. On radiographs, pus 
and infectious material fill the alveoli of the airways. The air bronchogram 
becomes more confluent as the infection worsens. As a result, air-filled bronchi 
pass through pus-filled alveoli. There are some individuals who are more likely 
to need hospitalization for pneumonia than others. Seek immediate medical 
attention if you have a condition such as heart disease, asthma, kidney, or 
endocrine problems. 

3. Renal failure 
Doppler ultrasound and other high-frequency sound wave imaging techniques 
can be used to assess kidney and arterial function. Using this technology, blood 
artery blockages can be detected and their severity determined. CT scans produce 
detailed images of renal arteries using an X-ray machine linked to a computer. 
Blood flow can be visualized using a dye injection. In MRA, radio waves and 
strong magnetic fields are used to provide exact 3D images of the kidneys and 
renal arteries. A dye injection can be used to observe how your blood flows. 
MRA creates detailed 3D images of the kidneys and renal arteries using radio 
waves and powerful magnetic fields. With a unique type of X-ray examination
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that helps identify the obstruction, it is sometimes possible to open the narrowed 
portion of the renal arteries with a balloon or stent. Maintain a healthy lifestyle, 
reduce salt consumption, eat wholesome meals, and exercise frequently if you 
have moderately or severely high blood pressure. A serum creatinine level can 
be used to determine kidney impairment. In spite of the rarity of nephrotic levels, 
vascular renal disease is typically associated with low-to-moderate proteinuria. 

4. Crohn’s disease 
A colonoscopy involves a doctor examining the interior of your colon and 
rectum with an endoscope, a long, flexible, narrow tube with a light on one end. 
Additionally, your doctor might examine your ileum for signs of Crohn’s disease. 
In a hospital setting or in an outpatient setting, a qualified professional performs 
a colonoscopy. You will receive written instructions from your doctor on how to 
prepare for bowel surgery at home. The blood test is one of the lab tests used 
to diagnose Crohn’s disease. In order to check for changes in red blood cells, 
a medical professional may take a sample of your blood for analysis. The X-ray 
machine has the shape of a tunnel, and you will sit on a table that slides into it. CT 
scans can detect Crohn’s disease and its symptoms. Intestinal endoscopy is the 
most accurate way to diagnose Crohn’s disease and exclude other conditions such 
as ulcerative colitis, diverticular disease, or cancer. It is common for people with 
Crohn’s disease to live active, fulfilling lives. To get enough calories, Crohn’s 
disease patients typically need to modify their diets. 

Here Ci = {C1, C2, C3, C4, C5}, where C1 = Chemist1,C2 = Chemist2, C3 = 
Chemist3, C4 = Chemist4, and C5 = Chemist5. They want to diagnose four disease 
given in the set as M = {D1,D2,D3,D4,D5}, where D1= clinical diagnosis, D2 
= laboratory diagnosis, D3 = principal diagnosis, D4 = admitting diagnosis, and D5 
= diagnostic imaging, each from a diagnostic lab. Chemists choose the diagnosis 
by prioritizing their choices since their decisions are based on their choices. It is the 
responsibility of each chemist to prioritize the four diseases in a diagnosis according 
to the satisfaction he/she feels, based on the set. 

Let F = {Urinary tract, infection, Pneumonia, Renal failure, Crohn’s disease}. 
Diagnosis is based on accuracy, satisfaction, good, or fair. Data are provided 
in decision Table 3, which is the Cartesian product of the neutrosophic relation 
between C and F denoted by C ∗F . Each entry of the decision table is of the form: 

. rij = 〈Ξij , Υij ,Ωij ,Πij 〉, i = 1, 2, 3, . . . , 5, j = 1, 2, 3, 4.

Let rij consist of further four sub-entries Ξij , Υij ,Ωij , and Πij . Let  Ξij be the 
membership value denoting the points allotted by the chemist ci to the disease fj 
of a diagnosis. The second sub-entry Υij is the non-membership value showing the 
points left by the chemist to the diseases fj . The third sub-entry Πij denotes the 
degree of the refusal of the chemist, ci , in the diseases fj . More explicitly, e.g., 
Ξij = 0.85 means that the chemist ci gives 0.85 measure of choice to disease fj of 
a diagnosis. Similarly, Υij = 0.75 means that the chemist ci expresses 0.75 measure 
of inaccuracy for fj ,Ωij = 0.3 means that the chemist ci expresses 0.3 measure of
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indeterminacy for fj , and Πij = 0.1 means that the chemist remains 0.1 measure 
undecided about the diagnosisfj . 

All decision tables do not have a fourth sub-entry for our convenience. Only the 
first three sub-entries are written. Assume that each entry of a table contains the 
fourth sub-entry Πij evaluated by Eq. 11.11. Table 11.2 contains the diagnosis data 
for the diseases, which is a neutrosophic relation of the sets F and M as F ∗ M . 
The entry tjk  = 〈Ξ ′

jk, Υ
′
jk,Ω

′
jk,Π

′
jk〉, j = 1, 2, 3, 4, k = 1, 2, 3, . . .  ,  5. The entry 

Ξ ′
jk  denotes the level of the membership of the disease fj in the diagnosismk , e.g., 

Ξ ′
jk  = 0.65 means that the disease fj is 0.65 degree present in the diagnosismk . 

In the same way,  Υ ′
jk  shows the degree of the non-membership of disease fj in the 

diagnosismk , for example, if Υ ′
jk  = 0.7, it means that the disease fj is 0.7 degree 

not available in the diagnosismk . In the same way,  Ω ′
jk  shows the degree of the non-

membership of disease fj in the diagnosis mk , for example, if Ω ′
jk  = 0.45, it means 

that the disease fj is 0.7 degree indeterminant in the diagnosis mk . Similarly, Πjk  
denotes the degree of the refusal of the disease fj in the diagnosisMk; Πjk  = 0.2 
means that there is no decision of the attribute Gj about the diagnosis mk . For our 
own convenience, we confined each entry to the matrix T to contain Ξ ′

j k, Υ ′
j k and 

Ω ′
j k. 
We find the values of the matrices ΠC∗F and ΠF∗M given by Eq.  11.11 for 

{m, p, n} = {(1, 1, 1), (2, 2, 2), (3, 3, 3)} and also the values of the matrices ΠC∗F 
and ΠF∗M given by Eq. 11.11 for {m, p, n} = {(2, 2, 3), (2, 3, 2), (3, 2, 2), (2, 3, 3), 
(3, 2, 3), (3, 3, 2)}. Using Eqs. 11.20–11.22, we find the matrix given by Eq. 11.25 
whose entries are given in Table 11.5 and 11.6. To ensure that our results are 
consistent with the GNSS values, we have also calculated the values using the two 
neutrosophic set methods, NSSs and PyNSSs. There are two ways in which we 
make decisions based on Table 11.3 and 11.4. 

Table 11.3 Chemist’s value to the diseases 

Q(C → F)  Urinary tract infection Pneumonia Renal failure Crohns Disease 

Chemist-1 〈0.7, 0.4, 0.6〉 〈0.7, 0.5, 0.4〉 〈0.7, 0.66, 0.7〉 〈0.6, 0.2, 0.4〉
Chemist-2 〈0.8, 0.3, 0.4〉 〈0.8, 0.6, 0.43〉 〈0.6, 0.56, 0.8〉 〈0.7, 0.4, 0.3〉
Chemist-3 〈0.8, 0.5, 0.5〉 〈0.9, 0.7, 0.7〉 〈0.5, 0.45, 0.92〉 〈0.8, 0.4, 0.2〉
Chemist-4 〈0.6, 0.2, 0.3〉 〈0.76, 0.6, 0.43〉 〈0.7, 0.63, 0.7〉 〈0.5, 0.5, 0.2〉
Chemist-5 〈0.8, 0.4, 0.5〉 〈0.77, 0.66, 0.4〉 〈0.5, 0.45, 0.8〉 〈0.7, 0.4, 0.1〉

Table 11.4 Generalized neutrosophic relation of the sets F and M denoted by R(F → M) 

R(F → M) D1 D2 D3 D4 D5 

Urinary tract 
infection

〈0.7, 0.5, 0.6〉 〈0.7, 0.5, 0.3〉 〈0.8, 0.6, 0.5〉 〈0.7, 0.7, 0.4〉 〈0.7, 0.7, 0.4〉

Pneumonia 〈0.8, 0.3, 0.4〉 〈0.8, 0.6, 0.43〉 〈0.7, 0.5, 0.3〉 〈0.6, 0.4, 0.5〉 〈0.6, 0.8, 0.45〉
Renal failure 〈0.7, 0.5, 0.5〉 〈0.9, 0.6, 0.4〉 〈0.8, 0.6, 0.5〉 〈0.5, 0.2, 0.56, 〉 〈0.5, ,  0.2, 0.56〉
Crohn’s 
disease

〈0.6, 0.2, 0.6〉 〈0.7, 0.5, 0.3〉 〈0.8, 0.5, 0.2〉 〈0.6, 0.4.0.35〉 〈0.6, 0.4, 0.35〉
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Table 11.5 Diagnosis value shown for each chemist 

R ∗ Q D1 D2 D3 D4 D5 Set Type 

Chemist-1 0.68 0.72 0.72 0.6856 0.6856 GNSS(1,1,1) 
0.62 0.8960 0.78 0.6466 0.6462 GNSS(2,2,2) 
0.5320 0.9279 0.9279 0.5959 0.5502 GNSS(3,3,3) 

Chemist-2 0.80 0.84 0.8084 0.7056 0.7056 GNSS(1,1,1) 
0.80 0.9411 0.8380 0.7258 0.7279 GNSS(2,2,2) 
0.80 0.94 0.94 0.7641 0.7810 GNSS(3,3,3) 

Chemist-3 0.80 0.8960 0.80 0.7056 0.7056 GNSS(1,1,1) 
0.80 0.9411 0.80 0.7457 0.7698 GNSS(2,2,2) 
0.80 0.80 0.80 0.8904 0.9065 GNSS(3,3,3) 

Chemist-4 0.76 0.8620 0.72 0.6096 0.6096 GNSS(1,1,1) 
0.76 0.9228 0.78 0.6372 0.6373 GNSS(2,2,2) 
0.76 0.9279 0.9279 0.6710 0.7079 GNSS(3,3,3) 

Chemist-5 0.7560 0.9420 0.80 0.7080 0.7080 GNSS(1,1,1) 
0.7246 0.9273 0.80 0.7464 0.7578 GNSS(2,2,2) 
0.6852 0.80 0.80 0.8476 0.8701 GNSS(3,3,3) 

1. From left to top: The decision illustrates the chemist’s satisfaction with the 
diagnosis. Chemist-1 is content with his choice of first diagnosis and then lab 
diagnosis. Chemist-2’s expertise lies in clinical diagnosis, laboratory diagnosis, 
and principal diagnosis. Chemist-3 is satisfied with clinical diagnosis, laboratory 
diagnosis, and principal diagnosis. Chemist-4 is satisfied with the laboratory 
diagnosis. According to Chemist-5, he is content with both the primary diagnosis 
and the tertiary diagnosis. 

2. From top to left: The decision tells how much a particular diagnosis is appropri-
ate. Chemist-2 and Chemist-3 are satisfied with the clinical diagnosis. Laboratory 
diagnosis suits the needs of Chemist-5 and Chemist-4. Chemist-2 is satisfied 
with the principal diagnosis. According to Chemist-5, admitting diagnosis is 
satisfactory. Chemist-5 and Chemist-3 are satisfied with the diagnostic image. 

Let the max-min-max composition of generalized neutrosophic relations Q and R 
be denoted by R ∗ Q and defined in Eq. 11.25 for diagnostic disease problem. 

4.2 Problem: Diabetes in Different Age Sectors 

1. Severe autoimmune diabetes (X1): 
In this type of diabetes, the immune system produces antibodies that attack beta 
cells (the cells that produce insulin). It is called an autoimmune response when 
such a response occurs in an infant. People with type 1 diabetes should closely 
monitor their blood glucose levels as part of their diabetes management plan. In 
addition to insulin injections or insulin pumps, this plan calls for daily insulin 
injections.
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Table 11.6 Diagnosis value for each chemist 

R ∗ Q D1 D2 D3 D4 D5 Set Type-

Chemist-1 0.5763 0.8159 0.8159 0.6153 0.6024 GNSS(2,2,3) 
0.5859 0.8294 0.8294 0.6184 0.6092 GNSS(2,3,2) 
0.5329 0.9552 0.9552 0.5946 0.5122 GNSS(2,3,3) 
0.5749 0.8317 0.8317 0.6133 0.5974 GNSS(3,2,2) 
0.5280 0.9591 0.9591 0.5923 0.4908 GNSS(3,2,3) 
0.5322 0.9854 0.9854 0.5936 0.5037 GNSS(3,3,2) 

Chemist-2 0.80 0.8367 0.8367 0.7334 0.7342 GNSS(2,2,3) 
0.80 0.8399 0.8399 0.7350 0.7355 GNSS(2,3,2) 
0.80 0.8848 0.8848 0.7612 0.7787 GNSS(2,3,3) 
0.80 0.72 0.72 0.6856 0.7361 GNSS(3,2,2) 
0.80 0.8801 0.8801 0.7651 0.7795 GNSS(3,2,3) 
0.80 0.8862 0.8862 0.7623 0.7821 GNSS(3,3,2) 

Chemist-3 0.80 0.80 0.80 0.6456 0.7507 GNSS(2,2,3) 
0.80 0.80 0.80 0.6618 0.7540 GNSS(2,3,2) 
0.80 0.80 0.80 0.8326 0.8329 GNSS(2,3,3) 
0.80 0.80 0.80 0.6681 0.7540 GNSS(3,2,2) 
0.80 0.80 0.80 0.8326 0.8329 GNSS(3,2,3) 
0.80 0.80 0.80 0.8403 0.8403 GNSS(3,3,2) 

Chemist-4 0.76 0.8159 0.8159 0.6593 0.6725 GNSS(2,2,3) 
0.76 0.8294 0.8294 0.6601 0.6749 GNSS(2,3,2) 
0.76 0.9552 0.9552 0.6727 0.7514 GNSS(2,3,3) 
0.76 0.8317 0.8317 0.6601 0.6749 GNSS(3,2,2) 
0.76 0.9591 0.9591 0.6727 0.7514 GNSS(3,2,3) 
0.76 0.9845 0.9845 0.6731 0.7558 GNSS(3,3,2) 

Chemist-5 0.73 0.80 0.80 0.7216 0.7527 GNSS(2,2,3) 
0.7031 0.80 0.80 0.7312 0.7563 GNSS(2,3,2) 
0.6840 0.80 0.80 0.8250 0.8361 GNSS(2,3,3) 
0.6982 0.80 0.80 0.7302 0.7559 GNSS(3,2,2) 
0.6816 0.80 0.80 0.8245 0.8308 GNSS(3,2,3) 
0.6828 0.80 0.80 0.8291 0.8385 GNSS(3,3,2) 

2. Severe insulin-deficient diabetes (X2): 
Many of the characteristics of type 1 diabetes patients were present in patients 
with this type of diabetes, such as young age, thinness, and inadequate insulin 
levels. A significant difference was that there were no antibodies in their blood, 
proving that it was not the immune system that caused their illness. Damaged 
insulin-producing cells were to blame for insufficient insulin synthesis in people 
with SIDD. There was a higher risk of visual loss in this group. People with this 
type of diabetes may also take oral drugs despite controlling their diabetes in the 
same way as those with type 1.
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3. Severe insulin-resistant diabetes (X3): 
Unlike other varieties of diabetes, this type of diabetes is characterized by insulin 
resistance, which occurs when the body doesn’t respond to its own insulin 
properly. Insulin resistance is worsened when people with SIRD are overweight. 
Type 3 diabetes is associated with a heightened risk of kidney impairment. 
Similarly, diabetes management options for patients with SIRD were found to be 
less effective than those for the other five subgroups. In the way, research result 
in new diagnostic techniques and more stringent treatments for these patients. 

4. Mild obesity-related diabetes (X4): 
People with this less severe form of diabetes are characterized by extreme obesity 
and insulin resistance. It is believed that fat causes this less severe form of 
diabetes, which is associated with less severe insulin resistance. 

5. Mild age-related diabetes (X5): 
Diabetes in MARD patients was milder and older than in middle-aged patients 
with diabetes. There is a high prevalence of this type of diabetes, according to 
the report. 

The following list the types of sectors affected by the disease and the types of 
diabetes they are suffered from. 

1. Infant: 
In addition to being irritable or agitated or having a seizure, the infant may also 
have breathing difficulties. Due to the hazards associated with diabetes, most 
diabetic infants will be closely monitored throughout their first few hours of 
life. They will receive regular heel sticks to assess their blood sugar levels. 
The likelihood of developing insulin resistance later in life is higher for term 
babies who are small for gestational age. Normal plasma levels of insulin cannot 
sufficiently stimulate the absorption of glucose by peripheral tissues in cases 
of insulin resistance (IR). It is possible to develop moderate diabetes caused 
by obesity (MOD) when you are overweight or obese but do not have insulin 
resistance. A medical disorder such as diabetes is often discovered later in life 
and presents with milder symptoms than other diseases. 

2. Toddler: 
Your child’s body may not be able to use the sugar in his or her bloodstream 
to produce energy. There may be a lack of energy in the muscles and organs of 
your child, resulting in extreme hunger and unexplained weight loss. The blood 
glucose of type 1 diabetics must be injected into their cells to be converted into 
energy. Depending on your child’s needs, the care team will customize your 
insulin schedule. Sugar (glucose) is used differently by your child’s body in 
this chronic condition. Obesity and a sedentary lifestyle both increase the risk 
of developing type 2 diabetes. 

3. Young: 
An increasing proportion of young individuals with latent autoimmune diabetes 
in the young (LADA) experience an initial insulin-free period. A medical 
disorder such as diabetes is diagnosed later in life and manifests with fewer
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symptoms. Diabetes with severe insulin deficiency (SIDD) is a cluster 1 subtype. 
When diagnosed, these patients have a low BMI and are young. However, GADA 
is not present. There is no clear explanation for why these people have beta 
cell dysfunction. Chronic hyperglycemia is caused by abnormal carbohydrate, 
protein, and fat metabolism. It is caused either by a deficiency in insulin action 
or secretion or by both, which characterizes the heterogeneous group of diseases 
known as diabetes. The most common type of diabetes, type 2 diabetes (T2D), 
has a range of pathophysiology, ranging from severe insulin resistance to normal 
insulin sensitivity. 

4. Adult: 
Latent autoimmune diabetes in adults (LADA) develop gradually. As with type 
1 diabetes, LADA occurs when your pancreas stops producing insulin due to 
some sort of “insult” that gradually damages the insulin-producing cells. Severe 
insulin resistance is characterized by significant hyperinsulinemia and reduced 
glucose sensitivity to both endogenous and exogenous insulin. As a result, insulin 
has a markedly diminished effect on physiology. It is common for people with 
SIRD to have high levels of insulin resistance. This means that their cells do not 
respond to insulin even though their bodies produce it. Additionally, they tend to 
be overweight. Those with mild age-related diabetes (MARD) tend to be older 
than those with other types of diabetes. Keeping their blood sugar under control 
is not a problem for them. It is the most prevalent type of diabetes, accounting 
for about 40 percent of cases. 

5. Pregnant women: 
High blood sugar during pregnancy can affect both the mother and unborn 
child. Pregnancy category B includes regular insulin (U-100 and U-500), insulin 
apart, insulin lispro (U-100 and U-200), NPH, and insulin determined. The FDA 
has deemed these insulins low risk during pregnancy based on human data. It 
is unknown at what blood sugar level insulin injections should be started. In 
contrast, if the fasting blood sugar level is higher than 105 mg/dl or if the level 
2 hours after a meal is higher than 120 mg/dl twice, many doctors will prescribe 
insulin. Insulin is the drug of choice for treating hyperglycemia in gestational 
diabetes mellitus. Metformin and glyburide are two drugs. 

Patients are given in the set G = {P1, P2, P3, P4, P5}, where P1 = Patient1, 
P2 = Patient2, P3 = Patient3, P4 = Patient4, andP5 = Patient5. The 
different types of diabetes were given in the set: P = {X1, X2, X3, X4, X5}, where 
X1= severe autoimmune diabetes (SAID), X2= severe insulin-deficient diabetes 
(SIDD), X3= severe insulin-resistant diabetes (SIRD), X4= mild obesity-related 
diabetes (MOD), and X5= mild age-related diabetes (MARD). The diabetes are 
suffered in accordance with the relevancy of the respective five age sector as 
U = {Infant,Toddler,Young,Adult,Pregnancy women}. The generalized neutro-
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Table 11.7 Different age to the respective patients 

Infant Toddler Young Adult Pregnancy women 

P1 〈0.9, 0.7, 0.7〉 〈0.9, 0.7, 0.7〉 〈0.5, 0.45, 0.92〉 〈0.8, 0.4, 0.2〉 〈0.9, 0.7, 0.7〉
P2 〈0.8, 0.6, 0.43〉 〈0.8, 0.6, 0.43〉 〈0.6, 0.56, 0.8〉 〈0.7, 0.4, 0.3〉 〈0.8, 0.6, 0.43〉
P3 〈0.9, 0.7, 0.7〉 〈0.9, 0.7, 0.7〉 〈0.5, 0.45, 0.92〉 〈0.8, 0.4, 0.2〉 〈0.9, 0.7, 0.7〉
P4 〈0.76, 0.6, 0.43〉 〈0.76, 0.6, 0.43〉 〈0.7, 0.63, 0.7〉 〈0.5, 0.5, 0.2〉 〈0.76, 0.6, 0.43〉
P5 〈0.8, 0, 6, 0.43〉 〈0.8, 0.6, 0.43〉 〈0.6, 0.56, 0.8〉 〈0.7, 0.4, 0.3〉 〈0.8, 0.6, 0.43〉

Table 11.8 The value of the diabetes to the respective age sector 

R(P → U) X1) X2 X3 X4 X5 

Infant 〈0.7, 0.5, 0.3〉 〈0.3, 0.6, 0.4〉 〈0.7, 0.5, 0.3〉 〈0.8, 0.6, 0.4〉 〈0.8, 0.6, 0.4〉
Toddler 〈0.7, 0.5, 0.3〉 〈0.8, 0.6, 0.4〉 〈0.7, 0.5, 0.3〉 〈0.8, 0.6, 0.4〉 〈0.8, 0.6, 0.4〉
Young 〈0.8, 0.6, 0.5〉 〈0.9, 0.6, 0.4〉 〈0.8, 0.6, 0.5〉 〈0.9, 0.6, 0.4〉 〈0.9, 0.6, 0.4〉
Adult 〈0.8, 0.5, 0.2〉 〈0.7, 0.5, 0.3〉 〈0.8, 0.5, 0.2〉 〈0.7, 0.5, 0.3〉 〈0.7, 0.5, 0.3〉
Pregnancy 
Women

〈0.7, 0.5, 0.1〉 〈0.8, 0.6, 0.0〉 〈0.7, 0.5, 0.1〉 〈0.8, 0.6, 0.0〉 〈0.8, 0.6, 0〉

sophic relation of the sets G and P are denoted by Q(G → P). We can make 
decision from Table 11.7. 

Generalized neutrosophic relation of the sets P and U denoted by R(P → U)  . 
We can make decision from Table 11.8. 

We find the values of the matrices ΠC∗F and ΠF∗M given by Eq.  11.11 for 
{m, p, n, } = {(1, 1, 1), (2, 2, 2), (3, 3, 3)}. After this, using Eqs. 11.20 and 11.22, 
we find the matrix given by Eq. 11.25 whose entries are given in Table 11.9. 
Along with the values of the GNSSs, we have also calculated the values by the 
two neutrosophic set methods NSSs and PyNSSs for the certainty that our results 
coincide with them. This fact is evident from Table 11.9. We can make decision 
from Table 11.9. 

1. From left to top: This is based on particular patients suffering from different 
types of diabetes. Patient-1 is suffering from X4 and X5. Patient-2 is suffering 
from X2. Patient-3 is suffering from X2. Patient-4 is suffering from X2,X4, and 
X5. Patient-5 is suffering from X2,X4, and X5. 

2. From  top to left:  This is based on the type of diabetes affecting the patient. 
X1 affects Patient-1 and Patient-3; X2 affects Patient-1 and Patient-3; X3 affects 
Patient-1 and Patient-3; and X4 and X5 affect all patients. 

We hope that this problem gives better results for more practical and real-world 
problems. Max-min-max composition of generalized neutrosophic relations Q and 
R is denoted by R ∗ Q and defined in Eq. 11.25 for diabetes problem.
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Table 11.9 Value of diabetes to the respective patients 

R ∗ Q X1 X2 X3 X4 X5 Set Type-

Patient-1 0.85 0.88 0.85 0.84 0.84 GNSS(1,1,1) 
0.85 0.9647 0.85 0.9411 0.9411 GNSS(2,2,2) 
0.85 0.9573 0.85 0.9815 0.9815 GNSS(2,3,2) 

Patient-2 0.8080 0.84 0.8084 0.84 0.84 GNSS(1,1,1) 
0.8330 0.9411 0.8330 0.9411 0.9411 GNSS(2,2,2) 
0.8321 0.9815 0.8321 0.9815 0.9815 GNSS(2,3,2) 

Patient-3 0.85 0.88 0.85 0.84 0.84 GNSS(1,1,1) 
0.85 0.9647 0.85 0.9411 0.9411 GNSS(2,2,2) 
0.85 0.9573 0.85 0.9815 0.9815 GNSS(2,3,2) 

Patient-4 0.81 0.84 0.81 0.84 0.84 GNSS(1,1,1) 
0.8437 0.9411 0.8437 0.9411 0.9411 GNSS(2,2,2) 
0.8169 0.9815 0.8169 0.9815 0.9815 GNSS(2,3,2) 

Patient-5 0.80 0.84 0.80 0.84 0.84 GNSS(1,1,1) 
0.8330 0.9411 0.8330 0.9411 0.9411 GNSS(2,2,2) 
0.8321 0.9815 0.8321 0.9815 0.9815 GNSS(2,3,2) 

5 Conclusions 

The following are the main conclusions of our work: 

1. Through the introduction of the GNSFSs, problems with uncertainty that do not 
fall under the FSs, IFSs, and PyFSs can be studied. 

2. To date, GNSSs are the most generalized form of FSs. As shown, the type of the 
set is determined by the neutrosophic numerical values of m, p, and n. 

3. By changing the values of their indices, GNSSs perform all the functions that 
NSSs and PyNSSs can perform; additionally, as shown in this demonstration, 
their canvas of apps is quite broad. 

4. Because GNSSs can be used for any purpose by merely changing the values of 
m, p, and n, they are appropriately called versatile NSSs. 

5. The max-min-max composition was used to examine two of the most prevalent 
real-world applications of MCDM: employee postings using GNSFSs and 
consumer satisfaction. It was found that the results of the GSNSFs, INSFSs, and 
PyNSFSs were all in agreement. 

6. There are formulas for calculating distances between various GNSFSs using 
Euclidean, normalized Euclidean, Hamming, and normalized Euclidean dis-
tances in the medical field. Literature findings were in agreement with the 
findings of this study. 

7. As with any other field, GNSFSs have limitations. It is critical to select the 
numerical values for the indices m, p, and n based on the kind of problem being 
researched. GNSFSs can still be inspected for m, p, and n to any non-negative 
real number, even if the values of these parameters are restricted to merely non-
negative integers.
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Chapter 12 
An Application of Neutrosophic Graph in 
Decision-Making Problem for Alliances 
of Companies 

Jasminara Khatun and Sk Amanathulla 

1 Introduction 

Rosenfeld [14] first defined fuzzy graph .(FG) when fuzzy relations are taken into 
account on fuzzy sets in 1975. The extension of FG  is an intuitionistic fuzzy 
graph (IFG). Neutrosophic models give the system more flexibility, compatibility, 
and precision than the IF  model. In 2006, the idea of neutrosophic set (NS) was  
invented by Smarandache [23] that would be a generalization of IFS. Cuong added 
extra components that determine the degree of neutral membership in addition to 
IFS. IFS  give an element’s membership and non-membership degree, while NS  
give the truth, indeterminacy, and falsity membership degree of an element. NS  used 
in several fields, including computer science, chemistry, economics, engineering, 
mathematics, etc. 

1.1 Review of Literature 

After Rosenfeld [14], the FG  theory is going on with its different branches, such as 
fuzzy planar graphs [19, 21], fuzzy threshold graph [20], balanced interval-valued 
FG  [12], highly irregular interval-valued FG  [11], and m-step fuzzy competition 
graphs [18]. FG  coloring has been introduced by Samanta et al. [22]. Some 
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problems regarding interval-valued FG  have been studied by Pramanik et al. [6– 
10]. Voskoglou et al. [27] have introduced fuzzy hypergraphs. 

In 2015, Sahoo et al. [16] studied IF  competition graph. Akram et al. have stud-
ied several problems, like strong IFG  [1], IF  hypergraphs [2], IF  cycles and IF  
trees [3], and IF  planar graphs [4]. Balanced IFG  is introduced by Karunambigai 
et al. [5]. Sahoo et al. introduced IF  tolerance graph with its application [17] and 
various types of products on IFG  [15, 16]. Recently, Amanathulla et al. studied a 
few problems which are the extension of fuzzy graphs [13, 24–26]. 

1.2 Motivation 

NGs add a new dimension to traditional graph theory, which is an extended version 
of IFG. FG  and IFG  have various applications in reality. There are various 
problems those cannot be solved neither by FG  nor by IFG. These problems can 
be handled by NG. These motivates us to consider NG  in this article and obtained 
significant results. An application of balanced NG  for alliances of companies is also 
given in this chapter. 

The rest portion of the chapter is arranged as follows. Some preliminaries are 
given in Sect. 2. In Sect. 3, NG  and some related terms are defined. In Sect. 4, 
balanced NG  have been studied. An application of balanced NG  is given in Sect. 5. 
In Sect. 6, concluding remarks are made. 

2 Preliminaries 

An extension of FG  is IFG. An  IFG  is defined below. 

Definition 1 An IFG  .G = (A, σ, μ) where .σ = (σ1, σ2), .μ = (μ1, μ2) and 

(i) .A = {h1, h2, . . . , hn} where .σ1 : T → [0, 1] and .σ2 : T → [0, 1] are the 
membership and non-membership degree of the node .hk ∈ T , respectively, and 
.0 ≤ σ1(hk) + σ2(hk) ≤ 1 for every .hk ∈ T .(k = 1, 2, . . . , n). 

(ii) .μ1 : A×A → [0, 1] and .μ2 : A×A → [0, 1], where .μ1(hi, hj ) and . μ2(hi, hj )

are, respectively, the membership and non-membership degree of the edge 
.(hi, hj ) so that .μ1(hi, hj ) ≤ σ1(hi)∧σ1(hj ) and .μ2(hi, hj ) ≤ σ2(hi)∨σ2(hj ), 
.0 ≤ μ1(hi, hj ) + μ2(hi, hj ) ≤ 1 for each .(hi, hj ). 

In Fig. 12.1, an  IFG  has been given. 
A neutrosophic set (NS) is an extended version of IFS. The formal definition of 

NS  is given below. 

Definition 2 A NS  N  on an universal set U is . N = {(n, tN (n), iN (n), fN(n)) :
n ∈ N}, where .tN (n) ∈ [0, 1], .iN (n) ∈ [0, 1], and .fN(n) ∈ [0, 1] are, respectively, 
the degree of truth, indeterminacy, and falsity membership of n in N which satisfies 
.0 ≤ tN (n) + iN (n) + fN(n) ≤ 3 for each .n ∈ N .
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Fig. 12.1 An IFG  

3 Neutrosophic Graph 

This part contains some definition and important properties of neutrosophic graph. 

Definition 3 A NG  is defined by .G = (A,B,WA,WB), where . A =
{h1, h2, . . . , hn} be the node set, .WA = (tA, iA, fA) and . WB = (tB, iB, fB)

are two NS  such that 

(i) .tA : A → [0, 1], .iA : A → [0, 1] and .fA : A → [0, 1], respectively, denote 
the degree of truth, indeterminacy, and falsity membership functions of a node 
.hi ∈ A and .0 ≤ tA(hi) + iA(hi) + fA(hi) ≤ 3 for any .hi ∈ A, .i = 1, 2, . . . , n. 

(ii) .tB : A × A → [0, 1], .iB : A × A → [0, 1] and .fB : A × A → [0, 1], 
where .tB(hi, hj ), .iB(hi, hj ), and .fB(hi, hj ), respectively, denote the truth, 
indeterminacy, and falsity membership value of the edge .(hi, hj ), so that 
.tB(hi, hj ) ≤ tA(hi) ∧ tA(hj ), .iB(hi, hj ) ≤ iA(hi) ∧ iA(hj ), . fB(hi, hj ) ≤
fA(hi) ∨ fA(hj ), and .0 ≤ tB(hi, hj ) + iB(hi, hj ) + fB(hi, hj ) ≤ 3 for all 
.(hi, hj ) ∈ A × A, .i = 1, 2, . . . , n. 

A PFG  is shown in Fig. 12.2. 

Definition 4 A NG  .G = (A,B,WA,WB), where .A = {h1, h2, . . . , hn} be the 
node set, .WA = (tA, iA, fA), .WB = (tB, iB, fB) is called a complete NG  if 
.tB(hi, hj ) = tA(hi) ∧ tA(hj ), .iB(hi, hj ) = iA(hi) ∧ iA(hj ), . fB(hi, hj ) =
fA(hi) ∨ fA(hj ) for every .hi, hj ∈ A. 

A complete NG  is shown in Fig. 12.3. 

Definition 5 A NG  .G = (A,B,WA,WB), where .A = {h1, h2, . . . , hn} be the 
node set, .WA = (tA, iA, fA), .WB = (tB, iB, fB) is said to be a strong NG  if 
.tB(hi, hj ) = tA(hi)∧ tA(hj ), .iB(hi, hj ) = iA(hi)∧ iA(hj ), . fB(hi, hj ) = fA(hi)∨
fA(hj ) for all .(hi, hj ) ∈ B.
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Fig. 12.2 A NG  

Fig. 12.3 A complete NG
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Fig. 12.4 A strong NG  

A strong NG  is shown in Fig. 12.4. 

Definition 6 Let .G = (A,B,WA,WB) be a NG, where .WA = (tA, iA, fA), 
.WB = (tB, iB, fB). Then the degree of a node a of the NG  is defined by 
.d(a) = (dt , di, df ), where .dt (a) = ∑

a �=b tB(a, b), .di(a) = ∑
a �=b iB(a, b), 

.df (a) = ∑
a �=b fB(a, b). 

For the NG  in Fig. 12.4, .d(h1) = (0.7, 0.6, 0.8), .d(h2) = (0.9, 0.9, 1.5), 
.d(h3) = (0.8, 0.4, 1.4), .d(h4) = (1.2, 0.9, 1.5). 

Definition 7 Let .G = (A,B,WA,WB) be a NG, where .WA = (tA, iA, fA), . WB =
(tB, iB, fB). Then order of G is defined by .O(G) = (Ot (G),Oi(G),Of (G)), 
where .Ot(G) = ∑

a∈A tA(a), .Oi(G) = ∑
a∈A iA(a), .Of (G) = ∑

a∈A fA(a). 

For the NG  G  in Fig. 12.4, the order of G is .O(G) = (2.1, 1.7, 1.6). 

Definition 8 Let .G = (A,B,WA,WB) be a NG, where .WA = (tA, iA, fA), . WB =
(tB, iB, fB). The size of G is defined by .S(G) = (St (G), Si(G), Sf (G)), where 
.St (G) = ∑

a �=b tB(a, b), .Si(G) = ∑
a �=b iB(a, b), .Sf (G) = ∑

a �=b fB(a, b). 

The size of the NG  in Fig. 12.4 is .S(G) = (1.8, 1.4, 2.6). 

Definition 9 For the NG  .G = (A,B,WA,WB), where .WA = (tA, iA, fA), . WB =
(tB, iB, fB), an edge .(a, b), .a, b ∈ A is called independent strong edge if . 12 [tA(a)∧
tA(b)] < iB(a, b) , . 12 [iA(a) ∨ iA(b)] > iB(a, b) and .

1
2 [fA(a) ∨ fA(b)] > fB(a, b), 

otherwise it is refer to as a weak edge. 

In Fig. 12.5, the edges .(h1, h2) and .(h2, h3) are independent strong, but the edge 
.(h1, h3) is not independent strong. The edge .(h1, h3) is a weak edge.
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Fig. 12.5 A NG  

Fig. 12.6 A bipartite NG  

Definition 10 A NG  .G = (A,B,WA,WB), where .WA = (tA, iA, fA), . WB =
(tB, iB, fB) is called a bipartite NG  if the node set A can be decomposed into two 
non-empty sets . h1 and . h2 so that .tB(hi, hj ) = 0, .iB(hi, hj ) = 0, .fB(hi, hj ) = 0 if 
.hi, hj ∈ A1 or .hi, hj ∈ A2. 

A bipartite graph is shown in Fig. 12.6.
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Fig. 12.7 A complete bipartite NG  

Definition 11 A bipartite NG  .G = (A,B,WA,WB), where .WA = (tA, iA, fA), 
.WB = (tB, iB, fB) called a complete bipartite NG  if .tB(hi, hj ) = tA(hi) ∧ tA(hj ), 
.iB(hi, hj ) = iA(hi)∧ iA(hj ), .fB(hi, hj ) = fA(hi)∨fA(hj ) for every .hi ∈ A1 and 
.hj ∈ A2. 

A complete bipartite graph is shown in Fig. 12.7. 

Definition 12 A path in a NG  G  is a sequence of nodes .h1, h2, . . . , hn which 
satisfies one of the conditions that are listed below: 
.(i) .tB(hi, hi+1) > 0, .iB(hi, hi+1) = 0, .fB(hi, hi+1) = 0 for all i. 
.(ii) .tB(hi, hi+1) > 0, .iB(hi, hi+1) = 0, .fB(hi, hi+1) > 0 for all i. 
.(iii) .tB(hi, hi+1) > 0, .iB(hi, hi+1) > 0, .fB(hi, hi+1) = 0 for all i. 
.(i) .tB(hi, hi+1) > 0, .iB(hi, hi+1) > 0, .fB(hi, hi+1) > 0 for all i. 

Now we will define the concepts of homomorphism and isomorphism of NG, as  
well as describe some properties of homomorphism and isomorphism of NG. 

Definition 13 Let .G1 = (A1, B1,WA1 ,WB1), .G2 = (A2, B2,WA2 ,WB2) where 
.WAi

= (tAi
, iAi

, fAi
), .WBi

= (tBi
, iBi

, fBi
) for .i = 1, 2. A homomorphism 

between .G1 and .G2 is a mapping .η : A1 → A2 satisfying the following 
conditions: 

(i) .tA1(hi) ≤ tA2(η(hi)), .iA1(hi) ≤ iA2(η(hi)), .fA1(hi) ≥ fA2(η(hi)) for all 
.hi ∈ A1. 

(ii) .tB1(hi, hj ) ≤ tB2(η(hi), η(hj )), .iA1(hi, hj ) ≤ iB2(η(hi), η(hj )), 
.fA1(hi, hj ) ≥ fB2(η(hi), η(bj )) for all .(hi, hj ) ∈ B1. 

Definition 14 Let .G1 = (A1, B1,WA1 ,WB1), .G2 = (A2, B2,WA2 ,WB2) where 
.WAi

= (tAi
, iAi

, fAi
), .WBi

= (tBi
, iBi

, fBi
) for .i = 1, 2. An isomorphism between 

. G1 and . G2 is a mapping .η : A1 → A2 having the following requirements:
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Fig. 12.8 Two isomorphic NG  

(i) .tA1(hi) = tA2(η(hi)), .iA1(hi) = iA2(η(hi)), .fA1(hi) = fA2(η(hi)) for all 
.hi ∈ A1. 

(ii) .tB1(hi, hj ) = tB2(η(hi), η(hj )), .iA1(hi, hj ) = iB2(η(hi), η(hj )), 
.fA1(hi, hj ) = fB2(η(hi), η(bj )) for all .(hi, hj ) ∈ B1. 

In Fig. 12.8, the  NGs . G1 and . G2 are isomorphic. 

Definition 15 Let . G1 and . G2 be two NGs. A weak isomorphism .η : G1 → G2 is 
a bijective mapping .η : A1 → A2 which satisfies the conditions that are outlined 
below: 

(i) . η is a homomorphism. 
(ii) .tA1(hi) = tA2(η(hi)), .iA1(hi) = iA2(η(hi)), .fA1(hi) = fA2(η(hi)) for all 

.hi ∈ A1. 

Definition 16 An automorphism of a NG  .G = (A,B,WA,WB), where . WA =
(tA, iA, fA), .WB = (tB, iB, fB) is an isomorphism of G onto itself. 

4 Balanced Neutrosophic Graph 

In this part, the definition and some properties of balanced neutrosophic graph 
(BNG) have presented. An algorithm to check BNG is also proposed in this 
section. 

Definition 17 .G = (A,B,WA,WB), where .WA = (tA, iA, fA), . WB =
(tB, iB, fB) be a NG. Then the weight of G is defined by . w(G) =
(wt (G),wi(G),wf (G)), where .wt(G) = ∑

(hi ,hj )∈B tA(hi) ∧ tA(hj ) . wi(G) =
∑

(hi ,hj )∈B iA(hi) ∧ iA(hj ) . wf (G) = ∑
(hi ,hj )∈B fA(hi) ∨ fA(hj )

Definition 18 Let .G = (A,B,WA,WB), where .WA = (tA, iA, fA), . WB =
(tB, iB, fB) be a NG. Then the density of G is defined by . ρ(G) =
(ρt (G), ρi(G), ρf (G)), where .ρt (G) = St (G)

wt (G)
, .ρi(G) = Si(G)

wi(G)
, .ρf (G) = Sf (G)

wf (G)
for 

all .hi, hj ∈ A. All the components .ρt (G), .ρi(G), and .ρf (G) lie between 0 and 3.
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Definition 19 .G = (A,B,WA,WB), where .WA = (tA, iA, fA), . WB =
(tB, iB, fB) be a NG. An intense neutrosophic subgraph S is a subgraph of G 
where .A(S) ⊆ A(G) and .B(S) ⊆ B(G) and .ρ(S) ≤ ρ(G). 

Now .ρ(S) ≤ ρ(G) holds if .ρμ(S) ≤ ρμ(G), .ρη(S) ≤ ρη(G), .ρν(S) ≤ ρν(G). 

Definition 20 .G = (A,B,WA,WB), where .WA = (tA, iA, fA), . WB =
(tB, iB, fB) be a NG. A feeble neutrosophic subgraph S is a subgraph of G 
where .A(S) ⊆ A(G), .B(S) ⊆ B(G), and .ρ(S) > ρ(G). 

Definition 21 A NG  .G = (A,B,WA,WB), where .WA = (tA, iA, fA), . WB =
(tB, iB, fB) is called a balanced NG  if all subgraphs are intense in G, i.e., . ρ(S) ≤
ρ(G) for any subgraph S of G. .ρ(S) ≤ ρ(G) holds if .ρt (S) ≤ ρt (G), . ρi(S) ≤
ρi(G), and .ρf (S) ≤ ρf (G). 

Now we consider a NG  .G = (A,B,WA,WB), where .WA = (tA, iA, fA), 
.MB = (tB, iB, fB) and .A = {h1, h2, h3, h4, h5}, . B = {(h1, h2), (h1, h3),
(h1, h4), (h2, h3), (h2, h5)} in Fig. 12.9 and check to see if it is balanced. 
We know that the size of G is .SG = (Sp(G), Si(G), Sf (G)). For this NG, 
.Sp(G) = ∑

hi �=hj
pB(hi, hj ) = 1.2, .Si(G) = ∑

hi �=hj
iB(hi, hj ) = 0.95, 

.Sf (G) = ∑
hi �=hj

fB(hi, hj ) = 1.95. Again, the weight of the NG  G  is 
.w(G) = (wp(G),wi(G),wf (G)). 

Then . wp(G) = ∑
(hi ,hj )∈B pA(hi) ∧ pA(hj ) = 1.5

. wi(G) = ∑
(hi ,hj )∈B iA(hi) ∧ iA(hj ) = 1.9

. wf (G) = ∑
(hi ,hj )∈B fA(hi) ∧ fA(hj ) = 3.0

So, the density of the NG  G  is .ρ(G) = (ρp(G), ρi(G), ρf (G)), where 

.ρp(G) = Sp(G)

wp(G)
= 0.8, .ρi(G) = Si(G)

wi(G)
= 0.5, .ρi(G) = Sf (G)

wf (G)
= 0.65. So, 

.ρ(G) = (0.8, 0.5, 0.65). From Table 12.1, we see that the subgroup’s density 

. Si is .(0.80, 0.50, 0.65) for .i = 1, 2, . . . , 19, 21, 23 and that of . Sj is .(0, 0, 0) for 

.j = 20, 22, 24, 25, 26. Here, all .ρ(Sr) ≤ ρ(G) for every subgraph . Sr of G, shown  
in Table 12.1. 

Fig. 12.9 A NG
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Table 12.1 Density of all 
subgraph of the PFG  in 
Fig. 12.9 

Subgraph Vertex set Density 

.S1 .{h1, h2, h3, h4, h5} . (0.8, 0.5, 0.65)

.S2 .{h1, h2, h3, h4} . (0.8, 0.5, 0.65)

.S3 .{h1, h2, h3, h5} . (0.8, 0.5, 0.65)

.S4 .{h1, h2, h4, h5} . (0.8, 0.5, 0.65)

.S5 .{h1, h3, h4, h5} . (0.8, 0.5, 0.65)

.S6 .{h2, h3, h4, h5} . (0.8, 0.5, 0.65)

.S7 .{h1, h2, h3} . (0.8, 0.5, 0.65)

.S8 .{h1, h2, h4} . (0.8, 0.5, 0.65)

.S9 .{h1, h2, h5} . (0.8, 0.5, 0.65)

.S10 .{h1, h3, h4} . (0.8, 0.5, 0.65)

.S11 .{h1, h3, h5} . (0.8, 0.5, 0.65)

.S12 .{h1, h4, h5} . (0.8, 0.5, 0.65)

.S13 .{h2, h3, h4} . (0.8, 0.5, 0.65)

.S14 .{h2, h3, h5} . (0.8, 0.5, 0.65)

.S15 .{h2, h4, h5} . (0.8, 0.5, 0.65)

.S16 .{h3, h4, h5} . (0.8, 0.5, 0.65)

.S17 .{h1, h2} . (0.8, 0.5, 0.65)

.S18 .{h1, h3} . (0.8, 0.5, 0.65)

.S19 .{h1, h4} . (0.8, 0.5, 0.65)

.S20 .{h1, h5} . (0, 0, 0)

.S21 .{h2, h3} . (0.8, 0.5, 0.65)

.S22 .{h2, h4} . (0, 0, 0)

.S23 .{h2, h5} . (0.8, 0.5, 0.65)

.S24 .{h3, h4} . (0, 0, 0)

.S25 .{h3, h5} . (0, 0, 0)

.S26 .{h4, h5} . (0, 0, 0)

Hence, the NG  G  is balanced. 

Observation 1 A NG  .G = (A,B,WA,WB), where .WA = (tA, iA, fA), . WB =
(tB, iB, fB) is balanced iff .pB(hi, hj ) = min{pA(hi) , pA(hj )} × μ1, . iB(hi, hj ) =
min{iA(hi) , iA(hj )} × μ2, .fB(hi, hj ) = max{fA(hi) , fA(hj )} × μ3 for all 
.(hi, hj ) ∈ B, where .ρ(G) = (μ1, μ2, μ3). 

Observation 2 If NG  .G = (A,B,WA,WB), where .WA = (tA, iA, fA), . WB =
(tB, iB, fB) be a balanced NG  and S be any subgraph of G then .ρ(S) = ρ(G) or 
.ρ(S) = (0, 0, 0). 

4.1 An Algorithm 

In this part an algorithm for checking a balanced NG  is proposed. Using this 
algorithm, one can check whether a NG  is balanced or not.
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Algorithm JBNS  
Input: A NG  G. 
Output: G is balanced NG  or not balanced NG. 

Step 1: Compute, 

μ1 =
∑

hi �=hj 
tB(hi , hj )

∑
(hi ,hj )∈B tA(hi) ∧ tA(hj ) 

μ2 =
∑

hi �=hj 
iB(hi , hj )

∑
(hi ,hj )∈B iA(hi) ∧ iA(hj ) 

and 

μ3 =
∑

hi �=hj 
fB(hi, hj )

∑
(hi ,hj )∈B fA(hi) ∧ fA(hj ) 

where the truth, indeterminacy, and falsity membership degree of the vertex hi are 
tA(hi), iA(hi), andfA(hi), respectively, and tB(hi , hj ), iB(hi , hj ), andfB(hi, hj ) are, respec-
tively, the truth, indeterminacy, and falsity membership degree of the edge joining the vertices 
hi and hj and μ1, μ2, μ3 are, respectively, the t-density, i-density, and f -density of G, i.e., 
ρ(G) = (μ1, μ2, μ3). 
Step 2: for i = 1 to  n 

for j = 1 to  n (i �= j)  
if (tB(hi , hj ), iB(hi , hj ), fB(hi, hj )) = (0, 0, 0) 

or (tB(hi , hj ), iB(hi , hj ), fB(hi, hj )) 
= (μ1[tA(hi) ∧ tA(hj )], μ2[iA(hi) ∧ iA(hj )], μ3[fA(hi) ∧ fA(hj )) 

then opt = 10; 
else 

opt = 20; 
Step 3: if opt = 10, then G is a balanced NG. 

else G is not a balanced NG. 
end JBNG. 

5 Application of Balanced Neutrosophic Graph in Business 
Alliance 

In this part, an application of balanced NG  to alliance their business for six IT  
companies are presented. The main goal of the proposed application is to identify 
potential business partners who could work together under the conditions outlined 
below. 

Here we take six information technology companies, Wipro (W ), HCL Tech-
nology (HCLT ), Infosys (I ), Indiamart International (II ), Route Mobile (RM), 
and Tata Consultancy Service (T CS). Any business can collaborate with one or 
more other businesses. Now we consider six companies as six vertices and draw a 
NG  where an edge connects the alliance business between two organizations. For 
instance, if Wipro (W ) allianced with HCL Technology (HCLT ), then there is an
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edge between W and HCLT . Vertices and edges’ membership functions are taken 
into consideration as follows. 

For vertices: 

1. Each company’s operational efficiency and financial stability were referred to as 
a vertex truth membership degree. 

2. Each company’s market positioning was referred to as an indeterminacy mem-
bership degree of the vertex. 

3. The poor management strategy of each companies referred to as the falsity 
membership degree of the vertex. 

For Edges: 

1. Alliances between two companies that are doing well are called the truth 
membership degree of every edge. 

2. Alliance between two companies with no growth referred as a indeterminacy 
membership degree of every edge. 

3. A partnership between two businesses is to be deemed unsuccessful and to have 
a false membership degree on each edge. 

The degree of memberships of every vertex is shown in Fig. 12.10 and that of for 
edges are shown in Table 12.2. From Fig.  12.10, we observe that the membership 
value of the vertices W and T CS  are .(1.8, 0.3, 0.6) and .(1.4, 0.5, 0.6), respectively. 
Also, from Table 12.2, we see that the membership value of the edge between the 
vertices W and T CS  is .(1.0, 0.12, 0.08). We may do the same for other vertices 
and edges to determine their membership values from Fig. 12.10 and Table 12.2, 
respectively. 

Fig. 12.10 A NG  corresponding to six companies
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Table 12.2 Membership values of edges 

W HCLT I 
W .− .(1.35, 0.135, 0.12) . (0.9, 0.135, 0.16)

HCLT .(1.35, 0.135, 0.12) .− . (0.9, 0.18, 0.16)

I .(0.9, 0.135, 0.16) .(0.9, 0.18, 0.16) . −
II .(1.2, 0.135, 0.12) .− . (0.9, 0.27, 0.16)

RM .(1.35, 0.09, 0.12) .(1.5, 0.0.09, 0.08) . (0.9, 0.09, 0.16)

T CS .(1.0, 0.12, 0.08) .(1.1, 0.18, 0.14) . (0.85, 0.23, 0.14)

II RM T CS  
W .(1.2, 0.135, 0.12) .(1.35, 0.09, 0.12) . (1.0, 0.12, 0.14)

HCLT .− .(1.5, 0.09, 0.08) . (1.1, 0.18, 0.14)

I .(0.9, 0.27, 0.16) .(0.9, 0.09, 0.16) . (0.85, 0.23, 0.14)

II .− .(1.2, , 0.09, 0.12) . −
RM .(1.2, 0.09, 0.12) .− . (0.95, 0.1, 0.16)

T CS .− .(0.95, 0.1, 0.16) . −

Fig. 12.11 Largest balanced neutrosophic subgraph of the NG  in Fig. 12.10 

Here, the density, i.e., the business relationship rate of the NG  in Fig. 12.10, 
is .(0.75, 0.45, 0.2). From the graph in Fig. 12.11, .S = {W,HCLT, I, II, IM} is 
largest neutrosophic subgraph, where the relationship rate of each company is equal 
for each pair of vertices. Therefore, the subgraph . S = {W,HCLT, I, II, IM}
is balanced (see Fig. 12.11). Hence, these five companies, namely, Wipro, HCL 
Technology, Infosys, Indiamart International, and Route Mobile, can be allianced 
properly. As a result, many businesses can use our example to align with the above-
described tactics.
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6 Conclusion 

NG  is a needful tool to solve real-life problems, so the study related to NG  is clearly 
welcome. In this study, we introduced a new subgraph of NG, called balanced NG, 
and using this graph, we present an application of alliances of some Information 
Technology Companies. 
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Chapter 13 
Dombi Hamy Mean Operators Based on 
Complex Intuitionistic Fuzzy Uncertainty 
and Their Application in Multi-Attribute 
Decision-Making 

Tahir Mahmood and Zeeshan Ali 

1 Introduction 

MADM technique is one of the fundamental parts of the decision-making tool, and 
because of its structure, certain people have utilized it in the field of computer 
networks, road signals, image segmentations, and magical diagnosis. Ambiguity 
and complexity are part of life, and certain people have affected them because of 
their involvement. Decision-making information is also one of the superior and 
valuable techniques used for evaluating this information which contained a lot of 
problems and ambiguity. But in certain valuable situations, experts have lost a lot of 
information during decision-making procedures under the consideration of classical 
information, because of ambiguity and complexity. For evaluating the above queries, 
the major framework of the fuzzy set (FS) was formulated by Zadeh [1]. FS is one 
of the big achievements in the environment of mathematical society by modifying 
the theory of classical information. Because in classical information, we have only 
two possibilities like “0” or “1.” But instead of classical information, we have a lot 
of possibilities in the presence of FS, and due to this reason, various scholars have 
proposed and utilized it in the field of decision-making techniques [2–4]. Similarly, 
FS has contained a lot of problems because FS has skipped the falsity grade which is 
an important part of our daily life problems. For this, Atanassov [5, 6] pioneered the 
intuitionistic FS (IFS) which is the modified version of FS. Because FS contained 
only one grade and the theory of IFS contained the two grades, called truth and 
falsity information with a strategy: .0 ≤ ζKR

(c) + ϑKR
(c) ≤ 1. But instead of FS 

information, we have a lot of possibilities in the presence of IFS, and due to this 
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reason, various scholars have proposed and utilized it in the field of decision-making 
techniques [7–12]. 

No doubt the theory of FS and IFS has a lot of applications in the field 
of computer science, software engineering, management science, and economics. 
But some experts have mentioned some limitation of the FS and IFS that the 
traditional FS and IFS has managed one-dimension information, but in various real-
life problems, many experts have dealt with those types of information which will 
be computed or given in the shape of two-dimension information, for instance, if 
anyone decided to buy a new car, for this he visited car enterprise for meeting the 
owner of the car companies. The owner provided information regarding each car in 
the shape, (i) brand name and (ii) brand price, which represented the amplitude and 
phase term of the truth grade and theory of FS and IFS has failed. For evaluating 
the above queries, the major framework of the complex FS (CFS) was formulated 
by Ramot et al. [13]. CFS is one of the big achievements in the environment of 
mathematical society by modifying the theory of FS information. Because in FS 
information, we have only one-dimension information in a one-term set. But instead 
of FS information, we have two-dimension information in the presence of CFS, and 
due to this reason, various scholars have proposed and utilized it in the field of 
decision-making techniques [14, 15]. Similarly, CFS has contained a lot of problems 
because CFS has skipped the falsity grade which is an important part of our daily 
life problems. For this, Alkouri and Salleh [16] pioneered the complex IFS (CIFS) 
which is the modified version of CFS. Because CFS contained only one grade and 
the theory of CIFS contained the two grades, called truth and falsity information 
with a strategy: .0 ≤ ζKR

(c) + ϑKR
(c) ≤ 1, 0 ≤ ζKI

(c) + ϑKI
(c) ≤ 1. But instead 

of CFS information, we have a lot of possibilities in the presence of CIFS, and due 
to this reason, various scholars have proposed and utilized it in the field of decision-
making techniques [17–20]. 

To derive the best preference from the collection of preferences, decision-making 
information is one of the most important and dominant techniques to evaluate 
most problems in real-life problems. Additionally, HM information is also used 
for aggregating the bundled information into a singleton set, computed based on 
algebraic laws. Under the consideration of the above valuable discussion, we noticed 
that Li et al. [21] derived the Dombi HM operator for IFS and Wu et al. [22] 
pioneered the major information of Dombi HM operators based on interval-valued 
IFSs, where the HM operators [23] and Dombi operational laws [24] are also very 
effective and dominant compared to prevailing information [25–27]. Keeping the 
advantages of the information, we aim to evaluate the following scenarios: 

1. To derive Dombi operational laws for CIF information. 
2. To construct the theory of CIFDHM, CIFWDHM, CIFDDHM, and CIFWD-

DHM operators. 
3. To evaluate some valuable properties and results for the presented information in 

the investigated analysis. 
4. To illustrate MADM information based on pioneered operators and given some 

examples to justify the worth and dominancy of the evaluated information.
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5. To compare the evaluated information with some other old or prevailing infor-
mation to enhance the quality of the derived operators. 

The summary of this analysis is computed in the shape: in Sect 2. In Sect. 3, we  
derived the Dombi operational laws for CIF information and also constructed the 
theory of CIFDHM, CIFWDHM, CIFDDHM, and CIFWDDHM operators. Further, 
we evaluated some valuable properties and results for the presented information 
in the investigated analysis. In Sect. 4, MADM “multi-attribute decision-making” 
information is utilized in this manuscript based on pioneered operators and given 
some examples to justify the worth and dominancy of the evaluated information. 
Finally, we compared the evaluated information with some other old or prevailing 
information to enhance the quality of the derived operators. Concluding and final 
remarks are part of Sect. 5. 

2 Preliminaries 

The main influence of this section is to revise the theory of HM operator, Dombi 
t-norm and t-conorm, CIF information, and their algebraic information. 

Definition 1 ([23]) The computed information is described below: 

.HMx(K1,K2, . . . , Kn) =
∑

1≤i1≤i2,...,≤ix≤n(
∏x

j=1(Kij ))
1/x

Cx
n

(13.1) 

Represented the Hamy mean information with binomial coefficient . Cnx =
n!/x!(n − x)!. 
Definition 2 ([24]) The computed information is described below: 

.TD,�(Y, Z) = 1

(1 + ((
(1−Y )

Y
)� + (

(1−Z)
Z

)�)1/�)
(13.2) 

.T ∗
D,�(Y, Z) = 1 − 1

(1 + ((
(Y )
1−Y

)� + (
(Z)
1−Z

)�)1/�)
(13.3) 

Represented the Dombi T-norm and Dombi T-conorm. 

Definition 3 ([16]) The computed information is described below: 

.K = ((ζK(c), ϑK(c)) : c ∈ C) (13.4) 

Represented the complex intuitionistic fuzzy (CIF) set, where . ζK(c) =
(ζKR

(c), ζKI
(c)), ϑK(c) = (ϑKR

(c), ϑKI
(c)), shows the complex shape of truth and 

falsity information with .0 ≤ ζKR
(c) + ϑKR

(c) ≤ 1, 0 ≤ ζKI
(c) + ϑKI

(c) ≤ 1. Fur-
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ther, we revise the refusal information, represented by . ηK(c) = (ηKR
(c), ηKI

(c)) =
(1− (ζKR

(c) + ϑKR
(c)), 1− (ζKI

(c) + ϑKI
(c))), and the final and last shape of the 

CIF number, represented by . Kj = ((ζKRj
, ζKIj

), (ϑKRj
, ϑKIj

)), j = 1, 2, .., n.

Definition 4 ([16]) To evaluate some algebraic information, we use some CIF 
information .Kj = ((ζKRj

, ζKIj
), (ϑKRj

, ϑKIj
)), j = 1, 2.; then we have 

. K1 ⊕ K2 = ((ζKR1
+ ζKR2

− ζKR1
∗ ζKR2

, ζKI1
+ ζKI2

− ζKI1
∗ ζKI2

),

(ϑKR1
∗ ϑKR2

, ϑKI1
∗ ϑKI2

))) (13.5) 

. K1 ⊗ K2 = ((ζKR1
∗ ζKR2

, ζKI1
∗ ζKI2

),

(ϑKR1
+ ϑKR2

− ϑKR1
∗ ϑKR2

, ϑKI1
+ ϑKI2

− ϑKI1
∗ ϑKI2

)))

(13.6) 

.�Kj = ((1 − (1 − ζKRj
)�, 1 − (1 − ζKIj

)�), (ϑ�
KRj

, ϑ�
KIj

)) (13.7) 

.K�
j = ((ζ�

KRj
, ζ�

KIj
), (1 − (1 − ϑKRj

)�, 1 − (1 − ϑKIj
)�)) (13.8) 

Definition 5 ([16]) To evaluate the theory of score and accuracy information, we 
use some CIF information .Kj = ((ζKRj

, ζKIj
), (ϑKRj

, ϑKIj
)), j = 1, 2.; then we 

have 

.∇SV (Kj ) = 1

2
∗ (ζKRj

+ ζKIj
− ϑKRj

− ϑKRj
) ∈ [−1, 1] (13.9) 

.∇AV (Kj ) = 1

2
∗ (ζKRj

+ ζKIj
+ ϑKRj

+ ϑKRj
) ∈ [0, 1] (13.10) 

To accommodate the relation between any two CIF information, we compute some 
properties, such that 

1. Obtained .∇SV (K1) less then .∇SV (K2), when . K1 less then . K2; 
2. Obtained .∇SV (K1) greater then .∇SV (K2), when . K1 greater then . K2; 
3. Obtained .∇SV (K1) = ∇SV (K2), then 

i. Obtained .∇AV (K1) less then .∇AV (K2), when . K1 less then . K2; 
ii. Obtained .∇AV (K1) greater then .∇AV (K2), when . K1 greater then . K2;
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3 Dombi Hamy Mean Operators for CIF Information 

The main influence of this section is to derive the theory of CIFDHM, CIFWDHM, 
CIFDDHM, and CIFWDDHM operators and evaluate some valuable properties and 
results. 

Definition 6 To evaluate some Dombi information, we use some CIF information 
.Kj = ((ζKRj

, ζKIj
), (ϑKRj

, ϑKIj
)), j = 1, 2.; then we have 

. K1 ⊕ K2 = ((1 − 1

(1 + ((
(ζKR1

)

1−ζKR1

)� + (
(ζKR2

)

1−ζKR2

)�)1/�)

,

1 − 1

(1 + ((
(ζKI1

)

1−ζKI1

)� + (
(ζKI2

)

1−ζKI2

)�)1/�)

),

(
1

(1 + ((
(1−ϑKR1

)

ϑKR1

)� + (
(1−ϑKR2

)

ϑKR2

)�)1/�)

,
1

(1 + ((
(1−ϑKI1

)

ϑKI1

)� + (
(1−ϑKI2

)

ϑKI2

)�)1/�)

))

(13.11) 

. K1 ⊗ K2 = ((
1

(1 + ((
(1−ζKR1

)

ζKR1

)� + (
(1−ζKR2

)

ζKR2

)�)1/�)

,

1

(1 + ((
(1−ζKI1

)

ζKI1

)� + (
(1−ζKI2

)

ζKI2

)�)1/�)

),

(1 − 1

(1 + ((
(ϑKR1

)

1−ϑKR1

)� + (
(ϑKR2

)

1−ϑKR2

)�)1/�)

,

1 − 1

(1 + ((
(ϑKI1

)

1−ϑKI1

)� + (
(ϑKI2

)

1−ϑKI2

)�)1/�)

)) (13.12) 

. �K1 = ((1 − 1

(1 + (�(
(ζKR1

)

1−ζKR1

)�)1/�)

, 1 − 1

(1 + (�(
(ζKI1

)

1−ζKI1

)�)1/�)

),

(
1

(1 + (�(
(1−ϑKR1

)

ϑKR1

)�)1/�)

,
1

(1 + (�(
(1−ϑKI1

)

ϑKI1

)�)1/�)

)) (13.13)
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. K�
1 = ((

1

(1 + (�(
(1−ζKR1

)

ζKR1

)�)1/�)

,
1

(1 + (�(
(1−ζKI1

)

ζKI1

)�)1/�)

),

(1 − 1

(1 + (�(
(ϑKR1

)

1−ϑKR1

)�)1/�)

, 1 − 1

(1 + (�(
(ϑKI1

)

1−ϑKI1

)�)

)) (13.14) 

Definition 7 The computed information is described below: 

.CIFDHMx(K1,K2, . . . , Kn) = ⊕1≤i1≤i2,...,≤ix≤n(⊗x
j=1(Kij ))

1/x

Cx
n

(13.15) 

Represented the CIFDHM information with binomial coefficient . Cnx =
n!/x!(n − x)!. 
Theorem 1 To evaluate the information in Eq. (13.15) with the help of Dombi 
operational laws, we prove that the resultant information of Eq. (13.15) is again 
CIF information, such that 

. CIFDHMx(K1,K2, . . . , Kn)

= ((1 − 1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(

1

∑x
j=1(

1−ζKRij
ζKRij

)�

)))(1/�)
,

1 − 1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(

1

∑x
j=1(

1−ζKIij
ζKIij

)�

)))(1/�)
),

(
1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(

1

∑x
j=1(

ϑKRij
1−ϑKRij

)�

)))(1/�)
,

1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(

1

∑x
j=1(

ϑKIij
1−ϑKIij

)�

)))(1/�)
)) (13.16) 

Proof Information is given in Def. (13.6) and Def. (13.7); we have 

. ⊗x
j=1 Kij = ((

1

1 + (
∑x

j=1(
1−ζKRij

ζKRij

)�)(1/�)

,
1

1 + (
∑x

j=1(
1−ζKIij

ζKIij

)�)(1/�)

),



13 Dombi Hamy Mean Operators Based on Complex Intuitionistic Fuzzy. . . 263

(1 − 1 

1 + (
∑x 

j=1( 
ϑKRij 

1−ϑKRij 
)�)(1/�)  

, 1 − 1 

1 + (
∑x 

j=1( 
ϑKIij 

1−ϑKIij 
)�)(1/�)  

)) 

. (⊗x
j=1Kij )

1
x = ((

1

1 + (( 1
x
) ∗ (

∑x
j=1(

1−ζKRij

ζKRij

)�))(1/�)

,

1

1 + ( 1
x
) ∗ ∑x

j=1(
1−ζKIij

ζKIij

)�)(1/�)

),

(1 − 1

1 + ( 1
x
) ∗ ∑x

j=1(
ϑKRij

1−ϑKRij

)�)(1/�)

, 1 − 1

1 + ( 1
x
) ∗ ∑x

j=1(
ϑKIij

1−ϑKIij

)�)(1/�)

))

. ⊕1≤i1≤i2,...,≤ix≤n(⊗x
j=1(Kij ))

1/x

= ((1 − 1

1 + ((
∑

1≤i1≤i2≤,...,≤ix≤n(
x

∑x
j=1(

1−ζKRij
ζKRij

)�

)))(1/�)
,

1 − 1

1 + ((
∑

1≤i1≤i2≤,...,≤ix≤n(
x

∑x
j=1(

1−ζKIij
ζKIij

)�

)))(1/�)
),

(
1

1 + ((
∑

1≤i1≤i2≤,...,≤ix≤n(
x

∑x
j=1(

ϑKRij
1−ϑKRij

)�

)))(1/�)
,

1

1 + ((
∑

1≤i1≤i2≤,...,≤ix≤n(
x

∑x
j=1(

ϑKIij
1−ϑKIij

)�

)))(1/�)
))

.
⊕1≤i1≤i2,...,≤ix≤n(⊗x

j=1(Kij ))
1/x

Cx
n
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= ((1 − 1 

1 + (( x 
Cx 

n 
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(

1

∑x 
j=1( 

1−ζKRij 
ζKRij 

)�

)))(1/�)  
, 

1 − 1 

1 + (( x 
Cx 

n 
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(

1

∑x 
j=1( 

1−ζKIij 
ζKIij 

)�

)))(1/�)  
), 

( 
1 

1 + (( x 
Cx 

n 
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(

1

∑x 
j=1( 

ϑKRij 
1−ϑKRij 

)�

)))(1/�)  
, 

1 

1 + (( x 
Cx 

n 
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(

1

∑x 
j=1( 

ϑKIij 
1−ϑKIij 

)�

)))(1/�)  
)) 

. CIFDHMx(K1,K2, . . . , Kn) = ⊕1≤i1≤i2,...,≤ix≤n(⊗x
j=1(Kij ))

1/x

Cx
n

=

((1 − 1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(

1

∑x
j=1(

1−ζKRij
ζKRij

)�

)))(1/�)
,

1 − 1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(

1

∑x
j=1(

1−ζKIij
ζKIij

)�

)))(1/�)
),

(
1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(

1

∑x
j=1(

ϑKRij
1−ϑKRij

)�

)))(1/�)
,

1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(

1

∑x
j=1(

ϑKIij
1−ϑKIij

)�

)))(1/�)
))

Proposition 1 When .Kj = K = ((ζKR
, ζKI

), (ϑKR
, ϑKI

)), j = 1, 2, . . . , n, then 

.CIFDHMx(K1,K2, . . . , Kn) = K (13.17)
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Proof Assumed that .Kj = K = ((ζKR
, ζKI

), (ϑKR
, ϑKI

)), j = 1, 2, . . . , n, then 
by using Eq. (16), we have 

. CIFDHMx(K1,K2, . . . , Kn)

= ((1 − 1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(

1

∑x
j=1(

1−ζKRij
ζKRij

)�

)))(1/�)
,

1 − 1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(

1

∑x
j=1(

1−ζKIij
ζKIij

)�

)))(1/�)
),

(
1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(

1

∑x
j=1(

ϑKRij
1−ϑKRij

)�

)))(1/�)
,

1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(

1

∑x
j=1(

ϑKIij
1−ϑKIij

)�

)))(1/�)
))

. = ((1 − 1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(

1
∑x

j=1(
1−ζKR
ζKR

)�
)))(1/�)

,

1 − 1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(

1
∑x

j=1(
1−ζKI
ζKI

)�
)))(1/�)

),

(
1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(

1
∑x

j=1(
ϑKR

1−ϑKR
)�

)))(1/�)
,

1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(

1
∑x

j=1(
ϑKI

1−ϑKI
)�

)))(1/�)
))

.((1 − 1

1 + ((( 1

(
1−ζKR
ζKR

)�
)))(1/�)

,
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1 − 1 

1 + ((( 1 

( 
1−ζKI 
ζKI 

)�
)))(1/�)  

), 

( 
1 

1 + ((( 1 

( 
ϑKR 

1−ϑKR 
)�

)))(1/�)  
, 

1 

1 + ((( 1 

( 
ϑKI 

1−ϑKI 
)�

)))(1/�)  
)) 

. = ((ζKR
, ζKI

), (ϑKR
, ϑKI

)) = K

Proposition 2 When . Kj = ((ζKRj
, ζKIj

), (ϑKRj
, ϑKIj

)) ≤ K∗
j = ((ζ ∗

KRj
, ζ ∗

KIj
),

(ϑ∗
KRj

, ϑ∗
KIj

)), j = 1, 2, . . . , n, then 

.CIFDHMx(K1,K2, . . . , Kn) ≤ CIFDHMx(K∗
1 ,K∗

2 , . . . , K∗
n) (13.18) 

Proof Considered the theory .Kj ≤ K∗
j , then it means that . ζKRj

≤ ζ ∗
KRj

, ζKIj
≤

ζ ∗
KIj

and .ϑKRj
≥ ϑ∗

KRj
, ϑKIj

≥ ϑ∗
KIj

, then we have 

.ζKRj
≤ ζ ∗

KRj
	⇒ 1 − ζKRj

≥ 1 − ζ ∗
KRj

	⇒
1 − ζKRj

ζKRj

≥
1 − ζ ∗

KRj

ζ ∗
KRj

	⇒ (
1 − ζKRj

ζKRj

)Γ ≥ (

1 − ζ ∗
KRj

ζ ∗
KRj

)Γ

	⇒
∑x

j=1
(
1 − ζKRj

ζKRj

)Γ ≥
∑x

j=1
(

1 − ζ ∗
KRj

ζ ∗
KRj

)Γ

	⇒ 1
∑x

j=1(
1−ζKRj

ζKRj

)Γ
≥ 1

∑x
j=1(

1−ζ ∗
KRj

ζ ∗
KRj

)Γ

	⇒
∑

1≤i1≤i2≤,...,≤ix≤n

1
∑x

j=1(
1−ζKRj

ζKRj

)Γ
≥
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∑

1≤i1≤i2≤,...,≤ix≤n 
1

∑x 
j=1( 

1−ζ ∗
KRj 

ζ ∗
KRj 

)Γ

	⇒ 
x 

Cx 
n 

∗
∑

1≤i1≤i2≤,...,≤ix≤n 
1

∑x 
j=1( 

1−ζKRj 
ζKRj 

)Γ 

≥ 
x 
Cx 

n 
∗

∑

1≤i1≤i2≤,...,≤ix≤n 
1

∑x 
j=1( 

1−ζ ∗
KRj 

ζ ∗
KRj 

)Γ

	⇒ ( 
x 
Cx 

n 
∗

∑

1≤i1≤i2≤,...,≤ix≤n 
1

∑x 
j=1( 

1−ζKRj 
ζKRj 

)Γ 
) 
1 
Γ 

≥ ( 
x 
Cx 

n 
∗

∑

1≤i1≤i2≤,...,≤ix≤n 
1

∑x 
j=1( 

1−ζ ∗
KRj 

ζ ∗
KRj 

)Γ 
) 
1 
Γ

	⇒ 1 + ( 
x 

Cx 
n 

∗
∑

1≤i1≤i2≤,...,≤ix≤n 
1

∑x 
j=1( 

1−ζKRj 
ζKRj 

)Γ 
) 
1 
Γ 

≥ 1 + ( 
x 
Cx 

n 
∗

∑

1≤i1≤i2≤,...,≤ix≤n 
1

∑x 
j=1( 

1−ζ ∗
KRj 

ζ ∗
KRj 

)Γ 
) 
1 
Γ

	⇒ 1 

1 + ( x 
Cx 

n 
∗ ∑

1≤i1≤i2≤,...,≤ix≤n 
1

∑x 
j=1( 

1−ζKRj 
ζKRj 

)Γ 
) 
1 
Γ 

≥ 1 

1 + ( x 
Cx 

n 
∗ ∑

1≤i1≤i2≤,...,≤ix≤n 
1

∑x 
j=1( 

1−ζ∗
KRj 

ζ∗
KRj 

)Γ 

) 
1 
Γ

	⇒ 1 − 1 

1 + ( x 
Cx 

n 
∗ ∑

1≤i1≤i2≤,...,≤ix≤n 
1

∑x 
j=1( 

1−ζKRj 
ζKRj 

)Γ 
) 
1 
Γ 

≤ 1 − 1 

1 + ( x 
Cx 

n 
∗ ∑

1≤i1≤i2≤,...,≤ix≤n 
1

∑x 
j=1( 

1−ζ∗
KRj 

ζ∗
KRj 

)Γ 

) 
1 
Γ
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	⇒ 1 − 1 

1 + ( x 
Cx 

n 
∗ ∑

1≤i1≤i2≤,...,≤ix≤n 
1

∑x 
j=1( 

1−ζKIj 
ζKIj 

)Γ 
) 
1 
Γ 

≤ 1 − 1 

1 + ( x 
Cx 

n 
∗ ∑

1≤i1≤i2≤,...,≤ix≤n 
1

∑x 
j=1( 

1−ζ∗
KIj 

ζ∗
KIj 

)Γ 

) 
1 
Γ 

Further, 

.ϑKRj
≥ ϑ∗

KRj
	⇒

ϑKRj

1 − ϑKRj

≥
ϑ∗

KRj

1 − ϑ∗
KRj

	⇒
∑x

j=1
(

ϑKRj

1 − ϑKRj

)Γ ≥
∑x

j=1
(

ϑ∗
KRj

1 − ϑ∗
KRj

)Γ

	⇒ 1
∑x

j=1(
ϑKRj

1−ϑKRj

)Γ
≥ 1

∑x
j=1(

ϑ∗
KRj

1−ϑ∗
KRj

)Γ

	⇒
∑

1≤i1≤i2≤,...,≤ix≤n

1
∑x

j=1(
ϑKRj

1−ϑKRj

)Γ

≥
∑

1≤i1≤i2≤,...,≤ix≤n

1

∑x
j=1(

ϑ∗
KRj

1−ϑ∗
KRj

)Γ

	⇒ (
x

Cx
n

) ∗
∑

1≤i1≤i2≤,...,≤ix≤n

1
∑x

j=1(
ϑKRj

1−ϑKRj

)Γ

≥ (
x

Cx
n

) ∗
∑

1≤i1≤i2≤,...,≤ix≤n

1

∑x
j=1(

ϑ∗
KRj

1−ϑ∗
KRj

)Γ

	⇒ ((
x

Cx
n

) ∗
∑

1≤i1≤i2≤,...,≤ix≤n

1
∑x

j=1(
ϑKRj

1−ϑKRj

)Γ
)1/Γ

≥ ((
x

Cx
n

) ∗
∑

1≤i1≤i2≤,...,≤ix≤n

1

∑x
j=1(

ϑ∗
KRj

1−ϑ∗
KRj

)Γ

)1/Γ
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	⇒ 1 + (( 
x 
Cx 

n 
) ∗

∑

1≤i1≤i2≤,...,≤ix≤n 
1

∑x 
j=1( 

ϑKRj 
1−ϑKRj 

)Γ 
)1/Γ 

≥ 1 + (( 
x 
Cx 

n 
) ∗

∑

1≤i1≤i2≤,...,≤ix≤n 
1

∑x 
j=1( 

ϑ∗
KRj 

1−ϑ∗
KRj 

)Γ 
)1/Γ

	⇒ 1 

1 + (( x 
Cx 

n 
) ∗ ∑

1≤i1≤i2≤,...,≤ix≤n 
1

∑x 
j=1( 

ϑKRj 
1−ϑKRj 

)Γ 
)1/Γ 

≥ 1 

1 + (( x 
Cx 

n 
) ∗ ∑

1≤i1≤i2≤,...,≤ix≤n 
1

∑x 
j=1( 

ϑ∗
KRj 

1−ϑ∗
KRj 

)Γ 

)1/Γ

	⇒ 1 

1 + (( x 
Cx 

n 
) ∗ ∑

1≤i1≤i2≤,...,≤ix≤n 
1

∑x 
j=1( 

ϑKIj 
1−ϑKIj 

)Γ 
)1/Γ 

≥ 1 

1 + (( x 
Cx 

n 
) ∗ ∑

1≤i1≤i2≤,...,≤ix≤n 
1

∑x 
j=1( 

ϑ∗
KIj 

1−ϑ∗
KIj 

)Γ 

)1/Γ 

Then by using the information in Eqs. (13.9) and (13.10), we can easily obtain the 
required information, such 

. CIFDHMx(K1,K2, . . . , Kn) ≤ CIFDHMx(K∗
1 ,K∗

2 , . . . , K∗
n).

Proposition 3 When .K−
j = ((minj ζKRj

,minj ζKIj
), (maxjϑKRj

,maxjϑKIj
)), 

.K+
j = ((maxj ζKRj

,maxj ζKIj
), (minjϑKRj

,minjϑKIj
)), j = 1, 2, . . . , n, then 

.K−
j ≤ CIFDHMx(K1,K2, . . . , Kn) ≤ K+

j (13.19) 

Proof Assumed that .K−
j = ((minj ζKRj

,minj ζKIj
), (maxjϑKRj

,maxjϑKIj
)), 

.K+
j = ((maxj ζKRj

,maxj ζKIj
), (minjϑKRj

,minjϑKIj
)), j = 1, 2, . . . , n, then by 

using Propositions 1 and 2, we have 

.CIFDHMx(K1,K2, . . . , Kn) ≤ CIFDHMx(K+
1 ,K+

2 , . . . , K+
n ) = K+

j
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. CIFDHMx(K1,K2, . . . , Kn) ≥ CIFDHMx(K−
1 ,K−

2 , . . . , K−
n ) = K−

j

Then, by using the above information, we have 

. K−
j ≤ CIFDHMx(K1,K2, . . . , Kn) ≤ K+

j .

Definition 8 The computed information is described below: 

. CIFWDHMx(K1,K2, . . . , Kn)

=
⎧
⎨

⎩

⊕1≤i1≤i2,...,≤ix≤n(1−∑x
j=1(�j ))(⊗x

j=1(Kij
))1/x

Cx
n

1 ≤ x < n

⊗x
j=1(Kj )

1−�j
1−n x = n

(13.20) 

Represented the CIFWDHM information with binomial coefficient . Cx
n = n!

x!(n−x)!
With weight vector .

∑x
j=1(�j ) = 1, where .�j ∈ [0, 1]. 

Proposition 4 To evaluate the information in Eq. (13.20) with the help of Dombi 
operational laws, we prove that the resultant information of Eq. (13.20) is again 
CIF information, such that// 

. CIFWDHMx(K1,K2, . . . , Kn)

=⊕1≤i1≤i2,...,≤ix≤n(1− ∑x
j=1(�j ))(⊗x

j=1(Kij ))
1/x

Cx
n

=((1− 1

1+(( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(1 − ∑x

j=1(�j ))(
1

∑x
j=1(

1−ζKRij
ζKRij

)�

)))(1/�)
,

1 − 1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(1 − ∑x

j=1(�j ))(
1

∑x
j=1(

1−ζKIij
ζKIij

)�

)))(1/�)
),

(
1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(1 − ∑x

j=1(�j ))(
1

∑x
j=1(

ϑKRij
1−ϑKRij

)�

)))(1/�)
,

1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(1 − ∑x

j=1(�j ))(
1

∑x
j=1(

ϑKIij
1−ϑKIij

)�

)))(1/�)
))

(13.21)
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. CIFWDHMx(K1,K2, . . . , Kn) = ⊗x
j=1(Kj )

1−�j
1−n

= ((1 − 1

1 + (
∑x

j=1(
1−�j

1−n
)(

1−ζKRj

ζKRj

)(�))
1
�

,

1 − 1

1 + (
∑x

j=1(
1−�j

1−n
)(

1−ζKIj

ζKIj

)(�))
1
�

),

(
1

1 + (
∑x

j=1(
1−�j

1−n
)(

ϑKRj

1−ϑKRj

)(�))
1
�

,
1

1 + (
∑x

j=1(
1−�j

1−n
)(

ϑKIj

1−ϑKIj

)(�))
1
�

))

(13.22) 

Proof Omitted. 

Definition 9 The computed information is described below: 

. CIFDDHMx(K1,K2, . . . , Kn) = (⊗1≤i1≤i2,...,≤ix≤n(
⊕x

j=1(Kij )

x
))

1
Cx

n

(13.23) 

Represented the CIFDDHM information with binomial coefficient .Cx
n = n!

x!(n−x)! . 

Proposition 5 To evaluate the information in Eq. (13.23) with the help of Dombi 
operational laws, we prove that the resultant information of Eq. (13.23) is again 
CIF information, such that 

.CIFDDHMx(K1,K2, . . . , Kn)

= ((
1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(

1

∑x
j=1(

ζKRij
1−ζKRij

)�

)))(1/�)
,

1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(

1

∑x
j=1(

ζKIij
1−ζKIij

)�

)))(1/�)
),

(1 − 1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(

1

∑x
j=1(

1−ϑKRij
ϑKRij

)�

)))(1/�)
,
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1 − 1 

1 + (( x 
Cx 

n 
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(

1

∑x 
j=1( 

1−ϑKIij 
ϑKIij 

)�

)))(1/�)  
)) (13.24) 

Proof Omitted. 

Definition 10 The computed information is described below: 

. CIFWDDHMx(K1,K2, . . . , Kn)

=
⎧
⎨

⎩

⊗1≤i1≤i2,...,≤ix≤n(1−∑x
j=1(�j ))(⊕x

j=1(Kij
))1/x

Cx
n

1 ≤ x < n

⊕x
j=1

1−�j

1−n
(Kj ) x = n

(13.25) 

Represented the CIFWDHM information with binomial coefficient . Cx
n = n!

x!(n−x)!
With weight vector .

∑x
j=1(�j ) = 1, where .�j ∈ [0, 1]. 

Proposition 6 To evaluate the information in Eq. (13.25) with the help of Dombi 
operational laws, we prove that the resultant information of Eq. (13.25) is again 
CIF information, such that 

. CIFWDDHMx(K1,K2, . . . , Kn)

= ⊗1≤i1≤i2,...,≤ix≤n(1 − ∑x
j=1(�j ))(⊕x

j=1(Kij ))
1/x

Cx
n

= ((
1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(1 − ∑x

j=1(�j ))(
1

∑x
j=1(

ζKRij
1−ζKRij

)�

)))(1/�)
,

1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(1 − ∑x

j=1(�j ))(
1

∑x
j=1(

ζKIij
1−ζKIij

)�

)))(1/�)
),

(1 − 1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(1 − ∑x

j=1(�j ))(
1

∑x
j=1(

1−ϑKRij
ϑKRij

)�

)))(1/�)
,

1 − 1

1 + (( x
Cx

n
) ∗ (

∑
1≤i1≤i2≤,...,≤ix≤n(1 − ∑x

j=1(�j ))(
1

∑x
j=1(

1−ϑKIij
ϑKIij

)�

)))(1/�)
))

(13.26)
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. CIFWDDHMx(K1,K2, . . . , Kn)

= ⊕x
j=1

1 − �j

1 − n
(Kj ) = ((

1

1 + (
∑x

j=1(
1−�j

1−n
)(

ζKRj

1−ζKRj

)(�))
1
�

,

1

1 + (
∑x

j=1(
1−�j

1−n
)(

ζKIj

1−ζKIj

)(�))
1
�

),

(1 − 1

1 + (
∑x

j=1(
1−�j

1−n
)(

1−ϑKRj

ϑKRj

)(�))
1
�

,

1 − 1

1 + (
∑x

j=1(
1−�j

1−n
)(

1−ϑKIj

ϑKIj

)(�))
1
�

)) (13.27) 

Proof Omitted. 

Proposition 7 When .Kj = K = ((ζKR
, ζKI

), (ϑKR
, ϑKI

)), j = 1, 2, . . . , n, then 

.CIFWDDHMx(K1,K2, . . . , Kn) = K (13.28) 

Proof Omitted. 

Proposition 8 When .Kj = ((ζKRj
, ζKIj

), . (ϑKRj
, ϑKIj

)) ≤ K∗
j = ((ζ ∗

KRj
, ζ ∗

KIj
),

(ϑ∗
KRj

, ϑ∗
KIj

)), j = 1, 2, . . . , n, then 

. CIFWDDHMx(K1,K2, . . . , Kn) ≤ CIFWDDHMx(K∗
1 ,K∗

2 , . . . , K∗
n)

(13.29) 

Proof Omitted. 

Proposition 9 When .K−
j = ((minj ζKRj

,minj ζKIj
), (maxjϑKRj

,maxjϑKIj
)), 

.K+
j = ((maxj ζKRj

,maxj ζKIj
), (minjϑKRj

,minjϑKIj
)), j = 1, 2, . . . , n, then 

.K−
j ≤ CIFWDDHMx(K1,K2, . . . , Kn) ≤ K+

j (13.30) 

Proof Omitted.
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4 Multi-Attribute Decision-Making Problem 

Here, we derive the theory of MADM technique based on proposed operators 
for CIF information which is to enhance the worth of the derived information. 
To evaluate some practical life problems, we assumed that the information of 

alternatives .KAL−1,KAL−2, . . . , KAL−m, and for this, we need to discuss the family 
of attributes .K1,K2, . . . , Kn with the mathematics information . �j , j = 1, 2, . . . , n
with a strategy .

∑n
j=1 �j = 1. Under the consideration of the above information, 

we computed a matrix by including the CIF numbers represented by .D = [rij ]m×n, 
such that .Kj = ((ζKRj

, ζKIj
), (ϑKRj

, ϑKIj
)), j = 1, 2, .., n. represented the 

CIF set, where .ζK(c) = (ζKR
(c), ζKI

(c)), ϑK(c) = (ϑKR
(c), ϑKI

(c)) shows the 
complex shape of truth and falsity information with . 0 ≤ ζKR

(c) + ϑKR
(c) ≤ 1, 0 ≤

ζKI
(c) + ϑKI

(c) ≤ 1. Further, we revise the refusal information, represented by 
.ηK(c) = (ηKR

(c), ηKI
(c)) = (1 − (ζKR

(c) + ϑKR
(c)), 1 − (ζKI

(c) + ϑKI
(c))). 

Using the information explained above, we use the below procedure to evaluate 
some real-life problems: 

Step 1: Collect the theory of CIF information and put it in a closed matrix. 
Step 2: Aggregate the information by using the theory of CIFDHM, CIFWDHM, 

CIFDDHM, and CIFWDDHM operators to evaluate the information of 
the suggested matrix. 

Step 3: Evaluate the score value of the aggregated information. 
Step 4: Rank all information based on their score information to illustrate the best 

preference. 

Using the pioneered procedure, we illustrated some practical information to enhance 
the quality and quantity of the presented information. 

4.1 Illustrated Example 

An enterprise decided to invest someone money in different companies; for this, 
the owner of the company makes a group of experts for finding the best investment 
company. The experts of the company visit different types of companies represented 
as alternatives, called .KAL−1, car company; .KAL−2, mobile company; .KAL−3, 
laptop company; .KAL−4, property company; and .KAL−5, construction company. 
Based on the four attributes, we try to take a decision, on which company is the 
best for investment; the information about each attribute is available in the shape: 
. K1, comfort zone; . K2, safety zone; . K3, benefits; and . K4, social impact by using 
weight vectors 0.4,0.3,0.1, and 0.2. Using the information explained above, we use 
the below procedure to evaluate some real-life problems.
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Table 13.1 Representation of the CIF information 

.K1 .K2 . K3

.KAL−1 .((0.5, 0.6), (0.3, 0.2)) .((0.51, 0.61), (0.31, 0.21)) . ((0.52, 0.62), (0.32, 0.22))

.KAL−2 .((0.7, 0.3), (0.1, 0.3)) .((0.71, 0.31), (0.11, 0.31)) . ((0.72, 0.32), (0.12, 0.32))

.KAL−3 .((0.6, 0.7), (0.2, 0.1)) .((0.61, 0.71), (0.21, 0.11)) . ((0.62, 0.72), (0.22, 0.12))

.KAL−4 .((0.4, 0.4), (0.4, 0.4)) .((0.41, 0.41), (0.41, 0.41)) . ((0.42, 0.42), (0.42, 0.42))

.KAL−5 .((0.3, 0.2), (0.1, 0.1)) .((0.31, 0.21), (0.11, 0.11)) . ((0.32, 0.22), (0.12, 0.12))

. K4

.KAL−1 . ((0.5, 0.6), (0.3, 0.2))

.KAL−2 . ((0.7, 0.3), (0.1, 0.3))

.KAL−3 . ((0.6, 0.7), (0.2, 0.1))

.KAL−4 . ((0.4, 0.4), (0.4, 0.4))

.KAL−5 . ((0.3, 0.2), (0.1, 0.1))

Table 13.2 Representation of the aggregated information 

CIFDHM CIFWDHM 
.KAL−1 .(((0.0930, 0.5434), (0.1166, 0.0058))) . (((0.0160, 0.1589), (0.4541, 0.0358)))

.KAL−2 .(((0.9469, 0.0067), (0.0006, 0.1166))) . (((0.7391, 0.00011), (0.00043, 0.4541)))

.KAL−3 .(((0.5434, 0.9469), (0.0005, 0.0005))) . (((0.1589, 0.7391), (0.0358, 0.0004)))

.KAL−4 .(((0.0090, 0.0090), (0.6401, 0.6401))) . (((0.00144, 0.00144), (0.9180, 0.9180)))

.KAL−5 .(((0.00067, 0.0003), (0.00006, 0.0006))) . (((0.00011, 0.0004), (0.00043, 0.00043)))

CIFDDHM CIFWDDHM 
.KAL−1 .(((0.9994, 0.9999), (0.0006, 0.0001))) . (((0.9921, 0.9993), (0.0001, 0.0002)))

.KAL−2 .(((0.9999, 0.1362), (0.0001, 0.0006))) . (((0.9999, 0.4541), (0.00001, 0.000011)))

.KAL−3 .(((0.9999, 0.9999), (0.0001, 0.0001))) . (((0.9993, 0.9999), (0.0001, 0.0003)))

.KAL−4 .(((0.9064, 0.9064), (0.0090, 0.0090))) . (((0.9180, 0.9180), (0.0014, 0.0014)))

.KAL−5 .(((0.1362, 0.0054), (0.003, 0.003))) . (((0.4541, 0.0358), (0.0004, 0.0004)))

Key 1: Collect the theory of CIF information and put it in the shape of Table 13.1. 
Key 2: Aggregate the information by using the theory of CIFDHM, CIFWDHM, 
CIFDDHM, and CIFWDDHM operators to evaluate the information of the sug-
gested matrix given in Table 13.2. 
Key 3: Evaluate the score value of the aggregated information given in Table 13.3. 
Key 4: Rank all information based on their score information to illustrate the best 
preference described in Table 13.4. 

By utilizing the pioneered procedure on the information in Table 13.1, we noticed 
that the proposed information is given the same ranking information and the best 
preference is .KAL−3 according to the CIFDHM, CIFWDHM, CIFDDHM, and 
CIFWDDHM operators.
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Table 13.3 Representation 
of the score information 

CIFDHM CIFWDHM 
.KAL−1 .0.257 . −0.1575

.KAL−1 .0.4154 . 0.1423

.KAL−1 .0.7422 . 0.4308

.KAL−1 .−0.6311 . −0.9166

.KAL−1 .0.00028 . −0.00037

CIFDDHM CIFWDDHM 
.KAL−1 .0.99935 . 0.9956

.KAL−1 .0.5677 . 0.7269

.KAL−1 .0.99998 . 0.99963

.KAL−1 .0.8974 . 0.9166

.KAL−1 .0.07086 . 0.2449

Table 13.4 Represented the ranking information 

Methods Score values 

CIFDHM operator . KAL−3 ≥ KAL−2 ≥ KAL−1 ≥ KAL−5 ≥ KAL−4

CIFWDHM operator . KAL−3 ≥ KAL−2 ≥ KAL−5 ≥ KAL−1 ≥ KAL−4

CIFDDHM operator . KAL−3 ≥ KAL−1 ≥ KAL−4 ≥ KAL−2 ≥ KAL−5

CIFWDDHM operator . KAL−3 ≥ KAL−1 ≥ KAL−4 ≥ KAL−2 ≥ KAL−5

4.2 Comparative Analysis 

The main theme of this theory is to show the supremacy of the evaluated information 
with the help of comparative analysis which is a valuable part of every manuscript. 
For comparative analysis, we use the information computed based on FSs, IFSs, 
CFSs, and CIFSs. Under the consideration of the above valuable discussion, we 
noticed that Li et al. [21] derived the Dombi HM operator for IFS and Wu et al. [22] 
pioneered the major information of Dombi HM operators based on interval-valued 
IFSs, Garg and Rani [25] derived the aggregation operators, Garg and Rani [26] 
pioneered the averaging-geometric aggregation information, and Garg and Rani [27] 
generalized geometric information based on CIFSs. The main comparative analysis 
of the proposed and prevailing theories based on the information given in Table 13.1 
is available in Table 13.5. 

Li et al. [21] derived that the Dombi HM operator for IFS has failed to evaluate 
the CIF types of information given in Table 13.1, because the information derived 
by Li et al. [21] was computed based on IFS which is a special case of the 
pioneered information. Similarly, Wu et al. [22] derived the major information of 
Dombi HM operators based on interval-valued IFSs that has failed to evaluate the 
CIF types of information given in Table 13.1, because the information derived 
by Wu et al. [22] was computed based on interval-valued IFS which is different 
from the pioneered information. Further, the theory of Garg and Rani [25] derived 
the aggregation operators, Garg and Rani [26] pioneered the averaging-geometric 
aggregation information, and Garg and Rani [27] generalized geometric information
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Table 13.5 Comparative information is obtained from the information in Table 13.1. 

Methods Score values 

Li et al. [21] . ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
Wu et al. [22] . ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
Garg and Rani [25] . 0.3004, 0.30054, 0.50063, 0.00027, 0.15065

Garg and Rani [26] . 0.41, 0.414, 0.6163, 0.1027, 0.2565

Garg and Rani [27] . 0.2114, 0.2114, 0.41163, 0.01127, 0.0617

CIFDHM operator . 0.257, 0.4154, 0.7422, −0.6311, 0.00028

CIFWDHM operator . −0.1575, 0.1423, 0.4308, −0.9166, −0.00037

CIFDDHM operator . 0.99935, 0.5677, 0.99998, 0.8974, 0.07086

CIFWDDHM operator . 0.9956, 0.7269, 0.99963, 0.9166, 0.2449

Methods Ranking Values 

Li et al. [21] . ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
Wu et al. [22] . ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
Garg and Rani [25] . KAL−3 ≥ KAL−2 ≥ KAL−1 ≥ KAL−5 ≥ KAL−4

Garg and Rani [26] . KAL−3 ≥ KAL−2 ≥ KAL−1 ≥ KAL−5 ≥ KAL−4

Garg and Rani [27] . KAL−3 ≥ KAL−2 ≥ KAL−1 ≥ KAL−5 ≥ KAL−4

CIFDHM operator . KAL−3 ≥ KAL−2 ≥ KAL−1 ≥ KAL−5 ≥ KAL−4

CIFWDHM operator . KAL−3 ≥ KAL−2 ≥ KAL−5 ≥ KAL−1 ≥ KAL−4

CIFDDHM operator . KAL−3 ≥ KAL−1 ≥ KAL−4 ≥ KAL−2 ≥ KAL−5

CIFWDDHM operator . KAL−3 ≥ KAL−1 ≥ KAL−4 ≥ KAL−2 ≥ KAL−5

based on CIFSs that are provided the same ranking information in the shape, where 
.KAL−3 is the best preference. 

Therefore, the pioneered information based on the CIF set is massive dominant 
and flexible compared to old or prevailing information. 

5 Conclusion 

The main impact of this analysis is to present the theory of Dombi operational 
under the consideration of complex intuitionistic fuzzy information. Furthermore, 
we described the theory of CIFDHM, CIFWDHM, CIFDDHM, and CIFWDDHM 
operators. Moreover, we evaluated some valuable properties and results for the 
presented information in the investigated analysis. Under consideration of the above 
information, we derived MADM information and gave some examples to justify 
the worth and dominancy of the evaluated information. In last, we compared the 
evaluated information with some other old or prevailing information to enhance the 
quality of the evaluated operators. 

When an expert provides three-dimension information such as yes, no, and 
abstinence, then the theory of the CIF set has failed because the current theory can
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deal only with yes and no types of information but avoid the abstinence information, 
so, in such type of situation, the theory of CIF set has been failed. 

In the coming times, we revise the theory of aggregation operators [28], Aczel-
Alsina operators [29, 30], similarity measures [31, 32], Dombi operational laws [33], 
spherical fuzzy and complex spherical fuzzy information [34–40], and decision-
making [41–44] which is to utilize it in the environment of decision-making, 
computer network, image segmentation, and medical diagnosis to improve the value 
of the derived information. 
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Chapter 14 
Linear Diophantine Fuzzy Information 
Aggregation with Multi-criteria 
Decision-Making 

H. M. A. Farid and Muhammad Riaz 

1 Introduction 

The act of selecting steps to take after compiling relevant information and analyzing 
the relative merits of several potential solutions is known as decision-making. 
Establishing pertinent information and identifying available alternatives are the first 
two stages of a decision-making process that should be carried out according to 
a step-by-step methodology. Depending on the objectives and available options, 
the decision-making process may be either strategically, tactically, or operational. 
Since the beginning of the twentieth century, one of the most significant chal-
lenges faced by society has been confusing and inaccurate information. In several 
areas, such as economics, administration, psychology, mathematics, engineering, 
cognitive systems, and autonomous systems, data aggregation is a crucial phase in 
the decision-making process. Knowledge of the alternative has traditionally been 
conceptualized by individuals as a restricted amount or linguistic number. On 
the other hand, it is difficult to synthesize the information due to the substantial 
ambiguity involved. The multi-criteria decision-making (MCDM) approach is a 
frequently used intellectual activity instrument whose primary objective is to pick 
from a restricted number of possibilities based on the details provided by decision-
makers (DMs). The MCDM approach, on the other hand, is prone to becoming 
ambiguous and inaccurate. This is because it integrates the complexity of human 
reasoning skills, making it difficult for DMs to engage in the review process in 
an accurate manner. In addition to addressing the issue of uncertainty, Zadeh [1] 
was a pioneer in developing fuzzy set theory. It is imperative that a solution be 
found for this issue. Atanassov [2] developed the “intuitionistic fuzzy set (IFS).” 
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Yager [3–5] introduced “Pythagorean fuzzy set (PFS)” as an extended form of IFS. 
Yager added some generalizations to the IFS and PFS, and he developed the concept 
of the “q-rung orthopair fuzzy set (q-ROFS)” [6]. A constraint of the q-ROFS is 
that the sum of qth membership degree (MSD) power and non-membership degree 
(NMSD) power might be equal to or less than one. Riaz and Hashmi established 
the notion of the linear Diophantine fuzzy set (LDFS) [17]. After the advent of 
this notion, a number of academics were drawn to it and began working in this 
field. 

Xu et al. [7–9] gave some Aos related to IFS. Wei et al. [11], Feng et al. 
[14], Mahmood et al. [10], Zhang et al. [12], Zhao et al. [13], Garg [15], and 
Rahman et al. [16] introduced many AOs for different extensions of fuzzy sets. 
Some work related to AOs and graph structures can be seen in [18, 19]. Extensive 
work related to bipolar fuzzy set is given in [20, 21]. Feng et al. [22] proposed 
some novel score functions related to orthopair fuzzy set. Senapati and Yager 
proposed Fermatean fuzzy set as the extension of IFS [23]. Smarandache proposed 
a novel idea of neutrosophic set [24, 25]. Farid and Riaz introduced some Einstein 
interacting geometric AOs for q-ROFSs [26]. Many AOs for “linear Diophantine 
fuzzy numbers” are given in [27, 28]. Ashraf et al. proposed some distance metric 
for cubic picture fuzzy set [29, 30]. Saha et al. [31, 32] introduced some hybrid 
AOs for different extensions of fuzzy set. Wei and Zhang [33] gave some single-
valued neutrosophic Bonferroni power AOs. Riaz et al. proposed a number of AOs, 
including Einstein prioritized [35], interactive [36], hybrid [34], and prioritized with 
PDs [37]. Some extra-ordinary work related to proposed work is given in [38– 
41]. Ejegwa and Davvaz proposed the improved composite relation for q-ROFSs 
[42]. Ejegwa and Ahemen introduced some enhanced IF similarity measures [43]. 
Ejegwa et al. described the Pythagorean fuzzy correlation approach from a statistical 
standpoint [44]. Jana et al. [45] gave the notion of picture fuzzy Dombi AOs. Naeem 
et al. [46] presented some features related to topology in m-polarity PFSs. Peng et al. 
[47] proposed upgraded “single valued neutrosophic number” (SVNN) operations 
and established their associated AOs. Nancy and Garg [48] established AOs by 
employing Frank operations. Liu et al. [49] developed some AOs for SVNNs based 
on “Hamacher operations.” Farid and Riaz [50] proposed Einstein interactive AOs 
for SVNNs. Zhang et al. [51] provided the AOs in the context of an “interval-valued 
neutrosophic set.” Wu et al. [52] developed the prioritized AOs with SVNNs. Wei 
[53] proposed some similarity measures, Singh [54] idea of correlation coefficients, 
and Son [55] gave some clustering method for picture fuzzy set. 

Multi-criteria decision-making (MCDM) is a method used to evaluate and select 
the best option among a set of alternatives based on multiple criteria. It is a powerful 
tool for decision-makers, as it allows for the consideration of multiple factors that 
may have an impact on the success of a decision. MCDM has been applied in a 
wide range of fields, including agriculture, where it can be used to make important 
decisions related to crop selection, land use, irrigation systems, and more. 

One of the main advantages of MCDM in agriculture is that it takes into account 
the multiple and often conflicting objectives that farmers and other stakeholders
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may have. For example, when selecting a crop to plant, a farmer may consider 
factors such as expected yield, market demand, and pest resistance. Each of these 
factors may have different levels of importance to the farmer, and MCDM allows 
for the weighting of these factors to reflect this. Additionally, MCDM can be used 
to evaluate the trade-offs between different factors, such as the relationship between 
yield and water use efficiency. 

Another important use of MCDM in agriculture is in land use planning. MCDM 
can be used to evaluate different land use options and determine the best option 
based on multiple criteria such as economic profitability, environmental sustain-
ability, and social acceptability. This can be particularly useful in situations where 
there is a need to balance competing interests such as urbanization and agricultural 
production. 

MCDM can also be used in irrigation systems. In this case, the farmer can 
evaluate different irrigation options based on criteria such as water use efficiency, 
cost, and impact on the environment. Additionally, MCDM can be used to evaluate 
the trade-offs between different irrigation options, such as the relationship between 
cost and water use efficiency. This can be particularly useful in areas where water is 
scarce, and farmers need to make decisions about how to use water resources in the 
most efficient and sustainable way. 

Furthermore, MCDM can be used in the context of climate change, where 
farmers need to make decisions about crop selection, irrigation systems, and land 
use in the face of changing weather patterns, rising temperatures, and increased 
water scarcity. MCDM allows for the consideration of multiple factors such as crop 
resilience, water use efficiency, and environmental impact, which can help farmers 
make more informed decisions about how to adapt to changing conditions. 

MCDM is an important tool for decision-making in agriculture. It allows for 
the consideration of multiple and often conflicting objectives, and it can be used 
to evaluate the trade-offs between different factors. This makes MCDM a valuable 
tool for farmers and other stakeholders in the agricultural sector, as it can help them 
make more informed decisions that balance economic profitability, environmental 
sustainability, and social acceptability. The main objectives of the manuscript are as 
follows: 

• Some basic AOs are proposed for the aggregation of linear Diophantine fuzzy 
information. 

• The essential properties of proposed AOs are also examined. 
• Decision-making algorithm based on proposed Aos is also explained. 
• Numerical example related to agriculture land selection is also given to show the 

practical implication of proposed algorithm. 

This format is maintained for the remainder of the paper. In the second portion, 
we will talk about some essential LDFS concepts. The third section offers several 
potential AOs for LDFNs. In Sect. 4, an MCDM framework is shown for the 
recommended AOs. Section 5 has a test scenario with numerical information. The 
most important findings from the research are discussed in the sixth section.
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2 Preliminary 

In this part, we will go over some of the most fundamental aspects of LDFS. 

Definition 1 ([17]) An LDFS . Rr in X can be characterized by 

. Rr = {(
Ξ, 〈ζ τ

Rr (Ξ), ηυ
Rr (Ξ)〉, 〈J ℵ

Rr (Ξ),C γ
Rr (Ξ)〉) : Ξ ∈ X

}
,

where .ζ τ
Rr (Ξ), ηυ

Rr (Ξ),J ℵ
Rr (Ξ),C γ

Rr (Ξ) ∈ [0, 1] are the MSD, the NMSD, 
and the corresponding reference parameters (RPs), respectively. Moreover, 

. 0 ≤ J ℵ
Rr (Ξ) + C γ

Rr (Ξ) ≤ 1,

and 

. 0 ≤ J ℵ
Rr (Ξ)ζ τ

Rr (Ξ) + C γ
Rr (Ξ)ηυ

Rr (Ξ) ≤ 1

for all .Ξ ∈ X. The LDFS 

. Rr
X = {(Ξ, 〈1, 0〉, 〈1, 0〉) : Ξ ∈ X}

is recognized the “absolute LDFS” in X. The LDFS 

. Rr
φ = {(Ξ, 〈0, 1〉, 〈0, 1〉) : Ξ ∈ X}

is recognized the “null LDFS” in X. 

Modeling or categorization certain structures can be accomplished with the help of 
the RPs. We are able to describe a wide variety of systems by altering the fundamen-
tal significance of the RPs. Moreover, . ηRr (Ξ)πRr (Ξ) = 1−(J ℵ

Rr (Ξ)ζ τ
Rr (Ξ)+

C γ
Rr (Ξ)ηυ

Rr (Ξ)) is called the “indeterminacy degree” and its corresponding RP 
of . Ξ to . Rr . 

It is very evident that our suggested conception is more appropriate and 
advanced, and it includes a range of RPs. This procedure is applicable to a wide 
range of projects, including those in the fields of industry, medicine, cognitive 
computing, and MCDM. 

Definition 2 ([17]) A “linear Diophantine fuzzy number” (LDFN) is the form of 
.�ς = (〈ζ τ

�κ , ηυ
�ς 〉, 〈J ℵ

�ς ,C γ
�ς 〉) having the given characteristics: 

(1) .0 ≤ ζ τ
�ς , ηυ

�ς ,J ℵ
�ς ,C γ

�ς ≤ 1. 
(2) .0 ≤ J ℵ

�ς + C γ
�ς ≤ 1. 

(3) .0 ≤ J ℵ
�ς ζ τ

�ς + C γ
�ς ηυ

�ς ≤ 1.
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Definition 3 ([17]) Consider .�ς = (〈ζ τ
�ς , ηυ

�ς 〉, 〈J ℵ
�ς ,C γ

�ς 〉) is the LDFN, 
and then the “score function” (SF) .¶̆(�ς ) is defined by . �(�ς ) : LDFN(X) →
[−1, 1] and given by 

. �(�ς ) = 1

2
[(ζ τ

�ς − ηυ
�ς ) + (J ℵ

�ς − C γ
�ς ), ]

where .LDFN(X) is the collection of LDFNs on X. 

Definition 4 ([17]) Consider .�ς = (〈ζ τ
�ς , ηυ

�ς 〉, 〈J ℵ
�ς ,C γ

�ς 〉) is the LDFN, 
and then the “accuracy function” is defined by .ψ : LDFN(X) → [0, 1] and given 
as 

. ψ(�ς ) = 1

2

[(ζ τ
�ς + ηυ

�ς

2

)
+ (J ℵ

�ς + C γ
�ς )]

Definition 5 ([17]) Let .�ς
1 = (〈ζ τ

1, η
υ
1〉, 〈J ℵ

1,C
γ
1〉) be an LDFN and .X > 0. 

Then: 

• .�ς c
1 = (〈ηυ

1, ζ
τ
1〉, 〈C γ

1,J ℵ
1〉). 

• .X�ς
1 =

(
〈1 − (1 − ζ τ

1)
X, ηυX

1 〉, 〈1 − (1 − J ℵ
1)

X,C γ X
1 〉
)
. 

• .�ςX
1 =

(
〈ζ τX

1 , 1 − (1 − ηυ
1)

X〉, 〈J ℵX
1 , 1 − (1 − C γ

1)
X〉
)
. 

Definition 6 ([17]) Let .�ς
i = (〈ζ τ

i, η
υ

i〉, 〈J ℵ
i ,C

γ
i〉) be two LDFNs with . i =

1, 2. Then: 

• .�ς
1 ⊆ �ς

2 ⇔ ζ τ
1 ≤ ζ τ

2, η
υ
2 ≤ ηυ

1,J
ℵ
1 ≤ J ℵ

2,C
γ
2 ≤ C γ

1. 
• .�ς

1 = �ς
2 ⇔ ζ τ

1 = ζ τ
2, η

υ
1 = ηυ

2,J
ℵ
1 = J ℵ

2,C
γ
1 = C γ

2. 
• . �ς

1 ⊕ �ς
2 = (〈ζ τ

1 + ζ τ
2 − ζ τ

1ζ
τ
2, η

υ
1η

υ
2〉, 〈J ℵ

1 + J ℵ
2 − J ℵ

1J
ℵ
2,

C γ
1C γ

2〉). 
• . �ς

1 ⊗ �ς
2 = (〈ζ τ

1ζ
τ
2, η

υ
1 + ηυ

2 − ηυ
1η

υ
2〉, 〈J ℵ

1J
ℵ
2,C

γ
1 + C γ

2
−C γ

1C γ
2〉). 

Definition 7 ([17]) Let .�ς
i = (〈ζ τ

i, η
υ

i〉, 〈J ℵ
i ,C

γ
i〉) be the assemblage of 

LDFNs with .i ∈ Δ. Then: 

• .
⋃

i∈Δ

�ς
i =

(
〈sup
i∈Δ

ζ τ
i, inf

i∈Δ
ηυ

i〉, 〈sup
i∈Δ

J ℵ
i , inf

i∈Δ
C γ

i〉
)
. 

• .
⋂

i∈Δ

�ς
i =

(
〈 inf
i∈Δ

ζ τ
i, sup

i∈Δ

ηυ
i〉, 〈 inf

i∈Δ
J ℵ

i , sup
i∈Δ

C γ
i〉
)
. 

There are many AOs for the aggregation of LDFNs, namely, Einstein AOs [28], 
prioritized AOs [27], and fairly AOs [56]. 

Definition 8 ([28]) Consider .�ς
ג = (〈ζ τ

,ג η
υ
,〈ג 〈J ℵ

ג
,C γ

(〈ג the agglomera-
tion of LDFNs and .� = (�

1,�
2, . . . ,�

n)
T be the weight vector (WV) 

with .
n∑

1=ג
�

ג = 1. Then “linear Diophantine fuzzy Einstein weighted average
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(LDFEWA) operator” is defined as 

. LDFEWA(�κ
1 , �

κ
2 , �

κ
3 , . . . , �

κ
n) =

n∑

1=ג

�
Λ�

ς
ג = �

1.E�
κ
1 ⊕E �

2.E�
κ
2 ⊕E �

3.Eγ3 ⊕E . . . ⊕E �
n.E�

κ
n.

In LDFEWA operator, we use . � as a WV and .�ς
ג are the LDFNs, where . ג =

1, 2, . . . , n. 

Theorem 1 ([28]) Let .�ς
ג = (〈ζ τ

,ג η
υ
,〈ג 〈J ℵ

ג
,C γ

(〈ג be an agglomeration of 
LDFNs and .� = (�

1,�
2, . . . ,�

n)
T be the WV with .

n∑

1=ג
�

ג = 1. Then the 

LDFEWA operator can also be written as 

. LDFEWA(�κ
1 , �

κ
2 , . . . , �

κ
n)

=
(〈∏n

1)1=ג + ζ τ
(ג

�
ג −∏n

1)1=ג − ζ τ
(ג

�
ג

∏n
1)1=ג + ζ τ

(ג
�

ג +∏n
1)1=ג − ζ τ

(ג
�

ג

,

2
∏n

1=ג ηυ�
ג

n∏ג
2)1=ג − ηυ

(ג
�

ג +∏n
η)1=ג

υ
(ג

�
ג

〉
,

〈∏n
1)1=ג + J ℵ

ג
)�

ג −∏n
1)1=ג − J ℵ

ג
)�

ג

∏n
1)1=ג + J ℵ

ג
)�

ג +∏n
1)1=ג − J ℵ

ג
)�

ג

,

2
∏n

1=ג C γ �
ג

n∏ג
2)1=ג − C γ

�(ג
ג +∏n

C)1=ג
γ
�(ג

ג

〉)
.

Definition 9 ([28]) Consider .�ς
ג = (〈ζ τ

,ג η
υ
,〈ג 〈J ℵ

ג
,C γ

(〈ג is the agglomera-

tion of LDFNs and .� = (�
1,�

2, . . . ,�
n)

T be the WV with .
n∑

1=ג
�

ג = 1. 

Then “linear Diophantine fuzzy Einstein weighted geometric (LDFEWG) operator” 
is defined as 

. LDFEWG(�κ
1 , �

κ
2 , �

κ
3 , . . . , �

κ
n) =

n∏

1=ג

�
�ג

ς
ג = �

1.E�
κ
1 ⊗E �

2.E�
κ
2 ⊗E �

3.E�
κ
3 ⊗E . . . ⊗E �

n.E�
κ
n.

Theorem 2 [[28]] Let .�ς
ג = (〈ζ τ

,ג η
υ
,〈ג 〈J ℵ

ג
,C γ

(〈ג be the agglomeration 

of LDFNs and .� = (�
1,�

2, . . . ,�
n)

T be the WV with .
n∑

1=ג
�

ג = 1. Then
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LDFEWG operator can also be written as 

. LDFEWG(�κ
1 , �

κ
2 , . . . , �

κ
n)

=
(〈

2
∏n

1=ג ζ τ �
ג

n∏ג
2)1=ג − ζ τ

(ג
�

ג +∏n
ζ)1=ג

τ
(ג

�
ג

,

∏n
1)1=ג + ηυ

(ג
�

ג −∏n
1)1=ג − ηυ

(ג
�

ג

∏n
1)1=ג + ηυ

(ג
�

ג +∏n
1)1=ג − ηυ

(ג
�

ג

〉
,

〈
2
∏n

1=ג J ℵ�
ג

n∏ג
2)1=ג − J ℵ

ג
)�

ג +∏n
J)1=ג

ℵ
ג
)�

ג

,

∏n
1)1=ג + C γ

(ג
�

ג −∏n
1)1=ג − C γ

(ג
�

ג

∏n
1)1=ג + C γ

�(ג
ג +∏n

1)1=ג − C γ
�(ג

ג

〉)

Definition 10 ([27]) Assume that .�ς
ג = (〈ζ τ

,ג η
υ
,〈ג 〈J ℵ

ג
,C γ

(〈ג is the 
agglomeration of LDFNs, and .LDFPWA : $n → $ is the mapping. If 

. LDFPWA(�ς
1,�

ς
2, . . .�

ς
n)=

˘̄h1
∑n

1=ג
˘̄hג

�
ς
1⊕

˘̄h2
∑n

1=ג
˘̄hג

�
ς
2⊕. . . ,⊕ ˘̄hn

∑n
1=ג

˘̄hג
�

ς
n,

(14.1) 
then the mapping LDFPWA is called “linear Diophantine fuzzy prioritized weighted 

averaging (LDFPWA) operator,” where . ˘̄hג = ∏j−1
k=1H (�ς

k) .(j = 2 . . . , n), . ̆̄h1 =
1, and .H (�ς

k) is the expectation score function of kth LDFN. 

Theorem 3 ([27]) Assuming that .�ς
ג = (〈ζ τ

,ג η
υ
,〈ג 〈J ℵ

ג
,C γ

(〈ג is the agglom-
eration of LDFNs, we can find .LDFPWA by 

. LDFPWA(�ς
1,�

ς
2, . . .�

ς
n)

=
(〈

1 −
∏n

1=ג
(1 − ζ τ

(ג

˘̄hג∑n
1=ג

˘̄hג ,
∏n

1=ג
ηυ

˘̄hג∑n
1=ג

˘̄hג
ג

〉
,

〈
1 −

∏n

1=ג
(1 − J ℵ

ג
)

˘̄hג∑n
1=ג

˘̄hג ,
∏n

1=ג
C γ

˘̄hג∑n
1=ג

˘̄hג
ג

〉)
. (14.2) 

Definition 11 ([27]) Assume that .�ς
ג = (〈ζ τ

,ג η
υ
,〈ג 〈J ℵ

ג
,C γ

(〈ג is the 
agglomeration of LDFNs and .LDFPWG : $n → $ is the mapping. If 

. LDFPWG(�ς
1,�

ς
2, . . .�

ς
n) = �

ς

˘̄h1∑n
1=ג

˘̄hג
1 ⊗ �

ς

˘̄h2∑n
1=ג

˘̄hג
2 ⊗ . . . ,⊗�

ς

˘̄hn∑n
1=ג

˘̄hג
n ,

(14.3)
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then the mapping LDFPWG is called “linear Diophantine fuzzy prioritized weighted 
geometric (LDFPWG) operator.” 

Theorem 4 ([27]) Assuming that .�ς
ג = (〈ζ τ

,ג η
υ
,〈ג 〈J ℵ

ג
,C γ

(〈ג is the agglom-
eration of LDFNs, we can find .LDFPWG by 

. LDFPWG(�ς
1,�

ς
2, . . .�

ς
n)

=
(〈∏n

1=ג
ζ τ

˘̄hג∑n
1=ג

˘̄hג
ג

, 1 −
∏n

1=ג
(1 − ηυ

(ג

˘̄hג∑n
1=ג

˘̄hג
〉
,

〈∏n

1=ג
J ℵ

˘̄hג∑n
1=ג

˘̄hג
ג

, 1 −
∏n

1=ג
(1 − C γ

(ג

˘̄hג∑n
1=ג

˘̄hג
〉)

. (14.4) 

Definition 12 ([56]) Let .�ς
ג = (〈ζ τ

,ג η
υ
,〈ג 〈J ℵ

ג
,C γ

〈ג
)
be the agglomeration 

of LDFNs and LDFFWA: .F n → F be a n dimension mapping. If 

. LDFFWA(�ς
1,�

ς
2, . . .�

ς
e) =

(
�

1 ∗ �
ς
1⊕̃�

2 ∗ �
ς
2⊕̃ . . . , ⊕̃�

e ∗ �
ς

e

)
,

(14.5) 

then the mapping LDFFWA is called “linear Diophantine fuzzy fairly weighted 
averaging (LDFFWA) operator,” and here .�

i is the weight vector (WV) of . �ς
i

with .�
i > 0 and .

∑e
i=1 �

i = 1. 

Theorem 5 ([56]) Let .�ς
ג = (〈ζ τ

,ג η
υ
,〈ג 〈J ℵ

ג
,C γ

〈ג
)
be the agglomeration of 

LDFNs, and we can also find LDFFWA by 

. LDFFWA(�ς
1,�

ς
2, . . . ,�

ς
e)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

〈
1
2

∏e
i=1(ζ

τ
i)

�
i

∏e
i=1(ζ τ

i)
�

i +∏e
i=1(ηυ

i)
�

i
×
(
1 +∏e

i=1

(
2 − ζ τ

i − ηυ
i

)�
i
)

,

1
2

∏e
i=1(η

υ
i)

�
i

∏e
i=1(ζ τ

i)
�

i +∏e
i=1(ηυ

i)
�

i
×
(
1 +∏e

i=1

(
2 − ζ τ

i − ηυ
i

)�
i
)〉

,

〈
∏e

i=1
(
J ℵ

i

)�
i

∏e
i=1(J ℵ

i )
�

i +∏e
i=1(C γ

i)
�

i
×
(
1 −∏e

i=1

(
1 − J ℵ

i − C γ
i

)�
i

)
,

∏e
i=1(C

γ
i)

�
i

∏e
i=1(J ℵ

i )
�

i +∏e
i=1(C γ

i)
�

i
×
(
1 −∏e

i=1

(
1 − J ℵ

i − C γ
i

)�
i

)〉
,

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where .�
i is the WV of .�ς

i with .�
i > 0 and .

∑e
i=1 �

i = 1. 

Definition 13 ( [56]) Let .�ς
ג = (〈ζ τ

,ג η
υ
,〈ג 〈J ℵ

ג
,C γ

〈ג
)
be the agglomeration 

of LDFNs and LDFFOWA: .F n → F be a n dimension mapping. If
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. LDFFOWA(�ς
1,�

ς
2, . . .�

ς
e)

=
(
�

1 ∗ �
ς

τ(1)⊕̃�
2 ∗ �

ς
τ(2)⊕̃ . . . , ⊕̃�

e ∗ �
ς

τ(e)

)
, (14.6) 

then the mapping LDFFOWA is called “linear Diophantine fuzzy fairly ordered 
weighted averaging (LDFFOWA) operator,” and here .�

i is the WV of .�ς
i with 

.�
i > 0 and .

∑e
i=1 �

i = 1. 
.ζ τ : 1, 2, 3, . . . . . . ., n → 1, 2, 3, . . . . . . ., n is a permutation map s.t. . �ς

τ(i−1) ≥
�ς

τ(i)
. 

Theorem 6 ([56]) Let .�ς
ג = (〈ζ τ

,ג η
υ
,〈ג 〈J ℵ

ג
,C γ

〈ג
)
be the agglomeration of 

LDFNs, and we can also find LDFFOWA by 

. LDFFOWA(�ς
1,�

ς
2, . . . ,�

ς
e)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

〈
1
2

∏e
i=1

(
ζ τ

τ(i)

)�
i

∏e
i=1

(
ζ τ

τ(i)

)�τ(i) +∏e
i=1

(
ηυ

τ(i)

)�
i
×
(
1+

e∏

i=1

(
2−ζ τ

τ(i)
−ηυ

τ(i)

)�
i

)
,

1
2

∏e
i=1

(
ηυ

τ(i)

)�
i

∏e
i=1

(
ζ τ

τ(i)

)�
i +∏e

i=1

(
ηυ

τ(i)

)�
i
×
(
1+

e∏

i=1

(
2−ζ τ

τ(i)
−ηυ

τ(i)

)�
i
)〉

,

〈 ∏e
i=1

(
J ℵ

τ(i)

)�
i

∏e
i=1

(
J ℵ

τ(i)

)�τ(i) +∏e
i=1

(
C γ

τ(i)

)�
i
×
(
1−

e∏

i=1

(
1−J ℵ

τ(i)
−C γ

τ(i)

)�
i
)

,

∏e
i=1

(
C γ

τ(i)

)�
i

∏e
i=1

(
J ℵ

τ(i)

)�
i +∏e

i=1

(
C γ

τ(i)

)�
i
×
(
1−

e∏

i=1

(
1 − J ℵ

τ(i)
− C γ

τ(i)

)�
i
)〉

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where .�
i is the WV of .�ς

i with .�
i > 0 and .

∑e
i=1 �

i = 1. 

Definition 14 ([28]) Consider .�ς
ג = (〈ζ τ

,ג η
υ
,〈ג 〈J ℵ

ג
,C γ

(〈ג the agglomer-
ation of LDFNs and .� = (�

1,�
2, . . . ,�

n)
T be the weight vector (WV) 

with .
n∑

1=ג
�

ג = 1. Then “linear Diophantine fuzzy Einstein weighted average 

(LDFEWA) operator” is defined as 

.LDFEWA(�κ
1 , �

κ
2 , �

κ
3 , . . . , �

κ
n) =

n∑

1=ג

�
Λ�

ς
ג = �

1.E�
κ
1 ⊕E �

2.E�
κ
2 ⊕E �

3.Eγ3 ⊕E . . . ⊕E �
n.E�

κ
n.
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In LDFEWA operator, we use . � as a WV and .�ς
ג are the LDFNs, where . ג =

1, 2, . . . , n. 

Theorem 7 ([28]) Let .�ς
ג = (〈ζ τ

,ג η
υ
,〈ג 〈J ℵ

ג
,C γ

(〈ג be an agglomeration of 
LDFNs and .� = (�

1,�
2, . . . ,�

n)
T be the WV with .

n∑

1=ג
�

ג = 1. Then the 

LDFEWA operator can also be written as 

. LDFEWA(�κ
1 , �

κ
2 , . . . , �

κ
n) =

(〈∏n
1)1=ג + ζ τ

(ג
�

ג −∏n
1)1=ג − ζ τ

(ג
�

ג

∏n
1)1=ג + ζ τ

(ג
�

ג +∏n
1)1=ג − ζ τ

(ג
�

ג

,

2
∏n

1=ג ηυ�
ג

n∏ג
2)1=ג − ηυ

(ג
�

ג +∏n
η)1=ג

υ
(ג

�
ג

〉
,

〈∏n
1)1=ג + J ℵ

ג
)�

ג −∏n
1)1=ג − J ℵ

ג
)�

ג

∏n
1)1=ג + J ℵ

ג
)�

ג +∏n
1)1=ג − J ℵ

ג
)�

ג

,

2
∏n

1=ג C γ �
ג

n∏ג
2)1=ג − C γ

�(ג
ג +∏n

C)1=ג
γ
�(ג

ג

〉)
.

Definition 15 ([28]) Consider .�ς
ג = (〈ζ τ

,ג η
υ
,〈ג 〈J ℵ

ג
,C γ

(〈ג is the agglomer-

ation of LDFNs and .� = (�
1,�

2, . . . ,�
n)

T be the WV with .
n∑

1=ג
�

ג = 1. 

Then “linear Diophantine fuzzy Einstein weighted geometric (LDFEWG) operator” 
is defined as 

. LDFEWG(�κ
1 , �

κ
2 , �

κ
3 , . . . , �

κ
n) =

n∏

1=ג

�
�ג

ς
ג = �

1.E�
κ
1 ⊗E �

2.E�
κ
2 ⊗E �

3.E�
κ
3 ⊗E . . . ⊗E �

n.E�
κ
n.

Theorem 8 ([28]) Let .�ς
ג = (〈ζ τ

,ג η
υ
,〈ג 〈J ℵ

ג
,C γ

(〈ג be the agglomeration of 
LDFNs and .� = (�

1,�
2, . . . ,�

n)
T be the WV with .

n∑

1=ג
�

ג = 1. Then 

LDFEWG operator can also be written as 

.LDFEWG(�κ
1 , �

κ
2 , . . . , �

κ
n)

=
(〈

2
∏n

1=ג ζ τ �
ג

n∏ג
2)1=ג − ζ τ

(ג
�

ג +∏n
ζ)1=ג

τ
(ג

�
ג

,

∏n
1)1=ג + ηυ

(ג
�

ג −∏n
1)1=ג − ηυ

(ג
�

ג

∏n
1)1=ג + ηυ

(ג
�

ג +∏n
1)1=ג − ηυ

(ג
�

ג

〉
,
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〈
2
∏n 

�J ℵ 1=ג
 ג

 n∏ג
2)1=ג − J ℵ

ג
)�

 n∏+ ג
J ℵ)1=ג

ג
)�

 ג
,

∏n 
1)1=ג + C γ 

(ג
�

 n∏− ג
1)1=ג − C γ 

(ג
�

ג

∏n 
1)1=ג + C γ 

�(ג
 n∏+ ג

1)1=ג − C γ 
�(ג

ג

〉)
. 

AOs are used in a variety of fields to summarize and analyze large sets of data. They 
are commonly used in business and finance to summarize financial data, in computer 
science and programming to analyze log files and performance metrics, and in data 
science and machine learning to extract insights from large datasets. 

In business and finance, AOs are used to summarize financial data such as sales 
and revenue. For example, a company may use an operator to calculate the total 
revenue for a particular product or product line. This information can then be used 
to make decisions about pricing, production, and marketing. 

