®

Check for
updates

Extended Abstract: Towards Reliable
and Scalable Linux Kernel CVE
Attribution in Automated Static

Firmware Analyses

R. Helmke®™ and J. vom Dorp

Fraunhofer FKIE, Zanderstrafse 5, 53177 Bonn, Germany
{rene.helmke, johannes.vom.dorp}@fkie.fraunhofer.de

Abstract. In vulnerability assessments, software component-based
CVE attribution is a common method to identify possibly vulnerable sys-
tems at scale. However, such version-centric approaches yield high false-
positive rates for binary distributed Linux kernels in firmware images.
Not filtering included vulnerable components is a reason for unreli-
able matching, as heterogeneous hardware properties, modularity, and
numerous development streams result in a plethora of vendor-customized
builds. To make a step towards increased result reliability while retaining
scalability of the analysis method, we enrich version-based CVE match-
ing with kernel-specific build data from binary images using automated
static firmware analysis. In a case study with 127 router firmware images,
we show that in comparison to naive version matching, our approach
identifies 68% of all version CVE matches as false-positives and reliably
removes them from the result set. For 12% of all matches it provides
additional evidence of issue applicability.

1 Introduction

Safety, security, and privacy threats arise alongside embedded system markets.
Growing device numbers inflate attack surfaces, raising impact and scope of
newly found software vulnerabilities in domains pivotal to society [8]. Thus, it
is important to maintain the software security of these systems.

Embedded devices commonly make use of Embedded Linux! as host operat-
ing system for their firmware. Using open source components instead of develop-
ing custom solutions generally provides a solid security foundation; though the
Linux kernel specifically has been attributed over 2,900 Common Vulnerabili-
ties and Exposures (CVE)s as of 2022. Attesting the security of a Linux-based
firmware thus includes checking which CVEs concern the specific kernel in-use.

While reproducible exploitation of a CVE would be optimal, various chal-
lenges [10,13] exist that make a comprehensive reproduction on a device unob-
tainable. First, not all CVEs have a known POC exploit to test against. Second,

1 https://www.embedded.com/wp-content /uploads/2019/11/EETimes_ Embedded 2019
Emb\discretionary-edded Markets Study.pdf.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Gruss et al. (Eds.): DIMVA 2023, LNCS 13959, pp. 201-210, 2023.
https://doi.org/10.1007/978-3-031-35504-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35504-2_10&domain=pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embdiscretionary {-}{}{}edded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embdiscretionary {-}{}{}edded_Markets_Study.pdf
https://doi.org/10.1007/978-3-031-35504-2_10

202 R. Helmke and J. vom Dorp

exploitation requires either a running device or an emulated firmware. The for-
mer is not generally attainable for large-scale analysis. The latter is hindered my
various challenges specific to firmware emulation [6,13].

Static analysis serves heuristics to find imperfect proof for CVE attribution.
Yet, many approaches do not scale well as they require considerable manual work
and deep knowledge of each CVE [10]. Parts are automatable but needed data
may be unavailable or incorrect in repositories [1,11]. Also, automation becomes
increasingly challenging considering proprietary formats, obfuscation, compiler
optimizations, and symbol stripping [3,10].

In lack of better methods, firmware analysis tools [4,9] and large-scale stud-
ies [2,12,14] commonly attribute vulnerabilities by matching versions against
CVE databases. One such study [12] used version matching on the Linux ker-
nel as part of an empirical study on home router security. Due to custom build
configurations, implying that each kernel includes only a subset of all possible
vulnerabilities, this method is exceedingly unreliable. To improve the reliabil-
ity of version-based Linux CVE attribution in large-scale scenarios, we enrich
such naive matching with kernel-specific configuration data, collected through
automated static firmware analysis. Hereby, we reduce the set of false-positive
matches requiring further manual verification. In the following, we provide:

1. A description of our methodology for Linux CVE attribution, based solely on
binary kernel representations.

2. A case study in which we compare our approach with naive version-based
CVE matching using the 2020 Home Router Security Report [12] dataset.

