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Preface

On behalf of the Program Committee, we are delighted to present the proceedings of the
20th Conference on Detection of Intrusions and Malware & Vulnerability Assessment,
also known as DIMVA. It is an honor to be part of the team organizing the conference’s
20th anniversary. Over the past two decades, DIMVA has become a well-established
security conference, consistently attracting high-quality research and fostering collabo-
ration between academia, industry, and government. DIMVA is organized by the Special
Interest Group – Security, Intrusion Detection, and Response (SIDAR) - of the German
Informatics Society (GI).

This year, we received 43 valid submissions and accepted 13 papers (12 full papers
and 1 short paper), resulting in a competitive acceptance rate of 30.2%. All papers
received three double-blind reviews, and each PC member was assigned up to three
papers to review.

For the first time, DIMVA introducedmultiple submission deadlines, with a balanced
acceptance rate across both cycles: 6 out of 22 papers were accepted in the first cycle,
and 7 out of 21 papers were accepted in the second cycle. The number of submissions
increased slightly, and in response, we implemented a revision model which closely
follows the concept of the previous “accept with shepherding” decision but allows for
more significant changes in the revised papers.

We would like to express our deep gratitude to the Program Committee members for
their countless hours spent reviewing submissions for both cycles, engaging in online and
in-person discussions, and shepherding numerous papers. Online alone, PC members
and external reviewers exchanged more than 400 comments. The in-person PC meeting
in Graz helped with discussing the remaining undecided papers and converging to a final
selection of papers and revision criteria.

We also would like to thank the Organizing Committee for their dedication and hard
work, laying the foundation for DIMVA’s successful 20th anniversary. We appreciate
the support from our sponsors and host institutions.

Finally, we would like to thank the authors who submitted their work and presented
their contributions, as well as the attendees who participated in the conference. Your
enthusiasm and commitment have made DIMVA the thriving and enriching event it is
today. We look forward to your future contributions.

May 2023 Daniel Gruss
Federico Maggi
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Side Channels Attacks



MAMBO–V: Dynamic Side-Channel
Leakage Analysis on RISC–V

Jan Wichelmann(B), Christopher Peredy, Florian Sieck, Anna Pätschke,
and Thomas Eisenbarth

University of Lübeck, Lübeck, Germany
{j.wichelmann,c.peredy,florian.sieck,a.paetschke,

thomas.eisenbarth}@uni-luebeck.de

Abstract. RISC–V is an emerging technology, with applications rang-
ing from embedded devices to high-performance servers. Therefore, more
and more security-critical workloads will be conducted with code that
is compiled for RISC–V. Well-known microarchitectural side-channel
attacks against established platforms like x86 apply to RISC–V CPUs
as well. As RISC–V does not mandate any hardware-based side-channel
countermeasures, a piece of code compiled for a generic RISC–V CPU
in a cloud server cannot make safe assumptions about the microarchi-
tecture on which it is running. Existing tools for aiding software-level
precautions by checking side-channel vulnerabilities on source code or
x86 binaries are not compatible with RISC–V machine code.

In this work, we study the requirements and goals of architecture-
specific leakage analysis for RISC–V and illustrate how to achieve these
goals with the help of fast and precise dynamic binary analysis. We
implement all necessary building blocks for finding side-channel leak-
ages on RISC–V, while relying on existing mature solutions when pos-
sible. Our leakage analysis builds upon the modular side-channel anal-
ysis framework Microwalk, that examines execution traces for leakage
through secret-dependent memory accesses or branches. To provide suit-
able traces, we port the ARM dynamic binary instrumentation tool
MAMBO to RISC–V. Our port named MAMBO–V can instrument arbi-
trary binaries which use the 64-bit general purpose instruction set. We
evaluate our toolchain on several cryptographic libraries with RISC–V
support and identify multiple leakages.

Keywords: RISC-V · Side-channel attacks · Dynamic binary
instrumentation · Software security

1 Introduction

Executing workloads in cloud environments with shared hardware resources is
becoming more and more important, promising great flexibility and scalability.
From a security viewpoint, however, this trend comes with a number of chal-
lenges, as shown by manifold examples of attacks that exploit microarchitectural
side-channels in cloud systems [21,22,53].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Gruss et al. (Eds.): DIMVA 2023, LNCS 13959, pp. 3–23, 2023.
https://doi.org/10.1007/978-3-031-35504-2_1
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While most of these cloud systems and the corresponding attacks are based
on the conventional x86 architecture, a new architecture called RISC–V is gain-
ing traction in both embedded applications and general-purpose hardware. The
royalty-free license [4] of RISC–V enables affordable hardware through lower
development costs, and helps innovation: For example, there now are sev-
eral open-source CPU designs which can be analyzed and extended by any-
one [26,33,45], promising the development of new hardware features like secure
trusted execution environments (TEEs) which avoid the issues of existing com-
mercial solutions. The software support for the RISC–V platform is growing
as well, with major compiler vendors adding backends for emitting RISC–V
machine code, which in turn allows porting operating systems like Linux.

The growing importance of RISC–V in general-purpose and cloud computing,
coupled with a wide spectrum of CPU designs from various vendors, still neces-
sitates caution to prevent repeating the mistakes that caused a lot of security
issues on the established platforms. One particular example is microarchitec-
tural timing leakage in cryptographic libraries, where subtle differences in how
the microarchitecture processes certain operations lead to exploitable leakages,
allowing a co-located attacker running on the same hardware as the victim code
to extract cryptographic secrets. By microarchitectural timing leakage, we refer
to architectural traces only, excluding transient execution attacks. As most of
the existing RISC–V hardware finds usage in the IoT or the automotive domain,
there has been more focus on physical attacks like power side-channels, and little
work on analyzing the co-location scenario so far. However, it is likely that many
attack vectors from x86 and ARM will apply to RISC–V systems as well. While
there are several proposals for hardware countermeasures that would address
this issue (e.g., resistant cache designs [11,43,49]), it is unlikely that all CPU
vendors will include one of those mitigations in their processors. Thus, absent a
proven hardware-based countermeasure, software-level mitigations are needed.

By now, most established libraries address timing leakages by employing so-
called constant-time code, i.e., code that exhibits the same control flow and mem-
ory access pattern independent of its secret inputs. However, the new compiler
backends and different instruction set of RISC–V may re-introduce leakage previ-
ously fixed at source level [3,10]. In addition, there is ongoing work on assembly-
level implementations of cryptographic primitives, which are carefully optimized
to fully utilize the underlying hardware to achieve best performance [44], but
may have subtle leakages. While there are lots of approaches for finding leakages
on source-level or via generic languages, those cannot detect leakage introduced
by the compiler. Finally, most of the corresponding proof-of-concept implemen-
tations lack usability [23] or do not apply to RISC–V.

In this work, we discuss the requirements of analyzing RISC–V software for
side-channel leakages, and show how an established side-channel analysis frame-
work can be adapted to also support RISC–V binaries. For that, we build upon
the Microwalk framework [51], that analyzes execution traces in order to identify
vulnerabilities, and then yields a detailed leakage report. While Microwalk gener-
ates its execution traces through dynamic binary instrumentation (DBI), no such
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tool is yet available for RISC–V. Thus, we develop the first DBI tool for RISC–
V, called MAMBO–V, which sets up on the MAMBO toolkit [18] for ARM,
and show how we can use this tool to generate Microwalk-compatible traces. We
evaluate our leakage analysis toolchain on several cryptographic libraries with
support for RISC–V, and uncover multiple vulnerabilities.

1.1 Our Contribution

In summary, our contributions are:

– We analyze the similarities and differences between RISC–V and established
architectures in terms of side-channel vulnerabilities, and extract require-
ments for building side-channel-resistant software on RISC–V.

– We implement MAMBO–V, a RISC–V port of the ARM-based DBI tool
MAMBO, enabling us to natively instrument RISC–V binaries.

– We include MAMBO–V in the Microwalk framework for finding timing side-
channels in software binaries, building the first toolchain for automatically
analyzing RISC–V programs.

– We analyze several RISC–V builds of cryptographic libraries and detect var-
ious leakages.

The source code is available at https://github.com/UzL-ITS/MAMBO-V.

Responsible Disclosure. We disclosed the potentially exploitable AES vul-
nerabilities to the developers of the respective libraries, who all acknowledged
our findings. They were mostly aware of the issues of the relevant implemen-
tations, and WolfSSL and OpenSSL have (undocumented) compiler flags which
partially fix the leakages (see Sect. 6.3). At the time of submission, there is ongo-
ing work on patches that ensure that the default implementations are secure, or
on appropriate documentation changes.

2 Background

2.1 RISC–V

RISC–V is a reduced instruction set computer (RISC) load-store architecture,
with a focus on broad availability through permissive licensing and high modu-
larity to support all applications from small low-power IoT devices over personal
mobile devices to large-scale general purpose computers. Its open-source charac-
ter allows easy extensibility through a so-called base-plus-extension instruction
set architecture (ISA). As a RISC architecture, only designated instructions
operate on memory, whereas the arithmetic merely happens in registers. The
most important standardized extensions for RISC–V are I, M, A, C, F, D, Zicsr
and Zifencei, which are often grouped together as RV64GC. Also, more special-
ized extensions are drafted and partially ratified, such as the vector extension
and scalar cryptographic extension [41]. Instruction encodings are designed to
simplify hardware implementations to increase performance and efficiency [47].

https://github.com/UzL-ITS/MAMBO-V
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2.2 Dynamic Binary Instrumentation

Binary instrumentation allows inserting code into an existing binary in order to
monitor or modify the program’s behavior. The insertion points are determined
through user-supplied rules or callback functions.

Static binary instrumentation (SBI), also called binary rewriting, perma-
nently inserts instrumentation code into the binary in an offline phase [12]. While
this approach promises a small runtime overhead, it is error-prone due to relying
on a correct disassembly of the program. In addition, SBI cannot handle special
cases like just-in-time compilation or self-modifying code.

In dynamic binary instrumentation (DBI), the instrumentation code is added
with the help of an instrumentation framework at runtime. The DBI frame-
work combines application and instrumentation code and executes the resulting
code directly on the target platform. DBI engines introduce a slightly higher
overhead than SBI due to the code translation at runtime, but most prevalent
instrumentation frameworks feature optimizations like caching, so each code
block needs to be instrumented only once. Popular DBI engines include Intel
Pin [30], DynamoRIO [9], QBDI [39] and the heavyweight analysis framework
Valgrind [35], which were initially built for x86 and then, in some cases, extended
to also support other architectures like ARM’s AArch32 and AArch64.

However, as ARM is a RISC architecture and thus quite different to x86, x86-
specific optimizations in a DBI engine may have little or even negative effects.
MAMBO [18] is a DBI tool specifically designed and developed for ARM, mak-
ing it suitable for efficiently handling RISC architectures. In addition to some
ARM-specific optimizations, MAMBO has general DBI features like a cache for
storing already instrumented code and scanning new code in basic block units.
Moreover, it supports behavioral transparency, which means that the execution
of all ABI-compliant binaries is guaranteed to be correct. The application binary
interface (ABI) defines the calling convention, which includes register allocation
for parameters and stack pointer behavior.

2.3 Microarchitectural Side-Channels

In a cloud setting, usually, many processes from different customers share the
same underlying hardware. These processes may work with sensitive data, which
should not be leaked to an attacker. While there are many architectural safe-
guards in place to prevent data from flowing from one process to another
directly, there are more subtle side-channels that use properties of the underly-
ing microarchitecture to extract some information from the running code. One
prominent example are so-called cache attacks [1,7,37,53], where the attacker
brings the (shared) CPU cache into a known state, and then monitors changes
to this state in order to learn whether the victim has accessed data within a
certain address range. This way, the attacker can infer the code line the vic-
tim is currently executing, or determine the index of a table lookup. Besides
the cache, there are many more shared resources that the attacker can monitor
and exploit, like the translation look-aside buffer [19] and the branch prediction
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unit [2]. Note that we only consider attacks that target architectural traces, so
transient execution attacks like Spectre [25] are out-of-scope.

A commonly used software-based countermeasure against side-channel
attacks is constant-time code without any secret-dependent memory accesses
or branches [3]. This code exhibits the same control flow and data flow indepen-
dent of the processed secret, so a side-channel attacker cannot learn anything by
looking at an execution trace as provided by a cache attack. As cryptographic
implementations are a primary target for side-channel attacks, most current
cryptographic libraries feature constant-time code.

Leakage Detection Tools. To ease checking implementations for side-channel
vulnerabilities, numerous tools and approaches have been proposed. Tools that
analyze source code include ct-fuzz [20] that uses a specialized form of fuzzing,
ct-verif [3] based on formal verification methods and CaSym [8] that symbol-
ically executes the source code. Moreover, there are various tools that analyze
binaries through static techniques, like BINSEC/REL [10] using symbolic execu-
tion, CacheS [46] combining symbolic execution with taint analysis, or CacheAu-
dit [14] which uses formal methods to find leakages on all paths of a program.
Finally, dynamic binary approaches comprise statistical timing measurements
like in dudect [40], constraint modeling in Abacus [5], as well as trace alignment
in DATA [48] or trace merging in Microwalk [51].

3 Overview

We first describe requirements and our approach for analyzing the side-channel
security of RISC–V implementations running in a co-located setting.

3.1 Analysis Approach

As described in Sect. 2.3, there are numerous tools and approaches for finding
side-channel leakages in software. Any useful tool should unify the following
properties [23,51]: First, it should accurately localize the respective leakages, so
the developer can directly understand the cause of a leakage and start building
a patch. Then, the analysis should be fast enough, so there is immediate feed-
back whenever there is a code change. Finally, to aid adoption in the developer
community, the tool should not be too hard to set up and use.

To check whether RISC–V code is leakage-free, focusing on the source code
alone is insufficient. For example, there have been cases where a misguided com-
piler pass “optimized” constant-time code, producing binaries with leakages that
are not present in the source code [3,24]. Daniel et al. [10] further provide an
extensive evaluation of different compiler versions, optimization levels and target
architectures, showing that constant-time properties always need to be validated
on the binary level. Compiling the code for x86 and using existing analysis tools
is not sufficient either, as x86 compilers may use different optimization passes
than RISC–V compilers. In addition, x86 has special extensions like AES-NI or
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the pclmulqdq instruction for carry-less multiplication (used in Galois counter
mode), which may substitute otherwise leaking code paths.

Fig. 1. RISC–V side-channel analysis overview. MAMBO–V instruments a RISC–
V library and generates execution traces, which are subsequently analyzed using
Microwalk. The resulting analysis report then helps the developer to find and fix the
identified leakages.

The necessity to work with RISC–V specific assembly leaves the option to
use either static or dynamic binary analysis. While static binary approaches offer
some guarantees that purely dynamic tools cannot give, they often suffer from
poor performance and require lots of manual interaction. On the other hand,
dynamic analysis is heavily dependent on the achieved coverage, i.e., leakage
can only be found in code that is actually executed. However, for cryptographic
implementations, it was found that a small number of random test cases is
sufficient to cover the relevant code [48,51]. In addition, dynamic analysis is
easy to use, as the user only has to call the respective primitives.

3.2 Toolchain

With the aforementioned requirements in mind, we picked the Microwalk frame-
work [50,51] as a basis for our RISC–V leakage analysis. Microwalk uses DBI to
generate execution traces from user-supplied programs, and offers several analy-
sis modules that compare these traces in order to find leakage. While the authors
originally designed Microwalk for x86 binaries, its modular structure and generic
trace format encourage addition of trace generators for other architectures.

This leaves the problem of generating Microwalk-compatible execution traces
for RISC–V. At the time of writing, there is no generic DBI framework for RISC–
V available, that offers the necessary flexibility for generating the information
Microwalk needs. Another requirement is transparency, such that the execution
traces are not influenced by the DBI engine itself, which would otherwise distort
the analysis result. Instead of building a new DBI framework, we decided to
port an existing framework for another RISC architecture, that is MAMBO [18]
for ARM. The similarities between ARM and RISC–V allow us to reuse most
of the general-purpose logic from MAMBO, like plugin handling or memory
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management. Our port, named MAMBO–V, implements the most significant
performance optimizations from MAMBO, which are inline hash table lookups
and direct branch linking. Additionally, we add support for atomic sequences,
which need special handling on RISC–V hardware. We are working with the
maintainers of MAMBO to contribute our RISC–V patches to the main project.

The resulting toolchain is illustrated in Fig. 1.

4 MAMBO–V Implementation

We now describe our RISC–V port of the MAMBO DBI framework, named
MAMBO–V. We give an overview over its generic features and discuss notable
performance optimizations as well as RISC–V specifics to be considered.

4.1 Instrumentation Approach

Target Platform. MAMBO–V targets RV64GC platforms, i.e., processors with
support for the RV64I base instruction set and its most common extensions. Like
MAMBO, MAMBO–V aims for behavioral transparency : Binaries that are com-
pliant to the standard RISC–V ABI are executed correctly. This does not affect
the correctness of our side-channel analysis, as we can expect that compilers emit
standard-compliant code and that the analyzed programs are not malicious.

Execution Model. Just as the ARM implementation of MAMBO, MAMBO–
V unifies the instrumentation framework and the target application in a single
process. On startup, a custom ELF loader reads the RISC–V ELF file and poten-
tial dependencies of the target application into the memory of the MAMBO–V
process, such that the engine can access the target’s full code. After initializa-
tion is done, MAMBO–V’s dispatcher proceeds loading and translating chunks of
the target’s code on-the-fly, while inserting instrumentation at the points speci-
fied by the user. Each chunk consists of a single basic block, i.e., a sequence of
instructions with a single entry point at the beginning and a single exit point at
the end. This way, the dispatcher can safely hand over control to the translated
chunk, and reclaim it after the chunk has fully executed.

Plugin API. In order to facilitate the usage of MAMBO–V for application
developers who want to analyze their applications, we also ported the plugin
API from MAMBO. A plugin contains user-supplied functions, which are called
at certain events, e.g., when translating a basic block. With these functions, the
user can then insert instrumentation code during translation. Other supported
events are function entry/exit, threads and system calls. In our analysis, we
primarily utilize the instrumentation to insert trace writing code.
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Optimizations. To speed up analysis, we have ported a number of performance
optimizations from MAMBO. Most of the overhead that arises during DBI comes
from the code translation and context switches between the dispatcher and the
target application. The most notable optimization is the code cache, which is a
common feature of DBI frameworks: It is located outside the target application’s
address space and stores a limited amount of translated basic blocks. This avoids
re-translation of frequently executed code, improving overall performance signif-
icantly. Other optimizations are hash tables for faster resolution of translated
blocks and direct branch linking to speed up jumping between different blocks
in the code cache without invoking a costly context switch to the dispatcher.

4.2 New Features for RISC–V

Atomic Sequences. A challenge we encountered on RISC–V cores are tightly
constrained atomic sequences, which ensure exclusive memory operations for
multiprocessor systems and process synchronization. Software locks for resources
that should only be accessed by a single thread or process at a time are often
translated to atomic loops by the compiler. An atomic loop contains an atomic
sequence, which begins with a load-reserved (LR) instruction and ends with
a store-conditional (SC) instruction. The atomic loop loops over the atomic
sequence until the SC eventually succeeds. The result of the SC instruction
depends on whether the reserved value was accessed during the atomic sequence
and on the environmental constraints defined by the ISA. Among others, the ISA
defines a maximum of 16 consecutive instructions between LR and SC, and allows
only the base (I) instruction set, disallowing loads, stores, backward jumps or
calls.

While the compiler enforces the constraints within an atomic sequence, the
instrumentation done by MAMBO–V can insert arbitrary instructions that break
one of the above constraints. Figure 2 shows an example of how a direct port
of MAMBO would add unconstrained instructions to an atomic sequence: First,
the original loop in Fig. 2a is split into two blocks because of the conditional
branch in line 3. Then, the resulting code cache blocks undergo optimization
and are instrumented as shown in Fig. 2b, leading to the insertion of uncon-
strained instructions (line 3–5). The result is a non-sequential sequence that
includes loads, stores, calls, and potential backward jumps, and is therefore not
guaranteed to succeed on RISC-V. However, requiring all instrumentation to
adhere to the constraints would cause some instrumentation features to be lost
in the process.

On ARM, where atomic sequences are available as well, MAMBO allows users
to freely insert instrumentation, which when breaking a constraint causes unde-
fined behavior, but does not affect stability on ARM Cortex processors. However,
on our SiFive U54 core, violating a constraint can block the SC instruction from
succeeding entirely, leaving the process stuck in a deadlock. We encountered such
a deadlock when instrumenting the dynamic linker.

Thus, for reliable instrumentation on RISC–V cores, we designed a
lightweight and behaviorally transparent solution for handling atomic sequences:
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Fig. 2. Exemplary instrumentation of a lock-acquire-loop: The instrumentation may
insert unconstrained instructions (marked in blue) into the atomic sequence, e.g., add
a function call with parameters to trace a conditional branch instruction. In order to
set the argument registers, the original register contents have to be written to the stack
using an unconstrained store instruction. (Color figure online)

We use hardware-assisted software emulation to relax the hardware constraints
by replacing the LR and the SC instructions. The LR is replaced by an equivalent
normal load instruction, which marks the beginning of the software-emulated
atomic sequence. To emulate the reserve, we also back up the original value for
later comparison. The subsequent code is not bound by constraints anymore and
safe for arbitrary instrumentation. Finally, we replace the SC instruction with a
semantically equivalent atomic sequence that conditionally stores the new value
if the value at the destination is equal to the previously created backup. Since
we include a native atomic sequence to check for changes at the destination, our
emulation remains thread-safe. The observable behavior of the emulated atomic
sequence is nearly identical to the original, with the only difference being that
the emulation cannot detect stores on the reserved value that do not modify
it. To the best of our knowledge, this difference does not effectively change the
semantics of the emulated sequence, and therefore the traces remain identical.

Global Pointer and Thread Pointer Register. In contrast to ARM, the
RISC–V standard calling convention defines a global pointer register gp and a
thread pointer register tp. Applications use these registers to access structures
such as the global offset table and global/thread-local variables. MAMBO–V
does not share these structures with its client, so gp and tp must be updated
on each of the context switch between MAMBO–V and the client. Originally,
on ARM, a unidirectional context switch was sufficient, as the dispatcher does
not make assumptions on register contents on entry. Thus, only the context of
the client is fully saved when entering the MAMBO–V context and restored
when leaving again. To support the distinct gp/tp contexts on RISC–V, we
implemented a full context switch for these two registers, while keeping the
unidirectional context for all other registers to minimize the overhead.

Shorter Jump Encoding. RISC–V and ARM do not have direct branch
instructions that take an absolute immediate address. Due to different instruc-
tion encodings, the maximum range of ARM branch instructions is ±128 MiB,
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while on RISC–V it is only ±1 MiB. The code cache in MAMBO–V can be much
larger than 1 MiB. Hence, for MAMBO–V, we decided to use indirect jumps to
transfer control flow back to the dispatcher. Loading the address and performing
the jump takes 14 additional bytes in the code cache, but due to the long lifetime
of translated code and runtime overhead of the client-dispatcher context switch
the effect on the overall performance and memory consumption is negligible.

5 Side-Channel Leakage Analysis.

In the following, we describe our approach for finding architecture-specific leak-
age in code compiled for RISC–V with the help of MAMBO–V. We focus on
implementations of cryptographic algorithms, as their impact on the security of
systems and communication is high. However, the concepts do apply to any sce-
nario where secret information should not be exposed to an attacker recording
execution traces. As discussed in Sect. 3, source-level analysis is often not suf-
ficient, and binaries may contain leakages even though the original source code
is constant-time. Therefore, we opted for a binary approach based on RISC–V-
specific DBI for execution trace generation and Microwalk for leakage analysis.

5.1 Leakage Model

We adopt the leakage model as specified for Microwalk [51]: We supply the
attacker with an implementation, a number of secret inputs and correspond-
ing execution traces. An execution trace consists of a sequence of all executed
instructions and accessed memory addresses, but does not contain actual pro-
cessed data. The attacker also gets access to all public inputs and outputs. We
consider the implementation constant-time if all traces are identical, i.e., when
the attacker does not learn anything about the secret input by looking at a
trace. In other words, in a constant-time program, the observed control flow and
memory accesses are independent of the secret inputs.

This leakage model assumes a rather strong attacker, as the known side-
channel attacks can only retrieve a fraction of the information expressed in a full
execution trace. For example, cache attacks are limited to granularities of 32 or 64
bytes on most systems, and control flow tracking techniques like single-stepping
only work in very specific scenarios. Due to the lack of suitable hardware, there
has not yet been much work on side-channels for RISC–V. Thus, while we expect
similar vulnerabilities on upcoming RISC–V processors as are already known for
other architectures, sticking to a strong leakage model is the safest way forward.
We only consider secret-dependent control flow and memory accesses that are
architecturally reachable, so transient execution attacks are out-of-scope.

Implementation in Microwalk. Microwalk implements the above leakage
model through a simple dynamic analysis pipeline, which generates secret inputs
(called test cases), collects and preprocesses corresponding execution traces, and
finally compares those traces with each other. If Microwalk finds a difference
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between two or more traces at a given code position, this difference is reported
as leakage, as an attacker may exploit this difference to tell apart two or more
secret inputs. If all traces are identical, the attacker does not learn anything
about the underlying secret inputs, and the implementation is reported as non-
leaking.

Fig. 3. Microwalk pipeline with a new trace generation module based on MAMBO–
V. Each trace generation module may emit either source-based or binary execution
traces, which are then preprocessed into a common trace format that can be parsed by
all analysis modules.

5.2 Required Information

Microwalk uses a common generic execution trace format to run its analysis
modules on, so we build a toolchain that collects RISC–V execution traces and
converts them into Microwalk’s format. Microwalk already offers two raw trace
preprocessors, one for converting source-based execution traces from languages
like JavaScript, and another one for binary traces from compiled code. While
the binary trace preprocessor was originally written for x86, we found that its
raw trace format is generic enough to also be used on other architectures. We
thus only need to create a trace generator for RISC–V, that emits raw execution
traces in the same format as the existing Intel Pin module (Fig. 3).

A raw binary execution trace from Microwalk’s Intel Pin module combines
the following information:

– taken/non-taken branches, with source and (if applicable) target address;
– memory accesses, with instruction address and accessed memory address;
– heap/stack allocation blocks, with start and end address;
– start and end addresses of the memory-mapped executable binaries.

We collect this data using a plugin for the MAMBO–V DBI framework.

5.3 MAMBO–V Trace Plugin

Interaction with the Target Program. In order to analyze a cryptographic
primitive, the primitive has to be made available to the DBI framework. We
follow Microwalk’s approach by asking the user to supply a small function that
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receives a test case file with secret inputs and then calls the cryptographic primi-
tive. Our MAMBO–V plugin registers a function call event callback for detecting
execution of that function, so it can detect when test case execution starts and
ends. This method has the advantage that we do not need to re-instrument
the binary for each test case, but can reuse the existing instrumentation, which
speeds up trace generation significantly. Before the first test case begins, we
record a trace prefix, that contains initializations of all global objects that may
be referenced during test case execution.

Recording Control Flow and Memory Accesses. When a test case begins,
which is signaled by the respective event callback, our plugin opens a new binary
trace file. We also register an instrumentation callback, which is called whenever
a new basic block is instrumented. In this callback, we check each instruction for
control flow and memory accesses, and add instrumentation to that instruction if
necessary. The resulting instrumented code then writes to the trace file whenever
the respective instruction is executed. To avoid tracing information outside our
target functions, the plugin receives a list of binaries that should be traced.

Tracking Memory Allocations. Microwalk needs both a list of allocated heap
memory blocks and the regions of the memory-mapped executables. To collect
heap blocks, we register function call and function return event callbacks for
the malloc, calloc, realloc and free functions, and log their parameters and
return addresses. For the static memory regions, we hook into the VM operation
event handler and extract the required information from VM MAP events, which
are triggered whenever a new ELF file is loaded.

6 Evaluation

To evaluate the performance of our toolchain and assess the current state of side-
channel security on RISC–V, we analyze a number of frequently used cipher and
signature functions for several popular libraries. We describe the experimental
setup, analyze the performance of trace creation and analysis, and discuss and
evaluate the discovered leakages. The results are summarized in Table 1.

6.1 Experimental Setup

As described in Sect. 3, we combine MAMBO–V with Microwalk to natively
analyze the leakage of binaries on RISC–V. We record the traces with MAMBO–
V on a Microchip PolarFire SoC FPGA Icicle Kit with four SiFive U54 cores
featuring RV64GC. The trace analysis with Microwalk is executed on an AMD
Ryzen 9 7950X with 16 cores.



MAMBO–V: Dynamic Side-Channel Leakage Analysis on RISC–V 15

Libraries. Due to its modular structure, the RISC–V architecture allows for a
broad range of target applications, from small embedded devices to server CPUs.
To reflect this, we chose to analyze WolfSSL [52] and Mbed TLS [31] as exam-
ples for libraries that support many architectures and that are optimized for the
embedded market. OpenSSL [36] and GNU Nettle [16], on the other hand, are
general purpose cryptography libraries that are used across different architec-
tures and chip sizes. In addition, as an example of a library specifically written
for RISC–V, we investigated SCL (SiFive Cryptographic Library) [44]. Finally,
as a reference for constant-time implementations, we included libsodium [29].

Table 1. Result of leakage analysis of several cryptographic libraries on RISC–V. “Tr.
CPU” shows the CPU time for generating the raw traces and “An. CPU” the CPU
time for trace preprocessing and analysis. The columns “# Lkgs.” and “# Uniq.” show
the total and unique number of detected leaking code lines.

Target Type Tr. CPU An. CPU # Lkgs # Uniq.

WolfSSL [52] 5.5.4

AES-ECB cipher 1 sec < 1 sec 157 157

AES-GCM aead-cipher 2 sec < 1 sec 493 184

ChaCha20-Poly1305 aead-cipher < 1 sec < 1 sec 0 0

Ed25519 signature 36 sec < 1 sec 0 0

ECDSA (secp192r1) signature 880 sec 7 sec 105 10

Mbed TLS [31] 3.3.0

AES-ECB cipher 2 sec < 1 sec 68 68

AES-GCM aead-cipher 4 sec < 1 sec 216 76

ChaCha20-Poly1305 aead-cipher 7 sec < 1 sec 0 0

OpenSSL [36] 3.0.0

AES-ECB cipher 115 sec < 1 sec 52 52

AES-GCM aead-cipher 117 sec < 1 sec 166 60

ChaCha20-Poly1305 aead-cipher 117 sec < 1 sec 0 0

Ed25519 signature 556 sec 4 sec 0 0

ECDSA (secp192r1) signature 3128 sec 30 sec 1647 284

GNU Nettle [16] 3.8.1 with GMP [15] 6.2.1

AES-ECB cipher 2 sec < 1 sec 32 32

AES-GCM aead-cipher 3 sec < 1 sec 108 40

ChaCha20-Poly1305 aead-cipher 2 sec < 1 sec 0 0

Ed25519 signature 104 sec 4 sec 0 0

SCL - SiFive Cryptographic Library [44] 20.08.00

ECDSA (secp256r1) signature 102 sec < 1 sec 5 2

libsodium [29] 1.0.18

ChaCha20-Poly1305 aead-cipher 2 sec < 1 sec 0 0

Ed25519 signature 12 sec < 1 sec 0 0
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Analyzed Primitives. We wrote analysis wrappers for AES-ECB, the authen-
ticated encryption schemes AES-GCM and ChaCha20-Poly1305, and the signa-
ture algorithms Ed25519 and ECDSA (curve secp192r1; secp256r1 for SCL).
The wrappers initialize the necessary environment and call the target functions,
if supported by the respective library. We skipped the ECDSA implementations
in GNU Nettle and Mbed TLS, as those are comparably slow and thus lead to
traces which exceed the limited resources of our evaluation platform.

All libraries and target wrappers were cross-compiled with the RISC–V GNU
Compiler Toolchain 12.2.0 [42] for RV64GC and ISA specification 2.2. We built
all libraries with default options and appropriate additional security flags as
stated in their documentation. All libraries except OpenSSL are built with opti-
mization level -O2. OpenSSL was built with optimization level -O3.

Test Cases. We generated 16 test cases for each primitive by creating 16 ran-
dom keys, and supplied these test cases to the target function. Since Microwalk
measures differences in the execution traces, any other input outside the test
cases must be kept constant to avoid false positives. Therefore, inputs such as
initialization vectors were set to fixed values. Random values like the ephemeral
key in ECDSA were generated by custom test case-dependent RNGs. We opted
for using smaller key sizes, as the cryptographic procedures are invariant of the
key size, and larger key sizes increase the resource consumption of the leakage
analysis without uncovering further vulnerabilities [51].

6.2 Performance Results

The performance of the side-channel analysis on RISC–V depends on the time
required for tracing the target function and analyzing the traces. The runtime
for all targets is summarized in Table 1.

Tracing. The duration of tracing 16 executions for each target is inherently
constrained by the limited performance of the SiFive U54 core. For the symmetric
ciphers and Ed25519, the tracing took at most a few minutes, which suggests that
our toolchain is suitable for everyday use on a developer’s computer. With newer
and more performant RISC–V cores, the tracing time should further decrease.

One outlier is OpenSSL, where a majority of the tracing time was spent in
the library initialization, which is mostly irrelevant for the leakage analysis. To
reduce this overhead, the developer could disable most features when compiling
the library for vulnerability evaluation and target low-level functions.

Analysis. With one exception, the trace preprocessing and analysis of nearly
all targets took less than 5 s. The fast analysis allows for frequent execution of
any test. The outlier, ECDSA for OpenSSL, was slowed down by preprocessing
the huge traces, so optimizing the tracing time should fix this as well.
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6.3 Vulnerabilities

The leakage analysis for the chosen popular libraries shows many vulnerabilities
across the board, except for libsodium which only implements a limited number
of ciphers and signature algorithms that allow for an implementation with bet-
ter resistance against timing attacks by design. Indeed, all analyzed implemen-
tations of ChaCha20-Poly1305 and Ed25519 are constant-time. We summarize
the results in Table 1 in the columns “# Lkgs.” (total leakages) and “# Uniq.”
(unique leakages). An instruction or function can be called or reached from
multiple contexts, thus potentially leaking different secrets with varying leakage
severity. Therefore, we also count unique occurrences of leaking instructions.

In-depth analysis of the libraries showed that most provide specific assembly
implementations for x86 and other architectures that use constant-time primi-
tives. For RISC–V though, due to lack of specifically optimized implementations,
the libraries fell back to default ones, which often turned out to be non-constant-
time, even when using the hardening flags specified in the documentation.

Symmetric Ciphers. All analyzed AES-ECB implementations leak secret
information through their timing behavior. The examined libraries do not pro-
vide RISC–V-specific code, but fall back to their default C/C++ implementa-
tions, which use either T-table or S-box lookups for AES encryption and round
key generation. Previous work has shown that table lookups are exploitable by
timing measurements [7]. The number of unique leakages varies between the
different libraries depending on whether the encryption rounds are unrolled and
how the final step is scheduled. After informing the OpenSSL developers that we
found several leakages in the default AES-ECB implementation, we were pointed
to an undocumented compiler flag that enables an alternative AES implementa-
tion, which we verified to be constant-time. However, they also stated that the
flag leads to a 95% performance loss, which is why it is not enabled by default.

The authenticated encryption algorithm AES-GCM builds upon the same
primitives as AES-ECB and thus also shows the same table lookup leakage for
the encryption step. In addition, the GCM mode adds authentication through
computation of a GHASH, which involves encryption of a 128-bit string of zeros
and the IV. The result of the latter encryption is used for the final computation of
the authentication data. The multiplication used for the GHASH is implemented
with a hash lookup table, where the accessed index depends on the current
ciphertext and the hash value of the previous block.

We compared the leakage result of AES-GCM on RISC–V for the libraries
OpenSSL and Mbed TLS against the analysis on x86. While the RISC–V binaries
contain many leakages as explained above, we observed no leakages for x86 bina-
ries. The x86 implementations use the AES-NI hardware extension for encryption
and the clmul extension for computation of the GHASH. Until such extensions
are available for RISC–V, cryptographic libraries must feature constant-time
software implementations. For WolfSSL, we learned during disclosure that there
is a GCM SMALL flag, which enables a non-table-based GHASH implementation.
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While designed (and documented) primarily for small code size, we found that
it is constant-time and thus a secure alternative for the default implementation.

Asymmetric Signature Algorithms. None of the analyzed implementations
of Ed25519 shows any non-constant-time behavior, emphasizing its inherent
resistance against timing attacks, even though there are no specific assembly
implementations for RISC–V. However, we found leakage for all analyzed imple-
mentations of ECDSA, especially in the implementation from OpenSSL. Even
the specially crafted RISC–V implementation from SCL reveals non-constant-
time behavior, though the library is not yet deemed production-ready. Despite
the high number of potential vulnerabilities, we found that all analyzed ECDSA
implementations use blinding, rendering the discovered leakages likely unex-
ploitable.

7 Discussion and Future Work

Limitations of Microwalk. As we base our analysis on Microwalk, we inherit
some of its limitations. Currently, Microwalk only supports deterministic imple-
mentations. Thus, all entropy must come from the secret inputs. While this sce-
nario works well with symmetric and constant-time asymmetric cryptographic
primitives, it has some issues with blinded implementations which obscure the
computation by randomizing the input parameters. Disabling the randomness
is not sufficient either, as this would just expose leakages which are normally
obscured by blinding. As a solution, Microwalk should be extended to support
randomized implementations. Another limitation of Microwalk’s analysis algo-
rithm is the possibility of several small leakages higher up in the call chain
hiding leakages further down, though we did not observe this during our evalu-
ation. Finally, Microwalk’s dynamic approach heavily depends on the coverage.
While it was found that few random test cases usually suffice [48,51], the user
should check that all relevant code locations have been reached.

Other Applications of MAMBO–V. While we used MAMBO–V for gener-
ating execution traces, the tool is far more versatile. The plugin API supports
a variety of different callbacks, making it on par with other widely-used frame-
works like Intel Pin. For example, new plugins can aid with control-flow checks
or help in bug detection. The broad similarities to ARM allow reusing analysis
code originally written for MAMBO with little adjustments.

Leakage Analysis on ARM. The proximity of RISC–V and ARM suggests
that the MAMBO–V trace generator plugin can be ported to the original MAM-
BO implementation with little adjustments. With that plugin, one could generate
execution traces from ARM binaries, and analyze these traces for side-channel
vulnerabilities using Microwalk, yielding a dynamic leakage analysis toolchain for
ARM. Thus, our toolchain comprising a tracer plugin and Microwalk provides a
solid basis for fast and accurate side-channel leakage analysis on various systems.
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8 Related Work

Analysis of Code on Intermediate Representations. Instead of instru-
menting code natively, the machine code can be lifted to a generic intermediate
representation. This approach is taken by the ongoing RISC–V port [38] of the
heavyweight instrumentation framework Valgrind [35] and the full-system emu-
lator QEMU [6], which do an emulated analysis of RISC–V instructions on the
intermediate representations of the respective framework. Thereby, it is possi-
ble to re-use existing analysis tools like memory leaks detection or call graphs.
Apart from that, the whole system reverse engineering tool PANDA [13] provides
a way to capture an execution trace, replay it afterwards and combine it with
extensive analysis through different plugins. However, emulated analysis meets
a different objective than analyzing architecture-specific leakage, as the leakage
may be hidden during lifting to the intermediate representation. Furthermore,
the emulators impose a very high overhead and are too resource-consuming to
use them in restricted environments or for an efficient analysis with Microwalk.

Side-Channel Analysis. Side-channel attacks on RISC–V are receiving grow-
ing attention by security research. Apart from the timing side-channels we ana-
lyze in this work, there have been efforts to secure RISC–V implementations
against leakage through power side-channels [32]. Further, electromagnetic leak-
age builds the basis for a successful fault attack in [34], showing that mani-
fold leakage channels need to be addressed. As some RISC–V systems also sup-
port out-of-order execution, they are susceptible to Spectre [25] attacks [17,27].
Recently, it was shown that data can be leaked from speculative execution
through cache attacks [28]. The vulnerability to Spectre-style attacks further
motivates the development of a framework to automatically detect timing side-
channels in software, because apart from direct exploitation, the timing differ-
ences can also be used as a way to leak speculatively accessed secrets.

Hardware-Based Countermeasures. A RISC–V working group developed
a number of extensions intended for secure cryptography, which were ratified
in 2022 [41]. This includes hardware-acceleration for symmetric encryption and
hash functions, but also the Zkt extension, which specifies constant-time prop-
erties for certain instructions. If a vendor implements the Zkt extension, certain
arithmetic instructions are guaranteed to have data-independent execution time.
However, solely instruction-based approaches are insufficient, as most vulnera-
bilities are caused by higher-level data-dependent behavior. Yu et al. propose
support for oblivious memory accesses, which would block most timing side-
channels [54] and thus go far beyond simply avoiding data-dependent instruc-
tion latency like in the Zkt extension. With hardware-integrated fully automated
Boolean masking [45], hardly any software-level precautions need to be taken
against power side-channels. To protect against data leakages in ALU, memory
and memory interfaces, INVITED [32] uses state-of-the-art masking techniques.
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However, these hardware mechanisms are always applied, not only for secret
inputs, making the solutions potentially inefficient for workloads where only a
small fraction of all executed instructions is truly security-critical. Moreover, in
a cloud scenario, the clients have limited control about the hardware actually
used, making secure software implementations indispensable.

9 Conclusion

In this paper, we have presented the first comprehensive side-channel analysis
for implementations of cryptographic primitives on RISC–V. We have shown
that some of the most popular open-source cryptographic libraries lack proper
side-channel resistance on RISC–V. For our work, we have studied the require-
ments for leakage detection on RISC–V and designed a thorough approach to
incorporate all requirements into a mature side-channel analysis framework that
we have extended with all necessary building blocks. We have based our anal-
ysis toolchain on Microwalk and augmented the framework with the necessary
RISC–V specific tracing capabilities by implementing the DBI tool MAMBO–V.
Our evaluation pinpoints several potentially exploitable leakages that should be
fixed by the developers and emphasizes the need for complete and precise side-
channel analysis capabilities on RISC–V to pave the way for secure computations
on shared RISC–V hardware in the cloud.
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Abstract. Power analysis has long been used to tell apart different
instructions running on the same machine. In this work, we show that it
is also possible to use power consumption to tell apart different machines
running the same instructions, even if these machines have entirely identi-
cal hardware and software configurations, and even if the power consump-
tion measurements are carried out using low-rate software-based methods.
We collected an extended dataset of power consumption traces from 291
desktop and server systems, spanning multiple processor generations and
vendors (Intel and AMD). After analyzing them, we discovered that pro-
filing the power consumption of individual assembly instructions makes
it possible to create a fingerprinting agent that can identify individual
machines with high accuracy. Our classifier approaches its peak accuracy
after less than 10 instructions, meaning that the fingerprint can take a
very short time to capture. We analyzed the stability of the fingerprint
over time and discovered that, while it remains relatively stable, it is sig-
nificantly affected by temperature changes. We also carried out a proof-
of-concept evaluation using portable WebAssembly code, showing that
our method can still be applied, albeit at a reduced accuracy, without
using native instructions for the profiling step. Our method depends on the
ability to measure power, which is currently restricted to high-privileged
“ring 0” code on modern PCs. This limits the current use of our method
to defense-only settings, such as strengthening authentication or anti-
counterfeiting. Our tools and datasets are publicly released as an open-
source repository. Our work highlights the importance of protecting power
consumption measurements from unauthorized access.

Keywords: Side Channel · Fingerprinting · PUF · WebAssembly

1 Introduction

As surprising as it may seem, individual copies of mass-manufactured computing
devices are never completely identical. Minuscule variations introduced during
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the hardware manufacturing process result in differences in the behaviors of
elements that form an integrated circuit (IC), including storage, logic, and com-
munication.

This interesting phenomenon is investigated by researchers in the field of
fingerprinting. Fingerprinting extracts the unique attributes of each device and
uses them to differentiate each device from other similar devices. Thus, a unique
physical fingerprint should be able to differentiate one device from the others
even when the software stack is identical on all devices (e.g., the same operating
system and software are installed with the same versions), and all hardware
components are the same model (e.g., same CPU and DRAM models). Several
hardware features or components have been used for physical fingerprinting,
such as DRAM [34,38], SRAM [10], and GPUs [19]. While it was originally
be used in the context of ICs, physical fingerprinting is now used in a variety of
contexts that require some identification, such as IoT devices [26], FPGA boards
in the cloud [39], and mobile devices using sensors [7,11]. On the defensive side,
fingerprinting can play a major role in multi-factor authentication [7,20], access
control [3], and even anti-counterfeiting [5]. On the attacking side, it can be used
for tracking devices and users without their consent [21].

In this work, we turn our attention to another potential source of finger-
printing information – the power consumption of a PC as it executes differ-
ent instructions. The power consumption of CMOS devices, such as computers,
varies depending on the instructions executed or the data processed [25]. This
effect is actively being used by the security research community to carry out
power analysis attacks – attacks which discover secrets about the internal state
of various computing devices by analyzing their power consumption – ever since
the publication of the seminal work of Kocher et al. in 1999 [16]. While tradi-
tional power analysis attacks require physical access to the device under test
(DUT), a growing body of works has explored methods of running software-
only power analysis attacks, relying on alternative methods for measuring power
consumption launched remotely [4,23,35].

In parallel to the work done by the security research community, the perfor-
mance engineering research community also has an interest in power consump-
tion measurements, since the limited power and thermal budgets of computer
systems is one of the main factors determining how fast code can be run. In an
interesting work coming from this community, von Kistowski et al. [15] noted
that seemingly-identical machines have different power consumption when per-
forming identical tasks. They found that the power consumption for common
benchmarks run on commercially identical processors can vary between comput-
ers by as much as 29.6% for an idle CPU and 19.5% at full load. While von
Kistowski et al. considered their observation as a negative result, highlighting
the challenge of uncertainty when dealing with benchmarks, we were motivated
to investigate whether this variation can actually serve as a fingerprinting mech-
anism that can identify individual PCs.

In this work, we show that this difference in power consumption among identi-
cal computers can indeed be used to distinguish among them with high accuracy.
In particular, we show how we can distinguish between identical machines at an
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accuracy of up to 65 times higher than random guessing. While it is currently
limited by restrictions on user-mode power consumption measurements related
to the PLATYPUS disclosures [23], the fingerprint is quite stable in time and
takes a reasonable time to capture.

We evaluated our method on several sets of identical computers. We also
show that this method can be reproduced by using web client-side workload, in
particular by using WebAssembly instructions. Although the fingerprinting still
requires a native access to read the power consumption, the web fingerprinting
allows to improve the experiment’s portability as well as greatly reducing the
code base.

Contributions. The main contributions are as follows:

– We show that it is possible to create a fingerprint based on power consumption
of the CPU. We evaluate our methods on 291 desktop and server systems,
spanning multiple processor generations and vendors (Intel and AMD), and
show that it consistently delivers accuracy significantly higher than the base
rate (76% for a set of 17 Core i5-4590 desktops, 59% for a set of 71 Xeon
E5-2630 servers, 55% for a set of 123 Xeon Gold 5220, 89% for a set of Xeon
Gold 6130, and even 91% on 7 AMD EPYC 7301).

– We evaluate the influence of CPU temperature and time drift over power-
consumption based fingerprint. We demonstrate that while time drift
decreases the accuracy of the fingerprint, taking into account the CPU tem-
perature increases its accuracy.

– We show a proof of concept of web-based fingerprint based on power consump-
tion, yielding 35% accuracy on a set of 17 computers, showing that power-
consumption fingerprinting can also be applied from a high-level portable
languages, and be oblivious to the microarchitecture.

Our work presents a fingerprinting vector that can increase the accuracy
of existing defensive fingerprinting systems. It also serves as another warning
against providing unrestricted access to computer power consumption measure-
ments.