In computer science and programming, AOs are used to analyze log files and 
performance metrics. For example, a web developer may use an operator to calculate 
the average response time of a web server or the number of requests per second. 
This information can be used to identify performance bottlenecks and optimize the 
performance of the system. 

In data science and machine learning, AOs are used to extract insights from large 
datasets. For example, a data scientist may use an operator to calculate the average 
of a particular variable in a dataset. This information can be used to identify patterns 
and trends in the data, which can inform decisions about which variables to include 
in a model or which groups to target in a marketing campaign. 

In the field of natural language processing, AOs are used to extract insights 
from text data. For example, a researcher may use an operator to calculate the 
most common words or phrases in a dataset of text. This information can be used 
to identify topics or themes in the data, which can inform decisions about which 
algorithms to use for text classification or sentiment analysis. 

In bioinformatics, AOs are used to summarize and analyze large sets of genetic 
data. For example, a researcher may use an operator to calculate the frequency of a 
particular genetic variant in a population. This information can be used to identify 
genetic risk factors for diseases and inform drug development. 

In general, AOs are a powerful tool for extracting insights from large sets of 
data. They can be used to summarize data, identify patterns and trends, and inform 
decisions across a wide range of fields. 

3 Linear Diophantine Fuzzy Aggregation Operators 

In this section, we discussed “linear Diophantine fuzzy weighted average (LDFWA) 
operator, linear Diophantine fuzzy ordered weighted average (LDFOWA) operator,
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linear Diophantine fuzzy weighted geometric (LDFWG) operator and linear Dio-
phantine fuzzy weighted ordered geometric (LDFOWG) operator.” 

3.1 LDFWA Operator 

Definition 16 Consider �ς 
ζ〉) = ג τ 

,ג η
υ 
,〈ג 〈J ℵ

ג
, C γ 

 is the agglomeration of (〈ג
LDFNs, and LDFWA : $n → $ be the mapping. 

.LDFWA(�ς
1,�

ς
2, . . .�

ς
n) = Pγ

1�
ς
1 ⊕ Pγ

2�
ς
2 ⊕ . . . ,⊕Pγ

n�
ς

n. (14.7) 

Then LDFWA is known as LDFWA operator, where (Pγ 
1, Pγ 

2, . . . ,P
γ 

n) be the 
weight vector (WV) with the constraint Pγ 

and 0 < ג
∑n 

h=1 P
γ 
 .1 = ג

We also evaluate LDFWA operator by the following theorem. 

Theorem 9 Consider �ς 
ζ〉) = ג τ 

,ג η
υ 
,〈ג 〈J ℵ

ג
,C γ 

 is the agglomeration of (〈ג
LDFNs, and we can find LDFWA by 

. LDFWA(�ς
1,�

ς
2, . . .�

ς
n)

=
(〈

1 −
∏n

1=ג
(1 − ζ τ

(ג
Pγ

ג ,
∏n

1=ג
ηυP

γ
ג

ג

〉
,

〈
1 −

∏n

1=ג
(1 − J ℵ

ג
)P

γ
,ג
∏n

1=ג
C γ Pγ

ג

ג

〉)
. (14.8) 

Proof It is quite simple for the first assertion to come before Definition 17 and 
Theorem 13. The following instances demonstrate this point further: 

. LDFWA(�ς
1,�

ς
2, . . .�

ς
n)

=
(
Pγ 1�ς

1 ⊕ Pγ
2�

ς
2 ⊕ . . . ,Pγ

n�
ς

n

)

=
(〈

1 −
∏n

1=ג
(1 − ζ τ

(ג
Pγ

ג ,
∏n

1=ג
ηυP

γ
ג

ג

〉
,

〈∏n

1=ג
(1 − J ℵ

ג
)P

γ
ג ,
∏n

1=ג
C γ Pγ

ג

ג

〉)
.

In order to demonstrate the validity of this theorem, we turned to mathematics 
induction. 

For n = 2
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. Pγ
1�

ς
1 =

(〈
1 − (1 − ζ τ

1)
Pγ

1 , ηυP
γ
1

1

〉
,

〈
1 − (1 − J ℵ

1)
Pγ

1,C γ Pγ
1

1

〉)

. Pγ
2�

ς
2 =

(〈
1 − (1 − ζ τ

2)
Pγ

1 , ηυP
γ
1

2

〉
,

〈
1 − (1 − J ℵ

2)
Pγ

1 ,C γ Pγ
1

2

〉)
.

Then 

. Pγ
1�

ς
1 ⊕ Pγ

2�
ς
2

=
(〈

1 − (1 − ζ τ
1)

Pγ
1 , ηυP

γ
1

1

〉
,

〈
1 − (1 − J ℵ

1)
Pγ

1 ,C γ Pγ
1

1

〉)
⊕

(〈
1 − (1 − ζ τ

2)
Pγ

1 , ηυP
γ
1

2

〉
,

〈
1 − (1 − J ℵ

2)
Pγ

1 ,C γ Pγ
1

2

〉)

=
(〈

1 − (1 − ζ τ
1)

Pγ
1 + 1 − (1 − ζ τ

2)
Pγ

1 −
(

(1 − (1 − ζ τ
1)

Pγ
1

)

(
(1 − (1 − ζ τ

2)
Pγ

1

)
, ηυP

γ
1

1 .ηυP
γ
1

2

〉
,

〈
1−(1−J ℵ

1)
Pγ

1+1−(1−J ℵ
2)

Pγ
1

−
(

(1 − (1 − J ℵ
1)

Pγ
1

)(
1 − (1 − J ℵ

2)
Pγ

1

)
,C γ Pγ

1
1 .C γ Pγ

1
2

〉)

=
(〈

1 − (1 − ζ τ
1)

Pγ
1(1 − ζ τ

2)
Pγ

1 , ηυP
γ
1

1 .ηυP
γ
1

2

〉
,

〈
1 − (1 − J ℵ

1)
Pγ

1(1 − J ℵ
2)

Pγ
1 ,C γ Pγ

1
1 .C γ Pγ

1
2

〉)

=
(〈

1 −
∏2

1=ג
(1 − ζ τ

(ג
Pγ

ג ,
∏2

1=ג
ηυP

γ
ג

ג

〉
,

〈
1 −

∏2

1=ג
(1 − J ℵ

ג
)P

γ
ג ,
∏2

1=ג
C γ Pγ

ג

ג

〉)
.

This demonstrates that Eq. (14.10) is correct for the value of n equal to two; now 
assume that Eq. (14.10) is accurate for the value of n equal to k, i.e., 

.LDFWA(�ς
1,�

ς
2, . . .�

ς
k)
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=
(〈

1 −
∏k 

 1=ג
(1 − ζ τ 

(ג
Pγ 

ג ,
∏k 

 1=ג
ηυP

γ 
 ג

ג

〉
,

〈
1 −

∏k 

 1=ג
(1 − J ℵ 

ג
)P

γ 
ג ,
∏k 

 1=ג
C γ Pγ 

 ג
ג

〉)
. 

Now that n = k + 1, according to the operational laws that govern LDFNs, we 
obtain 

.LDFWA(�ς
1,�

ς
2, . . .�

ς
k+1) = LDFWA(�ς

1,�
ς
2, . . .�

ς
k) ⊕ Pγ

�ג
ς

k+1

=
(〈

1 −
∏k

1=ג
(1 − ζ τ

(ג
Pγ

ג ,
∏k

1=ג
ηυP

γ
ג

ג

〉
,

〈
1 −

∏k

1=ג
(1 − J ℵ

ג
)P

γ
ג ,
∏k

1=ג
C γ Pγ

ג

ג

〉)
⊕

(〈
1 − (1 − ζ τ

k+1)
Pγ

k+1 , ηυP
γ

k+1
k+1

〉
,

〈
1 − (1 − J ℵ

k+1)
Pγ

k+1 ,C γ Pγ
k+1

k+1

〉)

=
(〈

1 −
∏k

1=ג
(1 − ζ τ

k)
Pγ

ג + 1 − (1 − ζ τ
k+1)

Pγ
k+1

−
(
1 −

∏k

1=ג
(1 − ζ τ

k)
Pγ

ג

)(
1 − (1 − ζ τ

k+1)
Pγ

k+1

)
,

∏k

1=ג
ηυP

γ
ג

k .ηυP
γ

k+1
k+1

〉
,

〈
1 −

∏k

1=ג
(1 − J ℵ

k)
Pγ

ג + 1 − (1 − J ℵ
k+1)

Pγ
k+1

−
(
1 −

∏k

1=ג
(1 − J ℵ

k)
Pγ

ג

)(
1 − (1 − J ℵ

k+1)
Pγ

k+1

)
,

∏k

1=ג
C γ Pγ

ג

k .C γ Pγ
k+1

k+1

〉)

=
(〈

1 −
∏k

1=ג
(1 − ζ τ

k)
Pγ

1)ג − ζ τ
k+1)

k+1,
∏k

1=ג
ηυP

γ
ג

k .ηυP
γ

k+1
k+1

〉
,

〈
1 −

∏k

1=ג
(1 − J ℵ

k)
Pγ

1)ג − J ℵ
k+1)

k+1,
∏k

1=ג
C γ Pγ

ג

k .C γ Pγ
k+1

k+1

〉)

=
(〈

1 −
∏k+1

1=ג
(1 − ζ τ

(ג
Pγ

ג ,
∏k+1

1=ג
ηυP

γ
ג

ג

〉
,

〈
1 −

∏k+1

1=ג
(1 − J ℵ

ג
)P

γ
ג ,
∏k+1

1=ג
C γ Pγ

ג

ג

〉)
.
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This shows that for n = k + 1,, Eq. (14.10) holds. Then, 

. LDFWA(�ς
1,�

ς
2, . . .�

ς
n)

=
(〈

1 −
∏n

1=ג
(1 − ζ τ

(ג
Pγ

ג ,
∏n

1=ג
ηυP

γ
ג

ג

〉
,

〈
1 −

∏n

1=ג
(1 − J ℵ

ג
)P

γ
ג ,
∏n

1=ג
C γ Pγ

ג

ג

〉)
.

The next couple of paragraphs will discuss a few of the beneficial qualities that 
LDFWA operator has. 

Theorem 10 (Idempotency) Assume that �ς 
ζ〉) = ג τ 

,ג η
υ 
,〈ג 〈J ℵ

ג
,C γ 

 is the (〈ג
agglomeration of LDFNs, where ˘̄hג = ∏j−1 

k=1H (�ς 
k) (j  = 2 . . . , n), ˘̄h1 = 1, and 

H (�ς 
k) is the expectation SF of kth LDFN. If all �ς 

,.are equal, i.e ג �ς 
= ג �ς 

for all j , then 

. LDFWA(�ς
1,�

ς
2, . . .�

ς
n) = �

ς .

Proof From Definition 17, we have  

. LDFWA(�ς
1,�

ς
2, . . .�

ς
n) = Pγ

1�
ς
1 ⊕ Pγ

2�
ς
2 ⊕ . . . ,⊕Pγ

n�
ς

n

= Pγ
1�

ς ⊕ Pγ
2�

ς ⊕ . . . ,⊕Pγ
n�

ς

= (Pγ
1 + Pγ

2 + . . . + Pγ
n)�

ς

= �
ς .

Corollary 1 If �ς 
ζ〉) = ג τ 

,ג η
υ 
,〈ג 〈J ℵ

ג
,C γ 

,j = (1 ,(〈ג 2, . . . n)  is the agglom-
eration of largest LDFNs, i.e., �ς 

= ג 〈(1, 0), (1, 0)〉 for all j , then 

. LDFWA(�ς
1,�

ς
2, . . .�

ς
n) = 〈(1, 0), (1, 0)〉.

Proof We can easily obtain Corollary similar to Theorem 10. 

Theorem 11 (Monotonicity) Assume that �ς 
ζ〉) = ג τ 

,ג η
υ 
,〈ג 〈J ℵ

ג
,C γ 

and (〈ג
�ς ∗ 

ζ〉) = ג τ ∗ 
ג
, ηυ∗ 

ג
〉, 〈J ℵ∗ 

ג
,C γ ∗ 

ג
〉) are the agglomerations of LDFNs. If ζ τ ∗ 

ζ ≤ ג τ 
 ,ג

ηυ∗ 
 ηυ ≥ ג

 ∗J ℵ ,ג
J ℵ ≤ ג

ג
, and C γ ∗ 

C ≥ ג γ 
for all j ג , then 

. LDFWA(�ς
1,�

ς
2, . . .�

ς
n) ≤ LDFWA(�ς ∗

1,�
ς ∗
2, . . .�

ς ∗
n).

Proof Here, ζ τ ∗ 
ζ ≤ ג τ 

and η ג
υ∗ 
 ηυ ≥ ג

for all j ג . If  ζ
τ ∗ 
ζ ≤ ג τ 

:ג
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⇔ ζ τ ∗ 
ζ ≤ ג τ 

⇔ ג 1 − ζ τ ∗ 
ζ − 1 ≥ ג τ 

 ג
⇔ (1 − ζ τ ∗ 

ג
)P

γ 
≥ ג (1 − ζ τ 

(ג
Pγ 

 ג

⇔ ∏n 
1)1=ג − ζ τ ∗ 

ג
)P

γ 
≥ ג ∏n 

ζ − 1)1=ג τ 
(ג

Pγ 
 ג

⇔ 1 −∏n 
1)1=ג − ζ τ 

(ג
Pγ 

1 ≥ ג −∏n 
1)1=ג − ζ τ ∗ 

ג
)P

γ 
 ג

Again: 

J ℵ∗ 
J ℵ ≤ ג

and C ג
γ ∗ 
C ≥ ג γ 

for all j ג . If  J ℵ∗ 
J ℵ ≤ ג

ג
, 

⇔ J ℵ∗ 
≤ ג J ℵ

1 ⇔ ג − J ℵ∗ 
1 ≥ ג − J ℵ

 ג
⇔ (1 − J ℵ∗ 

ג
)P

γ 
J ℵ − 1) ≥ ג

ג
)P

γ 
 ג

⇔ ∏n 
1)1=ג − J ℵ∗ 

ג
)P

γ 
≥ ג ∏n 

1)1=ג − J ℵ
ג
)P

γ 
 ג

⇔ 1 −∏n 
1)1=ג − J ℵ

ג
)P

γ 
1 ≥ ג −∏n 

1)1=ג − J ℵ∗ 
ג
)P

γ 
 ג

Now: 

ηυ∗ 
 ηυ ≥ ג

 ג
⇔ (ηυ∗ 

ג
)P

γ 
 ηυ) ≥ ג

(ג
Pγ 

 ג

⇔ ∏n 
η)1=ג

υ∗ 
ג
)P

γ 
≥ ג ∏n 

η)1=ג
υ 
(ג

Pγ 
 ג

And: 

C γ ∗ 
C ≥ ג γ 

 ג
⇔ (C γ ∗ 

ג
)P

γ 
C) ≥ ג γ 

(ג
Pγ 

 ג

⇔ ∏n 
C)1=ג

γ ∗ 
ג
)P

γ 
≥ ג ∏n 

C)1=ג
γ 
(ג

Pγ 
 ג

Let 

. �ς = LDFWA(�ς
1,�

ς
2, . . .�

ς
n)

and 

. �ς ∗ = LDFWA(�ς ∗
1,�

ς ∗
2, . . .�

ς ∗
n)

We get that �ς ∗ ≥ �ς . So, 

. LDFWA(�ς
1,�

ς
2, . . .�

ς
n) ≤ LDFWA(�ς ∗

1,�
ς ∗
2, . . .�

ς ∗
n).

Theorem 12 Assume that �ς 
ζ〉) = ג τ 

,ג η
υ 
,〈ג 〈J ℵ

ג
, C γ 

and (〈ג �γ 
 = ג

(〈φג, ϕג〉, 〈Kג,Mג〉) are two families of LDFNs. If r >  0 and �γ = 
(〈ζ τ

�γ , ηυ
�γ 〉, 〈J ℵ

�γ ,C γ
�γ 〉) is an LDFN, then: 

1. LDFWA(�ς 
1 ⊕�γ ,�ς 

2 ⊕�γ , . . .�ς 
n ⊕�γ ) = LDFWA(�ς 

1,�
ς 
2, . . .�

ς 
n)⊕

�γ 

2. LDFWA(r�ς 
1, r�

ς 
2, . . . r�

ς 
n) = r LDFWA(�ς 

1,�
ς 
2, . . .�

ς 
n)
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3. LDFWA(�ς 
1⊕�γ 

1,�
ς 
2⊕�γ 

2, . . .�
ς 

n⊕�γ 
n) = LDFWA(�ς 

1,�
ς 
2, . . .�

ς 
n)⊕ 

LDFWA(�γ 
1,�

γ 
2, . . .�

γ 
n) 

4. LDFWA(r�ς 
1 ⊕�γ , r�ς 

2 ⊕�γ , . . .⊕ r�ς 
n ⊕�γ ) = r LDFWA(�ς 

1,�
ς 
2, . . .

�ς 
n) ⊕ �γ 

Proof Here, we just proof 1 and 3. 
1. Since, 

. �
ς
ג ⊕ �

γ =
((

1 − (1 − ζ τ
1)(ג − ζ τ

�γ ), ηυ
ηג

υ
�γ

)
,

(
1 − (1 − J ℵ

ג
)(1 − J ℵ

�γ ),C γ
Cג

γ
�γ

))
.

By Theorem 13, 

. LDFWA(�ς
1 ⊕ �

γ ,�ς
2 ⊕ �

γ , . . .�ς
n ⊕ �

γ )

=
(〈

(1 −
∏n

1=ג

(
(1 − ζ τ

1)(ג − ζ τ
�γ )

)Pγ
ג

,
∏n

1=ג

(
ηυ

�γ ηυ
ג

)Pγ
ג

〉
,

〈
(1 −

∏n

1=ג

(
(1 − J ℵ

ג
)(1 − J ℵ

�γ )
)Pγ

ג

,
∏n

1=ג

(
C γ

�γ C γ
ג

)Pγ
ג

〉)

=
(〈

(1 −
(
1 − ζ τ

�γ

)Pγ
ג
∏n

1=ג

(
1 − ζ τ

ג

)Pγ
ג

,
(
ηυ

�γ

)Pγ
ג
∏n

1=ג

(
ηυ

ג

)Pγ
ג

〉
,

〈
(1 −

(
1−J ℵ

�γ

)Pγ
ג
∏n

1=ג

(
1−J ℵ

ג

)Pγ
ג

,
(
C γ

�γ

)Pγ
ג
∏n

1=ג

(
C γ

ג

)Pγ
ג

〉)

=
(〈

(1 −
(
1 − ζ τ

�γ

)∏n

1=ג

(
1 − ζ τ

ג

)Pγ
ג

,

(
ηυ

�γ

)∏n

1=ג

(
ηυ

ג

)Pγ
ג

〉
,

〈
(1 −

(
1 − J ℵ

�γ

)∏n

1=ג

(
1 − J ℵ

ג

)Pγ
ג

,
(
C γ

�γ

)∏n

1=ג

(
C γ

ג

)Pγ
ג

〉)
.

Now, by operational laws of LDFNs, 

.LDFWA(�ς
1,�

ς
2, . . .�

ς
n) ⊕ �

γ

=
(〈

(1 −
∏n

1=ג
(1 − ζ τ

(ג
Pγ

ג ,
∏n

1=ג
ηυP

γ
ג

ג

〉
,
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〈
(1 −

∏n 

 1=ג
(1 − J ℵ 

ג
)P

γ 
ג ,
∏n 

 1=ג
C γ Pγ 

 ג
ג

〉
⊕ 

(〈ζ τ
�γ , ηυ

�γ 〉, 〈J ℵ
�γ ,C γ

�γ 〉)
)

=
(〈

(1 −
(
1 − ζ τ

�γ

)∏n 

1=ג

(
1 − ζ τ 

ג

)Pγ 
 ג
,
(
ηυ

�γ

)∏n 

1=ג

(
ηυ 

ג

)Pγ 
ג

〉
,

〈
(1 −

(
1 − J ℵ

�γ

)∏n 

1=ג

(
1 − J ℵ 

ג

)Pγ 
 ג
,
(
C γ

�γ

)∏n 

1=ג

(
C γ 

ג

)Pγ 
ג

〉)
. 

Thus, 

. LDFWA(�ς
1⊕�

γ ,�ς
2⊕�

γ , . . .�ς
n⊕�

γ ) = LDFWA(�ς
1,�

ς
2, . . .�

ς
n)⊕�

γ .

3. According to Theorem 13, 

. q-ROFWA(�ς
1 ⊕ �

γ
2,�

ς
2 ⊕ �

γ
2, . . .�

ς
n ⊕ �

γ
n)

=
(〈

1 −
∏n

1=ג

(
(1 − ζ τ

1)(ג − φג)
)Pγ

ג

,
∏n

1=ג

(
ϕגη

υ
ג

)Pγ
ג

〉
,

〈
1 −

∏n

1=ג

(
(1 − J ℵ

ג
)(1 − Kג)

)Pγ
ג

,
∏n

1=ג

(
MגC

γ
ג

)Pγ
ג

〉)

=
(〈

1 −
∏n

1=ג

(
1 − φג

)Pγ
ג
∏n

1=ג

(
1 − ζ τ

ג

)Pγ
ג

,

∏n

1=ג

(
ϕג

)Pγ
ג
∏n

1=ג

(
ηυ

ג

)Pγ
ג

〉
,

〈
1 −

∏n

1=ג

(
1 − Kג

)Pγ
ג
∏n

1=ג

(
1 − J ℵ

ג

)Pγ
ג

,

∏n

1=ג

(
Mג

)Pγ
ג
∏n

1=ג

(
C γ

ג

)Pγ
ג

〉)
.

Now, 

. LDFWA(�ς
1,�

ς
2, . . .�

ς
n) ⊕ LDFWA(�γ

1,�
γ
2, . . .�

γ
n)

. =
(〈

1 −
∏n

1=ג
(1 − ζ τ

(ג
Pγ

ג ,
∏n

1=ג
ηυP

γ
ג

ג

〉
,

〈
1 −

∏n

1=ג
(1 − J ℵ

ג
)P

γ
ג ,
∏n

1=ג
C γ Pγ

ג

ג

〉)
⊕
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(〈
1 −

∏n 

 1=ג
(1 − φג)

Pγ 
ג ,
∏n 

 1=ג
ϕ P

γ 
 ג

ג

〉
,

〈
1 −

∏n 

 1=ג
(1 − Kג)

Pγ 
ג ,
∏n 

 1=ג
M P

γ 
 ג

ג

〉)

=
(〈

1 −
∏n 

1=ג

(
1 − φג

)Pγ 
ג
∏n 

1=ג

(
1 − ζ τ 

ג

)Pγ 
 ג
,

∏n 

1=ג

(
ϕג

)Pγ 
ג
∏n 

1=ג

(
ηυ 

ג

)Pγ 
ג

〉
,

〈
1 −

∏n 

1=ג

(
1 − Kג

)Pγ 
ג
∏n 

1=ג

(
1 − J ℵ 

ג

)Pγ 
 ג
,

∏n 

1=ג

(
Mג

)Pγ 
ג
∏n 

1=ג

(
C γ 

ג

)Pγ 
ג

〉)
. 

Thus, 

. LDFWA(�ς
1 ⊕ �

γ
2,�

ς
2 ⊕ �

γ
2, . . .�

ς
n ⊕ �

γ
n)

= LDFWA(�ς
1,�

ς
2, . . .�

ς
n) ⊕ LDFWA(�γ

1,�
γ
2, . . .�

γ
n).

3.2 LDFOWA Operator 

Definition 17 Consider �ς 
ζ〉) = ג τ 

,ג η
υ 
,〈ג 〈J ℵ

ג
, C γ 

 is the agglomeration of (〈ג
LDFNs, and LDFOWA : $n → $ be the mapping. 

. LDFOWA(�ς
1,�

ς
2, . . .�

ς
n) = Pγ

1�
ς

σ(1) ⊕ Pγ
2�

ς
σ(2) ⊕ . . . ,⊕Pγ

n�
ς

σ(n),

(14.9) 

where (σ (1), σ(2), . . . , σ (n))  is a permutation of (1, 2, . . . , n), such that
�ς 

σ(r−1) ≥ �ς 
σ(r), for any r. Then LDFOWA is known as LDFOWA operator, 

where (Pγ 
1,P

γ 
2, . . . ,P

γ 
n) be the WV with the constraint Pγ 

 and∑n 0 < ג
h=1 P

γ 
 .1 = ג

We might also think about LDFOWA by employing the theorem following. 

Theorem 13 Consider �ς 
ζ〉) = ג τ 

,ג η
υ 
,〈ג 〈J ℵ

ג
,C γ 

 is the agglomeration of (〈ג
LDFNs, and we can find LDFWA by 

.LDFOWA(�ς
1,�

ς
2, . . .�

ς
n)
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=
(〈

1 −
∏n 

 1=ג
(1 − ζ τ 

σ(j))
Pγ 

ג ,
∏n 

 1=ג
ηυP

γ 
 ג

σ(j)

〉
,

〈
1 −

∏n 

 1=ג
(1 − J ℵ 

σ(j))
Pγ 

, ג
∏n 

 1=ג
C γ Pγ 

 ג
σ(j)

〉)
. (14.10) 

Theorem 14 (Monotonicity) Assume that �ς 
ζ〉) = ג τ 

,ג η
υ 
,〈ג 〈J ℵ

ג
,C γ 

and (〈ג
�ς ∗ 

ζ〉) = ג τ ∗ 
ג
, ηυ∗ 

ג
〉, 〈J ℵ∗ 

ג
,C γ ∗ 

ג
〉) are the agglomerations of LDFNs. If ζ τ ∗ 

ζ ≤ ג τ 
 ,ג

ηυ∗ 
 ηυ ≥ ג

 ∗J ℵ ,ג
J ℵ ≤ ג

ג
, and C γ ∗ 

C ≥ ג γ 
for all j ג , then 

. LDFOWA(�ς
1,�

ς
2, . . .�

ς
n) ≤ LDFOWA(�ς ∗

1,�
ς ∗
2, . . .�

ς ∗
n).

Proof This is the same as Theorem 14. 

Theorem 15 Assume that �ς 
ζ〉) = ג τ 

,ג η
υ 
,〈ג 〈J ℵ

ג
, C γ 

and (〈ג �γ 
 = ג

(〈φג, ϕג〉, 〈Kג,Mג〉) are two families of LDFNs. If r >  0 and �γ = 
(〈ζ τ

�γ , ηυ
�γ 〉, 〈J ℵ

�γ ,C γ
�γ 〉) is an LDFN, then: 

1. LDFOWA(�ς 
1⊕�γ ,�ς 

2⊕�γ , . . .�ς 
n⊕�γ ) = LDFOWA(�ς 

1,�
ς 
2, . . .�

ς 
n)⊕

�γ 

2. LDFOWA(r�ς 
1, r�

ς 
2, . . . r�

ς 
n) = r LDFOWA(�ς 

1,�
ς 
2, . . .�

ς 
n) 

3. LDFOWA(�ς 
1 ⊕ �γ 

1,�
ς 
2 ⊕ �γ 

2, . . .�
ς 

n ⊕ �γ 
n) = LDFOWA(�ς 

1,�
ς 
2, . . .

�ς 
n) ⊕ LDFOWA(�γ 

1,�
γ 
2, . . .�

γ 
n) 

4. LDFOWA(r�ς 
1⊕�γ , r�ς 

2⊕�γ , . . .⊕r�ς 
n⊕�γ ) = rLDFOWA(�ς 

1,�
ς 
2, . . .

�ς 
n) ⊕ �γ 

3.3 LDFWG Operator 

Definition 18 Consider �ς 
ζ〉) = ג τ 

,ג η
υ 
,〈ג 〈J ℵ

ג
, C γ 

 is the agglomeration of (〈ג
LDFNs and LDFWG : $n → $ be a mapping. 

.LDFWG(�ς
1,�

ς
2, . . .�

ς
n) = �

ςP
γ
1

1 ⊗ �
ςP

γ
2

2 ⊗ . . . ,⊗�
ςPγ

n
n . (14.11) 

Then the mapping LDFWG is called LDFWG operator, where (Pγ 
1,P

γ 
2,. . . ,Pγ 

n) 
be the WV with the constraint Pγ 

i > 0 and
∑n 

i=1 P
γ 

i = 1. 

We may also consider LDFWG using the theorem below based on LDFNs opera-
tional law. 

Theorem 16 Assume that �ς 
ζ〉) = ג τ 

,ג η
υ 
,〈ג 〈J ℵ

ג
,C γ 

 is the agglomeration (〈ג
of LDFNs, and we can find LDFWG by LDFWG(�ς 

1,�
ς 
2, . . .�

ς 
n) 

. =
(〈∏n

1=ג
ζ τP

γ
ג

ג
, 1 −

∏n

1=ג
(1 − ηυ

(ג
Pγ

ג

〉
,
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〈∏n 

 1=ג
J ℵP

γ 
 ג

1 , ג −
∏n 

 1=ג
(1 − C γ 

(ג
Pγ 

ג

〉)
. (14.12) 

Proof It is quite simple for the first assertion to come before Definition 19 and 
Theorem 20. The following instances demonstrate this point further: 

. LDFWG(�ς
1,�

ς
2, . . .�

ς
n)

= �
ςP

γ
1

1 ⊗ �
ςP

γ
2

2 ⊗ . . . ,⊗�
ςPγ

n
n

=
(〈∏n

1=ג
ζ τP

γ
ג

ג
, 1 −

∏n

1=ג
(1 − ηυ

(ג
Pγ

ג

〉
,

〈∏n

1=ג
J ℵPγ

ג

ג
, 1 −

∏n

1=ג
(1 − C γ

(ג
Pγ

ג

〉)
.

In order to demonstrate the validity of this theorem, we turned to mathematics 
induction. 

For n = 2 

. �
ςP

γ
1

1 =
(〈

ζ τP
γ
1

1 , 1 − (1 − ηυ
1)

Pγ
1

〉
,

〈
J ℵPγ

1
1 , 1 − (1 − C γ

1)
Pγ

1

〉)

. �
ςP

γ
2

2 =
(〈

ζ τP
γ
1

2 , 1 − (1 − ηυ
(ג

Pγ
1

〉
,

〈
J ℵPγ

1
2 , 1 − (1 − C γ

(ג
Pγ

1

〉)
.

Then 

. �
ςP

γ
1

1 ⊗ �
ςP

γ
2

2

. =
(〈

ζ τP
γ
1

1 , 1 − (1 − ηυ
1)

Pγ
1

〉
,

〈
J ℵPγ

1
1 , 1 − (1 − C γ

1)
Pγ

1

〉)
⊗

(〈
ζ τP

γ
1

2 , 1 − (1 − ηυ
(ג

Pγ
1

〉
,

〈
J ℵPγ

1
2 , 1 − (1 − C γ

(ג
Pγ

1

〉)

=
(〈

ζ τP
γ
1

1 .ζ τP
γ
1

2 , 1−(1−ηυ
1)

Pγ
1+1−(1 − ηυ

(ג
Pγ

1 −
(
1 − (1 − ηυ

1)
Pγ

1

)

(
1 − (1 − ηυ

(ג
Pγ

1

)〉
,

〈
J ℵPγ

1
1 .J ℵPγ

1
2 , 1 − (1 − C γ

1)
Pγ

1 + 1

− (1 − C γ
(ג

Pγ
1 −

(
1 − (1 − C γ

1)
Pγ

1

)(
1 − (1 − C γ

(ג
Pγ

1

)〉)
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=
(〈

ζ τ Pγ 
1 

1 .ζ τ Pγ 
1 

2 , 1 − (1 − ηυ 
1)

Pγ 
1(1 − ηυ 

(ג
Pγ 

1

〉
,

〈
J ℵP

γ 
1 

1 .J ℵP
γ 
1 

2 , 1 − (1 − C γ 
1)

Pγ 
1(1 − C γ 

(ג
Pγ 

1

〉)

=
(〈∏2 

 1=ג
ζ τ Pγ 

 ג
, ג 1 −

∏2 

 1=ג
(1 − ηυ 

(ג
Pγ 

ג

〉
,

〈∏2 

 1=ג
J ℵP

γ 
 ג

, ג 1 −
∏2 

 1=ג
(1 − C γ 

(ג
Pγ 

ג

〉)
. 

This shows that Eq. (14.14) is true for n = 2, and now assume that Eq. (14.14) holds 
for n = k, i.e., 

. LDFWG(�ς
1,�

ς
2, . . .�

ς
k)

. =
(〈∏k

1=ג
ζ τP

γ
ג

ג
, 1 −

∏k

1=ג
(1 − ηυ

(ג
Pγ

ג

〉
,

〈∏k

1=ג
J ℵPγ

ג

ג
, 1 −

∏k

1=ג
(1 − C γ

(ג
Pγ

ג

〉)
.

Now n = k + 1, and by operational laws of LDFNs, we have 

. LDFWG(�ς
1,�

ς
2, . . .�

ς
k+1) = LDFWG(�ς

1,�
ς
2, . . .�

ς
k) ⊗ �

ςP
γ
ג

k+1

. =
(〈∏k

1=ג
ζ τP

γ
ג

ג
, 1 −

∏k

1=ג
(1 − ηυ

(ג
Pγ

ג

〉
,

〈∏k

1=ג
J ℵPγ

ג

ג
, 1 −

∏k

1=ג
(1 − C γ

(ג
Pγ

ג

〉)
⊗

(〈
ζ τP

γ
k+1

k+1 , 1 − (1 − ηυ
k+1)

Pγ
k+1

〉
,

〈
J ℵPγ

k+1
k+1 , 1 − (1 − C γ

k+1)
Pγ

k+1

〉)

=
(〈∏k

1=ג
ζ τP

γ
ג

k .ζ τP
γ

k+1
k+1 , 1 −

∏k

1=ג
(1 − ηυ

k)
Pγ

1)ג − ηυ
k+1)

k+1
〉
,

〈∏k

1=ג
J ℵPγ

ג

k .J ℵPγ
k+1

k+1 , 1 −
∏k

1=ג
(1 − C γ

k)
Pγ

1)ג − C γ
k+1)

k+1
〉)
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=
(〈∏k+1 

 1=ג
ζ τ Pγ 

 ג
1 , ג −

∏k+1 

 1=ג
(1 − ηυ 

(ג
Pγ 

ג

〉
,

〈∏k+1 

 1=ג
J ℵP

γ 
 ג

1 , ג −
∏k+1 

 1=ג
(1 − C γ 

(ג
Pγ 

ג

〉)
. 

This shows that for n = k + 1, Eq. (14.10) holds. Then, 

. LDFWG(�ς
1,�

ς
2, . . .�

ς
n)

. =
(〈∏n

1=ג
ζ τP

γ
ג

ג
, 1 −

∏n

1=ג
(1 − ηυ

(ג
Pγ

ג

〉
,

〈∏n

1=ג
J ℵPγ

ג

ג
, 1 −

∏n

1=ג
(1 − C γ

(ג
Pγ

ג

〉)
.

A few of LDFWG’s promising properties are described below. 

Theorem 17 (Idempotency) Assume that �ς 
ζ〉) = ג τ 

,ג η
υ 
,〈ג 〈J ℵ

ג
,C γ 

 is the (〈ג
agglomeration of LDFNs. If all �ς 

,.are equal, i.e ג �ς 
= ג �ς for all j , then 

. LDFWG(�ς
1,�

ς
2, . . .�

ς
n) = �

ς .

Proof From Definition 17, we have  

. LDFWG(�ς
1,�

ς
2, . . .�

ς
n) = �

ςP
γ
1

1 ⊗ �
ςP

γ
2

2 ⊗ . . . ,⊗�
ςPγ

n
n

= �
ςPγ

1 ⊗ �
ςPγ

2 ⊗ . . . ,⊗�
ςPγ

n

= �
ς .

Corollary 2 If �ς 
ζ〉) = ג τ 

,ג η
υ 
,〈ג 〈J ℵ

ג
,C γ 

(〈ג j  = (1, 2, . . . n)  is the agglom-
eration of largest LDFNs, i.e., �ς 

,1〉) = ג 0〉, 〈1, 0〉) for all j , then 

. LDFWG(�ς
1,�

ς
2, . . .�

ς
n) = (〈1, 0〉, 〈1, 0〉).

Proof We can easily obtain Corollary similar to Theorem 10. 

Theorem 18 Assume that �ς 
ζ〉) = ג τ 

,ג η
υ 
,〈ג 〈J ℵ

ג
, C γ 

and (〈ג �γ 
 = ג

(〈φג, ϕג〉, 〈Kג,Mג〉) are two families of LDFNs. If r >  0 and �γ = 
(〈ζ τ

�γ , ηυ
�γ 〉, 〈J ℵ

�γ ,C γ
�γ 〉) is an LDFN, then: 

1. LDFWG(�ς 
1⊕�γ ,�ς 

2⊕�γ , . . .�ς 
n ⊕�γ ) = LDFWG(�ς 

1,�
ς 
2, . . .�

ς 
n)⊕

�γ



304 H. M. A. Farid and M. Riaz

2. LDFWG(r�ς 
1, r�

ς 
2, . . . r�

ς 
n) = r LDFWG(�ς 

1,�
ς 
2, . . .�

ς 
n) 

3. LDFWG(�ς 
1⊕�γ 

1,�
ς 
2⊕�γ 

2, . . .�
ς 

n⊕�γ 
n) = LDFWG(�ς 

1,�
ς 
2, . . .�

ς 
n) 

⊕ LDFWG(�γ 
1,�

γ 
2, . . .�

γ 
n) 

4. LDFWG(r�ς 
1⊕�γ , r�ς 

2⊕�γ , . . .⊕ r�ς 
n ⊕�γ ) = r LDFWG(�ς 

1,�
ς 
2, . . .

�ς 
n) ⊕ �γ 

Proof The proof of this theorem is the same as Theorem 15. 

Theorem 19 (Monotonicity) Assume that �ς 
ζ〉) = ג τ 

,ג η
υ 
,〈ג 〈J ℵ

ג
,C γ 

and (〈ג
�ς ∗ 

ζ〉) = ג τ ∗ 
ג
, ηυ∗ 

ג
〉, 〈J ℵ∗ 

ג
,C γ ∗ 

ג
〉) are the agglomerations of LDFNs. If ζ τ ∗ 

ζ ≤ ג τ 
 ,ג

ηυ∗ 
 ηυ ≥ ג

 ∗J ℵ ,ג
J ℵ ≤ ג

ג
, and C γ ∗ 

C ≥ ג γ 
for all j ג , then 

. LDFWG(�ς
1,�

ς
2, . . .�

ς
n) ≤ LDFWG(�ς ∗

1,�
ς ∗
2, . . .�

ς ∗
n)

Proof Here, ηυ∗ 
 ηυ ≤ ג

and ζ ג
τ ∗ 
ζ ≥ ג τ 

for all j ג . If  η
υ∗ 
≤ ג ηυ 

 :ג

⇔ ηυ∗ 
 ηυ ≤ ג

⇔ ג 1 − ηυ∗ 
1 ≥ ג − ηυ 

 ג
⇔ (1 − ηυ∗ 

ג
)P

γ 
1) ≥ ג − ηυ 

(ג
Pγ 

 ג

⇔ ∏n 
1)1=ג − ηυ∗ 

ג
)P

γ 
≥ ג ∏n 

1)1=ג − ηυ 
(ג

Pγ 
 ג

⇔ 1 −∏n 
1)1=ג − ηυ 

(ג
Pγ 

 n∏− 1 ≥ ג
 ∗ηυ − 1)1=ג

ג
)P

γ 
ג . 

And: 

C γ ∗ 
C ≤ ג γ 

 ∗and J ℵ ג
≥ ג J ℵ

for all j ג . If  C
γ ∗ 
C ≤ ג γ 

 ג
⇔ C γ ∗ 

C ≤ ג γ 
1 ⇔ ג − C γ ∗ 

1 ≥ ג − C γ 
 ג

⇔ (1 − C γ ∗ 
ג
)P

γ 
1) ≥ ג − C γ 

(ג
Pγ 

 ג

⇔ ∏n 
1)1=ג − C γ ∗ 

ג
)P

γ 
≥ ג ∏n 

1)1=ג − C γ 
(ג

Pγ 
 ג

⇔ 1 −∏n 
1)1=ג − C γ 

(ג
Pγ 

 n∏− 1 ≥ ג
1)1=ג − C γ ∗ 

ג
)P

γ 
ג . 

Now: 

ζ τ ∗ 
ζ ≥ ג τ 

ζ) ⇔ ג τ ∗ 
ג
)P

γ 
≥ ג (ζ τ 

(ג
Pγ 

 ג

⇔ ∏n 
ζ)1=ג

τ ∗ 
ג
)P

γ 
≥ ג ∏n 

ζ)1=ג
τ 
(ג

Pγ 
ג . 

And: 

J ℵ∗ 
J ℵ ≥ ג

 ג
⇔ (J ℵ∗ 

ג
)P

γ 
J ℵ) ≥ ג

ג
)P

γ 
ג . 

⇔ ∏n 
 ∗J ℵ)1=ג

ג
)P

γ 
≥ ג ∏n 

J ℵ)1=ג
ג
)P

γ 
ג . 

Let 

. �ς = LDFWG(�ς
1,�

ς
2, . . .�

ς
n)

and 

.�ς ∗ = LDFWG(�ς ∗
1,�

ς ∗
2, . . .�

ς ∗
n).



14 Linear Diophantine Fuzzy Information Aggregation with Multi-criteria. . . 305

We get that �ς ∗ ≥ �ς . So, 

. LDFWG(�ς
1,�

ς
2, . . .�

ς
n) ≤ LDFWG(�ς ∗

1,�
ς ∗
2, . . .�

ς ∗
n).

3.4 LDFOWG Operator 

Definition 19 Consider �ς 
ζ〉) = ג τ 

,ג η
υ 
,〈ג 〈J ℵ

ג
, C γ 

 is the agglomeration of (〈ג
LDFNs and LDFOWG : $n → $ be a mapping 

.LDFOWG(�ς
1,�

ς
2, . . .�

ς
n) = �

ςP
γ
1

σ(1) ⊗ �
ςP

γ
2

σ(2) ⊗ . . . ,⊗�
ςP

γ
n

σ (n) , (14.13) 

where (σ (1), σ(2), . . . , σ (n))  is a permutation of (1, 2, . . . , n), such that
�ς 

σ(r−1) ≥ �ς 
σ(r), for any r. Then the mapping LDFOWG is called LDFOWG 

operator, where (Pγ 
1,P

γ 
2, . . . ,P

γ 
n) be the WV with the constraint Pγ 

i > 0 and∑n 
i=1 P

γ 
i = 1. 

We may also consider LDFOWG using the theorem below based on LDFNs 
operational law. 

Theorem 20 Assume that �ς 
ζ〉) = ג τ 

,ג η
υ 
,〈ג 〈J ℵ

ג
,C γ 

 is the agglomeration (〈ג
of LDFNs, and we can find LDFOWG by LDFOWG(�ς 

1,�
ς 
2, . . .�

ς 
n) 

. =
(〈∏n

1=ג
ζ τP

γ
ג

σ(j) , 1 −
∏n

1=ג
(1 − ηυ

σ(j))
Pγ

ג

〉
,

〈∏n

1=ג
J ℵPγ

ג

σ(j) , 1 −
∏n

1=ג
(1 − C γ

σ(j))
Pγ

ג

〉)
. (14.14) 

Theorem 21 (Monotonicity) Assume that �ς 
ζ〉) = ג τ 

,ג η
υ 
,〈ג 〈J ℵ

ג
,C γ 

and (〈ג
�ς ∗ 

ζ〉) = ג τ ∗ 
ג
, ηυ∗ 

ג
〉, 〈J ℵ∗ 

ג
,C γ ∗ 

ג
〉) are the agglomerations of LDFNs. If ζ τ ∗ 

ζ ≤ ג τ 
 ,ג

ηυ∗ 
 ηυ ≥ ג

 ∗J ℵ ,ג
J ℵ ≤ ג

ג
, and C γ ∗ 

C ≥ ג γ 
for all j ג , then 

. LDFOWG(�ς
1,�

ς
2, . . .�

ς
n) ≤ LDFOWG(�ς ∗

1,�
ς ∗
2, . . .�

ς ∗
n).

Theorem 22 Assume that �ς 
ζ〉) = ג τ 

,ג η
υ 
,〈ג 〈J ℵ

ג
, C γ 

and (〈ג �γ 
 = ג

(〈φג, ϕג〉, 〈Kג,Mג〉) are two families of LDFNs. If r >  0 and �γ = 
(〈ζ τ

�γ , ηυ
�γ 〉, 〈J ℵ

�γ ,C γ
�γ 〉) is an LDFN, then: 

1. LDFOWG(�ς 
1⊕�γ ,�ς 

2⊕�γ , . . .�ς 
n⊕�γ ) = LDFOWG(�ς 

1,�
ς 
2, . . .�

ς 
n) 

⊕ �γ 

2. LDFOWG(r�ς 
1, r�

ς 
2, . . . r�

ς 
n) = r LDFOWG(�ς 

1,�
ς 
2, . . .�

ς 
n) 

3. LDFOWG(�ς 
1 ⊕�γ 

1,�
ς 
2 ⊕�γ 

2, . . .�
ς 

n ⊕�γ 
n) = LDFOWG(�ς 

1,�
ς 
2, . . .

�ς 
n) ⊕ LDFOWG(�γ 

1,�
γ 
2, . . .�

γ 
n)
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4. LDFOWG(r�ς 
1⊕�γ , r�ς 

2⊕�γ , . . .⊕r�ς 
n⊕�γ ) = rLDFOWG(�ς 

1,�
ς 
2, . . .

�ς 
n) ⊕ �γ 

4 Proposed Methodology Based on Developed AOs 

Let .T ג = {T ג
1,T ג

2, . . . ,T ג
m} and .Ğ ζ = {Ğ ζ

1 , Ğ ζ
2 , . . . , Ğ ζ

n } be the alternatives 
and criterion, respectively. DM offered his judgement matrix .D = (ℵk

ij )m×n, in  

which . ℵk

ij stands for the alternate .T ג
i ∈ T ג as per the parameter .Ğ ζ

ג
∈ Ğ ζ by 

DM. The matrix D has converted into “normalized matrix” by the given formula 
.Y = (ςϑ℘

ij )m×n,” 

.(ςϑ℘

ij )m×n =
{

(ℵk

ij )
c; j ∈ τc

ℵk

ij ; j ∈ τb,
(14.15) 

where .(ℵk

ij )
c denotes the compliment of . ℵk

ij . 
The MCDM will be updated to include the suggested operators, which will make 

the previously described processes necessary. 

Algorithm 

Step 1: 
Acquire the judgment matrix .D = (ℵk

ij )m×n based on LDFNs from DMs. 

Ğ1 Ğ2 
⎡ 

⎢⎢ 
⎣ 

T ג 
1 (〈ζ τ 

11, η
υ 
11〉, 〈J ℵ11,C γ 

11〉) (〈ζ τ 
12, η

υ 
12〉, 〈J ℵ12,C γ 

12〉) 
T ג 

2 (〈ζ τ 
21, η

υ 
21〉, 〈J ℵ21,C γ 

21〉) (〈ζ τ 
22, η

υ 
22〉, 〈J ℵ22,C γ 

22〉) 
... 

... 
T ג 

m (〈ζ τ 
m1, η

υ 
m1〉, 〈J ℵm1, C γ 

m1〉) (〈ζ τ 
m2, η

υ 
m2〉, 〈J ℵm2,C

γ 
m2〉) 

Ğn ⎤ 

⎥⎥⎥ 
⎦ 

· · · · · ·  (〈ζ τ 
1n, η

υ 
1n〉, 〈J ℵ1n,C γ 

1n〉) 
· · · · · · (〈ζ τ 

2n, η
υ 
2n〉, 〈J ℵ2n,C γ 

2n〉) 
. . . . . . 

... 
· · · · · ·  (〈ζ τ 

mn, η
υ 

mn〉, 〈J ℵmn, C γ 
mn〉) 

. 

Step 2: 
There is no need for normalization if all indicators are of the same kind. The matrix 
D has amended to “transforming response matrix, .Y = (ςϑ℘

ij )m×n” by Eq. 14.15.
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Step 3: 
Aggregate .RS

ij for all alternates .T ג
i by utilizing the LDFWA (LDFWG) operator. 

.RS
ij = LDFWA(ςϑ℘

i1, ς
ϑ℘

i2, . . . ς
ϑ℘

in) or 
.RS

ij = LDFWG(ςϑ℘

i1, ς
ϑ℘

i2, . . . ς
ϑ℘

in). 
Step 4: 
Compute the score against all the alternatives. 
Step 5: 
The SF was used to classify the alternatives, and the most appropriate option was 
chosen. 

5 MCDM Example 

Multi-criteria decision-making (MCDM) is a useful tool for agricultural decision-
making as it allows for the consideration of multiple conflicting objectives and 
constraints. These may include economic, environmental, and social factors. The 
use of MCDM can lead to more sustainable and efficient farming practices, as well 
as improved decision-making for farmers and policymakers. 

Some specific applications of MCDM in agriculture include: 

• Land use planning: MCDM can be used to evaluate and compare different land 
use options, such as crop rotation, irrigation systems, and conservation practices. 
This can help farmers and policymakers make more informed decisions about 
how to use land resources in a sustainable and efficient way. 

• Crop selection: MCDM can be used to evaluate and compare different crop 
options, taking into account factors such as yield, profitability, water usage, and 
environmental impact. This can help farmers make more informed decisions 
about which crops to grow, leading to increased productivity and sustainability. 

• Livestock management: MCDM can be used to evaluate and compare different 
livestock management options, such as feed management, breeding strategies, 
and disease control. This can help farmers make more informed decisions about 
how to raise and manage livestock in a sustainable and efficient way. 

• Water management: MCDM can be used to evaluate and compare different water 
management options, such as irrigation systems, water storage, and conservation 
practices. This can help farmers and policymakers make more informed decisions 
about how to use water resources in a sustainable and efficient way. 

• Climate change mitigation: MCDM can be used to evaluate and compare differ-
ent mitigation options, such as crop rotation, irrigation systems, and conservation 
practices. This can help farmers and policymakers make more informed decisions 
about how to adapt to and mitigate the impacts of climate change. 

It is important to note that MCDM is not a one-size-fits-all solution and that the 
specific method used will depend on the specific problem being addressed and the
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available data. Additionally, it is important to involve stakeholders in the decision-
making process to ensure that the results are socially acceptable. 

MCDM is a useful tool for agricultural decision-making as it allows for the 
consideration of multiple conflicting objectives and constraints. Its applications in 
agriculture include land use planning, crop selection, livestock management, water 
management, and climate change mitigation. It can lead to more sustainable and 
efficient farming practices, as well as improved decision-making for farmers and 
policymakers. However, it is important to use appropriate method and involving 
stakeholders in the decision-making process. 

Agriculture is a significant contributor to Pakistan’s economy, accounting for 
18.9 percent of the country’s gross domestic product and employing 42.3 percent 
of the labor force. In addition to this, it is a significant source of revenues from 
international commerce, and it encourages growth in a variety of other areas. To 
boost development in this field, the public authority is focusing on aiding small 
and marginalized ranchers and pushing limited scope creative solutions. The sixth 
population and housing census that was conducted in Pakistan in 2017 revealed 
that the country’s overall population is expanding at a pace of 2.4 percent on an 
annual basis. Demand for goods produced by agriculture is expected to rise as a 
result of the fast population expansion. The current administration is centered on 
advancing this area and has begun various measures, for example, crop expansion, 
decreasing increase rates, proficient utilization of water, and advancement of high 
worth yields including biotechnology, agribusiness credit advancement, subsidized 
manure costs, and modest power for negritude wells. As a result, this current area’s 
exhibition expanded complicated after undergoing moderate and slowed expansion 
over the previous 13 years. 

Consider the decision-making challenge of determining the best agricultural 
land. Assume the agglomeration of choices, .T ג

1, .T ג
2, .T ג

3, and .T ג
4, also  

considering four criterions, .℘�
1= irrigation, .℘

�
2= cost, .℘

�
3=soil, and .℘

�
4= 

processing industry and market. Assuming that the criteria were weighted as 
.(0.25, 0.40, 0.20, 0.15). 

Algorithm 

5.1 With LDFWA Operator 

Step 1: 
Obtain matrix .D = (ℵk

ij )m×n by DM, which is shown in Table 14.2. 
Step 2: 
In this case, . Ğ ζ

2 criteria are cost type criteria that all are the benefits types, so there 
is need of normalization. Normalized LDF-decision matrix is given in Table 14.1. 
Step 3: 
Aggregate the LDF values .RS

ij for all .T ג
i using LDFWA operator, given in 

Table 14.3.
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Table 14.3 LDF-aggregated 
values . RS

i

.RS
1 . (〈0.596248, 0.760098〉, 〈0.32997, 0.175855〉)

.RS
2 . (〈0.769462, 0.522578〉, 〈0.523542, 0.612701〉)

.RS
3 . (〈0.503278, 0.624946〉, 〈0.708147, 0.613116〉)

.RS
4 . (〈0.482460, 0.581847〉, 〈0.532108, 0.399725〉)

Step 4: 
Compute the score for all LDF-aggregated values .RS

i . 

. C̆ RS)ג
1) = 0.497566

. C̆ RS)ג
2) = 0.539431

. C̆ RS)ג
3) = 0.493341

. C̆ RS)ג
4) = 0.508249

Step 5: 
Ranks according to SFs. 

. RS
2 � RS

4 � RS
1 � RS

3.

So, 

. T ג
2 � T ג

4 � T ג
1 � T ג

3

.T ג
2 is the best alternative among all other alternatives. 

5.2 With LDFWG Operator 

Step 1: 
Obtain matrix .D = (ℵk

ij )m×n by DM, which is shown in Table 14.4. 
Step 2: 
In this case, . Ğ ζ

2 criteria are cost type criteria that all are the benefits types, so there 
is need of normalization. Normalized LDF-decision matrix is given in Table 14.5. 
Step 3: 
Aggregate the LDF values .RS

ij for all .T ג
i using LDFWG operator, given in 

Table 14.6. 
Step 4: 
Compute the score for all LDF-aggregated values .RS

i . 

.C̆ RS)ג
1) = 0.476266
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.Ğ
ζ 3

. Ğ
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Table 14.6 LDF-aggregated 
values . RS

i

.RS
1 . (〈0.547045, 0.771117〉, 〈0.315797, 0.18666〉)

.RS
2 . (〈0.581468, 0.547835〉, 〈0.469927, 0.700454〉)

.RS
3 . (〈0.442722, 0.812834〉, 〈0.547528, 0.796085〉)

.RS
4 . (〈0.461491, 0.670541〉, 〈0.503649, 0.468701〉)

. C̆ RS)ג
2) = 0.480777

. C̆ RS)ג
3) = 0.345333

. C̆ RS)ג
4) = 0.456474.

Step 5: 
Ranks according to SFs. 

. RS
2 � RS

1 � RS
4 � RS

3.

So, 

. T ג
2 � T ג

1 � T ג
4 � T ג

3

.T ג
2 is the best alternative among all other alternatives. 

6 Conclusion 

MCDM is a significant real-world decision issue, and its most fundamental and 
essential research is the expression of imprecise information. IFSs, PFSs, and 
q-ROFSs are all effective methods for handling fuzzy information. LDFSs are 
more generic than IFS, PFS, and q-ROFS due to their ability to loosen the 
severe limitations of IFS, PFS, and q-ROFS by considering RPs. MCDM is a 
crucial subfield in operation research. This assignment’s techniques mostly rely 
on the nature of the issue being evaluated. Our everyday occurrences include 
unpredictability, imprecision, and obscurity. Existing structures were constructed 
on the basis of the concept that decision-makers (DMs) consider specific limitations 
while assessing various choices and qualities. However, this kind of situation makes 
it difficult for DMs to allocate MSDs and NMSDs; therefore, they do so with 
different constraints. LDFS is a novel method to uncertainty and decision-making 
issues that incorporates pairs of RPs versus MSDs and NMSDs in order to loosen 
these limits. We have used LDFSs to assess the validity of DMs’ knowledge 
in the basic framework and to remove any distortion in the decision analysis. 
The significant advantage of including RPs into the examination is to reduce the 
likelihood of theoretical knowledge-based MSD and NMSD-related mistakes. In 
addition, we have developed a number of AOs, including the LDFWA operator and
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the LDFWG operator. Numerous intriguing aspects of the suggested operators are 
investigated, and their illustration is convincingly shown. 
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Chapter 15 
Hyperbolic Fuzzy TOPSIS Method for 
Multi-Criteria Decision-Making 
Problems 

Palash Dutta and Abhilash Kangsha Banik 

1 Significance of the Work 

Multi-criteria decision-making (MCDM) problem has been a fascinating topic for 
researchers to solve decision-making (DM) problems. It requires the decision-
makers to assign values to solve it. Although q-ROFS was introduced to get more 
flexibility of taking membership and nonmembership values, it cannot perform in 
situations such as taking membership value as 1 and a nonzero nonmembership 
value (e.g. (1,0.2)) and vice versa. The solution to this lies in the HFS approach 
where such situations do not cause trouble as even the extreme values (1,1) could be 
considered and thus can be viewed as an improvisation over q-ROFS approach. So, 
based on the HFS approach, new methodologies could be created to solve MCDM 
problem where decision-makers get more independence of choosing values. In this 
work, we propose a new TOPSIS methodology based on HFS background to solve 
MCDM problems. A new score function and Minkowski distance based on HFS 
background are proposed to be used in the methodology. 

2 Introduction 

MCDM problems have been developed to assist decision-makers in dealing with 
decision-making (DM) problems involving multiple criteria. The presence of 
uncertainty in DM problem makes it more difficult for decision-makers to identify 
the ideal solution. The use of distance measure has been crucial in solving DM 
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problems with uncertainty. A new understanding of the DM process has emerged 
as a result of Zadeh’s [41] introduction of fuzzy sets (FS). Fuzzy approaches 
have proven to be a superior choice to conventional forms in solving MCDM 
problems with the presence of uncertainty. To tackle the MCDM problem, Hwang 
and Yoon [19] suggested the TOPSIS (technology for order preference by similarity 
to ideal solution) approach. Chen [9] extended TOPSIS to solve DM problem in a 
fuzzy environment. Fuzzy inferior ratio approach was put up by Hadi-Vencheh and 
Mirjaberi [17] for DM problems. 

The scope of FS is limited as just membership degree (MD) is present. So, 
intuitionistic fuzzy (IF) set (IFS) [1–4] was put forward by Atanassov by adding 
nonmembership degree (NMD) in addition to the already existing membership 
degree (MD), such that their sum is limited by 1. The conception of vague sets 
was developed by Gau and Buehrer [14] as an addition to FST. A score function 
was created by Chen and Tan based on sets [8]. Later, vague set was noted as being 
comparable to that of IFSs by Bustince and Burillo [5]. On the basis of these, several 
score functions have been developed based on these ideas [13, 20, 29]. In order to 
solve DM problems with IF values (IFV), Xu [33] created aggregation operators 
(AOs) like (IFWA). In order to solve MADM problems, Xu and Yager [34] have  
introduced AO like (IFWG). DM problems can be successfully resolved by distance 
measures utilizing IFSs. By incorporating the two elements of MD and NMD, 
Bustince and Burillo [6] proposed distance measurements using IFS. Later, Szmidt 
and Kacprzyk further developed new distance measures using a third element called 
hesitation degree (HD) [28]. Using the Hausdorff metric, Grzegorzewski provided 
some distance measures [16] using MD and NMD. The Hausdorff distances were 
further expanded by Yang and Chiclana [40] using MD, NMD, and HD. In order 
to handle DM problems in an IF environment, Boran et al. [7] suggested a TOPSIS 
technique to solve DM problems. 

Even though IFS is applicable, it fails when the total of MD and NMD becomes 
greater than 1. If .A = (0.6, 0.5) ∈ IFS, for instance, then .0.6 + 0.5 > 1 and IFS 
fails. As a more potent tool than IFS, Yager later created Pythagorean fuzzy (PF) 
set (PFS) theory [35, 36, 38], which ensures that the MD. 2+NMD.

2 �= 1. Due to 
greater independence in selecting MD and NMD, the PFS concept has now been 
used to handle a variety of DM situations. A score function was introduced to solve 
MCDM problems based on TOPSIS method that Zhang and Xu [42] proposed. A 
new score function was also put forth by Wu and Wei [31],  who used it in their  
suggested DM problem. With regard to the proposed MCDM method, Ma and Xu 
[22] provided a new score function and suggested new AOs. In this regard, some 
new scoring functions were also created [23, 24, 26]. In order to solve MCDM 
issues, Chen [10] developed a Minkowski distance measure for PFS utilizing a 
distance parameter called m. For  .m = 1, .m = 2, and .m → ∞, the distance 
measure yields normalized Hamming distance, normalized Euclidean distance, and 
normalized Hausdorff distance, respectively. 

However, PFS again fails when MD. 2+NMD. 2 becomes more than 1. If . A =
(0.8, 0.7) ∈ PFS, for instance, then .0.82 + 0.72 > 1 and PFS fails. As a 
generalization of the IFS and PFS, Yager formulated the q-rung orthopair fuzzy
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set (q-ROFS) [39], where MD. q+NMD. q is constrained to 1. More independence in 
choosing membership and nonmembership values is provided by raising q’s powers. 
Therefore, it becomes IFS for q. =1 and PFS for q. =2. A new score function based 
on q-ROFS was proposed by Liu and Wang, along with AOs .q − ROFWA and 
.q − ROFWG, and their applications to DM [21]. Peng et al. [25] developed a new 
score function that also took the degree of hesitation into account and used it to 
solve MCDM issues. Similarly, several score functions were created in this regard 
as improvements over pre-existing ones by various scholars [15, 30, 32]. Du [11], 
employing a distance parameter m for q-ROFS, developed a Minkowski distance 
measure that yields normalized Hamming distance for .m = 1, normalized Euclidean 
distance for .m = 2, and normalized Hausdorff distance for .m → ∞. The q-ROF 
TOPSIS method for the green supplier selection problem was proposed by Pinar 
et al. [27]. 

Centred on the outcome that variables causing job satisfaction among employ-
ees differ from those producing dissatisfaction, Herzberg suggested a two-factor 
model of motivation [18]. It was supported by information that Herzberg gathered 
through his interviews with 203 engineers and accountants in the Pittsburgh region. 
Motivators, such as challenging work, recognition, and responsibility, which provide 
satisfaction, and hygiene factors, such as salary and job security, which, while they 
do not directly contribute to higher satisfaction, nonetheless result in dissatisfaction 
when absent, were the two variables that were observed. 

Now, taking inspiration from the two-factor theory, when the MD is 1 and the 
NMD is not zero and vice versa, the q-ROFS approach fails. Consider the case 
when .A = (1, 0.1) ∈ q-ROFS, it fails since .1q + 0.1q > 1, for any q. Here, 
hyperbolic fuzzy set (HFS) developed by Dutta and Borah [12] steps in to play a 
more independent role in the selection of optimistic degree (OD) and pessimistic 
degree (PD). Using HFS, we can take the OD as 1 and also a nonzero PD (and vice 
versa) which is unlikely in all the existing forms such as IFS, PFS, and the more 
generalized q-ROFS. 

2.1 Motivation of the Study 

MCDM problems require finding the best alternative from a set of alternatives that 
meet certain criteria. Traditionally, the information of the alternatives was provided 
via crisp numbers. But, due to the presence of uncertainty, crisp numbers cannot 
give the precise information. The introduction of fuzzy MCDM techniques based 
on fuzzy set has remarkably addressed such issues. The developments such as IFS, 
PFS, and q-ROFS have aided in solving MCDM problems. But the information of 
the alternatives given via IFS in the form of MD and NMD is limited as MD+NMD 
cannot be greater than 1. So, there is lesser flexibility in choosing MD and NMD. 
Its upgraded approach PFS gives more flexibility in choosing MD and NMD. And, 
finally, the q-ROFS gives the most flexibility among them in choosing MD and 
NMD. But it cannot take MD. =1 and a nonzero NMD as MD. q+NMD.

q > 1.
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The HFS approach has been remarkable in this regard where the values taken are 
more flexible than the q-ROFS. So, there is a requirement of new techniques to be 
formulated based on HFS background to solve MCDM problems. This forms the 
basic motivation of our study. 

2.2 Structure of the Study 

The overview of the study is as follows: The Sect. 2 comprises the general idea of 
DM processes using IFS, PFS, and q-ROFS; also a literature review on previous 
studies is provided which is in the introduction part. The following is a summary 
of the paper. Preliminary definitions of FS, IFS, PFS, and q-ROFS are discussed 
in Sect. 3. Fundamental concept of HFS is presented in Sect. 4 after which certain 
operators are described. A novel score function based on HFS has been proposed 
later in Sect. 5 along with a few properties. The disadvantage of the proposed score 
function has been demonstrated by discussing the drawbacks of the existing score 
functions. The Minkowski distance utilizing HFS has been suggested in Sect. 6 
together with the Hamming, Euclidean, and Hausdorff distances. The TOPSIS 
technique has been suggested in Sect. 7 as a means of resolving MCDM issues. A 
few MCDM problems are implemented in Sect. 8 to demonstrate the shortcomings 
of the exiting approaches and the applicability of the suggested approach. Finally, 
an appropriate conclusion and future scope are provided in Sect. 9. 

3 Preliminaries 

Here in the segment, we discuss some basic definitions of the FS, IFS, PFS, and 
q-ROFS. 

Definition 3.1 (Fuzzy Set [41]) Let .Y = {yj : j = 1, 2, . . . , n} be a finite universe 
of discourse. Then a fuzzy set . F is defined by .F = {〈yj , ˜PF (yj )〉; yj ∈ Y }where 
the function . ˜PF (yj ) : Y → [0, 1] defines the degree of membership. 

Definition 3.2 (Intuitionistic Fuzzy Set [2]) An IFS .I on a finite uni-
verse of discourse .Y = {yj : j = 1, 2, . . . , n} is defined by . I =
{〈yj , ˜PI (yj ), ˜QI (yj )〉; yj ∈ Y } where the functions . ˜PI (yj ) : Y → [0, 1]
define the MD and . ˜QI (yj ) : Y → [0, 1] define the NMD such that 
.0 ≤ ˜PQ(yj ) + ˜QI (yj ) ≤ 1. 

The HD is defined by .˜RI (yj ) = 1 − [ ˜PI (yj ) + ˜QI (yj )] and . ˜PI (yj ) +
˜QI (yj ) + ˜RI (yj ) = 1. 

Definition 3.3 ([2]) Let us consider .I1 = {〈yj , ˜PI1(yj ), ˜QI1(yj )〉; yj ∈ Y } and 
.I2 = {〈yj , ˜PI2(yj ), ˜QI2(yj )〉; yj ∈ Y } be two IFSs defined in Y . Then, . I1 ⊆ I2

iff .˜PI1(yj ) ≤ ˜PI2(yj ) and . ˜QI1(yj ) ≥ ˜QI2(yj ).
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Definition 3.4 (Pythagorean Fuzzy Set [37]) An PFS . P on a finite universe of dis-
course .Y = {yj : j = 1, 2, . . . , n} is defined by . P = {〈yj , ˜PP (yj ), ˜QP (yj )〉; yj ∈
Y } where the functions .˜PP (yj ) : Y → [0, 1] define the MD and . ˜QP (yj ) : Y →
[0, 1] define the NMD such that .0 ≤ (˜PP (yj ))

2 + (˜QP (yj ))
2 ≤ 1. 

The HD is defined by .˜RP (yj ) = [1 − {(˜PP (yj ))
2 + (˜QP (yj ))

2}]1/2 and 
.˜RP (Y ) ∈ [0, 1] such that .(˜PP (yj ))

2 + (˜QP (yj ))
2 + (˜RP (yj ))

2 = 1. 

Definition 3.5 ([37]) Let us consider .P1 = {〈yj , ˜PP1(yj ), ˜QP1(yj )〉; yj ∈ Y } and 
.P2 = {〈yj , ˜PP2(yj ), ˜QP2(yj )〉; yj ∈ Y } be two PFSs defined in Y . Then, . P1 ⊆ P2
iff . ˜PP1(yj ) ≤ ˜PP2(yj ) and . ˜QP1(yj ) ≥ ˜QP2(yj ). 

Definition 3.6 (q-Rung Orthopair Fuzzy Set [39]) An q-ROFS . Q on a finite 
universe of discourse .Y = {yj : j = 1, 2, . . . , n} is defined by . Q =
{〈yj , ˜PQ(yj ), ˜QQ(yj )〉; yj ∈ Y } where the functions . ˜PQ(yj ) : Y → [0, 1]
define the MD and .˜QQ(yj ) : Y → [0, 1] define the NMD such that . 0 ≤
(˜PQ(yj ))

q + (˜QQ(yj ))
q ≤ 1. 

The HD is defined by . ˜RQ(yj ) = [1 − {(˜PQ(yj ))
q+(˜QQ(yj ))

q}1/q ]
and .˜RQ(yj ) ∈ [0, 1] such that .(˜PQ(yj ))

q + (˜QQ(yj ))
q + (˜RQ(yj ))

q = 1. 

Definition 3.7 ([39]) Let us consider . Q1 = {〈yj , ˜PQ1(yj ), ˜QQ1(yj )〉; yj ∈ Y }
and .Q2 = {〈yj , ˜PQ2(yj ), ˜QQ2(yj )〉;Y ∈ Y } be two q-ROFSs defined in Y . Then, 
.Q1 ⊆ Q2 iff .˜PQ1(Y ) ≤ ˜PQ2(Y ) and . ˜QQ1(Y ) ≥ ˜QQ2(Y ). 

4 Hyperbolic Fuzzy Set 

Here in this segment, the rudimentary idea of HFS with definitions and properties 
are provided. 

4.1 The Idea of HFS 

A comprehensive study of the formulation of HFS is done by Dutta and Borah [12] 
where a hyperbola is considered from the general equation of the conic section to 
define the concept of HFS. 

Figure 15.1 shows the graphical analysis of HFS. In the above figure, we consider 
the points under the graph .xy ≤ 1. If we consider the OD and PD as its axes, we 
get a squared portion that lies fully under the graph .xy ≤ 1. So the term hyperbolic 
fuzzy set is justified as .xy = 1 represents a hyperbola which is obtained from the 

hyperbola .
(x2 − y2)

2
= 1 with an angle of rotation 45. ◦.
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Fig. 15.1 Geometric interpretation of HFS 

Table 15.1 Difference between IFS, PFS, q-ROFS, and HFS 

IFS PFS q-ROFS HFS 

.0 ≤ P + Q ≤ 1 .0 ≤ P2 + Q2 ≤ 1 .0 ≤ Pq + Qq ≤ 1 . 0 ≤ PQ ≤ 1 

.P + Q �> 1 .P2 + Q2 �> 1 .Pq + Qq �> 1 .Pq + Qq ≤ 1 or . Pq + Qq > 1 

4.2 Basic Definition 

Dutta and Borah [12] Let  .Y = {yj : i = 1, 2, . . . , n} be a finite 
universe of discourse. We can define a hyperbolic fuzzy set .H by . H =
{〈yj , ˜PH (yj ), ˜QH (yj )〉; yj ∈ Y } where the functions . ˜PH (yj ) : Y → [0, 1]
and . ˜QH (yj ) : Y → [0, 1] define the optimistic degree (OD) and pessimistic degree 
(PD), respectively, of the element .yj ∈ Y to . H , which is a subset of Y , and for 

every .yj ∈ Y , .0 ≤ ˜PH (yj ) × ˜QH (yj ) ≤ 1. 
An HFS . H is a pair of values .(α, β) such that .α, β ∈ [0,1] and .α × β ≤1. Here, 

.α = PH is the degree of optimism in . H and .β = QH is the degree of pessimism 
in . H . 

We observe that for .α, β ∈[0,1], then .α × β ≤ (α)q + (β)q ≤ 1 for any . q ∈N. 
So, we can conclude that HFS provides a wider range of OD and PDs over q-ROFS. 

The following table (Table 15.1) shows the difference between IFS, PFS, q-
ROFS, and HFS: 

Now, we can define the operations as follows: 

Definition 4.1 ([12]) Let .H1 = {〈yj , ˜PH1(yj ), ˜QH1(yj )〉;Y ∈ Y } and . H2 =
{〈yj , ˜PH2(yj ), ˜QH2(yj )〉; yj ∈ Y } be two HFSs defined in Y . Then, the following 
operations can be defined as follows:
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(i) .H1 ⊆ H2 iff .˜PH1(yj ) ≤ ˜PH2(yj ) and . ˜QH1(yj ) ≥ ˜QH2(yj )

(ii) . H c
1 (or . H ) = {〈yj , 1 − ˜PH1(yj ), 1 − ˜QH1(yj )〉; yj ∈ Y }

(iii) . H1 ∪ H2 = {〈yj ,max(˜PH1(yj ), ˜PH2(yj )),min(˜QH1(yj ), ˜QH2(yj ))〉;
yj ∈ Y }

(iv) . H1 ∩ H2 = {〈yj ,min(˜PH1(yj ), ˜PH2(yj )),max(˜QH1(yj ), ˜QH2(yj ))〉;
yj ∈ Y }

(v) . H1 + H2 = {〈yj , (˜PH1(yj ) + ˜PH2(yj ) − ˜PH1(yj )˜PH2(yj )),

(˜QH1(yj )˜QH2(yj ))〉; yj ∈ Y }
(vi) . H1 × H2 = {〈yj , (˜PH1(yj )˜PH2(yj )), (˜QH1(yj ) + ˜QH2(yj ) −

˜QH1(yj )˜QH2(yj ))〉; yj ∈ Y }

4.3 Necessity and Possibility Operators 

Here, we will define two operators over the HFSs that transform an HFS into a fuzzy 
set. We have the following definition: 

Definition Let . H be an HFS; then we can define the following as: 

(i) Necessity Operator: . �H = {〈yj , ˜PH (yj ), 1 − ˜PH (yj )〉; yj ∈ Y }
(ii) Possibility Operator: . �H = {〈yj , 1 − ˜QH (yj ), ˜QH (yj )〉; yj ∈ Y }
Proposition For every HFS . H , we have: 

(i) . ��H = �H
(ii) . � � H = �H
(iii) . ��H = �H
(iv) . � � H = �H

(v) . �H = �H

(vi) . �H = �H

Clearly, for .�H = {〈yj , ˜PH (yj ), 1 − ˜PH (yj )〉; yj ∈ Y }. 
We have (i) .��H = {〈yj , ˜PH (yj ), 1 − (1 − ˜PH (yj ))〉; yj ∈ Y } = H . 
Similarly, (ii) .� � H = �H . 
Also, (iii) .��H = {〈yj , ˜PH (yj ), 1 − ˜PH (yj )〉; yj ∈ Y } = H . 
Similarly, (iv) .� � H = �H . 

Now, (v) . �H = �{〈yj , 1 − ˜PH (yj ), 1 − ˜QH (yj )〉; yj ∈ Y }

. = {〈yj , 1 − ˜PH (yj ), ˜PH (yj )〉; yj ∈ Y }
=. {〈yj , ˜PH (yj ), 1 − ˜PH (yj )〉; yj ∈ Y } = �H

Similarly, (vi) .�H = �H .
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Theorem For two HFSs . H1 and . H2: 

(i) . �(H1 ∩ H2) = �H1 ∩ �H2
(ii) . �(H1 ∪ H2) = �H1 ∪ �H2
(iii) . �(H1 ∩ H2) = �H1 ∩ �H2
(iv) . �(H1 ∪ H2) = �H1 ∪ �H2

(v) . �(H1 + H2) = �H1 × �H2

(vi) . �(H1 × H1) = �H1 + �H2

(vii) . �(H1 + H1) = �H1 × �H1

(viii) . �(H1 × H2) = �H1 + �H2

Proof (i) . �(H1 ∩ H2) = {〈yj ,min(˜PH1(Y ), ˜PH2(Y )),max(˜QH1(Y ), ˜QH2

(Y ))〉;Y ∈ Y }
=. {〈yj ,min(˜PH1(yj ), ˜PH2(yj )), 1 − min(˜PH1(yj ), ˜PH2(yj ))〉; yj ∈ Y }
=. {〈yj ,min(˜PH1(yj ), ˜PH2(yj )),max(1− ˜PH1(yj ), 1− ˜PH2(yj ))〉; yj ∈ Y }
Also, . �H1 ∩ �H2 = {〈yj , ˜PH1(yj ), 1 − ˜PH1(yj )〉; yj ∈ Y } ∩

{〈yj , ˜PH2(yj ), 1 − ˜PH2(yj )〉; yj ∈ Y }
=. {〈yj ,min(˜PH1(yj ), ˜PH2(yj )),max(1− ˜PH1(yj ), 1− ˜PH2(yj ))〉; yj ∈ Y }
Hence, .�(H1 ∩ H2) = �H1 ∩ �H2. 
Similarly, (ii) .�(H1 ∪ H2) = �H1 ∪ �H2. 

(iii) .�(H1 ∩ H2) = �H1 ∩ �H2. 
(iv) .�(H1 ∪ H2) = �H1 ∪ �H2. 

Further, it can be easily proven: 

(v) . �(H1 + H2) = �H1 × �H2

(vi) . �(H1 × H1) = �H1 + �H2

(vii) . �(H1 + H1) = �H1 × �H1

(viii) . �(H1 × H2) = �H1 + �H2

5 Score Function Based on HFS 

Here in this segment, a novel score function based on HFS is proposed along with 
some properties. The basic idea is to show its advantages over the existing score 
functions based on IFS, PFS, and q-ROFS. 

5.1 Existing Score Functions 

Ranking of fuzzy values by comparing them has been a notable feature of decision-
making. With the development of IFS, score functions have been developed to 
compare the magnitude of two IF values. A score function for IF values was 
proposed by Chen and Tan [8] as follows:
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Definition 5.1 Let .I = {〈yj , ˜PI (yj ), ˜QI (yj )〉; yj ∈ Y } be IF values; then the 
score function of . I can be defined as follows: 
(a) .SCT (I ) = ˜PI (Y ) − ˜QI (Y ) such that .SCT (I ) ∈ [−1, 1]. 

Using the score function, a comparison law for IF values was introduced as 
follows: 

Definition 5.2 Let .I1 = {〈yj , ˜PI1(yj ), ˜QI1(yj )〉; yj ∈ Y } and . I2 =
{〈yj , ˜PI2(yj ), ˜QI2(yj )〉; yj ∈ Y } be two IFNs defined in Y . Let  .S(I1) and 
.S(I2) be the scores of . I1 and . I2, respectively, then: 

(1) If .S(I1) < S(I2), then . I1 < I2
(2) If .S(I1) > S(I2), then . I1 > I2
(3) If .S(I1) = S(I2), then . I1 = I2

Some other score functions have been developed using IF values. 

(b) .SWZL = 3 ˜PI − ˜QI − 1

2
such that .SWZL ∈ [−1, 1] (Wang et al. [29]). 

(c) .SLW=. ˜PI +. ˜PI (1-. ˜PI -. ˜QI ) such that .SLW ∈ [0,1] (Liu and Wang [20]). 

(d) .SG = e
˜PI − ˜QI

˜RI + 1
such that .SG ∈ [e−1, e] (Gao and Liu [13]). 

Again, with the development of PFS and then q-ROFS, new score functions have 
been developed with the comparison law similar to the IF comparison laws as shown 
above. All the existing score functions based on PF and q-ROF values are shown as 
follows: 

(e) .SZX = (˜PP )2 − (˜QP )2 such that .SZX ∈ [−1, 1] (Zhang and Xu [42]). 
(f) . Smx =

{
√

(˜PP )2 − (˜QP )2, f or, ˜PP ≥ ˜QP

−
√

(˜QP )2 − (˜PP )2, f or, ˜QP ≥ ˜PP

such that .Smx ∈ [0, 1] (Ma 

and Xu [22]). 

(g) .SWW = 1 + (˜PP )2 − (˜QP )2

2
such that .SWW ∈ [0, 1] (Wu and Wei [31]). 

(h) .SPD = e( ˜PP )2−(˜QP )2

(˜RP )2 + 1
such that .SPD ∈ [e−1, e] (Peng and Dai [24]). 

(i) .SPe = (˜PP )2− (˜QP )2+
[ e( ˜PP )2−(˜QP )2

e( ˜PP )2−(˜QP )2 + 1
− 1

2

]

(˜RP )2 such that . SPe ∈ [0, 1]
(Peng [26]). 

(j) .SPZL = ˜PP
2 − ˜QP

2 − ln(1 + ˜RP
2
) such that .SPZD ∈ [−1, 1] (Peng, Zhang, 

and Luo [23]). 
(k) .SLU = (˜PQ)q − (˜QQ)q such that .SLU ∈ [0, 1] (Liu and Wang [21]). 

(l) .SWe =
˜PQ

q − ˜QQ
q + 1

2
such that .SWe ∈ [0, 1] (Wei et al. [30]). 

(m) .SPq = ˜PQ
q − ˜QQ

q +
[ e

˜PQ
q−˜QQ

q

e
˜PQ

q−˜QQ
q + 1

− 1

2

]

˜RQ
q
such that . SPq ∈ [0, 1]

(Peng [25]).
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(n) . SX =
{

(˜PQ
q − ˜QQ

q
)1/q, f or, ˜PQ ≥ ˜QQ

−(˜QQ
q − ˜PQ

q
)1/q, f or, ˜QQ ≥ ˜PQ

such that .SX ∈ [0, 1] (Xing 
et al. [32]). 

(o) .SGC = e
˜PQ

q−˜QQ
q

˜RQ
q + 1

such that .SGC ∈ [e−1, e] (Garg and Chen [15]). 

5.2 Novel Score Function Based on HFS 

Now, we propose a new score function that can be explained as follows: 

Definition 5.3 Let .H = {〈yj , ˜PH (yj ), ˜QH (yj )〉; yj ∈ Y } be a HFN; then the 
score function is denoted as 

. SA(H ) = 2˜PH (yj ) − 2 ˜QH (yj ) + 2 + ˜PH (yj ) × ˜QH (yj )

4
, SA ∈ [0, 1].

(15.1) 

The 3-D geometric interpretation of the score function is shown in Fig. 15.2. In  
Fig. 15.2, we can understand the change of . SA with change in . ˜P and . ˜Q. Then, we 
considered the variation of . SA with increase in . ˜P taking . ˜Q constant and increase 
in . ˜Q taking . ˜P constant. In Fig. 15.3, where .H = { ˜P, ˜Q}, we can see that taking 
. ˜Q = 0, 0.2, 0.4, 0.6, 0.8, 1.0, the  value  of  . SA increases w.r.t the increase of . ˜P for 
the values of . ˜Q. Similarly, in Fig. 15.3, where .H = { ˜P, ˜Q}, we can see that taking 
. ˜P = 0, 0.2, 0.4, 0.6, 0.8, 1.0, the  value  of  . SA decreases w.r.t the increase of . ˜Q for 
the values of . ˜P . In Fig. 15.4 we considered the variation of . ∂SA

∂ ˜P
( ˜P, ˜Q) w.r.t . ˜Q and 

then we considered the variation of .
∂SA

∂ ˜Q
( ˜P, ˜Q) w.r.t . ˜P . 

Proposition 1 For a HFN .H = { ˜P, ˜Q}, . SA increases monotonically with the 
increase of . ˜P and decreases monotonically with the increase of . ˜Q. 

Fig. 15.2 3-D geometric 
interpretation of score 
function
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Fig. 15.3 Variation of .SA( ˜P, ˜Q) w.r.t (i) (left) . ˜P and (ii) (right) . ˜Q

Fig. 15.4 (i) (Left) Variation of . ∂SA

∂ ˜P
( ˜P, ˜Q) w.r.t . ˜Q and (ii) (right) variation of . ∂SA

∂ ˜Q
( ˜P, ˜Q)

w.r.t . ˜P

Proof . ∂SA

∂ ˜P
= 2+ ˜Q

4 ≥ 0 which is obtained as first partial derivative of . SA w.r.t . ˜P
based on (1). 

Similarly, by first partial derivative of . SA w.r.t . ˜Q, we get . ∂SA

∂ ˜Q
= −2+ ˜P

4 ≤ 0. 

As a result, we can see that . SA increases monotonically with the increase of . ˜P
and decreases monotonically with the increase of . ˜P . 

Proposition 2 For a HFN .H = { ˜P, ˜Q}, . SA holds the following: 
(a).SA(H ) = 0 iff .H = (0, 1); .SA(H ) = 1 iff .H = (1, 0) and (b) . 0 ≤

SA(H ) ≤ 1. 

Proof 

(a) Based on Proposition 1, it can be easily seen that if we just take . ˜P and . ˜Q into 
consideration, .SA(H ) can have the min value (. H = (0, 1)) or max value (. H
= (1, 0)). In other words, .SA(H )min =0 and .SA(H )max = 1.  

(b) Based on (a) .0 ≤ SA(H ) ≤ 1.
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Proposition 3 Let .Hi = { ˜Pi , ˜Qi}(i = 1, 2) be two HFNs. If . ˜P1 ≥ ˜P2 and 
. ˜Q1 ≤ ˜Q2, then .SA(H1) ≥ SA(H2). 

Proof (a) Based on Proposition 1, it can be easily seen that .SA(H ) increases 
monotonically when the value of . ˜P increases and decreases monotonically when 
the value of . ˜Q increases. 

Therefore, if . ˜P1 ≥ ˜P2 and . ˜Q1 ≤ ˜Q2, then .SA(H1) ≥ SA(H2). 

Proposition 4 Let .Hi = { ˜Pi , ˜Qi}(i = 1, 2) be two HFNs; then: 

(a) If .H1 ⊆ H2, then, .SA(H1) ≤ SA(H2) and . SA(H c
2 ) ≤ SA(H c

1 )

(b) . SA(H1 × H2) ≤ SA(H1 ∩ H2) ≤ SA(H1), SA(H2) ≤ SA(H1 ∪ H2) ≤
SA(H1 + H2)

Proof 

(a) Based on Proposition 3, .H1 ⊆ H2 ˜P1 ≤ ˜P2 and . ˜Q1 ≥ ˜Q2; then, . SA(H1) ≤
SA(H2). 
Also, .H1 ⊆ H2 �⇒ H c

2 ⊆ H c
1 ; then .SA(H c

2 ) ≤ SA(H c
1 ). 

(b) We know .(H1 × H2) ⊆ (H1 ∩ H2) ⊆ H1,H2 ⊆ (H1 ∪ H2) ⊆ (H1 + H2). 
Hence, . SA(H1 × H2) ≤ SA(H1 ∩ H2) ≤ SA(H1), SA(H2) ≤ SA(H1 ∪

H2) ≤ SA(H1 + H2). 

Proposition 5 Let .Hi = { ˜Pi , ˜Qi}(i = 1, 2, 3) be three HFNs, such that . H1 ⊆
H2 ⊆ H3; then: 
(a).SA(H1 × H2) ≤ SA(H1 × H3), (b). SA(H1 ∩ H2) ≤ SA(H1 ∩ H3)

(c).SA(H1 ∪ H2) ≤ SA(H1 ∪ H3), d). SA(H1 + H2) ≤ SA(H1 + H3)

Proof We know .H1 ⊆ H2 ⊆ H3; then, . H1 × H2 ⊆ H1 × H3,H1 ∩ H2 ⊆
H1 ∩ H3,H1 ∪ H2 ⊆ H1 ∪ H3,.H1 + H2 ⊆ H1 + H3. 
Hence, (a) .SA(H1 × H2) ≤ SA(H1 × H3), (b) .SA(H1 ∩ H2) ≤ SA(H1 ∩ H3), 
(c) .SA(H1 ∪ H2) ≤ SA(H1 ∪ H3), and (d).SA(H1 + H2) ≤ SA(H1 + H3). 

5.3 Drawbacks of the Existing Score Functions 

Now, to discuss the drawbacks of the existing score function, we consider the 
following cases: 

Case 1 The drawbacks of the score functions based on IFS (except . SG) can be seen 
in Table 15.2. 

In case of .SCT , drawback occurs whenever . ˜PI (yj ) = ˜QI (yj ). Also for  
.SWZL, whenever . ˜PI (yj ) = 3˜QI (yj ) it fails. In case of .SLW , it fails whenever 
. ˜PI (yj ) = 0. 

Case 2 Considering all the existing score functions, we consider three fuzzy 
profiles which are given by .A1 = (0, 0),A2 = (0.4, 0.4),A3 = (0.5, 0.5). 
Finding the score values of .A1,A2,A3 for the different score functions, we
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Table 15.2 Comparison of score functions based on IFS 

Score function . I1=(0,0) . I2=(0,0.1) . I3=(0.1,0.3) . I4=(0.5,0.5) Ranking 

.SCT 0 . −0.1 . −0.2 0 . I4 = I1 > I2 > I3 

.SWZL . −0.5 . −0.55 . −0.5 0 . I4 > I1 = I3 > I2 

.SLW 0 0 0.16 0.5 . I4 > I3 > I1 = I2 

.SG 0.5 0.4762 0.5117 1 . I4 > I3 > I1 > I2 

Table 15.3 Comparison of score functions 

Score function .A1 = (0, 0) .A2 = (0.4, 0.4) .A3 = (0.5, 0.5) Ranking 

.SCT 0 0 0 . A1 = A2 = A3 

.SWZL . −0.5 . −0.1 0 . A1 < A2 < A3 

.SLW 0 0.48 0.5 . A1 < A2 < A3 

.SG 0.5 0.83 1 . A1 < A2 < A3 

.SZX 0 0 0 . A1 = A2 = A3 

.Smx 0 0 0 . A1 = A2 = A3 

.SWW 0.5 0.5 0.5 . A1 = A2 = A3 

.SPD 0.5 0.5953 1 . A1 < A2 < A3 

.SPe 0 0 0 . A1 = A2 = A3 

.SPZL . −0.6932 . −0.5188 . −0.4055 . A1 < A2 < A3 

.SLU 0 0 0 . A1 = A2 = A3 

.SWe 0.5 0.5 0.5 . A1 = A2 = A3 

.SPq 0 0 0 . A1 = A2 = A3 

.SX 0 0 0 . A1 = A2 = A3 

.SGC (q=3) 0.5 0.5342 0.5714 . A1 < A2 < A3 

.SA 0.5 0.54 0.5625 . A1 < A2 < A3 

can see the drawbacks in Table 15.3. Here, we can see the drawbacks of 
.SCT , SZX, Smx, SWW , SPe, SLU , SWe, SPq, SX. For example, in case of .SCT , we  
can see that .SCT (A1) = SCT (A2) = SCT (A3) = 0. Similar, drawbacks can be seen 
in .SZX, Smx, SWW , SPe, SLU , SWe, SPq, SPq, SX. 

Case 3 Again, .SGC can be seen as a generalization of . SG and .SPD which is of the  

form .SGC = e( ˜PP )q−(˜QP )q

(˜RP )q + 1
such that .SGC ∈ [e−1, e]. 

Let .SGC(H1,H2) = H ; then for the pair .

(

( 1+lnH
2 )

1
q , ( 1−lnH

2 )
1
q

)

, we have  

.SGC = e( 1+lnH
2 − 1−lnH

2 )

2 − 1+lnH
2 − 1−lnH

2

= elnH

1
= H i.e. for the different pairs . (H1,H2)

and .

(

( 1+lnH
2 )

1
q , ( 1−lnH

2 )
1
q

)

, the score function gives the same values. 

For example, taking q=1, .SGC becomes . SG. 
Let .A1 = (0.5, 0.3); then .S(A1) = 1.0178356318.
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Table 15.4 Comparison of score functions 

Table Profile 1 Profile 2 Profile 3 Profile 4 

.A1 (0.6,0.4) (0.8,0.6) (0.8,0.7) (0.9,0.7) 

.A2 (0.3,0.35) (0.3,0.35) (0.3,0.35) (0.3,0.35) 

.A3 (0.15,0.21) (0.15,0.21) (0.15,0.21) (0.15,0.21) 

1-ROFS S(. A1)=0.2 

IFS S(. A2)=-0.5 

S(. A3)=-0.6 

2-ROFS S(. A1)=0.28 

PFS S(. A2)=-0.0325 

S(. A3)=-0.0216 

3-ROFS S(. A1)=0.169 

S(. A2)=-0.01589 

S(. A3)=-0.0059 

4-ROFS S(. A1)=0.28 

S(. A2)=-0.0325 

S(. A3)=-0.0216 

Ranking .A1 > A2 > A3 .A1 > A3 > A2 .A1 > A3 > A2 . A1 > A3 > A2 

Under S(. A1)=0.61 S(. A1)=0.67 S(. A1)=0.665 S(. A1)=0.7075 

HFS S(. A2)=0.51375 S(. A2)=0.51375 S(. A2)=0.51375 S(. A2)=0.51375 

S(. A3)=0.492875 S(. A3)=0.492875 S(. A3)=0.492875 S(. A3)=0.492875 

Ranking .A1 > A2 > A3 .A1 > A2 > A3 .A1 > A2 > A3 . A1 > A2 > A3 

Now, for .A2 = (0.5088392216, 0.4911607784), we  have  . S(A2) =
1.0178356318, i.e. for different pairs . A1 and . A2, we have the same score value. 

Again, for q=2, .SGC becomes .SPD . 
Let .A1 = (0.5, 0.3); then .S(A1) = 0.70693425963. 
Now, for .A2 = (0.57148158222, 0.82061489213), we  have  . S(A2) =

0.70693425963, i.e. for different pairs . A1 and . A2, we have the same score value. 
Such type of drawback occurs in .SGC, SG, SPD . 

Case 4 Again, we consider, the score function .SLU . We consider different 
fuzzy profiles in Table 15.4. For 1-ROFS, we consider . A1 = (0.6, 0.4),A2 =
(0.3, 0.35),A3 = (0.15, 0.21). Here, we get the ranking order as .A1 > A2 > A3. 
For 2-ROFS, we consider .A1 = (0.8, 0.6),A2 = (0.3, 0.35),A3 = (0.15, 0.21). 
Here, we get the ranking order as .A1 > A3 > A2. Similarly, for 3-ROFS, 
we consider .A1 = (0.8, 0.7),A2 = (0.3, 0.35),A3 = (0.15, 0.21). Here, 
we get the ranking order as .A1 > A3 > A2. And, for 4-ROFS, we consider 
.A1 = (0.9, 0.7),A2 = (0.3, 0.35),A3 = (0.15, 0.21). Here, we get the ranking 
order as .A1 > A3 > A2. So, we can see that the ranking order of . A2 and . A3
changes on increasing the value of q. So, we get different ranking order for the 
same values for different values of q. But, in case of our proposed score function, 
we get the same order.
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Considering all the above findings, we can see that the proposed score function 
can serve as a better alternative to all the existing score functions. 

6 Distance Measure Based on HFS 

In this section, the Minkowski distance is defined under hyperbolic fuzzy environ-
ment. 

Definition 6.1 Let .H1 = {〈yj , ˜PH1(yj ), ˜QH1(yj )〉; yj ∈ Y } and . H2 =
{〈yj , ˜PH2(yj ), ˜QH2(yj )〉; yj ∈ Y } be two HFSs defined in Y . The distance 
measure d between . H1 and . H2 is a function d:HFS . × HFS.→ [0, 1] which satisfies 
the following: 

1. .0 ≤ d(H1,H2) ≤ 1. 
2. .d(H1,H2) = 0 iff .H1 = H1. 
3. .d(H1,H2) = d(H2,H1). 
4. If .H1,H2,H3 ∈ HFS.(Y ) such that .H1 ⊆ H2 ⊆ H3, then, . d(H1,H3) ≥

d(H1,H2) and . d(H1,H3) ≥ d(H2,H3).

Now, the Minkowski distance based on HFS can be defined as follows: 

Definition 6.2 Let .H1 and .H2 be two HFSs defined in Y . Then the Minkowski 
distance between . H1 and . H2 is described as: 

. d(H1,H2)M =
[1

2

n
∑

i=1

{|˜PH1(yj ) − ˜PH2(yj )|m + |˜QH1(yj ) − ˜QH2(yj )|m

+ |˜RH1(yj ) − ˜RH2(yj )|m}
] 1

m
,

f or,m ≥ 1 (15.2) 

where .˜RH1(yj ) = 1 − ˜PH1(yj ) × ˜QH1(yj ) and . ˜RH2(yj ) = 1 − ˜PH2(yj ) ×
˜QH2(yj ). 

We define normalized Minkowski distance = (Minkowski Distance)/n, i.e. 

. d(H1,H2)nM =
[ 1

2n

{

n
∑

i=1

{|˜PH1(yj ) − ˜PH2(yj )|m + |˜QH1(yj ) − ˜QH2(yj )|m

+ |˜RH1(yj ) − ˜RH2(yj )|m}}
] 1

m
(15.3)
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Clearly, normalized Minkowski distance satisfies properties 1–3 of distance 
measure. 

For property 4, .|˜PH1(yj ) − ˜PH2(yj )|m ≤ |˜PH1(yj ) − ˜PH3(yj )|m. 
Also, .|˜QH1(yj ) − ˜QH2(yj )|m ≤ |˜QH1(yj ) − ˜QH3(yj )|m. 
And .|˜RH1(yj ) − ˜RH2(yj )|m ≤ |˜RH1(yj ) − ˜RH3(yj )|m. 

.d(H1,H3) ≥ d(H1,H2). 
Similarly, . d(H1,H3) ≥ d(H2,H3).

Hence, normalized Minkowski distance is a distance measure for HFS .H1 and 
. H2. 

Now, for .m = 1, it is normalized Hamming distance which can be described as 

. d(H1,H2)nH =
[ 1

2n

{

n
∑

i=1

{|˜PH1(yj ) − ˜PH2(yj )| + |˜QH1(yj ) − ˜QH2(yj )|

+ |˜RH1(yj ) − ˜RH2(yj )|}
}

]

. (15.4) 

For .m = 2, it is normalized Euclidean distance which can be described as 

. d(H1,H2)nE =
[ 1

2n

{

n
∑

i=1

{(˜PH1(yj ) − ˜PH2(yj ))
2 + (˜QH1(yj ) − ˜QH2(yj ))

2

+ (˜RH1(yj ) − ˜RH2(yj ))
2}}

] 1
2
. (15.5) 

For .m → ∞, it is normalized Hausdorff (Chebyshev) distance which can be 
described as 

. d(H1,H2)nC =
[1

n

{

n
∑

i=1

max{|˜PH1(yj ) − ˜PH2(yj )|, |˜QH1(yj ) − ˜QH2(yj )|,

|˜RH1(yj ) − ˜RH2(yj )|}
}

]

. (15.6) 

Now, we can define the weighted Minkowski distance based on HFS as follows: 

Definition 6.3 Let .H1 and .H2 be two HFSs defined in Y . Then the Minkowski 
distance between . H1 and . H2 is described as: 

. d(H1,H2)wM =
[1

2

n
∑

i=1

wi{|˜PH1(yj )− ˜PH2(yj )|m+|˜QH1(yj )−˜QH2(yj )|m

+ |˜RH1(yj ) − ˜RH2(yj )|m}
] 1

m
,

where,m ≥ 1. (15.7)
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7 Solving MCDM Problem Based on HFS Using TOPSIS 

In this section the TOPSIS approach is introduced for solving MCDM problem in 
HFS environment. This approach is ideal for handling MCDM issues in HFS envi-
ronment. Also included is a brief description of the proposed method’s algorithm. 

7.1 Description of the MCDM Problem with HFNs 

We take aMCDMproblem comprising of m alternatives . Y = {Y1, Y2, . . . , Ym}, (m ≥
2) and n criteria  .C = {C1, C2, . . . , Cn} whose weight vectors are . w =
(w1, w2, . . . , wn)

T which meet the condition .0 ≤ wj ≤ 1 and .
∑n

j=1 wj = 1. 
We consider an expert which expresses the evaluation values of the alternative 
.Yk(k = 1, 2, . . . m) over the criteria .Cl(l = 1, 2, . . . n) in the form of HFN, 
.Hkl = ( ˜Pkl, ˜Qkl) where . ˜Pkl is the optimistic degree and . ˜Qkl is the pessimistic 
degree. Hence the formulated hyperbolic fuzzy decision matrix is given by 
.R = (Hkl)m×n. The following matrix form can succinctly describe the MCDM 
problem with HFNs: 

. R = (Cj (yj ))m×n =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

H ( ˜P11, ˜Q11) H ( ˜P12, ˜Q12) . . . . . . H ( ˜P1n, ˜Q1n)

H ( ˜P21, ˜Q21) H ( ˜P22, ˜Q22) . . . . . . H ( ˜P2n, ˜Q2n)

. . . .

. . . .

. . . .

H (˜Pm1, ˜Qm1) H (˜Pm2, ˜Qm2) . . . . . . H (˜Pmn, ˜Qmn)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(15.8) 

7.2 Algorithm of the Proposed Method 

Centred on above discussion, the subsequent steps are presented to define the 
TOPSIS method under HFS environment: 

Step 1. Create the decision matrix .R = (Hkl)m×n where . Hkl(k = 1, 2, .., m, l =
1, 2, .., n) are the assessments of the alternative .Yk ∈ Y in relation to the 
criterion .Cl ∈ C. 

Step 2. For matching the practicality of the values, decision matrix . R =
(Hkl)m×n is transformed to normalized form .N = (Hkl)m×n which 
is given by 

. Hkl =
{

( ˜Pkl, ˜Qkl), f or, benef it type criteria

(1 − ˜Pkl, 1 − ˜Qkl), f or, cost type criteria
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Step 3. Find the positive ideal alternative (PIA) and negative ideal alternative 
(NIA) which are given by 

. Y+ = {Cl,max S(Hkl)|l = 1, 2, .., n}
= {〈C1,H (˜P1

+
, ˜Q1

+
)〉, 〈C2,H (˜P2

+
, ˜Q2

+
)〉, .,

〈Cn,H (˜Pn
+
, ˜Qn

+
)〉} (15.9) 

. Y− = {Cl,min S(Hkl)|l = 1, 2, .., n}
= {〈C1,H (˜P1

−
, ˜Q1

−
)〉, 〈C2,H (˜P2

−
, ˜Q2

−
)〉, .,

〈Cn,H (˜Pn
−
, ˜Qn

−
)〉} (15.10) 

Step 4. Determine the distances between the alternative . Yk and the hyperbolic 
fuzzy PIS . Y+ as well as the hyperbolic fuzzy NIS . Y−, respectively, using 
Equations 

. D(Yk, Y
+) =

[1

2

n
∑

i=1

wl{| ˜Pkl − ˜P+
l | + | ˜Qkl − ˜Q+

l | + | ˜Rkl − ˜R+
l |}

]

,

where, k = 1, 2, . . . , m (15.11) 

. D(Yk, Y
−) =

[1

2

n
∑

i=1

wl{| ˜Pkl − ˜P−
l | + | ˜Qkl − ˜Q−

l | + | ˜Rkl − ˜R−
l |}

]

,

where, k = 1, 2, . . . , m (15.12) 

Step 5. Calculate the revised closeness .ζ(Yk) of the alternative . Yk(k =
1, 2, . . . , m) which is given by 

.ζ(Yk) = Dmax(Yk, Y
−)

D(Yk, Y−)
− D(Yk, Y

+)

Dmin(Yk, Y+)
(15.13) 

Step 6. Define the ranking order of the alternatives based on the revised 
closeness .ζ(Yk) obtained from Step 5. The alternatives are arranged in 
ascending order w.r.t the smaller values of .ζ(Yk)(k = 1, 2, . . . , m). The  
best alternative is thus defined by 

.Y ∗ = {Yk : (k : ζ ∗(Yk) = max
1≤k≤m

ζ(Yk))} (15.14)
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8 Illustrate Examples 

In this section, we use the proposed approach in the following examples which are 
given below. 

Example 8.1 We consider a MCDM problem with three alternatives .X1, X2, and 
. X3 which are valued by an expert under four criteria .A1, A2, A3, and . A4 and list 
them in terms of IFNs (i.e. when q = 1 of q-ROFNs). All the criteria are benefit-
type criteria. The values are noted in Table 15.5. The attribute weight is fitted to 
be .w = (0.25, 0.25, 0.25, 0.25). Ranking order of different methods is noted in 
Table 15.6. 

We use the proposed algorithm to solve the MCDM problem. 
According to Step 1, the decision matrix is given in Table 15.5. 
In Step 2, as all the criteria are benefit-type criteria, there is no need of 

normalization and thus the decision matrix remains the same. 
For Step 3, the PIA .X+ and NIA .X− are given as below: 
Using the score function, we get .X+ = {(1, 0), (0.7, 0.2), (1, 0), (0.7, 0.3)} and 

. X− = {(0.6, 0.4), (0.5, 0.5), (0.6, 0.2), (0.5, 0.4)}.
For Step 4, we have . D(X1, X

+) = 0.0159,D(X2, X
+) = 0.0262,D(X3, X

+) =
0.0838, . D(X1, X

−) = 0.0691,D(X2, X
−) = 0.0688,D(X3, X

−) = 0.
So, .Dmin(Xi,X

+) = D(X1, X
+) = 0.0159 and . Dmax(Xi,X

−) =
D(X1, X

−) = 0.0691. 
Now, for Step 5, .ζ(X1) = 0, ζ(X2) = −0.6516, ζ(X3) = −5.2549. 
Finally using Step 6, we have .X1 > X2 > X3. 
Upon comparing the results with the IFWA and IFWG methods [33, 34] as  

displayed in Table 15.6, it becomes evident that using the IFWA/IFWG approach 
leads to the selection of both . X1 and . X2 as the best alternatives. However, through 
our proposed method, . X1 emerges as the clear best alternative, effectively mitigating 
any confusion that may arise from having multiple options with the same highest 
score. 

Example 8.2 From Example 8.1, it can be seen that the methods are inadequate 
under the constraint . ˜P + ˜Q ≤ 1. Now, to exemplify the advantages of the proposed 

Table 15.5 Decision matrix 
of Example 8.1 

.R1 .A1 .A2 .A3 . A4 

.X1 (1.0,0) (0.7,0.2) (0.8,0.1) (0.6,0.3) 

.X2 (0.8,0.2) (0.6,0.1) (1.0,0) (0.7,0.3) 

.X3 (0.6,0.4) (0.5,0.5) (0.6,0.2) (0.5,0.4) 

Table 15.6 Ranking results 
with different methods for 
Example 8.1 

Score Values of operators 

Methods .X1 .X2 .X3 Ranking 

IFWA  1 1 0.6470 . X1 = X2 > X3 

IFWG  0.8320 0.8320 0.6344 .X1 = X2 > X3 
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Table 15.7 Decision matrix 
of Example 8.2 

.R2 .A1 .A2 .A3 . A4 

.X1 (1.0,0) (0.9,0.2) (0.8,0.1) (0.6,0.3) 

.X2 (0.8,0.2) (0.6,0.1) (1.0,0) (0.9,0.3) 

.X3 (0.6,0.4) (0.5,0.5) (0.6,0.2) (0.9,0.4) 

Table 15.8 Ranking results 
with different methods for 
Example 8.1 

Score Values of operators 

Methods .X1 .X2 .X3 Ranking 

IFWA  Cannot be evaluated No 

IFWG  Cannot be evaluated No 

PFWA  1 1 0.7421 . X1 = X2 > X3 

PFWG  0.8492 0.8492 0.7660 . X1 = X2 > X3 

method, slight adjustments to the attribute values are done by replacing the values 
of .a12, a24, and . a34 with (0.9,0.2), (0.9,0.3), and (0.9,0.4), respectively, to the data 
of Example 8.1 such that it falls under PFS (q = 2 of q-ROFS). The revised decision 
matrix is given in Table 15.7. 

Now, similar to the above problem, we solve the MCDM problem. Using the 
score function, we get .X+ = {(1.0, 0), (0.9, 0.2), (1.0, 0), (0.9, 0.3)} and . X− =
{(0.6, 0.4), (0.5, 0.5), (0.6, 0.2), (0.6, 0.3)}. 
. D(X1, X

+) = 0.0241,D(X2, X
+) = 0.0338,D(X3, X

+) = 0.0850
. D(X1, X

−) = 0.0672,D(X2, X
−) = 0.0713,D(X3, X

−) = 0.0181

So, .Dmin(Xi,X
+) = D(X1, X

+) = 0.0241 and . Dmax(Xi,X
−) = D(X2, X

−) =
0.0713. 

. ζ(X1) = −0.0570, ζ(X2) = −0.4026, ζ(X3) = −3.2781

So, .X1 > X2 > X3. 
Upon comparing the results with different methods [22, 33, 34] presented in 

Table 15.8, it becomes evident that the IFWA/IFWG method could not provide any 
results. However, when utilizing the PFWA/PFWG method, both . X1 and . X2 are 
identified as the best alternatives. In contrast, our proposed method designates . X1
as the superior alternative, effectively resolving any confusion that may arise from 
having multiple options with the same highest rank. 

Example 8.3 From Examples 8.1 and 8.2, it can be seen that the methods are 
inadequate under the constraint . ˜P + ˜Q ≤ 1 and . ˜P2 + ˜Q2 ≤ 1, respectively. Now, 
to exemplify the advantages of the proposed method, further adjustments to the 
attribute values are done by replacing the values of .a12, a21, and . a34 with (0.9,0.7), 
(0.8,0.7), and (0.9,0.5), respectively, to the data of Example 8.2 such that it falls 
under q-ROFS (q = 3). The revised decision matrix is given in Table 15.9.
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Table 15.9 Decision matrix 
of Example 8.2 

.R3 .A1 .A2 .A3 . A4 

.X1 (1.0,0) (0.9,0.7) (0.8,0.1) (0.6,0.3) 

.X2 (0.8,0.7) (0.6,0.1) (1.0,0) (0.9,0.3) 

.X3 (0.6,0.4) (0.5,0.5) (0.6,0.2) (0.9,0.5) 

Table 15.10 Ranking results with different methods for Example 8.1 

Score Values of operators 

Methods .X1 .X2 .X3 Ranking 

IFWA Cannot be evaluated No 

IFWG Cannot be evaluated No 

PFWA Cannot be evaluated No 

PFWG Cannot be evaluated No 

.q − ROFWA 1 1 0.7430 . X1 = X2 > X3 

.q − ROFWG 0.8925 0.8925 0.7968 . X1 = X2 > X3 

Now, similar to the above problem, we solve the MCDM problem. Using the 
score function, we get .X+ = {(1.0, 0), (0.6, 0.1), (1.0, 0), (0.9, 0.3)} and . X− =
{(0.6, 0.4), (0.5, 0.5), (0.6, 0.2), (0.6, 0.3)}. 
. D(X1, X

+) = 0.0700,D(X2, X
+) = 0.0456,D(X3, X

+) = 0.0884
. D(X1, X

−) = 0.0737,D(X2, X
−) = 0.0819,D(X3, X

−) = 0.0241

So, .Dmin(Xi,X
+) = D(X2, X

+) = 0.0456 and . Dmax(Xi,X
−) = D(X2, X

−) =
0.0819. 

. ζ(X1) = −0.6335, ζ(X2) = 0, ζ(X3) = −1.6445

So, .X2 > X1 > X3. 
Upon comparing the results with different methods [21, 22, 33, 34] presented 

in Table 15.10, it is evident that both the IFWA/IFWG and PFWA/PFWG methods 
could not produce any results. In contrast, when employing the . q − ROFWA/q −
ROFWG method, both . X1 and . X2 are identified as the best alternatives. However, 
our proposed method designates . X2 as the superior choice, effectively resolving any 
confusion that may arise from having multiple options with the same top rank. 

9 Conclusion and Future Scope 

MCDM is a vital component of DM process. IFS, PFS, and q-ROFS have all been 
used to construct various methodologies. However, these approaches have some 
restrictions on the choice of MD and NMD. However, because the HFS idea allows 
for more independence in choosing the values, it is a superior option to q-ROFS. 
Here, a new score function is defined using the HFS notion. Our suggested score
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function has been compared to a number of other score functions that are already 
in use. It is clear that the score functions that are currently in use have certain 
drawbacks. Therefore, compared to existing forms, our suggested scoring function 
is a preferable option. As a generalization of Hamming, Euclidean, and Hausdorff 
distance, the Minkowski distance measure based on HFS was also introduced. 
The TOPSIS approach to the MCDM problem has also been explored, and its 
applicability is demonstrated by using the distance measure to solve the problem. 
Therefore, the MCDM that has been illustrated here can be solved using the way we 
have suggested. 

The concept of HFS is remarkable in solving DM problems due to its advantages 
over existing forms in taking MD and NMD. A lot of scope is there in decision-
making using HFS. New distance and similarity measures can be developed using 
HFS aiding in solving DM problems. 
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Chapter 16 
Advanced TOPSIS-Based College 
Selection MCGDM Problem in 
Trapezoidal Pythagorean Fuzzy 
Environment 

Avishek Chakraborty, Tipu Sultan Haque, Rasel Mondal, and Shariful Alam 

1 Introduction 

Uncertainty-based decision-making (DM) methods are one of the most essential 
theories in our regular life. Traditionally, it is usually imagined that the decision 
details that access the objects are stated in the form of crisp numbers. But in 
most cases, a decision in realistic circumstances is taken in an environment where 
the objectives and restrictions are usually imprecise in nature and therefore takes 
numerous steps to attain the final target. To resolve these types of problems, 
Professor L. A. Zadeh [1] manifested the thought of fuzzy sets (FS) in 1965. 
Normally, fuzziness occurs when the boundary of a piece of data is not specified in 
a human’s mind. The innovation of fuzzy sets creates a new branch in mathematics 
that plays an essential role in engineering, modern science, medical sectors, and the 
technical field of research. Further, researchers incorporated the structure of various 
fuzzy numbers such as triangular [2], trapezoidal [3], pentagonal [4], hexagonal 
[5], etc. But, the conception of fuzzy set cannot grab the idea of non-membership 
portions. Thus, the concept of FS was extended by Prof. Atanassov [6] after  
introducing the idea of intuitionistic fuzzy set (IFS) in 1986. IFS can capture two 
membership functions: i) truth (. μ) and false (. λ) of an uncertain number. Further, Liu 
and Yuan [7] and Ban [8] initiated the conception of triangular and trapezoidal intu-
itionistic fuzzy sets respectively in the research domain that contributes a significant 
role in the uncertainty area. Wang [9, 10] introduced some aggregation operators 
such as triangular intuitionistic weighted average (TIWA), triangular intuitionistic 
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order weighted average (TIOWA), triangular intuitionistic hybrid weighted average 
(TIHWA), and triangular intuitionistic weighted geometric (TIWG) that are very 
useful to tackle MCGDM problems. Further, Xu [11] proposed the generalized 
weighted average operator grounded on the intuitionistic trapezoidal fuzzy numbers; 
Atanassov and Gargov [12] demonstrate the idea of interval-valued IFS; Gou et 
al. [13] aim to develop the idea of exponential operation law for IFNs. Normally, 
there are several cases, we can observe that .μ + λ > 1 in IFS. To resolve this 
limitation, Yager [14] developed the idea of Pythagorean fuzzy set (PFS) in which 
he considered the idea as .μ2 + λ2 ≤ 1. So, it is obvious that PFS is more efficient 
than IFS as PFS can be used more accurately and sufficiently to solve uncertainty 
problems than IFS. Further, Yager [15] also developed some important aggregation 
operators based on PFN; Zhang and Xu [16] derived the classical TOPSIS method 
for MCDM problems with PyFN environment; Garg [17] defined some average 
aggregation operator and geometric aggregation operator under PyF environment; 
Zhou and Chen [18] manifested Euclidean distance, Hamming distance [19], the 
Hausdorff metric [20], and so on that are used to measure the distance between two 
IFNs. Later on, Prof. G. W. Wei [21, 22] introduced a new distance function that 
is known as Wei’s distance function that is mainly used in picture IFSs. Abbas et 
al. [23] started the idea of cubic Pythagorean fuzzy number and applied it to tackle 
the MADM problem. Garg [24] gave the idea of generalized Pythagorean fuzzy 
geometric interactive aggregation operators using Einstein operations and applied 
it to decision-making problems. Verma and Merigo [25] introduced the two new 
generalized similarity measures between Pythagorean fuzzy sets based on cosine 
and cotangent functions. Apart from these, several other researchers [26–33] have  
studied decision-making problems by introducing several novel operational laws 
and aggregation operators in different fuzzy environments. 

Recently, various methods such as TOPSIS [34], VIKOR [35], AHP [36], and 
ELECTRE [37] have been developed to solve the MCDM problems. Among these 
techniques, the TOPSIS method manifested by Hwang and Yoon [34] becomes 
very effective and popular strategy for evaluating the MCDM problem. The main 
concept of the TOPSIS technique is to select the alternative that has minimum 
distance from the positive ideal solution (PIS) and maximum distance from the 
negative ideal solution (NIS). After the invention of the TOPSIS strategy, it has been 
widely applied to different uncertainty fields. Chen [38] manifested the TOPSIS 
technique for MCDM problems in fuzzy environment. Boran et al. [39] extended the 
TOPSIS method to solve the MCDM problem in intuitionistic fuzzy environment. 
Ye [40] put forwarded TOPSIS technique in the interval-valued intuitionistic fuzzy 
numbers for virtual enterprise partner selection problem. Ou et al. [41] introduced 
linguistic intuitionistic fuzzy set TOPSIS strategy to solve MCDM problems. Zhang 
and Xu [16] derived the classical TOPSIS method for MCDM problems with the 
PyFN environment. Han et al. [42] developed a TOPSIS strategy in the linguistic 
Pythagorean fuzzy based on novel entropy and distance measure and applied it to 
solve the MADM problem. Umer et al.[43] extended the TOPSIS technique in the 
interval type-2 Pythagorean fuzzy numbers for a selection of solar tracking system 
problems.
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From the above literature, it is clear that the TOPSIS technique is a popular 
effective and vital technique for solving MCDM/MCGDM problems. On the 
other hand, TrPFNs is a generalized Pythagorean fuzzy number that can grab 
the uncertainty in a suitable way. So far, TOPSIS technique is developed for 
Pythagorean fuzzy numbers and interval type-2 Pythagorean fuzzy numbers but not 
for TrPFNs. To enrich this research gap, we have introduced the improved TOPSIS 
technique for TrPFNs that has been applied to an interesting real-life problem 
namely selection of best college based on several criteria. 

In this research article, we draw our attention to the field of trapezoidal 
Pythagorean fuzzy numbers (TrPFNs) that are generated from TrPFSs. We have 
discussed some important definitions related to TrPFN and then its algebraic 
properties and some important theorem on TrPFN. After that, we define three 
distance functions that are Euclidean distance, Hamming distance, and Wei’s 
distance functions based on two TrPFNs in which we relate two TrPFNs as a real 
number so that we rank them. In general, we used these three types of distance 
functions so that we can conclude our results more precisely. Later on, we discussed 
aggregation operators that are trapezoidal Pythagorean fuzzy weighted arithmetic 
(TrPyFWA) aggregation operators, and then we discussed some properties related to 
this operator. These operators are used in the TOPSIS method to solve the MCGDM 
problem in the trapezoidal Pythagorean fuzzy number environment. Finally, we have 
done the sensitivity analysis and comparative analysis to show the efficiency and 
reliability of our proposed technique. 

1.1 Advantages and Limitation of the Proposed Method 

Advantage: Here, we developed an improved TOPSIS technique based on a 
newly introduced novel distance function defined on trapezoidal Pythagorean fuzzy 
number environment. First of all, it is simple but very much rational technique to 
choose the best alternative. Second, we have used .T rPyFNs, where the uncertainty 
can be put in robust way. So in our proposed technique, we get comprehensible and 
rational result. 
Limitation: In this proposed technique, each alternative needs the same number of 
criteria because we cannot apply underlying aggregation operators if alternatives 
have a different number of criteria. This is a limitation of the proposed technique. 

2 Some Important Definition and Mathematical 
Preliminaries 

Here, some rudimentary definitions and operation laws associated to IFSs, TIFSs, 
and PyFSs have been discussed.
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Definition 2.1 ([6]) Let . U be the universal set. Then IFSs are characterized as 

. I = {〈k;μ(k), λ(k)〉 : where k ∈ U and μ, λ : U → [0, 1]}.

Here, . μ is known as membership function and . λ is known as non-membership 
function of an element of the IFS . K. For convenience, we present the pair as 
.˜I = {(μ, λ); where μ, λ ∈ [0, 1] : μ + λ ≤ 1} and called it intuitionistic fuzzy 
number (IFN). 

Example 2.1 Let .
〈

0.6, 0.3
〉

and .

〈

0.6, 0.7
〉

be two ordered pair numbers. Since . 0.6+
0.3 = 0.9 < 1, then .

〈

0.6, 0.7
〉

is an IFN but since .0.6 + 0.7 = 1.3 � 1, then 

.

〈

0.6, 0.7
〉

is not an IFN. 

Definition 2.2 ([14]) Let . U be the universal set. Then 

. P = {〈k;μ(k), λ(k)〉 : where k ∈ U and μ, λ : U → [0, 1]}

is called Pythagorean fuzzy set on . U if it satisfies the condition . μ2(k) + λ2(k) ≤
1; ∀k ∈ U . For convenience, Pythagorean fuzzy number .(PyFN) is represented as 
follows: .˜P = {(μ, λ); where μ, λ ∈ [0, 1] : μ2 + λ2 ≤ 1}. 
Example 2.2 In the above Example 2.1, we have seen that .

〈

0.6, 0.7
〉

is not an IFN. 

But, here .0.62 + 0.72 = 0.85 < 1. This implies that .
〈

0.6, 0.7
〉

is PyFN . 

Definition 2.3 ([8]) Let . U be the universal set. Then 

. T = {〈k;μ(k), λ(k)〉 : where k ∈ U and μ, λ : U → [0, 1]}

is said to be trapezoidal intuitionistic fuzzy set on . U . Here, .μ and λ are trapezoidal 
fuzzy numbers defined as 

. μ(k) = (F (k),G(k), T (k), V (k))

. λ(k) = (f (k), g(k), t (k), v(k))

with the condition .V (k) + v(k) ≤ 1 .∀k ∈ U . For convenience, we repre-
sent the pair as here trapezoidal intuitionistic fuzzy number is defined as . ˜T =
{〈((

F,G, T , V
)

,
(

(f, g, t, v
))〉

, where F,G, T , V, f, g, t, v : U → [0, 1]} with 
condition satisfied that .V + v ≤ 1. 

Example 2.3 Let .

〈

(0.2.0.6, 0.3, 0.6), (0.1.0.5, 0.3, 0.3)
〉

and . 

〈

(0.1.0.4, 0.3, 0.6),

(0.2.0.5, 0.4, 0.7)
〉

be any two trapezoidal fuzzy numbers. Since . 0.6 + 0.3 = 0.9 <

1, then .
〈

(0.2.0.6, 0.3, 0.6), (0.1.0.5, 0.3, 0.3)
〉

is a trapezoidal intuitionistic fuzzy
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number. But, .0.6 + 0.7 = 1.3 � 1. Then, .
〈

(0.1.0.4, 0.3, 0.6), (0.2.0.5, 0.4, 0.7)
〉

is 

not a trapezoidal intuitionistic fuzzy number. 

3 Trapezoidal Pythagorean Fuzzy Sets 

Definition 3.1 Let U be a universal set. Then 

. S = {〈k, μ(k), λ(k)〉 : k ∈ U}

is called trapezoidal Pythagorean fuzzy set, where μ(k) and λ(k) are trapezoidal 
fuzzy number defined as 

. μ(k) = (

F(k),G(k), T (k), V (k)
)

. λ(k) = (

f (k), g(k), t (k), v(k)
)

such that V 2(k) + v2(k) ≤ 1. For convenience, we represent the pair as ˜S =
{〈((

F,  G,  T ,  V
)

,
(

(f, g, t, v
))〉; where  F,G, T , V, f, g, t, v  : U → [0, 1], V  2 + 

v2 ≤ 1
}

and called it trapezoidal Pythagorean fuzzy number (T rPyFN). 

Example 3.1 In Example 2.3, we have already noticed that
〈

(0.1.0.4, 0.3, 0.6), 

(0.2.0.5, 0.4, 0.7)
〉

is not a trapezoidal intuitionistic fuzzy number. But, since 

0.62 + 0.72 = .85 < 1, then
〈

(0.1.0.4, 0.3, 0.6), (0.2.0.5, 0.4, 0.7)
〉

is a trapezoidal 

Pythagorean fuzzy number. 

Remark 3.1 From the above examples, we can conclude that the range of trape-
zoidal Pythagorean fuzzy environment will be more wider than trapezoidal intu-
itionistic fuzzy environment. 

Now, we will discuss some important propositions and theorems related to 
T rPyFN . 

Proposition 3.1 Let ˜T1 = 〈(F1,G1, T1, V1), (f1, g1, t1, v1)〉 And ˜T2 =
〈(F2,G2, T2, V2), (f2, g2, t2, v2)〉 be any two trapezoidal Pythagorean fuzzy 
numbers. Here, we have defined their operational rules as follows: 

(i) ˜T1⊕˜T2 =
〈

(√

F 2 
1 + F 2 

2 − F 2 
1 F

2 
2 ,

√

G2 
1 + G2 

2 − G2 
1G

2 
2,

√

T 2 1 + T 2 2 − T 2 1 T 2 2 ,
√

V 2 1 + V 2 2 − V 2 1 V 2 2
)

,
(

f1f2, g1g2, t1t2, v1v2

)

〉
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(ii) ˜T1⊗˜T2 =
〈

(

F1F2,G1G2, T1T2, V1V2

)

,
(√

f 2 1 + f 2 2 − f 2 1 f 2 2 ,
√

g2 
1 + g2 

2 − g2 
1g

2 
2,

√

t2 1 + t2 2 − t2 1 t2 2 ,
√

v2 1 + v2 2 − v2 1v
2 
2

)

〉

(iii) ψ˜T1 =
〈

(√

1 − (1 − F 2 
1 )

ψ ,

√

1 − (1 − G2 
1)

ψ ,

√

1 − (1 − T 2 1 )ψ ,

√

1 − (1 − V 2 1 )ψ
)

,
(

f ψ 
1 , g  ψ 

1 , t  ψ 
1 , v  ψ 

1

)

〉

(iv) ˜T ψ 
1 =

〈

(

F ψ 
1 ,G  ψ 

1 , T  ψ 
1 , V  ψ 

1

)

,
(√

1 − (1 − f 2 1 )ψ ,

√

1 − (1 − g2 
1)

ψ ,

√

1 − (1 − t2 1 )ψ ,

√

1 − (1 − v2 1)
ψ
)

〉

Proposition 3.2 Let ˜T = 〈

(F,G, T , V  ),  (f, g, t, v)
〉

, ˜T1 = 〈

(F1,G1, T1, V1), 
(f1, g1, t1, v1)

〉

, and
˜T2 =

〈

(F2,G2, T2, V2), (f2, g2, t2, v2)
〉

be three T rPyFNs; then: 

(i) ˜T1 ∪ ˜T2 =
〈

(

max{F1, F2},max{G1,G2},max{T1, T2},max{V1, V2}
)

,
(

min{f1, f2},min{g1, g2}, min{t1, t2},min{v1, v2}
)

〉

(ii) ˜T1 ∩ ˜T2 =
〈

(

min{F1, F2},min{G1,G2},min{T1, T2},min{V1, V2}
)

,
(

max{f1, f2},max{g1, g2}, max{t1, t},max{v1, v2}
)

〉

(iii) ˜T c = 〈

(f, g, t, v),  (F,G, T , V  )
〉

Theorem 3.1 Let ˜T = 〈

(F,G, T , V  ),  (f, g, t, v)
〉

, ˜T1 =
〈

(F1,G1, T1, V1), (f1, g1, 
t1, v1)

〉

, and ˜T2 =
〈

(F2,G2, T2, V2), (f2, g2, t2, v2)
〉

be three T rPyFNs; then: 

(i) ˜T1 ∪ ˜T2 = ˜T2 ∪ ˜T1 
(ii) ˜T1 ∩ ˜T2 = ˜T2 ∩ ˜T1 
(iii) φ(˜T1 ∪ ˜T2) = φ˜T1 ∪ φ˜T2 
(iv) (˜T1 ∪ ˜T2)

φ = ˜T φ 
1 ∪ ˜T φ 

2 
(v) (˜T c )φ = (φ˜T )c 

(vi) φ(˜T c ) = (˜T φ )c 

(i) Proof: From proposition 3.2, we have  

. 

˜T1 ∪ ˜T2 =
〈

(

max{F1, F2},max{G1,G2},max{T1, T2},max{V1, V2}
)

,

(

min{f1, f2},min{g1, g2},min{t1, t2},min{v1, v2}
)

〉

.

=
〈

(

max{F2, F1},max{G2,G1},max{T2, T1},max{V2, V1}
)

,

(

min{f2, f1},min{g2, g1},min{t2, t1},min{v2, v1}
)

〉

= ˜T2 ∪ ˜T1
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(ii) Proof: From proposition 3.2, similarly, we can deduce the result. 
(iii) Proof: Now, using the above two Proposition 3.1 (iii) and Proposition 3.2 (i), 
we get 

. 

φ(˜T1 ∪ ˜T2)

= φ
〈

(

max{F1, F2},max{G1,G2},max{T1, T2},max{V1, V2}
)

,

(

min{f1, f2},min{g1, g2},min{t1, t2},min{v1, v2}
)

〉

=
〈

(
√

1 − (1 − max{F 2
1 , F 2

2 })φ,

√

1 − (1 − max{G2
1,G

2
2})φ,

√

1 − (1 − max{T 2
1 , T 2

2 })φ,

√

1 − (1 − max{V 2
1 , V 2

2 })φ
)

,

(

min{f φ
1 , f

φ
2 },min{gφ

1 , g
φ
2 },min{tφ1 , t

φ
2 }, ,min{vφ

1 , v
φ
2 }
)

〉

=
〈

(

max
{

√

1 − (1 − F 2
1 )φ,

√

1 − (1 − F 2
2 )φ

}

,max
{

√

1 − (1 − G2
1)

φ,

√

1 − (1 − G2
2)

φ
}

,max
{

√

1 − (1 − T 2
1 )φ,

√

1 − (1 − T 2
2 )φ

}

,

max
{

√

1 − (1 − V 2
1 )φ,

√

1 − (1 − V 2
2 )φ

}

)

,

(

min{f φ
1 , f

φ
2 },min{gφ

1 , g
φ
2 },min{tφ1 , t

φ
2 }, ,min{vφ

1 , v
φ
2 }
)

〉

= φ˜T1 ∪ φ˜T2.

(iv) Proof: This proof follows from the previous one. 
(v) Proof: From Proposition 3.1 (iv) and Proposition 3.2 (iii), we have 

. 

(˜T c)φ

= 〈

(F,G, T , V ), (f, g, t, v)
〉φ

=
〈

(

f φ, gφ, tφ, vφ
)

,
(
√

1 − (1 − F 2)φ,
√

1 − (1 − G2)φ,
√

1 − (1 − T 2)φ,

√

1 − (1 − V 2)φ
)

〉

= (φ˜T )c

(vi) Proof: The proof is similar to the previous one. 