3. An open source proof of concept implementation of the methodology?.

2 Background & Related Work

Automated vulnerability detection is approached using various methods such
as code similarity and patch analysis [5], fuzzing [7], and various emulation-
based methods [13]. Large-scale detection of known vulnerabilities requires sound
ground truth. Thus, we focus our discussion on sound vulnerability information
and previous research on discovering known vulnerabilities on binary code.

Sound Data as Foundation for known Vulnerability Detection. Correct
and detailed information on known vulnerabilities [10] is essential for effective
automated detection methods. The community-driven CVE catalog? offers a de
facto standard for vulnerability identification but comes with limitations due to
errors in Common Platform Enumeration (CPE) assignments [1], missing or hard
to obtain data [3] and inconsistent references to patches [11]. Additionally, for
CVEs affecting closed source projects, issuers will not share technical details on
fixes in public. In this work, we leverage upon the observation that the summary
of most Linux kernel CVEs includes a file reference to mark which kernel part
is affected.

2 https://github.com/fkie-cad/cve-attribution-s2.

https://www.cve.org/.

https://github.com/fkie-cad/cve-attribution-s2
https://www.cve.org/

Extended Abstract: Reliable Linux CVE Attribution 203

In consequence, most research comes with small custom datasets of selected
CVEs that their proposed techniques can ingest for evaluation [10]. The nec-
essary investigation, data aggregation, and technical bug knowledge, limits the
applicability of previously -scale scenarios.

Static Vulnerability Detection in Large-Scale Firmware Analyses. In
2014, Costin et al. [2] executed a quantitative study on embedded device security
by analyzing 32.000 firmware images. They attributed CVEs based on software
version number and then reported unsolved challenges in result verification, as
not only CVE data is incomplete, but vendors may also custom-patch files.

Cross-architecture code similarity methods (e.g. FirmUp [3]) have drastically
improved and may be used as imprecise measure for verification in this case. How-
ever, acquiring and processing patches for thousands of CVEs to bootstrap code
similarity methods deems infeasible based on the imprecise CVE repositories.

Zhao et al. [14] develop FirmSec, a large-scale static analysis pipeline for IoT
devices. The approach extracts syntactical and control-flow graph features and,
thus, provide an alternative for signature-based version detection. However, the
applicability issue introduced by vendor-specific build configurations, as in the
Linux kernel, is not considered.

The authors of [12] assess and compare the state of firmware security of 127
home routers in similar aspects as [2], using the automated Firmware Analysis
and Comparison Tool (FACT) [4]. Identified Linux kernel versions are matched
against the National Vulnerability Database (NVD)? to calculate how many
critical CVEs affect the kernel of each firmware. In this study, the stated issues
with CVE database information and kernel modularity lead to high false-positive
rates, incurring high manual verification efforts.

There is few work that specifically studies high false-positive CVE attribution
rates caused by the Linux kernel’s modularity. With version-based CVE attri-
bution being a common method, we identify false-positive reduction in static
kernel CVE attribution as a research gap.

3 Methodology

This section describes our proposed methodology to enrich the version-based
Linux kernel CVE attribution process with build-specific annotations. We show
an automated static analysis pipeline that finds and extracts kernel configura-
tions, dry builds the found kernel version, and filters CVEs based on affected
version and build log-included files.

Figure 1 provides an overview of our methodology. We establish a two-stage
process: In the first and left-hand stage, we unpack, analyze, and annotate each
file of an ingress firmware image. Gathered information includes Linux kernel
version, Instruction Set Architecture (ISA), and kernel build configuration. In the
second and right-hand stage, we leverage upon said data to perform the actual
CVE attribution and filtering step. Yellow boxes in Fig. 1 mark components this
paper contributes.