2 Background

CPU Fingerprinting. A fingerprint is often composed of one or several
attributes creating a unique identifier. The quality of such an attribute is evalu-
ated with two significant properties. The first property is uniqueness: A finger-
print’s end goal is uniquely identifying a user or device. To that extent, a perfect
attribute would be unique. However, such attributes are hard to encounter. The
second is stability : Changes in an attribute can break the fingerprint and pre-
vent users’ identification. A stable attribute does not vary significantly with time
or can be linked to previous iterations. In that regard, hardware attributes are
interesting as they offer high stability, as users rarely change hardware com-
ponents. They are thus valuable in strengthening more volatile software-based
fingerprints.
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Hardware attributes can fall into either of two categories. Discrete attributes
are classified in pre-determined categories, such as the number of physical
cores [40] or CPU generation [29]. As many users share the same hardware model,
these attributes do not yield a high uniqueness, but their identification is often
stable. On the contrary, continuous attributes exploit side effects of manufacture
to create an attribute unique to an iteration of the hardware component. These
attributes are often complex to measure as they do not fall into pre-determined
categories and yield a high uniqueness.

Power Analysis. The power consumption of CPUs is data-dependent, i.e., it
varies based on the instructions executed or the data processed. Power analysis
is a type of side channel extracting information from these slight differences.
Kocher et al. [16] introduced differential power analysis: by physically measuring
how the power consumption varies at a fixed point in a function’s execution, an
attacker can infer the data processed. They use differential power analysis to
extract DES private keys. This side channel has been expanded and modeled
by Messerges et al. [27]. Mangard et al. [25] proposed an overview of power-
consumption attacks and techniques to improve the signal. All these hardware-
based power side channels require physical access to the device and specialized
hardware, e.g., an oscilloscope. More recently, these power side channels have
been explored in a pure software implementation, without physical access to
the device [22,23]. These attacks leverage software interfaces,e.g., Intel’s RAPL,
allowing a user to get power consumption and CPU temperature feedback at a
high frequency.

WebAssembly. WebAssembly is a bytecode-like language of the web, designed
for client-side computations i.e., executed directly in the users’ browsers, in
sandboxed environments. WebAssembly can be compiled directly from other lan-
guages, e.g., C or Rust, or written in the wat text format, an assembly-like rep-
resentation of the binary code. WebAssembly standards are currently composed
of up to 256 instructions, offering more fine-grained control than JavaScript. It
is built in a typed stack-machine model.

3 Fingerprinting Model

In the model we use for this work, we assume a fingerprinting agent capable of
running short code sequences on the device under test (DUT) and measuring
their power consumption. The agent’s goal is to distinguish between n computers,
labeled c1 · · · cn, using power consumption data as the classification feature, as
presented in Fig. 1. The system should work even if all n computers have identical
hardware and software stacks.

The fingerprinting process begins by selecting a group of m assembly-
language instructions, labeled i1 · · · im. We evaluate two settings for this model.
In the first, described in Sect. 4.2, we assume the assembly-language instructions
are written in native code. In the second, described in Sect. 4.3, we assume the
assembly-language instructions are delivered in portable form as WebAssembly
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Fig. 1. Fingerprinting devices using power consumption.

instructions, and then compiled on the fly into native code by the DUT’s web
browser. In the next step, the agent measures the power consumption of each
individual instruction using a software-based method, as described below. The
agent also collects some additional data, including the time taken to execute the
instruction and the core temperature at the time of measurement. This process
is repeated for each instruction in the set to be measured, ultimately obtaining
a trace of power consumption measurements of length m.

Once a trace is defined, our problem follows a standard classification work-
flow: In an offline profiling step, the agent captures multiple power consumption
traces from multiple computers. Next, the power traces are used to construct
a machine-learning classifier. Then, in an online fingerprinting step, the agent
captures a single power trace from an unknown computer, and must use the clas-
sifier constructed in the offline phase to correctly identify which of the computers
emitted this unlabeled trace.

Key Performance Indicators. We can evaluate our fingerprinting system’s
quality using multiple parameters. First and foremost are the fingerprint’s
uniqueness and stability, corresponding to its ability to identify individual
machines accurately and consistently over time. Additional parameters are the
speed of the fingerprint collection process and its compatibility with multiple
types of hardware from multiple vendors and architectural generations.

4 Methodology

State of the art of hardware fingerprinting mechanisms focuses on detecting static
CPU properties, such as the cache size or micro-architectural generation [29,40]
or on the relative speed of the machine’s underlying components [19,32]. This
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work, in contrast, focuses on the power consumption of the CPU – we assume
that, due to slight manufacturing differences in the hardware, the power con-
sumption is slightly different between each device. We would like to empirically
demonstrate that this information is enough to significantly improve the finger-
print accuracy beyond the base rate of a naive classifier choosing one of the
devices at random.

4.1 Fingerprinting Process Overview

As presented in Sect. 3, the goal of the classifier is to distinguish between n
computers, labeled c1 · · · cn, using the power consumption of each computer as
the classification feature. We repeat the trace collection process � times for each
computer. Our dataset thus contains a total of (� × m × n) power measure-
ments. After gathering the dataset, we build a classification model, as described
in Sect. 5.1. The model receives as input a single trace from one of the machines
in the dataset, and predicts which machine created this power trace. The power
trace will be collected in the same process as the entire dataset, hence, it will be
a list of power consumption measurements of size m. To limit the noise in our
measurements, we execute all instructions on the same physical core, ensuring
no other processes are running on this core.

Measuring Power Consumption. While the instructions to be profiled are
all unprivileged, ring 3 instructions, our model also assumes that the finger-
printing agent is capable of measuring the average power consumption of the
device under test, as well as its temperature. Software applications running on
Intel and AMD processors can monitor power consumption, without requiring
external hardware, by accessing a model-specific register (MSR) named Running
Average Power Limit (RAPL). RAPL is a hardware feature designed to monitor
and control the system’s overall power consumption. It includes an interface for
reporting the accumulated energy consumption of various power domains, includ-
ing the CPU, its attached DRAM, and other components such as the on-chip
GPU [14]. A similar MSR also exists for AMD processors, with similar capabil-
ities. Linux offers an easy-to-use interface to the RAPL registers through the
/sys/class/powercap/intel-rapl/intel-rapl:0/intel-rapl:0:0/energy
uj virtual file system using PP0 domain, allowing them to be read using high-
level scripting languages. RAPL-based measurement is performed in practice by
sampling the system’s accumulated energy consumption, executing the work-
load, and finally sampling the accumulated energy consumption once again, and
then storing the difference between the final and initial energy measurements.

The main limitation of using RAPL is its required privilege level. Starting
in October 2020, following the revelations of Lipp et al. [22,23], access to the
RAPL interface was restricted to privileged processes. Consequently, the agent
we describe must be trusted by the system owners being fingerprinted, challeng-
ing our ability to use the agent in an offensive setting. We further note that
when the CPU is running in “Filtered RAPL“mode [12], RAPL readings are
passed through a filter which reduces their update frequency and adds some
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Table 1. Evaluated system specifications.

Name Vendor CPU Type Node
Count

µ-Arch. Year

Desk-4590 Intel Core i5-4590 17 Haswell 2014

Srv-2630-v3 Intel Xeon E5-2630 v3 71 Haswell 2014

Srv-2630L-v4 Intel Xeon E5-2630L v4 46 Broadwell 2016

Srv-6130 Intel Xeon Gold 6130 27 Skylake 2017

Srv-5220 Intel Xeon Gold 5220 123 Cascade Lake 2019

Srv-AMD AMD EPYC 7301 7 Zen 1 2017

random noise. This mode, which may affect our method’s effectiveness, is cur-
rently engaged only when SGX is enabled, but may be extended to other settings
in the future. We propose some workarounds to this limitation in Sect. 6.2.

4.2 Native Code Setup

The systems we evaluated are listed in Table 1. We chose six evaluation sets that
vary in their characteristics. The Desk-4590 set consists of desktop machines,
whereas the rest of the sets (Srv-) are servers located in the Grid’5000 testbed.
The systems represent micro-architectural designs spanning multiple processor
generations and multiple vendors. We note that the CPUs we evaluated do not
support Intel’s Software Guard Extension (SGX) feature which, as noted above,
may limit the effectiveness of RAPL readings when it is enabled.

Grid’5000 Environment. One of the challenges in evaluating fingerprinting
schemes for desktop computers is the difficulty of obtaining multiple systems
with identical software and hardware configurations. Obviously, any external
difference in the hardware, or in their environments, may be reflected onto the
traces and may skew the measured performance of the fingerprinting algorithm.
Previous works have attempted to address this challenge by using university
computer classrooms, or by crowd-sourcing the experiment and clustering the
data into multiple groups after it is collected based on other features [19,32]. In
this work we present a novel approach that further reduces the risk of external
factors affecting the fingerprint. We collaborated with Grid’5000, a large-scale
parallel and distributed computing testbed. Grid’5000 has several clusters con-
sisting of multiple hardware nodes. Each cluster node is identically configured
and located in the same data center, ensuring that environmental variation is
tightly controlled. Furthermore, since these systems are typically used for dis-
tributed computing tasks, there is less chance that software installed on one
particular node affects measurements.

Our code template is based on Gras et al. [8]. The entire x86-64 set, includ-
ing its optional instruction set extensions, consists of more than 16,000 different
instructions and instruction variations. To make the experiment practical, we
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selected a representative sample of 455 instructions. We chose one of the instruc-
tion sets of Gras et al. [8] for our evaluation, in particular instructions that exe-
cute on CPU ports 0, 1, and 5 that were used by Gras et al. in their research for
port contention. Each trace contains the power consumption of 455 instructions,
with each instruction considered a feature. Although other instructions can be
considered (as we mention in Sect. 6.2), we prioritized reproducibility over per-
formance when selecting the instruction set and writing the data collection code.
The measurement process is pinned and executed on one core, while the other
pipeline code is pinned to another core to avoid interferences.

4.3 Portable Code Proof of Concept Setup

Web client-side computations often allow more portability as they reduce the
code base and are adaptable, by design, to most systems that can run browsers.
The user downloads the script from the server and runs it automatically. Web-
based fingerprinting would render the process more portable, significantly reduc-
ing the code base of the experiments and making it highly adaptive to different
operating systems or browsers. We propose a proof of concept of web-based
power fingerprinting. This fingerprinting is built around WebAssembly as it
offers more atomic operations than plain JavaScript, and is based on the code of
Rokicki et al. [30]. We use a Python Selenium framework to automatically test
and evaluate the power consumption of WebAssembly instructions. Due to the
stack machine design of WebAssembly, the output of the previous instruction is
the input of the next. Therefore, instructions with different input and output
types cannot be called in a row. To address it, we create pairs of complementing
operations, i.e., the output type of the first is the input type of the second,
and we evaluate them as a whole. In total, we evaluate 211 single and paired
instructions.

Web browsers are colossal pieces of software, running computation-heavy
tasks: network management, graphical display, cryptographic operations, and
client-side operations. This computation can create noise in our measurement,
compared to the controlled environment of native power fingerprinting. The
design process of the framework is based on lowering as much as possible this
noise, while still running the experiments in a standard release browser.

We ran the experiments of this section in Firefox 107 running WebAssembly
1.1. Before starting the actual measurement, the framework loads the attack page
in the browser, fetches and instantiates all the tested instructions before starting
the measurement. As in the native case, for each instruction, the framework
reads the system’s total energy consumption, executes the instruction 100 times
in the browser, and reads the total energy consumption once again, saving the
difference in the power trace. To ensure that the JavaScript components required
to run WebAssembly are not creating unwanted execution, we unrolled the loop
directly in the WebAssembly script. This allows the most atomic measurement
of browser computations and reduces potential noise.

As client-side code runs entirely in a sandbox, it is impossible to use built-in
features to measure the power consumption, only to create the artificial power
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consumption for our experiments. A native component is still needed to read the
power consumption. Hence, an attacker sitting in the JavaScript sandbox cannot
measure this fingerprint. However, this native component could be integrated
into the applicative layer of the browser to provide a strong authentication factor
for web browsing. We discuss this limitation further in Sect. 6.2.

5 Results

We evaluate the accuracy of our method by comparing it to the base rate, which
is the accuracy of a random guess.

5.1 Classification Pipeline

A trace from our method consists of power and temperature measurements for
each instruction. The exact number of samples per trace was not equal among
all machine types, as some older microarchitectures do not support all of the
instructions in our set. The classification process is as follows:

1. We compute the average temperature for each trace to have a single repre-
sentative.

2. We exclude outliers using clipping, which is caused by context switches.
Specifically, we replace values that are lower than the first percentile of power
measurement values with the value of that percentile, and values that are
higher than the last percentile with the value of that percentile.

3. We use feature extraction to extract useful information from each trace. The
features that we extract include: mean, standard deviation, median absolute
deviation, skew, entropy, the value of each percentile between 10 and 90 with
jumps of 10, L1 distance between the mean and the median, mean of the
sequence of differences, median of the sequence of differences, standard devi-
ation of the sequence of differences, and the number of peaks of the trace.

4. We feed the resulting computed features into a Random Forest classifier.

With the exception of the n estimators parameter, which is set to 300, we
use the default hyper settings for the Random Forest implementation. We used
sklearn version 1.0.

5.2 Native-Code Fingerprinting

Classification Using Power Consumption Only. As a first evaluation, we
use only the power-consumption features to train the classifier. We use the col-
lection’s first 80% of traces as training data and the remaining 20% as testing
data for each group. We only use the training set from the initial collection to
train the classifier. We balance the datasets by using the same number of traces
for each machine. The base rate is 1 divided by the machine count. Figure 2
presents the accuracy of our methods using traces that were gathered the same
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Fig. 2. Summary of classification accuracy results.

day as the training traces. We can see that our method’s accuracy is significantly
better than base rate for every group of machines. A different classifier is trained
for each group of machines. The effect of temperature is explained below.

We also evaluate how our method performs on collections spanning different
days. To demonstrate that our method is robust (i.e., above the base rate) over
time, we gathered balanced data on various days utilizing Desk-4590 and Srv-
5220 group machines. For the Desk-4590 group, the accuracy is 70.14± 0.46%
on the test part of the first collection, 67.31±0.36% on a collection that was done
2 days later and 59.30 ± 0.49% on a collection that was done 3 days after the
first collection, compared to a base rate of 5.88%. For the Srv-5220 group, the
accuracy is 25.98±1.92% on the test part of the first collection, 16.71±0.50% on
a collection that was done 8 days later and 17.14±0.49% on a collection that was
done 10 days after the first collection, compared to a base rate of 0.81%. While
the accuracy drops noticeably on days where the classifier was not trained on,
the results are still significantly better than the base rate. Since we don’t have
complete control over Srv-5220 machines due to their location in a shared grid
environment, the Srv-5220 dataset has a bigger interval between the training
traces and other data collections compared to other groups.

Temperature. To check whether temperature affects our method, we first take
a single collection of the Srv-5220 machines, find the median temperature per
machine, and split the dataset into 2 parts: traces with temperatures below
the median temperature per machine and traces with temperatures above the
median temperature per machine. We evaluate the resulting classifiers against a
collection that was done 8 days after the training collection, that we also split
into colder and hotter traces. We discovered that a classifier that is trained
only on the colder (resp. the hotter) traces yields an accuracy of 14.84% (resp.
14.98%) on the test collection, while a classifier that is trained on both hotter
and the colder traces yields a higher accuracy of 17.54%. This indicates that the
temperature of the CPU while collecting the traces affects our method.

To take temperature into account, we add it as a feature of our classifier
on all machines except the Srv-AMD group, which had no operating system
support for temperature collection. The process for computing the temperature
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Fig. 3. Confusion matrix for Desk-4590 using all features including temperature.

feature is detailed in Sect. 5.1. As can be seen on Fig. 2, using temperature as
a feature improves our method’s classification accuracy by a significant margin.
Moreover, adding temperature as a feature also makes the system more robust
to temporal drift. With the addition of temperature as a feature for the Desk-
4590 group, the accuracy is 76.50±0.67% on the test part of the first collection,
81.51 ± 0.31% on a collection that was done 2 days later and 70.55 ± 0.41% on
a collection that was done 3 days after the first collection. With the addition of
temperature as a feature for the Srv-5220 group, the accuracy is 55.28± 0.62%
on the test part of the first collection, 29.75±0.69% on a collection that was done
8 days later and 28.21 ± 0.43% on a collection that was done 10 days after the
first collection. Figure 3 shows a confusion matrix on Desk-4590 machines when
using all features including temperature feature. Rows are the actual machines of
these traces, columns are the predicted machines for these traces. We can observe
that our model is able to classify machines with high accuracy as we reported
earlier. We can also observe that classification errors are not random, but instead
tend to form small clusters of machines with similar power consumption.

Classification Using Fewer Instructions. The collection time of a finger-
print, i.e., how long it takes to measure and collect a trace, is an important
performance metric. To see how the the data collection time may be reduced, we
evaluated each of the instructions in the trace, checking each one’s contribution
to the classification process. Since the statistical features used as input to our
classifier are aggregated from multiple instructions, we could not do this directly,
but instead performed an additional analysis: First, we trained a Random Forest
classifier on the raw power consumption trace, after clipping outliers but without
any additional preprocessing and temperature readings. This classifier has lower
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Fig. 4. Effect of number of instructions on accuracy, using a single trace.

accuracy, compared to the classifier that was trained with temperature and fea-
tures that were extracted using our feature extraction method. However, since
this classifier was specifically trained on the power consumption samples, we can
use the standard feature importance score metric to directly identify those with
the highest contribution to accuracy. We ranked the instructions according to
their importance, and then used only a subset of the most significant features as
input to our statistical feature extraction process. A table containing all evalu-
ated instructions, together with their feature importance score, can be found in
the artifact repository.

Figure 4 shows our method’s accuracy when using fewer assembly instruc-
tions. As shown in the figure, we obtain an accuracy of 63% and 44%, for Desk-
4590 and Srv-5220 respectively, by using less than 10 instructions. This is
approximately 80% of the peak accuracy obtained using all instructions, which
is 75.5% and 55.9% respectively. Even if we use only the 5 most helpful instruc-
tions process we obtain a high accuracy of 60.4% and 41.1% respectively. We
observe improved accuracy as we use more instructions, up to approximately 300
instructions for Desk-4590 and 250 instructions for Srv-5220. To understand
why certain instructions had a higher impact on the classification accuracy than
others, we performed a further manual analysis of the most significant instruc-
tions, noting the instruction set family of each command, based on the analysis
provided by Abel et al. [1]. This annotated version of the instruction table can
also be found in the repository. When analyzing the annotated instruction table,
we discovered that out of the 20 most helpful instructions, all but one belong
to the Advanced Vector Extensions (AVX) and Streaming SIMD Extensions 4
(SSE4) instruction sets. We performed a similar analysis on the WebAssembly
dataset, as described in Sect. 4.3, and discovered a similar situation – all but
7 of the 20 most helpful instructions are 128-bit vector instructions. Vector-
ized instructions are known to use significantly more power compared to regular
instructions, probably because they process more data. Our results suggest that
this increased power consumption in turn leads to a more distinct power con-
sumption signature, which can be used by our classifier. Interestingly, it is known
that the high power consumption of the AVX core requires special handling by
the CPU’s power monitor, which dynamically powers on the AVX core when
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Fig. 5. Effect of number of traces on accuracy, using all instructions.

Fig. 6. Effect of temporal drift on accuracy.

these instructions are used. As shown by Schwarz et al. [36], this power-up delay
can be used to perform a remote side-channel attack in a different setting.

As mentioned in Sect. 4.2, we did not measure the power consumption of the
entire space of valid x86 instructions. Thus, there may be additional instructions
which we did not evaluate which have even better performance. In addition,
the set of best-performing instructions likely varies between different processor
generations and microarchitectures.

Classification Using Multiple Traces. In order to improve the accuracy, at
the cost of a longer trace acquisition time, we can gather multiple traces, pass
them into the classifier, obtain the probability that each trace corresponds to
each class, add the probabilities for each class, and output the class with the
largest sum. Figure 5 shows the accuracy as a function of the number of traces
used for inference on Desk-4590 machines. It can be seen in the Figure, as we
use more traces for a single inference, the accuracy increases until it stabilizes
at 11 traces for inference for Desk-4590. We performed a similar evaluation
for Srv-5220, using a smaller amount of traces for each prediction, since we
collected less traces in this setting. The increase in accuracy when using more
traces is also observed for Srv-5220, although the available number of traces
per prediction is insufficient to determine when the accuracy reaches a plateau.

Stability of Results Over Time. The ability of fingerprinting methods to
fingerprint machines over time is an important measurement to the fingerprint
evaluation. To measure the effect of time on our method, we launched a contin-
uous experiment on the Srv-5220 machines, in which we run the collection in
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Table 2. Accuracy for multiple cores evaluation on Desk-4590.

Trained on Tested on

Core 1 Core 2 Core 1 & Core 2

Core 1 0.654 0.650 0.652

Core 2 0.621 0.645 0.650

Core 1 & Core 2 0.649 0.651 0.650

best effort mode. In best effort mode we run our collection on a machine as long
the machine is available. In a case that someone orders this machine or that this
machine becomes unavailable, our collection stops until that machine is free or
available again. This experiment can lead to an imbalanced dataset because of
the nature of best effort mode. This collection spans over a period of 19 days and
contains 508634 traces. To evaluate the accuracy of our method over time we
train a classifier on data that originates from the first day of this collection. We
used an equal number of traces per machine to train this classifier. We report
the accuracy of our classifier per day in Fig. 6. We also report the probability
that the correct machine was one of the top 5 outputs of the classifier. Note
that even that our dataset is imbalanced, the classifier was trained on balanced
data and it does not know the imbalanced machine distribution. In this case,
the base rate of our model is a random guess between 105 machines i.e., 0.95%,
since we collected the data in best effort mode and some machines were not
available during the temporal drift data collection. We can observe that our
classification accuracy is better on the day of the collection that the model was
trained on compared to other days. Our model’s accuracy drops on traces that
were collected on later days than the collection day of the training traces. We
can observe that our method’s accuracy is well above base rate, even for later
collections.

To test an extreme case, we take two collections from 16 machines from the
Desk-4590 group, train a classifier on the first collection and test on the second
collection. The second collection was launched 8 months after the first collection.
This classifier yields an accuracy of 28.50% on the later collection compared to
a base rate of 6.25%, without using the temperature as a feature. While this is
a significant drop in performance, it is still well above the base rate.

Multiple Cores. The behavior of different cores on the same machine is inter-
esting since it can affect our fingerprinting results when core pinning is not
applied. By conducting research on the effect of multiple cores on our fingerprint-
ing method we can conclude whether we fingerprint the core itself or another
hardware component. Data collection is performed using a similar method to
that employed for a single core, except that the pipeline is repeated on differ-
ent physical cores. The process begins by obtaining a list of all physical cores
on the device, after which the process is pinned to the first core in the list
and all instructions are executed on it. The process is then repeated from the
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beginning, this time using the second physical core from the list, resulting in two
traces obtained each time. The collected traces were split into two groups, based
on the physical cores from which they were obtained. The accuracy of the classi-
fier was evaluated under various core scenarios, as shown in Table 2. The results
indicate consistent performance of the classifier across all scenarios, except when
trained on traces from core 2 and tested on traces from core 1. In this case, a
slight decrease in accuracy was observed. It is worth noting that the accuracy in
this evaluation is lower than that reported in Fig. 2, due to the longer trace col-
lection period, which resulted in greater temperature variations compared to the
shorter experiment in Fig. 2. To investigate the classifier’s ability to distinguish
between traces obtained from the same machine but from different cores, a new
experiment was conducted, in which the collected traces were grouped by their
respective machines. The classifier and pre-processing methods were identical to
those used in the previous experiments. For each machine, a classifier was trained
to identify whether the trace originated from core 1 or core 2, yielding accuracies
ranging from 48.5% to 53.9%, except for one machine that achieved an accuracy
of 89.5%. However, all classifiers with accuracies between 48.5% and 53.9% failed
to accurately classify the core from which the trace originated, due to the base
rate of this experiment being 50%. The feature importance of the classifiers was
analyzed to understand why the classifier was successful in identifying the dif-
ferent cores on one particular machine. The maximum feature importance of
the classifiers that failed to distinguish between the cores was 0.076, whereas
the maximum feature importance of the successful classifier was 0.437, with the
10th percentile of power consumption being the most important feature with a
big margin. Upon examining the data from the machine on which the classifier
was successful, it was observed that there was a clear separation between the
cores based on the 10th percentile of power consumption. This separation is not
present in the data from the other machines.

5.3 Portable Fingerprinting

We collected data using our portable method, using the same pre-processing and
classifier as the native collections. We do not collect temperature data with this
method. This classifier’s accuracy is 35.41% for the Desk-4590 machines. This
is a significant accuracy drop compared to the native collections due to the high-
level nature of the web-based experiment. Web browsers are huge pieces of soft-
ware, running many other tasks than the WebAssembly instructions, which can
result in additional noise, hence power consumption, compared to the controlled
environment. Furthermore, we cannot ensure the translation of WebAssembly
instructions into native instructions, resulting in less control over the experi-
ment. The results of this PoC are encouraging as they are still well above base
rate, showing that power consumption could be used as a strong attribute, yield-
ing a high uniqueness in the browser context. We expect that this accuracy could
be improved by adapting the pipeline to browser-specific noise.
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6 Discussion

6.1 Related Work

PUFs and PC Fingerprinting. Kohno et al. [17] introduced a technique for
remote physical device fingerprinting that is based on clock skew. Using this
technique, the authors can determine whether two devices that possibly shifted
in time or IP addresses are the same physical device. Sánchez-Rola et al. [32]
presented a way to create a fingerprint based on careful analysis of the exact
time it takes the device under test to run a fixed benchmark. Their technique
was implemented in both native and web-based versions. Unlike of Sánchez-
Rola’s method, which collects only a single feature at each execution, our method
collects multiple data points, each corresponding to the power consumed by a
different instruction. We believe that this increases the robustness of our system.
Rokicki et al. [29] used WebAssembly instructions as a fingerprinting method,
creating a method for detecting hardware processor generation based on the
processor’s lookahead buffer behavior. Laor et al. [19] showed that it is possible
to fingerprint systems based on the individual execution units found inside their
Graphical Processing Units (GPUs). Our method explores a similar instance
of manufacturing variations, this time inside the CPU itself and not in one of
its peripherals. Another way to create a machine fingerprint is by treating the
machine hardware as a physically unclonable function, or PUF. Schaller et al. [33]
leveraged the Rowhammer attack that flips bits in RAM as a PUF to improve
security in commercial, off-the-shelf devices. Suh and Devadas [37] presented a
technique that enables low-cost authentication of individual ICs with the use
of PUF. Over time, PUF designs have been shown to be vulnerable to machine
learning attacks, where the model learns to predict the PUF response after only a
few observations [31]. To resist this type of attacks, Vijayakumar and Kundu [41]
proposed a novel PUF circuit that, unlike previous work, does not assume the
existence of ideal current sources or operating conditions [13,18]. The novel PUF
is based on a circuit block and depends on a non-linear voltage transfer function.

PC Power Consumption. Hähnel et al. [9] showed a way to use RAPL-based
power consumption to measure and analyze power consumption of individual
functions. The authors demonstrated how to use power to characterize the energy
costs for decoding video slices. Lipp et al. [23] used power measurement to con-
duct novel software-based power side-channel attacks on Intel server, desktop,
and laptop computers. The authors exploited the unprivileged access to the Intel
RAPL interface to leak AES-NI keys from Intel SGX, break kernel address-space
layout randomization, infer secret instruction streams and establish a timing-
independent covert channel. Von Kistowski et al. [15] noted that PCs have vari-
able power consumption in a performance benchmarking setting. They explored
the power consumption of identical CPUs for multiple workloads, and showed
that these different CPU samples display statistically significant differences. We
extend the work of von Kistowski et al., by turning their observations about
power consumption differences into a feature that can be used to tell apart iden-
tical devices.
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6.2 Limitations

Root Required for Power Measurements. A primary limitation of our
scheme is that it only works if the fingerprinting agent can measure power con-
sumption. The easiest way to perform this measurement is through the RAPL
interface, which is currently restricted to high-privileged processes. This limits
the use of the system to the defensive setting, since there is no way for a mali-
cious fingerprinting attacker (e.g., an intrusive web page) to measure the power
consumption of the PC while it is running in user mode.

To address this limitation, we note that there are several works showing how
power consumption can be measured indirectly via a side channel on modern
PCs. For example, Cohen et al. showed that power consumption can be measured
using rowhammer [4], and Wang et al. [42] showed that it is modulated onto the
system’s clock frequency. Although outside the scope of this work, our method
may be turned into an attack by combining our results on fingerprinting with
one of these techniques for performing user-land power consumption measure-
ment. On a more cynical note, we observe that features with impact on security
are often removed due to security disclosures, but then re-introduced to systems,
sometimes with a partial countermeasure, due to external demand for their func-
tionality. For example, high-resolution GPU timers were removed from Chrome
65 after Frigo et al. discovered they can be used for side-channel attacks [6], and
then re-enabled with some mitigations in Chrome 70 [28]. Unprivileged access to
power measurement, currently disabled due to the work of Lipp et al. [23], may
suffer the same fate. In that case, our work will immediately gain an offensive
aspect.

Limited Accuracy and Stability. Our method has limited accuracy and sta-
bility over time. In particular, it is unable to identify a single computer from a
large population with sufficient accuracy to be used as a single source of authen-
tication. While this accuracy may be improved with a better choice of instruc-
tion mix and a more refined machine learning pipeline, the limitation ultimately
stems from the fact that power consumption is a physical property which does
not depend on the workload alone, but also on external influences both inside
and outside the device under test, such as temperature, incoming noise on the
system’s power supply, and even activity of other computers on the same power
distribution network [43]. Our method is therefore the most useful when inte-
grated as a contributing feature into an existing fingerprinting system, or when
used as a first line of defense before resorting to more intrusive fingerprinting
methods or even asking the user to manually authenticate [2].

No Evaluation in the Wild. This work only evaluates the effectiveness of our
fingerprinting method in a lab setting, when telling apart identical computers. It
would be interesting to consider the ability of power consumption measurements
to tell apart computers with diverse hardware and software configurations in the
wild. We note that, in practice, a fingerprinting scheme would make use of all
information available in the system, including deterministic metrics such as the
list of installed hardware and software, the network address, the time zone, and so
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on. Thus, the power fingerprint would actually be used in a setting very similar to
the lab setup, to identify the computer among a small cluster of candidates with
identical configurations. As Laor et al. observed, this setting actually improves
the performance of non-deterministic fingerprinting methods [19].

Slow Data Collection. Our fingerprinting agent takes about 7 s to collect a full
power trace of 455 instructions, from the system. While this may be appropriate
in some settings, speeding up the process will definitely make it more practical.
One of the main reasons for this long runtime is the design of the agent, which
is built for reproducibility rather than performance. We analyzed the runtime
of the code and found that the actual measurements account for less than 25%
of its runtime, with the rest dedicated to logging, data management scripts and
diagnostic printouts. A practical solution written in a high-performance language
could avoid these extra steps. Going even further, as noted in Sect. 5.2, even very
small number of instructions is enough to capture more than 80% of the system’s
peak accuracy. In particular, a performance-oriented fingerprinting scheme can
obtain usable results after profiling no more than six instructions.

6.3 Countermeasures

Even though there is no immediate offensive application for our work, it is still
interesting to consider how a system can remain unidentifiable, even in the pres-
ence of a power-based fingerprinting agent. The most straightforward approach
to avoiding fingerprinting would be introducing noise to the power consump-
tion measurement. This can be internal noise, generated by executing code on
the DUT, or external noise, generated by plugging in a noisy device, such as a
microwave oven, to the same power distribution line as the PC and running it
when the fingerprint is collected. We note that this mechanism only decreases
the signal-to-noise ratio of the system, requiring more traces to be collected for
a reliable reading, but only partially eliminates the fingerprinting capability.

Another interesting, but unfortunately ineffective, countermeasure would be
to use the power capping mechanism available in modern processors. This mecha-
nism places a hard limit on the total power consumption of the device under test
by dynamically controlling its clock. Obviously, if the power cap is set aggres-
sively, all of the instructions executed on the machine will have the same power
consumption, reducing the accuracy of our method. unfortunately, as recently
observed by Liu et al. [24], fixing the power consumption only moves the side-
channel information into the frequency domain, with higher-power instructions
simply taking longer to execute than lower-power instructions. Since our finger-
printing agent already logs the time taken to execute each instruction, it will be
able to overcome this countermeasure.

7 Conclusions

As a result of identity theft and authentication attacks, device identification has
become an important topic in recent years. However, most fingerprint methods
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such as [19,30] rely on the differences between machines with different software
or hardware. Consequently, these kind of fingerprints would not be able to dis-
tinguish between identical devices in the same environment. In this paper, we
created a new method to identify devices with the same hardware and software
characteristics, based only on the CPU x86-64 micro-architectural properties.
We used the power consumption similar to PUF concept as the main feature
to create a fingerprint that can tell apart identical devices in a way that other
fingerprints cannot separate. Our method shows a way to use power as a founda-
tion for a robust fingerprint, as the power consumption of devices varies slightly.
Moreover, we showed that with the use of other CPU properties, such as CPU
temperature, as another feature, the fingerprint is more accurate, robust, and
stable. Through comprehensive evaluation, we showed that our technique can
distinguish between identical sets of machines with different micro-architectures
(Intel, AMD) and can be used not only on endpoint machines but also on servers.
Furthermore, we showed that this technique can be executed natively by using
the x86-64 instruction set, and portable by using the WebAssembly instruction
set.

Future Work. Our work lays the foundation for future work on authentication
methods based on micro-architectural features. In terms of future work, we first
note our work requires ring 0 access as there is no other way, to our knowledge, to
accurately measure power consumption from software. Once it becomes possible
to measure power consumption with ring 3 privileges, our technique can be used
as an authentication method to fingerprint data, both natively and portably.
Another future direction would be an in-the-wild evaluation on a machine set
larger than 130 devices. While most of our measurements were performed on
a single core, our results indicate that there may be some added value from
extracting fingerprints from multiple cores. It would be interesting to find the
optimal combination of instructions, cores and sample counts that can obtain
the best accuracy for a given sampling time budget. Another direction is per-
formance improvement. In this work, we focused on the system’s reproducibility
and readability, rather than the data collection time. The speed of the data
gathering can be increased by several methods, such as moving from a scripting
harness to 100% native code, reducing the instruction set as shown in Fig. 4, or
reducing the number of iterations for each instruction. Finally, we showed that
CPU temperature can increase the accuracy rate and can be used as another
feature in the classification process. As temperature and power are not the only
CPU micro-architectural properties, we infer that more features can be used in
the identification, which will improve its robustness, accuracy, and stability. Fur-
thermore, we believe that a power consumption feature can be added to existing
authentication methods [7,19,30,38,40].
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Artifact Availability.. Our developed code and data artifacts are available
at https://github.com/FingerInThePower/Finger In The Power, including code for
power consumption trace collection for each of the architectures used as well as the
portable code, our datasets used for the results section with the results, and the machine
learning pipeline with the pre-processing procedures.

References

1. Abel, A., Reineke, J.: uops.info: Characterizing latency, throughput, and port usage
of instructions on intel microarchitectures. In: ASPLOS (2019)

2. Alaca, F., van Oorschot, P.C.: Device fingerprinting for augmenting web authenti-
cation: classification and analysis of methods. In: ACSAC, pp. 289–301 (2016)

3. Cherkaoui, A., Bossuet, L., Seitz, L., Selander, G., Borgaonkar, R.: New paradigms
for access control in constrained environments. In: ReCoSoC. IEEE (2014)

4. Cohen, Y., et al.: Hammerscope: observing DRAM power consumption using
rowhammer. In: CCS (2022)

5. Colombier, B., Bossuet, L.: Survey of hardware protection of design data for inte-
grated circuits and intellectual properties. IET Comput. Digit. Tech. 8(6), 274–287
(2014)

6. Frigo, P., Giuffrida, C., Bos, H., Razavi, K.: Grand pwning unit: accelerating
microarchitectural attacks with the GPU. In: S&P (2018)

7. van Goethem, T., Scheepers, W., Preuveneers, D., Joosen, W.: Accelerometer-
based device fingerprinting for multi-factor mobile authentication. In: 8th Interna-
tional Symposium on Engineering Secure Software and Systems (ESSoS) (2016)

8. Gras, B., Giuffrida, C., Kurth, M., Bos, H., Razavi, K.: Absynthe: automatic black-
box side-channel synthesis on commodity microarchitectures. In: NDSS (2020)
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Abstract. An increasing number of Trusted Execution Environment (TEE) is
adopting to a variety of commercial products for protecting data security on the
cloud. However, TEEs are still exposed to various side-channel vulnerabilities,
such as execution order-based, timing-based, and power-based vulnerabilities.
While recent hardware is applying various techniques to mitigate order-based
and timing-based side-channel vulnerabilities, power-based side-channel attacks
remain a concern of hardware security, especially for the confidential computing
settings where the server machines are beyond the control of cloud users. In this
paper, we present PWRLEAK, an attack framework that exploits AMD’s power
reporting interfaces to build power side-channel attacks against AMD Secure
Encrypted Virtualization (SEV)-protected VM. We design and implement the
attack framework with three general steps: (1) identify the instruction running
inside AMD SEV, (2) apply a power interpolator to amplify power consump-
tion, including an emulation-based interpolator for analyzing purposes and a more
general interrupt-based interpolator, and (3) infer secrets with various analysis
approaches. A case study of using the emulation-based interpolator to infer the
whole JPEG images processed by libjpeg demonstrates its ability to help analyze
power consumption inside SEV VM. Our end-to-end attacks against Intel’s Inte-
grated Performance Primitives (Intel IPP) library indicates that PWRLEAK can be
exploited to infer RSA private keys with over 80% accuracy using the interrupt-
based interpolator.

1 Introduction

Private data is becoming an important asset for our society and personal life. More and
more data-driven applications and technologies are introduced to release the value of
data to the greatest extent, which, however, can potentially put personal or technical
data at risk of leakage. Such concerns are especially perceptible in the cloud com-
puting domain, where numerous cloud tenants rent cloud services from cloud service
providers, upload and process sensitive data on the cloud. Potential safety hazards can
occur in two ways: (1) malicious cloud tenants steal data from other cloud tenants, and
(2) a curious or malicious cloud service provider monitors or steals data from its cloud
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tenants directly. Therefore, there is an urgent demand for the industries to come up with
techniques that can guarantee data security in the cloud computing environment.

Trusted Execution Environment (TEE) is one of those techniques that meets the
above requirement and has already been adopted in mainstream cloud service providers,
such as Google cloud [17], Microsoft Azure [36], and Amazon AWS [1]. With the
help of trustworthy hardware (e.g., CPU and memory encryption engine), TEE pro-
vides hardware-guaranteed isolation to protect cloud user’s data from other cloud users
or even the cloud service provider. When TEEs are enabled, even the highest privilege
software (e.g. operating system, hypervisor, etc.) cannot directly access cloud user’s
data. With such promising security guarantee, CPU vendors, such as Intel, AMD or
ARM, all released server-level processors that support TEE features to protect VMs
running on the cloud, including the current available AMD Secure Encrypted Virtu-
alization (SEV) [2], and the upcoming Intel Trust Domain Extensions (TDX) [4] and
ARM Confidential Computing Architecture (ARM CCA) [3].

However, recent research [23,26,30] showed that different types of side-channel
attacks could be exploited to steal TEE-protected secrets. Among different types of side-
channel attacks, the power side-channel attack plays a very important role, where the
untrusted cloud service provider can easily collect the power consumption of TEE and
steal secrets. Platypus [30] first examines the threat of software-based power-based side-
channel attacks in cloud-based TEEs. Using power consumption reporting interfaces,
Platypus successfully demonstrates that attackers can obtain power consumption with
instruction-level granularity through APIC interrupts [44], and can use fine-grained
power data to carry out a series of end-to-end attacks, including breaking KASLR and
breaking constant-time cryptographic implementations (AES-NI) used by Intel SGX.
The feasibility of power-based side-channel attacks in SEV was also discussed in [30].

Inspired by previous work, in this paper, we aim to explore the power-based side-
channel attacks in the AMD SEV environment. We introduce PWRLEAK, a software-
based power side-channel framework that analyzes power consumption in AMD SEV-
only VMs (excluding the newer SEV-ES [21] and SEV-SNP [6] versions). Specifically,
PWRLEAK uses the AMD power-reporting features to monitor the program execution
inside AMD SEV VMs, and then infers secrets from the VMs. We first analyze the
possibility of using power information to distinguish instructions in SEV. We show that
different instructions have different power consumption, and the same instruction with
various operands also has distinguishable power differences. Based on such observa-
tion, PWRLEAK makes use of page-table-based controlled channel [23] to intercept
VM’s execution in real-time and then infers the secret inside the SEV VM by inferring
executed instructions and their operands based on distinguishable power consumption.

We test two interpolators that could amplify and produce distinguishable power
consumption of a single instruction on the AMD platform: an emulation-based interpo-
lator and an interrupt-based interpolator. The emulation-based interpolator can acquire
higher-resolution power information by emulating the execution of instructions, which
acts as an ideal tool to compare power consumption for analysis purposes. The more
general interrupt-based interpolator ports an existing APIC-based amplifier introduced
by Platypus [30] to AMD platform and can amplify the power information with inter-
rupts by forcing the re-execution of instructions. To demonstrate the capability of PWR-
LEAK, we showed that the emulation-based interpolator can be used to analyze power
consumption inside SEV VM and recover JPEG images processed by libjpeg library.
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We further demonstrated that PWRLEAK could steal RSA private keys from the Intel
IPP library with over 80% accuracy using the interrupt-based interpolator. To the best
of our knowledge, PWRLEAK is the first power-based side-channel attack that extracts
secrets from AMD SEV-protected VMs. The prototype of PWRLEAK has been made
public available at github.com/OSUSecLab/PWRLEAK. The contributions of the paper
are summarized as follows:

– An instruction-level power consumption study inside SEV VM. We measure the
power-based information leakage towards AMD SEV VMs, and figure out that the
power information can be used to differentiate instructions and their operands run-
ning inside AMD SEV VMs.

– Test power interpolators on AMD SEV. We test two power interpolators that take
advantage of the instruction emulation function or the advanced programmable inter-
rupt controller (APIC) to amplify the power consumption of a single instruction. We
show that these two interpolators are useful to amplify and analyze the energy con-
sumption of executed instructions in SEV VMs.

– A new attack on AMD SEV VM.We also propose PWRLEAK, a new power attack
framework on AMD SEV VMs, and successfully steal secrets from a VM protected
by the baseline SEV version. The feasibility and limitations of similar attacks but in
newer versions of SEV (SEV-ES and SEV-SNP) and the corresponding countermea-
sures are also discussed in the paper.

Responsible Disclosure. We disclosed the proposed findings and attacks to AMD in
April 2023. At the time of writing, AMD has acknowledged our findings and provided
a tracking ID for future communications. However, as discussed in Sect. 6, neither
attack method presented in this paper could be directly conducted against the newer
versions of SEV (e.g., SEV-ES and SEV-SNP). The emulation-based interpolator acts as
an analysis tool and is not expected to work for SEV-ES or SEV-SNP. For the interrupt-
based interpolator, our paper makes use of it to demonstrate that power-based side-
channel attacks can work in SEV, but we did not conduct relevant experiments in SEV-
ES or SEV-SNP. We can foresee that there may be a lot of additional noise caused by
additional protections enabled by SEV-ES and SEV-SNP, such as register encryption
or ownership check, which prevents PWRLEAK from working directly. Therefore, VM
protected by SEV-ES or SEV-SNP will not be affected by PWRLEAK.

2 Background

2.1 AMD Secure Encrypted Virtualization (SEV)

AMD first introduced Secure Encrypted Virtualization (SEV) in 2016 [2], which is a
hardware-based technology designed to protect virtual machines (VMs) against both
privileged software attackers and physical attackers on a remote platform. To protect
the confidentiality of guest VMs’ code and data, SEV provides necessary isolations for
data (e.g., cache and TLB) within the CPU chip, and encrypts VM’s memory using
memory encryption [48]. AMD later introduced SEV-ES (Encrypted State, the second
generation of SEV [21]) to add additional protection towards VM’s unencrypted register

http://www.github.com/OSUSecLab/PWRLEAK


PWRLEAK: Exploiting Power Reporting Interface 49

states during VM-hypervisor world switch. Lately, in order to add additional memory
integrity protection and defend against several controlled-channel attacks (page table
manipulation attacks [47]), AMD introduced the third generation of SEV on Zen 3
architecture, called SEV Secure Nested Paging (SEV-SNP [6]). Due to the strong secu-
rity guarantee and user-friendly mode provided, AMD SEV has already been adopted
by some public cloud service providers, including Google Cloud [17] and Microsoft
Azure [36].

2.2 Hardware Power Reporting Feature

The hardware power reporting interfaces provided by commodity processor vendors,
such as Intel and AMD, allow software to monitor and control CPU’s power consump-
tion. The reporting interfaces related to power consumption specified in the AMD man-
ual [52] include each CPU core’s effective frequency and power consumption:

The Effective Frequency, which monitors the real CPU frequency of each core with
the Max Performance Frequency Clock Count (MPERF) and Actual Performance Fre-
quency Clock Count (APERF) MSR registers. These two registers can be accessed in
kernel mode using rdmsr and wrmsr instructions. Users can calculate the effective
frequency of a core over a software-determined window of time.

Processor Core Power Consumption, which provides power consumption for a given
core over a software-determined time interval in MSR CORE ENERGY STATMSR. The
value of the register is the cumulative energy consumption of a given CPU core. The
sampling interval of MSR CORE ENERGY STAT is 1 ms. Compared to the power inter-
faces in Intel Processors, which have a 50 μs sampling interval, AMD processors sam-
ple power consumption in a much coarser granularity.

2.3 Power-Based Side-Channel Attacks

Power-based side-channel attacks exploit the collected power information to distinguish
victim’s behaviors or infer secret from the victim. The power-based side-channel attacks
can be further classified as hardware-based power attacks and software-based power
attacks.

Hardware-Based Power Side-Channel Attacks. The hardware-based power attacks
can usually acquire power consumption data with a higher granularity using an inde-
pendent device. Existing attacks showed that power consumption data collected in this
way could help an attacker identify the executed instruction [41,42,45] or infer the exe-
cution trace of programs [16]. Lately, researchers showed that hardware-based power
side-channel attacks could successfully steal the RSA private key algorithm [20,53] or
AES private keys [13,37,40].

Software-Based Power Side-Channel Attacks. Software-based power side-channel
attacks rely on software-based power reporting interfaces to collect power consumption
data. There are many efforts to explore software-based power side channels in smart-
phones [12,35], which could fingerprint application being used or identify user’s move-
ment. Recent work in the past few years has used software-based power side channels
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to break isolation protections provided by modern desktop or server processors. The
two most relevant papers related to this article include Platypus [30], which focuses on
attacking Intel SGX, and another software-based power side-channel attack [29], which
focuses on AMD CPUs. On Intel CPUs, Platypus attacks [30] showed for the first time
that attackers could distinguish different executed instructions and their operands by
collecting power consumption information from the Intel Running Average Power Limit
(RAPL) interface. With the help of APIC-timer interrupt, the attacker could get execu-
tion control with instruction-level granularity. These side-channel information could
later be used to leak secret keys from the constant-time AES-NI implementation used
by Intel SGX, break KASLR, and establish a time-independent convert channel. The
power consumption of different instructions, but in AMD ’s Zen microarchitecture, and
the feasibility of power-based side-channel attacks in SEVwas also studied or discussed
in the paper. Lipp et al. [29] later demonstrated the danger of power-based side-channel
attacks in modern AMD processors through several end-to-end attacks, which success-
fully broke KASLR, stole kernel secrets and established a covert channel from unprivi-
leged attackers. In their attacks, they combined power consumption with prefetch to
infer system states and steal secrets. Inspired by those existing papers, in our paper, we
focus on AMD’s Zen microarchitecture and explore the feasibility of stealing secrets
from AMD SEV-protected VMs using software-based power side-channel attacks.

