
CEFI : Command Execution Flow
Integrity for Embedded Devices

Anni Peng1,3, Dongliang Fang2,3, Wei Zhou3,4, Erik van der Kouwe3,5,
Yin Li1,3, and Yuqing Zhang1,3,6(B)

1 National Computer Network Intrusion Protection Center, UCAS, Beijing, China
zhangyq@nipc.org.cn

2 Institute of Information Engineering, CAS, Beijing, China
3 School of Cyber Security, UCAS, Beijing, China

4 School of Cyber Science and Engineering, HUST, Wuhan, China
5 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
6 School of Cyberspace Security, Hainan unversity, Haikou, China

Abstract. As embedded devices are widely used in increasingly com-
plex settings (e.g., smart homes and industrial control systems), one
device is usually connected with multiple entities, such as mobile apps
and the cloud. Recent research has shown that privilege separation vul-
nerabilities, which allow violations of authority between different enti-
ties, are occuring in IoT systems. Because such vulnerabilities can be
exploited without violating static control flow and data flow, existing
CFI and DFI solutions cannot prevent them. We present CEFI , the first
method to enforce integrity of command execution on embedded devices
after deployment. CEFI provides fine-grained Command Execution Flow
Integrity by preventing external commands from being executed on con-
trol flow paths belonging to interaction channels that are not authorized
to perform them. Using minimal manual annotations as a starting point,
CEFI statically determined the legal path set (from the start to the
end point) and instruments the program to verify the legitimacy of the
command execution at runtime by checking whether the calling context
is consistent between the runtime executed path and statically obtained
legal path set. We evaluate our prototype with five real-world firmware
samples, and show that CEFI has an average performance overhead of
just 0.18%, an average memory overhead of 0.19%, and that CEFI can
effectively protect embedded devices against attacks on privilege separa-
tion vulnerabilities even if they do not violate control flow.

Keywords: Internet of Things (IoT) · embedded devices · enforcement

1 Introduction

With the development of the Internet of Things (IoT), the application scenarios
of embedded devices are becoming broader and more complicated. For exam-
ple, embedded devices have long been restricted to closed environments, such as
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Gruss et al. (Eds.): DIMVA 2023, LNCS 13959, pp. 235–255, 2023.
https://doi.org/10.1007/978-3-031-35504-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35504-2_12&domain=pdf
https://doi.org/10.1007/978-3-031-35504-2_12

236 A. Peng et al.

industrial plants and vehicle communication systems, but nowadays are increas-
ingly connected, communicating with external systems to carry out their own
functionality. Embedded systems often communicate with multiple external sys-
tems in different roles. For example, a smart watch might communicate with
one server over WiFi to receive updates, with another over a 4G cellular net-
work to share location data, and also handle diagnostics and configuration com-
mands received by traditional SMS. The attack surface has greatly increased over
time. Attacks can send malicious data to an interaction channel by exploiting
many low-level security bugs (such as buffer overflows like CVE-2020-25066,
CVE-2020-27337, CVE-2020-27338, etc.) in firmware. Furthermore, attackers
also leverage missing checks among different interaction channels to perform
unauthorized functions.

Taking a smart home scenario as an example, a smart lock interacts with
the IoT cloud and mobile app simultaneously. Specifically, the smart lock can
receive operation commands both from the remote cloud and the local mobile
app. The remote cloud can control the smart lock to update its firmware, and
the local app can control the smart lock to perform lock operations (e.g., lock or
unlock the door). Typically, different interaction channels are designed to serve
different purposes. For this example, firmware updates can only be initiated from
the trusted cloud. However, if firmware fails to properly verify its interaction
channels, a local attacker can issue a malicious firmware update command to
the device. This type of attack has been demonstrated in the previous research,
which has uncovered 69 similar bugs [30]. Even worse, such an attack is stealthy,
as a firmware update is considered to be a normal device operation. The received
command does not deviate from normal ones, and there is no violation from the
viewpoint of control-flow integrity. Although there is a large body of research
on protecting low-end embedded devices [1,6,7,16,20,24], they only focus on
basic security properties like control-flow integrity and data-flow integrity. Most
recently, OAT [24] provides an attestation method that prevents both control-
flow and data-only attacks on embedded devices. However, newly discovered
hazards [30,35,36] involved in IoT interaction channels have enlarged attack
surfaces of embedded devices. Moreover, as seen in the example, such attacks
do not carry abnormal data or violate the control flow, so none of the previous
works can detect such attacks on the device side. Note that this attack differs
from data-only attacks [13], which usually require the exploitation of memory
corruption bugs. The root cause of our example is a logical flaw in the design
or implementation of the product, which remains unknown to both vendors and
users. It is different from the issue of implicit authorization, as discussed in
SmartAuth [26]. Implicit authorization refers to the mobile app gaining more
privileges without notifying the user, which is a problem that vendors are aware
of but users are not. This also differs from research that primarily analyzes
the mobile applications to identify and exploit potential security issues, as seen
in studies such as [11,12]. Although there has been considerable research on
security issues in mobile applications, we found mitigating logic flaws in IoT
embedded devices have not yet been systematically studied in the literature.

CEFI : Command Execution Flow Integrity for Embedded Devices 237

In this work, we propose the first interaction command based attestation
method that verifies whether the requested operation is trustworthy when it
carries out one received command execution, even when strictly following its
designed purpose. We automatically enforce this verification even if part of the
call stack is shared between command handlers, requiring only minimal man-
ual annotations to indicate which commands are allowed on which interfaces.
We assign a unique code (i.e., an integer value) to each different code path, and
automatically generate and enforce an allowlist that specifies all legal code paths.
To prevent attackers from manipulating the unique code and the allowlist, we
store both in secure memory on ARM-based devices using on the widely deployed
TrustZone extension. This allows us to prevent attackers from executing com-
mands from contexts where they are not authorized, even if executing them
would not violate control-flow and data-flow integrity.
Contributions. Our work makes the following contributions:

– We propose Command Execution Flow Integrity (CEFI), the first method
to enforce integrity of command execution on embedded devices after deploy-
ment, even against attacks that violate neither static control flow nor static
data flow.

– We apply a calling context encoding algorithm to classify each unique control
flow of the program, which is lightweight and suitable for resource-constrained
embedded devices.

