
Honey, I Chunked the Passwords:
Generating Semantic Honeywords

Resistant to Targeted Attacks Using
Pre-trained Language Models

Fangyi Yu(B) and Miguel Vargas Martin(B)

Ontario Tech University, Oshawa, ON L1G 0C5, Canada
{fangyi.yu,miguel.martin}@ontariotechu.ca

Abstract. Honeywords are fictitious passwords inserted into databases
in order to identify password breaches. The major challenge is produc-
ing honeywords that are difficult to distinguish from real passwords.
Although the generation of honeywords has been widely investigated in
the past, the majority of existing research assumes attackers have no
knowledge of the users. These honeyword generating techniques (HGTs)
may utterly fail if attackers exploit users’ personal identifiable informa-
tion (PII) and the real passwords include users’ PII. The literature has
demonstrated that password guessing is more effective when focusing
on each of the chunks that compose a password (e.g., “P@ssword123”
contains two chunks: “P@ssword” and “123”) and it has been suggested
that, when available, PII should be used to generate honeywords. We
thus leverage these findings to base our HGT method on any possible
PII contained within passwords, and introduce a new, and more robust
than its literature counterparts, method to generate honeywords, which
consists of generating honeywords with GPT-3 using the semantic chunks
of their corresponding real passwords.

Furthermore, we propose a new metric, HWSimilarity, to evaluate the
capability of HGTs. HWSimilarity is a pre-trained language model-based
similarity metric that considers the semantic meaning of passwords when
measuring the indistinguishability of honeywords and their counterparts.
Comparing our chunk-level GPT-3 HGT to two state-of-the-art HGTs
and using GPT-3 alone, we show that our HGT can generate honeywords
that are more indistinguishable than its counterparts.

Keywords: authentication · chunking · honeywords · natural
language processing · language models

1 Introduction

Passwords have dominated the authentication system for decades, despite their
security flaws compared to competing techniques such as cognitive authentica-
tion [12], biometrics [20] and tokens [22]. Their irreplaceability is primarily due
to their incomparable deployability and usability [3]. However, current password-
based authentication systems store sensitive password files that make them ideal
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Gruss et al. (Eds.): DIMVA 2023, LNCS 13959, pp. 89–108, 2023.
https://doi.org/10.1007/978-3-031-35504-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35504-2_5&domain=pdf
http://orcid.org/0000-0002-6461-5720
http://orcid.org/0000-0001-8169-6836
https://doi.org/10.1007/978-3-031-35504-2_5

90 F. Yu and M. V. Martin

targets for attackers because if successfully obtained and cracked (recovering
the hashed passwords’ plain-text representations), an adversary may imperson-
ate registered users in an undetectable fashion [26]. Numerous prestigious online
services have been infiltrated, for example, Yahoo!, RockYou, Zynga, resulting
in the exposure of millions of credentials. Unfortunately, there is often a large
delay between a credential database’s breach and its detection; estimates place
the average latency at 287 days [1]. The resulting window of vulnerability enables
attackers to crack passwords offline and use them directly to extract value or sell
them via illicit forums profiting with stolen credentials [25]. Normally, the longer
it takes to detect and remediate a data breach, the more expensive it is [1]. As
a result, it is vital to have active, timely password-breach detection systems in
place to allow immediate counter-actions.

One way to reduce the cost of password breaches is to make offline guessing
harder [5]. However, this method has major disadvantages, such as low scalability
or a need for large modifications to the server-side and client-side authentica-
tion systems, which prevent the community from implementing them. Another
promising approach is to shorten the latency between password breaches and
detection. Juels and Rivest suggest the use of honeywords as a potential method
for efficiently detecting password leaks [13]. According to their proposal, a web-
site could store decoy passwords, called honeywords, alongside real passwords
in its credential database, so that even if an attacker steals and reverts the
password file containing the users’ hashed passwords, they must still choose a
real password from a set of k distinct sweetwords, where a real password and
its associated honeywords are referred to as sweetwords. The attacker’s use of
a honeyword could cause the website to become aware of the breach. Notably,
honeywords are only beneficial if they are difficult to distinguish from real-world
passwords; otherwise, a knowledgeable attacker may be able to recognize them
and compromise their security. Thus, when implementing this security feature
into current authentication systems, the honeyword generating process is critical.

1.1 Honeywords for Targeted Attacks

The biggest challenge of designing a HGT is to generate honeywords that are
resistant to targeted attacks [28]. For targeted attacks, attackers exploit users’
PII to guess passwords, which increases the likelihood of users’ accounts being
compromised. This is a critical problem because numerous PII and passwords
become widely accessible as a result of ongoing data breaches [1] and people are
used to create easy-to-remember passwords using their names, birthdays, and
their variants [28]. Once an attacker obtains users’ PII, and if only one sweet-
word in a user’s sweetword list contains the user’s PII, it is highly likely that this
sweetword is the real password and others are fake. For example, for a sweet-
word list “gaby1124, abg71993, australiaisno#1, 10L026378, noviembre9101,
Elena1986@327, cken22305” which are generated using a made-up password
“Elena1986@327” (suppose this is the real password) and the HGT proposed
by Dionysiou et al. [9]. In this case, if the attacker has no information about the
user, it will be difficult to determine which of the seven sweetwords is the real

Honey, I Chunked the Passwords 91

password, since all of the honeywords are from data breaches and are legitimate
passwords belonging to other users. However, if the attacker knows the user’s first
name is “Elena”, it is quite straightforward to deduce that “Elena1986@327” is
this user’s real password and all the others are fake.

Table 1. Data breaches containing PII and passwords in the past five years

Dataset Number of Items Year Type of PII breached

Neiman Marcus 4,800,000 2021 Name, Encrypted Password, Security questions, Financial information

CAM4 10,880,000,000 2020 Name, Email, Encrypted Password, Chat transcripts, IP, Payment logs

Canva 137,000,000 2019 Name, Email, Encrypted Password

Quora 100,000,000 2018 Name, Email, Encrypted Password, Questions and answers posted

Yahoo 3,000,000,000 2017 Name, Email, Encrypted Password, DoB, Security question and answer

Following the introduction of the honeywords security mechanism by Juels
and Rivest [13], the academic community has been actively exploring the tech-
nique. However, to our knowledge, only Wang et al. [29] concentrated on the pro-
duction of honeywords in a targeted manner. All other works make the invalid
assumption that attackers have no knowledge about the users. Each year, as
demonstrated in Table 1, billions of password datasets including PII are leaked.
Attackers might use the PII to determine which sweetword is the real pass-
word. If none of the sweetwords include PII existing in the password breach, the
attackers may still create a knowledge map for each user by searching their infor-
mation purposefully through social media and search engines using the known
PII exposed in data breaches. This is especially a concern if the user is a pub-
lic figure. Compromised accounts may have substantial financial, political, and
societal consequences.