4 https://nvd.nist.gov/.

https://nvd.nist.gov/

204 R. Helmke and J. vom Dorp

[1lI-A. Gather Kernel Information via Static Firmware Analysis 111-B. Build Log-assisted CVE Attribution]

1 kemel.org
1
1 rces

nalysis results
CVE
Fetcher
Ver.
Database &

File Storage ko o3 il

Unpack
Scheduler

eeeeeeee

Fig. 1. Two-staged static analysis pipeline to (I) gather kernel information and (II)
attribute kernel CVEs accurately.

In the two following Subsects. 3.1 and 3.2, we provide detailed technical
insights on each stage and step.

3.1 Gather Kernel Information via Static Firmware Analysis

For stage one, we apply and enhance the open source firmware analysis tool
FACT [4]. FACT provides automated firmware analysis capabilities including
recursive extraction, kernel version, and ISA detection. In the following, we
describe all steps that are of importance for the proposed attribution methodology.

Starting with an arbitrary Linux firmware image, we first use FACT internals
to recursively extract all components necessary for analysis, including the kernel.
Next, we identify the ISA and kernel version. The Analysis Scheduler achieves
this by running a selected set of analyses on each extracted object. The software
version detection uses YARA rules and the ISA detection leverages ELF header
information, detected kernel configurations, and device trees.

We contribute the Kernel Configuration plugin, which detects and
extracts Linux kernel build configurations in firmware images. It is pivotal to
the succeeding dry build pipeline step, as it determines components included in
kernel builds. In firmware, kernel configurations may be present as plain text
or in binary form. Detection of plain text configurations is straight forward due
to the distinctive key-value structure and well-known directive keywords. These
can be used for pattern matching. If the CONFIG_IKCONFIG directive is enabled
(Y) during build, the kernel configuration gets embedded into the binary kernel
image. This embedding might be an inline string or a binary compressed repre-
sentation using common algorithms like LZMA or DEFLATE. If it is set to M,
the configuration is outsourced to a kernel module. Thus, if the file is either a
kernel image or module, our plugin searches for an embedded magic word that
precedes the kernel configuration data. The plugin tests for all variations and
extracts, and if necessary, decompresses the configuration.

3.2 Build Log-Assisted CVE Attribution

The build log-assisted CVE attribution is the second stage of our proposed anal-
ysis pipeline in Fig. 1. Here, we first use FACT’s REST API to consolidate the
kernel version, kernel build configuration, and detected target ISA.

Extended Abstract: Reliable Linux CVE Attribution 205

Then, our contributed Kernel Downloader fetches mainline version sources
from kernel.org. We emphasize that our assumption of unaltered mainline
kernels in firmware images is likely false because vendors may custom-patch
their kernels. However, we observe that modified kernel code is not accessible
in scale, regardless of the Linux kernel’s GNU General Public License (GPL)
that dictates vendors to publish modified open source code. For example, some
vendors complicate distribution by implementing manual request procedures for
each device, firmware, and version®.

Dry Build is the next step in Fig. 1. We set the target ISA and install the
extracted kernel build configuration in the downloaded kernel source project.
Then, we execute a compilation dry run, which does not compile the kernel but
prints each compilation recipe instead. This approach has the advantages of low
computational overhead and no requirement for a cross-compilation toolchain.
With this step, we gather a list of source files from the build log, which our
pipeline witnesses to be included in the kernel build.

The CVE Fetcher executes simultaneously. We query the NVD dataset for
all Linux kernel CVEs and filter out all records that do not refer CPEs stating
the extracted Linux kernel version to be vulnerable. The result of this stage is
identical to naive version-based attribution.

The File Filter step combines the outputs of CVE Fetcher and Dry Build:
Based on the observation that Linux kernel CVEs summaries usually state the
affected source files, we improve on the version-based attribution by removing
every CVE that does not reference an affected file we witnessed in the build log.