– We implement CEFI and conduct evaluation over five real-world embedded
programs that broadly cover multiple use cases in IoT devices, demonstrating
the practicality of CEFI in real-world application scenarios. CEFI is available
at https://github.com/mituanzi/CEFI.

2 Background

2.1 IoT Architecture

IoT architectures typically involve multiple types of entities [35,36] including
IoT device, cloud backend, and the companion mobile apps running on smart-
phones (see Fig. 1). Each entity has different responsibilities and design goals.
The IoT device is designed to interact with the physical world through sensors
and actuators. It sends collected real-time information (e.g., device status and
environment events) to the cloud or the mobile application. The cloud backend
manages devices and mobile app user accounts, including the binding between
devices and user accounts. In addition, device firmware can be updated from
the cloud when needed. When users are not in the same LAN with the devices,
the cloud can act as a proxy to forward device control commands from remote
users, and forward the device status or command execution results back to the
app. Mobile apps provide users with an interface to manage devices (e.g., bind-
ing the device, viewing device status, and issuing control commands). Generally,
mobile apps can control the device in two ways: 1) directly send the commands
to the device if they are in the same LAN, or 2) indirectly send the requests to

https://github.com/mituanzi/CEFI

238 A. Peng et al.

IoT cloud

APP

cloud-device channel
device-gateway internal channel
human-device channel
app-device channel
app-cloud channel

Fig. 1. Interaction model of IoT platform

the device via the cloud remotely. There are bidirectional interaction channels
between each pair of entities (see Fig. 1).

2.2 Interaction Channels on IoT Platform

In the IoT platform, each entity plays a different role and takes on differ-
ent responsibilities. As a result, the interaction channels between these entities
present a certain complexity. Specifically, i) There are many interaction channels
derived from multiple entities. First, the relationship between the entities is not
only in a one-to-one pattern, but also a one-to-many or many-to-many pattern.
For example, a device can be accessed by multiple different users and delegated
to multiple different third-party platforms [31] (e.g., Philips Hue, LIFX, Google
cloud, etc.). Second, entities may also have many interactions inside. For exam-
ple, a smart hub can interact with multiple smart lights via ZigBee. Finally,
a human may also participate in the interaction model directly and bring new
interaction channels, such as controlling the device based on the human voice
or directly controlling the device with a physical touch screen. ii) Each channel
has a different design purpose, which is mentioned in Sect. 2.1. In order to suit
the situation, the interaction channels involve a variety of different communica-
tion protocols, such as Bluetooth, Zigbee, MQTT, HTTP, etc. iii) There may be
functional overlap between different interaction channels. For example, both the
cloud and the mobile app have the same functionality in controlling the device
(e.g., turn on/off the device), recall that the cloud can act as a proxy to for-
ward control commands from the mobile app. We also note that the app→device
channel and cloud→device channel have different responsibilities to manage the
device account [30].

The complex interaction model among multiple entities in IoT platforms
makes maintaining design purpose more complicated, increasing the security risk
of many critical tasks, such as authentication [22,36], privilege separation [15,30,
31], state synchronization [21], and task isolation [14], etc. This paper focuses on
mitigating Privilege Separation Vulnerabilities (PSVs) that violate the privilege
separation model [30] (see Sect. 3.1).

CEFI : Command Execution Flow Integrity for Embedded Devices 239

2.3 ARM TrustZone

Our system relies on ARM TrustZone to protect critical state. TrustZone offers
a trusted execution environment on ARM. It is available even on Cortex-M
microcontrollers, which allows our system to be used even on low-cost CPUs
optimized for ultra-low power embedded applications.

TrustZone introduces two protection domains with different permissions at
the processor level, the Secure World and the Normal World. The two worlds are
completely isolated by the hardware and have different permissions. While code
executed from Secure World can access memory in both secure and non-secure
regions, both applications and operating systems running in the Normal World
are prevented from accessing the resources of the Secure World. Access is only
possible through API interfaces specifically offered for this purpose by software
in the Secure World. Properties such as hardware isolation and different permis-
sions between the two worlds provide an effective mechanism for protecting an
application’s code and data, even in the face of a compromised operating system
kernel. Therefore, TrustZone can be used to protect the state that is critical for
security of our system from tampering.

3 Motivation

3.1 Problem Statement

In this section, we show the dangers of privilege separation vulnerabilities, and
the need for a lightweight system to mitigate them, especially on low-powered
IoT devices. Following Yao et al. [30], we define privilege separation vulnerabil-
ities as vulnerabilities that violate the privilege separation model. The privilege
separation model defines the privileges of each involved role (e.g., remote cloud,
local app), which can be inferred from the specification, program context, empir-
ical knowledge, etc.

In order to explain the vulnerabilities in detail, we abstracted a piece of
pseudocode from a real example, as shown in Listing 1.1. It demonstrates
two types of privilege separation vulnerabilities, based on examples in prior
work [30]. The code implements two independent handlers (i.e., cloud handler
and local handler) to process data from the remote cloud and the local app
respectively (line 5). Both handlers use similar processing logic (line 10-39): they
receive data over a network, perform authentication, and parse the data. Both
invoke the extract cmd function whenever a command is specified. However,
cloud handler and local handler may use different receive functions (e.g.,
ssl recv and tcp recv), different protocols (e.g., MQTT and HTTP), and dif-
ferent data formats (e.g., encrypted format and JSON format). The extract cmd
function extracts the specific command and its parameters, and after some checks
(e.g., format and value range checks), it executes the command by invoking the
corresponding execution functions.

240 A. Peng et al.

1 void task_main(void) {
2 /* initializations (e.g., variable declarations */
3 /* and definitions , memory allocations , etc) */
4 //
5 func_t handlers [2] = {cloud_handler , local_handler };
6 /* register remote handler and local handler */
7 //
8 }
9

10 void cloud_handler(void) {
11 /* initializations */
12 //
13 char *buf = remote_recv (); // e.g., ssl_recv
14 if (auth(buf)) {
15 parse_remote_data(buf);
16 /* check whether it contains command */
17 //
18 if (remote_control) {
19 extract_cmd(buf);
20 }
21 //
22 }
23 /* error handling and response */
24 }
25
26 void local_handler(void) {
27 /* initializations */
28 char *buf = local_recv (); // e.g., tcp_recv
29 if (auth(buf)) {
30 parse_local_data(buf);
31 /* check whether it contains command */
32 //
33 if (local_control) {
34 extract_cmd(buf);
35 }
36 //
37 }
38 /* error handling and response */
39 }
40
41 void extract_cmd(char *buf) {
42 cmd_t *cmd = parse_command(buf);
43 parameter_t *para = parse_parameter(buf);
44 /* check whether cmd and parameters are valid */
45 /* (e.g., check its format , value range , etc) */
46 //
47 switch (cmd.type) {
48 case OP_1_TYPE: exec_turnOn(cmd , para); break;
49 case OP_2_TYPE: exec_update(cmd , para); break;
50 case OP_3_TYPE: exec_turnOff(cmd , para); break;
51 case OP_4_TYPE: exec_reboot(cmd , para); break;
52 //
53 }
54 //
55 }

Listing 1.1. Simplified Code Snippet on interaction channel processing logic.