1.2 Related Work

Numerous studies have been conducted on the non-targeted honeyword genera-
tion method. The majority of these HGTs fall into two categories: chaffing-by-
tweaking and chaffing-with-a-password-model. Chaffing-by-tweaking is mostly
based on the substitution of random letters, digits, and symbols. For instance,
given the real password “deshaun96”, we could get honeywords “deshaun87,
deshAUn66, DesHaun56” via tweaking. However, as Wang et al. [26] demon-
strate, this strategy is indeed vulnerable. While honeywords generated using the
chaffing-with-a-password-model approach are more resistant to attacks, they do
have certain drawbacks. Bojinov et al. [2] proposed Kamouflage, which first tok-
enizes the user’s real passwords into a collection of tokens, and then substitutes
each token with a random one that matches the token’s type. For instance,
“jones34monkey” is tokenized as “l5d2l6” (a five-letter word followed by two
digits and a six-letter word), indicating that some possible honeywords are
“apple10laptop, tired93braces, hills28highly”. This technique, as outlined in
[9], demands considerable modifications on the client-side authentication sys-
tem, which has a significant impact on usability. Additionally, it is incapable of

92 F. Yu and M. V. Martin

generating honeywords of varying length or structure, thus limiting the spectrum
of possible honeywords.

Yu et al. [36] proposed to generate honeywords using a password-guessing
model [34], which is based on an enhanced Generative Adversarial Network.
They evaluated their HGT quantitatively and qualitatively, demonstrating that
their HGT could generate honeywords more resistant to trawling attacks than
other state-of-the-art HGTs.

For targeted honeyword generation, the challenge is to split the real pass-
word into tokens while retaining tokens that correspond to PII and replacing
tokens that do not correspond to PII with random ones. Consider the real pass-
word ‘Elena1986@327”, the challenge is to produce honeywords containing the
token“Elena”, which is the user’s first name as indicated by her email address. To
do this, we propose to employ a chunking algorithm [32] to divide passwords into
semantic chunks consisting of frequently occurring sequences of related charac-
ters, and a pre-trained generative model [4] to create desired honeywords based
on the semantic chunks retrieved from the chunking step.

1.3 Our Contribution

– We are the first to use generative language models to create honeywords that
are robust to targeted attacks. We propose a novel HGT, termed Chunk-
GPT3 1 which generates honeywords by segmenting passwords into semantic
chunks and then instructing GPT-3 to construct honeywords containing the
given semantic chunks. Without being trained on real passwords, the off-the-
shelf GPT-3 model could generate high-quality honeywords that are more
indistinguishable from literature counterparts, and thus are more robust to
targeted attacks. Furthermore, unlike HGTs from the literature, our model
makes no assumptions as to the PII an attacker may use to tell apart honey-
words from the real password.

– We are the first to take semantic meaning into consideration to evaluate
HGTs. We propose HWSimilarity, for measuring an HGT’s capabilities.
HWSimilarity employs a pre-trained language model MPNet [23] to encode
sweetwords into vectors, and then calculates the cosine similarity between
each honeyword vector and its real password vector, taking into considera-
tion the semantics of each sweetword.

– We evaluated the capabilities of Chunk-GPT3 and two state-of-the-art HGTs
and demonstrated that Chunk-GPT3-generated honeywords are significantly
more similar to their real passwords, making them more difficult to differen-
tiate regardless of what PII is available in a targeted attack.

The remainder of the paper is structured as follows: Sect. 2 provides the
preliminaries for understanding our work. Section 3 introduces our approach to
generating honeywords in a targeted manner. Section 4 evaluates our HGT and
other two approaches. Section 5 discusses the limitations of our work and future
directions. Section 6 concludes our work.
1 Source code: https://github.com/HumanMachineLab/Chunk-GPT3.

https://github.com/HumanMachineLab/Chunk-GPT3

Honey, I Chunked the Passwords 93

2 Preliminaries

In this section, we explain the honeyword generation mechanism and datasets
used in this paper.

2.1 The Honeyword Mechanism

Fig. 1. Password (PW) authentication with honeywords.

Juels and Rivest [13] are the first to introduce the honeyword concept to detect
password breaches. The honeyword system is comprised of four entities, as
shown in Fig 1 [29]: a user Ui, an authentication server S, a honeychecker,
and an attacker A. User Ui initially registers an account(IDi, PWi) on the
server S. Apart from the standard user registration processes, S runs a com-
mand GEN(k, PWi) to produce a list of k − 1 unique fake passwords (called
honeywords) to be stored alongside Ui’s true password PWi, where k = 20 as
recommended in [13]. PWi and its k − 1 honeywords are referred to as k sweet-
words.

2.2 Threat Model

Honeyword-enabled systems could reliably identify a password file leak by pairing
each user’s account with k − 1 honeywords. The reason for this is that even if
attackers obtain a copy of the password file along with its hashing parameters and
salts, and successfully recover all the passwords via brute-force or other password
guessing techniques [17,30] (be aware that at this stage they know which k
sweetwords are associated with each user), they must first distinguish each user’s
true password from these k sweetwords. The system features honeychecker to
aid in the usage of honeywords, and the computer system could interact with the
honeychecker whenever a login attempt is made or users change their passwords.
Additionally, the honeychecker is capable of triggering an alert if an anomaly is

94 F. Yu and M. V. Martin

discovered. The warning signal may be sent to an administrator or to a third
party [13]. This approach is compatible with existing authentication systems
since it needs little adjustments to the server-side systems and no alterations to
the client-side systems; nevertheless, it is very reliable due to the high probability
of capturing adversaries. For instance, if the likelihood of an attacker selecting
each sweetword is uniform, the probability of capturing an attacker is 3/4 = 75%
for k = 4, and thus the probability grows as k increases.

Our HGT is designed based on the assumption that attackers have complete
knowledge of users’ PII, and our technique including the specifics (the following
mentioned prompt and temperature). As described in Sect. 5, we ensure that our
honeyword generation process is irreversible even when attackers have all of the
aforementioned information.

2.3 Dataset

This section introduces the password dataset (termed 4iQ) we used in this paper
and password selection process. 4iQ contains a leaked compilation of various
password breaches over time and was first discovered in the Dark Web2 in Decem-
ber 2017. The dataset consists of 1.4 billion email-password pairs, with 1.1 billion
unique emails and 463 million unique passwords. Duplicate email-password pairs
were removed by an unknown curator. The listed leaks are from websites such
as Canva, Chegg, Dropbox, LinkedIn, Yahoo!, etc. We eliminated the suffix of
each email address and only use the prefix as usernames for simplification.

