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Abstract. Online scanners analyze user-submitted files with a large
number of security tools and provide access to the analysis results. As the
most popular online scanner, VirusTotal (VT) is often used for determin-
ing if samples are malicious, labeling samples with their family, hunting
for new threats, and collecting malware samples. We analyze 328M VT
reports for 235M samples collected for one year through the VT file feed.
We use the reports to characterize the VT file feed in depth and compare
it with the telemetry of an AV vendor. We answer questions such as How
diverse is the feed? How fresh are the samples it provides? What fraction
of samples can be labeled on first sight? How different are the malware
families in the feed and the AV telemetry?

1 Introduction

Online scanners analyze artifacts (i.e., files, URLs, domains, IPs) submitted by
users using a large number of security tools, and provide access to the analysis
results through free and commercial APIs. The most popular online scanner is
VirusTotal [42] (VT), which is widely used by security analysts, and acts as
a de-facto central sharing service for the security community. Detection labels
in VT reports are routinely used for determining if an artifact is malicious by
either applying a threshold on their count (e.g., [27,29,44]) or feeding them to
machine-learning models [34,39], as well as for identifying the family of malicious
files [16,35,36]. Prior work has shown that VirusTotal can be used to identify new
malware before it is released, since malware developers often leverage VT during
development to check if their samples are detected and, if so, revise them until
they become fully undetected (FUD) [13,14,43]. VirusTotal is also commonly
used as a source for collecting malware samples [3,12,14,25,26].

Amongst its commercial services, VT offers feeds, i.e., streams of analysis
reports for all submissions of a type [1]. VT offers separate feeds for files, URLs,
and domains. In this work, we perform what we believe is the first characteriza-
tion of the VT file feed (or simply the feed). The VT file feed includes reports
for new files (i.e., first submission to VT), resubmissions of previously submitted
files, and re-scans requested by users. Each report in the VT file feed contains
detailed information about the analysis of a sample (i.e., file). The report con-
tains, among others, file metadata (e.g., hashes, size), certificate metadata for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Gruss et al. (Eds.): DIMVA 2023, LNCS 13959, pp. 155–176, 2023.
https://doi.org/10.1007/978-3-031-35504-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35504-2_8&domain=pdf
https://doi.org/10.1007/978-3-031-35504-2_8


156 K. van Liebergen et al.

signed samples (e.g., thumbprint, subject), VT specific data (e.g., time of first
submission to VT, submission filenames), and the list of detection labels assigned
by up to 70 antivirus (AV) engines used to scan the file. The VT file feed service
also allows unlimited downloads of the samples submitted in the last seven days.

We collect reports from the VT file feed for one year, from December 21st,
2020 to December 20th, 2021. During the first 11 months we collect reports
where the sample is detected by at least one AV engine, while in the last month
we collect all feed reports, regardless of the number of detections. Overall, we
collect 328M reports for 235M samples. We analyze the collected reports to
characterize the VT file feed as a source for collecting malicious samples and
for identifying new threats. Samples from the feed can be used for building
labeled malware datasets such as those required by machine learning (ML) based
malware detection (e.g., [4,15,17,32,37]) and family classification (e.g., [15,33]).
We investigate fundamental questions for such use including How diverse is the
feed? Does it allow building malware datasets for different filetypes? How fresh
are the samples it provides? What is the distribution of malware families it
sees? The feed can also be a source for malware triage and malware hunting
approaches (e.g., [10,18]). For this use, we investigate what fraction of the feed
samples are variants of known malware families that analysts may not need to
investigate. In particular, we measure what fraction of the samples in the VT file
feed can be detected as malicious on first sight, what fraction can be labeled with
a family on first sight, and what fraction of malicious samples are originally fully
undetected but later become detected by multiple AV engines. We complement
our characterization of the VT file feed with a comparison with telemetry data
collected in a privacy-sensitive manner from tens of millions of Windows devices
of clients of a large antivirus vendor. The comparison allows us to investigate
how different are the views of the malware landscape observed by both datasets
and which dataset observes samples faster.

To improve family labeling, we have more than doubled the size of the
AvClass [36] taxonomy and tagging rules. We have contributed our updates
to the AvClass repository and they have been integrated into AvClass 2.8.0.
The following are some of the most significant insights we gain:

– The VT file feed is a great source for malicious samples with a much higher
maliciousness ratio than the AV telemetry. Still, the VT file feed is not a
malware feed since half of its volume is for benign samples. Thus, it can
be used to build both malicious and benign file datasets for supervised ML
approaches.

– The feed is diverse with a wealth of filetypes and 4.9K families with at least
100 samples. However, the diversity is largely due to Windows and Android
families.

– The feed is fresh: it receives an average of 732K new malicious samples each
day and malicious samples appear a median of 4.4 h after they are seen in
user devices. 39% of new malicious samples appear in the VT file feed earlier
than in the AV telemetry, allowing AV engines to leverage the VT file feed
to build detections for samples before they affect their customers.
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Table 1. Dataset collected from VT file feed between 2020/12/21 and 2021/12/20.

Data All peexe apk other

Reports 328.3M 220.3M 15.9M 92.0M

Samples 235.7M 155.5M 8.2M 72.0M

– On first sight, 62% of the samples can be labeled as variants of known families,
and thus could be ignored when hunting for new threats.

– We identify 600K originally FUD samples. These samples have no detections
on first sight, but are later detected by multiple AV engines.

– The AV telemetry and VT file feed observe largely disjoint sets of malicious
samples with minimal overlap (1.2%–1.8%).

– The most popular families in the VT file feed by number of samples widely
differ from the families affecting most devices in the AV telemetry.

2 Datasets

We use two datasets in this work. We collect reports of files that appear in the
VT file feed for one year. We also examine the Windows telemetry of an AV
vendor over the same time period, which contains the metadata (e.g., file hash,
file type) of the files present in tens of millions of Windows devices that opted-
in to the data collection. Both datasets include benign and malicious files of
different file types.