By design, the IoT devices perform privileged operations that can only be
initiated from specific interaction channels. Therefore, IoT devices should imple-
ment a strict privilege separation model when handling commands from differ-
ent channels (entities) [30]. For example, commands from the remote cloud are

CEFI : Command Execution Flow Integrity for Embedded Devices 241

main

channel1 channel2

extract_cmds

…cmd1 cmd2

auth

Fig. 2. Simplified Call Graph Illustration

responsible for device management, such as binding or unbinding the device
with the owner, and updating the device’s firmware. Commands from the local
apps are used to control interaction with the environment (physical world), e.g.,
turning on/off the switch, locking/unlocking the lock, adjusting the brightness
of the light, etc. Different channels are not supposed to interfere with other’s
responsibilities. For example, the local app should not be able to update the
device’s firmware. These properties can be violated by PSVs. We will discuss
two particular types: over-privilege vulnerabilities and authentication bypass
vulnerabilities.

Over-Privilege Vulnerabilities. Listing 1.1 shows an over-privilege vulnera-
bility. The command handling function extract cmd shared between the inter-
faces supports all commands, even those not authorized on some of them.
There is a “valid” execution path (that is, one not violating CFI properties)
from local handler to exec update, namely with the call trace task main →
local handler → local recv → auth → parse local data → extract cmd
→ exec update. However, based on the program context, it appears that the
“valid” path is unexpected and violates the privilege separation model. We can
infer this from the user app lacking a user interface (e.g., button) that can initi-
ate the exec update behavior. This behavior is not intended for the user app to
perform. However, attackers can bypass the app interface and issue the command
using scripts. This bug has been reported to the vendor and acknowledged [30].
Inferring expected behavior from the program context, including exposed user
interfaces, is already used in existing research [26].

In this paper, we label such bugs as over-privilege vulnerabilities. Over-
privilege vulnerabilities are common in IoT platforms, and previous research has

242 A. Peng et al.

1 int auth(char *buf) {
2 /* extract user and password information from the buf*/
3 //
4 if ((strcmp(user , "GO") == 0) &&
5 (strcmp(pass , "ON") == 0))
6 return SUCCESS;
7 //
8 /* this is the real auth function , it checks */
9 /* user provided data with the credentials */

10 if (real_auth(user ,pass))
11 return SUCCESS;
12 else
13 return FAIL;
14 }

Listing 1.2. Code Snippet from [22] with slight changes.

uncovered many severe bugs [30,35,36]. Over-privilege are at the root of a num-
ber of CVEs, including CVE-2018-10691, CVE-2020-26072, CVE-2022-36782,
and CVE-2022-41627. To better understand the root cause of over-privilege vul-
nerabilities, we show a simplified call graph (see Fig. 2) abstracted from List-
ing 1.1. We assume there is a design goal that cmd1 can only be reached through
channel1, and cmd2 can only be reached by channel2. From the graph, we can
see that there are two unintended paths: channel1 can reach cmd2, and channel2
can reach cmd1. When taking a closer look at its root cause, we have two key
observations: i) before the command execution functions (i.e., cmd1, cmd2) there
is no check on the role or channel that issues the command, and ii) the unin-
tended path uses a shared function extract cmds to dispatch commands. This
function mixes the relationship between channels and privileged operations.

Authentication Bypass Vulnerabilities. In the Listing 1.1, the auth() func-
tion can also be bypassed without having knowledge of user’s credentials. Gen-
erally, attacker may leverage control-flow hijack technique (e.g., based on some
memory bugs) to bypass the authentication process. However, we do not target
memory bugs in this paper, instead, we target the bugs that are derived from
logic violations – the presence of hardcoded authentication credentials in the
authentication routine. Specifically, we show a problematic implementation of
auth() function in the Listing 1.2. There are hardcoded credentials (“GO” and
“ON”) in the auth function. The auth function can be bypassed (i.e., without
calling the real auth function) when the user’s input is consistent with the
hard-coded ones (line 2-4). Consequently, once an attacker analyzes and knows
the relevant content of the hardcoded information, it is not hard for them to
bypass the authentication and gain access to the device. Authentication bypass
vulnerabilities are common, and are at the root of a number of CVEs, including
CVE-2017-8226, CVE-2021-33218, CVE-2021-33220, CVE-2022-29730.

Limitations of Potential Solutions. To defend against the privilege sep-
aration bugs, there are three potential solutions: i) Detection in advance by

CEFI : Command Execution Flow Integrity for Embedded Devices 243

analyzing illegal path reachability. Ideally, we can use static analysis to detect
illegal paths in advance and ensure that cmd1 will never be reached through
channel2. However, since static analysis faces some common challenges (e.g., it
is hard to precisely resolve all indirect calls), it is very hard if not possible to
accurately exclude all paths from channel2 to cmd1. Moreover, any detected bugs
still need code patches (defense solutions) to defend against potential attacks.
ii) Blocking execution by checking input directly at the start point channel2.
Recall the example in Listing 1.1, one may argue that we can easily block the
execution if an “update” command is found at the local recv(). We note that
the received raw data at the entry point has various complex formats (e.g., JSON
format and encrypted formats [30]) and not completely parsed yet at this point.
Therefore, it is infeasible to directly filter illegal commands at the entry point
(i.e., local recv() and remote recv()). Futhermore, different channels are not
completely independent and often have some shared behaviors (e.g., both the
cloud and user app are allowed to issue turn on/off commands) and call shared
functions. Shared functions can easily lead to privilege separation vulnerabilities,
as noted by Yao et al. [30]. Although the program can know which channel is
involved at the entry point, it cannot predict the control flow, since the command
has not yet been parsed at that point. iii) Applying traditional CFI solutions.
However, logic bugs follow a “legal” path in the program implementation. There
is a path from channel2 to cmd1 which does not violate the CFG, so CFI solutions
fundamentally cannot mitigate this type of vulnerability.