2.4 Common Power Analysis Methods

Simple Power Analysis method and Cross Correlation Analysis method are two meth-
ods widely used in power-based side channel attacks. Simple Power Analysis (SPA)
is a technique that differentiates various operations by distinguishing individual power
patterns [51]. Based on the method used to recognize and distinguish power patterns,
the SPA attack can be further categorized into two types: the visual SPA attack [32]
and the template-based SPA attack [11]. The visual SPA attack manually inspects and
recognizes the difference in the power traces, and the template-based SPA attack uses
the extracted mathematical statistic template to analyze the power traces. Cross Corre-
lation Analysis (CCA) [33] uses the correlation coefficient to measure power traces to
differentiate two inputs. Specifically, if two inputs are similar, the correlation coefficient
value is high; otherwise, the correlation coefficient value is low.

Power Consumption Sampling with Instruction-Level Granularity. To achieve a
sampling rate with instruction-level granularity, previous attacks [26,30] usually uti-
lized APIC timer interrupts to allow the target to execute a single or multiple instruc-
tions before being halted. On Intel platforms, SGX-STEP [44] first showed that an
attacker could use APIC timer interrupts to execute zero-step or single-step SGX
enclaves with instruction-level granularity. Platypus [30] then first combined this timer
interrupt-based technique together with the power consumption interface to reveal the
relationship between power consumption and different instructions. A similar method-
ology was also studied on the AMD platform to monitor the states of SEV VMs.
CipherLeaks attack [26] used the APIC timer interrupt to step AMD SEV VM’s exe-
cution inside an instruction page. In this paper, we collect the power consumption at
the instruction level by adopting the same APIC-based sampling method presented in
Platypus [30].
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3 Exploring Power Consumption Leakage

This section consists of several experiments that aim to exploit the ability of hardware
power reporting interfaces in AMD platform and collect the ground truth of the rela-
tionship between the power consumption with behaviors of a SEV-protected VM. All
the experiments were conducted on a blade server with an 8-Core AMD EPYC 7251
Processor. The host OS runs Ubuntu 64-bit 18.04 with kernel version 4.20.0. The guest
VMs run the same kernel version and are configured with 4 virtual CPUs, 4 GB mem-
ory, and 30 GB local disk as SEV official GitHub repository suggested [8].

3.1 Synchronous Power Measurement

To accurately measure power consumption, we first introduce a synchronous power
measurement method to collect the ground truth and explore the relationship between
instructions and the corresponding power consumption. More specifically, we first mod-
ified the CPUID handler in the KVM to act as an indicator of the start and end of a
power trace, so that we could accurately locate the measured behaviors inside the VM.
Then, for each instruction to be tested, we used two CPUID instructions to indicate the
start and end points. We executed each instruction 100, 000 times inside the VM, and
measured the overall power consumption on the CPU core. By dividing the total power
consumption by 100, 000, we could know the power consumption of that instruction.
Although the power consumption of CPUID is also included in the results, it is negligi-
ble compared to the power consumption caused by 100, 000 repeated instructions.

3.2 Instruction Power Consumption

Our experiment results showed that even under the protection of AMD SEV, different
instructions, different operands, and different loaded data all produce distinguishable
power consumption-based side-channel information.

Distinguishing Instructions.With the synchronous power measurement approach, we
measure the power consumption of the instructions 100, 000 times and calculate the
median power consumption of each instruction. We choose instructions that are com-
monly used and related to cryptography for demonstration. The data are reported in

Table 1. Energy consumption of instructions.

Instruction Core Power
(104mW )

Instruction Core Power
(104mW )

aesdec xmm1, xmm2 4.266 inc r64 1.488

aesdeclast xmm1, xmm2 4.166 mov mem, r64 1.700

aesenc xmm1, xmm2 5.340 mov r64, r64 0.387

aesenclast xmm1, xmm2 5.251 clflush mem 69.600

aesimc xmm1, xmm2 1.123 xor r64, r64 1.444

pclmullqlqdq xmm1, xmm2 7.150 fscale 40.599

dec r64 1.511 nop 0.554

imul r64, r64 4.633 rdrand r64 29.540
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Fig. 1. Power difference because of operand’s hamming weights.

Table 1. There are four columns in this table; the first and the third column are the
instructions been tested, and the second and the fourth column are the core power con-
sumption for the given instruction. For instance, running instruction aesdec 100, 000
times consumes 4.266 × 104 milliwatts. The differences in power consumption among
the various instructions are noticeable. For instance, the aesdec instruction between
two registers has 4.26 × 104 core power consumption, while the aesenc instruction
between two registers has 5.34 × 104 core power consumption.

Distinguishing Operands. The power information can also be used to differentiate
operands of the same instruction. Furthermore, we collected and explored the power
difference caused by different operands of the same instruction. Our evaluation sug-
gests that the exact value of the operands is hard to be distinguished. However, operands
with different Hamming weights can be differentiated. We use the imul instruction to
demonstrate this result. For the operand (64-bit), we selected operands with Hamming
weights of 0, 32, and 64 bits. We measured each operand 100, 000 times and got the
maximum and minimum value of energy consumption. After dividing the energy inter-
val into five even groups, we counted the number of results for each interval. As shown
in Fig. 1(a), the x-axis is the group number, with the energy consumption of each group
sorted by ascending order; the y-axis is the percentage of the result that each group con-
tains. In summary, the energy difference in the operand with various Hamming weights
is observable; the operand with a lower Hamming weight has relatively less energy
consumption.

Distinguishing Loaded Data. Similarly, we measured the relationship between the data
loaded from the cache and their power consumption. We used the movb instruction to
demonstrate this experiment, which could read one byte of data from the cache line. We
generated 256 different pieces of data, which cover all possible values for a byte, and
categorized them into nine different groups based on the Hamming weight (e.g. 0, 1, 2,
. . . , 8). After measuring the power consumption that loads every data 100, 000 times,
we calculated the average power consumption of the data in each of the nine groups
and presented the result in Fig. 1(b). The x-axis is the Hamming weight of each group,
and the y-axis is the average power consumption of each group. The results suggest that
loading the data with larger Hamming weights could consume more energy, which is
distinguishable.
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4 PWRLEAK Design

In this section, we present PWRLEAK, an attack framework to differentiate power con-
sumption caused by instructions running inside SEV-protected VMs, and steal secrets
from the victim VM.

4.1 Threat Model

In this paper, we consider the same threat model as AMD SEV’s threat model [2], where
the adversary is a privileged software attacker who does not know the data protected by
the SEV-enabled guest VM, and cannot control any program running inside the guest
VM. We further assume that the adversary has the pre-knowledge of the target pro-
gram’s binary running inside the VM (e.g., a specific cryptography library), including
detailed information such as control flow and function calls of the target program.

4.2 Overview of PWRLEAK

Even though our synchronous power measurement (discussed in Sect. 3) suggests that
different behaviors inside SEV VMs lead to different power consumption. There are
two main challenges left for a real world power-based side-channel attack. First, the
synchronous power measurement approach used to measure repeated instructions is
not practical. Second, the low power consumption sampling rate (1 ms) in AMD pro-
cessors also limits the practicality of a real attack. To overcome these two challenges,
we introduce PWRLEAK, whose general components are shown in Fig. 2. Instruction
Identification is a component used to locate some target instructions in a specific pro-
gram running inside VMs. Power Interpolator is a component that can amplify the
power consumption of target instructions, so that the amplified power data is sufficient
for PWRLEAK to distinguish different instructions via AMD’s coarse-grain hardware
power reporting interfaces. Power Attack is a component that can run offline, possibly
on a separate machine, and infers secrets by analyzing the collected power data.

Instruction Identification. To locate a specific instruction of the program running
inside AMD SEV VMs, we use both the page-level memory access pattern [50] and
the APIC single-step [44]. We first locate the page of the target instruction with the
page-level memory access pattern, then use APIC single-step to further locate the target
instruction inside this page. Need to note that the attacker can directly check the rip

Fig. 2. PWRLEAK Overview.
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register to get the number of executed instructions. For a newer version such as SEV-
ES or SEV-SNP, the attacker may need to check the ciphertext of the rip register to
distinguish a single-step from a zero-step.

Power Interpolator. After locating the instruction, we measure the power consump-
tion of these instructions by monitoring the core energy consumption MSR register
(MSR CORE ENERGY STAT). As the register is updated in a related low rate (e.g.,
1ms), it is hard to measure the power consumption of a small gadget of instructions
(i.e. one instruction). To solve this problem, in Sect. 4.4, we test two power interpola-
tors that can be used to amplify the power consumption of a single instruction.

Power Attack. Finally, the attackers conduct a power attack by analyzing the power
consumption. As we assume that the attacker has knowledge about the program binary
to be attacked, the secret about this program can be inferred by distinguishing different
operations in critical locations.

4.3 Instruction Identification

To perform the attack, the adversary first needs to pinpoint a specific location (e.g., an
instruction inside its instruction page) in the program. In this work, we use the page
sequence matching to pinpoint an instruction page, and use the SEV VM single-step to
step to an instruction.

Page Sequence Matching. Previous works [50] have proved that the page sequence
caused by page faults can be used by the adversary to successfully locate a certain
instruction page of a target program. Similarly, in the SEV environment, the adversary
collects the page fault sequence for the known target binary and uses this sequence to
identify the target instruction page.

To trigger and monitor the page-level access pattern, we first clear the present bit
in the page table entry for all pages mapped to the VM. Then we monitor the VMEXIT
event (e.g., the handle exit function in the kernel). When the VMEXIT is triggered
by a page fault, we collect the corresponding page address. Finally, PWRLEAK identi-
fies the specific instruction page using the pre-collected page access pattern.

Unlike the traditional page table walk, SEV adopts a nested page table to maintain
the address transmission between the guest virtual address (GVA) and the host physical
address (HPA). Specifically, the nested page table consists of a guest page table and
a host page table. The guest page table maintains the mapping between GVA and the
guest physical address (GPA), and is within the protection of SEV. The host page table
maintains the mapping between GPA and HPA and is under the hypervisor’s control.
Thus, the privileged adversary knows the mapping between GPA and HPA, but will not
directly know the relationship between GVA and GPA. Therefore, instead of directly
using the GPA to construct the page access pattern, PWRLEAK uses the address interval
between two consecutive pages. For instance, we let pi be the GPA of the ith page
access. Then, the page access pattern can be presented as the following: S = {p1 −
p0, p2 − p1, · · · , pi − pi−1, · · · }.
SEV VM Single-Step. To further improve the attack, it is necessary to narrow down
the granularity of the attack to several instructions. PWRLEAK uses the APIC-based
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Fig. 3. APIC for the single-step and interpolator. (Color figure online)

single-step to identify the instruction in which we are interested. Similarly to the method
introduced in Platypus [30], SGX-Step [44] and Cipherleaks [26], we use the APIC
interrupt to force the VM to VMEXIT after a single instruction. By carefully setting the
APIC interrupt’s timer, the program running inside the SEV VM can be single-stepped.

In particular, as shown in Fig. 3, the first APIC interrupt arrives when the SEV VM
is executing instruction 0, which raises a VMEXIT after instruction 0 is retired. After the
VMEXIT is handled properly by the hypervisor, the hypervisor will execute the VMRUN
instruction. After all guest states are restored, the next instruction 1 in the guest VM
will be executed and the instruction pointer will be advanced. Meanwhile, the attacker
can set the APIC timer in the VMEXIT handler, so that the next APIC interrupt arrives
when instruction 1 is executing (shown in blue lines in Fig. 3). Because of the second
interrupt, another exception will be raised after instruction 1 is retired, which forces
another VMEXIT and is trapped by attacker-controlled VMEXIT handler. In this way,
the attacker can single-step the SEV VM.

In SEV-ES and SEV-SNP, the instruction pointer to be interrupted is encrypted
and stored in an area called the VM Save Area (VMSA) during VMEXIT. Thus, the
attacker cannot directly trace the execution of instructions. However, the attacker could
still know whether the instruction pointer is advanced by monitoring the change of the
encrypted instruction pointer inside VMSA. With the knowledge about the program
context, the attacker knows the distance to the instruction in which the attacker is inter-
ested, therefore, allows the attacker to single-step the target instruction.

4.4 Power Interpolator

Limited by AMD’s coarse-grained power consumption interface, a power interpolator
is introduced to amplify the power consumption of the target instruction. PWRLEAK

tests two interpolators: emulation-based and the existing interrupt-based interpolators.
The emulation-based interpolator can be used to emulate a single instruction multiply
times to amplify its power consumption, which is used by as an analysis tool to collect
power consumption from a SEV VM. It’s important to note that the emulation-based
interpolator is only compatible with SEV VM and cannot be used with SEV-ES or
SEV-SNPVMwhose register states are encrypted during VMEXIT. The interrupt-based
interpolator is a more general method that could be potentially applied to SEV-ES and
SEV-SNP but with lots of noise. More discussion of their pros and cons, as well as their
applicability in SEV-ES and SEV-SNP is covered in Sect. 6.
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Emulation-Based Interpolator. Emulation-based interpolator modifies the kernel
instruction emulation function to amplify the power consumption. KVM emulates the
execution of the instruction that raises the exception in its handler using an emulation
function to ensure that the same exception doesn’t raise right after VMRUN. This func-
tion (x86 emulate instruction) emulates the execution behavior of the instruc-
tion, for instance, accessing a specific memory location.

To deploy the emulation-based interpolator, PWRLEAK implements our own
instruction emulation function by extending the x86 emulate instruction func-
tion. In its original implementation, only instructions that access memory are emulated.
We further extend the capability of the emulation function by emulating other instruc-
tions. Particularly, for those instructions that do not have memory access, we obtain the
corresponding system states (e.g., the value of registers) from the virtual machine con-
trol block (VMCB), and retrieve the instruction to be emulated using single-step and
the program context. Finally, we execute the instruction directly in the hypervisor.

To apply this emulation-based interpolator for power analysis, PWRLEAK first
hooks the VMEXIT handler. When the target instruction is interrupted, the VMEXIT
trampoline handler is called. PWRLEAK forces the instruction to be emulated multi-
ple times in the trampoline handler, surrounded by the instruction that reads the power
consumption. The emulation-based interpolator can be used as a tool to analyze power-
based vulnerabilities by precisely collecting the power consumption of specific instruc-
tions. Even the emulation-based approach works well in SEV, it cannot be recognized as
an effective attack method because an attacker can directly read the values of registers in
SEV, and such information leakage will cause more severe leaks. Meanwhile, this app-
roach is limited by SEV-ES and SEV-SNP. SEV-ES and SEV-SNP would encrypt the
Virtual Machine Save Area (VMSA), which stores all VM’s state-related data. It would
prevent the emulation-based interpolator from obtaining the register values. Therefore,
the emulation-based interpolator cannot work with in the machine that supports SEV-ES
and SEV-SNP.

Interrupt-Based Interpolator. The interrupt-based interpolator is considered to be a
more general approach. In this paper, we have shown that it is feasible to use this app-
roach in the baseline SEV, and similar approaches may also potentially work with SEV-
ES or SEV-SNP. Specifically, by setting a value to the APIC timer, the attacker can
control where the APIC interrupt arrives. The single-step makes the interrupt arrive
when executing the first instruction after the VMRUN. Similar to the single-step, by set-
ting a small APIC interval, the interrupt-based interpolator makes the interrupt arrive at
the SEV VM within the VMRUN; thus, the exception will be raised before the next guest
instruction has been executed, and the instruction pointer of the guest VM will not be
advanced (shown in red lines in Fig. 3). In our experiment setup, the attacker conserva-
tively underestimates the APIC interval and can directly verify whether the instruction
is zero-stepped by checking the unencrypted rip register inside the SEV VM’s VM
control block. While this paper did not test for it, attackers may still be able to deter-
mine whether a zero-step or single-step occurred in SEV-ES or SEV-SNP environment
through other side-channel information, such as observing changes in the ciphertext
of the rip register, or by monitoring performance counters. With the interrupt-based
interpolator approach, the attacker can force the VMRUN or target instruction in the VM
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to be executed multiple times for measurement purposes [30]. However, the root reason
of distinguishable power consumption of an instruction amplified by interrupt-based
interpolator is not verified by the paper. The power consumption difference could be
introduced by different hamming weight in VMCB or be introduced by transient exe-
cution of the next instruction.

4.5 Power Attack

After amplifying and measuring the power consumption of the instructions with the
power interpolator, PWRLEAK uses the power information to infer the secret. For oper-
ations with noticeable differences in power consumption, PWRLEAK uses the Simple
Power Analysis (SPA) attack to infer the secret. PWRLEAK uses the cross correlation
analysis (CCA) to infer the secret in those applications for which SPA fails.

5 Evaluation

In this section, we evaluate PWRLEAK using two case studies. We first present how to
use only the emulation-based interpolator to analyze the power leakage from libjpeg,
and then demonstrate the attack targeting an RSA implementation with the interrupt-
based interpolator. The evaluation settings are identical as the experiment settings in
Sect. 3, excepting the attacker now doesn’t control the SEV-protected VM.

5.1 Infer Images from Libjpeg

Fig. 4. IDCT function in libjpeg.

Libjpeg is a widely used image-
rendering library that offers lossy
image compression and decompres-
sion implementations. The input
of the libjpeg library is a bitmap
image. The decoding of a JPEG
image transfer a bitmap image into
blocks with 8x8 pixels with three
steps: decompression, dequantiza-
tion, and inverse discrete cosine
transformation (IDCT). The encod-
ing procedure transfers blocks to a
bitmap image with discrete cosine
transform, quantization, and com-
pression. The JPEG image is shown
on the screen based on the decoded
pixels. With enough information
about each 8x8 pixels, adversaries
can recover the whole JPEG image.

In IDCT algorithm [28], there are two loops to handle a block (i.e. eight columns
and eight rows). A simple calculation applies when all elements in a row or a col-
umn are zeros; otherwise, a complex calculation with more page faults applies. The
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attacker can then infer the value of each block by normalizing the number of data-page
faults. To mitigate this vulnerability, libjpeg (version 6b, Fig. 4) implemented the flag
NO ZERO ROW TEST. When the flag is enabled, all rows use complex calculation, thus
page faults can not infer data in rows. Thus increases the difficulty of using only page
fault information to recover JPEG images.

In this experiment, we demonstrate that the power information can further be
exploited to infer rows in JPEG images on the IDCT implementation of the newest
libjpeg library. We first present that the power-based attack is also useful when the pro-
gram is vulnerable to order-based attacks. Using the emulation-based interpolator to
measure the power consumption of the simple and the complex calculations (wherein
the input is a column with four pixels equals 0) and using the SPA to analyze the results.
Particularly, we amplified some target instructions 100, 000 times, measured the power
consumption, and inferred the instruction and the secret. The results are presented in
Fig. 5(a), which indicates that the power of the simple and complex calculations can be
easily distinguished with the emulation-based interpolator.

Fig. 5. Energy Consumption of Emulation-based Interpolator.

Then, we demonstrate the power information is another covert channel when order-
based attacks is mitigated. To analyze the energy consumption of rows of JPEG images,
we use emulation-based approach to simulate/collect the power consumption. We mea-
sured the power consumption of each instruction 100, 000 times and amplified each
one 100, 000 times with the emulation-based interpolator. Finally, we applied the SPA
to analyze the results. The results are presented in Fig. 5(b), where the blue bars are
the rows with all bits (except the first one) as zeros, and the orange bars are the rows
with the Hamming weight equal to 4. The result indicates that these two conditions are
discernible. This is because one of the most energy-consuming calculations is multipli-
cation, which consumes much less energy when multiplying by 0. While this paper did
not reconstruct the JPEG image, attackers may still be able to recover the whole image
as the columns and rows with all bits as zeros is discernible [50].

5.2 Steal Private Exponent in RSA

RSA is a widely used asymmetric cryptographic algorithm. Modular exponentiation
is one of the most important components of the RSA algorithm. To mitigate attacks
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such as SPA [32] and DPA [22], the modular exponentiation algorithm with message
blinding [14,43] was discovered (as shown in Algorithm 1) by introducing a random
variable. However, attackers could still exploit this algorithm when they can discover
the correlation between the private exponent and the power consumption.

Here we targeted at a non-constant time RSA implementation of Intel’s Integrated
Performance Primitives (Intel IPP) library [19] with modular exponentiation algorithm
with message blinding, and we exploited both emulation-based and interrupt-based
interpolators to infer the private exponent. The RSA implementation in the IPP library
first calls the ippsRSA Decrypt/ippsRSA Encrypt function and then selects the
actual function (e.g., gsRSAprv cipher) for the encryption and the decryption based
on the instruction set supported by the CPU. We evaluated the effect of the power-based
attacks on it with a 512-bit RSA private exponent.

Interrupt-based Interpolator. Firstly, we try to exploit the interrupt-based interpolator
on a modular exponentiation algorithm with message blinding. As the algorithm runs

Algorithm 1: Modular Exponentiation
Input: x, n, d=(de−1, de−2, · · · , d2, d1, d0),
a=r − 1 mod n (r is a random number)
Output: xd mod n
begin

T[0] ← a, T[1] ← x*r mod n, z ← r mod x
foreach i = e − 1 to 0 do

z ← z*z mod n, z ← z*T[di] mod n
end
z=z*a mod n
return z

end

inside the SEV, neither plaintext nor
ciphertext are available to adver-
saries. Thus, the CCA attack [5,33]
is selected. The underlying assump-
tion of the CCA attack is that the cor-
relation coefficient of the power con-
sumption between two “z = z ∗ T [di]
mod n” operations would be higher if
the values of two T [di]s are the same.
Otherwise, the correlation coefficient
would be relatively low.

Power Trace Collection. For verification purposes, we use a relatively short RSA
private exponent (512-bit) to decrypt a ciphertext in this experiment. To collect the
power traces of the RSA operation, we focus on the “z = z ∗ T [di] mod n” opera-
tion in each iteration. For each instruction of this operation, we apply the interrupted-
based interpolator to amplify the power consumption of each instruction N times
(zero-stepping). As N increases, the precision of instruction’s power consumption also
becomes greater. Then, we organize all the power information collected into our defined
format (as shown in Definition 1). In total, 3, 000, 000 power traces were collected.

Definition 1. Let Pi = {Pi0, Pi1, · · · , Pir} be the power trace of ith execution of the
RSA decryption operation, and in total r power traces collected. Pij = {ei,j,0, ei,j,1,
· · · , ei,j,k} corresponding to the power information of the jth iteration of the multipli-
cation operation (“z = z ∗ T [di] mod n”) for the ith power trace. This multiplication
operation has k instructions, and ei,j,k indicates the power consumption of the kth
instruction in it.

Correlation Calculation. To calculate the correlation coefficient, we first randomly
select a jth bit as the reference bit. Then we calculate the Pearson correlation coefficient
of power consumption between the jth bit and all other bits with the equation shown
in Eq. 1 [49]. The result of this equation is the correlation coefficient of the power
consumption for the same instruction between different bits in the private exponent.
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ρ(Pij1,Pij2) =
∑r−1
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(
∑r−1
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r )
√

(
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i=0 ei,j2,1)2

r )
(1)

An example of this algorithm is shown in Fig. 6. Each column is the power con-
sumption of an instruction in the operation “z = z ∗ T [di] mod n”. For instance,
the first red column is the power consumption of the first instruction in the operation
when processing bit 0, and the second red column is the power consumption of the first
instruction when processing bit j. We calculate the power correlation between the same
instruction in different bits; thus, 512 correlations are calculated for each instruction.
When the operation “z = z∗T [di]mod n” consists of k instructions, 512∗k correlations
are calculated in total.

Fig. 6. Correlation Calculation Algorithm.

Exploit Key Bits. We use the correlation coefficient to distinguish bits in the private
exponent [46]. In particular, a higher correlation coefficient indicates that two bits (e.g.,
T [0] or T [1]) are the same. A relatively low correlation coefficient means that either two
bits are different, or a significant amount of noise is included in the power information.
As the noise introduced by the APIC interrupt and the system (e.g., random time delay,
random clock, etc.) could affect the result of the correlation coefficient, we only keep
those instructions that have a high correlation coefficient. In particular, the following
two steps are used:

• We filter the noise with an intermediate value, the variance. As shown in Fig. 7a, each
row consists of correlation values of the same instruction from various bits. We first
calculate the variance for each instruction (each row), then keep those instructions
with a relatively higher variance. A higher variance (peaks in Fig. 7b) means that the
power information of this instruction can help infer the private exponent.

• Then, we add up the correlation coefficient of these selected instructions (e.g., rows
in red in Fig. 7a) for each bit, then deduce the private exponent based on the value
of the summed correlation coefficients with the threshold-based approach. A higher
sum of the correlation coefficient means that this bit has a higher chance to be the
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Fig. 7. Interrupt-based Interpolator.

same as the reference bit. A lower correlation indicates that this bit has higher prob-
ability to be opposite to the reference bit. Thus, an attacker can use correlation anal-
ysis to infer the value of each bit and have different levels of confidence in the
predicted value of each bit.

Evaluation Results.We randomly generated a 512-bit RSA key using openssl and used
the two interpolators discussed above to recover the private exponent. To recover this
RSA key (private exponent), we recorded 3, 000, 000 traces in total.

Interrupted-Based Interpolator. The interrupted-based interpolator method could
correctly infer 427 out of 512 bits of the private exponent by comparing with the correct
key. With only correlation values, it is hard to know which bits of the key do not recover
correctly. When comparing this result with other works with a recovery rate greater than
90% [5], the lower recovery rate of the interrupt-based interpolator indicates that this
approach is affected by some noise. Such noise might be averaged out with the increas-
ing number of traces collected, we leave this for future work. However, the time needed
for collecting power consumption data also increases with the number of traces, and in
the experiment described in the paper, collecting 3 million traces took around 80 h.

Emulation-Based Interpolator. With the same approach discussed above, we mea-
sured the power consumption of each instruction in the operation “z ← z*T[di] mod
n” with the emulation-based interpolator. In particular, for the evaluation purpose, we
generated the RSA key pair with a 512-bit modulus. For each instruction, we applied
the emulation-based interpolator to amplify the power consumption 100, 000 times. In
total, 1, 000, 000 different power traces were collected. After applying the CCA attack,
we successfully recovered the private exponent without an error.

6 Discussion

Countermeasures. The power-based side-channel attack needs to gather fine-grained
power information during run-time in order to analyze and infer secret using the col-
lected data. Thus, adding additional noise may be one potential way to prevent power-
based side-channel attacks. The power-based side-channel attack could be prevented
if the hardware or the VM itself could add noises during run-time to hide the power
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consumption pattern caused by different instructions and operands. The hardware man-
ufacturers can also use a microcode patch to disable the hardware reporting interfaces of
TEE’s power assumption to prevent such attacks. For example, affected by two general
power-based side-channel attacks [29,30], AMD has added restrictions on accessing
power-consumption interfaces in newer kernel versions, and Linux has also removed
some related drivers that could potentially cause leakage [34].

Comparison with Other Power Attacks. To launch a power-based side-channel
attack, the CPA attack is a widely used method [9,10,31], which can resist noise. How-
ever, CPA attack mainly targets at algorithms and requires either plaintext or ciphertext,
which is not the case in the AMD SEV’s scenario. The most related work to us is Platy-
pus [30], which uses Intel RAPL to break Intel SGX protection, steal private keys from
constant-time cryptographic implementation (AES-NI), and study power consumption
of instructions in AMD platform. Considering that different CPU hardware and TEE
design (Intel SGX aims at protecting an application instead of a VM) could introduce
different power pattern, PWRLEAK could be a complementary work to Platypus with
similar approaches but target a different TEE design and cryptographic implementation
with low-secure level (non-constant time Intel IPP library).

Future Work. Due to equipment limitations, we did not perform experiments on SEV-
ES and SEV-SNP. Here we discuss the feasibility of power side-channel attacks on these
machines and treat them as future work. The current version of the emulation-based
interpolator could not work on SEV-ES and SEV-SNP due to the encrypted VMSA.
The interrupt-based interpolator could potentially work on both SEV-ES and SEV-SNP.
However, this approach would encounter a substantial amount of unstable noise intro-
duced by additional protection from SEV-ES or SEV-SNP. For example, in SEV-ES,
there is an integrity check for the VM Save Area region (the region used to encrypt and
backup registers) during each VMEXIT or VMRUN. In SEV-SNP, each memory write
access in the case of a TLB miss introduces a Reverse Map Table (RMP) check. These
additional protections may introduce inaccuracies in the observed energy consump-
tion. Therefore, a precise noise cancellation algorithm or an amplifier that can further
magnify the difference in power consumption may be necessary for such side-channel
attacks to work in SEV-ES or SEV-SNP VMs.

7 Related Work

Other Attacks Against AMD SEV. AMD SEV has been studied by both industry and
academia since its first release in 2016. Faced with a strong threat model in which the
entire software stack is not trusted, previous work showed that AMD SEV suffers from
numerous attack surfaces, including both incomplete system designs [15,18,24,27,38,
48] and side-channel attacks [23,26,47]. For incomplete system designs, AMD actively
addresses existing attacks by providing microcode patches [7] and adding new hard-
ware extensions (including AMD SEV Encrypted States (SEV-ES) [21] and AMD SEV
Secure Nested Paging (SEV-SNP) [6]) in addition to the baseline AMD SEV. How-
ever, for side-channel attacks, which are not included in AMD SEV’s thread model
and indirectly leak secret from the SEV-protected VM [23,25,26], AMD typically
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does not provide fixes for such attacks. Common side-channel attacks in AMD SEV
include page table-based side-channel attacks [39], cache side-channel attacks, PMC-
based side-channel attacks [47], and ciphertext side-channel attacks [23]. The defense
mechanisms against such side-channel attacks often involve refactoring source code to
avoid certain patterns or gadgets, or adopting code with constant-time implementations.

8 Conclusion

In this paper, we have demonstrated the potency of power-based side-channel attacks
in extracting secrets from AMD SEV-protected VMs. Through a series of exploratory
experiments and an emulation-based interpolator, we show that adversaries can still
notice the differences in the instruction and operand level with the 1 ms coarse-grained
power sampling interval provided by AMD. Additionally, we have successfully leaked
a random generated RSA key in an IPP implementation using PWRLEAK.
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Abstract. WebAssembly (Wasm) is a low-level binary format for web
applications, which has found widespread adoption due to its improved
performance and compatibility with existing software. However, the popu-
larity of Wasm has also led to its exploitation for malicious purposes, such as
cryptojacking, where malicious actors use a victim’s computing resources
to mine cryptocurrencies without their consent. To counteract this threat,
machine learning-based detection methods aiming to identify cryptojack-
ing activities within Wasm code have emerged. It is well-known that neu-
ral networks are susceptible to adversarial attacks, where inputs to a clas-
sifier are perturbed with minimal changes that result in a crass misclas-
sification. While applying changes in image classification is easy, manip-
ulating binaries in an automated fashion to evade malware classification
without changing functionality is non-trivial. In this work, we propose a
new approach to include adversarial examples in the code section of bina-
ries via instrumentation. The introduced gadgets allow for the inclusion of
arbitrary bytes, enabling efficient adversarial attacks that reliably bypass
state-of-the-art machine learning classifiers such as the CNN-basedMinos
recently proposed at NDSS 2021. We analyze the cost and reliability of
instrumentation-based adversarial example generation and show that the
approach works reliably at minimal size and performance overheads.

Keywords: Malware Detection · Adversarial Attack · Binary
Instrumentation · Minos · Cryptojacking

1 Introduction

With the introduction of WebAssembly (Wasm) in 2017, web applications are able
to utilize a system’s CPUs with near-native efficiency [1]. Wasm allows developers
to make computationally heavy applications available in-browser and has since
been used for games, text processing, visualizations, and media players [14,21].
On the downside, malicious parties have also utilized Wasm to distribute mali-
cious binaries to victims that visit an infected website and thus gain access to
the victim’s resources without having to gain access to their system. In par-
ticular, the near-native performance of Wasm and the support provided by all
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Gruss et al. (Eds.): DIMVA 2023, LNCS 13959, pp. 69–88, 2023.
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major browsers make WebAssembly a prime target for cryptojacking attacks
[14,21,35]. In-browser cryptojacking or drive-by cryptocurrency mining allows
an attacker to utilize their victim’s computational resources for mining cryp-
tocurrencies without their knowledge or consent, thus profiting from the returns
without having to pay for the spent energy. To address this issue, various meth-
ods have been proposed to protect against cryptojacking attacks. However, while
fast, traditional static approaches like blacklisting malicious hosts or matching
signatures are easily bypassed [31]. Dynamic detection systems [15,17,30], on
the other hand, rely on more sophisticated metrics that cause a runtime over-
head and require the malicious binary to be executed. Minos, a lightweight
machine learning-based detection system, provides a promising solution to this
problem [23]. By transforming Wasm binaries to grey-scale images, Minos can uti-
lize a convolutional neural network (CNN) for the classification of binaries. This
provides a rapid and effective approach that can be applied prior to executing
the binaries, thereby offering efficient protection against in-browser cryptojack-
ing attacks. While promising, CNNs are known to be susceptible to adversarial
attacks [39]. Malicious parties looking to distribute their malware have a high
incentive to evaluate possible avenues for bypassing detection frameworks. In
particular, the development of more sophisticated evasion techniques by attack-
ers could render existing detection methods ineffective. Adversarial examples
are usually crafted under the assumption that small changes to the input are
neglectable. However, applying adversarial examples to binaries that follow strict
syntactical and semantical rules requires specific placement of adversarial pay-
loads without invalidating the binary or changing the semantics. Still, attacks
leveraging adversarial examples to bypass visualization-based malware detectors
have been proven to succeed on Windows Portable Executables [16,20,28].

In this paper, we evaluate the feasibility of utilizing adversarial examples
against the Wasm-based classifier Minos [23] presented at NDSS 2021. We demon-
strate the feasibility of inserting semantic-preserving gadgets using binary instru-
mentation into the code section of WebAssembly applications, allowing effective
crafting of adversarial examples inside the gadget, thus enabling the evasion of
the Minos detection system. In contrast to existing work, we add the adver-
sarial payload directly into the application’s control flow and introduce both
size-efficient (SE) and optimization-resistant (OR) gadgets. Our findings shed
light on the potential weaknesses of machine learning-based classifiers in detect-
ing cryptojacking and highlight the need for ongoing efforts to improve their
robustness and security, particularly when classifiers are applied in scenarios
with incentives to evade classification. To summarize, our key contributions are:

– Comprehensive collection of malign Wasm samples from the Cisco Umbrella 1
Million websites list.

– A novel approach for automatically crafting adversarial examples in code by
introducing semantic-preserving instruction gadgets via instrumentation.

– Demonstrating a grey-box adversarial attack against the Minos classifier by
training a substitute model and applying our gadgets.

– A comprehensive evaluation of the efficacy and costs of the attack.
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2 Background

2.1 WebAssembly

WebAssembly (Wasm) [1] is a binary instruction format for a stack-based vir-
tual machine that enables high-performance applications that run seamlessly in
web browsers. It is designed to provide near-native performance to web appli-
cations and allows developers to write applications in various programming lan-
guages, including C, C++, and Rust, while still being executed in the browser.
Wasm is supported by all major web browsers and has gained significant traction
in recent years, particularly in resource-intensive applications, where the perfor-
mance benefits provided by Wasm are especially important. In most settings, Wasm
is integrated into the JavaScript code of a website, from where the Wasm modules
are loaded, and the respective functions are called. Its stack-based architecture,
widespread support, and versatility make it an essential tool for modern web
development.

2.2 Cryptojacking Malware

Cryptocurrency mining is the process of solving complex mathematical problems
in order to validate transactions and add new blocks to a blockchain network [22].
The process requires a significant amount of computational power and energy.
As compensation for the computation time, miners are rewarded with new units
of the respective cryptocurrency. This reward mechanism is a key component
of the decentralized nature of many cryptocurrencies, as it incentivizes individ-
uals and organizations to participate in the network and maintain its security.
However, as the difficulty of mining increases and the competition among min-
ers grows, the margin between the resources spent on mining and the returned
profits diminishes. If a malicious actor manages to utilize a victim’s resources
for mining, the computational cost is removed from the equation. In general,
the unauthorized use of a device’s computing power to mine cryptocurrencies,
typically without the knowledge or consent of the device’s owner, is referred to
as cryptojacking. This type of attack can occur via host- or browser-based min-
ing and can have significant impacts on both individual users and organizations.
Host-based cryptojacking requires the installation of a cryptocurrency miner on
the victim’s machine through, i.e., malicious software installed by the victim [35].
Browser-based cryptojacking is a method of exploiting a victim’s device through
a malicious website. The attacker inserts a script into the website’s code that
runs in the victims’ browser upon visiting the site and uses their device’s pro-
cessing power to mine cryptocurrency while profiting the owner of the operation.
With the introduction of WebAssembly and its near-native speed, the efficiency
of browser-based mining has significantly increased, making the attack lucra-
tive. Unlike traditional malware, browser-based cryptojacking does not require
the victims to download any files, making it subtle and difficult to prevent.
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2.3 Malware Detection

Identifying whether a binary contains malicious functionality is an active area
of research across different types of binaries. Various approaches have been pro-
posed for detecting cryptojacking, one of the primary malicious usages of Wasm
binaries [21]. Due to the reliance of cryptojacking malware on network commu-
nication, network-based detection systems have been proposed, analysing the
network traffic [32]. Host-based detection frameworks rely, in general, on either
static or dynamic analysis to identify malware. Dynamic approaches observe the
execution of a binary while monitoring key metrics such as memory consump-
tion [25], the number of executed arithmetic operations [37], or through CPU
profiling [17]. Prevention techniques that identify malware based on resource
consumption can be circumvented through throttling [12]. Additionally, a num-
ber of machine learning classifiers have been proposed that require dynamic
features such as API calls and resource information [30] or runtime information
such as the number of web sockets or workers [15]. In order to generate dynamic
features, the potentially malicious binary needs to be executed on the host’s
machine. Static approaches, on the other hand, do not require the evaluated
code to be executed; instead, the binary is directly evaluated, for example, by
matching known signatures or URL blacklisting [12]. However, these techniques
can be circumvented using obfuscation [31]. MinerRay [31] relies on the static
detection of hash semantics to make obfuscation-based prevention harder as the
semantics of the functions are evaluated.

In general, efficiently detecting whether a WebAssembly binary utilizes the
host’s resources for mining cryptocurrencies without relying on dynamic fea-
tures allows a detection framework to warn the user that a malicious binary is
loaded before the execution of the binary. Nassem et al. developed Minos [23],
a lightweight real-time detection system that aims to efficiently detect whether
a WebAssembly binary utilizes the host’s resources for cryptomining using a
CNN. Minos is designed to be implemented as a browser plug-in which uses
the detection framework to warn users about any detected cryptomining bina-
ries before they are executed. Upon visiting a website that loads a Wasm binary,
the detection framework transforms the bytes contained inside the binary into a
two-dimensional grey-scale image which is then evaluated by a pre-trained CNN.
This architecture allows the system to classify a binary, on average, in 25.9 ms
while achieving an overall accuracy of 98.97% against an in-the-wild dataset [23].

2.4 Adversarial Attacks

Deep neural networks, along with other machine learning models, have been
discovered to be susceptible to adversarial attacks on their input data [4,34].
Given a target model θ, an input x and a target class t �= θ(x), an adversaries
objective is to find a minimal perturbation δx under a norm N = || · || s.t.

θ(x + δx) = t (1)
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Minimizing the perturbation vector δx under a norm N ensures that the original
input x and the newly generated input, or adversarial example, x∗ = x + δx are
close to each other under a given distance metric D. However, finding a pertur-
bation δx that satisfies Eq. 1 is generally a hard problem due to the nonlinear-
ity of the evaluated model θ [34]. Existing methods for crafting an adversarial
example, such as the L-BFGS, solve the problem using approximations [39].
Carlini and Wagner (C&W) proposed a different approach by transforming the
constraint shown in Eq. 1 into an optimization problem using an appropriately
chosen objective function L, s.t. if θ(x + δx) = t is satisfied, L(x∗) ≤ 0 holds [8].
By moving the constraint into the minimization term, the problem of finding
an adversarial example is an optimization task that minimizes N (δx) + ε · L(x∗)
such that x∗ ∈ [0, 1]n where ε > 0 is a suitably chosen constant. The opti-
mization problem is solved using gradient-based optimization methods [5]. The
gradient of the objective function with respect to the input x is used to update
the perturbation δx in each iteration of the optimization process. The process is
repeated until the minimum perturbation, which results in the adversarial exam-
ple being classified as the target class t, is found. Without access to the gradients
of the target model θ, the aforementioned attack cannot be utilized. However,
given query access, the adversary can train a local substitute network [27] by
querying the target classifier with synthesized or otherwise gathered data. Using
the results obtained through inference against the target network as labels, the
local model is trained. Due to the transferability between models, it is possible to
train a machine learning model that mimics the behaviour of a target model [13].
In a black-box scenario [27], a network with unknown architecture is attacked,
requiring a custom architecture for the local substitute network. In the grey-box
scenario, additional information about the target network, such as parameters or
its architecture, is known, and hence the substitution network architecture can
be chosen similarly to the target model. The local model can then be utilized to
generate adversarial examples that are transferable to the target network [27].

3 MADVEX: Crafting Functional Adversarial Binaries

The Minos classifier [23] uses an image-based machine learning technique to
quickly identify malicious WebAssembly binaries. However, such classifiers are
shown to be vulnerable to adversarial attacks [34]. This section describes the
attack methodology used to craft binaries that are misclassified by Minos. To
illustrate the applicability of such an attack, we limit the adversary and assume
a grey-box scenario where the attacker has query access to the model and knowl-
edge of the network’s architecture. Although the Minos classifier’s architecture
was published by Naseem et al., the training data and model were not made
available. Therefore, we use a Minos classifier trained by Cabrera-Arteaga et al.
[7] as the target of our attack experiments.
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Fig. 1. Systematic overview of the training procedure for the substitute model. Mali-
cious (M) samples are augmented to generate a balanced dataset. To generate labels,
the target model is queried. The labelled benign (B) and malicious data is used to train
the substitute model using 5-fold cross-validation.

3.1 Data Acquisition

The performance of the attack correlates with the quality of the local substitute
model trained by the adversary. Therefore a comprehensive dataset of malicious
and benign WebAssembly binaries is required to train a suitable substitute net-
work. The original Minos model was trained on a balanced dataset containing
300 samples [23]. The data preparation and training procedure for the substi-
tute model is schematically visualized in Fig. 1 and described below in detail.
To obtain benign samples, we used WasmBench1, a WebAssembly dataset con-
taining more than 23.000 real-world binaries published by Hilbig et al. as part
of an empirical study [14]. We obtained 34 malicious samples from a dataset2

published in the context of Minesweeper [17]. Additionally, we ran a crawler to
increase the number of malware samples and gather up-to-date malware. By iter-
ating over the Cisco Umbrella 1 Million list [11], we were able to download 187
WebAssembly binaries. Each domain on this list is visited by the crawler, which
resides on any page for three seconds. By hooking a JavaScript function into each
document load, we are able to dump any WebAssembly binary before it is exe-
cuted. Considering that the malware may not reside on the homepage directly,
the crawler additionally visits three randomly chosen internal links. Overall 40%
of the crawled binaries resided on subdomains and were found either through
accessing internal links or redirects. The Minesweeper [17] classifier categorized
ten out of the 187 crawled binaries as being malicious. Even after combining the
samples of public datasets with the results of our crawling campaign, the number
of obtained malicious binaries is considerably lower than that of benign binaries.
In order to compensate for this difference and additionally increase the number
of samples, we utilize the Wasm-fuzzer wasm-mutate [6] as a diversifier. By uti-
lizing wasm-mutate, one can generate a variety of different WebAssembly bina-
ries that retain the original semantic. Mutation cores available in wasm-mutate
enable semantic-preserving transformations. A sample function that performs
the addition of two integers and two mutations of the function are shown in

1 https://github.com/sola-st/WasmBench (Accessed 2023/01/31).
2 https://github.com/vusec/minesweeper (Accessed 2023/01/31).

https://github.com/sola-st/WasmBench
https://github.com/vusec/minesweeper
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Fig. 2. Wasm function performing the addition of two integers (a) and two semantic-
preserving mutations (b),(c) of the original function using different seeds in
wasm-mutate [6].

Fig. 2. Each mutation is generated using a different seed, allowing us to generate
a larger variety of syntactically different binaries with identical semantics. To
generate appropriate adversarial examples, a shadow model that is as similar to
the target model as possible must be utilized. To achieve this, the internal labels
assigned to the samples are only used for balancing and not used for training.
Instead, the pre-trained Minos network [7] is employed for label generation.
After augmentation of the malicious samples, we obtain a dataset containing
2.3 × 104 malicious and 2.3 × 104 benign binaries that are used for training the
substitute model.

3.2 Substitute Network Training

We use the architecture employed by Minos for the substitute model because we
assume a known architecture in the grey-box attack. The architecture of the CNN
is shown in Fig. 3. Convolutional neural networks typically receive an image as
the input for classification. The Minos classifier requires the input to be a grey-
scale image of size 100×100. To allow binaries of varying sizes to be represented
as a fixed-dimensional image, the bytes are reshaped into the largest possible
two-dimensional array with the same width and height. The remaining bytes are
discarded. Initially, each byte of the binary corresponds to one pixel. However,
the image is downscaled to a 100 × 100 image. A detailed description of the
downsampling process is given in Sect. 3.3. The original model was trained using
an 80% training and 20% testing split. However, we use 5-fold cross-validation
for training. Hence five models are trained each on 80% of the dataset described
in Sect. 3.1, while 20% of samples are withheld for validation. For the evaluation,
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Fig. 3. Architectural overview of the Minos classifier from Naseem et al. [23]. The
CNN contains three convolution layers, three pooling layers, and one fully connected
layer. The input image shows a Wasm binary that is transformed into a grey-scale image.

Minos was trained with one epoch (M-1) to prevent overfitting, followed by 50
epochs (M-50), the same number as the target model. The area under the curve
(AUC) and loss after the final epochs are reported in Table 1. Even after training
the substitute network for only one epoch, the validation AUC reaches 99% with
a validation loss of 0.14. After training for 50 epochs, the validation loss decreases
to 0.04.

3.3 Attack Methodology

Performing an adversarial attack against an image-based classifier requires slight
modifications of the original image to manipulate the generated response in the
desired direction. The alterations are often transparent to the naked eye as they
result in a small amount of noise added to the original image. However, in the
case of binaries, slightly manipulating the value of a pixel, for example, chang-
ing a value from 0x2A to 0x2B, changes the original instruction from f32.load
to f64.load invalidating the binary. We require a procedure that allows us to
manipulate certain areas of the binary without changing the behaviour. Using
instrumentation, we can add, manipulate or remove instructions from the mal-
ware and provide areas inside the code section that can be utilized for the adver-
sarial attack. While we are still unable to manipulate arbitrary pixels, adding
specially crafted gadgets into the binary enables specific bytes to be utilized
for the adversarial attack. Generating an adversarial example requires iterative
manipulation of the target value in small increments. Hence, an area of bytes that

Table 1. Substitute network training evaluation after the last epoch for (a) one epoch
(M-1) and (b) 50 epochs (M-50).