Theorem 3.2 Let ˜T = 〈

(F,G, T , V  ),  (f, g, t, v)
〉

,˜T1 =
〈

(F1,G1, T1, V1), (f1, g1, 
t1, v1)

〉

, ˜T2 =
〈

(F2,G2, T2, V2), (f2, g2, t2, v2)
〉

be three T rPyFNs; then: 

(i) ˜T1 ⊕ ˜T2 = ˜T2 ⊕ ˜T1 
(ii) ˜T1 ⊗ ˜T2 = ˜T2 ⊗ ˜T1
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(iii) φ(˜T1 ⊕ ˜T2) = φ˜T1 ⊕ φ˜T2 
(iv) (φ1˜T ⊕ φ2˜T )  = (φ1 + φ2)T 
(v) (˜T1 ⊗ ˜T2)

φ = (˜T φ 
1 ⊗ ˜T φ 

2 ) 
(vi) (˜T φ1 ⊗ ˜T φ2) = ˜T φ1+φ2 

(i) Proof: From Proposition 3.1 (i), we get 

. 

˜T1⊕˜T2

=
〈

(
√

F 2
1 + F 2

2 − F 2
1 F 2

2 ,

√

G2
1 + G2

2 − G2
1G

2
2,

√

T 2
1 + T 2

2 − T 2
1 T 2

2 ,

√

V 2
1 + V 2

2 − V 2
1 V 2

2

)

,
(

f1f2, g1g2, t1t2, v1v2

)

〉

=
〈

(
√

F 2
2 + F 2

1 − F 2
2 F 2

1 ,

√

G2
2 + G2

1 − G2
2G

2
1,

√

T 2
2 + T 2

1 − T 2
2 T 2

1 ,

√

V 2
2 + V 2

1 − V 2
2 V 2

1

)

,
(

f2f1, g2g1, t2t1, v2v1

)

〉

= ˜T2 ⊕ ˜T1

(ii) Proof: The proof follows from the previous theorem by using Proposition 3.1 
(ii). 
(iii) Proof: From Proposition 3.1 (iii), we have 

.

φ˜T1 ⊕ φ˜T2

=
〈

(
√

1 − (1 − F 2
1 )φ,

√

1 − (1 − G2
1)

φ,

√

1 − (1 − T 2
1 )φ,

√

1 − (1 − V 2
1 )φ

)

,
(

f
φ
1 , g

φ
1 , t

φ
1 , v

φ
1

)

〉

⊕
〈

(
√

1 − (1 − F 2
2 )φ,

√

1 − (1 − G2
2)

φ,

√

1 − (1 − T 2
2 )φ,

√

1 − (1 − V 2
2 )φ

)

,
(

f
φ
2 , g

φ
2 , t

φ
2 , v

φ
2

)

〉

=
〈(

(
√

1 − (1 − F 2
1 )φ + 1 − (1 − F 2

2 )φ − (1 − (1 − F 2
1 )φ)(1 − (1 − F 2

2 )φ)
)

,

(
√

1 − (1 − G2
1)

φ + 1 − (1 − G2
2)

φ − (1 − (1 − G2
1)

φ)(1 − (1 − G2
2)

φ)
)

,

(
√

1 − (1 − T 2
1 )φ + 1 − (1 − T 2

2 )φ − (1 − (1 − T 2
1 )φ)(1 − (1 − T 2

2 )φ)
)

,
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. 

(
√

1 − (1 − V 2
1 )φ + 1 − (1 − V 2

2 )φ − (1 − (1 − V 2
1 )φ)(1 − (1 − V 2

2 )φ)
)

)

,

(

(

f1f2)
φ,
(

g1g2)
φ,
(

t1t2)
φ,
(

v1v2)
φ

)〉

= φ(˜T1 ⊕ ˜T2).

(iv) Proof: The proof is similar to the previous one. 
(v) Proof: From Propositions 3.1 (ii) and 3.1 (iv), we get 

. 

˜T
φ
1 ⊗ ˜T

φ
2

=
〈

(

F
φ
1 ,G

φ
1 , T

φ
1 , V

φ
1

)

,
(
√

1 − (1 − f 2
1 )φ,

√

1 − (1 − g2
1)

φ,

√

1 − (1 − t21 )φ,

√

1 − (1 − v21)
φ
)

〉

⊗
〈

(

F
φ
2 ,G

φ
2 , T

φ
2 , V

φ
2

)

,
(
√

1 − (1 − f 2
2 )φ,

√

1 − (1 − g2
2)

φ,

√

1 − (1 − t22 )φ,

√

1 − (1 − v22)
φ
)

〉

.

=
〈(

F
φ
1 F

φ
2 ,G

φ
1G

φ
2 , T

φ
1 T

φ
2 , V

φ
1 V

φ
2

)

,

(

(
√

1 − (1 − f 2
1 )φ + 1 − (1 − f 2

2 )φ − (1 − (1 − f 2
1 )φ)(1 − (1 − f 2

2 )φ)
)

,

(
√

1 − (1 − g2
1)

φ + 1 − (1 − g2
2)

φ − (1 − (1 − g2
1)

φ)(1 − (1 − g2
2)

φ)
)

,

(
√

1 − (1 − t21 )φ + 1 − (1 − t22 )φ − (1 − (1 − t21 )φ)(1 − (1 − t22 )φ)
)

,

(
√

1 − (1 − v21)
φ + 1 − (1 − v22)

φ − (1 − (1 − v21)
φ)(1 − (1 − v22)

φ)
)

)〉

=
〈(

(F1F2)
φ, (G1G2)

φ, (T1T2)
φ, (V1V2)

φ

)

,

(

(
√

1 − (1 − f 2
1 − f 2

2 − f 2
1 f 2

2 )φ
)

,

(
√

1 − (1 − g2
1 − g2

2 − g2
1g

2
2)

φ
)

,
(
√

1 − (1 − t21 − t22 − t21 t22 )φ
)

,

(
√

1 − (1 − v21 − v22 − v21v
2
2)

φ
)

)〉

= (˜T1 ⊗ ˜T2)
φ
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(vi) Proof: The proof is similar to the previous one. 

Theorem 3.3 Let ˜T = 〈

(F,G, T , V  ),  (f, g, t, v)
〉

,˜T1 =
〈

(F1,G1, T1, V1), (f1, g1, 
t1, v1)

〉

, and ˜T2 =
〈

(F2,G2, T2, V2), (f2, g2, t2, v2)
〉

be three T rPyFNs; then: 

(i) φ˜T1 � φ˜T2 = φ(˜T1 � ˜T2), if F1 ≥ F2, G1 ≥ G2, T1 ≥ T2, V1 ≥ V2, f1 ≤ 
min(f2, f2π1 

π2 
), g1 ≤ min(g2, g2π1 

π2 
), t1 ≤ min(t2, t2π1 

π2 
), v1 ≤ min(v2, v2π1 

π2 
). 

(ii) (˜T1�˜T2)
φ = ˜T φ 

1 �˜T φ 
2 , if F1 ≤ min(F2, F2π1 

π2 
), G1 ≤ min(G2, G2π1 

π2 
), T1 ≤ 

min(T2, T2π1 
π2 

), V1 ≤ min(V2, V2π1 
π2 

), f1 ≥ f2, g1 ≥ g2, t1 ≥ t2, v1 ≥ v2. 
(iii) φ1˜T � φ2˜T = (φ1 − φ2)˜T , if  φ1 ≥ φ2. 
(iv) ˜T φ1 � ˜T φ2 = ˜T φ1−φ2 . 

(i) Proof: Given that F1 ≥ F2, G1 ≥ G2, T1 ≥ T2, V1 ≥ V2, f1 ≤ 
min(f2, f2π1 

π2 
), g1 ≤ min(g2, g2π1 

π2 
), t1 ≤ min(t2, t2π1 

π2 
), v1 ≤ min(v2, v2π1 

π2 
). 

So, f1π2 ≤ f2π1, g1π2 ≤ g2π1, t1π2 ≤ t2π1, v1π2 ≤ v2π1
⇒ f 2 1 f 2 2 + f 2 1 π

2 
2 ≤ f 2 1 f 2 2 + f 2 2 π

2 
1 , g2 

1g
2 
2 + g2 

1π
2 
2 ≤ g2 

1g
2 
2 + g2 

2π
2 
1 , t2 1 t2 2 + 

t2 1π2 
2 ≤ t2 1 t2 2 + t2 2π2 

1 , v2 1v
2 
2 + v2 1π

2 
2 ≤ v2 1v

2 
2 + v2 2π

2 
1

⇒ f 2 1 
f 2 2 

≤ f 2 2 +π2 
1 

f 2 1 +π2 
2 
, g2 1 

g2 2 
≤ g2 2+π2 

1 
g2 1+π2 

2 
, t2 1 

t2 2 
≤ t2 2+π2 

1 
t2 1+π2 

2 
, v2 1 

v2 2 
≤ v2 2+π2 

1 
v2 1+π2 

2

⇒
(

f 2 1 
f 2 2

)φ ≤
(

f 2 2 +π2 
1 

f 2 1 +π2 
2

)φ 
,
(

g2 1 
g2 2

)φ ≤
(

g2 2+π2 
1 

g2 1+π2 
2

)φ 
,
(

t2 1 
t2 2

)φ ≤
(

t2 2+π2 
1 

t2 1+π2 
2

)φ 
,
(

v2 1 
v2 2

)φ ≤
(

v2 2+π2 
1 

v2 1+π2 
2

)φ

⇒ 1−
(

f 2 2 +π2 
1 

f 2 1 +π2 
2

)φ +
(

f 2 1 
f 2 2

)φ ≤ 1; 1−
(

g2 2+π2 
1 

g2 1+π2 
2

)φ +
(

g2 1 
g2 2

)φ ≤ 1; 1−
(

t2 2+π2 
1 

t2 1+π2 
2

)φ +
(

t2 1 
t2 2

)φ ≤ 1; 
1 −

(

v2 2+π2 
1 

v2 1+π2 
2

)φ +
(

v2 1 
v2 2

)φ ≤ 1

⇒
√

(

1 −
(

f 2 2 +π2 
1 

f 2 1 +π2 
2

)φ
)2 

+
(

f 2 1 
f 2 2

)φ ≤ 1;
√

(

1 −
(

g2 2+π2 
1 

g2 1+π2 
2

)φ
)2 

+
(

g2 1 
g2 2

)φ ≤ 1;
√

(

1 −
(

t2 2+π2 
1 

t2 1+π2 
2

)φ
)2 

+
(

t2 1 
t2 2

)φ ≤ 1;
√

(

1 −
(

v2 2+π2 
1 

v2 1+π2 
2

)φ
)2 

+
(

v2 1 
v2 2

)φ ≤ 1

⇒
(
√

1 −
(

1−F 2 
1 

1−F 2 
2

)φ
)2 

+
(

f φ 
1 

f φ 
2

)2 ≤ 1;
(
√

1 −
(

1−G2 
1 

1−G2 
2

)φ
)2 

+
(

g φ 
1 

g φ 
2

)2 ≤ 1;
(
√

1 −
(

1−T 2 1 
1−T 2 2

)φ
)2 

+
(

t φ 
1 

t φ 
2

)2 ≤ 1;
(
√

1 −
(

1−V 2 1 
1−V 2 2

)φ
)2 

+
(

v φ 
1 

v φ 
2

)2 ≤ 1. 

Then,
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φ(˜T1 � ˜T2)

= φ

〈 (

√

F 2
1 − F 2

2

1 − F 2
2

,

√

G2
1 − G2

2

1 − G2
2

,

√

T 2
1 − T 2

2

1 − T 2
2

,

√

V 2
1 − V 2

2

1 − V 2
2

)

,

(

f1

f2
,
g1

g2
,
t1

t2
,
v1

v2

)〉

=
〈(

√

√

√

√1−
(

1− F 2
1 − F 2

2

1 − F 2
2

)φ

,

√

√

√

√1−
(

1− G2
1 − G2

2

1 − G2
2

)φ

,

√

√

√

√1−
(

1− T 2
1 − T 2

2

1 − T 2
2

)φ

,

√

√

√

√1−
(

1 − V 2
1 − V 2

2

1 − V 2
2

)φ)

,

(

f
φ
1

f
φ
2

,
g

φ
1

g
φ
2

,
t
φ
1

t
φ
2

,
v

φ
1

v
φ
2

)〉

.

Now, 

. 

φ˜T1 � φ˜T2

=
〈

(
√

1 − (1 − F 2
1 )φ,

√

1 − (1 − G2
1)

φ,

√

1 − (1 − T 2
1 )φ,

√

1 − (1 − V 2
1 )φ

)

,

(

f
φ
1 , g

φ
1 , t

φ
1 , v

φ
1

)

〉

�
〈

(
√

1 − (1 − F 2
2 )φ,

√

1 − (1 − G2
2)

φ,

√

1 − (1 − T 2
2 )φ,

√

1 − (1 − V 2
2 )φ

)

,

(

f
φ
2 , g

φ
2 , t

φ
2 , v

φ
2

)

〉

=
〈(

√

1 − (1 − F 2
1 )φ − (1 − (1 − F 2

2 )φ

1 − (1 − (1 − F 2
2 )φ)

,

√

1 − (1 − G2
1)

φ − (1 − (1 − G2
2)

φ)

1 − (1 − (1 − G2
2)

φ)
,

√

1 − (1 − T 2
1 )φ − (1 − (1 − T 2

2 )φ)

1 − (1 − (1 − T 2
2 )φ)

,

√

1 − (1 − V 2
1 )φ − (1 − (1 − V 2

2 )φ)

1 − (1 − (1 − V 2
2 )φ)

)

,

(

f
φ
1

f
φ
2

,
g

φ
1

g
φ
2

,
t
φ
1

t
φ
2

,
v

φ
1

v
φ
2

)〉

= φ(˜T1 � ˜T2).

(ii) Proof: The proof is similar to the previous one. 
(iii) Proof: As φ1 ≥ φ2, then we get
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. 

φ1˜T � φ2˜T

=
〈

(
√

1 − (1 − F 2)φ1 ,
√

1 − (1 − G2)φ1 ,
√

1 − (1 − T 2)φ1 ,
√

1 − (1 − V 2)φ1
)

,

(

f φ1 , gφ1 , tφ1 , vφ1
)

〉

�
〈

(
√

1 − (1 − F 2)φ2 ,
√

1 − (1 − G2)φ2 ,
√

1 − (1 − T 2)φ2 ,
√

1 − (1 − V 2)φ2
)

,

(

f φ2 , gφ2 , tφ2 , vφ2
)

〉

=
〈(

√

1− (1− F 2)φ1 − (1− (1− F 2)φ2)

1− (1− (1− F 2)φ2
,

√

1− (1− G2)φ1 − (1− (1− G2)φ2)

1− (1− (1− G2)φ2)
,

√

1 − (1 − T 2)φ1 − (1 − (1 − T 2)φ2)

1 − (1 − (1 − T 2)φ2)
,

√

1 − (1 − V 2)φ1 − (1 − (1 − V 2)φ2)

1 − (1 − (1 − V 2)
φ
2 )

)

,

(

f φ1

f φ2
,
gφ1

gφ2
,
tφ1

tφ1
,
vφ1

vφ2

)〉

=
〈

(
√

1 − (1 − F 2)φ1−φ2 ,
√

1 − (1 − G2)φ1−φ2 ,
√

1 − (1 − T 2)φ1−φ2 ,

√

1 − (1 − V 2)φ1−φ2

)

,

(

f φ1−φ2 , gφ1−φ2 , tφ1−φ2 , vφ1−φ2
)

〉

= (φ1 − φ2)˜T .

(iv) Proof: The proof follows from the previous one. 

Theorem 3.4 Let ˜T1 =
〈

(F1,G1, T1, V1), (f1, g1, t1, v1)
〉

,˜T2 =
〈

(F2,G2, T2, V2), 
(f2, g2, t2, v2)

〉

be two T rPyFNs; then: 

(i) ˜T c 
1

⋃

˜T c 
2 = (˜T1

⋂

˜T2)
c 

(ii) ˜T c 
1

⋂

˜T c 
2 = (˜T1

⋃

˜T2)
c 

(iii) ˜T c 
1

⊕

˜T c 
2 = (˜T1

⊗

˜T2)
c 

(iv) ˜T c 
1

⊗

˜T c 
2 = (˜T1

⊗

˜T2)
c 

(v) ˜T c 
1 � ˜T c 

2 = (˜T1 � ˜T2)
c, if  f1 ≥ f2, g1 ≥ g2, t1 ≥ t2, v1 ≥ v2 

and F1 ≤ min

(

F2, F2π1 
π2

)

,G1 ≤ min

(

G2, G2π1 
π2

)

, T1 ≤ min

(

T2, T2π1 
π2

)

, 

V1 ≤ min

(

V2, V2π1 
π2

)
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(vi) ˜T c 
1 � ˜T c 

2 = (˜T1 � ˜T2)
c, if  F1 ≥ F2, G1 ≥ G2, T1 ≥ T2, V1 ≥ V2 and 

f1 ≤ min

(

f2, f2π1 
π2

)

, g1 ≤ min

(

g2, g2π1 
π2

)

, t1 ≤ min

(

t2, t2π1 
π2

)

(i) Proof: We have from definition, 

. 

˜T c
1

⋃

˜T c
2

=
〈

(f1, g1, t1, v1), (F1,G1, T1, V1)

〉

⋃

〈

(f2, g2, t2, v2), (F2,G2, T2, V2)

〉

=
〈(

max{f1, f2},max{g1, g2},max{t1, t2},max{v1, v2}
)

,

(

min{F1, F2},min{G1,G2},min{T1, T2)},min{V1, V2}
)〉

=
〈(

min{F1, F2},min{G1,G2},min{T1, T2},min{V1, V2}
)

,

(

max{f1, f2},max{g1, g2},max{t1, t2},max{v1, v2}
)〉c

= (˜T1
⋂

˜T2)
c.

(ii) Proof: The proof follows from the previous one. 
(iii) Proof: From the definition, we get 

. 

˜T c
1

⊕

˜T c
2

= 〈(f1, g1, t1, v1), (F1,G1, T1, V1)〉
⊕

〈(f2, g2, t2, v2), (F2,G2, T2, V2)〉

=
〈(

√

f 2
1 + f 2

2 − f 2
1 f 2

2 ,

√

g2
1 + g2

2 − g2
1g

2
2,

√

t21 + t22 − t21 t22 ,

√

v21 + v22 − v21v
2
2

)

,

(

F1F2,G1G2, T1T2, V1V2

)〉

=
〈(

F1F2,G1G2, T1T2, V1V2

)

,

(
√

f 2
1 + f 2

2 − f 2
1 f 2

2 ,

√

g2
1 + g2

2 − g2
1g

2
2,

√

t21 + t22 − t21 t22 ,

√

v21 + v22 − v21v
2
2

)〉c

= (˜T1
⊗

˜T2)
c.

(iv) Proof: The proof is similar to the previous one.



356 A. Chakraborty et al.

(v) Proof: As f1 ≥ f2, g1 ≥ g2, t1 ≥ t2, v1 ≥ v2 and F1 ≤ min

(

F2, F2π1 
π2

)

, 

G1 ≤ min

(

G2, G2π1 
π2

)

, 

T1 ≤ min

(

T2, T2π1 
π2

)

, V1 ≤ min

(

V2, V2π1 
π2

)

, then from definition we get 

. 

˜T c
1 � ˜T c

2

=〈(f1, g1, t1, v1), (F1,G1, T1, V1)〉 � 〈(f2, g2, t2, v2), (F2,G2, T2, V2)〉

=
〈(

√

f 2
1 − f 2

2

1 − f 2
2

,

√

g2
1 − g2

2

1 − g2
2

,

√

t21 − t22

1 − t22

,

√

v21 − v22

1 − v22

)

,

(

F1

F2
,
G1

G2
,
T1

T2
,
V1

V2

)〉

=
〈(

F1

F2
,
G1

G2
,
T1

T2
,
V1

V2

)

,

(

√

f 2
1 − f 2

2

1 − f 2
2

,

√

g2
1 − g2

2

1 − g2
2

,

√

t21 − t22

1 − t22

,

√

v21 − v22

1 − v22

)〉c

= (˜T1 � ˜T2)
c.

(vi) Proof: The proof is similar to the previous one. 

Theorem 3.5 Let ˜T1 =
〈

(F1,G1, T1, V1), (f1, g1, t1, v1)
〉

,˜T2 =
〈

(F2,G2, T2, V2), 
(f2, g2, t2, v2)

〉

be two T rPyFNs; then: 

(i)

(

˜T1
⋃

˜T2

)

⋂

˜T2 = ˜T2 

(ii)

(

˜T1
⋂

˜T2

)

⋃

˜T2 = ˜T2 

(iii)

(

˜T1 � ˜T2

)

⊕

˜T2 = ˜T1, if  F1 ≥ F2, G1 ≥ G2, T1 ≥ T2, V1 ≥ V2 

and f1 ≤ min

(

f2, f2π1 
π2

)

, g1 ≤ min

(

g2, g2π1 
π2

)

, t1 ≤ min

(

t2, t2π1 
π2

)

, 

v1 ≤ min

(

v2, v2π1 
π2

)

(iv)

(

˜T1 � ˜T2

)

⊗

˜T2 = ˜T1, if  f1 ≥ f2, g1 ≥ g2, t1 ≥ t2, v1 ≥ v2 and 

F1 ≤ min

(

F2, F2π1 
π2

)

, G1 ≤ min

(

G2, G2π1 
π2

)

, T1 ≤ min

(

T2, T2π1 
π2

)

, 

V1 ≤ min

(

V2, V2π1 
π2

)
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(i) Proof: Taking LHS, we get 

. 

(˜T1
⋃

˜T2)
⋂

˜T2

=
〈

(

max
{

F1, F2
}

,max
{

G1,G2
}

,max
{

T1, T2
}

,max max{V1, V2
}

)

,

(

min
{

f1, f2
}

,min
{

g1, g2
}

,min
{

t1, t2
}

,min
{

v1, v2
}

)

〉

⋂
〈

(F2,G2, T2, V2), (f2, g2, t2, v2)
〉

. 

=
〈

(

min
{

max
{

F1, F2
}

, F2
}

,min
{

max
{

G1,G2
}

,G2
}

,

min
{

max
{

T1, T2
}

, T2
}

,
{

max
{

V1, V2
}

, V2
}

)

,

(

max
{

min
{

f1, f2
}

, f2
}

,max
{

min
{

g1, g2
}

, g2
}

,max
{

min
{

t1, t2
}

, t2
}

,

max
{

min
{

v1, v2
}

, v2
}

)

〉

=
〈

(F2,G2, T2, V2), (f2, g2, t2, v2)
〉

= ˜T2.

(ii) Proof: The proof is similar to the previous one. 
(iii) Proof: Now from the given LHS, we get 

.

(˜T1 � ˜T2)
⊕

˜T2

=
〈(

√

F 2
1 − F 2

2

1 − F 2
2

,

√

G2
1 − G2

2

1 − G2
2

,

√

T 2
1 − T 2

2

1 − T 2
2

,

√

V 2
1 − V 2

2

1 − V 2
2

)

,

(

f1

f2
,
g1

g2
,
t1

t2
,
v1

v2

)〉

⊕

〈(

F2,G2, T2, V2

)

,

(

f2, g2, t2, v2

)〉

=
〈

√

√

√

√

(

√

F 2
1 − F 2

2

1 − F 2
2

)2

+ F 2
2 −

(

√

F 2
1 − F 2

2

1 − F 2
2

)2

F 2
2 ,

√

√

√

√

(

√

G2
1 − G2

2

1 − G2
2

)2

+ G2
2 −

(

√

G2
1 − G2

2

1 − G2
2

)2

G2
2,
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. 

√

√

√

√

(

√

T 2
1 − T 2

2

1 − T 2
2

)2

+ T 2
2 −

(

√

T 2
1 − T 2

2

1 − T 2
2

)2

T 2
2 ,

√

√

√

√

(

√

V 2
1 − V 2

2

1 − V 2
2

)2

+ V 2
2 −

(

√

V 2
1 − V 2

2

1 − V 2
2

)2

V 2
2 ,

(

f1

f2
f2,

g1

g2
g2,

t1

t2
t2,

v1

v2
v2

)〉

=
〈(

F1,G1, T1, V1

)

,

(

f1, g1, t1, v1

)〉

= ˜T1.

(iv) Proof: The proof is similar to the previous one. 

Definition 3.2 Let ˜T1 = 〈(F1,G1, T1, V1), (f1, g1, t1, v1)〉 and ˜T2 = 〈(F2,G2, 
T2, V2), (f2, g2, t2, v2)〉 be any two trapezoidal Pythagorean fuzzy numbers. Then, 
the distance between ˜T1 and ˜T2 is given by 

. 

dEu(˜T1, ˜T2) =
√

(F2 − F1)
2 + (G2 − G1)

2 + (T2 − T1)
2 + (V2 − V1)

2

+(f2 − f1)
2 + (g2 − g1)

2 + (t2 − t1)
2 + (v2 − v1)

2

dH (˜T1, ˜T2) = | F2 − F1 | + | G2 − G1 | + | T2 − T1 | + | V2 − V1 | + |
f2 − f1 | + | g2 − g1 | + | t2 − t1 | + | v2 − v1 |

dW (˜T1, ˜T2) = 1 − cos

[

π

4

{ | F2 − F1 | + | G2 − G1 | + | T2 − T1 | + |

V2 − V1 | + | f2 − f1 | + | g2 − g1 | + | t2 − t1 | + | v2 − v1 |}
]

.

4 Aggregation Operator 

Definition 4.1 Let ˜Tk = 〈(Fk,Gk, Tk, Vk), (fk, gk, tk, vk)〉 (k = 1, 2, · · ·  , n)  
be any collection of T rPyFNs. Then trapezoidal Pythagorean fuzzy weighted 
arithmetic (T rPyFWA)  aggregation operator is defined as follows: 

. 

T rPyFWA(˜T1, ˜T2, · · · , ˜Tn)

= φ1˜T1
⊕

φ2˜T2
⊕

· · ·
⊕

φn
˜Tn,

where φk’s are weights of ˜Tk (k = 1, 2, · · ·  , n), respectively, and 
n
∑

k=1 

φk = 1.
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Theorem 4.1 Let ˜Tk = 〈(Fk,Gk, Tk, Vk), (fk, qk, tk, vk)〉 (k = 1, 2, · · ·  , n)  be 
any collection of T rPyFNs. Then, their aggregated value using the T rPyFWA  
aggregation operator is also a trapezoidal Pythagorean fuzzy number and is given 
by 

. 

T rPyFWA(˜T1, ˜T2, · · · , ˜Tn)

=
〈(

√

√

√

√1 −
n
∏

r=1

(1 − F 2
r )φr ,

√

√

√

√1 −
n
∏

r=1

(1 − G2
r )

φr ,

√

√

√

√1 −
n
∏

r=1

(1 − T 2
r )φr ,

√

√

√

√1 −
n
∏

r=1

(1 − V 2
r )φr

)

,

( n
∏

i=1

fr
φr ,

n
∏

i=1

qr
φr ,

n
∏

i=1

tr
φr ,

n
∏

i=1

vr
φr

)〉

, · · · · · · · · · · · · · · · · · · · · · (1)

where φrs are weights of ˜Tr (r = 1, 2, · · ·  , n)  and 
n
∑

r=1 

φr = 1. 

Proof If we take r = 2, then 

.

φ1˜T1
⊕

φ2˜T2

=
〈(

√

1 − (1 − F 2
1 )φ1 ,

√

1 − (1 − G2
1)

φ1 ,

√

1 − (1 − T 2
1 )φ1 ,

√

1 − (1 − V 2
1 )φ1

)

,

(

f
φ1
1 , g

φ1
1 , t

φ1
1 , v

φ1
1

)〉

⊕

〈(
√

1 − (1 − F 2
2 )φ2 ,

√

1 − (1 − G2
2)

φ2 ,

√

1 − (1 − T 2
2 )φ2 ,

√

1 − (1 − V 2
2 )φ2

)

,

(

f
φ2
2 , g

φ2
2 , t

φ2
2 , v

φ2
2

)〉

=
〈(

√

1 − (1 − F 2
1 )φ1 + 1 − (1 − F 2

2 )φ2 − (1 − (1 − F 2
1 )φ1)(1 − (1 − F 2

2 )φ2),

√

1 − (1 − G2
1)

φ1 + 1 − (1 − G2
2)

φ2 − (1 − (1 − G2
1)

φ1)(1 − (1 − G2
2)

φ2),

√

1 − (1 − T 2
1 )φ1 + 1 − (1 − T 2

2 )φ2 − (1 − (1 − T 2
1 )φ1)(1 − (1 − T 2

2 )φ2),

√

1 − (1 − V 2
1 )φ1 + 1 − (1 − V 2

2 )φ2 − (1 − (1 − V 2
1 )φ1)(1 − (1 − V 2

2 )φ2),

)

,

(

f
φ1
1 f

φ2
2 , g

φ1
1 g

φ2
2 , t

φ1
1 t

φ2
2 , v

φ1
1 v

φ2
2

)〉
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. 

=
〈(

√

1 − (1 − F1
2)φ1(1 − F2

2)φ2 ,

√

1 − (1 − G1
2)φ1(1 − G2

2)φ2 ,

√

1 − (1 − T1
2)φ1(1 − T2

2)φ2 ,

√

1 − (1 − V1
2)φ1(1 − V2

2)φ2

)

,

(

f
φ1
1 f

φ2
2 , g

φ1
1 g

φ2
2 , t

φ1
1 t

φ2
2 , v

φ1
1 v

φ2
2

)〉

.

Let it hold for r = n (induction hypothesis) i.e., 

. 

φ1˜T1
⊕

φ2˜T2
⊕

· · ·
⊕

φn
˜Tn

=
〈(

√

√

√

√1 −
n
∏

r=1

(1 − F 2
r )φr ,

√

√

√

√1 −
n
∏

r=1

(1 − G2
r )

φr ,

√

√

√

√1 −
n
∏

r=1

(1 − T 2
r )φr ,

√

√

√

√1 −
n
∏

r=1

(1 − V 2
r )φr

)

,

( n
∏

i=1

fr
φr ,

n
∏

i=1

gr
φr ,

n
∏

i=1

tr
φr ,

n
∏

i=1

vr
φr

)〉

.

Now, we have to show that it also holds for r = n + 1 

. 

φ1˜T1
⊕

φ2˜T2
⊕

· · ·
⊕

φn
˜Tn

⊕

ψn+1˜Tn+1

=
〈(

√

√

√

√1 −
n
∏

r=1

(1 − F 2
r )φr + 1 − (1 − Fn+1

2)φn+1 −
(

1 −
n
∏

r=1

(1 − F 2
r )φr

)(

1 − (1 − Fn+1
2)φn+1

)

,

√

√

√

√1 −
n
∏

r=1

(1 − G2
r )

φr + 1 − (1 − Gn+1
2)φn+1 −

(

1 −
n
∏

r=1

(1 − G2
r )

φr

)(

1 − (1 − Gn+1
2)φn+1

)

,

√

√

√

√1 −
n
∏

r=1

(1 − T 2
r )φr + 1 − (1 − Tn+1

2)φn+1 −
(

1 −
n
∏

r=1

(1 − T 2
r )φr

)(

1 − (1 − Tn+1
2)φn+1

)

,

√

√

√

√1 −
n
∏

r=1

(1 − V 2
r )φr + 1 − (1 − Vn+1

2)φn+1 −
(

1 −
n
∏

r=1

(1 − V 2
r )φr

)(

1 − (1 − Vn+1
2)φn+1

))

,

.

( n
∏

i=1

fr
φr fn+1

φn+1 ,

n
∏

i=1

gr
φr gn+1

φn+1 ,

n
∏

i=1

tr
φr tn+1

φn+1 ,

n
∏

i=1

vr
φr vn+1

φn+1

)〉

=
〈(

√

√

√

√1 −
n+1
∏

r=1

(1 − F 2
r )φr ,

√

√

√

√1 −
n+1
∏

r=1

(1 − G2
r )

φr ,

√

√

√

√1 −
n+1
∏

r=1

(1 − T 2
r )φr ,

√

√

√

√1 −
n+1
∏

r=1

(1 − V 2
r )φr

)

,

( n+1
∏

r=1

fr
φr ,

n+1
∏

r=1

Gr
φr ,

n+1
∏

r=1

tr
φr ,

n+1
∏

r=1

vr
φr

)〉

.
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As the theorem is also true for r = n + 1 and, hence, by mathematical induction, we get the result 

. 

T rPyWAA(˜T1, ˜T2, · · · , ˜Tn)

=
〈(

√

√

√

√1 −
n
∏

r=1

(1 − F 2
r )φr ,

√

√

√

√1 −
n
∏

r=1

(1 − G2
r )

φr ,

√

√

√

√1 −
n
∏

r=1

(1 − T 2
r )φr ,

√

√

√

√1 −
n
∏

r=1

(1 − V 2
r )φr

)

,

( n
∏

r=1

fr
φr ,

n
∏

r=1

gr
φr ,

n
∏

r=1

tr
φr ,

n
∏

r=1

vr
φr

)〉

.

Hence, the theorem is proved. 

Example 4.1 Let ˜T1 =
〈

(0.4, 0.5, 0.55, 0.7), (0.3, 0.4, 0.5, 0.6)
〉

,˜T2 =
〈

(0.4, 0.5, 

0.55, 0.6), (0.45, 0.6, 0.7, 0.8)
〉

, and ˜T3 =
〈

(0.6, 0.7, 0.75, 0.8), (0.3, 0.4, 0.45, 

0.5)
〉

be three T rPyNs  and φ1 = 0.35, φ2 = 0.3, φ3 = 0.35 be the weight of 
the corresponding T rPyFNs. Then 

. 

T rPyWAA(˜T1, ˜T2, ˜T3)

=
〈(

√

√

√

√1 −
3
∏

r=1

(1 − F 2
r )φr ,

√

√

√

√1 −
3
∏

r=1

(1 − G2
r )

φr ,

√

√

√

√1 −
3
∏

r=1

(1 − T 2
r )φr ,

√

√

√

√1 −
3
∏

r=1

(1 − V 2
r )φr

)

,

( 3
∏

r=1

fr
φr ,

3
∏

r=1

gr
φr ,

3
∏

r=1

tr
φr ,

3
∏

r=1

vr
φr

)〉

=
〈

(0.3314, 0.4136, 0.5083, 0.6487), (0.2772, 0.3793, 0.4655, 0.566)
〉

.

Since 0.64872 + 0.5662 = 0.7412 < 1, then T rPyWAA(˜T1, ˜T2, ˜T3) is also a 
T rPyFN . 

4.1 Property of T rPyFWA  

Lemma 4.1.1 (Idempotency Properties of T rPyFWA  Operator) 
Let ˜Tr = 〈(Fr ,Gr, Tr , Vr), (fr , gr , tr , vr )〉 (r = 1, 2, · · ·  , n)  be any collection 

of T rPyFNs. If each ˜Tr = 〈(Fr ,Gr, Tr , Vr), (fr , gr , tr , vr )〉 is equal to T =
〈(F,G, T , V  ),  (f, g, t, v)〉 for all (r = 1, 2, · · ·  , n), then 

. T rPyFWA(˜T1, ˜T2, · · · , ˜Tn) = ˜T .

Proof From definition, we get
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. 

T rPyFWA(˜T1, ˜T2, · · · , ˜Tn)

=
〈(

√

√

√

√1−
n
∏

r=1

(1−F 2
r )φr ,

√

√

√

√1−
n
∏

r=1

(1−G2
r )

φr ,

√

√

√

√1−
n
∏

r=1

(1−T 2
r )φr ,

√

√

√

√1−
n
∏

r=1

(1−V 2
r )φr

)

,

( n
∏

r=1

fr
φr ,

n
∏

r=1

gr
φr ,

n
∏

r=1

tr
φr ,

n
∏

r=1

vr
φr

)〉

. 

=
〈(

√

√

√

√1 −
n
∏

r=1

(1 − F 2)φr ,

√

√

√

√1 −
n
∏

r=1

(1 − G2)φr ,

√

√

√

√1 −
n
∏

r=1

(1 − T 2)φr ,

√

√

√

√1 −
n
∏

r=1

(1 − V 2)φr

)

,

( n
∏

r=1

f φr ,

n
∏

r=1

gφr ,

n
∏

r=1

tφr ,

n
∏

r=1

vφr

)〉

(since for each ˜Tr = ˜T )

=
〈(

√

√

√

√

1 − (1 − F 2)

n
∑

r=1

φr

,

√

√

√

√

1 − (1 − G2)

n
∑

r=1

φr

,

√

√

√

√

1 − (1 − T 2)

n
∑

r=1

φr

,

√

√

√

√

1 − (1 − V 2)

n
∑

r=1

φr
)

,
(

f

n
∑

r=1

φr

, g

n
∑

r=1

φr

, t

n
∑

r=1

φr

, v

n
∑

r=1

φr
)〉

=
〈(
√

1− (1− F 2),
√

1− (1− G2),
√

1− (1− T 2),
√

1− (1− V 2)
)

,
(

f, g, t, v
)〉

= 〈(F,G, T , V ), (f, g, t, v)〉 = ˜T .

Lemma 4.1.2 (Boundedness Properties of T rPyFWA  Operator) 
Let ˜Tr = 〈(Fr ,Gr, Tr , Vr), (fr , gr , tr , vr )〉 (r = 1, 2, · · ·  , n)  be any collection 

of T rPyFNs. If ˜T − = 〈(F−,G−, T  −, V  −), (f +, g+, t+, v+)〉 and ˜T + =
〈(F+,G+, T  +, V  +), (f −, g−, t−, v−)〉, where F− = min{Fr : r = 
1, 2, · · ·  , n},G− = min{Gr : r = 1, 2, · · ·  , n}, T  − = min{Tr : r = 
1, 2, · · ·  , n}, V  − = min{Vr : r = 1, 2, · · ·  , n}, f  − = min{fr : r = 
1, 2, · · ·  , n}, g− = min{qr : r = 1, 2, · · ·  , n}, t− = min{tr : r = 
1, 2, · · ·  , n}, v− = min{vr : r = 1, 2, · · ·  , n}, F+ = max{Fr : r = 
1, 2, · · ·  , n},G+ = max{Zr : r = 1, 2, · · ·  , n}, T  + = max{Tr : r = 
1, 2, · · ·  , n}, V  + = max{Vr : r = 1, 2, · · ·  , n}, f  + = max{fr : r = 
1, 2, · · ·  , n}, g+ = max{gr : r = 1, 2, · · ·  , n}, t+ = max{tr : r = 
1, 2, · · ·  , n}, v+ = max{vr : r = 1, 2, · · ·  , n}, then
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. ˜T − ≤ T rPyFWA(˜T1, ˜T2, · · · , ˜Tn) ≤ ˜T +.

Proof From the given condition, we get 

. 

˜T − ≤ ˜Tr ≤ ˜T +

⇒ φr
˜T − ≤ φr

˜Tr ≤ φr
˜T +

⇒
n
∑

r=1

φr
˜T − ≤

n
∑

r=1

φr
˜Tr ≤

n
∑

r=1

φr
˜T +

⇒
( n
∑

r=1

φr

)

˜T − ≤
n
∑

r=1

φr
˜Tr ≤

( n
∑

r=1

φr

)

˜T +

⇒ ˜T − ≤
n
∑

r=1

φr
˜Tr ≤ ˜T + since

n
∑

r=1

φr = 1

⇒ ˜T − ≤ TrPyWAA(˜T1, ˜T2, · · · , ˜Tn) ≤ ˜T +.

Lemma 4.1.3 (Monotonicity Properties of T rPyFWA  Operator) Let ˜Tr and
˜Tr 

∗ 
for (r = 1, 2, · · ·  , n)  be any two collections of T rPyFNs  such that ˜Tr ≤ ˜Tr 

∗ 

for any (r = 1, 2, · · ·  , n). Then 

. TrPyFWA(˜T1, ˜T2, · · · , ˜Tn) ≤ TrPyFWA(˜T1
∗
, ˜T2

∗
, · · · , ˜Tn

∗
).

Proof Given that, 

. 

˜Tr ≤ ˜Tr
∗

⇒ φr
˜Tr ≤ φr

˜T ∗

⇒
n
∑

r=1

φr
˜Tr ≤

n
∑

r=1

φr
˜Tr

∗

⇒ TrPyFWA(˜T1, ˜T2, · · · , ˜Tn) ≤ TrPyFWA(˜T1
∗
, ˜T2

∗
, · · · , ˜Tn

∗
).

5 TOPSIS Strategy for MCGDM Based on T rPyFN  

In this section, we developed a framework for determining the ranking order of 
the alternatives under the trapezoidal Pythagorean fuzzy environment. TOPSIS 
(technique for order preference by similarity to ideal solution) [16, 38] is a
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celebrated technique in the decision-making field. The basic idea is that the chosen 
alternative should have the lowest distance from positive ideal solution (PIS) and 
the largest distance from negative ideal solution (NIS). 

For MCGDM problem, let .X = X1, X2, · · · , Xr be a set of alternatives, 
.Y = Y1, Y2, · · · , Ys be a set of criteria, and .Z = Z1, Z2, · · · , Zm be a set of 
distinct decision-makers. Here, we assume weight vector of the criteria is . θ =
(θ1, θ2, · · · , θs)

T , where .θi ≥ 0 and .
s
∑

i=1

θi = 1. Also, the weight of the decision-

makers is .� = (�1,�2, · · · ,�t )
T , where .�i ≥ 0 and .

m
∑

i=1

�i = 1. Here, we 

developed an improved TOPSIS method based on aggregation operator and distance 
functions to determine the ranking order of the alternative as follows: 
Step 1: For a decision-maker .Zk(k = 1, 2, · · · ,m), the evaluation values of the 
alternative .Xi(i = 1, 2, · · · , r) under the criteria .Yi(i = 1, 2, · · · , s) are given in 
the form decision matrix as follows: 

DMk = 

Y1 Y2 · · · Ys 
⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

X1 ˜T k 
11

˜T k 
12 · · · ˜T k 

1s 

X2 ˜T k 
21

˜T k 
22 · · · ˜T k 

2s 
... 

... 
... 

... 
Xr

˜T k 
r1

˜T k 
r2 · · · ˜T k 

rs 

, 

where each entity .˜T k
ij =

〈(

Fk
ij ,G

k
ij , T

k
ij , V

k
ij

)

,
(

f k
ij , g

k
ij , t

k
ij , v

k
ij

)〉

, (.i = 1, 2, · · · , r , 

.j = 1, 2, · · · , s, .k = 1, 2, · · · ,m) of the decision matrix is .T rPyFN with the 
condition . (V k

ij )
2 + (vk

ij )
2 ≤ 1.

Step 2: In this step, we use our proposed aggregation operator .T rPyFWA on 
decision matrices to get the aggregated evaluation value of the alternative in the 
form matrix .DM = (˜Tij )r×s , where 

.˜Tij = T rPyFWA(˜T 1
ij ,

˜T 2
ij , · · · ,˜T m

ij )

= �1˜T
1
ij + �2˜T

2
ij + · · · + �m

˜T m
ij

=
〈(

√

√

√

√1 −
m
∏

r=1

(

1 − (F r
ij )

2
)�r

,

√

√

√

√1 −
m
∏

r=1

(

1 − (Gr
ij )

2
)�r

,

√

√

√

√1 −
m
∏

r=1

(

1 − (T r
ij )

2
)�r

,

√

√

√

√1 −
m
∏

r=1

(

1 − (V r
ij )

2
)�r

)

,
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( m
∏

r=1 

(f r ij )
�r , 

m
∏

r=1 

(gr 
ij )

�r , 
m
∏

r=1 

(tr ij )
�r , 

m
∏

r=1 

(vr 
ij )

�r

)〉

. 

Therefore, the aggregated decision matrix (DM) is defined as follows: 

DM = 

Y1 Y2 · · · Ys 
⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

X1 ˜T11 ˜T12 · · · ˜T1s 

X2 ˜T21 ˜T22 · · · ˜T2s 
... 

... 
... 

... 
Xr

˜Tr1 ˜Tr2 · · · ˜Trs 

, 

where .˜Tij = 〈

(Fij ,Gij , Tij , Vij ), (fij , gij , tij , vij )
〉

is the aggregated evaluation 
value of the alternative, .i = 1, 2, · · · , r, j = 1, 2, · · · s. 
Step 3: Now, we utilize criterion weights .(θi) according to Proposition 3.1(iii) and 
get the weighted evaluation value as follows: 

D = 

Y1 Y2 · · · Ys 
⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

X1 ˜D11 ˜D12 · · · ˜D1s 

X2 ˜D21 ˜D22 · · · ˜D2s 
... 

... 
... 

... 
Xr

˜Dr1 ˜Dr2 · · · ˜Drs 

, 

where .˜Dij = θj
˜Tij . 

Step 4: Now, we calculate the PIS and NIS as follows: 
.P + = {p+

1 , p+
2 , · · · , p+

s }, 
where . p+

j =
〈

(max
i

(Fij ),max
i

(Gij ),max
i

(Tij ),max
i

(Vij )), (min
i

(fij ),min
i

(gij ),

min
i

(tij ),min
i

(vij ), )
〉

.P − = {p−
1 , p−

2 , · · · , p−
s }, 

where . p−
j =

〈

(min
i

(Fij ),min
i

(Gij ),min
i

(Tij ),min
i

(Vij )), (max
i

(fij ),max
i

(gij ),

max
i

(tij ),max
i

(vij ))
〉

. 

The global PIS and NIS for .T rPyFN are given as 

.p+
j =

〈

(1, 1, 1, 1), (0, 0, 0, 0)
〈

and .p−
j =

〈

(0, 0, 0, 0), (1, 1, 1, 1)
〈

. 

Step 5: In this step, we find out the distance between the alternative . Ai and PIS and 
NIS according to the equation (2) as follows:
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. 

Q+
i = d(Ai, P

+) =
s
∑

j=1

d(p+
j , ˜Dij ),

Q−
i = d(Ai, P

−) =
s
∑

j=1

d(p−
j , ˜Dij )

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

. · · · · · · · · · (2)

Step 6: Here, we measure the relative closeness coefficient as follows: 

. Si = Q+
i

Q+
i + Q−

i

.

Step 7: In this step, we utilize the relative closeness coefficient to find the ranking 
order of the alternative. The smallest value of . Si gives the best alternative. 

Remark 5.1 The various steps of the proposed TOPSIS-based MCGDM technique 
have been shown pictorially in Fig. 16.1. 

Fig. 16.1 Flowchart of the 
proposed TOPSIS technique
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6 Illustrative Example 

In this current era, we are very much concerned and doubtful in case of selection of 
the college for higher study. Several government and private institutes are present in 
our society for the higher studies in technical or general fields. Normally, question 
will arise which college/institute provides the best facilities such as quality of faculty 
member, eco-friendly campus, hostel facilities, discipline, good placement record, 
etc. But, the guardians are confused, and their mind is in dilemma to know all the 
answers properly such that they will select the best institute in their respective 
area. Thus, this becomes a fundamental and burning decision-making problem 
in imprecise arena. Here, we take some different experts like senior student of 
the corresponding institute, staff’s view of the corresponding institute, and social 
media ranking information from web search to focus on the statistical data of the 
decision matrices. To resolve this burning issue, we consider an MCGDM problem 
in trapezoidal Pythagorean environment linked with three alternatives, namely: a) 
College-1, b) College-2, and c) College-3 in case of selection process. Also, we 
choose three different attributes: i) quality of faculty; ii) environment of the campus 
and facilities; and iii) placement in MNC as judgment factors of this given problem. 
Let us consider there are three experts as decision-makers . Z1= Senior student, 
. Z2= Staff,  . Z3 = Web Results having weight function .� = (0.35, 0.33, 0.32), and 
additionally, we consider dissimilar weight vector .� = (0.35, 0.3, 0.35) linked with 
distinct attribute function. Here, we utilize the proposed TOPSIS-based MCGDM 
technique in the trapezoidal Pythagorean environment as follows: 
Step 1: Here, we construct the decision matrices according to the decision-makers 
as follows: 

DM1 = 

Y1 Y2 Y3
( )

X1 〈(0.4, 0.5, 0.55, 0.7), (0.3, 0.4, 0.5, 0.6)〉 〈(0.4, 0.5, 0.55, 0.6), (0.45, 0.6, 0.7, 0.8)〉 〈(0.6, 0.7, 0.75, 0.8), (0.3, 0.4, 0.45, 0.5)〉
X2 〈(0.45, 0.5, 0.55, 0.6), (0.3, 0.4, 0.5, 0.6)〉 〈(0.5, 0.55, 0.6, 0.65), (0.55, 0.6, 0.65, 0.7)〉 〈(0.35, 0.4, 0.5, 0.6), (0.4, 0.5, 0.6, 0.7)〉
X3 〈(0.2, 0.3, 0.4, 0.5), (0.6, 0.7, 0.75, 0.8)〉 〈(0.3, 0.4, 0.5, 0.6), (0.35, 0.4, 0.5, 0.6)〉 〈(0.25, 0.3, 0.35, 0.4), (0.45, 0.5, 0.6, 0.7)〉

DM2 = 

Y1 Y2 Y3
( )

X1 〈(0.2, 0.3, 0.4, 0.5), (0.35, 0.45, 0.5, 0.6)〉 〈(0.3, 0.45, 0.5, 0.6), (0.45, 0.5, 0.55, 0.7)〉 〈(0.5, 0.55, 0.6, 0.7), (0.4, 0.5, 0.6, 0.7)〉
X2 〈(0.3, 0.4, 0.5, 0.6), (0.2, 0.5, 0.6, 0.7)〉 〈(0.5, 0.6, 0.7, 0.8), (0.25, 0.4, 0.55, 0.6)〉 〈(0.1, 0.3, 0.5, 0.7), (0.2, 0.35, 0.4, 0.5)〉
X3 〈(0.4, 0.5, 0.6, 0.7), (0.25, 0.3, 0.35, 0.5)〉 〈(0.3, 0.4, 0.5, 0.6), (0.4, 0.5, 0.6, 0.7)〉 〈(0.4, 0.5, 0.6, 0.7), (0.4, 0.5, 0.6, 0.7)〉

DM3 = 

Y1 Y2 Y3
( )

X1 〈(0.35, 0.4, 0.55, 0.7), (0.2, 0.3, 0.4, 0.5)〉 〈(0.1, 0.2, 0.3, 0.4), (0.2, 0.3, 0.4, 0.5)〉 〈(0.15, 0.2, 0.35, 0.4), (0.25, 0.3, 0.4, 0.5)〉
X2 〈(0.3, 0.4, 0.45, 0.5), (0.35, 0.4, 0.5, 0.55)〉 〈(0.45, 0.5, 0.6, 0.75), (0.55, 0.6, 0.65, 0.7)〉 〈(0.45, 0.5, 0.6, 0.65), (0.5, 0.6, 0.7, 0.75)〉
X3 〈(0.25, 0.3, 0.45, 0.5), (0.4, 0.5, 0.6, 0.7)〉 〈(0.4, 0.5, 0.6, 0.7), (0.35, 0.4, 0.45, 0.6)〉 〈(0.3, 0.4, 0.5, 0.6), (0.4, 0.5, 0.55, 0.8)〉
. 

Step 2: In this step, our first aim is to develop the single decision matrix (DM) by  
using the proposed aggregation operators. For this, we use the operator . T rPyFWA

according to equation (1) and get
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DM = 

Y1 Y2 Y3 
⎛ 

⎜ 
⎝ 

⎞ 

⎟ 
⎠ 

X1 ˜C11 ˜C12 ˜C13 

X2 ˜C21 ˜C22 ˜C23 

X3 ˜C31 ˜C32 ˜C33 

, 

where . ˜Cij is given below, 

. ˜C11 = [〈(0.3314, 0.4136, 0.5083, 0.6487), (0.2772, 0.3793, 0.4655, 0.566)〉] ,

. ˜C12 = [〈(0.3016, 0.4144, 0.4713, 0.5494), (0.3471, 0.4526, 0.5405, 0.6586)〉] ,

. ˜C13 = [〈(0.4772, 0.5546, 0.6166, 0.6858), (0.3112, 0.3927, 0.4765, 0.5587)〉] ,

. ˜C21 = [〈(0.3620, 0.4389, 0.5043, 0.5716), (0.2757, 0.4306, 0.5310, 0.6140)〉] ,

. ˜C22 = [〈(0.4849, 0.5533, 0.6373, 0.7402), (0.4240, 0.5249, 0.6151, 0.6653)〉] ,

. ˜C23 = [〈(0.3382, 0.4102, 0.5358, 0.6522), (0.3418, 0.4712, 0.5514, 0.6404)〉] ,

. ˜C31 = [〈(0.2972, 0.3824, 0.4947, 0.5828), (0.3948, 0.4752, 0.5430, 0.6564)〉] ,

. ˜C32 = [〈(0.3362, 0.4358, 0.5358, 0.6363), (0.36580.4306, 0.5134, 0.6313)〉] ,

. ˜C33 = [〈(0.3232, 0.4097, 0.4980, 0.5890), (0.4168, 0.5000, 0.5835, 0.7306)〉] .

Step 3: Now, we obtain weighted aggregated decision matrix (D) using the criterion 
weights (. θi) according to Proposition 3.1(iii) as follows: 

D = 

Y1 Y2 Y3 

⎛ 

⎜ 
⎝ 

⎞ 

⎟ 
⎠ 

X1 ˜G11 ˜G12 ˜G13 

X2 ˜G21 ˜G22 ˜G23 

X3 ˜G31 ˜G32 ˜G33 

, 

where .˜Gij is given below, 

. ˜G11 = [〈(0.1998, 0.2521, 0.3152, 0.4171), (0.6382, 0.7123, 0.7652, 0.8194)〉] ,

. ˜G12 = [〈(0.1679, 0.2344, 0.2694, 0.3197), (0.7280, 0.7883, 0.8315, 0.8822)〉] ,

.˜G13 = [〈(0.2941, 0.3474, 0.3926, 0.4466), (0.6646, 0.7210, 0.7715, 0.8157)〉] ,
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. ˜G21 = [〈(0.2190, 0.2686, 0.3124, 0.3596), (0.6370, 0.7446, 0.8013, 0.8431)〉] ,

. ˜G22 = [〈(0.2780, 0.3223, 0.3804, 0.4603), (0.7731, 0.8242, 0.8643, 0.8849)〉] ,

. ˜G23 = [〈(0.2040, 0.2499, 0.3342, 0.4198), (0.6868, 0.7685, 0.8119, 0.8556)〉] ,

. ˜G31 = [〈(0.1785, 0.2320, 0.3059, 0.3677), (0.7223, 0.7707, 0.8076, 0.8630)〉] ,

. ˜G32 = [〈(0.1880, 0.2475, 0.3107, 0.3797), (0.7396, 0.7766, 0.8187, 0.8711)〉] ,

. ˜G33 = [〈(0.1946, 0.2496, 0.3081, 0.3722), (0.7362, 0.7846, 0.8282, 0.8960)〉] .

Step 4: In this step, we have calculated PIS and NIS from the above decision matrix 
D as follows: 
.P + = {p+

1 , p+
2 , p+

3 }, where 

. p+
1 =

〈

(0.2190, 0.2686, 0.3152, 0.4171), (0.6370, 0.7123, 0.7652, 0.8194)
〉

p+
2 =

〈

(0.2780, 0.3223, 0.3804, 0.4603), (0.728, 0.7766, 0.8187, 0.8711)
〉

p+
3 =

〈

(0.2941, 0.3474, 0.3926, 0.4466), (0.6646, 0.7210, 0.7715, 0.8157)
〉

,

and .P − = {p−
1 , p−

2 , p−
3 }, where 

. p−
1 =

〈

(0.1785, 0.2320, 0.3059, 0.3596), (0.7223, 0.7707, 0.8076, 0.8630)
〉

p−
2 =

〈

(0.1679, 0.2344, 0.2694, 0.3197), (0.7731, 0.7766, 0.8643, 0.8849)
〉

p−
3 =

〈

(0.1946, 0.2496, 0.3081, 0.3722), (0.7362, 0.7846, 0.8282, 0.8960)
〉

.

Step 5: Here, we find out the distance between the alternatives . Ai and PIS & NIS 
as follows: 

. Q+
1 = 0.2302,Q+

2 = 0.2012,Q+
3 = 0.3095 and Q−

1 = 0.2693,

Q−
2 = 0.2706,Q−

3 = 0.097.

Step 6: Now, the relative closeness coefficient is calculated below as 

.S1 = 0.4609, S2 = 0.4265, S3 = 0.7614.



370 A. Chakraborty et al.

Therefore, the raking order of the relative closeness coefficient is .S2 < S1 < S3. 
Therefore, the ranking order of the alternative is .X3 < X1 < X2. Hence, . X2 is the 
best option. 

6.1 Sensitivity Analysis 

In this section, we will observe how the ranking orders of the alternatives differ 
from each other in change of only the weight of the decision-makers (. �i) and other 
data remain unchanged. First, we take the same decision matrices (.DMk) according 
to the decision-makers, and then we converted it into a single decision matrix 
(DM) using the operator .T rPyFWA. After that, we will find the corresponding 
weighted aggregated decision matrix (D) using the criterion weights (. θi) and 
proposition 3.1(iii). Then we will sort out the PIS and NIS from the weighted 
aggregated decision matrix (D). After that, we use three different distance functions, 
namely: Hamming distance, Wei’s distance, and Euclidean distance to find out the 
distances between the alternatives . Ai and PIS and NIS. Finally, we compute the 
value of relative closeness coefficients (. Si) to find out the ranking order of the 
alternatives. Here, the sensitivity analysis is performed by varying the decision-
makers weights under the three different distance functions and noticed how the 
ranking orders of the alternatives are being affected. The results of sensitivity 
analysis are given in Table 16.1. In Fig. 16.2, we have shown the weights of the 
decision-makers. Figures 16.3, 16.4, and 16.5 show the change of ranking order 
under Euclidean, Hamming, and Wei’s distance functions, respectively. From these 
figures, we see that the ranking orders under Euclidean distance and Wei’s distance 
functions are more or less same. Here, . X2 is the best alternative under the both 
distance functions. But the ranking order under the Hamming distance function is 
different, and in this case, . X1 is the best alternative. Thus, we can conclude that our 
method is more or less stable. 

6.2 Comparison Analysis 

In order to justify the advantages and effectiveness of our proposed technique, here 
we are presenting a comparative analysis with the existing method given by Ye 
[40]. The decision information in the study of Ye [40] is taken in the form of 
interval-valued intuitionistic fuzzy numbers, whereas the information of our paper 
has been put in the form of .T rPyFN . As .T rPyFN is a generalization of trapezoidal 
intuitionistic fuzzy number, thus our current study can capture the underlying 
uncertainty in a more robust way. Moreover, the decision-making process proposed 
in this chapter not only solves the problem in the trapezoidal Pythagorean fuzzy 
environment but also in the trapezoidal intuitionistic fuzzy environment, whereas
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Fig. 16.2 Variation of 
decision-maker’s weights 

Fig. 16.3 Ranking order of 
the alternatives under 
Euclidean distance 

Fig. 16.4 Ranking order of 
the alternatives under 
Hamming distance 

the technique in [40] is only applicable for the interval-valued intuitionistic fuzzy 
environment. These facts clearly show the advantages and effectiveness of our 
method.



16 Advanced TOPSIS-Based College Selection MCGDM Problem in. . . 373

Fig. 16.5 Ranking order of 
the alternatives under Wei’s 
distance 

7 Conclusion 

In this chapter, we have introduced the concept of .T rPyFNs and discussed 
some elementary propositions and relevant theorem on .T rPyFNs. Then, we have 
defined new distance functions for .T rPyFNs that use to measure relative closeness 
coefficient. Based on this .T rPyFN , we proposed the trapezoidal Pythagorean 
fuzzy weighted arithmetic .(T rPyFWA) operator. Then, we have discussed the 
idempotency, boundedness, and monotonicity properties of the proposed aggrega-
tion operator. Subsequently, by utilizing defined aggregation operator and distance 
functions, we developed an improved TOPSIS strategy for solving a numerical 
problem under trapezoidal Pythagorean fuzzy environment. Lastly, a numerical 
example was given to demonstrate the defined TOPSIS method. Finally, sensitivity 
analysis and comparison analysis were presented to the reliability and efficiency of 
the proposed technique. 

In the future, we can introduce several operational laws and various 
MCDM/MCGDM techniques to grab the uncertainties in the trapezoidal 
Pythagorean fuzzy environment in a more rigorous way. Furthermore, researchers 
can also apply the concept of .T rPyFN in various research areas such as cloud 
computing, mobile computing problems, pattern recognition problems, big-data 
analysis, diagnosis problems, realistic mathematical modeling, etc. From this 
chapter, we can say that the newly defined .T rPyFN is another fuzzy number 
to tackle the uncertainty and vagueness theory. 
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Chapter 17 
Identification and Classification 
of Prioritized Aczel-Alsina Aggregation 
Operators Based on Complex 
Intuitionistic Fuzzy Information 
and Their Applications 
in Decision-Making Problem 

Kifayat Ullah, Mehwish Sarfraz, Maria Akram, and Zeeshan Ali 

1 Introduction 

Pattern recognition, clustering analysis, artificial intelligence, and decision-making 
techniques play a very important and critical role in the environment of awkward 
and unreliable information. The theory of the MADM technique is one of the 
important subparts of the decision-making strategy, which is used for evaluating 
the best or finest decision from the collection of preferences. A lot of complications 
have occurred when expertly using classical information during decision-making 
procedures because, in the case of classical information, we have only two 
possibilities such as zero or one. Therefore, Zadeh [1] examined a well-known and 
valid idea of the fuzzy set (FS), where the theory of FS has covered more than two 
possibilities such as zero, one, and from [0, 1]. Various individuals have utilized 
the theory of FS in different fields, but in various situations, the theory of FS has 
failed. Therefore, Atanassov [2] derived the intuitionistic FS (IFS), which covered 
the truth and falsity grades with a condition that the sum of the truth grade and 
falsity grade must be contained in the unit interval. Furthermore, Garg and Rani [3] 
discovered the theory of distances measures, Jia and Wang [4] derived the Choquet 
integral aggregation operators, Gohain et al. [5] evaluated the similarity measures, 
Ecer [6] derived the MAIRCA technique, Panda and Nagwani [7] exposed the topic 
modeling under the presence of IFSs, Gohain et al. [8] also examined the distance 
measures, Jebadass and Balasubramaniam [9] evaluated the enhancement of color 
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image under the presence of IFSs, and finally, Gu et al. [10] derived the theory of 
risk assessment for IFSs. 

Because handling two-dimensional information at once is so crucial and difficult, 
using the phase term in the context of truth grade is a very difficult challenge for 
students. The aforementioned query has been brought up by several academic’s 
numerous times. Additionally, there are numerous instances where two-dimensional 
information is involved. Therefore, the major idea of complex FS (CFS) was 
invented by Ramot et al. [11], where the CFS contained only one grade in the 
form of a complex number whose real and unreal parts belong to the unit interval. 
Various individuals have utilized the theory of CFS in different fields, but in various 
situations, the theory of CFS has failed. Therefore, Alkouri and Salleh [12] extended 
or modified the theory of complex IFS (CIFS). Furthermore, Garg and Rani [13] 
derived the information measures, Garg and Rani [14] discovered the theory of 
correlation coefficient measures, and Rajareega et al. [15] exposed the theory of 
weighted distance measures. 

Prioritized aggregation operators are very famous and reliable because they can 
help us to aggregate the collection of information into a singleton set. Furthermore, 
the derived theory of Aczel and Alsina [16] has received valuable and dominant 
attention from many scholars. Moreover, Senapati et al. [17] derived the theory 
of AA aggregation operators (AAAOs) for IFSs, Senapati et al. [18] exposed the 
theory of geometric AAAOs for IFSs, and finally, Mahmood et al. [19] examined 
the theory of AAAOs for CIFSs. Moreover, prioritized aggregation operators (PAOs) 
were examined by Yager [20] in 2008. Additionally, Yu and Xu [21] derived the 
idea of PAOs for IFSs. Many scholars have derived different types of operators 
based on fuzzy set and their extensions which is very awkward. It can be highly 
difficult and unclear for scholars to combine any two different types of operators 
or measurements using CIF data. The questions above are extremely technical and 
pertinent, because it is a very difficult work for scholars to provide the answer to the 
aforementioned facts. Therefore, the major theme of this analysis is listed below: 

1. To derive the theory of CIFPAAA, CIFPAAOA, CIFPAAG, and CIFPAAOG 
operators 

2. To explore various properties and special cases of the derived work 
3. To expose an MADM technique under the consideration of derived operators 
4. To illustrate various examples for determining the comparison between proposed 

and existing operators to show the supremacy and validity of the invented theory 

This manuscript is summarized or constructed in the following ways: In Sect. 
2, we revised the theory of CIFSs and their operational laws. In Sect. 3, we  
proposed the CIFPAAA, CIFPAAOA, CIFPAAG, and CIFPAAOG operators and 
their properties. In Sect. 4, we exposed anMADM technique under the consideration 
of derived operators. In Sect. 5, we illustrated various examples for determining the 
comparison between proposed and existing operators to show the supremacy and 
validity of the invented theory. Some concluding remarks are given in Sect. 6.
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2 Preliminaries 

Here, our major theme is to revise the idea of CIFS and their operational laws. 

Definition 1 [12] The CIFS in X represented by β is given by 

β =
{(

γβ (ξ) ei2π(θγ (ξ)), δβ (ξ) ei2π(θδ(ξ))
)

: ξ ∈ X
}

(17.1) 

where .γβ (ξ) ei2π(θγ (ξ)) and .δβ (ξ) ei2π(θδ(ξ)) represented the grades of the truth 
and falsity information with a characteristic: 0 ≤ γ β (ξ ) + δβ (ξ ) ≤ 1 and 
0 ≤ θγ (ξ ) + θδ(ξ ) ≤ 1. Furthermore, we derive the theory of neutral grade 
. πCF (ξ) = πRP (ξ) ei2π(πIP (ξ)) = (

1 − (
γβ (ξ) + δβ (ξ)

))
ei2π(1−(θγ (ξ)+θδ(ξ)))

with simple .βj =
(

γβj
e
i2π

(
θγj

)
, δβj

e
i2π

(
θδj

))
, j = 1, 2, . . . , ϑ . 

Definition 2 [19] For any CIFN .βj =
(

γβj
e
i2π

(
θγj

)
, δβj

e
i2π

(
θδj

))
, j = 1, we  

have stated the score and accuracy functions, such that 

Sco (β1) = 
1 

2

(
γβ1 + θγ1 − δβ1 − θδ1

) ∈ [−1, 1] (17.2) 

Acc (β1) = 
1 

2

(
γβ1 + θγ1 + δβ1 + θδ1

) ∈ [0, 1] (17.3) 

For the above theory, we have the following characteristics, such as: when 
Sco(β1) <  Sco(β2) ⇒ β1 < β2; when Sco(β1) = Sco(β2) ⇒ β1 = β2; 
when Acc (β1) <  Acc (β2) ⇒ β1 < β2; when Acc (β1) = Acc (β2) ⇒ β1 = β2. 

Definition 3 [19] For any two CIFNs .βj =
(

γβj
e
i2π

(
θγj

)
, δβj

e
i2π

(
θδj

))
, j = 1, 2, 

we have stated the Aczel-Alsina operational laws, such that 

β1 ⊕ β2 = 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
1 − e−((−ln

(
1−γβ1

))η+(−ln
(
1−γβ2

))η) 1 
η

)

e 
2πi

(
1−e

−((−ln(1−θγ1)) η+(−ln(1−θγ2)) η 
) 
1 
η

)

,(
e−((−ln

(
δβ1

))η+(−ln
(
δβ2

))η)1/η)

e 
2πi

(
e
−

((
−ln

(
θδ1

))η+
(
−ln

(
θδ2

))η)1/η)

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

(17.4)
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β1 ⊗ β2 = 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
e−((−ln

(
γβ1

))η+(−ln
(
γβ2

))η) 1 
η

)

e 
2πi  

⎛ 

⎝e
−

((
−ln

(
θδ1

))η+
(
−ln

(
θδ2

))η) 1 
η 

⎞ 

⎠ 

,(
1 − e−((−ln

(
1−δβ1

))η+(−ln
(
1−δβ2

))η) 1 
η

)

e 
2πi

(
1−e

−((−ln(1−θγ1)) η+(−ln(1−θγ2)) η 
) 
1 
η

)

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

(17.5)

	β1 = 

⎛ 

⎜⎜⎜⎜⎜⎝

(
1 − e−(

	
(−ln

(
1−γβ1

))η) 1 
η

)
e 
2πi

(
1−e

−(	(−ln(1−θγ1)) η 
) 
1 
η

)

(
e−(

	
(−ln

(
δβ1

))η)1/η)
e 
2πi

(
e
−

(
	

(
−ln

(
θδ1

))η)1/η)

, 

⎞ 

⎟⎟⎟⎟⎟⎠ 
(17.6) 

β	
1 = 

⎛ 

⎜⎜⎜⎜⎜⎜⎝

(
e−(

	
(−ln

(
γβ1

))η) 1 
η

)
e 
2πi

(
e
−(	(−ln(θγ1)) η 

) 
1 
η

)

,

(
1 − e−(

	
(−ln

(
1−δβ1

))η) 1 
η

)
e 
2πi  

⎛ 

⎝ 1−e
−

(
	

(
−ln

(
1−θδ1

))η) 1 
η 

⎞ 

⎠ 

⎞ 

⎟⎟⎟⎟⎟⎟⎠ 
(17.7) 

3 Prioritized Aczel-Alsina Aggregation Operators for CIFSs 

In this section, we examine the theory of CIFPAAA, CIFPAAOA, CIFPAAG, 
CIFPAAOG operators and their valuable properties. 

Definition 4 Here, we expose the theory of the CIFPAAA operator for any 

collection of CIFNs .βj =
(

γβj
e
i2π

(
θγj

)
, δβj

e
i2π

(
θδj

))
, j = 1, 2, . . . , ϑ , we have  

CIFPAAA (β1, β2, . . . βϑ) = ⊕ϑ 
j=1 

Tj∑ϑ 
j=1 Tj 

βj (17.8) 

Theorem 1 To use the theory in Eq. (17.8), we prove that they again give us a 
CIFN, such as
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CIFPAAA (β1, β2, . . . βϑ) 

= 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎛ 

⎜⎜⎝1 − e 
−

(
∑ϑ 

j=1 
Tj∑k+1 

j=1 Tj

(
−ln

(
1−γβj

))η
) 1 

η 
⎞ 

⎟⎟⎠ 

e 

2πi  

⎛ 

⎜⎜⎜⎜⎝ 
1−e 

− 

⎛ 

⎝∑ϑ 
j=1 

Tj∑k+1 
j=1 Tj

(
−ln

(
1−θγj

))η 
⎞ 

⎠ 

1 
η 

⎞ 

⎟⎟⎟⎟⎠ 

,⎛ 

⎜⎜⎝e 
−

(
∑ϑ 

j=1 
Tj∑k+1 

j=1 Tj

(
−ln

(
δβj

))η
) 1 

η 
⎞ 

⎟⎟⎠ 

e 

2πi  

⎛ 

⎜⎜⎜⎜⎝ 
e 
− 

⎛ 

⎝∑ϑ 
j=1 

Tj∑k+1 
j=1 Tj

(
−ln

(
θδj

))η 
⎞ 

⎠ 

1 
η 

⎞ 

⎟⎟⎟⎟⎠ 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

(17.9) 

Proof We aim to derive the theory in Eq. (17.9), such as, if ϑ = 2, then 

T1∑ϑ 
j=1 Tj 

β1 

= 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎛ 

⎜⎜⎝1 − e 
−

(
T1∑ϑ 

j=1 Tj

(−ln
(
1−γβ1

))η
) 1 

η 
⎞ 

⎟⎟⎠ e 

2πi  

⎛ 

⎜⎜⎜⎜⎝ 
1−e 

− 

⎛ 

⎝ T1∑ϑ 
j=1 Tj 

(−ln(1−θγ1)) η 
⎞ 

⎠ 

1 
η 

⎞ 

⎟⎟⎟⎟⎠ 

, 

⎛ 

⎜⎝e 
−

(
T1∑ϑ 

j=1 Tj

(−ln
(
δβ1

))η
)1/η⎞ 

⎟⎠ e 

2πi  

⎛ 

⎜⎜⎜⎝e 
− 

⎛ 

⎝ T1∑ϑ 
j=1 Tj

(
−ln

(
θδ1

))η 
⎞ 

⎠ 
1/η⎞ 

⎟⎟⎟⎠ 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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T2∑ϑ 
j=1 Tj 

β2 

= 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎛ 

⎜⎜⎝1 − e 
−

(
T2∑ϑ 

j=1 Tj

(−ln
(
1−γβ2

))η
) 1 

η 
⎞ 

⎟⎟⎠ e 

2πi  

⎛ 

⎜⎜⎜⎜⎝ 
1−e 

− 

⎛ 

⎝ T2∑ϑ 
j=1 Tj 

(−ln(1−θγ2)) η 
⎞ 

⎠ 

1 
η 

⎞ 

⎟⎟⎟⎟⎠ 

, 

⎛ 

⎜⎝e 
−

(
T2∑ϑ 

j=1 Tj

(−ln
(
δβ2

))η
)1/η⎞ 

⎟⎠ e 

2πi  

⎛ 

⎜⎜⎜⎝e 
− 

⎛ 

⎝ T2∑ϑ 
j=1 Tj

(
−ln

(
θδ2

))η 
⎞ 

⎠ 
1/η⎞ 

⎟⎟⎟⎠ 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

CIFPAAA (β1, β2) = T1∑2 
j=1 Tj 

β1 ⊕ T2∑2 
j=1 Tj 

β2 

= 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎛ 

⎜⎜⎝1 − e 
−

(
T1∑ϑ 

j=1 Tj

(−ln
(
1−γβ1

))η
) 1 

η 
⎞ 

⎟⎟⎠ e 

2πi  

⎛ 

⎜⎜⎜⎜⎝ 
1−e 

− 

⎛ 

⎝ T1∑ϑ 
j=1 Tj 

(−ln(1−θγ1)) η 
⎞ 

⎠ 

1 
η 

⎞ 

⎟⎟⎟⎟⎠ 

, 

⎛ 

⎜⎝e 
−

(
T1∑ϑ 

j=1 Tj

(−ln
(
δβ1

))η
)1/η⎞ 

⎟⎠ e 

2πi  

⎛ 

⎜⎜⎜⎝e 
− 

⎛ 

⎝ T1∑ϑ 
j=1 Tj

(
−ln

(
θδ1

))η 
⎞ 

⎠ 
1/η⎞ 

⎟⎟⎟⎠ 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

⊕ 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎛ 

⎜⎜⎝1 − e 
−

(
T2∑ϑ 

j=1 Tj

(−ln
(
1−γβ2

))η
) 1 

η 
⎞ 

⎟⎟⎠ e 

2πi  

⎛ 

⎜⎜⎜⎜⎝ 
1−e 

− 

⎛ 

⎝ T2∑ϑ 
j=1 Tj 

(−ln(1−θγ2)) η 
⎞ 

⎠ 

1 
η 

⎞ 

⎟⎟⎟⎟⎠ 

, 

⎛ 

⎜⎝e 
−

(
T2∑ϑ 

j=1 Tj

(−ln
(
δβ2

))η
)1/η⎞ 

⎟⎠ e 

2πi  

⎛ 

⎜⎜⎜⎝e 
− 

⎛ 

⎝ T2∑ϑ 
j=1 Tj

(
−ln

(
θδ2

))η 
⎞ 

⎠ 
1/η⎞ 

⎟⎟⎟⎠ 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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= 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎛ 

⎜⎜⎝1 − e 
−

(
T1∑2 

j=1 Tj

(−ln
(
1−γβ1

))η+ T2∑2 
j=1 Tj

(−ln
(
1−γβ2

))η
) 1 

η 
⎞ 

⎟⎟⎠ 

e 

2πi  

⎛ 

⎜⎜⎜⎜⎝ 
1−e 

− 

⎛ 

⎝ T1∑2 
j=1 Tj 

(−ln(1−θγ1)) η+ T2∑2 
j=1 Tj 

(−ln(1−θγ2)) η 
⎞ 

⎠ 

1 
η 

⎞ 

⎟⎟⎟⎟⎠ 

,⎛ 

⎜⎝e 
−

(
T1∑2 

j=1 Tj

(−ln
(
δβ1

))η+ T2∑2 
j=1 Tj

(−ln
(
δβ2

))η
)1/η⎞ 

⎟⎠ 

e 

2πi  

⎛ 

⎜⎜⎜⎝e 
− 

⎛ 

⎝ T1∑2 
j=1 Tj

(
−ln

(
θδ1

))η+ T2∑2 
j=1 Tj

(
−ln

(
θδ2

))η 
⎞ 

⎠ 
1/η⎞ 

⎟⎟⎟⎠ 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

= 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎛ 

⎜⎜⎝1 − e 
−

(
∑ϑ 

j=1 
Tj∑2 

j=1 Tj

(
−ln

(
1−γβj

))η
) 1 

η 
⎞ 

⎟⎟⎠ 

e 

2πi  

⎛ 

⎜⎜⎜⎜⎝ 
1−e 

− 

⎛ 

⎝∑ϑ 
j=1 

Tj∑2 
j=1 Tj

(
−ln

(
1−θγj

))η 
⎞ 

⎠ 

1 
η 

⎞ 

⎟⎟⎟⎟⎠ 

, 
⎛ 

⎜⎝e 
−

(
∑ϑ 

j=1 
Tj∑2 

j=1 Tj

(
−ln

(
δβj

))η
)1/η⎞ 

⎟⎠ 

e 

2πi  

⎛ 

⎜⎜⎜⎝e 
− 

⎛ 

⎝∑ϑ 
j=1 

Tj∑2 
j=1 Tj

(
−ln

(
θδj

))η 
⎞ 

⎠ 
1/η⎞ 

⎟⎟⎟⎠ 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

For the value of ϑ = 2, we get the correct answer, further, we assume that the 
data in Eq. (17.9) is also valid for ϑ = k, such as
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CIFPAAA (β1, β2, . . . βk) = ⊕k 
j=1 

Tj∑k 
j=1 Tj

(
βj

)

= 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎛ 

⎜⎜⎝1 − e 
−

(
∑k 

j=1 
Tj∑k 

j=1 Tj

(
−ln

(
1−γβj

))η
) 1 

η 
⎞ 

⎟⎟⎠ 

e 

2πi  

⎛ 

⎜⎜⎜⎜⎝ 
1−e 

− 

⎛ 

⎝∑k 
j=1 

Tj∑k 
j=1 Tj

(
−ln

(
1−θγj

))η 
⎞ 

⎠ 

1 
η 

⎞ 

⎟⎟⎟⎟⎠ 

,⎛ 

⎜⎝e 
−

(
∑k 

j=1 
Tj∑k 

j=1 Tj

(
−ln

(
δβj

))η
)1/η⎞ 

⎟⎠ 

e 

2πi  

⎛ 

⎜⎜⎜⎝e 
− 

⎛ 

⎝∑k 
j=1 

Tj∑k 
j=1 Tj

(
−ln

(
θδj

))η 
⎞ 

⎠ 
1/η⎞ 

⎟⎟⎟⎠ 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

Then, we expose that the data in Eq. (17.9) is also valid for ϑ = k + 1, such as 

CIFPAAA (β1, β2, . . . βk+1) = ⊕k 
j=1 

Tj∑k+1 
j=1 Tj

(
βj

) ⊕ 
Tk+1∑k+1 
j=1 Tj 

(βk+1) 

= 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎛ 

⎜⎜⎝1 − e 
−

(
∑k 

j=1 
Tj∑k+1 

j=1 Tj

(
−ln

(
1−γβj

))η
) 1 

η 
⎞ 

⎟⎟⎠ 

e 

2πi  

⎛ 

⎜⎜⎜⎜⎝ 
1−e 

− 

⎛ 

⎝∑k 
j=1 

Tj∑k+1 
j=1 Tj

(
−ln

(
1−θγj

))η 
⎞ 

⎠ 

1 
η 

⎞ 

⎟⎟⎟⎟⎠ 

,⎛ 

⎜⎜⎝e 
−

(
∑k 

j=1 
Tj∑k+1 

j=1 Tj

(
−ln

(
δβj

))η
) 1 

η 
⎞ 

⎟⎟⎠ 

e 

2πi  

⎛ 

⎜⎜⎜⎜⎝ 
e 
− 

⎛ 

⎝∑k 
j=1 

Tj∑k+1 
j=1 Tj

(
−ln

(
θδj

))η 
⎞ 

⎠ 

1 
η 

⎞ 

⎟⎟⎟⎟⎠ 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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⊕ 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎛ 

⎜⎜⎝1 − e 
−

(
Tk+1∑k+1 
j=1 Tj

(
−ln

(
1−γβk+1

))η
) 1 

η 
⎞ 

⎟⎟⎠ 

e 

2πi  

⎛ 

⎜⎜⎜⎜⎝ 
1−e 

− 

⎛ 

⎝ Tk+1∑k+1 
j=1 Tj 

(−ln(1−θγk+1)) η 
⎞ 

⎠ 

1 
η 

⎞ 

⎟⎟⎟⎟⎠ 

,⎛ 

⎜⎝e 
−

(
Tk+1∑k+1 
j=1 Tj

(
−ln

(
1−δβk+1

))η
)1/η⎞ 

⎟⎠ 

e 

2πi  

⎛ 

⎜⎜⎜⎜⎝ 
e 
− 

⎛ 

⎝ Tk+1∑k+1 
j=1 Tj

(
−ln

(
1−θδk+1

))η 
⎞ 

⎠ 
1/η

⎞ 

⎟⎟⎟⎟⎠ 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

= 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎛ 

⎜⎜⎝1 − e 
−

(
∑k+1 

j=1 
Tj∑k+1 

j=1 Tj

(
−ln

(
1−γβj

))η
) 1 

η 
⎞ 

⎟⎟⎠ 

e 

2πi  

⎛ 

⎜⎜⎜⎜⎝ 
1−e 

− 

⎛ 

⎝∑k+1 
j=1 

Tj∑k+1 
j=1 Tj

(
−ln

(
1−θγj

))η 
⎞ 

⎠ 

1 
η 

⎞ 

⎟⎟⎟⎟⎠ 

,⎛ 

⎜⎝e 
−

(
∑k+1 

j=1 
Tj∑k+1 

j=1 Tj

(
−ln

(
δβj

))η
)1/η⎞ 

⎟⎠ 

e 

2πi  

⎛ 

⎜⎜⎜⎜⎝ 
e 
− 

⎛ 

⎝∑k+1 
j=1 

Tj∑k+1 
j=1 Tj

(
−ln

(
θδj

))η 
⎞ 

⎠ 
1/η

⎞ 

⎟⎟⎟⎟⎠ 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

Hence, we obtain our required result which is valid for all positive integers. 

Preposition 1 (Idempotency) If .βj =
(
γβei2π(θγ ), δβei2π(θδ)

)
= β, then 

CIFPAAA (β1, β2, . . . , βϑ) = β (17.10) 

Preposition 2 (Monotonicity) If .βj ≤ β∗
j , then
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CIFPAAA (β1, β2, . . . , βϑ) ≤ CIFPAAA
(
β∗
1 , β∗

2 , . . . , β∗
ϑ

)
(17.11) 

Preposition 3 (Boundedness) If .β−
j =

⎛
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j
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e
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(
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⎠ , j = 1, 2, . . . , ϑ , then 

β− 
j ≤ CIFPAAA (β1, β2, . . . , βϑ) ≤ β+ 

j (17.12) 

Definition 5 Here, we expose the theory of the CIFPAAOA operator for any 

collection of CIFNs .βj =
(

γβj
e
i2π

(
θγj

)
, δβj

e
i2π

(
θδj

))
, j = 1, 2, . . . , ϑ , we have  

CIFPAAOA (β1, β2, . . . βϑ) = ⊕ϑ 
j=1 

Tj∑ϑ 
j=1 Tj 

βo(j) (17.13) 

Where, o(j) ≤ o(j − 1). 

Theorem 2 To use the theory in Eq. (17.13), we prove that they again give us a 
CIFN, such as 

CIFPAAOA (β1, β2, . . . βϑ) 
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(17.14) 

Preposition 4 (Idempotency) If .βj =
(
γβei2π(θγ ), δβei2π(θδ)

)
= β, then
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CIFPAAOA (β1, β2, . . . , βϑ) = β (17.15) 

Preposition 5 (Monotonicity) If .βj ≤ β∗
j , then 

CIFPAAOA (β1, β2, . . . , βϑ) ≤ CIFPAAOA
(
β∗
1 , β∗

2 , . . . , β∗
ϑ

)
(17.16) 

Preposition 6 (Boundedness) If .β−
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⎠ , j = 1, 2, . . . , ϑ , then 

β− 
j ≤ CIFPAAOA (β1, β2, . . . , βϑ) ≤ β+ 

j (17.17) 

Definition 6 Here, we expose the theory of the CIFPAAG operator for any 

collection of CIFNs .βj =
(

γβj
e
i2π

(
θγj

)
, δβj

e
i2π

(
θδj

))
, j = 1, 2, . . . , ϑ , we have  

CIFPAAG (β1, β2, . . . βϑ) = ⊗ϑ 
j=1β 

Tj∑ϑ 
j=1 Tj 

j (17.18) 

Theorem 3 To use the theory in Eq. (17.18), we prove that they again give us a 
CIFN, such as 

CIFPAAG (β1, β2, . . . βϑ) 

= 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎛ 

⎜⎜⎝e 
−

(
∑ϑ 

j=1 
Tj∑k+1 

j=1 Tj

(
−ln

(
γβj

))η
) 1 

η 
⎞ 

⎟⎟⎠ 

e 

2πi  

⎛ 

⎜⎜⎜⎜⎝ 
e 
− 

⎛ 

⎝∑ϑ 
j=1 

Tj∑k+1 
j=1 Tj

(
−ln

(
θγj

))η 
⎞ 

⎠ 

1 
η 

⎞ 

⎟⎟⎟⎟⎠ 

,⎛ 

⎜⎜⎝1 − e 
−

(
∑ϑ 

j=1 
Tj∑k+1 

j=1 Tj

(
−ln

(
1−δβj

))η
) 1 

η 
⎞ 

⎟⎟⎠ 

e 

2πi  

⎛ 

⎜⎜⎜⎜⎝ 
1−e 

− 

⎛ 

⎝∑ϑ 
j=1 

Tj∑k+1 
j=1 Tj

(
−ln

(
1−θδj

))η 
⎞ 

⎠ 

1 
η 

⎞ 

⎟⎟⎟⎟⎠ 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

(17.19)
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Preposition 7 (Idempotency) If .βj =
(
γβei2π(θγ ), δβei2π(θδ)

)
= β, then 

CIFPAAG (β1, β2, . . . , βϑ) = β (17.20) 

Preposition 8 (Monotonicity) If .βj ≤ β∗
j , then 

CIFPAAG (β1, β2, . . . , βϑ) ≤ CIFPAAG
(
β∗
1 , β∗

2 , . . . , β∗
ϑ

)
(17.21) 

Preposition 9 (Boundedness) If .β−
j =

⎛
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j
γβj

e
i2π

(
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j
θγj

)
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δβj
e
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)⎞
⎠, 

and .β+
j =

⎛
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j
γβj

e
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(
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j
θγj

)

,min
j

δβj
e
i2π

(
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j
θδj

)⎞
⎠ , j = 1, 2, . . . , ϑ , then 

β− 
j ≤ CIFPAAG (β1, β2, . . . , βϑ) ≤ β+ 

j (17.22) 

Definition 7 Here, we expose the theory of the CIFPAAOG operator for any 

collection of CIFNs .βj =
(

γβj
e
i2π

(
θγj

)
, δβj

e
i2π

(
θδj

))
, j = 1, 2, . . . , ϑ , we have  

CIFPAAOG (β1, β2, . . . βϑ) = ⊗ϑ 
j=1β 

Tj∑ϑ 
j=1 Tj 

o(j) (17.23) 

Where, o(j) ≤ o(j − 1). 

Theorem 4 To use the theory in Eq. (17.23), we prove that they again give us a 
CIFN, such as
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CIFPAAOG (β1, β2, . . . βϑ) 
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(17.24) 

Preposition 10 (Idempotency) If .βj =
(
γβei2π(θγ ), δβei2π(θδ)

)
= β, then 

CIFPAAOG (β1, β2, . . . , βϑ) = β (17.25) 

Preposition 11 (Monotonicity) If .βj ≤ β∗
j , then 

CIFPAAOG (β1, β2, . . . , βϑ) ≤ CIFPAAOG
(
β∗
1 , β∗

2 , . . . , β∗
ϑ

)
(17.26) 

Preposition 12 (Boundedness) If .β−
j =

⎛
⎝min

j
γβj

e
i2π

(
min

j
θγj

)

,max
j

δβj
e
i2π

(
max

j
θδj

)⎞
⎠, 

and .β+
j =

⎛
⎝max

j
γβj

e
i2π

(
max

j
θγj

)

,min
j

δβj
e
i2π

(
min

j
θδj

)⎞
⎠ , j = 1, 2, . . . , ϑ , then 

β− 
j ≤ CIFPAAOG (β1, β2, . . . , βϑ) ≤ β+ 

j (17.27) 

4 MADM Methods for CIFNs 

The MADM method is an important component of the decision-making process that 
is used to assess the best or finest decision from the information gathered. Here, we 
have shown how the MADM approach works when derived operators for CIFSs are
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present. We also revealed an MADM method when derived operators were taken 
into account. Lastly, we provided several examples for comparing the suggested 
and existing operators in order to demonstrate the superiority and viability of the 
conceived theory. 

Consider the collection of alternatives and their attributes such as k = {x1, x2, . . .  
xm} and C = {c1, c2, . . . , cn}, with a priority degree c1 > c2 > c3, . . . , cn. To compute 

a decision matrix .Kq =
(
K

q
ij

)
mxn

with . βj =
(

γβj
e
i2π

(
θγj

)
, δβj

e
i2π

(
θδj

))
, j =

1, 2, . . . , ϑ , noticed that the theory of .γβ (ξ) ei2π(θγ (ξ)) and . δβ (ξ) ei2π(θδ(ξ))

represented the theory of truth and falsity information with a characteristic: 
0 ≤ γ β (ξ ) + δβ (ξ ) ≤ 1 and 0 ≤ θγ (ξ ) + θδ(ξ ) ≤ 1. Furthermore, 
we derive the theory of neutral grade . πCF (ξ) = πRP (ξ) ei2π(πIP (ξ)) =(
1 − (

γβ (ξ) + δβ (ξ)
))

ei2π(1−(θγ (ξ)+θδ(ξ))). Therefore, here, we compute a 
decision-making procedure for evaluating the best decision from the collection 
of preferences, such as: 

Step 1 Compute or arrange a decision matrix by including the CIFNs. When we 
have cost type of data, then we need to evaluate it with the help of the below idea, 
such as: 

r q 
ij =

{
k q 
ij , f or benef it attribute cj 
k q 
ij , f  or  cos t  attribute  cj 

In the case of benefit, no need to normalize. 

Step 2 Aggregate the information in the matrix with the help of the below one, such 
as
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CIFPAAA (β1, β2, . . . βϑ) 
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Or 

CIFPAAG (β1, β2, . . . βϑ) 
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Step 3 Evaluate the best or finest preference with the help of the below score 
information, such as
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Sco (βi) = γγi − δβi i = 1, 2, . . .  m  

Step 4 Evaluate the ranking information based on the derived score values. 
Furthermore, we aim to expose various numerical examples for showing the 

reliability and effectiveness of the derived theory. 

4.1 Numerical Example 

A company wants to launch different types of software in a market. The rep-
resentation of the different software is stated as follows: ∂βAL − 1, ∂βAL − 2, 
∂βAL − 3, ∂βAL − 4, ∂βAL − 5, which are represented as alternatives. The theoretical 
representation of each alternative is of the form, such as Math Type, MS office, 
LaTeX, MATLAB, and Mathematica. To choose the best one from the above 
software, we use the following features or criteria such as β1, β2, β3, and β4, where 
the theoretical representation of each criterion follows: the price of the software, 
the version of the software, and finally, feedback from the users. Therefore, here, 
we compute a decision-making procedure for evaluating the best decision from the 
collection of preferences, such as: 

Step 1 Compute or arrange a decision matrix (using the information in Table 17.1) 
by including the CIFNs. When we have cost type of data, then we need to evaluate 
it with the help of the below idea, such as: 

r q 
ij =

{
k q 
ij , f or benef it attribute cj 
k q 
ij , f  or  cos t  attribute  cj 

In the case of benefit, no need to normalize, but the data in Table 17.1 is not 
needed to be normalized. 

Step 2 Aggregate the information in the matrix by using the theory of the 
CIFPAAA operator and CIFPAAG operator, see Table 17.2. 

Step 3 Evaluate the best or finest preference with the help of score information, see 
Table 17.3. 

Step 4 Evaluate the ranking information based on the derived score values, see 
Table 17.4. 

The finest decision is ∂βAL − 3 according to the theory of the CIFPAAA operator 
and CIFPAAG operator. Furthermore, we are doing a comparison between the 
proposed work and the existing operator under the consideration of the above 
numerical examples to show the reliability and effectiveness of the derived theory.
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Table 17.3 Score matrix CIFPAAA CIFPAAG 

∂βAL − 1 0.20015 0.1985 
∂βAL − 2 0.00515 0.00485 
∂βAL − 3 0.6518 0.648 
∂βAL − 4 0.3518 0.3481 
∂βAL − 5 0.20017 0.1981 

Table 17.4 Ranking matrix 

Methods Ranking results 

CIFPAAA ∂βAL − 3 ≤ ∂βAL − 4 ≤ ∂βAL − 5 ≤ ∂βAL − 1 ≤ ∂βAL − 2 
CIFPAAG ∂βAL − 3 ≤ ∂βAL − 4 ≤ ∂βAL − 1 ≤ ∂βAL − 5 ≤ ∂βAL − 2 

5 Comparative Analysis 

To enhance the capability and worth of the invented operators, we concentrate to 
derive the comparison between derived work and various existing works, for this, 
we try to collect various prevailing information such as Senapati et al. [17] derived 
the theory of AAAOs for IFSs, Senapati et al. [18] exposed the theory of geometric 
AAAO for IFSs, and finally, Mahmood et al. [19] examined the theory of AAAO for 
CIFSs. Additionally, Yu and Xu [21] derived the idea of PAOs for IFSs. Under the 
presence of the information in Table 17.1, the comparative information is available 
in Table 17.5. 

The CIFPAAA operator, the CIFPAAG operator, and ∂βAL3 in the theory of 
Mahmood et al. [19], where the best decision is once again the same. Furthermore, 
we also noticed that the theory of Senapati et al. [17], Senapati et al. [18], and the 
theory of Yu and Xu [21] have a lot of limitations because of their structure. Senapati 
et al. [17], Senapati et al. [18], and Yu and Xu [21] derived their theories based on 
IFS which is a special case of the invented theory. 

Hence, our proposed model is massively reliable, and dominant compared to 
others because the proposed operators are calculated based on CIFSs which is the 
modified form of FSs, IFSs, and CFSs. 

6 Conclusion 

The main influence or theme of this manuscript is stated below: 

1. With the help of two different structures such as prioritized averaging aggregation 
operators and Aczel-Alsina t-norm and t-conorm, we exposed the idea of 
CIFPAAA and CIFPAAOA operators.
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2. With the help of two different structures such as prioritized geometric aggrega-
tion operators and Aczel-Alsina t-norm and t-conorm, we exposed the idea of 
CIFPAG and CIFPAAOG operators. 

3. Some important properties and special cases of the derived work are also 
examined. 

4. We illustrated the procedure of the MADM technique under the consideration of 
derived operators for CIF information. 

5. Finally, we illustrated various examples for determining the comparison between 
proposed and existing operators. 

In the future, we aim to derive various new ideas and then try to utilize them in 
the field of game theory, machine learning, software engineering, computer science, 
artificial intelligence, neural networks, clustering analysis, pattern recognition, 
medical diagnosis, and decision-making [22–24] to enhance the worth of the derived 
theory. 
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Chapter 18 
Intuitionistic Fuzzy Approach for 
Predicting Maternal Outcomes 

Chukwudi Obinna Nwokoro, Udoinyang G. Inyang, Imo J. Eyoh, 
and Paul Augustine Ejegwa 

1 Introduction 

On daily basis, both health and nonhealth organizations make significant efforts in 
reducing newborn and maternal deaths. However, WHO in (2019) [1] reported that 
between 1990 and 2020, the newborn mortality rate was almost halved from 37 to 
17 deaths per 1000 births. Again, from 2000 to 2017, the global maternal mortality 
rate fell by nearly 38%. Despite these efforts, mothers within the bearing age are 
still experiencing death in unacceptably large numbers, which could be associated 
with complications during pregnancy or childbirth. 

The complication in pregnancy occurs from time to time and can affect the 
mother’s health, the baby’s health, or both. Often some women within the bear-
ing age may have some health problems that arise during pregnancy (such as 
preeclampsia, eclampsia, bleeding, ectopic pregnancy, miscarriage or fetal loss, and 
many others), while other women may have health problems before they became 
pregnant (such as unsafe abortion, infections, high blood pressure, and convulsions, 
sometimes followed by a coma), which could lead to complications. It is of great 
importance for women within the bearing age to receive good healthcare before and 
during pregnancy to reduce the risk of pregnancy complications, which may lead to 
morbidity or mortality. 
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Conversely, due to the uncertainties in maternal reproductive health, there is a 
need to introduce a fuzzy approach, which can help to handle uncertainties. Zadeh 
[2] introduced a fuzzy set to handle vagueness and ambiguity. Fuzzy set is capable of 
modeling human knowledge and intelligence. Nonetheless, it has some limitations, 
because in it, only one membership function is for prediction. To properly handle 
uncertainties in real world problems, an intuitionistic fuzzy set (IFS) was introduced 
by Atanassov [3] because to a large extent, it can reliably model most real-life 
situations. 

The need for a robust intuitionistic fuzzy (IF) approach was introduced in this 
chapter based on the following major concerns in terms of complications related to 
mothers within the bearing age: (i) complication among women within the bearing 
age poses lots of concerns to developing and less-developed countries with about 
50–100% [4] higher than those witnessed in developed countries, (ii) predicting 
pregnant mothers remains a challenge because its physical/clinical presentation 
could be confusing to some health personnel since it can be related to other health 
complications such as infections, urinary tract infection, obesity and weight gain, 
and hypertension, (iii) it is of great importance for developing countries to embrace 
new methods for predicting maternal complication, (iv) some patients may find it 
difficult to express how they feel, thereby making it difficult for the physician to 
provide the right diagnosis to the patient, and (v) complication among mothers 
within the bearing age could be misdiagnosed most especially in low-to-middle 
income countries (LMICs) due to quick access to local birth attendance and lack 
of funding to access good health facilities. 

This study recommends the use of an intuitionistic fuzzy (IF) approach to 
enhance decision-making for the prediction of maternal complications because 
IF approach is capable of handling the hesitation between patient and doctor in 
predicting maternal outcomes, which in most cases could be challenging in terms 
of the investigations like laboratory analysis and ultrasound and their proposed 
diagnoses outcomes. The IF method makes use of a membership function and 
nonmembership function with the possibility of the existence of hesitation margin 
to enrich decision-making in most real-life situations. There is no doubt that the 
health sector is not left alone, as such, some researchers have adopted intuitionistic 
methods to predict tropical diseases. Furthermore, maternal health remains a source 
of concern in the health system. Thus, this work seeks to contribute to the body of 
knowledge in reducing complications that may arise during and after pregnancy, as 
well as improve maternal healthcare. The concept of the intuitionistic fuzzy method 
gives a better predicting result than the conventional fuzzy sets. 

2 Review of Related Works 

Several works has been tailored toward adoption of IF methods to improve medical 
decisions, De et al. [5] and Ejegwa and Onasanya [6] applied intuitionistic fuzzy 
sets in medical diagnosis and suggested that an improved intuitionistic fuzzy
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composite relation will yield a better decision. The works in [7, 8] showcased 
the strength of intuitionistic fuzzy sets for the prediction of medical diagnosis, 
results were obtained from the lowest value from their computations. Ahn et al. [8] 
applied interval-valued IFS to medical diagnosis of headache. Ref. [9] compared 
the switch between type-2 fuzzy sets and intuitionistic fuzzy sets to proffer a better 
medical diagnosis. Luo and Zhao [10] conducted a study using distance measure 
to compute intuitionistic fuzzy sets to improve medical diagnosis. Dhiman et al. 
[11] adopted intuitionistic fuzzy set to extract expert knowledge for predicting 
medical diagnosis. Sulaiman et al. [12] applied weighted similarity on intuitionistic 
fuzzy set for medical diagnostics. Subsequently, intuitionistic fuzzy sets have been 
used in various domains: electoral system [13], pattern recognitions [14–21], image 
processing [5, 22–27], environmental management [28], and to predict decision-
making [29–36]. 

Intuitionistic fuzzy sets offer various measurement approaches, including the 
utilization of similarity and distance measures. These measures serve to represent 
the proximity or dissimilarity between different Intuitionistic Fuzzy Sets (IFSs). 
Lui [37] investigated cosine similarity measure with hybrid intuitionistic fuzzy 
information to enhance medical diagnosis. Pramanik and Mondal [38] studied 
intuitionistic fuzzy distance approaches with applications. Furthermore, Çağman 
and Deli [39] recommended similarity measures of two IFSs, which was applied 
to medical diagnosis to improve clinical results and other competing diagnosis. 
Gohain [40] proposed two new similarity measures for intuitionistic fuzzy sets and 
its various applications to pattern recognition, medical diagnosis, and the decision-
making problem of face mask selection for the novel COVID-19 virus [41]. Garg 
and Kumar [42] proposed some novel similarity measures to measure the relative 
strength of the different IFSs. 

However, distance measure between IFSs to a large extent is a method reliable 
for better interpretations. Several scholars have suggested methods to strengthen 
output results obtained by scholars. Dutta and Goala [43] used an advanced distance 
measure on IFSs to suggest the disease that a patient may be suffering from, 
while the work of Mahanta and Panda [44] showcased the importance of distance 
measure for intuitionistic fuzzy sets with diverse applications. Xiao [45] proposed 
a new distance measure between IFSs based on the Jensen-Shannon divergence, 
the new IFS distance measure cannot only satisfy the axiomatic definition of 
distance measure but also has nonlinear characteristics. A novel distance measure 
for cubic intuitionistic fuzzy sets was used to predict medical diagnosis and pattern 
recognition [46]. Though several scholars have experimented using IFSs, it is 
imperative to discuss the application of IF method in the prediction of maternal 
health outcomes. 

Our research centered on devising an Intuitionistic Fuzzy (IF) method by build-
ing upon the frameworks introduced by Szmidt and Kacprzk [30] and enhancing 
their intuitionistic fuzzy distances, as suggested by Ejegwa et al [47] Subsequently, 
we developed a novel intuitionistic fuzzy method through these modifications. The 
remaining part of this work is arranged as follows: Sect. 3 compares methodologies 
of IF methods (distance methods to be precise) and the basic notions of each of
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the methods, Sect. 4 presents numerical experiment and discussion based on real 
maternity data set, and Sect. 5 presents the summary of the work with a concluding 
remark and drawbacks of the work. 

3 Methodology 

3.1 Intuitionistic Fuzzy Sets and Their Distance Measures 

We will discuss the concept of IFSs distance method generated by Szmidt and 
Kacprzk [30] and then present a modified approach of Szmidt and Kacprzk’s [47] 
methods. We take ϒ as a nonempty set throughout this chapter. 

Definition 3.1 [50] A fuzzy set . Â drawn from γ could be written as . Â ={〈
e,�Â (e)

〉 : e ∈ γ
}
, where .�Ã(e), γ → [0, 1] is the membership function of . Â. 

Fuzzy set is a collection of objects with graded membership. 

Definition 3.2 [3] An IFS represented by . B̃ in ϒ is an object of the form 

B̃ = {〈
e,�B̃(e),�B̃(e)

〈 : e ∈ γ
}

where the function .�B̃(e),�B̃(e) : γ → [0, 1] define the degree of membership 
and degree of nonmembership of the element, e ∈ ϒ to . B̃, and for every e ∈ ϒ , 
.e ∈ γ,�B̃(e),�B̃(e) ∈ [0, 1]. Further, we have .�B̃(e) = 1 − �B̃(e) − �B̃(e), 
which is called the intuitionistic fuzzy set index or hesitation margin of .e ∈ B̃. The  
function, .�B̃(e), describes the degree at which e belongs to . B̃ or not. According to 
[51–53], we observe that every fuzzy set is an IFS but the converse does not hold, 
and that

�B̃(e) + �B̃(e) + �B̃(e) = 1. 

The advantage of IFS over fuzzy sets is the introduction of additional degrees 
of freedom (nonmemberships and hesitation margins) into the set description to 
give room to handle imprecise knowledge, which may lead to describe many real 
problems in a more adequate way. 

Definition 3.3 [3] If . B̃1, and . B̃2 inϒ , then for all e ∈ ϒ , we have  

(i) .̃B1 = B̃2 iff �B̃1
(e) = �B̃2

(e) and . �B̃1
(e) = �B̃2

(ii) .̃B1 ⊆ B̃2 iff .�B̃1
(e) ≤ �B̃2

(e) and . �B̃1
(e) ≥ �B̃2

(iii) .̃B1 � B̃2 iff .�B̃1
(e) � �B̃2

(e) and . �B̃1
(e) � �B̃1

(iv) .̃B1=
{〈

e,�B̃1
(e),�B̃1

(e)
〉
: e∈γ

}
, . B̃2= .̃B2 =

{〈
e,�B̃2

(e),�B̃2
(e)

〉
: e ∈ γ

}
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(v) .̃B1 ∪ B̃2 = . 

{〈
e,max

{
�B̃1

(e),�B̃2
(e)

}
,min

{
�B̃1

(e),�B̃2
(e)

〉
: e ∈ γ

}

(vi) .̃B1 ∩ B̃2 = .

{〈
e,min

{
�B̃1

(e),�B̃2
(e)

}
,max

{
�B̃1

(e),�B̃2
(e)

〉
: e ∈ γ

}
. 

Definition 3.4 [54] The distance measure between IFSs, .B̃, B̃1, and . B̃2 in ϒ is a 
function, �: IFS × IFS → [0, 1], which satisfies the following axioms: 

C1 . �
(
B̃1, B̃2

)
∈ [0, 1]

C2 .�
(
B̃1, B̃2

)
= 0 if and only if . B̃1= . B̃2

C3 . �
(
B̃1, B̃2

)
= �

(
B̃2, B̃1

)

C4 .�
(
B̃1, . B̃

)
+ �

(
˜̃B,B2

)
≥ �

(
B̃1, B̃2

)

C5 if .B̃1 ⊆ B̃2 ⊆ B̃, then .�

(
B̃1, B̃

)
≥ �

(
B̃1, B̃2

)
and .�

(
B̃1, .B̃

)
≥ �

(
˜̃B,B2

)
. 

Distance measure is a term that describes the difference between IFSs and can 
be considered as a dual concept of similarity measure. We recall the four distance 
measures proposed in [48–51] between IFSs, which were partly based on the 
geometric interpretation of IFSs with good geometric properties. 

IFSs Methods Developed by Szmidt and Kacprzyk 

Suppose there are two IFSs, . B̃1 and . B̃2 in ϒ = {e1, e2 . . .  , en}, given by

B̃1 =
{〈

ej ,�B̃1

(
ej

)
, �B̃1

(
ej

)
,�B̃1

(
ej

)〉 : ej ∈ Y
}

and

B̃2 =
{〈

ej ,�B̃2

(
ej

)
, �B̃2

(
ej

)
,�B̃2

(
ej

)〉 : ej ∈ Y
}

, ∀j = 1, 2, . . . , n. 

Then the following are distance measures between A and B [49, 50]: 
The Hamming distance

�1
(
B̃1, B̃2

) =

∑n 
j=1

(
|�B̃1

(
ej

) − �B̃2

(
ej

) | + |�B̃1

(
ej

) − �B̃2

(
ej

) | 
+|�B̃1

(
ej

) − �B̃2

(
ej

) |
)

2 
(18.1) 

The Euclidean distance
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�2
(
B̃1, B̃2

) =

√√√√√√√√√

∑n 
j=1

[(
�B̃1

(
ej

) − �B̃2

(
ej

))2 +
(
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(
ej

) − �B̃2

(
ej

))2 

+
(
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(
ej

) − �B̃2

(
ej

))2]

2 
(18.2) 

The normalized Hamming distance

�3
(
B̃1, B̃2

) =

∑n 
j=1

(
|�B̃1

(
ej

) − �B̃2

(
ej

) | + |�B̃1

(
ej

) − �B̃2

(
ej

) | 
+|�B̃1

(
ej

) − �B̃2

(
ej

) |
)

2n 
(18.3) 

The normalized Euclidean distance

�4
(
B̃1, B̃2

) =

√√√√√√√√√

∑n 
j=1

[(
�B̃1

(
ej

) − �B̃2

(
ej

))2 +
(
�B̃1

(
ej

) − �B̃2

(
ej

))2 

+
(
�B̃1

(
ej

) − �B̃2

(
ej

))2]

2n 
(18.4) 

Recently, Ejegwa et al. [47] developed the following distance measures for IFSs 
by modifying the approaches in [30]:

�5
(
B̃1, B̃2

) =

∑n 
j=1

(
|�B̃1

(
ej

) − �B̃2

(
ej

) | + |�B̃1

(
ej

) − �B̃2

(
ej

) | 
+|�B̃1

(
ej

) − �B̃2

(
ej

) |
)

3 
(18.5)

�6
(
B̃1, B̃2

) =

√√√√√√√√√

∑n 
j=1

[(
�B̃1

(
ej

) − �B̃2

(
ej

))2 +
(
�B̃1

(
ej

) − �B̃2

(
ej

))2 

+
(
�B̃1

(
ej

) − �B̃2

(
ej

))2]

3 
(18.6)



18 Intuitionistic Fuzzy Approach for Predicting Maternal Outcomes 405

�7
(
B̃1, B̃2

) =

∑n 
j=1

(
|�B̃1

(
ej

) − �B̃2

(
ej

) | + |�B̃1

(
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(
ej

) | 
+|�B̃1

(
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(
ej

) |
)

3n 
(18.7)

�8
(
B̃1, B̃2

) =

√√√√√√√√√

∑n 
j=1

[(
�B̃1

(
ej

) − �B̃2

(
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))2 +
(
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(
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) − �B̃2

(
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))2 

+
(
�B̃1

(
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) − �B̃2

(
ej

))2]

3n 
(18.8) 

Because the concept of similarity measure is the dual of distance measure, the 

similarity measures of the above distance measures can be obtained by . �
(
B̃1, B̃2

) =
1 − �

(
B̃1, B̃2

)
[52]. Based on this, the similarity measures are as follows: 

�̄1
(
B̃1, B̃2

) = 1 −

∑n 
j=1

(
|�B̃1

(
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) − �B̃2

(
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) | + |�B̃1

(
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(
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) | 
+|�B̃1

(
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) − �B̃2

(
ej

) |
)

2 
(18.9)

�2
(
B̃1, B̃2

) = 1 −

√√√√√√√√√

∑n 
j=1

[(
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(
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) −�B̃2

(
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))2 +
(
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(
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) −�B̃2

(
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+
(
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(
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(
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))2]

2 
(18.10)

�3
(
B̃1, B̃2

) = 1 −

∑n 
j=1

(
|�B̃1

(
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(
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(
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(
ej

) | 
+|�B̃1

(
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(
ej

) |
)

2n 
(18.11)

�4
(
B̃1, B̃2

) = 1 −

√√√√√√√√√

∑n 
j=1

[(
�B̃1

(
ej

) −�B̃2

(
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))2 +
(
�B̃1

(
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) −�B̃2

(
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))2 

+
(
�B̃1

(
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) − �B̃2

(
ej

))2]

2n 
(18.12)
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�5
(
B̃1, B̃2

) = 1 −

∑n 
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(
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(
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(18.13)

�6
(
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) = 1 −

√√√√√√√√√

∑n 
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(
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(18.14)

�7
(
B̃1, B̃2

) = 1 −

∑n 
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(
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(
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(
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(
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(18.15)

�8
(
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) = 1 −

√√√√√√√√√

∑n 
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[(
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(
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(
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(
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(
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(
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(
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3n 
(18.16) 

New Method of Intuitionistic Fuzzy Distance Measure 

To improve reliable results and evade loss of information, we present the following 
method of intuitionistic fuzzy distance measure between IFSs:

B̃1 =
{〈

ej ,�B̃1

(
ej

)
, �B̃1

(
ej

)
,�B̃1

(
ej

)〉 : ej ∈ Y
}

and

B̃2 =
{〈

ej ,�B̃2

(
ej

)
, �B̃2

(
ej

)
,�B̃2

(
ej

)〉 : ej ∈ Y
}

, 

in ϒ = {e1, e2 . . .  , en}, ∀j = 1, 2, . . . , n by
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�ω

(
B̃1, B̃2

) =
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j=1 ωj 

⎡ 

⎣ 
Av
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⎤ 
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n 
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(18.17) 

where Av is average, andωj is the weights of the elements of ϒ such that . 
∑n

j=1 ωj =
1 and ωj ∈ [0, 1]. This approach can be best described as weighted modified 
Hausdorff intuitionistic fuzzy distance approach. The similarity equivalent of the 
weighted modified Hausdorff intuitionistic fuzzy distance approach is given by

�ω

(
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(18.18) 

By simplifying Eqs. (18.17) and (18.18), we obtain
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(18.19)
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(18.20) 

Now, we present some properties of Eqs. (18.17) and (18.18) as follows. 

Proposition 3.1 Suppose . B̃1 and . B̃2 are IFSs of ϒ , then we have: 

(i) . �ω

(
B̃1, B̃2

)
= �ω

(
B̃2, B̃1

)

(ii) .�ω (B1,B2) = �ω (B2,B1). 

Proof The proof of (i) follows because
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= 
1 

3n 

n∑

j=1 

ωj 

⎡ 

⎣

∣∣∣−
[
�B̃2

(
ej

) − �B̃1

(
ej

)]∣∣∣ +
∣∣∣−

[
�B̃2

(
ej

) − �B̃1

(
ej

)]∣∣∣

+
∣∣∣−

[
�B̃2

(
ej

) − �B̃1

(
ej

)]∣∣∣

⎤ 

⎦ 

= 
1 

3n 

n∑

j=1 

ωj 

⎡ 

⎣

∣∣∣�B̃2

(
ej

) − �B̃1

(
ej

)∣∣∣ +
∣∣∣�B̃2

(
ej

) − �B̃1

(
ej

)∣∣∣

+
∣∣∣�B̃2

(
ej

) − �B̃1

(
ej

)∣∣∣

⎤ 

⎦ 

= �ω

(
B̃2, B̃1

)
. 

The proof of (ii) is similar. 

Theorem 3.2 Suppose . B̃1 and . B̃2 are IFSs in ϒ , then the functions . �ω
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)
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18 Intuitionistic Fuzzy Approach for Predicting Maternal Outcomes 409

n∑
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(
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≤ 1. Hence, 
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Next, we prove (ii). Suppose .�ω
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Conversely, assume .B̃1 = B̃2. Then
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Similarly, .�ω

(
B̃1, B̃2

) = 0 iff .B̃1 = B̃2, which proves (ii). 

Theorem 3.3 If .B̃1, B̃2 and . B̃3 are IFSs in ϒ with the containment, . B̃1⊆ . B̃2⊆ . B̃3. 
Then following statements hold: 

(i) .�ω

(
B̃1, B̃3

)
≥ . �ω

(
B̃1, B̃2

)
.

(ii) .�ω
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≥ . �ω
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Consequently, we have
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Hence, .�ω

(
B̃1, B̃3

)
≥ .�ω

(
B̃1, B̃2

)
, which establishes (i). Using the same 

principle, (ii) is established. Since .�ω

(
B̃1, B̃3

)
≥ .�ω

(
B̃1, B̃2

)
and . �ω

(
B̃1, B̃3

)

≥ .�ω

(
B̃2, B̃3

)
, it is easy to see that .�ω

(
B̃1, B̃3

)
≥max .

{
�ω

(
B̃1, B̃2

)
, 

.�ω

(
B̃2, B̃3

) }
. Hence (iii) is proved. 

Corollary 3.4 If .B̃1, B̃2 and . B̃3 are IFSs in ϒ with the containment, . B̃1 ⊆ B̃2 ⊆
B̃3. Then following statements hold: 

(i) . �ω ( B1, B3) ≤ Bu ( B1, B2) .

(ii) . �ω (D1, B2) ≤ dc (B2, B2) .

(iii) .�ω ( B1, B2) .≤ max{�ω ( B3, B2) ,�ω ( B2, B2)}. 

Proof The proofs of the statements are similar to Theorem 3.3. 

4 Numerical Experiment and Discussion 

4.1 Data Source/Descriptions 

We obtained data from both tertiary and private health-care centers (St Luke 
Hospital Anua, UyoAkwa Ibom State, University of River State Teaching Hospital 
and Zion Medical Centre Ahoada, Rivers State) in the South East Zone of Nigeria. 
The data were taken from about 2000 patients, with 15 input features: Maternal BP 
(MBPM), Maternal Weight(MW), Hemoglobin Level (HL), Packed Cell Volume 
Level (PCVL), Pulse Rate (PR), Mode of Delivery (MOD), Malaria Frequency 
(MP), Hepatitis C (HC), Diabetes Status (DM), Herbal Ingestion (HI), Respiratory 
disorder (RD), Material Aga (MA), Ascorbic acid Level (ACC), Preeclampsia 
(PREE), and Antennal booking (AB). The seven output features are Miscarriage, 
Preterm (Contraction), Still birth, Placentae Previa, UTI, Full term, and Mortality. 
Ethical clearance was obtained in each of health centers, but patients’ personnel 
details were not disclosed.
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Table 18.1 Raw dataset for maternal sickness 

MBPM MW HL PCVL PR MOD MP HC DM HI RD MA ACC PREE AB 

Miscarriage 2 85 13 36 0 1 1 0 0 0 0 34 0 0 1 
Pre-
Preterm 
(Contrac-
tion) 

5 72 13 41 0 1 0 0 0 0 0 30 0 0 1 

Still birth 4 58 12 36 0 1 0 0 0 0 0 28 0 0 1 
Placentae 
Previa 

2 85 13 36 0 1 1 0 0 0 0 34 0 0 1 

UTI 1 0 0 100 0 2 0 0 0 0 20 26 0 0 1 
FULL-
TERM 

1 55 13 27 0 1 1 0 0 0 0 23 0 0 1 

Mortality 1 96 12 36 0 2 0 0 0 0 0 27 0 0 1 

SupposeM = {M1,M2,M3,M4,M5}is the set of maternal patients to be diagnosed 
for various types of maternal outcome, andD={MBPM, MW, HL, PCVL, PR, 
MOD, MP, HC, DM, HI, RD, MA, ACC, PREE, AB} is the set of symptoms of 
maternal outcome. The maternal patients are susceptible to the following outcomes: 
Miscarriage, Preterm (Contraction), Still birth, Placentae Previa, UTI, Full term, 
Mortality. 

The symptoms of each of the maternal outcome are taken in intuitionistic fuzzy 
values as shown in the tables below. 

Table 18.1 is the raw data obtained from field, before transformation into 
intuitionistic maternal dataset, maternal patients against the symptoms in Tables 
18.2 and 18.3. 

Table 18.2 presents the maternal patients against the symptoms in intuitionistic 
fuzzy format; this was achieved using a numerical method, fuzzier, and the dataset. 
However, we considered the symptoms of each of the maternal outcomes using 
Intuitionistic Fuzzy, because these maternal symptoms have lots of hesitation 
associated with them. During examination, some of the symptoms may not be seen, 
but may later surface as the pregnancy increases, thereby causing some level of 
delay. Most especially, it is the third level of delay, where the health experts may 
find it difficult to understand the best type of treatment or management to give to 
the patient. Table 18.2 is then transformed into maternal outcome and diagnosis to 
generate Table 18.3. 

Table 18.3 represents the transformation of maternal outcome and diagnosis; this 
was achieved using the numerical method. Tables 18.2 and 18.3 are used to compute 
Table 18.4 using the best approach in [50] and Table 18.5 using the best approach in 
[47]. However, Table 18.6 presents the results from the new method of intuitionistic 
fuzzy distance measure, where the weight of the symptoms is given by a set 

ω = {0.1, 0.1, 0.05, 0.05, 0.1, 0.05, 0.05, 0.05, 0.05, 0.05, 0.1, 
0.05, 0.05, 0.1, 0.05} .
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Table 18.4 Distance values between patients and maternal outcomes using Szmidt and Kacprzk 
[50] methods 

Miscarriage 
Preterm 
(Contraction) Still birth Placentae previa UTI Full term Mortality 

Szmidt and Kacprzk Distance measures 
M1 0.11522 0.10656 0.11322 0.27972 0.37962 0.46753 0.37562 
M2 0.12587 0.12055 0.12321 0.27173 0.37796 0.45721 0.39161 
M3 0.11255 0.10390 0.11489 0.27373 0.36663 0.44346 0.39161 
M4 0.09457 0.09291 0.08858 0.41525 0.31968 0.41525 0.43556 
M5 0.35798 0.34032 0.34166 0.18648 0.09124 0.15551 0.64336 
Szmidt and Kacprzk Similarity Measures 
M1 0.88478 0.89344 0.88678 0.72028 0.62038 0.53247 0.62438 
M2 0.87413 0.87945 0.87679 0.72827 0.62205 0.54279 0.60839 
M3 0.88745 0.89610 0.88512 0.72627 0.63337 0.55654 0.60839 
M4 0.90543 0.90709 0.91142 0.58475 0.68032 0.58475 0.56444 
M5 0.64202 0.65968 0.65834 0.81352 0.90876 0.84449 0.35664 

Table 18.5 Distance values between patients and maternal outcomes using Ejegwa et al. [47] 
method 

Miscarriage 
Preterm 
(Contraction) Still birth Placentae previa UTI Full term Mortality 

Distance measures 
M1 0.11988 0.11544 0.11544 0.27084 0.35520 0.42846 0.28416 
M2 0.12876 0.12876 0.12876 0.26196 0.34188 0.41514 0.30192 
M3 0.11988 0.11544 0.11544 0.26640 0.36852 0.41514 0.30192 
M4 0.08436 0.08436 0.07992 0.37074 0.28860 0.37074 0.35076 
M5 0.32856 0.30192 0.30636 0.15540 0.07104 0.12210 0.51948 
Distance Measures 
M1 0.88012 0.88456 0.88456 0.72916 0.64480 0.57154 0.71584 
M2 0.87124 0.87124 0.87124 0.73804 0.65812 0.58486 0.69808 
M3 0.88012 0.88456 0.88456 0.73360 0.63148 0.58486 0.69808 
M4 0.91564 0.91564 0.92008 0.62926 0.71140 0.62926 0.64924 
M5 0.67144 0.69808 0.69364 0.84460 0.92896 0.87790 0.48052 

The weights of the symptoms are generated using assumptive approach. 
Table 18.4 is the computation of the most appropriate method of Szmidt and 

Kacprzk [50] in terms of patients (M1, M2, M3, M4, and M5) with the likely 
maternal outcomes. 

Table 18.5 is the computation using the most appropriate method of Ejegwa et al. 
[47] between patients (M1, M2, M3, M4, and M5) and the likely maternal outcomes. 

Table 18.6 indicates the computation using the new method of intuitionistic fuzzy 
distance measure and its similarity measure in terms of patients (M1, M2, M3, M4, 
and M5) with the likely maternal outcomes.
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Table 18.6 New method of intuitionistic fuzzy distance measure 

Miscarriage 
Preterm 
(Contraction) Still birth 

Placentae 
previa UTI Full-term Mortality 

New method of intuitionistic fuzzy distance measure 
M1 0.00755 0.00733 0.00710 0.01909 0.02353 0.02919 0.01865 
M2 0.00844 0.00866 0.00866 0.01820 0.02220 0.02786 0.02042 
M3 0.00755 0.00733 0.00733 0.01887 0.02464 0.02786 0.02042 
M4 0.00555 0.00555 0.00511 0.02520 0.01909 0.02520 0.02309 
M5 0.02176 0.02042 0.02087 0.00888 0.00599 0.00722 0.03485 
New method of intuitionistic fuzzy similarity measures 
M1 0.99245 0.99267 0.99290 0.98091 0.97647 0.97081 0.98135 
M2 0.99156 0.99134 0.99134 0.98180 0.97780 0.97214 0.97958 
M3 0.99245 0.99267 0.99267 0.98113 0.97536 0.97214 0.97958 
M4 0.99445 0.99445 0.99489 0.97480 0.98091 0.97480 0.97691 
M5 0.97824 0.97958 0.97913 0.99112 0.99401 0.99279 0.96515 

However, Tables 18.4 shows the intuitionistic transformation of the maternal 
dataset to obtain the distance between patients and maternal outcomes, as well as 
maternal patients and diagnosis for each patient. We applied similarity measurement 
in Table 18.4 to validate the result, which gave Tables 18.5 and 18.6. These are 
the similarity measurement using Szmidt and Kacprzk [50], Ejegwa et al. [47], 
and new intuitionistic method. The decision making is considered in two forms: 
(a) horizontal decision concerning the maternal outcome, (b) vertical decision 
concerning patients for each of the methods. Decisions are made based on the 
greater value of relationships between patients and maternal outcomes for similarity 
and the least value of relationships between patients and maternal outcomes for 
distance. 

From Table 18.4, we see that M1, M2, and M3 are predictable to suffer from 
contraction, M4 is predictable to suffer from still birth, and M5 is predictable to 
suffer from UTI. From Table 18.5, we see that M1 is predictable to suffer from 
contraction and still birth; M2 is predictable to suffer from miscarriage, contraction, 
and still birth; M3 is predictable to suffer from contraction and still birth; M4 is 
predictable to suffer from still birth; and M5 is predictable to suffer from UTI. From 
Table 18.6, we see that M1 is predictable to suffer from still birth, M2 is predictable 
to suffer from miscarriage, M3 is predictable to suffer from contraction and still 
birth, M4 is predictable to suffer from still birth, and M5 is predictable to suffer 
from UTI. Szmidt and Kacprzk [50] method, Ejegwa et al. [47] method, and the 
new method show that M4 and M5 are predictable to suffer from still birth and UTI, 
respectively. 

By comparison, the new method is the most appropriate distance/similarity for 
IFSs because it yields the least/greatest measure. In the same vein, Fig. 18.1 gives 
a clear picture when compared with the result obtained using the two methods. 
Each of the methods could be used by physicians to predict the current condition 
of mothers within the bearing age, with probability values ranging from 0 to 1.
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Fig. 18.1 Clustered bar for predicting maternal outcome using both methods 

The third method have a slight difference in terms of predicting still-birth, preterm, 
miscarriage, and UTI, while for placentae previa and full-term outcome, it is clear 
that the third method produce significant differences in predicting the maternal 
outcomes. In predicting various maternal outcomes, third method showed a huge 
difference in predicting mortality as one of the outcomes among mother within the 
bearing age. The third method been considered in the works are still not perfect but 
have their limitations and it is based on this that health experts, exposure several 
measures and avenues available to them, in order to solve problem associated 
to maternal health and its outcomes. There is no doubt that some socio-cultural 
factors like early marriage/early childbearing, educational attainment, women’s 
decision-making power, traditional obstetric care service, female genital mutilation, 
economic status, and access to health-care services should be addressed to reduce 
mortality among mothers within the bearing age. In line with this, the work of 
Marchieand Anyanwu [55] asserted that mortality among women within the bearing 
age can be addressed by encouraging and sensitizing mothers, also encouraging 
them to welcome early/prompt decisions to seek medical care in an emergency. 

Figure 18.2 portrays the strength of each of the methods used in this work. 
However, the method of Szmidt and Kacprzk [50] can also be used to predict 
maternal outcomes among mothers within the bearing age. However, the method 
by Ejegwa et al. [47] was used to predict the maternal outcome within minimal 
probabilistic prediction in each of the outcomes used in this study. Also the new 
method connotes a strong linear representation, which is a clear evidence that the 
new method could be used to predict maternal outcomes with little or no error. 
The method helps to handle the uncertainty that may be associated with handling 
maternal outcomes. Nevertheless, the graph in Fig. 18.2 further illustrates that both
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Fig. 18.2 Similarity line plot for predicting maternal outcome using three methods 

methods have little similarity in terms of predicting outcomes like miscarriage, 
preterm, UTI, and stillbirth, while placentae previa and full term have slight 
differences, although they still have almost the same prediction. Thus, aside from 
mortality, both methods tend to have significant distance in terms of predication. 

It’s clear that the different methods used in the experiments show that the patients 
in the dataset might have to deal with pre-term contractions and stillbirths. It’s 
a real-life situation that highlights some serious health issues that mothers in the 
reproductive age group could face. According to Malacova et al. [56], preterm and 
still birth are strongly interrelated and each of these conditions predisposes women 
to the other outcomes such as cerebral palsy, mental retardation, visual and hearing 
impairments, and poor health and growth. It is undeniable that mothers of babies 
facing these challenges undergo emotional stress and may encounter various health 
problems. This emotional strain can lead to negative feelings towards their babies 
during the early postnatal months, potentially hindering their ability to provide the 
necessary postnatal services and support. In addition, we have shown that there 
is a small but significant correlation between these adverse pregnancy outcomes: 
miscarriage, preterm, and still birth. Most especially, women who have experienced 
miscarriage are also more likely to have had a stillbirth. Subsequently, the works of 
Hure et al. [57] and Khalil et al. [58] pointed out that some factors that could lead 
to miscarriage, preterm delivery, and stillbirth, among others, are age at first birth, 
number of live births, smoking status, fertility problems, use of in vitro fertilization 
(IVF), and level of education. Without hesitation, the experience of miscarriage, 
preterm delivery, and stillbirth is generally regarded as very stressful for those 
involved.
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5 Conclusion 

Due to the complexity and uncertainty associated with maternal health, the intuition-
istic fuzzy distance/similarity methods used in this study can be adopted to improve 
decision making toward maternal outcomes. Each of these maternal outcomes when 
not properly managed may lead to mortality among women within the bearing 
age. The methods have showcased the importance of applying intuitionistic fuzzy 
sets instead of fuzzy sets because of the introduction of additional degrees of 
freedom (nonmemberships and hesitation margins) into the set description. These 
approaches are adequate because they help deal with multiple outcomes such as 
yes, no, abstaining, and so on, which was applicable in our study where we have 
stillbirth, preterm, full-term, mortality, placentae previa, and UTI, respectively. This 
approach gives an additional possibility to represent imprecise knowledge to the 
physician to describe what is likely to be the patient outcome and also to proffer 
solution to the problem. In this work, we have demonstrated that intuitionistic fuzzy 
distance/similarity methods can be used to predict the maternal outcomes. The new 
method IFSs outperforms the methods by Ejegwa et al. [47] and that of Szmidt and 
Kacprzk [50]with a slight difference. In general, the work has contributed to the 
body of knowledge in terms of the following: (i) improving decision support, (ii) 
enhancing distance and similarity measures, (iii) comparative analysis to showcase 
the strength of the two methods, (iv) employing of distance and similarity measures 
to predict the maternal outcome, and (v) better performance rating between the 
two methods. Our dataset can be applied using technique for order performance by 
similarity to ideal solution (TOPSIS) method to enhance multi-attributes decision 
making for mother within the bearing age. This work is novel in terms of similarity-
distance measures of IFS, and so can be applied in other variants of fuzzy sets with 
little modifications. 
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Chapter 19 
Study of Fuzzy Fractional Caputo Order 
Approach to Diabetes Model 

Subrata Paul, Animesh Mahata, Supriya Mukherjee, Sanat Kumar Mahato, 
Mehdi Salimi, and Banamali Roy 

1 Introduction 

Today, diabetes is a silent epidemic that is greatly increasing the burden of 
noncommunicable illnesses and is often stoked by decreased levels of exercise and 
an increase in the prevalence of obesity. 