3.2 Threat Model

We focus only on privilege separation vulnerabilities, and assume that the
attacker cannot hijack the original control flow and data flow. Note that we
do not consider memory errors in the threat model, as existing work can miti-
gate them. Our approach is orthogonal to existing solutions addressing control
flow hijacking (e.g., [1,20]) and data-flow violations (e.g., [24]). We also assume
that the attacker can access the IoT devices (e.g., via victim’s LAN), so they
have the ability to send the requests to the IoT devices directly or with a MITM
attack. Moreover, we assume the attacker can exploit any logic errors to execute
commands already present in the firmware without authorization. Our system
will be applied by a programmer who has access to the firmware source code,
and has knowledge of its high-level privilege-related design logic. This is realistic
when our system is deployed by the original developer, and also for third parties
in case of properly documented open source firmware. We also assume the trusted
software in the TEE is bug-free and isolated from the Normal World firmware, as
important metadata such as the allowlist is stored there. Considering the small
code base of the TEE-side software and the limited attack surface, this is a rea-
sonable assumption, well accepted by existing TEE-based work [1,20,24]. We do
not consider low-level physical attacks, such as connecting to a JTAG debugger
to re-program the firmware. Finally, we assume our compiler passes are free of
bugs.

244 A. Peng et al.

Valid Path
Analyzer

Allowed Start&End Points

Allowlist

Non-Secure World

Offline
Analysis

Online
Verification

Instrumented Binary

Calling Context
Encoder

Secure World

Developer

CEFI
Verifier

Source Code

LLVM
Bitcode

Valid
Paths

Target Branch

Return Branch

Fig. 3. The architecture of CEFI.

4 CEFI

In this section, we discuss the design and implementation of CEFI . Figure 3
shows the overall design of CEFI . Developers can use CEFI to protect their
firmware. It acts as a compiler pass, and anyone who has access to the firmware
source code can use it to generate a firmware binary hardened against privilege
separation vulnerabilities. CEFI needs minimal manual annotations to specify
the mapping between interfaces that can receive commands and commands per-
mitted on those interfaces, and can then automatically instrument the program
to enforce those policies at runtime, even in the face of logic bugs.

Our approach consists of two phases, which are discussed in this section. The
static calling context encoding (CCE) phase (Sect. 4.1) happens at compile time,
and performs static analysis and instrumentation to create a hardened binary.
It uses the policies specified by the user in the form of minimal annotations to
generate an allowlist that specifies the code paths that satisfy the policy, and
are therefore valid contexts to execute particular commands, and instruments
to code to be able to enforce this allowlist. The dynamic command execution
flow verification phase (Sect. 4.2) offers the necessary support at runtime to
perform these checks in a secure way. We take advantage of secure storage and
isolation provided by Trustzone-M the allowlist at runtime. We use Trustzone
to protect the security of the allowlist, as our approach relies on the guarantee
that it is not illegally written to. Meanwhile, due to the security isolation of
TrustZone, we avoid having to perform checks at all risky (e.g., pointer-based)
write instructions, which is expensive.

CEFI : Command Execution Flow Integrity for Embedded Devices 245

4.1 Calling Context Encoding Instrumentation

We implement CEFI as two LLVM compiler passes, namely the Valid Path
Analyzer and the Calling Context Encoder. We discuss them in this section.

Valid Path Analyzer. To accurately enforce the execution path belonging to
its expected interaction channel, CEFI needs developers to specify a legitimate
pair set between the sensitive command function (i.e., end point) with its corre-
sponding entry function (i.e., start point). There are some manual works annotat-
ing the start point and the end point, and representing their relationship. Taking
Listing 1.3 as an example, function func 1 and function func 2 are two different
entry functions (i.e., start point). The function turn on and update firmware
are two different command execution functions (i.e., end point). The annota-
tions specify a relationship between the start points and the end points, indi-
cating which paths are allowed and which are not. Specifically, the end point
turn on can be reached from start point func 1 and func 2, while end point
update firmware can only be reached by start point func 1. On this basis,
we can obtain many allowed pairs, i.e., (func 1, update firmware), (func 1,
turn on), (func 2, turn on). After annotating, the path analyzer gathers all
available paths from the start point to the end point of each pair based on the
call graph with a function named AllowPathAnalyzer(). In this way, we can
get the valid paths to each command execution function and filter out a lot
of irrelevant code. Note that these valid paths have already filtered the paths
that are not allowed to reach command execution functions, e.g., any paths from
func 2 → update firmware are not regarded valid even if they exist.

1 void __attribute__ ((annotate("entry#role1"))) func_1();
2 void __attribute__ ((annotate("entry#role2"))) func_2();
3 void __attribute__ ((annotate("cmd#role1#role2"))) turn_on ();
4 void __attribute__ ((annotate("cmd#role1"))) update_firmware ();

Listing 1.3. Manual Annotation

Calling Context Encoder. Calling context encoding is a lightweight tech-
nique to record dynamic calling path history, which has been widely used in
many software development processes such as testing, event logging, and pro-
gram analysis [4,23,32,33]. Its basic idea is to instrument function calling point,
so at the runtime, the instrumentation can dynamically update the ID such
that the value of the ID represents the current calling context. To make the ID
uniquely distinguish different contexts, the CCE algorithm solves many chal-
lenges, such as recursive calls, function pointers, etc. Since the CCE algorithm
is not our contribution, we omit the details here. Instead, we directly integrate
the work by Sumner et al. [23] in CEFI . The left-hand side of Fig. 4 (see [23] for
the ID notation) illustrates how it works. In the calling graph, the CCE algo-
rithm assigns a value to each edge between StartPA and EndPA. so the ID can be

246 A. Peng et al.

dynamically updated and each path to EndPA can be uniquely mapped to a value
in the runtime. Specifically, before the start point StartPA, the id is initialized
to 1, and at the end point EndPA, the id may have two different values (i.e., 1, 2),
which can uniquely distinguish two different paths (StartPA→f2→f4 →EndPA
and StartPA→f3→f4 →EndPA). When CEFI is deployed, it will instrument a
secure gateway API call at each edge, but it only requires instrumentation at
the edge f3→f4, as the process of “id+ = 0” does not alter the calling context
ID, making instrumentation unnecessary at other edges (such as StartPA→f2,
StartPA→f3, and f2→f4). CEFI is lightweight, which can be attributed to the
fact that only a limited amount of instrumentation is required. Besides, the
involved CCE algorithm is safe (i.e., different contexts are guaranteed to have
different ID), reversible (i.e., calling context can be faithfully decoded and recov-
ered) [23].