VT File Feed. The VT file feed contains analysis reports for files submitted to
VT, regardless of the file type and platform (e.g., Windows executables, Android
APKs, Linux ELF executables, PDF and Microsoft Office documents). Other arti-
facts submitted to VT like URLs, domains, and IPs have their own separate feeds
that we do not analyze. The VT file feed includes reports for new files (i.e., first
submission toVT), resubmissions of previously submitted files, and user-requested
re-scans of previously submitted files. Throughout the paper we use sample and file
indistinctly. Multiple reports may appear in the feed for the same file. In general,
we focus on the last report we collected for each sample because it should provide
the most up-to-date information (e.g., updated AV labels). However, when inter-
ested in what happened to a sample when first submitted to VT (e.g., whether it
was detected or labeled), we examine instead its first report.

We collect reports from the feed every minute. To keep the storage manage-
able, we do not download the samples from the feed, only the reports. In the
first 11 months, we only collected reports where at least one AV engine detected
the file as malicious, which (as later shown) roughly corresponds to half of all
reports in the feed. On November 19th, 2021, we started collecting all reports in
the feed regardless of the number of detections, i.e., including reports with zero
detections. Overall, as summarized in Table 1, over one year between Decem-
ber 21st, 2020 and December 20th, 2021, we collected 328M reports for 235M
samples (by unique file SHA256).
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Table 2. Features used.

Feature Scope Type peexe apk

cert issuer sample string � �
cert subject sample string � �
cert thumbprint sample cryptohash � �
cert valid from sample timestamp � �
cert valid to sample timestamp � �
exiftool filetype sample string � �
fseen date sample timestamp � �
md5 sample cryptohash � �
package name sample string ✗ �
sha1 sample cryptohash � �
sha256 sample cryptohash � �
trid filetype sample string � �
detection labels scan string list � �
scan date scan timestamp � �
sig verification res scan string � ✗

vt meaningful name scan string � �
vt score scan integer � �
avc family derived string � �
avc tags derived string list � �
avc is pup derived bool � �
filetype derived string � �

Telemetry. The telemetry comprises metadata of files present in tens of millions
of real Windows devices in use by customers of an AV engine. It does not contain
the samples, only theirmetadata. The customers opted-in to sharing their data and
the devices are anonymized to preserve customer privacy. The AV engine queries
a central service with file hashes observed on the device to obtain file reputation
information. Each query for a file hash sent by a device is an event. An event com-
prises a timestamp, the anonymous identifier of the device, a file hash, a filename,
and the signer key if the file is signed (i.e., the SHA256 of the public key in the
file’s certificate). The telemetry contains events for both benign and malicious files
present on the devices. Those files may be of different types including Windows PE
executables (e.g., .exe, .dll, .sys, .ocx), PDF documents, and Microsoft office files.
We also obtain information from the AV vendor on the subset of telemetry files
for which the AV engine threw an alert, i.e., the detected samples. We examine
telemetry events over the same one year period we monitored the VT file feed.

3 Features

Since we do not download the samples, we need to restrict our analysis to features
available in the reports, or that can be derived from the reports. We focus on a
selected set of 21 features: 17 from the VT reports and 4 derived from those (e.g.,
filetype and malware family). Features are summarized in Table 2. We define
three scopes for a feature: sample, scan, and derived. Sample features should have
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the same value across all scans of a sample. On the other hand, scan features
may differ across scans of the same sample, i.e., they evolve over time. For
example, the hash of the certificate of a signed sample (cert thumbprint) should
always be the same. But, whether the signature of a signed sample validates
(sig verification res) can change across scans, e.g., if the certificate expires or is
revoked. Features may be extracted only for a subset of filetypes, e.g., be specific
to Windows PE executables or Android APKs, and may be null for some samples
(e.g., certificate features are not available for unsigned Windows executables).
We detail the VT report features in Sect. 3.1 and the derived features in Sect. 3.2.

3.1 VT Report Features

Of the 17 features from the VT report, 3 are cryptographic hashes over the
whole file used to identify the sample (sha256 , sha1 , md5 ), 5 are related to code
signing, 2 capture the file type, another 2 capture the program name, and 5
are specific to the scan. The code signing features are available for a variety of
file types including Android APKs, iOS apps, signed Windows executables, and
signed Windows MSI installers.

Timestamps. We obtain four timestamps from a VT report. The scan date
when the sample is analyzed, which is always within our collection period. The
VT first seen date (fseen date) when the sample was first submitted to VT. For
signed samples, we also obtain the certificate’s validity period defined by the
cert valid from and cert valid to dates.

AV Scans. VT scans each submitted sample with a large number of AV engines.
We extract the number of engines that detected the sample (i.e., gave it a non-
NULL label) (vt score) and the list of detection labels. The labels are used to
derive three classification features, as detailed in Sect. 3.2.

Program Names. We use two features that capture the program a sample
corresponds to. The package name is the package identifier for Android apps
and vt meaningful name is the most meaningful filename VT selects for a sample
(e.g., among all filenames of the sample when submitted to VT).

3.2 Derived Features

Filetype. Determining the filetype of the sample in a report is not straight-
forward because VT reports do not have a single field for it. Instead, there
are multiple fields that provide, possibly contradictory, filetype information. We
derive a unique filetype feature for each report by performing a majority voting
on three fields: trid file type, vt tags, and vt meaningful name. trid file type cap-
tures the filetype identified by the TrID tool [31], which has very fine-grained
granularity (e.g., over 90 peexe subtypes). We build a mapping from TrID file-
types to coarser-grained filetypes such as grouping all Windows PE files (e.g.,
EXE, DLL, OCX, CPL) under peexe and all Word files (DOC, DOCX) under
doc. vt tags provides a list of tags assigned by VT to enable searching for sam-
ples across different dimensions. Some of the tags such as apk, peexe, and elf
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provide filetype information. When vt meaningful name is available, we extract
the extension from the filename and map the extension to a filetype.