To acquire legitimate passwords, we excluded those that are too short or too
lengthy, with fewer than 8 characters or more than 32 characters, respectively
[27], resulting in 28,492 username-password pairs. Such short strings are not
permitted by most authentication systems [24], and such lengthy strings are
unlikely created by users or password managers owing to their default settings
of 12, 16 or 20 characters (LastPass, 1Password and Dashlane) [32]. We further
calculated the strength of each password using zxcvbn [31], and found that 24,661
passwords have a zxcvbn score of 4, 2706 passwords have a zxcvbn score of 3, 277
and 3 passwords have a zxcvbn score of 1 and 0, respectively.

To compare HGTs’ capability on various password strengths, we constructed
two sets of username-password combinations depending on the computed zxcvbn
password strength. One zxcvbn-weak set with 1000 username-password pairs
whose passwords have the lowest zxcvbn score, and one zxcvbn-strong set with
1000 username-password pairings whose passwords have the highest strength
zxcvbn score. Note that all passwords in the zxcvbn-strong set have a zxcvbn
score of 4, and the zxcvbn-weak set has passwords with score ranging from 0
to 2. We further analyzed and compared the chunks in the two sets and generated
honeywords for both sets with our proposed method and two other HGTs.

2 1.4 Billion Clear Text Credentials Discovered in a Single Database: https://mediu
m.com/4iqdelvedeep/1-4-billion-clear-text-credentials-discovered-in-a-single-datab
ase-3131d0a1ae14.

https://medium.com/4iqdelvedeep/1-4-billion-clear-text-credentials-discovered-in-a-single-database-3131d0a1ae14
https://medium.com/4iqdelvedeep/1-4-billion-clear-text-credentials-discovered-in-a-single-database-3131d0a1ae14
https://medium.com/4iqdelvedeep/1-4-billion-clear-text-credentials-discovered-in-a-single-database-3131d0a1ae14

Honey, I Chunked the Passwords 95

3 Our Methodology

To preserve the PII in honeywords, it is necessary to segment passwords into
chunks in which the PII is included. The chunks can then be used as inputs for
a generative language model to produce honeywords that retain the PII while
altering the real passwords.

3.1 PII Extraction

PII is rarely a single character. Instead, most PII, such as usernames, birthdays,
anniversaries, and pet names carry some semantics. Semantic chunks in pass-
words may or may not constitute PII, but if users construct passwords including
semantic chunks, they risk exposing PII. In order to extract PII from users’ real
passwords, we first segment the real passwords into semantic chunks using the
password-specific segmentation technique PwdSegment [32]. PwdSegment con-
ceptually trains a Byte-Pair-Encoding (BPE) for producing chunk vocabularies
using training data of plain-text passwords. The BPE algorithm, which was ini-
tially proposed in 1994 as a data compression technique, is widely used in the
NLP domain for subword segmentation (e.g., the GPT-2 model [18] proposed
by OpenAI and the RoBERTa model [16] proposed by Meta), which preserves
the frequent words while dividing the rare ones into multiple units. PwdSegment
enhances the BPE technique by substituting the number of merging operations
with the configurable parameter average length (avg len) of chunk vocabulary.
PwdSegment counts all character pairs and terminates the merging operation
when the avg len of the resultant chunk vocabulary equals or exceeds the thresh-
old length. PwdSegment could be parameterized with a threshold avg len to
control the segmentation result with varied granularity more simply where a
longer avg len yields a more coarse-grained result.

The PwdSegment algorithm is first trained using a plain-text corpus. Then
it repeatedly merges the most common pair of tokens into a single, new (i.e.,
previously unseen) token comprising the subword (i.e. chunk) vocabulary. Every
merging procedure generates a new chunk by exchanging the most common pair
of letters or character sequences (for example, “r”, “d”) with a new subword (for
example, “rd”). The merging procedure is repeated until avg len of the resultant
chunk vocabulary equals or exceeds a pre-determined threshold length.

3.2 Chunk Analysis for zxcvbn-weak and zxcvbn-strong Password
Sets

Difference of Chunk Numbers. We segment passwords into chunks for both
zxcvbn-weak and zxcvbn-strong password sets using the PwdSegment algorithm.
As shown in Fig 2, most passwords in the zxcvbn-strong set contain four to seven
chunks, whereas most passwords in the zxcvbn-weak passwords only contain
two or three chunks. This suggests that stronger passwords (based on zxcvbn)
typically contain more chunks than weak passwords.

96 F. Yu and M. V. Martin

3 11

88

162 162 163

282

71
30 16 7 4 17

485

354

97

41
9 5 2

1 2 3 4 5 6 7 8 9 10 11 12 13

Fr
eq

ue
nc

y

Number of Chunks

zxcvbn-strong

zxcvbn-weak

Fig. 2. The comparison of password chunk numbers in zxcvbn-weak and zxcvbn-strong
sets.

Difference of Common Chunk Frequencies. To further investigate the
differences between zxcvbn-strong password set and zxcvbn-weak password
set, we list all chunks in both sets and visualize the result in Fig 3, from
which we can observe that most chunks in the zxcvbn-weak password set
contain semantics or easy-to-guess patterns, such as English words (“foot-
ball”, “builder” “vietnamese”,“microsoft”), phrases (“iloveyou”), Chinese names
(“chenchen”, “liang”, “jiang”, “shan”), English names (“benjamin”, “Erick”,
“sasha”, “elena”), and patterns (“qwert”, “zxcvbn”, “QWEASDZXC”). Many
of them are plausible PII that attackers could take advantage of to compro-
mise users’ accounts. In contrast, the majority of chunks in the zxcvbn-strong
password set are random and short combinations of characters with no seman-
tics, whereas semantics still exist in certain chunks (such as “sasha”, “jj” and
“wang”). This indicates that although passwords that are zxcvbn-strong in
strength are mostly comprised of more chunks and are harder to guess in a
trawling scenario, many of them still contain semantic words, which can be PII
that is accessible to attackers, thereby increasing the likelihood of passwords
being guessed and accounts being compromised. As a result, regardless of the
strength of the real password, as long as it contains PII which attackers could
utilize all their resources to get, the trawling-honeyword-integrated authentica-
tion system will fail since most trawling-generated honeywords do not contain
PII, and thus a targted-honeyword-integrated system is needed.

3.3 Honeyword Generation with Chunk-GPT3

Language models can learn the probabilities of occurrences of a series of words in
a regularly spoken language and predict the next potential word in that sequence.
Generative Pre-trained Transformer 3 (GPT-3) is an autoregressive language

Honey, I Chunked the Passwords 97

Fig. 3. The comparison of common password chunks in zxcvbn-weak (left) and zxcvbn-
strong (right) sets.

model that uses deep learning to generate text that appears to be written by a
person. It was introduced in 2020 and excels at a variety of NLP tasks, including
translation, question-answering, and cloze [4]. The model was trained on trillions
of words in text documents. It turns words into vectors or mathematical rep-
resentations, and then decodes the encoded text into human-readable phrases.
The model can be utilized to execute NLP tasks without requiring fine-tuning
on particular downstream task datasets and is capable of producing texts that
are difficult for humans to differentiate from human-written articles.