With the help of CCE, we can generate an allowlist for each end point
(i.e., command execution function), as shown in Algorithm 1, which is denoted
as AllowlistGenerate(). The algorithm takes the pair set of user-defined start
and end points and the whole call graph of the firmware as inputs. The out-
put is the allowlist. For each pair (i.e., StartPA, EndPA), the algorithm first
gets an AllowPathSet using the ValidPathAnalyzer(), and each item in the
set represents an allowed path from StartPA to EndPA. Then, it encodes each
edge of an allowed path using CallingContextEncoding(), and accumulates
the weights (IDs) of each allowed path to EndPA using ComputeID. Specifically,
each call statement on the allowed path will be instrumented to update the value
of context identifier, so that we can obtain a value at the EndPA and check it
against the allowlist. Note that we assign one to the start point instead of zero
as the traditional CCE algorithm does for quickly distinguishing the remaining
paths to the command function with zero values without encoding them. After
traversing every item in pairSet, we obtain the allowlist dictionary, in which the
key is EndPA and the value is AllowedIDset.

Instrumentation with ARMv8-M Security Extension. During instrumen-
tation, the firmware reads the allowlist and resides in the read-only secure mem-
ory before initialization at runtime. Then, all allowed paths are encoded with
CCE as mentioned before. Meanwhile, any ID update before the function call
site will be transferred to TrustZone-protected Secure World, thus we can guar-
antee the security of dynamically computed calling context ID. To enforce the
integrity check before command execution, we also intercept all call instructions
to the command functions (end points) and redirect them to the CEFI verifier
in the Secure World through secure gateway veneers [3]. If the verification is
passed, the control flow returns back to the intended command function.

CEFI : Command Execution Flow Integrity for Embedded Devices 247

Algorithm 1. Algorithm for Allowlist Generation, denote as AllowlistGener-
ate()
Input : PairSet
Input : CallGraph
Output: Allowlist
//PairSet: each item consists of (startPoint, endPoint)
//StartPA: entry function
//EndPA: command function
//Allowlist: a dict, the key is EndPA, the value is an AllowedIDSet
Item ← Head(PairSet)
do

StartPA, EndPA ← GetTuple(Item)
AllowPathSet ← ValidPathAnalyzer(StartPA, EndPA, CallGraph)
EncodedAllowPathSet ← CallingContextEncoding(AllowPathSet)
AllowedIDSet ← ComputeID(EncodedAllowPathSet)
Allowlist ← AddTo(Allowlist, EndPA, AllowedIDSet)
Item ← Next(PairSet);

while Item;

4.2 Command Execution Flow Integrity Enforcement

Figure 4 illustrates the process of dynamic command execution flow integrity
enforcement with CEFI verifier. When a call instruction to a command function
is encountered in the firmware, the control flow will be transferred to the security
gateway veneers and further forwarded to the CEFI verifier. It verifies the current
calling context (current ID value) by looking up the valid ID set to the command
function (e.g., EndPA in Fig. 4) from the allowlist. After verification, if the calling
context is allowed, the control flow redirects back to the command execution. If
the calling context is invalid (e.g., the ID value is not one or two in Fig. 4), the
CEFI verifier will stall the execution and output the current calling context (ID
value) via UART or other peripherals based on user specification.

5 Evaluation

To evaluate CEFI , we conducted experiments on five commonly-used programs
to i) measure its performance in terms of runtime and memory overhead, ii)
perform a security analysis to demonstrate its effectiveness, and iii) show the
manual effort required to use CEFI .

Testing Environment. CEFI is implemented on top of LLVM 10 and runs
on Ubuntu 18.04. CEFI generates hardened binaries that can run on the
STM32L562E-DK discovery kit, a popular IoT development board. This board
features an ARM Cortex-M33 core with TrustZone support, along with 512 kB
Flash memory and 256 kB SRAM. Our prototype does not rely on other board-
specific features, making it adaptable to other ARM Cortex-M chips.

248 A. Peng et al.

id+=0

Start
PA

f2 f3

f4

End
PA

id+=0 id+=0

id+=1

id=1

Non Secure Memory

Call to secure
gateway

Endpoint ID

EndPA {1,2}
…… ……

Secure Memory

Return branch to
the end point

Allowlist

Secure Gateway Veneers

Secure code
(CEFI Verifier)

Instrumented binary

Fig. 4. A Running example of the CEFI verification process.

Benchmark. Our benchmark consists of five embedded programs with practical
application scenarios. They are small in size (the average size is 104.03 kB) com-
pared with traditional software, which is representative of embedded programs
in practical settings, as these CPUs cannot run larger programs. These programs
have been used for evaluation in prior embedded device research [8,10,24].

– Light Controller is used in smart home applications. User can turn the light
on/off remotely by sending control command. It is also used for evaluation
by OAT [24].

– Syringe Pump is used in medical and production applications. The user
can control a device to inject or withdraw fluid automatically by sending
control command with user-provided amount. It is also used by C-FLAT [1]
and OAT [24].

– Thermostat reads the temperature and humidity from a sensor. If the tem-
perature is too far from a preset temperature it can, for example, trigger
an air conditioning unit. It also accepts commands to retrieve the current
temperature. This program is used by PRETENDER [10].

– RF door lock can be applied to smart door locks. Its commands include
unlocking the door given the correct password, and setting a custom password.
This program is used by PRETENDER [10].

– Steering control is used in autonomous driving. It receives commands from
the computer to control the steering and moving/motoring of the autonomous
vehicle. This program is used by P2IM [8].

Table 1 presents details on the application layer logic of the programs. It does
not consider the boot loader, board support package (BSP), device drivers, or
any other components outside of the application layer. It includes the functions
involved (#Functions), the number of annotations made (#Annotations), the

CEFI : Command Execution Flow Integrity for Embedded Devices 249

number of all allowed paths from the StartPA to EndPA (#AllowedPaths), and
the lines of code of application layer (#LoC).