AVClass Features. We feed the detection labels to the AvClass malware
labeling tool [36]. AvClass outputs a list of tags (avc tags) for the sam-
ple that include its category, behaviors, file properties, and the most likely
family (avc family). It also provides whether the sample is considered poten-
tially unwanted or malware (avc is pup). AvClass uses a taxonomy to iden-
tify non-family tokens that may appear in the AV labels such as malware
classes (e.g., CLASS:virus), behaviors (e.g., BEH:ddos), file properties (e.g.,
FILE:packed:asprotect), and generic tokens (e.g., GEN:malicious). It also uses
tagging rules to identify aliases between families (e.g., zeus being an alias to
zbot). In this work we apply AvClass to 328M VT reports, eight times more
than the largest to date work [36]. Thus, our AvClass results include a wealth
of new tags, including new aliases and non-family tokens. We have used the
AvClass update module and extensive manual validation to identify new tag-
ging rules that capture previously unknown aliases, as well as new taxonomy
entries for tokens appearing in over 100 samples. This process has resulted in
more than doubling the AvClass taxonomy and tagging rules. We have con-
tributed our updates to the AvClass repository.

4 Feed Analysis

This section characterizes the VT file feed, answering the following questions:
(1) How large is the VT file feed? (2) How fresh are samples in the feed? (3)
How diverse is the feed in terms of filetypes? (4) What fraction of samples are
signed? (5) What fraction of samples can be detected as malicious on first scan?
(6) What fraction of malicious samples are fully undetected on first scan? (7)
How diverse is the feed in terms of families? (8) What fraction of samples can
be labeled on first sight?

Fig. 1. Number of daily VT reports
and samples collected.

Fig. 2. Number of samples first seen by
VT on each month. y-axis is in logarithmic
scale.
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Table 3. Daily statistics when collecting all reports (from 2021/11/21 to 2021/12/20).

Mean Median Stdev Max

Reports 1,786,565 1,879,952 482,286 2,492,454

Samples 1,586,750 1,680,520 424,590 2,223,638

New samples 1,092,640 1,120,242 299,645 1,504,174

Volume. Figure 1 shows for each day in the collection period, the number of
reports in the feed, the number of unique samples in the daily reports, and the
number of samples first seen by VT on that day. The figure shows a few gaps
when the collection infrastructure was not working, the longest taking place
between January 11th and February 7th. The volume of reports and hashes
significantly increases once we started collecting samples with no detections. We
compute the daily statistics, excluding days in the collection gaps, split into two
periods: before November 21st, 2021 when we were collecting only reports with
at least one detection, and after that date when we were collecting all reports.
We say that a sample is new only on the first day that it is submitted to VT.
Table 3 shows the daily stats when collecting all reports: the average number of
daily reports is nearly 1.8M, the average number of samples nearly 1.6M, and
the average number of new samples nearly 1.1M. When only collecting reports
with at least one detection the daily averages were 913K reports, 823K samples,
and 580K new samples. Thus, approximately half of the reports (51%), samples
(51%), and new samples (53%) in the feed are for undetected samples.

Takeaway 1
At the end of 2021, the VT file feed had daily averages of 1.8M reports,
1.6M samples, and 1.1M new samples. The VT file feed is a file feed
rather than a malware feed. Half of its volume in terms of reports,
samples, and new samples is for undetected samples.

Freshness. The same sample may appear in the VT file feed multiple times,
e.g., because different users submit it at different times. On average, 69% of the
files observed in one day are new (i.e., previously unknown to VT) and 31%
correspond to re-submissions or re-scans of already known files. Over the one
year analysis period, 89% (209M) of the samples had a VT first seen date later
than our collection start date. This ratio increases over time as every day the
influx of new samples (69%) is larger than that of already seen samples (31%).

The previously seen samples that re-appear in the feed may be fairly recent or
really old. The VT first seen date provides a lower bound for a sample’s lifetime,
i.e., the sample could be older if it took some time for it to be submitted to VT.
The oldest sample observed in our collection period was first seen by VT on May
22nd, 2006. Figure 2 shows the number of samples (in logarithmic scale) whose
VT first seen date is on each month, capturing how old are the samples already
known to VT. The shape of the figure captures the volume increase in samples



162 K. van Liebergen et al.

Table 4. Top 20 filetypes for all samples observed. peexe includes all Windows PE
files (EXE, DLL, CPL, OCX, ...) doc and xls include also docx and xlsx, respectively.
NULL corresponds to samples for which a filetype could not be determined.

# Filetype Samples Perc

1 peexe 155,526,594 65.97%

2 javascript 21,048,404 8.93%

3 html 12,540,571 5.32%

4 pdf 11,346,815 4.81%

5 apk 7,992,206 3.40%

6 text 5,149,050 2.18%

7 NULL 4,128,183 1.75%

8 zip 3,934,987 1.67%

9 dex 3,015,650 1.28%

10 gzip 2,926,739 1.24%

11 lnk 2,718,635 1.15%

# Filetype Samples Perc

12 elf 942,148 0.40%

13 rar 516,514 0.22%

14 jar 448,324 0.19%

15 doc 429,794 0.18%

16 xls 428,057 0.18%

17 macho 409,399 0.17%

18 php 352,143 0.15%

19 xml 335,962 0.14%

20 powershell 321,178 0.14%

Other 1,233,754 0.52%

ALL 235,745,107 100.0%

submitted to VT over time until 2019, followed by a decrease in 2019–2021. The
reduction could be due to some vendors reducing their sharing from 2019.

Takeaway 2

On average, 69% of the samples observed in one day are new, i.e.,
previously unknown to VT, and the feed provides over a million new
samples each day. Thus, the VT file feed is a great source of fresh
samples.