(a) M-1

Fold 0 1 2 3 4

AUC 0.96 0.95 0.96 0.96 0.94

Val. AUC 0.99 0.99 0.99 0.99 0.99

Loss 0.29 0.30 0.29 0.29 0.34

Val. Loss 0.13 0.14 0.15 0.15 0.14

(b) M-50

Fold 0 1 2 3 4

AUC 1.00 1.00 1.00 1.00 1.00

Val. AUC 1.00 1.00 1.00 1.00 1.00

Loss 0.03 0.03 0.04 0.03 0.03

Val. Loss 0.05 0.05 0.03 0.04 0.04
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Fig. 4. Histogram of relative section size (a) for code section, data section and all
remaining sections for all binaries as described in Sect. 3.1. Cumulative density for
relative section size for all malicious binaries (b) and benign binaries (c).

are arbitrarily manipulable is ideal. Each WebAssembly binary is split into sev-
eral sections, each with a different purpose. As shown in Fig. 4a, the code section
represents, in most cases, the largest section inside both malicious and benign
binaries that were analyzed. When separately evaluating the section distribution
for malicious and benign binaries (cf. Fig. 4b and Fig. 4c), it is apparent that in
both cases, the code section remains the largest section. The code section con-
tains all functions with their instructions, whereas the data section represents a
linear array of memory accessible through instructions in the code section. While
an attack against the data section is also possible by extending the size of the
linear memory and using this area for crafting the attack, we chose to target the
code section as it represents the largest section of the binaries. An overview of
our attack methodology is given in Fig. 5. Each step is described in detail below.

Semantic-Preserving Gadgets. To enable manipulation inside the code
section, we require an instruction that has a number of bytes that are freely
choosable. In particular, instructions that load constants onto the stack cause
specific values to be present inside the code section. Hence, constructing a gadget
that loads an arbitrary constant onto the stack and removes it allows a num-
ber of bytes to be arbitrarily chosen. Additionally, it can be inserted anywhere
into the control flow because, after the gadget’s execution, the stack will be in
the same state as before. WebAssembly allows four number types to be pushed
onto the stack as constants - 32 and 64 bit variants of integers and floats. We
opt to use 64 bit constants, as the ratio between the number of bytes that are
available for the adversarial attack and the number of bytes required for the
overall gadget is higher. Generally, both integers and floats can work. However,
WebAssembly encodes all integers using the LEB128 variable-length encoding
in either the signed or unsigned variant. Compared to the encoding utilized for
floating point values, IEEE-754 [2], the integer encoding enforces a number of
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Fig. 5. Schematic overview of the attack methodology. A malicious binary is instru-
mented to add the gadgets used for carrying the adversarial payload. After downsam-
pling, the adversarial attack is performed against the substitute model. To recreate the
original binary, we upsample the adversarial image and recreate the original binary.

restrictions on the bytes representing the integer. IEEE-754, on the other hand,
allows all bytes to assume all possible values. Hence we use 64 bit floating point
constants to craft the attack. The f64.const x:f64 instruction can be used to
push the 64 bit floating point number x onto the stack. We initialize the constant
to 0x80808080 to allow both positive and negative perturbations. To ensure that
the functionality of the target binary is not modified, the value must be removed
from the stack before normal execution resumes. We demonstrate two gadgets
that can be inserted after arbitrary instructions, as the execution of the gadget
only changes the contents of the stack temporarily. A size-efficient gadget (SE)
is shown in Fig. 6a. After the constant is pushed onto the stack, it is immedi-
ately removed again using the drop instruction. Each inserted gadget of this type
increases the size of the binary by ten bytes, out of which the adversarial attack
can utilize eight bytes (compare Fig. 6b). Hence, only 20% of the size overhead
is attributed to bytes that cannot be manipulated during the attack phase.

Due to the low complexity of the size-efficient gadget, it is easy to discern that
the two instructions will retain the program’s semantics. However, optimizers
such as wasm-opt [38] can remove all gadgets of this type from the binary.
Note that using an optimizer before classifying the binary is not part of the
Minos framework [23] because it would counteract the high efficiency of the
detection system. Nevertheless, we are able to craft a gadget that is not removed
by wasm-opt, even when using its most aggressive optimization setting. This
resilience, however, is only made possible by increasing the gadget’s complexity.
The composition of our optimizer-resistant gadget (OR) is shown in Fig. 6c and
the binary representation in Fig. 6d. The basic idea remains unchanged; we still
load a constant onto the stack, thus introducing a value that can be manipulated
during the attack phase. However, instead of directly loading the value onto the
stack and dropping it, we use it as the increasing constant for a loop counter.
However, as the value can be an arbitrary float value, i.e. negative and positive,
we divide it by itself to have a known value, i.e. one. We then check whether this
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Fig. 6. Size-efficient (a) and optimizer-resistant (c) gadget and their binary representa-
tion (b, d). Bytes that can be manipulated during the adversarial attack are highlighted
in blue. (Color figure online)

new value is less than some constant, i.e. 42, which is always true, and break the
loop. While it is intuitively understandable that this loop will never be executed
more than once, it is not easily determined by an algorithm since loops are
difficult to analyze. While this gadget survives optimization passes, only eight
out of 32 bytes can be utilized for the adversarial attack. Gadgets are inserted
into the code section at randomly drawn insertion points with a predetermined
frequency. The relation between the number of inserted gadgets and the success
rate of the attack is evaluated in Sect. 4.1. In Sect. 4.2, we evaluate the execution
speed of both gadgets in relation to the number of gadgets inserted into the
binary. Insertion of either gadget into the target binary can be performed once
per binary before distribution and requires linear time in the size of the binary,
making the instrumentation efficient.

Downsampling. A given binary can be of any size between a few kilobytes and
many megabytes. Hence, the authors of Minos [23] downsample each binary into
an image of fixed dimensionality, i.e. 100 × 100 pixels (Fig. 3). As our shadow
model utilizes the same architecture, it also requires an input image of that
size. However, as we need to keep track of the positions that allow for a change
within the instrumented binary, i.e. the constants within our gadgets, we use a
custom downsampling algorithm for crafting the attacks. Yet, at inference time,
the original downsampling method is used. At first, we transform the sequence of
bytes b from the binary into a squared image with a dimension of �√|b|�. Hence, a
few bytes at the end are discarded. From this squared image, we combine as many
pixels as needed in order to downsample the image to 100 × 100 pixels. For this
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purpose, we calculate the mean of a group of pixels, which then become a single
pixel. To keep track of what pixels contain a byte that is used for the adversarial
attack, we maintain a mask M1. The mask has the same dimensionality as the
image and marks all positions that contain editable values. To easily revert the
downsampling when restoring the binary, we store the coordinates of the original
group of pixels for each downsampled pixel.

Adversarial Attack. After downsampling, the image x is perturbed iteratively
until our shadow model misclassifies the image as benign using the method pro-
posed by Carlini & Wagner [8]. However, instead of optimizing for a fixed num-
ber of iterations, we keep iterating until the shadow model prediction reaches a
threshold τ . Experimentally we determined τ = 10−13. However, we also termi-
nate the optimization after 1×104 iterations. During our experiments, we found
that the lower the threshold for the prediction score is, the higher the chance
that an original model will share the classification of the shadow model. In order
to only perturb pixels related to the gadgets, we multiply the mask M1 that was
saved during downsampling before adding the perturbation δx to the sample.
Given the model θ, a normalization | · | and the constant ε, the perturbation of
the input under the objective function L is given as:

x = x + M1 · ε ·
∣∣∣
∣

d
dx

L(θ(x), 0)
∣∣∣
∣

In our experiments, we chose ε = 0.05 and L as binary cross-entropy [5]. We
derive the change needed for the input x within the normalization term so that
the prediction θ(x) gets closer to zero, i.e. benign. However, instead of adding the
whole perturbation to x, only a small factor is added. This can be compared to
the learning rate in classical machine learning. As we cannot perturb the whole
input image but rather just the constants within the gadgets, our crafted mask
is multiplied before the summation. As the mask has zeros on all non-editable
pixels, i.e. the original code of the binary, and a one wherever there is at least a
single gadget, the perturbation is only applied to pixels that relate to gadgets.

Upsampling. The result of the adversarial attack is a perturbed image x∗

where the perturbation is only applied to the pixels that initially belonged to at
least a single gadget. Those changes must now be mapped back to the original
binary. For the perturbed image, we look at every pixel that belonged to at least
one gadget. If such a pixel is found, we retrieve the corresponding group of pixels
G. To correctly update G, the bytes belonging to an adversarial payload need
to be modified s.t. the mean value of G equals the corresponding pixel value
of x∗. Given the sum of the pixel values

∑
p∈G p, the number of pixels |G| and

the target pixel p∗ the update factor fadv can be derived using the following
equation:

fadv = p∗ · |G| −
∑

p∈G
p
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To apply the factor fadv to the adversarial payload, we create a mask M2 that
has a one at every editable position within G. M2 contains the same values as
M2 but flipped, s.t., ones become zeros and vice versa. We can update the group
of pixels using the following equation:

Gadv =

⎧
⎨

⎩
M2

fadv∑
M2

+ M2G if
∑

M2 ≥ 1

G otherwise

The left term of the addition in the first case replaces all the editable pixels within
the image with a shared factor. The second term adds the original values. This
way, the new mean value of Gadv equals the target value of the downsampled
image. In case there are no gadgets in the particular group, i.e.

∑
M2 = 0,

G is simply copied. After the termination of the adversarial attack, the image
is flattened into a byte array badv, and the bytes that were cropped during
downsampling are appended again.

Possible Countermeasures. In Sect. 4.1, we show that Minos [23] is suscep-
tible to the presented adversarial attack. However, it is essential to also discuss
possible improvements that could prevent such adversarial attacks and aid in
hardening the detection framework. The option to remove semantic-preserving
gadgets using an optimizer was already discussed in Sect. 3. While an additional
optimization step prevents an adversary from relying on the size-efficient gadget,
the more complex optimization-resistant gadget still allows effective adversarial
attacks. Machine learning models can be directly hardened against adversarial
attacks using, for example, defensive distillation [26], which is a technique where
the class probability vectors of a trained DNN are used to train another DNN of
the same dimensionality. As the name suggests, defensive distillation is derived
from the concept of distillation [3], where one trained DNN is used to train a
smaller DNN without losing accuracy. Another promising method for hardening
models against adversarial attacks is presented by Goodfellow et al. [13]. They
create adversarial examples and use them as training data for their model. How-
ever, the presented countermeasures were shown not to be effective against a
thoughtful attacker [36].

4 Evaluation

4.1 Gadget Effectiveness

Using our corpus of malicious samples (Sect. 3.1), we evaluate the effectiveness
of our attack by creating adversarial examples for each binary. We consider the
insertion density d as the relative frequency of occurrence of our gadget, s.t. for
a given density d ∈ [0, 1], for every 1000 instructions d · 1000 gadgets are added.
Figure 7 shows the misclassification rates of binaries with the size-efficient gad-
get (Fig. 7a) and the optimization-resistant gadget (Fig. 7b) against the Minos
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Fig. 7. Minos misclassification rate of binaries with size-efficient gadgets (a) and
optimizer-resistant gadgets (b) against the pre-trained Minos [23] classifier by Cabrera-
Arteaga et al. [7]. Each plot depicts the misclassification rate of the original binary
(Original), the instrumented binary without adversarial payload (Instr.), and the mis-
classification rate of the binaries with adversarial payload derived using Minos trained
for one epoch (Adv. M-1) and for 50 epochs (Adv. M-50). The adversarial misclassifica-
tion rates are average over all five folds. The error bars depict the standard deviation.

classifier [23] trained by Cabrera-Arteaga et al. [7]. To the best of our knowl-
edge, Minos is the only WebAssembly malware classifier that utilizes machine
learning to classify malware directly on a representation of the binary itself. To
evaluate the effectiveness of our adversarial payloads at invoking misclassifica-
tions, we plot the misclassification rates for the original binary, the instrumented
binary without adversarial payload and the adversarially crafted binaries. The
original binaries are unaffected by the gadget density and never result in mis-
classification. For instrumented binaries without adversarial payloads, it becomes
apparent that after a sufficiently large number of insertions, the classifier cannot
detect the malicious binary even without the adversarial attack. Figure 8b shows
the size increase of the binary through the addition of our gadgets. For each
gadget, the misclassification rates of the instrumented binaries start to increase
significantly at a size of roughly 1.5× the original binary. Considering that the
larger the binary gets, the higher the compression rates and information loss are
during downsampling, an increase in misclassification rates that correlates with
a size increase can occur. Due to the difference in the number of added bytes
per gadget, the misclassification rate for the larger optimization-resistant gadget
increases at lower densities. However, for both gadgets, one can observe that the
adversarially crafted binaries consistently outperform the binaries that are only
instrumented, causing higher misclassification rates at lower densities. Addition-
ally, adversarial payloads generated using the substitute models trained for one
epoch consistently cause higher misclassifications at lower densities than pay-
loads generated using the models trained for 50 epochs. To further evaluate the
misclassification caused by instrumenting the malicious binary, we additionally
instrumented 50 randomly selected benign binaries with the optimizer-resistant
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Fig. 8. Correlation between the insertion density and the relative increase in execution
time (a) and size (b). Both the size-efficient gadget (SE) and the optimization-resistant
gadget (OR) are evaluated. The x-axis represents the density of the gadgets, while
the y-axis represents the relative execution time compared to the baseline (no gadget
insertion) (a) and the relative increase of the binary’s size in bytes (b). The average over
the evaluated binaries is plotted, and the error bars represent the standard deviation.

gadget that caused higher misclassification rates. At densities of both 0.1 and
0.01, the classifier correctly identified all evaluated benign binaries as benign,
suggesting a tendency of the classifier to classify samples as benign. To evaluate
the effectiveness of our method, we additionally generated adversarial payloads
for the benign binaries that caused the substitute model to misclassify the binary
as malicious. Using the substitute model trained for one epoch, we were able to
successfully cause the target classifier to misclassify, on average, 77% of the bina-
ries over all folds at a density of 0.1. Overall, at a density of 0.02, both gadgets
are shown to be successful in evading the target classifier for at least 70% of eval-
uated malicious binaries, while the misclassification rates for the instrumented
binary without the adversarial payload are at or below 20%, highlighting the
effectiveness of our approach.

4.2 Performance Analysis

To quantify the gadget’s impact on the runtime of instrumented binaries, we
measured the execution time in relation to the gadget density. This correlation
is illustrated in Fig. 8a. We utilized a WebAssembly hashing library [24] and per-
formed 5×105 rounds of SHA-256 hashing. A baseline was established by measur-
ing the execution time without inserting the gadgets. The execution time of both
gadgets is shown in relation to the baseline. The insertion of the size-efficient
gadget only results in a small constant increase in execution time, suggesting that
the inserted gadget is not executed. WebAssembly is compiled using an ahead-
of-time compiler, which includes optimization of the code. As the size-efficient
gadget neither changes the data flow nor the control flow, the compiler likely
identifies and removes those instructions during compilation. However, similar
to wasm-opt [38], this optimizer cannot detect the optimization-resistant gad-
get. As a result, the execution time increases linearly in the number of inserted
gadgets. However, considering that a density of 0.02 is enough to trick the target
classifier, the increase in runtime is reasonable.



84 N. Loose et al.

Fig. 9. Average number of iterations (y-axis) required to achieve a confidence of
1×−12 for a given gadget density (x-axis). Both the size-efficient gadget (SE) and
the optimizer-resistant gadget (OR) are evaluated on the substitute model trained for
one epoch (M-1) and 50 epochs (M-50). The error bars show the standard deviation.

Additionally, we evaluated the requirements for generating an adversarial
example, which heavily depends on the gadget density. The number of itera-
tions required to achieve a confidence of less than 1 × 10−13 within the shadow
model was measured as a function of the chosen gadget density. The results are
depicted in Fig. 9, which displays the average number of iterations required dur-
ing the adversarial example generation over the applied gadget density. As both
gadget types hold the same number of bytes utilized for the adversarial payload,
they require a similar number of iterations to reach the confidence level. The
adversarial training optimization loop was run for a maximum of 1 × 104 itera-
tions. Overall, the lower the chosen density, the more iterations are required to
reach the target confidence, as fewer bytes are available for adversarial crafting.
While the adversarial examples crafted using the substitute model trained for
one epoch outperform the adversarial examples crafted using the model trained
for 50 epochs, the adversarial example reaches the target confidence with fewer
iterations on the model trained for 50 epochs. The execution time of a single
iteration is 9.84 ms on an AMD Ryzen 9 7950X 16-Core Processor, which ren-
ders the attack feasible. Note that this optimization needs to only be performed
once per malware. However, an attacker could potentially exploit the low cost
of generating new adversarial examples by regularly distributing new binaries to
website visitors.

5 Related Work

The use of machine learning-based classifiers for detecting malware has been
shown to be fast and effective in identifying binaries as malicious or benign.
However, the robustness of these classifiers against adversarial inputs is often
limited.Cite As more machine learning-based classifiers are utilized for detect-
ing malware, malicious actors who want to distribute their malware have a high
incentive to utilize evasion techniques to prevent detection. Especially for Win-
dows Portable Executables (PEs), a number of classifiers and evasions exist.
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Existing adversarial evasions on classifiers that utilize a gray-scale image repre-
sentation of the target binary [16] rely on FSGM [13] or Carlini & Wagner [8], to
generate a perturbation vector for the image [16,20,28]. However, in contrast to
our attack, Liu et al. [20] directly apply the perturbation to the image represen-
tation of the binary. While they show a successful attack against the classifier,
the generated adversarial example is not a valid binary anymore, rendering their
evasion ineffective. Khormali et al. [16] generate the adversarial example and
append the adversarial payload to the end of the file or at the end of a section.
This ensures that the adversarial example is added into nonexecutable areas,
and hence the original functionality remains. While this enables the addition of
the adversarial payload into the malicious binary, a sophisticated defender can
easily remove the payload by statically identifying unused bytes and masking
them before classification, as they should have no impact on the classification
performance. Using our attack methodology, the adversarial payload is placed
inside the code section and directly baked into the control flow of the target
binary, preventing a defender from easily removing the payload. Additionally,
we have presented the optimization-resistant gadget that cannot be generally
removed using an optimization pass. Evasions against other network architec-
tures that directly consider the sequence of bytes from Windows PE filescite gen-
erally insert adversarial payloads in unused bytes between sections [18,29,33],
in a new section [18] or at the end of the file [9,29]. While these approaches
generate executable binaries, it is rather easy to circumvent for a slightly more
sophisticated detection model, e.g. one that first removes unused bytes or trun-
cates sections or files. Either of our proposed gadgets is inserted directly into the
instructions so that more sophisticated static analysis techniques, such as data
flow and control flow analysis, are required to detect them fully. However, there
are also numerous adversarial attacks against classifiers that classify a binary
on more sophisticated features than just an image from its raw binary data, e.g.
based on extracted features such as control flow, data flow, API calls, libraries, or
dynamic features [10,19]. While the general procedure for generating the pertur-
bation vector is similar, the application to the binary relies on transforming the
target in a way that the corresponding features change. The interested reader
is referred to Ling et al. [19], who provide an in-depth evaluation of different
evasion techniques against Windows PE malware. Cabrera-Arteaga et al. [7]
proposed a malware evasion system against Wasm malware detectors and, in par-
ticular, Minos. However, their system relies on obfuscation to bypass detection
frameworks, and they do not utilize adversarial attacks.

6 Conclusion

In this paper, we introduced a novel technique for placing adversarial pay-
loads directly into the instruction stream using binary instrumentation to bypass
machine learning-based malware detectors. We have demonstrated the effective-
ness of our technique by crafting a grey-box adversarial attack against Minos
[23], a lightweight cryptojacking detection framework for WebAssembly pre-
sented at NDSS 2021. To place payloads inside the code section of the binary, we
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have introduced two semantic-preserving gadgets for Wasm binaries with a focus
on size-efficiency and optimization-resistance, respectively. We have collected an
extensive dataset with both benign and malicious binaries by utilizing two exist-
ing benchmark datasets [14,17] as well as results from a crawling campaign of
one million websites from the Cisco Umbrella list [11]. To populate this dataset,
we used wasm-mutate [6] to generate augmented binaries. Every sample was
then assigned a label by querying the target model, i.e. Minos [23] provided by
Cabrera-Arteaga et al. [7]. All samples with their corresponding label were then
used to train a substitute model of our targeted model. The challenge of creating
a functional adversarial example inside a binary without altering the semantics
was met by carefully inserting novel semantic-preserving gadgets. These gadgets
can be injected freely into the code section of a Wasm binary without changing
the semantics using binary instrumentation. Each gadget contains a number of
bytes that carry the adversarial payload and can be manipulated freely during
the attack phase. By attacking our substitute model, we successfully craft func-
tional adversarial examples for cryptojacking binaries. Using an insertion density
of 0.02 and the better-performing substitute network trained for one epoch (M-
1), we are able to cause the target detector to misclassify all of the evaluated
malicious binaries, demonstrating the effectiveness of our attack. Additionally,
we show that our size-efficient gadget is removed during compilation resulting in
only a negligible runtime overhead. The optimizer-resistant gadget, by design,
is not removed before execution and thus leads to a linear overhead in the den-
sity. However, as a small insertion density of 0.02 is sufficient in bypassing the
classifier, the execution time is only increased by roughly 10%. To prevent such
attacks, we addressed typical countermeasures; However, as discussed by Tramèr
et al. [36], as long as the adversary is able to manipulate features used by a clas-
sifier, the threat of adversarial attacks cannot be fully mitigated. The success
of our grey-box adversarial attack on Minos highlights the need for continued
research and improvement of defences against adversarial attacks on machine
learning-based malware detection frameworks.
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Abstract. Honeywords are fictitious passwords inserted into databases
in order to identify password breaches. The major challenge is produc-
ing honeywords that are difficult to distinguish from real passwords.
Although the generation of honeywords has been widely investigated in
the past, the majority of existing research assumes attackers have no
knowledge of the users. These honeyword generating techniques (HGTs)
may utterly fail if attackers exploit users’ personal identifiable informa-
tion (PII) and the real passwords include users’ PII. The literature has
demonstrated that password guessing is more effective when focusing
on each of the chunks that compose a password (e.g., “P@ssword123”
contains two chunks: “P@ssword” and “123”) and it has been suggested
that, when available, PII should be used to generate honeywords. We
thus leverage these findings to base our HGT method on any possible
PII contained within passwords, and introduce a new, and more robust
than its literature counterparts, method to generate honeywords, which
consists of generating honeywords with GPT-3 using the semantic chunks
of their corresponding real passwords.

Furthermore, we propose a new metric, HWSimilarity, to evaluate the
capability of HGTs. HWSimilarity is a pre-trained language model-based
similarity metric that considers the semantic meaning of passwords when
measuring the indistinguishability of honeywords and their counterparts.
Comparing our chunk-level GPT-3 HGT to two state-of-the-art HGTs
and using GPT-3 alone, we show that our HGT can generate honeywords
that are more indistinguishable than its counterparts.

Keywords: authentication · chunking · honeywords · natural
language processing · language models

1 Introduction

Passwords have dominated the authentication system for decades, despite their
security flaws compared to competing techniques such as cognitive authentica-
tion [12], biometrics [20] and tokens [22]. Their irreplaceability is primarily due
to their incomparable deployability and usability [3]. However, current password-
based authentication systems store sensitive password files that make them ideal
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targets for attackers because if successfully obtained and cracked (recovering
the hashed passwords’ plain-text representations), an adversary may imperson-
ate registered users in an undetectable fashion [26]. Numerous prestigious online
services have been infiltrated, for example, Yahoo!, RockYou, Zynga, resulting
in the exposure of millions of credentials. Unfortunately, there is often a large
delay between a credential database’s breach and its detection; estimates place
the average latency at 287 days [1]. The resulting window of vulnerability enables
attackers to crack passwords offline and use them directly to extract value or sell
them via illicit forums profiting with stolen credentials [25]. Normally, the longer
it takes to detect and remediate a data breach, the more expensive it is [1]. As
a result, it is vital to have active, timely password-breach detection systems in
place to allow immediate counter-actions.

One way to reduce the cost of password breaches is to make offline guessing
harder [5]. However, this method has major disadvantages, such as low scalability
or a need for large modifications to the server-side and client-side authentica-
tion systems, which prevent the community from implementing them. Another
promising approach is to shorten the latency between password breaches and
detection. Juels and Rivest suggest the use of honeywords as a potential method
for efficiently detecting password leaks [13]. According to their proposal, a web-
site could store decoy passwords, called honeywords, alongside real passwords
in its credential database, so that even if an attacker steals and reverts the
password file containing the users’ hashed passwords, they must still choose a
real password from a set of k distinct sweetwords, where a real password and
its associated honeywords are referred to as sweetwords. The attacker’s use of
a honeyword could cause the website to become aware of the breach. Notably,
honeywords are only beneficial if they are difficult to distinguish from real-world
passwords; otherwise, a knowledgeable attacker may be able to recognize them
and compromise their security. Thus, when implementing this security feature
into current authentication systems, the honeyword generating process is critical.

1.1 Honeywords for Targeted Attacks

The biggest challenge of designing a HGT is to generate honeywords that are
resistant to targeted attacks [28]. For targeted attacks, attackers exploit users’
PII to guess passwords, which increases the likelihood of users’ accounts being
compromised. This is a critical problem because numerous PII and passwords
become widely accessible as a result of ongoing data breaches [1] and people are
used to create easy-to-remember passwords using their names, birthdays, and
their variants [28]. Once an attacker obtains users’ PII, and if only one sweet-
word in a user’s sweetword list contains the user’s PII, it is highly likely that this
sweetword is the real password and others are fake. For example, for a sweet-
word list “gaby1124, abg71993, australiaisno#1, 10L026378, noviembre9101,
Elena1986@327, cken22305” which are generated using a made-up password
“Elena1986@327” (suppose this is the real password) and the HGT proposed
by Dionysiou et al. [9]. In this case, if the attacker has no information about the
user, it will be difficult to determine which of the seven sweetwords is the real
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password, since all of the honeywords are from data breaches and are legitimate
passwords belonging to other users. However, if the attacker knows the user’s first
name is “Elena”, it is quite straightforward to deduce that “Elena1986@327” is
this user’s real password and all the others are fake.

Table 1. Data breaches containing PII and passwords in the past five years

Dataset Number of Items Year Type of PII breached

Neiman Marcus 4,800,000 2021 Name, Encrypted Password, Security questions, Financial information

CAM4 10,880,000,000 2020 Name, Email, Encrypted Password, Chat transcripts, IP, Payment logs

Canva 137,000,000 2019 Name, Email, Encrypted Password

Quora 100,000,000 2018 Name, Email, Encrypted Password, Questions and answers posted

Yahoo 3,000,000,000 2017 Name, Email, Encrypted Password, DoB, Security question and answer

Following the introduction of the honeywords security mechanism by Juels
and Rivest [13], the academic community has been actively exploring the tech-
nique. However, to our knowledge, only Wang et al. [29] concentrated on the pro-
duction of honeywords in a targeted manner. All other works make the invalid
assumption that attackers have no knowledge about the users. Each year, as
demonstrated in Table 1, billions of password datasets including PII are leaked.
Attackers might use the PII to determine which sweetword is the real pass-
word. If none of the sweetwords include PII existing in the password breach, the
attackers may still create a knowledge map for each user by searching their infor-
mation purposefully through social media and search engines using the known
PII exposed in data breaches. This is especially a concern if the user is a pub-
lic figure. Compromised accounts may have substantial financial, political, and
societal consequences.

1.2 Related Work

Numerous studies have been conducted on the non-targeted honeyword genera-
tion method. The majority of these HGTs fall into two categories: chaffing-by-
tweaking and chaffing-with-a-password-model. Chaffing-by-tweaking is mostly
based on the substitution of random letters, digits, and symbols. For instance,
given the real password “deshaun96”, we could get honeywords “deshaun87,
deshAUn66, DesHaun56” via tweaking. However, as Wang et al. [26] demon-
strate, this strategy is indeed vulnerable. While honeywords generated using the
chaffing-with-a-password-model approach are more resistant to attacks, they do
have certain drawbacks. Bojinov et al. [2] proposed Kamouflage, which first tok-
enizes the user’s real passwords into a collection of tokens, and then substitutes
each token with a random one that matches the token’s type. For instance,
“jones34monkey” is tokenized as “l5d2l6” (a five-letter word followed by two
digits and a six-letter word), indicating that some possible honeywords are
“apple10laptop, tired93braces, hills28highly”. This technique, as outlined in
[9], demands considerable modifications on the client-side authentication sys-
tem, which has a significant impact on usability. Additionally, it is incapable of
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generating honeywords of varying length or structure, thus limiting the spectrum
of possible honeywords.

Yu et al. [36] proposed to generate honeywords using a password-guessing
model [34], which is based on an enhanced Generative Adversarial Network.
They evaluated their HGT quantitatively and qualitatively, demonstrating that
their HGT could generate honeywords more resistant to trawling attacks than
other state-of-the-art HGTs.

For targeted honeyword generation, the challenge is to split the real pass-
word into tokens while retaining tokens that correspond to PII and replacing
tokens that do not correspond to PII with random ones. Consider the real pass-
word ‘Elena1986@327”, the challenge is to produce honeywords containing the
token“Elena”, which is the user’s first name as indicated by her email address. To
do this, we propose to employ a chunking algorithm [32] to divide passwords into
semantic chunks consisting of frequently occurring sequences of related charac-
ters, and a pre-trained generative model [4] to create desired honeywords based
on the semantic chunks retrieved from the chunking step.

1.3 Our Contribution

– We are the first to use generative language models to create honeywords that
are robust to targeted attacks. We propose a novel HGT, termed Chunk-
GPT3 1 which generates honeywords by segmenting passwords into semantic
chunks and then instructing GPT-3 to construct honeywords containing the
given semantic chunks. Without being trained on real passwords, the off-the-
shelf GPT-3 model could generate high-quality honeywords that are more
indistinguishable from literature counterparts, and thus are more robust to
targeted attacks. Furthermore, unlike HGTs from the literature, our model
makes no assumptions as to the PII an attacker may use to tell apart honey-
words from the real password.

– We are the first to take semantic meaning into consideration to evaluate
HGTs. We propose HWSimilarity, for measuring an HGT’s capabilities.
HWSimilarity employs a pre-trained language model MPNet [23] to encode
sweetwords into vectors, and then calculates the cosine similarity between
each honeyword vector and its real password vector, taking into considera-
tion the semantics of each sweetword.

– We evaluated the capabilities of Chunk-GPT3 and two state-of-the-art HGTs
and demonstrated that Chunk-GPT3-generated honeywords are significantly
more similar to their real passwords, making them more difficult to differen-
tiate regardless of what PII is available in a targeted attack.

The remainder of the paper is structured as follows: Sect. 2 provides the
preliminaries for understanding our work. Section 3 introduces our approach to
generating honeywords in a targeted manner. Section 4 evaluates our HGT and
other two approaches. Section 5 discusses the limitations of our work and future
directions. Section 6 concludes our work.
1 Source code: https://github.com/HumanMachineLab/Chunk-GPT3.

https://github.com/HumanMachineLab/Chunk-GPT3
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2 Preliminaries

In this section, we explain the honeyword generation mechanism and datasets
used in this paper.

2.1 The Honeyword Mechanism

Fig. 1. Password (PW) authentication with honeywords.

Juels and Rivest [13] are the first to introduce the honeyword concept to detect
password breaches. The honeyword system is comprised of four entities, as
shown in Fig 1 [29]: a user Ui, an authentication server S, a honeychecker,
and an attacker A. User Ui initially registers an account(IDi, PWi) on the
server S. Apart from the standard user registration processes, S runs a com-
mand GEN(k, PWi) to produce a list of k − 1 unique fake passwords (called
honeywords) to be stored alongside Ui’s true password PWi, where k = 20 as
recommended in [13]. PWi and its k − 1 honeywords are referred to as k sweet-
words.

2.2 Threat Model

Honeyword-enabled systems could reliably identify a password file leak by pairing
each user’s account with k − 1 honeywords. The reason for this is that even if
attackers obtain a copy of the password file along with its hashing parameters and
salts, and successfully recover all the passwords via brute-force or other password
guessing techniques [17,30] (be aware that at this stage they know which k
sweetwords are associated with each user), they must first distinguish each user’s
true password from these k sweetwords. The system features honeychecker to
aid in the usage of honeywords, and the computer system could interact with the
honeychecker whenever a login attempt is made or users change their passwords.
Additionally, the honeychecker is capable of triggering an alert if an anomaly is
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discovered. The warning signal may be sent to an administrator or to a third
party [13]. This approach is compatible with existing authentication systems
since it needs little adjustments to the server-side systems and no alterations to
the client-side systems; nevertheless, it is very reliable due to the high probability
of capturing adversaries. For instance, if the likelihood of an attacker selecting
each sweetword is uniform, the probability of capturing an attacker is 3/4 = 75%
for k = 4, and thus the probability grows as k increases.

Our HGT is designed based on the assumption that attackers have complete
knowledge of users’ PII, and our technique including the specifics (the following
mentioned prompt and temperature). As described in Sect. 5, we ensure that our
honeyword generation process is irreversible even when attackers have all of the
aforementioned information.

2.3 Dataset

This section introduces the password dataset (termed 4iQ) we used in this paper
and password selection process. 4iQ contains a leaked compilation of various
password breaches over time and was first discovered in the Dark Web2 in Decem-
ber 2017. The dataset consists of 1.4 billion email-password pairs, with 1.1 billion
unique emails and 463 million unique passwords. Duplicate email-password pairs
were removed by an unknown curator. The listed leaks are from websites such
as Canva, Chegg, Dropbox, LinkedIn, Yahoo!, etc. We eliminated the suffix of
each email address and only use the prefix as usernames for simplification.

To acquire legitimate passwords, we excluded those that are too short or too
lengthy, with fewer than 8 characters or more than 32 characters, respectively
[27], resulting in 28,492 username-password pairs. Such short strings are not
permitted by most authentication systems [24], and such lengthy strings are
unlikely created by users or password managers owing to their default settings
of 12, 16 or 20 characters (LastPass, 1Password and Dashlane) [32]. We further
calculated the strength of each password using zxcvbn [31], and found that 24,661
passwords have a zxcvbn score of 4, 2706 passwords have a zxcvbn score of 3, 277
and 3 passwords have a zxcvbn score of 1 and 0, respectively.

To compare HGTs’ capability on various password strengths, we constructed
two sets of username-password combinations depending on the computed zxcvbn
password strength. One zxcvbn-weak set with 1000 username-password pairs
whose passwords have the lowest zxcvbn score, and one zxcvbn-strong set with
1000 username-password pairings whose passwords have the highest strength
zxcvbn score. Note that all passwords in the zxcvbn-strong set have a zxcvbn
score of 4, and the zxcvbn-weak set has passwords with score ranging from 0
to 2. We further analyzed and compared the chunks in the two sets and generated
honeywords for both sets with our proposed method and two other HGTs.

2 1.4 Billion Clear Text Credentials Discovered in a Single Database: https://mediu
m.com/4iqdelvedeep/1-4-billion-clear-text-credentials-discovered-in-a-single-datab
ase-3131d0a1ae14.

https://medium.com/4iqdelvedeep/1-4-billion-clear-text-credentials-discovered-in-a-single-database-3131d0a1ae14
https://medium.com/4iqdelvedeep/1-4-billion-clear-text-credentials-discovered-in-a-single-database-3131d0a1ae14
https://medium.com/4iqdelvedeep/1-4-billion-clear-text-credentials-discovered-in-a-single-database-3131d0a1ae14
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3 Our Methodology

To preserve the PII in honeywords, it is necessary to segment passwords into
chunks in which the PII is included. The chunks can then be used as inputs for
a generative language model to produce honeywords that retain the PII while
altering the real passwords.

3.1 PII Extraction

PII is rarely a single character. Instead, most PII, such as usernames, birthdays,
anniversaries, and pet names carry some semantics. Semantic chunks in pass-
words may or may not constitute PII, but if users construct passwords including
semantic chunks, they risk exposing PII. In order to extract PII from users’ real
passwords, we first segment the real passwords into semantic chunks using the
password-specific segmentation technique PwdSegment [32]. PwdSegment con-
ceptually trains a Byte-Pair-Encoding (BPE) for producing chunk vocabularies
using training data of plain-text passwords. The BPE algorithm, which was ini-
tially proposed in 1994 as a data compression technique, is widely used in the
NLP domain for subword segmentation (e.g., the GPT-2 model [18] proposed
by OpenAI and the RoBERTa model [16] proposed by Meta), which preserves
the frequent words while dividing the rare ones into multiple units. PwdSegment
enhances the BPE technique by substituting the number of merging operations
with the configurable parameter average length (avg len) of chunk vocabulary.
PwdSegment counts all character pairs and terminates the merging operation
when the avg len of the resultant chunk vocabulary equals or exceeds the thresh-
old length. PwdSegment could be parameterized with a threshold avg len to
control the segmentation result with varied granularity more simply where a
longer avg len yields a more coarse-grained result.

The PwdSegment algorithm is first trained using a plain-text corpus. Then
it repeatedly merges the most common pair of tokens into a single, new (i.e.,
previously unseen) token comprising the subword (i.e. chunk) vocabulary. Every
merging procedure generates a new chunk by exchanging the most common pair
of letters or character sequences (for example, “r”, “d”) with a new subword (for
example, “rd”). The merging procedure is repeated until avg len of the resultant
chunk vocabulary equals or exceeds a pre-determined threshold length.

3.2 Chunk Analysis for zxcvbn-weak and zxcvbn-strong Password
Sets

Difference of Chunk Numbers. We segment passwords into chunks for both
zxcvbn-weak and zxcvbn-strong password sets using the PwdSegment algorithm.
As shown in Fig 2, most passwords in the zxcvbn-strong set contain four to seven
chunks, whereas most passwords in the zxcvbn-weak passwords only contain
two or three chunks. This suggests that stronger passwords (based on zxcvbn)
typically contain more chunks than weak passwords.
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Fig. 2. The comparison of password chunk numbers in zxcvbn-weak and zxcvbn-strong
sets.

Difference of Common Chunk Frequencies. To further investigate the
differences between zxcvbn-strong password set and zxcvbn-weak password
set, we list all chunks in both sets and visualize the result in Fig 3, from
which we can observe that most chunks in the zxcvbn-weak password set
contain semantics or easy-to-guess patterns, such as English words (“foot-
ball”, “builder” “vietnamese”,“microsoft”), phrases (“iloveyou”), Chinese names
(“chenchen”, “liang”, “jiang”, “shan”), English names (“benjamin”, “Erick”,
“sasha”, “elena”), and patterns (“qwert”, “zxcvbn”, “QWEASDZXC”). Many
of them are plausible PII that attackers could take advantage of to compro-
mise users’ accounts. In contrast, the majority of chunks in the zxcvbn-strong
password set are random and short combinations of characters with no seman-
tics, whereas semantics still exist in certain chunks (such as “sasha”, “jj” and
“wang”). This indicates that although passwords that are zxcvbn-strong in
strength are mostly comprised of more chunks and are harder to guess in a
trawling scenario, many of them still contain semantic words, which can be PII
that is accessible to attackers, thereby increasing the likelihood of passwords
being guessed and accounts being compromised. As a result, regardless of the
strength of the real password, as long as it contains PII which attackers could
utilize all their resources to get, the trawling-honeyword-integrated authentica-
tion system will fail since most trawling-generated honeywords do not contain
PII, and thus a targted-honeyword-integrated system is needed.

3.3 Honeyword Generation with Chunk-GPT3

Language models can learn the probabilities of occurrences of a series of words in
a regularly spoken language and predict the next potential word in that sequence.
Generative Pre-trained Transformer 3 (GPT-3) is an autoregressive language
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Fig. 3. The comparison of common password chunks in zxcvbn-weak (left) and zxcvbn-
strong (right) sets.

model that uses deep learning to generate text that appears to be written by a
person. It was introduced in 2020 and excels at a variety of NLP tasks, including
translation, question-answering, and cloze [4]. The model was trained on trillions
of words in text documents. It turns words into vectors or mathematical rep-
resentations, and then decodes the encoded text into human-readable phrases.
The model can be utilized to execute NLP tasks without requiring fine-tuning
on particular downstream task datasets and is capable of producing texts that
are difficult for humans to differentiate from human-written articles.

Therefore, we propose to use GPT-3 to generate honeywords that are robust
to targeted attacks by providing the semantic chunks retrieved in the PII
extraction phase. We first specify what the model should do by giving it a
prompt, for example, “Derive five passwords that are similar to ‘toby2009bjs’
and contain ‘toby’, ‘2009’ and ‘bjs’. Do not add digits at the end of the pass-
words.” Here, “toby”, “2009” and “bjs” are chunks generated by PwdSeg-
ment. GPT-3 will then produce outputs “tobyEmma2009bjs, toby2009Katiebjs,
toby2009bjsKaitlyn, toby2009bjsRiley, toby2009bjsSavannah” by following the
instruction. The quality and the diversity of the output depend on three
attributes: prompt, temperature and examples given to the model.

The Prompt. The prompt is the instruction GPT-3 received. The quality of
the prompt can determine the quality of the generated honeywords. Usually, the
more concise and instructive the prompt is, the better the completion is [15].
Same can be seen in honeyword generation, as shown in Table 2.
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Table 2. Honeywords generated by GPT-3 when using different prompts. Honeywords
generated using Prompt2 are not ideal because they do not contain the potential PII
“toby”.

Prompt1 Suggest three passwords that are similar to “toby2009bjs” and contain “toby”

Honeywords toby2009bjd, toby1998bjx, toby2021bjz

Prompt2 Suggest three passwords that look like “toby2009bjs”.

Honeywords toy2009bjs, tab2009bjs, boy2009bjs

The Temperature. The temperature is a numeric variable between 0 and 1
that effectively regulates the model’s degree of confidence when generating pre-
dictions. A lower temperature implies that the model will take fewer risks, and
the honeywords created will be more repetitive while increasing the temperature
results in more diversified honeywords. The temperature is a vital parameter
that determines the irreversibility of our HGT, as discussed in Sect. 5. Table 3
contains examples of honeywords formed at temperatures 0 and 1.

Table 3. Honeywords generated by GPT-3 when using different temperatures and
given the prompt “Suggest five words that are similar to ‘toby2009bjs’ and contain
‘toby’.” A higher temperature will result in more diverse honeywords.

Temperature Honeywords

0 toby2009bjd, toby2009bjx, toby2009bjz, toby2009bjf, toby2009bjh

1 Toby2009BJS, toby2009bjs1, tobybjs2009, Bjs2009toby, bjs2009toby1

Zero-Shot and Few-Shot Learning. Zero-shot learning refers to a situation
in which no demonstrations are permitted and the model is given simply a plain
language description of the task. In comparison, few-shot learning refers to a
situation in which the model is given a few demonstrations of the task during
inference time, but the model is not re-trained on them. This is particularly
advantageous since many websites have varying policies regarding password cre-
ation, such as beginning with letters and requiring uppercase, lowercase, symbols,
and numbers. When the operators demonstrate how they want the honeywords
to appear, GPT-3 will generate honeywords that match the examples.

Since the introduction of Generative Pre-trained Transformers, they have
been extensively investigated in a variety of domains, including creating media
dialogues summaries [7], generating code from natural-language instructions [6],
generating passphrases [11], and generating graphics from text descriptions [19].
To the best of our knowledge, we are the first to employ GPT-3 in the sphere of
computer security, to generate honeywords that are resistant to targeted attacks.

An example of honeyword generation using Chunk-GPT3 is illustrated in
Fig. 4, which contains two steps: 1). Passwords are segmented using algorithm
PwdSegment, detailed in Sect. 3.1. For example, password “Elena1986@327”
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is segmented into chunks “Elena”, “1986” and “327”. 2). The resulting
chunks are used as inputs to prompt GPT-3 to generate honeywords. We
prompted GPT-3 with instruction “Please derive three passwords that are sim-
ilar to “Elena1986@327” and contain “Elena”, “1986” and “327”. The length
of the passwords should be at most 13 (the length of the real password
“Elena1986@327”).”

"Elena1986@327" "Elena", "1986",
"327"

Password

"Elena327@1986"
"1986327@Elena"
"Elena!1986327"

PwdSegment
Chunking

Honeywords
Generation

Chunks Honeywords

Fig. 4. Honeyword generation with Chunk-GPT3. In this example, the password
“Elena1986@327” is segmented into chunks “Elena”, “1986”, and “327” using the
PwdSegment Chunking algorithm. The chunks are then used as inputs for GPT-3
to generate honeywords.

4 Evaluation

Two common metrics in HGT evaluation are flatness and success-number graphs
which measure HGTs’ resistance against the honeyword distinguishing attacker
from the average and worst-case point perspective [26]. The honeyword dis-
tinguishing attacker is required for using the two metrics. Previous works [9,10]
used the trawling attack algorithm Normalized Top-PW model to construct flat-
ness and success-number graphs and to evaluate their HGTs, since their HGTs
are used to generate honeywords against trawling attacks [35]. The Normalized
Top-PW is not applicable to targeted attacks because trawling attackers have
no knowledge about users’ PII while targeted attacks do, which make targeted
attackers more capable. To the best of our knowledge, the only work propos-
ing targeted attacks [29] construct their attack models based on various kinds
of capabilities allowed to an attacker (e.g., birthday, username, email address,
and registration order). We do not give these assumptions to attackers since it
is typically not know what kind of attackers a system may have when gener-
ating honeywords. In fact, attackers may take advantage of any resources they
may have, not limiting to PII, registration order and more. A comparison of the
assumptions made in our HGT and in Wang et al.’s is shown in Table 4. Wang
et al. [29] used flatness and success-number graphs to measure their HGTs.
These metrics measure password guessing success rate per user, and the num-
ber of successfully identified real passwords, respectively. However, these hon-
eyword evaluation metrics are not compatible with our method since flatness
and success-number graphs require the computation of password probabilities
as yielded by the HGT method. For example, if our honeywords were generated
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using a PCFG-based approach, we would be able to compute honeyword proba-
bilities. However, Chunk-GPT3 is not a probabilistic method but a generalized
application of a large language model over password chunks. Thus, we evaluate
honeywords from the perspective of word embedding similarities, which are com-
monly used in the NLP domain, to measure the similarity of two sequences. We
propose an evaluation metric that measures the effectiveness of HGTs by com-
paring the similarity between a honeyword and its real password using another
pre-trained language model. We also intend to draw the community’s attention
to targeted scenarios, since trawling situations have been intensively studied
but targeted honeyword generation and attack models are under-researched yet
represent a pressing problem, as outlined in Sect. 1.1 and in [28].

Table 4. Assumptions on attackers in our HGT and Wang et al.’s [29].

PW file Public
infoa

Limited
PII or
user info

Any PII or other info

Ours � � � �
Wang et al.’s [29] � � �
a Public info may include leaked password lists, password policy, and cryptographic
algorithms.

4.1 Metric: HWSimilarity

In this section, we introduce an evaluation metric to measure the indistinguisha-
bility of honeywords in terms of their corresponding real passwords.

The similarity between two strings is crucial in HGT since it demonstrates the
indistinguishability of a false password from a genuine one. Typically, in natural
language processing tasks, the distance/similarity of two strings is determined as
follows: the strings are converted to vectors using word embedding techniques,
and then the cosine similarity of the two vectors is calculated as the distance.
Here, the strings might be composed of letters, symbols, or numbers, similar to
how passwords are composed. Since passwords may contain PII which contains
semantics, hence when measuring the similarity of two sweetwords, the semantics
contained in a sweetword have to be considered. Therefore, in this paper, we pro-
pose to use a pre-trained language model MPNet [23] to encode passwords since
it encodes the semantics in word sequences to word embeddings. MPNet utilizes
the interdependence among predicted tokens via permuted language modeling
(vs. MLM in BERT [8]) and accepts auxiliary position information as input to
help the model view a whole phrase, hence minimizing position discrepancy (vs.
PLM in XLNet [33]).