Table 1. Statistics in Benchmark Programs

Program #Functions #Annotations #AllowedPaths #LoC

Light Controller [24] 33 4 7 286

Syringe Pump [1,24] 51 4 8 569

Thermostat [10] 28 5 4 154

RF door lock [10] 25 4 5 219

Steering control [8] 33 2 8 150

5.1 Performance Overhead

For defense mechanisms to be deployable, they must result in low performance
overhead [25]. This is especially important for resource-constrained embedded
devices. To study the runtime overhead introduced into a system by CEFI , we
measure the execution time with and without CEFI for each test program. We
record end-to-end overhead, based on the time between when a device receives
an event and when a device completes the resulting action. The five programs we
selected all have multiple execution paths that are triggered by different inputs.
Therefore, we design different inputs to trigger each branch of the program. The
reported runtimes are averages over ten executions of each input.

We present the runtime overhead and memory overhead in Table 2. The col-
umn #Trans lists the average transitions between the trusted and normal world
of each programs. The results show that CEFI has very low overhead for each
of the programs, with a geometric mean of just 0.18% over all of them.

Memory overhead consists of Flash overhead and RAM overhead. For Flash
overhead, CEFI adds instrumentation to encode and decode the ID at each call
site. In addition, before the specific function, we need instrumentation to send the
ID to the Secure World to match it against the allowlist. These instrumentations

Table 2. Runtime Overhead and Memory Overhead

Program #Trans Execution Time (ms) Memory Consumption (bytes)

Baseline CEFI Overhead Baseline CEFI Overhead

Light Controller 9 18.49 18.51 0.11% 102888 103172 0.28%

Syringe Pump 7 54.34 54.36 0.04% 110536 110772 0.21%

Thermostat 5 5.04 5.05 0.20% 108184 108332 0.14%

RF door lock 10 2.20 2.21 0.45% 102308 102480 0.17%

Steering control 7 10.74 10.75 0.09% 108724 108888 0.15%

Geometric Mean 0.18% 0.19%

250 A. Peng et al.

Table 3. Commands for Smart Light Example

Interaction Channel Annotated Command Functions

Local client switch on, switch off

IoT cloud update firmware, recovery firmware, change password

increase Flash usage. The results show the Flash memory overhead of CEFI .
The geometric mean overhead across all applications is just 0.19%. For RAM
overhead, it mainly consists of the allowlist stored in the Secure World, costing
less than 80 bytes since the biggest allowlist contains less than twenty legal
integer IDs.

5.2 Effectiveness Analysis

Attack detection via CEFI . Although privilege separation vulnerabilities are
common (recent ones include for example CVE-2020-26072, CVE-2021-33220,
and CVE-2022-36782), unfortunately firmware is rarely available open source.
As such, there is no known vulnerable firmware available for us to test. Instead,
we injected the vulnerability shown in Fig. 2 into the test example, and verified
that CEFI could prevent attacks that exploit this vulnerability while running the
program. In order to construct the vulnerability, we added some functions to the
test example, such as switch on, update firmware, change passwd, and so on.
For the experiment, we formulated the following rules: some commands can only
be issued by the cloud, and the others only by local clients. The details are shown
in Table 3. However, we do not implement strict authentication, resulting in the
vulnerability that the remote and local command sets can be mixed together.

In order to realize our enhancement scheme, we carried out the following
steps: first, we annotate the command execution functions and entry functions,
such as switch off, update firmware, etc. Then, the legal IDs of the paths between
entry function and command execution function can be statically obtained. We
traverse all legal operations, and store all legal ID information in TrustZone to
form an allowlist. After getting the allowlist, we can send instructions to the
device at will: for example, send the update firmware command from the IoT
cloud to the device, and the device can normally perform the corresponding
operation, or send the update firmware command from the local client to the
device, and the device prompts that the operation cannot be performed. It can
be seen from this that our scheme is effective. Although this vulnerability is
constructed by ourselves, it tests the most important logic of the vulnerability,
and our solution can indeed discover and defend against such vulnerabilities
during program operation.

Security Analysis. Our threat model does not assume that the attacker can
hijack the original control flow and data flow, as outlined in Sect. 3.2. To evade
CEFI , attackers need to circumvent the validation checks of CEFI . They would

CEFI : Command Execution Flow Integrity for Embedded Devices 251

need to achieve any of the following: 1) disable the instrumentation of the calling
context ID updating logic and validation checks; 2) tamper with the metadata,
which includes the calling context ID and the allowlist; or 3) discover a collision
where a path from the channel (entry point) to disallowed commands (end
point) can produce an calling context ID that is included in the allowlist.

However, 1) is ruled out by the assumption that existing control flow integrity
enforcement has been effectively deployed, and attacks cannot bypass the
execution of instrumented trampoline functions. CEFI prevents 2) by storing
the crucial metadata (i.e., calling context ID and allowlist) in a TrustZone-
protected secure world. The metadata can only be updated by a secure API call
(i.e., instrumented trampoline function call). The assumption of control flow
integrity ensures that secure API call cannot be hijacked and will be correctly
executed. As a result, 2) is prevented as well. Lastly, 3) is prevented by the
nature of CCE algorithm [23], which guarantees the uniqueness of the ID for
each specific calling context.

5.3 Annotation Effort

CEFI requires annotation (see Listing 1.3) to express relationship between the
interaction channel’s entry point and the end point (i.e., command execution
function). Although this is a manual process, it requires only minimal effort
(see Table 1). In our experiments, we anticipate that a few minutes are enough
to complete annotations for a program, assuming that programmers have the
knowledge of its design logic. While these programs may seem particularly small,
this reflects the fact that most embedded programs are by nature required to be
much smaller than regular software. We note that there are currently no standard
benchmarks, but we chose these programs because they are also widely used for
evaluation in related research.

6 Related Work

CEFI is the first approach to enforce integrity of command execution on embed-
ded devices after deployment, even against attacks that violate neither static
control flow nor static data flow, even though such vulnerabilities are common
on embedded devices [35]. The only other work that can identify such vulnerabil-
ities, Gerbil [30], uses symbolic execution to find them in the testing phase, but
cannot prevent exploitation of residual vulnerabilities after deployment. CEFI ’s
very low overhead makes it particularly suitable for this purpose, especially on
resource-constrained embedded devices.