Filetypes. Table 4 shows the top 20 filetypes for all samples observed. The feed is
dominated by Windows PE files (EXE, DLL, OCX, CPL, ...) that correspond to
66% of the samples. Far behind are other filetypes like JavaScript (8.9%), HTML
(5.3%), PDF (4.8%), and Android applications (3.4%). The top 5 filetypes cover
88.4% of all samples. We could not obtain a filetype for 1.7% of samples as they
had no TrID information, no VT filetype-related tags, were not signed, and had
no most meaningful filename with extension. This highlights the lack of a unified
filetype field and the limitation of the tools VT uses for filetype determination.

Ugarte-Pedrero et al. [40] reported that 51% of an AV feed were PE exe-
cutables. The larger VT file feed ratio may be due to users contributing more
frequently PE executables to VT, avoiding other filetypes like HTML or text
files that may contain more private data.

Takeaway 3
Two thirds of feed samples are Windows PE files, but the feed is a
good source of samples for a large variety of filetypes. The feed lacks
a unified filetype field and filetype identification is challenging for a
significant number of samples.
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Code Signing. VT extracts code signatures from multiple filetypes. The col-
lected reports contain 13.3M samples (5.6% of all samples) for which VT
extracted code signing certificates. Of the signed samples, 55.9% are Android
APKs, 43.4% are Windows PE files, and 0.7% are other filetypes such as
Microsoft Installers (.msi) and patches (.msp), Mach-O executables, iOS appli-
cations, Apple image files (.dmg), and some archive formats (e.g., .zip, .cab).
PDF is one popular filetype for which VT does not currently extract signatures.
91.3% of all apk samples, 3.7% peexe, 31.4% msi, and 7.6% macho are signed.
APKs have to be signed in order for the Android OS to install them in a device.
The 8.7% of unsigned APKs is due to apps under development being uploaded
to VT, possibly to check if any AV engine detects them or as part of continuous
delivery pipelines.

Takeaway 4
VT supports the extraction of code signatures for a variety of filetypes,
but only a small fraction (5.6%) of all feed samples, and 3.7% of the
peexe samples, have a code signing signature.

4.1 AV Detections

A common approach for detecting malicious samples is to apply a threshold on
the number of detections in a VT report [44]. We use this approach to quantify
the percentage of malicious samples in the feed. We focus on the last month
when collecting all feed reports. Figure 3 shows the distribution of the number
of AV detections for all reports collected starting 2021/11/21. The figure shows
that 51% of the reports in the last month have no detections and 7% have one
detection. But, there are 9.6M samples with at least 40 detections.

We also examine the number of detections the first time a sample is submitted
to VT. Figure 4 shows the complementary CDF of VT scores for the first report of
each new sample since 2021/11/21. The figure captures the fraction of malicious

Fig. 3. Number of detections distribu-
tion for all reports since 2021/11/19.

Fig. 4. Reverse ECDF for the first report
of each new sample since 2021/11/19.
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samples in the feed depending on the selected detection threshold. 53% of the
samples have zero detections on their first observation. This percentage includes
truly benign programs as well as malicious samples that go fully undetected.
If we set the detection threshold on at least one detection, 47% of the samples
would be considered malicious. If the threshold is set higher to minimize false
positives, that reduces the fraction of malicious samples, e.g., 41% if we set it to
at least four detections as done in several related works [19–21].

Takeaway 5

On first sight, 41% of samples are detected as malicious by at least
4 AV engines, and 47% by at least one AV engine. These malicious
samples share traits with previously seen malware (i.e., match existing
signatures).

Originally FUD Malware. It is possible that a malicious sample is fully unde-
tected when first submitted to VT, but a later report classifies it as malicious.
To detect originally FUD samples, we measure the number of samples that sat-
isfy three conditions: (1) they are first observed by VT during our collection
period; (2) their last report has at least 4 detections; and (3) their first report
had zero detections or their VT first seen date is not in a data collection gap and
is before their first observation. The last condition is a disjunction to address
that we only collected reports with zero detections in the last month. During the
first 11 months we can know if a sample had zero detections in their first scan
because their VT first seen date is in our collection period and happens before
the earliest scan date collected for the sample. The exception are samples first
seen during a collection gap, for which a delayed scan date does not necessarily
imply zero detections on the first scan.

We identify 637K samples satisfying those conditions. However, the time
difference between the first seen date and the first report with at least four
detections, indicates that 37K samples change from zero to at least four detec-
tions within 5 min of their first VT observation. We exclude those 37K samples
as we observe that the distribution stabilizes afterwards (i.e., after 15 min only
an extra 1K samples flip classification).

Thus, we identify 600K originally FUD samples that had no detections on
their first scan, but were later considered malicious by at least 4 AV engines.
Increasing the detection threshold would decrease the percentage, but the detec-
tion rate of a malicious sample tends to increase over time and for 82% of samples
we only have one report. Thus, we believe our FUD rate estimation is conserva-
tive. The median time to flip classification is 7 days, (mean of 23.8 days) with
12% of the samples flipping classification in less than one day.

Of the 600K originally FUD samples, 60% are peexe, followed by 11% pdf,
and 8% javascript. PDFs are more than twice as likely to be FUD than expected
since they comprise only 4.8% of all feed samples. Malicious PDFs typically
contain exploits and are used in spearphishing attacks. These numbers point to
malicious PDFs being harder to detect.



A Deep Dive into the VirusTotal File Feed 165

Takeaway 6
Over the one year analyzed, we identify 600K samples that are origi-
nally FUD, i.e., they have zero detections on the first VT observation,
but later are considered malicious by at least 4 engines. PDF docu-
ments are more likely to be FUD than other filetypes.