Computing the HWSimilarity of a sweetword list can be done as follows:
For a user’s sweetword list SW = [sw1, sw2.....swl], and her honeyword list
HW = [hw1, hw2.....hwl−1], we have pw ∈ SW,HW � SW and pw /∈ HW .
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Here pw is the user’s real password, hwi denotes a honeyword and l is the
number of sweetwords. HWSimilarity =

∑l−1
i=1 cosin(Φ(hwi),Φ(pw))

l−1 , here Φ is the
MPNet Neural Network model.

4.2 Comparable HGTs and Evaluation Results

We compare our Chunk-GPT3 with other three HGTs: generating honeywords
using GPT-3 alone without semantic chunks provided, and two state-of-the-art
HGTs chaffing-by-tweaking and fasttext.

Chaffing-by-Tweaking. Chaffing-by-tweaking (tweaking) HGT was initially
presented in [13] and mainly relies on random letter, digit, and symbol substitu-
tion. We choose to use chaffing-by-tweaking instead of other recently proposed
methods in the literature because other methods are more vulnerable to targeted
attacks [2,28]. Dionysiou et al. [9] highlight the intricacy of developing tweak-
ing rules in such a way that it could be difficult for an attacker to distinguish
the password from its changed versions. For example, if a chaffing-by-tweaking
strategy randomly perturbs the last three characters of a password, the adver-
sary may easily conclude that the authentic password is the first one in the
instances “18!morning”, “18!morniey”, and “18!gorndge”. Thus, they replace all
occurrences of a particular symbol in a given password with a randomly chosen
alternate symbol, lower-case each letter in a password with probability p = 0.3,
upper-case each letter in a password with probability f = 0.03, and replace
each digit occurrence with probability q = 0.05. [9] contains the pseudocode and
rationale for the assignment of p, q, and f .

Table 5. Honeyword samples generated by the HGTs compared in the paper (Chunk-
GPT3, GPT-3, fasttext and tweaking). fasttext is required to be trained on a real
password dataset (the rockyou dataset in the paper). Other three HGTs can generate
honeywords directly without being trained on a password dataset. Only Chunk-GPT3-
generated honeywords retain the PII in the real password.

HGTs

Chunk-GPT3 GPT-3 fasttext tweaking

h2omega-tania tania-home123 h2omega-alex Karert 334 4oMega<tANia

Tania@home5 h2omega-zoe Adery993 H2oMega”tAnia

home!tania12 h2omega-sam brobe31 h4omega,tania

0000 mila 0000 1111 mila 0000 0000 lila 0000 octavia3 7434∼MIla$6421

0000 MILA 0000 0000 lela 0000 Bushido07 364\MIlA-9353

0000@Mila@0000 0000 lola 0000 Dampire2 3124/MiLa‘2089

007skyblueboy Skyblueboys007 007skybluegirl gz152sha 903SkyBlUeboY

Blueboysky007 007babyblueboy Calepepi 561SkYblUEbOy

007blueboysky 007lightblueboy hajenrai 960SKybluebOy
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Chaffing-by-Fasttext. This technique was proposed by Dionysiou et al. [9]
which uses representation learning for the generation of honeywords. They con-
vert words to vectors using fasttext and then assign honeywords to the k − 1
nearest neighbors of an actual password based on cosine similarity.

More specifically, in the chaffing-by-fasttext method, it needs a real password
corpus as the training dataset for the fasttext model. During the training phase,
fasttext generates vector representations of each word in the corpus. After train-
ing is complete, the trained model can be queried by providing a real password as
input and receiving a multi-dimensional vector representing the provided pass-
word’s word embedding as a response. Following that, Dionysiou et al. loop over
each password in their password corpus (n records in total where n is the number
of users) and return its top k−1 closest neighbours in decreasing order of cosine
similarity to create the list of k × n sweetwords. In this way, for each password
in the password file, they generate a list of the k − 1 most similar honeywords.

Notably, the technique’s primary weakness is that the produced honeywords
are all genuine passwords in the fasttext training dataset, which means that if
an attacker has access to the training dataset, the honeywords will be readily
discovered. Additionally, the size of the training data has a significant impact
on the quality of the honeywords created.

GPT-3 Without Semantic Chunks. We conducted an ablation study to
assess if GPT-3 can create honeywords containing PII on its own, without any
semantic chunks provided. In this case, the prompt we gave GPT-3 is “Derive 19
passwords that are similar to real password. The length of the passwords should
be at most len(real password). Do not add digits at the end of the passwords.”

A few examples of honeywords generated by Chunk-GPT3, GPT-3, tweaking
and fasttext are illustrated in Table 5.

Table 6. HWSimilarity of honeywords generated by the four techniques (Chunk-
GPT3, GPT-3, fasttext, and tweaking). Honeywords generated by Chunk-GPT3 have
the highest HWSimilarity score compared with other HGTs, indicating that the Chunk-
GPT3-generated honeywords are the most similar to their cor- responding real pass-
words taking into account semantics.

Chunk-GPT3 GPT-3 fasttext tweaking

zxcvbn-strong 0.8525 0.8348 0.3441 0.7297

zxcvbn-weak 0.8367 0.8144 0.3445 0.7527

Results. The HWSimilarity of honeywords is shown in Table 6. For both zxcvbn-
strong and zxcvbn-weak password sets, honeywords generated by fasttext and
tweaking have a much lower HWSimilarity score than the score of honeywords
generated by GPT-3 and Chunk-GPT3, indicating that the majority of fasttext
and tweaking-generated honeywords do not contain users’ PII.
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We also compared GPT-3 and Chunk-GPT3 using paired t-tests, and found
the Chunk-GPT3-generated honeywords are significantly more similar to their
corresponding real passwords considering semantics contained in passwords,
and thus are harder to distinguish by targeted attacks (tzxcvbn−weak(999) =
3.935, P < 0.001, tzxcvbn−strong(999) = 3.237, P < 0.001).

Will HWSimilarity Leak Information About the Real Passwords to
Attackers? Consider this scenario: An attacker takes the 20 sweetwords and
creates 20 different sets S1, S2, ..., and S20 of 19 sweetwords each (i.e., leaving
a different sweetword out every time). Then for each of S1, S2, ..., and S20, the
attacker computes the HWSimilarity of each element of Si against the sweet-
words that are not in Si. Will this expose some patterns revealing which of the 20
sweetwords is the real password? In order to examine this, we did a pilot exper-
iment and took a subset of our data with 500 username-password pairs and 4
honeywords per user from the generated honeywords by the 4 HGTs. In this
case, in the sweetword files with honeywords generated by different HGTs, each
user has 4 honeywords stored along with the real passwords. For each sweetword
list, the attacker takes one sweetword as p, and then 1) Computes the average
HWSimilarity score (p̄) of each sweetword sw1 to sw4 against the target sweet-
word p. 2) Then computes the average HWSimilarity score (ā1) of sweetwords
sw2, sw3, sw4, and p against sw1. 3) Next, computes the average HWSimilar-
ity score (ā2) of sweetwords sw1, sw3, sw4, and p against sw2. 4) Then com-
putes the average HWSimilarity score (ā3) of sweetwords sw1, sw2, sw4, and p
against sw3. 5) Then computes the average HWSimilarity score (ā4) of sweet-
words sw1, sw2, sw3, and p against sw4. 6) Finally, checks if one of the values
(i.e., p̄, ā1, ā2, ā3, ā4) is significantly “different” from the other 4 values.

The average similarity scores for each HGT are shown in Fig 5. ANOVA tests
on each HGT’s averages did not reject the null hypotheses, concluding that there
is no significant difference between the averages, suggesting that HWSimilarity
would not reveal the real password.

5 Discussion

We talk about the limitations of our study and future directions in this section.

User Study. We argue that there is no need to conduct user studies to
qualitatively evaluate Chunk-GPT3-generated honeywords. If given a ques-
tion: “Suppose you are an attacker and know a victim’s user name is ‘mila’,
which one in the following list would most probably be his/her password:
‘0000 mila 0000, octavia3, Bushido07,Dampire2’ (real password and honey-
words generated by fasttext).”, the task is easy to complete, while if the choices
are “0000 mila 0000, 1111 mila 0000, 0000 MILA 0000, 0000@Mila@0000”
(real password and honeywords generated by Chunk-GPT3), the task becomes
obviously more difficult.

Lack of Comparison with [29]. To the best of our knowledge, there is only
one publication that discusses how to generate honeywords that are resistant
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Fig. 5. Each boxplot represents the HWSimilarity scores of sweetwords at all indices
with the sweetword at the target index. No significant difference in the average scores
at different indices is observed for each HGT.

to targeted attacks, which was published in IEEE S&P’22 by Wang et al. [29].
They first proposed four attack models each representing a potential attacker
A’s strategy, with each model based on different information available to A (e.g.,
public datasets, the victim’s username, email address, birthday and registration
order). They further developed four HGTs for each attack strategy, by using
various probabilistic password guessing models proposed in previous work [28].
Nonetheless, assuming that attackers have access to only certain PII imposes
an important limit since attackers may utilize a superset of PII beyond the PII
pieces considered in their study (or a totally different PII set) to guess a user’s
password, particularly if the user is a person of interest. What we are propos-
ing is a different yet robust, and generalized approach. Rather than assuming
A’s attack strategy and creating HGTs accordingly, we assume attackers have
white-box access to our HGT, meaning that attackers have complete knowledge
of users’ PII, and our technique including the specifics (such as the prompt and
temperature). A comparison of the assumptions made in our HGT and in Wang
et al.’s can be found in Table 4, along with an explanation as to why gener-
ating flatness and success-number graphs is not possible (see Sect. 4). Despite
the impossibility of producing a useful comparison between our work and Wang
et al.’s, and for completeness, we still attempted to reproduce their HGT and
compare with ours, using HWSimilarity. However, they did not make their arti-
facts public due to intellectual property concerns, and despite our efforts, we
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were unable to reproduce their HGT from the description found in their paper.
Nonetheless, it is clear that their HGT method does not consider the real pass-
word chunks, and this results in honeywords that do not necessarily resemble the
real password. This can be readily seen by comparing the honeywords generated
with one of their HGTs (TarList) and our Chunk-GPT3 method (see Table 7).

Table 7. Honeyword examples generated for real password “tiger81” by our method
(Chunk-GPT3) and Wang et al.’s TarList (taken from [29], Fig. 1).

HGTs Honeywords

Chunk-GPT3 Tig3r81, T1ger81, TigEr81, Tig3r8I, T1g3r81, Tig3r1I,
T1gEr81, T1ger8I, TigEr1I, Tig3r8I, T1gEr8I, T1g3r1I

Wang et al.’s jsmith117, prince00, love123, qwertyu, js128821, bond007, a123456,
trustono1, rcv 11n1nj, jan1981, lemein, newy0rk, 1989y2002r

Since our HGT is based on the intuition that honeywords that are more
similar to their corresponding real password are of higher quality [13], if there
are any PII in the real passwords, the honeywords should include that PII to
warrant their indistinguishability. Thus, we evaluate our HGT based on the
similarity/word vector distance between honeywords and real passwords.

Irreversibility. The irreversibility of an HGT is critical. We need to make
sure that even when attackers know our methodology and the specifications we
were using for generating honeywords, such as the prompt and the temperature,
they still cannot reproduce the honeywords we generated. This is ensured by
careful prompt-engineering [14,21] and temperature setting. We suggest to set
temperature to 1 to get the most randomness [4], and after experimenting with
various prompts, we decided to use the prompt “Derive 19 passwords that are
similar to real password, and contain chunks. The length of the passwords
should be at most len(real password). Do not add digits at the end of the
passwords.” since it generates the most diversified honeywords compared with
other prompts we experimented with, and the honeywords generated each time
are different by our observation.

6 Conclusions

In this paper, we proposed a novel HGT, Chunk-GPT3, which segments pass-
words into semantic chunks and then utilizes GPT-3 to generate high-quality
honeywords that contain PII existing in users’ real passwords. Honeywords gen-
erated by Chunk-GPT3 are robust to targeted attacks where attackers get access
to both breached password databases and users’ PII. Unlike other machine
learning-based HGTs, GPT-3 can be easily integrated into any current password-
based authentication system without any further training on real passwords.
Additionally, we proposed a targeted HGT evaluation metric that incorporates
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another pre-trained language model. We compared Chunk-GPT3’s performance
with GPT-3 alone, and two state-of-the-art HGTs with the proposed metric and
demonstrated that Chunk-GPT3-generated honeywords are significantly harder
to decipher and thus could raise the bar for targeted attacks.
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Abstract. Anomaly detection for cyber-physical systems is an effec-
tive method to detect ongoing process anomalies caused by an attacker.
Recently, a number of anomaly detection techniques were proposed (e.g.,
ML based, invariant rule based, control theoretical). Little is known
about the resilience of those anomaly detectors against attackers that
conceal their attacks to evade detection. In particular, their resilience
against white-box concealment attacks has so far only been investigated
for the subset of neural network-based detectors. In this work, we demon-
strate for the first time that white-box concealment attacks can also be
applied to detectors that are not based on neural network solutions. In
order to achieve this, we propose a generic white-box attack that evades
anomaly detectors and can be adapted even if the target detection tech-
nique does not optimize a loss function. We design and implement a
framework to perform our attacks, and test it on several detectors from
related work. Our results show that it is possible to completely evade
a wide range of detectors (based on diverse detection techniques) while
reducing the number of samples that need to be manipulated (compared
to prior black-box concealment attacks).

1 Introduction

Cyber-Physical Systems (CPS) interact with the physical environment to accom-
plish a task by using sensors and actuators while applying a control strategy.
Examples of such systems are Industrial Control Systems (ICS), Critical Infras-
tructures (such as power and water systems), and Autonomous Vehicles (AV).

The security and reliability of those systems are crucial in our society. For
example, the water reaches houses through water treatment and distribution
systems, which are critical infrastructures, consisting of pipes, pump stations,
industrial controllers, etc. Attacks targeting those infrastructures can cause dis-
ruption (e.g., no water to houses), or harm people (e.g., contaminants in water).

Recently, anomaly detection techniques for CPS gained popularity as they
allow the identification of process anomalies caused by cyber-attacks while
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D. Gruss et al. (Eds.): DIMVA 2023, LNCS 13959, pp. 111–131, 2023.
https://doi.org/10.1007/978-3-031-35504-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35504-2_6&domain=pdf
http://orcid.org/0000-0003-2631-8829
http://orcid.org/0000-0001-8424-2602
https://doi.org/10.1007/978-3-031-35504-2_6


112 A. Erba and N. O. Tippenhauer

remaining legacy compliant. Different techniques were proposed in the litera-
ture to detect anomalies in CPS, system identification [3,9,19,29], Kalman fil-
tering [2], Support Vector Machines [8], Deep learning [16,22,28] and control
invariants [1,13]. Little is known about the resilience of those anomaly detec-
tion techniques against targeted manipulation, especially regarding classifier eva-
sion [4]. If an attacker evades the anomaly detection system to conceal the true
state and avoid or delay detection, can cause severe hardware damage or harm
human beings. Concealment attacks are a variant of evasion attacks, in which
evasion by sensor manipulation will not have a direct effect on the process [11],
and can be performed in white-box and black-box settings. We refer to white-
box and black-box to differentiate the knowledge of the attacker. A white-box
attacker has access to a copy of the anomaly detector, which can be queried
to get detection scores for a sample. A black-box attacker can not access this
information.

Prior work demonstrated that generic black-box concealment attacks on gen-
eral anomaly detectors are possible [12], but those limitations lead to attacks
that manipulate a large number of sensors, over many samples. It is unclear how
optimal those attacks are—we need a baseline to compare against. White-box
concealment attacks by a less constrained, more knowledgeable attacker could
provide such a baseline, but those attacks were only investigated for the specific
subclass of Deep Learning based anomaly detectors [11]. Thus, the threat posed
by white-box concealment attacks on general anomaly detectors is unclear, and
in particular, the minimal perturbation required to achieve misclassification (by
strong attackers) is unknown for each detector.

In this work, we bridge this research gap by addressing three research ques-
tions: R1 How resilient are anomaly detectors for cyber-physical systems against
white-box concealment attacks? R2 Can white-box attacks efficiently compute
manipulations at runtime? R3 How do the white-box attacks perform compared
to prior work black-box attacks?

To address the aforementioned research questions we tackle two research chal-
lenges: C1 The attacker manipulates dynamic streaming data, i.e., the attacker
cannot retroactively change past values, or predict future process sensor values.
C2 General detectors are not guaranteed to optimize a differentiable loss func-
tion for detection (in contrast to Deep Learning-based detectors). We address C1
by implementing and evaluating a method that manipulates only the current sen-
sors’ observations and show that it is still possible to minimize the detection func-
tion loss. We address C2 by proposing a method to re-write non-differentiable
classification functions as differentiable and hence allow concealment attacks.

List of Contributions. The main contributions of the paper are:

– Designing an effective general purpose white-box concealment framework for
anomaly detection systems.

– Formulation of loss-free detectors (i.e. process invariants), as loss-based.
– Evaluation of proposed white-box attacks with real testbed data against five

state-of-the-art anomaly detection systems.
– Comparison of the proposed white-box concealment with prior attacks.
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Table 1. Summary of anomaly detection families proposed in prior work in the context
of CPS. The table reports the approach used for detection and the detectors that we
analyze in our evaluation (� = no, � = yes). We skip DNN as it was analyzed before.

[19] [3] [9,29] [2,8] [16,22,28] [1,13]

Approach type AR SVD LTI SVM DNN Invariants

Classification Differentiability D D D D D N

Prior WBC analysis � � � � � �
Analyzed in this work � � � � � �

2 CPS: Background and Related Work

CPS Architecture. Cyber-physical systems encompass a wide spectrum of
applications [23]. The general CPS architecture consists of three main compo-
nents. Sensors: measure the physical environment; controllers: use the infor-
mation received from sensors and decide which actions to take; and actuators:
execute those commands.

CPS Security. Given the high degree of interconnections in a CPS, the overall
security of CPS deployments relies on trustworthy communication. In practice,
CPS systems are often deployed relying on protocols that do not implement secu-
rity features (such as authentication or encryption) e.g., Fieldbus [14], CAN [14],
or mavlink [21]. Communication protocols that promise security were introduced
for ICS, but in practice, there are challenges in deploying secure CPS [10].

Attacks to CPS. CPS are important for our society and they are a valuable
target of attacks [6]. Attacks on CPS occurred in the past. For example, attacks
to ICS and critical infrastructures e.g., Stuxnet [31] targeting nuclear plants, the
Colonial Pipeline attack [32] targeting gasoline pipeline and Oldsmar’s water
treatment attack [7] targeting a water facility. The common goal of attacks is to
physically or remotely exploit the CPS to cause process disruption.

Anomaly Detection for CPS. A number of process-based anomaly detec-
tion techniques were proposed in the literature. They leverage the characteris-
tics of the physical process to detect deviations in the process data caused by
attacks [6]. i) Residual-based approaches are trained to minimize a loss func-
tion (usually Mean Squared Error), between the expected and observed sensor
readings. To detect anomalies, the loss between input and output is monitored,
if it exceeds a threshold an alarm is raised. In this category, we find control
theoretic approaches e.g., Auto Regressive (AR) models [19] and Linear Time-
Invariant (LTI) models [9,29], and machine learning approaches e.g., Support
Vector Machines [2,8] and Deep Neural Networks [16,22,28]. ii) Invariant-based
approaches consist of rules that describe conditions that always hold in a given
state on the CPS [1]. Those rules are often written based on detailed process
knowledge [1,13].
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Fig. 1. System and attacker model, we assume a physical process that is controlled
by a controller and monitored by an anomaly detection system. The attacker wants to
hide an ongoing anomaly on the CPS. The attacker is aware that anomaly detection is
deployed and wishes to conceal the true state and evade detection.

Evasion Attacks Against CPS. In Adversarial Machine Learning, evasion
attack refers to the setting in which an attacker modifies a sample to induce mis-
classification in a classifier [4]. In the context of the Advanced Driver-Assistance
System (ADAS), several attacks were proposed e.g., against LIDAR [5], location
estimation [27]. In the context of CPS anomaly detection, white-box attacks
against Deep Learning models [11,33] were demonstrated. Also, generic black-
box evasion techniques were proposed [12]. Table 1 summarizes prior work in
the field of anomaly detection for CPS, and reports which models were analyzed
before for white-box concealment attacks. In this work, we focus on models pro-
posed in prior work but not analyzed so far against white-box concealment.

3 System and Attacker Model

We assume a Cyber-Physical System that is monitored by an anomaly detec-
tion system to detect anomalies (Fig. 1). The physical process is controlled by
one or multiple controllers, control commands u and sensor readings y are
observed by the anomaly detector and used for the detection. Consistent with
related work [11], we assume an attacker that has physical access to the CPS
e.g., the attacker can attach malicious hardware to the network, and perform
sensor spoofing exploiting communication protocol vulnerabilities (e.g., unau-
thenticated industrial protocols [14]) or performing attacks such as Man-in-the-
PLC [15] attack. The attacker has knowledge of the system and can query the
anomaly detector to obtain the predictions/classifications w.r.t. the current y
and u. The attacker’s goal is to launch a concealment attack to hide an ongoing
process anomaly in the system (i.e., conceal the anomalies caused by the attacker
on the process from the anomaly detection system).

The attacker can modify exchanged industrial traffic in transit, or compro-
mise intermediate hosts to change values being forwarded (yadv and uadv), in
Fig. 1. For example, in the Stuxnet attack [31] a compromised PLC was chang-
ing the rotation frequency of centrifuges of a nuclear process while reporting
the correct frequency value to the anomaly detection to hide the anomaly. We
measure the cost of the attack with respect to the number of features that are
manipulated using the L0 norm (independent of the modification amount, i.e. L2
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norm), as the effort is in compromising the communication channel, and at that
point, arbitrary values can be set [11]. In practice, we allow any perturbations
within the operational limits of the respective sensor or actuator [26].

3.1 Research Goals and Challenges

We address the three open research questions presented in the introduction.
While addressing the three research questions we tackle the following research
challenges: C1 The attacker manipulates dynamic streaming data on the fly,
which means that the attacker i) iteratively manipulates each value sequentially
without knowing future values in advance; ii) adapts the strategy according to
previous values stored in data logs without altering them. This is imposed by
the Cyber-Physical Systems, where the attacker is assumed to perform sensor
spoofing exploiting communication channels vulnerabilities. C2 Not all general
detectors are guaranteed to have differentiable loss functions (in contrast to Deep
Learning based detectors). Thus, we need a general technique to attack different
detectors even in absence of a loss function. For example, the detector [13] repre-
sents the current sample as a boolean vector (each element representing whether
a specific invariant was violated). For this reason, we cannot use gradient-based
methods (for example) to find optimal evasion samples.

Our main goal is to assess whether additional knowledge on detection mecha-
nisms (i.e. white-box attacks) allows the attacker to perform better compared to
black/grey-box attacks discussed in prior work [11,12]. This allows us to assess
the robustness of CPS anomaly detectors, i.e., the minimal number of commu-
nication channels (features) that need to be controlled by the attacker to avoid
detection.

3.2 Formal Definition of Concealment Attack

We now summarize the formal definition of the attack based on prior work [11].
Sensor and actuator values from a CPS are logged and used for anomaly detec-
tion. Given an anomalous feature vector x = (y, u) (i.e., sensors and actuators
readings) collected at a certain instant in time, a binary classification function
f(x) that classifies system state as ‘anomalous’ or ‘safe’, the concealment attack
looks for a feature perturbation δ that added to x produces target misclassifica-
tion (Eq. 1).

Given x = (y, u)
s.t. f(x) = ‘anomalous’

Find xadv = x + δ

s.t. f(xadv) = ‘safe’
(1)

where y ∈ R
n, u ∈ R

m, x ∈ R
n+m, xadv = (yadv, uadv), yadv = y + δy, δy ∈ R

n,
uadv = u + δu, and δu ∈ R

m.
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Fig. 2. Challenge C1. For each time slot, the attacker can only manipulate the latest
sensor reading without knowing future values. We note the attacker cannot retroac-
tively modify previous (manipulated or original) values. Eventually, the data considered
in the sliding window will exclusively process values that were manipulated before.

4 Proposed Approach

We design a generic white-box concealment attack for CPS anomaly detectors.
In this section, we start proposing the general framework that can be applied to
attack prior work anomaly detectors.

4.1 White-Box Concealment Attacks (WBC)

We translate the white-box concealment attack (WBC) objective (Eq. 1) into an
error minimization problem (Eq. 2)

minimize Lossxadv
(xadv, tc)

where tc = target class
(2)

Then, we induce targeted misclassification (to achieve the goal in Eq. 1)
inspired by the Fast Gradient Signal Method (FGSM) [18] proposed originally
for the domain of image manipulation.

δ = −ε ∗ sign(∇xLoss(x, tc)) (3)

Every anomaly detection method has a different classification function, and
consequently a different loss (if explicitly present), for this reason, this generic
method is suitable to be applied to different categories of anomaly detectors.

The perturbation in Eq. 3 is iteratively applied until the concealment attack
is successful and the detector no longer flags the anomaly (Eq. 1). Two attackers
can be considered in this setting (we will compare them in Sect. 6). The first
continue iterating until the objective (Eq. 2) is minimized, and the second con-
tinues until the classification label is changed, but the objective is not necessarily
minimized.

4.2 Attacking Detectors with Differentiable Classifiers

We now address the research challenge C1: on-the-fly manipulation of stream-
ing data (see Fig. 2). Residual-based anomaly detectors classify anomalies based
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Fig. 3. Challenge C2. WBC concealment against detectors without loss function.
Invariant-based detection works by checking whether the sensor readings satisfy the
invariant rules, without relying on predictive models (no loss function). To apply our
WBC attack, we re-formulate invariant-based methods as loss-based. We manipulate
the sensors and actuators readings according to the difference (loss) between the desired
state specified by the rules and the current state.

on the residual error between the sensors and actuators readings x and a pre-
dicted output value o from the anomaly detection classifier. That classification
is performed over a sliding window of past observed values (i.e., [xt−n, . . . , xt]).

In our scenario, the attacker can not simultaneously manipulate each value
in this sliding window (as it would require post-hoc change of data), only the
current sensor reading xt can be manipulated. This introduces a novel constraint
on the attack as the attacker has to minimize the residual loss acting on the last
observed sample, and cannot globally minimize the loss function. We account
for this additional constraint in our evaluation.

For example, to perform the WBC attack for residual-based detectors, we
model the residuals by using the Mean Squared Error loss (Eq. 4). Then, we
compute the partial derivative of the mean squared error w.r.t. x (Eq. 5) and
apply directly FGSM to it (Eq. 3).

Loss(x, o) =
1
2
(x − o)2 (4) ∇xLoss(x, o) = x − o (5)

4.3 Attacking Detectors with Non-differentiable Classifiers

Invariant-based anomaly detectors [1,13] classify anomalies based on the coher-
ence of the system sensors and actuators w.r.t. a set of process invariant rules.
When invariants are used, detectors check if some invariant rules are not fulfilled
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and raise an alarm consequently.

Given an invariant rule R: A → B

(read as: if A then B)
(6)

where A is the antecedent and B is the consequent of the invariant rule.
Antecedent and consequent of a rule, consist of a set of predicates over cer-
tain sensors and actuators (e.g., valve status = 1 and sensor value < 4). An
anomaly is identified if predicates in the antecedent A are all satisfied but not
all predicates in consequent B are satisfied.

This method does not employ a loss function. In order to evade such detec-
tors we need to consider the research challenge C2, i.e., we need to formulate
the invariant-based approach as a loss-based method. Specifically, to evade the
detector an attacker is required to modify the sensor readings in such a way that
the predicates in B are fulfilled1. In order to do so, we decompose the attack in
two steps (Fig. 3 provides a toy example of the method).

(i) Erroneous Predicates Identification. In the first step we identify which
predicates trigger the anomaly in B. To do so we perform the set difference
between the predicates in the rule R and the predicates observed in the system
P (Eq. 7).

R \ P (7)

Practically predicates are represented by Boolean conditions (i.e., boolean
vectors where the position represents a certain invariant and the value 1 or 0
represents if the invariant condition holds). We identify the predicate that does
not match the triggered rule performing the difference of such vectors.

(ii) Perturbation of Sensors Generating Errors in Predicates. In the
second step, for the predicates that are erroneous we need to perturb the data
related to that predicate to induce the change in the generated predicates. To
guide sensor reading perturbation we can consider the desired value (i.e., the
condition required by the predicate) of the erroneous predicates as our target
value. This step can be performed by substituting the desired value directly
in the sensor reading if the predicate is a direct equality or inequality over
the sensor value (e.g., sensor = 3). Otherwise, if the predicate aggregates more
information about a sensor reading (e.g., Gaussian Mixture Models over sensor
value updates), we formulate the problem as a Mean Squared Error minimization
as in Sect. 4.2, and compute the perturbation using Eq. 3 and using the loss as
in Eq. 4.

5 Implementation and Evaluation Setup

In this section, we provide details about the implementation setup, the target
anomaly detection systems, and the dataset used for evaluation. Based on the
1 Alternatively the attacker can deactivate a rule by violating one condition in A,

but this does not give guarantees about other rules that might be triggered by the
modification.
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categories of detectors identified in Sect. 2 and the analysis of prior work white-
box concealment attacks in Table 1 we selected the target detectors according
to three main criteria: (i) diversity of the detection technique (ii) not covered
by prior work studies on white-box concealment attacks (iii) code availability
for the detector. Our selection covers the research gap in the field of white-
box concealment attacks on CPS anomaly detection. We consider five differ-
ent anomaly detectors proposed in relevant prior peer-reviewed publications;
namely, Auto Regressive model [19], Linear Time Invariants [29], Support Vec-
tor Machines [3,8], Process Invariants [13], and for each, we apply our proposed
approach to achieve misclassification.

5.1 Attack Implementation and Hardware Setup

All experiments were performed on a laptop, equipped with Intel(R) Core(TM)
i7-8650U CPU @ 1.90GHz, and 16GB of RAM. Experiments were performed
either using Matlab 2019a, or Python 3.8.10 (depending on detector sources).

Implementation of the attack required: 201 lines of Matlab code for the AR
model [19], 249 lines of Matlab code for the LTI model [29], 287 lines of Python
code for the SVM [8] in this case we relied on the secml [25] library for gra-
dients calculation by creating a wrapper for sklearn OneClassSVM, 324 lines
of code for the PASAD detector [3], and 490 lines of code for the SFIG detec-
tor [13]. The code of our attacks is available at https://github.com/scy-phy/
whiteboxDimva23.

5.2 Auto Regressive Models

AR models are a popular method used to model time series processes using
linear equations starting from process data. Specifically, an Auto Regressive
model (Eq. 8), tries to minimize the prediction error of sample Xt given the
previous values (X0 . . .Xt−1).

Xt = c +
p∑

i=1

γiXt−i + εt (8)

where c is a constant, γi, . . . , γp indicates the parameters of the model and
εt is white noise. The parameters of the model are fitted using Yule-Walker
equations [20]. AR models were applied to perform anomaly detection in cyber-
physical systems [19,29]. The AR model is fitted starting from normal opera-
tions data, consequently, residuals observed during training are used to identify
some thresholds or to tune Cumulative Sum (CUSUM) statistics. At test time
the residuals are monitored to detect some deviations from expected behav-
ior. Availability. We relied on the re-implementation by Erba et al. [12] and
adapted it to work with SWaT dataset.

https://github.com/scy-phy/whiteboxDimva23
https://github.com/scy-phy/whiteboxDimva23
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5.3 Linear Time Invariant Models

Linear Time Invariant (see Eq. 9) models were applied [9,29].
{

sk+1 = Ask + Bqk

xk = Csk + Dqk
(9)

where k := kT and T is the sampling time. sk ∈ R
n is the state of the system,

i.e., the variables (directly or indirectly observable) of the process. qk ∈ R
p is

the input to the system. xk ∈ R
q is the output of the system. A ∈ R

n×n is the
state matrix, relates the state sk and its update sk+1. B ∈ R

n×p is the input
matrix, relates the system input qk and the state update sk+1. C ∈ R

q×n is the
output matrix, relates the state sk and the measured output xk. D ∈ R

q×p is
the feed-through matrix, relates qk and xk.

Similarly to the AR model system identification (n4sid algorithm [30]) is
applied to identify the LTI model parameters. Then the CUSUM algorithm
performs anomaly detection. We identified an order 4 LTI model for the SWaT
dataset. We use 22 sensors as input of the system, and the 3 tank level sensors
as the output of the model. Availability. We relied on the re-implementation
by Erba et al. [12] and we adapted it to work with the SWaT dataset.

5.4 SVM

We implement the SVM model proposed by Chen et al. [8], the proposed SVM
is trained on the water tank sensor readings (π,π′) measured at d timesteps from
each other. To apply their proposed method to the SWaT dataset which contains
exclusively benign samples in the training set, we switched to one class SVM
classifier. Following the guideline in the paper we performed a grid search to tune
the parameters of the SVM. The resulting model is OneClassSVM with linear
kernel, γ=0.01, ν=0.02. We also tuned the parameter d. With our experiments,
we tested d = 1, 10, 100, and 1000 s and found the best performance at 1 s.
We note that the simulator used in the original paper has a faster sampling
rate (5 ms) than the actual SWaT testbed sampling rate (1 s). Availability.
This detector was made available to us by the authors of [8] upon request. We
adapted it to work with the SWaT testbed dataset (originally it was proposed
for the SWaT simulator).

5.5 PASAD

The PASAD model proposed in the work by Aoudi et al. [3] is based on the idea
of Singular Value Decomposition (SVD) [17]. PASAD uses the time series data
and applies a sliding window to them. Using the sliding window data samples,
PASAD identifies a projection subspace where normal operations (i.e., the train-
ing data) sensor readings are projected to. Normal operations form a cluster in
the projection subspace. At test time, if anomalous sensor readings occur on the
system, the data points will be projected far away from the cluster obtained
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during training. The distance from the center of the cluster is used as a criterion
to detect anomalies. Availability. This detector is available online on GitHub2.

5.6 SFIG

The Systematic Framework for Invariant Generation (SFIG) method proposed
by Feng et al. [13], based on the idea of process invariants (see Sect. 2), proposes
a method to automatically find invariant rules starting from process data. The
rules are generated based on three sets of predicates: distribution driven pred-
icates, event driven predicates, and categorical predicates. Distribution driven
predicates are generated fitting a Gaussian mixture model of the system, while
categorical predicates are generated according to actuator states. Finally, event
driven predicates are generated by fitting some linear models to capture critical
values that trigger changes in actuator states. To perform anomaly detection, at
each time step, sensor readings are tested against all the rules in the collection
of identified rules. If a rule is not fulfilled an alarm is raised. Availability. This
detector is available online on GitHub3.

5.7 SWaT Dataset

SWaT [24] is a water treatment testbed located at the Singapore University of
Technology and Design. It consists of a six-stage process for water treatment.
Those six stages are controlled by interconnected PLCs, connected to Human
Machine Interfaces (HMIs), Supervisory Control and Data Acquisition (SCADA)
workstation, and a Historian. The SWaT dataset is a collection of data from 11
days of operations; 7 days were collected during the system in normal operation
while 4 days were collected while 41 attacks were launched on the system. We
rely on this dataset as it is commonly used in related research, notably, it was
used to evaluate all the detectors from prior work that we test in this work
against WBC.

6 Evaluation Results

In this section, we present the results of our evaluation. To answer to R1, we
applied the five aforementioned detection mechanisms to the SWaT dataset [24]
and attacked them with the proposed WBC. To answer R2, we verify the com-
putational runtime of the proposed approach and the cost of the perturbations.
Finally, to answer to R3, the results of the WBC attack methodology are com-
pared against the performance when no concealment was applied to the data,
and against the black-box attacks for CPS detectors [12].

For our proposed WBC attack we consider three variants. Namely, WBC
baseline, where the WBC attack is applied to every set of sensor readings labeled

2 https://github.com/mikeliturbe/pasad.
3 https://github.com/cfeng783/NDSS19 InvariantRuleAD.

https://github.com/mikeliturbe/pasad
https://github.com/cfeng783/NDSS19_InvariantRuleAD
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Table 2. WBC Attack on the AR model trained over SWaT sensor LIT301 (used as
reference in prior work [3]). The WBC attacks evade the anomaly detection system (see
original recall vs. WBC recall). μ indicates the mean, and σ the standard deviation. N
indicates how many rows were modified by the attack †Note: technically NaN as the
metric divides by 0.

Elapsed (ms) Euclidean D.

Data Acc F1 Prec Rec FPR μ σ μ σ N

Original 0.797 0.254 0.227 0.288 0.134 – – – – –

Prior Work [12]

Replay 0.775 0.088 0.086 0.091 0.131 – – 13.592 48.322 541

Random R. 0.832 0.501 0.389 0.702 0.151 – – 12.832 45.903 541

Stale 0.788 0.186 0.173 0.201 0.131 – – 17.341 55.804 522

Our WBC

baseline 0.858 (0)† 0.000 0.000 0.024 0.004 0.014 11.046 40.578 515

NTP 0.860 (0)† 0.000 0.000 0.022 249.36 148.77 2.081 24.563 74

NA 0.879 (0)† 0.000 0.000 0.001 171.11 71.7 5.092 30.485 258

as ‘anomalous’ as ground truth (i.e., the attacker is manipulating the physical
process), regardless if they are detected as anomalous or not. In this setting,
the attacker iterates until the objective (Eq. 2) is minimized. This is the same
setting considered by the attacks proposed by Erba et al. [12], and we use it for
comparison. No True Positives (WBC NTP), in this setting the WBC is applied
to every set of sensor readings labeled as ‘anomalous’, which is also detected
as anomalous by the anomaly detection system (i.e., physical anomaly correctly
detected by the anomaly detection system). Finally, we consider the No Alarms
(WBC NA), in this setting the WBC is applied to every set of sensor readings
that are detected as anomalous by the anomaly detection system (i.e., conceal
also false positives). In WBC NTP and WBC NA settings, the attacker iterates
until the label is changed.

We note that since there is the white-box assumption on the target detector,
the attacker is assumed to access the prediction of the detector. Moreover, since
the physical process manipulations are under the control of the attacker, the
attacker knows when the physical process anomaly is occurring on the system
(i.e., ‘anomalous’ ground truth in the SWaT dataset).

Evaluation Metrics. To assess the impact of the attack on the detection capa-
bility of the classifier we consider the following metrics: Accuracy, F1 score,
Precision, Recall, and False Positive Rate. In particular, the Recall score gives
us information on how the attack is capable of concealing the true state of
the system from the anomaly detector. Elapsed time is measured to assess the
mean computational overhead required by the WBC attack. Specifically, we mea-
sure average the time required to compute an adversarial example. Finally, we
measure the Euclidean distance (L2) between the original sample p and the
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Fig. 4. Comparison of AR detection before and after the WBC attack. The concealment
attack hides the anomalies in the process data. In the bottom figure (WBC NA) WBC
is applied to all the readings even if no physical attack is present, this removes not only
the True Positives but also the False Positives.

perturbed sample q to assess the perturbation required on the features by the
attack. Moreover, to evaluate the minimal number of features under the con-
trol of the attacker we compute the Hamming distance (L0), as the number of
sensors/actuators that were changed by the attack.

6.1 Auto Regressive

We apply the proposed approach to the AR detection model. In Table 2 we
present the results of the WBC attack and compare them with the result from
prior work black-box attacks [12], while Fig. 4 shows the impact of the WBC
over the CUSUM statistics.

The AR detector precision and recall drop to 0 after the attack, this means
that no more true positives are detected, and consequently, the F1 score becomes
not defined as we have a division by zero. This result means that the detector is
no longer capable of recognizing anomalies in the system. Looking at Fig. 4 we
can also observe the difference between the three attack approaches (baseline,
NTP, NA). WBC baseline brings the CUSUM error to 0 when the ground truth
label reports ‘anomalous’, this happens because the attacker iterates until the
loss is minimized. This is in contrast to WBC NTP and WBC NA for which the
attacker stops iterating as soon as the alarm threshold is not surpassed anymore.
Finally, we can notice the difference between the WBC NTP and WBC NA, the
WBC NTP (as the name suggests) brings the True Positives to zero, while the
WBC NA hides all the positives (both True Positive and False Positive).

Regarding the computational time, we observe that the WBC concealment
attacks required hundreds of milliseconds to compute (while SWaT sampling
time is 1 s). WBC baseline is sensibly faster because code optimization was
used. As in the WBC baseline, we care of loss minimization, and we attack
the AR model, we can achieve loss minimization in one step by selecting
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Table 3. WBC Attack on the LTI model trained over SWaT.

Elapsed (ms) Euclidean D. Ham. D.

Data Acc F1 Prec Rec FPR μ σ μ σ N μ σ

Original 0.962 0.815 0.987 0.694 0.001 – – – – – – –

Prior Work [12]

Replay 0.879 0.008 0.233 0.004 0.002 – – 69.60 210.7 53863 21.4 1.8

Random R 0.998 0.992 0.987 0.996 0.002 – – 69.58 210.53 53863 21.4 1.8

Stale 0.887 0.126 0.845 0.068 0.002 – – 66.05 211.53 53862 19.8 4.1

Our WBC

baseline 0.884 0.081 0.785 0.043 0.002 121.0 326.1 67.25 218.92 53863 2.9 0.3

NTP 0.885 0.087 0.831 0.046 0.001 32.9 22.9 59.41 208.37 37385 2.9 0.5

NA 0.885 0.087 0.944 0.046 0.000 87.8 46.4 59.89 208.95 37881 2.9 0.5

ε = ||∇xLoss(x, o)||2 in Eq. 3. For clarity, this is equivalent to changing Eq. 3 to
δ = −∇xLoss(x, o).

We compare the white-box concealment technique w.r.t. the black-box
attacks proposed by Erba et al. [12] (See Table 2). As we can observe the white-
box attacks outperform the black-box attacks in terms of concealment capability,
as the black-box attacks never conceal all the True Positives (i.e. recall greater
than 0). Finally, we can compare the Euclidean distances between the attacks.
As we can observe in Table 2, the average perturbation is always lower for the
WBC attacks w.r.t. prior work black-box attacks. This is because the white-box
setting optimizes the samples to be optimal w.r.t. the past observed process
data. This is instead impossible for black-box attacks. This can be observed by
looking at the number of modified values (N) in Table 2, which is always in favor
of the WBC NTP ad NA attacks. Since the AR model is univariate, we do not
report the hamming distance (it would be 1 in any case).

6.2 Linear Time Invariant

We apply the WBC concealment attacks to the LTI model. Table 3 reports the
results of our evaluation. The WBC concealment attacks evade the LTI detector,
and the detector recall drops from 0.69 to 0. We can observe the impact of the
NA attack that reduces also the number of False Positive Rate.

The required computational time of the WBC attacks is at most 120 ms,
which is lower than the sampling time of the SWaT system (1 s).

Also in this case the Euclidean Distance of the perturbed samples is lower
than in prior work attacks. Moreover, when looking at the Hamming Distance,
we can observe how the number of features to be manipulated decreases (2.93 vs
28.4). This happens because our WBC is constrained to manipulate the output
of the model xk but cannot operate on the input qk (see Eq. 9). This number tells
us that an attacker which controls 3 out of the 25 features used by the model,
can significantly reduce the classifier recall by reducing it from 0.694 to 0.046.
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Table 4. WBC Attack on the SVM model trained over SWaT sensor LIT101, LIT301,
LIT 401.

Elapsed (ms) Euclidean D. Ham. D.

Data Acc F1 Prec Rec FPR μ σ μ σ N μ σ

Original 0.931 0.689 0.754 0.634 0.028 – – – – – – –

Prior Work [12]

Replay 0.855 0.0 0.0 0.0 0.028 – – 87.13 266.40 53897 5.99 0.12

Random R 0.855 0.0 0.0 0.0 0.028 – – 87.45 266.03 53897 5.99 0.12

Stale 0.855 0.0 0.0 0.0 0.028 – – 84.52 269.66 53896 5.84 0.55

Our WBC

baseline 0.855 0.0 0.0 0.0 0.028 65.56 56.25 7.54 27.33 53934 5.99 0.07

NTP 0.855 0.0 0.0 0.0 0.028 103.84 33.13 7.54 27.33 34187 5.99 0.07

NA 0.880 0.0 0.0 0.0 0.000 107.22 61.49 10.71 36.74 45361 5.96 0.33

The number N is lower for WBC NTP and NA attacks when compared to prior
work, i.e. 37881 vs 53863. When we compare the evasion performance of the
attacks, we can observe that the WBC approach has comparable performance
to the Replay and Stale attacks in terms of reduction of the model recall.

6.3 SVM

Table 4 reports the results of the evaluation of the proposed attacks on the SVM
model. The proposed WBC concealment attack evades the SVM model and the
recall drops from 0.63 to 0 in all the considered settings. We can observe how the
NA approach differs by bringing the FPR to 0. The average computational time is
at most 107 ms, which is lower than the sampling rate of the SWaT testbed. Since
the detector is using the water tank levels measured at d timesteps of distance
(π,π′), we constraint the adversarial example to modify only π′ (3 features), this
is consistent with our challenge C1.

When comparing the WBC attacks to prior work generic concealment
attacks, we can observe that the Euclidean distance required by the WBC
attack is lower, as well as the number of perturbed samples by the NTP and NA
approaches. The Hamming distance remains almost the same, after d timestep
of continuous attack (in our case 1 step) all the features in (π,π′) are under the
control of the attacker (6 features).

6.4 PASAD

In this section, we attack PASAD with our WBC approach. The results of the
attack are summarized in Table 5. Also, in this case, the attacks are successful
and the performance of the detector is compromised, as the recall drops close
to 0 in all the three considered attacks. Differently from the previous case, the
recall does not reach exactly 0, this is because there are a few instances in
which the WBC is not reducing enough the distance from the PASAD cluster
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Table 5. WBC results on PASAD trained on SWaT Dataset sensor LIT301 (used in
the paper [3]). The WBC attacks evade PASAD. The WBC requires less than 4ms
to compute. The Euclidean distance is smaller when compared to prior work attacks.
Threshold 3 × 106.

Elapsed (ms) Euclidean D.

Data Acc F1 Prec Rec FPR μ σ μ σ N

Original 0.878 0.557 0.492 0.641 0.090 – – – – –

Prior Work [12]

Replay 0.822 0.118 0.145 0.100 0.080 – – 13.664 48.693 53859

Random R 0.819 0.083 0.106 0.069 0.079 – – 13.341 47.829 53852

Stale 0.899 0.617 0.563 0.681 0.072 – – 17.356 56.065 52013

Our WBC

baseline 0.825 0.039 0.057 0.03 0.067 2.31 1.84 12.92 48.716 40962

NTP 0.818 0.008 0.011 0.006 0.072 3.91 7.95 8.265 94.526 24842

NA 0.870 0.004 0.025 0.002 0.012 2.6 2.44 10.431 48.302 33369

center. Similar to the previous experiment, we can see the difference between
the baseline, NTP, and NA approaches. Again we can observe how the FPR rate
reduces in the case of the NA setting. This time it reaches 0.012 meaning that
there are few false positives.

Looking at the computational time required, the WBC algorithm finds the
adversarial examples in 2.3 ms which is lower that the SWaT sampling time of 1 s.
In this case, optimizations cannot be performed in the baseline setting. PASAD
projects the univariate sensor readings into a subspace and tracks the distance of
the projected time series form the centroid of the normal operations cluster. As
explained with the research challenge C1, we assume we cannot change the whole
time series sliding window but we manipulate just the last observation from the
coming from the physical process. For this reason, the attack evades the detector
by changing one sample at a time. Eventually, if the attack continues, all the
samples in the sliding window are under the control of the attacker.