Currently, mathematics and biology are collaborating for a common good. Many 
diverse biological problems may be modeled mathematically. Among of them is 
modeling after diabetes and prediabetes. When levels of blood sugar are higher 
than usual but not high sufficient to be classified as diabetes, the condition is called 
prediabetes. 

Diabetes is mostly a chronic illness that affects people. Diabetes is a metabolic 
syndrome that is often brought on by inherited and environmental factors, including 
obesity, increased blood pressure, a family history of cardiovascular disease, 
excessive triglycerides, etc. The following categories apply to diabetes: 

S. Paul 
Department of Mathematics, Arambagh Government Polytechnic, Arambagh, India 

A. Mahata (�) 
Mahadevnagar High School, Kolkata, West Bengal, India 

S. Mukherjee 
Department of Mathematics, Gurudas College, Kolkata, India 

S. K. Mahato 
Department of Mathematics, Sidho-Kanho-Birsha University, Purulia, India 

M. Salimi 
Department of Mathematics & Statistics, St. Francis Xavier University, Antigonish, NS, Canada 

B. Roy 
Department of Mathematics, Bangabasi Evening College, Kolkata, India 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
C. Jana et al. (eds.), Fuzzy Optimization, Decision-making and Operations 
Research, https://doi.org/10.1007/978-3-031-35668-1_19

423

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35668-1protect T1	extunderscore 19&domain=pdf


424 S. Paul et al.

• Type-1 diabetes: Type 1 diabetes is an autoimmune condition that is metabolism. 
Blood is filled with glucose from eating. Glucose has to pass a gate in the cell 
wall to enter the body’s cells. These gates can be opened by insulin. 

• Type-2 diabetes: Because all these gates are more challenging to open in type-2 
diabetes, insulin must work harder to open them, which in turn requires a greater 
effort on the part of the pancreas. 

• Gestational diabetes: Diabetes mellitus gestational diabetes is another name for 
the condition. It happens when a pregnant woman without diabetes has high 
levels of blood sugar. 

Epidemiology refers to the study of how diseases spread inside a living thing 
in connection to its environment [1]. Numerical simulations may be used to study 
a disease’ epidemiology. Contagious diseases including measles [2], rubella [3], 
HIV [4], dengue fever [5], TB [6], and more recently, Ebola [7] and the Zika 
virus [8], have all been the subject of research that have sought to forecast and 
mimic the spread of these diseases in the past. As research develops, mathematical 
modeling is being used to explore not just the spread of communicable illnesses as 
well as an expanding number of noncommunicable disorders. It is often possible to 
mimic medications as well as other environmental illnesses [9]. This is conceivable 
because of the qualities of how it disseminates, namely, via closer contact even 
as media disseminates. One of the “dispersion” aspects of hyperglycemia, a quasi 
illness, is the impact of social interactions on dietary adjustment. If a person’s 
fasting blood sugar level is more than 126 mg/dL or even if their level of blood 
sugar is higher than 200 mg/dL 2 hours following eating, they are considered to 
have hyperglycemia. The glycemic connection has been described using a variety 
of formulations based on insulin concentrations and levels. However, while these 
approaches may indeed be beneficial in research, they all have restrictions with 
respect to estimating blood sugar levels in a real therapeutic scenario owing to 
the underlying demand for continuously modified inputs about parameter estimates 
such as glucose concentrations and insulin accessibility [10]. 

Diabetics who are healthy choose to lead uncomfortable lives in their daily 
activities. According to Hill et al. [11], the association between diabetics on an 
unhealthy diet and healthy volunteers might lead to behavioral “dissemination.” 
The result of culture “spread” is prevalence. As high pervasiveness increases, 
diabetic predominance emerges. Calculating the percentage of likely interaction also 
requires determining the ratio of vulnerable people in a given individual group. In 
current history, several writers, including Boutayeb et al. [12], Mahata et al. [13], 
Pandit et al. [14], Makroglou et al. [15], have investigated various mathematical 
systems to represent diabetes and associated problems. The techniques of Caputo 
[16], Baleanu et al. [17], Singh et al. [18, 19], and Kumar et al. [20] are only a few 
examples as to how fractional extensions of mathematical systems of integer order 
describe the natural reality in a fairly methodical manner. 

The arrangement of the chapter is as follows: Sect. 2 contains the basic concept. 
Model formation and stability analysis are smeared in Sect. 3 and Sect. 4. Numerical 
illustration is prepared in Sect. 5. Section 6 contains conclusion of the work.
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2 Pre-requisite Concepts 

Definition 1 [21] The Caputo fractional derivative of order 0 < φ ≤ 1 for the func-
tion u : Cn[0,∞] → R is defined as .CD

φ
t (u(t)) = 1

�(n−φ)

∫ t

0
1

(t−z)φ+1−n
dn

dzn u(z)dz, 

where Cn[0,∞] is a  n tines continuously differentiable function and the Gamma 
function is defined by Γ (,) such that n − 1 <  φ < n. 

Definition 2 [22] A triangular fuzzy number can be represented by three points
∼ 
P1 = (P11, P12, P13) and the membership function can be represented by 

μ∼ 
R 

(x1) = 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

0, x1 ≤ P11 
x1−P11 
P12−P11 

, P11 ≤ x1 ≤ P12 

1, x1 = P12 
P13−x1 
P13−P12 

, P12 ≤ x1 ≤ P13 

0 x1 ≥ P13 

Definition 3 [23 Generalized Hukuhara Derivative (gHD)] A fuzzy valued function 
f1 : (a, b) → R at p0 is defined by, 

f1
′ (p0) = lim 

l→0 

f1(p0+l)�gh f1(p0) 
l

, f1
′
(x0) ∈ R satisfy the condition then Gh say 

that GH derivative at p0. 
Now, f1(t) is (i)-gHD at p0 when [f

′
(p0)]α = [f11

′
(p0,α), f12

′
(p0, α)]andf1(t) is 

(ii)-gHD at p0 when [f
′
(p0)]α = [f12

′
(p0, α), f11

′
(p0, α)]. 

Definition 4 [24] Let  F be an interval-valued function of type 2 defined on the 
domain [0,∞) given by F(y) = [f1(y), f2(y]. Then, Fis said to be (i) Φ- gH  
differentiable of type-I, then FΦ (y) = [f1 Φ (y), f2 Φ (y) ] and (ii) Φ- gH differentiable 
of type-II, then FΦ (y) = [f2 Φ (y), f1 Φ (y)]. 

3 Model Formulation 

As per Roy and Mahata et al. [23], the integer order system may be expressed as 

DtG(t) = −a1G(t) + a2I (t) + p, 

DtI (t)  = −a3G(t) − a4I (t) + q, (19.1) 

with initial state G(0) = G0, I(0) = I0, where .Dt ≡ d
dt (Table 19.1). 

Over the last several decades, fractional differential equations (FDEs) [25– 
28] have been used to investigate physical processes with greater accuracy and 
precision. Other medical and scientific study fields that utilize them include biology,
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Table 19.1 Descriptions of the model parameters 

Notation Interpretations 

G The variation of glucose levels from their average physiological value 
I The insulin concentration’s departure from its physiologically recommended mean 

value 
p Divided by the extracellular compartment value is the intravenous injection 

function I (Insuline) 
q Value obtained by dividing the intravenous injection function G (glucose) by the 

extracellular compartment 
a1 The ability of insulin to increase insulin concentration and its sensitivity to do so 
a2 The ability of pancreatic insulin to increase blood glucose levels 
a3 Hepatic glycogen store and tissue glucose uptake are both sensitive to increased 

insulin levels 
a4 The capacity of liver glycogen store to increase insulin concentration when tissue 

insulin is used 

physics, and others. Modern calculus is an extension of traditional integer-order 
calculus. FDEs are becoming more and more popular for replicating real-world 
scenarios because of their distinct properties that DEs lack. FDEs are preferred 
to Des, since they are nonlocal and also have memory effects. Furthermore, the 
model’s future scenario is often influenced by both its past and present states, 
which is why FDEs have drawn a lot of interest from academics in recent years. 
This is because FDEs, as opposed to integer-order models, can more accurately 
account for the retention and heritable properties of various materials and processes. 
Our mathematical model is reformulated using the Caputo fractional derivative for 
fractional index φ as: 

C D φ 
t G(t) = −a1G(t) + a2I (t) + p, 

C D φ 
t I (t)  = −a3G(t) − a4I (t)  + q. (19.2) 

Depending on how accurate the data or information is, FDEs or ODEs may 
be used to analyze the mathematical models of many physical situations. Fuzzy 
fractional operators are the right instruments to represent physical issues when there 
is uncertainty or fuzziness in the information of a model. The fuzzy set, which is 
a generalization of the crisp set, was introduced for the first time by L.A. Zadeh 
[29]. Later, fuzzy DEs and fuzzy FDEs were proposed [30–33]. Numerous practical 
issues made use of the concept of fuzzy FDEs. One study of the fractional relaxation 
oscillation DEs in a fuzzy notion was conducted by Armand et al. [26]. Rahamanet 
al. [34] studied the solution of an Economic Production Quantity model using the 
generalized Hukuhara derivative approach. By using the fuzzy Laplace transform 
(FLT), Ahmad et al. [35] studied the fuzzy fractional Fisher’s equation. Fuzzy 
dispersive PDE has been researched using FLT in the literature. We used model
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(19.2) under the fuzzy fractional Caputo derivative as follows, which was inspired 
by the above work: 

C D φ 
t G(t) = −a1G(t) + a2I (t) + p, 

C D φ 
t I (t)  = −a3G(t) − a4I (t)  + q. (19.3) 

with initial states . G(0) = ∼
G0, I (0) = ∼

I 0.

We consider the following cases: 

Case 1: When .
∼
G(t) and .

∼
I (t) are gHD type-I 

Case 2: When .
∼
G(t)and .

∼
I (t) are gHD type-II 

Case 3: When .
∼
G(t) is gHD type-I and .

∼
I (t) is gHD type-II 

Case 4: When .
∼
G(t) is gHD type-II and .

∼
I (t) is gHD type-II 

Let us consider the initial conditions are fuzzy numbers. 

Case 1: When .
∼
G(t), .

∼
I (t) are Φ-gH differentiable of type I The Eq. (19.3) 

changes to 

C D φ 
t G1 (t, α) = −a1G2 (t, α) + a2I1 (t, α) + p 

C D φ 
t G2 (t, α) = −a1G1 (t, α) + a2I2 (t, α) + p 

C D φ 
t I1 (t, α) = −a3G2 (t, α) − a4I2 (t, α) + q (19.4) 

C D φ 
t I2 (t, α) = −a3G1 (t, α) − a4I1 (t, α) + q 

Case 2: When .
∼
G(t), .

∼
I (t) are Φ-gH differentiable of type II The Eq. (19.3) 

changes to 

C D φ 
t G1 (t, α) = −a1G1 (t, α) + a2I2 (t, α) + p 

C D φ 
t G2 (t, α) = −a1G2 (t, α) + a2I1 (t, α) + p 

C D φ 
t I1 (t, α) = −a3G1 (t, α) − a4I1 (t, α) + q (19.5) 

C D φ 
t I2 (t, α) = −a3G2 (t, α) − a4I2 (t, α) + q
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4 Model Analysis 

4.1 Existence of Equilibrium Point of the System (19.4) 

The model (19.4) has only coexistence equilibrium point, E1∗ (G1∗ , G2∗ , I1∗ , I2∗ ), 
where .G1

∗ = G2
∗ = a4p+a2q

a2a3+a1a4
, .I1∗ = I 2

∗ = a1q−qa3
a2a3+a1a4

. The equilibrium point E1∗ 

is feasible if a1q > qa3. 

4.2 Stability Analysis of the System (19.4) 

Theorem 1 The E1∗ (G1∗ , G2∗ , I1∗ , I2∗ ) of the system (19.2) is unstable. 
Proof: Let the Jacobi matrix of the model (19.4) at  E1∗ (G1∗ ,G2∗ , I1∗ , I2∗ ) be  

JE1
∗ = 

⎛ 

⎜ 
⎜ 
⎜ 
⎝ 

0 −a1 a2 0 
− a1 0 0 a2 
0 

− a3 
−a3 

0 
0 −a4 

−a4 0 

⎞ 

⎟ 
⎟ 
⎟ 
⎠ 

. 

The characteristic equation becomes 
λ4 + μ1λ

3 + μ2λ
2 + μ3λ + μ4 = 0, where the eigenvalue is λ. 

where μ1 = 0, μ2 = −  (a1 2 + a4 2), μ3 = 2(a1a2a3 + a2a3a4), μ4 = a1 2a4 2 
− a2 2a3 2 

Using stability condition of RH -criteria, the system (19.4) is unstable at E1∗ (G1∗ , 
G2∗ , I1∗ , I2∗ ). 

4.3 Existence of Equilibrium Point of the System (19.5) 

The model (19.5) has only coexistence equilibrium point, E1∗∗ (G1∗∗ ,G2∗∗ , I1∗∗ , I2∗∗ ) 
where .G1

∗∗ = G2
∗∗ = pa4+qa2

a1a4+a2a3
, .I1∗∗ = I2

∗∗ = a1q−qa3
a2a3+a1a4

. The equilibrium point 
E1∗ is feasible if a1q > qa3. 

4.4 Stability Analysis of the System (19.5) 

Theorem 2 The E1∗∗ (G1∗∗ , G2∗∗ , I1∗∗ , I2∗∗) of the  system  (19.2) is unstable. 
Proof: Let the Jacobi matrix of the model (19.5) at  E1∗∗ (G1∗∗ , G2∗∗ , I1∗∗ , I2∗∗ ) 

be



19 Study of Fuzzy Fractional Caputo Order Approach to Diabetes Model 429

JE1
∗∗ = 

⎛ 

⎜ 
⎜ 
⎜ 
⎝ 

−a1 0 0 a2 
0 −a1 a2 0 

−a3 

0 
0 

− a3 

−a4 0 
0 −a4 

⎞ 

⎟ 
⎟ 
⎟ 
⎠ 

. 

The characteristic equation becomes 
λ4 + r1λ3 + r2λ2 + r3λ + r4 = 0, where the eigenvalue is λ. 
where r1 = 2(a1 + a4), r2 = (a1 2 + a4 2 + 4a1a4), r3 = (2a1 2a4 + 2a1a4 2), 

r4 = a2 2a3 2 + a1 2a4 2. 
Using stability condition of RH -criteria, the system (19.5) is stable at E1∗∗ (G1∗∗ , 

G2∗∗ , I1∗∗ , I2∗∗ ). 

5 Numerical Illustrations 

Numerical simulations are carried out with the help ofMATLAB software to support 
the mathematical study of the model system (Tables 19.2, 19.3, and 19.4). 

Figure 19.1 depicts the fuzzy solution of the model system (19.4) for  φ = 0.96 
when t ∈ [0, 20]. In Fig. 19.1a, b, we observed that G1(t, α) ≤ G2(t, α), 
I1(t, α) ≤ I2(t, α) for  t ∈ [0, 20], which imply that strong fuzzy solution [23] 
exists. Also in Fig. 19.1c, we find that G1(t, α) = G2(t,α), I1(t,α) = I2(t, α) for  

Table 19.2 Parameter values Notation Interpretations Source 

p 500 [23] 
q 800 [23] 
a1 0.03 [23] 
a2 0.07 [23] 
a3 0.04 [23] 
a4 0.08 [23] 

Table 19.3 The fuzzy 
solutions of the model system 
(19.4) for  t = 10, Φ = 0.96 

α G1(t,α) G2(t, α) I1(t,α) I2(t,α) 

0 5762.4 6114.6 4199.9 4585.3 
0.1 5.7790 6.0960 4.2188 4.5656 
0.2 5.7957 6.0774 4.2377 4.5460 
0.3 5.8123 6.0589 4.2567 4.5264 
0.4 5.8289 6.0403 4.2756 4.5068 
0.5 5.8456 6.0217 4.2945 4.4871 
0.6 5.8622 6.0031 4.3134 4.4675 
0.7 5.8789 5.9845 4.3323 4.4479 
0.8 5.8955 5.9659 4.3512 4.4282 
0.9 5.9121 5.9474 4.3701 4.4086 
1 5.9288 5.9288 4.3890 4.3890
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Table 19.4 The fuzzy 
solutions of the model system 
(19.5) for  t = 10, Φ = 0.96 

α G1(t,α) G2(t, α) I1(t,α) I2(t,α) 

0 5.9070 5.9700 4.3737 4.4115 
0.1 5.9092 5.9658 4.3752 4.4093 
0.2 5.9114 5.9617 4.3768 4.4070 
0.3 5.9136 5.9576 4.3783 4.4048 
0.4 5.9157 5.9535 4.3798 4.4025 
0.5 5.9179 5.9494 4.3813 4.4003 
0.6 5.9201 5.9452 4.3829 4.3980 
0.7 5.9222 5.9411 4.3844 4.3957 
0.8 5.9244 5.9370 4.3859 4.3935 
0.9 5.9266 5.9329 4.3875 4.3912 
1 5.9288 5.9288 4.3890 4.3890 

Fig. 19.1 Time series solution with φ = 0.96 of the model (19.4) for  α = 0, 0.5, 1 

t ∈ [0, 20]. Figure 19.1 depicts that the equilibrium point of the system (19.4) is  
unstable. 

Figure 19.2 depicts the fuzzy solution of the model system (19.5) for  
φ = 0.96 when t ∈ [0, 100]. In Fig. 19.2a, b, c, we find that G1(t, α) = G2(t, α), 
I1(t, α) = I2(t, α) for  t ∈ [0, 20], which imply that strong fuzzy solution [23] exists. 
Figure 19.2 depicts that the equilibrium point of the system (19.4) is stable.
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Fig. 19.2 Time series solution with φ = 0.96 of the model (19.4) for  α = 0, 0.5, 1 

To analyze the dynamical behavior of G1, G2, I1, and I2, the values of the 
parameters in Table 19.2 are employed. Figure 19.3a–c depict all classes’ behavior 
over time for various fractional indices φ. Figure 19.3 shows that the number of all 
individuals increases when φ changes from 0.7 to 0.9. Figure 19.4 depicts the fuzzy 
solution of the model system for when t ∈ [0, 6000] and t ∈ [0, 5500]. We observe 
that the outcomes of numerical results are fuzzy triangular functions. 

6 Conclusion 

Nowadays, mathematical modeling is a key issue in research and development since 
it has the potential to become a crucial instrument in the area of medicine. We 
have discussed the fuzzy fractional diabetic model in Caputo’s meaning, where 
a fuzzy number is assumed to represent the initial populations. The generalized 
Hukuhara derivatives of type I and type II notion are used for the model’s analysis.
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Fig. 19.3 Dynamical behavior of model system with α = 1 for several fractional indices φ 

Fig. 19.4 Graphical representation of fuzzy solution 

The stability analysis, which is crucial for a biological system, is carried out here 
for the model of the glucose-insulin regulation system in a fuzzy environment. 
The numerical solutions had been completed for potential scenarios, and relevant
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graphics had been used to explain their relevance. From numerical simulations, we 
observe that the outcomes of numerical results are fuzzy triangular functions. The 
outcomes of our suggested fuzzy fractional order model have been visually shown. 

In our next research, we’ll look at how chaotic systems are affected by the 
generalized Caputo operator. The new operator can also be used to bring additional 
dynamical properties and features to existing fuzzy fractional systems or equations 
that have practical applications. 
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Chapter 20 
Decision Analysis Framework Based 
on Information Measures of T -Spherical 
Fuzzy Sets 

Shahzaib Ashraf and Attaullah 

1 Introduction 

A decision-making process is concerned for the selection of the best alternative in 
the available options. To tackle the making decision problems, decision-makers need 
to collect data from multiple sources, examine the data, and make final judgments. 
In complex problems, more than one criterion is effective to assess the performance 
of the alternatives for reliable decision-making. Therefore, in these conditions, 
decision-making is defined as multi-criteria decision-making (MCDM). MCDM 
approaches facilitate decision-makers to make reasonable judgments by taking into 
account a variety of decision criteria. As a result, the decision-maker is much more 
focused to choose practical and credible procedures for selecting the best options. 

Classical procedures of crisp set theory were inept and inefficient in dealing with 
vagueness and uncertain data in decision-making challenges. In order to interact 
with such unpredictable circumstances, Zadeh [63] pioneered the fuzzy set (FS) 
approach, which evoked a dramatic change in several scientific and technological 
areas. The concept of FS has sparked significant attention owing to its capacity to 
contend with ambiguity and uncertainty. Over the recent decades, several perms 
of FSs have been reported by various researchers. Atanassov [7] introduced the 
intuitionistic fuzzy set (IFS), which is capable to handle with complexity and 
uncertainty with the help of truth and falsity degrees. 

Yager [59] initiated the tremendous concept of Pythagorean fuzzy set (PyFS) 
as an extension of the IFS theory by broadening the space for membership grade 
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(MG) and non-membership grade (NMG) using a relatively lenient condition. 
These dominant features allow the PyFSs to perform more aptly and exceptionally 
than IFS. However, the graph of PyFS occupies a small portion of the available 
space owing to the restricted condition, and this significant model is inutile 
beyond that condition. Therefore, researchers desperately need a comprehensive 
framework that explains these challenges. Recently, Yager [58] introduced a new 
concept that accommodate both IFS and PyFS, named q-rung orthopair fuzzy set 
(q-ROFS). 

Numerous researchers have demonstrated their preferences in this novel region 
of study. The majority of q-ROFS’s applications have been examined in the 
background of making decision. The structure of the q-ROFS is adjustable owing 
to the adaptable parameter q that can be opted according to the nature of data and 
need of that particular problem. Thus, the wider space and flexible structure of q-
ROFS allow it to dominate over the limited theories, including IFS and PyFS, that 
are bounded by a single, specified, and strict condition. 

Despite their broad application, the aptitudes of IFSs, PyFSs, and q-ROFSs are 
limited to describe the satisfaction and dissatisfaction grades only. In short, their 
designs are inept to capture the neutral part of human judgments. For instance, when 
surveying a voter’s conception on a party nominee, it may be favorable, unfavorable, 
neutral, or refusal. Moreover, public opinion on the social media’s function in a 
democratic country varies significantly by ideology and political stance, including 
favorable, negative, and neutral observations. To manage this kind of ambiguous 
information, Cuong [13] derived the representation of picture fuzzy sets (PFSs), 
which consists of three indices, namely, positive MG .℘S(vi ), neutral MG . IS(vi )

and negative MG .GS(vi ) with the limitation that . 0 ≤ ℘S(vi )+ IS(vi )+GS(vi ) ≤ 1.
Cuong and Kreinovich [14] further contributed to establish the theory of PFSs by 
providing several rudimentary operations and properties. The PFSs are observed to 
be incredibly applicable when engaging with circumstances that have neutral aspect 
in addition to occurrence and non-occurrence. Ashraf [3] presented the norm of 
algebraic which is based on novel aggregation operators for picture information. 
Tian et al. [49] derived the operators under picture fuzzy environment and explored 
their applications to decision-making. Despite the high accuracy and widespread 
application of PFSs, they become obsolete whenever the summation of all three 
grades is more than 1. To address this type of difficulty, Ashraf et al. [5] proffered 
spherical fuzzy sets (SFSs) as a powerful extension of PFSs with the constraint that 
.0 ≤ ℘2

S(vi ) + I 2S (vi ) + G 2
S (vi ) ≤ 1. Shahzaib [6] showed the spherical fuzzy t-

conorm and its t-norms, to established the negator of spherical, and provided some 
categorization of the spherical fuzzy t-norms and t-conorms that are helpful for the 
operator to aggregate the spherical fuzzy knowledge. Khan et al. [25] presented 
the generalized decision-making technique for the hospitalization and treatment 
of COVID-19 sufferers’ issue under spherical hesitant fuzzy information. Many 
researchers contributed to develop the theory of SFSs. Gündoğdu and Kahraman 
[26] proposed TOPSIS methodology and discussed their application in DM under 
SF information. Akram et al. [1, 2] and Zahid et al. [64] presented the complex
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SF VIKOR, TOPSIS, and ELECTRE models to handle the problem in making 
the decision. Ashraf [4] represents the novel operators using Dombi norm and SF 
information to address the uncertainty in DM. This idea empowers the researchers 
to deal with situations that are too sophisticated for the previous notions and finds 
extensive applications in real-life scenarios. Mahmood [31] generalized the idea of 
(SFS) to develop the T -spherical fuzzy set (T -SFS) by incorporating a parameter 
T that enables DMs to select membership grades from any point in the interval 
.[0, 1] irrespective of the constraint. A T -SFS, being the most generalized accessible 
fuzzy framework, is capable to capture individual opinions on any imprecise event 
in an indefinitely proficient manner. The analysis of the outputs of PFS, SFS, and 
T -SFS unfolds the edge of T -SFS as compared to other fuzzy structures. Park [36] 
employing t-spherical fuzzy preference relations, the shopping online platform’s 
item quality was assessed. Soft set theory is an expanded form of fuzzy set theory, 
which Molodtsov proposed in 1999 to address uncertainty parametrically. A soft 
set is a based on finite element family of sets; it is called “soft” because the 
set’s boundary is determined by the parameters. Many researchers have contributed 
toward the fuzzification of the notion of soft set. Bipolar-valued fuzzy sets are an 
outgrowth of fuzzy sets in which the membership degree range is increased from 
[0, 1] to [. −1, 1]. The degree of membership 0 in a bipolar-valued fuzzy set reveals 
that index is meaningless to the relating property, the occurrence degrees on (0, 1] 
reveal that index partially satisfy the estate, and the membership degrees on [. −1, 0] 
indicate that elements partially fulfill the property. The idea of complex fuzzy set is 
given by Daniel Ramot in 2002. Amathematical foundation is the complicated fuzzy 
set that describes set membership using a complex number. The innate difficulty in 
grasping the concept of complex-valued membership is a significant impediment to 
realizing its maximum potential. Bipolar soft set is made up of two soft sets; one 
gives us true comments, and the other gives us incriminating comments. According 
to the bipolar philosophy, human judgment is based on both sides, positive and 
negative, and we select the one that is better. Bipolar complex fuzzy set (BCFS) is a 
merging of bipolar fuzzy set (BFS) that is used by decision analysts to elaborate the 
positive and unfavorable characteristics of a thing, complex fuzzy set which is used 
by decision analysts to manage two-dimensional information. 

MADM is a prominent and trending topic of research in the field of fuzzy 
mathematics to figure out the most compatible solution for real-world complex prob-
lems. The MADM processes are normally assisted by measuring the similarity, also 
measuring the distance, inclusion measures, entropy measures, and its operators. 
The list of similarity measures has garnered considerable interest in recent decades 
due to its importance in DM, data mining, recognition of pattern, and diagnosis of 
the medical applications. Szmidt and Kacprzyk [44] performed the first investiga-
tion, extending well-known distance measures comparing methods used for normal 
fuzzy sets to those utilized for the IFS, like the distance measure and the hamming 
distance. However, Wang and Xin [51] highlighted the shortcoming of the Szmidt 
and Kacprzyk’s [44] distance measures which were ineffective in certain situations. 
Therefore, several innovative pattern recognition distance measures were developed
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and implemented. Grzegorzewski [20] also extended Hamming, Euclidean, and 
their normalized versions to the IFS framework. Chen [9] later demonstrated 
that several flaws occurred in Grzegorzewski [20] by providing counterexamples. 
Hung and Yang [21] described three similar things that measured and extended 
the distance of Hausdorff for IFSs. Also other side, rather than extending well-
established measures, various research established novels measure the similarity for 
IFSs. Mitchell [33] demonstrated the similarity measures, and Li and Cheng [62] 
improved the similarity measure for counterintuitive circumstances and validated 
it statistically. Similarly, Liang and Shi [30] provided examples to demonstrate the 
similarity measure for IFSs. Xu [55] formulated a series of IFS-based similarity 
measures and used them for the MADM problem employing IF information. Xu 
and Chen [56] combined and extended several weighted Hamming, Euclidean, 
and Hausdorff distances to present a set of more authentic and practical distance 
and similarity measures. Xu and Yager [57] constructed a resemblance calculate 
between IFSs and used it to MAGDM utilizing IF preference relations. Additionally 
to these research, several researchers examined the connections between IFS’s 
distance, similarity, and entropy measurements. Zeng and Guo [65] analyzed the 
linked between distance(normalized), equality, and the entropy of the interval-
valued fuzzy collections. It is further shown that utilizing the normalized distance 
of their axiomatic concepts, interval-valued fuzzy sets’ similarity, inclusions, and 
entropy could be generated. Wei et al. [54] give a generalized entropy measure 
for IFSs. Additionally, a technique was developed for constructing similarity 
measures for IFS and PyFSs using entropy measures. Numerous studies (see 
[12–67] for more details) investigated measure information for IFSs and PyFSs 
and their transformations relationship. Various studies focused on the information 
measures for q-ROFSs. Du et al.  [16] proposed Minkowski-type distance measures 
for q-ROFSs, including distances. To overcome the comparability problem, Peng 
et al. [40] innovated the use of a score formula for q-rung orthopair fuzzy 
numbers. Subsequently, they developed a measure of distance for q-ROFSs with 
multiple parameters and validated their findings with justification. Additionally, 
the numerous appealing characteristics of the resulting similarity and distance 
measures are inferred. Peng and Liu [38] examined the relationship between the 
distance, similarity, entropy, and inclusion measures for q-ROFSs. Khan et al. 
[24] deliberated distance and measure it for SFSs and its applicability to project 
selection. Rafiq et al. [43] investigated SFSs cosine similarity measurements and 
their applications in DM. Shishavan et al. [45] employed similarity measures of 
SFSs to diagnosis of the medical things and the selections of green supplier. Wei et 
al. [53] developed ten similarity measures between SFSs using the cosine function 
and implemented these similarity measures as well as recognition of pattern and 
diagnosis of medical using weighted similarity measurements. 

The innovative features of T -SFS addressed the limitations of traditional fuzzy 
set theory including FS, IFS, PyFS, q-ROFS, PFS, and many more. It is worth 
noting that both PFS and SFS incorporate membership, neutral and non-membership



20 Decision Analysis Framework Based on Information Measures of T -. . . 439

grades, but their constraint was responsible for limiting the space of these member-
ship grades. The T -SFS widens the space of these traditional models by introducing 
a flexible parameter within the constraint to provide more flexibility to the decision-
makers for the assignment of membership grades. Similarly, the structure and 
space of membership grades in FS, IFS, PyFSs, and q-ROFSs are restricted to 
target only two aspects of the ambiguous information in terms of satisfaction and 
dissatisfaction. The shortcomings of existing information measures, including the 
occurrence of meaningless situations (i.e., dividing by zero) [37, 61], ineptness 
to avoid counterintuitive examples [8, 10, 11, 37, 61], generation of unreasonable 
outcomes [34, 41], and incompetency to classify the findings [10, 17, 27, 30, 52, 66], 
captivated us present new informational measure within the potent framework of 
T -SFSs. To overcome the drawbacks of the preceding literature, this study is 
focused to present a class of beneficial information measures under T -SFS, provide 
associated information measure formulations, and investigate their transformation 
relationships. Therefore, developing an information measure for T -SFSs is of 
major academic significance. The aforementioned constraints associated with the 
preceding models drove us to develop information measures based on T -SFSs, a 
modified version of SFSs. 

Presented work are enlisted as below: 

1. This study is devoted to introduce the axiomatic descriptions for T -SFS informa-
tion measures along with their formulae and transformation relationships. 

2. A major target goal of this project is to use the established distance measures 
.(D1 − D13) to pattern recognition and medical diagnostics to demonstrate their 
feasibility and efficacy. 

3. Further, we demonstrate the potency of the novel similarity measures by 
employing the our measures to recognition of pattern, construction materials, 
and diagnostics of medical things. 

4. A comparison with existing measures of similarity for diagnosis of medical 
problems is accomplished to illustrate the efficiency of the developed similarity 
measures. 

5. Additionally, we exhibit the applicability of the suggested T -SFS inclusion 
measures to pattern recognition with an example to verify the authenticity of 
new inclusion. 

The remaining part of the article is structured as follows. In Sect. 2 some fun-
damental notions of HFS, IHFS, and q-ROFS define certain associated laws of 
operation. In Sect. 3, we introduced some new information measures along with 
their formulae and explored their transformation relationships for T -SFSs. Sections 
4–6 illustrate the application of novel information measures to recognition of pattern 
and diagnosis of medical things and in building materials. Moreover, a correlating 
research has been presented between the proposed distance and similarity measures 
with existing ones. Section 7 summarizes the results of the investigation.
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2 Preliminary 

In the first section, we provide few relevant fundamental information of SFSs and 
T -SFSs along with some related operational laws. These core concepts will assist 
readers in comprehending the proposed framework. 

Definition 1 ([5]) Let .H = {v1, v2, v3, . . . , vn} be a fixed set. Then the SFS S 
over . H is defined as 

. S = {〈vi, ℘S(vi), IS(vi),GS(vi)〉|vi ∈ H }

for each .vi ∈ H the functions .℘S : H → [0, 1], .IS : H → [0, 1] and . GQ :
v → [0, 1] shows the positive, neutral, and negative MG of . vi in . H , respectively. 
Also .℘S(vi ), IS(vi ), and .GS(vi ) satisfy the following condition: .(∀ vi ∈ H ), . 0 ≤
(GQ(vi ))

2 + (IS(vi))
2 + (℘S(vi ))

2 ≤ 1.

.μS(vi ) =
√
1 − ((℘S(vi))2 + (IS(vi))

2 + (GS(vi))2) referred to as the degree of 
refusal .vi ∈ H . The numbers in the form .(℘S(vi), IS(vi),GS(vi)) are said to SFN 
and for every SFN can be shown by .r = (℘r, Ir ,Gr ), where . ℘r , . Ir , and .Gr ∈ [0, 1], 
with condition that . 0 ≤ ℘2

r + I 2r + G 2
r ≤ 1.

Definition 2 ([31]) Let .H = {v1, v2, v3, . . . , vn} be a set of fixed. Then the T -
spherical fuzzy set (T -SFS) T over . H is defined as 

. T = {〈vi, ℘T (vi), IT (vi),GT (vi)〉|vi ∈ H }

for each .vi ∈ H the functions .℘T : H → [0, 1], .IT : v → [0, . 1] and . GT :
H → [0, . 1] represent the positive MG, neutral MG, and negative MG of . vi in 
. H , respectively. Also .℘T (vi ), IT (vi ), and .GT (vi ) satisfy the following condition: 
.(∀ vi ∈ H ), .0 ≤ (GT (vi ))

t + (IT (vi))
t + (℘T (vi ))

t ≤ 1, .(t ∈ Z). 
.μP (vi ) = t

√
1 − (℘T (vi))t + (IT (vi))

t + (GT (vi))t is said to be refusal degree of 
.vi ∈ H . The numbers in the form .(℘S(vi), IS(vi),GS(vi)) are said to T -SFN, and 
each T -SFN can be denoted by .r = (℘r, Ir ,Gr ), where . ℘r , . Ir , and .Gr ∈ [0, 1], 
with condition that . 0 ≤ ℘t

r + I t
r + G t

r ≤ 1.

Definition 3 ([31]) Assume that . rj = .
(
℘rj , Irj ,Grj

)
and . rk = .

(
℘rk , Irk ,Grk

)
are 

every two t-SFNs, union, intersection, and its compliment defined as follows: 

1. .rj ⊆ rk iff .∀r ∈ H , ℘rj ≤ ℘rk , Irj ≤ Irkand . Grj ≥ Grk ;
2. .rj = rk iff . rj ⊆ rkandrk ⊆ rj ;
3. . rj ∪ rk = (max(℘rj , ℘rk ),min(Irj , Irk ),min(Grj ,Grk )

) ;
4. . rj ∩ rk = (min(℘rj , ℘rk ),min(Irj , Irk ),max(Grj ,Grk )

) ;
5. .rj = (Grj , Irj , ℘rj

)
.
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Definition 4 ([31]) Suppose that . rj = .
(
℘rj , Irj ,Grj

)
and . rk = .

(
℘rk , Irk ,Grk

)
are 

any two of SFNs and .γ ≥ 0. Operations of T -SFNs which is based on rigorous 
Archimedean triangular norm and conorm can be described as follows: 

1. . rj ⊕rk =
{√

s−1(s(℘t
rj

) + s(℘t
rk

)), t−1(t (Irj ) + t (Irk )), t
−1(t (Grj ) + t (Grk ))

}
;

2. . γ rj =
{√

s−1(γ s(℘t
rj

), t−1(γ t (Irj )), t
−1(γ t (Grj ))

}
;

3. . rj ⊗rk =
{
t−1(s(℘rj ) + s(℘rk )), t

−1(t (Irj ) + t (Irk )),
√

s−1(t (G t
rj

) + t (G t
rk

))
}

;
4. . rγ

j = . 

{
t−1(γ t (℘rj ), t

−1(γ t (Irj ),
√

s−1t (G t
rk

)
}

.

2.1 Compared Rules for T -SFNs 

Now, we will discuss certain operations that factor heavily toward the ranking of 
SFNs. 

Definition 5 Suppose .rj = (℘rj , Irj ,Grj

)
be any T -SFN. Then 

1. The following defines the scoring function: 

. sc(rj ) =
(
℘t

rj
+ 1 − I t

rj
+ 1 − G t

rj

)

3
=
(
2 + ℘t

rj
− I t

rj
− G t

rj

)

3
.

2. The following is a definition of the accuracy function: 

. ac = ℘t
rj

− G t
rj

.

3. The following is a definition of the certainty function: 

. cr(rj ) = ℘rj .

Definition 6 Let .rj = (℘rj , Irj ,Grj

)
and .rk = (℘rk , Irk ,Grk

)
be any two T -SFSs. 

Then by using Definition 5, equating technique is characterized as follows: 

1. if .sc(rj ) > sc(rk), then . rj > rk;
2. if .sc(rj ) = sc(rk), .ac(rj ) > ac(rk) then . rj > rk;
3. if .sc(rj ) = sc(rk), ac(rj ) = ac(rk) and .cr(rj ) > cr(rk), then .rj > rk; 

4. if .sc(rj ) = sc(rk), ac(rj ) = ac(rk) and .cr(rj ) = cr(rk), then . rj = . rk.

Definition 7 If . R, .U ∈ T− SFSs. Then their fundamental operations are defined 
as follows: 

1. .Rc = {〈vi,GR(vi), IR(vi), ℘R(vi)〉 |vi ∈ H } ;
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2. .R ⊆ U iff for all .vi ∈ H , ℘R(vi ) ≤ ℘U (vi ) ,.IR(vi ) ≥ IU (vi ) and 
. GR(vi ) ≥ GU (vi );

3. .R = U iff for all .vi ∈ H , ℘R(vi ) = ℘U (vi ), .IR(vi ) = IU (vi ) and 
. GR(vi ) = GU (vi );

4. . ΦR = {〈vi, 1, 0, 0〉 |vi ∈ H } ;
5. . ∅R = {〈vi, 0, 1, 1〉 |vi ∈ H } ;
6. . R ∩ U = {vi ∈ H , ℘R(vi) ∧ ℘U (vi), IR(vi) ∨ IU (vi) ,

. GR(vi) ∨ GU (vi)|vi ∈ H } ;
7. . R ∪ U = {vi ∈ H , ℘R(vi) ∨ ℘U (vi), IR(vi) ∧ IU (vi),

. GR(vi) ∧ GU (vi)|vi ∈ H } ;

8. . R⊕U =
{

vi ∈ H , t

√
℘t

R(vi) + ℘t
U (vi) − ℘t

R(vi)℘
t
U (vi), I

t
R(vi)I

t
U (vi),

G t
R(vi)G

t
U (vi)|vi ∈ H

}
;

9. . R⊗U =
⎧
⎨
⎩

vi ∈ H , ℘t
R(vi)℘

t
U (vi),

t

√
I t
R(vi) + I t

U (vi) − I t
R(vi)I

t
U (vi),

t

√
G t

R(vi) + G t
U (vi) − G t

R(vi)G
t
U (vi)|vi ∈ H

⎫
⎬
⎭ ;

10. .R � U =
{

vi ∈ H ,
℘t

R(vi) − ℘t
U (vi)

1 − ℘t
U (vi)

,
I t
R(vi)

I t
U (vi)

,
G t

R(vi)

G t
U (vi)

|vi ∈ H

}
if 

.℘R(vi ) ≥ ℘U (vi ), .IR(vi ) ≤ min

{
IU (vi),

IR(vi)πR(vi)

πU (vi)

}
and . GR(vi ) ≤

min

{
GU (vi),

GR(vi)πR(vi)

πU (vi)

}
;

11. . R � U =
{

vi ∈ H ,
℘t

R(vi)

℘t
U (vi)

, t

√
I t
R(vi) + I t

U (vi)

1 − I t
U (vi)

,

.
t

√
G t

R(vi) + G t
U (vi)

1 − G t
U (vi)

|vi ∈ H

}
if .GR(vi ) ≥ GU (vi ), IR(vi ) ≥ IU (vi ) and 

. ℘R(vi ) ≤ min

{
℘U (vi),

℘U (vi)πR(vi)

πU (vi)

}
.

3 Certain Information Measures Between T -SFSs 

This section presents the axiomatic framework of T -SFSs information measures as 
well as their related formulations. Simultaneously, their evolving connections are 
thoroughly examined.
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3.1 Distance measures for T -SFSs 

Let . R, . U , and . W be three T -SFSs on . H . The measure of distance .D(R,U ) is an 
index D: T -SFS.(H ) × T -SFS.(H ) → [0, 1], carrying the following features: 
1. . 0 ≤ D(R,U ) ≤ 1;
2. . D(R,U ) = D(U ,R);
3. . D(R,U ) = D(U ,R);
4. . D(R,U ) = D(U ,R);
5. .D(R,U ) = 0 iff . R = U ;
6. .D(R,Rc) = 1 iff . R is a crisp set; 

7. If .R ⊆ U ⊆ W , then .D(R,U ) ≤ D(R,W ) and . D(U ,W ) ≤ D(R,W ).

Proposition 1 Suppose . R and .U be two T -SFSs. Then . Di(R,U ) (i =
1, 2, . . . , 13) are the measure of distance: 

1. . D1(R,U ) = 1

2|H |
∑

vi∈H

( |℘t
R(vi) − ℘t

U (vi)| + |I t
R(vi) − I t

U (vi)|
+| G t

R(vi) − G t
U (vi)| + |πt

R(vi) − πt
U (vi)|

)
;

2. . D2(R, U ) = 1

2|H |
∑

vi∈H

( | (℘t
R(vi) − ℘t

U (vi)
)+(

I t
R(vi) − I t

U (vi)
)+ (G t

R(vi) − G t
U (vi)

)
)

;

3. . D3(R,U ) = 1

4|X|

⎛
⎜⎜⎝

∑
vi∈H

(|℘t
R(vi) − ℘t

U (vi)| + |I t
R(vi) − I t

U (vi)| +
| G t

R(vi) − G t
U (vi)| + |G t

R(vi) − πt
U (vi)|

)

+∑vi∈H

( | (℘t
R(vi) − G t

R(vi)
)− I t

R(vi)

+ (℘t
U (vi) − I t

U (vi) − G t
U (vi)

) |
)

⎞
⎟⎟⎠ ;

4. . D4(R, U ) = 1

|H |
∑

vi∈H

(|℘t
R(vi) − ℘t

U (vi)| ∨ |I t
R(vi) − I t

U (vi)| ∨ |
. 
(
G t

R(vi) − G t
U (vi)

) |) ;

5. . D5(R, U ) = 2

|H |
∑

vi∈H

. 
|℘t

R(vi) − ℘t
U (vi)| ∨ |I t

R(vi) − I t
U (vi)| ∨ | (G t

R(vi) − G t
U (vi)

) |
1 + |℘t

R(vi) − ℘t
U (vi)| ∨ |I t

R(vi) − I t
U (vi)| ∨ | (G t

R(vi) − G t
U (vi)

) | ;

6. . D6(R, U ) =
.

2
∑

vi∈H |℘t
R(vi) − ℘t

U (vi)| ∨ |I t
R(vi) − I t

U (vi)| ∨ | (G t
R(vi) − G t

U (vi)
) |∑

vi∈H

(
1 + |℘t

R(vi) − ℘t
U (vi)| ∨ |I t

R(vi) − I t
U (vi)| ∨ | (G t

R(vi) − G t
U (vi)

) |) ;



444 S. Ashraf and Attaullah

7. . D7(R, U ) = 1 − α

∑
vi∈H

(
℘t

R(vi) ∧ ℘t
U (vi)

)
∑

vi∈H

(
℘t

R(vi) ∨ ℘t
U (vi)

)

− γ

∑
vi∈H

(
I t
R(vi) ∧ I t

U (vi)
)

∑
vi∈H

(
I t
R(vi) ∨ I t

U (vi)
) − β

∑
vi∈H

(
G t

R(vi) ∧ G t
U (vi)

)
∑

vi∈H

(
G t

R(vi) ∨ G t
U (vi)

) , 
.α + γ + β = 1, . α, γ, β ∈ [0, 1];

8. . D8(R, U ) = 1 − α

|H |
∑

vi∈H

(
℘t

R(vi) ∧ ℘t
U (vi)

)
(
℘t

R(vi) ∨ ℘t
U (vi)

) − γ

|vi |
∑

vi∈H

(
I t
R(vi) ∧ I t

U (vi)
)

(
I t
R(vi) ∨ I t

U (vi)
) − β

|X|
∑

vi∈H

(
G t

R(vi) ∧ G t
U (vi)

)
(
G t

R(vi) − G t
U (vi)

) | , 
.α + γ + β = 1, . α, γ, β ∈ [0, 1];

9. . D9(R, U ) = 1 − 1

|H |
∑

vi∈H

(
℘t

R(vi) ∧ ℘t
U (vi)

)+ (I t
R(vi) ∧ I t

U (vi)
)+ (G t

R(vi) ∧ G t
U (vi)

)
(
℘t

R(vi) ∨ ℘t
U (vi)

)+ (I t
R(vi) ∨ I t

U (vi)
)+ (G t

R(vi) ∨ G t
U (vi)

) ;

10. . D10(R, U ) =
1−
∑

vi∈H

(
℘t

R(vi) ∧ ℘t
U (vi)

)+ (I t
R(vi) ∧ I t

U (vi)
) + (G t

R(vi) ∧ G t
U (vi)

)
∑

vi∈H

(
℘t

R(vi) ∨ ℘t
U (vi)

)+ (I t
R(vi) ∨ I t

U (vi)
) + (G t

R(vi) ∨ G t
U (vi)

) ;

11. . D11(R, U ) = 1 − 1

|H |
∑

vi∈H

(
℘t

R(vi) ∧ ℘t
U (vi)

)+ (I t
R(vi) ∧ I t

U (vi)
) + (G t

R(vi) ∧ G t
U (vi)

)
(
℘t

R(vi) ∨ ℘t
U (vi)

)+ (I t
R(vi) ∨ I t

U (vi)
) + (G t

R(vi) ∨ G t
U (vi)

) ;

12. . D12(R, U ) = 1 −

∑
vi∈H (℘t

R(vi )∧℘t
U (vi ))+((1−I t

R(vi ))∧(1−I t
U (vi )))

+((1−G t
R(vi ))∧(1−G t

U (vi )))∑
vi∈H (℘t

R(vi )∨℘t
U (vi ))+((1−I t

R(vi ))∨(1−I t
U (vi )))

+((1−G t
R(vi ))∨(1−G t

U (vi )))

;

13. . D13(R, U ) =

.
t

√√√√√√√√√√

1

2|H |(l1 + 1)t
∑

vi∈H

{ | (l1
(
℘t

R(vi)
)− ℘t

U (vi)
)−

((
I t
R(vi)

)− I t
U (vi)

) − (G t
R(vi) − G t

U (vi)
) |t

}

+ 1

2|H |(l2 + 1)t
∑

vi∈H

{ | (l2
(
G t

R(vi)
)− G t

U (vi)
)−

((
I t
R(vi)

)− I t
U (vi)

)− (℘t
R(vi) − ℘t

U (vi)
) |t

}
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3.2 Similarity Measure for T -SFSs 

Let . R, . U , and . W be three T -SFSs on . H . A measure of similarity . S(R,U )

is a mapping S: T -SFS.(H ) × T -SFS.(H ) → [0, 1] satisfying the following 
conditions: 

1. .0 ≤ S(R,U ) ≤ 1; 

2. .S(R,U ) = S(U ,R); 

3. .S(R,U ) = S(U ,R); 

4. .S(R,U ) = S(U ,R); 

5. .S(R,U ) = 1 iff .R = U ; 

6. .S(R,Rc) = 0 iff . R is a crisp set; 

7. If .R ⊆ U ⊆ W , then .S(R,U ) ≤ S(R,W ) and . S(U ,W ) ≤ S(R,W ).

Theorem 1 Let . R and . U be two T -SFSs. Then .Si(R,U ) (i = 1, 2, . . . , 13) are 
similarity measures: 

1. . S1(R, U ) = 1 − 1

2|H |
∑

vi∈H( |℘t
R(vi) − ℘t

U (vi)| + |I t
R(vi) − I t

U (vi)|
+| G t

R(vi) − G t
U (vi)| + |πt

R(vi) − πt
U (vi)|

)
;

2. . S2(R, U ) = 1− 1

2|H |
∑

vi∈H

( | (℘t
R(vi) − ℘t

U (vi)
)−(

I t
R(vi) − I t

U (vi)
)− (G t

R(vi) − G t
U (vi)

)
)

;

3. . S3(R, U ) =

1 − 1

4|X|

⎛
⎜⎜⎜⎜⎜⎝

∑
vi∈H

( |℘t
R(vi) − ℘t

U (vi)| + |I t
R(vi) − I t

U (vi)| +
| G t

R(vi) − G t
U (vi)| + |πt

R(vi) − πt
U (vi)|

)

+∑vi∈H

( | (℘t
R(vi) − G t

R(vi)
)− I t

R(vi)

+ (℘t
U (vi) − I t

U (vi) − G t
U (vi)

) |

)

⎞
⎟⎟⎟⎟⎟⎠

4. . S4(R, U ) = 1− 1

|H |
∑

vi∈H

(|℘t
R(vi) − ℘t

U (vi)| ∨ |I t
R(vi) − I t

U (vi)| ∨ |
. 
(
G t

R(vi) − G t
U (vi)

) |) ;

5. . S5(R, U ) = 1

|H |
∑

vi∈H

1 − |℘t
R(vi) − ℘t

U (vi)| ∨ |I t
R(vi) − I t

U (vi)| ∨ | (G t
R(vi) − G t

U (vi)
) |

1 + |℘t
R(vi) − ℘t

U (vi)| ∨ |I t
R(vi) − I t

U (vi)| ∨ | (G t
R(vi) − G t

U (vi)
) | ;

6. .S6(R, U ) =

∑
vi∈H (1−|℘t

R(vi )−℘t
U (vi )|∨|I t

R(vi )−I t
U (vi )| ∨|

(G t
R(vi )−G t

U (vi ))|)∑
vi∈H (1+|℘t

R(vi )−℘t
U (vi )|∨|

I t
R(vi )−I t

U (vi )| ∨|(G t
R(vi )−G t

U (vi ))|)
;
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7. . S7(R, U ) = α

∑
vi∈H

(
℘t

R(vi) ∧ ℘t
U (vi)

)
∑

vi∈H

(
℘t

R(vi) ∨ ℘t
U (vi)

) + γ

∑
vi∈H

(
I t
R(vi) ∧ I t

U (vi)
)

∑
vi∈H

(
I t
R(vi) ∨ I t

U (vi)
)

.+β

∑
vi∈H

(
G t

R(vi) ∧ G t
U (vi)

)
∑

vi∈H

(
G t

R(vi) ∨ G t
U (vi)

) , .α + γ + β = 1, . α, γ, β ∈ [0, 1];

8. . S8(R, U ) = α

|H |
∑

vi∈H

(
℘t

R(vi) ∧ ℘t
U (vi)

)
(
℘t

R(vi) ∨ ℘t
U (vi)

) + γ

|vi |
∑

vi∈H

(
I t
R(vi) ∧ I t

U (vi)
)

(
I t
R(vi) ∨ I t

U (vi)
)+ . 

β

|X|
∑

vi∈H

(
G t

R(vi) ∧ G t
U (vi)

)
(
G t

R(vi) − G t
U (vi)

) ,
α + γ + β = 1, . α, γ, β ∈ [0, 1];

9. . S9(R, U ) =
. 
1

|H |
∑

vi∈H

(
℘t

R(vi) ∧ ℘t
U (vi)

)+ (I t
R(vi) ∧ I t

U (vi)
)+ (G t

R(vi) ∧ G t
U (vi)

)
(
℘t

R(vi) ∨ ℘t
U (vi)

)+ (I t
R(vi) ∨ I t

U (vi)
)+ (G t

R(vi) ∨ G t
U (vi)

) ;

10. . S10(R, U ) =∑
vi∈H

(
℘t

R(vi) ∧ ℘t
U (vi)

)+ (I t
R(vi) ∧ I t

U (vi)
) + (G t

R(vi) ∧ G t
U (vi)

)
∑

vi∈H

(
℘t

R(vi) ∨ ℘t
U (vi)

)+ (I t
R(vi) ∨ I t

U (vi)
) + (G t

R(vi) ∨ G t
U (vi)

) ;

11. . S11(R, U ) = 1

|H |
∑

vi∈H

(℘t
R(vi )∧℘t

U (vi ))+((1−I t
R(vi ))∧(1−I t

U (vi )))
+((1−G t

R(vi ))∧(1−G t
U (vi )))

(℘t
R(vi )∨℘t

U (vi ))+((1−I t
R(vi ))∧(1−I t

U (vi )))
+((1−G t

R(vi ))∧(1−G t
U (vi )))

;

12. . S12(R, U ) =

∑
vi∈H (℘t

R(vi )∧℘t
U (vi ))+((1−I t

R(vi ))∧(1−I t
U (vi )))

+((1−G t
R(vi ))∧(1−G t

U (vi )))∑
vi∈H (℘t

R(vi )∨℘t
U (vi ))+((1−I t

R(vi ))∨(1−I t
U (vi )))

+((1−G t
R(vi ))∨(1−G t

U (vi )))

;

13. . S13(R, U ) =

. t

√√√√√√√√√√

1

2|H |(l1 + 1)t
∑

vi∈H

{ | (l1
(
℘t

R(vi)
)− ℘t

U (vi)
)−

((
I t
R(vi)

)− I t
U (vi)

) − (G t
R(vi) − G t

U (vi)
) |t

}

+ 1

2|H |(l2 + 1)t
∑

vi∈H

{ | (l2
(
G t

R(vi)
)− G t

U (vi)
)−

((
I t
R(vi)

)− I t
U (vi)

)− (℘t
R(vi) − ℘t

U (vi)
) |t

}

Theorem 2 For .i = 1, 2, 3, . . . , 13, if .α = β = 1/2, then the following hold: 

1. . Si(R,U c) = Si(U c,R);
2. . Si(R,U ) = Si(R ∩ U ,R ∪ U );
3. . Si(R,R ∩ U ) = Si(R,R ∪ U );
4. . Si(R,R ∪ U ) = Si(R,R ∩ U ).

Theorem 3 For .i = 1, 2, . . . , 6, the following hold: 

1. . Si(R,R ⊗ U ) = Si(U ,R ⊕ U );
2. .Si(R,R ⊕ U ) = Si(U ,R ⊗ U ).
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Theorem 4 For i=1,4,5,6 and for all .vi ∈ H , .
(
℘t

R(vi) + ℘t
U (vi)

) = 1, 
.
(
I t
R(vi)

)+ I t
U (vi ) = 1 and .G t

R(vi ) + G t
U (vi ) = 1, we have 

1. .Si(R,R � U ) = Si(U ,R � U ), .℘t
R(vi ) ≤ ℘t

U (vi ), .
(
I t
R(vi)

) ≥ I t
U (vi ) and 

. 
(
G t

R(vi) ≥ G t
U (vi)

)

2. .Si(R,R � U ) = Si(U ,R � U ), .℘t
R(vi ) ≥ ℘t

U (vi ), .
(
I t
R(vi)

) ≤ I t
U (vi ) and 

. 
(
G t

R(vi) ≤ G t
U (vi)

)

3.3 Entropy for T -SFSs 

Let . R, and . U be two T -SFSs on . H . A measure of entropy .E(R) is a function E: 
T -SFS.(H ) → [0, 1] carries the given features: 
1. . 0 ≤ E(R) ≤ 1;
2. .E(R) = 0 iff . R is a set of crisp; 

3. .E(R) = 1 iff . ℘t
R(vi ) = G t

R(vi );
4. . E(R) = E(Rc);
5. If .E(R) ≤ E(U ) if . R is less fuzzy than .U , that is . ℘t

R(vi ) ≤ ℘t
U (vi ) ≤

I t
U (vi ) ≤ I t

R(vi ) ≤ G t
U (vi ) ≤ G t

R(vi ) and . G t
R(vi ) ≤ G t

U (vi ) ≤ I t
R(vi ) ≤

I t
U (vi )℘

t
U (vi ) ≤ ℘t

R(vi )

Theorem 5 Let . R be two T -SFSs. Then .Ei(R,U ) (i = 1, 2, . . . , 12) are entropy 
measures: 

1. . E1(R) =∑vi∈H

(
πt

R(vi) + 1 − |℘t
R(vi) − I t

R(vi) − G t
R(vi)

) |(
πt

R(vi) + 1 + |℘t
R(vi) − I t

R(vi) − G t
R(vi)

) | ;

2. . E2(R) = 1

2|H |
∑

vi∈H

1 − |℘t
R(vi) − I t

R(vi) − G t
R(vi)|

1 + |℘t
R(vi) − I t

R(vi) − G t
R(vi)| ;

3. . E3(R) =
∑

vi∈H

(
1 − |℘t

R(vi) − I t
R(vi) − G t

R(vi)|
)

∑
vi∈H

(
1 + |℘t

R(vi) − I t
R(vi) − G t

R(vi)|
) ;

4. . E4(R) = 1 − 1

|H |
∑

vi∈H

(|℘t
R(vi) − I t

R(vi) − G t
R(vi)|

) ;

5. . E5(R) =
∑

vi∈H

(
℘t

R(vi) ∧ I t
R(vi) ∧ G t

R(vi)
)

∑
vi∈H

(
℘t

R(vi) ∨ I t
R(vi) ∨ G t

R(vi)
) ;

6. .E6(R) = 1

|H |
∑

vi∈H

(
℘t

R(vi) ∧ I t
R(vi) ∧ G t

R(vi)
)

(
℘t

R(vi) ∨ I t
R(vi) ∨ G t

R(vi)
) ;
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7. . E7(R) =
∑

vi∈H

(
0.5πt

R(vi) + ℘t
R(vi) ∧ I t

R(vi) ∧ G t
R(vi)

)
∑

vi∈H

(
0.5πt

R(vi) + ℘t
R(vi) ∨ I t

R(vi) ∨ G t
R(vi)

) ;

8. . E8(R) = 1

|H |
∑

vi∈H

0.5πt
R(vi) + ℘t

R(vi) ∧ I t
R(vi) ∧ G t

R(vi)

0.5πt
R(vi) + ℘t

R(vi) ∨ I t
R(vi) ∨ G t

R(vi)
;

9. . E9(R) = 1(√
2 − 1

)
vi |H |

∑
vi∈H

(
sin

1 + ℘t
R(vi) − I t

R(vi) − G t
R(vi)

4
π

)

+
(
sin

11℘t
R(vi) + I t

R(vi) + G t
R(vi)

4
π − 1

)
;

10. . E10(R, U ) = 1(√
2 − 1

)
vi |H |

∑
vi∈H

(
cos

1 + ℘t
R(vi) − I t

R(vi) − G t
R(vi)

4
π

)
+

. 

(
cos

11℘t
R(vi) + I t

R(vi) + G t
R(vi)

4
π − 1

)
;

11. . E11(R, U ) = 1

|H |
∑

vi∈H cot

(
1

4
π + |℘t

R(vi) − I t
R(vi) − G t

R(vi)|
4
(
1 + πt

R(vi)
) π

)
;

12. . E12(R, U ) = 1

|H |
∑

vi∈H tan

(
1

4
π − |℘t

R(vi) − I t
R(vi) − G t

R(vi)|
4
(
1 + πt

R(vi)
) π

)
.

3.4 Inclusion Measure for T -SFSs 

Let . R, . U , and . W be three T -SFSs on . H . An inclusion measure .I (R,U ) is a 
function I : T -SFS.(H ) × T -SFS.(H ) → [0, 1], carrying the following features: 
1. . 0 ≤ I (R,U ) ≤ 1;
2. .I (R,U ) = 1 iff . R ⊆ U ;
3. .I (R,U ) = 0 iff .R = Φ and . U = ∅;
4. If .R ⊆ U ⊆ W , then .I (R,U ) ≤ I (R,W ) and . I (U ,W ) ≤ I (R,W ).

Theorem 6 Let . R and . U be two T -SFSs. Then .Ii(R,U ) (i = 1, 2, . . . , 7) are 
inclusion measures: 

1. . I1(R,U ) =

.1 − 1

2|H |
∑

vi∈H

(
|℘t

R(vi) − ℘t
R(vi) ∧ ℘t

U (vi)| + |I t
R(vi)

−I t
R(vi) ∧ I t

U (vi)| + | G t
R(vi) − G t

R(vi)|
)

;



20 Decision Analysis Framework Based on Information Measures of T -. . . 449

2. . I2(R, U ) =

. 

⎧
⎨
⎩

1, R = ∅∑
vi∈H

(
1 + ℘t

R(vi) ∧ ℘t
U (vi) − I t

R(vi) ∨ I t
U (vi) − G t

R(vi) ∨ G t
U (vi)

)
∑

vi∈H

(
1 + ℘t

R(vi) − I t
R(vi) − G t

R(vi)
) , R �= ∅

;

3. . I3(R, U ) =

. 

⎧
⎨
⎩

1, R = U = ∅∑
vi∈H

(
1 + ℘t

R(vi) − I t
R(vi) − G t

R(vi)
)

∑
vi∈H

(
1 + ℘t

R(vi) ∨ ℘t
U (vi) − I t

R(vi) ∧ I t
U (vi) − G t

R(vi) ∧ G t
U (vi)

) , others
;

4. . I4(R, U ) =

. 

⎧
⎨
⎩

1, R = U = ∅∑
vi∈H

(
1 + ℘t

R(vi) − I t
R(vi) − G t

R(vi)
)

∑
vi∈H

(
1 + G t

R(vi) ∧ G t
U (vi) − I t

R(vi) ∧ I t
U (vi) − ℘t

R(vi) ∨ ℘t
U (vi)

) , others
;

5. . I5(R, U ) =

. 

⎧
⎨
⎩

1, R = U = ∅

1

|H |
∑

vi∈H

(
1 + ℘t

R(vi) ∧ ℘t
U (vi) − I t

R(vi) ∨ I t
U (vi) − G t

R(vi) ∨ G t
U (vi)

)
(
1 + ℘t

R(vi) − I t
R(vi) − G t

R(vi)
) , others

;

6. . I6(R, U ) =

. 

⎧
⎨
⎩

1, R = U = ∅

1

|H |
∑

vi∈H

(
1 + ℘t

R(vi) − I t
R(vi) − G t

R(vi)
)

(
1 + ℘t

R(vi) ∨ ℘t
U (vi) − I t

R(vi) ∧ I t
U (vi) − G t

R(vi) ∧ G t
U (vi)

) , others
;

7. . I7(R, U ) =

. 

⎧
⎨
⎩

1, R = U = ∅

1

|H |
∑

vi∈H

(
1 + ℘t

R(vi) − I t
R(vi) − G t

R(vi)
)

(
1 + G t

R(vi) ∧ G t
U (vi) − I t

R(vi) ∧ I t
U (vi) − ℘t

R(vi) ∨ ℘t
U (vi)

) , others
.

3.5 Information Measure Transformation Connections for 
T -SFSs 

Theorem 7 Let ℘ be the T -spherical fuzzy distance measure for R,U ∈T−SFSs. 
Then S(R,U ) = 1−℘(R,U )the similarity measurement is of T -SFSs R and U . 

Proof The proof is straightforward. 

Theorem 8 For R,U ∈ T -SFSs. Then the following hold: 

℘1(R,U ) = 
1 

|H |
∑

vi∈H

( |℘t 
R(vi) − ℘t 

U (vi)| + |I t 
R(vi) − I t 

U (vi)| 
+| G t 

R(vi) − G t 
U (vi)| + |πt 

R(vi) − πt 
U (vi)|

)
then 

we have
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S(R,U ) = 1− 
1 

2|H |
∑

vi∈H

( |℘t 
R(vi) − ℘t 

U (vi)| + |I t 
R(vi) − I t 

U (vi)| 
+| G t 

R(vi) − G t 
U (vi)| + |πt 

R(vi) − πt 
U (vi)|

)
= 

S1(R,U ). Also  Si(R,U ) = 1 − ℘i(R,U )(i = 1, 2, . . . 13). 

Theorem 9 Let ℘ and S be the measure of distance and measure of similarity of 
T -SFSs, for R ∈ T -SFSs. Then 

. ℵ(R) = 1 − S(R,Rc) = 1 − S(R,Rc)

is the entropy of T -SFSs. 

Proof (ℵ1) Obvious. 
(ℵ2) If  R is a crisp set, then R = ∅ or R = Φ, we have S(R,Rc ) = 0. Therefore, 
E(R) = 0. 
(ℵ3) E(R) = 1 ⇔ S(R,Rc ) = S(Rc ,R) ⇔ ℘t 

R(vi ) = I t 
R(vi ) = G t 

R(vi ) for 
vi ∈ H . 
(ℵ4) ℵ(R) = S(R,Rc ) = S(Rc , R) = ℵ(Rc ). 
(ℵ5) Since ℘t 

R(vi) ≤ ℘t 
U (vi) ≤ I t 

U (vi) ≤ I t 
R(vi) ≤ G t 

U (vi) ≤ G t 
R(vi) implies 

R ⊆ U ⊆ U c ⊆ Rc . Therefore, according to the definition of similarity measure 
of T − SFSs, we have S(R,Rc ) ≤ S(U ,Rc ) ≤ ℵ(R,Rc ), that is, ℵ(R) ≤ 
ℵ(U ). Similarly, if G t 

R(vi) ≤ G t 
U (vi) ≤ I t 

R(vi)I
t 
U (vi) ≤ ℘t 

U (vi) ≤ ℘t 
R(vi), 

the we have S(R,Rc ) ≤ (U ,Rc ) ≤ S(U ,U c ), thatisℵ(R) ≤ ℵ(U ). This 
completes the proof. 

Theorem 10 For �,U ∈ T -SFSs. Then the following hold: 

1. S(�,U ) = S1(�,U ) = 1 − 
1 

2|H |
∑

vi∈H

( |℘t�(vi) − ℘t 
U (vi)| + |I t�(vi) − I t 

U (vi)| 
+| G t 

R(vi) − G t 
U (vi)| + |πt 

R(vi) − πt 
U (vi)|

)
, then we have 

2. ℵ(�) = S1(�,�c ) = 1 − 
1 

|H |
∑

vi∈H |℘t�(vi ) − I t�(vi ) − G t�(vi )| = ℵ4(�). 
Also 

3. ℵ4(�) = S2(�,�c ) = S3(�,�c ) = S4(�,�c ) = S13(�,�c ), 
4. ℵ5(�) = S7(�,�c ) = S10(�,�c ), 
5. ℵ6(�) = S8(�,�c ) = S9(�,�c ), 
6. ℵ7(�) = S12(�,�c ), 
7. ℵ8(�) = S11(�,�c ). 

Definition 8 Let � be a T -SFS, m(�), n(�) ∈ T− SFSs, ∀ vi ∈ H , m(�)(vi ) = 
(℘m (�) (vi), Im (�) (vi), Gm (�) (vi)), n(�)(vi ) = (℘n (�) (vi), In (�) (vi), 
Gn (�) (vi)); their membership and non-membership functions are defined as 
follows: 

• ℘m (�) (vi ) =
√
1 + (℘t�(vi) − I t�(vi) − G t�(vi)

)t 
,
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• Gm (�) (vi ) =
√
1 − |℘t�(vi) − I t�(vi) − G t�(vi)|, 

• ℘n (�) (vi ) =
√
1 − (℘t�(vi) − I t�(vi) − G t�(vi)

)t 
, 

• Gn (�) (vi ) =
√
1 + |℘t�(vi) − I t�(vi) − G t�(vi)|. 

Theorem 11 Let D be the measure of distance and S be the similarity measure of 
T -SFSs, for � ∈ T -SFSs. Then 

. ℵ(�) = S(m(�), n(�)) = 1 − D(�,�c) = 1 − S(m(�), n(�))

is the entropy of T -SFS �. 

Proof (ℵ1) Obvious. 
(ℵ2) If � is a crisp set, then ∀ vi ∈ H , we have  ℘�(vi ) = 1, G�(vi ) = 0 or  
℘�(vi ) = 0, G�(vi ) = 1. Therefore, we can achieve 

. ℘m (�) (vi) = 1,Gm (�) (vi) = 0, ℘m (�) (vi) = 0,Gm (�) (vi) = 1.

This implies that m(�) = Φ, n(�) = ∅, consequently, S(m(�), n(�)) = 0. 
(ℵ3) 

. ℵ(�) = 1 ⇔ S(m(�), n(�)) = 1 ⇔ m(�) = n(�) ⇔ ℘m (�) (vi)

= ℘n (�) (vi), Gm (�) (vi) = Gn (�) (vi).

(ℵ4) Using the definitions of m(�) and n(�), we have  m(�) = m(�c ), n(�) = 
n(�c ), hence S(m(�), n(�)) = S(m(�c ), n(�c )). 
(ℵ5) Since ℘�(vi ) ≤ ℘U (vi ) ≤ I�(vi ) ≤ IU (vi ) ≤ G�(vi ) ≤ GU (vi ) implies
� ⊆  U ⊆ U c ⊆ �c . Therefore, we have |℘t�(vi ) − I t�(vi ) − G t�(vi )| ≥  
| (℘t 

U (vi) − I t 
U (vi) − G t 

U (vi)
) |. It means that n(A) ≤ n(U ) ≤ m(U ) ≤ m(�), 

so we have S(m(�), n(�)) ≤ S (m(U ), n(�)) ≤ S (m(U ), n(U )), that is, ℵ(�) ≤ 
ℵ(U ). 

Similarly, if G�(vi ) ≤ GU (vi ) ≤ IU (vi ) ≤ I�(vi ) ≤ ℘U (vi ) ≤ ℘�(vi ), then 
we have S(m(�), n(�)) ≤ S (m(�), n(U )) ≤ S (m(U ), n(U )), that is, ℵ(�) ≤ 
ℵ(U ). This completes the proof. 

Proposition 2 Assume D and S are the measure of distance and measures of its 
similarity of T -SFSs, respectively, for �,U ∈ T -SFSs. Then 

. I (�,U ) = S(�,� ∩ U ) = 1 − D(�,� ∩ U )

is the measure of inclusion for T -SFSs � and U . 

Proof (I1) Obvious. 
(I2) If � ⊆  U , then S(�,� ∩  U ) = S(�,�) = 1 = S(�,U ). 
(I3) I (�,U ) = 0 ⇔ S(�,� ∩  U ) = 0 ⇔ � =  Φ, U = ∅.
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(I4) If � ⊆  U ⊆ O, then I (O,�) = S(O, O ∩ �) = S(O,�) and I (U ,�) = 
S(U ,U ∩�) = S(U ,�). Known by the measure of similarity of T -SFSs, we have  
I (O,  M)  ≤ I (U ,�). Similarly, I (O,�) ≤ I (O,U ). This completes the proof. 

Proposition 3 Assume D and S are the measure of distance and measures of 
similarities T -SFSs, respectively, for �, U ∈ T -SFSs. Then 

. I (�,U ) = S(U ,� ∪ U ) = 1 − D(U ,� ∪ U )

is the measure of inclusion T -SFSs � and U . 

Definition 9 Let� and U be two T -SFSs. Then, we described g(A, B) ∈T−SFSs, 
∀vi ∈ H , 
℘g (�,U ) (vi ) =√
1 + min

{|℘t�(vi) − ℘t 
U (vi)|, |I t�(vi) − I t 

U (vi)|, |G t�(vi) − G t 
U (vi)|

}

2 
, 

Gg (�,U ) (vi ) =√
1 − max

{|℘t�(vi) − ℘t 
U (vi)|, |I t�(vi) − I t 

U (vi)|, |G t�(vi) − G t 
U (vi)|

}

2 
. 

Proposition 4 Assume ℵ is the entropy measure of T -SFSs, for �, U ∈ T -SFSs. 
Then ℵ(g(�,U )) is the measure of similarity T -SFSs � and U . 

Proof (S1)−(S2) are clear-cut. 
(S3) known from the entropy definition of T -SFSs, ℵ(g(�,U )) = 1 ⇔ 
℘g (�,U ) (vi ) = Ig (�, U ) (vi ) = Gg (�, U ) (vi ) ⇔ |℘t�(vi ) − ℘t 

U (vi )| =  
0, |I t�(vi ) − I t 

U (vi )| =  0, |G t�(vi ) − G t 
U (vi )| =  0 ⇔ ℘�(vi ) = ℘U (vi ), 

I�(vi ) = IU (vi ), G�(vi ) = GU (vi ) ⇔ � =  U . 
(S4) If � is a crisp set, then ℘�(vi ) = 1, I�(vi ) = 0, G�(vi ) = 0 or  ℘�(vi ) = 0, 
I�(vi ) = 0, G�(vi ) = 1. Hence, ℘g (�,�c ) (vi ) = 1, IR (�,U c ) (vi ) = 
0,G� (�,U c ) (vi ) = 0, it implies g(�, U c )=Φ, so ℵ (g(�, U c )) = 0. 
(S5) Since � ⊆  U ⊆ O, then ∀ vi ∈ H , we have ℘�(vi ) ≤ ℘U (vi ) ≤ ℘O(vi ), 
IO(vi ) ≤ IU (vi ) ≤ I�(vi ), GO(vi ) ≤ GU (vi ) ≤ G�(vi ). Therefore, we have 
|℘t�(vi ) − ℘t 

O(vi )| ≥ |℘t�(vi ) − ℘t 
U (vi )|, |I t�(vi ) − I t 

O(vi )| ≥ |I t�(vi ) − I t 
U (vi )| 

and |G t�(vi ) − G t 
O(vi )| ≥ |G t�(vi ) − G t 

U (vi )|. 
Further, we have 

. min
{|℘t�(vi) − ℘t

O(vi)|, |I t�(vi) − I t
O(vi)|, |G t�(vi) − G t

O(vi)|
}

≥ min
{|℘t�(vi) − ℘t

U (vi)|, |I t�(vi) − I t
U (vi)|, |G t�(vi) − G t

U (vi)|
}

. max
{|℘t�(vi) − ℘t

O(vi)|, |I t�(vi) − I t
O(vi)|, |G t�(vi) − G t

O(vi)|
}

≥ max
{|℘t�(vi) − ℘t

U (vi)|, |I t�(vi) − I t
U (vi)|, |G t�(vi) − G t

U (vi)|
}
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Also, we can know 

. ℘g (�,O) (vi) ≥ ℘g (�,U ) (vi), Ig (�,O) (vi) ≤ Ig (�,U ) (vi)

and 

. G� (�,O) (vi) ≤ G� (�,U ) (vi), ℘g (�,U ) (vi) ≥ Ig (�,U ) (vi)

≥ G� (�,U ) (vi)

that is, 

. Gg (�,O) (vi) ≤ Gg (�,U ) (vi) ≤ Ig (�,O) (vi) ≤
Ig (�,U ) (vi) ≤ ℘g (�,U ) (vi) ≤ ℘g (�,O) (vi)

and understood from the definition, ℵ(g(�,O))  ≤ ℵ(g(�, U )). 
Similarly, ℵ(g(�,O))  ≤ ℵ(g(U , O)). 

Proposition 5 Assume I is the inclusion measure of T -SFSs, for � ∈  T -SFSs. 
Then ℵ(�) = I (� ∪ �c ,� ∩ �c ) is the entropy of T -SFSs �. 

Proof (ℵ1) Obvious. 
(ℵ2) If � is a crisp set, then � =  Φ or � =  ∅, we have  I (� ∪ �c, � ∩ �c ) = 
I (Φ,  ∅) = 0. Therefore, ℵ(�) = 0. 
(ℵ3) ℵ(�) = 1⇔ I (� ∪ �c, � ∩ �c ) = 1 ⇔ � ∪ �c ⊆ � ∩ �c ⇔ � ∪ �c =
� ∩ �c ⇔ ℘�(vi ) = I�(vi ) = G�(vi ). 
(ℵ4) ℵ(�) = I (� ∪ �c, � ∩ �c ) = I (�c ∪ �, �c ∩ �) = ℵ(�c ). 
(ℵ5) Since ℘�(vi ) ≤ ℘U (vi ) ≤ IU (vi ) ≤ I�(vi ) ≤ GU (vi ) ≤ G�(vi ) implies
� ⊆  U ⊆ U c ⊆ �c . Further, � ∩ �c ⊆ U ∩ U c ⊆ U ∪ U c ⊆ � ∪ �c . 

By definition of inclusion measure, it follows that I (�∪�c, �∩�c ) ≤ I (�∪�c, 
U ∩ U c ) ≤ I (U ∪ U c, U ∩ U c ), so ℵ(�) ≤ E(U ). 

Similarly, if G�(vi ) ≤ GU (vi ) ≤ I�(vi ) ≤ IU (vi ) ≤ ℘U (vi ) ≤ ℘�(vi ), then 
we can have I (� ∪ �c, � ∩ �c ) ≤ I (U ∪ U c, � ∩ �c ) ≤ I (U ∪ U c, U ∩ U c ), 
that is, ℵ(A) ≤ ℵ(U ). 

Example 1 For �, U ∈ T -SFSs. 

. I (�, U ) = I1(�, U )

= 1 − 1

2|H |
∑

vi∈H

( |℘t�(vi) − ℘t�(vi) ∧ ℘t
U (vi)| + |I t�(vi)

−I t�(vi) ∧ I t
U (vi)| + | G t�(vi) − G t�(vi)|

)
,

then we have ℵ(�) = I1(�∪�c,�∩�c ) = 1− 
1 

2|H |
∑

vi∈H

(|℘t�(vi) − I t�(vi)− 

G t�(vi)|
) = ℵ4(�).
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Theorem 12 S(℘�(vi ), I�(vi ),G�(vi )) is the entropy of T -SFS �. 

Proof (ℵ1) Obvious. 
(ℵ2) is the set of crisp �, then ℘�(vi ) = Φ, I�(vi ) = ∅ and G�(vi ) = ∅ or 
℘�(vi ) = ∅, I�(vi ) = Φ and G�(vi ) = Φ. Therefore, S(℘�(vi ), I�(vi ),G�(vi ) = 
0. 
(E3) measured by the notion of similarity, T -SFSs, we have 

. S(℘�(vi), I�(vi),G�(vi)) = 1 ⇔ ℘�(vi) = I�(vi) = G�(vi) ⇔ ℵ(�) = 1.

(ℵ4) ℵ(�) =S(℘�(vi ), I�(vi ),G�(vi )) = S(G�(vi ), I�(vi ), ℘�(vi )) = ℵ(Rc ). 
(ℵ5) Since ℘�(vi ) ≤ ℘U (vi ) ≤ IU (vi ) ≤ I�(vi ) ≤ GU (vi ) ≤ G�(vi ) implies
� ⊆  U ⊆ U c ⊆ �c . Namely, ℘� ⊆ ℘U ⊆ IU ⊆ I� ⊆ GU ⊆ G�. In accordance 
with the similarity measure’s definition, we can have S(℘�(vi ), I�(vi ),G�(vi )) ≤ 
S(℘U (vi ), IU (vi ), GU (vi )), that is, ℵ(�) ≤ ℵ(U ). 

Likewise, if G�(vi ) ≤ GU (vi ) ≤ I�(vi ) ≤ IU (vi ) ≤ ℘U (vi ) ≤ ℘�(vi ), then 
ℵ(�) ≤ ℵ(U ).The proof is now complete. 

4 Numerical Examples of Information Measures 

This section introduces axiomatic descriptions for T -SFS information measures. 
Flow chart of information measures is in Fig. 20.1. 

4.1 Application of Distance Measures to Pattern Recognition 

Herein, we provide numerous examples to illustrate the use of the established 
distance measures for specific T -SFSs in pattern recognition. 

Example 2 Let .W1,W2,W3, and . W4 be four known patterns which are illustrated 
by the following T -SFSs in X: 

. 

W1 = {(v1, 0.32, 0.14, 0.36) , (v2, 0.41, 0.25, 0.47) , (v3, 0.54, 0.36, 0.48)} ,

W2 = {(v1, 0.41, 0.34, 0.43) , (v2, 0.52, 0.35, 0.51) , (v3, 0.60, 0.63, 0.32)} ,

W3 = {(v1, 0.34, 0.47, 0.57) , (v2, 0.56, 0.52, 0.61) , (v3, 0.86, 0.61, 0.81)} ,

W4 = {(v1, 0.23, 0.21, 0.11) , (v2, 0.31, 0.32, 0.30) , (v3, 0.45, 0.33, 0.35)} .

The following is an unknown pattern . K : 

.K = {(v1, 0.25, 0.26, 0.22) , (v2, 0.46, 0.38, 0.34) , (v3, 0.47, 0.49, 0.54)} ,
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Fig. 20.1 Flow chart of 
information measures 

Its aim is to determine the class to which . K belongs. In order to do that, the distance 
between . K and classes . W1, . W2, . W3, and . W4 is measured, and . K is then allocated 
to the class . Wg specified by 

. g = argmax
g

{
D
(
Wg,K

)}
.

For all the newly developed distance measures .(D1 − D13) for T -SFS, the distance 
between .D(W1,K ), .D(W2,K ), .D(W3,K ), and .D(W4,K ) are determined and 
displayed in Table 20.1. It is observed in Table 20.1 that the pattern which is 
unknown . K relates to a class . W3 when . D1 to .D13 are used. It is clear that the 
cause for this distinction is the first characteristic, i.e., (. v1). The T -SFNs of . v1 are 

. 
(0.32, 0.14, 0.36) , (0.41, 0.34, 0.43) , (0.34, 0.47, 0.57) ,

(0.23, 0.21, 0.11) , (0.25, 0.26, 0.22) ,

for . W1, . W2, .W3,W4, and . K , respectively. As a conclusion, it appears that 

.D(W3,K ) > D(W2,K ) > D(W4,K ) > D(W4,K )
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Table 20.1 Distance measures for Example 2 

.D(W1, K ) .D(W2, K ) .D(W3, K ) .D(W4, K ) Classification results 

.D1 .0.0956 .0.1985 .0.5523 .0.1579 . W3

.D2 .0.0382 .0.0584 .0.0764 .0.0385 . W3

.D3 .0.0669 .0.1284 .0.3143 .0.0982 . W3

.D4 .0.0572 .0.0956 .0.2982 .0.0638 . W3

.D5 .0.1051 .0.1694 .0.5446 .0.1143 . W3

.D6 .0.1082 .0.1746 .0.4593 .0.1200 . W3

.D7 .0.4656 .0.5023 .0.7133 .0.5014 . W3

.D8 .0.8219 .0.8341 .0.9044 .0.8338 . W3

.D9 .0.8125 .0.8496 .0.9094 .0.8490 . W3

.D10 .0.4731 .0.5636 .0.7316 .0.5405 . W3

.D11 .0.6871 .0.6973 .0.7564 .0.6850 . W3

.D12 .0.0613 .0.0915 .0.2595 .0.0547 . W3

.D13 .0.0428 .0.0588 .0.0900 .0.0242 . W3

The bold values show the best similarity values according to the given problem

Table 20.2 Symptomatic characteristics of the diagnosis under consideration 

Temperature Headache Stomach pain Cough 

Viral fever .(0.2, 0.3, 0.6) .(0.3, 0.4, 0.7) .(0.2, 0.5, 0.6) . (0.1, 0.4, 0.8)

Malaria .(0.3, 0.5, 0.7) .(0.1, 0.3, 0.4) .(0.2, 0.3, 0.4) . (0.1, 0.2, 0.4)

Typhoid .(0.2, 0.3, 0.5) .(0.1, 0.4, 0.5) .(0.1, 0.3, 0.3) . (0.2, 0.2, 0.3)

Chest problem .(0.1, 0.3, 0.4) .(0.2, 0.4, 0.5) .(0.2, 0.3, 0.4) . (0.1, 0.2, 0.3)

Table 20.3 Symptoms and features of the patients under consideration 

Temperature Headache Stomach pain Cough 

Al .(0.2, 0.3, 0.4) .(0.1, 0.3, 0.3) .(0.1, 0.3, 0.4) . (0.2, 0.2, 0.3)

Bob .(0.1, 0.4, 0.5) .(0.1, 0.1, 0.4) .(0.2, 0.3, 0.3) . (0.1, 0.1, 0.3)

Joe .(0.1, 0.3, 0.3) .(0.1, 0.4, 0.5) .(0.2, 0.2, 0.3) . (0.2, 0.2, 0.3)

Ted .(0.1, 0.4, 0.4) .(0.2, 0.3, 0.4) .(0.1, 0.3, 0.5) . (0.1, 0.2, 0.3)

is more acceptable. Using standard calculations, we can obtain the noted relation for 
. D2 to . D13.

Example 3 Assume that a doctor would like to diagnose the condition of C . = {viral 
fever, malaria, typhoid, chest problem} for patients P . = {Al, Bob, Joe, Ted} with 
disease symptoms V = {temperature, headache, stomach pain, cough}. The early 
signs associated with the considered diagnosis are listed in Table 20.2, and the early 
signs of the disease associated with each patient are listed in Table 20.3. Every table 
element is represented by a specific T -SFSs. For each patient, a precise diagnosis is 
necessary. 

To determine a condition of the patient, we may assess the distance mea-
sure between the symptoms associated with each illness and those associated with 
the patient. The diagnostic findings are provided in Table 20.4 using the suggested
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Table 20.4 The distance 
between the patient and the 
set of probable diagnoses by 
using . D13

Viral fever Malaria Typhoid Cough 

Al .0.1719 .0.0605 .0.0324 . 0.0251

Bob .0.1654 .0.0527 .0.0259 . 0.0255

Joe .0.1698 .0.0655 .0.0262 . 0.0230

Ted .0.1622 .0.0564 .0.0352 . 0.0242

The bold values show the best similarity values
according to the given problem

distance measure formula D. 13 and taking .p = 1, .t1 = 2, .t2 = 2, .q = 3. We may  
conclude from Table 20.4 that all the patients suffer from viral fever. 

4.2 Application of the Similarity Measure to Recognition of 
Pattern 

This part, we describe some examples to showing the use of the suggested measure 
similarity for T -SFS to recognition of pattern. 

Let suppose that four classes .W1,W2,W3,, and . W4 of known construction things 
and . K , an unknown construction things, are defined in the . X = {v1, v2, v3}
showing by T -SFS as given below. Its goal is to ascertain to which class . K belongs 
to. 
. W1 = {(v1, 0.21, 0.22, 0.33) , (v2, 0.22, 0.42, 0.43) , (v3, 0.32, 0.33, 0.32)} ,

. W2 = {(v1, 0.22, 0.32, 0.41) , (v2, 0.32, 0.43, 0.31) , (v3, 0.13, 0.55, 0.34)} ,

. W3 = {(v1, 0.11, 0.23, 0.11) , (v2, 0.12, 0.24, 0.21) , (v3, 0.32, 0.21, 0.32)} ,

. W4 = {(v1, 0.33, 0.34, 0.11) , (v2, 0.21, 0.12, 0.22) , (v3, 0.23, 0.37, 0.32)} ,

The following is an known building materials . K : 
. K = {(v1, 0.25, 0.26, 0.22) , (v2, 0.42, 0.31, 0.34) , (v3, 0.33, 0.23, 0.24)} ,

Its objective is to determine the class to which . K belongs. To do this, the degrees 
of similarity between . K and classes . W1, . W2, . W3, and . W4 are measured and . K is 
then allocated to the class . Wg specified by 

. g = argmax
g

{
S
(
Wg,K

)}
.

For all the established similarity measure .(S1 − S13) for T -SFS, the degree of 
similarity between four classes of known building materials .S(W1,K ), .S(W2,K ), 
.S(W3,K ), and .S(W4,K ) are determined and displayed in Table 20.5. It is  
clearly observed in Table 20.5 that the an unknown building material . K belongs 
to a class  . W1 when .S1, S3, S7, to . S10 are used and . K belongs to a class . W3 when 
. S2, . S4 to . S6 and .S11 to .S13 are used. It is obvious that the first characteristic 
is what has caused this discrepancy, i.e., (. v1). As a conclusion, it appears that 
.S(W1,K ) > S(W3,K ) > S(W4,K ) > S(W2,K ) is more acceptable. Similarly, 
we can find the aforementioned relations for . S2 to . S13.The graphical representation 
of similarity measures is given in Fig. 20.2.
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Table 20.5 Similarity measure for Example 4.2 

.S(W1, K ) .S(W2, K ) .S(W3, K ) .S(W4, K ) Classification results 

.S1 .0.9317 .0.8591 .0.8824 .0.8681 . W1

.S2 .0.9636 .0.9378 .0.9923 .0.9838 . W3

.S3 .0.9477 .0.8984 .0.9374 .0.9260 . W1

.S4 .0.9719 .0.9345 .0.9736 .0.9687 . W3

.S5 .0.1635 .0.1592 .0.1637 .0.1631 . W3

.S6 .0.4904 .0.4772 .0.4910 .0.4894 . W3

.S7 .0.4194 .0.3192 .0.3792 .0.2682 . W1

.S8 .0.1398 .0.1064 .0.1264 .0.0894 . W1

.S9 .0.1303 .0.0890 .0.1004 .0.0840 . W1

.S10 .0.4211 .0.2889 .0.3565 .0.2707 . W1

.S11 .0.3204 .0.3115 .0.3238 .0.3194 . W3

.S12 .0.9613 .0.9347 .0.9716 .0.9583 . W3

.S13 .0.9778 .0.9650 .0.9946 .0.9894 . W3

The bold values show the best similarity values according to the given problem
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Fig. 20.2 Comparative study 

5 Comparative Analysis 

To demonstrate how well the proposed similarity measurements work for spe-
cific T -SFSs in pattern recognition, we present some examples and compare the 
novel findings to those reported in the literature. 

Example 4 Comparison analysis of similarity measure for three patterns .W1,W2,, 
and . W3 which are presented by the following T -SFSs in .X = {v1, v2, v3, v4}: 
. W1 = {(v1, 0.3, 0.0, 0.3) , (v2, 0.4, 0.0, 0.4) , (v3, 0.4, 0.0, 0.4) , (v4, 0.4, 0.0, 0.4)} ,

. W2 = {(v1, 0.5, 0.0, 0.5) , (v2, 0.1, 0.0, 0.1) , (v3, 0.5, 0.0, 0.5) , (v4, 0.1, 0.0, 0.1)} ,

.W3 = {(v1, 0.5, 0.0, 0.4) , (v2, 0.4, 0.0, 0.5) , (v3, 0.3, 0.0, 0.3) , (v4, 0.2, 0.0, 0.2)} .
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Table 20.6 Comparison for similarity measures for Example 4 

.S(W1, K ) .S(W2, K ) .S(W3, K ) Classification results 

S [27] .0.8677 .0.7261 .0.9134 . W3

S [10] .1.0000 .1.0000 .0.9750 Not classified 

S [11] .0.8679 .0.7425 .0.8923 . W3

S [21] .0.8750 .0.7500 .0.9000 . W3

S [21] .0.8141 .0.6501 .0.8495 . W3

S [21] .0.7778 .0.6000 .0.8182 . W3

S [23] .0.8750 .0.7500 .0.9250 . W3

S [17] .1.0000 .1.0000 .0.9750 Not classified 

S [29] .0.9375 .0.8750 .0.9500 . W3

S [30] .0.8750 .0.7500 .0.9250 . W3

S [30] .0.9375 .0.8750 .0.9500 . W3

S [30] .0.9167 .0.8333 .0.9417 . W3

S [33] .0.8750 .0.7500 .0.9250 . W3

S [61] .1.0000 .1.0000 .0.9969 Not classified 

S [52] .1.0000 .1.0000 .0.9884 Not classified 

S [66] .0.5000 .0.5000 .0.5000 Not classified 

S [37] .1.0000 .1.0000 .0.9775 Not classified 

S [37] .0.5038 .0.2378 .0.6223 . W3

S [37] .0.8785 .0.7912 .0.9205 . W3

S [8] .0.9583 .0.9167 .0.9583 Not classified 

S [38] .0.9841 .0.9727 .0.9816 . W1

The bold values show the best similarity values according to the given problem

The following is an unknown pattern . K : 
. K = {(v1, 0.4, 0.0, 0.4) , (v2, 0.5, 0.0, 0.5) , (v3, 0.2, 0.0, 0.2) , (v4, 0.3, 0.0, 0.3)} ,

Our objective is to ascertain the class to which . K belongs. The results of the 
suggested similarity measures (.S1-. S13), displayed in Table 20.6, are in contrast 
to the classification result of the existing measure similarity (S[27]–S[38]). From 
Table 20.7, we observed that the developed similarity measures (.S1, S3 − S13) 
address the shortcomings of conventional similarity measures S [17], S [61], S [52], 
S [66], S [37], and S [8]. 

The graphical representation of comparison using similarity measures is given in 
the Fig. 20.3: 

Comparison analysis of similarity measure for three known patterns .W1,W2, and 
. W3 that are presented by the following T -SFSs in . X = {v1, v2, v3, v4}
. W1 = {(v1, 0.3, 0.0, 0.3) , (v2, 0.6, 0.0, 0.1) , (v3, 0.2, 0.0, 0.6) , (v4, 0.7, 0.0, 0.3)} ,

. W2 = {(v1, 0.5, 0.0, 0.3) , (v2, 0.8, 0.0, 0.1) , (v3, 0.2, 0.0, 0.6) , (v4, 0.7, 0.0, 0.3)} ,

. W3 = {(v1, 0.5, 0.0, 0.3) , (v2, 0.6, 0.0, 0.1) , (v3, 0.2, 0.0, 0.6) , (v4, 0.7, 0.0, 0.3)} .

The following is an unknown pattern . K : 
.K = {(v1, 0.4, 0.0, 0.3) , (v2, 0.7, 0.0, 0.1) , (v3, 0.3, 0.0, 0.6) , (v4, 0.7, 0.0, 0.3)} ,
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Table 20.7 Comparison for the proposed similarity measure for Example 4 

.S(W1, K ) .S(W2, K ) .S(W3, K ) classification result 

.S1 .0.8407 .0.7205 .0.9144 . W3

.S2 .1.0000 .1.0000 .0.9848 Not classified 

.S3 .0.9203 .0.8602 .0.9496 . W3

.S4 .0.9523 .0.9180 .0.9600 . W3

.S5 .0.1219 .0.1197 .0.1225 . W3

.S6 .0.4878 .0.4786 .0.4898 . W3

.S7 .0.3975 .0.1841 .0.6587 . W3

.S8 .0.0994 .0.0460 .0.1647 . W3

.S9 .0.1429 .0.0641 .0.2344 . W3

.S10 .0.3975 .0.1841 .0.6380 . W3

.S11 .0.2383 .0.2301 .0.2439 . W3

.S12 .0.9534 .0.9212 .0.9756 . W3

.S13 .0.9818 .0.9790 .0.9813 . W1

The bold values show the best similarity values according to the given problem

3.5 

2.5 

1.5 

0.5 

3 

2 

1 

0 

S(W3,K) 

S(W2,K) 

S(W1,K) 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 
0.9345 0.9741 0.9543 0.9483 0.1218 0.4867 0.8765 

0.4883 0.8822 

0.4839 0.8764 
0.2191 

0.2206 

0.2191 
0.2764 

0.2799 

0.2638 
0.8133 

0.8254 

0.8052 
0.2438 

0.2444 

0.2424 
0.9758 

0.9785 

0.9715 
0.9561 

0.9622 

0.92980.1211 

0.1222 

0.9377 

0.9543 

0.9491 

0.9586 

0.9689 

0.9771 

0.9293 

0.9401 

Axis Title 

S(W1,K) S(W2,K) S(W3,K) 

Sc
or

e 
va

lu
es

 

Comparison Using Similarity Measures 

Fig. 20.3 Comparative study 

Our objective is to ascertain the class to which . K belongs. Table 20.9 shows 
a comparison of the classification result of the established similarity measures 
(.S1 − S13) with existing similarity measures (S[27]-S[38]) shown in Table 20.8. 
Hence, the unknown pattern for the proposed similarity measures (.S1 − S13) is  
classified in the pattern .W1. From Table 20.2, it could be clearly observed that the 
novel similarity measures (.S1 − S13) can address the drawbacks of conventional 
similarity measures S [17], S [10], S [11], S [21], S [23], S [17] S [29], S [30], S 
[33], S [61], S [52], and S [8]. The graphical representation of comparison using 
similarity measures is given in Fig. 20.4 (Table 20.9).
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Table 20.8 Comparison for similarity measures for Example 5 

.S(W1, K ) .S(W2, K ) .S(W3, K ) Classification results 

S [27] .0.9388 .0.9388 .0.9388 Not classified 

S [10] .0.9625 .0.9625 .0.9625 Not classified 

S [11] .0.8880 .0.8902 .0.8902 Not classified 

S [21] .0.9250 .0.9250 .0.9250 Not classified 

S [21] .0.8857 .0.8857 .0.8857 Not classified 

S [21] .0.8605 .0.8605 .0.8605 Not classified 

S [23] .0.9625 .0.9625 .0.9625 Not classified 

S [17] .0.9625 .0.9625 .0.9625 Not classified 

S [29] .0.9625 .0.9625 .0.9625 Not classified 

S [30] .0.9625 .0.9625 .0.9625 Not classified 

S [30] .0.9625 .0.9625 .0.9625 Not classified 

S [30] .0.9625 .0.9625 .0.9625 Not classified 

S [33] .0.9625 .0.9625 .0.9625 Not classified 

S [61] .0.9949 .0.9961 .0.9961 Not classified 

S [52] .0.9885 .0.9943 .0.9943 Not classified 

S [66] .0.7879 .0.8281 .0.8229 . W2

S [37] .0.9688 .0.9638 .0.9663 . W1

S [37] .0.8372 .0.8484 .0.8410 . W2

S [37] .0.9446 .0.9405 .0.9415 . W1

S [8] .0.9625 .0.9625 .0.9625 Not classified 

S [38] .0.9771 .0.9689 .0.9741 . W1
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Example 5 Suppose a doctor would likely to diagnose the condition of C = 
{viral fever,malaria, typhoid} for a patients set P = {Al, Bob, Joe Ted} having 
symptoms V = {temperature, headache, and cough}. The symptoms associated with 
the considered diagnosis are listed in Table 20.10, and the symptoms associated
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Table 20.9 Comparison for the proposed similarity measures for Example 5 

.S(W1, K ) .S(W2, K ) .S(W3, K ) Classification result 

.S1 .0.9401 .0.9293 .0.9345 . W1

.S2 .0.9771 .0.9689 .0.9741 . W1

.S3 .0.9586 .0.9491 .0.9543 . W1

.S4 .0.9543 .0.9377 .0.9483 . W1

.S5 .0.1222 .0.1211 .0.1218 . W1

.S6 .0.4883 .0.4839 .0.4867 . W1

.S7 .0.8822 .0.8764 .0.8765 . W1

.S8 .0.2206 .0.2191 .0.2191 . W1

.S9 .0.2799 .0.2638 .0.2764 . W1

.S10 .0.8254 .0.8052 .0.8133 . W1

.S11 .0.2444 .0.2424 .0.2438 . W1

.S12 .0.9785 .0.9715 .0.9758 . W1

.S13 .0.9622 .0.9298 .0.9561 . W1

The bold values show the best similarity values according to the given problem

Table 20.10 Symptom features for the diagnosis under consideration 

Temperature Headache Stomach pain Cough Chest pain 

Viral fever .(0.4, 0.0, 0.0) .(0.3, 0.0, 0.5) .(0.1, 0.0, 0.7) .(0.4, 0.0, 0.3) . 0.1, 0.0, 0.7

Malaria .(0.7, 0.0, 0.0) .(0.2, 0.0, 0.6) .(0.0, 0.0, 0.9) .(0.7, 0.0, 0.0) . 0.1, 0.0, 0.8

Typhoid .(0.3, 0.0, 0.3) .(0.6, 0.0, 0.1) .(0.2, 0.0, 0.7) .(0.2, 0.0, 0.6) . 0.1, 0.0, 0.9

Stomach problem .0.1, 0.0, 0.7 .0.2, 0.0, 0.4 .0.8, 0.0, 0.0 .0.2, , 0.0, 0.7 . 0.2, 0.0, 0.7

Chest problem .(0.1, 0.0, 0.8) .(0.0, 0.0, 0.8) .(0.2, 0.0, 0.8) .(0.2, 0.0, 0.8) . 0.8, 0.0, 0.1

Table 20.11 Symptoms of the patients sunder examination 

Temperature Headache Stomach pain Cough Chest pain 

Al .(0.8, 0.0, 0.1) .(0.6, 0.0, 0.1) .(0.2, 0.0, 0.8) .(0.6, 0.0, 0.1) . 0.1, 0.0, 0.6

Bob .(0.0, 0.0, 0.8) .(0.4, 0.0, 0.4) .(0.6, 0.0, 0.1) .(0.1, 0.0, 0.7) . 0.1, 0.0, 0.8

Joe .(0.8, 0.0, 0.1) .(0.8, 0.0, 0.1) .(0.0, 0.0, 0.6) .(0.2, 0.0, 0.7) . 0.0, 0.0, 0.5

Ted .(0.6, 0.0, 0.1) .(0.5, 0.0, 0.4) .(0.3, 0.0, 0.4) .(0.7, 0.0, 0.2) . 0.3, 0.0, 0.4

with every patient are listed in Table 20.11. Each table element is represented 
by a specific T -SFSs. Each patient requires proper diagnosis, which needs to be 
assessed. Diagnosis will identify a for each patient based on the similar between the 
symptoms associated with each diagnosis and those associated with the patient. The 
diagnostic observations are described in Tables 20.12, 20.13, 20.14, and 20.15 for 
Al, Bob, Joe, and Ted, respectively, using the novel similarity measures formulae 
.(S1 − S13). The patient Al is diagnosed with malaria (Mal.) in 10 of the 13 of 
the proposed approaches; the remaining approach indicates that Al is diagnosed 
with viral fever (VF) as presented in Table 20.12. It is obvious that Bob has a 
stomach problem (SP), since all of the measures yield the same findings, shown 
in Table 20.13. Joe is diagnosed with typhoid in 12 of the 13 methods; the other
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Table 20.12 Symptoms 
features of the patient Al 

VF Mal. TYP SP Chest problem 

.S1 .0.7690 .0.8039 .0.7248 .0.6423 . 0.5910

.S2 .0.8773 .0.8760 .0.8384 .0.7190 . 0.6806

.S3 .0.8231 .0.8399 .0.7816 .0.6807 . 0.6358

.S4 .0.7830 .0.7952 .0.7236 .0.6600 . 0.5912

.S5 .0.0883 .0.0887 .0.0854 .0.0806 . 0.0763

.S6 .0.4391 .0.4430 .0.4198 .0.3976 . 0.3715

.S7 .0.3606 .0.5128 .0.3256 .0.0771 . 0.1201

.S8 .0.0860 .0.1150 .0.0746 .0.0188 . 0.0297

.S9 .0.0754 .0.1081 .0.0613 .0.0082 . 0.0193

.S10 .0.3661 .0.5108 .0.3372 .0.0798 . 0.1432

.S11 .0.1752 .0.1771 .0.1690 .0.1473 . 0.1384

.S12 .0.8804 .0.8800 .0.8445 .0.7489 . 0.7083

.S13 .0.8917 .0.8349 .0.8318 .0.7275 . 0.6581

The bold values show the best similarity values according to
the given problem

Table 20.13 Symptoms 
features of the patient Bob 

VF Mal. TYP SP Chest problem 

.S1 .0.7054 .0.6636 .0.7365 .0.8571 . 0.6725

.S2 .0.8221 .0.7308 .0.8372 .0.9294 . 0.7584

.S3 .0.7637 .0.6972 .0.7869 .0.8933 . 0.7154

.S4 .0.7200 .0.6530 .0.7354 .0.8606 . 0.6720

.S5 .0.0847 .0.0819 .0.0854 .0.0928 . 0.0822

.S6 .0.4186 .0.3950 .0.4238 .0.4625 . 0.4019

.S7 .0.1552 .0.1300 .0.2692 .0.5722 . 0.1861

.S8 .0.0370 .0.0322 .0.0633 .0.1335 . 0.0462

.S9 .0.0372 .0.0234 .0.0730 .0.1272 . 0.0399

.S10 .0.2072 .0.1790 .0.3379 .0.6514 . 0.2770

.S11 .0.1634 .0.1447 .0.1659 .0.1845 . 0.1458

.S12 .0.8216 .0.7409 .0.8324 .0.9257 . 0.7540

.S13 .0.8446 .0.7148 .0.8285 .0.9136 . 0.7170

The bold values show the best similarity values according to
the given problem

approach represented that Joe is diagnosed with VF shown in Table 20.14. Similarly, 
9 of the 13 measures indicated that Ted has VF, whereas the remaining methods 
imply that Ted has Mal. presented in Table 20.15. For patient Al, it could be 
observed from Tables 20.12 and 20.16 that the established similarity measures 
.(S1, S3 − S11) yield the same findings as those in References [11, 18, 21, 30, 33, 
35, 37, 54, 66], and the measures .(S2, S12, S13) provide the same results as in 
References [8, 10, 17, 23, 27, 30, 35, 37, 38, 46, 47, 50, 52, 61]. For patient Bob 
the novel similarity measures provide the same results as in literature presented in 
Table 20.16. Similarly, for patient Joe the measures of similarity provide the same 
result as in literature shown in Table 20.16 except . S4. For patient Ted, the suggested
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Table 20.14 Symptoms 
features of the patient Joe 

VF Mal. TYP SP Chest problem 

.S1 .0.6549 .0.6204 .0.6592 .0.6348 . 0.5922

.S2 .0.8229 .0.7536 .0.8344 .0.7642 . 0.6862

.S3 .0.7389 .0.6870 .0.7468 .0.6995 . 0.6392

.S4 .0.6812 .0.6168 .0.6722 .0.6510 . 0.6000

.S5 .0.0818 .0.0770 .0.0819 .0.0807 . 0.0760

.S6 .0.4052 .0.3815 .0.4020 .0.3943 . 0.3750

.S7 .0.2052 .0.2262 .0.3143 .0.1850 . 0.1322

.S8 .0.0490 .0.0500 .0.0725 .0.0460 . 0.0329

.S9 .0.0340 .0.0398 .0.0558 .0.0189 . 0.0196

.S10 .0.2085 .0.2212 .0.3261 .0.1702 . 0.1533

.S11 .0.1655 .0.1559 .0.1678 .0.1539 . 0.1393

.S12 .0.8343 .0.7762 .0.8403 .0.7858 . 0.7130

.S13 .0.8355 .0.7431 .0.8397 .0.7608 . 0.6629

The bold values show the best similarity values according to
the given problem

Table 20.15 Symptoms 
features of the patient Ted 

VF Mal. TYP SP Chest problem 

.S1 .0.7508 .0.7230 .0.6767 .0.6639 . 0.5265

.S2 .0.8782 .0.8429 .0.8099 .0.7809 . 0.6847

.S3 .0.8145 .0.7830 .0.7433 .0.7224 . 0.6056

.S4 .0.7826 .0.7200 .0.6882 .0.6884 . 0.5208

.S5 .0.0880 .0.0860 .0.0831 .0.0821 . 0.0685

.S6 .0.4390 .0.4186 .0.4077 .0.4077 . 0.3425

.S7 .0.2256 .0.3938 .0.1520 .0.0805 . 0.0507

.S8 .0.0511 .0.0820 .0.0329 .0.0191 . 0.0118

.S9 .0.0428 .0.0496 .0.0219 .0.0105 . 0.0097

.S10 .0.2264 .0.3260 .0.1390 .0.0794 . 0.0546

.S11 .0.1771 .0.1724 .0.1649 .0.1596 . 0.1431

.S12 .0.8842 .0.8528 .0.8222 .0.8024 . 0.7156

.S13 .0.8790 .0.7989 .0.7969 .0.7739 . 0.6617

The bold values show the best similarity values according to
the given problem

similarity measures .(S1 − S6, S11 − S13) yield the same findings as in References 
[8, 10, 17, 21, 23, 27, 29, 30, 33, 35, 37, 38, 47, 50, 52, 54, 61], and the measures 
S7-S10 provide the results as in References [11, 18, 37, 46, 66]. 

5.1 Application of the Inclusion Measures to Pattern 
Recognition 

This section illustrates the applicability of the suggested T -SFS inclusion mea-
sures to pattern recognition.



20 Decision Analysis Framework Based on Information Measures of T -. . . 465

Table 20.16 The summary 
of existing similarity 
measures in medical 
diagnosis 

Al Bob Joe Ted 

S [27] VF SP TYP VF 

S [10] VF SP TYP VF 

S [11] Mal SP TYP Mal 

S [21] Mal SP TYP VF 

S [21] Mal SP TYP VF 

S [21] Mal SP TYP VF 

S [23] VF SP TYP VF 

S [17] VF SP TYP VF 

S [29] VF/Mal SP TYP VF 

S [30] Mal SP TYP VF 

S [30] VF SP TYP VF 

S [30] Mal SP TYP VF 

S [33] Mal SP TYP VF 

S [61] VF SP TYP VF 

S [52] VF SP TYP VF 

S [66] Mal SP TYP Mal 

S [37] Mal SP TYP VF 

S [37] Mal SP TYP Mal 

S [37] VF SP TYP VF 

S [8] VF SP TYP VF 

S [38] VF SP TYP VF 

S [54] Mal SP TYP VF 

S [46] VF SP TYP Mal 

S [47] VF SP TYP VF 

S [35] VF SP TYP VF 

S [35] VF SP TYP VF 

S [35] Mal SP SP VF 

S [18] Mal SP TYP Mal 

S [50] VF SP TYP VF 

Example 6 Let, .W1,W2,W3, and . W4 are the known patterns illustrated by T -SFSs 
in .X = {v1, v2, v3} described as follows: 
. W1 = {(v1, 0.21, 0.11, 0.19) , (v2, 0.22, 0.12, 0.23) , (v3, 0.32, 0.14, 0.27)} ,

. W2 = {(v1, 0.22, 0.11, 0.12) , (v2, 0.24, 0.12, 0.21) , (v3, 0.27, 0.17, 0.25)} ,

. W3 = {(v1, 0.12, 0.11, 0.21) , (v2, 0.14, 0.12, 0.30) , (v3, 0.21, 0.13, 0.32)} ,

. W4 = {(v1, 0.10, 0.12, 0.22) , (v2, 0.11, 0.21, 0.31) , (v3, 0.13, 0.22, 0.33)} .

The following is an unknown pattern . K : 
. K = {(v1, 0.15, 0.12, 0.21) , (v2, 0.19, 0.21, 0.27) , (v3, 0.32, 0.23, 0.28)} ,

Its purpose is to determine the class . K . To do this, the inclusion degrees between 
. K and classes . W1, . W2, . W3, and . W4 are measured, and . K is then allocated to the 
class . Wg specified by 

.g = argmax
g

{
I
(
Wg,K

)}
.
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Table 20.17 Inclusion measure for Example 6 

.I (W1, K ) .I (W2, K ) .I (W3, K ) .I (W4, K ) Classification results 

.I1 0.9935 0.9910 0.9970 0.9997 . W4

.I2 0.9870 0.9822 0.9939 0.9995 . W4

.I3 0.9870 0.9822 0.9940 0.9995 . W4

.I4 0.9919 0.9974 0.9906 0.9852 . W2

.I5 0.3290 0.3274 0.3313 0.3332 . W4

.I6 0.3290 0.3274 0.3313 0.3332 . W4

.I7 0.3323 0.3334 0.3331 0.3321 . W2

The bold values show the best similarity values according to the given problem

For all the established inclusion measures .(I1 − I7) for T -SFS, the degree of inclu-
sion between .I (W1,K ), .I (W2,K ), .I (W3,K ), and .I (W4,K ) are determined 
and displayed in Table 20.17. It is shown in Table 20.17 that pattern which is 
unknown . K lies to a class . W4 when .I1, I2, I3, I5, and . I6 are used and . K belongs 
to a class  . W2 when . I4 and . I7 are used. It is evident that the primary attribute 
is what caused this difference, i.e., (. v1). T -SFNs of . v1 are .(0.21, 0.11, 0.19), 
.(0.22, 0.11, 0.12), .(0.12, 0.11, 0.21) , (0.10, 0.12, 0.22), and .(0.15, 0.12, 0.21) for 
. W1, . W2, .W3,W4, and . K , respectively. As a conclusion, it appears that . I (W1,K ) >

I (W3,K ) > I (W4,K ) > I (W2,K ) is more acceptable. In a similar way, we can 
find the mentioned above relations for . I2 to . I7.

6 Applications of the Inclusion Measures to Bacteria 
Recognition 

This section illustrates the applicability of the suggested T-SFS inclusion mea-
sures to Bacteria recognition. 

Example 7 Identification and characterization of microorganisms is an essential 
part of microbiology. On the basis of classifying bacteria is to examine their 
response to the Gram’s stain test. When stain reacts with the bacteria present, the 
germs become purple or pink in color. Stay purple if they are Gram-positive. They 
are Gram-negative if they are pink. Consider the following bacterial collection: 
Salmonella, Escherichia coli, and Shigella. All gut bacteria are Gram-negative and 
belong to the bacilli family. The major characteristics of these microorganisms are 
summarized by 

.W = {v1(size), v2(flagellum), v3(colony size)}
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A team of microbiologists is assumed to evaluate the existence of the afore-
mentioned characteristics in the four bacteria .W1,W2,W3, and . W4 and provides 
an assessment illustrated by T-SFSs in .X = {v1, v2, v3} described as follows: 
. W1 = {(v1, 0.21, 0.11, 0.19) , (v2, 0.22, 0.12, 0.23) , (v3, 0.32, 0.14, 0.27)} ,

. W2 = {(v1, 0.22, 0.11, 0.12) , (v2, 0.24, 0.12, 0.21) , (v3, 0.27, 0.17, 0.25)} ,

. W3 = {(v1, 0.12, 0.11, 0.21) , (v2, 0.14, 0.12, 0.30) , (v3, 0.21, 0.13, 0.32)} ,

. W4 = {(v1, 0.10, 0.12, 0.22) , (v2, 0.11, 0.21, 0.31) , (v3, 0.13, 0.22, 0.33)} .

The main purpose of molecular biologist team is to recognize an unknown 
bacteria . K which is given as follows: 
. K = {(v1, 0.15, 0.12, 0.21) , (v2, 0.19, 0.21, 0.27) , (v3, 0.32, 0.23, 0.28)} ,

Its purpose is to calculate which class . K belongs to. To do this, the inclusion 
degrees between . K and classes . W1, . W2, . W3, and . W4 are measured, and . K is then 
allocated to the class . Wg specified by 

. g = argmax
g

{
I
(
Wg,K

)}
.

For all the established inclusion measures .(I1 − I7) for T-SFS, the degree of 
inclusion between .I (W1,K ), .I (W2,K ), .I (W3,K ), and .I (W4,K ) are deter-
mined and displayed in Table 20.17. It is observed in Table 20.17 that an unknown 
bacteria .K belongs to a class .W4 when . I1to . I3 and . I5 to . I6 are used and 
.K belongs to a class .W2 when . I4 and . I7 are used. It is obvious that the 
first characteristic is what caused this discrepancy, i.e., (. v1). The t-SFNs of . v1
are .(0.21, 0.11, 0.19), .(0.22, 0.11, 0.12), .(0.12, 0.11, 0.21) , (0.10, 0.12, 0.22), and 
.(0.15, 0.12, 0.21) for . W1, . W2, .W3,W4, and . K , respectively. It is concluded that 
the inclusion degree between .(0.10, 0.12, 0.22) and .(0.15, 0.12, 0.21) is larger than 
the inclusion degree between .(0.12, 0.11, 0.21) and .(0.15, 0.12, 0.21); is larger 
than the inclusion degree between .(0.21, 0.11, 0.19) and .(0.15, 0.12, 0.21); and is 
larger than .(0.22, 0.11, 0.12) and .(0.15, 0.12, 0.21) . As a conclusion, it appears 
that .I (W1,K ) > I (W3,K ) > I (W4,K ) > I (W2,K ) is more acceptable. In 
a similar way, we can find the mentioned above relations for . I2 to . I7. Table 20.17 
summarizes the outcomes for . I1 to . I7. Obviously, the unknown bacteria belong to 
.W4,W2 for .I1 − I3, .I5 − I6 and . I4, . I7, respectively. Interestingly, the findings of all 
seven inclusion measures are comparable and consistent. 

7 Conclusions 

The T -SFSs present an excellent framework for expressing imprecise and dubious 
information owing to their flexible space eminent features and general structure. 
Further, the distance, the entropy measure, and similarity play pivotal role to 
boost the caliber and authenticity of decision-making approaches. However, how 
to precisely measure the similarity, entropy, and inclusion between two T -SFSs 
remains an open issue. Therefore, this article has keenly developed novel T -SF
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along with the thorough analysis of the associated transformation relationships. 
Further, the competency of the proposed distance measures has been unfolded by 
highlighting their application in recognition of pattern and diagnosis of medical 
things. To strengthen the arguments in favor of the proposed similarity measures, 
several counterintuitive examples of existing similarity measures have been pre-
sented. Furthermore, these similarity measures have been employed to target the 
applications of pattern recognition, construction materials, and medical diagnostics 
to obtain more authentic outcomes. The comparative study has been included in this 
study to exhibit the validity and competency of similarity measure. Moreover, the 
presented similarity measures, defined for the outstanding model of T -SFSs, are 
acknowledged to run over the shortcomings of existing similarity measure which 
fail to impart the reasonable outcomes in some particular condition. Additionally, 
we have spotlighted applicability of the suggested T -SFS inclusion measures to 
pattern recognition with an explanatory example to show their edge in comparison 
to the existing measures. In a nutshell, the experimental findings demonstrate that 
the suggested measures achieve more precise classification results. In the future, the 
similarity measure may be widely explored in scientific investigations for decision-
making, recognition of pattern, linguistic summarization, and the mining of data. 
You most likely resolved your research issue within the contexts of a particular 
context, location, and culture. As a result, you can propose future studies that 
tackle the very same research issue in a different sense, placement, and culture. 
Additionally, we may immerse them in a variety of fuzzy environments. 
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45. S.A.S. Shishavan, F.K. Gündoğdu, E. Farrokhizadeh, Y. Donyatalab and C. Kahraman, 
Novel similarity measures in spherical fuzzy environment and their applications. Engineering 
Applications of Artificial Intelligence, 94, p.103837, 2020. 

46. E. Szmidt and J. Kacprzyk, June. A similarity measure for intuitionistic fuzzy sets and its 
application in supporting medical diagnostic reasoning. In International conference on artificial 
intelligence and soft computing (pp. 388–393). Springer, Berlin, Heidelberg, 2004. 

47. E. Szmidt, and J. Kacprzyk, 2001, May. Intuitionistic fuzzy sets in intelligent data analysis 
for medical diagnosis. In International conference on computational science (pp. 263–271). 
Springer, Berlin, Heidelberg. 

48. V. Torra and Y. Narukawa, 2009, August. On hesitant fuzzy sets and decision. In 2009 IEEE 
International Conference on Fuzzy Systems (pp. 1378–1382). IEEE. 

49. C. Tian, J.J. Peng, S. Zhang, W.Y. Zhang and J.Q. Wang, Weighted picture fuzzy aggregation 
operators and their applications to multi-criteria decision-making problems. Computers & 
Industrial Engineering, 137, p.106037, 2019. 

50. I.K. Vlachos and G.D. Sergiadis, Intuitionistic fuzzy information–applications to pattern 
recognition. Pattern Recognition Letters, 28(2), pp.197–206, 2007.



20 Decision Analysis Framework Based on Information Measures of T -. . . 471

51. W. Wang and X. Xin, Distance measure between intuitionistic fuzzy sets. Pattern recognition 
letters, 26(13), pp.2063–2069, 2005. 

52. G. Wei and Y. Wei, Similarity measures of Pythagorean fuzzy sets based on the cosine function 
and their applications. International Journal of Intelligent Systems, 33(3), pp.634–652, 2018. 

53. G. Wei, J. Wang, M. Lu, J. Wu and C. Wei, Similarity measures of spherical fuzzy sets based 
on cosine function and their applications. IEEE Access, 7, pp.159069–159080, 2019. 

54. C.P. Wei, P. Wang and Y.Z. Zhang, Entropy, similarity measure of interval-valued intuitionistic 
fuzzy sets and their applications. Information Sciences, 181(19), pp.4273–4286, 2011. 

55. Z. Xu, Some similarity measures of intuitionistic fuzzy sets and their applications to multiple 
attribute decision making. Fuzzy Optimization and Decision Making, 6(2), pp.109–121, 2007. 

56. Z.S. Xu and J. Chen, An overview of distance and similarity measures of intuitionistic fuzzy 
sets. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 16(04), 
pp.529–555, 2008. 

57. Z. Xu and R.R. Yager, Intuitionistic and interval-valued intutionistic fuzzy preference relations 
and their measures of similarity for the evaluation of agreement within a group. Fuzzy 
Optimization and decision making, 8(2), pp.123–139, 2009. 

58. R.R. Yager and N. Alajlan, Approximate reasoning with generalized orthopair fuzzy sets. 
Information Fusion, 38, pp.65–73, 2017. 

59. R.R. Yager, Pythagorean membership grades in multicriteria decision making. IEEE Transac-
tions on Fuzzy Systems, 22(4), pp.958–965, 2013. 

60. R.R. Yager, Generalized orthopair fuzzy sets. IEEE Transactions on Fuzzy Systems, 25(5), 
pp.1222–1230, 2016. 

61. J. Ye, Cosine similarity measures for intuitionistic fuzzy sets and their applications. Mathemat-
ical and computer modelling, 53(1–2), pp.91–97, 2011. 

62. D. Yong, S. Wenkang, D. Feng and L. Qi, A new similarity measure of generalized fuzzy 
numbers and its application to pattern recognition. Pattern Recognition Letters, 25(8), pp.875– 
883, 2004. 

63. L.A. Zadeh, Fuzzy sets. Information and control, 8(3), pp.338–353, 1965. 
64. K. Zahid, M. Akram and C. Kahraman, A new ELECTRE-based method for group decision-

making with complex spherical fuzzy information. Knowledge-Based Systems, pp. 108525, 
2022. 

65. W. Zeng and P. Guo, Normalized distance, similarity measure, inclusion measure and entropy 
of interval-valued fuzzy sets and their relationship. Information Sciences, 178(5), pp.1334– 
1342, 2008. 

66. X. Zhang, A novel approach based on similarity measure for Pythagorean fuzzy multiple 
criteria group decision making. International Journal of Intelligent Systems, 31(6), pp.593– 
611, 2016. 

67. X. Zhang and Z. Xu, Extension of TOPSIS to multiple criteria decision making with 
Pythagorean fuzzy sets. International Journal of Intelligent Systems, 29(12), pp.1061–1078, 
2014.



Chapter 21 
New Methods of Computing Correlation 
Coefficient Based on Pythagorean Fuzzy 
Information and Their Applications 
in Disaster Control and Diagnostic 
Analysis 

Paul Augustine Ejegwa, Arun Sarkar, and Idoko Charles Onyeke 

1 Introduction 

Decision-making is the procedure of identifying and choosing varieties using 
preferences of the decision-makers (DMs) managed by germane assessment criteria. 
DMs often come across imprecise information, which tends to obstruct the decision-
making process. The conception of fuzzy sets [45], which has the ability to operate 
in the presence of vague information, becomes appropriate to confront decision-
making in uncertain sphere. The quest for a better tool for decision-making under 
fuzzy setting led to the conception of intuitionistic fuzzy sets (IFSs) [1]. Against the 
construct of fuzzy set, which features only membership grade (MG) defined within 
the interval, [0, 1], IFS features MG, nonmembership grade (NMG), and the grade 
of hesitation (GH), which aggregated to one. Because of the appropriateness of IFS, 
it has been applied to recognition of patterns [3, 18, 26], diagnosis [6, 16, 38], and 
decision-making [9, 31]. 

The concept of intuitionistic fuzzy correlation coefficient (IFCC) has been used 
to discuss sundry application of IFSs. Correlation coefficient measures the similarity 
and interrelationship between data, and it has been extended to fuzzy sphere to 
measure fuzzy data [4, 7]. Subsequently, correlation coefficient was equipped to 
handle intuitionistic fuzzy data [25]. IFCC had also been studied from statistical 
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view point [15, 28, 32, 33, 39]. Zeng and Li [46] extended the method in [25] 
by including GH for better result. Garg and Kumar [23] developed a method of 
IFCCusing set pair analysis, and discussed its application in decision-making. 

Though model formulation based on IFSs is appropriate for determining 
decision-making under fuzzy setting, DMs often run into problems when the 
aggregate of MG and NMG is greater than one, which is a likely possibility. Due 
to this drawback, the concept of IFS of the second type was conceived [2], which 
is mostly referred to as the Pythagorean fuzzy set (PFS) [41]. PFS enlarges the 
scope of IFS so that the aggregate of MG and NMG could also be greater than 
one. Honestly, every single IFS is a PFS, but every single PFS is not an IFS. Many 
applications of PFSs have been discussed based on myriad information measures 
in sundry real-world problems [8, 13, 17, 21, 42–44, 47–49]. Other variants of the 
fuzzy sets have been studied with applications such as Fermatean fuzzy sets [14], 
q-rung orthopair fuzzy sets [11], cubic m-polar fuzzy sets [24], linear Diophantine 
fuzzy soft sets [29], cubic bipolar fuzzy sets [34, 35], and m-polar spherical fuzzy 
sets [36]. 

The construct of correlation coefficient has been stretched to accommodate 
Pythagorean fuzzy data. The studies on Pythagorean fuzzy correlation coefficient 
(PFCC) were initiated in [22] and applied to determine multiple criteria decision-
making (MCDM). Lin et al. [30] extended the methods in [22] to develop new 
methods of PFCC using unconventional parameters of PFSs. Chen [5] developed 
a method of PFCC using the approach of Pearson-like correlation coefficient, and 
discussed its place in MCDM. In ref. [37], method of PFCC was developed by 
extending the work in [27] to Pythagorean fuzzy setting, and applied in real-
life issues. Thao [40] developed a method of computing PFCC from statistical 
perspective, and used the approach to address MCDM problems. In Ref. [10], a 
PFCC method, which modified an approach in [22], was developed and applied to 
real-world problems. Some methods of PFCC based on statistical approach were 
developed and used to resolve pattern recognition problems and the case of disease 
diagnosis [12, 19, 20]. The motivation for this research includes the following: 

• The method of PFCC in [5] violates the condition of correlation coefficient. 
• The methods of PFCC in [10, 22] are defective in the sense that they cannot 

measure correlation of comparable patterns. 
• In ref. [37], the grade of hesitation is not included in the method of PFCC, and 

so the approach cannot be reliable. 
• In ref. [40], the method of PFCC violates the condition of correlation coefficient, 

and equally does not consider the grade of hesitation. 

Due to these lapses, this chapter develops two methods for calculating PFCC 
to resolve the problems in the existing methods. The new developed methods are 
discussed and applied to real-world problems like disaster control and diagnosis 
analysis. The objectives of this chapter include the following: 

• Characterizations of the existing methods of PFCC to identify their setbacks.
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• Development of two methods of PFCC with better prospects compared to the 
existing methods of PFCC. 

• Validation of the new methods of PFCC with theoretic results to show their 
agreement with classical correlation operator. 

• Demonstration of the applications of the new PFCC methods in real-world 
problems like disaster control and disease analysis. 

• Comparison of the new PFCC methods with other PFCC methods to justify the 
new developed methods. 

What follows is the outline of the remaining parts of the chapter for easy 
reference: Sect. 2 discusses the concept of PFSs and their correlation operators 
including some existing methods of PFCC. Section 3 presents the new developed 
methods of PFCC, discusses their properties, and computation example. Section 
4 discusses the numerical applications of the new methods and presents the 
comparative studies. Section 5 sums up the conclusion and suggests some valid 
recommendations. 

2 Preliminaries 

In this section, certain basic notions of PFSs are revised and some methods of 
calculating PFCC are addressed. 

2.1 Pythagorean Fuzzy Sets 

Some basic definitions of PFSs and operations on them are examined in this 
section before constructing the approaches of calculating correlation operator. By 
the inclusion of a nonmembership degree, the idea of fuzzy sets was extended to 
intuitionistic fuzzy sets. We denote nonempty set by U in the chapter. 

Definition 2.1 [1] An IFS . 
∼
N in U is given by 

∼ 
N =

{〈
u, ξ∼ 

N 
(u), η∼ 

N 
(u)
〉
|u ∈ U

}
, (21.1) 

where .ξ∼
N

, η∼
N

: U → [0, 1] denote the grades of membership and nonmembership 

for u ∈ U to the set . 
∼
N , with the property 

0 ≤ ξ∼ 
N 

(u) + η∼ 
N 

(u) ≤ 1. (21.2)
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The grade of indeterminacy for IFS . 
∼
N is presented by . λ∼

N
(u) = 1 − ξ∼

N
(u) −

η∼
N

(u). For easiness, .
(
ξ∼
N

(u), η∼
N

(u)
)
is taken as intuitionistic fuzzy number (IFN) 

and it is denoted by .
∼
N = (ξ, η). 

By extending IFS, Yager [41] presented a new set called PFS as defined in the 
following manner. 

Definition 2.2 [41] A PFS, . 
∼
℘in U is presented by 

∼
℘ =

{〈
u, ξ∼

℘ (u), η∼
℘ (u)

〉
|u ∈ U

}
, (21.3) 

where .ξ∼
℘
(u), η∼

℘
(u) ∈ [0, 1] denote the grades of membership and nonmembership 

for u ∈ U to the set . 
∼
℘, with the property 

0 ≤ ξ2∼
℘ 
(u) + η2∼

℘ 
(u) ≤ 1. (21.4) 

The grade of indeterminacy for PFS . 
∼
℘ is given by .λ∼

℘
(u)=

[
1−ξ2∼

℘
(u)−η2∼

℘
(u)

] 1
2

. 

With the introduction of PFS, it is clearly realized that the spaces of the membership 
and nonmembership values have been enlarged to model many real-world problems. 