4.2 Family Labeling

We obtain a sample’s family by feeding to AvClass the last report of each
sample in our dataset, which should have the most up-to-date labels. AvClass
labels 151.7M (64.3%) of the samples with 74,360 distinct family names. How-
ever, many families output by AvClass are rare. In particular, 41.4K (55.8%)
of all families have only one sample, 14K (19.5%) have at least 10 samples,
4.9K (6.7%) have at least 100 samples, 1.5K (2.1%) have at least 1K samples,
526 (0.7%) have at least 10K samples, 147 families (0.2%) have at least 100K
samples, and only 32 families (0.04%) have at least 1M samples.

Despite more than half of the families having only one sample, the fact that
there are 4.9K families with more than 100 samples shows that the feed is diverse
and is not dominated by a few highly polymorphic families (e.g., file infectors).
However, the diversity is largely due to Windows families. By filetype, the num-
ber of families with more than 100 samples is led by peexe with 3.8K families,
followed far behind by apk (447), html (129), javascript (116), doc (53), macho
(52), xls (47), elf (37), and pdf (15). Thus, by monitoring the feed it is possible
to build datasets with a large number of families for Windows and Android mal-
ware. But, for other filetypes like macho and elf, even after collecting for a year,
we could only obtain 52 and 37 families with at least 100 samples, respectively.

AvClass outputs as family the top-ranked tag that is either a family in the
taxonomy or unknown (i.e., not in the taxonomy). Of the 74,360 families output
by AvClass, 2,391 (3.2%) are in the updated taxonomy, which contains a total
of 2,451 families (i.e., 97.5% of taxonomy families appear in one year of feed
reports). However, the families in the updated taxonomy contribute 90.6% of
the labeled samples, only 9.4% of the samples are labeled with unknown fami-
lies. This indicates that the most popular families are in the updated taxonomy,
which is expected as it is common for analysts like us to add the most popular
previously unknown families to the taxonomy. In fact, of the families with at
least 1M samples, only 3% are unknown, increasing to 15% for families with
100K samples, 43% for those with 1K samples, and 85% for those with 10 sam-
ples. Unknown families can be due to two main reasons. One are tags that it
is unclear if they are a family name or another category such as a behavior
or a file property (e.g., lnkrun, refresh). The other are tags that correspond to
random-looking signature identifiers or family variants (e.g., aapw, dqan). We
manually examine the top 1K families and identify that 89% of the unknown
families correspond to the first case and 11% to the latter. We repeat this check
on 200 randomly sampled unknown families with only one sample and the result
is the opposite: 11% corresponding to the first case and 89% to the latter. Thus,
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Table 5. Peexe top 10 families.

Family Class Samples

FAM:berbew backdoor 19,371,273

FAM:dinwod downloader 9,398,314

FAM:virlock virus 7,921,534

FAM:pajetbin worm 7,164,373

FAM:sivis virus 6,222,693

FAM:lamer virus 4,074,441

FAM:salgorea downloader 3,737,865

FAM:vobfus worm 3,415,996

FAM:drolnux worm 2,858,975

FAM:griptolo worm 2,407,104

Table 6. Apk top 10 families.

Family Class Samples

FAM:smsreg pup 616,406

FAM:ewind pup:adware 430,531

FAM:hiddad pup:adware 219,577

FAM:fakeadblocker pup:adware 82,715

FAM:airpush pup:adware 80,704

FAM:revmob pup:adware 78,495

FAM:dowgin pup:adware 68,522

FAM:dnotua pup 65,330

FAM:kuguo pup:adware 63,262

FAM:mobidash pup:adware 40,016

Table 7. Elf top 10 families.

Family Class Samples

FAM:xorddos ddos 287,631

FAM:mirai backoor 163,525

FAM:gafgyt backoor 59,348

FAM:tsunami backoor 3,381

FAM:hajime downloader 2,499

FAM:mozi backdoor 1,996

FAM:setag backdoor 1,454

FAM:dofloo backdoor 890

FAM:fakecop pup 805

FAM:ladvix virus 580

Table 8. Mach-O top 10 families.

Family Class Samples

FAM:flashback downloader 33,087

FAM:mackontrol backdoor 15,459

FAM:mackeeper pup 15,017

FAM:evilquest ransomware 7,070

FAM:cimpli pup:adware 5,444

FAM:gt32supportgeeks pup 3,453

FAM:genieo pup:adware 3,339

FAM:bundlore pup:adware 3,142

FAM:installcore pup:adware 1,543

UNK:fplayer pup:adware 905

Table 9. Macros (doc & xls) top 10 families.

Family Class Samples

FAM:emotet infosteal 26,430

UNK:sneaky downloader 23,521

FAM:qbot downloader 22,416

FAM:squirrelwaffle downloader 18,230

FAM:valyria downloader 16,256

FAM:sagent downloader 13,298

FAM:zloader downloader 12,371

FAM:sload downloader 10,923

UNK:encdoc downloader 5,703

FAM:thus virus 4,917

Table 10. Javascript top 10 families.

Family Class Samples

FAM:faceliker clicker 2,288,894

FAM:facelike – 952,180

FAM:coinhive miner 766,087

FAM:cryxos – 744,894

FAM:smsreg pup 415,669

UNK:gnaeus – 400,570

FAM:fakejquery downloader 330,792

UNK:hidelink – 210,306

UNK:agentwdcr – 87,101

FAM:inor downloader 83,694

for less prevalent families AvClass may output a name that corresponds to a
signature identifier or variant. While those random-looking names are not very
descriptive for analysts, they are still valid cluster identifiers, i.e., samples with
the same name should belong to the same family. Based on the above, we esti-
mate that over the whole year a total of 33.8K (41.4K * 0.11 + 32.9K * 0.89)
families of all filetypes have been observed in the feed.

We also obtain the family using the first report for samples first seen during
our monitoring period. AvClass is able to label on first sight 62.3% of samples,
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Table 11. Html top 10 families.