Finally, if we compare the performance of the white-box attacks w.r.t. black-
box attack from prior work [12], we can observe that also in this case the WBC
attacks are more effective than the black-box attacks in terms of concealment
performance as the WBC recall score is always lower than in the case of the three
attacks black box attacks from prior work. Looking at the Euclidean distance
(Table 5), we can observe that the WBC attacks are on average less expensive
than the black-box attack. Looking instead at the number of modified rows (N)
we can observe that the WBC attacks are always less expensive than prior work.

6.5 SFIG

We then apply our attack method to the SFIG detector (see Table 6). In this set-
ting, the WBC baseline and NTP coincide, because the invariant-based detector
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Table 6. Attack against the SFIG detector on the SWaT dataset. The WBC baseline
and NTP coincide because in invariant-based detectors alarms can be triggered only if
rules are contradicted.

Elapsed (ms) Euclidean D. Ham. D.

Data Acc F1 Prec Rec FPR μ σ μ σ N μ σ

Original 0.958 0.793 0.950 0.681 0.005 – - – – – – –

Prior Work [12]

Replay 0.876 0.000 0.004 0.000 0.005 – – 69.60 210.70 53863 28.4 5.3

Random R 0.893 0.240 0.797 0.141 0.005 – – 69.58 210.53 53863 28.4 5.3

Stale 0.881 0.080 0.544 0.043 0.005 – – 66.05 211.53 53862 27.4 8.4

Our WBC

base./NTP 0.876 0.003 0.040 0.002 0.005 256.2 34.5 0.136 0.459 36704 2.8 0.5

NA 0.880 (0)† 0.0 0.0 0.0 354.3 264.6 0.141 0.465 38643 2.8 0.6

triggers only when rules are contradicted (i.e., there is no loss to minimize). In
this experiment, we consider attacks that deal with the 51 features of the SWaT
dataset, as the detector considers them all together.

Also in this setting, the detector was evaded by the attacks reducing the
performance of the detector from 0.68 to 0 in both cases. Also here we can
appreciate the difference induced in the false positive rate in the two attack
settings, the NA setting leaves no false positives.

In the WBC baseline/NTP, we notice that the recall is not 0.000, this is
because we noticed that there is an artifact in the detection rules which causes
a contradictory set of rules. This means that applying our attack to fix the
data to turn off the alarms, triggers another rule in contradiction. This makes
it impossible to turn off the alarm in a row of data.

Looking at the computational time required by the attacks in this case, we
are in the order of 200/300 ms which is lower than the SWaT sampling time.
Regarding the Euclidean distance, from Table 6 we can observe that the WBC
attacks are less expensive than the attacks from the black box attacks from prior
work, the proposed WBC attacks are always 2 orders of magnitude closer to the
original values, meaning that features need to be slightly modified to achieve the
goal. Also, the number of modified rows N (as in the previous experiments) is
smaller. In this multivariate setting, we can also measure the number of features
that were modified by the attack (i.e., the Hamming distance). As we can observe
in Table 6, out of the 51 features in the SWaT dataset, WBC attacks modify on
average 2.8 features (maximum 7 features out of 51), while prior work attacks
modify on average ∼30 features (maximum 37 features out of 51).

Finally, if we compare the performance of the WBC w.r.t. attacks from prior
work [12], we can observe that on one hand, the WBC NTP have a similar
performance to Replay and Stale attacks from prior work, but on the other
hand, as we pointed out before the WBC NTP is overall cheaper in terms of
features that are modified by the attack.
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Table 7. Summary of findings on our white-box concealment attacks. ‘# Manipulated’
refers to the number of features that needed to be manipulated by the attacker.

Method Attack works # Manipulated Computational Cost ≤ 1 s

AR ✓ 1/1 249 ms

LTI ✓ 3/25 120 ms

SVM ✓ 3/6 107 ms

PASAD ✓ 1/1 4 ms

SFIG ✓ 3/51 360 ms

7 Discussion and Conclusion

In this section, we discuss the answers to our research questions. In Table 7 we
summarize our findings. With respect to question R1, we tested three variations
of the proposed WBC attacks, over five different anomaly detection systems.
To do so the attacker has to deal with challenge C1 (i.e., manipulate only the
last sensor value) and with challenge C2 (i.e., transform to differentiable detec-
tors which do not use a loss function). As a result, we found that the evaluated
detectors are vulnerable to white-box concealment attacks, i.e., for all the tested
detectors, the recall score drops to 0 or very close to it. This result demonstrates
that the proposed attack methodology can affect a wide range of anomaly detec-
tors for cyber-physical systems, affecting their detection performance with often
little perturbation of the sensor data (in terms of Hamming and Euclidean dis-
tance). Our analysis reveals that only a low number of resources need to be
under the control of an attacker to subvert the classification outcome of the tar-
get anomaly detector. For example, for the LTI and the SFIG, our results show
that is enough to control ∼3 features of the multivariate detector to conceal
attacks.

With respect to research question R2, we measured the time to compute the
adversarial examples (worst case ∼350 ms), and we found that runtime manip-
ulations are possible, as it is possible to compute manipulations faster than the
system’s sampling rate of the SWaT system (1 sample per second). We note that
temporal constraints for adversarial examples are not generally investigated by
related adversarial machine learning literature, as in other domains adversarial
examples can be pre-computed (for example in the image classification domain)
and do not need to be adapted based on the context.

Concerning research question R3, we compared the proposed attacks with
black-box attacks from prior work [12], in particular in terms of concealment
performance and Euclidean distance. We found that our proposed WBC attacks
are more effective (e.g., F1 score of the PASAD model is always lower in the
WBC attack 0.039 vs 0.083 from prior work). Moreover, in general, our attacks
require less manipulation than prior work attacks, (e.g., the Euclidean Distance
in the SFIG case is 0.136 vs 66.05 from prior work, same the holds for the
Hamming distance WBC 2.81 vs 27.41 from prior work).
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Our results demonstrate that it is possible to evade a wide range of detectors
while reducing the number of samples that need to be manipulated (compared to
prior black-box concealment attacks). Those findings highlight the need for further
research and constructive discussion about guarantees for CPS anomaly detec-
tors against adversarial manipulation. As such we see our contribution toward the
robustness and reliability of CPS detectors against adversarial examples.
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Abstract. Computer numerical control (CNC) machines are extensively
used in production plants and are considered a crucial asset for organi-
zations worldwide. These machines require unique controllers that differ
from those used in other types of machine tools in terms of software archi-
tecture, protocols, and design, so to meet the high precision and accuracy
demands of their applications. The growing adoption of network-enabled
systems in the industrial domain, driven by Industry 4.0, has resulted
in an increased use of CNC machines. These machines have evolved
from traditional mechanical machines to full-fledged systems with mul-
tiple networking services for smart connectivity. This study investigates
the risks associated with this technological development. Using actual
machine installations, we conducted the first empirical evaluation of the
privacy and security implications of Industry 4.0 in the CNC domain.
Our findings revealed that malicious users could conduct five types of
attacks: compromise, denial-of-service, damage, hijacking, and theft. We
reported our findings to the affected vendors and proposed mitigations
to manufacturers, integrators and end-users. Our work aims to provide
an opportunity to increase awareness in a domain where security does
not appear to be a priority at present.

1 Introduction

In the past decade, there has been a significant rise in the popularity of network-
enabled systems, even for devices that were historically not designed to offer such
capabilities. This trend has been particularly evident in the industrial domain,
where various types of network-enabled systems are widely used to support mod-
ern manufacturing processes.

The development of devices such as industrial gateways, computer numerical
controls (CNCs), industrial robots, and autonomous vehicles for logistics has
led to new industrial models that follow the general paradigm of Industry 4.0,
driving manufacturing companies towards networked shop floors. While connect-
ing modern machine tools to wide networks, including the Internet, presents an
important opportunity for creating new business intelligence through the col-
lection and analysis of production data, it also poses potential threats to the
security and privacy of organizations.
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CNC machines play a fundamental role in the manufacturing industry
because they are the building blocks of the mechanical processing of pieces.
In a manufacturing line, a variety of systems cooperate, such as robots or other
support systems (like control servers), but CNCs are responsible for the mechan-
ical processing of the pieces through drillers, lathes, or cutters. Industrial robots,
on the other hand, are used for auxiliary operations such as material handling,
palletizing, or as soldering stations.

CNC machines require unique systems that differ from other machine tools,
not only in terms of software architecture and protocols but also in their overall
design, to meet the specific demands of precision and accuracy required by their
applications. While under the hood, CNC machines still rely on well-established
mechanical automation routines, they are also equipped with unique solutions
specific to their domain, such as advanced software algorithms and specialized
hardware components. These domain-specific functionalities set modern CNCs
apart from traditional machine tools and enable them to achieve higher levels
efficiency in manufacturing processes.

For this reason, we believe that CNC machines are a key element in analyzing
the security posture of the manufacturing ecosystem. As far as we know, we are
the first to conduct a comprehensive analysis of the security issues related to
this specific technology and demonstrate potential vulnerabilities in practice.

In short, the contributions of our work consist of the following:

– We investigate the security and privacy of CNC machines in Industry 4.0.
To the best of our knowledge, we are the first to conduct a depth empirical
analysis in this direction.

– We conduct an extensive security assessment of the technologies offered by
modern CNCs by making use of the controllers provided by four large repre-
sentative vendors.

– We perform threat modelling and report problems resulting in five attack
classes: compromise, damage, denial-of-service, hijacking and theft.

– We communicate our findings to the affected vendors, we propose mitigations,
and do our best to raise awareness in this domain.

2 Background

A CNC machine is a machine tool developed to transform the geometry of raw
material through machining, a process through which a material (be it metal,
polymer, or otherwise) is cut until it reaches the desired geometry through a
controlled process. This process is carried out through the aid of cutting tools
and is achieved using a controller, which, together with the mechanics of the
machinery, constitutes a numerically controlled machine tool. The main benefit
of this addition lies in the possibility of the machine to operate process phases in
an unattended way and to use the computing power of the controller to create
complex geometries with high degrees of precision.

CNC machines are programmed in G-code (RS-274 [1]). This language resem-
bles Basic programming: it is presented as a series of instructions initialized by
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Fig. 1. Examples of simulator and machine.

a letter address, which follow one another on successive lines separated by para-
graph breaks; each of these lines is called block. Each letter address specifies the
type of movement or function called by the user in that part of the program.
Over the years, concepts that we now consider basic in programming languages,
such as loops, macros, and object programming, have also been introduced in
machine language, and numerous examples of conversational or guided languages
have been included to facilitate CNC operations.

While G-code is, still, the standard for programming CNC machines, engi-
neers nowadays tend to rely on CAM software1 to translate architectural draw-
ings (of the parts to be produced) into software programs. Such programs are
then ran on controller simulators before being deployed in production lines.
Figure 1a shows one of these simulators, which can be either physical (like in the
photo) or software (e.g., in form of virtual machine). Despite this difference, con-
troller simulators implement the same logic of a real-world CNC machine (ref.
Fig. 1b) – in fact, the software running on such simulators is normally the same
as the one on the machine, despite the hardware peripherals being virtualized
e.g. the motors used to move the machine’s axes.

3 Approach

The manufacturing and deployment of a CNC machine can be modeled as a
supply chain process, where a controller manufacturer produces and sells con-
trollers to multiple machine manufacturers. The machine manufacturers, using
1 Computer Aided Manufacturing.
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the controllers, develop CNC machines such as lathes, and make them available
to resellers, integrators, and end-users.

There are two considerations to make: firstly, any security issues or vulnera-
bilities introduced by the controller manufacturer at the beginning of the supply
chain will be propagated throughout the entire chain, along with any technolo-
gies or software used by the controller. Therefore, by examining the controller,
we can gain a wider perspective on the adoption of such technologies and any
related issues throughout the supply chain.

Secondly, the number of controller manufacturers on the market is much
smaller than the number of machine manufacturers, with a single controller
typically being used to build dozens of CNC machines. This is important for our
goal of evaluating the security of CNCs, as it means we can focus on a smaller
number of manufacturers that represent a significant portion of the market.

Our investigation begins by identifying a set of representative, large controller
manufacturers on the market. We proceed by selecting those players that have
a worldwide reach, are on the market since tens of years, are widely known
in the industrial domain, or have developed technologies widely used in this
industry. All selected manufacturers develop controllers used on machines we
have access to2. This is important for us because we want to conduct an empirical
study, showing that our concerns have practical implications. Table 1 provides
a summary of the selected manufacturers and their respective controllers and
machines that we used for testing.

Our analysis consists of the following process:

– We conduct threat modelling, by presenting the scenarios in which a miscreant
would be able to target a CNC machine and discussing the impact of such
attacks.

– We identify the technologies introduced in the CNC realm to adhere to Indus-
try 4.0. They encompass protocols and services used to connect the machines
to smart environments, for example to share the production information with
centralized systems for better management and cost reduction. They also
enable remote management, for example, for an operator to change the exe-
cuted program or configure the tooling.

– We conduct a first coarse-grained security assessment, for example using vul-
nerability scanners to identify potential known vulnerabilities or misconfig-
urations in such services. Note that the focus of our research is on domain-
specific technologies, i.e. we ignore those problems related to generic software
(like Windows services).

– We then go deep into the CNC technologies previously identified, by analyzing
the risks of abuses and conducting practical attacks on the controllers. For
this, we develop attack tools that leverage the weaknesses that we identified.
We make use of both proprietary documentation and APIs we were given
access to.

2 The machines are located in different facilities: in Celada, MADE Competence Cen-
ter, or the Department of Mechanical Engineering of the Polytechnic University of
Milan.
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Table 1. A summary of the selected manufacturers and their respective controllers
and machines used for testing.

Vendor Haas Okuma Heidenhain Fanuc

Country US Japan Germany Japan

Year of
establishment

1983 1898 1889 1972

Estimated size More than
US$1B revenue
and 1,300
employees (2018)

US$1.41B
revenue and
3,812
employees
(2020)

US$1.3B revenue
and 8,600
employees (2020)

US$4.18B revenue
and 8,260
employees (2020)

Market Controllers and
machines for all
markets

Controllers
and machines
for all markets

Controllers Controllers and
simple machines

Simulator 100.19.100.1123 OSP-P300S TNC 640
Programming
Station
340595V.10.00.04

Not used

Controllers 100.20.000.1110 P300MA-H TNC 640 31iB5 iHMI and
32i-B

Machines Super Mini Mill Genos
M460V-5AX6

Hartford 5A-65E Yasda YMC
430+RT10 and
Star SR-32JII

Types 3-axis vertical
machining center

5-axis vertical
machining
center

5-axis vertical
machining center

5-axis vertical
micro machining
center and Swiss
lathe

– We collect evidence of our concerns and collaborate with the affected vendors
in suggesting mitigations.

3.1 Threat Modelling

CNC machines are commonly installed in manufacturing networks. These net-
works, often referred as OT networks, are standalone networks that traditionally
were not in communication with corporate (IT) networks. However, in modern
factory plants, CNC machines communicate with external servers for enabling
remote machine programming or process monitoring. These machines are, for
example located in corporate networks reachable via industrial gateways or
mobile networks. Mobile operators offer connectivity to CNC machines via Inter-
net while industrial gateways act as bridges between OT and IT networks. To
confirm these trends, in the preliminary phase of our research, we conducted an
interview with experts on the fields (e.g. suppliers and installers of machines)
who confirmed these claims.

We model the attacker as following:

– A remote attacker who has access to the OT network. This attacker could
be an insider with direct access to the OT network where the CNC machine
is installed, or an attacker with a presence in an enterprise with missing or
wrongly configured network segmentation that exposes the CNC machine.
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– A remote attacker with access to the IT network. The attacker gains access
to the CNC machine by pivoting from the IT network, potentially exploiting
misconfigurations or vulnerabilities in the industrial gateway connecting the
IT and OT networks. Previous research has shown that such devices are
vulnerable to several types of attacks [2]. Alternatively, the attacker could
pivot from the server that communicates with the CNC machine.

– An Internet-based attacker. In this scenario, the attacker conducts the attack
from the Internet. Unfortunately, CNC machines are sometimes left exposed
to the Internet for remote monitoring or due to misconfiguration. We con-
ducted an analysis of this type using a large-scale scanner (ZMap) and found
evidence of exposed machines. However, we did not connect to these machines
for ethical reasons.

– A remote attacker who communicates with the machine operator. In this
scenario, the attacker social-engineers the operator, for example, via email,
persuading him to install a CNC add-in, as we discuss later.

In this threat model, we should also consider the possibility of an attacker
with physical access to the machine. However, for the purposes of our research,
we chose to focus solely on remote attackers and did not include this particular
scenario.

An attacker who fits within our threat model would be capable of carrying
out all five attack classes outlined in the rest of the paper.

3.2 CNC Technologies and Related Problems

All the controllers we considered provide various technologies that can integrate
CNCs into modern digital shop floors. These technologies enable automatic data
exchange with acquisition systems, enterprise resource planning (ERP) systems,
CAM software, digital twin solutions, and tool management systems. Since these
technologies are typically proprietary and designed specifically for CNCs, they
require a thorough and specialized analysis to fully understand their security
implications.

For example, Haas Connect3 is a cloud service offered by Haas to monitor a
machine remotely. With Haas Connect, an engineer can monitor the production
information of the machine, knowing how many parts are produced over time,
or being informed if any alert occurs. Many of these technologies are included
by default in the controller, while others are offered on demand and need to be
purchased in addition. However, we observed that most of the customers prefer
purchasing machines equipped with all technologies for many reasons like the
fiscal incentives offered by several countries on buying these “smart technolo-
gies” or the clear advantages in having machines that can be centrally managed
and monitored. In our research, we decided to focus on those technologies that
are included by-default in the installations (second column), with the addition
of THINC-API for the reasons explained later. OPC-UA was not taken into
consideration because rarely available.
3 https://www.haascnc.com/productivity/control/haas-connect.html.

https://www.haascnc.com/productivity/control/haas-connect.html
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Table 2. A summary of Industry 4.0 technologies adopted by manufacturers.

Vendor Default Technologies Optional Technologies

Haas MTConnect, Haas Connect, Ethernet Q Commands NaN

Okuma NaN THINC-API , MTConnect

Heidenhain RPC and LSV2 (DNC) OPC-UA

Fanuc Focas OPC-UA , MTConnect

MTConnect4 is an effort to standardize the different protocols used in the
industrial domain to collect machinery data. The goal is indeed to provide guide-
lines for converting old and proprietary information to a common language; this
will help organizations to handle machine tools from different brands in an eas-
ier form. Along with our evaluation, we confirmed that 3 of the tested vendors
support MTConnect, in particular Haas provides such feature on all default
installations. In our analysis, we investigated the data that an attacker could
infer (or leak) from a machine exposing MTConnect over the network. A com-
mon scenario is, for example, the number of parts that are produced, together
with the associated program. In other cases, an attacker can infer the source code
of the executed program by repeatedly querying the MTConnect agent installed
on the machine as we show later.

Despite the standardization effort around MTConnect, proprietary protocols
are confirmed to be the majority, with one of these being Haas’s Ethernet Q
Commands5. With this protocol, a user can query information from a controller
(for example the machine’s model, the tooling configuration, or the number of
produced parts) or set (program) variables needed for a program to execute. In
the following Listing, few examples are given:

?100: Query the Machine’s Serial Number
?Q402: Query the Parts Counter #1 (number of produced parts)
?Q600 10000: Read the value of variable 10000
?E10000 123: Write the value 123 into the variable 10000

This service is useful in making a machine reachable remotely and enables
manufacturing automation; however, it may also expose the machine to potential
threats. This is, indeed, the case suggested by our analysis. In fact, even if the
documentation reported that only a limited range of registers could be written,
namely those ones related to program variables (i.e., 10000-10999), this was not
the case. As we describe later in the paper, our experiment confirmed that such a
lack of access control allows a miscreant to conduct attacks like denial-of-service,
hijacking, or damage.

Heidenhain offers so-called DNC interface6, which is implemented with two
protocols: RPC and LSV2. The first is a proprietary protocol operating on
4 https://www.mtconnect.org.
5 https://www.haascnc.com/service/troubleshooting-and-how-to/how-to/machine-

data-collection---ngc.html.
6 https://www.heidenhain.com/products/digital-shop-floor/connected-machining.

https://www.mtconnect.org
https://www.haascnc.com/service/troubleshooting-and-how-to/how-to/machine-data-collection---ngc.html
https://www.haascnc.com/service/troubleshooting-and-how-to/how-to/machine-data-collection---ngc.html
https://www.heidenhain.com/products/digital-shop-floor/connected-machining
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TCP/19003. Heidenhain uses the generic name of RPC (remote procedure call)
for a protocol allowing a remote peer to call a remote interface’s method on
the CNC. The second is a standardized protocol used by certain vendors. While
it is not as famous as other technologies, it is used and documented to a cer-
tain extent. PyLSV2 is, for example, a Python library for implementing a LSV2
compatible client.

In our evaluation, we obtained access to the RemoTools library provided
by the manufacturer to the integrators in order to develop interfaces for the
controller. A miscreant having access to this library is facilitated in implementing
a malicious client for hijacking the operation of the CNC machine, or stealing
confidential data. Note that the same attacks could be developed with public
libraries as well, for example for LSV2. The controller offers the possibility to
enable network authentication on the DNC interface for both RPC and LSV2.
The authentication is implemented in form of SSH tunneling, which is very
convenient because the controller runs on top of Linux. This option, which needs
to be voluntarily enabled by the integrator or the end-user, is a good solution
to the problems that we identified and that we discuss later in the paper.

Fanuc offers an equivalent technology called Focas7. Even though Focas offers
a restricted set of remote-call possibilities compared with the other vendors
(that is, a limited number of management features), our experiments showed
that a miscreant can still conduct attacks like damage, DoS, and hijacking.
This is an important issue because, unfortunately, authentication was introduced
only recently (in 2020) and only as a non-default option - according to our
communications with the vendor. This new version allows to configure an eight-
digit code to be used as authentication token. This is achieved by setting the
controller’s global parameter 10344 to the desired code. By default, this value is
set to 0 (no authentication).

Okuma stands out from the controller market for one interesting feature: the
modularity of its controller. In fact, while the vendor offers in its simplest form
a limited controller, it also provides a mechanism (called THINC-API) to highly
customize its functionalities. With this technology, anyone can implement an
add-in that - once installed - runs in the context of the controller, in the form
of extension. Applications developed with THINC-API are commonly offered
by integrators and resellers to their customers, and can be made available to
3rd-parties via the Okuma’s app store8 for easier distribution.

Given the prevalence of this technology, we conducted a dedicated assessment
in the hope to better understand the potential impact of this technology despite
not being provided as default option. Unfortunately, our analysis highlighted
that simple security mechanisms that are nowadays very common like resource
access control are not yet supported. As a result, if a miscreant manages to install
a malicious application, she will be able to access all controller’s information and
to tamper with its behavior. There are several paths that a miscreant can take

7 https://www.fanuc.eu/it/en/cnc/development-software/focas-development-
libraries.

8 https://www.myokuma.com/.

https://www.fanuc.eu/it/en/cnc/development-software/focas-development-libraries
https://www.fanuc.eu/it/en/cnc/development-software/focas-development-libraries
https://www.myokuma.com/
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for such installation, for example by compromising the machine or using social
engineering techniques. A malicious user could also upload the application to the
app store, for example by hiding the malicious functionalities around legitimate
ones, and lure her victim to download and install it. Note that we did not conduct
this experiment for legal reasons. In our experiments, we managed to compromise
the controller under test via a well-known system vulnerability (MS10-61) so as
to install our application without notice. The malicious application we developed
for testing mimicked a bot reaching out to the attacker via a call-back, and
waiting for commands to be prompted to the backdoored CNC.

4 Findings

Our research reported issues common to many of the controllers under exam.
We provide the summary of our findings and discuss their security implications.

First of all, the controllers we analyzed are equipped with either obsolete and
legacy software, or software encompassing a large number of known vulnerabil-
ities. Although this issue is well-understood in the ICS realm, and we were not
surprised to run into obsolete software, we would have expected that machine
tools like CNCs – that can easily cost a million dollar – would come with auto-
updating mechanisms or, at least, mechanisms to inform the end-user of a need
for an update. This is especially true in the context of Industry 4.0, in which
machines tend to be normally connected to the network.

Second, several networking technologies do not support authentication, or do
not have authentication enabled by default. In particular, only DNC and Focas
have support for authentication, while MTConnect, Ethernet Q and THINC-API
not have (note that THINC-API is a corner case because is exposed only locally).
This issue is very severe because offers to any malicious user the possibility to
abuse of the unauthenticated services.

Third, resource access control is lacking on most of the architectures of the con-
trollers: A user (or a process) is often given full access to any system’s resource,
including its file-system or memory locations. For example, an application written
on top of THINC-API will have full access permission to any system’s resource
including the internal controller configurations; with Ethernet Q, a remote user
can write to memory locations mapped outside of the running process.

Fourth, the monitoring services expose a large amount of information. On
one side, this is expected because those services have been, as said, introduced
to make CNC machines compliant with Industry 4.0 paradigm. However, the
information can be abused by a miscreant, especially given that authentication is
often not available. In our experiments, we confirmed that all analyzed controllers
suffer from data leakage problems resulting in confidential information being
exposed to 3rd parties (e.g. programs code).
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Table 3. Summary of the attacks identified in our research.

Attack Class Attack Name Haas Okuma Heidenhain Fanuc Total

Compromise RCE � � � 3

Damage Disable feed hold � 1

Disable single step � � 2

Increase tool life � � � 3

Increase tool load � � � 3

Change tool geometry � � � � 4

Decrease tool life � � � 3

DoS Decrease tool load � � � 3

Change tool geometry � � � � 4

DoS via parametric program � � � � 4

Trigger custom alarms � � 2

Ransomware � � � 3

Hijacking Change tool geometry � � � � 4

Hijack parametric program � � � � 4

Program rewrite � � � 3

Theft Leak production information � � � � 4

Leak program code � � � 3

Screenshot � 1

Total 15 14 15 10

4.1 Impact

Overall, as depicted in Table 3, our evaluation identified 18 attacks (or attack
variations) that we grouped into five attack classes: compromise, damage, denial-
of-service, hijacking, and theft9.

Among the different controllers that we tested, we observed a consistency
in the number of problems: Haas, Okuma and Heidenhain yielded a similar
amount of issues (15), with Fanuc having 10 attacks confirmed. This is a symp-
tom that security does not seem to be a priority for controller manufacturers.
This, together with the possibility of CNC machines being misconfigured and
exposed to corporate networks, or worse to the Internet, creates serious and
compelling problems.

Considering the same table on a line-by-line basis, the scenario is not better.
Among all attacks, only two are confirmed to apply to a single vendor only (i.e.,
disable feed hold and theft via screenshot). On the other hand, six attacks are
confirmed on all vendors.

9 When an attack is reported multiple times is because it consists of variations of the
same attack. For example, “change tool geometry” can be leveraged to achieve dam-
age, denial-of-service, or hijacking; this depends on which geometries are changed,
the type of machine and the manufacturing process. Vice-versa, distinct attacks can
conduct to the same goal. For example, an attacker can take control of the pro-
duction of an exposed CNC by hijacking a parametric program, by modifying the
geometry of a tool to introduce a micro-defect, or by changing the executed program.
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Features like the configuration of the geometry of the installed tools, or the
modification of the variables used by a parametric program with values supplied
via network are automation-facing options, needed when dealing with complex
automation and unsupervised process. Although these requirements are nowa-
days more common in manufacturing, vendors do not seem to take into account
unwanted consequences of these features, thus raising concerns about security.

Compromise. The first class of attacks consists of issues that result in a com-
promise of the CNC machine. While the focus of our research is limited to
domain-specific problems, we also conducted a general assessment of the secu-
rity posture of the controllers under analysis, including the simulators. For this,
we used standard vulnerability assessment tools like Nessus with the aid of man-
ual analysis and inspection.

Our experiments confirmed that several CNCs were prone to compromise
at different levels including obsolete software or operating systems, weak OEM
passwords or service credentials, enabled jumpers that allowed firmware extrac-
tion. Considering that our tests were conducted on CNCs ready to be delivered
to the end-users, this reveals a general lack of awareness with respect to security.

Damage. This class of attacks consists in damaging either the machine (or
part of the machine, such as the tool or the spindle), or the part in production.
CNCs are costly machines, with prices ranging from a few thousand to millions
of US dollars, so damage is an important issue. Not only is the damage to
be considered in terms of breakage of machinery components, and therefore
the economic burdens on the end-user, but some interventions to replace the
damaged elements also require procurement of complex assemblies, with logistic
times usually on the order of weeks or months. Furthermore, the replacement
interventions of these components require days of work and a phase of zeroing
of the geometries of the machine tool (for example, the setup of the axes), thus
introducing, in addition to the monetary cost, an impediment in terms of use of
the machine for varying times.

We identified five attacks that could lead to damage. Due to the lack of space,
this paper will present two of them.

Feed hold is a functionality that enables an operator to pause the execution
of a machine, by stopping the feed axes, for example, to inspect the part in
production during a program run. In our experiments, we confirmed that one
vendor, Haas, is vulnerable to an attack in which a malicious user can remotely
disable the feed hold while being used: an operator pressing the pause button of
the machine will not be able to pause the manufacturing. For this vendor, the
attack involves abusing the lack of authentication and access control on Ethernet
Q to set the global variable 3004 to 7.

Another attack consists of tampering with the geometry of the tools. Each
tool used by a CNC needs to be measured in any of its fundamental geometric
quantity, depending on the type of machine and manufacturing process. A cor-
rect measurement is a must in computing the quotes for working a part within
tolerance. In addition to that, any manufacturing process consumes the tool, for
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example, by reducing the overall geometry of the cutting edge. To address this
need, a parameter called wear is used as a form of compensation. For example,
in the case of a vertical milling machine used to drill holes in a raw part, a
negative wear causes the column to crash into the part with damage on the tool
or the spindle. Unfortunately, we found that this attack successfully works in
all its variations and on all manufacturing controllers, including simulators and
real-world installations as we demonstrate in Sect. 5.

Denial-of-Service. Miscreants are often interested in sabotaging the opera-
tions of a targeted organization, such as a competitor or a generic victim they
can profit from, for example, by demanding a ransom to restore the normal
functionalities. With DoS, we mean all attacks aimed at disrupting the manu-
facturing process, for example, by stopping the machines from operating, or at
slowing down the production with the end goal of reducing the efficiency of the
industrial process.

We identified six attacks leading to DoS. One of these consists of lowering
the load parameter associated with a tool, in order to slow down the production.
This attack works because the controller automatically tunes the spindle’s speed
according to the capacity of the tool installed on the machine.

Another way of causing DoS is triggering alarms so as to block the current
execution and request the intervention of the operator. Unfortunately, our eval-
uation reported that two vendors permit generating software alarms remotely.
Although this feature can, to a certain extent, make sense in the development of
a program for CNC applications, for example, for a program to trigger an alarm
in certain conditions, it is arguable whether it would make sense to offer this
option through a remote network call.

We also confirm the possibility to ransom the machines under test by compro-
mising and installing an add-in that locks the HMI (Okuma), or by encrypting
the G-code programs exposed via network shares, which were by default unpro-
tected on Haas and Heidenhain.

Hijacking. With hijacking we refer to the possibility for a miscreant to either
introduce a micro-defect in the manufacturing process, or to replace the program
in execution with one of her choice. In our experiments, we confirmed that all
vendors were vulnerable to a change of a tool geometry aimed at introducing a
micro-defect. With this, an adversary can take control of the manufacturing pro-
cess to introduce very small micro-defects that might pass the QA process. These
would eventually result in big financial or reputational losses for the victimized
manufacturer.

Another option for hijacking the production is to alter the logic of a para-
metric program. By substituting the values of the memory variables used by a
parametric program, an attacker can influence the final outcome. An example of
this attack is the production of components “in sizes”, in which the difference
in geometry is often controlled by the selection (that is, activation) of specific
program blocks for manufacturing the size or configuration of the work geometry
in a parametric way. The modification of these values leads to the introduction
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of defects or to the production of wrong sizes compared to what is set by the
operator on the HMI. All controllers were affected by this issue.

Finally, on three of the four controllers, we managed to replace the executed
program with one of our choice without requiring any operator intervention or
notice.

Theft. Theft is a major concern in the manufacturing world. Production
includes sensitive information that a manufacturing process produces and that
an adversary is interested in monitoring or stealing. In our evaluation, we con-
firmed that all tested vendors expose such private information to varying degrees.
The information we confirmed being exposed within the tested machines includes
how many parts are produced, the name of the program associated with each
production, the name of the machine, its serial number and related controller
version, the active screen or menu on the HMI, the tool number, and part pro-
gram comments.

Program files constitute a highly sensitive intellectual property because they
specify the movements that a machine has to perform to conduct the machining.
If an adversary manages to get access to these files, she could reproduce the part
on her side or learn all the details behind the manufacturing, as in the case of an
adversarial competitor. Theft of program files becomes of even greater concern in
consideration that programs developed in G-code are not compiled. In our work,
we managed to leak the content of the executed program on three controllers. In
all the cases, we performed the attack via network, that is, without the need to
bypass any security mechanism like brute-forcing an authentication procedure.
In the case of Okuma, the MTConnect service exposes by default the block line
currently executed, thus enabling an attacker to poll the daemon to reconstruct
the code. For Heidenhain, its DNC interface is by default unauthenticated and
a user can therefore remotely dump the executed program (via RPC or LSV2).
Similarly, Fanuc exposes such data via Focas.

Finally, the DNC interface of Heidenhain can be abused to take screenshots
of the operator’s HMI. This enables a miscreant to spy on the manufacturing
process, potentially accessing information such as the part program code, the
tools list, or the machine configurations in an even more simplified way.

5 Use Cases

In this Section, we provide few a examples among the many attacks that we
conducted on our real-world CNC installations, showing how we implemented
them and discussing their practical impact10.

The first experiment consists of abusing the Ethernet Q Commands interface
of Haas to conduct three attacks: introducing a micro-defect in the manufactur-
ing process (hijacking), performing a DoS, and damaging a tool. These attacks
are possible because Ethernet Q Commands allows for altering the geometry of

10 An extensive list of use cases are provided in our technical report [4].
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Fig. 2. The Haas Super Mini Mill engraving the first trace.

Fig. 3. Example of hijacking attack.

a tool remotely. As previously mentioned, the controller exposes this interface
by default and does not provide authentication nor resource access control.

We conducted these attacks on a Haas Super Mini Mill machine – shown in
operation during our experiment in Fig. 2. For this experiment, we developed a
program that instructed the machine to engrave four equal traces in a part of
raw metal. The engraving was supposed to be 5.05 mm deep, as measured in
Fig. 3a. The result of the manufacturing cycle is shown in Fig. 4. The part on
the left shows the correct execution of the manufacturing, with four traces of
the same depth.

At this point, we ran our attacks by altering the wear parameter three con-
secutive times. First, we set a wear of +0.25 mm on tool number 1 to introduce
a micro-defect:

$ echo "?E2201 0.25" | nc <IP> 5000
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Fig. 4. The correct process on the left, and that of our confirmed attacks on the right.

Fig. 5. The 3D-printed plastic tool for our damaging experiment, which crashed against
the raw material (left), and a detail thereof (right).

Then, we set the same wear to +5.50 mm, which is more than the original
depth of the engraving. Finally, we set the wear to -10 mm.

The result of our attacks is shown in the right part of Fig. 4. This part shows
only two engravings instead of four. The first engraving is the reference one and
corresponds to the normal execution of the machine. The second engraving has
a depth of only 4.80 mm as measured in Fig. 3b, i.e. with an error of 0.25 mm as
per attack.

The other two engravings were not made because: In one, the machine oper-
ated above the plane of the raw part due to the wear being higher than the
depth (5.50 mm > 5.05 mm); in the other, the machine crashed the tool against
the raw part because of the negative wear (−10 mm). For this last attack, we
printed a plastic tool with a 3D printer, which we voluntarily broke against the
raw part during the attack as shown in Fig. 5.

With this single experiment, we demonstrated how an attacker can remotely
alter the geometry of tools to conduct attacks with three goals: hijacking the
production to insert a micro-defect, making the machine operate above the plane
of the material (DoS), and damaging the production’s tool or part.

The next experiment shows how to leak the program code running on the
machine. Three tested controllers were affected by this issue. In the case of
Okuma, the agent reports several useful information related to the manufactur-
ing process like the number of installed tools or the position of the axes. The
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Fig. 6. The dump of the executed program’s source code via an unauthenticated and
exposed MTConnect agent.

Fig. 7. A parametric program executing two holes as per legitimate operation.

problem lies with the fact that the same agent reports both the name of the
executed program and the code block (i.e., the instruction) currently executed
on the machine. As result, a miscreant can pool the service to fetch the executed
instructions shown in Fig. 6. This is a severe issue because it required noth-
ing more than connecting to the exposed service for conducting the attack. We
communicated this issue to Okuma, which promptly acknowledged and fixed it.

One important consequence of being able to dump the executed program is
the act of reverse-engineer it, which is fairly easy with G-code. This, leads to
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Fig. 8. The same parametric program executing 25 holes after hijacking.

the next use case: parametric program hijacking. As we discussed previously, it
is a common practice of developers to use variables to dynamically change the
execution flow of a program (as in a sort of conditional IF). In our example, we
have a program that is supposed to drill K holes, where K is controlled by the
variable VC1, as we highlighted in the instruction block of Fig. 6. In this use
case, K holds a value of 2 and the machine drills two holes, as shown in Fig. 7.

At this point, an attacker that understands the program can remotely replace
the content of the variable with an arbitrary value (such as 25) in order to hijack
the production. This would alter the production to suit the attacker’s needs,
slowing down the production, or damaging it. Figure 8 shows this example in
practice. All tested controller are affected by this issue.

6 Responsible Disclosure and Mitigations

In conducting this research, we wanted to raise awareness in a domain in which
security didn’t, yet, seem to considered an important driver. With this goal in
mind, we underwent an important disclosure process and communicated our
findings in a timely and responsible manner with the vendors of the tested con-
trollers. This process was not easy, and required strong commitment on our side
in engaging with the right peers and educating them on the importance of the
issues that we identified. The large amount of demo material that we collected
during our experiments helped in this direction.

Fortunately, all vendors acknowledged our concerns and most of them have
addressed, to various degrees, our findings in a reasonable time frame. More
importantly, all of them have expressed interest in our research and have decided
to improve either their documentation or their communication efforts with the
machine manufacturers, with the final goal of offering to the end-users more
secure solutions.

Table 4 provides a short summary of this process. CISA’s ICS-CERT
extended invaluable help and support during our discussion with the vendors,
for which we are grateful.
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Table 4. A summary of our responsible disclosure process with the vendors.

Vendor Issues (and CVEs) Contact Date Ack Date Feedback

Haas Abuse of Ethernet Q
Commands (CVE-2022-2474,
CVE-2022-2475,
CVE-2022-41636). RCE via
Java JMX. Firmware
extraction via enabled boot
jumper

17/11/21 (direct).
13/01/22 (CERT)

20/07/22 Issues acknowledged and public
advisory released. The simulator
won’t be fixed because out of
scope

Okuma RCE via CVE-2010-2729.
Abuse of THINC-API. Code
leak via MTConnect

19/11/21 (direct) 25/11/21 Issues acknowledged and
MTConnect fixed. THINC-API
won’t be fixed due to performance
reasons

Heidenhain Abuse of DNC
(CVE-2022-41648). Weak
OEM password. Multiple
known vulnerabilities

04/02/22 (direct).
01/03/22 (CERT)

10/05/22 Issues acknowledged and public
advisory released

Fanuc Abuse of Focas. 07/03/22 (direct).
29/03/22 (CERT)

27/04/22 Issues acknowledged and
documentation enhanced. Added
support for authentication.

We also propose mitigation strategies for both manufacturers and end-
users/integrators. With regards to controller manufacturers, we recommend
adding support for authentication on all services and enforcing authentication by
default. Additionally, we encourage manufacturers to adopt appropriate autho-
rization schemes in the design of their systems, such as privilege separation and
access management.

For integrators and end-users, we suggest the following mitigation strategies:
Use of context-aware IPS/IDSs that regularly keep up with newer industrial
protocols. Correct network segmentation should be implemented to isolate CNC
machines from other network assets. Consider modern CNC machines as part of
an organization’s IT assets and follow the same patch management procedures
as any other equipment, such as desktop computers or servers. In our research,
we also collaborated with a vendor to add support for proprietary CNC protocols

7 Related Work

While previous work has addressed the security of smart manufacturing tech-
nologies, including CNCs to a limited extent, our extensive evaluation of the
CNC domain using both controller simulators and real-world machines sets our
research apart as the first of its kind.

Quarta et al. [10] conducted a security analysis of an industrial robot. By
using a real-world industrial robot, the authors analyzed its architecture and
evaluated the associated risks. However, this paper differs from our work in the
following ways: firstly, our work focuses on the overall ecosystem of computer
numerical controls while this paper focuses on a single robot and its implemen-
tation; secondly, our work includes the analysis of CNC machines which differ
significantly from industrial robots in terms of design, architecture, and imple-
mentation of both software and protocols; thirdly, manufacturers of industrial
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robots such as ABB, do not typically offer CNC solutions (and vice versa), high-
lighting the substantial differences between these two types of machine tools.

In a follow-up study, Pogliani et al. [9] explored the security risks associ-
ated with bad practices in code development for modern industrial robots. The
authors proposed a static-code analysis tool to detect security vulnerabilities in
robot code and used it to show that certain implementations of programs found
online were effectively vulnerable to different classes of attacks. This work differs
in focus from ours. Additionally, the programming languages used in industrial
robots (e.g. RAPID and KRL) are quite different from those ones in the CNC
domain (G-code, M-code, proprietary macros). Maggi et al. [7] investigated how
smart factory floors are exposed to potential security threats in Industry 4.0.
They reported security issues at different levels including abusing industrial add-
ins or compromising digital twins in software simulators. Their research explored
the risks of the industrial ecosystem as a whole, showing that modern smart
installations give rise to a larger attack surface, compared with previous gener-
ations of industrial facilities. This work touches on the security of the different
systems without going vertical on a single category. In addition, the problems
identified related with common OS functionalities rather than domain-specific
features. Balduzzi et al. [2] looked at industrial gateways used in smart facto-
ries to enable communication between modern and legacy devices. The authors
reported issues in which translations occurred for example from Modbus TCP to
RTU. Niedermaier et al. [8] showed how PLCs can be influenced by packet flood-
ing. The authors conducted an experiment with 16 devices from six vendors, and
demonstrated that all except for one device are susceptible to network flooding
attacks. Maggi et al. [6] looked at the radio protocols used to remotely control
industrial machinery. Their research indicated that multiple vendors were prone
to the same class of problems: the ability for a miscreant to arbitrarily gener-
ate fake radio messages and sabotage the operation of industrial plants. Similar
problems were reported by Balduzzi et al. [3] who conducted a security analysis
of a radio protocol standard used in the maritime industry for monitoring and
tracking logistics and passenger ships.

In a work closer to ours, Chen et al. [5] discussed the hypothetical risks
associated with CNC machines, reporting issues related to a CNC’s terminal.
The authors proposed mitigation strategies like the adoption of cryptographic
schemes for data protection, or industrial gateways for proper network segmen-
tation and access control. Similarly, Tu et al. [11] proposed a trusted security
framework for CNC machines. Although these works sit in the same domain
of research as ours, they provide different research methodologies and contribu-
tions. Our work is closer to the real-world implementations of CNC machines,
in having conducted an empirical evaluation of the security boundaries of the
technologies put in place by controller manufacturers according to the needs
dictated by Industry 4.0.
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8 Conclusions

Our research explored the risks associated with the adoption of Industry 4.0 in
CNC machines. These machines underwent a shift from standalone systems to
network-enabled ones that resemble full-fledged machines more closely than they
do mechanical devices. As a result, end-users are left dealing with sophisticated
systems that, if not correctly configured or poorly designed, might open the door
to abuse.

In our research, we explored technologies specific to the CNC domain and
conducted an extensive security evaluation. We implemented PoC attacks on
real-world installations, demonstrating that our concerns have practical impli-
cations, and identified important issues that are common among all controllers
under test.

In addition to publishing our findings in this research paper, we also created
demo material to educate the community about the security risks in the CNC
domain. Our responsible disclosure process prompted interest from the affected
manufacturers, who acknowledged our findings. Our aim is to raise awareness in
a field that we believe will gain more attention in the future.
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Abstract. Online scanners analyze user-submitted files with a large
number of security tools and provide access to the analysis results. As the
most popular online scanner, VirusTotal (VT) is often used for determin-
ing if samples are malicious, labeling samples with their family, hunting
for new threats, and collecting malware samples. We analyze 328M VT
reports for 235M samples collected for one year through the VT file feed.
We use the reports to characterize the VT file feed in depth and compare
it with the telemetry of an AV vendor. We answer questions such as How
diverse is the feed? How fresh are the samples it provides? What fraction
of samples can be labeled on first sight? How different are the malware
families in the feed and the AV telemetry?

1 Introduction

Online scanners analyze artifacts (i.e., files, URLs, domains, IPs) submitted by
users using a large number of security tools, and provide access to the analysis
results through free and commercial APIs. The most popular online scanner is
VirusTotal [42] (VT), which is widely used by security analysts, and acts as
a de-facto central sharing service for the security community. Detection labels
in VT reports are routinely used for determining if an artifact is malicious by
either applying a threshold on their count (e.g., [27,29,44]) or feeding them to
machine-learning models [34,39], as well as for identifying the family of malicious
files [16,35,36]. Prior work has shown that VirusTotal can be used to identify new
malware before it is released, since malware developers often leverage VT during
development to check if their samples are detected and, if so, revise them until
they become fully undetected (FUD) [13,14,43]. VirusTotal is also commonly
used as a source for collecting malware samples [3,12,14,25,26].

Amongst its commercial services, VT offers feeds, i.e., streams of analysis
reports for all submissions of a type [1]. VT offers separate feeds for files, URLs,
and domains. In this work, we perform what we believe is the first characteriza-
tion of the VT file feed (or simply the feed). The VT file feed includes reports
for new files (i.e., first submission to VT), resubmissions of previously submitted
files, and re-scans requested by users. Each report in the VT file feed contains
detailed information about the analysis of a sample (i.e., file). The report con-
tains, among others, file metadata (e.g., hashes, size), certificate metadata for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Gruss et al. (Eds.): DIMVA 2023, LNCS 13959, pp. 155–176, 2023.
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signed samples (e.g., thumbprint, subject), VT specific data (e.g., time of first
submission to VT, submission filenames), and the list of detection labels assigned
by up to 70 antivirus (AV) engines used to scan the file. The VT file feed service
also allows unlimited downloads of the samples submitted in the last seven days.

We collect reports from the VT file feed for one year, from December 21st,
2020 to December 20th, 2021. During the first 11 months we collect reports
where the sample is detected by at least one AV engine, while in the last month
we collect all feed reports, regardless of the number of detections. Overall, we
collect 328M reports for 235M samples. We analyze the collected reports to
characterize the VT file feed as a source for collecting malicious samples and
for identifying new threats. Samples from the feed can be used for building
labeled malware datasets such as those required by machine learning (ML) based
malware detection (e.g., [4,15,17,32,37]) and family classification (e.g., [15,33]).
We investigate fundamental questions for such use including How diverse is the
feed? Does it allow building malware datasets for different filetypes? How fresh
are the samples it provides? What is the distribution of malware families it
sees? The feed can also be a source for malware triage and malware hunting
approaches (e.g., [10,18]). For this use, we investigate what fraction of the feed
samples are variants of known malware families that analysts may not need to
investigate. In particular, we measure what fraction of the samples in the VT file
feed can be detected as malicious on first sight, what fraction can be labeled with
a family on first sight, and what fraction of malicious samples are originally fully
undetected but later become detected by multiple AV engines. We complement
our characterization of the VT file feed with a comparison with telemetry data
collected in a privacy-sensitive manner from tens of millions of Windows devices
of clients of a large antivirus vendor. The comparison allows us to investigate
how different are the views of the malware landscape observed by both datasets
and which dataset observes samples faster.