For simplicity, .
(
ξ∼
F

(u) , η∼
F

(u)
)
is called a Pythagorean fuzzy number (PFN) 

and is symbolized by .
∼
℘ = (ξ, η). 

Here, definitions that explain the notion of correlation coefficient under PFSs 
within [0, 1] and [−1, 1] are provided. 

Definition 2.4 [22] Suppose . 
∼
℘1 and . 

∼
℘2 are PFSs in U = {u1, u2, . . .  , un}, then the 

correlation coefficient under PFSs . 
∼
℘1 and . 

∼
℘2, denoted by .�

(∼
℘1,

∼
℘2

)
, is a function, 

.� : ∼
℘1 × ∼

℘2 → [0, 1], which satisfies 

(i) . �
(∼
℘1,

∼
℘2

)
∈ [0,1

]

(ii) . �
(∼
℘1,

∼
℘2

)
= �

(∼
℘2,

∼
℘1

)

(iii) .�
(∼
℘1,

∼
℘2

)
= 1if and only if . 

∼
℘1 = ∼

℘2

As .�
(∼
℘1,

∼
℘2

)
moves closer to 1, it shows that the correlation is strong. On the 

other hand, as .�
(∼
℘1,

∼
℘2

)
moves closer to 0, it shows that the correlation is very 

weak. On the other hand, .�
(∼
℘1,

∼
℘2

)
= 1 and .�

(∼
℘1,

∼
℘2

)
= 0 indicate a perfect 

correlation and no correlation, respectively.
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Definition 2.5 [12] Suppose . 
∼
℘1 and . 

∼
℘2 are PFSs in U = {u1, u2, . . .  , un}, then the 

correlation coefficient based on statistical view under PFSs . 
∼
℘1 and . 

∼
℘2 denoted by 

.�∗
(∼
℘1,

∼
℘2

)
is a function, .�∗ : ∼

℘1 × ∼
℘2 → [−1, 1] , which satisfies 

(i) . �∗
(∼
℘1,

∼
℘2

)
∈ [−1, 1]

(ii) . �∗
(∼
℘1,

∼
℘2

)
= �∗

(∼
℘2,

∼
℘1

)

(iii) .�∗
(∼
℘1,

∼
℘2

)
= 1if and only if . 

∼
℘1 = ∼

℘2

As .�∗
(∼
℘1,

∼
℘2

)
moves closer to 1, it shows that there is a strong positive cor-

relation. On the other hand, as .�∗
(∼
℘1,

∼
℘2

)
moves closer to−1, it shows that there 

is a weak negative correlation. Whereas, .�∗
(∼
℘1,

∼
℘2

)
= 1 and . �∗

(∼
℘1,

∼
℘2

)
= 0

indicate a perfect positive correlation and perfect negative correlation, respectively. 

2.2 Problems with Existing Methods for Computing 
Correlation Coefficient for Pythagorean Fuzzy Sets 

Some existing methods of computing the correlation coefficient of PFSs are enu-
merated before pinpointing their limitations. Suppose . 

∼
℘1 and . 

∼
℘2 are two arbitrary 

PFSs in U = {u1, u2, . . .  , un}, then the existing methods for computing correlation 
coefficient for . 

∼
℘1and . 

∼
℘2 are as follows: 

• Garg’s methods [22]

�1

(∼
℘1, 

∼
℘2

)
=

∑n 
j=1

(
ξ2∼
℘1

(
uj

)
ξ2∼
℘2

(
uj

)+ η2∼
℘1

(
uj

)
η2∼

℘2

(
uj

)

+λ2∼
℘1

(
uj

)
λ2∼

℘2

(
uj

))

√√√√√√√

∑n 
j=1

(
ξ4∼
℘1

(
uj

)+ η4∼
℘1

(
uj

)+ λ4∼
℘1

(
uj

))

∑n 
j=1

(
ξ4∼
℘2

(
uj

)+ η4∼
℘2

(
uj

)+ λ4∼
℘2

(
uj

))

(21.5) 

The method is not reliable for computing correlation coefficient between PFSs. 
Suppose 

∼
℘1 =

(
2 

3 
, 
2 

3

)
, ∼℘2 =

(
1 

3 
, 
2 

3

)
and 

∼
℘3 =

(
1√
3 
, 

1√
3

)
are PFSs in U = {u} .
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The hesitation margins are 

λ∼
℘1 

(u) = 
1 

3 
, λ∼

℘2 
(u) = 

2 

3 
, λ∼

℘3 
(u) = 

1√
3 
. 

Applying Eq. (21.5), we get

�1

(∼
℘1, 

∼
℘3

)
=

(
2 
3 × 1√

3

)2 +
(
2 
3 × 1√

3

)2 +
(
1 
3 × 1√

3

)2
√(

2 
3

)4 +
(
2 
3

)4 +
(
1 
3

)4√(
1√
3

)4 +
(

1√
3

)4 +
(

1√
3

)4 

= 0.9045 and

�1

(∼
℘2, 

∼
℘3

)
=

(
1 
3 × 1√

3

)2 +
(
2 
3 × 1√

3

)2 +
(
2 
3 × 1√

3

)2
√(

1 
3

)4 +
(
2 
3

)4 +
(
2 
3

)4√(
1√
3

)4 +
(

1√
3

)4 +
(

1√
3

)4 = 0.9045 

We see that, .�1

(∼
℘1,

∼
℘3

)
= �1

(∼
℘2,

∼
℘3

)
although .

∼
℘1 �= ∼

℘2, which proves that 

Eq. (21.5) is not reliable. The second method in [22] is

�2

(∼
℘1, 

∼
℘2

)

=
∑n 

j=1

(
ξ2∼
℘1

(
uj

)
ξ2∼
℘2

(
uj

)+ η2∼
℘1

(
uj

)
η2∼

℘2

(
uj

)+ λ2∼
℘1

(
uj

)
λ2∼

℘2

(
uj

))

max 

⎧⎪⎪⎨ 

⎪⎪⎩

∑n 
j=1

(
ξ4∼
℘1

(
uj

)+ η4∼
℘1

(
uj

)+ λ4∼
℘1

(
uj

))
,

∑n 
j=1

(
ξ4∼
℘2

(
uj

)+ η4∼
℘2

(
uj

)+ λ4∼
℘2

(
uj

))

⎫⎪⎪⎬ 

⎪⎪⎭ 

. 

(21.6) 

Again, take 

∼
℘1 =

(
2 

3 
, 
2 

3

)
, ∼℘2 =

(
1 

3 
, 
2 

3

)
and 

∼
℘3 =

(
1√
3 
, 

1√
3

)
as PFSs in U = {u} . 

Applying Eq. (21.6), we get

�2

(∼
℘1, 

∼
℘3

)
=

(
2 
3 × 1√

3

)2 +
(
2 
3 × 1√

3

)2 +
(
1 
3 × 1√

3

)2 

max

{((
2 
3

)4 +
(
2 
3

)4 +
(
1 
3

)4)
,

((
1√
3

)4 +
(

1√
3

)4 +
(

1√
3

)4)}

= 0.8182 and
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�2

(∼
℘2, 

∼
℘3

)
=

(
1 
3 × 1√

3

)2 +
(
2 
3 × 1√

3

)2 +
(
2 
3 × 1√

3

)2 

max

{((
1 
3

)4 +
(
2 
3

)4 +
(
2 
3

)4)
,

((
1√
3

)4 +
(

1√
3

)4 +
(

1√
3

)4)}

= 0.8182 

We see that .�2

(∼
℘1,

∼
℘3

)
= �2

(∼
℘2,

∼
℘3

)
although .

∼
℘1 �= ∼

℘2, which proves that 

Eq. (21.6) is not reliable. 

• Chen’s method [5]

�3

(∼
℘1, 

∼
℘2

)
= 

1 

3

(
kξ

(∼
℘1, 

∼
℘2

)
+ kη

(∼
℘1, 

∼
℘2

)
+ kλ

(∼
℘1, 

∼
℘2

))
(21.7) 

where 

kξ

(∼
℘1, 

∼
℘2

)
=

∑n 
j=1

[(
ξ2∼
℘1

(
uj

)− ξ 2∼
℘1

)(
ξ2∼
℘2

(
uj

)− ξ 2∼
℘2

)]

⎡ 

⎣
√
∑n 

j=1

(
ξ2∼
℘1

(
uj

)− ξ 2∼
℘1

)2√∑n 
j=1

(
ξ2∼
℘2

(
uj

)− ξ 2∼
℘2

)2 ⎤ 

⎦ 

kη

(∼
℘1, 

∼
℘2

)
=

∑n 
j=1

[(
η2∼

℘1

(
uj

)− η2∼
℘1

)(
η2∼

℘2

(
uj

)− η2∼
℘2

)]

⎡ 

⎣
√
∑n 

j=1

(
η2∼

℘1

(
uj

)− η2∼
℘1

)2√∑n 
j=1

(
η2∼

℘2

(
uj

)− η2∼
℘2

)2 ⎤ 

⎦ 

kλ

(∼
℘1, 

∼
℘2

)
=

∑n 
j=1

[(
λ2∼

℘1

(
uj

)− λ 2∼
℘1

)(
λ2∼

℘2

(
uj

)− λ 2∼
℘2

)]

⎡ 

⎣
√
∑n 

j=1

(
λ2∼

℘1

(
uj

)− λ 2∼
℘1

)2√∑n 
j=1

(
λ2∼

℘2

(
uj

)− λ 2∼
℘2

)2 ⎤ 

⎦ 

ξ ∼
℘1 

=
∑n 

j=1 ξ∼
℘1

(
uj

)

n 
, η∼

℘1 
=
∑n 

j=1 η∼
℘1

(
uj

)

n 
, λ∼

℘1 
=
∑n 

j=1 λ∼
℘1

(
uj

)

n 

ξ ∼
℘2 

=
∑n 

j=1 ξ∼
℘2

(
uj

)

n 
, η∼

℘2 
=
∑n 

j=1 η∼
℘2

(
uj

)

n 
, λ∼

℘2 
=
∑n 

j=1 λ∼
℘2

(
uj

)

n
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We want to show that Eq. (21.7) is unrealistic. Suppose 

∼
℘1 =

(
2 

3 
, 
2 

3

)
,

(
1 

3 
, 
2 

3

)
and 

∼
℘2 =

(
2 

3 
, 
1 

3

)
,

(
2 

3 
, 
2 

3

)
are PFSs in U = {u1, u2} . 

The hesitation margins are 

λ∼
℘1 

(u1) = 
1 

3 
, λ∼

℘1 
(u2) = 

2 

3 
, λ∼

℘2 
(u1) = 

2 

3 
, λ∼

℘2 
(u2) = 

1 

3 

The mean values are: 

ξ ∼
℘1 

= 
1 

2 
, η∼

℘1 
= 

2 

3 
, λ∼

℘1 
= 

1 

2 

ξ ∼
℘2 

= 
2 

3 
, η∼

℘2 
= 

1 

2 
, λ∼

℘2 
= 

1 

2 

Applying Eq. (21.7), we get 

kξ

(∼
℘1, 

∼
℘2

)
=

(
2 
3 
2 − 1 2 

2
) (

2 
3 
2 − 2 2 

2
)

+
(
1 
3 
2 − 1 2 

2
) (

2 
3 
2 − 2 3 

2
)

[√(
2 
3 
2 − 1 2 

2
)2 +

(
1 
3 
2 − 1 2 

2
)2√(

2 
3 
2 − 2 3 

2
)2 +

(
2 
3 
2 − 2 3 

2
)2]

= ∞  

kξ

(∼
℘1, 

∼
℘2

)
=

(
2 
3 
2 − 2 3 

2
) (

1 
3 
2 − 1 2 

2
)

+
(
2 
3 
2 − 2 3 

2
) (

2 
3 
2 − 1 2 

2
)

[√(
2 
3 
2 − 2 3 

2
)2 +

(
2 
3 
2 − 2 3 

2
)2√(

1 
3 
2 − 1 2 

2
)2 +

(
2 
3 
2 − 1 2 

2
)2]

= ∞  

kλ

(∼
℘1, 

∼
℘2

)
=

(
1 
3 
2 − 1 2 

2
) (

2 
3 
2 − 1 2 

2
)

+
(
2 
3 
2 − 1 2 

2
) (

1 
3 
2 − 1 2 

2
)

[√(
1 
3 
2 − 1 2 

2
)2 +

(
2 
3 
2 − 1 2 

2
)2√(

2 
3 
2 − 1 2 

2
)2 +

(
1 
3 
2 − 1 2 

2
)2]

= −0.9457 

The fact that .kξ

(∼
℘1,

∼
℘2

)
= kξ

(∼
℘1,

∼
℘2

)
= ∞, then .�3

(∼
℘1,

∼
℘2

)
= ∞, which 

is unrealistic, and so is not a reliable approach.
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• Singh and Ganie’s method [37]

�4

(∼
℘1, 

∼
℘2

)
= 

1 

2n

∑n 

j=1

(
μj

(
1 − �ξj

)+ νj

(
1 − �ηj

))
(21.8) 

where 

μj = 
c − �ξj − �ξmax 

c − �ξmin − �ξmax 
, νj = 

c − �ηj − �ηmax 

c − �ηmin − �ηmax 
, c  >  2

�ξmin = min 
j

{∣∣∣∣ξ2∼℘1

(
uj

)− ξ2∼
℘2

(
uj

)∣∣∣∣
}

,�ηmin = min 
j

{∣∣∣∣η2∼℘1

(
uj

)− η2∼
℘2

(
uj

)∣∣∣∣
}

�ξmax = max 
j

{∣∣∣∣ξ2∼℘1

(
uj

)− ξ2∼
℘2

(
uj

)∣∣∣∣
}

,�ηmax = max 
j

{∣∣∣∣η2∼℘1

(
uj

)− η2∼
℘2

(
uj

)∣∣∣∣
}

�ξj =
∣∣∣∣ξ2∼℘1

(
uj

)− ξ2∼
℘2

(
uj

)∣∣∣∣ ,�ηj =
∣∣∣∣η2∼℘1

(
uj

)− η2∼
℘2

(
uj

)∣∣∣∣

The limitation of this method is that it does not consider the hesitation margin, 
and so, its output is not reliable. 

• Thao’s method [40]

�5

(∼
℘1, 

∼
℘2

)
=

∑n 
j 

⎡ 

⎢⎢⎣

((
ξ2∼
℘1

(
uj

)− ξ 2∼
℘1

)
−
(

η2∼
℘1

(
uj

)− η2∼
℘1

))

((
ξ2∼
℘2

(
uj

)− ξ 2∼
℘2

)
−
(

η2∼
℘2

(
uj

)− η2∼
℘2

))

⎤ 

⎥⎥⎦
√
∑n 

j=1

((
ξ2∼
℘1

(
uj

)− ξ 2∼
℘1

)
−
(

η2∼
℘1

(
uj

)− η2∼
℘1

))2

√
∑n 

j=1

((
ξ2∼
℘2

(
uj

)− ξ 2∼
℘2

)
−
(

η2∼
℘2

(
uj

)− η2∼
℘2

))2 

(21.9) 

where 

ξ ∼
℘1 

=
∑n 

j=1 ξ∼
℘1

(
uj

)

n 
, η∼

℘1 
=
∑n 

j=1 η∼
℘1

(
uj

)

n
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ξ ∼
℘2 

=
∑n 

j=1 ξ∼
℘2

(
uj

)

n 
, η∼

℘2 
=
∑n 

j=1 η∼
℘2

(
uj

)

n 

We now show whether this method is reliable. Suppose 

∼
℘1 =

(
2 

3 
, 
2 

3

)
and 

∼
℘2 =

(
2 

5 
, 
1 

5

)
are PFSs in U = {u} . 

The mean values are 

ξ ∼
℘1 

= 
2 

3 
, η∼

℘1 
= 

2 

3 
, ξ ∼

℘2 
= 

2 

5 
, η∼

℘2 
= 

1 

5 

Thus, .�5

(∼
℘1,

∼
℘2

)
=

((
2
3
2− 2

3
2
)
−
(
2
3
2− 2

3
2
))((

2
5
2− 2

5
2
)
−
(
1
5
2− 1

5
2
))

√(
2
3
2− 2

3
2
)
−
(
2
3
2− 2

3
2
)2√(

2
5
2− 2

5
2
)
−
(
1
5
2− 1

5
2
)2 = ∞, which is 

unrealistic. In addition, the method does not consider the hesitation margin, and so, 
its output is not reliable. 

• Ejegwa and Awolola’s method [10]

�6

(∼
℘1, 

∼
℘2

)
=

∑n 
j=1

(
ξ2∼
℘1

(
uj

)
ξ2∼
℘2

(
uj

)+ η2∼
℘1

(
uj

)
η2∼

℘2

(
uj

)

+λ2∼
℘1

(
uj

)
λ2∼

℘2

(
uj

))

Aver 

⎧⎪⎪⎨ 

⎪⎪⎩

∑n 
j=1

(
ξ4∼
℘1

(
uj

)+ η4∼
℘1

(
uj

)+ λ4∼
℘1

(
uj

))
,

∑n 
j=1

(
ξ4∼
℘2

(
uj

)+ η4∼
℘2

(
uj

)+ λ4∼
℘2

(
uj

))

⎫⎪⎪⎬ 

⎪⎪⎭ 

(21.10) 

To show that this method is not reliable, take 

∼
℘1 =

(
2 

3 
, 
2 

3

)
, ∼℘2 =

(
1 

3 
, 
2 

3

)
and 

∼
℘3 =

(
1√
3 
, 

1√
3

)
to be PFSs in U = {u} . 

The hesitation margins are 

λ∼
℘1 

(u) = 
1 

3 
, λ∼

℘2 
(u) = 

2 

3 
, λ∼

℘3 
(u) = 

1√
3 

Applying Eq. (21.10), we get
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�6

(∼
℘1, 

∼
℘3

)
=

(
2 
3 × 1√

3

)2 +
(
2 
3 × 1√

3

)2 +
(
1 
3 × 1√

3

)2 

Aver

{((
2 
3

)4 +
(
2 
3

)4 +
(
1 
3

)4)
,

((
1√
3

)4 +
(

1√
3

)4 +
(

1√
3

)4)}

= 0.8998 and

�6

(∼
℘2, 

∼
℘3

)
=

(
1 
3 × 1√

3

)2 +
(
2 
3 × 1√

3

)2 +
(
2 
3 × 1√

3

)2 

Aver

{((
1 
3

)4 +
(
2 
3

)4 +
(
2 
3

)4)
,

((
1√
3

)4 +
(

1√
3

)4 +
(

1√
3

)4)}

= 0.8998 

We see that .�6

(∼
℘1,

∼
℘3

)
= �6

(∼
℘2,

∼
℘3

)
although .

∼
℘1 �= ∼

℘2, which proves that 

Eq. (21.10) is not reliable. 

3 New Methods for Computing Correlation Coefficient for 
Pythagorean Fuzzy Sets 

Having dissected the existing methods of computing of correlation coefficient for 
PFSs, we present two new methods of calculating correlation coefficient for PFSs, 
which improve the methods in [22, 37] to enhance reliability. 

Let . 
∼
℘1 and . 

∼
℘2 be any two arbitrary PFSs in U = {u1, u2, . . . , un}, then the new 

methods for estimating the correlation coefficient between . 
∼
℘1 and . 

∼
℘2are in Eqs. 

(21.11) and (21.12), respectively. 

∼
�1

(∼
℘1, 

∼
℘2

)
= 

1 

3n

∑n 

j=1

(
μj

(
1 − �ξj

)+ νj

(
1 − �ηj

)+ ϕj

(
1 − �λj

))

(21.11) 

where 

μj = 
c − �ξj − �ξmax 

c − �ξmin − �ξmax 
, νj = 

c − �ηj − �ηmax 

c − �ηmin − �ηmax 
, 

ϕj = 
c − �λj − �λmax 

c − �λmin − �λmax 
, c  >  2

�ξmin = min 
j

{∣∣∣∣ξ2∼℘1

(
uj

)− ξ2∼
℘2

(
uj

)∣∣∣∣
}

,�ηmin = min 
j

{∣∣∣∣η2∼℘1

(
uj

)− η2∼
℘2

(
uj

)∣∣∣∣
}
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�λmin = min 
j

{∣∣∣∣λ2∼℘1

(
uj

)− λ2∼
℘2

(
uj

)∣∣∣∣
}

�ξmax = max 
j

{∣∣∣∣ξ2∼℘1

(
uj

)− ξ2∼
℘2

(
uj

)∣∣∣∣
}

,�ηmax = max 
j

{∣∣∣∣η2∼℘1

(
uj

)− η2∼
℘2

(
uj

)∣∣∣∣
}

�λmax = max 
j

{∣∣∣∣λ2∼℘1

(
uj

)− λ2∼
℘2

(
uj

)∣∣∣∣
}

�ξj =
∣∣∣∣ξ2∼℘1

(
uj

)− ξ2∼
℘2

(
uj

)∣∣∣∣ ,�ηj =
∣∣∣∣η2∼℘1

(
uj

)− η2∼
℘2

(
uj

)∣∣∣∣

�λj =
∣∣∣∣λ2∼℘1

(
uj

)− λ2∼
℘2

(
uj

)∣∣∣∣

∼
�2

(∼
℘1, 

∼
℘2

)
=

√√√√√√√

∑n 
j=1

(
ξ2∼
℘1

(
uj

)
ξ2∼
℘2

(
uj

)

+η2∼
℘1

(
uj

)
η2∼

℘2

(
uj

)+ λ2∼
℘1

(
uj

)
λ2∼

℘2

(
uj

))

√√√√√√√√√

√
∑n 

j=1

(
ξ4∼
℘1

(
uj

)+ η4∼
℘1

(
uj

)+ λ4∼
℘1

(
uj

))

√
∑n 

j=1

(
ξ4∼
℘2

(
uj

)+ η4∼
℘2

(
uj

)+ λ4∼
℘2

(
uj

))

(21.12) 

= 4

√√√√√√√√√√√√√√√√

(∑n 
j=1

(
ξ2∼
℘1

(
uj

)
ξ2∼
℘2

(
uj

)+ η2∼
℘1

(
uj

)
η2∼

℘2

(
uj

)

+λ2∼
℘1

(
uj

)
λ2∼

℘2

(
uj

)))
2

∑n 
j=1

(
ξ4∼
℘1

(
uj

)+ η4∼
℘1

(
uj

)+ λ4∼
℘1

(
uj

))

∑n 
j=1

(
ξ4∼
℘2

(
uj

)+ η4∼
℘2

(
uj

)+ λ4∼
℘2

(
uj

))

Now, we present the computation example of the new method.
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3.1 Computation Example to Show Validity and Superiority 

Suppose that 

∼
℘1 =

(
2 

3 
, 
2 

3

)
,

(
1 

3 
, 
2 

3

)
and 

∼
℘2 =

(
2 

3 
, 
1 

3

)
,

(
2 

3 
, 
2 

3

)
are PFSs in U = {u1, u2} . 

The hesitation margins are .λ∼
℘1

(u1) = 1
3 , .λ∼

℘1
(u2) = 2

3 , .λ∼
℘2

(u1) = 2
3 , and 

.λ∼
℘2

(u2) = 1
3 . 

By applying Eq. (21.11), we obtain the following information:

�ξ1 = 0,�η1 = 0.3333,�λ1 = −  0.3333,

�ξ2 = −0.3333,�η2 = 0,�λ1 = 0.3333

�ξmin = −0.3333,�ηmin = 0,�λmin = −0.3333

�ξmax = 0,�ηmax = 0.3333,�λmax = 0.3333 

μ1 = 0.9, ν1 = 0.875, ϕ1 = 1, μ2 = 1, ν1 = 1, ϕ1 = 0.7778, for c = 3 

Then, for n = 2, we get 

∼
�1

(∼
℘1, 

∼
℘2

)
= 

1 

6 
[(0.9 × 1) + (0.875 × 0.6667) + (1 × 1.333) 

+ (1 × 1.3333) + (1 × 1) + (0.7778 × 0.6667)] = 0.9448 

Using Eq. (21.12), we have 

n∑
j=1

(
ξ2∼
℘1

(
uj

)
ξ2∼
℘2

(
uj

)+ η2∼
℘1

(
uj

)
η2∼

℘2

(
uj

)+ λ2∼
℘1

(
uj

)
λ2∼

℘2

(
uj

)) = 0.5926 

n∑
j=1

(
ξ4∼
℘1

(
uj

)+ η4∼
℘1

(
uj

)+ λ4∼
℘1

(
uj

))

= 
n∑

j=1

(
ξ4∼
℘2

(
uj

)+ η4∼
℘2

(
uj

)+ λ4∼
℘2

(
uj

)) = 0.8148



486 P. A. Ejegwa et al.

and so, 

∼
�2

(∼
℘1, 

∼
℘2

)
= 4

√
(0.5926)2 

0.8148 × 0.8148 
= 0.8528 

The correlation coefficient values show that . 
∼
℘1 and . 

∼
℘2 are quite related. 

By using the other methods, we obtain the following results:

�1

(∼
℘1, 

∼
℘2

)
= �2

(∼
℘1, 

∼
℘2

)
= 0.7273,�3

(∼
℘1, 

∼
℘2

)
= ∞

�4

(∼
℘1, 

∼
℘2

)
= 0.9542,�5

(∼
℘1, 

∼
℘2

)
= −1,�6

(∼
℘1, 

∼
℘2

)
= 0.7273 

From the computation example, we notice the following: 

• .�1

(∼
℘1,

∼
℘2

)
= �2

(∼
℘1,

∼
℘2

)
= .�6

(∼
℘1,

∼
℘2

)
whenever . 

∑n
j=1

(
ξ4∼
℘1

(
uj

)

+η4∼
℘1

(
uj

)+ λ4∼
℘1

(
uj

))
and .

∑n
j=1

(
ξ4∼
℘2

(
uj

)+ η4∼
℘2

(
uj

)+ λ4∼
℘2

(
uj

))
are 

equal. 

• .�3

(∼
℘1,

∼
℘2

)
and .�5

(∼
℘1,

∼
℘2

)
yield misleading results. 

• Although .�4

(∼
℘1,

∼
℘2

)
, which we modified as .

∼
�1

(∼
℘1,

∼
℘2

)
, yields a better 

result at this time, it cannot be trusted, because the hesitation margin parameter 
was excluded from it. 

• Our new methods, .
∼
�1

(∼
℘1,

∼
℘2

)
and .

∼
�2

(∼
℘1,

∼
℘2

)
are the most reliable corre-

lation coefficient measures, because they give the precise interpretation of the 
correlation between the considered PFSs. 

3.2 Theoretical Results 

Some results that validate the new methods of calculating correlation coefficient 
under PFSs are presented in the following section. 

Proposition 3.1 Suppose . 
∼
℘1and . 

∼
℘2 are PFSs inU, then .

∼
�1

(∼
℘1,

∼
℘2

)
satisfies the 

following: 

(i) . 
∼
�1

(∼
℘1,

∼
℘2

)
= ∼

�1

(∼
℘2,

∼
℘1

)

(ii) .
∼
�1

(∼
℘1,

∼
℘2

)
= 1iff .

∼
℘1 = ∼

℘2
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Proof Recall that 

∼
�1

(∼
℘1, 

∼
℘2

)
= 

1 

3n

∑n 

j=1

(
μj

(
1 − �ξj

)+ νj

(
1 − �ηj

)+ ϕj

(
1 − �λj

))

So, we have 

∼
�1

(∼
℘1, 

∼
℘2

)
= 

1 

3n

∑n 

j=1

(
μj

(
1 −

∣∣∣∣ξ2∼℘1

(
uj

)− ξ2∼
℘2

(
uj

)∣∣∣∣
)

+νj

(
1 −

∣∣∣∣η2∼℘1

(
uj

)− η2∼
℘2

(
uj

)∣∣∣∣
)

+ϕj

(
1 −

∣∣∣∣λ2∼℘1

(
uj

)− λ2∼
℘2

(
uj

)∣∣∣∣
))

= 
1 

3n

∑n 

j=1

(
μj

(
1 −

∣∣∣∣ξ2∼℘2

(
uj

)− ξ2∼
℘1

(
uj

)∣∣∣∣
)

+νj

(
1 −

∣∣∣∣η2∼℘2

(
uj

)− η2∼
℘1

(
uj

)∣∣∣∣
)

+ϕj

(
1 −

∣∣∣∣λ2∼℘2

(
uj

)− λ2 1
(
uj

)∣∣∣∣
))

= 
∼
�1

(∼
℘2, 

∼
℘1

)

which verifies (i). 
Again, assume .

∼
℘1 = ∼

℘2. Then

∣∣∣∣ξ2∼℘1

(
uj

)− ξ2∼
℘2

(
uj

)∣∣∣∣ = 0,

∣∣∣∣η2∼℘1

(
uj

)− η2∼
℘2

(
uj

)∣∣∣∣ = 0

∣∣∣∣λ2∼℘1

(
uj

)− λ2∼
℘2

(
uj

)∣∣∣∣ = 0 

Subsequently, �ξmax = �ηmax = �λmax = 0, �ξ j = �ηj = �λj = 0,
�ξmin = �ηmin = �λmin = 0, thus μj = νj = ϕj = 1. Hence, .

∼
�1

(∼
℘1,

∼
℘2

)
= 1. 

Conversely, assume that .
∼
�1

(∼
℘1,

∼
℘2

)
= 1, then .

∼
℘1 = ∼

℘2 is straightforward. 

Hence, (ii) is proved.
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Proposition 3.2 Let . 
∼
℘1 and . 

∼
℘2 be PFSs in U, then .

∼
�2

(∼
℘1,

∼
℘2

)
satisfies the 

following: 

(i) . 
∼
�2

(∼
℘1,

∼
℘2

)
= ∼

�2

(∼
℘2,

∼
℘1

)

(ii) .
∼
�2

(∼
℘1,

∼
℘2

)
= 1iff . 

∼
℘1 = ∼

℘2

Proof Recall that 

∼
�2

(∼
℘1, 

∼
℘2

)
=

√√√√√√√

∑n 
j=1

(
ξ2∼
℘1

(
uj

)
ξ2∼
℘2

(
uj

)+ η2∼
℘1

(
uj

)
η2∼

℘2

(
uj

)

+λ2∼
℘1

(
uj

)
λ2∼

℘2

(
uj

))

√√√√√√√√√

√
∑n 

j=1

(
ξ4∼
℘1

(
uj

)+ η4∼
℘1

(
uj

)+ λ4∼
℘1

(
uj

))

√
∑n 

j=1

(
ξ4∼
℘2

(
uj

)+ η4∼
℘2

(
uj

)+ λ4∼
℘2

(
uj

))

Then it follows: 

∼
�2

(∼
℘1, 

∼
℘2

)
=

√√√√√√√

∑n 
j=1

(
ξ2∼
℘1

(
uj

)
ξ2∼
℘2

(
uj

)+ η2∼
℘1

(
uj

)
η2∼

℘2

(
uj

)

+λ2∼
℘1

(
uj

)
λ2∼

℘2

(
uj

))

√√√√√√√√√

√
∑n 

j=1

(
ξ4∼
℘1

(
uj

)+ η4∼
℘1

(
uj

)+ λ4∼
℘1

(
uj

))

√
∑n 

j=1

(
ξ4∼
℘2

(
uj

)+ η4∼
℘2

(
uj

)+ λ4∼
℘2

(
uj

))

=

√√√√√√√

∑n 
j=1

(
ξ2∼
℘2

(
uj

)
ξ2∼
℘1

(
uj

)+ η2∼
℘2

(
uj

)
η2∼

℘1

(
uj

)

+λ2∼
℘2

(
uj

)
λ2∼

℘1

(
uj

))

√√√√√√√√√

√
∑n 

j=1

(
ξ4∼
℘2

(
uj

)+ η4∼
℘2

(
uj

)+ λ4∼
℘2

(
uj

))

√
∑n 

j=1

(
ξ4∼
℘1

(
uj

)+ η4∼
℘1

(
uj

)+ λ4∼
℘1

(
uj

))
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= 
∼
�2

(∼
℘2, 

∼
℘1

)
, 

which proves (i). 
Suppose .

∼
℘1 = ∼

℘2, then we have 

∼
�2

(∼
℘1, 

∼
℘2

)
=

√
∑n 

j=1

(
ξ4∼
℘1

(
uj

)+ η4∼
℘1

(
uj

)+ λ4∼
℘1

(
uj

))

√
∑n 

j=1

(
ξ4∼
℘1

(
uj

)+ η4∼
℘1

(
uj

)+ λ4∼
℘1

(
uj

))

= 1. 

On the contrary, assume .
∼
�2

(∼
℘1,

∼
℘2

)
= 1, then

√√√√√
√√√√

n∑
j=1

(
ξ4∼
℘1

(
uj

)+ η4∼
℘1

(
uj

)+ λ4∼
℘1

(
uj

))
√√√√

n∑
j=1

(
ξ4∼
℘2

(
uj

)+ η4∼
℘2

(
uj

)+ λ4∼
℘2

(
uj

))

=
√√√√

n∑
j=1

(
ξ2∼
℘1

(
uj

)
ξ2∼
℘2

(
uj

)+ η2∼
℘1

(
uj

)
η2∼

℘2

(
uj

)+ λ2∼
℘1

(
uj

)
λ2∼

℘2

(
uj

))
implies that

√√√√
n∑

j=1

(
ξ4∼
℘1

(
uj

)+ η4∼
℘1

(
uj

)+ λ4∼
℘1

(
uj

))
√√√√

n∑
j=1

(
ξ4∼
℘2

(
uj

)+ η4∼
℘2

(
uj

)+ λ4∼
℘2

(
uj

))

= 
n∑

j=1

(
ξ2∼
℘1

(
uj

)
ξ2∼
℘2

(
uj

)+ η2∼
℘1

(
uj

)
η2∼

℘2

(
uj

)+ λ2∼
℘1

(
uj

)
λ2∼

℘2

(
uj

))
implies that
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n∑
j=1

(
ξ4∼
℘1

(
uj

)+ η4∼
℘1

(
uj

)+ λ4∼
℘1

(
uj

)) n∑
j=1

(
ξ4∼
℘2

(
uj

)+ η4∼
℘2

(
uj

)+ λ4∼
℘2

(
uj

))

= 

⎛ 

⎝ 
n∑

j=1

(
ξ2∼
℘1

(
uj

)
ξ2∼
℘2

(
uj

)+ η2∼
℘1

(
uj

)
η2∼

℘2

(
uj

)+ λ2∼
℘1

(
uj

)
λ2∼

℘2

(
uj

))
⎞ 

⎠ 
2 

impliesthat 

n∑
j=1

(
ξ4∼
℘1

(
uj

)+ η4∼
℘1

(
uj

)+ λ4∼
℘1

(
uj

))(
ξ4∼
℘2

(
uj

)+ η4∼
℘2

(
uj

)+ λ4∼
℘2

(
uj

))

= 
n∑

j=1

(
ξ2∼
℘1

(
uj

)
ξ2∼
℘2

(
uj

)+ η2∼
℘1

(
uj

)
η2∼

℘2

(
uj

)+ λ2∼
℘1

(
uj

)
λ2∼

℘2

(
uj

))2 
, 

which implies that .
∼
℘1 = ∼

℘2. Hence, (ii) is proved. 

Theorem 3.3 Suppose .
∼
�1

(∼
℘1,

∼
℘2

)
and .

∼
�2

(∼
℘1,

∼
℘2

)
are correlation coefficients 

of PFSs . 
∼
℘1 and . 

∼
℘2 in U, then .

∼
�1

(∼
℘1,

∼
℘2

)
, .

∼
�2

(∼
℘1,

∼
℘2

)
∈ [0, 1]. 

Proof We need to show that .0 ≤ ∼
�1

(∼
℘1,

∼
℘2

)
≤ 1and .0 ≤ ∼

�2

(∼
℘1,

∼
℘2

)
≤ 1, that 

is, 

(i) .
∼
�1

(∼
℘1,

∼
℘2

)
≥ 0and . 

∼
�1

(∼
℘1,

∼
℘2

)
≤ 1

(ii) .
∼
�2

(∼
℘1,

∼
℘2

)
≥ 0and . 

∼
�2

(∼
℘1,

∼
℘2

)
≤ 1

Certainly, .
∼
�1

(∼
℘1,

∼
℘2

)
≥ 0 and .

∼
�2

(∼
℘1,

∼
℘2

)
≥ 0. Now, we show that 

.
∼
�1

(∼
℘1,

∼
℘2

)
≤ 1 as well as .

∼
�2

(∼
℘1,

∼
℘2

)
≤ 1. To establish .

∼
�1

(∼
℘1,

∼
℘2

)
≤ 1, 

let us assume that 

n∑
j=1 

μj

(
1 − �ξj

) = 
, 
n∑

j=1 

νj

(
1 − �ηj

) = �, 
n∑

j=1 

ϕj

(
1 − �λj

) = �. 

Then 

∼
�1

(∼
℘1, 

∼
℘2

)
= 

1 

3n

∑n 

j=1

(
μj

(
1 − �ξj

)+ νj

(
1 − �ηj

)+ ϕj

(
1 − �λj

))
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=
∑n 

j=1 μj

(
1 − �ξj

)+∑n 
j=1νj

(
1 − �ηj

)+∑n 
j=1ϕj

(
1 − �λj

)

3n 

= 
 + � + �

3n 

Thus, 

∼
�1

(∼
℘1, 

∼
℘2

)
− 1 = 
 + � + �

3n 
− 1 

= 
 + � + � − 3n 
3n 

= − (3n − 
 − � − �) 
3n

≤ 0, 

Which proves .
∼
�1

(∼
℘1,

∼
℘2

)
≤ 1, and so .,

∼
�1

(∼
℘1,

∼
℘2

)
∈ [0, 1]. 

Now, we establish that .
∼
�1

(∼
℘1,

∼
℘2

)
≤ 1. Let us assume that 

n∑
j=1 

ξ2∼
℘1

(
uj

) = 
1, 
n∑

j=1 

ξ2∼
℘2

(
uj

) = 
2 

n∑
j=1 

η2∼
℘1

(
uj

) = �1, 
n∑

j=1 

η2∼
℘2

(
uj

) = �2 

n∑
j=1 

λ2∼
℘1

(
uj

) = �1, 
n∑

j=1 

λ2∼
℘2

(
uj

) = �2 

Then
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∼
�2

(∼
℘1, 

∼
℘2

)
=

√√√√√√√

∑n 
j=1

(
ξ2∼
℘1

(
uj

)
ξ2∼
℘2

(
uj

)+ η2∼
℘1

(
uj

)
η2∼

℘2

(
uj

)

+λ2∼
℘1

(
uj

)
λ2∼

℘2

(
uj

))

√√√√√√√√√

√
∑n 

j=1

(
ξ4∼
℘1

(
uj

)+ η4∼
℘1

(
uj

)+ λ4∼
℘1

(
uj

))

√
∑n 

j=1

(
ξ4∼
℘2

(
uj

)+ η4∼
℘2

(
uj

)+ λ4∼
℘2

(
uj

))

= 
√


1
2 + �1�2 + �1�2√√

2 
1 + �2 

1 + �2 
1

√

2 
2 + �2 

2 + �2 
2 

.
∼
�

2

2

(∼
℘1,

∼
℘2

)
= 
1
2+�1�2+�1�2√


2
1+�2

1+�2
1

√

2
2+�2

2+�2
2

, and so 

∼
�

2 

2

(∼
℘1, 

∼
℘2

)
− 1 = 
1
2 + �1�2 + �1�2√


2 
1 + �2 

1 + �2 
1

√

2 
2 + �2 

2 + �2 
2 

− 1 

=

1
2 + �1�2 + �1�2 −

(√

2 
1 + �2 

1 + �2 
1

√

2 
2 + �2 

2 + �2 
2

)

√

2 
1 + �2 

1 + �2 
1

√

2 
2 + �2 

2 + �2 
2 

= −
√


2 
1 + �2 

1 + �2 
1

√

2 
2 + �2 

2 + �2 
2 − (
1
2 + �1�2 + �1�2)√


2 
1 + �2 

1 + �2 
1

√

2 
2 + �2 

2 + �2 
2 

≤ 0 

Thus, .
∼
�

2

2

(∼
℘1,

∼
℘2

)
− 1 ≤ 0, and so .

∼
�2

(∼
℘1,

∼
℘2

)
≤ 1. Hence, . 

∼
�2

(∼
℘1,

∼
℘2

)
∈

[0, 1].
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4 Numerical Applications 

The section discusses decision-making process based on the two Pythagorean 
fuzzy correlation coefficient methods and juxtaposes their effectiveness with the 
existing Pythagorean fuzzy correlation coefficient methods using the principle of 
recognition. The applications are in the areas of disaster control and medical 
diagnosis, respectively. 

4.1 Application in Disaster Control 

Disaster management is the art of managing resources and responsibilities to deal 
with disasters by preventing or reducing the destructive effects of disasters. Disaster 
management consists of preparation, reaction, mitigation, preventive control, and 
rescue. In short, disaster management is aimed at preventing and reducing the 
damaging effects of disasters. Most often, the occurrence of disaster is indetermi-
nate, and as such, adopting indeterminate methodologies to check-mate disaster 
is necessary. We deployed Pythagorean fuzzy correlation coefficient to mitigate 
disaster, because PFS is one of the verified concepts for curbing uncertainties. To 
determine the control, an assumption that an emergency agent made emergency 
rescue planning to control disasters is presented whose data are encapsulated in 
Pythagorean fuzzy context. The rescue emergency staff is obliged to obtain the 
situation data after a disaster occurred, and afterward compare with the existing 
Pythagorean fuzzy disaster data to identify the suitably match with the current 
disaster. The matching process is carried out by deploying the Pythagorean fuzzy 
correlation coefficient methods to estimate the matching of the current disaster with 
the Pythagorean fuzzy data of the disaster rescue planning. 

Suppose there are three hypothetical situations of disaster rescue planning 
represented by Pythagorean fuzzy data D1, D2, and D3 described by means of the 
setU = {rescue difficulty, scale of people affected, traffic conditions, and emergency 
supplies}. The current disaster, which is to be controlled, is denoted by nD and 
described by Pythagorean fuzzy data defined by the elements of U. The Pythagorean 
fuzzy disaster data can be seen in Table 21.1. 

We now find which of the existing disasters can be suitably matched with the 
current disaster by computing their correlation coefficients based on the existing 

Table 21.1 Pythagorean fuzzy disaster information 

Disasters Rescue difficulty Scale of people affected Traffic conditions Emergency supplies 

D1 (0.8, 0.55) (0.7, 0.0) (0.7, 0.2) (0.7, 0.2) 
D2 (0.4, 0.45) (0.5, 0.3) (0.4, 0.5) (0.5, 0.4) 
D3 (0.6, 0.3) (0.6, 0.2) (0.7, 0.2) (0.8, 0.0) 
nD (0.5, 0.3) (0.6, 0.2) (0.5, 0.4) (0.7, 0.0) 
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methods and the new developed methods. The correlation coefficient values can be 
seen in Table 21.2. 

From the correlation coefficient values, the current disaster can be matched with 
the disasters D2 and D3, respectively. Hence, the current disaster can be managed 
and controlled with the same approaches used to control disasters D2and D3. With 
this principle of recognition, it is certain that the current disaster has no similarity 
with disaster D1, and so, the approaches used to manage D1 cannot be adopted for 
the current disaster nD. 

The methods in [10, 22] and the new developed methods are the only methods 
that incorporate the complete parameters of PFSs, and so, their outputs are more 
reliable when compared to the methods given in [5, 37, 40], which do not incor-
porate the complete parameters of PFSs. Besides, the newly developed methods, 

especially the second method, .
∼
�2, produce the best correlation coefficient. 

4.2 Application in Medical Diagnosis 

Suppose a patient P is sick and is showing some symptoms like high temperature, 
headache, stomach pain, cough, and chest pain. From the symptoms, it is suspected 
that the patient is infected by at least one of the diseases in the set D = {viral 
fever, malaria fever, typhoid fever, peptic ulcer, and chest problem}. The medical 
information of the patient and the suspected diseases are captured by PFSs, which 
we called Pythagorean fuzzy medical information data. Table 21.3 contains the 
Pythagorean fuzzy medical information data for the patient and diseases defined 
by the symptoms. 

Now, we spot which of the diseases has the greatest correlation with the patient 
to determine the medical diagnosis. In doing this, the Pythagorean fuzzy correlation 
coefficient methods are deployed and the results are given in Table 21.4. 

From the results given in Table 21.4, the patient P is mainly diagnosed with 
malaria fever, viral fever, and typhoid fever in that order. The diagnosis shows that 
malaria fever, viral fever, and typhoid fever are related diseases in agreement to real-
life medical practice. Again, the newly developed methods take the three parameters 

Table 21.2 Correlation 
coefficient values for the 
disasters 

Methods (D1, nD) (D2, nD) (D3, nD)

�1 [22] 0.8249 0.9618 0.9791
�2 [22] 0.8241 0.9412 0.8931
�3 [5] −0.3062 0.7539 0.6849
�4 [37] 0.8185 0.8678 0.8994
�5 [40] 0.3851 0.7951 0.6174
�6 [10] 0.8249 0.9616 0.9750 

. 
∼
�1 0.7960 0.8940 0.8919 

. 
∼
�2 0.9083 0.9807 0.9895 
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Table 21.3 Pythagorean fuzzy medical information data 

Patient/diseases Temperature Headache 
Stomach 
pain Cough Chest pain 

Viral fever (0.4, 0.0) (0.3, 0.5) (0.1, 0.7) (0.4, 0.3) (0.1, 0.7) 
Malaria fever (0.7, 0.0) (0.2, 0.6) (0.0, 0.9) (0.7, 0.0) (0.1, 0.8) 
Typhoid fever (0.3, 0.3) (0.6, 0.1) (0.2, 0.7) (0.2, 0.6) (0.1, 0.9) 
Peptic ulcer (0.1, 0.7) (0.2, 0.4) (0.8, 0.0) (0.2, 0.7) (0.2, 0.7) 
Chest problem 
Patient 

(0.1, 0.8) 
(0.8, 0.1) 

(0.0, 0.8) 
(0.6, 0.1) 

(0.2, 0.8) 
(0.2, 0.8) 

(0.2, 0.8) 
(0.6, 0.1) 

(0.8, 0.1) 
(0.1, 0.6) 

Table 21.4 Correlation coefficient values for diagnostic analysis 

Methods (P, Viral fever) (P, Malaria fever) (P, Typhoid fever) (P, Peptic ulcer) (P, Chest problem)

�1 [22] 0.8622 0.9047 0.7808 0.6233 0.5080
�2 [22] 0.8328 0.8895 07485 0.6229 0.5075
�3 [5] 0.5773 0.7433 0.2418 −0.0989 −0.1211
�4 [37] 0.9261 0.9300 0.9579 0.7401 0.6869
�5 [40] 0.9361 0.8792 0.7101 −0.6615 −0.4716
�6 [10] 0.8617 0.9046 0.7801 0.6233 0.5080 

. 
∼
�1 0.9316 0.9221 0.9368 0.7853 0.7527 

. 
∼
�2 0.9285 0.9512 0.8836 0.7895 0.7127 

of PFSs into account, and so give the most accurate results when compared to the 
existing methods that also take into account the three parameters of PFSs. 

5 Conclusion 

In this chapter, we have studied correlation coefficient under PFSs because the 
concept of correlation coefficient is quite applicable in real-world decision-making. 
Many authors have presented some methods of correlation coefficient under PFSs, 
despite some in-built limitations, such as accuracy and reliability. Based on these 
setbacks, we have presented two methods for calculating correlation coefficient 
under PFSs, and explicated their properties in consonant to the attributes of the 
classical correlation coefficient. In addition, the applications of the new methods 
in real-world problems like disaster control and medical diagnosis were discussed 
using Pythagorean fuzzy data. Finally, the justification of the new methods was 
portrayed in comparative analysis involving other methods of correlation coefficient 
under PFSs, and it was shown that the new developed methods are more reliable 
when compared to the other methods of calculating correlation coefficient under 
PFSs. These methods can be applied to study MCDM problems in future under 
Fermatean fuzzy sets, q-rung orthopair fuzzy sets, cubic m-polar fuzzy sets, linear 
Diophantine fuzzy soft sets, cubic bipolar fuzzy sets, and m-polar spherical fuzzy 
sets.



496 P. A. Ejegwa et al.

Acknowledgments We express our sincere gratitude to the anonymous reviewers who took time 
to improve the technical quality of this chapter. 

References 

1. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set Syst, 20, 87–96, 1986. 
2. K. T. Atanassov, Geometrical interpretation of the elements of the intuitionistic fuzzy objects, 

Preprint IM-MFAIS-1-89, Sofia, 1989. 
3. F. E. Boran and D. Akay, A biparametric similarity measure on intuitionistic fuzzy sets with 

applications to pattern recognition, Inf Sci, 255(10), 45–57, 2014. 
4. D. A. Chiang and N. P. Lin, Correlation of fuzzy sets, Fuzzy Set Syst, 102(2), 221–226, 1999. 
5. T. Y. Chen, Multiple criteria decision analysis under complex uncertainty: a Pearson-like 

correlation-based Pythagorean fuzzy compromise approach, Int J Intell Syst, 34(1), 114–151, 
2019. 

6. S. K. De, R. Biswas and A. R. Roy, An application of intuitionistic fuzzy sets in medical 
diagnosis, Fuzzy Set Syst, 117(2), 209–213, 2001. 

7. D. Dumitrescu, Fuzzy correlation, StudiaUniv Babes-Bolyai Math, 23, 41–44, 1978. 
8. P. A. Ejegwa, Improved composite relation for Pythagorean fuzzy sets and its application to 

medical diagnosis, Granul Comput, 5(2), 277–286, 2020. 
9. P. A. Ejegwa and S. Ahemen, Enhanced intuitionistic fuzzy similarity operators with applica-

tions in emergency management and pattern recognition, Granul Comput, 2022. https://doi.org/ 
10.1007/s41066-022-00334-1. 

10. P. A. Ejegwa and J. A. Awolola, Real-life decision making based on a new correlation 
coefficient in Pythagorean fuzzy environment, Ann Fuzzy Math Inform, 21(1), 51–67, 2021. 

11. P. A. Ejegwa and B. Davvaz, An improved composite relation and its application in deciding 
patients’ medical status based on a q-rung orthopair fuzzy information, Comput Applied Math, 
41:303, 2022. https://doi.org/10.1007/s40314-022-02005-y. 

12. P. A. Ejegwa, Y. Feng and W. Zhang, Pattern recognition based on an improved Szmidt and 
Kacprzyk’s correlation coefficient in Pythagorean fuzzy environment, In: Min, H., Sitian, Q., 
Nian, Z. (Eds.); Advances in Neural Networks -17th International Symposium on Neural 
Networks (ISNN 2020), LNCS 12557, Springer, 2020. https://doi.org/10.1007/978-3-030-
64221-1_17. 

13. P. A. Ejegwa, Y. Feng, S. Tang, J. M. Agbetayo and X. Dai, New Pythagorean fuzzy-
based distance operators and their applications in pattern classification and disease diagnostic 
analysis, Neural Comput Applic, 2022. https://doi.org/10.1007/s00521-022-07679-3. 

14. P. A. Ejegwa, G. Muhiuddin, E. A. Algehyne, J. M. Agbetayo and D. Al-Kadi, An enhanced 
Fermatean fuzzy composition relation based on a maximum-average approach and its appli-
cation in diagnostic analysis, J Math, Article ID 1786221, 12 pages, 2022. https://doi.org/ 
10.1155/2022/1786221. 

15. P. A. Ejegwa and I. C. Onyeke, Intuitionistic fuzzy statistical correlation algorithm with 
applications to multi-criteria based decision-making processes, Int J Intell Syst, 36(3), 1386– 
1407, 2021. 

16. P. A. Ejegwa and I. C. Onyeke, A robust weighted distance measure and its applications in 
decision making via Pythagorean fuzzy information, J Inst Elect Comput, 3, 87–97, 2021. 

17. P. A. Ejegwa and I. C. Onyeke, Some new distance and similarity algorithms for Pythagorean 
fuzzy sets with application in decision-making problems, In S. Broumi (Ed.), Handbook of 
Research on Advances and Applications of Fuzzy Sets and Logic, 2022. https://doi.org/ 
10.4018/978-1-7998-7979-4.ch008. 

18. P. A. Ejegwa, I. C. Onyeke, B. T. Terhemen, M. P. Onoja, A. Ogiji and C. U. Opeh, Modified 
Szmidt and Kacprzyk’s intuitionistic fuzzy distances and their applications in decision-making, 
J Nig Soc Phy Sci, 4, 175–182, 2022.


 29283 25159 a 29283
25159 a
 
http://doi.org/10.1007/s41066-022-00334-1

 4874 31801
a 4874 31801 a
 

 21731 36229 a 21731 36229 a
 
http://doi.org/10.1007/978-3-030-64221-1_17

 14269
40657 a 14269 40657 a
 

 29283 43978 a 29283 43978 a
 
http://doi.org/10.1155/2022/1786221

 29283 53940 a 29283 53940 a
 
http://doi.org/10.4018/978-1-7998-7979-4.ch008


21 New Methods of Computing Correlation Coefficient Based. . . 497

19. P.  A.  Ejegwa, S. Wen, Y. Feng and  W.  Zhang,  Determination of pattern recognition problems 
based on a Pythagorean fuzzy correlation measure from statistical viewpoint, In: Proceedings 
of the 13th International Conference of Advanced Computational Intelligence, pp. 132–139, 
Wanzhou, China, 2021. https://doi.org/10.1109/ICACI52617.2021.9435895. 

20. P. A. Ejegwa, S. Wen, Y. Feng, W. Zhang and J. Liu (2022) A three-way Pythagorean fuzzy 
correlation coefficient approach and its applications in deciding some real-life problems, 
Applied Intell, 2022. https://doi.org/10.1007/s10489-022-03415-5. 

21. P. A. Ejegwa, S. Wen, Y. Feng, W. Zhang and N. Tang, Novel Pythagorean fuzzy correlation 
measures via Pythagorean fuzzy deviation, variance and covariance with applications to pattern 
recognition and career placement, IEEE Trans Fuzzy Syst, 30(6), 1660–1668, 2021. 

22. H. Garg, A novel correlation coefficients between Pythagorean fuzzy sets and its applications 
to decision making processes, Int J Intell Syst, 31(12), 1234–1252, 2016. 

23. H. Garg and K. Kumar, A novel correlation coefficient of intuitionistic fuzzy sets based on the 
connection number of set pair analysis and its application, Scientia Iranica, 25(4), 2373–2388, 
2018. 

24. H. Garg, M. Riaz, M. A. Khokhar and M. Saba, Correlation measures for cubic m-polar fuzzy 
sets with applications, Mathematical Problems in Engineering, Article ID 9112586, 19 pages 
(2021). https://doi.org/10.1155/2021/9112586. 

25. T. Gerstenkorn and J. Manko, Correlation of intuitionistic fuzzy sets, Fuzzy Set Syst, 44(1), 
39–43, 1991. 

26. A. G. Hatzimichailidis, A. G. Papakostas and V. G. Kaburlasos, A novel distance measure of 
intuitionistic fuzzy sets and its application to pattern recognition problems, Int J Intell Syst, 27, 
396–409, 2012. 

27. H. L. Huang and Y.Guo, An improved correlation coefficient of intuitionistic fuzzy sets, J Intell  
Syst, 28(2), 231–243, 2019. 

28. W. L. Hung, Using statistical viewpoint in developing correlation of intuitionistic fuzzy sets, 
Int J Uncert Fuzz Knowl-Based Syst, 9(4), 509–516, 2001. 

29. I. Alshammari, M. Parimala, C. Ozel, M. Riaz and R. Kammoun, New MCDM algorithms with 
linear Diophantine fuzzy soft TOPSIS, VIKOR and aggregation operators, Mathematics, 10, 
3080, 2022. https://doi.org/10.3390/math10173080. 

30. M. Lin, C. Huang, R. Chen, H. Fujita and X.Wang, Directional correlation coefficient measures 
for Pythagorean fuzzy sets: their applications to medical diagnosis and cluster analysis, 
Complex Intell Syst, 7, 1025–1043, 2012. 

31. P. Liu and S. M. Chen, Group decision making based on Heronian aggregation operators of 
intuitionistic fuzzy numbers, IEEE Trans Cybern, 47(9), 2514–2530, 2017. 

32. B. Liu, Y. Shen, L. Mu, X. Chen and L. Chen, A new correlation measure of the intuitionistic 
fuzzy sets, J Intell Fuzzy Syst, 30(2), 1019–1028, 2016. 

33. J.H.  Park, K. M. Lim, J. S. Park and  Y.  C.  Kwun,  Correlation coefficient between intuitionistic 
fuzzy sets, In: Cao B., Li T. F., Zhang CY (eds) Fuzzy information and engineering volume 2 
(2009), AISC, vol 62. Springer, Berlin, 2009. 

34. M. Riaz, A. Habib, M. J. Khan and P. Kumam, Correlation coefficients for cubic bipolar fuzzy 
sets with applications to pattern recognition and clustering analysis, IEEE Access, 9, 109053– 
109066, 2021. 

35. M. Riaz, D. Pamucar, A. Habib and M. Riaz, A new TOPSIS approach using cosine similarity 
measures and cubic bipolar fuzzy information for sustainable plastic recycling process, 
Mathematical Problems in Engineering, Article ID 4309544, 18 pages (2021). https://doi.org/ 
10.1155/2021/4309544. 

36. M. Riaz, M. Saba, M. A. Khokhar and M. Aslam, Novel concepts of m-polar spherical 
fuzzy sets and new correlation measures with application to pattern recognition and medical 
diagnosis, AIMS Mathematics, 6(10), 11346–11379, 2021. 

37. S. Singh and A. H. Ganie, On some correlation coefficients in Pythagorean fuzzy environment 
with applications, Int J Intell Syst, 35, 682–717, 2020. 

38. E. Szmidt and J. Kacprzyk, Medical diagnostic reasoning using a similarity measure for 
intuitionistic fuzzy sets, Note IFS, 10(4), 61–69, 2004.



8509 3014 a 8509 3014 a
 

 7409
6335 a 7409 6335 a
 

 2416 18512 a 2416 18512
a
 

 4142 31795
a 4142 31795 a
 

 29283 49507 a 29283 49507 a
 
http://doi.org/10.1155/2021/4309544


498 P. A. Ejegwa et al.

39. N. X. Thao, A new correlation coefficient of the intuitionistic fuzzy sets and its application, J
Intell Fuzzy Syst, 35(2), 1959–1968, 2018. 

40. N. X. Thao, A new correlation coefficient of the Pythagorean fuzzy sets and its applications, 
Soft Comput, 24, 9467–9478, 2020. 

41. R. R. Yager, Pythagorean membership grades in multi-criteria decision making, Technical 
Report MII-3301 Machine Intelligence Institute Iona College, New Rochelle, 2013. 

42. R. R. Yager, Properties and applications of Pythagorean fuzzy sets, Springer, Berlin, 2016. 
43. R. R. Yager, Pythagorean membership grades in multi-criteria decision making, IEEE Trans

Fuzzy Syst, 22(4), 958–965, 2014. 
44. R. R. Yager and A. M. Abbasov, Pythagorean membership grades, complex numbers and 

decision making, J Intell Fuzzy Syst, 28(5), 436–452, 2016. 
45. L. A. Zadeh, Fuzzy sets, Inf Control, 8, 338–353, 1965. 
46. W. Zeng and H. Li, Correlation coefficient of intuitionistic fuzzy sets, J Indust Eng Int, 3(5), 

33–40, 2007. 
47. W. Zeng, D. Li and Q. Yin, Distance and similarity measures of Pythagorean fuzzy sets and 

their applications to multiple criteria group decision making, Int J Intell Syst, 33(11), 2236– 
2254, 2018. 

48. X. Zhang, A novel approach based on similarity measure for Pythagorean fuzzy multiple 
criteria group decision making, Int J Intell Syst, 31, 593–611, 2016. 

49. X. L. Zhang and Z. S. Xu, Extension of TOPSIS to multiple criteria decision making with 
Pythagorean fuzzy sets. Int J Intell Syst, 29(12), 1061–1078, 2014.



Chapter 22 
Multi-Criteria Group Decision-Making 
q-Rung Neutrosophic Interval-Valued 
Soft Set TOPSIS Aggregating Operator 
for the Selection of Diagnostic Health 
Imaging 

M. Palanikumar, V. Sreelatha Devi, Chiranjibe Jana , 
and Gerhard Wilhelm Weber 

1 Introduction 

Ambiguity is present in nearly all real-world problems. Zadeh [31] has proposed 
the fuzzy set (FS) as a way of dealing with uncertainties, Atanassov [4] has 
proposed the intuitionistic FS (IFS), Yager [29] has proposed Pythagorean FS 
(PFS), and Smarandache [27] proposed the neutrosophic set (NSS). There is an 
FS in which each element in the set has a membership value corresponding to its 
level of belongingness, with grades corresponding to these levels. Natural language 
processing, artificial intelligence, handwriting recognition, and speech recognition 
are all examples of applications that benefit from using this gradation method. 
Similar logic was later proposed by Atanassov [4], in which the total MD and NMD 
values should equal . ≤ 1, this as an IFS logic. In the case of MD and NMD sums 
that exceed 1, we might have difficulty decision-making (DM). For generalizing 
IFS, Yager [29] has proposed PFS logic, which requires the square total of its MD 
and NMD to be equal to . ≤ 1. Several applications based on PyFS are discussed by 
Akram et al. [1–3]. Rahman et al. [24] discuss the use of an IVPFS for geometric 
AOs within the context of a group DM. According to Peng et al. [22], a PyFS based 
on AO with interval values is recommended. Rahman et al. [25] propose a few 
MCGDM methods using interval-valued Pythagorean fuzzy Einstein AOs. Multi-
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attribute decision-making (MADM) with IVPyFS was developed by Yang et al. 
[30]. The square root FS (SRFS) and its weighted AOs were explored by Shami 
et al. in DM. The q-Rung orthopair FS (q-Rung OFS) were developed by Yager 
[28] through an expansion of PyFSs. The result of the qth power of MD and qth 
power of NMD lies between .0 and 1. Since q=1, q-Rung OFS transforms into IFSs, 
and since q=2, q-Rung OFS transforms into PyFSs; q-Rung OFSs are extensions of 
IFSs and PyFSs. q-Rung IVFSs have been discussed by Bhagawati [5] et al. Yager 
[28] introduced the notion of generalized OFSs. 

Recent research by Smarandache led to the development of the NSS [27]. This 
neutrality is referred to as neurosophy, and it is this neutrality that distinguishes FS 
from IFS. According to the truth degree (TD), the indeterminacy degree (ID), and 
the false degree (FD). NSS has levels of TD, ID, and FD for every component of 
the universe that are between .0 and 1. Historically, a classical set, a functional set, 
an integral set, etc. are generalized by an NSS. Pythagorean NSIV set (PyNSIVS) 
was introduced for the first time by Smarandache et al. [9]. Medical diagnostics and 
context analysis are applied to the single-valued NSS [26]. According to Ejegwa 
[6], distance measures for IFSs are hamming distances (HDs), Euclidean distances 
(EDs), and normalized Euclidean distances (NEDs), which are common in PyFSs 
and are examined for use in MCDM and MADM. There are a number of distance 
functions for PyNSNIVSs presented by Palanikumar et al. [13]. Yang et al. [32] 
advocated generalizing PyFS against TOPSIS by including MCDM, whereas Peng 
et al. [23] discussed neutrosophic MADM under MABAC and TOPSIS. In recent 
year, an approach to Dombi aggregation mappings based on MCDM has been 
presented by Jana et al. [8]. In several studies [14–21], Palanikumar et al. studied 
many algebraic structures and its applications. 

As a result of Molodtsov’s work [12], the theory of soft sets (SS) was developed. 
A soft set represents real-world DM more accurately than other uncertain theories 
in terms of objectivity and complexity. In addition, SSs can be integrated with 
other mathematical models as a valuable research topic. Typically, these concepts 
are identified as fuzzy soft sets (FSS) [10] and intuitionistic fuzzy soft sets (IFSS) 
[11]. There are a number of DM problems that can be addressed with these two 
theories. Adeel et al. discussed fuzzy linguistic TOPSIS using m-polar attributes 
in 2019, while Eraslan et al. discussed TOPSIS-based GDMs [7]. The concept of 
single-valued neutrosophic MADM based on MABAC and TOPSIS was proposed 
by Zhang et al. [32] and Peng et al. [23]. According to Zulqarnain et al. in 
2021, TOPSIS can be extended to interval-valued IFSS (IVIFSS). Using TOPSIS, 
distances to positive ideal solutions (PIS) and negative ideal solutions (NIS) are 
calculated, and a preference order is found based on the relative closeness of the 
two distance measures. 

Consequently, this work makes the following contributions: 

1. TOPSIS q-Rung NSIVSS introduced a new ED measure. 
2. An application of the proposed definition for NSIVSS with q-Rungs. 
3. According to the q-Rung NSIVSS, PIS and NISs are determined. 
4. A decision is made based on q for arriving at a result.
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The organization of this article extends the concept of TOPSIS-q-Rung NSIVSS 
for MCGDM methods. Five sections are presented in the paper. The introduction 
is found in Sect. 1. An overview of q-Rung FS and q-Rung IVFS is provided 
in Sect. 2. Section 3 discusses about MCGDM using q-Rung NSIVSS algorithm. 
Section 4 talks MCGDM based on q-Rung NSIVSS-TOPSIS aggregating operator. 
Section 5 discusses about the comparison for the q-Rung NSIVSS-TOPSIS and 
existing approach. Lastly, Sect. 6 provides a conclusion. 

2 Preliminary 

The purpose of this part is to review some ideas related to NSS and q-Rung FS 
literary concepts. 

Definition 1 AnNSSH in the universe . U is . H = {�,�T
H (�),�I

H (�),�F
H (�)|� ∈

U }, where .�T
H (�), .�I

H (�), and .�F
H (�) represent the TD, ID, and FD of H , 

respectively. Then .�
T
H ,�I

H ,�F
H : U → [0, 1] and . 0 � sup�T

H (�) + sup�I
H (�) +

sup�F
H (�) � 3. 

Definition 2 ([28]) The q-Rung FS H in . U is . H =
{
�,
〈
�

T
H (�),�F

H (�)
〉∣∣� ∈

U
}
, .�T

H : U → [0, 1] and .�
F
H : U → [0, 1] denote the MD and NMD of . � ∈ U

to H , respectively, and .0 � (�T
H (�))q + (�F

H (�))q � 1, where .q � 1. The degree 

of indeterminacy is .π(�) =
(
(�T

H (�))q + (�F
H (�))q − (�T

H (�))q(�F
H (�))q

)1/q
. 

.H = 〈
�

T
H ,�F

H

〉
is called a q-Rung FN. 

Definition 3 ([5]) The q-Rung IVFS H in . U is . H =
{
�,
〈
�̃

T
H (�), �̃F

H (�)
〉∣∣∣� ∈

U
}
, where .�̃

T
H : U → Int ([0, 1]) and .�̃

F
H : U → Int ([0, 1]) denote the MD and 

NMD of .� ∈ U to H , respectively, and .0 � (�T +
H (�))q + (�F+

H (�))q � 1. For  

convenience, .H =
〈[
�

T −
H ,�T +

H

]
,
[
�

F−
H ,�F+

H

]〉
is called a q-Rung IVFN. 

Definition 4 ([9]) A PyNSS H in . U is .H = {�,�T
H (�),�I

H (�),�F
H (�)|� ∈ U }, 

where .�
T
H (�), .�I

H (�), and .�
F
H (�) represent the TD, ID, and FD of H , respectively. 

The mapping .�T
H ,�I

H ,�F
H : U → [0, 1] and . 0 � (�T

H (�))2 + (�I
H (�))2 +

(�F
H (�))2 � 2. Since .H = 〈�T

H ,�I
H ,�F

H 〉 is called a Pythagorean neutrosophic 
number(PyNSN). 

Definition 5 The PyIVFS .H =
{
�,
〈
�̃

T
H (�), �̃F

H (�)
〉∣∣∣� ∈ U

}
, where . �̃T

H (�) =[
�

T L
H (�),�T U

H (�)
]
and .�̃F

H (�) =
[
�

FL
H (�),�FU

H (�)
]
denote the MD and NMD 

of H , respectively. Here, .�̃T
H and .�̃F

H are function from . U into .D[0, 1] and
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.0 ≤ (�̃T
H (�))2 + (�̃F

H (�))2 ≤ 1, and it is observed that . 0 ≤ (�T U
H (�))2 +

(�FU
H (�))2 ≤ 1. 

Definition 6 The IVNSS .H =
{
�,
(
�̃

T
H (�), �̃I

H (�), �̃F
H (�)

)
|� ∈ U

}
, where 

.�̃
T
H (�) =

[
�

T L
H (�),�T U

H (�)
]
, .�̃I

H (�) =
[
�

IL
H (�),�IU

H (�)
]
, and . �̃F

H (�) =[
�

FL
H (�),�FU

H (�)
]
represent the TD, ID, and FD of H , respectively. Then . �̃T

H :
U → D[0, 1], .�̃I

H : U → D[0, 1], .�̃F
H : U → D[0, 1], and . 0 ≤ (�̃T

H (�))2 +
(�̃I

H (�))2 + (�̃F
H (�))2 ≤ 2 mean .0 ≤ (�T U

H (�))2 + (�IU
H (�))2 + (�FU

H (�))2 ≤ 2. 

Here, .H̃ =
([

�
T L
H ,�T U

H

]
,
[
�

IL
H ,�IU

H

]
,
[
�

FL
H ,�FU

H

])
is called a neutrosophic 

interval-valued number (NSIVN). 

Definition 7 Let E be the set of parameter. The .(̃Γ,H) or .Γ̃H is called 
an NSIVS on . U if .H 	 E and .Γ : H → NSIV U , where . NSIV U

denotes the set of all neutrosophic interval-valued subsets of . U . That is, 

. Γ̃H =
{(

e,

{
�([

�
T L
ΓH

(�),�T U
ΓH

(�)
]
,
[
�

IL
ΓH

(�),�IU
ΓH

(�)
]
,
[
�

FL
ΓH

(�),�FU
ΓH

(�)
])
})

: e ∈

H,� ∈ U

}
. 

Remark 1 If we write .α̃ij = �̃
T
ΓH

(ej )(�i ) and .β̃ij = �̃
I
ΓH

(ej )(�i ) and . ̃γij =
�̃

F
ΓH

(ej )(�i ), where .i = 1, 2, ..., m and .j = 1, 2, ..., n, then the NSIV set . Γ̃H

defined in matrix form is 

. Γ̃H = [(α̃ij , β̃ij , γ̃ij )]m×n

=

⎡
⎢⎢⎢⎣

(α̃11, β̃11, γ̃11) (α̃12, β̃12, γ̃12) . . . (α̃1n, β̃1n, γ̃1n)

(α̃21, β̃21, γ̃21) (α̃22, β̃22, γ̃22) . . . (α̃2n, β̃2n, γ̃2n)
...

...
. . .

...

(α̃m1, β̃m1, γ̃m1) (α̃m2, β̃m2, γ̃m2) . . . (α̃mn, β̃mn, γ̃mn)

⎤
⎥⎥⎥⎦

This matrix is called neutrosophic interval-valued soft matrix (NSIVSM). 

3 MCGDM Based on q-Rung NSIVSS-TOPSIS Aggregating 
Operator 

Definition 8 The cardinal set of the q-Rung NSIVSS Γ̃X is denoted by c̃ΓX and is 
defined as
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c̃ΓX =
{

e([
�

T L  
cθX 

(e),�T U  
cθX 

(e)
]
,
[
�

IL  
cξX 

(e),�IU  
cξX 

(e)
]
,
[
�FL  

cϕX (e),�
FU  
cϕX (e)

]) : e ∈ E

}
=

{
e(

�̃T 
cθX (e),�̃

I 
cξX (e),�̃

F 
cϕX (e)

) : e ∈ E

}
, where �̃T 

cθX
, �̃I 

cξX
, and �̃F 

cϕX : 

E → D[0, 1] are mapping, respectively; where �̃T 
cθX (e) = |θ̃X(e)| 

|U | ,
�̃I 

cξX (e) = |̃ξX(e)| 
|U | , and �̃F 

cϕX (e) = |ϕ̃X(e)| 
|U | ; and where |θ̃X(e)|, |̃ξX(e)| and 

|ϕ̃X(e)| denote the scalar cardinalities of the q-Rung NSIVSS θ̃X(e), ξ̃X(e) 
and ϕ̃X(e), respectively and |U | represents cardinality of the universe U . 
The collection of all cardinal sets of q-Rung NSIVSS of U is represented 
as cq−Rung NSIV U . If  X ⊆ E = {ei : i = 1, 2, ..., n}, then
c̃ΓX ∈ cq−Rung NSIV SU may be represented in a matrix form as[ (

[αL 
1j , α

U 
1j ], [βL 

1j , β
U 
1j ], [γ L 

1j , γ  U 
1j ]
) ]

1×n 
=

[ ([αL 
11, α

U 
11], [βL 

11, β
U 
11], [γ L 

11, γ  U 
11]
)
,

([αL 
12, α

U 
12], [βL 

12, β
U 
12], [γ L 

12, γ  U 
12]
)
, . . . ,

([αL 
1n, α

U 
1n], [βL 

1n, β
U 
1n], [γ L 

1n, γ  U 
1n]
) ]

, where(
[αL 

1j , α
U 
1j ], [βL 

1j , β
U 
1j ], [γ L 

1j , γ  U 
1j ]
)

=
[
μL 

cΓX 
(ej ), μU 

cΓX 
(ej )

]
, for  j = 1, 2, . . .  , n. 

For our convenience, consider matrix form as [(̃α1j , β̃1j , γ̃1j )]1×n = [(̃α11, β̃11,

γ̃11), (̃α12, β̃12, γ̃12), . . ., (̃α1n, β̃1n, γ̃1n)], where (̃α1j , β̃1j , γ̃1j ) = μ̃cΓX (ej ), for  
j = 1, 2, ..., n. Hence, this matrix is called a cardinal matrix of c̃ΓX of E. 

Definition 9 Let Γ̃X ∈ q-Rung NSIVSS(U ) and c̃ΓX ∈ cq-Rung NSIVSS(U ). 
The q-Rung NSIVSS AO q − Rung NSIV SSagg : cq − Rung NSIV SSU × 
q − RungNSIV SS(U ) → q − RungNSIV SS(U , E)  is defined as 

q-Rung NSIVSSagg(c̃ΓX, Γ̃X) =
{

�

μ̃Γ ∗
X 

(�) : �∈ U
}
=
{

�(
�̃T 

θ∗
X 

(�),�̃I 
ξ∗
X 

(�),�̃F 
ϕ∗
X 

(�)
) :

� ∈ U
}
. 

This collection is called q − RungNSIV SSsetΓ̃X. 

The TD �̃T 
θ∗
X 
(�):U → D[0, 1] by �̃T 

θ∗
X 
(�)= 1 

|E|
∑

e∈E

(
�̃T 

cθX (e), �̃
T 

θX (e)
)

(�), ID �̃I 
ξ∗
X 
(�) : U → D[0, 1] by �̃I 

ξ∗
X 
(�) = 1 

|E|
∑

e∈E

(
�̃I 

cξX (e), �̃
I 
ξX (e)

)
(�), 

and FD �̃F 
ϕ∗

X 
(�) : U → D[0, 1] by �̃F 

ϕ∗
X 
(�) = 1 

|E|
∑

e∈E

(
�̃F 

cϕX (e), �̃
F 

ϕX (e)
)

(�). The  set  q − RungNSIV SSagg(c̃ΓX, Γ̃X) is expressed in a matrix form as 

.

[ (
[αL

i1, α
U
i1], [βL

i1, β
U
i1], [γ L

i1, γ
U
i1 ]
) ]

m×1

=

⎡
⎢⎢⎢⎣

([αL
11, α

U
11], [βL

11, β
U
11], [γ L

11, γ
U
11]
)

([αL
21, α

U
21], [βL

21, β
U
21], [γ L

21, γ
U
21]
)

...([αL
m1, α

U
m1], [βL

m1, β
U
m1], [γ L

m1, γ
U
m1]
)

⎤
⎥⎥⎥⎦
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where
[ ([αL 

i1, α
U 
i1], [βL 

i1, β
U 
i1], [γ L 

i1, γ  U 
i1 ])

]
=

[
μL 

Γ ∗X 
(�i ), μU 

Γ ∗X 
(�i )

]
, for  i = 

1, 2, ..., m. This matrix is called q-Rung NSIVSS aggregate matrix of q − 
RungNSIV SSagg(c̃ΓX, Γ̃X) over U . 

Algorithm-IV (q-Rung NSIVSS-TOPSIS) 
Step 1: Suppose that D = {Di : i ∈ N} is a set of decision-makers, y = {yi : i ∈ N} 
is a set of alternatives, and D = {ei : i ∈ N} is a set of parameters. 
Step 2: Determine the weighted parameter by P = [

wL 
ij , w

U 
ij

]
n×m

, where[
wL 

ij , w
U 
ij

]
be the weight by the makers Di to ej . 

Step 3: Determine the weighted normalized decision by N̂ = [̂
nL 

ij , n̂
U 
ij

]
n×m

, 

where
[̂
nL 

ij , n̂
U 
ij

] =
[

wL 
ij 

q
√∑n 

i=1 w qU 
ij 

, 
wU 

ij 
q
√∑n 

i=1 w qL 
ij

]
is the normalized parameter and 

finding the weighted vector is W = ([mL 
1 ,m

U 
1 ], [mL 

2 ,m
U 
2 ]..., [mL 

m,mU 
m]), where 

[mL 
i ,m

U 
i ] =

[
wL 

i 
q
√∑n 

l=1 w
U 
li 

, wU 
i 

q
√∑n 

l=1 w
L 
li

]
be the weight of the j th parameter and 

[wL 
j , w

U 
j ] =

[∑n 
i=1 n̂L 

ij 
n ,

∑n 
i=1 n̂U 

ij 
n

]
. 

Step 4: Form the q-Rung NSIVSS decision by Di = [
cLi 
jk , c

Ui  
jk

]
l×m

. Here,[
cLi 
jk , c

Ui  
jk

]
is a ith decision-maker, i.e., [DL 

i ,D
U 
i ] for each i. Calculating the 

aggregating matrix by
[
X L ,X U

] =
[
DL 

1 ,D
U 
1

]
+
[
DL 

2 ,D
U 
2

]
+...+

[
DL 

n ,D
U 
n

]
n

= [
xL 
jk, x

U 
jk

]
l×m

. 

Step 5: Find the weighted q-Rung NSIVSS decision matrix by [Y L ,Y U ] =[
yL 
jk, y

U 
jk

]
l×m 

, 

where
[
yL 
jk, y

U 
jk

]
=
[
mL 

k × xL 
jk,m

U 
k × xU 

jk

]
. 

Step 6: Calculate the values for q-Rung NSIVSS-PIS and q-Rung NSIVSS-NIS. 
Now, 
q-Rung NSIVSS-PIS =

([
yL+ 
1 , yU+ 

1

]
,
[
yL+ 
2 , yU+ 

2

]
...,
[
yL+ 
l , yU+ 

l

])

=
{(

∨k

[
yL 
jk, y

U 
jk

]
,∧k

[
yL 
jk, y

U 
jk

]
,∧k

[
yL 
jk, y

U 
jk

])
: k = 1, 2, ..., m

}
and 

q-Rung NSIVSS-PIS =
([

yL− 
1 , yU− 

1

]
,
[
yL− 
2 , yU− 

2

]
...,
[
yL− 
l , yU− 

l

])

=
{(

∧k

[
yL 
jk, y

U 
jk

]
,∨k

[
yL 
jk, y

U 
jk

]
,∨k

[
yL 
jk, y

U 
jk

])
: k = 1, 2, ..., m

}
. 

Here, q-Rung NSIVSS union ∨ and q-Rung NSIVSS intersection ∧. 
Step 7: Obtain q-Rung NSIVSS-Euclidean distances from q-Rung NSIVSS-PIS 
and q-Rung NSIVSS-NIS. Now

[
dL+ 
j , dU+ 

j

]
=
[
√√√√√
∑m 

k=1

{ (
�

T L  
jk  − �

T L+ 
j

)2 +
(
�

IL  
jk  − �

IL+ 
j

)2 

+
(
�

FL  
jk  − �

FL+ 
j

)2 } ,

√∑m 
k=1

{ (
�

T U  
jk  − �

T U+ 
j

)2 +
(
�

IU  
jk  − �

IU+ 
j

)2 +
(
�

FU  
jk  − �

FU+ 
j

)2 } ]
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and
[
dL− 
j , dU− 

j

]
=

[
√√√√√
∑m 

k=1

{ (
�

T L  
jk  − �

T L− 
j

)2 +
(
�

IL  
jk  − �

IL− 
j

)2 

+
(
�

FL  
jk  − �

FL− 
j

)2 } ,

√∑m 
k=1

{ (
�

T U  
jk  − �

T U− 
j

)2 +
(
�

IU  
jk  − �

IU− 
j

)2 +
(
�

FU  
jk  − �

FU− 
j

)2 } ]
, 

where j = 1, 2, ..., n. 
Step 8: Calculate the relative closeness for the ideal solution by[
CL∗(yj ), CU∗(yj )

]
=
[

dL− 
j 

dU+ 
j +dU− 

j 
, 

dU− 
j 

dL+ 
j +dL− 

j

]
; hence, C∗(yj ) = CL∗(yj )+CU∗(yj ) 

2 ∈ 

[0, 1]. 
Step 9: Finding the rank of alternatives by using decreasing or increasing order 
of their relative closeness coefficients. The bigger C∗(yj ), the more desirable 
alternative yj . 

4 Selection Process Based on Diagnostic Health Imaging 

A range of methods for looking inside the body to obtain a diagnosis and identify 
the cause of a disease or injury are referred to as “diagnostic health imaging.” 
Analysis of diagnostic medical imaging is crucial in contemporary medicine. Due 
to the difficulty of analyzing and diagnosing from a single image, computer-aided 
diagnostic tools have been utilized to shed light on potential illness mechanisms. 
Providing a forum for the dissemination of new research findings in the field of 
medical and biological image analysis, diagnostic health image analysis focuses on 
efforts related to the applications of computer vision, virtual reality, and robotics 
to biomedical imaging challenges. Professionals can see into your body using 
diagnostic imaging to assist them find any signs of a problem. There are numerous 
simple, painless, and noninvasive imaging procedures. Some, meanwhile, may 
demand you to remain still inside the machine for a protracted amount of time, 
which could be uncomfortable. The test volunteers in certain trials receive a little 
dose of radiation. Diagnostic health imaging technology has transformed healthcare 
by enabling early disease diagnosis, reducing the need for unnecessary invasive 
exploratory procedures, and improving patient outcomes. Due to its higher accuracy, 
repeatability, and objectivity when compared to conventional diagnosis in many 
scenarios, computer-assisted automatic processing and analysis of medical images 
is in high demand. Our research focuses on creating machine learning-based image 
analysis algorithms and systems to address a variety of crucial yet difficult medical 
image analysis issues. When used to identify, track, or treat medical conditions, 
various technologies are referred to as “medical imaging”: 

1. CT (Computed Tomography) Scan: . (y1)
A noninvasive medical test or process known as computed tomography (CT), 
sometimes known as “computerized tomography” or “computed axial tomog-



506 M. Palanikumar et al.

raphy” (CAT), creates cross-sectional images of the body using specialist X-ray 
equipment. Similar to the slices in a loaf of bread, each cross-sectional image 
shows a “slice” of the individual being photographed. There are numerous 
diagnostic and therapeutic uses for these cross-sectional pictures. Every part 
of the body can get a CT scan for a variety of purposes (e.g., diagnostic, 
treatment planning, interventional, or screening). CT is a useful medical tool 
that can assist a doctor in diagnosing illness, injury, or abnormality, planning 
and directing interventional or therapeutic operations, and assessing the efficacy 
of therapy (e.g., cancer treatment). 

2. MRI (Magnetic Resonance Imaging) Scan: . (y2)
MRIs use a powerful magnet rather than radiation to create an image of the 
patient’s body. It gives you an incredibly detailed look inside your body and can 
be used to check for anomalies in the spine, brain, cysts, tumors, and other areas 
of your body in addition to breast tissue cancer. An average MRI examination 
takes between 30 and 60 minutes to complete. The doctor may administer 
contrast fluid to you in order to improve the clarity of specific components 
in the ensuing photographs. The development of the MRI scan represents a 
crucial turning point in medical history. Careful screening of individuals and 
objects entering the MR environment is crucial to ensure that nothing pierces 
the magnet. 

3. X-Ray: . (y3)
One of the most popular and well-known diagnostic imaging procedures is the 
use of X-rays. They are used by doctors to observe the interior of the body. 
X-ray machines provide a high-energy beam that can pass through other parts 
of the body but cannot penetrate dense tissue or bones. In the same way, that 
visible light is an electromagnetic radiation as well as X-rays. A high-energy 
X-ray can penetrate most materials, including the human body, due to its high 
energy. X-rays are used to create images of internal structures and tissues.When 
the device is turned on, X-rays enter the body and are absorbed in different 
amounts by different tissues depending on their radiological density. 

4. Ultrasound: . (y4)
High-frequency sound waves are used in sonography, another term for ultra-
sound imaging, to observe within the body. With real-time ultrasound imaging, 
it is possible to observe the motion of the internal organs of the body as well 
as the flow of blood via the arteries. A transducer (probe) is inserted into a 
bodily orifice or on the skin during an ultrasonic examination. In order to 
allow the ultrasonic waves from the transducer to pass through the skin and 
into the body, a small coating of gel is applied to the skin. Images of internal 
organs are produced when waves reflect off them. To create an image, the power 
(amplitude) of the sound signal and the length of the wave’s journey through 
the body are used. A clinician can analyze, identify, and treat medical diseases 
using ultrasonic imaging. Since ultrasound imaging has been in use for more 
than 20 years, it has a stellar safety record.
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5. Nuclear Medicine:. (y5)
Nuclear medicine works well. It can aid in the early detection of a wide 
range of illnesses, including infection, stress fractures, cancer, heart disease, 
blood clots, and cancer. Nuclear medicine scans have been used for about 50 
years and are mostly safe. Since the radiation dose is so minimal, there are 
no significant dangers. After the patient receives a radioactive tracer, nuclear 
medicine imaging is a technique for producing images by detecting radiation 
from various physiological locations. A nuclear medicine physician uses the 
images, which are produced digitally on a computer, to diagnose patients. 
Injections of radioactive tracers into the veins are commonly used in nuclear 
medicine. A patient normally experiences relatively minimal radiation exposure 
during a traditional nuclear medicine scan. Nuclear imaging is a common 
method for identifying or treating ailments. 

6. Radiology:. (y6)
The field of medicine known as radiology uses imaging techniques to diagnose 
and treat illness. To determine whether a medical condition is present or not, it 
could be used as a diagnostic tool (such as finding a lung cancer). Radiology has 
developed methods during the past century for a wide range of disease diagnosis 
and a variety of treatments, many of which are less invasive than surgery, for a 
range of medical problems. Its job is to take pictures of the body’s interior. It is 
used to determine certain conditions. 

7. MRA (Magnetic Resonance Angiogram) Scan:. (y7)
A special type of MRI that examines the body’s blood arteries is known as 
magnetic resonance angiography, sometimes known as a magnetic resonance 
angiogram (MRA). Magnetic resonance angiography is a significantly less 
intrusive and uncomfortable examination than a standard angiogram, which 
involves placing a catheter within the body. Doctor may recommend magnetic 
resonance angiography if they suspect that you have a blocked or narrowed 
blood artery elsewhere in your body. The images from the magnetic resonance 
angiography will be analyzed by healthcare provider. Depending on the exact 
issue found, your healthcare practitioner may recommend additional exams or 
treatments. 

8. PET (Positron Emission Tomography):. (y8)
Radiation-based imaging shows cellular activity within the body. To perform 
the scan, radioactive tracers are added to a special dye. In order to examine an 
area of your body, you either breathe in the tracers, inject them into a vein in 
your arm, or consume them. Your doctor can evaluate your organs and tissues 
by detecting the tracers using a PET scanner. There are a number of biological 
tissues and diseases that are more chemically active than others, so the tracer 
will collect in these areas. Bright spots will appear on the PET scan when 
these diseased areas are scanned. The scan can evaluate a variety of things, 
including blood flow, oxygen utilization, and also how body processes sugar. 
PET scans reveal cellular-level metabolic alterations in an organ or tissue. This 
is significant because cellular processes frequently mark the start of illnesses. 
PET scans are able to identify very subtle cell changes.
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9. Mammogram: . (y9)
Mammography, also referred to as mammograms, is a method used by doctors 
to find breast cancer early on, before symptoms show. A screening mammog-
raphy is what it is known as. Most mammography results show benign or 
noncancerous tissue. Less than one in ten people who require further testing 
after a mammogram actually have cancer. Mammograms are performed using 
a special X-ray machine designed to examine breast tissue. The apparatus 
exposes to less X-ray radiation than is necessary to inspect the bones. During a 
mammography, the breasts are exposed to very low doses of radiation, but the 
benefits far outweigh any possible hazards. 

10. Fluoroscopy: . (y10)
Fluoroscopy, a medical imaging procedure, uses a sequence of X-ray beam 
pulses to show the movement of internal organs and tissues in real time on a 
computer screen. Traditional X-rays are like images, whereas fluoroscopy is 
like a video. Diagnostic imaging and interventional guidance, which use fluo-
roscopy to guide particular therapeutic procedures like surgeries and catheter 
insertions, are the two main uses of fluoroscopy in healthcare. Because they 
can be used to detect a large range of illnesses and to guide a wide range of 
operations, fluoroscopy imaging examinations are quite common. 

Using professional evaluations, we want to select the best option from a large 
number of options. I have provided the following DM information: 

1. Image Restoration 
An image can be improved by image restoration. It is usually objective because 
it is based on a mathematical or probabilistic model when restoring damaged 
images. An image can be restored to its original state once noise and blur have 
been eliminated. In a variety of situations, such as photography, radar imaging, 
and reducing motion blur brought on by camera shaking, it might be difficult to 
get rid of image blur. Models that are reliable for individual medical imaging 
devices are typically much harder to obtain than universal models. Methods 
of image restoration are crucial for enhancing the usability of medical images 
and broadening their scope of use. With a linear system model, the process of 
ultrasound image restoration may be explained. Pictures taken using transmission 
X-rays were restored using an iterative approach. 

2. Image Segmentation 
The process of segmenting an image involves classifying its voxels into a variety 
of different categories. The core problem with medical image analysis is medical 
image segmentation, a contentious and challenging field of study. An important 
first step in image analysis is segmenting CT images. It is a required step in 
order to provide a trustworthy CT image analysis. Both diagnosis and detection 
need the use of image segmentation. The purpose of X-ray segmentation is 
to divide the image into distinct parts so that clinicians can utilize them to 
examine the bone’s structure, identify bone fractures, or choose the best course 
of action before surgery. Prostate-specific ultrasound images are created for both 
diagnostic and therapeutic purposes. Nuclear medicine image analysis has been
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identified as the core problem due to image segmentation, which remains a 
contentious and challenging area. 

3. Image Registration 
In image registration, two or more images are lined up by fusion, matching, 
or warping. Image registration in ultrasonography aligns two or more picture 
files taken at different times, by different cameras, or by different sensors in 
order to fuse the images from the two sources. The input images in CT imaging 
modalities must be aligned before fusion can occur. Images can be aligned 
and stacked in an X-ray scan through image registration. The results of these 
scans are more accurately interpreted by medical experts when they have these 
scans. A radioactive tracer can be administered to a patient in order to detect 
radiation emitted from different physiological regions. Diagnoses are made using 
digital images made on a computer by nuclear medicine physicians. In order to 
properly diagnose and treat patients, data from several images taken using diverse 
modalities must be integrated. The technique in question is image registration. 

4. Image Acquisition 
Image acquisition is the action of obtaining an image for subsequent processing 
from an external source. Since no operation can be started without first obtaining 
an image, it is always the first stage in the workflow. In a CT scan, picture 
capture follows a helical or circular path around the patient’s body, while X-
rays are emitted in a collimated fan beam. When data are collected by the set 
of detectors at various source locations, a set of projections is produced. Image 
capture magnetic resonance imaging (MRI or MR), which moves the subject 
into the center of the tube for imaging, resembles a computed tomography 
machine in terms of look. X-ray images are produced when an image receptor 
cassette is exposed to an active X-ray beam. A radiographic film is housed in the 
image receptor cassette between two intensifying screens. During the ultrasonic 
picture acquisition process, time, frequency, and velocity are estimated. Nuclear 
medicine uses positron emission tomography and single-photon emission tomog-
raphy for image acquisition. 

5. Image Enhancement 
Image enhancement techniques allow for an increase in signal-to-noise ratio and 
emphasize image details by altering the colors or intensities of a photograph. 
It also has automatic deblurring, linear and nonlinear filtering, and contrast 
enhancement. Contrast enhancement is used in both MRI and CT scan results. 
Due to contrast picture enhancement, the radiologist can more easily discern 
between normal and diseased areas. It is simpler to distinguish between nor-
mal and pathological conditions because of the contrast picture enhancement 
employed in CT scans. X-ray images are dimly lit and have poor contrast. The 
quality of the X-ray image and consequently the evaluation can be improved 
by applying image enhancement. In ultrasonic image enhancement, depending 
on the demands of the user, some features of an image are emphasized, while 
others are weakened or removed. Following the standard preprocessing and 
postprocessing carried out by a gamma camera system, improving image quality 
is offered as a solution.
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Suppose that ten types of diagnostic health imaging (alternatives) such as . y =
{y1, y2, y3, y4, y5, y6, y7, y8, y9, y10}, where CT scan .(y1), MRI scan .(y2), X-ray  
.(y3), ultrasound .(y4), nuclear medicine .(y5), radiology .(y6), MRA scan .(y7), PET  
.(y8), mammogram .(y9), and fluoroscopy .(y10): 
Step 1: Suppose that .[DL,DU ] = {[DL

i ,DU
i ] : i = 1, 2, 3, 4, 5

}
is a finite set 

of decision-makers, .y = {yi : i = 1, 2, ..., 10} is the collection of diagnostic 
health imaging/alternatives, and .D = {ei : i = 1, 2, ..., 5} is a finite set family of 
parameters, where .e1 = Image Restoration .e2 = image segmentation, .e3 = image 
registration, .e4 = image acquisition, and .e5 = image enhancement. 
Step 2: Linguistic variables in the form as very good report presentation (VGRP) . =
[0.9, 0.95], good report presentation (GRP) .= [0.8, 0.9], average report presentation 
(ARP) .= [0.65, 0.8], poor report presentation (PRP) .= [0.5, 0.65], and very poor 
report presentation (VPRP) .= [0.35, 0.5]. 
Form the weighted parameter matrix given as 

. P = [wL
ij , w

U
ij ]5×5

=

⎡
⎢⎢⎢⎢⎢⎣

ARP GRP V GRP V PRP PRP

V PRP V GRP GRP PRP ARP

V GRP PRP V PRP ARP GRP

ARP V PRP PRP V GRP V PRP

PRP ARP V GRP GRP PRP

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

[0.65, 0.80] [0.80, 0.90] [0.90, 0.95] [0.35, 0.50] [0.50, 0.65]
[0.35, 0.50] [0.90, 0.95] [0.80, 0.90] [0.50, 0.65] [0.65, 0.80]
[0.90, 0.95] [0.50, 0.65] [0.35, 0.50] [0.65, 0.80] [0.80, 0.90]
[0.65, 0.80] [0.35, 0.50] [0.50, 0.65] [0.90, 0.95] [0.35, 0.50]
[0.50, 0.65] [0.65, 0.80] [0.90, 0.95] [0.80, 0.90] [0.50, 0.65]

⎤
⎥⎥⎥⎥⎥⎦

where .[wL
ij , w

U
ij ] be the weight provided by the specialist .[DL

i ,DU
i ] to each 

parameter . ej . 
Step 3: Form the normalized weighted decision matrix as follows: 

. N̂ = [̂
nL

ij , n̂
U
ij

]
5×5

=

⎡
⎢⎢⎢⎢⎣

[0.3847, 0.4735] [0.4600, 0.5175] [0.4964, 0.5240] [0.2012, 0.2875] [0.3134, 0.4074]
[0.2071, 0.2959] [0.5175, 0.5462] [0.4412, 0.4964] [0.2875, 0.3737] [0.4074, 0.5015]
[0.5326, 0.5622] [0.2875, 0.3737] [0.1930, 0.2758] [0.3737, 0.4600] [0.5015, 0.5642]
[0.3847, 0.4735] [0.2012, 0.2875] [0.2758, 0.3585] [0.5175, 0.5462] [0.2194, 0.3134]
[0.2959, 0.3847] [0.3737, 0.4600] [0.4964, 0.5240] [0.4600, 0.5175] [0.3134, 0.4074]

⎤
⎥⎥⎥⎥⎦

.

weighted vector 

.
W = ([0.058, 0.085], [0.0557, 0.0785], [0.0684, 0.0697],

[0.0557, 0.0785], [0.0629, 0.0982]) .
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Step 4: The aggregated decision matrix . 
[
X L,X U

] =

[
DL

1 ,DU
1

]+ [DL
2 ,DU

2

]
+... + [DL

5 ,DU
5

]
5

. =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

([0.55, 0.65], [0.40, 0.50], [0.30, 0.40]) ([0.07, 0.45], [0.55, 0.65], [0.46, 0.70]) ([0.38, 0.45], [0.40, 0.50], [0.51, 0.60])
([0.45, 0.65], [0.50, 0.60], [0.30, 0.60]) ([0.60, 0.60], [0.65, 0.65], [0.10, 0.25]) ([0.65, 0.75], [0.25, 0.35], [0.30, 0.40])
([0.55, 0.65], [0.60, 0.67], [0.60, 0.66]) ([0.50, 0.60], [0.55, 0.65], [0.15, 0.25]) ([0.54, 0.60], [0.23, 0.30], [0.34, 0.40])
([0.50, 0.63], [0.40, 0.50], [0.40, 0.50]) ([0.44, 0.55], [0.35, 0.50], [0.47, 0.60]) ([0.60, 0.70], [0.50, 0.60], [0.31, 0.40])
([0.55, 0.65], [0.45, 0.53], [0.15, 0.30]) ([0.25, 0.35], [0.46, 0.55], [0.65, 0.75]) ([0.50, 0.60], [0.40, 0.50], [0.30, 0.55])
([0.62, 0.70], [0.65, 0.73], [0.25, 0.35]) ([0.44, 0.51], [0.25, 0.35], [0.55, 0.65]) ([0.30, 0.50], [0.45, 0.55, [0.60, 0.70])
([0.40, 0.55], [0.55, 0.62], [0.15, 0.25]) ([0.30, 0.42], [0.29, 0.40], [0.60, 0.70]) ([0.65, 0.75], [0.20, 0.30], [0.55, 0.75])
([0.45, 0.45], [0.60, 0.74], [0.50, 0.60]) ([0.30, 0.40], [0.25, 0.65], [0.65, 0.75]) ([0.28, 0.35], [0.40, 0.50], [0.50, 0.60])
([0.45, 0.65], [0.50, 0.73], [0.40, 0.60]) ([0.55, 0.65], [0.44, 0.50], [0.55, 0.65]) ([0.35, 0.50], [0.34, 0.40], [0.55, 0.62])
([0.35, 0.55], [0.65, 0.80], [0.15, 0.30]) ([0.55, 0.65], [0.44, 0.50], [0.55, 0.65]) ([0.35, 0.50], [0.34, 0.40], [0.55, 0.62])

([0.45, 0.55], [0.55, 0.65], [0.39, 0.50]) ([0.50, 0.60], [0.60, 0.70], [0.50, 0.60])
([0.25, 0.33], [0.60, 0.70], [0.30, 0.60]) ([0.50, 0.60], [0.20, 0.30], [0.60, 0.70])
([0.23, 0.30], [0.62, 0.70], [0.20, 0.30]) ([0.52, 0.60], [0.22, 0.55], [0.50, 0.73])
([0.60, 0.70], [0.45, 0.55], [0.45, 0.55]) ([0.35, 0.50], [0.30, 0.55], [0.55, 0.65])
([0.40, 0.50], [0.55, 0.65], [0.35, 0.50]) ([0.44, 0.70], [0.40, 0.55], [0.30, 0.70])
([0.50, 0.60], [0.60, 0.70], [0.40, 0.55]) ([0.40, 0.49], [0.38, 0.45], [0.40, 0.50])
([0.49, 0.55], [0.60, 0.75], [0.25, 0.35]) ([0.50, 0.60], [0.60, 0.70], [0.20, 0.50])
([0.50, 0.60], [0.70, 0.80], [0.15, 0.35]) ([0.36, 0.45], [0.70, 0.78], [0.10, 0.25])
([0.44, 0.60], [0.35, 0.50], [0.40, 0.50]) ([0.25, 0.45], [0.65, 0.75], [0.40, 0.55])
([0.29, 0.45], [0.65, 0.75], [0.50, 0.60]) ([0.40, 0.50], [0.55, 0.63], [0.60, 0.60])

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. = [
xL
jk, x

U
jk

]
10×5

Step 5: The weighted q-Rung NSIVSS decision matrix . 
[
Y L,Y U

] =
[
mL

k ×
xL
jk,m

U
k × xU

jk

]

. =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

([0.0537, 0.0933], [0.0390, 0.0718], [0.0293, 0.0574]) ([0.0068, 0.0614], [0.0533, 0.0888], [0.0445, 0.0956])
([0.0439, 0.0933], [0.0488, 0.0862], [0.0293, 0.0862]) ([0.0581, 0.0956], [0.0629, 0.1024], [0.0097, 0.0341])
([0.0537, 0.0933], [0.0585, 0.0962], [0.0585, 0.0948]) ([0.0484, 0.0819], [0.0533, 0.0888], [0.0145, 0.0341])
([0.0488, 0.0905], [0.0390, 0.0718], [0.0390, 0.0718]) ([0.0426, 0.0751], [0.0339, 0.0683], [0.0455, 0.0819])
([0.0537, 0.0933], [0.0439, 0.0761], [0.0146, 0.0431]) ([0.0242, 0.0478], [0.0445, 0.0751], [0.0629, 0.1024])
([0.0605, 0.1005], [0.0634, 0.1048], [0.0244, 0.0505]) ([0.0426, 0.0696], [0.0242, 0.0478], [0.0533, 0.0888])
([0.0390, 0.0790], [0.0537, 0.0890], [0.0146, 0.0359]) ([0.0291, 0.0574], [0.0281, 0.0546], [0.0581, 0.0956])
([0.0439, 0.0646], [0.0585, 0.1063], [0.0488, 0.0862]) ([0.0291, 0.0546], [0.0242, 0.0888], [0.0629, 0.1024])
([0.0439, 0.0933], [0.0488, 0.1048], [0.0390, 0.0862]) ([0.0397, 0.0683], [0.0533, 0.0888], [0.0484, 0.0819])
([0.0342, 0.0790], [0.0634, 0.1149], [0.0146, 0.0431]) ([0.0533, 0.0888], [0.0426, 0.0683], [0.0533, 0.0888])

([0.0366, 0.0568], [0.0385, 0.0631], [0.0491, 0.0758]) ([0.0436, 0.0751], [0.0533, 0.0888], [0.0378, 0.0683])
([0.0626, 0.0947], [0.0241, 0.0442], [0.0289, 0.0505]) ([0.0242, 0.0451], [0.0581, 0.0956], [0.0291, 0.0819])
([0.0520, 0.0758], [0.0222, 0.0379], [0.0328, 0.0505]) ([0.0223, 0.0410], [0.0600, 0.0956], [0.0194, 0.0410])
([0.0578, 0.0884], [0.0482, 0.0758], [0.0299, 0.0505]) ([0.0581, 0.0956], [0.0436, 0.0751], [0.0436, 0.0751])
([0.0482, 0.0758], [0.0385, 0.0631], [0.0289, 0.0695]) ([0.0387, 0.0683], [0.0533, 0.0888], [0.0339, 0.0683])
([0.0289, 0.0631], [0.0434, 0.0695], [0.0578, 0.0884]) ([0.0484, 0.0819], [0.0581, 0.0956], [0.0387, 0.0751])
([0.0626, 0.0947], [0.0193, 0.0379], [0.0530, 0.0947]) ([0.0474, 0.0751], [0.0581, 0.1024], [0.0242, 0.0478])
([0.0270, 0.0442], [0.0385, 0.0631], [0.0482, 0.0758]) ([0.0484, 0.0819], [0.0678, 0.1092], [0.0145, 0.0478])
([0.0434, 0.0695], [0.0241, 0.0442], [0.0626, 0.0947]) ([0.0426, 0.0819], [0.0339, 0.0683], [0.0387, 0.0683])
([0.0337, 0.0631], [0.0328, 0.0505], [0.0530, 0.0783]) ([0.0281, 0.0614], [0.0629, 0.1024], [0.0484, 0.0819])

([0.0501, 0.0940], [0.0602, 0.1097], [0.0501, 0.0940])
([0.0501, 0.0940], [0.0201, 0.047o], [0.0602, 0.1097])
([0.0522, 0.0940], [0.0221, 0.0862], [0.0501, 0.1144])
([0.0351, 0.0784], [0.0301, 0.0862], [0.0552, 0.1019])
([0.0522, 0.1097], [0.0401, 0.0862], [0.0301, 0.1097])
([0.0401, 0.0768], [0.0381, 0.0705], [0.0401, 0.0784])
([0.0501, 0.0940], [0.0602, 0.1097], [0.0201, 0.0784])
([0.0361, 0.0705], [0.0702, 0.1222], [0.0100, 0.0392])
([0.0251, 0.0705], [0.0652, 0.1175], [0.0401, 0.0862])
([0.0401, 0.0784], [0.0552, 0.0987], [0.0602, 0.0940])

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.=
[
yL
jk, y

U
jk

]
10×5
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Step 6: Determine the values for q-Rung NSIVSS-PIS and q-Rung NSIVSS-NIS. 
Now, 

. 

[
yL+, yU+

]
q − RungNSIVSS − PIS[

yL+
1 , yU+

1

]
([0.0537, 0.0940], [0.0385, 0.0631], [0.0293, 0.0574])[

yL+
2 , yU+

2

]
([0.0626, 0.0956], [0.0201, 0.0442], [0.0097, 0.0341])[

yL+
3 , yU+

3

]
([0.0537, 0.0940], [0.0221, 0.0379], [0.0145, 0.0341])[

yL+
4 , yU+

4

]
([0.0581, 0.0956], [0301, 0.0683], [0.0299, 0.0505])[

yL+
5 , yU+

5

]
([0.0552, 0.1097], [0.0385, 0.0631], [0.0146, 0.0431])[

yL+
6 , yU+

6

]
([0.0605, 0.1005], [0.0242, 0.0478], [0.0244, 0.0503])[

yL+
7 , yU+

7

]
([0.0626, 0.0947], [0.0193, 0.0379], [0.0146, 0.0359])[

yL+
8 , yU+

8

]
([0.0484, 0.0819], [0.0242, 0.0631], [0.0100, 0.0392])[

yL+
9 , yU+

9

]
([0.0439, 0.0933], [0.0241, 0.0442], [0.0387, 0.0683])[

yL+
10 , yU+

10

]
([0.0533, 0.0888], [0.0328, 0.0505], [0.0146, 0.0431])[

yL−, yU−
]

q − RungNSIVSS − NIS[
yL−
1 , yU−

1

]
([0.0068, 0.0568], [0.0602, 0.1097], [0.0501, 0.0956])[

yL−
2 , yU−

2

]
([0.0242, 0.0451], [0.0629, 0.1024], [0.0602, 0.1097])[

yL−
3 , yU−

3

]
([0.0223, 0.0410], [0.0600, 0.0962], [0.0585, 0.1144])[

yL−
4 , yU−

4

]
([0.0351, 0.0751], [0.0482, 0.0862], [0.0552, 0.1019])[

yL−
5 , yU−

5

]
([0.0242, 0.0478], [0.0533, 0.0888], [0.0629, 0.1097])[

yL−
6 , yU−

6

]
([0.0289, 0.0631], [0.0634, 0.1048], [0.0578, 0.0888])[

yL−
7 , yU−

7

]
([0.0291, 0.0574], [0.0602, 0.1097], [0.0581, 0.0956])[

yL−
8 , yU−

8

]
([0.0270, 0.0442], [0.0702, 0.1222], [0.0629, 0.1024])[

yL−
9 , yU−

9

]
([0.0251, 0.0683], [0.0652, 0.1175], [0.0626, 0.0947])[

yL−
10 , yU−

10

]
([0.0281, 0.0614], [0.0634, 0.1149], [0.0602, 0.094])

Step 7: The q-Rung NSIVSS EDs from q-Rung NSIVSS-PIS and q-Rung NSIVSS-
NIS:
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. 

[
(yL

i ), (yU
i )
] [

dL+
i , dU+

i

] [
dL−
i , dU−

i

]
[
(yL

1 ), (yU
1 )
]

[0.0681, 0.0980] [0.0892, 0.1007][
(yL

2 ), (yU
2 )
]

[0.0990, 0.0146] [0.1127, 0.1645][
(yL

3 ), (yU
3 )
]

[0.0912, 0.1593] [0.1029, 0.1682][
(yL

4 ), (yU
4 )
]

[0.0511, 0.0769] [0.0552, 0.0791][
(yL

5 ), (yU
5 )
]

[0.0686, 0.1332] [0.0926, 0.1263][
(yL

6 ), (yU
6 )
]

[0.0868, 0.1188] [0.0782, 0.0976][
(yL

7 ), (yU
7 )
]

[0.1000, 0.1524] [0.0963, 0.1354][
(yL

8 ), (yU
8 )
]

[0.1104, 0.1355] [0.0983, 0.1250][
(yL

9 ), (yU
9 )
]

[0.0655, 0.1224] [0.0783, 0.1031][
(yL

10), (y
U
10)
]

[0.1009, 0.1361] [0.0678, 0.1053]

Step 8: Calculate closeness coefficients using q-Rung NSIVSS-PIS and q-Rung 
NSIVSS-NIS for every alternatives: 

.

[
CL∗
1 , CU∗

1

]
= [0.4488, 0.6403], .

[
CL∗
2 , CU∗

2

]
= [0.3631, 0.7767], . 

[
CL∗
3 , CU∗

3

]
=

[0.3140, 0.8667], .

[
CL∗
4 , CU∗

4

]
=[0.3541, 0.7435], . 

[
CL∗
5 , CU∗

5

]
=[0.3569, 0.7830],

.

[
CL∗
6 , CU∗

6

]
= [0.3613, 0.5914], .

[
CL∗
7 , CU∗

7

]
= [0.3346, 0.6900], . 

[
CL∗
8 , CU∗

8

]
=

[0.3772, 0.5993], .
[
CL∗
9 , CU∗

9

]
= [0.3471, 0.7170], . 

[
CL∗
10 , CU∗

10

]
= [0.2810, 0.6240].

The . C∗ values are .C∗
1 = 0.5446, .C∗

2 = 0.5699, .C∗
3 = 0.5904, .C∗

4 = 0.5488, 
.C∗
5 = 0.5700, .C∗

6 = 0.4764, .C∗
7 = 0.5123, .C∗

8 = 0.4883, .C∗
9 = 0.5320, 

.C∗
10 = 0.4525. 

Step 9: The order of the diagnostic health imaging . C∗
i is . y3 � y5 � y1 � y4 �

y2 � y9 � y7 � y8 � y10 � y6. 

5 Comparison Between the Suggested and the Existing 
Approach 

Here, we compared some existing models with the suggested models. Thus, its 
benefits and usefulness are demonstrated. A q-rung NSIVSS approach is used with 
an ED. Here are the various distances: 

.q = 1 q-Rung NSIVSS 

.T OPSIS − Proposed . y3 � y5 � y1 � y4 � y2 � y9 � y7 � y8 � y10 � y6

.T OPSIS− [13] .y3 � y5 � y1 � y4 � y2 � y9 � y7 � y8 � y10 � y6
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5.1 Sensitivity Analysis 

The reliability of the circumstances for the MCGDM approach with the alternatives. 
Below are the values and rankings of closeness. The different “q” values are 
acquired using the q-Rung NSIVSS technique. Using the q-Rung NSIVSS method, 
if .q = 1, then ranking of alternative is . y3 � y5 � y1 � y4 � y2 � y9 �
y7 � y8 � y10 � y6. If  .2 ≤ q ≤ 10, then new ranking of alternative is 
.y3 � y5 � y2 � y4 � y1 � y9 � y7 � y8 � y10 � y6. If  .q = 11, then ranking 
of new order is .y3 � y5 � y2 � y1 � y4 � y9 � y7 � y8 � y6 � y10. Thus, 
the imaging “. y4” becomes the imaging “. y1” as the best alternative. The TOPSIS 
approaches q values should be changed. The following relative closeness values are 

Relative closeness values 

.q − values .D∗
1 .D∗

2 .D∗
3 .D∗

4 .D∗
5 .D∗

6 .D∗
7 .D∗

8 .D∗
9 . D∗

10

.q = 2 .0.5446 .0.5699 .0.5904 .0.5488 .0.5700 .0.4764 .0.5123 .0.4883 .0.5320 . 0.4525

.q = 3 .0.5449 .0.5704 .0.591 .0.5503 .0.5705 .0.4769 .0.5129 .0.4887 .0.5323 . 0.4533

.q = 4 .0.5450 .0.5705 .0.5911 .0.5506 .0.5706 .0.4771 .0.513 .0.4888 .0.5323 . 0.4536

.q = 5 .0.5449 .0.5703 .0.5909 .0.5502 .0.5705 .0.4771 .0.5129 .0.4887 .0.5322 . 0.4535

.q = 6 .0.5447 .0.5701 .0.5905 .0.5492 .0.5702 .0.4769 .0.5126 .0.4884 .0.5319 . 0.4532

.q = 7 .0.5444 .0.5697 .0.59 .0.548 .0.5698 .0.4766 .0.5121 .0.4880 .0.5316 . 0.4526

.q = 8 .0.5441 .0.5692 .0.5894 .0.5466 .0.5694 .0.4762 .0.5116 .0.4876 .0.5313 . 0.4520

.q = 9 .0.5438 .0.5688 .0.5888 .0.5454 .0.5689 .0.4757 .0.5111 .0.4872 .0.531 . 0.4511

.q = 10 .0.5434 .0.5684 .0.5883 .0.5440 .0.5684 .0.4753 .0.5106 .0.4867 .0.5309 . 0.4505

.q = 11 .0.5432 .0.5679 .0.5878 .0.5427 .0.568 .0.4751 .0.5101 .0.4864 .0.5305 . 0.4498

Figure 22.1 shows the graphical representation consists of MCGDM based on 
TOPSIS. 

Fig. 22.1 Graphical 
representation using 
MCGDM based on TOPSIS
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5.2 Advantages 

According to the earlier study provided, the technique recommended in the follow-
ing paragraphs has advantages. By combining the ideas of q-Rung FS and IVNSS, it 
suggests the concept of q-Rung NSIVSS. In situations where the sum of TD, ID, and 
FD is higher than two but less than the square total of its TD, ID, and FD, the q-Rung 
NSIVSS analyzes human behavior and natural phenomena that take place in real life 
and clarifies ambiguous information. The decision-maker has the freedom to select 
the outcome based on their individual tastes and q. The flexible accomplishment of 
varied ranking results of alternatives is made possible by operators like the q-Rung 
NSIVSS. 

6 Conclusion 

This article introduced ED measurements for q-Rung NSIVSSs, whose mathemat-
ical simplicity is an added benefit. The superiority of ED metrics is illustrated by 
practical numerical examples. An application case is given to show the usefulness 
of ED measurements. The q-Rung NSIVSS based on MADM challenges, which 
arise in diverse DM, is the main subject of this research work. In our discussion of 
the q-Rung NSIVSS of numerous AOs, we came to a number of conclusions that 
were relevant to their q-Rung NSIVSS. People can select the best course of action 
from the available options in settings with ambiguous and conflicting information 
by using the q-Rung NSIVSS based on MCGDM method. On the basis of q, the  
operators for the q-Rung NSIVSS have been applied to the MCGDM issue. The 
MCGDM problem were addressed using the q-Rung NSIVSS. A q-Rung NSIVSS 
can be used to determine the different rankings of alternatives. A generalized value 
of q has the greatest impact on ranking alternatives, according to research. By setting 
q values according to the actual scenario, decision-makers can arrive at the most 
reasonable ranking. In order to determine the result, the decision-maker must know 
q. Despite the fact that this field of study is still in its infancy, the author believes that 
the material in this paper will prove useful to future academics who are interested 
in it. Numerous types of statistical charts have also been included to visualize the 
rankings of the alternatives. 
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Chapter 23 
Cosine Neutrosophic Normal 
Interval-Valued Aggregation Operators 
to the Selection of Robotic Engineering 

M. Palanikumar, K. Arulmozhi, and Chiranjibe Jana 

1 Introduction 

The complexity of real-world systems makes it challenging for decision-makers to 
select the most appropriate option among the various options available. Even though 
condensing is difficult, it is not impossible. It proves difficult for many businesses to 
set goals, incentive systems, and viewpoint restrictions. In decision-making (DM), 
therefore, multiple objectives must be considered at the same time. MADM is 
the process of choosing the most appropriate option from many possibilities. Our 
MADM team deals with a wide range of MADM problems on a daily basis. As 
a result, we all need to improve our DM skills. DM problems are of interest to 
a number of researchers. Most real problems are characterized by uncertainty. In 
order to cope with these uncertainties, a number of uncertain theories have been 
proposed, including fuzzy sets (FSs) [26], intuitionistic FS (IFSs) [4], Pythagorean 
FSs (PFSs) [24], and neutrosophic sets (NSs) [21]. There is a grade or degree of 
belonging to an element in a FS that lies between zero and one. Grades such as 
these are referred to as membership values. Clustering procedures are available 
for FS, as well as regression predictions for fuzzy time series [23] and fuzzy c-
numbers [25]. Natural language processing, artificial intelligence, and handwriting 
recognition are applications that are well-suited to this gradation concept. According 
to Atanassov [4], IFS logic can be classified based on its membership degree (MD) 
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and non-membership degree (NMD) being equal to or less than one. A problem 
in decision-making (DM) can arise when MD and NMD are greater than one. A 
generalization of IFS, PFS is defined as the square sum of MD and NMD is less than 
or equal to 1, as presented by Yager [24]. PFS can be applied to various applications, 
as discussed by Akram et al. [1–3]. It has been demonstrated that the geometric 
aggregation operator (AO) can be applied to group DM in an IVPFS scheme by 
Rahman et al. [17]. According to Peng et al. [15], a Pythagorean fuzzy AO can be 
derived from interval values. Rahman et al. [18] have proposed several approaches to 
MADM using an induced interval-valued Pythagorean fuzzy Einstein AO. In Khan 
et al. [11], fuzzy Einstein and Choquet operators are applied based on Pythagorean 
theory. In the DM approach, fuzzy AO was introduced by Liu et al. [12]. 

The novel theory of NSs was introduced recently. The FS and IFS differ from 
neurosophy due to their knowledge of neutral thought. According to Smarandache 
[21], NS is based on philosophical reasoning. According to this logic, each 
proposition is assigned a degree of truth (TD), indeterminacy (ID), or falsity (FD). 
As part of NS, every element in the universe receives a degree from 0 to 1 of TD, ID, 
and FD. A philosophical approach to NSs generalizes classical sets, FSs, and IVFSs. 
In 1996, Smarandache et al. introduced the PNIVS [10]. In context analysis [20] and 
medical diagnosis [19], single-valued NSs are applied. Hamming distance (HD) and 
Euclidean distance (ED), normalized HD and ED and their similarity to MCDM 
and MADM models in Ejegwa [5]. PNSNIVS distance functions are generally 
generalized from PNSIVS. Zhang et al. [27] discussed PFS can be generalized by 
MCDM based on TOPSIS. A discussion of MADM under the MABAC and TOPSIS 
scheme was then presented by Peng et al. [16]. Various real-life situations have been 
addressed by Hwang et al. [6]. Jana et al. studied a generalization of bipolar fuzzy 
soft set (BFSS) with applications [7]. Jana et al. [8] introduced Pythagorean fuzzy 
Dombi AOs. The measurement of distance in pattern recognition is addressed by 
Ullah et al. [22]. CT-SVTrN Dombi AOs were identified by Jana et al. [9]. The 
idea of MADM for PNNIV with AOs is discussed by Palanikumar et al. [13]. 
Palanikumar et al. discussed spherical vague normal AOs are used for selecting 
farmers [14]. The following contributions are made by this work: 

1. The introduction of a new CTri-NNIVS distance measure based on Euclidean 
and Hamming distances. 

2. For CTri-NNIVN in MADM, we will examine the applicable definition, AOs, 
and robotic examples. 

3. Using CTri-NNIVWA, CTri-NNIVWG, CTri-GNNIVWA, and CTri-GNNIVWG, 
determine the ideal values. 

4. A decision based on . Θ is made in order to achieve a specific result. 

In this chapter, the new CTri-NNIVS concept is discussed. As a starting point, 
let us look at the CTri-NNIVS aggregation operators. A ranking will be established 
using these operators and applied to DM problems by way of an example. According 
to the table of contents, the chapter is divided into eight sections. In Sect. 1, you 
will find an introduction. Section 2 refers to some concepts that are explained. 
Section 3 describes some operations of the MADM based on CTri-NNIVN. The
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distance between CTri-NNIVNs is discussed in Sect. 4. For CTri-NNIVN, Sect. 5 
discusses MADM using cosine AOs. As part of Sect. 6, MADM is compared with 
proposed and existing models using CTri-NNIV data, an algorithm with the most 
appropriate selection of robotic data. Section 7 contains the conclusion. 

2 Preliminary 

Wewill cover some basic definitions in this section so that we can conduct additional 
research. 

Definition 1 ([24]) Let . Z be the universal set. The PFS L in . Z is . L ={
u,
〈
�
T

L(ε),�F

L(ε)
〉∣∣ε ∈ Z

}
, where .�T

L : Z → [0, 1] and .�F

L : Z → [0, 1] denotes 
MD and NMD of .ε ∈ Z to L, respectively, and .0 ≤ (�T

L(ε))2 + (�F

L(ε))2 ≤ 1. For  
comfortable, .L = 〈�T

L,�F

L

〉
is said to be a Pythagorean fuzzy number (PFN). 

Definition 2 ([15]) The PIVFS L in . Z is given by .L =
{
u,
〈
�
T

L(ε),�F

L(ε)
〉∣∣∣ε ∈ Z

}
, 

where the functions .�T

L : Z → Int ([0, 1]) and .�F

L : Z → Int ([0, 1]) denote MD 
and NMD of .ε ∈ Z to L, .0 ≤ (�T+

L (ε))2 + (�F+
L (ε))2 ≤ 1. For comfortable, 

.L =
〈[
�
T−
L ,�T+

L

]
,
[
�
F−
L ,�F+

L

]〉
is said to be a Pythagorean interval-valued fuzzy 

number (PIVFN). 

Definition 3 ([21]) The NS L in . Z is .L =
{
u,
〈
�
T

L(ε),�I

L(ε),�F

L(ε)
〉∣∣ε ∈ Z

}
, 

where .�T

L : Z → [0, 1], .�I

L : Z → [0, 1], and .�F

L : Z → [0, 1] denote TD, 
ID, and FD of .ε ∈ Z to L, respectively, and .0 ≤ �

T

L(ε) + �
I

L(ε) + �
F

L(ε) ≤ 3. For  
comfortable, .L = 〈�T

L,�I

L,�F

L

〉
is said to be a neutrosophic number (NSN). 

Definition 4 ([10]) The PNSS L in . Z is .L =
{
u,
〈
�
T

L(ε),�I

L(ε),�F

L(ε)
〉∣∣ε ∈ Z

}
, 

where .�T

L : Z → [0, 1], .�I

L : Z → [0, 1], and .�F

L : Z → [0, 1] denote TD, ID, and 
FD of .ε ∈ Z to L, respectively, and .0 ≤ (�T

L(ε))2 + (�I

L(ε))2 + (�F

L(ε))2 ≤ 2. For  
comfortable, .L = 〈�T

L,�I

L,�F

L

〉
is said to be a Pythagorean neutrosophic number 

(PNSN). 

Definition 5 ([15]) Let .L =
〈
[�T−,�T+], [�F−,�F+]

〉
, . L1 =

〈
[�T−

1 ,�T+
1 ],

[�F−
1 ,�F+

1 ]
〉
, and 

.L2 =
〈
[�T−

2 ,�T+
2 ], [�F−

2 ,�F+
2 ]
〉
be PIVFNs, and .Θ > 0. Then: 

1. .L1�L2 =
⎡
⎣
[√

(�T−
1 )2+(�T−

2 )2−(�T−
1 )2 · (�T−

2 )2,

√
(�T+

1 )2+(�T+
2 )2−(�T+

1 )2 · (�T+
2 )2

]
,[

�
F−
1 · �F−

2 , �F+
1 · �F+

2

]
⎤
⎦.
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2. .L1 ©L2 =
⎡
⎢⎣

[
�
T−
1 · �T−

2 , �T+
1 · �T+

2

]
,[√

(�F−
1 )2+(�F−

2 )2−(�F−
1 )2 · (�F−

2 )2,

√
(�F+

1 )2+(�F+
2 )2−(�F+

1 )2 · (�F+
2 )2
]
⎤
⎥⎦. 

3. . Θ·L =
[[√

1 − (1 − (�T−)2
)Θ

,

√
1 − (1 − (�T+)2

)Θ ]
,
[
(�F−)Θ, (�F+)Θ

]]
.

4. . LΘ =
[[

(�T−)Θ, (�T+)Θ
]
,
[√

1 − (1 − (�F−)2
)Θ

,

√
1 − (1 − (�F+)2

)Θ ]]
.

Definition 6 ([15]) Let .L =
〈
[�T−,�T+], [�F−,�F+]

〉
be the PIVFN: 

(i) The score function is 

. S(L) = 1

2

(
(�T−)2 + (�T+)2 − (�F−)2 − (�F+)2

)
, where S(L) ∈ [−1, 1].

(ii) The accuracy function of L is 

. H(L) = 1

2

(
(�T−)2 + (�T+)2 + (�F−)2 + (�F+)2

)
, where H(L) ∈ [0, 1].

Definition 7 ([25]) The fuzzy number .M(ε) = e
−
(

x−χ
ψ

)2
, (ψ > 0) and .ε ∈ R, is  

referred to as a normal fuzzy number (NFN) .M = (χ,ψ), N is a set of normal 
fuzzy numbers (NFNs), and .R ∈ [−∞,∞]. 
Definition 8 ([23]) Let .L = (χ1, ψ1) ∈ Nand .M = (χ2, ψ2) ∈ N , where 

.(ψ1, ψ2 > 0). Then .D(L,M) =
√

(χ1 − χ2)2 + 1
2 (ψ1 − ψ2)2. 

3 Some Basic Operation Based on CTri-NNIVN 

Define cosine trigonometric neutrosophic interval-valued numbers (CTri-NIVN) 
and neutrosophic interval-valued numbers (NFN). This section develops a new 
notion of CTri-NIVN with normal (CTri-NNIVN) and its fundamental operations. 

Definition 9 Let .(χ,ψ) ∈ N , . L = 〈(χ,ψ); [�T−,�T+], [�I−,�I+], [�F−,�F+]〉
be NSNIVN. Then we form a cosine trigonometric NNIVN (CTri-NNIVN) set as 

. cosL = {[cos
(
π/2 · (�T−

L (ε))
)

, cos
(
π/2 · (�T+

L (ε))
)
],

. [1 − cos
(
π/2 · 1 − (�I−

L (ε))
)

, 1 − cos
(
π/2 · 1 − (�I+

L (ε))
)
], [1 − cos (π/2·

(1 − �
F−
L (ε))

)
,

.1 − cos
(
π/2 · (1 − �

F+
L (ε))

)
]}. Thus, .cosL is a CTri-NNIVN and satisfied the 

condition that



23 Cosine Neutrosophic Normal Interval-Valued Aggregation Operators to. . . 523

.cos
(
π/2 · �T+

L (ε)
)

∈ [0, 1], .cos
(
π/2 · �I+

L (ε)
)

∈ [0, 1] and . 1 − cos (π/2·(
1 − �

F+
L (ε)

))
.∈ [0, 1]. 

Hence, . cosL =
{[

cos
(
π/2 · (�T−

L (ε))
)

, cos
(
π/2 · (�T+

L (ε))
) ]

, 1 −
[
cos(

π/2 · (1 − (�I−
L (ε)))

)
,

.1− cos
(
π/2 · (1 − (�I+

L (ε)))
) ]

, . 

[
1− cos

(
π/2 · ((1 − �

F−
L (ε)))

)
, 1− cos (π/2·

((1 − �
F+
L (ε)))

) ]}
is a CTri-NNIVN, put . 

[
�
T−
L ,�T+

L

]
=
[
�
T−
L e

−
(

y−χ
ψ

)2
,�T+

L

e
−
(

y−χ
ψ

)2]
and .
[
�
I−
L ,�I+

L

]
=
[
�
I−
L e

−
(

y−χ
ψ

)2
,�I+

L e
−
(

y−χ
ψ

)2]
and . 
[
�
F−
L ,�F+

L

]
=

[
�
F−
L e

−
(

y−χ
ψ

)2
,�F+

L e
−
(

y−χ
ψ

)2]
, .y ∈ Y . Here, Y is a non-empty set. 

Definition 10 Let .L =
〈
(χ,ψ); [�T−,�T+], [�I−,�I+], [�F−,�F+]

〉
be the CTri-

NIVN. Then the score function of L (where .S(L) lies between -1 and 1) is founded 
by 

. S(L) = χ

2

⎛
⎜⎜⎜⎝

2 + (cos2(π/2 · �T−)) + (cos2(π/2 · �T+)) − (cos2(π/2 · �I−))

−(cos2(π/2 · �I+)) − (cos2(π/2 · �F−)) − (cos2(π/2 · �F+))

2

⎞
⎟⎟⎟⎠ .

Definition 11 Let .L =
〈
(χ,ψ); [�T−,�T+], [�I−,�I+], [�F−,�F+]

〉
, . L1 =〈

(χ1, ψ1); [�T−
1 ,�T+

1 ], .[�I−
1 ,�I+

1 ], .[�F−
1 ,�F+

1 ]
〉
, and . L2 =

〈
(χ2, ψ2); [�T−

2 ,�T+
2 ],

.[�I−
2 ,�I+

2 ], [�F−
2 ,�F+

2 ]
〉
be CTri-NNIVNs, and .Θ > 0. Now, we defined the basic 

operations as follows: 

1. 

. cosL1 � cosL2

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(χ1 � χ2, ψ1 � ψ2);⎡
⎢⎢⎣

(cos2(π/2 · �T−
1 ))Θ + (cos2(π/2 · �T−

2 ))Θ

−(cos2(π/2 · �T−
1 ))Θ · (cos2(π/2 · �T−

2 ))Θ,

(cos2(π/2 · �T+
1 ))Θ + (cos2(π/2 · �T+

2 ))Θ

−(cos2(π/2 · �T+
1 ))Θ · (cos2(π/2 · �T+

2 ))Θ

⎤
⎥⎥⎦ ,

[
cos2(π/2 · �I−

1 ) · cos2(π/2 · �I−
2 ), cos2(π/2 · �I+

1 ) · cos2(π/2 · �I+
2 )
]
,[

cos2(π/2 · �F−
1 ) · cos2(π/2 · �F−

2 ), cos2(π/2 · �F+
1 ) · cos2(π/2 · �F+

2 )
]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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2. 