Other existing work focuses mostly on detecting violations of control flow
and data flow. In this section, we first focus on work that enables detection of
such vulnerabilities on resource-constrained embedded devices. Since context-
sensitivity is critical to CEFI ’s ability to detect privilege separation vulnerabili-
ties, we also discuss works that introduce context sensitivity to runtime detection
of violations.

252 A. Peng et al.

6.1 Control and Data Flow Integrity on Embedded Systems

Since embedded devices are resource-constrained, solutions to enforce control-
flow integrity (CFI) and data-flow integrity (DFI) are only viable if they are
very lightweight. For example, µRAI [2] uses LLVM compiler passes to enforce
return address integrity by removing the need to spill return addresses to the
stack. Silhouette [34] leverages an incorruptible shadow stack for hardening back-
ward indirect jump and uses a label instruction for protecting forward indirect
jump. CFI CaRE [20] leverages TrustZone to implement a shadow stack mech-
anism. DFI is used to protect the integrity of memory access (e.g., maintaining
and checking bounds information for each memory read or write). DFI requires
much more instrumentation than CFI, because it needs to perform checks at
memory access points rather than just at indirect branches. As such, there are
fewer solutions for DFI than for CFI for embedded systems, as pointed out in
a recent survey [17]. One notable work is OAT [24], selectively protects crit-
ical data on embedded programs. Therefore, it reduces performance overhead
by instrumenting critical variable access, but sacrifices protection. However, this
solution does not affect the protection provided by CEFI . Existing work can-
not prevent exploitation of privilege separation vulnerabilities without violating
control and data flow properties.

6.2 Context Sensitive Defense Solutions

Context sensitivity allows defenses to be more restrictive than traditional CFI
and DFI solutions can be, by considering not just static properties of the con-
trol and data flow graphs, but also the actual control flow path taken at run-
time. Calling context is widely used in context-sensitive defenses [9,18,19,27–
29]. For example, PathArmor [27] conducts context-sensitive static analysis over
the CFG on-demand, and provides context-insensitive CFI policies. However,
PathArmor [27] does not protect against privilege separation vulnerabilities.
Henry et al. [9] and David et al. [28] use the call stack and calling context
for anomaly detection and system call trace consistency, but these methods are
expensive [5]. Qiang et al. [33] propose HeapTherapy for lightweight trace col-
lection and exploit detection, which aims to mitigate traditional heap buffer
overflows. We use calling context encoding to defend against privilege separa-
tion vulnerabilities and logic bugs without control flow violations in resource-
constrained embedded systems.

7 Conclusion

With the development of the Internet of Things (IoT), the application scenar-
ios of embedded devices are becoming broader and more complicated. As a
result, there are interactions between the various entities (i.e., cloud, the IoT
device, mobile app). This causes the rise of a new type of vulnerability, privilege
separation vulnerabilities, that can be exploited to launch attacks (e.g., device

CEFI : Command Execution Flow Integrity for Embedded Devices 253

hijacking attacks) without control flow anomalies. Therefore, we propose CEFI -
Command Execution Flow Integrity, to protect embedded devices against such
attacks. Finally, we apply CEFI on five real-world programs. The evaluation
shows that CEFI can effectively prevent this type of attack, with negligible
runtime overhead of 0.18% and negligible memory overhead of 0.19%. In future
work, we plan to evaluate CEFI on larger IoT systems.

Acknowledgements. We thank our shepherd Roland YAP Hock Chuan and anony-
mous reviewers for their valuable feedback. This work was supported by the National
Natural Science Foundation of China (U1836210), the Key Research and Development
Science and Technology of Hainan Province (GHYF2022010), the National Natural
Science Foundation of China (No.62202188), and the National Key R&D Program of
China (No.2022YFB31033400). Meanwhile, this work was partly done at VU Amster-
dam. We thank the support provided by the China Scholarship Council (CSC) and the
VUSec Group at VU Amsterdam.

References

1. Abera, T., et al.: C-flat: control-flow attestation for embedded systems software.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 743–754 (2016)

2. Almakhdhub, N.S., Clements, A.A., Bagchi, S., Payer, M.: µrai: securing embedded
systems with return address integrity. In: 27th Annual Network and Distributed
System Security Symposium, NDSS 2020, San Diego, California, USA, February
23–26 (2020)

3. ARM Ltd.: Arm compiler software development guide version 6.3 (2022). https://
developer.arm.com/documentation/dui0773/d/chunkpge1447084556319

4. Ball, T., Larus, J.R.: Efficient path profiling. In: MICRO 29, pp. 46–57. IEEE
(1996)

5. Bond, M.D., McKinley, K.S.: Probabilistic calling context. ACM SIPLAN Notices
42(10), 97–112 (2007)

6. Cerdeira, D., Santos, N., Fonseca, P., Pinto, S.: SoK: understanding the prevailing
security vulnerabilities in trustzone-assisted tee systems. In: 2020 IEEE Sympo-
sium on Security and Privacy (SP), pp. 1416–1432. IEEE (2020)

7. Clements, A.A., Almakhdhub, N.S., Bagchi, S., Payer, M.: Aces: Automatic com-
partments for embedded systems. In: USENIX Security 2018, vol. 2018, pp. 65–82
(2018)

8. Feng, B., Mera, A., Lu, L.: P2IM: scalable and hardware-independent firmware
testing via automatic peripheral interface modeling. In: USENIX Security 2020,
pp. 1237–1254 (2020)

9. Feng, H.H., Kolesnikov, O.M., Fogla, P., Lee, W., Gong, W.: Anomaly detection
using call stack information. In: 2003 Symposium on Security and Privacy, 2003,
pp. 62–75. IEEE (2003)

10. Gustafson, E., et al.: Toward the analysis of embedded firmware through automated
re-hosting. In: RAID 2019, pp. 135–150 (2019)

11. Hassanshahi, B., Jia, Y., Yap, R.H.C., Saxena, P., Liang, Z.: Web-to-application
injection attacks on android: characterization and detection. In: Pernul, G., Ryan,
P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 577–598. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24177-7 29

https://developer.arm.com/documentation/dui0773/d/chunkpge1447084556319
https://developer.arm.com/documentation/dui0773/d/chunkpge1447084556319
https://doi.org/10.1007/978-3-319-24177-7_29