Family Class Samples

UNK:refresh – 882,026

FAM:cryxos – 363,821

FAM:faceliker clicker 312,563

FAM:smsreg pup 201,253

UNK:redir – 200,926

FAM:coinhive miner 152,968

UNK:generickdz – 121,975

UNK:pushnotif – 120,085

FAM:ramnit virus 80,044

UNK:fklr rogueware 79,353

Table 12. Pdf top 10 families.

Family Class Samples

UNK:fakeauthent phishing 194,963

UNK:minerva phishing 15,527

FAM:pdfka exploit 13,618

UNK:pidief exploit 6,319

FAM:alien downloader 6,137

UNK:gorilla phishing 4,749

UNK:talu phishing 2,379

UNK:gerphish phishing 1,558

UNK:urlmal phishing 1,469

FAM:rozena backdoor 839

slightly less than the 64.3% using the last collected report. The fact that 62%
of samples can be attributed on first sight to a family indicates they correspond
to variants of known families with accurate signatures. This result shows that
AvClass can be used during triage as a filter to remove 62% of samples from
well-detected families so that analysts can focus on the 38% unlabeled samples.

Prior work has applied AvClass to peexe, apk, and elf files (e.g., [12,36]).
However, AvClass can be applied on AV labels regardless of platform or filetype.
Tables 5, 6, 7 and 8 show the top 10 families for the four executable filetypes.
The largest families overall are for Windows led by berbew with 19.4M samples,
followed by dinwod (9.4M), and virlock (7.9M). We use AvClass to output a
relations file on the whole feed. We identify a family’s class checking the strongest
CLASS relation for each family with a strength of at least 0.2. The top 10
peexe families are dominated by 4 worm and 3 virus families due to their high
polymorphism. However, as already discussed, overall the feed is not dominated
by file infectors and worms. For Android, the top 10 families are all PUP and 8 of
them are adware. The top Linux families are dominated by backdoors including
mirai derivatives (gafgyt, hajime, mozi). For macOS, seven top families are PUP
and five of those adware. Table 9 shows the top 10 families for Microsoft Office
macros including both Word and Excel files. Malicious macros are dominated by
downloaders. Tables 10, 11 to 12 show the top families for three other popular
filetypes (JavaScript, HTML, PDF) for which we observe that top families output
by AvClass contain many unknown tokens that may correspond instead to other
categories (e.g., redir may indicate injections that redirect the user). We also
observe overlaps between JavaScript and HTML families (e.g., cryxos, facelike)
and that for 9/30 families we cannot identify a class. We conclude that for these
three filetypes the concept of a family is not as well defined and that AV labels
for these filetypes capture instead behaviors such as phishing, injections, and
exploitation.
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Table 13. Top 10 families (>10K samples)
sorted by ratio of originally FUD samples.

FUD

Family Class Type Samp. Ratio

pcacceleratepro pup peexe 1,749 9.5%

sagent down. macro 2,141 9.3%

dstudio down. peexe 1,255 6.2%

pasnaino down. peexe 613 5.9%

opensupdater pup peexe 2,051 4.8%

mobtes down. apk 967 4.6%

hesv pup peexe 849 4.4%

asacub infosteal apk 833 4.1%

agentino down. peexe 649 4.0%

fakecop pup apk 672 3.6%

Table 14. Top 10 families for
feed samples in the telemetry
ranked by number of infected
devices.

Family Class Dev. Samp.

winactivator pup 2.0M 10,871

utorrent pup 1.6M 1,366

installcore pup 1.5M 46,758

webcompanion pup 1.4M 2,569

dotsetupio pup 1.1M 198

iobit pup 898K 4,321

opensupdater pup 692K 14,918

opencandy pup 579K 9,346

offercore pup 555K 363

driverreviver pup 545K 615

Takeaway 7
The feed is diverse. Over one year, 33K families are observed with
4.9K families having at least 100 samples. However, the diversity is
largely due to peexe and apk families. For those two filetypes, the feed
is a good source to build datasets for large-scale family classification.
AvClass labels 62% of samples on first sight. Thus, it can be used in
triage to remove samples from well-detected families so that analysts
can focus on the 38% unlabeled samples.

Originally FUD Families. Using their last report, AvClass outputs a family
for 62.5% of the 600K originally FUD samples, which is in line with the overall
labeling rate, indicating a similar fraction of well-known families among origi-
nally FUD samples. However, some families have larger fractions of originally
FUD samples, and thus are harder to detect. Table 13 shows the top 10 families
with at least 10K samples sorted by the ratio of originally FUD samples over
all family samples. These include 6 families for Windows, 3 for Android, and
one family of Microsoft Office macros. All of them have FUD ratios 6–16 times
higher than the 0.59% average over all families with at least 10K samples.

5 Comparison with Telemetry

This section compares the VT file feed with the AV telemetry. We compare
the total volume and percentage of malicious files, compute the intersection
of malicious files, examine the family distribution, and measure which dataset
observes malicious files faster.

Total and Malicious Volume. We first compare the total volume of both
datasets over the one month when we were collecting all VT reports. Over that
month, the VT file feed contains reports for 39.8M samples, while the telemetry
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contains events for 686.5M samples. Both numbers include all samples observed
over that month in each dataset, regardless of the filetype, if the samples are old
or new, and whether they are benign or malicious. Thus, the telemetry volume
is 17 times larger than the VT file feed volume. The AV vendor has other file
datasets available beyond the Windows telemetry (e.g., Android telemetry), thus
its total file volume is even larger.

Over that month, the AV engine threw alerts for 1.9M malicious files in 905K
devices, 0.3% of all samples seen in the telemetry over that month. In comparison,
the VT file feed contains 14.8M samples with at least four detections (37.3%)
and 17.5M with at least one detection (43.9%). Thus, the ratio of malicious files
in the VT feed is 126–146 times larger than in the telemetry. This is likely due to
two reasons. First, prior work has shown that AV telemetry is largely dominated
by rare benign files, i.e., 94% of files in AV telemetry are observed only in one
device and the ratio of benign to malicious such files is 80:1 [23]. Second, the
VT file feed is likely biased towards malicious samples, as VT contributors may
only submit suspicious samples to be analyzed, while avoiding to submit samples
known to be benign.