. cosL1 © cosL2 =
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(χ1 © χ2, ψ1 © ψ2);[
cos2(π/2 · �T−

1 ) · cos2(π/2 · �T−
2 ), cos2(π/2 · �T+

1 ) · cos2(π/2 · �T+
2 )
]
,

⎡
⎢⎢⎣

(cos2(π/2 · �I−
1 ))Θ + (cos2(π/2 · �I−

2 ))Θ

−(cos2(π/2 · �I−
1 ))Θ · (cos2(π/2 · �I−

2 ))Θ,

(cos2(π/2 · �I+
1 ))Θ + (cos2(π/2 · �I+

2 ))Θ

−(cos2(π/2 · �I+
1 ))Θ · (cos2(π/2 · �I+

2 ))Θ

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

(cos2(π/2 · �F−
1 ))Θ + (cos2(π/2 · �F−

2 ))Θ

−(cos2(π/2 · �F−
1 ))Θ · (cos2(π/2 · �F−

2 ))Θ,

(cos2(π/2 · �F+
1 ))Θ + (cos2(π/2 · �F+

2 ))Θ

−(cos2(π/2 · �F+
1 ))Θ · (cos2(π/2 · �F+

2 ))Θ

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

3. . Θ · cosL

=

⎡
⎢⎢⎢⎢⎢⎣

(Θ · χ,Θ · ψ);[
1 − (1 − (cos2(π/2 · �T−))Θ

)Θ
, 1 − (1 − (cos2(π/2 · �T+))Θ

)Θ ]
,[

(cos2(π/2 · �I−))Θ, (cos2(π/2 · �I+))Θ
]
,[

(cos2(π/2 · �F−))Θ, (cos2(π/2 · �F+))Θ
]

⎤
⎥⎥⎥⎥⎥⎦

.

4. . (cosL)Θ

=

⎡
⎢⎢⎢⎣

(χΘ,ψΘ);
[
(cos2(π/2 · �T−))Θ, (cos2(π/2 · �T+))Θ

]
,[

1 − (1 − (cos2(π/2 · �I−))Θ
)Θ

, 1 − (1 − (cos2(π/2 · �I+))Θ
)Θ ]

,[
1 − (1 − (cos2(π/2 · �F−))Θ

)Θ
, 1 − (1 − (cos2(π/2 · �F+))Θ

)Θ ]

⎤
⎥⎥⎥⎦ .

4 Distance for CTri-NNIVNs 

The Euclidean and Hamming distances for CTri-NNIVNs are introduced, and their 
basic mathematical properties are discussed. 

Definition 12 Let .L1 =
〈
(χ1, ψ1); [�T−

1 ,�T+
1 ], .[�I−

1 ,�I+
1 ], [�F−

1 ,�F+
1 ]
〉
and 

.L2 =
〈
(χ2, ψ2); [�T−

2 ,�T+
2 ], .[�I−

2 ,�I+
2 ], [�F−

2 ,�F+
2 ]
〉
be CTri-NNIVNs. The 

Euclidean distance and Hamming distance are defined as follows: 

.DE

(
L1, L2

)
= 1

2

√√√√√√

[ 1+I1+1+I2
2 χ1 − 1+I3+1+I4

2 χ2
]2

+1

2

[ 1+I1+1+I2
2 ψ1 − 1+I3+1+I4

2 ψ2
]2
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. DH

(
L1, L2

)
= 1

2

⎡
⎢⎢⎣

∣∣∣∣
1 + I1 + 1 + I2

2
χ1 − 1 + I3 + 1 + I4

2
χ2

∣∣∣∣
+ 1

2

∣∣∣∣
1 + I1 + 1 + I2

2
ψ1 − 1 + I3 + 1 + I4

2
ψ2

∣∣∣∣

⎤
⎥⎥⎦

. I1 = cos2(π/2 · �T−
1 ) − cos2(π/2 · �I−

1 ) − cos2(π/2 · �F−
1 )

. I2 = cos2(π/2 · �T+
1 ) − cos2(π/2 · �I+

1 ) − cos2(π/2 · �F+
1 )

. I3 = cos2(π/2 · �T−
2 ) − cos2(π/2 · �I−

2 ) − cos2(π/2 · �F−
2 )

. I4 = cos2(π/2 · �T+
2 ) − cos2(π/2 · �I+

2 ) − cos2(π/2 · �F+
2 ).

Theorem 1 Let .L1 =
〈
(χ1, ψ1); [�T−

1 ,�T+
1 ], [�I−

1 ,�I+
1 ], .[�F−

1 ,�F+
1 ]
〉
, . L2 =〈

(χ2, ψ2); [�T−
2 ,�T+

2 ], .[�I−
2 ,�I+

2 ], [�F−
2 ,�F+

2 ]
〉
, .L3 =

〈
(χ3, ψ3); .[�T−

3 ,�T+
3 ], 

.[�I−
3 ,�I+

3 ], [�F−
3 ,�F+

3 ]
〉
be CTri-NNIVNs. Then .DE(L1, L2) satisfies the condi-

tions: 

1. .DE(L1, L2) =0, if and only if .L1 = L2. 
2. .DE(L1, L2) = .DE(L2, L1). 
3. .DE(L1, L3) ≤ DE(L1, L2) + DE(L2, L3). 

Proof Proofs of (1) and (2) that are easiest way. It is remaining to Then (3) as below. 

Now, . 
(
DE(L1, L2) + DE(L2, L3)

)2 =
⎡
⎢⎣

1
2

(
(Γ1χ1 − Γ2χ2)

2 + 1
2 (Γ1ψ1 − Γ2ψ2)

2
)1/2

+ 1
2

(
(Γ2χ2 − Γ3χ3)

2 + 1
2 (Γ2ψ2 − Γ3ψ3)

2
)1/2

⎤
⎥⎦
2

implies 

.
1

4

(
(Γ1χ1 − Γ2χ2)

2 + 1

2
(Γ1ψ1 − Γ2ψ2)

2
)

+ 1

4

(
(Γ2χ2 − Γ3χ3)

2 + 1

2
(Γ2ψ2 − Γ3ψ3)

2
)

+ 1

2

(√
(Γ1χ1 − Γ2χ2)2 + 1

2
(Γ1ψ1 − Γ2ψ2)2

×
√

(Γ2χ2 − Γ3χ3)2 + 1

2
(Γ2ψ2 − Γ3ψ3)2

)
.
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Put .Γ1 = 1+I1+1+I2
2 , Γ2 = 1+I3+1+I4

2 , and . Γ3 = 1+I5+1+I6
2 .

. I1 = cos2(π/2 · �T−
1 ) − cos2(π/2 · �I−

1 ) − cos2(π/2 · �F−
1 ),

. I2 = cos2(π/2 · �T+
1 ) − cos2(π/2 · �I+

1 ) − cos2(π/2 · �F+
1 ),

. I3 = cos2(π/2 · �T−
2 ) − cos2(π/2 · �I−

2 ) − cos2(π/2 · �F−
2 ),

. I4 = cos2(π/2 · �T+
2 ) − cos2(π/2 · �I+

2 ) − cos2(π/2 · �F+
2 ),

. I5 = cos2(π/2 · �T−
3 ) − cos2(π/2 · �I−

3 ) − cos2(π/2 · �F−
3 ),

. I6 = cos2(π/2 · �T+
3 ) − cos2(π/2 · �I+

3 ) − cos2(π/2 · �F+
3 ).

Hence, . 
(
DE(L1, L2) + DE(L2, L3)

)2

. ≥ 1

4

(
(Γ1χ1 − Γ2χ2)

2 + 1

2
(Γ1ψ1 − Γ2ψ2)

2
)

+ 1

4

(
(Γ2χ2 − Γ3χ3)

2 + 1

2
(Γ2ψ2 − Γ3ψ3)

2
)

+1

2

(
(Γ1χ1 − Γ2χ2) × (Γ2χ2 − Γ3χ3) + 1

2
(Γ1ψ1 − Γ2ψ2) × (Γ2ψ2 − Γ3ψ3)

)

= 1

4
(Γ1χ1 − Γ2χ2 + Γ2χ2 − Γ3χ3)

2 + 1

8
(Γ1ψ1 − Γ2ψ2 + Γ2ψ2 − Γ3ψ3)

2

= 1

4
(Γ1χ1 − Γ3χ3)

2 + 1

8
(Γ1ψ1 − Γ3ψ3)

2

= DE(L1, L3).

Corollary 1 Let .L1 =
〈
(χ1, ψ1); [�T−

1 ,�T+
1 ], [�I−

1 ,�I+
1 ], [�F−

1 ,�F+
1 ]
〉
, . L2 =〈

(χ2, ψ2); [�T−
2 ,�T+

2 ], .[�I−
2 ,�I+

2 ], .[�F−
2 ,�F+

2 ]
〉
, .L3 =

〈
(χ3, ψ3); . [�T−

3 ,�T+
3 ],

[�I−
3 ,�I+

3 ], [�F−
3 ,�F+

3 ]
〉
be the CTri-NNIVNs. Then .DH (L1, L2) satisfies the con-

ditions: 

1. .DH (L1, L2)=0, if and only if .L1 = L2. 
2. .DH (L1, L2) =.DH (L2, L1). 
3. .DH (L1, L3) ≤ DH (L1, L2) + DH (L2, L3). 

Proof The proof is devoted to Theorem 1.
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5 Aggregation Operators for CTri-NNIVNs 

This section introduces the new operators based on CTri-NNIVWA, CTri-
NNIVWG, CTri-GNNIVWA, and CTri-GNNIVWG. 

5.1 CTri-NNIV Weighted Averaging (CTri-NNIVWA) 

Definition 13 Let Li =
〈
(χi, ψi); [�T− 

i ,�T+ 
i ], [�I− 

i ,�I+ 
i ], [�F− 

i ,�F+ 
i ]
〉
be a finite 

collection of CTri-NNIVNs, and W = (σ1, σ2, . . . , σn) be the weight of Li , σi ≥ 
0, and �n 

i=1σi = 1. Then CTri-NNIVWA (L1, L2, . . . , Ln) = �n 
i=1σiLi, i  = 

1, 2, . . .  , n. 

Theorem 2 Let Li =
〈
(χi, ψi); [�T− 

i ,�T+ 
i ], [�I− 

i ,�I+ 
i ], [�F− 

i ,�F+ 
i ]
〉
be a finite 

collection of CTri-NNIVNs. Then CT ri − NNIV  WA(L1, L2, . . . , Ln)= 

. 

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
�n

i=1 σiχi,�n
i=1σiψi

)
;[

1 − ©n
i=1

(
1 − (cos2(π/2 · �T−

i ))Θ
)σi

,

1 − ©n
i=1

(
1 − (cos2(π/2 · �T+

i ))Θ
)σi
]
,

[
©n

i=1 (cos2(π/2 · �I−
i ))σi ,©n

i=1(cos
2(π/2 · �I+

i ))σi

]
,

[
©n

i=1 (cos2(π/2 · �F−
i ))σi ,©n

i=1(cos
2(π/2 · �F+

i ))σi

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof The proof of Theorem 2 follows from the mathematical induction approach. 
If n = 2, then CTri-NNIVWA (L1, L2) = σ1 cosL1 � σ2 cosL2; put 

.σ1 cosL1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
σ1χ1, σ1ψ1

)
;[

1 −
(
1 − (cos2(π/2 · �T−

1 ))Θ
)σ1

,

1 −
(
1 − (cos2(π/2 · �T+

1 ))Θ
)σ1]

,
[
(cos2(π/2 · �I−

1 ))σ1 , (cos2(π/2 · �I+
1 ))σ1

]
,[

(cos2(π/2 · �F−
1 ))σ1 , (cos2(π/2 · �F+

1 ))σ1
]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and 

. σ2 cosL2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
σ2χ2, σ2ψ2

)
;[

1 −
(
1 − (cos2(π/2 · �T−

2 ))Θ
)σ2

,

1 −
(
1 − (cos2(π/2 · �T+

2 ))Θ
)σ2]

,
[
(cos2(π/2 · �I−

2 ))σ2 , (cos2(π/2 · �I+
2 ))σ2

]
,

[
(cos2(π/2 · �F−

2 ))σ2 , (cos2(π/2 · �F+
2 ))σ2

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We apply to Definition 11, σ1 cos L1 � σ2 cos L2 

. =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
σ1χ1 � σ2χ2, σ1ψ1 � σ2ψ2

)
;⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1 −
(
1 − (cos2(π/2 · �T−

1 ))Θ
)σ1)

+
(
1 −
(
1 − (cos2(π/2 · �T−

2 ))Θ
)σ2)

−
(
1 −
(
1 − (cos2(π/2 · �T−

1 ))Θ
)σ1)

·
(
1 −
(
1 − (cos2(π/2 · �T−

2 ))Θ
)σ2)

,(
1 −
(
1 − (cos2(π/2 · �T+

1 ))Θ
)σ1)

+
(
1 −
(
1 − (cos2(π/2 · �T+

2 ))Θ
)σ2)

−
(
1 −
(
1 − (cos2(π/2 · �T+

1 ))Θ
)σ1)

·
(
1 −
(
1 − (cos2(π/2 · �T+

2 ))Θ
)σ2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[
(cos2(π/2 · �I−

1 ))σ1 · (cos2(π/2 · �I−
2 ))σ2 ,

(cos2(π/2 · �I+
1 ))σ1(cos2(π/2 · �I+

2 ))σ2
]
,[

(cos2(π/2 · �F−
1 ))σ1 · (cos2(π/2 · �F−

2 ))σ2 ,

(cos2(π/2 · �F+
1 ))σ1(cos2(π/2 · �F+

2 ))σ2
]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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. =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
σ1χ1 � σ2χ2, σ1ψ1 � σ2ψ2

)
;⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −
(
1 − (cos2(π/2 · �T−

1 ))Θ
)σ1

·
(
1 − (cos2(π/2 · �T−

2 ))Θ
)σ2

,

1 −
(
1 − (cos2(π/2 · �T+

1 ))Θ
)σ1

·
(
1 − (cos2(π/2 · �T+

2 ))Θ
)σ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[
(cos2(π/2 · �I−

1 ))σ1 · (cos2(π/2 · �I−
2 ))σ2 ,

(cos2(π/2 · �I+
1 ))σ1 · (cos2(π/2 · �I+

2 ))σ2
]
,[

(cos2(π/2 · �F−
1 ))σ1 · (cos2(π/2 · �F−

2 ))σ2 ,

(cos2(π/2 · �F+
1 ))σ1 · (cos2(π/2 · �F+

2 ))σ2
]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Hence, CT ri − NNIV  WA(L1, L2) 

. =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
�2

i=1 σiχi,�2
i=1σiψi

)
;[

1 − ©2
i=1

(
1 − (cos2(π/2 · �T−

i ))Θ
)σi

,

1 − ©2
i=1

(
1 − (cos2(π/2 · �T+

i ))Θ
)σi
]
,

[
©2

i=1 (cos2(π/2 · �I−
i ))σi ,©2

i=1(cos
2(π/2 · �I+

i ))σi

]
,[

©2
i=1 (cos2(π/2 · �F−

i ))σi ,©2
i=1(cos

2(π/2 · �F+
i ))σi

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Also, it is valid for n ≥ 3. Similarly, CT ri − NNIV  WA(L1, L2, . . . , Ll) = 

. 

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
�l

i=1 σiχi,�l
i=1σiψi

)
;[

1 − ©l
i=1

(
1 − (cos2(π/2 · �T−

i ))Θ
)σi

,

1 − ©l
i=1

(
1 − (cos2(π/2 · �T+

i ))Θ
)σi
]
,

[
©l

i=1 (cos2(π/2 · �I−
i ))σi ,©l

i=1(cos
2(π/2 · �I+

i ))σi

]
,[

©l
i=1 (cos2(π/2 · �F−

i ))σi ,©l
i=1(cos

2(π/2 · �F+
i ))σi

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If n = l + 1, then CTri-NNIVWA (L1, L2, . . . , Ll, Ll+1)
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. =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
�l

i=1 σiχi � σl+1χl+1,�l
i=1σiψi � σl+1ψl+1

)
;⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�l
i=1

(
1 −
(
1 − (cos2(π/2 · �T−

i ))Θ
)σi
)

+
(
1 −
(
1 − (cos2(π/2 · �T−

l+1))
Θ
)σl+1

)

− ©l
i=1

(
1 −
(
1 − (cos2(π/2 · �T−

i ))Θ
)σi
)

·
(
1 −
(
1 − (cos2(π/2 · �T−

l+1))
Θ
)σl+1

)
,

�l
i=1

(
1 −
(
1 − (cos2(π/2 · �T+

i ))Θ
)σi
)

+
(
1 −
(
1 − (cos2(π/2 · �T+

l+1))
Θ
)σl+1

)

− ©l
i=1

(
1 −
(
1 − (cos2(π/2 · �T+

i ))Θ
)σi
)

·
(
1 −
(
1 − (cos2(π/2 · �T+

l+1))
Θ
)σl+1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[
©l

i=1 (cos2(π/2 · �I−
i ))σi · (cos2(π/2 · �I−

l+1))
σl+1 ,

©l
i=1(cos

2(π/2 · �I+
i ))σi · (cos2(π/2 · �I+

l+1))
σl+1
]
,[

©l
i=1 (cos2(π/2 · �F−

i ))σi · (cos2(π/2 · �F−
l+1))

σl+1 ,

©l
i=1(cos

2(π/2 · �F+
i ))σi · (cos2(π/2 · �F+

l+1))
σl+1
]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
�l+1

i=1 σiχi,�l+1
i=1σiψi

)
;⎡

⎣ 1 − ©l+1
i=1

(
1 − (cos2(π/2 · �T−

i ))Θ
)σi

,

1 − ©l+1
i=1

(
1 − (cos2(π/2 · �T+

i ))Θ
)σi

⎤
⎦ ,

[
©l+1

i=1 (cos2(π/2 · �I−
i ))σi ,©l+1

i=1(cos
2(π/2 · �I+

i ))σi

]
,[

©l+1
i=1 (cos2(π/2 · �F−

i ))σi ,©l+1
i=1(cos

2(π/2 · �F+
i ))σi

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Theorem 3 If all Li =
〈
(χi, ψi);

[
(cos(π/2·�T− 

i )), (cos(π/2·�T+ 
i ))
]
,
[
(cos(π/2·

�
I− 
i )), (cos(π/2 ·�I+ 

i ))
]
,
[
(cos(π/2 ·�F− 

i )), (cos(π/2 ·�F+ 
i ))
]〉

are equal and Li = 
L with Θ = 1, then CTri-NNIVWA(L1, L2, . . . , Ln) = L. 

Proof Since (χi, ψi) = (χ, ψ), [cos(π/2 · �T− 
i ), cos(π/2 · �T+ 

i )] = [cos(π/2 ·
�
T−), cos(π/2·�T+)], [cos(π/2·�I− 

i ), cos(π/2·�I+ 
i )] = [cos(π/2·�I−), cos(π/2·

�
I+)], and [cos(π/2 · �F− 

i ), cos(π/2 · �F+ 
i )] = [cos(π/2 · �F−), cos(π/2 · �F+)], 

for i = 1, 2, . . .  ,  n  and �n 
i=1σi = 1. Now, CT ri − NNIV  WA(L1, L2, . . . , Ln)
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. =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
�n

i=1 σiχi,�n
i=1σiψi

)
;⎡

⎣ 1 − ©n
i=1

(
1 − (cos(π/2 · �T−

i ))Θ
)σi

,

1 − ©n
i=1

(
1 − (cos(π/2 · �T+

i ))Θ
)σi

⎤
⎦ ,

[
©n

i=1 (cos(π/2 · �I−
i ))σi ,©n

i=1(cos(π/2 · �I+
i ))σi

]
,[

©n
i=1 (cos(π/2 · �F−

i ))σi ,©n
i=1(cos(π/2 · �F+

i ))σi

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
χ �n

i=1 σi, ψ �n
i=1 σi

)
;⎡

⎢⎣
1 −
(
1 − (cos(π/2 · �T−))Θ

)�n
i=1σi

,

1
(
1 − (cos(π/2 · �T+))Θ

)�n
i=1σi

⎤
⎥⎦ ,

[
(cos(π/2 · �I−))�

n
i=1σi , (cos(π/2 · �I+))�

n
i=1σi

]
,[

(cos(π/2 · �F−))�
n
i=1σi , (cos(π/2 · �F+))�

n
i=1σi

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

(χ,ψ);
⎡
⎣ 1 −

(
1 − (cos(π/2 · �T−))Θ

)
,

1 −
(
1 − (cos(π/2 · �T+))Θ

)
⎤
⎦ ,

[
(cos(π/2 · �I−)), (cos(π/2 · �I+))

]
,[

(cos(π/2 · �F−)), (cos(π/2 · �F+))
]

⎤
⎥⎥⎥⎥⎥⎥⎦

= L.

Theorem 4 Let Li =
〈
(χij , ψij ); [�T− 

ij ,�T+ 
ij ], [�I− 

ij ,�
I+ 
ij ][�F− 

ij ,�F+ 
ij ]
〉
be a collec-

tion of CTri-NNIVWA, where (i = 1, 2, . . . , n); (j = 1, 2, . . .  ,  ij ), ←−χ = inf χij , 
−→χ = sup χij , 

←−
ψ = sup ψij , 

−→
ψ = inf ψij , 

←−−
�
T− = inf�T

− 
ij , 

−−→
�
T− = sup�T

− 
ij , 

←−−
�
T+ = inf�T

+ 
ij , 

−−→
�
T+ = sup�T

+ 
ij , 

←−
�
I− = inf�I

− 
ij , 

−→
�
I− = sup�I

− 
ij , 

←−
�
I+ = inf�I

+ 
ij , −→

�
I+ = sup�I

+ 
ij , 

←−−
�
F− = inf�F

− 
ij , 

−−→
�
F− = sup�F

− 
ij , 

←−−
�
F+ = inf�F

+ 
ij , and 

−−→
�
F+ = 

sup�F
+ 

ij . 

Then,
〈
(←−χ ,

←−
ψ ); [←−−

�
T−,

←−−
�
T+], [−→�I−,

−→
�
I+], [−−→�F−, 

−−→
�
F+]
〉

≤ CT ri − NNIV  WA  
(L1, L2, . . . , Ln) 

≤
〈
(−→χ ,

−→
ψ ); [−−→�T−,

−−→
�
T+], [←−

�
I−,

←−
�
I+], [←−−

�
F−,

←−−
�
F+]
〉
. 

Proof Since,
←−−
�
T− = inf�T

− 
ij ,

−−→
�
T− = sup�T

− 
ij
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←−−
�
T+ = inf�T

+ 
ij ,

−−→
�
T+ = sup�T

+ 
ij and

←−−
�
T− ≤ �

T
− 

ij ≤ −−→
�
T− and 

←−−
�
T+ ≤ �

T
+ 

ij ≤ −−→
�
T+. 

We have
←−−−−−−−−−−
cos2(π/2 · �T−) + ←−−−−−−−−−−

cos2(π/2 · �T+) 

. = 1− ©n
i=1

(
1−(

←−−−−−−−−−−
cos2(π/2 · �T−))Θ

)σi + 1− ©n
i=1

(
1−(

←−−−−−−−−−−
cos2(π/2 · �T+))Θ

)σi

≤ 1− ©n
i=1

(
1−(cos2 ·π/2 · �T

−
ij )Θ

)σi + 1− ©n
i=1

(
1−(cos2 ·π/2 · �T

+
ij )Θ

)σi

≤ 1− ©n
i=1

(
1−(

−−−−−−−−−−→
cos2(π/2 · �T−))Θ

)σi + 1− ©n
i=1

(
1 − (

−−−−−−−−−−→
cos2(π/2 · �T+))Θ

)σi

=
−−−−−−−−−−→
cos2(π/2 · �T−) +

−−−−−−−−−−→
cos2(π/2 · �T+).

Since,
←−
�
I− = inf�I

− 
ij , 

−→
�
I− = sup�I

− 
ij←−

�
I+ = inf�I

+ 
ij , 

−→
�
I+ = sup�I

+ 
ij and 

←−
�
I− ≤ �

I
− 

ij ≤ 
−→
�
I− and 

←−
�
I+ ≤ �

I
+ 

ij ≤ 
−→
�
I+. We  

have 

. 
←−−−−−−−−−−
cos2(π/2 · �I−) +

←−−−−−−−−−−
cos2(π/2 · �I+)

= ©n
i=1(

←−−−−−−−−−−
cos2(π/2 · �I−))σi + ©n

i=1(
←−−−−−−−−−−
cos2(π/2 · �I+))σi

≤ ©n
i=1(cos

2 ·π/2 · �I
−

ij )σi + ©n
i=1(cos

2 ·π/2 · �I
+

ij )σi

≤ ©n
i=1(

−−−−−−−−−−→
cos2(π/2 · �I−))σi + ©n

i=1(
−−−−−−−−−−→
cos2(π/2 · �I+))σi

=
−−−−−−−−−−→
cos2(π/2 · �I−) +

−−−−−−−−−−→
cos2(π/2 · �I+).

Since,
←−−
�
F− = inf�F

− 
ij ,

−−→
�
F− = sup�F

− 
ij←−−

�
F+ = inf�F

+ 
ij ,

−−→
�
F+ = sup�F

+ 
ij and

←−−
�
F− ≤ �

F
− 

ij ≤ 
−−→
�
F− and

←−−
�
F+ ≤ �

F
+ 

ij ≤ 
−−→
�
F+. 

We have 

.

←−−−−−−−−−−
cos2(π/2 · �F−) +

←−−−−−−−−−−
cos2(π/2 · �F+)

= ©n
i=1(

←−−−−−−−−−−
cos2(π/2 · �F−))σi + ©n

i=1(
←−−−−−−−−−−
cos2(π/2 · �F+))σi

≤ ©n
i=1(cos

2 ·π/2 · �F
−

ij )σi + ©n
i=1(cos

2 ·π/2 · �F
+

ij )σi

≤ ©n
i=1(

−−−−−−−−−−→
cos2(π/2 · �F−))σi + ©n

i=1(
−−−−−−−−−−→
cos2(π/2 · �F+))σi

=
−−−−−−−−−−→
cos2(π/2 · �F−) +

−−−−−−−−−−→
cos2(π/2 · �F+).
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Since, ←−χ = inf χij , 
−→χ = sup χij ,

←−
ψ = sup ψij ,

−→
ψ = inf ψij and

←−χ ≤ χij ≤ −→χ 
and

−→
ψ ≤ ψij ≤ ←−

ψ . 
Hence, �n 

i=1σi
←−χ ≤ �n 

i=1σiχij ≤ �n 
i=1σi

−→χ and �n 
i=1σi 

−→
ψ ≤ �n 

i=1σiψij ≤
�n 

i=1σi 
←−
ψ . 

Therefore, 

. 
�n

i=1σi
←−χ

2
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 +
(
1 − ©n

i=1

(
1 − (

←−−−−−−−−−−
cos2(π/2 · �T−))Θ

)σi

)

+
(
1 − ©n

i=1

(
1 − (

←−−−−−−−−−−
cos2(π/2 · �T+))Θ

)σi

)

2

−

(
©n

i=1(
−−−−−−−−−−→
cos2(π/2 · �I−))σi

)
+
(
©n

i=1(
−−−−−−−−−−→
cos2(π/2 · �I+))σi

)

2

−

(
©n

i=1(
−−−−−−−−−−→
cos2(π/2 · �F−))σi

)
+
(
©n

i=1(
−−−−−−−−−−→
cos2(π/2 · �F+))σi

)

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ �n
i=1σiχij

2
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 +
(
1 − ©n

i=1

(
1 − (cos2 ·π/2 · �T

−
ij )Θ

)σi
)

+
(
1 − ©n

i=1

(
1 − (cos2 ·π/2 · �T

+
ij )Θ

)σi
)

2

−
(
©n

i=1(cos
2 ·π/2 · �I

−
ij )σi

)
+
(
©n

i=1(cos
2 ·π/2 · �I

+
ij )σi

)

2

−
(
©n

i=1(cos
2 ·π/2 · �F

−
ij )σi

)
+
(
©n

i=1(cos
2 ·π/2 · �F

+
ij )σi

)

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. ≤ �n
i=1σi

−→χ
2

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 +
(
1 − ©n

i=1

(
1 − (

−−−−−−−−−−→
cos2(π/2 · �T−))Θ

)σi

)

+
(
1 − ©n

i=1

(
1 − (

−−−−−−−−−−→
cos2(π/2 · �T+))Θ

)σi

)

2

−

(
©n

i=1(
←−−−−−−−−−−
cos2(π/2 · �I−))σi

)
+
(
©n

i=1(
←−−−−−−−−−−
cos2(π/2 · �I+))σi

)

2

−

(
©n

i=1(
←−−−−−−−−−−
cos2(π/2 · �F−))σi

)
+
(
©n

i=1(
←−−−−−−−−−−
cos2(π/2 · �F+))σi

)

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Hence,
〈
(←−χ ,

←−
ψ ); [←−−−−−−−−−−

cos2(π/2 · �T−),
←−−−−−−−−−−
cos2(π/2 · �T+)], [−−−−−−−−−−→

cos2(π/2 · �I−), 
−−−−−−−−−−→
cos2(π/2 · �I+)],
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[−−−−−−−−−−→
cos2(π/2 · �F−),

−−−−−−−−−−→
cos2(π/2 · �F+)]

〉
≤ CT ri − NNIV  WA(L1, L2, . . . , Ln) ≤

〈
(−→χ ,

−→
ψ ); [−−−−−−−−−−→

cos2(π/2 · �T−), 
−−−−−−−−−−→
cos2(π/2 · �T+)], [←−−−−−−−−−−

cos2(π/2 · �I−),
←−−−−−−−−−−
cos2(π/2 · �I+)], 

[←−−−−−−−−−−
cos2(π/2 · �F−),

←−−−−−−−−−−
cos2(π/2 · �F+)]

〉
. 

Theorem 5 Let Li =
〈
(χtij , ψtij ); [�T−

tij ),�T+
tij )], [�I−

tij ),�
I+
tij )], [�F−

tij ),�F+
tij )]
〉
and 

Wi =
〈
(χhij , ψhij ); [�T− 

hij 
),�T+ 

hij 
)], [�I− 

hij 
),�I+ 

hij 
)], [�F− 

hij 
),�F+ 

hij 
)]
〉
(i = 1, 2, . . .  , n); 

(j = 1, 2, . . .  , ij ) be the two families of CTri-NNIVWAs. For any i, if there is 

χtij ≤ ψhij
,
(
cos2(π/2 · �T−

tij )
)

+
(
cos2(π/2 · �T+

tij )
)

≤(
cos2(π/2 · �T− 

hij 
)
)

+
(
cos2(π/2 · �T+ 

hij 
)
)
and
(
cos2(π/2 · �I−

tij )
)

+ (cos2(π/2 

·�I+
tij )
)

≥
(
cos2(π/2 · �I− 

hij 
)
)

+
(
cos2(π/2 · �I+ 

hij 
)
)

and
(
cos2(π/2 · �F−

tij )
)

+(
cos2(π/2 · �F+

tij )
)

≥
(
cos2(π/2 · �F− 

hij 
)
)

+
(
cos2(π/2 · �F+ 

hij 
)
)
or Li ≤ Wi , then 

CT ri − NNIV  WA  (L1, L2, . . . , Ln) ≤ CT ri − NNIV  WA  (W1,W2, . . . , Wn). 

Proof For every i, χtij ≤ ψhij
. Thus, �n 

i=1χtij ≤ �n 
i=1ψhij

. 

For any i,
(
cos2(π/2 · �T−

tij )
)

+
(
cos2(π/2 · �T+

tij )
)

≤
(
cos2(π/2 · �T− 

hij 
)
)

+(
cos2(π/2 · �T+ 

hij 
)
)
. 

Therefore, 1 −
(
cos2(π/2 · �T−

ti )
)

+ 1 −
(
cos2(π/2 · �T+

ti )
)

≥ 1 −(
cos2(π/2 · �T− 

hi 
)
)

+ 1 −
(
cos2(π/2 · �T+ 

hi 
)
)
. 

Hence,©n 
i=1

(
1 −
(
cos2(π/2 · �T−

ti )
))σi +©n 

i=1

(
1 −
(
cos2(π/2 · �T+

ti )
))σi ≥

©n 
i=1

(
1 −
(
cos2(π/2 · �T− 

hi 
)
))σi + ©n 

i=1

(
1 −
(
cos2(π/2 · �T+ 

hi 
)
))σi 

and(
1 − ©n 

i=1

(
1 −
(
cos2(π/2 · �T−

ti )
)Θ)σi

)
+

(
1 − ©n 

i=1

(
1 −
(
cos2(π/2 

·�T+
ti )
)Θ)σi

)
≤
(
1 − ©n 

i=1

(
1 −
(
cos2(π/2 · �T− 

hi 
)
)Θ)σi

)
+ (

1 − ©n 
i=1(

1 −
(
cos2(π/2 · �T+ 

hi 
)
)Θ)σi

)

and 

2 +
(
1 − ©n 

i=1

(
1 −
(
cos2(π/2 · �T−

ti )
)Θ)σi

)

+
(
1 − ©n 

i=1

(
1 −
(
cos2(π/2 · �T+

ti )
)Θ)σi

)

2 ≤ 

2 +
(
1 − ©n 

i=1

(
1 −
(
cos2(π/2 · �T− 

hi 
)
)Θ)σi

)

+
(
1 − ©n 

i=1

(
1 −
(
cos2(π/2 · �T+ 

hi 
)
)Θ)σi

)

2 . 
For every i,
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(
cos2(π/2 · �I−

tij )
)Θ +

(
cos2(π/2 · �I+

tij )
)Θ ≥

(
cos2(π/2 · �I− 

hij 
)
)Θ +

(
cos2(π/2 · �I+ 

hij 
)
)Θ 

. 

Therefore, 

−
(©n 

i=1 cos
2(π/2 · �I−

tij )
)
+
(©n 

i=1 cos
2(π/2 · �I+

tij )
)

2 

≤ −
(
©n 

i=1 cos
2(π/2 · �I− 

hij 
)
)

+
(
©n 

i=1 cos
2(π/2 · �I+ 

hij 
)
)

2 . 

For any i,
(
cos2(π/2 · �F−

tij )
)

+
(
cos2(π/2 · �F+

tij )
)

≥
(
cos2(π/2 · �F− 

hij 
)
)

+(
cos2(π/2 · �F+ 

hij 
)
)
. 

Therefore, 

−
(©n 

i=1 cos
2(π/2 · �F−

tij )
)
+
(©n 

i=1 cos
2(π/2 · �F+

tij )
)

2 

≤ −
(
©n 

i=1 cos
2(π/2 · �F− 

hij 
)
)

+
(
©n 

i=1 cos
2(π/2 · �F+ 

hij 
)
)

2 . 

. 
�n

i=1χtij

2
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 +
(
1 − ©n

i=1

(
1 − (cos2 ·π/2 · �T

−
t i )Θ

)σi
)

+
(
1 − ©n

i=1

(
1 − (cos2 ·π/2 · �T

+
t i )Θ

)σi
)

2

−
(
©n

i=1(cos
2 ·π/2 · �I

−
t ij )
)

+
(
©n

i=1(cos
2 ·π/2 · �I

+
t ij )
)

2

−
(
©n

i=1(cos
2 ·π/2 · �F

−
t ij )
)

+
(
©n

i=1(cos
2 ·π/2 · �F

+
t ij )
)

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

. ≤ �n
i=1χhij

2
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 +
(
1 − ©n

i=1

(
1 − (cos2 ·π/2 · �T

−
hi )Θ

)σi
)

+
(
1 − ©n

i=1

(
1 − (cos2 ·π/2 · �T

+
hi )Θ

)σi
)

2

−
(
©n

i=1(cos
2 ·π/2 · �I

−
hij )
)

+
(
©n

i=1(cos
2 ·π/2 · �I

+
hij )
)

2

−
(
©n

i=1(cos
2 ·π/2 · �F

−
hij )
)

+
(
©n

i=1(cos
2 ·π/2 · �F

+
hij )
)

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Hence, CT ri−NNIV  WA  (L1, L2, . . . , Ln) ≤ CT ri−NNIV  WA  (W1,W2, . . . ,  
Wn). 

5.2 Generalized CTri-NNIVWA (CTri-GNNIVWA) 

Definition 14 Let Li =
〈
(χi, ψi); [�T− 

i ,�T+ 
i ], [�I− 

i ,�I+ 
i ], [�F− 

i ,�F+ 
i ]
〉
be the 

finite collection of CTri-NNIVN. Then CTri-GNNIVWA (L1, L2, . . . , Ln) =(
�n 

i=1 σi(cos Li)
Θ
)1/Θ 

.
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Theorem 6 Let Li =
〈
(χi, ψi); [�T− 

i ,�T+ 
i ], [�I− 

i ,�I+ 
i ], [�F− 

i ,�F+ 
i ]
〉
be the finite 

collection of CTri-NNIVNs. Then CTri-GNNIVWA (L1, L2, . . . , Ln) = 

. 

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

((
�n

i=1 σiχ
Θ
i

)1/Θ
,
(
�n

i=1 σiψ
Θ
i

)1/Θ);
⎡
⎢⎢⎢⎣

(
1 − ©n

i=1

(
1 −
(
(cos2(π/2 · �T−

i ))Θ
)Θ)σi

)1/Θ
,

(
1 − ©n

i=1

(
1 −
(
(cos2(π/2 · �T+

i ))Θ
)Θ)σi

)1/Θ

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣
1 −
(
1 −
(

©n
i=1

(
1 −
(
1 − (cos2(π/2 · �I−

i ))Θ
)Θ)σi

)Θ)1/Θ
,

1 −
(
1 −
(

©n
i=1

(
1 −
(
1 − (cos2(π/2 · �I+

i ))Θ
)Θ)σi

)Θ)1/Θ

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣
1 −
(
1 −
(

©n
i=1

(
1 −
(
1 − (cos2(π/2 · �F−

i ))Θ
)Θ)σi

)Θ)1/Θ
,

1 −
(
1 −
(

©n
i=1

(
1 −
(
1 − (cos2(π/2 · �F+

i ))Θ
)Θ)σi

)Θ)1/Θ

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof It is compulsory to prove that �n 
i=1σi(cos Li)

Θ =⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

((
�n 

i=1 σiχ
Θ 
i

)
,
(
�n 

i=1 σiψ
Θ 
i

))
; 

⎡ 

⎢⎢⎣ 
1 − ©n 

i=1

(
1 −
(
(cos2(π/2 · �T− 

i ))Θ
)Θ)σi 

, 

1 − ©n 
i=1

(
1 −
(
(cos2(π/2 · �T+ 

i ))Θ
)Θ)σi 

⎤ 

⎥⎥⎦ , 

⎡ 

⎢⎢⎣
©n 

i=1

(
1 −
(
1 − (cos2(π/2 · �I− 

i ))Θ
)Θ)σi 

,

©n 
i=1

(
1 −
(
1 − (cos2(π/2 · �I+ 

i ))Θ
)Θ)σi 

⎤ 

⎥⎥⎦ , 

⎡ 

⎢⎢⎣
©n 

i=1

(
1 −
(
1 − (cos2(π/2 · �F− 

i ))Θ
)Θ)σi 

,

©n 
i=1

(
1 −
(
1 − (cos2(π/2 · �F+ 

i ))Θ
)Θ)σi 

⎤ 

⎥⎥⎦ 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

. 

The proof uses a mathematical induction approach. If n = 2, then σ1(cos L1)
Θ �

σ2(cos L2)
Θ
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. =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
σ1χ

Θ
1 � σ2χ

Θ
2 , σ1ψ

Θ
1 � σ2ψ

Θ
2

)
;⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1 −
(
1 −
(
(cos2(π/2 · �T−

1 ))Θ
)Θ)σ1

)Θ

+
(
1 −
(
1 −
(
(cos2(π/2 · �T−

2 ))Θ
)Θ)σ1

)Θ

,

−
(
1 −
(
1 −
(
(cos2(π/2 · �T−

1 ))Θ
)Θ)σ1

)Θ

·
(
1 −
(
1 −
(
(cos2(π/2 · �T−

2 ))Θ
)Θ)σ1

)Θ

(
1 −
(
1 −
(
(cos2(π/2 · �T+

1 ))Θ
)Θ)σ1

)Θ

+
(
1 −
(
1 −
(
(cos2(π/2 · �T+

2 ))Θ
)Θ)σ1

)Θ

−
(
1 −
(
1 −
(
(cos2(π/2 · �T+

1 ))Θ
)Θ)σ1

)Θ

·
(
1 −
(
1 −
(
(cos2(π/2 · �T+

2 ))Θ
)Θ)σ1

)Θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1 −
(
1 − (cos2(π/2 · �I−

1 ))Θ
)Θ)σ1

·
(
1 −
(
1 − (cos2(π/2 · �I−

2 ))Θ
)Θ)σ1

,

(
1 −
(
1 − (cos2(π/2 · �I+

1 ))Θ
)Θ)σ1

·
(
1 −
(
1 − (cos2(π/2 · �I+

2 ))Θ
)Θ)σ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1 −
(
1 − (cos2(π/2 · �F−

1 ))Θ
)Θ)σ1

·
(
1 −
(
1 − (cos2(π/2 · �F−

2 ))Θ
)Θ)σ1

,

(
1 −
(
1 − (cos2(π/2 · �F+

1 ))Θ
)Θ)σ1

·
(
1 −
(
1 − (cos2(π/2 · �F+

2 ))Θ
)Θ)σ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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. =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
�2

i=1 σiχ
Θ
i ,�2

i=1σiψ
Θ
i

)
;⎡

⎢⎢⎣
1 − ©2

i=1

(
1 −
(
(cos2(π/2 · �T−

1 ))Θ
)Θ)σi

,

1 − ©2
i=1

(
1 −
(
(cos2(π/2 · �T+

1 ))Θ
)Θ)σi

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

©2
i=1

(
1 −
(
1 − (cos2(π/2 · �I−

i ))Θ
)Θ)σi

,

©2
i=1

(
1 −
(
1 − (cos2(π/2 · �I+

i ))Θ
)Θ)σi

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

©2
i=1

(
1 −
(
1 − (cos2(π/2 · �F−

i ))Θ
)Θ)σi

,

©2
i=1

(
1 −
(
1 − (cos2(π/2 · �F+

i ))Θ
)Θ)σi

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In general, the form �l 
i=1σi(cos Li)

Θ =⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
�l 

i=1 σiχ
Θ 
i ,�l 

i=1σiψ
Θ 
i

)
;⎡ 

⎢⎢⎣ 
1 − ©l 

i=1

(
1 −
(
(cos2(π/2 · �T− 

1 ))Θ
)Θ)σi 

, 

1 − ©l 
i=1

(
1 −
(
(cos2(π/2 · �T+ 

1 ))Θ
)Θ)σi 

⎤ 

⎥⎥⎦ , 

⎡ 

⎢⎢⎣
©l 

i=1

(
1 −
(
1 − (cos2(π/2 · �I− 

i ))Θ
)Θ)σi 

,

©l 
i=1

(
1 −
(
1 − (cos2(π/2 · �I− 

i ))Θ
)Θ)σi 

⎤ 

⎥⎥⎦ , 

⎡ 

⎢⎢⎣
©l 

i=1

(
1 −
(
1 − (cos2(π/2 · �F− 

i ))Θ
)Θ)σi 

,

©l 
i=1

(
1 −
(
1 − (cos2(π/2 · �F− 

i ))Θ
)Θ)σi 

⎤ 

⎥⎥⎦ 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

. 

If n = l + 1, then �l 
i=1σi(cos Li)

Θ � σl+1(cos Ll+1)
Θ = �l+1 

i=1σi(cos Li)
Θ . 

Now, �l 
i=1σi(cos Li)

Θ � σl+1(cos Ll+1)
Θ = σ1(cos L1)

Θ � σ2(cos L2)
Θ � . . . �

σl(cos Ll)
Θ � σl+1(cos Ll+1)

Θ
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. =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
�l

i=1 σiχ
Θ
i � σl+1χ

Θ
l+1,�l

i=1σiψ
Θ
i � σl+1ψ

Θ
l+1

)
;⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1 − ©l

i=1

(
1 −
(
(cos2(π/2 · �T−

i ))Θ
)Θ)σi

)Θ

+
(
1 −
(
1 −
(
(cos2(π/2 · �T−

l+1))
Θ
)Θ)σ1

)Θ

,

−
(
1 − ©l

i=1

(
1 −
(
(cos2(π/2 · �T−

i ))Θ
)Θ)σi

)Θ

·
(
1 −
(
1 −
(
(cos2(π/2 · �T−

l+1))
Θ
)Θ)σ1

)Θ

(
1 − ©l

i=1

(
1 −
(
(cos2(π/2 · �T+

i ))Θ
)Θ)σi

)Θ

+
(
1 −
(
1 −
(
(cos2(π/2 · �T+

l+1))
Θ
)Θ)σ1

)Θ

−
(
1 − ©l

i=1

(
1 −
(
(cos2(π/2 · �T+

i ))Θ
)Θ)σi

)Θ

·
(
1 −
(
1 −
(
(cos2(π/2 · �T+

l+1))
Θ
)Θ)σ1

)Θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

©l
i=1

(
1 −
(
1 − (cos2(π/2 · �I−

i ))Θ
)Θ)σi

·
(
1 −
(
1 − (cos2(π/2 · �I−

l+1))
Θ
)Θ)σ1

,

©l
i=1

(
1 −
(
1 − (cos2(π/2 · �I+

i ))Θ
)Θ)σi

·
(
1 −
(
1 − (cos2(π/2 · �I+

l+1))
Θ
)Θ)σ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

©l
i=1

(
1 −
(
1 − (cos2(π/2 · �F−

i ))Θ
)Θ)σi

·
(
1 −
(
1 − (cos2(π/2 · �F−

l+1))
Θ
)Θ)σ1

,

©l
i=1

(
1 −
(
1 − (cos2(π/2 · �F+

i ))Θ
)Θ)σi

·
(
1 −
(
1 − (cos2(π/2 · �F+

l+1))
Θ
)Θ)σ1

.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Thus, �l+1 
i=1σi(cos Li)

Θ = 

. 

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
�l+1

i=1 σiχ
Θ
i ,�l+1

i=1σiψ
Θ
i

)
;⎡

⎢⎢⎣
1 − ©l+1

i=1

(
1 −
(
(cos2(π/2 · �T−

1 ))Θ
)Θ)σi

,

1 − ©l+1
i=1

(
1 −
(
(cos2(π/2 · �T+

1 ))Θ
)Θ)σi

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

©l+1
i=1

(
1 −
(
1 − (cos2(π/2 · �I−

i ))Θ
)Θ)σi

,

©l+1
i=1

(
1 −
(
1 − (cos2(π/2 · �I−

i ))Θ
)Θ)σi

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

©l+1
i=1

(
1 −
(
1 − (cos2(π/2 · �F−

i ))Θ
)Θ)σi

,

©l+1
i=1

(
1 −
(
1 − (cos2(π/2 · �F−

i ))Θ
)Θ)σi

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Hence,
(
�l+1 

i=1σi(cos Li)
Θ
)1/Θ 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

((
�l+1 

i=1 σiχ
Θ 
i

)1/Θ 
,
(
�l+1 

i=1 σiψ
Θ 
i

)1/Θ); 
⎡ 

⎢⎢⎢⎣

(
1 − ©l+1 

i=1

(
1 −
(
(cos2(π/2 · �T− 

i ))Θ
)Θ)σi

)1/Θ 
,

(
1 − ©l+1 

i=1

(
1 −
(
(cos2(π/2 · �T+ 

i ))Θ
)Θ)σi

)1/Θ 

⎤ 

⎥⎥⎥⎦ 
, 

⎡ 

⎢⎢⎢⎣ 

1 −
(
1 −
(

©l+1 
i=1

(
1 −
(
1 − (cos2(π/2 · �I− 

i ))Θ
)Θ)σi

))1/Θ 
, 

1 −
(
1 −
(

©l+1 
i=1

(
1 −
(
1 − (cos2(π/2 · �I+ 

i ))Θ
)Θ)σi

))1/Θ 

⎤ 

⎥⎥⎥⎦ 
, 

⎡ 

⎢⎢⎢⎣ 

1 −
(
1 −
(

©l+1 
i=1

(
1 −
(
1 − (cos2(π/2 · �F− 

i ))Θ
)Θ)σi

))1/Θ 
, 

1 −
(
1 −
(

©l+1 
i=1

(
1 −
(
1 − (cos2(π/2 · �F+ 

i ))Θ
)Θ)σi

))1/Θ 

⎤ 

⎥⎥⎥⎦ 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

. 

It is true for any l. 

In the case of Θ = 1, the CTri-GNNIVWA becomes the CTri-NNIVWA. 

Theorem 7 If all Li =
〈
(χi, ψi);

[
(cos(π/2·�T− 

i )), (cos(π/2·�T+ 
i ))
]
,
[
(cos(π/2·

�
I− 
i )), (cos(π/2 · �I+ 

i ))
]
,[

(cos(π/2 · �F− 
i )), (cos(π/2 · �F+ 

i ))
]〉

are equal and Li = L with Θ = 1, then 
CTri-GNNIVWA(L1, L2, . . . , Ln) = L.
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Proof The proof of Theorem 7 is based on Theorem 3. 

CTri-GNNIVWA is valid for Theorem 4 and Theorem 5 satisfy the boundedness 
and monotonicity properties. 

5.3 Generalized CTri-NNIVWG (CTri-GNNIVWG) 

Definition 15 Let Li =
〈
(χi, ψi); [�T− 

i ,�T+ 
i ], [�I− 

i ,�I+ 
i ], [�F− 

i ,�F+ 
i ]
〉
be the 

finite collection of CTri-NNIVNs. Then CTri-GNNIVWG (L1, L2, . . . , Ln) = 
1 
Θ

(
©n 

i=1 (Θ cos Li)
σi

)
, (i = 1, 2, . . . , n). 

Theorem 8 Let Li =
〈
(χi, ψi); [�T− 

i ,�T+ 
i ], [�I− 

i ,�I+ 
i ], [�F− 

i ,�F+ 
i ]
〉
be the finite 

collection of CTri-NNIVNs. Then CTri-GNNIVWG(L1, L2, . . . , Ln) = 

. 

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1
Θ

©n
i=1 (Θχi)

σi ,
1

Θ
©n

i=1 (Θψi)
σi

)
;

⎡
⎢⎢⎢⎣
1 −
(
1 −
(

©n
i=1

(
1 −
(
1 − (cos2(π/2 · �T−

i ))Θ
)Θ)σi

)Θ)1/Θ
,

1 −
(
1 −
(

©n
i=1

(
1 −
(
1 − (cos2(π/2 · �T+

i ))Θ
)Θ)σi

)Θ)1/Θ

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

(
1 − ©n

i=1

(
1 −
(
(cos2(π/2 · �I−

i ))Θ
)Θ)σi

)1/Θ
,

(
1 − ©n

i=1

(
1 −
(
(cos2(π/2 · �I+

i ))Θ
)Θ)σi

)1/Θ

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

(
1 − ©n

i=1

(
1 −
(
(cos2(π/2 · �F−

i ))Θ
)Θ)σi

)1/Θ
,

(
1 − ©n

i=1

(
1 −
(
(cos2(π/2 · �F+

i ))Θ
)Θ)σi

)1/Θ

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof The proof of Theorem 8 is devoted to Theorem 6. 

With Θ = 1, the CTri-GNNIVWG becomes the CTri-NNIVWG. 
According to Theorem 4 and Theorem 5, the CTri-GNNIVWG operator fulfills 

the boundedness and monotonicity properties. 

Theorem 9 If all Li =
〈
(χi, ψi);

[
(cos(π/2·�T− 

i )), (cos(π/2·�T+ 
i ))
]
,
[
(cos(π/2·

�
I− 
i )), (cos(π/2 ·�I+ 

i ))
]
,
[
(cos(π/2 ·�F− 

i )), (cos(π/2 ·�F+ 
i ))
]〉

are equal and Li = 
L with Θ = 1, then CTri-GNNIVWG(L1, L2, . . . , Ln) = L.
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6 MADM Concept Using CTri-NNIV Approach 

Let .L = {L1, L2, . . . , Ln} be the set of n-alternatives and . C = {M1,M2, . . . , Mm}
be the set of m-attributes and their corresponding weights of attributes are 
.w = {σ1, σ2, . . . , σm}, where .i = 1, 2, . . . , n and .j = 1, 2, . . . , m . Lij =〈
(χij , ψij ); [cos2(π/2 · �

T−
ij ), cos2(π/2 · �

T+
ij )], [cos2(π/2 · �

I−
ij ), cos2(π/2 ·

�
I+
ij )][cos2(π/2 · �F−

ij ), cos2(π/2 · �F+
ij )]
〉
denote CTri-NNIVN of . Li in . Mj . Thus, 

. 

[
cos2(π/2·�T−

ij ), cos2(π/2·�T+
ij )
]
,
[
cos2(π/2·�I−

ij ), cos2(π/2·�I+
ij )
]
,
[
cos2(π/2·

�
F−
ij ), cos2(π/2 ·�F+

ij )
]

∈ [0, 1] and the values of . cos2(π/2 ·�T+
ij )(z) + cos2(π/2 ·

�
I+
ij )(z) + cos2(π/2 · �F+

ij )(z) lie between 0 and 2. The .n × m decision matrix is 
.D = (Lij )n×m, where n-alternative sets and m-attribute sets. 

6.1 Algorithm 

Step 1 The decision values should be entered based on the CTri-NNIV model. 

Step 2 Find normalized decision values. The decision matrix D = (Lij )n×m is to 
normalized decision matrix D = (L̂ij )n×m. Since, 

. ̂Lij =
〈
(χij , ψij ); [�T−

ij ,�T+
ij ], [�I−

ij ,�I+
ij ], [�F−

ij ,�F+
ij ]
〉

and 

. χij = χij

supi (χij )
, ψij = ψij

supi (ψij )
· ψij

χij

, �
T−
ij = �

T−
ij ,�T+

ij = �
T+
ij .

Step 3 Find the aggregated values for every alternative. CTri-NNIV is used to 
represent the attribute Mj in Li , and 

. ̂Lij =
〈
(χij , ψij ); [�T−

ij ,�T+)ij ], [�I−
ij ,�I+

ij ], [�F−
ij ,�F+

ij ]
〉

is aggregated into 

. ̂Li =
〈
(χi, ψi); [�T−

i ,�T+
i ], [�I−

i ,�I+
i ], [�F−

i ,�F+
i ]
〉
.

Step 4 Compute the ideal values of each alternative: 

.L̂+ =
〈(

sup
1≤i≤n

χij , inf
1≤i≤n

ψij

)
; [1, 1], [0, 0], [0, 0]

〉
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and 

. ̂L− =
〈(

inf
1≤i≤n

χij , sup
1≤i≤n

ψij

)
; [0, 0], [1, 1], [1, 1]

〉
.

Step 5 To illustrate, EDs between each alternative include ideal values: 

. D
+
i = DE

(
L̂i , L̂

+); D
−
i = DE

(
L̂i , L̂

−).

Step 6 To illustrate, the relative nearness values are 

. D
∗
i = D

−
i

D
+
i + D

−
i

.

Step 7 The output is the greatest value of D∗
i , and thus the optimal solution is to be 

chosen as the most appropriate solution to our problem. 

6.2 Robotic Engineering Real-Life Example 

In computing, it is a branch of interdisciplinary study. Robotics is the design, 
construction, operation, and use of robots. According to an agreement, robots 
are primarily used to replace humans. Software can be used in a wide range of 
fields, such as mechanics, electronics, computer science, graphics, and software 
engineering. There are many ways in which it can replace humans. Aircraft 
Manufacturing: A scientist reported that robots are used to manufacture most 
aircraft. Artificial intelligence is the fastest-growing area in robotics. The majority 
of the work is done without human assistance. First and foremost, the ultimate robot 
is used in aircraft manufacturing. Cafes and Hotels: Nowadays, most hotels in 
China and other countries serve as servers. What makes it so interesting is that it 
has the most majestic function of speaking to people. The etymology of robot was 
introduced by Kern Capek. Scientists conduct extensive research in high-demand 
fields, such as hotels. Army: Robots are developed in such a way that robots are 
used in the army. They are considered soldiers as they are used in many mis-
functional areas in critical situations. Their usage of robots can save a human life 
that is in the army. Most of the technical and emotional fireworks and bullets 
for humans can be avoided in robots. They are really very useful in the army. 
Agriculture: Robots are now being utilized to cultivate crops in agriculture. In the 
agriculture field, robots are having a great time. Some of the robots are used in 
Merlin robots, milkers, Rospheres, orange harvesters, and Lethice robots. Robotics 
are used widely in farming. A particularly suitable example is the milk bot. It is the 
first and foremost agricultural bot, Dubble Viro, that is capable of picking tomatoes 
without causing any damage. There is no doubt that Cambridge University has been
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instrumental in the development of robotics. It is a Vegebot. Humanoid bot: The 
first humanoid bot is WABLT-1, the world’s first full-scale humanoid intelligent 
robot. It was created at Waseda University in 1967 and 1972. It is known as the 
WABLT project. It is a full-scale humanoid intelligence. The other bot, known as 
General Motors, was the first robot to work in Factor in 1961. If five different uses 
of robotics (alternatives) such as Aircraft Manufacturing .(L1), Cafes and Hotels 
.(L2), Army  .(L3), Agriculture .(L4), Humanoid bot .(L5) with four attributes are 
considered as tasks .(M1), precision .(M2), speed .(M3), and completion of work 
.(M4) and their weights are .w = {0.4, 0.3, 0.2, 0.1}. The best robotics are those 
that perform well in the real world. In making decisions, we consider the following 
factors: 

.M1 .M2 .M3 . M4

.L1 .
〈
(0.85, 0.6); [0.15, 0.2], .

〈
(0.55, 0.3); [0.15, 0.28], .

〈
(0.5, 0.35); [0.15, 0.7], . 

〈
(0.75, 0.55); [0.13, 0.2],

.[0.1, 0.5], [0.3, 0.5]〉 .[0.3, 0.52], [0.1, 0.52]〉 .[0.52, 0.59], [0.3, 0.64]〉 . [0.3, 0.45], [0.45, 0.52]〉

.L2 .
〈
(0.95, 0.65); [0.22, 0.28], .

〈
(0.4, 0.25); [0.22, 0.48], .

〈
(0.55, 0.3); [0.22, 0.56], . 

〈
(0.9, 0.65); [0.15, 0.56],

.[0.3, 0.45], [0.31, 0.52]〉 .[0.3, 0.59], [0.52, 0.59]〉 .[0.3, 0.45], [0.3, 0.36]〉 . [0.45, 0.5], [0.45, 0.5]〉

.L3 .
〈
(0.9, 0.7); [0.22, 0.56], .

〈
(0.6, 0.35); [0.48, 0.7], .

〈
(0.5, 0.25); [0.15, 0.48], . 

〈
(0.75, 0.55); [0.27, 0.56],

.[0.3, 0.59], [0.3, 0.45]〉 .[0.3, 0.64], [0.45, 0.59]〉 .[0.45, 0.64], [0.31, 0.36]〉 . [0.23, 0.59], [0.52, 0.59]〉

.L4 .
〈
(0.75, 0.45); [0.2, 0.48], .

〈
(0.45, 0.2); [0.22, 0.7], .

〈
(0.65, 0.5); [0.2, 0.28], . 

〈
(0.85, 0.6); [0.2, 0.42],

.[0.23, 0.59], [0.59, 0.64]〉 .[0.23, 0.59], [0.3, 0.45]〉 .[0.3, 0.59], [0.3, 0.64]〉 . [0.23, 0.5], [0.3, 0.31]〉

.L5 .
〈
(0.85, 0.55); [0.22, 0.56], .

〈
(0.55, 0.3); [0.2, 0.56], .

〈
(0.6, 0.4); [0.15, 0.56], . 

〈
(0.8, 0.65); [0.15, 0.27],

.[0.3, 0.5], [0.1, 0.52]〉 .[0.52, 0.59], [0.31, 0.52]〉 .[0.52, 0.59], [0.45, 0.59]〉 . [0.3, 0.59], [0.52, 0.71]〉

A normalized decision matrix can be illustrated as below: 

.M1 .M2 . M3

.L1 .
〈
(0.8947, 0.605); [0.15, 0.2], .

〈
(0.9167, 0.4675); [0.15, 0.28], . 

〈
(0.7692, 0.49); [0.15, 0.7],

.[0.1, 0.5], [0.3, 0.5]〉 .[0.3, 0.52], [0.1, 0.52]〉 . [0.52, 0.59], [0.3, 0.64]〉
.L2 .
〈
(1, 0.6353); [0.22, 0.28], .

〈
(0.6667, 0.4464); [0.22, 0.48], . 

〈
(0.8462, 0.3273); [0.22, 0.56],

.[0.3, 0.45], [0.31, 0.52]〉 .[0.3, 0.59], [0.52, 0.59]〉 . [0.3, 0.45], [0.3, 0.36]〉
.L3 .
〈
(0.9474, 0.7778); [0.22, 0.56], .

〈
(1, 0.5833); [0.48, 0.7], . 

〈
(0.7692, 0.25); [0.15, 0.48],

.[0.3, 0.59], [0.3, 0.45]〉 .[0.3, 0.64], [0.45, 0.59]〉 . [0.45, 0.64], [0.31, 0.36]〉
.L4 .
〈
(0.7895, 0.3857); [0.2, 0.48], .

〈
(0.75, 0.254); [0.22, 0.7], . 

〈
(1, 0.7692); [0.2, 0.28],

.[0.23, 0.59], [0.59, 0.64]〉 .[0.23, 0.59], [0.3, 0.45]〉 . [0.3, 0.59], [0.3, 0.64]〉
.L5 .
〈
(0.8947, 0.5084); [0.22, 0.56], .

〈
(0.9167, 0.4675); [0.2, 0.56], . 

〈
(0.9231, 0.5333); [0.15, 0.56],

.[0.3, 0.5], [0.1, 0.52]〉 .[0.52, 0.59], [0.31, 0.52]〉 .[0.52, 0.59], [0.45, 0.59]〉
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. M4

.L1 . 
〈
(0.8333, 0.6205); [0.13, 0.2],
. [0.3, 0.45], [0.45, 0.52]〉

.L2 . 
〈
(1, 0.7222); [0.15, 0.56],
. [0.45, 0.5], [0.45, 0.5]〉

.L3 . 
〈
(0.8333, 0.6205); [0.27, 0.56],
. [0.23, 0.59], [0.52, 0.59]〉

.L4 . 
〈
(0.9444, 0.6516); [0.2, 0.42],
. [0.23, 0.5], [0.3, 0.31]〉

.L5 . 
〈
(0.8889, 0.8125); [0.15, 0.27],
. [0.3, 0.59], [0.52, 0.71]〉

We can find aggregate values based on the CTri-NNIVWA operator for every 
alternative that are as below: 

. CT ri − NNIV WA operator (Θ = 1)

.L̂1 . 
〈
(0.8701, 0.5423); [0.3608, 0.9273], [0.3395, 0.5610], [0.2135, 0.4326]〉

.L̂2 . 
〈
(0.8692, 0.5257); [0.3396, 0.972], [0.1079, 0.7957], [0.5524, 0.6462]〉

.L̂3 . 
〈
(0.9161, 0.5982), [0.4069, 0.9601], [0.1348, 0.4732], [0.3467, 0.7246]〉

.L̂4 . 
〈
(0.8352, 0.4495), [0.4082, 0.9445], [0.0779, 0.8066], [0.2198, 0.4105]〉

.L̂5 . 
〈
(0.9064, 0.5315), [0.3736, 0.9747], [0.2769, 0.5641], [0.8591, 0.7866]〉

Illustrate that the ideal values of every alternative are below: 

. ̂L+ 

. 
〈
(0.9161, 0.4495), [1, 1], [0, 0], [0, 0]〉

. ̂L− 

. 
〈
(0.8352, 0.5982), [0, 0], [1, 1], [1, 1]〉

The Hamming distance between every alternative with ideal values is below: 

.D
+ 
1 .D

+ 
2 .D

+ 
3 .D

+ 
4 . D+ 

5 

.0.4349 .0.7170 .0.4234 .0.7107 . 0.8799 

.D
− 
1 .D

− 
2 .D

− 
3 .D

− 
4 . D− 

5 

.0.9276 .0.6455 .0.9391 .0.6517 . 0.4826 

It illustrates the relative nearness values are .D∗
1 = 0.6808, .D∗

2 = 0.4738, . D∗
3 = 

0.6892, .D∗
4 = 0.4783, and .D∗

5 = 0.3542. The ranking of alternatives is . L3 ≥ L1 ≥ 
L4 ≥ L2 ≥ L5. For real-world performance, . L3 provides the most suitable solution. 
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6.3 Comparison for Proposed Approach with Existing 
Approach 

Based on the above news, we handover to the CTri-NNIVWG, CTri-GNNIVWA, 
and CTri-GNNIVWG operators. As a result, the following tabulation was made: 

.Θ = 1 CT  riNNIV  WA  CT  riNNIV  WG  GCT  riNNIV  WA  GCT  riNNIV  WG  

.T OPSIS  − Hamming .L3 ≥ L1 ≥ L4 .L3 ≥ L1 ≥ L4 .L3 ≥ L1 ≥ L4 . L3 ≥ L1 ≥ L4 

.distance (proposed) .L2 ≥ L5 .L5 ≥ L2 .L2 ≥ L5 . L5 ≥ L2 

.Hamming distance [13] .L3 ≥ L5 ≥ L1 .L3 ≥ L5 ≥ L2 .L3 ≥ L5 ≥ L1 . L3 ≥ L5 ≥ L2 

.L2 ≥ L4 .L1 ≥ L4 .L2 ≥ L4 . L1 ≥ L4 

Replace the values of . Θ from the CTri-NNIVWA approach. Then the relative 
nearness values and their orders are in Figs. 23.1 and 23.2: 

In the above discussion, the alternative ranking is determined in the case of the 
CTri-NNIVWA operator. If .Θ = 1, we can find the ranking of alternative is . L3 ≥ 
L1 ≥ L4 ≥ L2 ≥ L5; if  .Θ = 2, we can find the ranking of alternative is . L3 ≥ 
L2 ≥ L1 ≥ L4 ≥ L5; if .Θ = 3, then finding a new order is . L5 ≥ L2 ≥ L1 ≥ L3 ≥ 
L4. Hence, the optimal . L3 is converted into . L5. Similarly, we can handover to the 
alternative rankings that are founded using CTri-NNIVWG, CTri-GNNIVWA, and 
CTri-GNNIVWG operators based on . Θ . 

7 Conclusion 

In this chapter, we introduce ED and HD measures for CTri-NNIVSs, whose 
mathematical simplicity makes them even more appealing. Through appropriate 

Fig. 23.1 Graphical representation based on Hamming distance for CTri-NNIVWA 



23 Cosine Neutrosophic Normal Interval-Valued Aggregation Operators to. . . 547 

Fig. 23.2 Graphical representation based on Hamming distance for the existing and proposed 
models 

numerical examples, the ED and HD measures are shown to be superior. In real-life 
examples, the ED and HD measures are demonstrated to be applicable. Our proposal 
improves the AO rules for CTri-NNIVWA, CTri-NNIVWG, CTri-GNNIVWA, 
and CTri-GNNIVWG. A few examples were provided of how these AOs can be 
developed, as well as some properties. Using the CTri-NNIV MADM approach 
can help people make the right decision out of available alternatives in inde-
terminate and inconsistent information environments. To solve MADM problems 
under . Θ , we applied the CTri-NNIVWA, CTri-NNIVWG, CTri-GNNIVWA, and 
CTri-GNNIVWG operators. According to . Θ , the CTri-NNIVWA, CTri-NNIVWG, 
CTri-GNNIVWA, and CTri-GNNIVWG operators rank alternatives differently. As 
a result of the above analysis, . Θ appears to have the greatest impact on ranking. 
By adjusting . Θ based on the actual situation, decision-makers can determine an 
appropriate and reasonable ranking. Using . Θ values, the decision-maker can arrive 
at a conclusion. An analysis of data is involved in a number of real-life applications 
of ED and HD measures of NSs. The topic of this chapter will be helpful to future 
researchers interested in this emerging field. 
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Chapter 24 
An Integrated Weighted Distance-Based 
Approximation Method for 
Interval-Valued Spherical Fuzzy 
MAGDM 

Utpal Mandal and Mijanur Rahaman Seikh 

1 Introduction 

An organization identifies, evaluates, and contracts with suppliers during the selec-
tion of suppliers. For any organization to succeed, it is crucial. When suppliers are 
selected incorrectly, suppliers may perform poorly, supply may disrupt, and business 
processes may be inadequate. Most organizations lack a well-defined supplier 
selection process, which makes reducing excess spending difficult. Now, selecting 
the most suitable supplier for an organization consists of multiple conflicting 
attributes such as quality of the product, price of the product, past performance 
record, financial stability, the technical ability of the supplier, etc. As a result, it 
can be considered a multi-attribute decision-making (MADM) problem. Again, no 
single person can assess the significance of each attribute in a MADM process. So, 
we need to consult with several experts from different domains to gather the required 
data. Thus, the problem is similar to a MAGDM problem. 

Now, expressing information about the attributes subject to a specific alternative 
is a crucial component of MAGDM problems. These kinds of issues frequently arise 
in our daily lives. Because, in the real world, due to insufficient information and the 
complexity of MAGDM, it is more appropriate to convey attribute values using 
fuzzy sets rather than crisp values. However, the fuzzy set is inappropriate for mak-
ing several real-life decisions since it is limited to membership degree (MD) only. As 
an extension of the fuzzy set, Atanassov [2] presented the notion of the intuitionistic 
fuzzy set (IFS). The IFS is associated with the MD and the nonmembership degree 
(NMD), whose sum cannot be more than one. Several researchers developed the 
MADM method under the intuitionistic fuzzy environment [8, 30, 31]. Later, Yager 
[29] enlarged the range of IFS and proposed Pythagorean fuzzy sets (PFS). The 

U. Mandal · M. R. Seikh (�) 
Department of Mathematics, Kazi Nazrul University, Asansol, India 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
C. Jana et al. (eds.), Fuzzy Optimization, Decision-making and Operations 
Research, https://doi.org/10.1007/978-3-031-35668-1_24

551

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35668-1protect T1	extunderscore 24&domain=pdf
http://orcid.org/0000-0002-1479-5516
http://orcid.org/0000-0003-4746-5369
https://doi.org/10.1007/978-3-031-35668-1_24
https://doi.org/10.1007/978-3-031-35668-1_24
https://doi.org/10.1007/978-3-031-35668-1_24
https://doi.org/10.1007/978-3-031-35668-1_24
https://doi.org/10.1007/978-3-031-35668-1_24
https://doi.org/10.1007/978-3-031-35668-1_24
https://doi.org/10.1007/978-3-031-35668-1_24
https://doi.org/10.1007/978-3-031-35668-1_24
https://doi.org/10.1007/978-3-031-35668-1_24
https://doi.org/10.1007/978-3-031-35668-1_24
https://doi.org/10.1007/978-3-031-35668-1_24


552 U. Mandal and M. R. Seikh

sum of the squares of MD and NMD in PFS is restricted to 1. There have been 
many significant contributions to the PFS [14–16, 32]. 

Gundogdu and Kahraman [11] developed the notion of a spherical fuzzy set 
(SFS) as an extension of PFS. With the SFSs, decision experts can define a mem-
bership function on a spherical surface and independently assign the parameters to a 
larger domain using the membership function. Several researchers are investigating 
the properties of SFSs and how they can be applied in MADM scenarios [1, 19]. 
Mathew et al. [21] combined the analytical hierarchy process (AHP) and TOPSIS 
under SFS and applied them to the selection of an advanced manufacturing system. 
Mahmood et al. [20] defined some operational laws of SFSs and applied them to 
solve medical diagnosis-based problems. 

Currently, Gundogdu and Kahraman [12] combined SFS and interval-valued 
fuzzy set [9] and introduced the notion of IVSF set. Several researchers utilized 
the IVSF set to deal with uncertainty and develop a decision-making model. 
Gul and Ak [10] extended the TOPSIS model under the IVSF environment and 
used it to select a marble manufacturing facility. Gundogdu and Kahraman [13] 
developed the AHP method using IVSF sets and utilized it for hospital performance 
assessment. Erdogan [7] combined SWARA and MAIRCA methods under the 
IVSF environment to assess farmers’ attitudes toward Agriculture 4.0 technologies. 
Duleba et al. [6] developed the AHP method for assessing public transportation 
problems using IVSF data. Aydogdu and Gul [4] combined the entropy method and 
ARAS method under the IVSF environment. 

In the following, we review existing fuzzy extensions to the WDBA method 
[23]. According to the WDBA method, the best alternative should be closest to 
the ideal solution and farthest away from the anti-ideal solution. Dorfeshan et al. 
[5] developed the WDBA method with interval-valued fuzzy data. Peng et al. [22] 
extended the WDBA method under q-rung orthopair fuzzy environment and applied 
it in emergency decision-making. In light of the above literature review, we can 
conclude that WDBA can be used effectively to address real-world decision-making 
scenarios with conflicting attributes. But the WDBA method using IVSF sets has not 
existed yet. Thus, WDBA should be extended in the IVSF environment. 

Now, the weight of the decision experts appointed to solve MAGDM problems 
cannot be equalized. The importance of attributes may be judged differently by dif-
ferent decision experts. Therefore, in this chapter, we calculate the experts’ weights 
utilizing the AHP. Again, not all attributes are equally important in decision-making. 
In most cases, decision-makers choose attribute weights at random. However, this 
is not realistic. To avoid the influence of decision experts in determining attribute 
weights, we enhance the entropy method under the IVSF environment and use it to 
determine attribute weights in this chapter. 

The motivation for this study can be summarized as follows: 

• The IVSF sets are a new concept in the literature. A wide range of applications 
enables the IVSF environment-based decision-making model to be applied more 
flexibly and in greater detail to reveal obscure information. In this context, it is 
essential to focus more on the decision-making model within IVSF.
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• The existing score function for IVSF sets has limitations. The existing score 
functions cannot distinguish IVSF sets properly. Thus, it is important to develop 
a new score function that is more accurate for IVSF sets. 

• In the MAGDM process, attribute weights play a vital role. For determining 
the attribute weights, this study developed an IVSF environment-based entropy 
model intending to avoid undesirable effects of decision-makers on the outcome 
of decision-making. 

• The WDBA method has emerged as an efficient and straightforward decision-
making tool. Thus, the WDBA method, when combined with the entropy method 
and IVSF sets in a decision-making environment, will have a more robust 
decision-making structure than the existing methods. 

This chapter makes the following contributions: 

• Introduced an improved score function and Euclidean distance measure under an 
IVSF environment. 

• Developed entropy method using the proposed score function to determine the 
attribute weights. 

• Developed a new approach called IVSF-AHP-entropy-WDBA method utilizing 
AHP, WDBA, and entropy method under IVSF environment. Here, the AHP, 
entropy, and WDBA methods are employed to determine the decision experts’ 
weights, attribute weights, and ranking outcomes, respectively. 

• Presented a numerical example of selecting a supplier for a textile manufacturing 
company within the IVSF context to demonstrate the practicality and efficiency 
of the developed IVSF-AHP-WDBA-entropy methodology. 

This chapter is arranged in the following manner: In Sect. 2, some basic 
preliminaries are incorporated. In Sect. 3, we propose an improved score function to 
distinguish IVSF sets. An entropy method and Euclidean distance measure are also 
introduced in this section. The AHP-WDBA-entropy methodology for MAGDM 
under the IVSF environment is presented in Sect. 4. Here, the decision experts’ 
weights are obtained by using the AHP method and attribute weights are calculated 
using the proposed entropy method. Section 5 presents a supplier selection problem 
in a textile manufacturing company to illustrate the efficiency of the developed 
IVSF-AHP-WDBA-entropy methodology. This section also compares the results 
to various existing methods to demonstrate the feasibility of our model. Finally, we 
concluded in Sect. 6. 

2 Preliminaries 

Here, we review some fundamental preliminaries. The set Y is regarded as a 
universal set all through the paper. 

Definition 1 ([11]) The SFS . S̃ over Y is expressed as
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. S̃ = {〈g, ηS(g), θS(g), πS(g)〉|g ∈ Y },

where .ηS, .θS, and . πS are the functions from Y to .[0, 1] and they, respectively, 
represent the MD, NMD, and hesitancy degree (HD). The MD, NMD, and HD 
satisfy the condition .(ηS(g))2 + (θS(g))2 + (πS(g))2 ≤ 1 for each .g ∈ Y . 

Definition 2 ([12]) The IVSF set S over Y is expressed as 

. S = {〈g, ([η−
S (g), η+

S (g)], [θ−
S (g), θ+

S (g)], [π−
S (g), π+

S (g)])〉|g ∈ Y },

where .0 ≤ η−
S (g) ≤ η+

S (g) ≤ 1, .0 ≤ θ−
S (g) ≤ θ+

S (g) ≤ 1, and . 0 ≤ (η+
S (g))2 +

(θ+
S (g))2+(π+

S (g))2 ≤ 1. For every .g ∈ Y, .η+
S , θ+

S , and π+
S , respectively, represent 

the upper MD, NMD, and HD of g to the set . S. For simplicity, the triplet . s =
〈[η−, η+], [θ−, θ+], [π−, π+]〉 where all of .[η−, η+], [θ−, θ+], and [π−, π+] are 
the subsets of .[0, 1] represents as IVSF number (IVSFN). 

Note that if .η− = η+, θ− = θ+, and π− = π+, then IVSF set converted into 
SFS. 

Definition 3 ([12]) Let .s = 〈[η−, η+], [θ−, θ+], [π−, π+]〉, . s1 = 〈[η−
1 , η+

1 ], [θ−
1 ,

θ+
1 ], [π−

1 , π+
1 ]〉, and .s2 = 〈[η−

2 , η+
2 ], [θ−

2 , θ+
2 ], [π−

2 , π+
2 ]〉 be three IVSFNs and 

.λ > 0 be a real number. Then, some IVSFN operations are listed below. 

1. . s1⊕ s2 = 〈[
√

(η−
1 )2 + (η−

2 )2 − (η−
1 )2(η−

2 )2,

√
(η+

1 )2 + (η+
2 )2 − (η+

1 )2(η+
2 )2], [θ−

1 θ−
2 , θ+

1 θ+
2 ],

. [
√

(1 − (η−
2 )2)(π−

1 )2 + (1 − (η−
1 )2)(π−

2 )2 − (π−
1 )2(π−

2 )2,√
(1 − (η+

2 )2)(π+
1 )2 + (1 − (η+

1 )2)(π+
2 )2 − (π+

1 )2(π+
2 )2]〉.

2. . s1⊗ s2 = 〈[η−
1 η−

2 , η+
1 η+

2 ], [
√

(θ−
1 )2 + (θ−

2 )2 − (θ−
1 )2(θ−

2 )2,

√
(θ+

1 )2 + (θ+
2 )2 − (θ+

1 )2(θ+
2 )2],

. [
√

(1 − (θ−
2 )2)(π−

1 )2 + (1 − (θ−
1 )2)(π−

2 )2 − (π−
1 )2(π−

2 )2,√
(1 − (θ+

2 )2)(π+
1 )2 + (1 − (θ+

1 )2)(π+
2 )2 − (π+

1 )2(π+
2 )2]〉.

3. . λs = 〈[√1 − (1 − (η−)2)λ,
√
1 − (1 − (η+)2)λ], [(θ−)λ, (θ+)λ],

. [√(1 − (η−)2)λ − (1 − (η−)2 − (π−)2)λ,
√

(1 − (η+)2)λ − (1 − (η+)2 − (π+)2)λ]〉.
4. . sλ = 〈[(η−)λ, (η+)λ], [√1 − (1 − (θ−)2)λ,

√
1 − (1 − (θ+)2)λ],

. [√(1 − (θ−)2)λ − (1 − (θ−)2 − (π−)2)λ,
√

(1 − (θ+)2)λ − (1 − (θ+)2 − (π+)2)λ]〉.
Definition 4 ([12]) Let .sx = 〈[η−

x , η+
x ], [θ−

x , θ+
x ], [π−

x , π+
x ]〉, x = 1, 2, . . . , n be 

a collection of IVSFNs; then the aggregated value using interval-valued spherical 
weighted arithmetic mean (IVSWAM) operator is given by 

. IV SWAM(s1, s2, . . . , sn) =
〈[√

1 −
n∏

x=1
(1 − (η−

x )2)�x ,

√
1 −

n∏
x=1

(1 − (η+
x )2)�x

]
,

[
n∏

x=1
(θ−

x )�x ,
n∏

x=1
(θ+

x )�x

]
,

[√
n∏

x=1
(1 − (η−

x )2)�x −
n∏

x=1
(1 − (η−

x )2 − (π−
x )2)�x ,

√
n∏

x=1
(1 − (η+

x )2)�x −
n∏

x=1
(1 − (η+

x )2 − (π+
x )2)�x

]〉

where . �x is the weight of . sx with .�x > 0,
n∑

x=1
�x = 1.
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Definition 5 ([12]) The score and the accuracy functions of the IVSFN . s =
〈[η−, η+], .[θ−, θ+], [π−, π+]〉 are defined by 

.Φ1(s) = (η−)2 + (η+)2 − (θ−)2 − (θ+)2 − (π−
2 )2 − (π+

2 )2

2
(24.1) 

and 

.Ψ (σ) = (η−)2 + (η+)2 + (θ−)2 + (θ+)2 + (π−)2 + (π+)2

2
(24.2) 

respectively. Here .Φ(σ) ∈ [−1, 1], and . Ψ (σ) ∈ [0, 1].
Definition 6 ([12]) According to Definition 5, the comparison between two 
IVSFNs .Φ(s1) and Φ(s2) is defined as follows: 

1. If .Φ(s1) > Φ(s2), then . s1 � s2.

2. If .Φ(s1) = Φ(s2), and 

• If .Ψ (s1) > Ψ (s2), then . s1 � s2.

• If .Ψ (s1) = Ψ (s1), then . s1 ∼ s2.

2.1 Limitations of the Existing Score Functions 

The score functions are an important factor in the MADM process for ranking the 
various options. In the following example, we show that the current score function 
on the IVSF set cannot distinguish between the alternatives adequately. 

Example 1 Let .s1 = 〈[0, 0.5], [0.1, 0.7], [0, 0.1]〉 and . s2 = 〈[0.3, 0.4], [0.5, 0.5],
[0, 0.1]〉 be two IVSFNs. Now, using Eq. 24.1 we have .Φ1(s1) = −0.1275 and 
.Φ1(s2) = −0.1275. Hence, we cannot distinguish between . s1 and . s2 using the 
existing score function .Φ1. Therefore, the score function . Φ1 fails to rank the 
IVSFNs . s1 and . s2.

Hence, according to Definition 6, we calculate the accuracy values of . s1 and . s2. By 
using Eq. 24.2, we obtain .Ψ (s1) = 0.38 and . Ψ (s2) = 0.38.

Therefore, based on Definition 6, .s1 ∼ s2.But we can easily observe that . s1 
= s2.

Thus, it is not possible to distinguish between IVSFNs using the existing score and 
accuracy functions. Hence, it is necessary to develop an improved score function. 

3 Improved Score Function and Distance Measure 

Example 1 shows that the score function . Φ1 is not sufficient to distinguish IVSFNs. 
If the score value of two distinct IVSFNs is the same, then it is necessary to
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implement an accuracy function to rank them. Therefore, we aim to develop an 
improved score function to make it easier to distinguish IVSFNs despite this 
complexity of calculation. 

3.1 Improved Score Function 

Definition 7 The score function for the IVSFN s = 〈[η−, η+], [θ−, θ+], [π−, π+]〉
is defined by 

. Φ(s) = (η−)2[1 +
√

(η−)2 + (θ−)2 + (π−)2]

+ (η+)2[1 +
√

(η+)2 + (θ+)2 + (π+)2] (24.3) 

Definition 8 The IVSFNs are compared according to the following rule: Suppose 
s1 and s2 are two IVSFNs; then 

• s1 � s2 if Φ(s1) > Φ(s2) 
• s1 = s2 if Φ(s1) = Φ(s2) 

Now, we consider the following example to show how well the suggested score 
function works. 

Example 2 Let s1 = 〈[0, 0.5], [0.1, 0.7], [0, 0.1]〉 and s2 = 〈[0.3, 0.4], [0.5, 0.5], 
[0, 0.1]〉 be two IVSFNs. Now, using Eq. (24.3) we have Φ(s1) = 0.1875 and 
Φ(s2) = 0.2224. Hence, according to Definition 8, we have  s2 � s1, i.e., s2 is 
better than s1. 

Here, we consider the identical IVSFNs s1 and s2 in Examples 1 and 2. However, 
the suggested score function easily distinguishes between s1 and s2, whereas the 
existing score function is unable to do so. As a result, the improved score function is 
superior to the existing score function. Also, it can reduce computational complexity 
during the decision-making process. 

Now, we will define some fundamental properties of the improved score function. 

Property 1 (Zero Property) If s is the smallest IVSFN, i.e., if s = 〈[0, 0], [1, 1], 
[0, 0]〉, then Φ(s) = 0. 

Property 2 (One Property) If s is the largest IVSFN, i.e., if s = 〈[1, 1], [0, 0], 
[0, 0]〉, then Φ(s) = 1. 

3.2 Distance Measure 

Definition 9 The Euclidean distance between two IVSFNs s1 = 〈[η− 
1 , η

+ 
1 ], 

[θ− 
1 , θ

+ 
1 ], [π− 

1 , π
+ 
1 ]〉 and s2 = 〈[η− 

2 , η
+ 
2 ], [θ− 

2 , θ
+ 
2 ], [π− 

2 , π
+ 
2 ]〉 is defined by
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. Θ(s1, s2) =
√
1

6
((η−

1 − η−
2 )2 + (η+

1 − η+
2 )2 + (θ−

1 − θ−
2 )2 + (θ+

1 − θ+
2 )2 + (π−

1 − π−
2 )2 + (π+

1 − π+
2 )2).

(24.4) 

Example 3 The Euclidean distance between the largest and smallest IVSFNs
〈[1, 1], [0, 0], [0, 0]〉 and 〈[0, 0], [1, 1], [0, 0]〉 using Definition 9 is 1. 
Remark 1 If the lower and upper limits of MD, NMD, and hesitancy degree 
in the IVSF set are the same, the proposed distance measure converts into the 
Euclidean distance measure of the SFS. Therefore, the Euclidean distance between 
two SFSs s̃1 = 〈η1, θ1, π1〉 and s̃2 = 〈η2, θ2, π2〉 is given by Θ ′(s̃1, s̃2) =√

1 
3 ((η1 − η2)2 + (θ1 − θ2)2 + (π1 − π2)2). 

4 Weighted Distance-Based Approximation Method for 
MAGDM 

Here, we develop an integrated IVSF-AHP-entropy-WDBA model by combining 
AHP, entropy, and WDBA methods within IVSF sets. 

Our proposed model consists of three stages. In the first stage, we estimate the 
DE’s weight using the AHP method. The attribute weight is estimated in the second 
stage using the entropy method. Finally, we used the WDBA method to derive the 
ranking results of the various options in the corresponding MAGDM problem. 

The framework of the integrated IVSF-AHP-entropy-WDBA approach is pre-
sented in Fig. 24.1 and described in the steps below. 

Stage 1: Here, we estimate the DE’s weight using the AHP method. The procedure 
is given in the following steps: 

Step 1.1. Selection of alternatives and attributes using DE’s preference. Let 
.A = {A1, A2, . . . , Am}, .B = {B1, B2, . . . , Bn}, and . DE =
{DE1,DE2, . . . , DEk} be the sets of m alternatives, n attributes, and 
k decision experts, respectively. 

Step 1.2. Constitute pairwise comparison matrix .M = (aij )k×k among the decision 
experts. 

.M =

⎛
⎜⎜⎜⎝

1 a12 a13 . . . a1k

a21 1 a23 . . . a2k
...

...
...

. . .
...

ak1 ak2 rk3 . . . 1

⎞
⎟⎟⎟⎠
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Fig. 24.1 Framework of the IVSF-AHP-entropy-WDBA approach
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Table 24.1 Scale of 
importance 

Importance level Definition 

1 Equal importance 

3 Medium importance 

5 High importance 

7 Very high importance 

9 Extreme importance 

2,4,6,8 Intermediate values 

. 13 , 1
5 , 1

7 , 1
9 Value for inverse comparison 

Here, each entry . aij represents the significance of the . ith DE compared to 
the . j th DE, and each . aij is measured on a scale from 1 to 9, as shown in 
Table 24.1. 

Step 1.3. Determine the normalized pairwise comparison matrix . M̃ = (ãij )k×k,

where . ̃aij is calculated by using Eq. (24.5) 

.ãij = aij

k∑
i=1

aij

. (24.5) 

Step 1.4. Weights .�i(i = 1, 2, . . . , k) of the decision experts are calculated, 
utilizing Equation (24.6) 

.�i =

k∑
j=1

ãij

k
. (24.6) 

Stage 2: At this stage, we combine the decision matrices obtained from the 
decision experts. Also, this stage develops the entropy method using the proposed 
score function, which is used to compute the attribute weights. 

Step 2.1. Identify the linguistic terms and construct the decision matrices. 
The DEs express their viewpoints using the following linguistic variables 
(LVs): extremely low (EL), very low (VL), low (L), moderate (M), high 
(H), very high (VH), and extremely high (EH). The IVSFNs are used to 
model the LVs to portray the qualitative data in a better way. Table 24.2 
shows the relationships between LVs and IVSFNs. 
Then, we construct the decision matrices using Table 24.2. Let  
.Dt = (rt

xy)m×n be decision matrix provided by .DEt .Here, . rt
xy = 〈[η−t

xy,

η+t
xy], [θ−t

xy, θ
+t

xy], [π−t
xy, π

+t
xy]〉 is an IVSFN that reflects the 

assessed value of the alternative . Ax for the attribute . By given by . DEt .

Step 2.2. Compute IVSF aggregated decision matrix.
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Table 24.2 Relationship 
between LVs and IVSFNs 

LVs IVSFNs 

EH . 〈[0.84, 0.91], [0.14, 0.21], [0.07, 0.14]〉
VH . 〈[0.77, 0.84], [0.21, 0.28], [0.14, 0.21]〉
H . 〈[0.70, 0.77], [0.28, 0.35], [0.21, 0.28]〉
M . 〈[0.49, 0.56], [0.42, 0.49], [0.35, 0.42]〉
L . 〈[0.28, 0.35], [0.70, 0.77], [0.21, 0.28]〉
VL . 〈[0.21, 0.28], [0.77, 0.84], [0.14, 0.21]〉
EL . 〈[0.14, 0.21], [0.84, 0.91], [0.07, 0.14]〉

Here, we utilize the weights of the DEs .(�1,�2, . . . ,�k) from Stage 
1 and IVSWAM operator to aggregate the decision matrices . Dt, t =
1, 2, . . . , k. Let .D̃ = ((αxy))m×n be the aggregated decision matrix where 

. αxy =
〈[√√√√1 −

k∏
t=1

(1 − (η− t
xy )2)�t ,

√√√√1 −
k∏

t=1
(1 − (η+ t

xy )2)�t

]
,

[ k∏
t=1

(θ− t
xy )�t ,

k∏
t=1

(θ+ t
xy )�t

]
,

[√√√√ k∏
t=1

(1 − (η− t
xy )2)�t −

k∏
t=1

(1 − (η− t
xy )2 − (π−t

xy )2)�t ,

[√√√√ k∏
t=1

(1 − (η+ t
xy )2)�t −

k∏
t=1

(1 − (η+ t
xy )2 − (π+t

xy )2)�t

]〉
.

Step 2.3. Calculate the attribute weights. 
Here, we extend the entropy method [28] under IVSF environment 
using the proposed score function. The proposed entropy method for 
determining the attribute weights is exhibited in Eq. (24.7). 

.γy =
1
m

m∑
x=1

Φ(αxy)

n∑
y=1

[ 1
m

m∑
x=1

Φ(αxy)]
. (24.7) 

Stage 3: This stage derives the ranking results of the various options in a MAGDM 
problem using the IVSF-WDBA model. The following steps outline the IVSF-
WDBA model: 

Step 3.1. Here, the attribute weights, aggregated decision matrix . D̃ which is 
obtained from Stage 2, and Definition 3 are utilized to obtain the 
weighted aggregated decision matrix. Let .D̃′ = (βxy)m×n be the weighted 
aggregated decision matrix. 

Step 3.2. Compute the average value matrix .Ey(y = 1(1)n) by using Eq. (24.8). 

.Ey = 1

m

m∑
x=1

Φ(βxy). (24.8)
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Step 3.3. Determine the standard deviation matrix .Fy, y = 1(1)n by using 
Eq. (24.9). 

.Fy =
√√√√ 1

m

m∑
x=1

(Φ(βxy) − Ey)2. (24.9) 

Step 3.4. Calculate the normalized matrix .(Gxy)m×n by utilizing Equation (24.10). 

.Gxy = Φ(βxy) − Ey

Fy

. (24.10) 

Step 3.5. Determine ideal points .G+ and anti-ideal points .G− by Eq. (24.11). 

.

G+ = {max
x

{Gx1},max
x

{Gx2}, . . . ,max
x

{Gxn}}
G− = {min

x
{Gx1},min

x
{Gx2}, . . . ,min

x
{Gxn}}.

(24.11) 

Step 3.6. Obtain the weighted Euclidean distance (WED) of each alternative . Ax

from the ideal points .G+ and anti-ideal points .G−. The distance from 
.G+ and .G− are, respectively, denoted by .Θ(Ax,G

+) and .Θ(Ax,G
−). 

The distances are given in Eq. (24.12). 

.

Θ(Ax,G
+) =

√√√√
n∑

y=1

γy(Gxy − G+)2

Θ(Ax,G
−) =

√√√√
n∑

y=1

γy(Gxy − G−)2.

(24.12) 

Step 3.7. Using Eq. (24.13), calculate the suitability index value .Υ (Ax) for every 
alternative. 

.Υ (Ai) = Θ(Ax,G
−)

Θmax(Ax,G−)
− Θ(Ax,G

−)

℘min(Ax,G−)
. (24.13) 

The suitability index is used for measuring the extent to which the 
alternative . Ax is close to the ideal points and far from anti-ideal points 
[22]. The best alternative should have the highest closeness coefficient 
and vice versa.
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5 Supplier Selection Problem 

Here, we apply the proposed IVSF-AHP-entropy-WDBA methodology to select the 
best supplier in a textile manufacturing company. 

Suppose X is a renowned textile manufacturing company. To produce a large 
number of textiles, X needs a large amount of fabric. Thus, the company must 
choose a fabric supplier who meets its requirements. Now, choosing the most 
suitable supplier for the company is not an easy task due to the presence of 
apparently contradictory attributes. For this, the managing board has formed a team 
of three experienced DEs (.DE1,DE2,DE3) from different fields to choose the best 
supplier for the company. These experts have decision-making abilities and over 8 
years of field experience. Each expert can independently analyze the criteria and 
alternatives within the evaluation process. The following attributes are taken into 
consideration according to the experts’ expertise and experience. 

• Quality of the product .(B1): In today’s life, everyone wants to buy a product of 
the best quality. Therefore, delivering quality products to the customer is the key 
to capturing the market and gaining customer confidence. The target of quality 
products depends on the quality of the material supplied by the supplier. So, the 
company must choose a supplier who distributes better-quality materials. 

• Past performance record .(B2): The organization must carefully examine 
the past performance record of the supplier. It is a good investment to do 
business with a supplier that has maintained good relationships with clients and 
maintained quality levels over the years. 

• Price of the product .(B3): The price of the material is the most significant factor 
that affects the supplier selection process. It is not the amount of money that 
matters but its value. There is, however, a possibility that a cheap supplier may 
sell low-quality material and a costly supplier may sell good-quality material. 
Therefore, a company should choose a supplier who offers good-quality products 
at a reasonable cost. 

• Financially strong .(B4): If the supplier is not financially strong, it cannot be 
a reliable source for the organization, because supplier also needs to acquire or 
prepare material and run their day-to-day operations. 

• Delivery capability .(B5): Every company is aware of whether suppliers can 
deliver the right amount of product at the right time. In a just-in-time envi-
ronment, companies depend on suppliers to deliver small quantities of products 
quickly. Suppliers’ locations may also affect the delivery time. 

• Technical ability .(B6) : A supplier’s technical ability refers to their ability to 
acquire new technologies and technical resources. 

Based on the above attributes, the decision experts have selected five distinct 
suppliers, namely, . A1, A2, A3, A4, and A5.

In Fig. 24.2, we present a hierarchical framework of supplier selection in the 
textile industry.
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Fig. 24.2 Hierarchical framework of supplier selection process 

5.1 Decision-Making Process 

Here, we exploit the proposed IVSF-entropy-WDBA approach to solve the above 
supplier selection problem. 

Stage 1: In this stage, we compute the weights of the decision experts using the 
AHP method. 

Step 1.1. We take the opinion of three decision experts .DEk(k = 1, 2, 3) and they 
select five alternative suppliers and six attributes. 

Step 1.2. Based on the scale of importance of decision experts’ from Table 24.1, 
construct the pairwise comparison matrix . M.

M = 

DE1 DE2 DE3⎡ 

⎣ 

⎤ 

⎦ 
DE1 1 5 1 

3 
DE2 

1 
5 1 7  

DE3 3 1 
7 1
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Step 1.3. Determine the normalized pairwise matrix . M̃ using Eq. (24.5). 

M̃ = 

DE1 DE2 DE3[ ]
DE1 0.238 0.813 0 
DE2 0.047 0.162 0.833 
DE3 0.714 0.023 0.125 

Step 1.4. Using Eq. (24.6) we obtain the DE’s weights as . (0.364, 0.350, 0.286).

Stage 2: Here, we combine the decision matrices obtained from three DEs. Also, 
we determine the attribute weights. 

Step 2.1. Construct the decision matrices in Table 24.3 using the LVs presented in 
Table 24.2. 

Step 2.2. We utilize the IVSWAM aggregation operator and decision experts’ 
weights which are obtained from Stage 1 to combine the decision experts’ 
opinions exhibited in Table 24.3. Let . D̃ be the aggregated decision matrix 
. D̃. Then 

Table 24.3 Decision matrices 

Decision-maker Alternatives .B1 .B2 .B3 .B4 .B5 . B6

.DE1 .A1 EH VH M VH M H 

.A2 VH H L H M M 

.A3 M H H M L L 

.A4 H M H L H H 

.A5 M H H M M L 

.DE2 .A1 VH EH H M H VH 

.A2 M VH M H M VH 

.A3 H VH H M L H 

.A4 H M M M H H 

.A5 M H VH VL H L 

.DE3 .A1 H VH H VH M H 

.A2 VH H H VH M M 

.A3 M M M H VL VH 

.A4 M M M H L EH 

.A5 H L H L VL EL
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D̃= 

B1 B2 B3 B4 B5 B6
⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

〈[0.783, 0.857], 〈[0.797, 0.869], 〈[0.640, 0.712], 〈[0.702, 0.777], 〈[0.582, 0.654], 〈[0.727, 0.797], 
A1 [0.196, 0.268], [0.182, 0.253], [0.324, 0.395], [0.267, 0.340], [0.364, 0.435], [0.253, 0.323], 

[0.136, 0.203]〉 [0.116, 0.184]〉 [0.259, 0.328]〉 [0.212, 0.279]〉 [0.299, 0.368]〉 [0.185, 0.255]〉
〈[0.747, 0.818], 〈[0.727, 0.797], 〈[0.522, 0.594], 〈[0.722, 0.793], 〈[0.490, 0.560], 〈[0.623, 0.699], 

A2 [0.232, 0.302], [0.253, 0.323], [0.450, 0.524], [0.257, 0.328], [0.420, 0.490], [0.253, 0.323], 
[0.164, 0.234]〉 [0.185, 0.255]〉 [0.269, 0.339]〉 [0.190, 0.259]〉 [0.350, 0.420]〉 [0.274, 0.341]〉
〈[0.582, 0.654], 〈[0.686, 0.760], 〈[0.654, 0.726], 〈[0.567, 0.639], 〈[0.262, 0.331], 〈[0.637, 0.713], 

A3 [0.364, 0.435], [0.284, 0.356], [0.314, 0.385], [0.374, 0.445], [0.719, 0.789], [0.359, 0.437], 
[0.299, 0.368]〉 [0.224, 0.292]〉 [0.249, 0.318]〉 [0.308, 0.377]〉 [0.193, 0.262]〉 [0.191, 0.262]〉
〈[0.654, 0.726], 〈[0.490, 0.560], 〈[0.585, 0.657], 〈[0.522, 0.594], 〈[0.629, 0.702], 〈[0.751, 0.825], 

A4 [0.314, 0.385], [0.420, 0.490], [0.362, 0.433], [0.450, 0.524], [0.363, 0.438], [0.229, 0.302], 
[0.249, 0.318]〉 [0.350, 0.420]〉 [0.297, 0.366]〉 [0.269, 0.339]〉 [0.213, 0.285]〉 [0.170, 0.237]〉
〈[0.567, 0.639], 〈[0.629, 0.702], 〈[0.797, 0.797], 〈[0.360, 0.428], 〈[0.542, 0.614], 〈[0.248, 0.317], 

A5 [0.374, 0.445], [0.363, 0.438], [0.253, 0.323], [0.600, 0.673], [0.433, 0.508], [0.737, 0.807], 
[0.308, 0.377]〉 [0.213, 0.285]〉 [0.185, 0.255]〉 [0.266, 0.335]〉 [0.261, 0.330]〉 [0.183, 0.250]〉

Step 2.3. Compute . γy using Eq. (24.7). The attributes along with their weights . (γy)

are exhibited in Fig. 24.3. 

Stage 3: Here, we utilize the WDBA method to get ranking of the selected 
suppliers. 

Step 3.1. Here, we utilize Equation (3) and the attribute weights obtained from 
Stage 2 to get the IVSF weighted aggregated decision matrix . D̃′.

Fig. 24.3 Weights of the 
attributes
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D̃′ = 

B1 B2 B3 B4 B5 B6
⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

〈[0.409, 0.475], 〈[0.420, 0.487], 〈[0.295, 0.339], 〈[0.313, 0.362], 〈[0.220, 0.255], 〈[0.344, 0.394], 
A1 [0.730, 0.775], [0.719, 0.767], [0.822, 0.851], [0.818, 0.848], [0.884, 0.904], [0.793, 0.827], 

[0.088, 0.157]〉 [0.077, 0.146]〉 [0.137, 0.192]〉 [0.112, 0.168]〉 [0.128, 0.173]〉 [0.105, 0.165]〉
〈[0.381, 0.438], 〈[0.367, 0.420], 〈[0.231, 0.269], 〈[0.325, 0.373], 〈[0.180, 0.210], 〈[0.281, 0.326], 

A2 [0.754, 0.793], [0.767, 0.804], [0.870, 0.894], [0.813, 0.844], [0.900, 0.917], [0.829, 0.858], 
[0.101, 0.166]〉 [0.111, 0.174]〉 [0.130, 0.175]〉 [0.102, 0.160]〉 [0.142, 0.183]〉 [0.141, 0.194]〉
〈[0.276, 0.319], 〈[0.339, 0.391], 〈[0.303, 0.348], 〈[0.239, 0.276], 〈[0.092, 0.118], 〈[0.289, 0.335], 

A3 [0.822, 0.851], [0.784, 0.819], [0.818, 0.847], [0.861, 0.884], [0.960, 0.971], [0.841, 0.870], 
[0.159, 0.213]〉 [0.129, 0.189]〉 [0.133, 0.189]〉 [0.146, 0.194]〉 [0.069, 0.097]〉 [0.098, 0.148]〉
〈[0.319, 0.366], 〈[0.227, 0.264], 〈[0.264, 0.305], 〈[0.217, 0.252], 〈[0.243, 0.280], 〈[0.360, 0.417], 

A4 [0.799, 0.831], [0.845, 0.871], [0.838, 0.865], [0.885, 0.906], [0.884, 0.904], [0.780, 0.817], 
[0.140, 0.198]〉 [0.177, 0.227]〉 [0.151, 0.202]〉 [0.122, 0.165]〉 [0.094, 0.138]〉 [0.099, 0.162]〉
〈[0.268, 0.310], 〈[0.304, 0.350], 〈[0.349, 0.400], 〈[0.144, 0.170], 〈[0.203, 0.235], 〈[0.102, 0.132], 

A5 [0.827, 0.855], [0.822, 0.852], [0.788, 0.822], [0.600, 0.673], [0.925, 0.941], [0.950, 0.964], 
[0.163, 0.216]〉 [0.116, 0.170]〉 [0.106, 0.167]〉 [0.111, 0.146]〉 [0.108, 0.147]〉 [0.077, 0.108]〉

Step 3.2. By utilizing Equation (24.8), we obtain the average value matrix . Ey as 

. Ey = (0.376, 0.381, 0.276, 0.212, 0.118, 0.277).

Step 3.3. We obtain the standard deviation matrix . Fy using Eq. (24.9) as 

. Fy = (0.132, 0.145, 0.077, 0.105, 0.053, 0.138).

Step 3.4. By utilizing Equation (24.10), we get the normalized matrix .(G)m×n as 

. G =

⎛
⎜⎜⎜⎜⎜⎝

1.473 1.539 0.093 1.035 0.648 0.814
0.855 0.468 −1.366 1.261 −0.304 −0.129

−0.944 0.020 0.305 −0.277 −1.713 −0.047
−0.303 −1.462 −0.643 −0.604 1.236 1.128
−1.059 −0.549 1.628 −1.394 0.167 −1.755

⎞
⎟⎟⎟⎟⎟⎠

Step 3.5. We obtain ideal and anti-ideal points as follows from Eq. (24.11): 
. G+ = {1.473, 1.539, 1.628, 1.261, 1.236, 1.128}
. G− = {−1.059,−1.462,−1.366,−1.394,−1.713,−1.755}.

Step 3.6. Utilizing Equation (24.12), we get the distances between the alternative 
. Ax and the ideal points .G+ as well as the anti-ideal points . G−, and the 
outcomes are recorded in Table 24.4. 

Step 3.7. By using Eq. (24.13), we get the suitability index of each alternatives. The 
ranking outcomes are exhibited in Table 24.4 and Fig. 24.4. 

According to Fig. 24.4 and Table 24.4, we get the ranking of five available suppliers 
as .A1 � A2 � A4 � A5 � A3. Therefore, from Table 24.4 and Fig. 24.4, it can 
be concluded that supplier . A1 is the most suitable for the textile manufacturing 
company.
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Table 24.4 Decision 
obtained by IVSF-WDBA 
method 

Alternative .Θ(Ax,G+) .Θ(Ax,G−) .Υ (Ax) Ranking 

.A1 0.281 1.001 0.781 1 

.A2 0.632 0.728 0.535 2 

.A3 0.765 0.514 0.401 5 

.A4 0.792 0.676 0.460 3 

.A5 0.597 1.623 0.402 4 

Fig. 24.4 Ranking of the 
alternatives 

5.2 Comparison Analysis 

Here, we compare the proposed approach with some existing approaches, such as 
the TOPSIS method [12] and MULTIMOORA method (fuzzy multiplicative and 
ratio system approach) [3] under the IVSF environment. To accomplish this, we 
employ the TOPSIS method [12] and the MULTIMOORA method [3] to solve  
the supplier selection problem given in Sect. 5. Table 24.5 and Fig. 24.5 display 
the outcomes for supplier options using various methods. We demonstrate, using 
Table 24.5 and Fig. 24.5, that our method does not differ significantly from the other 
methods for selecting the best supplier. The supplier . A1 is the best supplier obtained 
using all the methods. However, the ranking of the other suppliers slightly differs. As 
a result of the comparison analysis, the proposed method produces highly reliable 
results. 

In comparison to the existing model, the proposed model has the following 
advantages: 

• The proposed model uses the AHP method to select each DE weight, whereas, in 
the existing models, the DE weights are selected arbitrarily. 

• The proposed model investigates the MAGDM using unknown attribute weights. 
To estimate these unknown weights, we employ the entropy method. But, in the 
existing models, attribute weights are chosen arbitrarily. Since decision-makers 
have limited abilities and lack sufficient data and knowledge, they must be 
unsure about the appropriate attribute weights. So, calculating attribute weights
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Table 24.5 Ranking of the suppliers using various approaches 

Methods Ranking of the alternatives 

TOPSIS [12] . A1 � A2 � A4 � A5 � A3

Ratio system approach-based MULTIMOORA 
[3] 

. A1 � A2 � A4 � A3 � A5

Fuzzy multiplicative approach-based 
MULTIMOORA [3] 

. A1 � A2 � A4 � A3 � A5

WDBA (proposed) . A1 � A2 � A4 � A5 � A3

Fig. 24.5 Outcomes for supplier options using various methods 

by applying a suitable method is more reasonable. In conclusion, the proposed 
model will provide a more robust solution. 

6 Conclusion 

Due to insufficient information, experts cannot precisely quantify their judgment in 
many real-life situations. In such a situation, decision-makers should provide their 
judgments through the IVSFS due to their broader space. This chapter develops an 
integrated AHP and entropy-based WDBA method using IVSF data. At first, we 
have defined an improved score function for IVSF sets. Then, for IVSF sets, we 
defined Euclidean distance measures and investigated their significant characteris-
tics. Next, we have developed an entropy method by utilizing the proposed score 
function. Then, to solve MAGDM problems, we developed the WDBA method 
within the IVSF context, utilizing the proposed Euclidean distance measure. The
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AHP method and the entropy method are used in the developed method to determine 
the DE’s weights and the unknown attributed weights, respectively. Then, we solved 
a supplier selection problem for a textile manufacturing company to illustrate the 
practicality and efficiency of the proposed model. The result shows that . A1 is the 
best supplier for the company. Finally, we compared the results to several existing 
methods to demonstrate the feasibility of our model. 

There are some limitations to the present study. Future research will address 
the limitations of the present study. This study was conducted with data from 
three decision-makers regarding five alternative suppliers. It is possible to confirm 
the results of this study by collecting data from multiple suppliers in the future. 
Furthermore, the MAGDM model is only used for selecting suppliers. But it has the 
potential to address various other decision-making issues, such as assistant professor 
selection problem [18], job selection problem [24], company investment problem 
[25], etc. Furthermore, other fuzzy set extensions, such as quasirung fuzzy sets 
[26, 27], Pythagorean cubic fuzzy sets [17], etc., could be used to construct fuzzy 
WDBA. 
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1 Introduction 

Graphs are usually used to model relationships between objects. They have many 
applications in different fields including networks, computers, systems analysis, 
operations research, transportation, and economics. In recent years, various param-
eters have been studied in graphs. During these studies, domination and covering 
have been of great importance due to the concrete role they have had in the practical 
and real issues of human life. 

Among many issues in the world today, there are many variables for which 
no exact value can be considered. These values, which are categorized in the 
field of ambiguous and uncertain concepts, have long occupied the minds of 
researchers. Until Zadeh [1], for the first time, by introducing a fuzzy set (FS), was 
able to convert uncertain variables into intelligible numerical values by assigning 
a value between 0 and 1. Ten years later, Rosenfeld [2] proposed the fuzzy 
graph (FG) concept using FS. Next, the researchers investigated the FG types 
and their features. Mordeson [3] provided some operations definitions on FGs. In 
2013, Akram [4] broadened the bipolar FGs concept and explored some of their 
properties. Considering the FS non-membership values, Atanasov [5] extended it to 
an intuitionistic fuzzy set (IFS). Rashmanlou et al. [6, 7] examined some properties 
of an intuitionistic fuzzy graph (IFG) and highly irregular bipolar fuzzy graphs. 
Borzooei et al. [8] conducted many studies on vague graph (VG). Talebi et al. [9, 10] 
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revised a selection of graph parameters on the IVIFG. Some features of VG are 
investigated in the research of Kosari et al. [11–13]. 

The crucial grounds on dominating set (DS) was put forward by T.W. Haynes et 
al. [14]. Somasundaram and Somasundaram [15, 16] introduced the domination in 
FG. Gani and Chandrasekaran [17] presented domination in FGs by means of strong 
edges which was also examined by Mohideen and Ismayil [18]. Several domination 
concepts in FGs were presented and its various types were examined in FGs by 
researchers. Borzooei et al. [19] mentioned several concepts on VGs. The DS in an 
IFG was proposed by Parvathi et al. [20]. 

A vertex covering (VC) in a graph acts as an array of vertices where each edge 
has at least one endpoint. Manjusha and Sunitha [21] established the paired DS, 
VC, and matching in FGs applying strong edges. The VC and paired DS in IFGs 
was analyzed by Sahoo et al. [22]. 

Jun et al. [23] described the cubic fuzzy set (CFS) idea as an FS and an IVFS. 
Jun et al. [24] brought together the neutrosophic complex with CFS and organized 
the concept of neutrosophic CFS. Jun et al., also, evaluated some CFS-based 
algebraic features incorporating cubic IVIFSs [25], cubic structures [26], cubic sets 
in semigroups [27], cubic soft sets [28], and cubic intuitionistic structures [29]. 
Mohiuddin et al. [30] presented a new definition of a CFG. Rashmanlou et al. [31– 
33] illustrated some CFG concepts. Khan et al. [34] put forward some graphical 
structures of cubic IFG. Gulistan et al. [35] conducted a study on neutrosophic 
CFGs regarding real-life applications in industries. Jan et al. [36] defined some cubic 
bipolar fuzzy graphs concepts. 

In this chapter, we introduce two parameters related to the vertices of a graph, 
i.e., VC and DS in a CFG. The inadequacies of previous information in this field 
have led us to redefine the DS and VC in a CFG. Certain concepts related to DS and 
VC in a CFG were investigated. Some features of DS and VC have been studied in 
complete CFG. An application of the DS in a decision-making problem in the field 
of power transmission is presented at the end of the chapter. 

2 Preliminaries 

Some of the concepts needed to be mentally prepared to enter the main topic would 
be reviewed in this section. 

Let U be a non-empty set. Then, .ϑ : U → [0, 1] is referred to as a fuzzy set (FS) 
on U . An FG is a pair .� = (ϑ, �), where . ϑ is an FS on U and . � is an FS on .U ×U , 
therefore, .�(ab) ≤ ϑ(a) ∧ ϑ(b), for all .a, b ∈ U . Here, . � is considered a reflective 
and symmetric fuzzy relation in . ϑ . 

The underlying graph .�∗ = (ϑ∗, �∗) is referred to as the crisp graph of . �
whenever .ϑ∗ = {a ∈ U |ϑ(a) > 0} and .�∗ = {ab ∈ U × U |�(ab) > 0}. The  
FG .H = (ϕ, ψ) is named the partial fuzzy subgraph of .� = (ϑ, �) providing 
that .ϕ ⊆ ϑ and .ψ ⊆ �. Two vertices . a and . b in . � are adjacent to each other if
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.�(ab) > 0. An FG .� = (ϑ, �) is termed complete FG if .�(ab) = ϑ(a) ∧ ϑ(b), for  
all .a, b ∈ U . [37] 

Definition 2.1 ([23]) A cubic fuzzy set (CFS) on U is outlined as 

. X = {〈[ι(a), ζ(a)], η(a)〉|a ∈ U},

where .[ι(a), ζ(a)] is referred to as the interval-valued fuzzy membership value and 
.η(a) is signified as the fuzzy membership value of a, where .ι, ζ, η : U → [0, 1]. 
Definition 2.2 ([30]) A cubic fuzzy graph (CFG) on U is a pair .S = (X,Y) where 
. X is a CFS in U and . Y is a CFS in .U × U , so that for all . ab ∈ Y

. ιY(ab) ≤ ιX(a) ∧ ιX(b),

ζY(ab) ≤ ζX(a) ∧ ζX(b),

ηY(ab) ≤ ηX(a) ∧ ηX(b).

Definition 2.3 ([30]) Suppose that .S = (X,Y) be a CFG on U . The strength of a 
path . P is defined as .S(P ) = 〈[Sι(P ), Sζ (P )], Sη(P )〉 where 

. S(P ) =
〈[

k∧
i=1

ιY(zi−1zi),

k∧
i=1

ζY(zi−1zi)

]
,

k∧
i=1

ηY(zi−1zi)

〉
.

Definition 2.4 ([30]) An edge . zw in a CFG . S is named CSE whenever 

. ιY(ab) ≥ max Sι(Pi), ζY(ab) ≥ max Sζ (Pi),

ηY(ab) ≥ max Sη(Pi), for i = 1, 2, . . .

Definition 2.5 A CFG  .S = (X,Y) is signified as the complete CFG whenever 
. a, b ∈ U

. ιY(ab) = ιX(a) ∧ ιX(b),

ζY(ab) = ζX(a) ∧ ζX(b),

ηY(ab) = ηX(a) ∧ ηX(b).

Definition 2.6 Let .S = (X,Y) be a CFG. Then, the vertex and edge cardinalities 
of . S are expressed as follows: 

. p =
∑
a∈U

(
1 − ιX(a) + ζX(a) + ηX(a)

3

)

q =
∑
ab∈E

(
1 − ιY(ab) + ζY(ab) + ηY(ab)

3

)
.
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Table 25.1 Abbreviations Notation Meaning 

FS Fuzzy set 

FG Fuzzy graph 

DS Dominating Set 

VC Vertex covering 

IFS Intuitionistic fuzzy set 

IVFS Interval-valued fuzzy set 

IVFG Interval-valued fuzzy graph 

IVIFS Interval-valued intuitionistic fuzzy set 

IVIFG Interval-valued intuitionistic fuzzy graph 

Min-Car Minimum cardinality 

Max-Car Maximum cardinality 

CFS Cubic fuzzy set 

CFG Cubic fuzzy graph 

CSE Cubic strong edge 

CSN Cubic strong neighborhood 

SVCS Strong vertex covering set 

SVIS Strong vertex independent set 

Definition 2.7 Suppose that .S = (X,Y) be a CFG and .S ⊆ U . The cardinality of 
S is outlined by 

. |S| =
∑
a∈S

(
1 − ιX(a) + ζX(a) + ηX(a)

3

)
.

Some abbreviations in the article are listed in Table 25.1. 

3 The Dominating Set in Cubic Fuzzy Graphs 

In this section, we describe DS in a CFG and study its related associated properties. 
This concept is one of the characteristics attributed to the vertices of a graph that 
the set containing those vertices dominates the other vertices. This means that there 
is at least one edge between the vertices of this set and the outside vertices. The 
following definition introduces the concept with the help of CSEs. 

Definition 3.1 Suppose that .S = (X,Y) be a CFG on U . .S ⊆ U is referred to as 
a dominating set (DS) in . S whenever for every .z /∈ S, there exists .w ∈ S so that w 
dominates z. In other words, there exists a CSE between w and z. The Min-Car of 
all DSs in . S is referred to as the domination number of . S signified by .γ (S) or . γ . 

The above definition is applied in the following example. 

Example 3.2 As given in Fig. 25.1, a CFG of .S = (X,Y) is taken into account.



25 Investigating Some Parameters of Cubic Fuzzy Graphs and an Application. . . 577

Fig. 25.1 The CFG 
. S = (X,Y)

Here, ab and bd are CSE. The DSs are as follows: 

. S1 = {a, c}, S2 = {b, e}, S3 = {c, e},
S4 = {a, b}, S5 = {b, d}.

Upon measuring the cardinality of .S1, S2, S3, S4, S5, we obtain 

. |S1| = 1.2, |S2| = 1.36, |S3| = 1.33,

|S4| = 1.23, |S5| = 1.13.

Thus, .γ = 1.13. 

In the following definitions, the neighborhood of a vertex and its neighborhood 
degree are discussed. 

Definition 3.3 Suppose that .S = (X,Y) be a CFG. A CSN of z is specified as 

. N (z) = {w ∈ U |wz is a CSE}.

Furthermore, .N [z] = N (z) ∪ {z} is referred to as a closed CSN of z. 
Definition 3.4 The CSN degree of vertex z is classified as 

. DN (z) =
〈⎡
⎣ ∑

w∈N (z)

ι(w),
∑

w∈N (z)

ζ(w)

⎤
⎦ ,

∑
w∈N (z)

η(w)

〉
,

and the minimum and Max-Car CSN of . S are represented by .δN and .ΔN , 
respectively. 

The above definitions are used in the following example.
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Fig. 25.2 A strong CFG 

Example 3.5 Suppose that .S = (X,Y) be a CFG as depicted in Fig. 25.2. All edges 
are strong. We have 

. N (a) = {d}, N (b) = {c, d}, N (c) = {b, d},
N (d) = {a, b, c}.

Therefore, 

. DN (a) = 〈[0.5, 0.9], 0.3〉, DN (b) = 〈[0.6, 1.3], 0.7〉,
DN (c) = 〈[0.8, 1.5], 0.9〉, DN (d) = 〈[0.8, 1.7], 1.7〉.

Then, .δN = |〈[0.5, 0.9], 0.3〉| = 0.57, and .ΔN = |〈[0.8, 1.7], 1.7〉| = 1.2. 

Definition 3.6 In a CFG .S = (X,Y), a vertex .z ∈ U is referred to as an isolated 
vertex if .N (z) = ∅, i.e., for any .w ∈ U where .z = w, wz is not a CSE. 

The following theorem shows the relation between . γ and neighborhood degree. 

Theorem 3.7 If .S = (X,Y) is a CFG without an isolated vertex, then 

. γ ≤ p − ΔN and γ ≤ p − δN .

Proof Suppose that z be a vertex in CFG .S = (X,Y). Let  .DN (z) = ΔN and 
.U − N (z) be a DS of . S so that 

. γ ≤ |U − N (z)| = p − ΔN .

Since .δN ≤ ΔN , then, .γ ≤ p − δN .
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4 The Vertex Covering in Cubic Fuzzy Graphs 

This section discusses the VC in CFGs comparing some of their properties. This 
concept is one of the other parameters attributed to the vertices of a graph whose 
members cover all the edges of the graph. With the definition given in this chapter, 
this vertices covering is done by CSEs. 

Definition 4.1 Suppose that .S = (X,Y) be a CFG. An SVCS in  . S is a set . C of 
vertices in such a way that each CSE in . S is adjacent to at least one vertex in . C. 

The set . C is named the minimal SVCS of the CFG . S if .C \ {z} is not an SVCS, 
for all .z ∈ C. 

The SVCS number of . S is the Min-Car among all the minimal SVCSs of . S, and 
it is shown by .ðs(S) or . ðs . In that case, it is labeled as .ðs-set. 

Example 4.2 Consider the CFG . S as shown in Fig. 25.3. Here, . ab, . cd, and . ef are 
CSEs. The minimal SVCSs in Fig. 25.3 are as follows: 

. C1 = {a, c, e}, C2 = {a, d, e}, C3 = {a, c, f }, C4 = {a, d, f },
C5 = {b, d, f }, C6 = {b, c, f }, C7 = {b, d, e}, C8 = {b, c, e}.

From the cardinality measurement of the above SVCSs, we have 

. |C1| = 1.59, |C2| = 1.75, |C3| = 1.46, |C4| = 1.62,

|C5| = 1.72, |C6| = 1.56, |C7| = 1.85, |C8| = 1.69.

It is observed that . C3 comprises the Min-Car among other SVCSs. Hence, . ðs(S) =
1.46 and . C3 is the .ðs-set of . S. 

The following theorem proves that by removing a vertex from a CFG, .ðs(S) can 
be reduced. 

Fig. 25.3 The CFG .S
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Theorem 4.3 If . S is a CFG and .z ∈ U , then, .ðs(S − z) ≤ ðs(S). 

Proof Consider . C to be a minimum SVCS of . S. 
Case i. Assume .z /∈ C. 

Let . u and . v be two adjacent vertices of .S − z. Therefore, they are also adjacent 
in . S. Since . C is an SVCS, then, .u ∈ C or .v ∈ C. Thus, . C is an SVCS of .S − z. 
Hence, .ðs(S − z) ≤ ðs(S). 
Case ii. Assume .z ∈ C. 

Consider the set .C1 = C \ {z}. Suppose that . u and . v as two nodes of .S− z which 
are adjacent in .S − z. Hereupon, .u ∈ C or .v ∈ C. 

Since .u = z and .v = z, .u ∈ C1 or .v ∈ C1. Hence, . C1 is an SVCS of .S− z. Then, 

. ðs(S − z) ≤ |C1| < |C| = ðs(S).

Therefore, .ðs(S − z) ≤ ðs(S). 

Theorem 4.4 If .S = (X,Y) is a CFG without an isolated vertex, then, 

.ðs(S) ≤ p

2
. 

Proof Suppose that .S = (X,Y) be a CFG without an isolated vertex and the set . C
be an SVCS of . S. Therefore, .U \ C is also an SVCS of . S. Thus, 

. ðs(S) = min{|C|, |U \ C|},
ðs(S) ≤ p

2
.

Whenever we talk about an SVCS, the independent SVCS (SVIS) is also mentioned. 
Next, this concept is discussed in CFG. 

Definition 4.5 Suppose that . S be a CFG. A set .F ⊆ U is referred to as the SVIS of 
. S if the connecting edge between both vertices of . F is not CSE. An SVIS is named 
maximal SVIS if no set larger than . F is an SVIS. The Max-Car of SVISs in . S is 
termed as the SVIS number, and it is signified by .ßs(S) or . ßs . 

Example 4.6 In Fig. 25.3, only . C7 is a .ßs-set of . S with the Max-Car, so . ßs(S) =
|C7| = 1.85. 

The following theorem expresses the correlation between two SVCS and SVIS. 

Theorem 4.7 In CFG . S, . F is an SVIS if and only if .V ∗ \ F is an SVCS. 

Proof The proof is clear because every CSE has at least one endpoint in . F and 
.U \ F . 

In the next theorem, the relationship between SVCS and SVIS is presented in the 
CFG.
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Theorem 4.8 If . S is a CFG of order . p without an isolated vertex, then, . ðs(S) +
ßs(S) = p. 

Proof Suppose that . C and . F be two .ðs-sets of . S, respectively. Thus, .U \ C is an 
SVCS, and .U \ F is an SVIS. Hence, 

. p − ðs(S) = |U \ C| ≤ ßs(S), p − ßs(S) = |U \ F | ≥ ðs(S).

The last two inequalities show that .ðs(S) + ßs(S) = p. 

5 Application 

Today, the increase in urban population, the restructuring of the electricity industry, 
and the move toward privatization are among the main concerns of electricity 
companies. In this situation, one of the serious needs of the country’s electricity 
industry in the distribution sector is to establish an automation system for these 
networks, so that in a reasonable period of time, the reliability of the system can 
be significantly improved. The use of remote control keys as a suitable method to 
achieve the desired goals can cause fault detection, isolation, and load transfer in 
order to maintain the continuity and reliability of the network. 

Automation of distribution systems plays an important role in reducing the 
load recovery program execution time by using remote control keys. The use of 
an efficient methodology to determine the location of remote control switches is 
very important for power companies because this process can improve network 
recovery time as well as reliability indicators. Determining the appropriate location 
of these switches is one of the important priorities of power companies, considering 
the multiple network maneuvering points and economic constraints. The control 
keys should be installed in such a way that it dominates the surrounding points. 
Figure 25.4 shows the single-line diagram of the regional medium pressure feeder. 

Loads in the distribution network are considered as the residential, commercial, 
and industrial ones. The criteria related to the number of subscribers and their level 
of sensitivity are considered in combination. All the information required for the 
purpose of checking and analyzing the network, including the total load capacity 
and the distance of the points from the beginning of the feeder, which are extracted 

Fig. 25.4 Single-line 
diagram of a power 
distribution feeder
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based on the data available in the geographic information system (GIS) as well as 
comprehensive exploitation software (ENOX), are listed in Table 25.2. 

If we consider the single-line diagram in Fig. 25.4 as a CFG, then by considering 
the distance as an interval-valued fuzzy number and the total capacity as a fuzzy 
number, the cubic fuzzy values of each point are determined according to Table 25.3. 
Fuzzy values are obtained by dividing each number by the maximum numbers. 

The location of points is such that all edges can be assumed to be strong. The 
minimum DSs are as follows: 

. S1 = {1, 4, 8, 10}, |S1| = 1.98

S2 = {1, 4, 9, 10}, |S2| = 2.01

S3 = {1, 4, 8, 11}, |S3| = 1.89

S4 = {1, 4, 9, 11}, |S4| = 1.92

S5 = {2, 4, 8, 10}, |S5| = 2.01

S6 = {2, 4, 8, 11}, |S6| = 1.92

Table 25.2 Medium 
pressure feeder information 

Points Distance from the feeder Total load capacity 

1 100 85 

2 435 155 

3 475 315 

4 710 215 

5 775 130 

6 765 250 

7 1055 510 

8 1070 350 

9 1540 420 

10 1085 715 

11 1800 525 

Table 25.3 The cubic fuzzy 
values of each of the points 

Points Cubic fuzzy values 

1 . 〈[0.04, 0.06], 0.11〉
2 . 〈[0.23, 0.25], 0.21〉
3 . 〈[0.25, 0.27], 0.44〉
4 . 〈[0.38, 0.39], 0.30〉
5 . 〈[0.42, 0.44], 0.18〉
6 . 〈[0.42, 0.44], 0.34〉
7 . 〈[0.57, 0.59], 0.71〉
8 . 〈[0.58, 0.60], 0.48〉
9 . 〈[0.84, 0.86], 0.58〉
10 . 〈[0.59, 0.61], 1〉
11 .〈[0.99, 1], 0.73〉
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S7 = {2, 4, 9, 10}, |S7| =  2.04 

S8 = {2, 4, 9, 11}, |S8| =  1.95. 

Therefore, . S3 is a .γ -set. So, points 1, 4, 8, and 11 are the best places to install remote 
control keys. It should be noted that according to the mentioned process, two or 
more adjacent points may be given the high priority for installing the equipment; in 
which case the experts of the region should choose one of them as the best point. The 
need to pay attention to the geographic and environmental conditions and location 
of the studied feeders, the possible limitations of the real network, and the existence 
of unique characteristics of each of the medium pressure feeders cause that all the 
components related to the network are carefully examined in choosing the location 
of these switches. 

6 Conclusions 

The CFGs have better flexibility in modeling uncertain phenomena since they 
support both fuzzy membership and interval-valued membership. In this chapter, 
due to the importance of the concepts of DS and VC in graph theory, we introduced 
these concepts in CFG and examined some of its properties. In this context, attention 
has been paid to the definition of these concepts in some types of CFGs. The results 
show a significant relationship between these concepts in FGs. In this study, the 
parameters values are shown as a real number to make it easy to compare between 
different sets. In addition, the obtained values depend on the upper and lower bounds 
of the membership intervals. One of the limitations of this method is the loss of some 
data. In future works, the authors try to study the connectivity index and the Wiener 
index in a CFG. 
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Chapter 26 
Imperfect Production Inventory System 
Considering Effects of Production 
Reliability 

Shyamal Kumar Mondal and Barun Khara 

1 Introduction 

To attain maximum profit, each production company wishes to manufacture only 
perfect quality products. Due to various factors like as labor problems, machinery 
breakdowns, etc., malfunctioning of the manufacturing process increases as pro-
duction time increases and hence manufacturing unit out lets partly perfect and 
partly defective/imperfect quality items. By the implication of development cost, 
the production of defective units can be reduced. Still now, several works on EPQ 
models by several researchers have been developed. On imperfect productions, 
several research works have been developed by Panja and Mondal [37], Dolai and 
Mondal [35],  Dolai et al.  [36], Nandra et al. [38], Seung et al. [15, 29], Nandra 
et al. [41], Tayyab et al. [39], Goyal et al. [7], Sana et al. [24], Sarkar et al. [40], 
Dolai [26], Yadav et al. [42], and Khouja and Mehrez [12]. With the incorporation 
of learning effect in random planning horizon, Kar et al. [10] have assumed a 
production model with permissible delay due to stimulate consumers. In connection 
with the EPQ/EOQ model with imperfect products, Salameh and Jaber [23] worked  
on inventory model. 