254 A. Peng et al.

12. Hassanshahi, B., Yap, R.H.C.: Android database attacks revisited. In: AsiaCCS
2017, pp. 625–639 (2017)

13. Hu, H., Shinde, S., Adrian, S., Chua, Z.L., Saxena, P., Liang, Z.: Data-oriented
programming: on the expressiveness of non-control data attacks. In: 2016 IEEE
Symposium on Security and Privacy (SP), pp. 969–986. IEEE (2016)

14. Huo, D., Cao, C., Liu, P., Wang, Y., Li, M., Xu, Z.: Commercial hypervisor-based
task sandboxing mechanisms are unsecured? but we can fix it! J. Syst. Architect.
116, 102114 (2021)

15. Jia, Y., et al.: Burglars’ IoT paradise: understanding and mitigating security risks
of general messaging protocols on IoT clouds. In: 2020 IEEE Symposium on Secu-
rity and Privacy (SP), pp. 465–481. IEEE (2020)

16. Koeberl, P., Schulz, S., Sadeghi, A.R., Varadharajan, V.: TrustLite: a security
architecture for tiny embedded devices. In: Proceedings of the Ninth European
Conference on Computer Systems, pp. 1–14 (2014)

17. Mishra, T., Chantem, T., Gerdes, R.: Survey of control-flow integrity techniques
for embedded and real-time embedded systems. arXiv preprint arXiv:2111.11390
(2021)

18. Newsome, J., Brumley, D., Song, D., Chamcham, J., Kovah, X.: Vulnerability-
specific execution filtering for exploit prevention on commodity software. In: NDSS
(2006)

19. Novark, G., Berger, E.D., Zorn, B.G.: Exterminator: automatically correcting
memory errors with high probability. In: PLDI, pp. 1–11 (2007)

20. Nyman, T., Ekberg, J.-E., Davi, L., Asokan, N.: CFI CaRE: hardware-supported
call and return enforcement for commercial microcontrollers. In: Dacier, M., Bailey,
M., Polychronakis, M., Antonakakis, M. (eds.) RAID 2017. LNCS, vol. 10453, pp.
259–284. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66332-6 12

21. OConnor, T., Enck, W., Reaves, B.: Blinded and confused: uncovering systemic
flaws in device telemetry for smart-home internet of things. In: Proceedings of the
12th Conference on Security and Privacy in Wireless and Mobile Networks, pp.
140–150 (2019)

22. Shoshitaishvili, Y., Wang, R., Hauser, C., Kruegel, C., Vigna, G.: Firmalice-
automatic detection of authentication bypass vulnerabilities in binary firmware.
In: NDSS, vol. 1, p. 1 (2015)

23. Sumner, W.N., Zheng, Y., Weeratunge, D., Zhang, X.: Precise calling context
encoding. IEEE Trans. Software Eng. 38(5), 1160–1177 (2011)

24. Sun, Z., Feng, B., Lu, L., Jha, S.: OAT: attesting operation integrity of embedded
devices. In: SP, pp. 1433–1449. IEEE (2020)

25. Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: eternal war in memory. In: 2013
IEEE Symposium on Security and Privacy, pp. 48–62. IEEE (2013)

26. Tian, Y., et al.: Smartauth: User-centered authorization for the internet of things.
In: USENIX Security 2017, pp. 2–8 (2017)

27. Van der Veen, V., et al.: Practical context-sensitive CFI. In: CCS, pp. 927–940
(2015)

28. Wagner, D., Dean, R.: Intrusion detection via static analysis. In: Proceedings 2001
IEEE Symposium on Security and Privacy. S&P 2001, pp. 156–168. IEEE (2000)

29. Xu, J., Ning, P., Kil, C., Zhai, Y., Bookholt, C.: Automatic diagnosis and response
to memory corruption vulnerabilities. In: CCS, pp. 223–234 (2005)

30. Yao, Y., Zhou, W., Jia, Y., Zhu, L., Liu, P., Zhang, Y.: Identifying privilege
separation vulnerabilities in IoT firmware with symbolic execution. In: Sako, K.,
Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11735, pp. 638–657.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29959-0 31

http://arxiv.org/abs/2111.11390
https://doi.org/10.1007/978-3-319-66332-6_12
https://doi.org/10.1007/978-3-030-29959-0_31

CEFI : Command Execution Flow Integrity for Embedded Devices 255

31. Yuan, B., et al.: Shattered chain of trust: understanding security risks in cross-
cloud iot access delegation. In: USENIX Security 2020, pp. 1183–1200 (2020)

32. Zeng, Q., Rhee, J., Zhang, H., Arora, N., Jiang, G., Liu, P.: DeltaPath: precise and
scalable calling context encoding. In: Proceedings of Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, pp. 109–119 (2014)

33. Zeng, Q., Zhao, M., Liu, P.: Heaptherapy: an efficient end-to-end solution against
heap buffer overflows. In: DSN 2015, pp. 485–496. IEEE (2015)

34. Zhou, J., Du, Y., Shen, Z., Ma, L., Criswell, J., Walls, R.J.: Silhouette: efficient
protected shadow stacks for embedded systems. In: USENIX, pp. 1219–1236 (2020)

35. Zhou, W., et al.: Reviewing IoT security via logic bugs in IoT platforms and
systems. IEEE Internet Things J. 8(14), 11621–11639 (2021)

36. Zhou, W., et al.: Discovering and understanding the security hazards in the inter-
actions between IoT devices, mobile apps, and clouds on smart home platforms.
In: USENIX, pp. 1133–1150 (2019)

	CEFI: Command Execution Flow Integrity for Embedded Devices
	1 Introduction
	2 Background
	2.1 IoT Architecture
	2.2 Interaction Channels on IoT Platform
	2.3 ARM TrustZone

	3 Motivation
	3.1 Problem Statement
	3.2 Threat Model

	4 CEFI
	4.1 Calling Context Encoding Instrumentation
	4.2 Command Execution Flow Integrity Enforcement

	5 Evaluation
	5.1 Performance Overhead
	5.2 Effectiveness Analysis
	5.3 Annotation Effort

	6 Related Work
	6.1 Control and Data Flow Integrity on Embedded Systems
	6.2 Context Sensitive Defense Solutions

	7 Conclusion
	References