To improve family labeling, we have more than doubled the size of the
AvClass [36] taxonomy and tagging rules. We have contributed our updates
to the AvClass repository and they have been integrated into AvClass 2.8.0.
The following are some of the most significant insights we gain:

– The VT file feed is a great source for malicious samples with a much higher
maliciousness ratio than the AV telemetry. Still, the VT file feed is not a
malware feed since half of its volume is for benign samples. Thus, it can
be used to build both malicious and benign file datasets for supervised ML
approaches.

– The feed is diverse with a wealth of filetypes and 4.9K families with at least
100 samples. However, the diversity is largely due to Windows and Android
families.

– The feed is fresh: it receives an average of 732K new malicious samples each
day and malicious samples appear a median of 4.4 h after they are seen in
user devices. 39% of new malicious samples appear in the VT file feed earlier
than in the AV telemetry, allowing AV engines to leverage the VT file feed
to build detections for samples before they affect their customers.



A Deep Dive into the VirusTotal File Feed 157

Table 1. Dataset collected from VT file feed between 2020/12/21 and 2021/12/20.

Data All peexe apk other

Reports 328.3M 220.3M 15.9M 92.0M

Samples 235.7M 155.5M 8.2M 72.0M

– On first sight, 62% of the samples can be labeled as variants of known families,
and thus could be ignored when hunting for new threats.

– We identify 600K originally FUD samples. These samples have no detections
on first sight, but are later detected by multiple AV engines.

– The AV telemetry and VT file feed observe largely disjoint sets of malicious
samples with minimal overlap (1.2%–1.8%).

– The most popular families in the VT file feed by number of samples widely
differ from the families affecting most devices in the AV telemetry.

2 Datasets

We use two datasets in this work. We collect reports of files that appear in the
VT file feed for one year. We also examine the Windows telemetry of an AV
vendor over the same time period, which contains the metadata (e.g., file hash,
file type) of the files present in tens of millions of Windows devices that opted-
in to the data collection. Both datasets include benign and malicious files of
different file types.

VT File Feed. The VT file feed contains analysis reports for files submitted to
VT, regardless of the file type and platform (e.g., Windows executables, Android
APKs, Linux ELF executables, PDF and Microsoft Office documents). Other arti-
facts submitted to VT like URLs, domains, and IPs have their own separate feeds
that we do not analyze. The VT file feed includes reports for new files (i.e., first
submission toVT), resubmissions of previously submitted files, and user-requested
re-scans of previously submitted files. Throughout the paper we use sample and file
indistinctly. Multiple reports may appear in the feed for the same file. In general,
we focus on the last report we collected for each sample because it should provide
the most up-to-date information (e.g., updated AV labels). However, when inter-
ested in what happened to a sample when first submitted to VT (e.g., whether it
was detected or labeled), we examine instead its first report.

We collect reports from the feed every minute. To keep the storage manage-
able, we do not download the samples from the feed, only the reports. In the
first 11 months, we only collected reports where at least one AV engine detected
the file as malicious, which (as later shown) roughly corresponds to half of all
reports in the feed. On November 19th, 2021, we started collecting all reports in
the feed regardless of the number of detections, i.e., including reports with zero
detections. Overall, as summarized in Table 1, over one year between Decem-
ber 21st, 2020 and December 20th, 2021, we collected 328M reports for 235M
samples (by unique file SHA256).
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Table 2. Features used.

Feature Scope Type peexe apk

cert issuer sample string � �
cert subject sample string � �
cert thumbprint sample cryptohash � �
cert valid from sample timestamp � �
cert valid to sample timestamp � �
exiftool filetype sample string � �
fseen date sample timestamp � �
md5 sample cryptohash � �
package name sample string ✗ �
sha1 sample cryptohash � �
sha256 sample cryptohash � �
trid filetype sample string � �
detection labels scan string list � �
scan date scan timestamp � �
sig verification res scan string � ✗

vt meaningful name scan string � �
vt score scan integer � �
avc family derived string � �
avc tags derived string list � �
avc is pup derived bool � �
filetype derived string � �

Telemetry. The telemetry comprises metadata of files present in tens of millions
of real Windows devices in use by customers of an AV engine. It does not contain
the samples, only theirmetadata. The customers opted-in to sharing their data and
the devices are anonymized to preserve customer privacy. The AV engine queries
a central service with file hashes observed on the device to obtain file reputation
information. Each query for a file hash sent by a device is an event. An event com-
prises a timestamp, the anonymous identifier of the device, a file hash, a filename,
and the signer key if the file is signed (i.e., the SHA256 of the public key in the
file’s certificate). The telemetry contains events for both benign and malicious files
present on the devices. Those files may be of different types including Windows PE
executables (e.g., .exe, .dll, .sys, .ocx), PDF documents, and Microsoft office files.
We also obtain information from the AV vendor on the subset of telemetry files
for which the AV engine threw an alert, i.e., the detected samples. We examine
telemetry events over the same one year period we monitored the VT file feed.

3 Features

Since we do not download the samples, we need to restrict our analysis to features
available in the reports, or that can be derived from the reports. We focus on a
selected set of 21 features: 17 from the VT reports and 4 derived from those (e.g.,
filetype and malware family). Features are summarized in Table 2. We define
three scopes for a feature: sample, scan, and derived. Sample features should have
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the same value across all scans of a sample. On the other hand, scan features
may differ across scans of the same sample, i.e., they evolve over time. For
example, the hash of the certificate of a signed sample (cert thumbprint) should
always be the same. But, whether the signature of a signed sample validates
(sig verification res) can change across scans, e.g., if the certificate expires or is
revoked. Features may be extracted only for a subset of filetypes, e.g., be specific
to Windows PE executables or Android APKs, and may be null for some samples
(e.g., certificate features are not available for unsigned Windows executables).
We detail the VT report features in Sect. 3.1 and the derived features in Sect. 3.2.

3.1 VT Report Features

Of the 17 features from the VT report, 3 are cryptographic hashes over the
whole file used to identify the sample (sha256 , sha1 , md5 ), 5 are related to code
signing, 2 capture the file type, another 2 capture the program name, and 5
are specific to the scan. The code signing features are available for a variety of
file types including Android APKs, iOS apps, signed Windows executables, and
signed Windows MSI installers.

Timestamps. We obtain four timestamps from a VT report. The scan date
when the sample is analyzed, which is always within our collection period. The
VT first seen date (fseen date) when the sample was first submitted to VT. For
signed samples, we also obtain the certificate’s validity period defined by the
cert valid from and cert valid to dates.

AV Scans. VT scans each submitted sample with a large number of AV engines.
We extract the number of engines that detected the sample (i.e., gave it a non-
NULL label) (vt score) and the list of detection labels. The labels are used to
derive three classification features, as detailed in Sect. 3.2.

Program Names. We use two features that capture the program a sample
corresponds to. The package name is the package identifier for Android apps
and vt meaningful name is the most meaningful filename VT selects for a sample
(e.g., among all filenames of the sample when submitted to VT).

3.2 Derived Features

Filetype. Determining the filetype of the sample in a report is not straight-
forward because VT reports do not have a single field for it. Instead, there
are multiple fields that provide, possibly contradictory, filetype information. We
derive a unique filetype feature for each report by performing a majority voting
on three fields: trid file type, vt tags, and vt meaningful name. trid file type cap-
tures the filetype identified by the TrID tool [31], which has very fine-grained
granularity (e.g., over 90 peexe subtypes). We build a mapping from TrID file-
types to coarser-grained filetypes such as grouping all Windows PE files (e.g.,
EXE, DLL, OCX, CPL) under peexe and all Word files (DOC, DOCX) under
doc. vt tags provides a list of tags assigned by VT to enable searching for sam-
ples across different dimensions. Some of the tags such as apk, peexe, and elf
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provide filetype information. When vt meaningful name is available, we extract
the extension from the filename and map the extension to a filetype.

AVClass Features. We feed the detection labels to the AvClass malware
labeling tool [36]. AvClass outputs a list of tags (avc tags) for the sam-
ple that include its category, behaviors, file properties, and the most likely
family (avc family). It also provides whether the sample is considered poten-
tially unwanted or malware (avc is pup). AvClass uses a taxonomy to iden-
tify non-family tokens that may appear in the AV labels such as malware
classes (e.g., CLASS:virus), behaviors (e.g., BEH:ddos), file properties (e.g.,
FILE:packed:asprotect), and generic tokens (e.g., GEN:malicious). It also uses
tagging rules to identify aliases between families (e.g., zeus being an alias to
zbot). In this work we apply AvClass to 328M VT reports, eight times more
than the largest to date work [36]. Thus, our AvClass results include a wealth
of new tags, including new aliases and non-family tokens. We have used the
AvClass update module and extensive manual validation to identify new tag-
ging rules that capture previously unknown aliases, as well as new taxonomy
entries for tokens appearing in over 100 samples. This process has resulted in
more than doubling the AvClass taxonomy and tagging rules. We have con-
tributed our updates to the AvClass repository.

4 Feed Analysis

This section characterizes the VT file feed, answering the following questions:
(1) How large is the VT file feed? (2) How fresh are samples in the feed? (3)
How diverse is the feed in terms of filetypes? (4) What fraction of samples are
signed? (5) What fraction of samples can be detected as malicious on first scan?
(6) What fraction of malicious samples are fully undetected on first scan? (7)
How diverse is the feed in terms of families? (8) What fraction of samples can
be labeled on first sight?

Fig. 1. Number of daily VT reports
and samples collected.

Fig. 2. Number of samples first seen by
VT on each month. y-axis is in logarithmic
scale.
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Table 3. Daily statistics when collecting all reports (from 2021/11/21 to 2021/12/20).

Mean Median Stdev Max

Reports 1,786,565 1,879,952 482,286 2,492,454

Samples 1,586,750 1,680,520 424,590 2,223,638

New samples 1,092,640 1,120,242 299,645 1,504,174

Volume. Figure 1 shows for each day in the collection period, the number of
reports in the feed, the number of unique samples in the daily reports, and the
number of samples first seen by VT on that day. The figure shows a few gaps
when the collection infrastructure was not working, the longest taking place
between January 11th and February 7th. The volume of reports and hashes
significantly increases once we started collecting samples with no detections. We
compute the daily statistics, excluding days in the collection gaps, split into two
periods: before November 21st, 2021 when we were collecting only reports with
at least one detection, and after that date when we were collecting all reports.
We say that a sample is new only on the first day that it is submitted to VT.
Table 3 shows the daily stats when collecting all reports: the average number of
daily reports is nearly 1.8M, the average number of samples nearly 1.6M, and
the average number of new samples nearly 1.1M. When only collecting reports
with at least one detection the daily averages were 913K reports, 823K samples,
and 580K new samples. Thus, approximately half of the reports (51%), samples
(51%), and new samples (53%) in the feed are for undetected samples.

Takeaway 1
At the end of 2021, the VT file feed had daily averages of 1.8M reports,
1.6M samples, and 1.1M new samples. The VT file feed is a file feed
rather than a malware feed. Half of its volume in terms of reports,
samples, and new samples is for undetected samples.

Freshness. The same sample may appear in the VT file feed multiple times,
e.g., because different users submit it at different times. On average, 69% of the
files observed in one day are new (i.e., previously unknown to VT) and 31%
correspond to re-submissions or re-scans of already known files. Over the one
year analysis period, 89% (209M) of the samples had a VT first seen date later
than our collection start date. This ratio increases over time as every day the
influx of new samples (69%) is larger than that of already seen samples (31%).

The previously seen samples that re-appear in the feed may be fairly recent or
really old. The VT first seen date provides a lower bound for a sample’s lifetime,
i.e., the sample could be older if it took some time for it to be submitted to VT.
The oldest sample observed in our collection period was first seen by VT on May
22nd, 2006. Figure 2 shows the number of samples (in logarithmic scale) whose
VT first seen date is on each month, capturing how old are the samples already
known to VT. The shape of the figure captures the volume increase in samples
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Table 4. Top 20 filetypes for all samples observed. peexe includes all Windows PE
files (EXE, DLL, CPL, OCX, ...) doc and xls include also docx and xlsx, respectively.
NULL corresponds to samples for which a filetype could not be determined.

# Filetype Samples Perc

1 peexe 155,526,594 65.97%

2 javascript 21,048,404 8.93%

3 html 12,540,571 5.32%

4 pdf 11,346,815 4.81%

5 apk 7,992,206 3.40%

6 text 5,149,050 2.18%

7 NULL 4,128,183 1.75%

8 zip 3,934,987 1.67%

9 dex 3,015,650 1.28%

10 gzip 2,926,739 1.24%

11 lnk 2,718,635 1.15%

# Filetype Samples Perc

12 elf 942,148 0.40%

13 rar 516,514 0.22%

14 jar 448,324 0.19%

15 doc 429,794 0.18%

16 xls 428,057 0.18%

17 macho 409,399 0.17%

18 php 352,143 0.15%

19 xml 335,962 0.14%

20 powershell 321,178 0.14%

Other 1,233,754 0.52%

ALL 235,745,107 100.0%

submitted to VT over time until 2019, followed by a decrease in 2019–2021. The
reduction could be due to some vendors reducing their sharing from 2019.

Takeaway 2

On average, 69% of the samples observed in one day are new, i.e.,
previously unknown to VT, and the feed provides over a million new
samples each day. Thus, the VT file feed is a great source of fresh
samples.

Filetypes. Table 4 shows the top 20 filetypes for all samples observed. The feed is
dominated by Windows PE files (EXE, DLL, OCX, CPL, ...) that correspond to
66% of the samples. Far behind are other filetypes like JavaScript (8.9%), HTML
(5.3%), PDF (4.8%), and Android applications (3.4%). The top 5 filetypes cover
88.4% of all samples. We could not obtain a filetype for 1.7% of samples as they
had no TrID information, no VT filetype-related tags, were not signed, and had
no most meaningful filename with extension. This highlights the lack of a unified
filetype field and the limitation of the tools VT uses for filetype determination.

Ugarte-Pedrero et al. [40] reported that 51% of an AV feed were PE exe-
cutables. The larger VT file feed ratio may be due to users contributing more
frequently PE executables to VT, avoiding other filetypes like HTML or text
files that may contain more private data.

Takeaway 3
Two thirds of feed samples are Windows PE files, but the feed is a
good source of samples for a large variety of filetypes. The feed lacks
a unified filetype field and filetype identification is challenging for a
significant number of samples.
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Code Signing. VT extracts code signatures from multiple filetypes. The col-
lected reports contain 13.3M samples (5.6% of all samples) for which VT
extracted code signing certificates. Of the signed samples, 55.9% are Android
APKs, 43.4% are Windows PE files, and 0.7% are other filetypes such as
Microsoft Installers (.msi) and patches (.msp), Mach-O executables, iOS appli-
cations, Apple image files (.dmg), and some archive formats (e.g., .zip, .cab).
PDF is one popular filetype for which VT does not currently extract signatures.
91.3% of all apk samples, 3.7% peexe, 31.4% msi, and 7.6% macho are signed.
APKs have to be signed in order for the Android OS to install them in a device.
The 8.7% of unsigned APKs is due to apps under development being uploaded
to VT, possibly to check if any AV engine detects them or as part of continuous
delivery pipelines.

Takeaway 4
VT supports the extraction of code signatures for a variety of filetypes,
but only a small fraction (5.6%) of all feed samples, and 3.7% of the
peexe samples, have a code signing signature.

4.1 AV Detections

A common approach for detecting malicious samples is to apply a threshold on
the number of detections in a VT report [44]. We use this approach to quantify
the percentage of malicious samples in the feed. We focus on the last month
when collecting all feed reports. Figure 3 shows the distribution of the number
of AV detections for all reports collected starting 2021/11/21. The figure shows
that 51% of the reports in the last month have no detections and 7% have one
detection. But, there are 9.6M samples with at least 40 detections.

We also examine the number of detections the first time a sample is submitted
to VT. Figure 4 shows the complementary CDF of VT scores for the first report of
each new sample since 2021/11/21. The figure captures the fraction of malicious

Fig. 3. Number of detections distribu-
tion for all reports since 2021/11/19.

Fig. 4. Reverse ECDF for the first report
of each new sample since 2021/11/19.
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samples in the feed depending on the selected detection threshold. 53% of the
samples have zero detections on their first observation. This percentage includes
truly benign programs as well as malicious samples that go fully undetected.
If we set the detection threshold on at least one detection, 47% of the samples
would be considered malicious. If the threshold is set higher to minimize false
positives, that reduces the fraction of malicious samples, e.g., 41% if we set it to
at least four detections as done in several related works [19–21].

Takeaway 5

On first sight, 41% of samples are detected as malicious by at least
4 AV engines, and 47% by at least one AV engine. These malicious
samples share traits with previously seen malware (i.e., match existing
signatures).

Originally FUD Malware. It is possible that a malicious sample is fully unde-
tected when first submitted to VT, but a later report classifies it as malicious.
To detect originally FUD samples, we measure the number of samples that sat-
isfy three conditions: (1) they are first observed by VT during our collection
period; (2) their last report has at least 4 detections; and (3) their first report
had zero detections or their VT first seen date is not in a data collection gap and
is before their first observation. The last condition is a disjunction to address
that we only collected reports with zero detections in the last month. During the
first 11 months we can know if a sample had zero detections in their first scan
because their VT first seen date is in our collection period and happens before
the earliest scan date collected for the sample. The exception are samples first
seen during a collection gap, for which a delayed scan date does not necessarily
imply zero detections on the first scan.

We identify 637K samples satisfying those conditions. However, the time
difference between the first seen date and the first report with at least four
detections, indicates that 37K samples change from zero to at least four detec-
tions within 5 min of their first VT observation. We exclude those 37K samples
as we observe that the distribution stabilizes afterwards (i.e., after 15 min only
an extra 1K samples flip classification).

Thus, we identify 600K originally FUD samples that had no detections on
their first scan, but were later considered malicious by at least 4 AV engines.
Increasing the detection threshold would decrease the percentage, but the detec-
tion rate of a malicious sample tends to increase over time and for 82% of samples
we only have one report. Thus, we believe our FUD rate estimation is conserva-
tive. The median time to flip classification is 7 days, (mean of 23.8 days) with
12% of the samples flipping classification in less than one day.

Of the 600K originally FUD samples, 60% are peexe, followed by 11% pdf,
and 8% javascript. PDFs are more than twice as likely to be FUD than expected
since they comprise only 4.8% of all feed samples. Malicious PDFs typically
contain exploits and are used in spearphishing attacks. These numbers point to
malicious PDFs being harder to detect.
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Takeaway 6
Over the one year analyzed, we identify 600K samples that are origi-
nally FUD, i.e., they have zero detections on the first VT observation,
but later are considered malicious by at least 4 engines. PDF docu-
ments are more likely to be FUD than other filetypes.

4.2 Family Labeling

We obtain a sample’s family by feeding to AvClass the last report of each
sample in our dataset, which should have the most up-to-date labels. AvClass
labels 151.7M (64.3%) of the samples with 74,360 distinct family names. How-
ever, many families output by AvClass are rare. In particular, 41.4K (55.8%)
of all families have only one sample, 14K (19.5%) have at least 10 samples,
4.9K (6.7%) have at least 100 samples, 1.5K (2.1%) have at least 1K samples,
526 (0.7%) have at least 10K samples, 147 families (0.2%) have at least 100K
samples, and only 32 families (0.04%) have at least 1M samples.

Despite more than half of the families having only one sample, the fact that
there are 4.9K families with more than 100 samples shows that the feed is diverse
and is not dominated by a few highly polymorphic families (e.g., file infectors).
However, the diversity is largely due to Windows families. By filetype, the num-
ber of families with more than 100 samples is led by peexe with 3.8K families,
followed far behind by apk (447), html (129), javascript (116), doc (53), macho
(52), xls (47), elf (37), and pdf (15). Thus, by monitoring the feed it is possible
to build datasets with a large number of families for Windows and Android mal-
ware. But, for other filetypes like macho and elf, even after collecting for a year,
we could only obtain 52 and 37 families with at least 100 samples, respectively.

AvClass outputs as family the top-ranked tag that is either a family in the
taxonomy or unknown (i.e., not in the taxonomy). Of the 74,360 families output
by AvClass, 2,391 (3.2%) are in the updated taxonomy, which contains a total
of 2,451 families (i.e., 97.5% of taxonomy families appear in one year of feed
reports). However, the families in the updated taxonomy contribute 90.6% of
the labeled samples, only 9.4% of the samples are labeled with unknown fami-
lies. This indicates that the most popular families are in the updated taxonomy,
which is expected as it is common for analysts like us to add the most popular
previously unknown families to the taxonomy. In fact, of the families with at
least 1M samples, only 3% are unknown, increasing to 15% for families with
100K samples, 43% for those with 1K samples, and 85% for those with 10 sam-
ples. Unknown families can be due to two main reasons. One are tags that it
is unclear if they are a family name or another category such as a behavior
or a file property (e.g., lnkrun, refresh). The other are tags that correspond to
random-looking signature identifiers or family variants (e.g., aapw, dqan). We
manually examine the top 1K families and identify that 89% of the unknown
families correspond to the first case and 11% to the latter. We repeat this check
on 200 randomly sampled unknown families with only one sample and the result
is the opposite: 11% corresponding to the first case and 89% to the latter. Thus,
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Table 5. Peexe top 10 families.

Family Class Samples

FAM:berbew backdoor 19,371,273

FAM:dinwod downloader 9,398,314

FAM:virlock virus 7,921,534

FAM:pajetbin worm 7,164,373

FAM:sivis virus 6,222,693

FAM:lamer virus 4,074,441

FAM:salgorea downloader 3,737,865

FAM:vobfus worm 3,415,996

FAM:drolnux worm 2,858,975

FAM:griptolo worm 2,407,104

Table 6. Apk top 10 families.

Family Class Samples

FAM:smsreg pup 616,406

FAM:ewind pup:adware 430,531

FAM:hiddad pup:adware 219,577

FAM:fakeadblocker pup:adware 82,715

FAM:airpush pup:adware 80,704

FAM:revmob pup:adware 78,495

FAM:dowgin pup:adware 68,522

FAM:dnotua pup 65,330

FAM:kuguo pup:adware 63,262

FAM:mobidash pup:adware 40,016

Table 7. Elf top 10 families.

Family Class Samples

FAM:xorddos ddos 287,631

FAM:mirai backoor 163,525

FAM:gafgyt backoor 59,348

FAM:tsunami backoor 3,381

FAM:hajime downloader 2,499

FAM:mozi backdoor 1,996

FAM:setag backdoor 1,454

FAM:dofloo backdoor 890

FAM:fakecop pup 805

FAM:ladvix virus 580

Table 8. Mach-O top 10 families.

Family Class Samples

FAM:flashback downloader 33,087

FAM:mackontrol backdoor 15,459

FAM:mackeeper pup 15,017

FAM:evilquest ransomware 7,070

FAM:cimpli pup:adware 5,444

FAM:gt32supportgeeks pup 3,453

FAM:genieo pup:adware 3,339

FAM:bundlore pup:adware 3,142

FAM:installcore pup:adware 1,543

UNK:fplayer pup:adware 905

Table 9. Macros (doc & xls) top 10 families.

Family Class Samples

FAM:emotet infosteal 26,430

UNK:sneaky downloader 23,521

FAM:qbot downloader 22,416

FAM:squirrelwaffle downloader 18,230

FAM:valyria downloader 16,256

FAM:sagent downloader 13,298

FAM:zloader downloader 12,371

FAM:sload downloader 10,923

UNK:encdoc downloader 5,703

FAM:thus virus 4,917

Table 10. Javascript top 10 families.

Family Class Samples

FAM:faceliker clicker 2,288,894

FAM:facelike – 952,180

FAM:coinhive miner 766,087

FAM:cryxos – 744,894

FAM:smsreg pup 415,669

UNK:gnaeus – 400,570

FAM:fakejquery downloader 330,792

UNK:hidelink – 210,306

UNK:agentwdcr – 87,101

FAM:inor downloader 83,694

for less prevalent families AvClass may output a name that corresponds to a
signature identifier or variant. While those random-looking names are not very
descriptive for analysts, they are still valid cluster identifiers, i.e., samples with
the same name should belong to the same family. Based on the above, we esti-
mate that over the whole year a total of 33.8K (41.4K * 0.11 + 32.9K * 0.89)
families of all filetypes have been observed in the feed.

We also obtain the family using the first report for samples first seen during
our monitoring period. AvClass is able to label on first sight 62.3% of samples,
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Table 11. Html top 10 families.

Family Class Samples

UNK:refresh – 882,026

FAM:cryxos – 363,821

FAM:faceliker clicker 312,563

FAM:smsreg pup 201,253

UNK:redir – 200,926

FAM:coinhive miner 152,968

UNK:generickdz – 121,975

UNK:pushnotif – 120,085

FAM:ramnit virus 80,044

UNK:fklr rogueware 79,353

Table 12. Pdf top 10 families.

Family Class Samples

UNK:fakeauthent phishing 194,963

UNK:minerva phishing 15,527

FAM:pdfka exploit 13,618

UNK:pidief exploit 6,319

FAM:alien downloader 6,137

UNK:gorilla phishing 4,749

UNK:talu phishing 2,379

UNK:gerphish phishing 1,558

UNK:urlmal phishing 1,469

FAM:rozena backdoor 839

slightly less than the 64.3% using the last collected report. The fact that 62%
of samples can be attributed on first sight to a family indicates they correspond
to variants of known families with accurate signatures. This result shows that
AvClass can be used during triage as a filter to remove 62% of samples from
well-detected families so that analysts can focus on the 38% unlabeled samples.

Prior work has applied AvClass to peexe, apk, and elf files (e.g., [12,36]).
However, AvClass can be applied on AV labels regardless of platform or filetype.
Tables 5, 6, 7 and 8 show the top 10 families for the four executable filetypes.
The largest families overall are for Windows led by berbew with 19.4M samples,
followed by dinwod (9.4M), and virlock (7.9M). We use AvClass to output a
relations file on the whole feed. We identify a family’s class checking the strongest
CLASS relation for each family with a strength of at least 0.2. The top 10
peexe families are dominated by 4 worm and 3 virus families due to their high
polymorphism. However, as already discussed, overall the feed is not dominated
by file infectors and worms. For Android, the top 10 families are all PUP and 8 of
them are adware. The top Linux families are dominated by backdoors including
mirai derivatives (gafgyt, hajime, mozi). For macOS, seven top families are PUP
and five of those adware. Table 9 shows the top 10 families for Microsoft Office
macros including both Word and Excel files. Malicious macros are dominated by
downloaders. Tables 10, 11 to 12 show the top families for three other popular
filetypes (JavaScript, HTML, PDF) for which we observe that top families output
by AvClass contain many unknown tokens that may correspond instead to other
categories (e.g., redir may indicate injections that redirect the user). We also
observe overlaps between JavaScript and HTML families (e.g., cryxos, facelike)
and that for 9/30 families we cannot identify a class. We conclude that for these
three filetypes the concept of a family is not as well defined and that AV labels
for these filetypes capture instead behaviors such as phishing, injections, and
exploitation.



168 K. van Liebergen et al.

Table 13. Top 10 families (>10K samples)
sorted by ratio of originally FUD samples.

FUD

Family Class Type Samp. Ratio

pcacceleratepro pup peexe 1,749 9.5%

sagent down. macro 2,141 9.3%

dstudio down. peexe 1,255 6.2%

pasnaino down. peexe 613 5.9%

opensupdater pup peexe 2,051 4.8%

mobtes down. apk 967 4.6%

hesv pup peexe 849 4.4%

asacub infosteal apk 833 4.1%

agentino down. peexe 649 4.0%

fakecop pup apk 672 3.6%

Table 14. Top 10 families for
feed samples in the telemetry
ranked by number of infected
devices.

Family Class Dev. Samp.

winactivator pup 2.0M 10,871

utorrent pup 1.6M 1,366

installcore pup 1.5M 46,758

webcompanion pup 1.4M 2,569

dotsetupio pup 1.1M 198

iobit pup 898K 4,321

opensupdater pup 692K 14,918

opencandy pup 579K 9,346

offercore pup 555K 363

driverreviver pup 545K 615

Takeaway 7
The feed is diverse. Over one year, 33K families are observed with
4.9K families having at least 100 samples. However, the diversity is
largely due to peexe and apk families. For those two filetypes, the feed
is a good source to build datasets for large-scale family classification.
AvClass labels 62% of samples on first sight. Thus, it can be used in
triage to remove samples from well-detected families so that analysts
can focus on the 38% unlabeled samples.

Originally FUD Families. Using their last report, AvClass outputs a family
for 62.5% of the 600K originally FUD samples, which is in line with the overall
labeling rate, indicating a similar fraction of well-known families among origi-
nally FUD samples. However, some families have larger fractions of originally
FUD samples, and thus are harder to detect. Table 13 shows the top 10 families
with at least 10K samples sorted by the ratio of originally FUD samples over
all family samples. These include 6 families for Windows, 3 for Android, and
one family of Microsoft Office macros. All of them have FUD ratios 6–16 times
higher than the 0.59% average over all families with at least 10K samples.

5 Comparison with Telemetry

This section compares the VT file feed with the AV telemetry. We compare
the total volume and percentage of malicious files, compute the intersection
of malicious files, examine the family distribution, and measure which dataset
observes malicious files faster.

Total and Malicious Volume. We first compare the total volume of both
datasets over the one month when we were collecting all VT reports. Over that
month, the VT file feed contains reports for 39.8M samples, while the telemetry
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contains events for 686.5M samples. Both numbers include all samples observed
over that month in each dataset, regardless of the filetype, if the samples are old
or new, and whether they are benign or malicious. Thus, the telemetry volume
is 17 times larger than the VT file feed volume. The AV vendor has other file
datasets available beyond the Windows telemetry (e.g., Android telemetry), thus
its total file volume is even larger.

Over that month, the AV engine threw alerts for 1.9M malicious files in 905K
devices, 0.3% of all samples seen in the telemetry over that month. In comparison,
the VT file feed contains 14.8M samples with at least four detections (37.3%)
and 17.5M with at least one detection (43.9%). Thus, the ratio of malicious files
in the VT feed is 126–146 times larger than in the telemetry. This is likely due to
two reasons. First, prior work has shown that AV telemetry is largely dominated
by rare benign files, i.e., 94% of files in AV telemetry are observed only in one
device and the ratio of benign to malicious such files is 80:1 [23]. Second, the
VT file feed is likely biased towards malicious samples, as VT contributors may
only submit suspicious samples to be analyzed, while avoiding to submit samples
known to be benign.

Over the whole year, the AV engine detected 12.9M files as malicious. In com-
parison, the VT file feed contains 187.0M samples with at least four detections
and 212.2M with at least one detection. Thus, over the course of the year the
VT file feed observes 16–17 times more malicious files. Of the 12.9M detected
files in the telemetry, 5.2M (40.3%) have extensions corresponding to peexe files
(.exe, .dll, .sys, .cpx, .ocl, .scr), followed by .tmp temporary files (17.8%) and
.lnk link files (9.7%).

Takeaway 8
While massive, the total VT file feed volume is 17 times lower than the
Windows telemetry of a AV vendor. However, despite the much lower
volume, the VT file feed contains 16–17 times more malware than the
telemetry, making it a great source of malicious samples.

Intersection. We compute the intersection between both datasets over the
whole year. Given the massive size of the telemetry (i.e., > 108 events), to make
the query scale, we focus the intersection on malicious peexe files and ignore
other filetypes and benign executables. Thus, we query the telemetry using the
151.7M peexe file hashes from the VT file feed with at least one detection. For
each file hash found in the telemetry, we collect the anonymized identifiers of the
devices where it was observed and the telemetry first seen time, i.e., the earliest
time, within our collection period, a feed sample was queried by an endpoint to
obtain its reputation.

The intersection contains 3.8M samples with at least one detection (1.8% of
feed samples with one detection) and 2.2M (1.2%) with at least four detections.
The small intersection indicates that the telemetry and the VT file feed observe
largely disjoint sets of malicious samples. Prior work has observed that public
and commercial threat intelligence feeds have small overlap [9,41]. However,
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those works focus on IP addresses [41] or work on APT-focused commercial TI
feeds [9]. As far as we know, no prior work has checked the overlap between
large (malicious) file hashes datasets. Our results show that even the largest
(malicious) file hashes datasets are largely disjoint with minimal overlap. This
is likely caused by a huge space of malicious samples of which each vendor only
sees a small portion.

Of the 12.9M files detected as malicious by the AV vendor over the year,
11.9M (92.2%) are not observed in the VT file feed. These files are either never
submitted to VT or their last VT report was before our collection start. Quanti-
fying this requires querying the 11.9M files to VT which due to API restrictions
is not possible. Instead, we estimate these figures by querying a subset of 1M
randomly selected hashes. Only 10.9% of those are known to VT, while 89.1%
have never been submitted. This shows that security vendors may only share a
fraction of their malicious samples with VT. Sharing decisions by the AV vendor
are transparent to us.

Takeaway 9
The telemetry and VT file feed observe largely disjoint sets of mali-
cious samples (1.2%–1.8% of feed samples in common). Thus, even
the largest file datasets only see a small portion of the whole space of
malicious samples.

Family Distribution. Table 14 shows the top 10 families in the intersection
sorted by number of telemetry devices where the samples of the family are
observed. All these families are PUP. Instead, when we ranked families by num-
ber of samples observed in the VT file feed (peexe families in Table 5), the top
families were dominated by virus and worm families. From the top 10 VT file
feed families by number of samples, vobfus and virlock are the two families that
affect most devices in the telemetry found on 25.9K and 3.3K devices, respec-
tively, 1–2 orders of magnitude less devices than the families in Table 14. The
remaining 8 families are ranked below the 1,000th position affecting each less
than 2K devices. These results indicate that the top families in the VT file
feed, i.e., those with the most samples submitted by contributors, may be biased
towards highly-polymorphic families such as viruses and worms and may not
correspond to the families that affect most user devices, which according to the
telemetry are PUP families.

Takeaway 10
The top families by number of samples collected is biased towards
highly polymorphic families such as viruses and worms, and may sig-
nificantly differ from the top families by number of infected devices.

Observation Delay. The telemetry first seen timestamp for a sample, i.e.,
the earliest time within our collection period a feed sample was queried by an
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endpoint, is an upper bound on the earliest time the AV vendor observed the
sample. For example, a sample first seen by the AV vendor in 2010 may appear
in the telemetry subset we analyze as first queried on December 22nd, 2020.
We calculate the delay to observe a sample as the VT first seen timestamp
minus the telemetry first seen timestamp, but only for the 2.1M samples first
observed by VT during our analysis period and that are in the intersection with
the telemetry. Of those 2.1M samples, 2.5M (61%) are first observed by the
telemetry (i.e., positive difference) while 816K (39%) are first observed by VT
(i.e., negative difference). The median delay for VT to observe the sample is 4.4 h.
Thus, real devices observe the sample a few hours earlier than VT. However, the
mean delay is 21 days because 12% of these samples are first submitted to VT
at least 3 months after they appear in the telemetry, compared to 3% being
observed by VT 3 months earlier than in the telemetry. It is important to note
that since the telemetry first seen is an upper bound for the AV vendor first
seen, the VT delay may be actually larger.

Takeaway 11
Malicious samples are first seen a median of 4.4 hours earlier in the
telemetry. Still, 39% of samples are first seen by VT before they are
first seen in user devices. Thus, VT may provide useful early alerts to
AV vendors.

6 Discussion

The section discusses the implications of our results for future works, limitations,
threats to validity, and avenues for improvement.

Result Implications. Our results have implications for researchers analyzing
the malware ecosystem. We show that the most popular Windows families widely
differ between the VT file feed and the AV telemetry. Top families in the feed
correspond to highly polymorphic malware such as viruses and worms. In con-
trast, families affecting most user devices are PUP. Thus, the most popular feed
families may not be those that impact end users most, but rather those for
which samples are easier to collect (e.g., due to their many polymorphic vari-
ants). Focusing only on the top feed families might ignore popular families that
affect many user devices. Those families are also found in the VT file feed, but
with lower volumes, so researchers may need to dive deeper into the feed beyond
the top families.

Our results have implications for researchers that need to build malware
datasets for ML approaches. The VT file feed is a great source for malware (and
also benign) files, due to its large volume, filetype diversity, and freshness of
samples. However, the diversity largely centers on Windows and to a smaller
degree Android samples. For other platforms, even collecting samples for one
year, would only provide a handful of families with at least 100 samples (e.g.,
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52 for Mac OS and 37 for Linux), which we consider the minimum for training,
validating, and testing ML family classification models.

Our results have implications for researchers building detection models on
the VT file feed. Pendlebury et al. [28] argued that the goodware/malware ratio
expected in ML testing datasets should be matched when training the model.
They measured this ratio was 90/10 for AndroZoo [2]. Previous work has also
shown that this ratio is roughly 99/1 in AV telemetry [23]. In contrast, we
observe a ratio of nearly 50/50 for the VT file feed, indicating VT users are
more likely to submit malicious samples. Accounting for this ratio is important
for applying ML models on the VT file feed. To avoid temporal bias, Pendlebury
et al. [28] also recommend that samples in the testing dataset have timestamps
larger than any sample in the training dataset and that in every testing slot, all
samples come from the same time window. For the VT file feed, this separation
should use the VT first seen date because we show that 31% of the daily samples
are re-submissions of older samples which may break these properties.

While the dynamics of detections labels have been studied before [8,44], our
work is the first one that can analyze them on samples that are not selected apri-
ori and re-scanned daily by the authors. This allows us to identify 600K originally
FUD samples that initially escaped detection until multiple AV vendors realized
their maliciousness a median of 7 days later (mean of 23.8 days). This raises the
question of how many other malicious files may remain undetected in the feed.

Data Collection Issues. Longitudinal analyses often face unexpected data
collection issues that create gaps in the temporal data sequence. Such issues
prevented us from collecting VT reports on 39 days, most notably over 27 days
between January 11th and February 7th, 2022. Thus, our dataset contains data
for 326 days, rather than a whole year. We account for these gaps throughout
the measurements, e.g., we do not provide yearly volume statistics, but provide
daily statistics that exclude data gaps.

AV Telemetry Comparison. Our work shows that the VT file feed has little
overlap with the telemetry of a large AV vendor and that the most popular
families largely differ in both datasets. Results could differ for the telemetry of
other AV vendors. However, we believe this is unlikely given the large size of
both datasets. Furthermore, our results match those observed in smaller APT-
focused file datasets [9] and in datasets of other malicious indicators such as
IP addresses [41]. We believe the different results in this area indicate that
feeds (even those that aggregate data from multiple other feeds) achieve limited
coverage of indicators, thus highlighting the need for further aggregation and
cooperation. It would be interesting to examine whether different AV vendors
observe very different top malware families as well, but getting access to the
telemetry of multiple AV vendors is challenging.

Family Labeling. Our malware labeling is based on AV labels processed by
AvClass. Thus, it inherits the limitations of both the AV labels and the tool.
For example, our results show that AV labels for document filetypes such as
HTML and PDF often contain behaviors rather than family names. If the AV
labels do not contain a family name, possibly because the AV vendors do not
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have a good definition of family for those filetypes, then AvClass cannot output
a family. There are also cases where AvClass identifies as a family a token that
is not a family (e.g., looks randomly generated). These may be due to new AV
engines or changes to AV label format since AvClass was released. We will
report them to the developers so that they can be addressed.

Filetype Identification. VT reports lack a unified filetype field. Instead, they
provide the output of different filetype identification tools, which may not agree.
To handle disagreements and minimize the number of samples without a filetype,
we combine multiple filetype-related fields in the VT reports. Still, we cannot
infer the filetype for 1.75% of samples indicating that further research on file-
type identification is needed. Furthermore, filetype identification tools should
output hierarchical filetypes allowing users to aggregate results as they prefer.
For example, a DLL is also a PE executable and an APK is also a ZIP archive.
Whether to count DLLs and APKs as their own filetypes or as part of their
parent filetypes should be up to the user.

7 Related Work

Most related is the work by Ugarte-Pedrero et al. [40] that analyzes 172K PE
executables that a large AV vendor collects through multiple sources on one day.
In contrast, we examine one year of a file feed with 235M samples of multiple
filetypes and compare it to the telemetry of a large AV vendor. Other works
have performed large scale longitudinal malware analysis on Windows [7,22],
Android [24,38], and Linux [3,12]. In contrast, our work examines malware for
multiple platforms including Windows, Android, Linux, macOS, Microsoft Office
macros, PDF documents, and Web content.

Detection labels such as those available in VT reports have been widely
studied. Early works showed how different AV engines disagree on labels for
the same sample [5,11]. Still, AV labels have been widely used to build training
datasets and evaluate malware detection and clustering approaches (e.g., [5,6,
30]). Recent works have examined the dynamics of detection labels [8,44] and
have proposed to replace the traditional threshold-based detection approach on
the number of detections, which we use in this paper, with machine-learning
models [34,39]. We plan to explore these approaches in future work.

8 Conclusions

We have characterized the VirusTotal file feed by analyzing 328M reports for
235M samples collected during one year, and have compared the feed with the
telemetry of a large AV vendor. Among others, we show that despite having
a volume 17 times lower than the AV telemetry, the VT file feed observes 8
times more malware. The feed is fresh with 69% of daily samples being new
and samples appear a median of 4.4 h after they are seen in user devices. The
feed is diverse containing 4.9K families with at least 100 samples. However, the
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diversity largely focuses on Windows and Android families. The AV telemetry
and VT file feed observe largely disjoint sets of malicious samples (1.2%–1.8%
overlap). We identify 600K originally FUD samples that have no detections on
first scan, but are later considered malicious by at least 4 AV engines.
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Abstract. To achieve economies of scale, popular Internet destinations
concurrently serve hundreds or thousands of users on shared physical
infrastructure. This resource sharing enables attacks that misuse per-
missions and affect other users. Our work uses containerization to create
“single-use servers” which are dynamically instantiated and tailored for
each user’s permissions. This isolates users and eliminates attacker per-
sistence. Further, it simplifies analysis, allowing the fusion of logs to
help defenders localize vulnerabilities associated with security incidents.
We thus mitigate attacks and convert them into debugging traces to aid
remediation. We evaluate the approach using three systems, including the
popular WordPress content management system. It eliminates attacker
persistence, propagation, and permission misuse. It has low CPU and
latency costs and requires linear memory consumption, which we reduce
with a customized page merging technique.

1 Introduction

Internet servers are designed to handle many clients simultaneously. These
servers use multiple processes or threads of execution to balance requests and
make effective use of computing resources. Unfortunately, this model intermin-
gles processing from many clients within a single execution context. When these
servers have security defects, attackers can exploit the vulnerabilities to gain
unauthorized access, modify the server’s content, and harm other current or
future users [31].

Exacerbating this problem, when a server accesses other resources, such as
databases, it is often configured with a super-set of all privileges associated
with the server’s users. This can lead to “confused deputy” attacks [13], wherein
an adversary exploits a vulnerability to cause an application server to misuse
its authority when interacting with a resource provider. SQL injection attacks,
which are estimated to be used in nearly two-thirds of all web attacks [3], are a
common form of confused deputy attack.

In this work, we propose a “single-user server” model where each incoming
client gets directed to its own isolated container. We explore a set of research
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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questions: How can this single-use server model limit attack propagation, persis-
tence, and privilege escalation? Can containerization provide low enough over-
heads to support a large number of concurrent users? To what extent can we
improve the resource consumption of the approach? What impact can the single-
use server model have on attack reconstruction and analysis?

The first two research questions lead to novel contributions in container man-
agement and access control. Our single-use server model places every application
server in its own Docker container with permissions tailored to the associated
end user. When a client first connects to a server, it has anonymous user priv-
ileges and tightly constrained access to backend resources, such as a database.
When a user authenticates, our approach automatically alters the permissions
associated with the container to match the privileges associated with the authen-
ticated user. Since the permissions for each application server and container are
tailored, they do not have the elevated privileges necessary to enact a confused
deputy attack. The container approach provides isolation and the destruction of
a container upon the client’s disconnection eliminates attacker persistence.

The third research question leads to novel contributions to memory dedu-
plication. Our approach, called Focused Kernel Same-page Merging (FKSM),
actively merges two container’s processes if they run the same programs.

The final research question leads to novel contributions in attack analysis and
localization. To detect access violations, we create monitoring infrastructure for
communication between clients and the application server as well as between
the application server and any back-end resources. This monitoring also enables
forensic reconstruction of attacks. In this work, we:

– Design a Single-Use Server (SuS) approach that includes the compo-
nents needed for authentication, container management, and the collection
of forensics for arbitrary applications (Sect. 3). Our design improves secu-
rity by cleanly separating the untrusted execution environments for individual
users from each other and from the control plane that routes, authorizes, and
monitors requests.

– Implement a Single-Use Web Server using a novel combination of
lightweight containers and network middleboxes to support three web applica-
tion services, including the popular WordPress platform (Sect. 4). Our imple-
mentation demonstrates that applications can be ported with minimal codebase
modifications. We also enable fine-grained permissions to be safely enforced
by proxy middleboxes. We further develop a memory deduplication approach
that saves 26% of memory for each container while the merge time is only a
fraction of the state-of-the-art UKSM [40] approach.

– Evaluate the security and performance of our SuS implementation
(Sects. 5 and 6). We find the containerization approach prevents several
exploits against vulnerable versions of WordPress without requiring applica-
tion software patches. It incurs less than 5% CPU overhead, needs only 2GB
of RAM to run 100 concurrent containers, and shows only a 20% increase in
response time when running 100 concurrent containers.

– Reconstruct attacker steps by leveraging the per-user logging enabled by
SuS (Sect. 5.2). When exploring a known CVE attack on our SuS WordPress
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system, we find that a back-tracing workflow can quickly localize the search
space for debugging and remediation, reducing the search space from thousands
of files to only two functions.

2 Background and Related Work

In this section, we review work in the most related areas and discuss how our
approach is different from various perspectives.
Security through Isolation: Parno et al. proposed CLAMP to protect LAMP-
stack websites [27]. CLAMP assigns individual users to isolated VMs running
copies of the web server code. Users can upgrade their VM’s permissions via
a separate, trusted authentication portal. Unfortunately, CLAMP provides only
42% of the performance of native operations. The CLAMP authors acknowledged
significant impediments to the practical deployment of such a system and did not
complete an analysis of VM start-up on normal operation, citing the significant
overhead of VM start-up and limitations of delta virtualization. In contrast, in
our work, we designed and implemented customized memory improvements and
performed an end-to-end evaluation, including on-demand server generation. Our
result shows that SuS incurs modest overheads and achieves greater scalability.
Taylor [36] introduces a software-defined networking (SDN) controller to demul-
tiplex users’ traffic and guide their packets to isolated VMs. The Taylor work
lacks the resource restriction component present in CLAMP, but adds attack
attribution. Our SuS model improves performance and scalability; further, it
uses log fusion to reconstruct attack steps, which was not previously explored.