4 Case Study

We perform a case study to evaluate the reliability of our enriched version-based
Linux kernel CVE attribution in large-scale static analyses. For this purpose,
we let our pipeline analyze the Home Router Security Report 2020 [12] corpus,
which vendors reported to yield high false-positive rates using version-based
CVE matching. We raise two research questions:

R10Our methodology requires access to specific information in firmware samples
and CVE repositories. How many samples and CVEs fulfill these modalities?
How applicable is our approach in a real-world scenario?

R2 With version-based CVE matching as baseline, what impact has the method-
ology on result reliability?

In the following subsections, we first provide detailed information on our exper-
iment and used dataset (4.1). Then, we present the results and analyze them
within the context of both stated research questions (4.2 and 4.3, respectively).

4.1 Experiment & Firmware Corpus

Experiment Execution. We deploy our analysis pipeline on a x86 64 desktop
system, running Ubuntu 20.04.4 LTS. FACT v4.0 (commit 38d£4883) is used

5 https://www.zyxel.com/form/gpl oss_software notice.shtml.

https://www.zyxel.com/form/gpl_oss_software_notice.shtml

206 R. Helmke and J. vom Dorp

in the first pipeline stage to detect CPU architecture, identify the kernel, and
extract the kernel configuration. The second pipeline stage executes on the same
machine based on a snapshot of the NVD — taken on 2022-08-30. The snapshot
has records for 2,910 Linux kernel CVEs attributable through CPE. For each
component in our system, we collect details on ingress and egress data, including
plugin results, version-based CVE matches, and filtering decisions.

Firmware Corpus. The analyzed Home Router Security Report [12] corpus is
publicly documented®, and consists of firmware from 127 recent home routers.
Devices of seven vendors are included: ASUS, AVM, D-Link, Linksys, Netgear,
TP-Link, and Zyxel. Samples were scraped on 2020-03-27.

Across all 127 samples, 121 binary distributed Linux kernels from v2.4.20 to
v4.4.60 are included. The most common major version is 3.x with 49 kernels,
while 44 kernels have version 2.6. 11 firmware images are not analyzable due to
failed operating system detection or unpacking errors. Note that firmware can
contain multiple kernels, e.g., embedded devices may consist of subcomponents
running their own systems.

All identified CPU architecture belong to the MIPS and ARM ISAs, with a
majority having a word length of 32-bit. The ISA is unknown for 24 samples.
Further corpus insights can be found in [12].

While we acknowledge the missing size and device class diversity of the
dataset compared to studies like [2,6], we argue that the dataset is of sufficient
size to demonstrate applicability, as it covers Linux kernels from three major
releases, widely spread ISAs, and devices of multiple vendors. We also choose it
to investigate the reliability of matches reported in [12] using naive version-based
Linux kernel CVE attribution.

4.2 R1 Analysis — Applicability in Real-World Scenarios

We identify two methodological requirements that must be fulfilled for each
firmware and Linux CVE for our approach to succeed:

S1 FACT firmware extraction and all plugin analyses of stage one must succeed
to consolidate the kernel version, ISA, and kernel configuration.

S2 CVE descriptions must reference affected files to filter vulnerable compo-
nents not included in the kernel build.

Using the firmware corpus, we evaluate egress and ingress data of each step
in the proposed pipeline with regards to these requirements. Table 1 shows the
results. Highlighted rows designate effective requirement fulfillment rates over
all analyzed firmware images and Linux kernel CVEs.

For requirement S1, FACT successfully extracted 116 out of 127 firmware
images. It then identified both kernel binary and kernel version for all 116 extracted
images. The ISA was successfully identified in 103 images. However, our Kernel
Configuration plugin finds build information in only 44 samples. Thus 34.64%
of all analyzed firmware samples fulfill requirement S1. This rate is explainable

6 https://github.com/fkie-cad /embedded-evaluation-corpus/blob/master/2020 /FKIE-HRS-2020.
md.

https://github.com/fkie-cad/embedded-evaluation-corpus/blob/master/2020/FKIE-HRS-2020.md
https://github.com/fkie-cad/embedded-evaluation-corpus/blob/master/2020/FKIE-HRS-2020.md