Therefore, we propose to use GPT-3 to generate honeywords that are robust
to targeted attacks by providing the semantic chunks retrieved in the PII
extraction phase. We first specify what the model should do by giving it a
prompt, for example, “Derive five passwords that are similar to ‘toby2009bjs’
and contain ‘toby’, ‘2009’ and ‘bjs’. Do not add digits at the end of the pass-
words.” Here, “toby”, “2009” and “bjs” are chunks generated by PwdSeg-
ment. GPT-3 will then produce outputs “tobyEmma2009bjs, toby2009Katiebjs,
toby2009bjsKaitlyn, toby2009bjsRiley, toby2009bjsSavannah” by following the
instruction. The quality and the diversity of the output depend on three
attributes: prompt, temperature and examples given to the model.

The Prompt. The prompt is the instruction GPT-3 received. The quality of
the prompt can determine the quality of the generated honeywords. Usually, the
more concise and instructive the prompt is, the better the completion is [15].
Same can be seen in honeyword generation, as shown in Table 2.

98 F. Yu and M. V. Martin

Table 2. Honeywords generated by GPT-3 when using different prompts. Honeywords
generated using Prompt2 are not ideal because they do not contain the potential PII
“toby”.

Prompt1 Suggest three passwords that are similar to “toby2009bjs” and contain “toby”

Honeywords toby2009bjd, toby1998bjx, toby2021bjz

Prompt2 Suggest three passwords that look like “toby2009bjs”.

Honeywords toy2009bjs, tab2009bjs, boy2009bjs

The Temperature. The temperature is a numeric variable between 0 and 1
that effectively regulates the model’s degree of confidence when generating pre-
dictions. A lower temperature implies that the model will take fewer risks, and
the honeywords created will be more repetitive while increasing the temperature
results in more diversified honeywords. The temperature is a vital parameter
that determines the irreversibility of our HGT, as discussed in Sect. 5. Table 3
contains examples of honeywords formed at temperatures 0 and 1.

Table 3. Honeywords generated by GPT-3 when using different temperatures and
given the prompt “Suggest five words that are similar to ‘toby2009bjs’ and contain
‘toby’.” A higher temperature will result in more diverse honeywords.

Temperature Honeywords

0 toby2009bjd, toby2009bjx, toby2009bjz, toby2009bjf, toby2009bjh

1 Toby2009BJS, toby2009bjs1, tobybjs2009, Bjs2009toby, bjs2009toby1

Zero-Shot and Few-Shot Learning. Zero-shot learning refers to a situation
in which no demonstrations are permitted and the model is given simply a plain
language description of the task. In comparison, few-shot learning refers to a
situation in which the model is given a few demonstrations of the task during
inference time, but the model is not re-trained on them. This is particularly
advantageous since many websites have varying policies regarding password cre-
ation, such as beginning with letters and requiring uppercase, lowercase, symbols,
and numbers. When the operators demonstrate how they want the honeywords
to appear, GPT-3 will generate honeywords that match the examples.

Since the introduction of Generative Pre-trained Transformers, they have
been extensively investigated in a variety of domains, including creating media
dialogues summaries [7], generating code from natural-language instructions [6],
generating passphrases [11], and generating graphics from text descriptions [19].
To the best of our knowledge, we are the first to employ GPT-3 in the sphere of
computer security, to generate honeywords that are resistant to targeted attacks.

An example of honeyword generation using Chunk-GPT3 is illustrated in
Fig. 4, which contains two steps: 1). Passwords are segmented using algorithm
PwdSegment, detailed in Sect. 3.1. For example, password “Elena1986@327”

Honey, I Chunked the Passwords 99

is segmented into chunks “Elena”, “1986” and “327”. 2). The resulting
chunks are used as inputs to prompt GPT-3 to generate honeywords. We
prompted GPT-3 with instruction “Please derive three passwords that are sim-
ilar to “Elena1986@327” and contain “Elena”, “1986” and “327”. The length
of the passwords should be at most 13 (the length of the real password
“Elena1986@327”).”

"Elena1986@327" "Elena", "1986",
"327"

Password

"Elena327@1986"
"1986327@Elena"
"Elena!1986327"

PwdSegment
Chunking

Honeywords
Generation

Chunks Honeywords

Fig. 4. Honeyword generation with Chunk-GPT3. In this example, the password
“Elena1986@327” is segmented into chunks “Elena”, “1986”, and “327” using the
PwdSegment Chunking algorithm. The chunks are then used as inputs for GPT-3
to generate honeywords.

4 Evaluation

Two common metrics in HGT evaluation are flatness and success-number graphs
which measure HGTs’ resistance against the honeyword distinguishing attacker
from the average and worst-case point perspective [26]. The honeyword dis-
tinguishing attacker is required for using the two metrics. Previous works [9,10]
used the trawling attack algorithm Normalized Top-PW model to construct flat-
ness and success-number graphs and to evaluate their HGTs, since their HGTs
are used to generate honeywords against trawling attacks [35]. The Normalized
Top-PW is not applicable to targeted attacks because trawling attackers have
no knowledge about users’ PII while targeted attacks do, which make targeted
attackers more capable. To the best of our knowledge, the only work propos-
ing targeted attacks [29] construct their attack models based on various kinds
of capabilities allowed to an attacker (e.g., birthday, username, email address,
and registration order). We do not give these assumptions to attackers since it
is typically not know what kind of attackers a system may have when gener-
ating honeywords. In fact, attackers may take advantage of any resources they
may have, not limiting to PII, registration order and more. A comparison of the
assumptions made in our HGT and in Wang et al.’s is shown in Table 4. Wang
et al. [29] used flatness and success-number graphs to measure their HGTs.
These metrics measure password guessing success rate per user, and the num-
ber of successfully identified real passwords, respectively. However, these hon-
eyword evaluation metrics are not compatible with our method since flatness
and success-number graphs require the computation of password probabilities
as yielded by the HGT method. For example, if our honeywords were generated

100 F. Yu and M. V. Martin

using a PCFG-based approach, we would be able to compute honeyword proba-
bilities. However, Chunk-GPT3 is not a probabilistic method but a generalized
application of a large language model over password chunks. Thus, we evaluate
honeywords from the perspective of word embedding similarities, which are com-
monly used in the NLP domain, to measure the similarity of two sequences. We
propose an evaluation metric that measures the effectiveness of HGTs by com-
paring the similarity between a honeyword and its real password using another
pre-trained language model. We also intend to draw the community’s attention
to targeted scenarios, since trawling situations have been intensively studied
but targeted honeyword generation and attack models are under-researched yet
represent a pressing problem, as outlined in Sect. 1.1 and in [28].