Integrated production inventory approach deteriorating as a result of pricing 
policy, Chung and Wee [4] formulated a model in which warranty period and 
inspection planning have been assumed. In an imperfect production process, 
Cardenas-Barron [2] formulated an EPQ model in which manufactured imperfect 
items are repaired within the same cycle of the production due to ready the lot size 
of produced items as well as backorders’ size. Under consideration of imperfect 
inspection and sales return, Yoo et al. [34] developed an EPQ model. 
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Moreover, reliability of a produced item mostly depends on the production 
system as well as production rate, and hence production cost has an impact due 
to reliability of a produced item. In this regard, so many research works have been 
developed. Sana [25] developed a production inventory model in which production 
cost depends on production rate as well as product reliability parameter. Under 
fuzziness with multiple constraints, Gupta et al. [8] presented optimization problems 
in perspective of reliability. To deal with the discrepancy and deficiency, Saxena and 
Sarkar [43] studied production process reliability with random misplacement. 

In general, for deteriorating items, deterioration increases as time passes. In 
this connection, Singh et al. [31] developed time-dependent linear demand rate 
along with time-proportional deterioration rate in an optimal policy for deteriorating 
items. In the sense of probabilistic deterioration, Sarkar and Sarkar [28] formulated 
an EMQ model in a production system. With multiple production setups for 
deteriorating items, Uthayakumar and Tharani [33] have presented an EPQ with 
time-dependent demand. For instantaneous deteriorating items with backlogging 
as well as trade credit under inflation, Rajan and Uthayakumar [22] considered 
replenishment policies with optimal pricing. 

At present, publicity has a strong effect to rise the demand of a commodity. 
In this regard, in an imperfect production inventory model with advertisement-
dependent demand, Manna et al. [16] developed a production inventory model along 
with production rate-dependent defective rate. Using branch and bound technique 
with advertisement-dependent demand, Khara et al. [11] developed an integrated 
imperfect production model. 

At present, the economic condition changes rapidly in the financial market, due to 
high inflation rate. In this regard, several researchers have developed different types 
of model considering the effect of inflation and also time value of money. Under 
the effect of inflation in an imperfect production process, Sarkar [27] presented an 
inventory model with reliability. 

2 Research Gaps 

Under the environment of fuzzy rough, a supply chain model containing three layers 
was presented by Manna et al. [14]. Paul et al. [20] studied an imperfect production 
model under managing disruption. The reliability-dependent development cost is 
done by Mettas [17] and Sana [25]. In real scenario, it has been noticed that 
every production system produces almost all good items within a fractional part 
of the production time as all components are newly set up and going start to run 
at the beginning of production and produces a mixture of imperfect and perfect 
items as malfunctioning increases when system runs through long duration. Again, 
when time passes, the development cost increases. Therefore, in this chapter the 
total production time has been divided into two parts (i) a time during which all
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produced items are perfect and (ii) a time within which imperfect and perfect items 
are produced. Also we have considered the development cost depends on time and 
reliability connected to the system. 

It is observed that various investigator have considered various patterns of 
demand structure. Baker and Urban [1] studied a model with stock-dependent 
demands. Hariga [9] developed time variable demand. Mandal and Phaujdar [13] 
and Ray and Chaudhuri [21] have assumed stock-dependent demand. Datta and Pal 
[5] and Teng and Chang [32] investigated an inventory system with stock- and price-
dependent demand. Ghosh and Chaudhuri [6] considered an EOQ model, where 
demand nature is in quadratic form. Mondal et al. [18], Panda and Maiti [19], and 
Chen et al. [3] studied a demand function connected with price of the item. Hence, 
from the seeing of the literature, it appears no one has previously taken into account 
the selling value, publicity cost, as well as reliability connected with the product. 

3 Novelty and Contribution 

In this work, a production model has been studied where production system 
manufactures only perfect quality of products within a fractional part of the total 
production duration at the initial stage of production because of all components of 
the production system are new in this initial stage and produces perfect and imper-
fect items within the remaining part of the production duration as malfunctioning 
of the production system increases due to various kinds of problems like labor, 
machinery, and technology whenever production run time increases. Every time a 
person goes to a supermarket or shopping mall to purchase a product, he or she faces 
an important question. First one is: How long does it last with its specific operating 
hours? That is, how much is it reliable? Second things is what is its selling price? 
Under this aspect requirement of the item has been adopted as a function of product 
reliability, selling value, and advertisement. To reduce imperfect production as well 
as to regulate the reliability of the machinery system, time-dependent development 
cost has been introduced in this production inventory model because of imperfect 
increases as time passes. In this work, three variables which are reliability connected 
with the product, manufacturing system, and the production time have been adopted 
that maximizes the item’s profit. The gist of connected literature from which novelty 
of this chapter can be understood easily has been given in Table 26.1. 

The chapter is arranged as follows: In Sect. 4, we have discussed the inventory 
management in operations research (OR). Some basic concept and terminologies 
have been given in Sect. 5. In Sect. 6, notations and model assumptions are given. 
In Sect. 7, the model formulation is illustrated. In Sect. 8, the numerical results have 
been discussed. In Sect. 9, sensitivity analysis and in Sect. 10 managerial insight are 
drawn. Finally, the paper is concluded including the future research in Sect. 11.
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4 Inventory Management in Operations Research 

To solve a problem as well as for making a decision, operations research (OR) is 
a useful analytical method which is applied in the management of organizations. 
In this consequence, a specific problem is divided into some components, and 
next it is solved by several steps into mathematical analysis. Mathematical logic, 
network analysis, simulation, game theory, and queuing theory are well-known 
analytical methods used in operations research. At the time of the Second World 
War, the mystical term operations research (OR) was originated whenever a group 
of scientists were called by the British military management to perform a scientific 
approach in the study of military operations to win the battle. The main purpose 
was to assign limited amount of resources in an appropriate technique to several 
military operations and activities within every operation. In England, the activity 
of this group of researchers was called “operational research” because of dealing 
with research on (military) operations. Operations research means the method of 
the scientific application, tools, as well as techniques to the problems of decision-
making involving the system operations such that to apply these in the monitoring 
of the operations with optimum results. 

After completion of the war, industrial managers focused their attention on the 
advancement of the military teams to solve their complex executive-type problems. 
In 1947, a mathematical technique was developed, which is related to this field 
(known as the simplex method in the problem of linear programming). After that, in 
both academic institution and industry, these new techniques along with applications 
have been revealed with effort and cooperations of sensible individuals. At present, 
in many areas the impact of operations research has been realized. Besides military 
and business applications, in so many sections such as transportation, financial 
institution, hospitals, city planning, and libraries, the activities of OR have been 
implemented. In this connection, in a real-life situation, for an example, it has been 
observed that a retailer roughly places an order to his/her supplier according to 
his/her customer’s demand during a period of month or a week to satisfy his/her 
customer’s demand. This is not the fact for a manager of a large departmental 
store or a large retailer, as the stocking in these cases depends on different 
factors, e.g., demand, time of ordering, time lag between the orders and actual 
receipt, amelioration, deterioration, time value of money, inflation, etc., and the 
impreciseness of these factors. So the problem for managers/retailers is to have a 
compromise between over-stocking and under-stocking. The study of such type of 
problem is known by the term “inventory control.” 

In general, inventory is nothing but the stock of the raw materials. For an 
enterprise, it is also known as the idle resource. Furthermore, the items which are 
either to be hold for sale or are kept for the process of manufacturing or are stocked 
in the form of raw materials are also defined as inventory. It has been observed that 
the time interval between the receiving of the purchased raw material and converting 
them into finished items varies from factory to factory depending on the production 
cycle time. Therefore, it is most essential to hold inventories of several types to



592 S. K. Mondal and B. Khara

perform as a buffer between supply and demand for efficient operation of the system. 
Thus, for smooth running of the production cycle with least interruptions, it is must 
needed to control inventory. In broad sense, inventory is defined as an idle resource 
of a company/manufacturing firm. It can be defined as a stock of physical goods, 
commodities, or other economic resources which are used to satisfy the customer’s 
demand or requirement of production. This means that the inventory acts as a buffer 
stock between a supplier and a customer. In any one of the following categories, 
inventory of commodity can be stored: 

• Raw materials: The collected products or extracted raw materials which are 
shifted to products. 

• Components: Several parts that are used to make a final product. 
• Work-in-process (WIP): An improved item which belongs to some stage of 

completion in a production system. 
• Finished goods: Any completed item produced by the manufacturing system 

which is ready to deliver for the consumers. 
• Maintenance, repair, and operational (MRO) inventory (often called supplies): 

some specific part that are used in production process but is not any part of the 
finished product. 

In inventory control, materials are systematically moved from suppliers to 
production facilities, and then products are moved to consumers via distribution 
centers. Materials and final products are planned, acquired, stored, moved, and 
controlled by this department. Its main objective is to obtain the right goods at the 
right time with the right price to continue desired service level at minimum cost. 
Basically, it focuses with mainly two problems: (i) At what time an order should be 
placed? (ii) How much quantity should be ordered to satisfy market demand? 

Using inventory models, answers are given. The scientific inventory control 
system balances between the loss due to non-availability of an item and carrying 
cost due stock of the product. The main goal of the scientific inventory control is to 
maintain the stock of required goods at optimum level at minimum cost in favor of 
the company. Therefore, the basic objectives of inventory control are: 

• To assure sufficient supply of items to the customer and prevent shortages as far 
as feasible. 

• To ensure minimum financial investment for inventories. 
• For materials procurement, keeping, use for purpose, and accounting are impor-

tant objectives. 
• Timely initiative for replenishment is needed. 
• To continue timely account of stocks of products and to keep the stock within a 

desired range. 
• To give in hand stock for different lead times of supply of materials. 
• To provide a technical concept for both short-term and long-term ideas of 

materials.
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For the same reasons, stocks of other departments are used. Some costs like hold-
ing, replenishment/set-up, material costs, purchasing, shortage, etc. are involved in 
an inventory system. Although inventories constitute an idle resource which incurs 
holding costs, they are supported by the result protecting in shortage, replenishment, 
and procurement costs. The problem of inventory control is primarily concerned 
with the following fundamental questions: 

• Is there a need to produce which items? 
• How much of each of these products should be manufactured? 
• When to produce? or When should an order be placed? 
• What type of stock of the system should be used? 

According to the above questions, the inventory problem plays a vital role in 
determining optimal decisions. Moreover, an inventory model reflects the decisions 
which enhance the favor of the organization, consumer service, etc. and optimize 
either the profit function or cost function of the inventory model. Basically, it 
is a tremendous job to decide an appropriate stocking management that deals 
with the mentioned questions in a practical problem. To solve inventory control 
problems, OR techniques are used to develop a mathematical model. Basically, the 
model represents the problems in a simplified way by considering only the most 
significant characteristics. Then, most beneficial or an optimal solution is acquired. 
In this study, we are developing some mathematical models and solving them 
using different mathematical methodologies for various realistic inventory control 
systems. 

5 Basic Concepts and Terminologies 

Inventory: Generally, inventory is defined as greatest resource of a com-
pany/enterprise/manufacturing firm. Normally, stock of commodities and physical 
goods which are supplied to satisfy the customers’ demand can also be denoted as 
inventory. Also it reveals that it is considered as a buffer stock between a customer 
and a supplier. The inventories are categorized into the following forms: 

I. Direct Inventories: Products that take part as an important preface in the 
production system and become an important portion of the finished products are 
familiar as direct inventories, which has been divided into four major groups: 

(a) Raw materials inventory: It consists of the procure products or extracted 
items which are shifted into products or components. It is provided for cheap 
(i) to make larger purchasing, (ii) to allow to change production rate, (iii) to 
enable buffer stock of production in regarding lateness transportation, and 
also (iv) for seasonal variations.
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(b) Inventory for work-in-process (WIP): In the manufacturing process, this 
type of inventory consists of completion of some stages for an item. It is 
provided (i) to allow for economical lot size of production, (ii) to continue 
to produce the varieties of items, (iii) for replacing of dissipation, and (iv) 
to continue consistency in production though amount of sales may change. 

(c) Inventory of completed products: This type of inventory contains accom-
plished items which will be delivered to consumers. It is given (i) to enable 
sales of promotion, (ii) for keeping off-self delivery, and (iii) to maintain 
stability of the level of the production. 

(d) Elements of the inventory: It includes of some portion that are used to form 
the complete item. 

II. Indirect Inventories: Some components like petrol, grease, oil, lubricants, office 
materials, maintenance materials, etc. that are needed to produce an item but are 
not the component of finished production known as indirect inventories. 

Demand: In a given period of time, it is the number of consumers who are willing 
and able to buy products at different prices. The consumer’s willingness and ability 
to pay for the commodity determines demand for any commodity. 

Production: The resources and the products determine the production system. A 
product is designed to meet market demand using these resources. 

Imperfect Production: It is seen that in reality in any manufacturing process, the 
production of imperfect quality products is a natural phenomenon which occur due 
to different causes such as inadequate working instructions, quality of raw materials, 
long-term production process, machinery faults, labor issues, etc. 

Inspection/Screening Process: In any manufacturing process, it is observed that 
the system produces both imperfect and perfect quality items due to the various 
kinds of issues connected with the manufacturing process. So, the screening process 
is necessary to identify whether a manufactured product is good or not. After 
screening and shorting, the manufacturer satisfies the retailer’s/customer’s demand. 

Rework Policy: In an imperfect production systems, it has been seen that a 
portion of the produced items are imperfect in quality which may be reworked to 
become as good as new one and can be sold further. It is important to eliminate 
waste and reduce manufacturing costs as a result of rework. 

Reliability: In production inventory system, reliability means the ability of a 
device or a manufacturing process to execute its function subject to stated conditions 
for a specified length of time. It is measured by the ratio of the number of survival 
units to the total number of operating units inside a specified time interval. In a 
manufacturing system, the ratio of perfect number of items to the total number of 
produced items within an operating hour is known as the reliability of the production 
system. 

Credit Period Policy/Delay in Payment: It is a time period that a customer is 
allowed to wait before paying an invoice. In present competitive situation, the credit 
period has special significance to reduce demand error for the manufacturer.
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Advance Payment Policy: An advance payment means a payment that is made 
prior to replenish the order. Frequently, retailers try to increase the demand through 
the motivation by price discount offer. Further, if a customer pays an advance 
payment, then he may get some price discount on the ordering quantity. It has been 
observed that, in presence of several brands available in the market, demand rate of a 
product is decreased. So, to ensure the demand, the manufacturer/retailer frequently 
asks their retailer/customer to pay a certain percentage of the procurement cost of 
the replenishment quantity prior to delivery of the products in order to lessen the 
chance of cancellations of orders and invites to enjoy some other facilities offered 
by them. 

Discount Policy: In order to employ more transection, the manufacturer fre-
quently offers a reduced price if ordered quantity is greater than some specified 
minimum quantity. As a result, if you place a larger order, you will pay a lower 
price per unit. In general, two kinds of quantity price structure are assumed: (a) all 
unit discount and (b) incremental quantity discount. Furthermore, several types of 
discount are also offered under certain conditions. 

Supply Chain Model (SCM): In present competitive market, supply chain man-
agement(SCM) takes part a significant role in economy as it provides an integrated 
networking system among supplier, manufacturer, retailer, and customer and tells 
how to survive in the present competitive market situation through the cooperation 
among supplier, manufacturer, retailer, and customer. To obtain tensionless stable 
sources of supply and demand of reliable products and to achieve optimum profit, 
it is very important to attain a long-term cooperation among manufacturer, supplier, 
and retailer which balances a series of inter-connected business procedure on 
account of: 

(i) Optimal purchasing quantity of raw materials delivered by the supplier; 
(ii) Shifting the raw materials into storehouse; 
(iii) Manufacture of items in the manufacturing center and transportation of 

finished product to retailer to satisfy customer’s required demand. 

Recycling: Recycling is the procedure of converting waste substance into new 
materials and articles. It saves natural resources and helps to reduce greenhouse 
gas emissions. At present, in connection with the crisis of conventional resource 
of energy as well as environment pollution due to increase of greenhouse gasses, 
recycling of used product shows a vital role to save conventional resource of energy 
and to rescue us from an environmental catastrophe. Because much less energy is 
required for recycling of used product, huge energy is needed to produce an item 
from virgin raw materials, and consequently recycling saves our natural resources. 
So, it not only saves natural resource but it also saves energy. 

Closed-Loop Supply Chain (CLSC): Closed-loop supply chains (CLSC) indi-
cates a network that include the returns processes, and the manufacturer has 
the intent of capturing additional value and further integrating all supply chain 
activities. Closed-loop supply chain management(CLSCM) includes all forward
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logistics and also the reverse logistics to procure and process returned products 
and/or some portion of the products due to assurance of an ecologically as well as 
socioeconomically sustainable fulfillment. The main objective of the conventional 
supply chain is to reduce the cost and increase the efficiency of supply chain 
company so that as to maximum economic benefits can be achieved. Furthermore, 
CLSCM try to maximize economic profits, to reduce the consumption of natural 
resources and energy, and also to reduce the emissions of pollutants. 

Cost of Purchase: It expenses to purchasing material and making the material in 
sellable condition. 

Inventory Cost: It is the cost of keeping and holding down the inventory over 
a specified time period. There are several costs associated with inventory, for 
example, costs of production, purchasing costs, screening costs, reworking costs, 
setup costs, holding costs, idle costs, advertisement costs, warranty costs, stock-out 
costs, disposal worth, etc. 

Reworking Cost: This is a cost required to make new products from defective 
items to restrain the waste of functional portion of an imperfect product, also 
to make less the use of virgin raw materials, to decrease energy utilization and 
environmental pollution in manufacturing center. Therefore, for this reason, the 
imperfect products are remanufactured at a cost to make a perfect one product. 

Warranty Cost: The cost that a business expects to or has already incurred for 
the repair or replacement of goods that it has sold. The total amount of warranty 
expense is limited by the warranty period that a business typically allows. 

Setup Cost: It includes packaging, delivery, shipping, and handling costs associ-
ated with actually ordering the inventory. 

Shortage or Stock-Out Cost: This is the penalty imposed when there is not 
enough stock to meet customer demand. Inventory that has not been delivered to 
the customer determines this cost parameter, not where stock is replenished. 

Disposal Cost: If an excess of some units remain at the end of an inventory cycle 
and are sold at a less price, and at the next time to get certain benefits, such as 
finishing the stock, closing the business, etc., the disposal cost is the revenue earned 
as a result of such a process. 

6 Assumption and Notation 

Following are the assumptions and notations used to develop the imperfect produc-
tion model.
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6.1 Notations 

q(t) : Perfect items inventory at time t ≥ 0 

qd(t) : Faulty items inventory at t ≥ 0 

p : Fixed production value per item. 

λ : Reliability parameter of the manufacturing system, decision variable, which 
belongs in [λmin , λmax ] 

r : Reliability of the product. 
rmax : Highest value of r 
rmin : Lowest value of r 

v : Number of advertisement, v ∈ [0,1] 
cv : Advertisement cost per unit time per unit advertisement. It is the cost allotted 

to advertise for an item in popular media such as TV, radio, newspaper, 
magazine, etc. and also with the sales representative to increase the sale of 
that item. 

V (λ,  t)  : Development cost. 

A : Energy and labor cost which is not dependent on λ. 
B : The cost of resource, design complexity, and technology for manufacturing. 

when λ=λmax and t=(τ + 1). 
k : The difficulties in increasing reliability of the manufacturing system. 

s : Perfect item selling price per unit. 

s1 : Imperfect item selling price per unit. 

D(r, s, v) : Demand function on r , s and v. 
d0 : Constant demand due to reliability of the product. 

d1 : Demand constant due to selling price. 

d2 : Demand constant due to advertisement. 

D3 : Demand of defective items. 

C(λ, r, t) : Production cost per product. 
M(r) : Material cost depending on r . 

M0 : Constant ingredient cost. 

M1 : The reliability of the item to be produced increases by this ingredient cost. 

C1 : Per unit item holding cost per unit time. It is the cost to keep the items store 
house of the inventory until its utilization or selling. 

C2 : Screening cost per unit item. 

t1 : Duration of production, dependent decision variable. 

τ : A fractional part of the production time t1 
T : Finite time duration. 

Depending upon the characteristic of the stock system, it can be finite or 
infinite. 

α : Tool/die cost variance constant.
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6.2 Assumptions 

On the basis of following assumptions, this model of the inventory management 
system has been developed which are adopted by the authors only. So, there is no 
reference against each assumption: 

(i) In an imperfect production process, this model is formulated for a single 
product. 

(ii) It is obvious that the production system is under control in the initial stage 
of production run time as every machinery components of the system is new 
initially. As a result, it produces only perfect quality items within this initial 
stage of production. But after a fractional part of the production time (i.e., 
after this initial stage of production time), it produces a mixture of imperfect 
and perfect quality items because it is shifted to out of control state due to 
malfunctioning of the machinery parts, machinery breakdown, labor, etc. as 
production run time increases. In this connection, it has been assumed that 
the system manufactures only fair items within a period of time length (0,. τ ) 
when the manufacturing system is under control state and after time . τ the 
production process outlets a mixture of both imperfect and perfect items. 

(iii) In this model, .e−λ(t−τ)  is assumed as the reliability of the production system 
where . λ is the parameter due to reliability is explained as 

. λ= number of imperfect products 

whole number ofmanufactured product within a specified interval of time 

which reflects that reliability of the system increases with the deceasing value 
of . λ. 

(iv) In perspective of our assumption (iii), it is obvious that, whenever time passes, 
production system reliability is reduced. Again, following the assumption (ii), 
the manufacturing process is under control state within a duration of time 
lying between 0 and . τ , and system reaches out of control situation after . τ . 
So, it is appropriate to consider a constant maintenance cost within a period of 
time interval (0,. τ ) to run the system and a time-dependent development cost 
after time . τ to obtain a constant reliability connected with the manufacturing 
process within production system. Moreover, the cost for development should 
be increased to increase the reliability of the system. Hence, this cost . V (λ,  t)  
should be related to . λ, and t is assumed as follows: 

. V (λ,  t)  = 

⎧ 
⎪⎨ 

⎪⎩ 
A if 0 < t  ≤ τ 
A + B(t − τ)e  k( λmax−λ 

λ−λmin 
) 

if τ ≤ t ≤ t1 
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where A is a constant maintenance cost due to energy and labor which 
independent of . λ and the cost of resource, technology, as well as design 
complexity is B, whenever t=.(1 + τ)  and . λ=.λmax . 

(v) Generally, product reliability r depends on the raw material as well as on 
the manufacturing procedure. Again, reliability r connected with the product 
increases with increase in quality of the raw material, but this rate is not 
uniform. This rate of increase is decreased. Incorporating this fact, the 
ingredient cost .M(r) have been formulated as below 

. M(r) = M0 − M1e
−μr 

where .M0 > 0, .M1 > 0, with .M0 > M1 and .μ >  0. 
(vi) In this model, the production cost per product .C(λ, r, t) assumed as a function 

of development cost as well as material cost of the following form: 

. C(λ, r, t) = M(r) + 
V (λ,  t)  

p
+ αp 

where . α is fixed cost depending on manufactured items p in the production 
system. 

(vii) In present situation, it is noted that the selling of an article relies on the 
product promotion in connection with the common life. So, increasing the 
demand of an article, the advertisement impacts positively to motivate the 
consumers to purchase the product. Again, it is noted that the customers pay 
attention on the reliability connected with the product r and also on the selling 
price s of an article. In this regard, the demand .D(r, s, v) of an article has been 
assumed as the following form: 

.D(r, s, v) = d0 
(r − rmin) 
(rmax − r) 

+ d1s−b + d2v (26.1) 

where .0 < v  <  1 and here the demand decreases with selling price (s) and 
increases with the reliability (r) and the advertisement (v). 

(viii) In this model, the finite time horizon is assumed. 
(ix) The terminal and the initial inventory levels are considered as zero. 
(x) As all produced items are considered as perfect within time . τ , the screening 

is considered for the items produced after time (. τ ) to identify whether it is 
perfect or imperfect. 

(xi) As . τ a fractional part of the production time . t1, in this model we have 
considered .τ = xt1 where .0 < x  <  1. 

Lemma 1 The ingredient cost .M(r) = M0 − M1e
−μr increases with product 

reliability (r) and increases from .M0 − M1 at a decreasing rate. 

Proof Here, .M(r) = M0 − M1e
−μr and for zero reliability, we have . M(0) = 

M0−M1 is the constant material cost for production. Since .M(0) >  0, so .M0 > M1. 
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Therefore, . dM(r) 
dr = M0μe−μr > 0 which reflects that .M(r) is an rising function. 

Again, . d
2M(r) 
dr2 

= −M0μ
2e−μr < 0 shows that . dM(r) 

dr decreases with r . Hence, . M(r) 
is an increasing function of r with a decreasing rate. 

7 Model Formulation 

In real scenario, it has seen that there is no manufacturing system which can produce 
.100% perfect items when it continues through long time. It is true that it produces 
a mixture of both imperfect and perfect quality items due to various kinds of issue 
like machinery breakdown, labor, technology, etc. when it process through long 
duration. In our model, we have considered that all produced items are perfect within 
time . τ and after time . τ when manufacturing system becomes out of control state 
due to several kinds of problem like labor, machinery breakdown, technology, etc. 
producing a mixture of both imperfect and perfect items. Items in perfect condition 
are available for sale, while defective items are on sale for a reduced cost. In order to 
reduce these defective items, the cost of development .V (λ,  t)  is introduced, which 
is enhanced with the time t. The schematic diagram of this model has been given in 
Fig. 26.1. 

Here, p is the constant production rate, and the reliability of the manufacturing 
system is .e−λ(t−τ), number of perfect items produced by the system is .pe−λ(t−τ), 
and the number of imperfect items is .p(1 − e−λ(t−τ)  ). Therefore, the differential 
equation of the inventory .q(t) is given by 

. 
dq(t) 
dt 

= 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

p − D if  0 ≤ t ≤ τ 
pe−λ(t−τ)  − D if  τ  ≤ t ≤ t1 

−D if  t1 ≤ t ≤ T 

Fig. 26.1 The schematic diagram of imperfect production inventory system 
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with boundary conditions .q(0) = q(T ) = 0. 
By solving the abovementioned differential equation with the boundary condi-

tions, the stocking level .q(t) of perfect items at any time t is given by 

. q(t) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

(p − D)t if 0 ≤ t ≤ τ 
p 
λ
{1 − e−λ(t−τ)} − Dt + pτ if τ ≤ t ≤ t1 

p 
λ
{1 − e−λ(t1−τ)} −  Dt + pτ if t1 ≤ t ≤ T 

The graph inventory for perfect item for Example 2 is shown in Fig. 26.2 and that 
of for imperfect item is depicted in Fig. 26.3. 

Lemma 2 The variables r , . λ, and . t1 are connected as follows: 

Fig. 26.2 Graph of inventory 
.q(t) of perfect items based on 
Example 2 

Fig. 26.3 Graph of inventory 
.qd(t) of imperfect items 
based on Example  2 
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. 
1 

λ 
p{1 − e−λ(t1−τ)} =  DT − pτ 

where . D = d0 (r−rmin) 
(rmax−r) + d1s−b + d2v 

Proof Since, the stocking level .q(t) is continuous at time .t = τ and at .t = t1, hence 
we have 

. 
1 

λ 
p{1 − e−λ(t1−τ)} − Dt1 + pτ = D(T − t1) 

i.e., 
1 

λ 
p{1 − e−λ(t1−τ)} +  pτ = DT (26.2) 

Again, the differential equation of the stock of the imperfect products .qd(t) is as 
follows: 

. 
dqd(t) 

dt 
= 

⎧ 
⎨ 

⎩ p{1 − e−λ(t−τ)} −  D3 if τ ≤ t ≤ t1 

−D3 if t1 ≤ t ≤ t3 

with boundary conditions .qd(τ ) = 0 = qd(t3) and .D3 = d3s
−w 
1 has been 

considered as the demand of defective items. 
By solving the abovementioned differential equation with the initial conditions, 

the stocking level .qd(t) at any time t is given by 

. qd(t) = 

⎧ 
⎨ 

⎩ p[t − τ − 1 
λ
{1 − e−λ(t−τ)}] − (t − τ)D3 if τ ≤ t ≤ t1 

p[t1 − τ − 1 
λ
{1 − e−λ(t1−τ)}] − (t − τ)D3 if t1 ≤ t ≤ t3 

The graph inventory for perfect item for Example 3 is shown in Fig. 26.4 and that 
of for imperfect item is depicted in Fig. 26.5. 

Lemma 3 The decision variables . λ and . t1 are connected as follows: 

.p[t1 − τ − 
1 

λ
{1 − e−λ(t1−τ)}] = (t3 − τ)D3 (26.3) 

Proof The stocking level .qd(t) of the imperfect items at time .t = t3 vanishes; 
therefore, .qd(t3) = 0 implies 

. p[t1 − τ − 
1 

λ
{1 − e−λ(t1−τ)}] − (t3 − τ)D3 = 0 

i.e.,p[t1 − τ − 
1 

λ
{1 − e−λ(t1−τ)}] = (t3 − τ)D3 (26.4) 
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Fig. 26.4 Graph of inventory 
.q(t) of perfect items based on 
Example 3 

Fig. 26.5 Graph of inventory 

.qd (t) of imperfect items based on 

Example 3 

Lemma 4 The decision variables such as the product reliability r and the produc-
tion time . t1 are related as follows .t1 = E + GD where .E = D3t3 

p+D3x
, . G = T 

p+D3x 
and . τ = xt1 

Proof From Lemmas 2 and 3: using two constraint Equations, we attained as 
follows: 

. p[t1 − τ − 
1 

λ
{1 − e−λ(t1−τ)}] − (t3 − τ)D3 = 0 

i.e.,p(t1 − τ)  − (DT − pτ) = (t3 − τ)D3 
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i.e.,pt1 − DT = D3t3 − D3xt1 

i.e.,t1 = 
D3t3 

p + D3x 
+ T 

p + D3x 
D 

i.e.,t1 = E + GD (26.5) 

The revenue for the perfect items is given by 

.Srev = s 
τ∫

0 

pdt + s 
t1∫

τ 

pe−λ(t−τ)  dt = sp[τ + 
1 

λ
{1 − e−λ(t1−τ)}] (26.6) 

The revenue for the imperfect items with reduced selling price is given by 

.Srevd = s1 

t1∫

τ 

p{1 − e−λ(t−τ)}dt = s1p[t1 − τ − 
1 

λ
{1 − e−λ(t1−τ)}] (26.7) 

The total cost . Cp for production is given by 

. Cp = p 
τ∫

0 

C(λ, r, t)dt + p 
t1∫

τ 

C(λ, r, t)dt 

= p 
τ∫

0 

{M(r) + 
A 
p 

+ αp}dt + p 
t1∫

τ 

{M(r) + 
V (λ,  t)  

p 
+ αp}dt 

= [p{M0 − M1e
−μr } + A + αp2]t1 + 

B 
2 

(t1 − τ)2e k( λmax−λ 
λ−λmin 

) 
(26.8) 

The cost .Chp for holding the perfect items is obtained as 

. Chp = c1[ 
τ∫

0 

q(t) + 
t1∫

τ 

q(t) + 
T∫

t1 

q(t)]dt 

= c1 
p 
λ

[t1 − τ − 
1 

λ
{1 − e−λ(t1−τ)}] + c1pT τ + c1(T − t1) 

p 
λ

{1 − e−λ(t1−τ)}. (26.9) 

− 
c1 

2 
(DT 2 + pτ 2) (26.10) 

The holding cost .Chd of imperfect items is obtained as 
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. Chd = c1[ 
t1∫

τ 

qd(t) + 
t3∫

t1 

qd(t)]dt 

= c1 
p 
2 

(t1 − τ)2 − c1 
D3 

2 
(t3 − τ)2 + p(t3 − t1 − 

1 

λ 
)[t1 − τ 

−1 

λ
{1 − e−λ(t1−τ)}] (26.11) 

The total cost for publicity . Cadv = cv 
yT∫

0 
vdt = cvvyT 

The cost for screening the products whether it is perfect or defective is . Cscr = 

c2 

t1∫

τ 
pdt = c2p(t1 − τ)  

Therefore, in this model the average profit using Lemmas 1 and 2: is obtained as 
follows: 

. F(λ,  r,  t1) = 
1 

T 
[Srev + Srevd − Cp − Chp − Chd − Cadv − Cscr ] 

= 
1 

T 
[(sT − 

1 

2 
c1T 2 + c1T t1){d0 (r − rmin) 

(rmax − r) 
+ d1s−b + d2v} 

−{s1D3x + p(M0 − M1e
−μr ) + αp2 + A − c1D3t3 + c2p(1 − x)}t1 

+{1 
2 
c1D3x

2 − 
1 

2 
B(1 − x)2e k( λmax−λ 

λ−λmin 
) − 

1 

2 
c1p − c1D3x}t2 1 

−1 

2 
c1D3t

2 
3 − cvvyT + s1D3t3] (26.12) 

Here three variables . λ, r , and . t1 are connected through the average profit .F(λ,  r,  t1). 
As there are two constraint equations in Lemmas 2 and 3 connected with three 
variables . λ, r , and . t1, the objective function .F(λ,  r,  t1) finally reduces to a one 
independent decision variable. As profit function is not linear and complicated 
form, it is difficult to reduce as a function of a single independent variable. After 
substitution of the value of . t1 from Lemma 4, the function .F(λ,  r,  t1) transforms to 
.F(λ)  as follows: 

.F(λ)  = 
1 

T 
[μ1D − {p(M0 − M1e

−μr ) + μ2}(E + GD) 

+ {μ3 − 
1 

2 
B(1 − x)2e k( λmax−λ 

λ−λmin 
)}(E + GD)2 + c1T D(E  + GD) + μ4] 

= 
1 

T 
[{μ5 − Gp(M0 − M1e

−μr ) − EGB(1 − x)2e k( λmax−λ 
λ−λmin 

)}D 
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+ {μ6 − 
1 

2 
G2B(1 − x)2e k( λmax−λ 

λ−λmin 
)}D2 − Ep(M0 − M1e

−μr ) 

− 
1 

2 
E2B(1 − x)2e k( λmax−λ 

λ−λmin 
) + μ7] (26.13) 

where . D = {d0 (r−rmin) 
(rmax−r) + d1s

−b + d2v} 
.μ1 = st − (1/2)c1T 2, . μ2 = s1D3x + αp2 + A − c1D3t3 + c2p(1 − x) 
.μ3 = (1/2)c1D3x

2 − (1/2)c1p − c1D3x, . μ4 = c1D3t3 − (1/2)c1D3t
2 
3 − cvvyt 

.μ5 = μ1 −Gμ2 + 2EGμ3 + c1T E, .μ6 = G2μ3 + c(1)T G and . μ7 = μ4 −Eμ2 + 
E2μ3 
and r is considered as a function of . λ, suppose .r = φ(λ)  is obtained from the 
following equation where r and . λ are related implicitly 

. 
p 
λ

{1 − e−λ(t1−τ)} =  DT − pτ 

i.e., 
p 
λ

{1 − e−λ(1−x)t1} =  DT − pxt1 

i.e., 
p 
λ

{1 − e−λ(1−x)(E+GD)} = DT − px(E + GD) 

i.e., 
p 
λ

{1 − e−λ(1−x)(E+GD)} = (T − pxG)D − pxE (26.14) 

So, the main objective is to maximize .F(λ)  = F(λ,  r)  subject to .r = φ(λ)  (say) 
obtained from Eq. (26.14). 

Therefore, by the chain rule from differential calculus, . dF(λ) 
dλ = ∂F (λ,r) 

∂λ + 
∂F (λ,r) 

∂r 
dr 
dλ and . 

d2F 
dλ2 

= ∂2F(λ,r)  
∂λ2 

+ 2 ∂2F(λ,r)  
∂λ∂r 

dr 
dλ + ∂F (λ,r) 

∂r 
d2r 
dλ2 

+ ∂2F(λ,r)  
∂λ2 

( dr 
dλ )

2 (see 
Appendix). 

Lemma 5 Average profit F is finally a function of . λ. Here, parametric values are 
associated with the equation . 

dF(λ) 
dλ = 0. There exists at least one value of .λ = λ∗ at 

which . d
2F 

dλ2 
< 0; then we get the optimum value of the profit at .λ = λ∗. 

8 Numerical Illustration 

To get the optimum value of the model, the numerical description has been done 
taking the following examples. It is noted that due to unavailability of the real data, 
all data in these examples have been considered hypothetically but similar to the 
real. 

Example 1 Suppose a production house manufactures an article with a fixed rate 
of production monthly with ten units to fulfill the requirement of the consumer 
during the business cycle of 1 month due to assumption (vi). Here fixed rate 
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of demand is given by .d0 = 2 units, .d1 = 8 units, and .d2 = 2 units, per 
unit selling price for perfect quality of items, .s = $90, and other parameters 
.b = 2 and amount of advertisement .v = 0.7. To regulate the reliability connected 
with the manufacturing process, the manufacturer has assumed a time-dependent 
manufacturing development cost based on assumption (iii) with .A = $1, .k = 0.1, 
.λmin = 0.01, .B = $0.5, and .λmax = 0.9. In this system, the cost for material 
(assumption (iv)) is defined where .M1 = $30, .M0 = $60, .μ = 0.5 and production 
cost per unit has been considered based on assumption (v) where .α = 0.01. Here, to 
sell the produced imperfect quality of items, the company has considered reduced 
selling price .s1 = $25 per imperfect product. In this system, the cost for holding 
single produced item per unit time is .c1 = $0.4, unit advertisement cost .cv = $20. 
To obtain the maximum profit, find out the optimum time of production due to the 
optimum reliability connected with the manufacturing process. Hence, we have to 
obtain the optimum reliability. 

Solution In Table 26.2, the hypothetic values of the parameters for this example are 
assumed. 

It is very complicated to optimize the objective function analytically, due to 
nonlinear of the profit function of this current model. To obtain the outcomes of 
the model, we have used LINGO 12 software. With respect to the system reliability 
parameter . λ, Fig. 26.6 reveals that the profit function .F(λ)  is concave and due to 
the reliability r . Also, Fig. 26.7 shows that the profit function .F(λ)  is concave in 
nature, which indicates that the profit function is globally optimum. Hence, due to 
these hypothetic values of all parameters, the model is optimized numerically which 
gives the following results: 

Optimum values of the profit, . λ, duration of production, and reliability of the 
product are given by .F ∗ = $382.92, .λ∗ = 0.0253446, .t∗1 = 0.6720670, and . r∗ = 
0.6558947, respectively. 

Now, here optimal condition of the objective function are verified numerically as 
follows: 

At .λ∗ = 0.0253446, the first derivative . dF(λ) 
dλ = 0 and the second derivative 

. d
2F 

dλ2 
= −36950150 which indicates the optimal point at .λ∗ = 0.02534456. 

Henceforth, it confirms the existence of the maximum value. 

Table 26.2 Parametric values 

Parameter Value Parameter Value Parameter Value Parameter Value 

s 90 .M0 60 p 10 .t3 0.9 

.s1 25 T 1 A 1 B 0.5 

.μ 0.5 y 0.7 .λmax 0.9 .λmin 0.01 

v 0.7 .α 0.01 .d0 2 .c1 0.4 

.M1 30 k 0.1 .d1 8 .c2 0.2 

x 0.3 b 2 .d2 2 .cv 20 

w 1 .y3 0.9 .d3 1 .τ 0.2016201 
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Fig. 26.6 Concave nature of 
.F(λ)  based on Example  1 
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Fig. 26.7 Concave of the 
profit function .F(r)  based on 
Example 1 
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Example 2 The same type of problem is considered in this example with some 
different input parametric values shown in Table 26.3. 

Solution In Table 26.3, the parametric values are given. 
In the same way as in Example 1, Fig. 26.8 shows that the profit function .F(λ)  is 

concave in nature w.r.t system reliability parameter . λ and Fig. 26.9 shows that . F(λ)  
is concave in nature with respect to the product reliability r which indicates global 
maximum value of the function. Hence, the optimal solution is given by: 

Optimal value of . λ, profit, duration of production and reliability of the product 
are as .λ∗ = 0.0630804, .F ∗ = $19397.85, .t∗1 = 1.967591, and . r∗ = 0.8549242 
respectively. 

Now, here optimal condition of the objective function are verified numerically as 
follows: 
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Table 26.3 parametric values 

Parameter Value Parameter Value Parameter Value Parameter Value 

s 100 .M0 60 p 600 .t3 2.7 

.s1 45 T 3 A 1 B 1 

.μ 0.5 y 0.7 .λmax 0.9 .λmin 0.01 

v 0.7 .α 0.01 .d0 20 .c1 0.4 

.M1 30 k 0.5 .d1 8 .c2 0.4 

x 0.3 b 2 .d2 10 .cv 20 

w 0.05 .y3 0.9 .d3 20 .τ 0.5902774 

Fig. 26.8 Concave nature of 
.F(λ)  based on Example  2 
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Fig. 26.9 Graph of profit F 
vs parameter . λ based on 
Example 2 
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Table 26.4 Parametric values 

Parameter Value Parameter Value Parameter Value Parameter Value 

s 100 .M0 60 p 300 .t3 2.7 

.s1 45 T 3 A 1 B 1 

.μ 0.5 y 0.7 .λmax 0.9 .λmin 0.01 

v 0.7 .α 0.01 .d0 20 .c1 0.4 

.M1 30 k 0.5 .d1 8 .c2 0.4 

x 0.3 b 2 .d2 10 .cv 20 

w 0.05 .y3 0.9 .d3 20 .τ 0.7686275 

At .λ∗ = 0.0630804, the first derivative . dF(λ) 
dλ = 0 and the second derivative 

. d
2F 

dλ2 
= −0.3039915E + 08 which indicates the optimal point at .λ∗ = 0.0630804. 

Henceforth, it confirms the existence of the maximum value. 

Example 3 In Table 26.4, the corresponding input several parameters are given as 
in Examples 1 and 2. 

In the same way of Examples 1 and 2, in this example the optimal solutions are 
given by 

Optimum profit, values of . λ, duration of production, and reliability of the product 
are as .F ∗ = $13243.07, .λ∗ = 0.0689405, .t∗1 = 2.562092, and .r∗ = 0.8549242, 
respectively. 

9 Sensitivity Analysis 

From the previous Example 1, we have done sensitivity analysis of the proposed 
model to variations in some parameters in the following section. 

Here, we assume, .�λ = (λ′ − λ)/λ × 100%, .�x = (x′ − x)/x × 100%, 
.�p = (p′ − p)/p × 100%, .�t∗1 = (t∗′

1 − t∗1 )/t∗1 × 100%, . �F ∗ = (F ∗′ − 
F ∗)/F ∗ × 100%, .�r∗ = (r∗′ − r∗)/r∗ × 100%, where . λ, p, . t∗1 , . F ∗, . r∗ be the exact 
values and the corresponding estimated values are . λ′, . p′, . t∗′

1 , . F
∗′
, . r∗′

. We have  
shown the sensitivity analysis by fluctuating the parameters p and x by different 
percentage(%), where one or more are taken at a time with keeping the rest at their 
exact values. The results are as follows (Tables 26.5 and 26.6). 

It is seen from Table 26.7 that the reliability connected with the system . λ 
increases (i.e., the reliability connected with the production system decreases) as the 
parameter k increases. For this reason, Table 26.7 depicts that the production time 
. t1, profit F , and product reliability r are decreased as the parameter k increases. 

Table 26.8 shows that the system reliability parameter . λ decreases with the 
increasing of selling price s which explores that for more selling price s, the demand 
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Table 26.5 Sensitivity w.r.t production rate p based on Example 1 

Change of p (%) Change of . λ (%) Change of . t1 (%) Change of r (%) Change of F (%) 

.(�p) (.�λ∗) (. �t∗1 ) (.�r∗) (.�F ∗) 

.−30 .+4.67 .+14.40 .−8.36 . −19.92 

.−20 .+2.86 .+8.85 .−5.03 . −12.93 

.−10 .+1.32 .+4.11 .−2.29 . −6.30 

.+10 .−1.15 .−3.61 .+1.96 . +6.03 

.+20 .−2.17 .−6.82 .+3.65 . +11.82 

.+30 .−3.08 .−9.70 .+5.14 . +17.40 

Table 26.6 Sensitivity analysis w.r.t. the parameter x 

Change of x (%) Change of . λ (%) Change of . t1 (%) Change of r (%) Change of F (%) 

.(�x) (.�λ∗) (. �t∗1 ) (.�r∗) (.�F ∗) 

.−30 .+1.01 .−7.45 .−2.76 . −7.75 

.−20 .+0.68 .−5.07 .−1.83 . −5.28 

.−10 .+0.35 .−2.58 .−0.91 . −2.69 

.+10 .−0.35 .+2.68 .+0.90 . +2.81 

.+20 .−0.72 .+5.47 .+1.80 . +5.73 

.+30 .−1.09 .+8.35 .+2.67 . +8.77 

is decreased. Again, demand rate decreases imply production rate decreases for 
which the reliability connected with the system is increased. 

10 Managerial Implication 

Using the numerical results and sensitivity analysis, the observed managerial 
implications are as follows: 

• Figures 26.6 and 26.9 reveal that the objective function profit is concave in nature 
w.r.t . λ. Here, the system reliability decreases as production time increases and 
to maintain the same level of production reliability throughout the process, the 
production cost must be increased and hence profit decreases after getting its 
optimum value. 

• From Figs. 26.7 and 26.8, one can see that w.r.t. product reliability r , the profit is 
concave in nature. It is obvious because more production cost is needed for more 
product reliability r which decreases the profit. 

• In this current model, it is taken in consideration that all manufacturing products 
are perfect up to time . τ in the initial stage of production, so screening is not 
needed up to time . τ for which total screening cost can be reduced. 
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Table 26.7 The change of 
.F(λ)  w.r.t. k 

k .λ .t1 r F 
0.08 0.0225648 0.7068327 0.6670160 403.63 

0.09 0.0239620 0.6886712 0.6613357 392.78 

0.1 0.0253446 0.6720670 0.6558947 382.91 

0.2 0.0385805 0.5581755 0.6106469 316.44 

0.3 0.0510626 0.4919235 0.5756759 278.56 

0.4 0.0629947 0.4469979 0.5467233 253.15 

0.5 0.0744734 0.4138940 0.5218484 234.53 

0.6 0.0855573 0.3881774 0.4999669 220.14 

0.7 0.0962875 0.3674514 0.4803988 208.57 

0.8 0.1066943 0.3502885 0.4626845 199.02 

0.9 0.1168021 0.3357764 0.4464960 190.95 

1.0 0.1266310 0.3233007 0.4315896 184.03 

Table 26.8 The variation of 
. λ, . t1, r , and profit F with 
respect to the selling price s 
based on Example  2 

s .λ .t1 r F 
85 0.0649297 1.943189 0.8543554 13704.19 

90 0.0642287 1.952326 0.8545700 15597.75 

95 0.0636188 1.960386 0.8547577 17491.96 

100 0.0630804 1.967591 0.8549242 19397.85 

105 0.0625992 1.974102 0.8550736 21310.64 

110 0.0621650 1.980037 0.8552089 23229.69 

115 0.0617699 1.985486 0.8553324 25154.48 

11 Conclusion 

In this chapter, a production inventory model with defective items has been taken 
in which the production run time is broken into two parts: (i) a fractional part . τ of 
the production time . t1 in the initial stage of production where all produced items 
are good because of in-control-state of the machinery system and (ii) second the 
remaining part .t1 − τ of the production time . t1 where imperfect and perfect items 
are manufactured because of faulty system as due to long run process. Here demand 
depends on selling price, advertisement, and the product reliability. Basically, this 
type of work is related to the items of saree (cloths), the other goods made by 
brass, etc. In our model, the time-dependent development cost has been considered, 
so less production time implies less development cost when system reliability is 
fixed. Further, by motivating the customers to purchase product, the reliability can 
be regulated by regulating the production rate and also the development cost. The 
proposed model is further illustrated with numerical illustrations and sensitivity 
analysis to demonstrate the impact of changing the various parameters involved. 
Evaluating this work, we have the following conclusions: 

(i) The product reliability has an influence to rise the consumer demand and hence 
to increase the profit. 
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(ii) In this model, it is taken in consideration that all yielding products are perfect 
up to time . τ in the initial stage of production. Thus, we can conclude that 
the screening is not needed up to time . τ for which total screening cost can 
be reduced. 

Some possible future works are as follows: (i) to investigate the EPQ model with 
multi-item, where demand depends on different reliable product as well as selling 
price, (ii) and to consider the warranty period of the produced items and (iii) to 
introduce the demand depending on product reliability, stock of the product, and 
selling price and (iv) uncertainty in price. 

This current model is limited with a single-level inventory model, which may 
be further directed toward an integrated inventory model. An inventory model that 
incorporates imperfect items may contribute to reducing carbon emissions in future 
work. In this model, we can add the advertisement effects of the product to the 
customer’s demand. 

Appendix 

Here, the profit function .F(λ,  r)  is formed as a function of r and . λ. Again  r and 
. λ are related implicitly by the equation .r = φ(λ), so finally .F(λ)  is formed by . λ 
only. Therefore, by chain rule from differential calculus, we have . 

dF(λ) 
dλ = ∂F (λ,r) 

∂λ + 
∂F (λ,r) 

∂r 
dr 
dλ
. Differentiating again with respect to . λ, we obtain 

. 
d2F 
dλ2 

= 
d 
dλ 

( 
∂F 
∂λ 

) + 
d 
dλ 

( 
∂F 
∂r 

dr 
dλ 

) = 
∂ 
∂λ 

( 
∂F 
∂λ 

) + 
∂ 
∂r 

( 
∂F 
∂λ 

) 
dr 
dλ 

+ 
d 
dλ 

( 
∂F 
∂r 

) 
dr 
dλ 

+∂F 
∂r 

d 
dλ 

( 
dr 
dλ 

) 

= 
∂2F 
∂λ2 

+ 
∂2F 
∂r∂λ 

dr 
dλ 

+ {  
∂2F 
∂λ∂r 

+ 
∂2F 
∂r2 

dr 
dλ

} dr 
dλ 

+ 
∂F 
∂r 

d2r 
dλ2 

= 
∂2F 
∂λ2 

+ 2 
∂2F 
∂r∂λ 

dr 
dλ 

+ 
∂F 
∂r 

d2r 
dλ2 

+ 
∂2F 
∂r2 

( 
dr 
dλ 

)2 (26.15) 

where the values of . ∂F 
∂λ , . 

∂F 
∂r , . 

dr 
dλ
, . ∂

2F 
∂λ2 

, . ∂
2F 

∂λ∂r
, . d

2r 
dλ2

, . ∂
2F 

∂r2 
are given as follows: 

. ∂F 
∂λ = 1 

T [Bk(1 − x)2(GED + 1 2G
2D2 + 1 2E

2) (λmax−λmin) 
(λ−λmin)2 

e k( λmax−λ 
λ−λmin 

)] 

. 
∂F 
∂r 

= 
1 

T 
[−(E + GD)pM1μe−μr + {μ5 − Gp(M0 − M1e

−μr ) 

− GEB(1 − x)2e k( λmax−λ 
λ−λmin 

)}d0 (λmax − λmin) 
(λ − λmin)2 
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+ 2D{μ6 − 
1 

2 
G2B(1 − x)2e k( λmax−λ 

λ−λmin 
)}d0 (λmax − λmin) 

(λ − λmin)2 
] (26.16) 

Again from Eq. (26.14) differentiating both sides with respect to . λ, we obtain 

. 
dD 
dλ 

= 
p 
λ2 

− p 
λ
{ 1 
λ + (E + GD)(1 − x)}e−λ(1−x)(E+GD) 

pG(1 − x)e−λ(1−x)(E+GD) − T + pxG 
= 

U0 

V0 
, say  

(26.17) 

Again differentiating with respect to . λ 

. 
d2D 
dλ2 

= 
V0 

dU0 
dλ − U0 

dV0 
dλ 

V 2 0 
(26.18) 

where . 
dU0 
dλ and . 

dV0 
dλ are as follows: 

. 
dU0 

dλ 
= −2p 

λ3 
+ [2p 

λ3 
+ 

p 
λ2 

(1 − x)(E + GD) − 
p 
λ 

(1 − x)G 
dD 
dλ 

+ (1 − x)(E + GD + λG 
dD 
dλ 

){ p 
λ2 

+ 
p 
λ 

(1 − x)(E + GD)}]e−λ(1−x)(E+GD) 

dV0 

dλ 
= −pG(1 − x)2(E + GD + λG 

dD 
dλ 

)e−λ(1−x)(E+GD) (26.19) 

Again differentiating .D = {d0 (r−rmin) 
(rmax−r) + d1s−b + d2v} with respect to . λ, we obtain 

. 
dD 
dλ 

= 
d 
dλ

{d0 (r − rmin) 
(rmax − r) 

+ d1s−b + d2v} = d0 
(rmax − rmin) 
(rmax − r)2 

dr 
dλ 

(26.20) 

So 

. 
dr 
dλ 

= 
(rmax − r)2 

d0(rmax − rmin) 
dD 
dλ 

(26.21) 

Again differentiating equation (27) with respect to . λ we obtain 

. 
d2r 
dλ2 

= 1 

d0(rmax − rmin)
{(rmax − r)2 

d2D 
dλ2 

− 2 
(rmax − r)3 

d0(rmax − rmin) 
( 
dD 
dλ 

)2} 
(26.22) 

. 
∂2F 
∂λ2 

= −Bk(1 − x)2(GED + 
1 

2 
G2D2 + 

1 

2 
E2){k 

(λmax − λmin)
2 

(λ − λmin)4 
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+ 2 
(λmax − λmin) 
(λ − λmin)3 

}e k( λmax−λ 
λ−λmin 

) 

∂2F 
∂λ∂r 

= BkG(1 − x)2 
(λmax − λmin) 

(λ − λmin) 
d0 

(rmax − rmin) 
(rmax − r)2 

(E + GD)e k( λmax−λ 
λ−λmin 

) 

∂2F 
∂r2 

= DGpM1μ
2e−μr − 2GpM1μe−μr dD 

dr 
+ {μ5 − Gp(M0 − M1e

−μr ) 

− GEB(1 − x)2e k( λmax−λ 
λ−λmin 

)}d
2D 

dr2 
+ 2{μ6 − 

1 

2 
G2B(1 − x)2e k( λmax−λ 

λ−λmin 
)} 

×{( dD 
dr 

)2 + 
d2D 
dr2 

} (26.23) 

where . dD 
dr = d0 

(rmax−rmin) 
(rmax−r)2 

and . d
2D 

dr2 
= 2d0 (rmax−rmin) 

(rmax−r)3 
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Chapter 27 
A Fuzzy EOQ Model with Exponential 
Demand and Deterioration with 
Preservation Technology 

Ganesh Kumar and Sunita 

1 Introduction 

A deterministic inventory system was developed considering dual storage house 
allowing different item depreciation levels in warehouses by Bhunia and Maiti [2]. 
Kar et al. [14] devised an inventory model for an individual entity comprising two 
distinct storage facilities and an arithmetic progression of the lengths of the sub-
sequent replenishment cycles. An inventory system for ameliorating commodities 
demonstrated for the prescribed period by Mondal et al. [23]. When dealing with 
a supplier’s trade credit plans and price promotions on purchasing merchandise, 
a strategy for increased revenue was proposed by Sana and Chaudhuri [31] for  
retailers and inventory system was devised for a product whose units were not in 
pristine condition by selling through two distinct outlets: a primary shop and a 
secondary shop. A system of unified management was developed by Singh et al. 
[37]. A study was conducted by Sana [30] on a demand that is impacted by price 
and a degradation rate that changes with time. 

An approach to managing an inventory system for goods that deteriorate over 
time, taking into account the possibility of controlling the degradation process 
through preservation methods conducted by Mishra [22]. A mathematical model 
was devised by Mishra [21] to analyze a unique inventory system for goods that are 
simultaneously deteriorating, with a focus on the idea that the degradation process 
can be controlled through the implementation of preservation methods. This model 
takes into consideration both the constant demand rate and a deterioration rate that 
changes over time, utilizing the Weibull distribution to come to its conclusions. 
“Preserving Perishables: Unraveling the Secrets of Seasonal Product Longevity” 
is a study that delves into the potential of industries to elongate the lifespan of 
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seasonal products through strategic preservation investments by He and Huang 
[8]. The impact of investing in preservation techniques on inventory decisions was 
broadly described by Dye [6] when they took into account an inventory system with 
a non-instantaneously degrading commodity. Zhang et al. [43] unveiled the mystery 
of striking a balance between pricing and inventory management for products 
in decline, an intricate challenge that was once thought to be insurmountable. 
The examination of consumers’ reactions to expiration dates for perishable items 
in grocery stores was conducted by Tayal et al. [39]. Mishra [20] crafted a  
strategy for determining the optimal replenishment cycle and total expenditure, 
with preservation technology cost as a defining factor in the convex cost function. 
An innovative solution was proposed by Singh et al. [36], where merchants invest 
in preservation technologies to decelerate the depreciation of goods that gradually 
lose value. This inventory policy ensures that demand for these goods is based on 
available stock levels, resulting in a balanced approach to inventory management. 
Shah et al. [33] crafted a narrative that delves into the retailer’s calculated decision 
to fortify their commodities by investing in preservation techniques, leading to 
a slowing down of their degradation rate. Roy et al. [29] developed a strategic 
framework for managing stock of perishable goods, incorporating the likelihood of 
demand and the rate of product decay to prevent stock-outs and optimize inventory. 
Pervin et al. [25] created a revolutionary supplier-customer model for slowly losing 
value goods, a novel approach to attract more patrons. 

Ullah et al. [40] developed a sophisticated interplay of production and inventory 
management to mimic a dual-layer supply network, where the decline of goods 
was meticulously regulated by chance. Maity et al. [16] created an innovative 
approach to tackle the challenge of managing the inventory of products that lose 
value over time and a complex, nonlinear demand pattern by creating a system 
that incorporated the use of nonlinear heptagonal fuzzy demand. Chakraborty et 
al. [3] described hexagonal fuzzy numbers, which are useful in fuzzy inventory 
systems. De et al. [5] put forth a forward-thinking production system for perishable 
goods that takes into account the realities of delayed payments and prioritizes 
environmentally conscious carbon emission practices. Maity et al. [17] implemented 
a cutting-edge inventory model that leverages cloud-based intuitionistic demand 
to manage backlogged commodities with maximum efficiency. The innovative 
approach takes into consideration the delicate interplay of supply, demand, and 
depreciation. Maity et al. [19] illustrated a unique and innovative EOQ model, 
incorporating parabolic demand amidst a hazy and uncertain atmosphere. Maity et 
al. [18] unraveled a fascinating EOQ approach in a nebulous atmosphere, examining 
the inventory management of wavering commodities that were facing declining 
consumer demand. Jaggi et al. [12] created a novel dual-warehouse solution for 
perishable items facing backlogs, incorporating flexible credit terms and adjusting 
for economic inflation. Taleizadeh et al. [38] proposed a cost-effective solution for 
inventory management in the presence of time and credit-period-sensitive demand 
for items with imperfections. Shah et al. [32] explored and evaluated the intricate 
workings of the supply chain mechanism to understand its impact on inventory 
decisions. Pervin et al. [27] unveiled a novel strategy of mitigating product depre-
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ciation by incorporating preservation techniques within the vendor-buyer system. 
This innovative approach aimed to strike a balance between controlling the pace of 
product degradation and meeting customer demand in a production environment 
with perishable components. Pervin et al. [26] adopted preservation technology. 
Jaggi and Singh [11] optimized resource allocation by devising a strategic plan for 
efficient management of declining resources in a disaster response scenario. Iqbal 
and Sarkar [10] developed a revolutionary solution to ensure the longevity of goods 
by incorporating preservatives, addressing public health concerns with a model that 
promises an endless shelf life. 

Akbar et al. [34] examined the intricate interplay of inflation, production 
reliability, price dependence, and supply network degradation in devising a com-
prehensive strategy for inventory management of perishing commodities with a 
partial trade credit plan. Rana et al. [28] made efforts to reduce the emission in 
their model. Barman et al. [1] made a unique production system for goods that were 
facing declining demand and backlogs, taking into account the effect of time on 
consumer requests within a hazy and uncertain environment. Zadeh [42] depicted 
the problems in real-world situations due to unclear data and the use of fuzzy 
sets in data management and problem-solving. Further, expanded use of fuzzy 
theory has been incorporated into various areas of mathematics, with inventory 
management being one such field. Chen and Hsieh [4] proposed two streamlined 
fuzzy inventory models utilizing generalized trapezoidal fuzzy numbers to illustrate 
fuzzy parameters and variables. Hsieh [9] proposed the utilization of either crisp or 
fuzzy quantities in inventory management systems and relying on the cost of each 
unit and ordering cycle for optimization considered by Wang et al. [41]. Utilizing 
two innovative methods that incorporate either crisp or fuzzy production quantities 
as fuzzy parameters, thoroughly evaluating the cost of each unit quantity and the 
order cost of each cycle, Mahata and Goswami [15] used trapezoidal and triangular 
fuzzy numbers. Shekarian et al. [35] used and described a sample of 210 papers to 
discover similar model traits. Fathalizadeh et al. [7] presented two distinct inventory 
strategies for products undergoing depreciation, featuring constant demand and 
steady degradation rates, in order to determine the most cost-effective ordering 
plan in the context of inflation and partial backlog using two different modeling 
techniques. Kalaiarasi and Gopinath [13] sought to outline the EOQ model and its 
underlying stochastic processes, streamlining operations and impacting inventory 
costs positively. Nagamani [24] designed a novel dual-warehouse EOQ framework, 
encompassing uncertain and faulty merchandise within a fuzzy atmosphere. 

The following highlights the innovative features of the current study:

• This contribution involves constant and instantaneous deterioration in which 
demand is taken exponentially, and shortages are not allowed with costs as 
trapezoidal fuzzy numbers.

• Both in crisp and fuzzy scenarios, preservation technology is employed to 
mitigate the degradation.

• To determine the system’s least overall cost in both a crisp and fuzzy sense, 
mathematical formulation is created and solved using differentiation tools.
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• In order to explicate and validate system in both scenarios, there are numerical 
examples.

• Changing one parameter while leaving the others at their default levels allows for 
managerial insights and parameter observations.

• In two scenarios, the impact of changing the input parameters on the overall cost, 
the economic order quantity, and the optimal time is investigated. 

Different steps follow the construction of this chapter: The preliminaries related to 
this system are offered in Sect. 2. Section 3 specifies the notations and assumptions. 
Section 4 outlines the model’s mathematical formulation in both a crisp and fuzzy 
perspective. We have demonstrated the solution procedure in Sect. 5. A numerical 
example of this inventory system in both a crisp and fuzzy circumstances is 
performed in Sect. 6. Section 7 presents a sensitivity investigation of the developed 
model by assigning values to the parameters. Graphical representation is portrayed 
in Sect. 8. Observations and managerial insights are reported in Sect. 9. The paper’s 
conclusion is discussed in Sect. 10. 

2 Preliminaries 

2.1 Fuzzy Set 

The elements of a specified universal set X, a crisp set, are mapped into the real 
numbers in the range .[0, 1] by each membership function of a fuzzy set . B̃. 

So .μ
B̃
(x) : X → [0, 1] is defined as the membership value of .x ∈ X. 

Hence, we can defined a fuzzy set . B̃ in the following manner: 
. B̃ = {(x, μ

B̃
(x) : x ∈ X}

2.2 Fuzzy Number 

If the membership function of a fuzzy set . B̃, specified on set of all real numbers . R, 
meets the criteria listed below, the set is said to be fuzzy number. 

1. .μ
B̃

: R → [0, 1] is continuous. 
2. .μ

B̃
(x) = 0 for all . x ∈ (−∞, a] ∪ [d,∞)

3. .μ
B̃
(x) strictly increasing on .[a, b] and strictly decreasing on .[c, d]. 

4. .μ
B̃
(x) = 1 for all .x ∈ [b, c], where .a < b < c < d.

3
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2.3 α-cut of a Fuzzy Number 

The .α-cut, .α ∈ (0, 1] of a fuzzy number . B̃ is a crisp set designated as . B(α) = {x ∈
R : B(x) ≥ α}. Every . Bα is a closed interval of the form .[BL(α), BU(α)]. 

2.4 Trapezoidal Fuzzy Number 

A trapezoidal fuzzy number denoted by . B̃ is defined as .(l,m, n, u) where the 

membership function is given by . μ
B̃
(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, x ≤ l

x−l
m−l

, l ≤ x ≤ m

1, m ≤ x ≤ n

u−x
u−n

, n ≤ x ≤ u

0, x ≥ u

Figures 27.1 and 27.2 are geometrical forms of .α-cut and trapezoidal fuzzy 
numbers. 

2.5 Defuzzification Method 

The value of a fuzzy number . B̃ is denoted and defined as 
. val(B) = ∫ 1

0 α {BU(α) + BL(α)} dα

Fig. 27.1 .α-cut of a trapezoidal fuzzy number
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Fig. 27.2 Trapezoidal fuzzy number 

Proposition 1 The value of a trapezoidal fuzzy number .B̃ = (a, b, c, d) is 
demonstrated by .val(B) = a

6 + b
3 + c

3 + d
6 . 

Proof The .α-cut of the trapezoidal fuzzy number .B̃ = (a, b, c, d) is stated by 

. B(α) = [BL(α), BU(α)] = [a + α(b − a), d − α(d − c)].

Then value of the fuzzy number .B̃ = (a, b, c, d) is denoted and specified by 

. val(B) =
∫ 1

0
α {BU(α) + BL(α)} dα

=
∫ 1

0
[a + α(b − a), d − α(d − c)]dα

= a

6
+ b

3
+ c

3
+ d

6

= a + 2b + 2c + d

6
.

3 Assumptions and Notations 

To explain this concept, we have shown the following presumptions and notations.
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Table 27.1 Notations 

Notation Description 

.θ Deterioration rate, where . 0 < θ < 1

T Length of cycle time (years) 

Q Economic order quantity (units) 

h Holding cost ($/unit/unit time) 

.h̃ Fuzzy holding cost ($/unit/unit time) 

A Setup cost ($/order) 

.Ã Fuzzy setup cost ($/order) 

x Preservation technology investment per unit time to reduce the deterioration 
rate 

.x̃ Fuzzy preservation technology investment per unit time to reduce the 
deterioration rate 

q Unit transportation cost of a shipment from supplier to the retailer($/unit/unit 
time) 

.q̃ Fuzzy unit transportation cost of a shipment from supplier to the 
retailer($/unit/unit time) 

.I (t) Inventory level with respect to time t 
T C Total cost ($/cycle) 

.T̃ C Fuzzy total cost ($/cycle) 

3.1 Notations 

Table 27.1 in the current model employs the following notations. 

3.2 Assumptions 

1. Time influences the demand rate and expressed as D(t) = aebt i.e. demand is 
exponential. 

2. The proportion of diminished depreciation rate is represented by the function 
f (x)  = 1 − e−x , where 0 ≤ f (x)  ≤ 1, if x ≥ 0. 

3. Shortages are not allowed. 
4. Deterioration is instantaneous. 
5. Planning horizon is infinite. 
6. Lead time is ignorable. 

4 Formulation of Mathematical Model 

Our inventory control system is set up so that at time .t = 0, the initial inventory 
level is Q. The stock supply gradually depletes as a consequence of the ongoing
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rise in demand and level of degradation. The stock level drops to zero, and the cycle 
starts afresh once time .t = T has passed. We have displayed our inventory system 
in Fig. 27.3. 

4.1 Crisp Model 

To demonstrate this inventory system, the governing differential equation are as 
follows: 

. 
dI1(t)

dt
+ {θ − f (x)}I (t) = −D(t)

�⇒ dI1(t)

dt
+ {θ − f (x)}I (t) = −aebt , 0 ≤ t ≤ T . (27.1) 

Coupled with boundary conditions, 

.I (0) = Q and I (T ) = 0 (27.2) 

The boundary conditions (27.1) are used to effectively resolve the differential 
equation (27.2) in the manner shown below: 

.I (t) = a

b + θ − f (x)

[
ebt − ebT e(θ−f (x))(T −t)

]
. (27.3) 

Fig. 27.3 Visualization of present model
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Maximum inventory is determined by utilizing the boundary condition .I (0) = Q: 

.Q = a

b + θ − f (x)

[
1 − e(b+θ−f (x))T

]
. (27.4) 

Annual holding cost is given by 

. HC = h

[∫ T

0
I (t)dt

]

�⇒ HC = ha

b + θ − f (x)

[
ebt

b
+ ebT

θ − f (x)

{
1 − e(θ−f (x))T

}]

. (27.5) 

Annual preservation technology cost is given by 

.PC = xaT

b + θ − f (x)

[
1 − e(b+θ−f (x))T

]
. (27.6) 

Annual transportation cost is given by 

.T rC = qa

b + θ − f (x)

[
1 − e(b+θ−f (x))T

]
. (27.7) 

Annual setup cost is given by 

.SC = A (27.8) 

Total cost per cycle, 

. T C = 1

T
[SC + HC + PC + T rC]

�⇒ T C = A

T
+ ha

T {b + θ − f (x)}
[
ebt

b
+ ebT

θ − f (x)

{
1 − e(θ−f (x))T

}]

+ xa

{b + θ − f (x)}
[
1 − e(b+θ−f (x))T

]

+ qa

T {b + θ − f (x)}
[
1 − e(b+θ−f (x))T

]
. (27.9) 

4.2 Fuzzy Model 

To face the uncertainty in inventory problems, consider the costs h, A, q, and x as 
trapezoidal fuzzy numbers. So taking 

.h̃ = (h1, h2, h3, h4),
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.Ã = (A1, A2, A3, A4), 

.q̃ = (q1, q2, q3, q4), 

.x̃ = (x1, x2, x3, x4). 

The total cost function becomes 

. ̃T C = Ã

T
+ h̃a

T {b + θ − f (x̃)}
[
ebt

b
+ ebT

θ − f (x̃)

{
1 − e(θ−f (x̃))T

}]

+ x̃a

{b + θ − f (x̃)}
[
1 − e(b+θ−f (x̃))T

]

+ q̃a

T {b + θ − f (x̃)}
[
1 − e(b+θ−f (x̃))T

]
.

where .T̃ C = (T C1, T C2, T C3, T C4) and . R(T̃ C) = 1
6 (T C1 + 2T C2 + 2T C3 +

T C4), where 

. T C1 = A1

T
+ h1a

T {b + θ − f (x1)}
[
ebt

b
+ ebT

θ − f (x1)

{
1 − e(θ−f (x1))T

}]

+ x1a

{b + θ − f (x1)}
[
1 − e(b+θ−f (x1))T

]

+ q1a

T {b + θ − f (x1)}
[
1 − e(b+θ−f (x1))T

]

. T C2 = A2

T
+ h2a

T {b + θ − f (x2)}
[
ebt

b
+ ebT

θ − f (x2)

{
1 − e(θ−f (x2))T

}]

+ x2a

{b + θ − f (x2)}
[
1 − e(b+θ−f (x2))T

]

+ q2a

T {b + θ − f (x2)}
[
1 − e(b+θ−f (x2))T

]

.T C3 = A3

T
+ h3a

T {b + θ − f (x3)}
[
ebt

b
+ ebT

θ − f (x3)

{
1 − e(θ−f (x3))T

}]

+ x3a

{b + θ − f (x3)}
[
1 − e(b+θ−f (x3))T

]

+ q3a

T {b + θ − f (x3)}
[
1 − e(b+θ−f (x3))T

]
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. T C4 = A4

T
+ h4a

T {b + θ − f (x4)}
[
ebt

b
+ ebT

θ − f (x4)

{
1 − e(θ−f (x4))T

}]

+ x4a

{b + θ − f (x4)}
[
1 − e(b+θ−f (x4))T

]

+ q4a

T {b + θ − f (x4)}
[
1 − e(b+θ−f (x4))T

]

5 Solution Procedure 

To find the best answer to the issue (27.9), we’ll follow the steps below: 

Step-1: Initialize the total cost function by entering the parameter values. 
Step-2: Determine the total cost function’s first- and second-order partial deriva-

tives in relation to cycle length T . 
Step-3: With the aid of MATLAB, we obtain the stationary value of T by 

equating the first-order partial derivative of the total cost function relative to T 
equals zero. 

Step-4: With the support of MATLAB, we obtain the second-order partial 
derivative of the total cost function in relation to T greater than zero. 

Step-5: Using optimal value . T ∗ in .T C(T ) function, we get the minimum cost. 

6 Numerical Examples 

6.1 Numerical Example in Crisp Environment 

Let us consider .A = 1000, .h = 6, .q = 3, .x = 6, .T = 3, .a = 5, .b = 0.5, and 
.θ = 0.5. Then we get the following optimum values with the help of the MATLAB 
software: .t∗ = 0.2301, .Q∗ = 1551.9, and .T C∗ = 14827. 

6.2 Numerical Example in Fuzzy Environment 

(i) Let A1 = 600, h1 = 3, q1 = 1, x1 = 4, T = 3, a = 5, b = 0.5, and θ = 0.5. 
Then we get the following optimum values with the help of the MATLAB 
software: t∗ = 0.6999, Q∗ = 78.3961, and T C∗ = 2109.9. 

(ii) Let A2 = 800, h2 = 5, q2 = 2, x2 = 5, T = 3, a = 5, b = 0.5, and θ = 0.5. 
Then we get the following optimum values with the help of the MATLAB 
software: t∗ = 0.3668, Q∗ = 468.0031, and T C∗ = 5877.6.
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(iii) Let A3 = 1000, h3 = 7, q3 = 3, x3 = 6, T = 3, a = 5, b = 0.5, and θ = 0.5. 
Then we get the following optimum values with the help of the MATLAB 
software: t∗ = 0.2131, Q∗ = 1586.3, and T C∗ = 15414. 

(iv) Let A4 = 1200, h4 = 9, q4 = 4, x4 = 7, T = 3, a = 5, b = 0.5, and θ = 0.5. 
Then we get the following optimum values with the help of the MATLAB 
software: t∗ = 0.1268, Q∗ = 4787.2, and T C∗ = 40779. 

So we have, 
Ã = (600, 800, 1000, 1200), h̃ = (3, 5, 7, 9), q̃ = (1, 2, 3, 4), x̃ = (4, 5, 6, 7), 
T = 3, a = 5, b = 0.5, and θ = 0.5. Then we get the following optimum values 
using MATLAB software: t∗ = 0.3311, Q∗ = 1495.7, and T C∗ = 14245. 

7 Sensitivity Analysis 

Each and every parameter of the inventory is subjected to the sensitivity analysis. 
One approach to assessing the sensitivity of inventory parameters entails altering 
one parameter by .−20%, .−10%, . 0%, .+10%, and .+20% while maintaining the 
same values for the other variables. 

7.1 Case: I Sensitivity Analysis in Crisp Environment 

7.2 Case: II Sensitivity Analysis in Fuzzy Environment 

8 Graphical Representations 

9 Observations and Managerial Insights 

9.1 Observations 

We have observed the following situations by studying the above tables and with the 
help of the above figures: 

1. When the value of the initial demand parameter a is changed from .−20 to . +20
percentage, Table 27.2, Figs. 27.4 and 27.5 show that the optimal time decreases, 
the lot size increases and the overall cost rises for the crisp example, which leads 
us to propose reducing the value of the parameter a to reduce costs and increase 
revenue simultaneously. 

2. An organization should avoid adjusting the value of parameter b in this range 
(.−20 to .+20 percentage of the original value) because no closed-form determina-
tion can be established for it. The same holds for our attempt to find a monotonic
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Table 27.2 Change in t , Q, and  T C  w.r.t. input parameters 

Parameter Percentage change 

Input 
parameters 

Output 
parameters 

−20% −10% 0% +10% +20% 

a t 0.2585 0.2431 0.2301 0.2189 0.2092 

Q 1195.5 1373 1551.9 1731.9 1912.8 

T C 12680 13767 14827 15864 16882 

b t 3 3 0.2301 1.0709 1.3318 

Q 88.2480 195.7788 1551.9 −12.2481 −23.2022 

T C −2058.5 −5000.3 14827 1969.1 1331.9 

θ t 3 3 0.2301 1.0107 1.2233 

Q 88.2480 195.7788 1551.9 −6.2081 −17.3376 

T C −2071.7 −5012.4 14827 2078.8 1475.9 

Fig. 27.4 Change in total cost, optimal time, and EOQ related to parameter a in crisp case 

representation of the data for the parameter . θ . It is only sometimes possible to 
locate the parameters in the crisp form in real-world situations (Fig. 27.6). 

3. As a result of some ambiguity and imprecise information, we require a new 
theory of fuzziness to accommodate these factors. Table 27.3 and Figs. 27.7, 27.8, 
and 27.9 display the results of the fuzzy inventory model. The graph of output 
parameter variation versus input parameter value is similar to that of the crisp 
model. However, the fuzzy inventory model reduces the overall system cost. The 
crisp inventory model has been considered less significant, and the fuzzy model 
is recommended as an alternative.
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Fig. 27.5 Change in total cost, optimal time, and EOQ related to parameter b in crisp case 

Fig. 27.6 Change in total cost, optimal time, and EOQ related to parameter . θ in crisp case
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Table 27.3 Change in t , Q, and  T C  w.r.t. input parameters in fuzzy case 

Parameter Percentage change 

Input 
parameters 

Output 
parameters 

. −20% . −10% 0% +10% +20% 

a t 0.3734 0.3505 0.3311 0.3145 0.3000 

Q 1159 1326.8 1495.7 1665.5 1836.3 

T C 12152 13211 14245 15259 16255 

b t 3 3 0.3311 1.0439 1.2884 

Q 92.8253 219.0670 1495.7 . −8.1166 . −20.0972 

T C . −2329.4 . −5735.4 14245 1833 1259.8 

.θ t 3 3 0.3311 0.9872 1.1824 

Q 92.8253 219.0670 1495.7 . −2.8058 . −14.5476 

T C . −2340.7 . −5744.9 14245 1929.6 1388.5 

Fig. 27.7 Change in total cost, optimal time, and EOQ related to parameter a in fuzzy case 

9.2 Managerial Insights 

A business manager can apply the model using the following points: 

1. This is a very simple and effective approach to reducing the total cost in the 
management of any inventory system that even a less qualified business manager 
can understand easily. 

2. A business manager can lower the total cost by using the fuzzy approach 
compared to the crisp model.
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Fig. 27.8 Change in total cost, optimal time, and EOQ related to parameter b in fuzzy case 

Fig. 27.9 Change in total cost, optimal time, and EOQ related to parameter . θ in fuzzy case
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3. In a fuzzy environment as opposed to crisp conditions, a business manager will 
order fewer units in order to reduce the overall cost while maintaining all the 
parameters at their best levels. 

4. They can increase the cycle length by using our model in a fuzzy environment so 
that stock lasts longer than the usual model in a crisp sense. 

9.3 Discussion 

The fuzzy approach in inventory management is a simple and effective method to 
reduce the total cost, making it accessible and understandable even for less qualified 
business managers. This approach is known to lower the total cost when compared to 
a crisp model. The advantage of using a fuzzy approach lies in the fact that it allows 
business managers to order fewer units while still maintaining optimal parameters, 
ultimately reducing the overall cost. Additionally, by using the fuzzy approach, the 
cycle length can be increased, which allows the stock to last longer than it would in 
a crisp environment. 

10 Conclusion 

Stock management is the most crucial factor to consider in the business of 
perishable commodities, such as medications, eatables, and blood. It is essential 
to use preservation technologies to ensure they remain useful for an extended 
period. This article is a contribution that examines continuous and instantaneous 
degradation under the assumption that demand is exponential and that shortages 
are not allowed. By using preservation strategies, we can regulate the degradation 
process. In general, it is optional to determine the various expenses associated 
with the model precisely. Therefore, to estimate the outcomes, we utilized a fuzzy 
approach and then employed a method to defuzzify it to be more precise. A 
mathematical formulation is developed in both crisp and fuzzy cases and then solved 
with the help of a differentiation tool to determine the procedure that achieves the 
result at the lowest total cost. A numerical illustration is provided as a means of both 
explaining and justifying the model. Keeping one parameter in its original state 
while making changes to the others allows for generating managerial viewpoints 
and observations of the parameters. The findings from the observations in both the 
crisp and fuzzy cases suggest that we can reduce costs in an environment with 
more uncertainty. In addition, they can be developed further in neutrosophic and 
intuitionist cases. 
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Chapter 28 
An EOQ Model with Price 
and Stock-Dependent Demand Including 
Trade Credit Using De-intuitification 
Technique Under Triangular 
Intuitionistic Fuzzy Environment 

Shilpi Pal and Avishek Chakraborty 

1 Introduction 

Impreciseness concept plays a crucial role in several fields of advance mathematical 
modeling. Recently, researchers from several sectors like E-commerce, social 
science, accounting, finance, medical etc., have linked the theory of ambiguity in 
their applicable arenas. The classical EOQ model considers constant demand with 
no shortages and deterioration. But as the time elapsed, the restriction on the above 
parameters is relaxed and the researcher tries to develop the model that fits with the 
real-life scenario. 

Thus, in this chapter, we focused on various defuzzification techniques of tri-
angular intuitionistic fuzzy number with application in inventory management. We 
focused on price and stock-dependent demand where shortages are backordered and 
there are two options of trade credit under inflation. It further used defuzzification 
techniques of triangular intuitionistic fuzzy number and optimized the inventory 
model. 

1.1 Literature Review 

In 1965, Professor Zadeh [1] first invented the general idea of fuzzy set (FS) 
and its mathematical notations. Since then, a large number of works have been 
established in this fuzzy zone research arena [2–6] and applied in various sectors 
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of technical fields. But fuzzy set mainly deals with the membership functions, 
whereas in many cases, we need to focus on both truth and false components of the 
uncertain number. In 1986, Atanassov [7] stretched and explained the perception 
of FS into intuitionistic FS (IFS) by introducing the idea of both truth and false 
components of a fuzzy uncertain parameter. After the invention of IFS, Zhang et al. 
[8] portrayed an idea of interval-valued IFS and discussed its utility in detail. Also, 
a few researchers focused on the structural development of IFS [9–11] to capture, 
tackle, and discover several complex features in various real-life problems. Further, 
several works based on arithmetic operations [12], assignment difficulty [13], and 
similarity measure [14] in interval-valued IFS were developed in research zone and 
people also utilized it to solve several decision-making problems. A few important 
numbers of arithmetic operator-based research work like aggregation operator [15], 
exponential operator [16] and important MCDM process has been established 
based on few crucial measures like similarity [17, 18], inclusion [19], entropy 
[20, 21], cross-entropy [22], and distance [23] in IFS field to resolve some useful 
problems in engineering domain. Also, researchers have applied the IFS in inventory 
management problem: Chakraborty et al. [24] utilized IFS in optimization skill for 
Pareto optimal solution of industrial inventory models having presence of shortages; 
De and Sana [25] used it in periodic production model; De et al. [26] incorporated 
the idea of time sensitivity backlogging in EOQ model; multiobjective stochastic 
inventory model has been portrayed by Banerjee and Roy [27]; backlogging EOQ 
model related with time-dependent effect has been manifested by Das et al. [28]; 
generalized IFS based inventory model highlighted by Garai et al. [29]; IFS-related 
backlogging EOQ model ignited by De and Sana [30]; fractional inventory model 
manifested by Ali et al. [31] and Kaur and Deb [32] focused on an IFS tactic IN A 
without shortage problem in an inventory model; Chakraborty et al. [33] focused on 
pentagonal intuitionistic number and applied it in inventory model; Maity et al. [34] 
incorporated the idea of fuzzy-related demand rate-based inventory model. 

Sana and Chaudhuri [35] projected research on numerous natures of demand 
rates having trade credit policies along with the effect of price discounting. A 
deterministic model in inventory field having delay effect in payment and backorder 
price discount effect has been introduced by Pal and Chandra [36] and Jaggi et 
al. [37], respectively. Pal et al. [38, 39] worked on ramp type demand with and 
without shortages in their different papers under fuzzy condition. Chakraborty et 
al. [40] have developed Hexagonal fuzzy number with ranking and defuzzification 
technique with its application in inventory management; Maity et al. [41] extended 
the concept to nonlinear heptagonal dense fuzzy environment for a backlogging 
EOQ model; Maity et al. [42] also worked on EOQ model of discounted items under 
cloudy fuzzy demand rate; Mondal et al. [43] focused on EOQ model by introducing 
the advertisement effect; Mahapatra et al. [44] introduced time-dependent deterio-
ration model under uncertainty; Bhuniya et al. [45] manifested supply chain model 
in uncertain environment; Sarkar et al. [46] focused on marketing-based inventory 
problem under trade credit policy; Kumar et al. [47] incorporated the logistic model 
under fuzzy arena by considering the carbon emission factor; Choi et al. [48] 
introduced online to offline supply chain model under demand variability; Gupta
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et al. [49] projected multiobjective supply chain model under intuitionistic arena; 
Maity et al. [50] established the backorder EOQ model under dense intuitionistic 
environment. 

1.2 Motivation 

The idea of uncertainty theory plays a useful role in creation of mathematical model, 
soft computing, engineering structural problems, medical diagnoses, etc. Generally, 
a few questions will arise in mind that if uncertainty (Specifically intuitionistic fuzzy 
scenario) is present in inventory model, then how can we tackle it? How can we 
convert an intuitionistic parameter into crisp one? How it affects the inventory model 
system? What is the difference between crisp results and intuitionistic fuzzy result? 
Researchers have already applied triangular fuzzy number in inventory model to 
different situations, but if the model parameter acts like triangular intuitionistic 
fuzzy type (it means both membership and non-membership functions are present), 
then how we shall tackle it? After, arising these questions in our mind we started to 
build up this article to find out the reliable solution of the system. 

1.3 Novelty 

In this chapter, we have mainly focused on price and stock-dependent demand where 
shortages are backordered. There are two options of trade credit with inflation under 
crisp and triangular IFN. Thus the main contribution of the paper is given below: 

(i) We have introduced an innovative de-intuitification skill of triangular intuition-
istic fuzzy number here. 

(ii) We have developed the EOQ model with inflation under crisp and triangular 
intuitionistic fuzzy environment. 

(iii) We have showed the reliability of this model by performing sensitivity analysis. 
(iv) A comparative study has been made under both crisp and triangular intuition-

istic fuzzy domain. Also, the result is analyzed with a numerical example. 

1.4 Structure of the Chapter 

The research chapter is structured as follows: 
In Sect. 2, mathematical preliminaries have been addressed; while Sect. 3 shows 

de-intuitification technique of triangular IFN and its theoretical computation; Sect. 4 
focuses on the application part of this chapter and developed the EOQ model under 
uncertain environment; in Sect. 5, we have performed the numerical simulations to
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understand the effect of the various parameters; in Sect. 6, we have performed the 
sensitivity analysis of the model and finally, in Sect. 7, we have drawn the conclusion 
part of this chapter. 

2 Mathematical Preliminaries 

Definition 28.1: Intuitionistic Fuzzy Set A set  . 
∼
I in the universal discourse X is 

said to be an intuitionistic fuzzy set if .
∼
I =

{〈
x;
[
τ∼
I
(x), ϕ∼

I
(x)
]〉 ...x ∈ X

}
, where 

.τ∼
I
(x) : X → [0, 1] is the truth membership function, .ϕ∼

I
(x) : X → [0, 1] is the 

falsity membership function, which satisfies the following relation: 

0 ≤ τ∼ 
I 
(x) + ϕ∼ 

I 
(x) ≤ 1. 

Definition 28.2: Triangular Intuitionistic Fuzzy Number A triangular intu-

itionistic fuzzy number is defined as 
∼ 
AI = (a1, a2, a3; b1, b2, b3) whose truth 

membership and falsity membership are defined as follows: 

T∼ 
AI 

(x) = 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

x−a1 
a2−a1 

, a1 ≤ x <  a2 
1 x = a2 
a3−x 
a3−a2 

a2 < x  ≤ a3 
0 otherwise 

; F∼ 
AI 

(x) = 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

b2−x 
b2−b1 

, b1 ≤ x <  b2 
0 x = b2 
x−b2 
b3−b2 

b2 < x  ≤ b3 
1 otherwise. 

where 0 ≤ T∼ 
AI 

(x) + F∼ 
AI 

(x) ≤ 1, x ∈ 
∼ 
AI 

The parametric form of the above type number is

(∼ 
AI

)
α,β 

= [TI (α) , TI (α) ; FI (β) , FI (β)] 

where 

TI(α) = a1 + α(a2 − a1) 
TI(α) = a3 − α(a3 − a2) 
FI(β) = b2 − β(b2 − b1) 
FI(β) = b2 + β(b3 − b2) 

Here, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, and 0 ≤ α + β + γ ≤ 1
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3 De-intuitification of Triangular Intuitionistic Fuzzy 
Number 

3.1 De-intuitification Skill Using Removal Area Method 

Let us consider a triangular intuitionistic fuzzy number as . 
∼
ANe= (P1, P2, P3; S1, S2,

S3) whose Pictorial representation of De-intuitification skill is shown as below: 
We consider a number s ∈ R and an uncertain number . Ǎ for the lower triangle 

of the intuitionistic number, then left side removal of . Ǎ with respect to k is 

.Rl

(
Ǎ, s

)
,which one is called the left spade of . Ǎ with respect to lower part. 

Similarly, the right side removal of . Ǎ with respect to k is .Rr

(
Ǎ, s

)
. Further, 

consider a number s ∈ R and an uncertain number . B̌ for the left most upper triangle, 

then left side removal of . B̌ with respect to k is .Rl

(
B̌, s

)
,which is called the left 

spade of . Ǎ with respect to upper part. Similarly, the right side removal of . B̌ with 

respect to k is .Rr

(
B̌, s

)
. 

Mean is defined as .R
(
Ǎ, s

)
= Rl

(
Ǎ, S

)
+Rr

(
Ǎ,S

)
2 , . R

(
B̌, s

)
= Rl

(
B̌,S

)
+Rr

(
B̌,S

)
2

Then, we defined the De-intuitification of triangular intuitionistic fuzzy number 
as follows: 

R
(
Ď, s

)
= 

R
(
Ǎ, S

)
+ R

(
B̌, S

)
2 

For S = 0, .R
(
Ǎ, 0

)
= Rl

(
Ǎ,0
)
+Rr

(
Ǎ,0
)

2 , . R
(
B̌, 0

)
= Rl

(
B̌,0
)
+Rr

(
B̌,0
)

2

So, . R

( ˇ
D, 0

)
= R

(
Ǎ,0
)
+R
(
B̌,0
)

2

Rl

(
Ǎ, 0

)
= Area of trapezium of Fig. 28.1 = 

(P1 + S1) 
2 

.1 

Rr

(
Ǎ, 0

)
= Area of trapezium of Fig. 28.2 = 

(P3 + S2) 
2 

..1 

Rl

(
B̌, 0

)
= Area of trapezium of Fig. 28.3 = 

(P2 + S1) 
2 

.1 

Rr

(
B̌, 0

)
= Area of trapezium of Fig. 28.4 = 

(P2 + S3) 
2 

.1
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Fig. 28.1 Area Computation 
(Step-1) 

Fig. 28.2 Area Computation 
(Step-2) 

Hence, .R
(
Ǎ, 0

)
= (a+2b+c)

4 , R
(
B̌, 0

)
= (d+2e+f )

4 , . R

( ˇ
C, 0

)
= (g+2h+k)

4

So, R

( ˇ 
D, 0

)
= 

(P1 + 2P2 + P3 + S1 + 2S2 + S3) 
8 

(28.1) 

4 Application of Triangular Intuitionistic Fuzzy Number 
in EOQ Model 

In this chapter, we formulate an EOQ model for deteriorating items with price 
and stock-dependent demand under the effect of shortage, inflation, and delay in
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Fig. 28.3 Area Computation 
(Step-3) 

Fig. 28.4 Area Computation 
(Step-4) 

payment. Here we also observe the effect of triangular intuitionistic fuzzy number 
in the model and observe a comparative study under crisp and intuitionistic fuzzy 
environment. In this case study, the effect of trade credit is considered and two cases 
arise under these circumstances. Either, the supplier collects the money before the 
inventory ends, in other words, credit period end before or at the end of the cycle 
time, or, the supplier collects the money after the inventory ends. Finally, the total 
cost is minimized.
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4.1 Notations 

The following notations are used to represent the variables in this chapter: 

D(Q(t), s) Demand rate at time t 
Q(t) Inventory amount at time t 
s Selling price of the stock 
γ Constant rate of deterioration 
k Inflation rate 
t1 Time when the stock finishes 
T Replenishment time 
c1 Holding cost per unit item 
c2 Purchase cost per unit item 
c3 Shortage cost per unit item 
Ie Rate of interest earned 
Ip Rate of interest payable 
R Credit period 

4.2 Assumptions 

The assumptions of the model are as follows: 

1. Demand rate D(Q(t), s) = p(s)[a + bQ(t)] where p(s) = αe−sβ is the price feature 
where α, β > 0 are the parameters, b is stock-dependent parameter 0 ≤ b ≤ 1. 

2. Shortages are fully backlogged. 
3. Inflation rate (k) is considered constant, which will affect the future value of the 

inventory cost. 
4. Deterioration rate (γ ) is constant and no replenishment is done inside the cycle. 
5. If the vendor pays back within the credit period R, then no interest is chargeable 

to the former; otherwise, the former has to pay interest at the rate Ip to the 
supplier. 

6. The vendor earned interest at the rate of Ie and paid charges to the supplier for 
delay, that is, Ip is rate of interest that is payable by the retailer to supplier for 
delay in payment. 

4.3 Prototypical Design of Inventory Model 

In this chapter, we have considered an EOQ model with price and stock-dependent 
demand rate with constant deteriorations. Qmax quantity of items are ordered at the 
beginning of the inventory and it depletes with time till t= t1. In this model, we have 
considered a delay in payment, that is, there is an option for the supplier if he arrives
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before or after the stock finishes, which we have incorporated in two different cases 
as  shown in Fig.  28.5. After the stock finishes still there is demand, which leads to 
shortage and thus there is backorder till t = T. 

Therefore, Fig. 28.5 shows the model, and the mathematical formulation of the 
model is as follows: 

dQ(t) 
dt 

+ γQ(t)  = −p(s) [a + bQ(t)] , 0 ≤ t ≤ t1 

dQ(t) 
dt 

= −p(s)a, t1 ≤ t ≤ T (28.2) 

Where the conditions are Q(0) = Qmax and Q(t1) = 0 

Thus, solving (28.2), Q(t) =
{

e−ϑt
(
eϑt1−eϑt

)
p(s)a 

ϑ , if  0 ≤ t ≤ t1 
p(s)a (t1 − t) , if  t1 ≤ t ≤ T 

(28.3) 

where ϑ = γ + br(s) 
The maximum amount of inventory obtained after ordering at the beginning of 

the cycle t = 0 is  Qmax = Q(0) and is given as follows: 

Qmax = Q(0) = 
ap(s) 

ϑ

(
eϑt1 − 1

)
(28.4) 

The inventory finishes at time t = t1 and thus, the shortages begin from that time. 
The maximum shortage is at t = T and is given by 

Qs = −p(s)a (t1 − T ) = p(s)a (T − t1) 

Now the current value of inventory carrying cost is HC where its per unit cost is 
c1 

Fig. 28.5 On hand inventory
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HC = c1
∫ t1 

0

(
p (s) ae−at

(
eϑt1 − eϑ t

)
ϑ

)
e−ktdt 

=
(

c1p(s)ϑ 
ϑk  (ϑ + k)

)(
ϑe−kt1 + keϑt1 − (ϑ + k)

)

The present value of purchase cost is PC, where per unit cost is c2 

PC  = c2Qmax + c2e−kt
∫ T −t1 
0 p(s)adt 

= c2Qmax + c2e−kt a (T − t1) 

The present value of shortage cost is SC, where per unit cost is c3 

SC = c3
∫ T 

t1 

Q(t)e−kt dt 

= c3
(

e−k(T +t1) c2p(s)a 
k2

)(
ekT − ekt1 (1 + k (T − t1))

)

The present value of deterioration cost is DC, where per unit cost is c4 

DC = c2
(
Qmax −

∫ T 

0 
D (Q (t) , s) dt 

= c2
(

Qmax −
(

p(s)a 
ϑ2

)(
ϑ2t1 + (eϑt1 − 1

)
p(s)b − ϑr(s)t1b

))

The ordered cost OC is Oc. 

Case I: Supplier Arrives Before the Completion of Inventory (R ≤ T1) 

As the supplier arrives before the stock ends so the retailer has to give money prior 
his/her income. So retailer can’t receive the interest of the money, which she or he 
could have received by selling the items if the supplier doesn’t arrive. Thus, the 
interest payable to the supplier by the retailer is given by IP1 and the amount is 
given by 

IP1 = c2Ip

∫ T 

R 
Q(t)dt
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= c2Ip

((
p(s)a

(
eϑ(t1−R) − 1

)− 1 − ϑ (R − t1) 
ϑ2

)
−
(
1 

2

)
p(s)a(T − t1)2

)

Interest earned by the retailer due to sale up tot1 is given by IE1 

IE1 = c2Ie

∫ t1 

0 
tD (Q (t) , s) dt 

=
(

c2Iep(s)a 
2ϑ3

)(
2
(
eϑT  − 1

)
r(s)b + ϑt1

(
ϑ2t1 − r(s) (2 + ϑt1) b

))

Thus, total cost is . T C1 =
(
1
T

)
(OC + HC + SC + DC + PC + IP 1 − IE1)

= 
1 

T

[
Oc +

(
c1p(s)ϑ 

ϑk  (ϑ + k)

)(
ϑe−kt1 + keϑt1 − (ϑ + k)

)
+ c2Qmax 

+c2e
−kt a (T − t1) + c3

(
e−k(T +t1) c2p(s)a 

k2

)(
ekT − ekt1 (1 + k (T − t1))

)

+c2

(
Qmax −

(
p(s)a 
ϑ2

)(
ϑ2t1 + (eϑt1 − 1

)
r(s)b − ϑp(s)t1b

))]

+ c2Ip

((
p(s)a

(
eϑ(t1−R)−1

)
−1−ϑ(R−t1) 

ϑ2

)
−
(
1 
2

)
p(s)a(T − t1)2

)

−
(

c2Iep(s)a 
2ϑ3

) (
2
(
eϑT  − 1

)
p(s)b + ϑt1

(
ϑ2t1 − p(s) (2 + ϑt1) b

))

Case II: Supplier Arrives After the Stocks Ends (t1 ≤ R) 

As the supplier arrives after the stock ends, the retailer will earn the capital (c2Qmax) 
and also the interest (IE2) from that capital. Due to this the retailer won’t have to 
pay the interest to the supplier, that is, IP2 = 0. 

Thus, the interest earned in this case is 

IE2 = c2Ie

[∫ t1 

0 
tD  (Q(t), s) dt + (R − t1)

∫ t1 

0 
D (Q(t), s) dt

]

= 
c2Iep(s)a 

2ϑ3

[(
2
(
eϑT  − 1

)
p(s)b + ϑt1

(
ϑ2t1 − p(s) (2 + ϑt1) b

))

+
(

(R − t1) a 
ϑ2

)(
ϑ2t1 + (eϑt1 − 1

)
p(s)b − ϑp(s)t1b

)]

Thus, total cost is .T C2 =
(
1
T

)
(OC + HC + SC + DC + PC + IP2 − IE2)
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= 1 
T

[
Oc +

(
c1p(s)ϑ 
ϑk(ϑ+k)

) (
ϑe−kt1 + keϑt1 − (ϑ + k)

)+ c2Qmax + c2e−kt a (T − t1) 

+c3

(
e−k(T +t1) c2p(s)a 

k2

)(
ekT − ekt1 (1 + k (T − t1))

)

+c2

(
Qmax −

(
p(s)a 
ϑ2

) (
ϑ2t1 + (eϑt1 − 1

)
p(s)b − ϑp(s)t1b

))]
− c2Iep(s)a 

2ϑ3

[(
2
(
eϑT  − 1

)
p(s)b + ϑt1

(
ϑ2t1 − p(s) (2 + ϑt1) b

))
+
(

(R − t1) a 
ϑ2

)(
ϑ2t1 + (eϑt1 − 1

)
p(s)b − ϑp(s)t1b

)]

Now the minimize of total cost with respect to time is obtained if . dT C1
dt1

and dT C2
dt1

exist for then the necessary condition to minimize TC1 and TC2 for a specified 
value of M are . dT C1

dt1
= 0 and dT C2

dt1
= 0 and we get the extreme point of TC1 

and TC2. Again, the sufficient condition to minimize TC1 and TC2 are . 
d2T C1

dt21
>

0 and d2T C2
dt21

> 0. Since the total cost is intricated function, it is tough to show 

the analytic validation of the above sufficient conditions in both cases. Thus, the 
sufficient condition is assessed numerically. 

Effect of Triangular Intuitionistic Fuzzy Number in the Proposed Model 

IFN is a new mathematical number to handle impreciseness properly. Normally it is 
used when there is both the chance of truthiness or falseness of a parameter. Thus, 
in this chapter, we have considered selling price (s) and inflation (k) as intuitionistic 

fuzzy parameter. Thus, we have modified the model .T C1

(
∼
s ,

∼
k

)
and T C2

(
∼
s ,

∼
k

)
. 

Now applying Eq. 28.1 to defuzzify the parameter ( .s̃dint , k̃dint ) the model we 
obtained is given below 

∼ 
T C1 = 1 

T 

⎡ 

⎣Oc + 

⎛ 

⎝ c1p (s̃dint ) ϑ 

ϑk
(
ϑ + k̃dint

)
⎞ 

⎠(ϑe−k̃dint t1 + k̃dint e
ϑt1 − (ϑ + k̃dint

))

+c2Qmax + c2e−k̃dint t a (T − t1) 

+c3

(
e− ˜kdint (T +t1)c2p(s̃dint )a 

k̃2

)(
ek̃dint T − ek̃dint t1

(
1 + k̃dint (T − t1)

))

+c2

(
Qmax −

(
p(s̃dint )a 

ϑ2

) (
ϑ2t1 + (eϑt1 − 1

)
p (s̃dint ) b − ϑp (s̃dint ) t1b

))]

+ c2Ip

((
p(s̃dint )a

(
eϑ(t1−R)−1

)
−1−ϑ(R−t1) 

ϑ2

)
−
(
1 
2

)
p (s̃dint ) a(T − t1)2

)

−
(

c2Iep(s̃dint )a 
2ϑ3

) (
2
(
eϑT  − 1

)
p (s̃dint ) b + ϑt1

(
ϑ2t1 − p (s̃dint ) (2 + ϑt1) b

))
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∼ 
T C2 = 1 

T

[
Oc +

(
c1p(s̃dint )ϑ 

ϑk(ϑ+)

) (
ϑe−k̃dint t1 + k̃dint e

ϑt1 − (ϑ + k̃dint

))

+c2Qmax + c2e−k̃dint t a (T − t1) + c3
(

e− ˜kdint (T +t1)c2p(s̃dint )a 
k̃2

)

×
(
ek̃dint T − ek̃dint t1

(
1 + k̃dint (T − t1)

))

+c2

(
Qmax −

(
p(s̃dint )a 

ϑ2

) (
ϑ2t1 + (eϑt1 − 1

)
p (s̃dint ) b − ϑp (s̃dint ) t1b

))]

− c2Iep(s̃dint )a 
2ϑ3

[(
2
(
eϑT  − 1

)
p (s̃dint ) b + ϑt1

(
ϑ2t1 − p (s̃dint ) (2 + ϑt1) b

))
+
(

(R−t1)a 
ϑ2

) (
ϑ2t1 + (eϑt1 − 1

)
p (s̃dint ) b − ϑp (s̃dint ) t1b

)
]

5 Numerical Illustration 

The existing model is demonstrated with the following case. A supermarket ABC 
has demand rate dependent on the stock present and price of the item, that is, demand 
rate is D(Q(t), s), here α = 200, β = 1.3, a = 500 units, b = 0.15. Also, 10% of 
the total stock deteriorates, costing $ 2 per item. Let the purchasing price of each 
item is $ 3, retailing price is $ 6 per item, and to carry the item, it entails $ 0.6 per 
unit. They spend $ 250 for setup of the inventory. The inflation rate in the market 
is 12% and let the vendor earns 15% of interest and pays 20% interest for full year. 
If the supplier comes (i) Two Monthly (ii) Four months after (iii) Six months (iv) 
Eight months. Now we minimize the total cost per unit item per unit time for the 
above situations. 

D (Q (t) , s) =r (s) [a+bQ (t)]=200e−6∗1.3 [500+0.15Q(t)] , s  = 6, γ  = 0.1,Oc 
= 250 per order, c1 = 0.6 per year, k = 0.12, c2 = 3 per year, c3 
= 2 per year, Ie = 0.15 per year, Ip = 0.2 per year, T = 1 year. 

Inflation and price of the items are also considered as triangular intuitionistic 
fuzzy number. Here k = (0.1,0.13, 0.14, 0.11, 0.12, 0.15), s = (5,6,7,5.5,6.5,7.5) 

The results of the inventory model for four diverse situations are represented in 
Table 28.1. 

Thus, from Tables 28.1 and 28.2, it is seen that supplier arriving in 2nd month 
(R = 0.1667) it contradicts case 2 and case 1 hold with minimum total cost TC1 
under the intuitionistic scenario. If the supplier arrives at 4th month, (R = 0.333) 
then both case 1 and case 2 are satisfied and TC1 < TC2 under both scenarios. If 
the supplier arrives at 6th month (R = 0.5), then it contradicts case 1, while case 2 
holds with minimum total cost TC2 under the intuitionistic scenario. If the supplier 
arrives at 8th month (R = 0.667) that contradicts case 1 while case 2 hold with 
minimum total cost TC2 under the intuitionistic scenario. Thus, from Table 28.2 it
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Table 28.1 Supplier arrives before inventory finishes (Case 1) 

Delay in payment  
t1 * (in year) 
Crisps case 

TC1 
* ($) Crisps 

case 
t1 * (in year) 
Intuitionistic case 

.T̃ C∗
1 ($) 

Intuitionistic case 

2 months 0.373 376.42 0.374 341.32 
4 months 0.41 375.83 0.412 340.89 
6 months 0.447 375.78 0.449 340.85 
8 months 0.484 376.26 0.486 341.12 

Table 28.2 Supplier arrives after inventory finishes (Case 2) 

Delay in payment  
t1 * (in year) 
Crisps case 

TC2 
* ($) Crisps 

case 
t1 * (in year) 
Intuitionistic case 

.T̃ C∗
2 ($) 

Intuitionistic case 

2 months 0.178 387.31 0.156 349.19 
4 months 0.244 379.41 0.226 342.05 
6 months 0.311 368.96 0.297 332.21 
8 months 0.378 355.98 0.368 319.73 

0.2 0.4 0.6 0.8 1.0 

320 

340 

360 

380 

400 

420 

Fig. 28.6 Case 1 and Case 2 in crisps scenario 

is observed that the total cost is minimum is under Intuitionistic scenario when the 
supplier arrives at 8th month. 

Figures 28.6 and 28.7 show that the total cost is minimum under intuitionistic 
scenario, which is useful from managerial point of view.
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Fig. 28.7 Case 1 and case 2 in Intuitionistic Scenario 

6 Sensitivity Analysis 

In order to understand the effect of change of various parameter, we take one 
parameter at a time and by changing −20%, −10%, 10%, 20% for each parameter 
and keeping other unchanged. Here we have considered M = 8 month as the total 
costing is minimum in this situation. 

Thus, from Table 28.3, it is seen that price of the items is highly sensitive, 
replacement time is moderately sensitive, while rest of the parameters are less 
sensitive. 

6.1 Managerial Insight and Limitation of Work 

In this chapter, we observed that our model fits better under case 2. That is, the 
supplier comes after the stock finishes. This is realistic in managerial point of view, 
because if the supplier comes after the stock finishes, then the retailer earns the 
money of selling the entire stock as well as she or he earns the interest until the 
supplier arrives. 

The limitation of the works is, here we have mainly focused at the optimum time 
when the stock finishes. We could have extended the research work by focusing on 
how much the selling price will be in order to have our optimum total cost. Also, we 
could have extended the model by considering finite time horizon under different 
scenarios of intuitionistic fuzzy number.
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Table 28.3 Sensitivity analysis of parameters 

Case 1 Case 2 
Parameter Change (%) t1* TC1* t1* TC1* Remarks Change (%) 

p −20 0.463 855.66 0.444 848.445 Case 2 holds 138.34 
−10 0.481 526.63 0.412 511.026 Case 2 holds 43.55 
10 0.494 307.98 0.357 285.34 Case 2 holds −19.84 
20 0.496 276.57 0.345 252.69 Case 2 holds −29.02 

k −20 0.519 378.09 0.385 358.32 Case 2 holds 0.66 
−10 0.504 377.35 0.382 357.36 Case 2 holds 0.39 
10 0.475 375.81 0.376 355.46 Case 2 holds −0.15 
20 0.46 375.02 0.373 354.52 Case 2 holds −0.41 

Ie −20 0.474 377.014 0.385 361.58 Case 2 holds 1.57 
−10 0.482 376.803 0.382 358.997 Case 2 holds 0.85 
10 0.498 376.359 0.377 353.81 Case 2 holds −0.61 
20 0.507 376.126 0.375 351.22 Case 2 holds −1.34 

Ip −20 0.505 377.14 0.378 355.98 Case 2 holds 0.00 
−10 0.497 376.86 0.378 355.98 Case 2 holds 0.00 
10 0.482 376.3 0.378 355.98 Case 2 holds 0.00 
20 0.475 376 0.378 355.98 Case 2 holds 0.00 

T −20 0.425 439.2 0.358 409.92 Case 2 holds 15.15 
−10 0.458 404.37 0.368 379.98 Case 2 holds 6.74 
10 0.521 353.92 0.389 337.44 Case 2 holds −5.21 
20 0.55 335.08 0.4 321.93 Case 2 holds −9.57 

7 Conclusion 

In order to deal with the real-life scenario, it is observed that considering the 
parameters as constant is not realistic. Few parameters always have vagueness in it 
and thus to represent the vagueness in the parameter it is better to consider triangular 
intuitionistic fuzzy number. In this chapter, an EOQ model is considered under 
shortages and delay in payment. After studying the model numerically, it is seen 
that under different situations, the model works differently and depending on delay 
in payment period, the different cases are satisfied. Under all scenarios, it is seen that 
the model works better if we consider inflation and price of the items as triangular 
intuitionistic fuzzy number. It is seen that overall total cost is minimum when the 
supplier arrives at 8th month and this means total cost is minimum at case 2, that 
is, the supplier arrives once the stock finishes, which is realistic for retailer point 
of view. This model can be extended by considering price as decision variable, or 
considering shortage as lost in sales, etc. 

In future, the model can be further extending by incorporating it in supply 
chain model or by collaborating with interdisciplinary ideas of control theory. The 
uncertainty of the model can also be represented by using stochastic process.
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Chapter 29 
A Study of an EOQ Model Under 
Triangular Cloudy Fuzzy Neutrosophic 
Demand Rate 

Sujit Kumar De and Sanchita Mahato 

1 Introduction 

It is very crucial to have genuine crisp data for any decision-making problem. But in 
modern competing scenario, it is very difficult to have adequate crisp data, because 
many data are hidden for governmental and political issues. The reliable data are not 
actually acceptable because of its vagueness and piecewise untruth nature. Zadeh 
[24] first studied Fuzzy set theory but few decennary later a new concept on hesitant 
fuzzy set has been developed. Torra [20] developed the concept on hesitant fuzzy set. 
Indeed, in intuitionistic fuzzy environment, eminent practitioner studied numerous 
research articles. Atannosov [1, 2] and Dubois et al. [10] independently developed 
the concept on intuitionistic fuzzy set (IFS). Between its process, Wang et al. [21, 
22], Pei and Zheng [19] discussed over new concepts on evidence-based IFS and a 
unique perspective for decision-making respectively. 

A study with four-valued logic, namely, Truth (T), false (F), Unknown (U), 
and Contradiction (C), was performed by [3]. Considering these four components 
as interconnected in nature, a bilattice structure was used by him. Smarandache 
[19] developed four valued logics: the Neutrosophic set (NS), Neutrosophic logic, 
Neutrosophic probability, and Neutrosophic statistics. Numerous ranking methods 
for NS have been discussed by several researchers like [23], Biswas et al. [5, 6], 
[16], etc. Recently, Peng et al. [18] developed the multivalued power operator in 
NS. 

EOQ models under different types of dense fuzzy environment were uniquely 
studied by Maity et al. [12–14]. Some inventory models for defective or imperfect 
quality items have been generously established by De and Mahata [8]. Maity et al. 
[15] made a great study of a Backorder EOQ model for cloud-type intuitionistic 
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dense fuzzy demand rate. Several researchers like Karmakar et al. [11] and De et al. 
[7] developed a production inventory supply chain model with partial back ordering 
and disruption under triangular linguistic dense fuzzy lock set approach greatly. 
A pollution-sensitive fuzzy EPQ model with endogenous reliability and product 
deterioration based on lock fuzzy game theoretic approach has been evolved by 
Bhattacharya et al. [4]. 

Generally, a decision maker finds suitable membership grade for various char-
acteristics of data. But real situation is different as predicted data of previous day 
is inconvenient for tomorrow due to the reason of changing frequency of various 
ownership enterprises. Time gaping is also responsible for this type of problematic 
situation. So, it is inconvenient to discover the raw data, as most of the genuine data 
are concealed under national or international rules and regulations. For instance, due 
to several unreliability in the merchandise, the demand rate actually varies from one 
cycle time to another. Moreover, for developing inventory model, a major challenge 
faced by a DM is to prognosticate the annual demand whose characteristics are 
found to be standard and nonstandard fuzzy flexibilities. 

To model this situation in this chapter, a classical EOQ model is considered in 
TCFN demand rate environment. For numerical illustration, a solution algorithm 
has been constructed. After comparison of numerical result with other connected 
models, the uniqueness of this new approach is proved. Graphical illustration and 
sensitivity analysis are also made for proper justification of this model. 

This chapter is organized as follows: In Sect. 2, we have described some 
preliminary definitions and membership grades related to different NS. In this 
section, we also have expressed about score value of an NS. In Sect. 3, we have  
developed crisp mathematical EOQ model. In the next part, we have developed crisp 
equivalent of TCFN model. In Sect. 4, we have solved a numerical problem through 
crisp, general fuzzy and TCFN model and compare the results in a table. A table for 
different submodels related to TCFN model also has been created in this section. In 
Sect. 5, a table for sensitivity analysis of different parameters has been developed. 
In Sect. 6, we have illustrated different graphs like optimum inventory cost and 
order quantity under various methods and graph for sensitivity analysis of different 
parameters. Finally, conclusion has been given in Sect. 7. 

2 Basic Concepts 

This section contains some basic definitions and concepts of NS. 

Definition 1 (Biswas et al. 2014a) Let y be the element of a space point . X . Then 
an NS . A in . X is characterized by a truth grade α, an indeterminacy grade β, and 
a falsity grade γ , respectively. Thus, NS = < α, β, γ> with the functions α, β, 
γ are of real standard or non-standard subsets of ]0−, 1+[. That is:Y → ]0−, 1+[, 
β : Y → ]0−, 1+[ and γ : Y → ]0−, 1+[ satisfying the relation .0− ≤ sup α(y) +
supβ(y) + sup γ (y) ≤ 3+
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2.1 Triangular Cloudy Fuzzy System 

Cloudy fuzzy environment in different cases of NS has been discussed in this 
section. 

Definition 2 Let a fuzzy set . 
∼
A have components of time τ with the membership 

grade satisfying the functional relation μ(y, τ ) → 1. Now as τ → ∞  if μ(y, τ ) → 1 

for some .y ∈ R, then the set . 
∼
A is a cloudy fuzzy set. If . 

∼
A is triangular, then it is 

called “Triangular cloudy Fuzzy Set” or TCFS. Now, if for some τ , μ(y, τ ) attains 
1, then it is called “Normalized Triangular Cloudy Fuzzy Set” or NTCFS (shown in 
Fig. 29.1). 

Example 1 Following definitions (2) we assume the NTCFS as follows: 

∼ 
A =< p2

(
1 − η1 

(1 + τ)

)
, p2, p2

(
1 + 

δ1 

1 + τ

)
> (29.1) 

Having membership function 

γα (y, τ) = 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

0 if y < p2

(
1 − η1 

1+τ

)
and y > p2

(
1 + δ1 

1+τ

)
y−p2

(
1− η1 

1+τ

)
ρ1a2 
1+t 

if p2

(
1 − η1 

1+τ

)
≤ y ≤ p2 

p2

(
1+ δ1 

1+τ

)
−y 

δ1p2 
1+τ 

if p2 ≤ y ≤ p2

(
1 + δ1 

1+τ

)

(29.2) 

Fig. 29.1 Truth function of NTCFS
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Similarly, here also we consider the membership functions of falsehood and 
indeterminacy, respectively, described as follows: 

γβ (y, τ) = 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

0 if y < q2
(
1 − η2 

1+τ

)
and y > q2

(
1 + δ2 

1+τ

)
q2−y 
η2q2 
(1+τ ) 

if q2
(
1 − η2 

1+τ

)
≤ y ≤ q2 

y−q2 
δ2q2 
1+τ 

if q2 ≤ y ≤ q2
(
1 + δ2 

1+τ

) (29.3) 

γγ (y, τ) = 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

0 if y < γ2
(
1 − η3 

1+τ

)
and y > r2

(
1 + δ3 

1+τ

)
r2−y 
η3r2 
(1+τ ) 

if r2
(
1 − η3 

1+τ

)
≤ y ≤ r2 

y−r2 
η3r2 
1+τ 

if r2 ≤ y ≤ r2
(
1 + δ3 

1+τ

) (29.4) 

Definition 3 TCFS based on nonmembership and indeterminacy function [10] 

Let . 
∼
A be the fuzzy number whose components are the function of time. Now as 

τ → ∞  if ν(y, τ ) → 0 for  some  .y ∈ R, then we call the set .
∼
A as cloudy fuzzy 

set. If we consider the fuzzy number . 
∼
A of the form .

∼
A =< p1, p2, p3 >, then we 

call it “Triangular cloudy Fuzzy Set” or TCFS. Now, if τ = 0 in T and  ν(y, τ ) takes 
1, then we call it as “Normalized Triangular Cloudy Fuzzy Set” or NTCFS (shown 
in Fig. 29.2). 

Fig. 29.2 Falsity function of NTCFS
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Example 2 Let the falsity set is given by 

∼ 
B =< q2 (1 − η2) e−τ , q2e

−τ , q2 (1 + δ2) e−τ > f  or  0 < η2, δ2 < 1 
(29.5) 

and its nonmembership function for τ ≥ 0 is defined by 

ν (y, τ) = 

⎧⎪⎨ 

⎪⎩ 

0 if y < q2 (1 − η2) e−τ and y > q2 (1 + δ2) e−τ 

q2e
−τ −y 

η2q2e
−τ if q2 (1 − η2) e−τ ≤ y ≤ q2e−τ 

y−q2e
−τ 

δ2q2e
−τ if q2e−τ ≤ y ≤ q2 (1 + δ2) e−τ 

(29.6) 

And that for the indeterminacy dense fuzzy set . 
∼
C be of the form 

∼ 
C =< r2 (1 − η3) e−τ , r2e

−τ , r2 (1 + δ3) e−τ > f  or  0 < η3, δ3 < 1 
(29.7) 

representing the membership function 

π (y, τ) = 

⎧⎪⎨ 

⎪⎩ 

0 if y < r2 (1 − η3) e−τ and y > r2 (1 + δ3) e−τ 

r2e
−τ −y 

η3r2e
−τ if r2 (1 − η3) e−τ ≤ y ≤ r2e−τ 

y−r2e
−τ 

δ3r2e
−τ if r2e−τ ≤ y ≤ r2 (1 + δ3) e−τ 

(29.8) 

respectively. 

Remark 1 The NS for dependency components [9 ] Here a plain Venn diagram 
for NS dependency components has been drawn out for realization of aggregate 
analysis of fuzzy components. As per theorem of probability, the net score for NS-
dependent components was obtained from the Fig. 29.3. Moreover, the concepts of 
Figs. 29.1 and 29.2 have been utilized to draw Fig. 29.3. Note that, if p2 = q2 = r2 
hold in the relations (29.1), (29.5), and (29.7), then we reach at a crisp set. 

2.2 Score Value of an NS [9] 

Here we shall discuss over the aggregated score or expected index value under the 
standard fuzzy set of the proposed NS Ns = < α, β, γ >where all the NS components 
are assumed to be dependent. Then the score s(y) for standard neutrosophic set is 
given by 

s(y) = (α(y) + β(y) + γ (y) − α(y)β(y) − β(y)γ (y) 

−α(y)γ (y) + α(y)β(y)γ (y)) 
1 
3 

(29.9)
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Crisp 

Fig. 29.3 Venn diagram of general NS 

And that for nonstandard NS we have 

I (S)  = [I (α) + I (β) + I (γ ) − I (α) I (β) − I (β) I (γ ) 

−I (α) I (γ ) + I (α) I (β) I (γ )] 
(29.10) 

3 Considerations and Symbols 

The following notations and assumptions are used to develop the model. 

Considerations 
1. Orders are placed on demand. 
2. The cycle time is infinite (weeks). 
3. Backlogging is absent. 
4. Lead time is zero 

Symbols 
q The stock per cycle (a variable) 
D Week basis Demand (units) 
K Cycle wise Set-up cost ($) 
h Inventory holding cost per unit quantity per cycle ($) 
c Purchasing price of unit item ($) 
T0 Threshold inventory run time (years) 
T1 Final inventory run time (years) (Decision variable) 
T1 − T0 Cycle time (years) 
Z Total average cost of the model (a variable) ($)
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Demand rate 

Average inventory 

Maximum 

inventory 

Minimum inventory 

0 

Time 

Fig. 29.4 Schematic view of the  EOQ process  

3.1 Crisp Model Formulation 

Considering the initial inventory starts with order quantity q and the constant 
consumed demand rate is D (shown in Fig. 29.4). Then at the end of the cycle time 
T1 − T0, the inventory becomes zero. The costs related with it are unit purchasing 
price c, unit holding cost h, and set up costK only. Therefore, the proposed inventory 
problem for minimization of overall total cost is given as 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

T otal Average inventory cost 
= purchasing cost + set − up cost + holding cost 

= cD + k 
T1−T0 

+ hD(T1−T0) 
2 

Subject to q = D (T1 − T0) 

So, the proposed EOQ model becomes 

⎧⎪⎨ 

⎪⎩ 

Find  X  = (q, T ) so that 
Minimize Z = cD + k 

T1−T0 
+ hD(T1−T0) 

2 

subject to q = D (T1 − T0) 
(29.11) 

3.2 Neutrosophic Fuzzy Mathematical Model 

Let us assume that the inventory process is demand sensitive by means of NS. Thus, 
taking the demand rate D as a TCFN 

∼ 
D =

{
< p2

(
1 − 

η1 

1 + t

)
, p2, p2

(
1 + 

δ1 

1 + t

)
> f  or  0 < η1, δ1 < 1
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Now the membership function for truth component of Neutrosophic fuzzy 
demand is given by 

μαD (y, τ) = 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

0 ify < p2

(
1 − 

η1 

1 + τ

)
and y > p

(
1 + 

δ1 

1 + τ

)

y − p2

(
1 − 

η1 

1 + τ

)

η1p2 

1 + τ 

if p2

(
1 − 

η1 

1 + τ

)
≤ y ≤ p2 

p2

(
1 + 

δ1 

1 + τ

)
− y 

δ1p2 

1 + τ 

if p2 ≤ y ≤ p2

(
1 + 

δ1 

1 + τ

)

(29.12) 

Similarly, membership function for falsehood of Neutrosophic fuzzy demand is 
given by 

μβD (y, τ) = 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

0 if y < q2
(
1 − 

η2 

1 + τ

)
and y > q2

(
1 + 

δ2 

1 + τ

)

q2 − y 
η2q2 

(1 + τ) 

if q2
(
1 − 

η2 

1 + τ

)
≤ y ≤ q2 

y − q2 
δ2q2 

1 + τ 

if q2 ≤ y ≤ q2

(
1 + 

δ2 

1 + τ

)

(29.13) 

and that of the membership function for indeterminacy is given by 

μγD  (y, τ) = 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

0 if y < r2
(
1 − 

η3 

1 + τ

)
and y > r2

(
1 + 

δ3 

1 + τ

)

r2 − y 
η3r2 

(1 + τ) 

if r2
(
1 − 

η3 

1 + τ

)
≤ y ≤ r2 

y − r2 
δ3r2 

1 + τ 

if r2 ≤ y ≤ r2
(
1 + 

δ3 

1 + τ

)

(29.14) 

Now we consider the TCFN demand set as 

Ns =< μαD (y, τ) , μβD (y, τ) , μγD  (y, τ) >=< αd, βd, γd > say,
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where αd is the truth membership function,βd is the falsehood membership function, 
and γ d is the indeterminacy function, respectively. If these three components are 
dependent and keep positive sign then using inclusion-exclusion principle and De 
and Beg [9], the ultimate score be, the case of standard NS 

s(x) = (α(y) + β(y) + γ (y) − α(y)β(y) − β(y)γ (y) 

−α(y)γ (y) + α(y)β(y)γ (y)) 
1 
3 

(29.15) 

Now utilizing De and Beg [9], the defuzzied value of NS can be obtained with 
the help of the formula 

I

(∼ 
A

)
= 

1 

2T1

∫∫ θ=1,t=T1 

θ=0,t=T0 

{L (θ,  t) + R (θ,  t)} dθdt 

= p2

{
1 + 

δ − η 
4T1 

Log (1 + T1)
} (29.16) 

Therefore, the index values for Td, Id, Fd are given by 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

Iα

(∼ 
D

)
= p2

{
1 + δ1−η1 

4T1 
Log (1 + T1)

}

Iβ

(∼ 
D

)
= q2

{
1 + δ2−η2 

4T1 
Log (1 + T1)

}

Iγ

(∼ 
D

)
= r2

{
1 + δ3−η3 

4T1 
Log (1 + T1)

}
(29.17) 

So, the aggregated index value for Neutrosophic fuzzy demand D can be found 
with the help of (29.15) 

I

(∼ 
D

)
=

(
Iα

(∼ 
D

)
+ Iβ

(∼ 
D

)
+ Iγ

(∼ 
D

)
− Iα

(∼ 
D

)
Iβ

(∼ 
D

)

−Iα

(∼ 
D

)
Iγ

(∼ 
D

)
− Iβ

(∼ 
D

)
Iγ

(∼ 
D

)
+ Iα

(∼ 
D

)
Iβ

(∼ 
D

)
Iγ

(∼ 
D

)) 1 
3 

(29.18) 

Again considering (29.10), the truth membership function for Neutrosophic 
fuzzy objective is given by
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μαZ (y, τ) = 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

0 if Z < p2

(
1 − η1 

1+τ

) (
c + hτ 

2

) + K 
τ 

and Z > p2

(
1 + δ1 

1+τ

) (
c + hτ 

2

) + K 
τ⎧⎨ 

⎩ 

2(Zτ−K) 
(2cτ+hτ2)

−p2

(
1− η1 

1+η

)
η1p2 
1+τ 

⎫⎬ 

⎭ if p2

(
1 − η1 

1+τ

) (
c + hτ 

2

) + K 
τ 

≤ Z ≤ p2
(
c + hτ 

2

) + K 
τ{

p2

(
1+ δ1 

1+τ

)
− 2(Zτ−K) 

2cτ+hτ2 
δ1p2 
1+τ

}
if p2

(
c + hτ 

2

) + K 
τ ≤ Z 

≤ p2

(
1 + δ1 

1+τ

) (
c + hτ 

2

)
+ K 

τ 
(29.19) 

Similarly, the membership function for falsity and indeterminacy of the Neutro-
sophic fuzzy objective is as follows: 

μβZ (y, τ) = 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

0 if Z < q2
(
1 − η2 

1+τ

) (
c + hτ 

2

) + K 
τ 

and Z > q2
(
1 + δ2 

1+τ

) (
c + hτ 

2

) + K 
τ{

q2− 2(Zτ−K) 
(2cτ+hτ2) 
η2q2 
(1+τ )

}
if q2

(
1 − η2 

1+τ

) (
c + hτ 

2

) + K 
τ 

≤ Z ≤ q2
(
c + hτ 

2

) + K 
τ{ 2(Zτ−K) 

(2cτ+hτ2) − q2 

δ2q2 
1+τ

}
if q2

(
c + hτ 

2

) + K 
τ ≤ Z 

≤ q2
(
1 + δ2 

1+τ

) (
c + hτ 

2

) + K 
τ 

(29.20) 

μγZ  (y, τ) = 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

0 if Z < r2
(
1 − η3 

1+τ

) (
c + hτ 

2

) + K 
τ 

and Z > r2
(
1 + δ3 

1+τ

) (
c + hτ 

2

) + K 
τ{

r2− 2(Zτ−K) 
(2cτ+hτ2) 
η3r2 
(1+τ )

}
if r2

(
1 − η3 

1+τ

) (
c + hτ 

2

) + K 
τ ≤ Z 

≤ r2
(
c + hτ 

2

) + K 
τ{ 2(Zτ−K) 

(2cτ+hτ2) − r2 

δ3r2 
1+τ

}
if r2

(
c + hτ 

2

) + K 
τ ≤ Z 

≤ r2
(
1 + δ3 

1+τ

) (
c + hτ 

2

) + K 
τ 

(29.21) 

Now from the formula stated in (29.17), we find the index values of truth, falsity, 
and indeterminacy components of fuzzy objective variable, which are given below:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

Iα

(∼ 
Z

)
= 

KLog
(

T 1 
T 0

)
T1 

+ p2

(
c + hT1 

4

)
+ p2 

4T1 
c (δ1 − η1) Log (1 + T1) 

+ a2 
8T 1h (δ1 − η1)

(
T1 − Log (1 + T1) 

Iβ

(∼ 
Z

)
= 

KLog
(

T 1 
T 0

)
T1 

+ q2
(
c + hT1 

4

)
+ q2 

4T1 
c (δ2 − η2) Log (1 + T1) 

+ b2 
8T 1h (δ2 − η2)

(
T1 − Log (1 + T1) 

Iγ

(∼ 
Z

)
= 

KLog
(

T 1 
T 0

)
T1 

+ r2
(
c + hT1 

4

)
+ r2 

4T1 
c (δ3 − η3) Log (1 + T1) 

+ c2 
8T 1h (δ3 − η3)

(
T1 − Log (1 + T1) 

(29.22) 

Now the aggregated index value for objective function Z becomes 

I

(∼ 
Z

)
=

(
Iα

(∼ 
Z

)
+ Iβ

(∼ 
Z

)
+ Iγ

(∼ 
Z

)
− Iα

(∼ 
Z

)
Iβ

(∼ 
Z

)
− Iα

(∼ 
Z

)
Iγ

(∼ 
Z

)

−Iβ

(∼ 
Z

)
Iγ

(∼ 
Z

)
+ Iα

(∼ 
Z

)
Iβ

(∼ 
Z

)
Iγ

(∼ 
Z

)) 1 
3 

(29.23) 

However, the truth membership function for fuzzy order quantity q is 

μαQ (y, τ) = 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

0 if Q < p2t
(
1 − η1 

1+τ

)
and Q > p2τ

(
1 + δ1 

1+τ

)
Q−p2τ

(
1− η1 

1+τ

)
η1p2τ 
1+τ 

if p2τ
(
1 − η1 

1+\tau

)
≤ Q ≤ p2τ 

p2τ
(
1+ δ1 

1+τ

)
−Q 

δ1p2τ 
1+τ 

if p2τ ≤ Q ≤ p2τ
(
1 + δ1 

1+τ

)

(29.24) 

Similarly, the membership function for falsity and indeterminacy of fuzzy order 
quantity q is 

μβQ (y, τ) = 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

0 if Q < q2τ
(
1 − η2 

1+τ

)
and Q > q2τ

(
1 + δ2 

1+τ

)
q2τ − Q 

η2q2τ 
(1+τ) 

if q2τ
(
1 − η2 

1+τ

)
≤ Q ≤ q2τ 

Q − q2τ 
δ2q2τ 
1+τ 

if q2τ ≤ Q ≤ q2τ
(
1 + δ2 

1+τ

)

(29.25)
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μγQ  (y, τ) = 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

0 if Q < r2τ
(
1 − η3 

1+τ

)
and Q > r2τ

(
1 + δ3 

1+τ

)

r2τ − Q 
η3r2τ 
(1+τ) 

if r2τ
(
1 − η 

1+τ

)
≤ Q ≤ r2τ 

Q 
τ − r2τ 

δ3r2τ 
1+τ 

if r2τ ≤ Q ≤ r2τ
(
1 + δ3 

1+τ

)

(29.26) 

Now from the formula stated in (29.24), we find the index values of truth, falsity, 
and indeterminacy components of fuzzy order quantity, which are given below: 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

Iα

(∼ 
Q

)
= p2T1 

2 + p2 
4T1 

(δ1 − η1) (T1 − Log (1 + T1)) 

Iβ

(∼ 
Q

)
= q2T1 

2 + q2 
4T1 

(δ2 − η2) (T1 − Log (1 + T1)) 

Iγ

(∼ 
Q

)
= r2T1 

2 + r2 
4T1 

(δ3 − η3) (T1 − Log (1 + T1)) 

(29.27) 

Now the total index value for fuzzy order quantity q becomes 

I

(∼ 
Q

)
=

(
Iα

(∼ 
Q

)
+ Iβ

(∼ 
Q

)
+ Iγ

(∼ 
Q

)
− Iα

(∼ 
Q

)
Iβ

(∼ 
Q

)
− Iα

(∼ 
Q

)
Iγ

(∼ 
Q

)

−Iβ

(∼ 
Q

)
Iγ

(∼ 
Q

)
+ Iα

(∼ 
Q

)
Iβ

(∼ 
Q

)
Iγ

(∼ 
Q

)) 1 
3 

(29.28) 

So, the crisp equivalent of the TDFN Model becomes 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

Min I

(∼ 
Z

)
=

(
Iα

(∼ 
Z

)
+ Iβ

(∼ 
Z

)
+ Iγ

(∼ 
Z

)
− Iα

(∼ 
Z

)
Iβ

(∼ 
Z

)
− Iα

(∼ 
Z

)

×Iγ

(∼ 
Z

)
− Iβ

(∼ 
Z

)
Iγ

(∼ 
Z

)
+ Iα

(∼ 
Z

)
Iβ

(∼ 
Z

)
Iγ

(∼ 
Z

)) 1 
3 

I

(∼ 
D

)
=

(
Iα

(∼ 
D

)
+ Iβ

(∼ 
D

)
+ Iγ

(∼ 
D

)
− Iα

(∼ 
D

)
Iβ

(∼ 
D

)
− Iα

(∼ 
D

)

×Iγ

(∼ 
D

)
− Iβ

(∼ 
D

)
Iγ

(∼ 
D

)
+ Iα

(∼ 
D

)
Iβ

(∼ 
D

)
Iγ

(∼ 
D

)) 1 
3 

S.t.I

(∼ 
Q

)
=

(
Iα

(∼ 
Q

)
+ Iβ

(∼ 
Q

)
+ Iγ

(∼ 
Q

)
− Iα

(∼ 
Q

)
Iβ

(∼ 
Q

)
− Iα

(∼ 
Q

)

×Iγ

(∼ 
Q

)
− Iβ

(∼ 
Q

)
Iγ (Q) + Iα

(∼ 
Q

)
Iβ

(∼ 
Q

)
Iγ

(∼ 
Q

) ) 1 
3 

Subject to
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

Iα

(∼ 
Z

)
= 

KLog
(

T 1 
T 0

)
T1 

+ p2

(
c + hT1 

4

)
+ p2 

4T1 
c (δ1 − η1) Log (1 + T1) 

+ p2 
8T 1h (δ1 − η1)

(
T1 − Log (1 + T1) 

Iβ

(∼ 
Z

)
= 

KLog
(

T 1 
T 0

)
T1 

+ q2
(
c + hT1 

4

)
+ q2 

4T1 
c (δ2 − η2) Log (1 + T1) 

+ q2 
8T 1h (δ2 − η2)

(
T1 − Log (1 + T1) 

Iγ

(∼ 
Z

)
= 

KLog
(

T 1 
T 0

)
T1 

+ r2
(
c + hT1 

4

)
+ r2 

4T1 
c (δ3 − η3) Log (1 + T1) 

+ r2 
8T 1h (δ3 − η3)

(
T1 − Log (1 + T1) 

Iα

(∼ 
D

)
= p2

{
1 + δ1−η1 

4T1 
Log (1 + T1)

}

Iβ

(∼ 
D

)
= q2

{
1 + δ2−η2 

4T1 
Log (1 + T1)

}

Iγ

(∼ 
D

)
= r2

{
1 + δ3−η3 

4T1 
Log (1 + T1)

}

Iα

(∼ 
Q

)
= p2T1 

2 + p2 
4T1 

(δ1 − η1) (T1 − Log (1 + T1)) 

Iβ

(∼ 
Q

)
= q2T1 

2 + q2 
4T1 

(δ2 − η2) (T1 − Log (1 + T1)) 

Iγ

(∼ 
Q

)
= r2T1 

2 + r2 
4T1 

(δ3 − η3) (T1 − Log (1 + T1)) 

(29.29) 

Similarly, we shall use the formula of nonstandard fuzzy set to get another set of 
results. 