Over the whole year, the AV engine detected 12.9M files as malicious. In com-
parison, the VT file feed contains 187.0M samples with at least four detections
and 212.2M with at least one detection. Thus, over the course of the year the
VT file feed observes 16–17 times more malicious files. Of the 12.9M detected
files in the telemetry, 5.2M (40.3%) have extensions corresponding to peexe files
(.exe, .dll, .sys, .cpx, .ocl, .scr), followed by .tmp temporary files (17.8%) and
.lnk link files (9.7%).

Takeaway 8
While massive, the total VT file feed volume is 17 times lower than the
Windows telemetry of a AV vendor. However, despite the much lower
volume, the VT file feed contains 16–17 times more malware than the
telemetry, making it a great source of malicious samples.

Intersection. We compute the intersection between both datasets over the
whole year. Given the massive size of the telemetry (i.e., > 108 events), to make
the query scale, we focus the intersection on malicious peexe files and ignore
other filetypes and benign executables. Thus, we query the telemetry using the
151.7M peexe file hashes from the VT file feed with at least one detection. For
each file hash found in the telemetry, we collect the anonymized identifiers of the
devices where it was observed and the telemetry first seen time, i.e., the earliest
time, within our collection period, a feed sample was queried by an endpoint to
obtain its reputation.

The intersection contains 3.8M samples with at least one detection (1.8% of
feed samples with one detection) and 2.2M (1.2%) with at least four detections.
The small intersection indicates that the telemetry and the VT file feed observe
largely disjoint sets of malicious samples. Prior work has observed that public
and commercial threat intelligence feeds have small overlap [9,41]. However,
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those works focus on IP addresses [41] or work on APT-focused commercial TI
feeds [9]. As far as we know, no prior work has checked the overlap between
large (malicious) file hashes datasets. Our results show that even the largest
(malicious) file hashes datasets are largely disjoint with minimal overlap. This
is likely caused by a huge space of malicious samples of which each vendor only
sees a small portion.

Of the 12.9M files detected as malicious by the AV vendor over the year,
11.9M (92.2%) are not observed in the VT file feed. These files are either never
submitted to VT or their last VT report was before our collection start. Quanti-
fying this requires querying the 11.9M files to VT which due to API restrictions
is not possible. Instead, we estimate these figures by querying a subset of 1M
randomly selected hashes. Only 10.9% of those are known to VT, while 89.1%
have never been submitted. This shows that security vendors may only share a
fraction of their malicious samples with VT. Sharing decisions by the AV vendor
are transparent to us.

Takeaway 9
The telemetry and VT file feed observe largely disjoint sets of mali-
cious samples (1.2%–1.8% of feed samples in common). Thus, even
the largest file datasets only see a small portion of the whole space of
malicious samples.

Family Distribution. Table 14 shows the top 10 families in the intersection
sorted by number of telemetry devices where the samples of the family are
observed. All these families are PUP. Instead, when we ranked families by num-
ber of samples observed in the VT file feed (peexe families in Table 5), the top
families were dominated by virus and worm families. From the top 10 VT file
feed families by number of samples, vobfus and virlock are the two families that
affect most devices in the telemetry found on 25.9K and 3.3K devices, respec-
tively, 1–2 orders of magnitude less devices than the families in Table 14. The
remaining 8 families are ranked below the 1,000th position affecting each less
than 2K devices. These results indicate that the top families in the VT file
feed, i.e., those with the most samples submitted by contributors, may be biased
towards highly-polymorphic families such as viruses and worms and may not
correspond to the families that affect most user devices, which according to the
telemetry are PUP families.

Takeaway 10
The top families by number of samples collected is biased towards
highly polymorphic families such as viruses and worms, and may sig-
nificantly differ from the top families by number of infected devices.

Observation Delay. The telemetry first seen timestamp for a sample, i.e.,
the earliest time within our collection period a feed sample was queried by an
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endpoint, is an upper bound on the earliest time the AV vendor observed the
sample. For example, a sample first seen by the AV vendor in 2010 may appear
in the telemetry subset we analyze as first queried on December 22nd, 2020.
We calculate the delay to observe a sample as the VT first seen timestamp
minus the telemetry first seen timestamp, but only for the 2.1M samples first
observed by VT during our analysis period and that are in the intersection with
the telemetry. Of those 2.1M samples, 2.5M (61%) are first observed by the
telemetry (i.e., positive difference) while 816K (39%) are first observed by VT
(i.e., negative difference). The median delay for VT to observe the sample is 4.4 h.
Thus, real devices observe the sample a few hours earlier than VT. However, the
mean delay is 21 days because 12% of these samples are first submitted to VT
at least 3 months after they appear in the telemetry, compared to 3% being
observed by VT 3 months earlier than in the telemetry. It is important to note
that since the telemetry first seen is an upper bound for the AV vendor first
seen, the VT delay may be actually larger.

Takeaway 11
Malicious samples are first seen a median of 4.4 hours earlier in the
telemetry. Still, 39% of samples are first seen by VT before they are
first seen in user devices. Thus, VT may provide useful early alerts to
AV vendors.

6 Discussion

The section discusses the implications of our results for future works, limitations,
threats to validity, and avenues for improvement.

Result Implications. Our results have implications for researchers analyzing
the malware ecosystem. We show that the most popular Windows families widely
differ between the VT file feed and the AV telemetry. Top families in the feed
correspond to highly polymorphic malware such as viruses and worms. In con-
trast, families affecting most user devices are PUP. Thus, the most popular feed
families may not be those that impact end users most, but rather those for
which samples are easier to collect (e.g., due to their many polymorphic vari-
ants). Focusing only on the top feed families might ignore popular families that
affect many user devices. Those families are also found in the VT file feed, but
with lower volumes, so researchers may need to dive deeper into the feed beyond
the top families.