Table 4. Assumptions on attackers in our HGT and Wang et al.’s [29].

PW file Public
infoa

Limited
PII or
user info

Any PII or other info

Ours � � � �
Wang et al.’s [29] � � �
a Public info may include leaked password lists, password policy, and cryptographic
algorithms.

4.1 Metric: HWSimilarity

In this section, we introduce an evaluation metric to measure the indistinguisha-
bility of honeywords in terms of their corresponding real passwords.

The similarity between two strings is crucial in HGT since it demonstrates the
indistinguishability of a false password from a genuine one. Typically, in natural
language processing tasks, the distance/similarity of two strings is determined as
follows: the strings are converted to vectors using word embedding techniques,
and then the cosine similarity of the two vectors is calculated as the distance.
Here, the strings might be composed of letters, symbols, or numbers, similar to
how passwords are composed. Since passwords may contain PII which contains
semantics, hence when measuring the similarity of two sweetwords, the semantics
contained in a sweetword have to be considered. Therefore, in this paper, we pro-
pose to use a pre-trained language model MPNet [23] to encode passwords since
it encodes the semantics in word sequences to word embeddings. MPNet utilizes
the interdependence among predicted tokens via permuted language modeling
(vs. MLM in BERT [8]) and accepts auxiliary position information as input to
help the model view a whole phrase, hence minimizing position discrepancy (vs.
PLM in XLNet [33]).

Computing the HWSimilarity of a sweetword list can be done as follows:
For a user’s sweetword list SW = [sw1, sw2.....swl], and her honeyword list
HW = [hw1, hw2.....hwl−1], we have pw ∈ SW,HW � SW and pw /∈ HW .

Honey, I Chunked the Passwords 101

Here pw is the user’s real password, hwi denotes a honeyword and l is the
number of sweetwords. HWSimilarity =

∑l−1
i=1 cosin(Φ(hwi),Φ(pw))

l−1 , here Φ is the
MPNet Neural Network model.

4.2 Comparable HGTs and Evaluation Results

We compare our Chunk-GPT3 with other three HGTs: generating honeywords
using GPT-3 alone without semantic chunks provided, and two state-of-the-art
HGTs chaffing-by-tweaking and fasttext.

Chaffing-by-Tweaking. Chaffing-by-tweaking (tweaking) HGT was initially
presented in [13] and mainly relies on random letter, digit, and symbol substitu-
tion. We choose to use chaffing-by-tweaking instead of other recently proposed
methods in the literature because other methods are more vulnerable to targeted
attacks [2,28]. Dionysiou et al. [9] highlight the intricacy of developing tweak-
ing rules in such a way that it could be difficult for an attacker to distinguish
the password from its changed versions. For example, if a chaffing-by-tweaking
strategy randomly perturbs the last three characters of a password, the adver-
sary may easily conclude that the authentic password is the first one in the
instances “18!morning”, “18!morniey”, and “18!gorndge”. Thus, they replace all
occurrences of a particular symbol in a given password with a randomly chosen
alternate symbol, lower-case each letter in a password with probability p = 0.3,
upper-case each letter in a password with probability f = 0.03, and replace
each digit occurrence with probability q = 0.05. [9] contains the pseudocode and
rationale for the assignment of p, q, and f .

Table 5. Honeyword samples generated by the HGTs compared in the paper (Chunk-
GPT3, GPT-3, fasttext and tweaking). fasttext is required to be trained on a real
password dataset (the rockyou dataset in the paper). Other three HGTs can generate
honeywords directly without being trained on a password dataset. Only Chunk-GPT3-
generated honeywords retain the PII in the real password.

HGTs

Chunk-GPT3 GPT-3 fasttext tweaking

h2omega-tania tania-home123 h2omega-alex Karert 334 4oMega<tANia

Tania@home5 h2omega-zoe Adery993 H2oMega”tAnia

home!tania12 h2omega-sam brobe31 h4omega,tania

0000 mila 0000 1111 mila 0000 0000 lila 0000 octavia3 7434∼MIla$6421

0000 MILA 0000 0000 lela 0000 Bushido07 364\MIlA-9353

0000@Mila@0000 0000 lola 0000 Dampire2 3124/MiLa‘2089

007skyblueboy Skyblueboys007 007skybluegirl gz152sha 903SkyBlUeboY

Blueboysky007 007babyblueboy Calepepi 561SkYblUEbOy

007blueboysky 007lightblueboy hajenrai 960SKybluebOy

102 F. Yu and M. V. Martin

Chaffing-by-Fasttext. This technique was proposed by Dionysiou et al. [9]
which uses representation learning for the generation of honeywords. They con-
vert words to vectors using fasttext and then assign honeywords to the k − 1
nearest neighbors of an actual password based on cosine similarity.

More specifically, in the chaffing-by-fasttext method, it needs a real password
corpus as the training dataset for the fasttext model. During the training phase,
fasttext generates vector representations of each word in the corpus. After train-
ing is complete, the trained model can be queried by providing a real password as
input and receiving a multi-dimensional vector representing the provided pass-
word’s word embedding as a response. Following that, Dionysiou et al. loop over
each password in their password corpus (n records in total where n is the number
of users) and return its top k−1 closest neighbours in decreasing order of cosine
similarity to create the list of k × n sweetwords. In this way, for each password
in the password file, they generate a list of the k − 1 most similar honeywords.

Notably, the technique’s primary weakness is that the produced honeywords
are all genuine passwords in the fasttext training dataset, which means that if
an attacker has access to the training dataset, the honeywords will be readily
discovered. Additionally, the size of the training data has a significant impact
on the quality of the honeywords created.

GPT-3 Without Semantic Chunks. We conducted an ablation study to
assess if GPT-3 can create honeywords containing PII on its own, without any
semantic chunks provided. In this case, the prompt we gave GPT-3 is “Derive 19
passwords that are similar to real password. The length of the passwords should
be at most len(real password). Do not add digits at the end of the passwords.”

A few examples of honeywords generated by Chunk-GPT3, GPT-3, tweaking
and fasttext are illustrated in Table 5.

Table 6. HWSimilarity of honeywords generated by the four techniques (Chunk-
GPT3, GPT-3, fasttext, and tweaking). Honeywords generated by Chunk-GPT3 have
the highest HWSimilarity score compared with other HGTs, indicating that the Chunk-
GPT3-generated honeywords are the most similar to their cor- responding real pass-
words taking into account semantics.