4 Numerical Experiment 

Let us take the values of model parameters c = $60, D = 50 units, K = $800, 
h = $3.5 and the fuzzy deviation parameters δ1 = .1, η1 = .15, δ2 = .2, η2 = .25, 
δ3 = .3, η3 = .35.Then we get the optimal solution of the proposed model given 

in Table 29.1. Taking fuzzy demand rate as .
∼

D =< 46, 50, 52 > and that for the 
TCFN model and the outputs are shown in this table. For TCFN model, we take 
p2 = 50, q2 = 50, r2 = 50 and get the result 

From Table 29.1, it is seen that the average inventory cost under different 
standard fuzzy environments ranges from $3299.668 to $ 3528.150. For the 
nonstandard fuzzy environment, the cost value hikes to 7979790.87 with respect 
to stock quantity 47,662, which is the 315.25 multiple of that of crisp result. The 
cost value gives better benefit to the decision maker in standard Neutrosophic fuzzy 
environment for cycle time 1.534 years and stock quantity 74.51 units, which gives
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Table 29.1 Optimum solution of the proposed process 

Model 
Time cycle 
(T1 − T0)∗ (years) 

Stock quantity 
q∗ (units) 

Average 
System cost Z∗ RC (%) 

Crisp 3.0323 151.1858 3528.150 
General fuzzy 
(Triangular) 

3.038 150.4280 3496.498 −0.89 

TCFN (standard) 1.534 74.51 3299.668 −6.47 
TCFN 
(nonstandard) 

1.5 47662 28153.9 × 106 +797979010.87 

Note: . RC = Z∗−Z∗crisp
Z∗crisp

× 100%

6.47% cost reduction with respect to crisp model. Although, in the fuzzy model, the 
cost benefit assumes 0.89% with respect to that of crisp model. The order quantities 
of the other models, assumes values near 150 units explicitly. 

5 Sensitivity Analysis 

Here we perform a sensitivity analysis for the TCFN (standard) model for c, h, K, a2, 
b2, c2, which are associated in the EOQ model. Considering the parametric changes 
from −50 % to 50% for each of the parameters and the optimum results are denoted 
by (*) and they are shown in Table 29.2. 

From Table 29.2, we see that the purchasing cost parameter c is highly sensitive 
with its changes from −50% to +50% and the change of inventory cost is from 
−48.7% to 35.8 % . The holding cost h and set up cost k are almost insensitive 
whenever they are changed from −50% to +50%. For Neutrosophic truth parameter 
a2 we get value of optimum inventory cost and order quantity for 50%change and 
−30 % change. In other cases, we get infeasible solution. For Neutrosophic falsity 
parameter we get optimal solution for−30% changes and other cases give infeasible 
solution. For Neutrosophic indeterminacy parameter c2 we observe mild changes for 
50% and 30% changes. For parameter a2 there is small changes for −30% and 50% 
changes. Parameter c2 has very mild sensitivity for 50% and 30% changes. 

6 Graphical Illustration 

Taking data from Table 29.1 we illustrate the following graphs below. 
From Fig. 29.5, we see that the inventory cost for crisp model is $3528.150, 

for general fuzzy model, it is 3496.488, and for TCFN (standard) model, it is 
$3299.668. So, we see that inventory cost for TCFN (standard) model gives lesser 
value than crisp and general fuzzy model.
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Table 29.2 Sensitivity analysis of TCFN (standard) model 

Parameters Changes q∗ (T1 − T0)∗ Z∗ RC 

c = 60 50% 
30% 

−30% 
−50% 

74.519 
74.524 
74.482 
74.467 

1.5343 
1.5345 
1.5328 
1.5322 

4791.047 
4209.424 
2404.733 
1808.139 

35.8% 
19.3% 
−31.8% 
−48.7% 

h = 3.5 50% 
30% 

−30% 
−50% 

74.474 
74.462 
74.509 
74.597 

1.5324 
1.532 
1.5339 
1.5347 

3365.576 
3339.121 
3273.212 
3237.111 

−4.6% 
−5.35% 
−7.2% 
−8.2% 

K = 800 50% 
30% 

−30% 
−50% 

74.5298 
74.4974 
74.477 
74.597 

1.5347 
1.5334 
1.5326 
1.5318 

3392.575 
3355.321 
3243.835 
3206.647 

−3.8% 
−4.9% 
−8% 
−9.1% 

p2 = 50 50% 
30% 

−30% 
−50% 

85.310 
Infeasible 
66.050 
Infeasible 

1.5341 
Infeasible 
1.5348 
Infeasible 

3748.695 
Infeasible 
2953.071 
Infeasible 

6.2% 
– 
−16.2% 
– 

q2 = 50 50% 
30% 

−30% 
−50% 

Infeasible 
Infeasible 
65.995 
Infeasible 

Infeasible 
Infeasible 
1.5323 
Infeasible 

Infeasible 
Infeasible 
2952.903 
Infeasible 

– 
– 
−16.3% 
Infeasible 

r2 = 50 50% 
30% 

−30% 
−50% 

85.373 
81.397 
Infeasible 
Infeasible 

1.5323 
1.5337 
Infeasible 
Infeasible 

3753.373 
3585.612 
Infeasible 
Infeasible 

6.4% 
1.6% 
– 
– 
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Fig. 29.5 Inventory cost under various methods 

Figure 29.6 shows that the order quantity for crisp model is 151.1858 units, for 
general fuzzy model is 150.4280 units and that for TCFN (standard) model is 74.51
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Fig. 29.7 Inventory cost under parametric sensitivity 

units. So, it is obvious that optimum order quantity for TCFN (standard) model is 
lesser than crisp and general fuzzy model. 

Taking data from Table 29.2, we illustrated the following graphs below. 
Figure 29.7 shows that the purchasing cost parameter c is highly sensitive. The 

changes of inventory cost for this parameter range from $1808.139 to $4791.047. 
The h and K are almost insensitive and the deviation of inventory cost for these 
parameters is from $3206.647 to $3392.575 exclusively. For the Neutrosophic 
truth, falsity, indeterminacy parameters, the changes of inventory cost range from 
$2750.018 to $3753.373.Also this Figure shows that maximum and minimum 
inventory cost is $4791.047 and $1808.139 for +50 % and − 50% changes of 
purchasing cost parameter c.
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6.1 Managerial Insights 

This study reveals an EOQ inventory decision under standard and nonstandard 
neutrosophic fuzzy flexibility of the demand parameter. In fact, in cloudy fuzzy 
environment, all fuzzy parameters are assumed to be changing with learning 
experiences gained by the decision maker from one cycle to another. The basic aim 
of cloudy fuzzy situation is to avail minimum cost of every modeling. Here, the 
following managerial insights can be achieved. 

A. Standard neutrosophic fuzzy environment is more comfortable for the DM 
because of its cost benefit up to 6.47% with respect to the crisp decision. 

B. In standard NS, the order quantity almost gets half of that of crisp and general 
fuzzy model. 

C. The entire cycle time also becomes minimum (1.5 years) than that of crisp model 
(3.0323 years). 

D. The time complexity is minimum all the time. 
E. The only limitation is that if the DM wishes to order more and more quantities, 

then the cost will get an unexpected value within the same / specific cycle time 
period. 

7 Conclusion 

In this study, we have explained the existing EOQ model under TCFN demand rate. 
As in contemporary circumstances, predicted data is always swapping for change 
of learning experience of human being. Time gap is also accountable for exchanges 
of crisp data. So, lack of genuine data causes substantial issue to DM for making 
decision in inventory problem. To clarify this problem, we defuzzify classical EOQ 
Model under TCFN environment with standard and nonstandard situations. After 
analyzing a real-life data under this model, we came to the decision that this model 
gives better result than other existing models. The newness’s of this model are 

1. The fuzzy demands, which are obtained directly from data can be used easily in 
this model to get optimum value. 

2. Changes of fuzzy flexibility with time elapsed and interactions covered will not 
affect in optimum result. 

3. An actual real world inventory problem can be easily analyzed rather than a 
hypothetical world problem. 

4. Learning experiences measured by the cloudy fuzzy set can get the model global 
minimum all the time.
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Chapter 30 
An Application of Intuitionistic Fuzzy 
Differential Equation to the Inventory 
Model 

Mostafijur Rahaman, Shariful Alam, Abdul Alamin, Sankar Prasad Mondal, 
and Payal Singh 

1 Introduction 

When the system’s knowledge is insufficient to define a fuzzy set or to describe the 
ambiguity (vagueness) around a declaration of assertions about the financial world 
in the collections themselves, the idea of IFS can be seen as an alternate option. 
Since human skill and knowledge are legitimate and dependable, it is envisaged 
that IFS may be utilized to imitate human decision-making processes and activities. 
Here, rejection and satisfaction levels are considered so that the total of both values 
is never greater than one. In this chapter, the traditional EOQ model in uncertain 
intuitionistic fuzzy phenomena will be covered. The following subsections describe 
the motivation, objective, research gaps, contribution, and orientation of this chapter. 

1.1 Motivation and Objectives 

The idea of fuzzy set theory is expanded more comprehensively by the intuitionistic 
fuzzy set theory, which considers belongingness and nonbelongingness (rejection). 
A phenomenon that makes decisions could experience an ambiguous scenario with 
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the choice between acceptance and rejection. A manager may share an acceptance-
rejection dilemma when using an economic order quantity (EOQ) model with the 
set aim of reducing costs as much as feasible. As a result, an EOQ model may be 
considered in a fuzzy intuitionistic uncertain environment. It is preferable to use 
intuitionistic fuzzy calculus to explain the uncertain model when the parameters 
and decision variables are of the imprecise intuitionistic fuzzy kind. 

1.2 Research Gaps 

After reviewing existing literature, we have seen the following points. 

(i) Few papers [21–26] describe inventory models in fuzzy environment using 
fuzzy differential equation approach. 

(ii) Few papers [27–33] exist in the existing literature where intuitionistic fuzzy 
numbers are applied in a differential equation. 

(iii) Some recent studies [34–39] discussed inventory control problems in the 
intuitionistic fuzzy environment. 

But, to our knowledge, there is nothing in the existing literature describing the 
inventory control problem under the fuzzy differential equation approach. Table 30.1 
describes the research gaps in the existing literature and contribution of this chapter. 

1.3 Contribution 

To fill the gaps, the current chapter is going to explore the following novel ideas: 

(i) An EOQ model is considered in the intuitionistic fuzzy environment. Here, the 
intuitionistic fuzzy differential equation is incorporated in this current study to 
describe the fuzzy model. 

(ii) The optimal solutions obtained in terms of (α, β)-level are defuzzified by a new 
defuzzification approach. 

1.4 Orientation of the Manuscript 

The rest of this chapter is organized into the following sections: Sect. 2 describes 
shortly the preliminaries section regarding intuitionistic fuzzy numbers. Section 
3 stands for describing the notations and assumptions on which the model is 
constructed and developed. Section 4 describes the mathematical formulation of 
the proposed model and described it by intuitionistic fuzzy differential equations.
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Table 30.1 Comparison of contributions in recent literatures and present chapter 

Article details 

Uncertain 
differential 
equation 
approach 

Inventory 
(EOQ/EPQ) 

Uncertain 
environment Main contribution 

Das et al. [21] Fuzzy 
differential 
equation 

EOQ Fuzzy Solution of an EOQ model 
using fast and elitist 
multi-objective genetic 
algorithm (MOGA) and 
interactive fuzzy decision 
making 

Guchhait et al. 
[22] 

Fuzzy 
differential 
equation 

EPQ Fuzzy Solution of an EPQ model 
using interval compared 
genetic algorithm 

Mondal et al. 
[23] 

Fuzzy 
differential 
equation 

EPQ Fuzzy Solution of an EPQ model 
using modified graded 
mean integration value 
(MGMIV) and fuzzy 
preference ordering of 
interval (FPOI) 

Majumder et 
al. [24] 

Fuzzy 
differential 
equation 

EPQ Fuzzy Solution of an EPQ model 
using generalized 
Hukuhara derivative 
approach 

Mondal [25] Fuzzy 
differential 
equation 

EOQ Fuzzy Solution of an EOQ model 
using fuzzy differential 
and interval differential 
approach 

Debnath et al. 
[26] 

Fuzzy 
differential 
equation 

EOQ Fuzzy Solution of an EOQ model 
using generalized 
Hukuhara derivative 
approach. 

Lata and 
Kumar [27] 

Intuitionistic 
fuzzy 
differential 
equation 

– Intuitionistic 
fuzzy 

A novel approach is 
suggested for resolving 
these nth-order 
time-dependent 
intuitionistic fuzzy linear 
differential equations. 

Melliani and 
Chadli [28] 

Intuitionistic 
fuzzy 
differential 
equation 

– Intuitionistic 
fuzzy 

Solving partial differential 
equation in intuitionistic 
fuzzy phenomena 

Abbasbandy 
and 
Allahviranloo 
[29] 

Intuitionistic 
fuzzy 
differential 
equation 

– Intuitionistic 
fuzzy 

Numerical solution 
approach of intuitionistic 
fuzzy differential equation 
by Runge-Kutta method 

Melliani and 
Chadli [30] 

Intuitionistic 
fuzzy 
differential 
equation 

– Intuitionistic 
fuzzy 

Concept of solving initial 
valued differential 
equation in intuitionistic 
fuzzy phenomena 

(continued)
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Table 30.1 (continued) 

Article details 

Uncertain 
differential 
equation 
approach 

Inventory 
(EOQ/EPQ) 

Uncertain 
environment Main contribution 

Mondal and 
Roy [31] 

Intuitionistic 
fuzzy 
differential 
equation 

– Intuitionistic 
fuzzy 

Triangular intuitionistic 
fuzzy number as the initial 
value of a system of 
differential equations and 
its application 

Mondal and 
Roy [32] 

Intuitionistic 
fuzzy 
differential 
equation 

– Intuitionistic 
fuzzy 

The first-order 
homogeneous ordinary 
differential equation with a 
triangular fuzzy beginning 
value 

De and Sana 
[33] 

– EOQ Intuitionistic 
fuzzy 

The essay’s subject is the 
backorder EOQ (economic 
order quantity) model with 
the promotional index for 
fuzzy decision variables 

De and Sana 
[34] 

– EOQ Intuitionistic 
fuzzy 

Utilizing the score 
functions for the member 
and nonmembership 
functions, an intuitionistic 
fuzzy economic order 
quantity (EOQ) inventory 
model with the backlog is 
examined 

De et al. [35] – EOQ Intuitionistic 
fuzzy 

Consumers’ demand 
fluctuates with the selling 
price and promotional 
activity, and this chapter 
describes the EOQ crisp 
model with backlogged 
orders in an intuitionistic 
fuzzy scenario 

De and Sana 
[36] 

– EPQ Intuitionistic 
fuzzy 

The relevant linear 
programming problem 
(L.P.P.) with various 
constraints has been first 
presented in a crisp model. 
The cost function is then 
adjusted to account for 
three different fuzzy and 
intuitionistic fuzzy 
assumptions 

(continued)



30 An Application of Intuitionistic Fuzzy Differential Equation. . . 683

Table 30.1 (continued) 

Article details 

Uncertain 
differential 
equation 
approach 

Inventory 
(EOQ/EPQ) 

Uncertain 
environment Main contribution 

Das et al. [37] – EOQ Intuitionistic 
fuzzy 

The current study 
examines a backorder 
economic order quantity 
(EOQ) model for a natural 
leisure/closing time 
system. The overall 
scarcity period and the 
seasonal effect influence 
the demand rate 

This paper Intuitionistic 
fuzzy 
differential 
equation 

EOQ Intuitionistic 
fuzzy 

An EOQ model is 
considered in the 
intuitionistic fuzzy 
environment and it is 
solved using intuitionistic 
fuzzy differential equation 
approach 

Numerical illustration in different scenarios is presented in Sect. 5. Finally, the 
conclusion is given in Sect. 6. 

2 Literature Review 

The literature review was done based on the keywords, which can be categorized 
into following three subsections. 

2.1 Fuzzy Set Theory 

Zadeh [1] was the first to introduce the concept of fuzzy uncertainty, concentrating 
on the degree of exclusion and inclusion of a point in a given set. However, the 
degree of hesitation in terms of the membership and nonmembership functions 
was incorporated into the notion of intuitionistic fuzzy uncertainty by Atanassov 
[2, 3]. Several investigations have established many arithmetic operations of the 
intuitionistic fuzzy sets [4–6]. The uncertainty due to the intuitionistic fuzzy sense 
is improved and popularly used for decision-making in different domains of science 
and technology [7–13].
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2.2 Fuzzy Differential Equation Approach in Inventory Models 

The fuzzy differential equation is an essential tool for describing many dynamical 
models. In this context, Kandel and Byatt first introduced the term “fuzzy dif-
ferential equation” [14]. To construct the fuzzy differential equation, definitions 
of fuzzy derivatives were introduced [15]. Several investigations were carried out 
aiming at the analytical solution and proper interpretation of the first-order linear 
fuzzy differential equations [16–20]. When applied to inventory management issues, 
the inclusion of fuzzy demand rates results in FDE for the current state of the 
inventory level. Until recently, creating and using the fuzzy differential equation 
to solve the various fuzzy inventory models was challenging. The usage of two 
methods for solving an initial valued first-order FDE on a fuzzy EOQ model 
was discussed by Das et al. [21] using the fuzzy extension idea and the centroid 
formula for defuzzification. Guchhait et al. [22] used fuzzy differential equations 
and an interval-valued genetic algorithm approach to create a production inventory 
model with fuzzy demand and production rate in an imperfect manufacturing 
process. A production recycling model was developed and solved by Mondal et 
al. [23]. Majumber et al. [24] examined an application of the generalized Hukuhara 
derivative technique of FDE using an economic production quantity (EPQ) model 
with a partial trade credit policy in a fuzzy environment. Mondal [25] explained 
how to solve the fundamental inventory model using FDE and an IDE technique in 
an imprecise and interval environment. Using the extended Hukuhara derivative of 
FDE, Debnath et al. [26] proposed a sustainable fuzzy economic production quantity 
model with the demand expressed as a type-2 fuzzy number. 

2.3 Inventory Problems in Intuitionistic Fuzzy Environment 

In the current literature, intuitionistic fuzzy numbers have been used in a few articles 
[27–32] to solve differential equations. Recent research has examined inventory 
control issues in an intuitionistic and fuzzy environment. De and Sana [33] pub-
lished the Classical EOQ model for promotional effort-sensitive demand, which was 
seen as an intuitionistic fuzzy variable. De and Sana [34] devised the EOQ model 
with back ordering for marketing initiatives and selling price-sensitive demand 
using an intuitionistic fuzzy technique. For the EOQ model with time-sensitive 
backlogging, De et al. [35] recently created an intuitionistic fuzzy technique-based 
decision-making phenomenon. In an intuitionistic fuzzy environment, De and Sana 
[36] created an optimal global solution for the multiperiod production—inventory 
model with capacity restrictions for many producers. Das et al. [37] investigated a 
backorder EOQ model in a natural leisure/closing time system where the demand 
rate depends on the full scarcity length owing to the seasonal influence.
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3 Preliminaries 

Definition 2.1 [31, 32] An intuitionistic fuzzy set . Ã in the universe of discourse X 
is given by the triplet .Ã = {

< x,μ
Ã
(x), ν

Ã
(x) >: x ∈ X

}
, where . μ

Ã
, ν

Ã
: X →

[0, 1] are two functions such that .0 ≤ μ
Ã
(x) + ν

Ã
(x) ≤ 1. Here, .μ

Ã
(x) is called 

the membership function and .ν
Ã
(x) is called the nonmembership function. 

Definition 2.2 [31, 32] A triangular intuitionistic fuzzy number (TIFN) Ã =(
a1, a2, a3; a1

′, a2, a3
′) is given by the membership and nonmembership functions 

as the following: 

μ 
Ã (x)= 

⎧ 
⎪⎨ 

⎪⎩ 

x−a1 
a2−a1 

, where  a1 ≤ x ≤ a2 
a3−x 
a3−a2 

, where  a2 ≤ x ≤ a3 

0, otherwise  
and ν 

Ã (x) = 

⎧ 
⎪⎨ 

⎪⎩ 

a2−x 
a2−a1

′ , where  a1
′ ≤ x ≤ a2 

x−a2 
a3

′−a2 
, where  a2 ≤ x ≤ a3

′

1, otherwise  

Definition 2.3 [31, 32] The (α, β)-level of the fuzzy set Ã of X is given by A(α,β) ={
x : μ 

Ã (x) ≥ α ,  ν  
Ã (x) < β : x ∈ X, α, β ∈ [0, 1] , α  + β ≤ 1

}
. 

In parametric form the (α, β)-level of the fuzzy set Ã is given by 
A(α, β) = {[A1(α),A2(α)]; [A1

′
(β),A2

′
(β)]}, where 

dA1(α) 
dα > 0, dA2(α) 

dα < 0, A1(1) ≤ A2(1) and dA1
′(β) 

dβ < 0, dA2
′(β) 

dβ > 
0, A1

′(0) ≤ A2
′(0) for all α, β ∈ [0, 1], α + β ≤ 1. 

The (α, β)-level of the TIFN Ã =(
a1, a2, a3; a1

′, a2, a3
′)ix given byA(α, β) = {[A1(α),A2(α)]; [A1

′
(β),A2

′
(β)]}, where 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

A1 (α) = a1 + α (a2 − a1) 
A2 (α) = a3 − α (a3 − a2) 
A1

′ (β) = a2 − β
(
a2 − a1

′)

A2
′ (β) = a2 + β

(
a3

′ − a2
)

Definition 2.4 [31, 32] Let f be an intuitionistic fuzzy value function defined on R. 
Suppose the (α, β)-level of f be given by [f (t)](α, β) = {[f1(t, α), f2(t, α)]; [f1

′
(t, β), 

f2
′
(t, β)]} for all t ∈ R. Also let, f1(t, α), f2(t, α), f1

′
(t, β) and f2

′
(t, β) are differentiable 

functions. Then, 

(a) f is (i)-differentiable when df (t) 
dt =

{[
df1(t,α) 

dt , df2(t,α) 
dt

]
;
[

df1
′(t,β) 
dt , df2

′(t,β) 
dt

]}

(b) f is (ii)-differentiable when df (t) 
dt =

{[
df2(t,α) 

dt , df1(t,α) 
dt

]
;
[

df2
′(t,β) 
dt , df1

′(t,β) 
dt

]}
.
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4 Notations and Assumptions to Define Proposed EOQ 
Model 

To describe our proposed problem, we use the following notation with certain units 
and description: 

Notations Units Descriptions 

Crisp model 

h $/unit Holding cost per unit time 
oc $/unit Ordering cost per unit time 
D Units Demand rate per cycle 
T Year Total time cycle 
Q Units Lot size 
TAP $/Year Total average profit 
Decision variable for crisp model 

T 
Q 

Year 
Unit 

Total time cycle 
Lot size 

Objective function for crisp model 

TAP $/Year Total average profit 

For the fuzzy models, the above notations h, oc, D, Q,and TAP are replaced by 
.h̃, õc, D̃, . Q̃, and . ˜T AP , respectively. 

This chapter revisited the EOQ model given by Harris [38] in intuitionistic fuzzy 
environment. Harris [38]’s work contains the following assumptions. 

1. Demand is constant. 
2. No shortage is allowed. 
3. Replenishment rate is infinite, but size is finite. 
4. The horizon is finite. 
5. Lead time is zero. 

We assume that the demand, holding cost, and ordering cost to be uncertain in 
nature and given in terms of triangular intuitionistic fuzzy numbers. 

5 Formulation of Mathematical Model 

5.1 Crisp Model 

Initially, an inventory system starts with the maximum stock Q. The stock gradually 
decreases meeting up the demand of the customers and reaches to zero level 
completing the cycle length T. 

Then the classical EOQ model is governed by the differential equation
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⎧ 
⎨ 

⎩ 

dq(t) 
dt = −D, f or 0 ≤ t ≤ T 

where q(0) = Q 
and q(T ) = 0 

(30.1) 

Solving the Eq. (30.1), we get 

q(t) = D (T − t) , for 0 ≤ t ≤ T (30.2) 

And the lot size is given by 

Q = DT (30.3) 

Now, we calculate the costs. 

Holding Cost The holding cost per unit is h and it is constant. Then, the total 
holding cost (HC) for the whole cycle is given by 

HC  = h
∫ T 

0 
D (T − t) dt = 

hDT 2 

2 
(30.4) 

Ordering Cost One time ordering cost per cycle is oc and it is constant. 

Total Average Cost The total cost is .
(
oc + hDT 2

2

)
in the whole cycle. Therefore, 

total average cost (TAC) is given by 

T AC  = 
oc 
T 

+ 
hDT 

2 
(30.5) 

So, the optimization problem is 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

Min T AC  
T AC  = oc 

T + hDT 
2 

Q = DT 
Subject to T > 0 

(30.6) 

5.2 Intuitionistic Fuzzy Differential Equation Approach 

Let . Q̃ and . D̃ be the TIFNs given by .Q̃ = (
Q1,Q2,Q2;Q1

′,Q2,Q2
′) and . D̃ =(

d1, d2, d3; d1
′, d2, d3

′). 
Then the fuzzy differential equation is of the form
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⎧ 
⎪⎨ 

⎪⎩ 

dq̃(t) 
dt = −D̃, f or 0 ≤ t ≤ T 

where q̃(0) = Q̃ 
and q̃(T ) = 0̃ 

(30.7) 

The (α,β)-level of . D̃ is D(α, β) = {[D1(α),D2(α)]; [D1
′
(β),D2

′
(β)]}, 

where, 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

D1 (α) = d1 + α (d2 − d1) 
D2 (α) = d3 − α (d3 − d2) 
D1

′ (β) = d2 − β
(
d2 − d1

′)

D2
′ (β) = d2 + β

(
d3

′ − d2
)

(30.8) 

The (α, β)-level of . Q̃ is Q(α, β) = {[Q1(α),Q2(α)]; [Q1
′
(β),Q2

′
(β)]} 

where 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

Q1 (α) = Q1 + α (Q2 − Q1) 
Q2 (α) = Q3 − α (Q3 − Q2) 
Q1

′ (β) = Q2 − β
(
Q2 − Q1

′)

Q2
′ (β) = Q2 + β

(
Q3

′ − Q2
)

(30.9) 

Let, the on-hand inventory level .q̃(t) at any time t has the (α, β)-level repre-
sentation {[q1(t, α), q2(t, α)], [q1

′
(t, β), q2

′
(t, β)]}. Now, the following two cases are 

considered: 

Case-1 when .q̃(t) is (i)-differentiable 
Then, from (30.7), we get

{[
dq1 (t, α) 

dt 
, 
dq2 (t, α) 

dt

]
,

[
dq1

′ (t, β) 
dt 

, 
dq2

′ (t, β) 
dt

]}
= 

− {
[D1 (α) ,D2 (α)] ; [

D1
′ (β) ,D2

′ (β)
]}

This gives the following system of differential equations 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

dq1(t,α) 
dt = −D2 (α) 

dq2(t,α) 
dt = −D1 (α) 

dq1
′(t,β) 
dt = −D2

′ (β) 
dq2

′(t,β) 
dt = −D1

′ (β) 

(30.10) 

The initial and terminal values in the (α, β)-level representation provide the 
following conditions for the system (30.10):
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⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

q1 (0, α) = Q1 (α) 
q2 (0, α) = Q2 (α) 
q1

′ (0, β) = Q1
′ (β) 

q2
′ (0, β) = Q2

′ (β) 

(30.11) 

And 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

q1 (T ,  α) = 0 
q2 (T ,  α) = 0 
q1

′ (T ,  β) = 0 
q2

′ (T ,  β) = 0 

(30.12) 

Then, solving (30.10) and using conditions given by (30.11) and (30.12), 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

q1 (t, α) = D2 (α) (T − t) 
q2 (t, α) = D1 (α) (T − t) 
q1

′ (t, β) = D2
′ (β) (T − t) 

q2
′ (t, β) = D1

′ (β) (T − t) 

(30.13) 

Also, the (α, β)-level of the lot size . Q̃ in terms of demand is given by 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

Q1 (α) = D2 (α) T 
Q2 (α) = D1 (α) T 
Q1

′ (β) = D2
′ (β) T 

Q2
′ (β) = D1

′ (β) T 

(30.14) 

Now, we calculate the intuitionistic fuzzy costs. 

Holding Cost The intuitionistic fuzzy holding cost per unit is . ̃h and let, 
the (α, β)-level of the holding cost per unit quantity per unit time are 
given by {[h1(α), h2(α)]; [h1

′
(β), h2

′
(β)]}. Then, the (α, β)-level of the total 

holding cost .(H̃C) for the whole cycle is given by {[HC1(T, α),HC2(T, α)]; 
[HC1

′
(T, β),HC2

′
(T, β)]}, where 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

HC1 (T ,  α) = h1 (α)
∫ T 

0 D2 (α) (T − t) dt = h1(α)D2(α)T 2 

2 

HC2 (T ,  α) = h2 (α)
∫ T 

0 D1 (α) (T − t) dt = h2(α)D1(α)T 2 

2 

HC1
′ (T ,  β) = h1

′ (β)
∫ T 

0 D2
′ (β) (T − t) dt = h1

′(β)D2
′(β)T 2 

2 

HC2
′ (T ,  β) = h2

′ (β)
∫ T 

0 D1
′ (β) (T − t) dt = h2

′(β)D1
′(β)T 2 

2 

(30.15) 

Ordering Cost One-time intuitionistic fuzzy ordering cost per cycle is . õc and let 
the (α, β)-level of the ordering cost is given by{[c1(α), c2(α)]; [c1

′
(β), c2

′
(β)]}.
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Total Average Cost Then, the (α, β)-level of the total average cost (. ˜T AC) for  
the whole cycle is given by {[TAC1(T, α),TAC2(T, α)]; [TAC1

′
(T, β), TAC2

′
(T, β)]}, 

where 
⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

T AC1 (T ,  α) = c1(α) 
T + h1(α)D2(α)T 

2 
T AC2 (T ,  α) = c2(α) 

T + h2(α)D1(α)T 
2 

T AC1
′ (T ,  β) = c1

′(β) 
T + h1

′(β)D2
′(β)T 

2 

T AC2
′ (T ,  β) = c2

′(β) 
T + h2

′(β)D1
′(β)T 

2 

(30.16) 

Then, the optimization problem is given by 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

Maximize α 
Minimize β 

T AC(α,β) =
{
[T AC1 (α) , T  AC2 (α)] ; [

T AC1
′ (β) , T  AC2

′ (β)
]}

Subject to T AC1 (α) ≤ T AC2 (α) and T AC1
′ (β) ≤ T AC2

′ (β) and values are given by (30.16) 
Q(α,β) =

{
[Q1 (α) ,Q2 (α)] ; [

Q1
′ (β) , Q2

′ (β)
]}

and values are given by (30.14) 
0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and α + β ≤ 1 

T >  0 

Equivalently the optimization problem can be given by 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

Maximize (α − β) 
α >  β  

T AC(α,β) =
{
[T AC1 (α) , T  AC2 (α)] ; [

T AC1
′ (β) , T  AC2

′ (β)
]}

Subject to T AC1 (α) ≤ T AC2 (α) and T AC1
′ (β) ≤ T AC2

′ (β) and values are given by (30.16) 
Q(α,β) =

{
[Q1 (α) ,Q2 (α)] ; [

Q1
′ (β) , Q2

′ (β)
]}

and values are given by (30.14) 
0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and α + β ≤ 1 

T >  0 

Case-2 when .q̃(t) is (ii)-differentiable 
Then, from (30.7), we get

{[
dq2 (t, α) 

dt 
, 
dq1 (t, α) 

dt

]
,

[
dq2

′ (t, β) 
dt 

, 
dq1

′ (t, β) 
dt

]}

= − {
[D1 (α) ,D2 (α)] ; [

D1
′ (β) ,D2

′ (β)
]}

This gives the following system of differential equations 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

dq1(t,α) 
dt = −D1 (α) 

dq2(t,α) 
dt = −D2 (α) 

dq1
′(t,β) 
dt = −D1

′ (β) 
dq2

′(t,β) 
dt = −D2

′ (β) 

(30.17)
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Then, solving (30.17) and using conditions given by (30.11) and (30.12), 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

q1 (t, α) = D1 (α) (T − t) 
q2 (t, α) = D2 (α) (T − t) 
q1

′ (t, β) = D1
′ (β) (T − t) 

q2
′ (t, β) = D2

′ (β) (T − t) 

(30.18) 

Also, the (α, β)-level of the lot size . Q̃ in terms of demand is given by 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

Q1 (α) = D1 (α) T 
Q2 (α) = D2 (α) T 
Q1

′ (β) = D1
′ (β) T 

Q2
′ (β) = D2

′ (β) T 

(30.19) 

Now, we calculate the intuitionistic fuzzy costs. 

Holding Cost The intuitionistic fuzzy holding cost per unit is . ̃h and let 
the (α, β)-level of the holding cost per unit quantity per unit time be 
given by {[h1(α), h2(α)]; [h1

′
(β), h2

′
(β)]}. Then, the (α, β)-level of the total 

holding cost .(H̃C) for the whole cycle is given by {[HC1(T, α),HC2(T, α)]; 
[HC1

′
(T, β),HC2

′
(T, β)]}, where 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

HC1 (T ,  α) = h1 (α)
∫ T 

0 D1 (α) (T − t) dt = h1(α)D1(α)T 2 

2 

HC2 (T ,  α) = h2 (α)
∫ T 

0 D2 (α) (T − t) dt = h2(α)D2(α)T 2 

2 

HC1
′ (T ,  β) = h1

′ (β)
∫ T 

0 D1
′ (β) (T − t) dt = h1

′(β)D1
′(β)T 2 

2 

HC2
′ (T ,  β) = h2

′ (β)
∫ T 

0 D2
′ (β) (T − t) dt = h2

′(β)D2
′(β)T 2 

2 

(30.20) 

Ordering Cost One-time intuitionistic fuzzy ordering cost per cycle is . õc and let 
the (α, β)-level of the ordering cost be given by {[c1(α), c2(α)]; [c1

′
(β), c2

′
(β)]}. 

Total Average Cost Then, the (α, β)-level of the total average cost (. ˜T AC) for  
the whole cycle is given by {[TAC1(T, α),TAC2(T, α)]; [TAC1

′
(T, β), TAC2

′
(T, β)]}, 

where 
⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

T AC1 (T ,  α) = c1(α) 
T + h1(α)D1(α)T 

2 
T AC2 (T ,  α) = c2(α) 

T + h2(α)D2(α)T 
2 

T AC1
′ (T ,  β) = c1

′(β) 
T + h1

′(β)D1
′(β)T 

2 

T AC2
′ (T ,  β) = c2

′(β) 
T + h2

′(β)D2
′(β)T 

2 

(30.21) 

Then the optimization problem will be
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⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

Maximize (α − β) 
α >  β  

T AC(α,β) =
{
[T AC1 (α) , T  AC2 (α)] ; [

T AC1
′ (β) , T  AC2

′ (β)
]}

Subject to T AC1 (α) ≤ T AC2 (α) and T AC1
′ (β) ≤ T AC2

′ (β) and values are given by (30.19) 
Q(α,β) =

{
[Q1 (α) ,Q2 (α)] ; [

Q1
′ (β) , Q2

′ (β)
]}

and values are given by (30.21) 
0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and α + β ≤ 1 

T >  0 

5.3 Defuzzification of Total Average Cost and Lot Size 

The defuzzified value of TAC(α, β) is given by TACi → c=TACcrisp + (TACα − TACβ ), 

.T ACα =
∑m

i=1{T AC1(αi )+T AC2(αi )}
2m

and .T ACβ =
∑n

j=1 T AC1
′(βj )+T AC1

′(βj )
2n

, 
where i and j are not distinct. 

The defuzzified value of Q(α, β) is given by Qi → c = Qcrisp + (Qα − Qβ ), 

.Qα =
∑m

i=1{Q1(αi )+Q2(αi )}
2m

and .Qβ =
∑n

j=1 Q1
′(βj )+Q1

′(βj )
2n

, where i and j not are 
distinct. 

6 Numerical Illustration 

For numerical simulation, we used the hypothetical data. Then, the crisp and 
fuzzy models after defuzzification as described in Sect. 5.3 were optimized. We 
used LINGO 18.0 software for numerical solution. The machine was 64 bits. The 
following three subsections describe the numerical simulation in details. 

6.1 Crisp and Fuzzy Solutions 

(a) For crisp model, let oc = 550, h = 3, and D = 350. Then, the optimal values of 
the objective function and the decisions variables are given by 

TAC = 1500, T = 0.432, and Q = 151.19. 
(b) Let us consider the values of the fuzzy parameters as TIFNs: 

õc = (500, 550, 600; 490, 550, 610), h̃ = (2.5, 3, 3.5; 2.4, 3, 3.6) and D̃ = 
(300, 350, 400; 290, 350, 410). Then, the solutions of T, 

∼ 
Q, and ˜T AC  for the case 

of (i) and (ii)-differentiability are given in Tables 30.2 and 30.3, respectively. 
Following Table 30.2, the components of total average cost in the (α, β)-level 

against the total time cycle and the acceptance and rejection level are plotted three-
dimensionally and given in Figs. 30.1, 30.2, 30.3, and 30.4.
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Fig. 30.1 Inter-dependency among total average cost (lower), time cycle, and alpha for the case 
of (i)-differentiability 
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Fig. 30.2 Inter-dependency among total average cost (upper), time cycle, and alpha for the case 
of (i)-differentiability 

Following Table 30.3, the components of total average cost in the (α, β)- level 
against the total time cycle and the acceptance and rejection level are plotted three-
dimensionally and given in Figs. 30.5, 30.6, 30.7, and 30.8.
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Fig. 30.3 Inter-dependency among total average cost (lower), time cycle, and beta for the case of 
(i)-differentiability 

3 

2 

1 

0 

–1 

0.8 

0.6 
0.4 

0.2 
0.1 

0 

0.2 

0.3 

0.4 

BetaCycle time 

T
ot

al
 a

ve
ra

ge
 c

os
t (

U
pp

er
)

� 105 

Fig. 30.4 Inter-dependency among total average cost (Upper), time cycle, and beta for the case of 
(i)-differentiability 

6.2 Comparison Among Three Cases 

When (i)-differentiability is considered, then from Table 30.2, we get
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Fig. 30.5 Inter-dependency among total average cost (lower), time cycle, and alpha for the case 
of (ii)-differentiability 
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Fig. 30.6 Inter-dependency among total average cost (upper), time cycle, and alpha for the case 
of (ii)-differentiability 

TACα = 2442.02, TACβ = 2442.99, and Qα = 140.67(approx.) = Qβ 
Then, TACi → c = 1499.03 and Qi → c = 151.19 
Again, when (ii)-differentiability is considered, then from Table 30.3, we get 
TACα = 11565.84, TACβ = 11564.67, and Qα = 175.19(approx.) = Qβ 
Then, TACi → c = 1501.17 and Qi → c = 151.19



698 M. Rahaman et al.

3 

2 

1 

0 

–1 

0.8 
0.6 

0.4 
0.2 0.1 

0 

0.2 
0.3 

0.4 

BetaCycle Time 

T
ot

al
 a

ve
ra

ge
 c

os
t (

Lo
w

er
)

� 105 

Fig. 30.7 Inter-dependency among total average cost (lower), time cycle, and beta for the case of 
(ii)-differentiability 
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Fig. 30.8 Inter-dependency among total average cost (Upper), time cycle, and beta for the case of 
(ii)-differentiability 

The defuzzified optimal values of total average cost and lot size along with the 
crisp result are represented in Table 30.4. 

The lot size in the three different situations remains the same. But the total 
average cost varies less significantly. The comparison of the values of the total 
average cost is presented in Fig. 30.9.
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Table 30.4 Values of total average cost and lot size in different scenarios 

Scenario Lot size Total average cost 

Crisp 151.19 1500 
Intuitionistic fuzzy[(i)-differentiability] 151.19 1499.03 
Intuitionistic fuzzy[(ii)-differentiability] 151.19 1501.17 

Fig. 30.9 Comparison of crisp total average cost, defuzzified total average costs for the cases of 
(i) and (ii)-differentiability 

Though the variation of Total average cost in the three different considerations 
with the present data set is almost negligible, from the bar diagram given in Fig. 
30.9, our basic observation is the following: 

(i) The case regarding (i)-differentiability of q(t) gives the best result in the cost 
minimization objective. Even the result, in this case, is better than the crisp 
result. 

(ii) The case of (ii)-differentiability of q(t) is not suitable for this cost minimization 
perspective as it gives a worse result than the crisp result. 

6.3 Managerial Insights 

The choice between acceptance and rejection might present as a phenomenon that 
makes decisions. When utilizing an economic order quantity (EOQ) model to lower 
costs as much as possible, a manager may experience an acceptance-rejection 
dilemma. An EOQ model can therefore be taken into account in a fuzzy intuitionistic
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uncertain environment. In cases when the decision variables and parameters are 
of the imprecise intuitionistic fuzzy kind, it is better to describe the uncertain 
model using intuitionistic fuzzy calculus. This chapter suggests an approach to deal 
with the dilemma of acceptance-rejection associated with impreciseness for wise 
managerial decisions. This is the central executive insight of this chapter. 

7 Conclusion 

This chapter has attempted to describe an inventory control problem under the 
intuitionistic fuzzy differential equation approach. In such an initial study, we 
consider the classical EOQ model to analyze in a new direction. A defuzzification 
technique is also developed anew to compare with the crisp model. From the 
numerical analysis, it is perceived that the intuitionistic fuzzy environment with (i)-
differentiability of q(t)provides the best result in favor of the cost minimization goal 
among the three discussed approaches, while the intuitionistic fuzzy environment 
with (ii)-differentiability of q(t)shows the worst one. As per our knowledge, this will 
be a novel approach in the literature to discuss the inventory model in a fuzzy situ-
ation. In the end, we admit our limitations in discussing this chapter. We redefined 
the classical EOQ model in an intuitionistic fuzzy environment and discussed the 
model in an intuitionistic fuzzy differential equation approach. Though the proposed 
method is very new and logical, we discussed the classical EOQ model, which was 
a straightforward model and may not catch complex retailing scenarios properly. 
Further, we explained the model based on the hypothetical data. In the future, 
the intuitionistic fuzzy differential equation approach can be applied to discuss 
the more complicated and accurate marketing-retailing-based model. Instead of 
the theoretical data, the raw data collected from the real-world business field can 
validate the proposed approach in the upcoming days. 
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Chapter 31 
Solution of the Second-Order Linear 
Intuitionistic Fuzzy Difference Equation 
by Extension Principle Scheme 

Mostafijur Rahaman, Shariful Alam, Abdul Alamin, 
and Sankar Prasad Mondal 

1 Introduction 

The notion based on fuzzy numbers and fuzzy arithmetic was initially developed 
by Zadeh [1], Dubois, and Parade [2]. The theory of generalized fuzzy sets [1] is  
regarded as one of the intuitionistic fuzzy sets (IFS). Later, Atanassov created the 
notion of an intuitionistic fuzzy set and expanded the fuzzy set concept [3–5].We 
consider a second-order linear nonhomogeneous difference equation with its initial 
information as follows:

{
a0un+2 + a1un+1 + a2un = f (n)  

un=0 = u0, un=1 = u1 
(31.1) 

In Eq. (31.1), a0 �= 0, a1 and a2 are coefficients of the linear difference equation, 
and f (n) is the nonhomogeneous part of the above difference equation, which is 
a function of n alone. Equation (31.1) can be viewed as an intuitionistic fuzzy 
difference equation, taking one or more of the initial information u0 and u1 and 
the coefficients a0 �= 0, a1 and a2 as intuitionistic fuzzy number(s). The following 
subsections describe the motivation, objectives, research gaps, and contribution of 
this chapter. 
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1.1 Motivation and Objectives 

The discrete calculus and fuzzy decision-making methods used in the fuzzy 
difference equation investigate the computational framework’s theoretical under-
pinnings that depict the uncertainty inherent in the modeling and the underflowing 
discrete behavior. The nonlinear fuzzy difference equations with various beginning 
conditions and coefficients represented as fuzzy numbers allow for the identification 
of the model. The fuzzy difference equation efficiently establishes the mathematical 
correspondence of a discrete dynamical system with modeling-related parameter 
uncertainty. Numerous authors consider intuitionistic fuzzy numbers in various 
works and use them in multiple contexts. However, only a few scholars have solved 
the difference equations accompanied by intuitionistic fuzzy numbers or functions. 
But what mathematical tool will represent the phenomenon if a physical situation 
passes through a discrete dynamical system and has uncertainty with an acceptance-
rejection sense? We look for the best work on this topic based on this motive. 

1.2 Research Gaps 

An extensive literature survey based on the keywords of this chapter, which are 
summarized in the next section, reveals the lacuna in literature as follows: 

(i) The theory of fuzzy differential equations is not discussed too much compared 
to fuzzy difference equations. However, there are causes to develop the 
approach of fuzzy difference equation to describe the discrete dynamical 
system under uncertainty. 

(ii) Majority of the fuzzy difference equations are discussed in a general fuzzy 
environment. Few (e.g., Mondal et al. [6]) used intuitionistic fuzzy phenomena. 

(iii) Up to the authors’ knowledge, no such literature has discussed difference 
equations of order two in an intuitionistic fuzzy environment. 

1.3 Contribution 

The contributions of this present chapter can be summarized as follows: 

(i) The second-order difference equation is analyzed using an intuitionistic fuzzy 
frame. 

(ii) The problem is addressed extensively using the extension principal approach. 
(iii) An appropriate application and numerical examples are provided to illustrate 

the proposed theory.
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Table 31.1 Comparison of contributions in recent literatures and this chapter 

Article 
details 

System taken 
(discrete/ 
continuous) Linear/nonlinear Environment Main contribution 

Mondal and 
Roy [7] 

Continuous Linear Intuitionistic 
fuzzy 

Discussion of first-order linear 
homogenous differential equation 
in intuitionistic fuzzy 
environment 

Mondal and 
Roy [8] 

Continuous Linear Intuitionistic 
fuzzy 

Discussion of first-order linear 
nonhomogenous differential 
equation in intuitionistic fuzzy 
environment 

Mondal and 
Roy [9] 

Continuous Linear Intuitionistic 
fuzzy 

Solving the system of differential 
equations in intuitionistic fuzzy 
environment 

Mondal [10] Continuous Linear Interval 
valued 
intuitionistic 
fuzzy 

Discussion of first-order linear 
differential equation in interval 
valued intuitionistic fuzzy 
environment 

Alamin et al. 
[11] 

Discrete Linear General 
fuzzy 

The solution techniques of 
nonhomogeneous fuzzy linear 
difference equation in fuzzy 
environment 

Alamin et al. 
[12] 

Discrete Linear Neutrosophic The solution of the homogeneous 
difference equation with initial 
information, coefficient and both 
as neutrosophic numbers 

Rahaman et 
al. [13] 

Discrete Linear Gaussian 
fuzzy 

Properties of Gaussian fuzzy 
numbers and their applications to 
describe fuzzy difference 
equations 

Rahaman et 
al. [14] 

Discrete Linear Interval 
number 

Solution of linear difference 
equations in interval environment 

Mondal et al. 
[6] 

Discrete Linear Intuitionistic 
fuzzy 

Solution of linear difference 
equations in intuitionistic fuzzy 
environment 

This paper Discrete Quadratic Intuitionistic 
fuzzy 

Solution of second-order 
difference equations in 
intuitionistic fuzzy environment 

The contributions of the recent literature and this chapter are summarized in 
Table 31.1.
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1.4 Organization of This Chapter 

The rest of this chapter is divided into the following sections. Some suitable 
mathematical premises related to the proposed theory are presented in Sect. 3. The  
fundamental contribution of this chapter is detailed in Sect. 4, which introduces the 
notion of an intuitionistic fuzzy difference equation. The numerical examples in 
Sect. 5 clarify the theory. Section 6 suggests a suitable application. Final remarks 
are provided in Sect. 7. 

2 Literature Review 

This section consists of three subsections related to the keywords as follows: 

2.1 Intuitionistic Fuzzy Number and Its Application 

The fuzzy set merely takes into account the level of belongingness and nonbelong-
ingness. The degree of hesitation is not taken into account by fuzzy set theory. 
Atanassov [4] examined the idea of fuzzy set theory through intuitionistic fuzzy 
set (IFS) theory to deal with such circumstances. Only the degree of acceptance 
in fuzzy sets is relevant; otherwise, IFS is defined by a membership function and 
a nonmembership function, the sum of which is smaller than one [5]. More IFS 
theory developments, like intuitionistic fuzzy generalized nets, intuitionistic fuzzy 
logic, intuitionistic fuzzy topology, and an intuitionistic fuzzy approach to artificial 
intelligence, may all be found in [15]. IFSs have numerous valuable applications 
in a variety of fields, including pattern classification [16], clinical issues [17], and 
drug screening [18]. As a result, they are an essential and effective tool for modeling 
imprecision. 

2.2 Fuzzy Differential Equation in Intuitionistic Environment 

Interest in fuzzy differential equations (FDEs) has exploded recently. The first-
order system is the most significant among all fuzzy differential equations. Only 
a few studies use intuitionistic fuzzy numbers for differential equations. Melliani 
and Chadli [19] described fuzzy differential equation of first order in intuitionistic 
fuzzy environment. They also discussed partial differential equation in the same 
environment [20]. In this environment, the fuzzy differential equations of first-order, 
homogenous and nonhomogenous types were discussed in a series of research works 
by Mondal and Roy [7–10, 21, 22].
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2.3 Fuzzy Difference Equation 

The discrete calculus and fuzzy decision-making methods used in the fuzzy differ-
ence equation, respectively, investigate the computational framework’s theoretical 
underpinnings that depict the uncertainty inherent in the modeling and the under-
flowing discrete behavior. The nonlinear fuzzy difference equations with various 
beginning conditions and coefficients represented as fuzzy numbers allow for the 
identification of the model. The fuzzy difference equation efficiently establishes 
the mathematical correspondence of a discrete dynamical system with modeling-
related parameter uncertainty. Deeba et al. [23, 24] accounted for the initial ideas of 
fuzzy difference equations and potential applications. Lakshmikantham and Vatsala 
[25] also investigated the foundational theory of fuzzy difference equations. Many 
academics [11–14, 26–28] followed in their footsteps and examined many kinds of 
fuzzy difference equations from their unique points of view. 

3 Preliminaries 

Definition 3.1 [3] A triangular intuitionistic fuzzy number .Ãi
T IFN is defined as an 

ordered triplet .
(
x, μ

Ãi (x), ϑ
Ãi (x)

)
, where x belongs to some universal set X and the 

membership function .μ
Ãi (x) and nonmembership function .ϑ

Ãi (x) of x in the set A 
satisfies the relation .0 ≤ μ

Ãi (x)+ϑ
Ãi (x) ≤ 1 where .μ

Ãi (x) and .ϑ
Ãi (x) are defined 

as 

μ 
Ãi (x) = 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

x − a1 

a2 − a1 
f or  a1 ≤ x ≤ a2 

a3 − x 
a3 − a2 

f or  a2 ≤ x ≤ a3 

0 otherwise 

and ϑ 
Ãi (x) = 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

a2 − x 
a2 − a1

′ f or  a1
′ ≤ x ≤ a2 

x − a2 

a3
′ − a2 

f or  a2 ≤ x ≤ a3
′

1 otherwise. 

Here, a1
′ ≤ a1 ≤ a2 ≤ a3 ≤ a3

′
and TIFN are denoted by . Ãi

T IFN =(
a1, a2, a3; a1

′, a2, a3
′)

Definition 3.2 [3] Let the real valued intuitionistic fuzzy number is denoted by the 
set F1 =

{〈ζ, η〉 | R → [0, 1]2, ∀x ∈ R; 0 ≤ ζ(x) + η(x) ≤ 1
}
. An element 〈ζ , η〉

in F1 to be an intuitionistic fuzzy number if the following conditions are maintained
〈ζ , η〉 is normal, that is, for some t0 and t1 ∈ R, ζ (t0) = 1 and η(t1) = 1.
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(i) The membership functions of ζ and η are fuzzy convex and fuzzy concave 
respectively. 

(ii) ζ is a lower semicontinuous and η is a n upper semicontinuous function. 
(iii) Supp〈ζ , η〉 is bounded. 

Definition 3.3 [3, 29] If α, β ∈ [0, 1] and α + β = 1, the parametric form of 
the α, β- cut of the intuitionistic fuzzy number 〈ζ , η〉 is of the form 〈ζ, η〉(α,β) =[
ζ 1 
L (α) , ζ 1 

R (α) ; η2 
L (β) , η2 

R (β)
]

where
[
ζ 1 
L (α) , ζ 1 

R (α)
]

and
[
η2 

L (β) , η2 
R (β)

]
are 

the parametric form of the α-cut of ζ and β-cut of η, respectively. 

Definition 3.4 Zadeh’s extension principle [30]: Let U be a crisp set and Ã be a 
fuzzy set in U. f : U → V be a function defined by v = f (u) then the extension 

principle introduces a fuzzy set 
∼ 
B in V as 

∼ 
B =

{(
v, μ∼ 

B 
(v)|v = f (u),  u  ∈ U

)

where μ∼ 
B 
(v) =

{
u∈f −1(v) 

sup
(
μ 

Ã (u)
)
, iff  f  −1(v) �= φ 

0 otherwise 

Example 3.1 Let Af be a fuzzy set given by the membership function as follows: 

μAf (x) = 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

0 if x ≤ 3 
x − 3 if 3 ≤ x <  4 

1 if x = 4 
6 − x 

2 
if 4 < x  ≤ 6 

0 if x ≥ 6 

Let us choose a function F(x) = 2x + 3. Using the concept of Zadeh’s extension 
principle, another fuzzy set F(Af ) can be determined. The membership function of 
F(Af ) is obtained as follows: 

μF(Af )(y) = 

⎧⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

0 if x ≤ 9 
y − 9 

2 
if 9 ≤ y <  11 

1 if y = 11 
15 − y 

4 
if 11 < y  ≤ 15 

0 if y ≥ 15 

Definition 3.5 Extension principle on Intuitionistic fuzzy sets [31]: Let us take some 
usual set RR and let us choose some fuzzy set Aif ∈ IFS(XR).The extension principle 
for fuzzy sets states that if G(Aif ) ∈ FS(YR) such that y ∈ YR, 

μG(Aif )(y) =
{

sup
{
μAif (x) : x ∈ G−1(y)

}
, if  y  ∈ Range(G) 

0, if  y  /∈ Range(G)
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ϑG(Aif )(y) =
{

inf
{
ϑAif (x) : x ∈ G−1(y)

}
, if  y  ∈ Range(G) 

1, otherwise  

And for every Bif ∈ IFS(YR), G−1(Bif ) is defined in the following way 

μG−1(Bif )(x) = μBif (G(x)) 

ϑG−1(Bif )(x) = ϑBif (G(x)) , for every x ∈ XR. 

Example 3.2 Let Aif be an Intuitionistic fuzzy set whose membership and non-
membership functions are given as follows: 

μAif (x) = 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

0 if x ≤ 0 
x if  0 ≤ x <  1 

1 if x = 2 
4−x 

2 if 2 < x  ≤ 4 
0 if x ≥ 4 

ϑAif (x) = 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

1 if x ≤ −1 
2−x 

3 if − 1 < x  ≤ 2 
0 if x = 2 

x−2 
3 if 2 ≤ x <  5 

1 if x ≥ 5 

Let us choose a function G(x) = x + 5. Using the concept of Zadeh’s extension 
principle, another fuzzy set G(Aif ) can be determined. The membership and 
nonmembership functions of G(Aif ) are obtained as follows: 

μG(Aif )(y) = 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

0 if y ≤ 5 
y − 5 if 5 ≤ y <  6 

1 ify = 7 
9−y 

2 if 7 < y  ≤ 9 
0 if y ≥ 9 

ϑG(Aif )(y) = 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

1 if y ≤ 4 
7−y 

3 if 4 < x  ≤ 7 
0 if y = 7 

y−7 
3 if 7 < y  ≤ 10 

1 if y ≥ 10
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Theorem 3.1 Let F : Rm → Rn is continuous function. Then, the Zadeh’s extension 

function 
∼ 
F : (

Rf

)m − (
Rf

)n is well defined, continuous and

[∼ 
F(u)

]
α 

= 

F
([∼

u
]
α

)
,∀α ∈ [0, 1]. 

Note 3.1 The above theorem is also valid for F : U → Rn, where U is an open 
subset in Rn. 

4 Second-Order Linear Difference Equation in Intuitionistic 
Fuzzy Environment 

Consider the second-order linear nonhomogeneous crisp difference equation as

{
a0un+2 + a1un+1 + a2un = f (n)  

un=0 = u0, un=1 = u1 
(31.2) 

With the initial condition un = 0 = u0 and un = 1 = u1 
where a0 �= 0, a1 and a2 are the coefficient of the linear difference Eq. (31.2) 

and f (n) is the nonhomogeneous part of the above difference equation, which is 
either constant or function of n alone. In the case of linear difference equation, the 
coefficients are independent of un. The solution of Eq. (31.2) includes two parts: 
one is complementary and other is particular solution. 

The upstairs Eq. (31.2) is called intuitionistic fuzzy difference equation if: 

(i) The initial information is of intuitionistic fuzzy valued number. 
(ii) The coefficient or coefficients are intuitionistic fuzzy valued number. 

(iii) The initial information and coefficient or coefficients are intuitionistic fuzzy 
valued numbers. 

5 Extension Principle on Intuitionistic Fuzzy Second-Order 
Difference Equation 

Consider a second-order homogeneous difference equation 

a0un+2 + a1un+1 + a2un = 0 (31.3) 

With the fuzzy intuitionistic initial conditions .un=0 = ũ0 and .un=1 = ũ1 whereas 
a0 �= 0, a1 and a2 are the coefficient of the linear homogeneous difference 

equation.
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The auxiliary equation of the difference Eq. (31.3) is  

a0m
2 + a1m + a2 = 0 (31.4) 

Let the intuitionistic(α, β)-cut of the initial conditions .un=0 = ũ0 and . un=1 = ũ1
are 

⎧⎨ 

⎩
[
ũ0

]
(α,β) =

[
u1 

L,0 (α) , u1 
R,0 (α) ; u2 

L,0 (β) , u2 
R,0 (β)

]
[
ũ1

]
(α,β) =

[
u1 

L,1 (α) , u1 
R,1 (α) ; u2 

L,1 (β) , u2 
R,1 (β)

] (31.5) 

Now, depending on the roots of the auxiliary Eq. (31.4), the following cases arise. 

Case I The roots m1 and m2 are real and distinct. 
Suppose m1 and m2 are two real roots of the auxiliary Eq. (31.4) with m1 �= m2. 

The general solution of (31.2) in crisp sense is 

un = k1(m1)
n + k2(m2)

n + G(n) (31.6) 

Here m1,2 = 
−a1±

√
a2 

1−4a0a2 

2a0 
In Eq. (31.6), G(n) is the particular solution of Eq. (31.2). 
Using the initial conditions, un = 0 = u0 and un = 1 = u1, we have  

un = 
u0m2 − u1 

m2 − m1 
(m1)

n + 
u0m1 − u1 

m1 − m2 
(m2)

n + ∅(n) (31.7) 

In Eq. (31.7), ∅(n) is given as follows:  

∅(n) =
(

G(1) − m2G(0) 
m2 − m1

)
(m1)

n +
(

m1G(0) − G(1) 
m2 − m1

)
(m2)

n + G(n) 

(31.8) 

Now the sequence of intuitionistic fuzzy solution . ̃ui
n is obtained by substituting 

the intuitionistic fuzzy initial conditions (31.5) in place of u0 and u1 respectively in 
Eq. (31.6). 

Let, . ̃uie
n be the sequence of intuitionistic fuzzy solutions obtained from Eq. (31.6) 

after applying Zadeh’s extension principle and setting the values of coefficients 
(m1)n and (m2)n as f1(u0, u1) and f2(u0, u1) respectively. Then, the(α, β)-cut of . ̃u

ie
n is 

given by

[
ũie 

n

]
(α,β) 

=
[
u ie1 

L,n (α) , u  ie1 
R,n (α) ; u ie2 

L,n (β) , u  ie2 
R,n (β)

]
. 

The components of the (α, β)-cut of . ̃uie
n are obtained as
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⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

u 
ie1 
L,n(α)=min{f1(u0,u1)(m1)

n+f2(u0,u1)(m2)
n:u0ε [ũ0]α, u1ε [ũ1]α,α ε[0,1]}+∅(n) 

u 
ie1 
R,n(α)=max{f1(u0,u1)(m1)

n+f2(u0,u1)(m2)
n:u0ε [ũ0]α, u1ε [ũ1]α,α ε[0,1]}+∅(n) 

u 
ie2 
L,n(β)=min

{
f1(u0,u1)(m1)

n+f2(u0,u1)(m2)
n:u0ε [ũ0]β , u1ε [ũ1]β ,β ε[0,1]

}
+∅(n) 

u 
ie2 
R,n(β)=max

{
f1(u0,u1)(m1)

n+f2(u0,u1)(m2)
n:u0ε [ũ0]β , u1ε [ũ1]β ,β ε[0,1]

}
+∅(n) 

(31.9) 

The function ∅(n) is obtained from Eq. (31.8). 

After computing .u
ie1
L,n (α) , u

ie1
R,n (α) ; u

ie2
L,n (β) and .u

ie2
R,n (β); . uie

n be the solution 
of Eq. (31.2),if all the α-components and β-components satisfy intutionistic the 
difference Eq. (31.2) and the corresponding initial conditions. 

The following condition is required for . uie
n to solve the difference equation, it is 

easy to see . uie
n satisfy the initial condition, so we only need to consider n ≥ 2. 

For each α ∈ [0, 1] and β ∈ [0, 1], there exists u01 and .u02 ∈ [
ũ0

]
α

; .u∗
01 and 

.u∗
02 ∈ [

ũ0
]
β

; u11, .u12 ∈ [
ũ1

]
α

; .u∗
11 and .u∗

12 ∈ [
ũ1

]
β
, then

{
u ie1 

L,n (α) = f1 (u01, u11) (m1)
n + f2 (u01, u11) (m2)

n + ∅(n) 
u ie2 

L,n (β) = f1
(
u∗

01, u
∗
11

)
(m1)

n + f2
(
u∗

01, u
∗
11

)
(m2)

n + ∅(n) 
(31.10) 

And for all n ≥ 2
{

u ie1 
R,n (α) = f1 (u02, u12) (m1)

n + f2 (u02, u12) (m2)
n + ∅(n) 

u ie2 
R,n (β) = f1

(
u∗

02, u
∗
12

)
(m1)

n + f2
(
u∗

02, u
∗
12

)
(m2)

n + ∅(n) 
(31.11) 

To check the increasing and decreasing nature of the solution un from Eq. (31.6) 
we have

{
∂un 
∂u0 

= h1(n) = m2(m1)
n−m1(m2)

n 

m2−m1 
∂un 
∂u1 

= h2(n) = (m2)
n−(m1)

n 

m2−m1 

(31.12) 

Case II The roots m1 and m2 are real and equal 
Suppose, m1 = m2 = m are two real roots of the auxiliary Eq. (31.4). The general 

solution of the Eq. (31.2) is of the form  

un = k1m
n + k2n(m)n + G(n) (31.13) 

. m = −a1

2ao

.

Using the initial condition, the unique solution is obtained as 

un = u0m
n + 

u1 − u0m 
m 

nmn + ϕ(n) (31.14)
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ϕ(n) = −G(0)mn + 
mG(0) − G(1) 

m 
nmn + G(n) (31.15) 

To check the increasing and decreasing nature of the solution un, we calculate 
the following

{
∂un 
∂u0 

= (1 − n) mn 

∂un 
∂u1 

= nmn−1 (31.16) 

Case III The roots m1 and m2 are complex conjugate 
Let two complex conjugate roots are given by m1 = α − iβ, m2 = α + iβ; α, β, 

α = −a1 
2a0 

, β  =
√

4a0a2−a2 
1 

2a0 
are real with β > 0. Then the general solution of the Eq. 

(31.2) is  

un = pn (k1 cos (nθ) + k2 sin (nθ)) + G(n) (31.17) 

In Eq. (31.17), values of p and θ are obtained as

{
p = √

α2 + β2 

θ = tan−1
(
β
/

α

) (31.18) 

Using the initial conditions, we find the unique solution as 

un = pn

(
u0 cos (nθ) + 

u1 − pu0 cos θ 
sin θ 

sin (nθ)

)
+ χ(n) (31.19) 

In Eq. (31.19), χ (n) is obtained as 

χ(n)  = pn

(
−G(0) cos (nθ) + 

pG(0) cos θ − G(1) 
sin θ 

sin (nθ)

)
+ G(n) 

(31.20) 

6 Numerical Illustration 

Example 6.1 Consider the second-order difference equation yn + 2 + yn + 1 
− 6yn = 0 with initial intuitionistic conditions y0 = (2, 3, 4; 1, 3, 5),  y1 = (15, 17, 
19; 14, 17, 20). 

Solution: First we solve the difference equation yn + 2 + yn + 1 − 6yn = 0, 

yn = c1(−3)n + c2(2)n (31.21)



714 M. Rahaman et al.

Using the initial conditions in terms of y0 and y1, the solution of the difference 
equation takes the form 

yn =
(

2y0 − y1 

5

)
(−3)n +

(
3y0 + y1 

5

)
(2)n (31.22) 

We check the increasing and decreasing nature of the Eq. (31.22)

{
∂yn 
∂y0 

= 2 
5 (−3)n + 3 

5 (2)n = g1(n) 
∂yn 
∂y1 

= − 1 
5 (−3)n + 1 

5 (2)n = g2(n) 
(31.23) 

The(α, β)-cuts of the intuitionistic fuzzy initial conditions y0 and y1 are

[
ỹ0

]
(α,β) = [2 + α, 4 − α; 3 − 2β, 3 + 2β] ,

[
ỹ1

]
(α,β) = [15 + 2α, 19 − 2α; 17 − 3β, 17 + 3β] 

Using the initial conditions, we find the general intuitionistic fuzzy solution y ie 
n of 

the second-order intuitionistic fuzzy difference equation, given by example 6.1 and 
it’s α, β-cuts are as follows: 

Case I n εN is an even number 
When εN, an even number as a power of the auxiliary roots of the difference 

equation in example 6.1, then the α, β-cuts of the intuitionistic fuzzy solution y ie 
n 

are given by 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

y ie1 
L,n (α) =

(−15+4α 
5

)
(−3)n +

(
5α+21 

5

)
(2)n 

y ie1 
R,n (α) =

(−7−4α 
5

)
(−3)n +

(
31−5α 

5

)
(2)n 

y ie2 
L,n (β) =

(−11−7β 
5

)
(−3)n +

(
26−9β 

5

)
(2)n 

y ie2 
R,n (β) =

(−11+7β 
5

)
(−3)n +

(
26+9β 

5

)
(2)n 

(31.24) 

The subfigures in Fig. 31.1 describe the Case I of the Example 6.1 in different 
situations. 

Case II n εN is an odd number 
When n ε N, an odd number as a power of the auxiliary roots of the difference 

equation in example 6.1, then the α, β-cuts of the intuitionistic fuzzy solution y ie 
n 

are given by
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Fig. 31.1 Solution of the second-order difference equation yn + 2 + yn + 1 − 6yn = 0 with initial 
intuitionistic conditions y0 = (2, 3, 4; 1, 3, 5),  y1 = (15, 17, 19; 14, 17, 20) for n as even numbers. 
In Fig. 31.1., subfigures (a), (b), (c), and (d) represent solutions in terms of intuitionistic fuzzy 
numbers for n = 0, 2, 4, 6 respectively. The red and blue colors represent the membership and 
nonmembership functions respectively in all the subfigures 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

y ie1 
L,n (α) =

(−7−4α 
5

)
(−3)n +

(
5α+21 

5

)
(2)n 

y ie1 
R,n (α) =

(−15+4α 
5

)
(−3)n +

(
31−5α 

5

)
(2)n 

y ie2 
L,n (β) =

(−11+7β 
5

)
(−3)n +

(
26−9β 

5

)
(2)n 

y ie2 
R,n (β) =

(−11−7β 
5

)
(−3)n +

(
26+9β 

5

)
(2)n 

(31.25) 

The subfigures in Fig. 31.2 describe the Case II of the Example 6.1 in different 
situations. 

Example 6.2 Consider the second-order difference equation yn + 2 − 16yn + 1 
+ 64yn = 0 with initial intuitionistic conditions, y0 = (4, 5, 6; 3, 5, 7)  and  
y1 = (9, 10, 11; 8, 10, 12). 

Solution First we solve the difference equation of the example 6.2, we have  

yn = (c1 + nc2) 8n (31.26) 

where c1 and c2 are arbitrary constants to be obtained from Eq. (31.26) using the  
initial conditions specified in the example. Therefore,
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Fig. 31.2 Solution of the second-order difference equation yn + 2 + yn + 1 − 6yn = 0 with initial 
intuitionistic conditions y0 = (2, 3, 4; 1, 3, 5),  y1 = (15, 17, 19; 14, 17, 20) for n as odd numbers. 
In Fig.31.2., subfigures (a), (b), (c), and (d) represent solutions in terms of intuitionistic fuzzy 
numbers for n = 1, 3, 5, 7 respectively. The red and blue colors represent the membership and 
nonmembership functions respectively in all the subfigures 

yn = {ny1 − 8 (n − 1) y0} (8)n−1 (31.27) 

We check the increasing and decreasing properties of the solution yn in Eq. 
(31.27),

{
∂yn 
∂y0 

= (8)n − n(8)n = g1(n) 
∂yn 
∂y1 

= n(8)n−1 = g2(n) 
(31.28) 

By extension principle 
Using initial condition, we find the general solution y ie 

n of second-order intuition-
istic fuzzy difference equation as its α, β-cuts are given by 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

y ie1 
L,n (α) = {n (9 + α) − 8 (n − 1) (6 − α)} (8)n−1 

y ie1 
R,n (α) = {n (11 − α) − 8 (n − 1) (4 + α)} (8)n−1 

y ie2 
L,n (β) = {n (10 − 2β) − 8 (n − 1) (5 + 2β)} (8)n−1 

y ie2 
R,n (β) = {n (10 + 2β) − 8 (n − 1) (5 − 2β)} (8)n−1 

(31.29)
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Example 6.3 Let us consider second-order difference equation yn + 2 + 16yn = 0 
with initial intuitionistic condition y0 = (1.5, 3, 4.5; 1, 3, 5),  y1 = (12, 13, 14; 
11, 13, 15) 

Solution: The α, β-cut of the initial condition
[
ỹ0

]
(α,β) = [1.5 + 1.5α, 4.5 − 1.5α; 

3 − 2β, 3 + 2β]

[
ỹ1

]
(α,β) = [12 + α, 14 − α; 13 − 2β, 13 + 2β] 

Using initial conditions, we find the general solution of second-order intuitionis-
tic fuzzy difference equation as its α, β-cut: 

(a) when n = 4k, k ∈ Z+ 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

y ie1 
L,n (α) = (4)4k (1.5 + 1.5α) 

y ie1 
R,n (α) = (4)4k (4.5 − 1.5α) 
y ie2 
L,n (β) = (4)4k (3 − 2β) 

y ie2 
R,n (β) = (4)4k (3 + 2β) 

(31.30) 

(b) when n = 4k + 1, k ∈ Z+ 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

y ie1 
L,n (α) = (4)4k+1 (12 + α) 

y ie1 
R,n (α) = (4)4k+1 (14 − α) 

y ie2 
L,n (β) = (4)4k+1 (13 − 2β) 

y ie2 
R,n (β) = (4)4k+1 (13 + 2β) 

(31.31) 

(c) when n = 4k + 2, k ∈ Z+ 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

y ie1 
L,n (α) = (4)4k+2 (1.5α − 4.5) 

y ie1 
R,n (α) = (4)4k+2 (−1.5α − 1.5) 
y ie2 
L,n (β) = (4)4k+2 (−3 − 2β) 

y ie2 
R,n (β) = (4)4k+2 (−3 + 2β) 

(31.32) 

(d) when n = 4k + 3, k ∈ Z+ 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

y ie1 
L,n (α) = (4)4k+3 (α − 14) 

y ie1 
R,n (α) = (4)4k+3 (−α − 12) 

y ie2 
L,n (β) = (4)4k+3 (−13 − 2β) 

y ie2 
R,n (β) = (4)4k+3 (−13 + 2β) 

(31.33)
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Fig. 31.3 Solution of the second-order difference equation yn + 2 + 16yn = 0 with initial intu-
itionistic conditions y0 = (1.5, 3, 4.5; 1, 3, 5), y1 = (12, 13, 14; 11, 13, 15). In Fig. 31.3, subfigures 
(a), (b), (c), and (d) represent solutions in terms of intuitionistic fuzzy numbers for n = 0, 1, 2, 
3 respectively. The red and blue colors represent the membership and nonmembership functions 
respectively in all the subfigures 

The subfigures in Fig. 31.3 describe all the cases of the Example 6.3 in different 
situations. 

Example 6.4 Consider the second-order difference equation yn + 2 − 5yn + 1 + 6yn 
= 4n with initial intuitionistic condition, y0 = (1.5, 2, 2.5; 1, 2, 3),  y1 = (4.5, 5, 
5.5; 4, 5, 6) 

Solution First we solve the difference equation of example (31.23) 

yn = c1(2)n + c2(3)n + 2n + 3 (31.34) 

Using the values of initial conditions in Eq. (31.34), we obtain the values of 
arbitrary constants c1 and c2 in terms of y0 and y1. Then the Eq. (31.34) reduces to 
the form 

yn = (3y0 − y1 − 4) (2)n + (y1 − 2y0 + 1) (3)n + 2n + 3 (31.35) 

The α, β-cut of the initial condition
[
ỹ0

]
(α,β) = [1.5 + 0.5α, 2.5 − 0.5α; 2 − β, 2 + β]

[
ỹ1

]
(α,β) = [4.5 + 0.5α, 5.5 − 0.5α; 5 − β, 5 + β]
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Fig. 31.4 Solution of the second-order difference equation yn + 2 − 5yn + 1 + 6yn = 4n with initial 
intuitionistic conditions y0 = (1.5, 2, 2.5; 1, 2, 3), y1 = (4.5, 5, 5.5; 4, 5, 6). In Fig. 31.4, subfigures 
(a), (b), (c), and (d) represent solutions in terms of intuitionistic fuzzy numbers for n = 0, 1, 2, 
3 respectively. The red and blue colors represent the membership and nonmembership functions 
respectively in all the subfigures 

Using initial conditions, we find the general solution of second-order intuitionis-
tic fuzzy difference equation of example 6.3 as its α, β-cut is given by 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

y ie1 
L,n (α) = (−5 + 2α) (2)n + (0.5 + 1.5α) (3)n + 2n + 3 

y ie1 
R,n (α) = (−1 − 2α) (2)n + (3.5 − 1.5α) (3)n + 2n + 3 

y ie2 
L,n (β) = (−3 − 4β) (2)n + (2 − 3β) (3)n + 2n + 3 

y ie2 
R,n (β) = (−3 + 4β) (2)n + (2 + 3β) (2)n + 2n + 3 

The subfigures in Fig. 31.4 describe all the cases of the Example 6.4 in different 
situations. 

7 Application 

Considering an experiment in which the pressure of gas in a cylinder is measured in 
each second and the pressure (in standard units) in n seconds is denoted by pn. The  
measurements satisfy the difference equation
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pn+2 = 
1 

2 
(pn+1 + pn) (31.36) 

with the initial intuitionistic condition are p0= (7, 8, 9; 6, 8, 10; ), p1= (12, 13, 14; 11, 
13, 15)(n ≥ 0). Find an explicit formula for pn in terms of n, and state the value to 
which the pressure settles down in the long term. 

Solution The general solution of the difference Eq. (31.36) in this application is as 
follows: 

pn = c1 + c2

(
−1 

2

)n 
(31.37) 

Using the initial conditions in terms of p0 and p1, the solution of the difference 
Eq. (31.36) takes the form 

pn = 
1 

3 
(p0 + 2p1) + 

2 

3 
(p0 − p1)

(−1 

2

)n 
(31.38) 

We check the increasing and decreasing of pn in Eq. (31.38), 

⎧⎨ 

⎩ 

∂pn 
∂p0 

= 1 
3 + 2 

3

(
− 1 

2

)n = g1(n) 
∂pn 
∂p1 

= 2 
3 − 2 

3

(
− 1 

2

)n = g2(n) 
(31.39) 

The intuitionistic fuzzy initial conditions are

[
p̃0

]
(α,β) = [7 + α, 9 − α; 8 − 2β, 8 + 2β] (31.40) 

and

[
p̃1

]
(α,β) = [12 + α, 14 − α; 13 − 2β, 13 + 2β] (31.41) 

By extension principle, using the intuitionistic α, β-cut of the initial conditions, 
we find the general intuitionistic solution .pie

n of second-order intuitionistic fuzzy 
difference equation .pn+2 = 1

2 (pn+1 + pn) as its α, β-cut is given by the following 
cases: 

Case I when n εN is an even number 
When nεN, an even number as a power of the auxiliary roots of the difference 

equation in this application, then the α, β-cuts of the intuitionistic fuzzy solution 
.p

ie
n are given by
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Fig. 31.5 Pressure of gas in a cylinder with initial pressure as intuitionistic conditions 
p0 = (7, 8, 9; 6, 8, 10; ),  p1 = (12, 13, 14; 11, 13, 15). In Fig. 31.5, subfigures (a), (b), (c), and (d) 
represent solutions in terms of intuitionistic fuzzy numbers for n = 0, 2, 4, 6 respectively. The 
red and blue colors represent the membership and nonmembership functions respectively in all the 
subfigures 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

p ie1 
L,n (α) = 1 

3 (31 + 3α) + 2 
3 (−7 + 2α)

(−1 
2

)n 

p ie1 
R,n (α) = 1 

3 (37 − 3α) + 2 
3 (−3 − 2α)

(−1 
2

)n 

p ie2 
L,n (β) = 1 

3 (34 − 6β) + 2 
3 (−5 − 4β)

(−1 
2

)n 

p ie2 
R,n (β) = 1 

3 (34 + 6β) + 2 
3 (−5 + 4β)

(−1 
2

)n 

(31.42) 

The subfigures in Fig. 31.5 describe the Case I of the application in different 
situations. 

Case II when n εN is an odd number 
When εN, an odd number as a power of the auxiliary roots of the difference 

equation in this application, then the α, β-cuts of the intuitionistic fuzzy solution 
. y

ie
n are given by
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Fig. 31.6 Pressure of gas in a cylinder with initial pressure as intuitionistic conditions 
p0 = (7, 8, 9; 6, 8, 10; ),  p1 = (12, 13, 14; 11, 13, 15). In Fig. 31.6, subfigures (a), (b), (c), and (d) 
represent solutions in terms of intuitionistic fuzzy numbers for n = 1, 3, 5, 7 respectively. The 
red and blue colors represent the membership and nonmembership functions respectively in all the 
subfigures 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

p ie1 
L,n (α) = 1 

3 (31 + 3α) + 2 
3 (−3 − 2α)

(−1 
2

)n 

p ie1 
R,n (α) = 1 

3 (37 − 3α) + 2 
3 (−7 + 2α)

(−1 
2

)n 

p ie2 
L,n (β) = 1 

3 (34 − 6β) + 2 
3 (−5 + 4β)

(−1 
2

)n 

p ie2 
R,n (β) = 1 

3 (34 + 6β) + 2 
3 (−5 − 4β)

(−1 
2

)n 

(31.43) 

The subfigures in Fig. 31.5 describe the Case II of the application in different 
situations. 

8 Conclusion 

The difference equations are significant for modeling numerous difficulties in 
diverse fields in the discrete system. It is imperative if it is learning in an 
intuitionistic fuzzy setting. When it can be taught in an intuitionistic but imprecise 
environment, it behaves differently, and the solution process becomes more compli-
cated than in fuzzy instances. The intuitionistic extension principle approach, which
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is an extension of extension principle in fuzzy set, is used in this study to solve 
the second-order linear intuitionistic fuzzy difference equation. If the beginning 
data or (and) the coefficients are intuitionistic fuzzy valued numbers, the difference 
equation is referred to as an intuitionistic fuzzy difference equation. We discussed 
the situation using intuitionistic fuzzy valued integers as the initial information. 
This work’s numerical examples and applications illustrate the simplest method of 
solving an unknown difference equation. 

Suppose we are looking for a mathematical tool where all changes are discrete 
and the uncertain phenomena have a sense of acceptance-rejection measure. In that 
scenario, the proposed chapter can fulfill the purpose, and this is the most significant 
managerial benefit of the discussion of this chapter. Ultimately, we acknowledge our 
limitation in this chapter, that we manifested the second-order difference equation 
in an intuitionistic environment. The whole argument is theoretical, and the data 
used here are all artificial. It is better if the data from natural phenomena validate 
the hypothetical results. In the future, the proposed theory can be extended for 
nonlinear difference equations with the uncertainty of different kinds. Also, the 
investigation for aptly fitted applications of the proposed idea in discrete dynamics 
under uncertainty may bring worthy outcomes in the future. 
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Chapter 32 
The Probabilistic Games and the Shapley 
Function 

Surajit Borkotokey, Sujata Goala, and Rajnish Kumar 

1 Introduction 

A cooperative game with transferable utilities (TU games in short) deals with 
situations where players make coalitions to generate worth. It is assumed that all 
the players join together to form the grand coalition and a suitable allocation rule 
determines the share of each player in the grand coalitional worth. The Shapley 
value [19] is perhaps the most popular allocation rule in the literature of TU 
games. In many social situations, even though players tend to cooperate among 
themselves for generating worth, their complex and difficult to predict interactions, 
emotional traits and preferences may raise competency issues in such cooperative 
behaviour [17, 21]. Thus, while forming a coalition, the players must first agree on 
its sub-coalitions. Take, for example, if player 1, 2 and 3 want to form a coalition 
.{1, 2, 3}, first, there should be agreements between players 1 & 2, players 2 & 3 
and players 3 & 1. Because of the uncertainties involved in the negotiations among 
these three players in pairs, we can never be fully sure to have the coalition .{1, 2, 3}. 
Instead, we need to assign some probabilities to each of these sub-coalitions, and 
the worth of the coalition is the expectation with respect to the probabilities over 
all these sub-coalitions. However, in the deterministic framework, in order to form 
coalition .{1, 2, 3}, for example, no such prior interactions among the players in the 
smaller coalitions is considered. Thus, in the deterministic case, we have that in 
particular, the probability of formation of .{1, 2, 3} is 1 while the probabilities of all 
its sub-coalitions that lead to the formation of .{1, 2, 3} are 0. 
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In [15], several instances are reported where coalitions among agents from 
different spatial and cultural backgrounds fail to sustain even after a few successful 
interactions due to a lack of mutual appreciation among the agents that should 
develop over a period of time. Considering this fact, in this paper, we propose a 
probabilistic model of worth generation through cooperative activities which we 
call a probabilistic game, and the corresponding Shapley function is proposed as 
a suitable mean to allocate the worth so generated among the players. A special 
class of probabilistic game is studied, and the corresponding Shapley function is 
characterized using some intuitive axioms. 

Few essential recent studies in this direction are by Dehez and Ferey [8], Ferey 
and Dehez [9], Hou et al. [11], Kamionko and Marakulin [12], and Koster et 
al. [13]; however, the references are indicative of an extensive literature only. 
In [12] a TU game with probabilistic endogenous coalitions is proposed. The 
authors assume that different agents have different incentives of cooperation with 
other agents in the coalition formation process: the outcome of these incentives 
is represented by a probability function. The prediction value is the difference 
between the conditional expectations of the worths of a coalition when an agent 
cooperates with a given probability distribution introduced in [13]. In [11] the  
allocation problem of the collective probability of success in cooperation is studied 
where different agents have a common target, and the probability of success with 
which each agent succeeds in attaining the target is a common prior. In [8], the joint 
liabilities of a group of agents are allocated according to the Shapley value under 
a probabilistic setup. In [9], the appointment of damage resulting from the action 
of several tortfeasors is studied. However, in either of these works, the worth is 
again a probability. This probability is shared among the agents using an allocation 
scheme. This is why in all these studies, the aggregate of two probabilistic games is 
not a probabilistic game again. On the other hand, in our model, the worth being 
a non-negative real number can represent any divisible goods, and the class of 
probabilistic games in our model is a vector space under the standard addition and 
scalar multiplication. The interested reader is referred to [5–7, 14, 18] for  some  
alternative models that describe similar situations. 

There is another group of researchers who discuss the uncertainty of the coalition 
formation process using fuzzy set theory [1–4, 16, 20]. In these models, the worth 
of coalitions depends on the degree of membership of each player in this coalition. 
In [1, 3, 4], TU games with fuzzy coalitions are defined as a weighted aggregate of 
the worths on the level subsets over the membership values. In [16], the notion of 
multilinear extension is used to define a fuzzy cooperative game, and in [20], the 
idea of Choquet integral is used to define a fuzzy cooperative game. In [2], both 
coalitions and the worths generated by the coalitions are taken as fuzzy quantities. 
However, none of these models consider the competency possibilities among the 
players in small groups while forming a coalition. We deviate from most of the 
existing literature in two respects: first, we extend the class of TU games to its 
probabilistic counterpart by incorporating probabilities of coalition formation which 
is given by a probability measure, and second, the allocation schemes are also 
specific to this particular probability measure.
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The rest of the paper proceeds as follows. In Sect. 2, we briefly mention the 
preliminary ideas related to the development of our model. Section 3 studies the 
class of probabilistic games and the corresponding Shapley function. In Sect. 4 we 
propose a special class of probabilistic games and obtain its Shapley function. We 
also provide a characterization of this Shapley function. Finally Sect. 5 concludes. 

2 Preliminary 

Let . R be the set of real numbers and . Rn denote the Euclidian space of typical vectors 
.(xi)

n
i=1 with .xi ∈ R. Let  . ℵ denote the set of all non-empty, finite subsets of a 

countably infinite set; we call this the universe of all players. For each .N ∈ ℵ, let  
. 2N denote the power set of N . The members of . 2N are called coalitions, and N , the  
largest among them, is called the grand coalition. To simplify the notations, we use 
.S ∪ i, .S \ i, etc., instead of .S ∪ {i}, .S \ {i}, etc. Also let small letters . s, t , etc. denote 
the size of coalitions .S, T , etc. A cooperative game with transferable utilities (TU 
game) is a pair .(N, v) with .N ∈ ℵ and a characteristic function .v : 2N �→ R, such 
that .v(∅) = 0. The real number .v(S) represents the worth of the coalition S. The  set  
of all TU games with variable players set .N ∈ ℵ, (fixed player set N ) is denoted by 
G, (.G(N)). If there is no ambiguity with the choice of N , we denote the TU game 
.(N, v) only by v. The restriction of .(N, v) to a player set .S ⊆ N is denoted by 
.(S, v). The identity game .eT ∈ G(N) is defined as 

.eT (S) =
{
1 if S = T ,

0 if S 	= T .
(32.1) 

and the unanimity game .uT ∈ G(N) is defined as 

.uT (S) =
{
1 if T ⊆ S,

0 otherwise.
(32.2) 

The set of unanimity games .{uT : T ⊆ N, T 	= ∅} and the class of identity games 
.{eT : T ⊆ N, T 	= ∅} are bases for the game space .G(N). The null game . (N, v0)

is given by .v0(S) = 0 . ∀ .S ⊆ N . 
Since .G(N) is a linear space and .{uT : T ⊆ N, T 	= ∅} is a basis for .G(N), 

every .v ∈ G(N) can be expressed uniquely as a linear combination of these basis 
vectors as follows: 

.v =
∑

∅	=S⊆N

Δv(S)uS, (32.3) 

where the term .Δv(S) is called the Harsanyi dividend [10] and is given for all . S ⊆ N

by
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.Δv(S) =
{

0 for S = ∅,

v(S) − ∑
R�S Δv(R) otherwise.

(32.4) 

An alternative expression of the Harsanyi dividend is given by the following 
formula. 

.Δv(S) =
∑
T ⊆S

(−1)s−t v(T ). (32.5) 

A solution to the class .G(N) of TU games is a function defined on .G(N) that 
assigns each TU game an n-tuple of real numbers. An intuitive assumption in this 
framework is the formation of grand coalition, and the n-tuple given by a solution is 
usually a distribution of the worth of this grand coalition. The single point solutions 
are called values. The most popular and transverse value is the Shapley value [19], 
defined in terms of Harsanyi dividends[10] as follows: 

.Φsh
i (N, v) =

∑
S⊆N :i∈S

Δv(S)

s
, ∀ i ∈ N. (32.6) 

The Shapley value is characterized, among others by the following axioms; see [19]. 
Before proceeding to these axioms, we give some definitions. 

Definition 1 (Symmetric Players) Players .i, j ∈ N are symmetric in . (N, v) ∈
G(N) if .v(S ∪ i) = v(S ∪ j) for all .S ⊆ N \ {i, j}. 
Definition 2 (Null Player) Player .i ∈ N is a null player in .(N, v) ∈ G(N) if for 
all .S ⊆ N \ i, .v(S ∪ i) = v(S). 

Definition 3 (Carrier) A coalition C is said to be a carrier of .(N, v) ∈ G(N) if 
.v(S ∩ C) = v(S) .∀S ⊆ N . 

It follows that if C is a carrier and .i ∈ N \ C, then for any .S ⊆ N \ i, . v(S ∪ i) =
v(S ∪ i ∩ C) = v(S ∩ C) = v(S). Thus if C is a carrier of .(N, v), all players 
.j ∈ N \ C are null players in .(N, v). 

Axiom 1 (Carrier) A value . Φ on .G(N) satisfies Carrier, i.e. for any game . (N, v)

and any carrier C in .(N, v), .
∑

i∈C Φi(N, v) = v(C) = v(N) and .Φj(N, v) = 0 for 
all .j ∈ N \ C. 

Note that Carrier axiom is equivalent to efficiency that implies that the total 
payoff to all the members of the grand coalition is equal to the worth of the grand 
coalition; hence there is neither deficit nor saving over the total worth .v(N). 

Axiom 2 (Symmetry) A value . Φ on G satisfies Symmetry if . Φi(N, v) =
Φj(N, v) for each pair of symmetric players .i, j ∈ N . 

The last axiom is that of Linearity (Additivity).
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Axiom 3 (Linearity (Additivity)) A value . Φ on G is Linear if for arbitrary 
.(N, v),& (N,w) ∈ G, and .α, β ∈ R, one must have 

. Φ(N, αv + βw) = αΦ(N, v) + βΦ(N,w).

. Φ is Additive if the above conditions holds only for .α = β = 1. 

Shapley’s[19] characterization theorem goes as follows. 

Theorem 1 There exists exactly one function .Φ : G(N) �→ R
n that satisfies axioms 

Carrier, Symmetry and Linearity, and it is given by Eq. (32.6). 

3 A Class of Probabilistic Games and Its Shapley Function 

Following our discussion in Sect. 1, now we assume that the formation of the 
coalitions is realized with an endogenous probability distribution over the set . 2N

of coalitions of N . Our second assumption is that the probability of formation of 
.S ∈ 2N depends on the probabilities of formation of all its sub-coalitions given 
by this probability distribution. Thus, for each .S ⊆ N , we associate a probability 
measure .pN : 2N �→ [0, 1] such that the set . {pN(S)|S ⊆ N,

∑
S⊆N pN(S) = 1}

forms a probability distribution over . 2N . With an abuse of notation, we call the 
probability measure .pN a probability distribution. Denote the class of all such 
distributions by . PN . Thus formally, we have 

. P
N = {pN : 2N �→ [0, 1]|

∑
S⊆N

pN(S) = 1}.

Let .P = {PN : N ∈ ℵ} denote the class of all probability distributions over a 
variable player set .N ∈ ℵ. 
Definition 4 An ordered pair .(pN, S) ∈ P

N × 2N consisting of a probability 
distribution over N and a coalition .S ⊆ N is called a probabilistic coalition. With an 
abuse of notations, we denote by .i ∈ (pN, S) to represent that i is an element of the 
probabilistic coalition .(pN, S); however, the notion .i ∈ (pN, S) differs from . i ∈ S

in the sense that, here, player i joins coalition S as prescribed by the probability 
distribution .pN over N . Further, for a fixed .pN ∈ P

N , we define a partial order 
between two probabilistic coalitions .(pN, S) and .(pN, T ) by .(pN, S) ⊆ (pN, T ) if 
and only if .S ⊆ T . 

It follows that when a probabilistic coalition .(pN, S) is such that . pN(S) = 1
and .pN(T ) = 0, ∀ .T 	= S, then we can say that coalition S forms with certainty. In 
other words, every coalition .S ∈ 2N corresponds to a probabilistic coalition . (pN, S)

such that .pN(S) = 1 and .pN(T ) = 0 ∀ .T 	= S.
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Definition 5 A probabilistic game with transferable utilities is a pair .(N,w) with 
.N ∈ ℵ and a function .w : PN × 2N → R: call it the probabilistic coalition function 
that satisfies .w(pN,∅) = 0, for all .pN ∈ P

N . 

Let .G(PN) denote the set of the probabilistic games .(N,w) over a fixed player 
set N and .G(P) denote the set of the probabilistic games .(N,w) for all .N ∈ ℵ. 
The probabilistic game .(N,w) ∈ G(PN) is called the probabilistic null game if 
.w(pN, S) = 0, for all .(pN, S) ∈ P

N × 2N . 

Definition 6 A probabilistic coalition .(pN, S) ∈ P
N × 2N is called a carrier in 

.(N,w) if 

. w(pN, S ∩ T ) = w(pN, T ) ∀(pN, T ) ∈ P
N × 2N.

Let .C(N,w) denote the class of all carriers in .(N,w). In the following, we prove 
that intersection of the carriers in a probabilistic non-null game .(N,w) is non-empty 
and is again a carrier. 

Proposition 1 Let .(pN, S1), (pN, S2) ∈ C(N,w). Then . (pN, S1∩S2) ∈ C(N,w)

for each probabilistic non-null game .(N,w) ∈ G(PN). 

Proof We prove our proposition in two steps. 
Let .(pN, S1) and .(pN, S2) be two carriers in .(N,w) ∈ G(PN). As a deduction, 

we have .w(pN, S1∩T ) = w(pN, T ) and .w(pN, S2∩T ) = w(pN, T ), . ∀ (pN, T ) ∈
P

N × 2N . In particular taking .T = S1 and .T = S2, we get 

.w(pN, S1 ∩ S2) = w(pN, S1) = w(pN, S2) (32.7) 

Let .S1∩S2 = P , then using Eq. (32.7), for all .(pN, T ) ∈ P
N ×2N , . w(pN, P ∩T ) =

w(pN, S1 ∩ (S2 ∩ T )) = w(pN, S2 ∩ T ) = w(pN, T ). Hence P is also a carrier. 
Our next assertion is that the intersection of two carriers cannot be empty in 

a probabilistic non-null game. Since otherwise, by the first part, .(pN,∅) is also 
a carrier which implies that .(N,w) is the probabilistic null game. Hence for a 
probabilistic non-null game, intersection of two carriers cannot be empty. 

Similar to its counterpart in classical TU games, a solution to the class .G(PN) can 
be defined as a function .f : G(PN) �→ (Rn)P

N
such that for each .(N,w) ∈ G(PN), 

and .pN ∈ P
N , .f (N,w)(pN) is an n-vector of real numbers representing the payoffs 

to the players. Next, we define the Shapley function on the class .G(PN) based on a 
set of properties specific to the set of probabilistic games. 

Definition 7 Given .(N,w) ∈ G(PN), and .pN ∈ P
N , a probabilistic coalition 

.(pN,Mw) is called a maximal probabilistic coalition of .(N,w) with respect to . pN

if .w(pN, S) = w(pN, S ∩ Mw) for all .(pN, S) � (pN,Mw) and .w(pN,Mw) 	= 0. 

It is easy to verify that .Mw is the intersection of all carriers of the probabilistic 
TU game .(N,w). In view of proposition 1, therefore, .Mw is also a carrier. Based on 
this, we define the following axiom, namely, the “Maximal Coalitional Efficiency”.
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Axiom 4 (Maximal Coalitional Efficiency) A function . Φ : G(PN) �→ (Rn)P
N

satisfies Maximal Coalitional Efficiency, that is, for each .(N,w) ∈ G(PN) and 
.pN ∈ P

N , 

. 
∑

i∈(pN ,Mw)

Φi(N,w)(pN) = w(pN,Mw)

Φi(N,w)(pN) = 0 whenever i /∈ (pN,Mw).

The “Maximal Coalitional Efficiency” indicates that given a probability distri-
bution .pN ∈ P

N and .(N,w) ∈ G(PN), the  worth  .w(pN,Mw) so obtained should 
be completely exhausted by distributing it among all the members of the maximal 
coalition. The next axiom is also a slight deviation from the symmetry axiom of 
the classical Shapley function. Here, we define a property called .pN -Compatibility 
that looks into how two players can contribute to the worth generation through their 
probabilities of joining a coalition. 

Definition 8 Given .(N,w) ∈ G(PN) and .pN ∈ P
N , players .i, j ∈ N are called 

equally compatible with respect to . pN in .(N,w) if 

. w(pN, S ∪ i) = w(pN, S ∪ j), for all S ⊆ N \ {i, j}.

The corresponding axiom, which we call the .pN -Compatibility axiom goes as 
follows. 

Axiom 5 (.pN -Compatibility) The function .Φ : G(PN) �→ (Rn)P
N
satisfies .pN -

Compatibility, namely, 

. Φi(N,w)(pN) = Φj(N,w)(pN)

for each pair . i, j of equally compatible players with respect to . pN in .(N,w). 
Axiom .pN -Compatibility states that players i and j are rewarded with equal 

payoffs if they are equally compatible in forming coalitions and generating worth. 
The next axiom is Additivity which is same as the standard Additivity axiom for 
classical TU games. 

Axiom 6 (Additivity) The function . Φ on .G(PN) is said to satisfy Additivity, i.e. 
given .(N,w), (N,w′) ∈ G(PN), 

. Φ(N,w + w′) = Φ(N,w) + Φ(N,w′).

Based on these axioms, we define the Shapley function for the class of proba-
bilistic games as follows.
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Definition 9 A function .Φ : G(PN) → (Rn)P
N
is said to be a Shapley function 

on the class .G(PN) if it satisfies Maximal Coalitional Efficiency, .pN -Compatibility, 
and Additivity. We denote the Shapley value on the class .G(PN) by . Ψ . 

4 A Special Collection of Probabilistic Games 

In this section, we define a special class of probabilistic games. Recall that for 
any probability distribution .pN ∈ P

N and .S ⊆ N , we denote by .pN(S) the 
probability of formation of the coalition .S ⊆ N . We assume that in order to from a 
probabilistic coalition .(pN, S), all the players in S must first form the sub-coalitions 
of S according to the probability distribution . pN . Thus the worth of the probabilistic 
coalition .(pN, S) in this framework is the expectation of the worths of all the sub-
coalitions of S with respect to the probabilities .pN(T ) where .T ⊆ S. For this, we 
associate a TU game to obtain the worths of the sub-coalitions. Formally we define 
a probabilistic game as follows. 

Definition 10 Given the player set N and a TU game .(N, v), a probabilistic game 
.(N,w(N,v)) is the pair where the function .w(N,v) : PN × 2N �→ R is defined as 

.w(N,v)(p
N, S) =

∑
T ⊆S

v(T )pN(T ) for each pair (pN, S) ∈ P
N × 2N. (32.8) 

The TU game .(N, v) is called the associate TU game of .(N,w(N,v)). 

It follows from Definition 10 that, for each pair .(pN, S) ∈ P
N × 2N , the  

value .w(N,v)(p
N, S) represents the expected worth of the coalition S with respect 

to the probability distribution .pN over the worths of all its sub-coalitions. Let 
.G0(P

N) denote this particular class of probabilistic games over player set N . 
Clearly .G0(P

N) ⊆ G(PN). In the following, we obtain the probabilistic Shapley 
value for the class .G0(P

N). Given  .(N,w(N,v)) ∈ G0(P
N) with the associate TU 

game .(N, v) ∈ G(N) and a probability distribution .pN ∈ P
N , define a TU game 

.vpN : 2N �→ R by 

.vpN

(S) = w(N,v)(p
N, S) ∀S ⊆ N. (32.9) 

The Shapley function of .(N, vpN
) is given by 

.Φsh
i (N, vpN

) =
∑

S⊆N :i∈S

Δ
(N,vpN

)
(S)

s
, where Δ

(N,vpN
)
(S) is given by Eq. (32.5). 

(32.10) 

On simplification of the expression in Eq. (32.10), we obtain
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. Φsh
i (N, vpN

) =
∑

S⊆N :i∈S

∑
T ⊆S(−1)s−t vpN

(T )

s

=
∑

S⊆N :i∈S

1

s

( ∑
T ⊆S

(−1)s−t
∑
K⊆T

v(K)pN(K)
)

=
∑

S⊆N :i∈S

v(S)pN(S)

s
. (32.11) 

Now, define a function .Ψ : G0(P
N) �→ (Rn)P

N
by 

.Ψ (N,w(N,v))(p
N) = Φsh(N, vpN

) for each pN ∈ P
N. (32.12) 

Following theorem states that . Ψ so defined is the probabilistic Shapley function on 
.G0(P

N). 

Theorem 2 The function . Ψ defined by Eq. (32.12) is the unique Shapley function 
for the class .G0(P

N). 

Proof We first show that . Ψ given by Eq. (32.12) satisfies Maximal Coalitional 
Efficiency, .pN -Compatibility, and Additivity. 

(a) Maximal Coalitional Efficiency: Given .(N,w(N,v)) ∈ G0(P
N) and .pN ∈ P

N , 
let .(pN,Mw) be a maximal coalition of .(N,w(N,v)). Since . w(N,v)(p

N, T ) =
w(N,v)(p

N, T ∩ Mw), therefore .v(S) = 0, for all S 	⊂ Mw, we have  

. 
∑

i∈(pN ,Mw)

Ψi(N,w(N,v))(p
N) =

∑
i∈Mw

Φsh(N, vpN

)

=
∑

i∈Mw

⎧⎨
⎩

∑
S⊆Mw :i∈S

v(S)

s
pN(S)

⎫⎬
⎭

=
∑

S⊆Mw

s
v(S)

s
pN(S)

=
∑

S⊆Mw

pN(S)v(S)

= w(N,v)(p
N,Mw)

Also, 

. Ψi(N,w(N,v))(p
N) =

∑
S�Mw :i∈S

v(S)

s
pN(S) = 0, for all i /∈ Mw.

Hence . Ψ satisfies Maximal Coalitional Efficiency.
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(b) .pN -Compatibility: 
Given .(N, v) ∈ G(N), .(N,w(N,v)) ∈ G0(P

N) and .pN ∈ P
N , let  .i, j ∈ N , 

be equally compatible players in .(N,w(N,v)) with respect to . pN , i.e. 

. w(N,v)(p
N, S ∪ i) = w(N,v)(p

N, S ∪ j), for all S ⊆ N \ {i, j}.
In view of Eq. (32.8), with some simplifications, we obtain 

v(S ∪ i)pN (S ∪ i) = v(S ∪ j)pN (S ∪ j),  for all S ⊆ N \ {i, j} 

It follows from Eqs. (32.11) and (32.12) that 

. Ψi(N,w(N,v))(p
N) =

∑
S⊆N :i /∈S

v(S ∪ i)

s + 1
pN(S ∪ i)

=
∑

S⊆N :j /∈S

v(S ∪ j)

s + 1
pN(S ∪ j)

= Ψj (N,w(N,v))(p
N).

(c) Additivity: For any .(N, v), (N, v′) ∈ G(N), .pN ∈ P
N and corresponding 

.(N,w(N,v)), (N,w(N,v′)) ∈ G(PN), we have from Eqs. (32.11) and (32.12) 

. Ψi(N,w(N,v) + w(N,v′))(p
N) =

∑
S⊆N :i∈S

(v + v′)(S)pN(S)

s

= Ψi(w(N,v))(p
N) + Ψi(w(N,v′))(p

N).

For the uniqueness part, let . Φ be a probabilistic value satisfying Maximal Coali-
tional Efficiency, .pN -Compatibility, and Additivity. We show that .Φ = Ψ . Let  
.(N, v) ∈ G(N). Then, there exist unique real numbers .cT ∈ R, .T 	= ∅ such that 
.v =

∑
T ⊆N,T 	=∅

cT uT . Then by Eq. (32.8), we have 

.w(N,v)(p
N, S) =

∑
T ⊆S

v(T )pN(T )

=
∑
T ⊆S

( ∑
K⊆N

cKuK(T )
)
pN(T )

=
∑
K⊆N

cK

( ∑
T ⊆S

uK(T )pN(T )
)

=
∑
K⊆N

cKw(N,uK)(p
N, S) ∀ (pN, S) ∈ P

N × 2N.
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Thus, .w(N,v) = ∑
K⊆N cKw(N,uK). Using Additivity of . Ψ and . Φ, it follows  that  

.Φ(N,w(N,v)) =
∑

T ⊆N,T 	=∅
Φ(N, cT w(N,uT )) (32.13) 

.Ψ (N,w(N,v)) =
∑

T ⊆N,T 	=∅
Ψ (N, cT w(N,uT )) (32.14) 

Therefore, it is enough to show that . Φ(N, cw(N,uT )) = Ψ (N, cw(N,uT )), ∀ T ⊆
N, T 	= ∅ and .c ∈ R. 

In view of Eqs. (32.1) and (32.2), .uT = ∑
T ⊆K⊆N eK and .MeK

= K . Therefore, 
using Additivity of . Φ, we have  

. Φi(N, cw(N,uT )) =
∑

T ⊆K⊆N

Φi(N, cw(N,eK))

Here, .MeK
= K and any pair of .i, j ∈ K are equally compatible with respect to . pN

in .w(N,eK). Therefore, using Maximal Coalitional Efficiency and .pN -Compatibility, 

. 
∑

i∈MeK

Φi(N, cw(N,eK))(p
N) =

∑
S⊆K

c pN(S)eK(S)

⇒ kΦi(N, cw(N,eK))(p
N) = c pN(K)

⇒ Φi(N, cw(N,eK))(p
N) = cpN(K)

k

⇒ Φi(N, cw(N,eK))(p
N) = Ψi(N, cw(N,eK))(p

N) for all i ∈ K.

Also, .Φi(N, cw(N,eK))(p
N) = 0 = Ψi(N, cw(N,eK))(p

N), for all .i /∈ K . 

Therefore, .Ψi(N, cw(N,uT )) =
∑

T ⊆K:i∈K

cpN(K)

k
= Φi(N, cw(N,uT )), ∀ . i ∈

N , .T ⊆ N . 
This completes the proof. 

Remark 1 The logical independence of the three axioms in theorem (2) are shown 
below: 

1. The value .Φi(N,w(N,v))(p
N) = Ψi(N,w(N,v))(p

N )

2n−1 satisfies .pN−Compatibility 
and Additivity, but not Maximal Coalitional Efficiency. 

2. The value .Φi(N,w(N,v))(p
N) = Ψi(N,w(N,v))(p

N) + w(N,v)(p
N ,N)

[ n
2 ] for first . [n

2 ]
number of players and
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. Φi(N,w(N,v))(p
N) = Ψi(N,w(N,v))(p

N) − w(N,v)(p
N,N)

[n
2 ]

for the next . [n
2 ] number of players and . Φi(N,w(N,v))(p

N) = Ψi(N,w(N,v))(p
N)

for the remaining players (if exist) satisfies Maximal Coalitional Efficiency and 
Additivity, but not .pN−Compatibility. 

3. The value .Φi(N,w(N,v))(p
N) = Ψi(N,w(N,v))(p

N) for .w(N,v)(p
N,N) ≥ K , 

and for all .w(N,v)(p
N,N) < K , .Φi(N,w(N,v))(p

N) = w(N,v)(p
N ,N)

n
where 

.K ∈ R satisfies .pN -Compatibility and Maximal Coalitional Efficiency, but not 
Additivity. 

Remark 2 An alternative expression for .Ψ : G0(P
N) �→ (Rn)P

N
can be obtained 

from the standard simplifications used in classical TU games as follows: 

.Ψ (N,w(N,v))(p
N) =

∑
S⊆N\i

(n − s − 1)!s!
n! {

∑
T ⊆S

v(T ∪ i)pN(T ∪ i)} (32.15) 

From now onward, we call . Ψ the probabilistic Shapley value on .G0(P
N). In  

what follows next, we present a characterization of the probabilistic Shapley value 
specific to the class .G0(P

N). In the following, we present a numerical example to 
illustrate our proposed model. 

Example 1 Consider the player set .N = {1, 2, 3, 4, 5}, and the TU game .(N, v) is 
defined as follows: 
.v(S) = 0 for all .S ⊆ N such that .5 ∈ S; .v({1}) = v({2}) = 2; . v({3}) = v({4}) =
3;.v({1, 3}) = v({2, 3}) = 5; .v({1, 4}) = v({2, 4}) = 4; . v({1, 2}) = 3, v({3, 4}) =
2; .v({1, 3, 4}) = v({2, 3, 4}) = 5; .v({1, 2, 3}) = v({1, 2, 4}) = 6; . v({1, 2, 3, 4}) =
5. 
It is easy to show that in the probabilistic game .(N,w(N,v)), the maximal proba-
bilistic coalition is given by .(pN,Mw),where Mw = {1, 2, 3, 4}. Assume that the 
endogenous probability distribution . pN is given by the following: 

. pN(∅) = 1

6
;pN({i}) = 1

30
;pN({i, j}) = 1

60
;pN({i, j, k}) = 1

60
;pN({i, j, k, l}) =

1

30
;pN(N) = 1

30
, for all .i, j, k, l ∈ N , i.e. 

. pN(S) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

6
if S = ∅ or S = N

1

6 × (4
s

) otherwise

and pN(S) = 0 for all S ⊆ N : 4 ∈ S.

(32.16) 
Now we have
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. Ψi(N,w(N,v))(p
N) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
S⊆Mw :i∈S

v(S)

s
pN(S), for all i ∈ Mw.

0, for all i /∈ Mw

Thus the payoff for each .i ∈ N in the game .w(N,v) corresponding to the 
probability distribution . pN given by Eq. (32.16) is given by . Ψ (N,w(N,v))(p

N) =
( 2072 ,

20
72 ,

25
72 , 0, 0). Note that, since .p

N(S) = 0 for all .S ⊆ N : 4 ∈ S, 
therefore, we have .Ψ4(N,w(N,v))(p

N) = 0. Moreover, player 1 and 2 satisfy 
.pN compatibility therefore, .Ψ1(N,w(N,v))(p

N) = 20
72 = Ψ2(N,w(N,v))(p

N). 
Finally, due to the Maximum Coalitional Efficiency .Ψ5(N,w(N,v))(p

N) = 0 and 
.Ψ3(N,w(N,v))(p

N) = 25
72 . 

4.1 Characterization on G0(P
N ) 

In this section, we present a characterization of the probabilistic Shapley value on 
.G0(P

N) along the line of Young’s characterization of the Shapley value for TU 
games; see [22]. Let .w(N,v) be the probabilistic null game with associate game 
.(N, v) ∈ G(N). That is, .w(N,v)(p

N, S) = 0 for each .(pN, S) ∈ P
N × 2N . Note  

that a sufficient condition for .w(N,v) to be null is that .(N, v) is the null game in 
.G(N), that is, .v(S) = 0 for all .S ⊆ N ; however, this condition is not necessary. 
Given a probability distribution .pN ∈ P

N , let .V0 ⊆ G(N) be the class of TU games 
.(N, v) ∈ G(N) for which .(N,w(N,v)) is the probabilistic null game. Let us denote 
a probabilistic null game by .(N,O(N,v)) with .(N, v) ∈ V0. We have the next axiom 
as follows. 

Axiom 7 (Probabilistic Null Game Property) A function . Φ : G0(P
N) �→

(Rn)P
N
satisfies probabilistic null game property if for each . pN ∈ P

N

. Φi(N,O(N,v))(p
N) = 0, ∀ i ∈ N, (N, v) ∈ V0.

Following similar formulations as in their counterparts in classical TU games, 
for a given .(N, v) ∈ G(N), .(pN, S) ∈ P

N × 2N and a player .i ∈ N , let us call 
the term .w(N,v)(p

N, S ∪ i) − w(N,v)(p
N, S) the marginal contribution of player i 

from .S ⊆ N \i with respect to the probabilistic game .(N,w(N,v)). The next axiom is 
strong .pN -Monotonicity which suggests that if the marginal contribution of a player 
with respect to a probabilistic game is not less than the marginal contribution with 
respect to another probabilistic game, then the payoff to this player by the former 
game cannot be less than the latter. 

Axiom 8 (Strong .pN -Monotonicity) Given .i ∈ N , if  .(N, v), (N, v′) ∈ G and 
the corresponding .(N,w(N,v)), (N,w(N,v′)) ∈ G(P) are such that . w(N,v)(p

N, S ∪
i) − w(N,v)(p

N, S) ≥ w(N,v′)(pN, S ∪ i) − w(N,v′)(pN, S) for all .pN ∈ P
N and all
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.S ∈ 2N with .i /∈ S, then the probabilistic value . Φ satisfies Strong .pN -Monotonicity, 
namely, 

. Φi(N,w(N,v))(p
N) ≥ Φi(N,w(N,v′))(p

N).

Definition 11 A player .i ∈ N is called the probabilistic null player with respect to 
.(N, v) and . pN if .w(N,v)(p

N, T )−w(N,v)(p
N, T \i) = 0, ∀ T such that .i ∈ T ⊆ N . 

Axiom 9 (Probabilistic Null Player Property) A probabilistic value . Φ satisfies 
probabilistic null player property if .Φi(N,w(N,v))(p

N) = 0 for a probabilistic null 
player i with respect to .(N, v) and . pN . 

Theorem 3 A probabilistic value . Φ satisfies Maximal Coalitional Efficiency, 
Monotonicity, and Strong .pN -Monotonicity if and only if .Φ(N,wv) = Ψ (N,wv). 

Proof In view of Theorem 2, the probabilistic Shapley value . Ψ satisfies Maximal 
Coalitional Efficiency and .pN -Compatibility. Also, it is easy to show that . Ψ satisfies 
Strong .pN -Monotonicity. For the converse part, let . Φ be a function satisfying 
Maximal Coalitional Efficiency, .pN -Compatibility, and Strong .pN -Monotonicity. 

We first claim that if a probabilistic value satisfies Maximal Coalitional Effi-
ciency and .pN -Compatibility, then it also satisfies the probabilistic null game 
property. Note that, in the probabilistic null game .(N,O(N,v)), all the players are 
equally compatible. Because .O(N,v)(p

N, S) = 0, ∀ .S ⊆ N . ⇒ v(S)pN(S) =
0, ∀ .S ⊆ N , therefore for arbitrary pair .i, j and . ∀ S ⊆ N \ {i, j}, we have  
.v(S ∪ i)pN(S ∪ i) = 0 = v(S ∪ j)pN(S ∪ j) where .(N, v) ∈ V0. 

Therefore following Maximal Coalitional Efficiency and .pN -Compatibility, i.e. 

. Φi(N,O(N,v))(p
N) = Φj(N,O(N,v))(p

N).

For any pair of compatible players . i, j , we have  

. 
∑

i∈MO

Φi(N,O(N,v))(p
N) = 0 and Φi(N,O(N,v))(p

N) = 0 ∀ i /∈ MO

⇒ Φi(N,O(N,v))(p
N) = 0, ∀ i ∈ N and (N, v) ∈ V0.

Next, we show that a value satisfying probabilistic null game property and Strong 
. pN—Monotonicity also satisfies Probabilistic Null player property. 

Let .i ∈ N be a Probabilistic Null player in .w(N,v) hence, . w(N,v)(p
N, T ) =

w(N,v)(p
N, T \ i) . ∀ T such that .i ∈ T . Moreover, .O(N,v)(T ) = 0 . ∀ . T ⊆ N

i.e. .O(N,v)(p
N, T ) = 0 = O(N,v)(p

N, T \ i). Therefore, following Strong .pN -
Monotonicity, .Φi(N,w(N,v))(p

N) = Φi(O(N,v))(p
N) = 0. This proves our 

assertion. 
Since .weT

(pN, S) = weT
(pN, S \ i), for all .S ⊆ N \ i, therefore for the class of 

game . weT
, all .i /∈ T are Probabilistic Null players. Similarly since .eT (S ∪ i)pN(S ∪
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i) = 0.pN (S ∪ i) = 0 · pN (S ∪ j)  = eT (S ∪ j)pN (S ∪ j)  for all .S ⊆ N \ {i, j}, 
therefore all .i, j ∈ T are compatible players with respect to . eT and . pN . 

Therefore, using Maximal Coalitional Efficiency, .pN -Compatibility, and Proba-
bilistic Null player property, 

. Φi(N,w(N,eK))(p
N) = Ψi(N,weK

)(pN) = 0, ∀ i /∈ K

Φi(N,w(N,eK
)(pN) = Ψi(N,weK

)(pN) = pN(K)

k
, ∀ i ∈ K

We prove the uniqueness using induction on the size of number of non-zero 
.Δw(N,v)(p

N ,T )s. Note that .Δw(N,v)(p
N ,T ) = pN(T )v(T ) 	= 0 implies . pN(T ) 	= 0

and .v(T ) 	= 0. Therefore, for any .pN ∈ P
N , it is enough to apply induction on the 

size of .Δw(N,v)(p
N ,T ). 

Let .�w(N,v)
= {T : Δw(N,v)(p

N ,T ) = v(T ).pN(T ) 	= 0, T ⊆ N}, i.e. . pN(T ) 	= 0
as well as .v(T ) 	= 0. We apply induction on the size of .�w(N,v)

. For . |�w(N,v)
| = 0 ⇒

v = v0. 
Therefore, . Φi(N,w(N,v))(p

N) = Φi(w(N,v0))(p
N) = 0 = Ψi(w(N,v0))(p

N) =
Ψi(N,w(N,v))(p

N). 
For .|�w(N,v)

| = 1, there exists .T ⊆ N with .v(T ) 	= 0, pN(T ) 	= 0 and hence 
using Maximal Coalitional Efficiency: 

. Φi(N,w(N,v))(p
N) = v(T )pN(T )

t
= Ψi(N,w(N,v))(p

N)

Let .Φi(N,wv′)(pN) = Ψi(N,wv′)(pN), . ∀ (N, v′) ∈ G(N) with . |�wv′ | < k, k ≥
2. Suppose .(N, v) ∈ G(N) be a game with .|�w(N,v)

| = k. 
There exist . Tr , .r ∈ {1, 2, . . . , k} such that .v(Tr) 	= 0, .pN(Tr) 	= 0 and hence 

.w(N,v)(p
N,N) = ∑K

r=1 v(Tr)p
N(Tr). Consider .D = ∩K

r=1Tr . 
For .i ∈ N\D, we define .wvi (pN, S) = ∑

i∈Tr
v(Tr)w(N,eTr )(p

N, S) for 
.S ⊆ N . Because .|�wvi

| < k, the induction hypothesis implies, . Φi(N,w(N,vi )) =
Ψi(N,w(N,vi )). 

Note that, for .i /∈ D, but  .i ∈ Tr for some r , we have  . w(N,v)(p
N,N) =∑

i∈Tr
v(Tr)p

N(Tr) = wvi (pN,N). Following Strong . pN—Monotonicity, 
. Φi(N,w(N,v))(p

N) = Φi(N,w(N,vi ))(p
N) = Ψi(N,w(N,vi ))(p

N) =
Ψi(N,w(N,v))(p

N). On the other hand if .i /∈ Tr for any . Tr then .i /∈ Mw and 
hence .Φi(N,w(N,v))(p

N) = 0 = Ψi(wvi )(pN) and consequently 

.Φi(N,w(N,v))(p
N) = Ψi(N,w(N,vi ))(p

N), for all i ∈ N \ D. (32.17) 

By Maximal Coalitional Efficiency, 

.

∑
i∈Mw

φi(N,w(N,v)(p
N) =

∑
i∈Mw

ψi(N,w(N,v))(p
N)
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Moreover, for .i /∈ D, using  Eq. (4.1) 

. 
∑

i∈Mw

Φi(N,w(N,v))(p
N) =

∑
i∈Mw

Ψi(N,w(N,v))(p
N)

⇒
∑
i∈D

Φi(N,w(N,v))(p
N) +

∑
i∈Mw\D

Φi(N,w(N,v))(p
N) =

∑
i∈D

Ψi(N,w(N,v))(p
N)

+
∑

i∈Mw\D
Ψi(N,w(N,v))(p

N)

⇒
∑
i∈D

Φi(N,w(N,v))(p
N) +

∑
i∈Mw\D

Ψi(N,w(N,v))(p
N) =

∑
i∈D

Ψi(N,w(N,v))(p
N)

+
∑

i∈Mw\D
Ψi(N,w(N,v))(p

N)

⇒
∑
i∈D

Φi(N,w(N,v))(p
N) =

∑
i∈D

Ψi(N,w(N,v))(p
N).

Note that for all .i, j ∈ D ⇒ i, j ∈ Tr for some r . For all .i, j ∈ Tr , . v(S ∪ i)pN(S ∪
i) = 0 = v(S ∪ j)pN(S ∪ j), since .S ∪ j 	= Tr and .S ∪ i 	= Tr for any r and 
.S ⊆ N \ {i, j}; therefore, any pair .i, j ∈ D are compatible. Hence, using .pN -
Compatibility we obtain, .Ψi(N,w(N,v)) = Ψj (N,w(N,v)), for all .i, j ∈ D. Again  
for any .D ⊆ N , 

. 
∑
i∈D

Φi(N,w(N,v))(p
N) =

∑
i∈D

Ψi(N,w(N,v))(p
N)

⇒ d.Φi(N,w(N,v))(p
N) = d.Ψi(N,w(N,v))(p

N)

⇒ Φi(N,w(N,v))(p
N) = Ψi(N,w(N,v))(p

N) for all i ∈ D.

This completes the proof. 

Remark 3 The logical independence of each of the axioms in theorem (3) are shown 
below: 

1. The value .Φi(N,w(N,v))(p
N) = w(N,v)(p

N ,N)

n
satisfies .pN -Compatibility and 

Maximal Coalitional Efficiency but not Strong . pN—Monotonicity. 
2. The value .Φi(N,w(N,v))(p

N) = Ψi(N,w(N,v))(p
N) + 1 for first . [n

2 ] number of 
player and .Φi(N,w(N,v))(p

N) = Ψi(N,w(N,v))(p
N) − 1 for next . [n

2 ] number 
of player .Φi(N,w(N,v))(p

N) = Ψi(N,w(N,v))(p
N) for the rest player (if exist), 

satisfies Maximal Coalitional Efficiency and Strong . pN—Monotonicity, but not 
.pN -Compatibility. 

3. The value .Φi(N,w(N,v))(p
N) = Ψi(N,w(N,v))(p

N )

2n−1 satisfies .pN -Compatibility and 
Strong . pN—Monotonicity, but not Maximal Coalitional Efficiency.
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5 Conclusions 

In this work, we proposed the probabilistic extension of the classical TU games. 
First, we defined a general class of probabilistic games over the set of probabilistic 
coalitions. Then we introduced a special subclass of this general class having some 
interesting properties. Our assumption is that the formation of a coalition depends 
on how the players in it interact with each other in the smaller coalitions. Thus 
we can assign a probability distribution over all possible coalitions, and the worth 
of any coalition under this setup is the expectation of the worths at sub-coalitions 
with respect to this probability distribution. The Shapley value is defined for the 
general class first, and based on that we obtained the corresponding Shapley value 
for this special subclass. We proposed a characterization of the Shapley value of 
the special subclass. Various properties of the classical TU games can be extended 
to the probabilistic framework. However, one drawback of our proposal is that 
we are able to discuss only a very primitive model involving prior probabilities 
of forming of a coalition. Updating these probabilities on the basis of players’ 
successive interactions among themselves would provide more credibility to the 
model. The probabilistic approach of TU games has a natural extension to network 
games. However, due to their complex nature, a number of problems in this area 
are still open. Strategic nature of players in forming networks in absence of prior 
knowledge is, therefore, an interesting area to work on. This we keep for our future 
studies. 
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