Extended Abstract: Reliable Linux CVE Attribution 207

Table 1. Method Applicability Analysis for the Firmware Corpus

S1 Requirement (FACT Analysis Success)

FW Matches [#] E‘ulﬁlled[w]

FWs Total
Extraction 116 0.9133
Kernel Version 116 0.9133
Architecture Detection 103 0.8110

S2 Requirement (File Reference in Linux Kernel CVE)

CVE Matches Fulfilled [SYEMatches |

No Reference 1038 0.3567

considering that a) IKCONFIG must be explicitly enabled to embed kernel config-
urations into binary representations and b) it is common practice for vendors to
strip unnecessary information for memory saving and obfuscation purposes.

For requirement S2 (affected files must be referenced in Linux kernel CVE
descriptions), data analysis over all Linux CVEs inside the NVD yields three
different categories: Files are either referenced as Full Path relative to the ker-
nel’s source tree, or the reference is File Only (location in the source tree is
unknown), or No Reference exists at all. Table1 distributes all 2,910 Linux
kernel CVEs across these classes, showing that the proposed approach is appli-
cable to 1,872 (64.33%) kernel CVEs. For CVEs with no included file reference,
the approach falls back to version-based CVE matching and, thus, cannot add
value to result reliability.

4.3 R2 Analysis — Impact on CVE Attribution Result Reliability

We approach research question R2 by analyzing the attribution results of all 44
firmware images our methodology is applicable to (cf., Sect. 4.2). Subject samples

=== Not Applicable (High Confidence) mmm Applicable (File Only Match, Medium Confidence)
= Applicable (Full Path Match, High Confidence) mmm Applicable (No File Match, Low Confidence)

CVE Match Confidence [%, Relative]

Kernel Binary extracted from Firmware Sample

Fig. 2. Filter verdict distribution of our pipeline relative to the baseline CVE attribu-
tion results for each of the 44 analyzed kernels.

208 R. Helmke and J. vom Dorp

include kernels ranging from v3.4.0 to v4.4.60. At the time of this evaluation,
none of these are still actively maintained by the mainline kernel team.

The baseline method attributes a median of 1,196 CVEs per firmware image,
which is roughly 40% of all Linux kernel CVEs present in the NVD. A possi-
ble explanation lies within unsound and/or unmaintained CVE records in the
NVD [1,11]. Based on the results we present in the following paragraphs, there
is reason to assume that the baseline yields exceedingly high false-positive rates.

Version-based CVE attribution is an intermediate result of our methodol-
ogy (cf., Sect.3). To estimate the impact our pipeline has on result reliability,
we consolidate all decisions of the build log-assisted filtering to classify them into
four categories of verdict confidence:

— Applicable (High) — CVE references affected files and full file path is wit-
nessed in build log.

— Not Applicable (High) — CVE references affected files but none of them
is present in the build log.

— Applicable (Medium) — CVE references affected files but does not state
full file paths. A file was matched and seen in the build log, but ambiguity
exists due to duplicate names in the source tree.

— Applicable (Low) — No file references, we cannot decide on applicability
and fall back to version-based matching.

The idea is to map persuasiveness of additional evidence the pipeline gathers
within a trial: File matches are witnesses for CVE applicability, but not every
match is equally credible.

Figure 2 shows the filter verdict distribution of our pipeline relative to the
baseline CVE attribution results for each analyzed kernel. Versions are ordered
from oldest (left) to newest (right). Note that a single kernel was found in each
one of the 44 analyzed samples. Thus, each entry on the horizontal axis represents
a unique firmware. All distribution values are medians across all samples.