Chunk-GPT3 GPT-3 fasttext tweaking

zxcvbn-strong 0.8525 0.8348 0.3441 0.7297

zxcvbn-weak 0.8367 0.8144 0.3445 0.7527

Results. The HWSimilarity of honeywords is shown in Table 6. For both zxcvbn-
strong and zxcvbn-weak password sets, honeywords generated by fasttext and
tweaking have a much lower HWSimilarity score than the score of honeywords
generated by GPT-3 and Chunk-GPT3, indicating that the majority of fasttext
and tweaking-generated honeywords do not contain users’ PII.

Honey, I Chunked the Passwords 103

We also compared GPT-3 and Chunk-GPT3 using paired t-tests, and found
the Chunk-GPT3-generated honeywords are significantly more similar to their
corresponding real passwords considering semantics contained in passwords,
and thus are harder to distinguish by targeted attacks (tzxcvbn−weak(999) =
3.935, P < 0.001, tzxcvbn−strong(999) = 3.237, P < 0.001).

Will HWSimilarity Leak Information About the Real Passwords to
Attackers? Consider this scenario: An attacker takes the 20 sweetwords and
creates 20 different sets S1, S2, ..., and S20 of 19 sweetwords each (i.e., leaving
a different sweetword out every time). Then for each of S1, S2, ..., and S20, the
attacker computes the HWSimilarity of each element of Si against the sweet-
words that are not in Si. Will this expose some patterns revealing which of the 20
sweetwords is the real password? In order to examine this, we did a pilot exper-
iment and took a subset of our data with 500 username-password pairs and 4
honeywords per user from the generated honeywords by the 4 HGTs. In this
case, in the sweetword files with honeywords generated by different HGTs, each
user has 4 honeywords stored along with the real passwords. For each sweetword
list, the attacker takes one sweetword as p, and then 1) Computes the average
HWSimilarity score (p̄) of each sweetword sw1 to sw4 against the target sweet-
word p. 2) Then computes the average HWSimilarity score (ā1) of sweetwords
sw2, sw3, sw4, and p against sw1. 3) Next, computes the average HWSimilar-
ity score (ā2) of sweetwords sw1, sw3, sw4, and p against sw2. 4) Then com-
putes the average HWSimilarity score (ā3) of sweetwords sw1, sw2, sw4, and p
against sw3. 5) Then computes the average HWSimilarity score (ā4) of sweet-
words sw1, sw2, sw3, and p against sw4. 6) Finally, checks if one of the values
(i.e., p̄, ā1, ā2, ā3, ā4) is significantly “different” from the other 4 values.

The average similarity scores for each HGT are shown in Fig 5. ANOVA tests
on each HGT’s averages did not reject the null hypotheses, concluding that there
is no significant difference between the averages, suggesting that HWSimilarity
would not reveal the real password.

5 Discussion

We talk about the limitations of our study and future directions in this section.

User Study. We argue that there is no need to conduct user studies to
qualitatively evaluate Chunk-GPT3-generated honeywords. If given a ques-
tion: “Suppose you are an attacker and know a victim’s user name is ‘mila’,
which one in the following list would most probably be his/her password:
‘0000 mila 0000, octavia3, Bushido07,Dampire2’ (real password and honey-
words generated by fasttext).”, the task is easy to complete, while if the choices
are “0000 mila 0000, 1111 mila 0000, 0000 MILA 0000, 0000@Mila@0000”
(real password and honeywords generated by Chunk-GPT3), the task becomes
obviously more difficult.

Lack of Comparison with [29]. To the best of our knowledge, there is only
one publication that discusses how to generate honeywords that are resistant

104 F. Yu and M. V. Martin

Fig. 5. Each boxplot represents the HWSimilarity scores of sweetwords at all indices
with the sweetword at the target index. No significant difference in the average scores
at different indices is observed for each HGT.

to targeted attacks, which was published in IEEE S&P’22 by Wang et al. [29].
They first proposed four attack models each representing a potential attacker
A’s strategy, with each model based on different information available to A (e.g.,
public datasets, the victim’s username, email address, birthday and registration
order). They further developed four HGTs for each attack strategy, by using
various probabilistic password guessing models proposed in previous work [28].
Nonetheless, assuming that attackers have access to only certain PII imposes
an important limit since attackers may utilize a superset of PII beyond the PII
pieces considered in their study (or a totally different PII set) to guess a user’s
password, particularly if the user is a person of interest. What we are propos-
ing is a different yet robust, and generalized approach. Rather than assuming
A’s attack strategy and creating HGTs accordingly, we assume attackers have
white-box access to our HGT, meaning that attackers have complete knowledge
of users’ PII, and our technique including the specifics (such as the prompt and
temperature). A comparison of the assumptions made in our HGT and in Wang
et al.’s can be found in Table 4, along with an explanation as to why gener-
ating flatness and success-number graphs is not possible (see Sect. 4). Despite
the impossibility of producing a useful comparison between our work and Wang
et al.’s, and for completeness, we still attempted to reproduce their HGT and
compare with ours, using HWSimilarity. However, they did not make their arti-
facts public due to intellectual property concerns, and despite our efforts, we

Honey, I Chunked the Passwords 105

were unable to reproduce their HGT from the description found in their paper.
Nonetheless, it is clear that their HGT method does not consider the real pass-
word chunks, and this results in honeywords that do not necessarily resemble the
real password. This can be readily seen by comparing the honeywords generated
with one of their HGTs (TarList) and our Chunk-GPT3 method (see Table 7).

Table 7. Honeyword examples generated for real password “tiger81” by our method
(Chunk-GPT3) and Wang et al.’s TarList (taken from [29], Fig. 1).

HGTs Honeywords

Chunk-GPT3 Tig3r81, T1ger81, TigEr81, Tig3r8I, T1g3r81, Tig3r1I,
T1gEr81, T1ger8I, TigEr1I, Tig3r8I, T1gEr8I, T1g3r1I

Wang et al.’s jsmith117, prince00, love123, qwertyu, js128821, bond007, a123456,
trustono1, rcv 11n1nj, jan1981, lemein, newy0rk, 1989y2002r

Since our HGT is based on the intuition that honeywords that are more
similar to their corresponding real password are of higher quality [13], if there
are any PII in the real passwords, the honeywords should include that PII to
warrant their indistinguishability. Thus, we evaluate our HGT based on the
similarity/word vector distance between honeywords and real passwords.

Irreversibility. The irreversibility of an HGT is critical. We need to make
sure that even when attackers know our methodology and the specifications we
were using for generating honeywords, such as the prompt and the temperature,
they still cannot reproduce the honeywords we generated. This is ensured by
careful prompt-engineering [14,21] and temperature setting. We suggest to set
temperature to 1 to get the most randomness [4], and after experimenting with
various prompts, we decided to use the prompt “Derive 19 passwords that are
similar to real password, and contain chunks. The length of the passwords
should be at most len(real password). Do not add digits at the end of the
passwords.” since it generates the most diversified honeywords compared with
other prompts we experimented with, and the honeywords generated each time
are different by our observation.