Our results have implications for researchers that need to build malware
datasets for ML approaches. The VT file feed is a great source for malware (and
also benign) files, due to its large volume, filetype diversity, and freshness of
samples. However, the diversity largely centers on Windows and to a smaller
degree Android samples. For other platforms, even collecting samples for one
year, would only provide a handful of families with at least 100 samples (e.g.,
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52 for Mac OS and 37 for Linux), which we consider the minimum for training,
validating, and testing ML family classification models.

Our results have implications for researchers building detection models on
the VT file feed. Pendlebury et al. [28] argued that the goodware/malware ratio
expected in ML testing datasets should be matched when training the model.
They measured this ratio was 90/10 for AndroZoo [2]. Previous work has also
shown that this ratio is roughly 99/1 in AV telemetry [23]. In contrast, we
observe a ratio of nearly 50/50 for the VT file feed, indicating VT users are
more likely to submit malicious samples. Accounting for this ratio is important
for applying ML models on the VT file feed. To avoid temporal bias, Pendlebury
et al. [28] also recommend that samples in the testing dataset have timestamps
larger than any sample in the training dataset and that in every testing slot, all
samples come from the same time window. For the VT file feed, this separation
should use the VT first seen date because we show that 31% of the daily samples
are re-submissions of older samples which may break these properties.

While the dynamics of detections labels have been studied before [8,44], our
work is the first one that can analyze them on samples that are not selected apri-
ori and re-scanned daily by the authors. This allows us to identify 600K originally
FUD samples that initially escaped detection until multiple AV vendors realized
their maliciousness a median of 7 days later (mean of 23.8 days). This raises the
question of how many other malicious files may remain undetected in the feed.

Data Collection Issues. Longitudinal analyses often face unexpected data
collection issues that create gaps in the temporal data sequence. Such issues
prevented us from collecting VT reports on 39 days, most notably over 27 days
between January 11th and February 7th, 2022. Thus, our dataset contains data
for 326 days, rather than a whole year. We account for these gaps throughout
the measurements, e.g., we do not provide yearly volume statistics, but provide
daily statistics that exclude data gaps.

AV Telemetry Comparison. Our work shows that the VT file feed has little
overlap with the telemetry of a large AV vendor and that the most popular
families largely differ in both datasets. Results could differ for the telemetry of
other AV vendors. However, we believe this is unlikely given the large size of
both datasets. Furthermore, our results match those observed in smaller APT-
focused file datasets [9] and in datasets of other malicious indicators such as
IP addresses [41]. We believe the different results in this area indicate that
feeds (even those that aggregate data from multiple other feeds) achieve limited
coverage of indicators, thus highlighting the need for further aggregation and
cooperation. It would be interesting to examine whether different AV vendors
observe very different top malware families as well, but getting access to the
telemetry of multiple AV vendors is challenging.

Family Labeling. Our malware labeling is based on AV labels processed by
AvClass. Thus, it inherits the limitations of both the AV labels and the tool.
For example, our results show that AV labels for document filetypes such as
HTML and PDF often contain behaviors rather than family names. If the AV
labels do not contain a family name, possibly because the AV vendors do not
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have a good definition of family for those filetypes, then AvClass cannot output
a family. There are also cases where AvClass identifies as a family a token that
is not a family (e.g., looks randomly generated). These may be due to new AV
engines or changes to AV label format since AvClass was released. We will
report them to the developers so that they can be addressed.

Filetype Identification. VT reports lack a unified filetype field. Instead, they
provide the output of different filetype identification tools, which may not agree.
To handle disagreements and minimize the number of samples without a filetype,
we combine multiple filetype-related fields in the VT reports. Still, we cannot
infer the filetype for 1.75% of samples indicating that further research on file-
type identification is needed. Furthermore, filetype identification tools should
output hierarchical filetypes allowing users to aggregate results as they prefer.
For example, a DLL is also a PE executable and an APK is also a ZIP archive.
Whether to count DLLs and APKs as their own filetypes or as part of their
parent filetypes should be up to the user.

7 Related Work

Most related is the work by Ugarte-Pedrero et al. [40] that analyzes 172K PE
executables that a large AV vendor collects through multiple sources on one day.
In contrast, we examine one year of a file feed with 235M samples of multiple
filetypes and compare it to the telemetry of a large AV vendor. Other works
have performed large scale longitudinal malware analysis on Windows [7,22],
Android [24,38], and Linux [3,12]. In contrast, our work examines malware for
multiple platforms including Windows, Android, Linux, macOS, Microsoft Office
macros, PDF documents, and Web content.

Detection labels such as those available in VT reports have been widely
studied. Early works showed how different AV engines disagree on labels for
the same sample [5,11]. Still, AV labels have been widely used to build training
datasets and evaluate malware detection and clustering approaches (e.g., [5,6,
30]). Recent works have examined the dynamics of detection labels [8,44] and
have proposed to replace the traditional threshold-based detection approach on
the number of detections, which we use in this paper, with machine-learning
models [34,39]. We plan to explore these approaches in future work.

8 Conclusions

We have characterized the VirusTotal file feed by analyzing 328M reports for
235M samples collected during one year, and have compared the feed with the
telemetry of a large AV vendor. Among others, we show that despite having
a volume 17 times lower than the AV telemetry, the VT file feed observes 8
times more malware. The feed is fresh with 69% of daily samples being new
and samples appear a median of 4.4 h after they are seen in user devices. The
feed is diverse containing 4.9K families with at least 100 samples. However, the
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diversity largely focuses on Windows and Android families. The AV telemetry
and VT file feed observe largely disjoint sets of malicious samples (1.2%–1.8%
overlap). We identify 600K originally FUD samples that have no detections on
first scan, but are later considered malicious by at least 4 AV engines.
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