The proposed Linux kernel CVE attribution methodology made a medium to
high confidence decision for 80.6% of all version-based matches. The portion of
high confidence applicable CVE matches is 12.04%. Relative path matches yield-
ing medium confidence applicability are negligible with 0.19%. As indicated by
the bottom bars belonging to the class of Not Applicable (High), our pipeline
attributes 68.37% of all version-based CVE matches as false-positives and filters
them out of the result set. Out of the median 1,196 matches per firmware, we
reduce the set of potentially applicable CVEs to roughly 378. Thus, we signif-
icantly reduce the result set of potentially applicable CVEs requiring manual
verification by analysts and vendors. The portion of low confidence applicability
due to missing file references is 19.4%. Unfortunately, our methodology does not
generate added value for this subset.

5 Limitations

We identify methodological shortcomings in three dimensions: applicability,
sound ground truth, and functionality.

Extended Abstract: Reliable Linux CVE Attribution 209

In terms of applicability, our Linux kernel CVE attribution pipeline is bound
to FACT’s static analysis success. If the kernel version, ISA, and build configura-
tion remain unknown, our method cannot identify possibly included components
for reliable CVE filtering. Yet, the case study in Sect.4 shows that there is still
a considerable amount of firmware fulfilling all requirements.

As for sound ground truth, reliable and true-positive CVE attribution is lim-
ited by the quality of its underlying dataset. Unsound Linux kernel CVE records
that reference unaffected versions or source files can introduce false matches
in our proposed method. Our assumption of vendors using mainline kernels is
another limiting factor that affects reliability, but a methodical necessity due
to missing insider information. Vendors may cherry-pick patches or introduce
custom fixes, which are not detectable by our approach. While some of the
modifications might be obtainable through GPL portals, we identify the issue of
scalable accessibility. Another limitation comes from the file-based filtering. Ker-
nel builds can in- or exclude only parts of a file based on configuration options.
This can lead to exclusion of vulnerable code, while the affected file still appears
in the build log.

Regarding functional limits, we stress the inherent limitations of static anal-
ysis. It may use heuristics to find indicators of bug presence but can hardly serve
definitive proof — which usually requires triggering the bug during runtime.

Finally, the conducted case study is limited in its validity, as the used corpus
lacks device class heterogeneity.

6 Conclusion and Future Work

In this paper, we present a method to improve result reliability of version-based
CVE matching for the special case of binary Linux kernels in large-scale static
firmware analyses. This is achieved by enriching naive version-based CVE match-
ing with a static attribution pipeline that detects kernel configurations and ISAs
in firmware images. We reconstruct the kernel build process and infer included
source files. Combined with kernel CVE information, where affected files are
explicitly stated, this can be used to remove most false-positive CVE annota-
tions.

The case study shows that, with the limitations discussed in Sect. 5 in mind,
our method is scalable and moderately applicable: For 34.64% of firmware
images, the technical requirements are fulfilled and about 65% of all Linux kernel
CVEs reference affected files in their description. Compared to naive version-
based matching, the method generates a high-confidence filter verdict for 80.6%
of all attributed CVEs. Specifically, 68.37% of attributed CVEs are discarded
as false-positives. We contributed stage one of our pipeline to the publicly avail-
able FACT [4] and published the scripts for stage two on GitHub (https://github.
com/fkie-cad/cve-attribution-s2).

In future work, we want to address the reliance on inline kernel configura-
tion that leads to the moderate applicability by researching alternative options
to infer configuration from binary kernels. Also, the fine-granular commit-based

https://github.com/fkie-cad/cve-attribution-s2
https://github.com/fkie-cad/cve-attribution-s2

210 R. Helmke and J. vom Dorp

version tracking as offered by linuxkernelcves.com is a promising alternative
data source for initial version-based attribution. Furthermore, partial file compi-
lation and custom backports should be addressed. Finally, we plan a large-scale
evaluation addressing missing device class heterogeneity, like [2,6].