6 Conclusions

In this paper, we proposed a novel HGT, Chunk-GPT3, which segments pass-
words into semantic chunks and then utilizes GPT-3 to generate high-quality
honeywords that contain PII existing in users’ real passwords. Honeywords gen-
erated by Chunk-GPT3 are robust to targeted attacks where attackers get access
to both breached password databases and users’ PII. Unlike other machine
learning-based HGTs, GPT-3 can be easily integrated into any current password-
based authentication system without any further training on real passwords.
Additionally, we proposed a targeted HGT evaluation metric that incorporates

106 F. Yu and M. V. Martin

another pre-trained language model. We compared Chunk-GPT3’s performance
with GPT-3 alone, and two state-of-the-art HGTs with the proposed metric and
demonstrated that Chunk-GPT3-generated honeywords are significantly harder
to decipher and thus could raise the bar for targeted attacks.

Acknowledgement. The authors thank the assigned shepherd and anonymous
reviewers for their valuable comments that improved the quality of the paper. We
acknowledge the support of the Natural Sciences and Engineering Research Council of
Canada (NSERC), funding reference number RGPIN-2018-05919.

References

1. IBM security: Cost of a data breach report 2021 (2021). https://www.ibm.com/
security/data-breach. Accessed 01 Jan 2022

2. Bojinov, H., Bursztein, E., Boyen, X., Boneh, D.: Kamouflage: loss-resistant pass-
word management. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 286–302. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15497-3 18

3. Bonneau, J., Herley, C., Oorschot, P.C.V., Stajano, F.: The quest to replace pass-
words: a framework for comparative evaluation of web authentication schemes.
In: 2012 IEEE Symposium on Security and Privacy (S&P), pp. 553–567 (2012).
https://doi.org/10.1109/SP.2012.44

4. Brown, T., et al.: Language models are few-shot learners. In: Advances in
Neural Information Processing Systems, vol. 33, pp. 1877–1901. Curran Asso-
ciates, Inc. (2020). https://proceedings.neurips.cc/paper files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

5. Camenisch, J., Lehmann, A., Neven, G.: Optimal distributed password verification.
In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Commu-
nications Security. CCS ’15, pp. 182–194. Association for Computing Machinery,
New York, NY, USA (2015). https://doi.org/10.1145/2810103.2813722

6. Chen, M., et al.: Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021)

7. Chintagunta, B., Katariya, N., Amatriain, X., Kannan, A.: Medically aware GPT-
3 as a data generator for medical dialogue summarization. In: Proceedings of the
Second Workshop on Natural Language Processing for Medical Conversations, pp.
66–76. Association for Computational Linguistics, Online, June 2021). https://doi.
org/10.18653/v1/2021.nlpmc-1.9

8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis,
Minnesota, June 2019. https://doi.org/10.18653/v1/N19-1423

9. Dionysiou, A., Vassiliades, V., Athanasopoulos, E.: HoneyGen: generating honey-
words using representation learning. In: Proceedings of the 2021 ACM Asia Con-
ference on Computer and Communications Security. ASIA CCS ’21, pp. 265–279.
Association for Computing Machinery, New York, NY, USA (2021). https://doi.
org/10.1145/3433210.3453092

https://www.ibm.com/security/data-breach
https://www.ibm.com/security/data-breach
https://doi.org/10.1007/978-3-642-15497-3_18
https://doi.org/10.1007/978-3-642-15497-3_18
https://doi.org/10.1109/SP.2012.44
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/2810103.2813722
http://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/2021.nlpmc-1.9
https://doi.org/10.18653/v1/2021.nlpmc-1.9
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/3433210.3453092
https://doi.org/10.1145/3433210.3453092

Honey, I Chunked the Passwords 107

10. Guo, Y., Zhang, Z., Guo, Y.: Superword: a honeyword system for achieving higher
security goals. Comput. Secur. 103, 101689 (2021). https://doi.org/10.1016/j.cose.
2019.101689

11. Jagadeesh, N., Vargas Martin, M.: Alice in passphraseland: assessing the memora-
bility of familiar vocabularies for system-assigned passphrases (2021). https://doi.
org/10.48550/ARXIV.2112.03359

12. Joudaki, Z., Thorpe, J., Vargas Martin, M.: Reinforcing system-assigned
passphrases through implicit learning. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’18, pp. 1533–1548.
Association for Computing Machinery, New York, NY, USA (2018). https://doi.
org/10.1145/3243734.3243764

13. Juels, A., Rivest, R.L.: Honeywords: making password-cracking detectable. In: Pro-
ceedings of the 2013 ACM SIGSAC Conference on Computer and Communications
Security. CCS ’13, pp. 145–160. Association for Computing Machinery, New York,
NY, USA (2013). https://doi.org/10.1145/2508859.2516671

14. Kojima, T., Gu, S.S., Reid, M., Matsuo, Y., Iwasawa, Y.: Large language models
are zero-shot reasoners. arXiv preprint arXiv:2205.11916 (2022)

15. Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G.: Pre-train, prompt, and
predict: a systematic survey of prompting methods in natural language processing.
ACM Comput. Surv. 55(9) (2023). https://doi.org/10.1145/3560815

16. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

17. Pasquini, D., Gangwal, A., Ateniese, G., Bernaschi, M., Conti, M.: Improving pass-
word guessing via representation learning. In: 2021 IEEE Symposium on Security
and Privacy (S&P, pp. 1382–1399 (2021). https://doi.org/10.1109/SP40001.2021.
00016

18. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language mod-
els are unsupervised multitask learners (2018). https://d4mucfpksywv.cloudfront.
net/better-language-models/language-models.pdf

19. Ramesh, A., et al.: Zero-shot text-to-image generation. In: International Conference
on Machine Learning, pp. 8821–8831. PMLR (2021)

20. Ratha, N.K., Connell, J.H., Bolle, R.M.: Enhancing security and privacy in
biometrics-based authentication systems. IBM Syst. J. 40(3), 614–634 (2001)

21. Reynolds, L., McDonell, K.: Prompt programming for large language models:
beyond the few-shot paradigm. In: Extended Abstracts of the 2021 CHI Conference
on Human Factors in Computing Systems. CHI EA ’21, Association for Computing
Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3411763.3451760

22. Roche, T., Lomné, V., Mutschler, C., Imbert, L.: A side journey to Titan. In:
30th USENIX Security Symposium (USENIX Security 21), pp. 231–248. USENIX
Association, August 2021. https://www.usenix.org/conference/usenixsecurity21/
presentation/roche

23. Song, K., Tan, X., Qin, T., Lu, J., Liu, T.Y.: MPNet: masked and permuted
pre-training for language understanding. In: Advances in Neural Information
Processing Systems, vol. 33, pp. 16857–16867. Curran Associates, Inc. (2020).
https://proceedings.neurips.cc/paper files/paper/2020/file/c3a690be93aa602ee2d
c0ccab5b7b67e-Paper.pdf

24. Tan, J., Bauer, L., Christin, N., Cranor, L.F.: Practical recommendations for
stronger, more usable passwords combining minimum-strength, minimum-length,
and blocklist requirements. CCS ’20, pp. 1407–1426. Association for Computing
Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3372297.3417882

https://doi.org/10.1016/j.cose.2019.101689
https://doi.org/10.1016/j.cose.2019.101689
https://doi.org/10.48550/ARXIV.2112.03359
https://doi.org/10.48550/ARXIV.2112.03359
https://doi.org/10.1145/3243734.3243764
https://doi.org/10.1145/3243734.3243764
https://doi.org/10.1145/2508859.2516671
http://arxiv.org/abs/2205.11916
https://doi.org/10.1145/3560815
http://arxiv.org/abs/1907.11692
https://doi.org/10.1109/SP40001.2021.00016
https://doi.org/10.1109/SP40001.2021.00016
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://doi.org/10.1145/3411763.3451760
https://www.usenix.org/conference/usenixsecurity21/presentation/roche
https://www.usenix.org/conference/usenixsecurity21/presentation/roche
https://proceedings.neurips.cc/paper_files/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
https://doi.org/10.1145/3372297.3417882

108 F. Yu and M. V. Martin

25. Thomas, K., et al.: Data breaches, phishing, or malware? Understanding the risks
of stolen credentials. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. CCS ’17, pp. 1421–1434. Association
for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/
3133956.3134067

26. Wang, D., Cheng, H., Wang, P., Yan, J., Huang, X.: A security analysis of hon-
eywords. In: Network and Distributed System Security (NDSS) Symposium 2018,
pp. 1–16, October 2018. https://doi.org/10.14722/ndss.2018.12345

27. Wang, D., Wang, P., He, D., Tian, Y.: Birthday, name and bifacial-security: under-
standing passwords of Chinese web users. In: 28th USENIX Security Symposium
(USENIX Security 19), pp. 1537–1555. USENIX Association, Santa Clara, CA,
August 2019. https://www.usenix.org/conference/usenixsecurity19/presentation/
wang-ding

28. Wang, D., Zhang, Z., Wang, P., Yan, J., Huang, X.: Targeted online password
guessing: an underestimated threat. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’16, pp. 1242–1254.
Association for Computing Machinery, New York, NY, USA (2016). https://doi.
org/10.1145/2976749.2978339

29. Wang, D., Zou, Y., Dong, Q., Song, Y., Huang, X.: How to attack and generate
honeywords. In: 2022 IEEE Symposium on Security and Privacy (S&P), pp. 966–
983 (2022). https://doi.org/10.1109/SP46214.2022.9833598

30. Weir, M., Aggarwal, S., Medeiros, B.d., Glodek, B.: Password cracking using prob-
abilistic context-free grammars. In: 2009 30th IEEE Symposium on Security and
Privacy (S&P), pp. 391–405 (2009). https://doi.org/10.1109/SP.2009.8

31. Wheeler, D.L.: zxcvbn: Low-budget password strength estimation. In: 25th
USENIX Security Symposium (USENIX Security 16), pp. 157–173. USENIX
Association, Austin, TX, August 2016. https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/wheeler

32. Xu, M., Wang, C., Yu, J., Zhang, J., Zhang, K., Han, W.: Chunk-level password
guessing: towards modeling refined password composition representations. In: Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security. CCS ’21, pp. 5–20. Association for Computing Machinery, New York, NY,
USA (2021). https://doi.org/10.1145/3460120.3484743

33. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.:
XLNet: generalized autoregressive pretraining for language understanding. In:
Advances in Neural Information Processing Systems, vol. 32. Curran Asso-
ciates, Inc. (2019). https://proceedings.neurips.cc/paper files/paper/2019/file/
dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf

34. Yu, F.: Raising the bar for password crackers: improving the quality of honeywords
with deep neural networks. Master’s thesis, Ontario Tech University, Oshawa,
Canada (2022). https://ir.library.ontariotechu.ca/bitstream/handle/10155/1593/
Yu Fangyi.pdf?sequence=1&isAllowed=y

35. Yu, F., Vargas Martin, M.: GNPassGAN: improved generative adversarial networks
for trawling offline password guessing. In: 2022 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW), pp. 10–18 (2022). https://doi.org/
10.1109/EuroSPW55150.2022.00009

36. Yu, F., Vargas Martin, M.: HoneyGAN: creating indistinguishable honeywords
with improved generative adversarial networks. In: Lenzini, G., Meng, W. (eds.)
STM 2022. LNCS, vol. 13867, pp. 189–198. Springer, Cham (2023). https://doi.
org/10.1007/978-3-031-29504-1 11

https://doi.org/10.1145/3133956.3134067
https://doi.org/10.1145/3133956.3134067
https://doi.org/10.14722/ndss.2018.12345
https://www.usenix.org/conference/usenixsecurity19/presentation/wang-ding
https://www.usenix.org/conference/usenixsecurity19/presentation/wang-ding
https://doi.org/10.1145/2976749.2978339
https://doi.org/10.1145/2976749.2978339
https://doi.org/10.1109/SP46214.2022.9833598
https://doi.org/10.1109/SP.2009.8
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/wheeler
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/wheeler
https://doi.org/10.1145/3460120.3484743
https://proceedings.neurips.cc/paper_files/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://ir.library.ontariotechu.ca/bitstream/handle/10155/1593/Yu_Fangyi.pdf?sequence=1&isAllowed=y
https://ir.library.ontariotechu.ca/bitstream/handle/10155/1593/Yu_Fangyi.pdf?sequence=1&isAllowed=y
https://doi.org/10.1109/EuroSPW55150.2022.00009
https://doi.org/10.1109/EuroSPW55150.2022.00009
https://doi.org/10.1007/978-3-031-29504-1_11
https://doi.org/10.1007/978-3-031-29504-1_11

	Honey, I Chunked the Passwords: Generating Semantic Honeywords Resistant to Targeted Attacks Using Pre-trained Language Models
	1 Introduction
	1.1 Honeywords for Targeted Attacks
	1.2 Related Work
	1.3 Our Contribution

	2 Preliminaries
	2.1 The Honeyword Mechanism
	2.2 Threat Model
	2.3 Dataset

	3 Our Methodology
	3.1 PII Extraction
	3.2 Chunk Analysis for zxcvbn-weak and zxcvbn-strong Password Sets
	3.3 Honeyword Generation with Chunk-GPT3

	4 Evaluation
	4.1 Metric: HWSimilarity
	4.2 Comparable HGTs and Evaluation Results

	5 Discussion
	6 Conclusions
	References