References

1. Benthin Sanguino, L.A., Uetz, R.: Software Vulnerability Analysis Using CPE and
CVE. ArXiv (2017). https://doi.org/10.48550/arXiv.1705.05347

2. Costin, A., Zaddach, J., Francillon, A., Balzarotti, D.: A Large-Scale Analysis of
the Security of Embedded Firmwares. In: 23rd USENIX Conference on Security
Symposium (SEC ’14). USENIX Association, San Diego, USA (2014)

3. David, Y., Partush, N., Yahav, E.: FirmUp: precise Static Detection of Com-
mon Vulnerabilities in Firmware. In: 23rd International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS ’18).
ACM, Williamsburg, USA (2018)

4. Fraunhofer FKIE: FACT - Firmware Analysis and Comparison Tool. https://
github.com/fkie-cad /FACT _core

5. Haq, I.U., Caballero, J.: A Survey of Binary Code Similarity. ACM Comput. Surv.
54(3), 01-38 (2021)

6. Kim, M., Kim, D., Kim, E., Kim, S., Jang, Y., Kim, Y.: FirmAE: towards Large-
Scale Emulation of IoT Firmware for Dynamic Analysis. In: 2020 Annual Computer
Security Applications Conference (ACSAC ’20). ACM, Austin, USA (2020)

7. Manés, V.J., et al.: The Art, Science, and Engineering of Fuzzing: a Survey. IEEE
Trans. Softw. Eng. 47(11), 2312-2331 (2021)

8. Neshenko, N., Bou-Harb, E., Crichigno, J., Kaddoum, G., Ghani, N.: Demystifying
IoT Security: an exhaustive survey on iot vulnerabilities and a first empirical look
on internet-scale IoT exploitations. IEEE Commun. Surv. Tutorials 21(3) (2019)

9. ONEKEY GmbH: ONEKEY Automated Firmware Analysis Platform. Accessed 5
Sep 2022. https://onekey.com/

10. Qasem, A., Shirani, P., Debbabi, M., Wang, L., Lebel, B., Agba, B.L.: Automatic
Vulnerability Detection in Embedded Devices and Firmware: survey and layered
taxonomies. ACM Comput. Surv. 54(2), 1-42 (2021)

11. Tan, X., et al.: Locating the Security Patches for Disclosed OSS Vulnerabilities with
Vulnerability-Commit Correlation Ranking. In: 2021 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’21). ACM, Virtual, Republic of
Korea (2021)

12. Weidenbach, P., Vom Dorp, J.: Home Router Security Report 2020. Fraun-
hofer Institute for Communication, Information Processing and Ergonomics
(FKIE), Tech. Rep. (2020). https://www.fkie.fraunhofer.de/en/press-releases/
Home-Router.html

13. Wright, C., Moeglein, W.A., Bagchi, S., Kulkarni, M., Clements, A.A.: Challenges
in Firmware Re-Hosting, Emulation, and Analysis. ACM Comput. Surv. 54(1),
1-36 (2021)

14. Zhao, B., et al.: A Large-Scale Empirical Analysis of the Vulnerabilities Introduced
by Third-Party Components in IoT Firmware. In: 31st ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA ’22). ACM, South
Korea (2022)

https://doi.org/10.48550/arXiv.1705.05347
https://github.com/fkie-cad/FACT_core
https://github.com/fkie-cad/FACT_core
https://onekey.com/
https://www.fkie.fraunhofer.de/en/press-releases/Home-Router.html
https://www.fkie.fraunhofer.de/en/press-releases/Home-Router.html

	Extended Abstract: Towards Reliable and Scalable Linux Kernel CVE Attribution in Automated Static Firmware Analyses
	1 Introduction
	2 Background & Related Work
	3 Methodology
	3.1 Gather Kernel Information via Static Firmware Analysis
	3.2 Build Log-Assisted CVE Attribution

	4 Case Study
	4.1 Experiment & Firmware Corpus
	4.2 R1 Analysis – Applicability in Real-World Scenarios
	4.3 R2 Analysis – Impact on CVE Attribution Result Reliability

	5 Limitations
	6 Conclusion and Future Work
	References