Radiatus, by Cheng et al. [6], builds off CLAMP and introduces more strin-
gent security measures. The result of such a design is a web development frame-
work that requires developers to use their API to create an application. Porting
an existing application to use Radiatus thus requires re-implementation. Our
SuS model aims to provide strong security isolation and can be deployed on
widely used web applications like WordPress and HotCRP with minimal code
base modification (≤ 50 lines of code).
Lighter Weight Virtualization: Some Internet services use lightweight vir-
tualization like containers to facilitate fast deployment, fine-grained scaling,
and component failure isolation [34,35]. Prior work has also sought ways to
reduce the resource consumption and cost of starting and running applications
with these technologies [2,15]. Serverless computing platforms benefit from these
lightweight virtualization technologies. SuS is different from the serverless model.
Our work takes a user-based view of the application and constrains the user’s
behavior based on the functions and resources the user is supposed to access.
We focus on security and forensics aspects.
Memory Deduplication: Kernel Same-page Merging (KSM) on Linux allows
applications to share identical pages by comparing the page content. Previous
work improves KSM in terms of scanning speed and resource utilization [11,
33,41]. UKSM [40] improves KSM by prioritizing statically-duplicated memory
regions and reducing computational cost through Adaptive Partial Hashing [12].
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Our merging approach differs from these existing works in the way duplicate
pages are identified. We compare our FKSM with UKSM on deduplication speed
and effectiveness to show the benefit of active and strategic scanning.
Forensic Analysis of Exploits: Data records can help defenders understand,
analyze and replay past events that are related to attacks. Dunlap et al. [8]
proposed Revirt, which uses checkpoint logging and roll-forward recovery to
replay entire attack events. To facilitate the human understanding of collected
forensics, researchers have proposed different approaches [7,10,32] to visualize
the data. In our work, we focus on constructing execution traces in an informed
way that leverages per-user isolation, facilitating visualization integration.

3 An Untrusted Application Server Design

Application servers are complex, making them ripe for attack. We create mon-
itoring and protection components so that attacks become valuable learning
opportunities for defenders to improve software without negative outcomes.

3.1 Threat Model

The SuS model is a server-side defense system aimed at preventing adversaries 1)
from successfully executing any backend request above their intended privilege
level and 2) from making changes to server files that would enable them to attack
other users. We assume that adversaries can only access the server program’s
host machine via network communication and that they will attempt exploits
via the packet payloads in the server program’s communication protocol.

We assume the application server within a single-use container can be
exploited and adversary-controlled. The adversary may arbitrarily control one
or more clients and containers. We assume that the container facilitates access
to information stored in one or more backend resources (e.g., in databases or file
shares) but that it otherwise only stores per-user session state. For the defender,
we assume that they leverage the SuS capability to configure the levels of access
based on their applications and different user roles. Such configuration exer-
cises a least-privilege principle, helping defenders mitigate exploitation against
unknown vulnerabilities.

We exclude attacks that cause privileged users to misuse their legitimate
privileges, such as social engineering or cross-site request forgery. Similarly, we
exclude attacks against our trusted computing base (TCB), which includes the
operating system, the back-end resource servers, and the SuS infrastructure com-
ponents themselves (such as middleboxes and container managers). While we
evaluate container scalability and performance, we exclude flooding-based denial-
of-service attacks and assume defenders employ current best practices. While a
trusted kernel is a common threat model assumption, and one we use as well, we
recognize that efforts to escape a container and elevate privileges are possible.
Given the importance of kernels and containers, we anticipate other continued
efforts to improve and protect them. The scope of the SuS approach is to explore
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the feasibility of using lightweight virtualization to run server instances that are
tailored to a single user. Our approach could be used with other lightweight
isolation and virtualization technologies as needed.

3.2 Design Components

Our SuS model assumes that each server instance will support only a single client,
although this could be extended to enable a container to serve a group of related
users, albeit with no protection between them. We will place each application
server in a separate container and examine each container for indications of
compromise (IOCs) that merit further analysis. Any container that lacks an IOC
is deleted once it is no longer needed by a client. Figure 1 shows the following
SuS model components. We now describe these components in detail.
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Fig. 1. Design overview of Single-use Server architecture. The middleboxes, authenti-
cation, and management components coordinate to provision SuS containers and assign
them to clients, provide a means of upgrading privileges to the backend resource, and
contain and analyze exploited application servers.

3.3 Application Containers

We place each application server in its own isolated execution container. These
containers are instantiated by cloning an existing server. Before the container
interacts with a client, we consider the container to be “pristine.” While it is pris-
tine, the container can be trusted since it is unreachable by an adversary. Once a
container interacts with a client, we consider the container “contaminated” and
inherently untrustworthy.

3.4 Container Management

The centralized Container Manager mostly performs management tasks includ-
ing server instance configuration, container provisioning, reclamation, or freezing
(if an attack is detected). Because the Container Manager knows which pair of
processes are created from the same resource, it also communicates with the
FKSM kernel module to initiate page deduplication.
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3.5 Authentication Container and Permissions

Many application servers must identify the user associated with a given client.
In our model, we cannot rely on the untrusted application to accurately report
the client’s authentication status. Instead, all user authentication is handled by
a trusted Authentication Container, which has a minimal code base that can be
more easily verified and protected. This separation of roles is somewhat similar
to the Kerberos authentication model [17].

The Container Manager communicates with the Authentication Container to
adjust container permissions. If the Authentication Container confirms a client’s
identity, the Container Manager increases privileges in the SuS-to-backend mid-
dlebox and backend infrastructure to reflect the new user permissions. In essence,
the SuS container gains only the privileges associated with the connected user.

Our privilege model differs from traditional web server configurations. An
application container does not need a superset of users privileges during the
configuration (e.g., WordPress installation recommends granting all privileges
in the WordPress database). Such a configuration has the potential risk of let-
ting adversaries ultimately control the entire WordPress database in case of an
exploited WordPress instance. In our SuS model, the same exploitation is limited
to the database privileges of the account associated with the exploited container.
In other words, the adversary may issue queries, but the queries will only suc-
ceed if they can be performed within the limited permissions associated with the
container. We treat database server privilege errors as evidence of compromise.

3.6 Client-Side Demultiplexing and Forwarding

Our Client-to-SuS middlebox acts as a load balancer that demultiplexes clients
and directs each to a separate SuS container and as a proxy that handles all
encryption functionality. This keeps cryptographic keys out of the untrusted
SuS container environment while letting the middlebox vet unencrypted data.
It controls access and blocks client communication in the event of an access
violation. It logs network traffic for forensic reconstruction. This allows defenders
to pinpoint the client messages that preceded the violation, potentially revealing
the vulnerability exploited in the SuS container.

3.7 Guarding Backend Resources

The narrowly-tailored permissions the Container Manager configures for back-
end resources solve many Confused Deputy attacks. However, a SuS-to-backend
middlebox provides fine-grained restrictions that some backend implementations
cannot support. For example, an authenticated user should have UPDATE priv-
ileges to the application’s users table so the user can change the associated
email address or password. However, that privilege should be limited to certain
rows, such as the rows for which the column USERID matches the authenticated
user’s identifier. The SuS-to-backend middlebox must be protocol-aware to per-
form resource access control effectively. We designed the system to easily swap
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between backend modules for protocols such as SQL and NFS. The modules in
the middlebox must implement specific API functions that (1) parse and condi-
tionally modify resource requests and (2) detect permission violations in request
responses. The middlebox also observes any errors or responses from the backend
resource and informs the Container Manager to act accordingly. The middlebox
logs the communication for incident analysis of any attacks and it prevents access
between potentially compromised SuS containers and the backend resources.

3.8 Constructing Execution Events

The client-side and backend-side traffic are logged by the corresponding mid-
dleboxes and associated with users’ identities. With our design, this traffic is
automatically separated to represent a single user’s interaction with the service.
While helpful, the network traffic alone is insufficient because it lacks insight into
the user’s interaction with the application. In Sect. 4.6, we describe the server
profiling component that provides such detail. Since SuS logs the per-user server
instances, it has a significant advantage in fusing and reconstructing logged data
to facilitate the understanding of the provenance and the impact of an incident.
We discuss the implementation of log integration in Sect. 4.7.

4 Implementation

To provide concrete examples and show evidence of generalization of our SuS
design, we create implementations using three different Web applications: 1)
WordPress [39], a popular Internet content management system estimated to
be used in over 35% of all websites on the Internet [37]; 2) HotCRP [14], a
system for managing paper submission and peer reviews for conferences; and 3)
an anonymized learning management system (LMS) used in our organization for
the administration and delivery of class materials. For simplicity, we focus on
WordPress and simply describe where HotCRP and our LMS applications differ.

All three applications require a web server, a PHP runtime, and a database
server. Since PHP is used in over 78% of popular websites [38], we focus on PHP
web applications. We use the popular Docker container system to implement our
containers. We test multiple versions of the WordPress software to measure the
impact of the single-use server approach on attacks against versions of Word-
Press with known vulnerabilities. In the remainder of this section, we describe
the implementation details of our SuS containers, the Container Manager, the
Authentication Container, the middleboxes, and our protocols.

4.1 Container Configuration

We build a Docker container image through a “Dockerfile” for each application we
need to protect in a SuS container. The application container is configured under
a private network which is created through Docker’s command line interface. We
assign each container a unique IP and expose the necessary ports.
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Under their standard deployment, most web applications must be configured
to communicate external components such as server applications and resource
databases. The SuS model separates server instances but does not fundamentally
interrupt the data flow. Therefore, a similar configuration effort is required.
Using WordPress, HotCRP, and our LMS as case studies, we find that only
minor modifications are required and mainly involve the following aspects:

Authentication: The authentication logic must relocate from the untrusted
container into the Authentication Container. For all three applications, we
rewrite the login URL and direct the user to their assigned SuS container after
successful authentication. For HotCRP, users must log in for most features and
be directed to a pristine container. Our LMS application was configured as a
relying party associated with a single-sign-on identity provider. Therefore, the
redirection URL is encoded with the parsed SSO response.

Shared Resources: The SuS-to-Backend Middlebox (Sect. 4.5) can support
backend resources such as databases. Some services, like HotCRP, use a mail
server for message transmission. This can be handled via an external server or
a shared service (which itself could be in the SuS system). For simplicity, we
simply use a mail server on the container host in our experiments.

4.2 Container Manager

The Container Manager creates a thread to maintain a pool of available contain-
ers for new clients. Our pooling strategy hides latency by ensuring a container is
ready when a client arrives. When stopped, the Container Manager terminates
all threads and containers and removes container credentials from the database.
We use a startup script as the entry point that setup control arguments for
the rest of the container processes. After parameter configuration, the script
then fires up the web application. The scripts receive these arguments from the
Container Manager as part of the container startup process. An internal control
manager handles the generation of each container’s control arguments (including
IP address, database credential with minimal privilege, PHP settings, etc.).

Optimizing memory usage for SuS is important. Our memory deduplicator
is implemented as a kernel module in Linux and a userspace component which
is part of the Container Manager. The communication between the kernel and
userspace is achieved through a ioctl call in which the manager passes a pair
of in-container process IDs that requires merging. Container processes’ IDs are
obtained by intercepting the Docker event interface and examining the corre-
sponding cgroup directory on a container startup event. After receiving the pro-
cess IDs, our kernel module’s callback function scans the processes’ pages. Before
merging, we compute and store page metadata in a two-layered hashmap. This
structure combines xxHash checksums with Blake2b checksums for each page to
perform faster merge comparisons. The first layer is indexed off xxHash’s first
bytes, and the second layer stores the full xxHash and points to a red-black tree
indexed off the Blake2b hash. The mergeable pages between two processes are
first maintained in a link list and then merged using existing kernel functions.
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4.3 Authentication Container

The Authentication Container operates a web page that prompts clients for
credentials. Upon receiving the user’s credentials, it tries to validate them and
notifies the Container Manager whether the client has a new role. The Con-
tainer Manager then accesses the database and appropriately upgrades the priv-
ileges of the account associated with the client’s assigned SuS container. The
Authentication Container finally redirects the user back to a specific URL on
the appropriate SuS container. That URL encodes data that allows the script to
set authentication cookies to set the user identity in the application.

This authentication model requires that the two redirect messages be cryp-
tographically validated. We encode nonces and a message authentication code
in the redirect messages to ensure the authenticity of all passed parameters. We
derive the keys using information preconfigured by the Container Manager. This
approach allows the Authentication Container to statelessly validate messages
from any SuS container without requiring an interaction with the Container
Manager. We omit the details of these messages for brevity.

4.4 Client-to-SuS Middlebox

The main task for the client-to-SuS container middlebox is determining the
appropriate container for each client. We embed the user information in an
HTTP cookie called SUS_DEMULTIPLEX_COOKIE to perform the client demulti-
plexing. We implement the middlebox using Python’s asnycio library and use
its API functions to handle the TLS termination. The middlebox can thus parse
the HTTP request to extract the user information within the Cookie header.
After parsing the HTTP header, it updates an internal mapping structure with
the relation between the user information and its assigned SuS container IP.
The validity of the SUS_DEMULTIPLEX_COOKIE determines whether a new con-
tainer request is needed. After a SuS container is purged for inactivity, the mid-
dlebox removes the corresponding internal mapping. Upon receiving the first
response from the SuS container, the middlebox rewrites the HTTP response
in a Set-Cookie field with appropriate cookie value and expiration to ensure
the client sends subsequent requests with the cookie value. It then encrypts the
response message and sends it back to the client.

We also implement a second cookie named SUS_LOG_COOKIE, which is used
only on the server side to uniquely name each request for logging and event
reconstruction purposes (See Sect. 4.6 and Sect. 4.7).

4.5 SuS-to-Backend Middlebox

The SuS architecture ensures that the database can enforce the table-level con-
straint by itself. Fine-grained query scoping requires configuration similar to
prior work [16]. In our work, we create a proxy middlebox between the SuS
containers and the MySQL database. As described in Sect. 3.7, one task that
middlebox performs is query scoping, which limits table access to certain rows.
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We define a ResourceRestrictTable that maps the tuple (Role, Resource, Access
Type) to an Access Predicate. An Access Predicate is an extra limitation that
can be applied to the query by appending it to the query’s WHERE clause or an
assertion to check the presence of a specific row selector in the WHERE clause.
The middlebox also maintains a UserContext dictionary that maps container IP
to user information (e.g., user_id, role). For each database query, the middle-
box first retrieves the user’s role based on the container IP. Then it extracts the
resource (table) and access type (e.g., SELECT, INSERT). The middlebox retrieves
the Access Predicate using the above three values. An access predicate may have
a variable, as in the case ID = :user_id. In this case, the middlebox inserts the
corresponding value from the UserContext dictionary entry before appending it
to the query. The modified query is then sent to the MySQL database, and the
response is forwarded to the container from which the query originated as usual.
This silently restricts the data available to each user. The middlebox monitors
and logs MySQL server responses for permission violations and regards any such
error messages as an indication that the container has been compromised. Upon
detecting such an error, the middlebox issues a request to freeze the container.

4.6 Tracing Application Execution

We implement a PHP extension that leverages request hooks to mark the start
and end of a request and log important contexts such as URLs and cookies. The
SUS_LOG_COOKIE cookie (inserted by the Client-to-SuS middlebox as mentioned
in Sect. 4.4) is extracted at the request_start hook function. In addition to the
request information, we also leverage the function execution hook to record func-
tion execution information, including the function name, the function call site
(the file and line at which the function is called), and the function’s parameter
values. In this hook, a SUS_LOG_COOKIE value will be propagated if the function
execution is part of the request handling. Because PHP handles requests syn-
chronously, this propagation is scoped by the request_start and request_end
hook functions.

The profiling extension is application-independent and can be loaded and
unloaded through the PHP runtime’s configuration file when PHP processes
start. We found that accessing a complete list of function parameter values can
incur significant overhead. Therefore, we only obtain the first three elements’
values for composite-type parameters. In addition, we limit the parameter tracing
depth when a composite-type parameter contains other composite-types.

Since the profiling extension runs within each SuS container, the profiling
data may be tainted. An attacker with control of the SuS container may manip-
ulate the profiling extension to provide false data. We leverage Linux’s auditd
from outside the container to implement rules that monitor ptrace and accesses
to PHP’s configuration directory. These rules can effectively detect an attacker’s
attempt to subvert the profiling modules through code injection and module
replacement. Previous work explores syscall semantic reconstruction for inter-
preted program [5,18]. Tracing syscalls from outside the container can enable
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legitimacy estimates of the PHP execution trace. Mismatches between the syscall
traces and PHP traces could themselves be indicators of container compromise.

4.7 Integrating Execution Traces

As mentioned in Sect. 3.8, logs from different users can easily be separated
because of the single-use design. Our system generates: (1) an HTTP log from
the Client-to-SuS middlebox, (2) PHP execution logs from profiling modules, and
(3) a resource query log from the SuS-to-backend middlebox. These logs depict
an interaction from different perspectives and, when integrated, constitute an
execution trace of the whole event.

The first step in constructing the trace is parsing unstructured PHP logs into
per-request call graphs. We implement a syntactical parser based on php-ast [30]
to locate the user-defined function’s definition (a script that defines the function
and the line ranges of the implementation) and functions that will be called in the
global scope. This statically-learned information is combined with our profiling
data to construct the graph. The former allows us to determine the calling rela-
tion between two function log entries (e.g., whether function A is called within
the block of function B). The latter allows us to identify the root node of a chain
of function execution. The resulting request call graph is essentially a tree that
starts with a root node named RINIT describing the request. Each child of the
RINIT node is a global scope function followed by subsequent function calls and
ends with PHP sink functions such as mysqli_query. To link the HTTP log
to the request call graph, we only need to match the SUS_LOG_COOKIE cookie.

Table 1. CVEs and defenses considered in our security evaluation.

Category CVE Vulnerability Description SuS Attack Mitigation

Single-user
Instances

2012-3578
[20]

Input type validation failure enables
script file upload and execution of
arbitrary SQL queries and database
credential leak

At SuS container startup, each
wp-config PHP file is written with a
database user of minimum privilege

Table-Level
Privilege
Constraints

2021-24182
[24]

Union-based SQL injection on
wp_tutor_quiz_question_answers

Deny access to sensitive tables for
unauthenticated or limited users (e.g.,
student roles)

2021-24183
[25]

Union-based SQL injection on
wp_tutor_quiz_question

2018-19207
[1]

Allows update to wp_setting table to
register new admin account

Limit update access to the wp_setting
table to administrator users

Row-Level Query
Scoping

2019-9879
[21]

Privilege escalation exploit allows
unauthenticated user to register new
admin user

Query scoping prevents wp_capability
used as the row selector when updating
wp_usermeta

2020-13693
[23]

Privilege-escalation exploit allows
unauthenticated user to change
wp_usermeta table to register with
bbp_keymaster role

2019-9880
[22]

Allows unauthenticated user to retrieve
all user information in wp_user table

Query scoping adds row selector to limit
user access to only their own data

2009-2762
[19]

Input validation failure allows reset of
administrator’s password for account
hijack or account-level denial-of-service
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This approach allows us to link accurately even with the server application’s
URL rewriting. To link the call graph with the resource log query, we match the
query string with the PHP function’s parameter.

5 Security Evaluation

To evaluate the security benefits of the single-use server, we first consider the
attacker’s goal and common techniques in exploiting the confused deputy. Nor-
mally, attackers aim to access resources beyond what the application is designed
for or what a user is allowed. This often requires the attacker to inject specific
queries or misuse existing queries in the application code. For the injection case
(the first three cases in Table 1), we consider two common attack vectors: file
uploads and SQL injection. For the query misuse cases, we examine a set of
attacks of this type (The fourth to eighth cases in Table 1).

We explore SuS effectiveness against attacks by classifying these exploits
based on the SuS feature that stops or mitigates the attack. For each vulner-
ability, we apply an exploit to a test environment, both with our SuS model
and without it. With the SuS model, the defender is required to configure the
enforcement policies, while the control uses a shared server of the same software.

5.1 Evaluation: Real-Word Vulnerabilities

Single-user Instances For a server deployed using SuS model, file upload vul-
nerabilities are naturally mitigated because any uploaded script is only accessible
within the attacker’s container. Further, the uploaded script can only execute
database queries within the limited permissions granted to that container (e.g.,
credentials saved in files like wp-config.php). We used CVE-2012-3578 [20] to
evaluate SuS’s effectiveness. As expected, the attack was successful in the shared
server scenario. Our script, which aimed to delete WordPress accounts, failed in
the SuS model since the container lacked the necessary permissions.

Table-Level Privilege Constraints Since each SuS container is configured
with a unique database user account, we can configure different table access priv-
ileges based on the identity associated with the client. This prevents confused-
deputy attacks since it eliminates privileged access that must be granted on a
shared sever. For SQL injection attacks, queries which are manipulated to access
any sensitive tables, such as mysql.user, are denied. In Table 1, we select three
representative CVEs and show how SuS is configured to address these attacks.

Row-Level Query Scoping This class includes attacks in which a mali-
cious user takes advantage of permissions that they were intentionally given in
order to access or modify data that is disallowed by the security policy. This typ-
ically happens when the backend resource’s native access control system is too
coarse-grained to properly implement the desired policy. Our SuS-to-Backend
middlebox enforces access control at the row level. We evaluate such a control’s
effectiveness through 4 different CVEs, as shown in Table 1.
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5.2 Case Study: Exploring Execution Traces

While SuS can block the requests that trigger security exceptions, this alone does
not help a security analyst to identify the root cause of an exploit. To illustrate
how SuS logging can guide the process of localizing vulnerabilities, we consider
a case study. We explore the GdprOptions vulnerability (CVE-2018-19207) and
analyze the data. Using the trace construction workflow from Sect. 4.7, we con-
struct a graph of relevant events from each HTTP request and SQL interaction.
As mentioned above, the GdprOptions vulnerability is prevented by our SuS
model because the UPDATE query needed to change the WordPress site settings
exceeds the permissions associated with the client. This allows us to prune our
analysis to graphs that contain the denied update query. The result, depicted
in Fig. 2, shows progression from an HTTP POST request (the first block) to
/wp-admin/admin-ajax.php, and a series of PHP function calls that end with
a denied SQL query (the last block).

POST /wp-admin/admin-ajax.php
action=wpgdprc_process_action
data={type=save_setting, append=false, option=users_can_register, value=1}

HTTP Request

do_action()
admin-ajax.php

apply_filters()
class-wp-hook.php

processAction()
gdpr142/Includes/Ajax.php

update_option('users_can_register', 1)
gdpr142/Includes/Ajax.php

update(query_string)
wp-db.php

query(query_string)
wp-db.php

_do_query(query_string)
wp-db.php

UPDATE `wp_options` SET `option_value` = '1'
WHERE `option_name` = 'users_can_register'

Rejected Query

query_string = UPDATE `wp_options` SET `option_value` = '1' WHERE `option_name` = 'users_can_register'

Fig. 2. The pruned trace shows how the HTTP request (yellow) is handled by PHP
functions (blue) and leads to the rejected SQL query (red). For readability, we use the
string “query_string” as shorthand to represent the full SQL query that appears as
parameters in the PHP nodes. (Color figure online)

In the trace, the PHP execution starts in the WordPress codebase and even-
tually enters the code base of a plugin (gdpr142/Includes/Ajax.php). After
execution of the processAction, the query is prepared and processed by a
sequence of query-related functions until it is issued by the _do_query func-
tion. Since the query is simply passed through those helper functions unmod-
ified, it suggests that the issue originates in or near the processAction or
update_option functions. The documented patch to the vulnerability confirmed
that the processAction was indeed the cause [26]. With such data, a defender
can remedy the issue by patching the software or removing the plugin.

In a non-SuS system, this exploit might not be noticed for days or weeks, at
which point logs may be overwhelming to analyze, and there will be no clear trail
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back to the request that triggered the exploit. In contrast, SuS’s user separation
allows the query to be rejected, signaling the need for immediate analysis. In this
particular example, there are a total of 802 functions and 12 script files that are
accessed between the HTTP request and the SQL query (assuming the analyst
can identify the malicious request). SuS allows an analyst to quickly narrow the
potential cause of the vulnerability to only two functions (processAction and
update_option) within a single file (gdpr142/Includes/Ajax.php), out of the
1000+ PHP scripts in a WordPress installation.

We also conducted the same attack reconstruction analysis for other CVEs
described in Table 1 as well. The log reduction benefit applies to other CVEs too;
reconstructed traces average 18 functions with an average total of 1188 lines.

6 Performance Evaluation

Scalability and performance are key considerations for the SuS model. Since con-
tainers can use shared read-only mount points, and the remaining temporary file
write space is needed in shared servers anyway, disk utilization is not a signifi-
cant concern for the SuS model. However, we must explore what additional CPU
and memory resources, if any, would be required by allocating separate server
instances for each client and isolating them in separate containers. We must also
explore the latency overheads associated with directing traffic to the appropri-
ate container, logging its interactions, and enforcing permissions associated with
those containers. We explore each of these topics in turn.

All our SuS containers run within a virtual machine with 16 GB of RAM, an
allocation of 4 host CPU cores, and a 40 GB virtual hard drive. The VM runs on
a physical host with 192 GB of RAM, 20 cores running at 2.20GHz, and 21 TB of
hard drive space, configured with RAID. Our containers are not configured to use
or enforce any CPU or memory limits. This configuration allows a comparison
with the performance results associated with CLAMP [27].

6.1 RAM Usage

Before comparing memory usage between the SuS and the shared server model,
we explore multiple server configuration options to ensure a fair comparison. We
use WordPress as an example to show the impact of these options and determine
the best choice for each model. We first configured different web servers using
PHP with a static pool. For the shared and SuS server, the PHP worker pool
size is set to the maximum number of concurrent users and one per container,
respectively. The memory usage is calculated through Linux’s free command.
In the shaded portion of Table 2, we show the memory usage ratio (i.e., SuS

Shared )
of the SuS model versus the shared server model. Our experiment shows that the
shared server only uses a subset of the configured workers and achieves memory
sharing that the SuS model does not.

For subsequent experiments, we select nginx with PHP-FPM as the default
configuration for SuS because its relative lightweight and server popularity. Using
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Table 2. The ratio of memory ( SuS
Shared

) used by WordPress in the SuS model verses
the shared server model across varying numbers of concurrent users in 10 trials of
experiments. The shaded results omit copy-on-write sharing while FKSM uses such
page sharing in the kernel.

Server Configuration
Concurrent Users

10 25 50 100

Apache PHP-FPM
original approach 3.94 5.01 6.97 8.1

Our FKSM 2.72 3.37 4.71 5.39

Nginx PHP-FPM
original approach 4.13 5.08 5.67 7.37

Our FKSM 2.85 3.47 3.86 5.0

Lighttpd PHP-FPM
original approach 4.02 4.96 5.48 6.9

Our FKSM 2.89 3.33 4.65 5.59

PHP-FPM with a single PHP worker, we pre-spawn a fixed number of SuS
containers and use web clients to interact with the servers. We measure active
containers’ memory usage while serving pages to clients. In Table 3, we see that
the per-container memory usage decreases as the number of concurrent clients
increases. This is likely the result of amortizing fixed costs.

Table 3. Per-container memory usage (in MiB) with active clients across three appli-
cations using nginx and PHP-FPM. Results averaged over 10 trials.

Concurrent Users
SuS Application 10 25 50 100

memory usage in MiB WordPress 31.25 30.02 29.21 28.37
HotCRP 27.80 27.71 27.55 27.16
LMS 23.12 22.90 21. 14 20.70

The application server’s basic properties play a significant role in the overall
memory usage and the practical deployability of SuS. The 2.02 GBytes for 100
concurrent users can be easily handled by modern web servers. The web server
hosting the LMS has ample memory and can easily scale to support the more
than 1,000 active users in the system. Likewise, the HotCRP service can han-
dle one hundred concurrent users with less than 3 GByte of RAM, which may
meet the needs of most conferences. For high-volume websites such as Word-
Press, when considering our FMSK improvement, the memory usage will reduce
to be relatively the same as the LMS application. But even without further opti-
mization, compared with CLAMP’s VM-based approach, each SuS container’s
memory usage is only half as much as a VM-based Webstack’s (64 MB).
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Table 4. The average merge time (tm) and per-container memory saving (ms) com-
parison between our FKSM and the UKSM approach across 10 trials with varying
container counts. UKSM requires parameter tuning for best performance; the default
works better in workloads with < 25 containers.

Concurrent Users
KSM Approach 10 25 50 100

tm (secs) Our FKSM 1.24 3.24 8.51 18.56
UKSM [40] 95.75 88.5 105.25 143.25

ms (MiB) Our FKSM 8.92 9.84 10.02 10.03
UKSM [40] 4.98 5.30 5.14 5.00

We compare UKSM with our own Focused Kernel Same-page Merging
(FKSM) approach, in which the container manager actively initiates the merging
requests and records merge completion time and the average memory saved for
each container. In contrast, UKSM constantly runs in the background without
a clear merge completion point. Therefore, to make a fair comparison, we record
the memory statistics for 10min and choose the time needed for UKSM to com-
plete 80% of memory savings for its performance statistics. We show these results
in Table 4. FKSM focuses on mergeable pages only between pairs of processes,
enabling quick merging. In contrast, UKSM makes multiple rounds of local and
global samplings and may not discover all merging opportunities (resulting in
48% less memory saving on average). In the shared region of Table 2, we show the
FKSM savings, which average around 30%. We examine how web retrievals can
lead to unique states to process requests. We found that the memory usage will
increase by around 2MB for both page-sharing approaches. Our approach still
saves 26% of memory per container. We also found that when ASLR is enabled,
the memory saving of FKSM and UKSM is significantly reduced to less than 5%.
While the original UKSM paper [40] reports 39% of memory saving for contain-
ers, we found that this result is only achievable with a fully duplicated LAMP
stack, where most saving is attributed to duplicated MySQL processes. In our
settings, multiple containers share a single database with different credentials.

Table 5 shows the median CPU usage (obtained using mpstat) for a four-
core system with each tested case across 10 trials using the same container
configuration as our per-container memory usage experiment with WordPress as
the SuS-hosted application. The CPU usage difference between SuS and a shared
server appears related to the processes needed to fork and isolate containers. For
SuS, each container has a complete process set. For the shared server setup, it
only needs to run a single server application and shared PHP worker processes.
On the initial load, the 100 concurrent users each cause the accessed PHP scripts
to be compiled on SuS, whereas in the shared server, a single compilation suffices
due to PHP’s OPcache [28]. This likewise explains the closer results for SuS and
the shared server models on subsequent loads.
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Table 5. The CPU usage (in percent) for both the shared and Single-use Server across
10 trials. For both deployments, the first load on WordPress triggers a bootstrapping
process that causes the CPU usage to be higher than the second (and subsequent)
page loads. In SuS, the first page load also causes the Container Manager to assign a
container to the newly-connected user.

Concurrent Users
Configuration 10 25 50 100

First Load Shared 21.01% 23.19% 31.49% 41.33%
SuS 56.85% 77.02% 85.94% 93.62%

Second Load Shared 4.36% 10.10% 17.53% 34.83%
SuS 16.26% 22.40% 27.60% 39.50%

To avoid the PHP bootstrapping and compiling process, as mentioned above,
we configured the Container Manager to perform this bootstrapping when cre-
ating a SuS container to prime it. Our implementation handles this by sending
a pre-provision request to the fresh-started SuS container. We note that such a
process can also be configured by the Opcache preload [29] feature but requires
specifying the scripts in the correct dependency order to compile. Our request-
based approach avoids this requirement.

6.2 Page Retrieval Times

We examine and compare the latency between SuS and Shared server using
WordPress, which is known to be a heavyweight application [4]. We generate
concurrent client requests using multiple instances of wget to get WordPress’s
main page (each main page access requires 7 different assets files and triggers 22
unique MySQL queries). While website complexity varies in practice, this exper-
iment compares the workload’s impact across different server configurations.

Figure 3 shows page load times under different settings. As we mentioned
above, one overhead is the multiple script compilation process. Given this, the
first two settings for SuS are with and without pre-provision. In addition, we
consider a third pool refilling setting where the container manager maintains a
pool watcher thread to ensure sufficient available containers.

From Fig. 3, we see that when using pre-provisioned containers, the load
times for the SuS and shared server models are similar, from 10 to 50 concurrent
users. The SuS model becomes slower at 100 concurrent users. We believe there
are two main sources of delay. First, the SuS model requires the CPU to spend
extra cycles to context switch between processes, which is saved for shared servers
because of sharing worker processes across requests. Second, our Client-to-SuS
middlebox must request a new container from the Container Manager for the first
request from a new client, adding initial latency and load. For the pool refilling
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Fig. 3. CDFs of 200 home page load trials in WordPress 5.1.1. with 10, 25, 50, 100
concurrent users in SuS and shared server (“control”) scenarios.

setting, we observed only a minor impact on the page load time (characterized
by the difference between the second (orange) and third (green) lines in Fig. 3).

In CPU usage and page load time, SuS has results close to a shared server.
When memory is not the bottleneck, SuS is able to achieve similar throughput
as a shared server. This significantly outperforms the VM-based approach in
CLAMP, which had only 42% of the throughput of a shared server [27].

6.3 PHP Profiling Overhead

Our PHP profiling module adds extra runtime procedures to obtain the func-
tion’s execution context. Then it asynchronously sends the collected traces to a
profiling data receiver. The profiling overhead does not affect each asset retrieval,
only the request handled by PHP. This experiment measures the overhead by
comparing the PHP request’s round trip time with and without the module.

Figure 4 indicates that the profiling adds around 10ms delay on individual
PHP requests. WordPress makes many function calls (around 25,000 user-defined
functions for each PHP request on average). Given this statistic, our profiling
module adds less than 1µs for each function call. The PHP profiling overhead
does not need to affect production traffic since analysts can disable this func-
tionality in normal usage and only enable it in post hoc analysis in which the
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Fig. 4. Profiling affects page load time. Unless applied to production traffic, this logging
overhead would occur in post-hoc analysis.

profiling module is enabled in a pristine container, and the previously logged
HTTP request and back-end resource requests are replayed. Tools like TCPre-
play [9] enable such event-based traffic replaying. Accordingly, defenders may
choose whether to enable the feature for live traffic or only in incident response.
Since our system prunes unrelated interactions, the replay logs may be small.

7 Conclusion

Our work introduces SuS containers that prevent adversaries from exploiting
vulnerabilities in front-end Internet servers. These protections require only small
code base alterations. Overheads introduced by the containerization approach
are limited, with 2GB RAM sufficient for 100 containers and only a 5% increase
in CPU consumption. The memory consumption of the approach is practical
in some settings. Our FKSM saves 26% of memory for active containers. High-
volume servers may benefit from future work in copy-on-write container cloning.
This approach captures logs at the middleboxes and execution engine. The app-
roach can allow analysts to reconstruct an incident and localize a vulnerability.
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Abstract. In vulnerability assessments, software component-based
CVE attribution is a common method to identify possibly vulnerable sys-
tems at scale. However, such version-centric approaches yield high false-
positive rates for binary distributed Linux kernels in firmware images.
Not filtering included vulnerable components is a reason for unreli-
able matching, as heterogeneous hardware properties, modularity, and
numerous development streams result in a plethora of vendor-customized
builds. To make a step towards increased result reliability while retaining
scalability of the analysis method, we enrich version-based CVE match-
ing with kernel-specific build data from binary images using automated
static firmware analysis. In a case study with 127 router firmware images,
we show that in comparison to naive version matching, our approach
identifies 68% of all version CVE matches as false-positives and reliably
removes them from the result set. For 12% of all matches it provides
additional evidence of issue applicability.

1 Introduction

Safety, security, and privacy threats arise alongside embedded system markets.
Growing device numbers inflate attack surfaces, raising impact and scope of
newly found software vulnerabilities in domains pivotal to society [8]. Thus, it
is important to maintain the software security of these systems.

Embedded devices commonly make use of Embedded Linux1 as host operat-
ing system for their firmware. Using open source components instead of develop-
ing custom solutions generally provides a solid security foundation; though the
Linux kernel specifically has been attributed over 2,900 Common Vulnerabili-
ties and Exposures (CVE)s as of 2022. Attesting the security of a Linux-based
firmware thus includes checking which CVEs concern the specific kernel in-use.

While reproducible exploitation of a CVE would be optimal, various chal-
lenges [10,13] exist that make a comprehensive reproduction on a device unob-
tainable. First, not all CVEs have a known POC exploit to test against. Second,
1 https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_

Emb\discretionary-edded_Markets_Study.pdf.
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exploitation requires either a running device or an emulated firmware. The for-
mer is not generally attainable for large-scale analysis. The latter is hindered my
various challenges specific to firmware emulation [6,13].

Static analysis serves heuristics to find imperfect proof for CVE attribution.
Yet, many approaches do not scale well as they require considerable manual work
and deep knowledge of each CVE [10]. Parts are automatable but needed data
may be unavailable or incorrect in repositories [1,11]. Also, automation becomes
increasingly challenging considering proprietary formats, obfuscation, compiler
optimizations, and symbol stripping [3,10].

In lack of better methods, firmware analysis tools [4,9] and large-scale stud-
ies [2,12,14] commonly attribute vulnerabilities by matching versions against
CVE databases. One such study [12] used version matching on the Linux ker-
nel as part of an empirical study on home router security. Due to custom build
configurations, implying that each kernel includes only a subset of all possible
vulnerabilities, this method is exceedingly unreliable. To improve the reliabil-
ity of version-based Linux CVE attribution in large-scale scenarios, we enrich
such naive matching with kernel-specific configuration data, collected through
automated static firmware analysis. Hereby, we reduce the set of false-positive
matches requiring further manual verification. In the following, we provide:

1. A description of our methodology for Linux CVE attribution, based solely on
binary kernel representations.

2. A case study in which we compare our approach with naive version-based
CVE matching using the 2020 Home Router Security Report [12] dataset.

3. An open source proof of concept implementation of the methodology2.

2 Background & Related Work

Automated vulnerability detection is approached using various methods such
as code similarity and patch analysis [5], fuzzing [7], and various emulation-
based methods [13]. Large-scale detection of known vulnerabilities requires sound
ground truth. Thus, we focus our discussion on sound vulnerability information
and previous research on discovering known vulnerabilities on binary code.

Sound Data as Foundation for known Vulnerability Detection. Correct
and detailed information on known vulnerabilities [10] is essential for effective
automated detection methods. The community-driven CVE catalog3 offers a de
facto standard for vulnerability identification but comes with limitations due to
errors in Common Platform Enumeration (CPE) assignments [1], missing or hard
to obtain data [3] and inconsistent references to patches [11]. Additionally, for
CVEs affecting closed source projects, issuers will not share technical details on
fixes in public. In this work, we leverage upon the observation that the summary
of most Linux kernel CVEs includes a file reference to mark which kernel part
is affected.
2 https://github.com/fkie-cad/cve-attribution-s2.
3 https://www.cve.org/.

https://github.com/fkie-cad/cve-attribution-s2
https://www.cve.org/
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In consequence, most research comes with small custom datasets of selected
CVEs that their proposed techniques can ingest for evaluation [10]. The nec-
essary investigation, data aggregation, and technical bug knowledge, limits the
applicability of previously -scale scenarios.

Static Vulnerability Detection in Large-Scale Firmware Analyses. In
2014, Costin et al. [2] executed a quantitative study on embedded device security
by analyzing 32.000 firmware images. They attributed CVEs based on software
version number and then reported unsolved challenges in result verification, as
not only CVE data is incomplete, but vendors may also custom-patch files.

Cross-architecture code similarity methods (e.g. FirmUp [3]) have drastically
improved and may be used as imprecise measure for verification in this case. How-
ever, acquiring and processing patches for thousands of CVEs to bootstrap code
similarity methods deems infeasible based on the imprecise CVE repositories.

Zhao et al. [14] develop FirmSec, a large-scale static analysis pipeline for IoT
devices. The approach extracts syntactical and control-flow graph features and,
thus, provide an alternative for signature-based version detection. However, the
applicability issue introduced by vendor-specific build configurations, as in the
Linux kernel, is not considered.

The authors of [12] assess and compare the state of firmware security of 127
home routers in similar aspects as [2], using the automated Firmware Analysis
and Comparison Tool (FACT) [4]. Identified Linux kernel versions are matched
against the National Vulnerability Database (NVD)4 to calculate how many
critical CVEs affect the kernel of each firmware. In this study, the stated issues
with CVE database information and kernel modularity lead to high false-positive
rates, incurring high manual verification efforts.

There is few work that specifically studies high false-positive CVE attribution
rates caused by the Linux kernel’s modularity. With version-based CVE attri-
bution being a common method, we identify false-positive reduction in static
kernel CVE attribution as a research gap.

3 Methodology

This section describes our proposed methodology to enrich the version-based
Linux kernel CVE attribution process with build-specific annotations. We show
an automated static analysis pipeline that finds and extracts kernel configura-
tions, dry builds the found kernel version, and filters CVEs based on affected
version and build log-included files.

Figure 1 provides an overview of our methodology. We establish a two-stage
process: In the first and left-hand stage, we unpack, analyze, and annotate each
file of an ingress firmware image. Gathered information includes Linux kernel
version, Instruction Set Architecture (ISA), and kernel build configuration. In the
second and right-hand stage, we leverage upon said data to perform the actual
CVE attribution and filtering step. Yellow boxes in Fig. 1 mark components this
paper contributes.

4 https://nvd.nist.gov/.

https://nvd.nist.gov/
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Fig. 1. Two-staged static analysis pipeline to (I) gather kernel information and (II)
attribute kernel CVEs accurately.

In the two following Subsects. 3.1 and 3.2, we provide detailed technical
insights on each stage and step.

3.1 Gather Kernel Information via Static Firmware Analysis

For stage one, we apply and enhance the open source firmware analysis tool
FACT [4]. FACT provides automated firmware analysis capabilities including
recursive extraction, kernel version, and ISA detection. In the following, we
describe all steps that are of importance for the proposed attribution methodology.

Starting with an arbitrary Linux firmware image, we first use FACT internals
to recursively extract all components necessary for analysis, including the kernel.
Next, we identify the ISA and kernel version. The Analysis Scheduler achieves
this by running a selected set of analyses on each extracted object. The software
version detection uses YARA rules and the ISA detection leverages ELF header
information, detected kernel configurations, and device trees.

We contribute the Kernel Configuration plugin, which detects and
extracts Linux kernel build configurations in firmware images. It is pivotal to
the succeeding dry build pipeline step, as it determines components included in
kernel builds. In firmware, kernel configurations may be present as plain text
or in binary form. Detection of plain text configurations is straight forward due
to the distinctive key-value structure and well-known directive keywords. These
can be used for pattern matching. If the CONFIG_IKCONFIG directive is enabled
(Y) during build, the kernel configuration gets embedded into the binary kernel
image. This embedding might be an inline string or a binary compressed repre-
sentation using common algorithms like LZMA or DEFLATE. If it is set to M,
the configuration is outsourced to a kernel module. Thus, if the file is either a
kernel image or module, our plugin searches for an embedded magic word that
precedes the kernel configuration data. The plugin tests for all variations and
extracts, and if necessary, decompresses the configuration.

3.2 Build Log-Assisted CVE Attribution

The build log-assisted CVE attribution is the second stage of our proposed anal-
ysis pipeline in Fig. 1. Here, we first use FACT’s REST API to consolidate the
kernel version, kernel build configuration, and detected target ISA.
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Then, our contributed Kernel Downloader fetches mainline version sources
from kernel.org. We emphasize that our assumption of unaltered mainline
kernels in firmware images is likely false because vendors may custom-patch
their kernels. However, we observe that modified kernel code is not accessible
in scale, regardless of the Linux kernel’s GNU General Public License (GPL)
that dictates vendors to publish modified open source code. For example, some
vendors complicate distribution by implementing manual request procedures for
each device, firmware, and version5.

Dry Build is the next step in Fig. 1. We set the target ISA and install the
extracted kernel build configuration in the downloaded kernel source project.
Then, we execute a compilation dry run, which does not compile the kernel but
prints each compilation recipe instead. This approach has the advantages of low
computational overhead and no requirement for a cross-compilation toolchain.
With this step, we gather a list of source files from the build log, which our
pipeline witnesses to be included in the kernel build.

The CVE Fetcher executes simultaneously. We query the NVD dataset for
all Linux kernel CVEs and filter out all records that do not refer CPEs stating
the extracted Linux kernel version to be vulnerable. The result of this stage is
identical to naive version-based attribution.

The File Filter step combines the outputs of CVE Fetcher and Dry Build:
Based on the observation that Linux kernel CVEs summaries usually state the
affected source files, we improve on the version-based attribution by removing
every CVE that does not reference an affected file we witnessed in the build log.

4 Case Study

We perform a case study to evaluate the reliability of our enriched version-based
Linux kernel CVE attribution in large-scale static analyses. For this purpose,
we let our pipeline analyze the Home Router Security Report 2020 [12] corpus,
which vendors reported to yield high false-positive rates using version-based
CVE matching. We raise two research questions:

R1Our methodology requires access to specific information in firmware samples
and CVE repositories. How many samples and CVEs fulfill these modalities?
How applicable is our approach in a real-world scenario?

R2 With version-based CVE matching as baseline, what impact has the method-
ology on result reliability?

In the following subsections, we first provide detailed information on our exper-
iment and used dataset (4.1). Then, we present the results and analyze them
within the context of both stated research questions (4.2 and 4.3, respectively).

4.1 Experiment & Firmware Corpus

Experiment Execution. We deploy our analysis pipeline on a x86_64 desktop
system, running Ubuntu 20.04.4 LTS. FACT v4.0 (commit 38df4883) is used
5 https://www.zyxel.com/form/gpl_oss_software_notice.shtml.

https://www.zyxel.com/form/gpl_oss_software_notice.shtml
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in the first pipeline stage to detect CPU architecture, identify the kernel, and
extract the kernel configuration. The second pipeline stage executes on the same
machine based on a snapshot of the NVD – taken on 2022–08-30. The snapshot
has records for 2,910 Linux kernel CVEs attributable through CPE. For each
component in our system, we collect details on ingress and egress data, including
plugin results, version-based CVE matches, and filtering decisions.

Firmware Corpus. The analyzed Home Router Security Report [12] corpus is
publicly documented6, and consists of firmware from 127 recent home routers.
Devices of seven vendors are included: ASUS, AVM, D-Link, Linksys, Netgear,
TP-Link, and Zyxel. Samples were scraped on 2020–03-27.

Across all 127 samples, 121 binary distributed Linux kernels from v2.4.20 to
v4.4.60 are included. The most common major version is 3.x with 49 kernels,
while 44 kernels have version 2.6. 11 firmware images are not analyzable due to
failed operating system detection or unpacking errors. Note that firmware can
contain multiple kernels, e.g., embedded devices may consist of subcomponents
running their own systems.

All identified CPU architecture belong to the MIPS and ARM ISAs, with a
majority having a word length of 32-bit. The ISA is unknown for 24 samples.
Further corpus insights can be found in [12].

While we acknowledge the missing size and device class diversity of the
dataset compared to studies like [2,6], we argue that the dataset is of sufficient
size to demonstrate applicability, as it covers Linux kernels from three major
releases, widely spread ISAs, and devices of multiple vendors. We also choose it
to investigate the reliability of matches reported in [12] using naive version-based
Linux kernel CVE attribution.

4.2 R1 Analysis – Applicability in Real-World Scenarios

We identify two methodological requirements that must be fulfilled for each
firmware and Linux CVE for our approach to succeed:

S1 FACT firmware extraction and all plugin analyses of stage one must succeed
to consolidate the kernel version, ISA, and kernel configuration.

S2 CVE descriptions must reference affected files to filter vulnerable compo-
nents not included in the kernel build.

Using the firmware corpus, we evaluate egress and ingress data of each step
in the proposed pipeline with regards to these requirements. Table 1 shows the
results. Highlighted rows designate effective requirement fulfillment rates over
all analyzed firmware images and Linux kernel CVEs.

For requirement S1, FACT successfully extracted 116 out of 127 firmware
images. It then identified both kernel binary and kernel version for all 116 extracted
images. The ISA was successfully identified in 103 images. However, our Kernel
Configuration plugin finds build information in only 44 samples. Thus 34.64%
of all analyzed firmware samples fulfill requirement S1. This rate is explainable

6 https://github.com/fkie-cad/embedded-evaluation-corpus/blob/master/2020/FKIE-HRS-2020.
md.

https://github.com/fkie-cad/embedded-evaluation-corpus/blob/master/2020/FKIE-HRS-2020.md
https://github.com/fkie-cad/embedded-evaluation-corpus/blob/master/2020/FKIE-HRS-2020.md
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Table 1. Method Applicability Analysis for the Firmware Corpus

S1 Requirement (FACT Analysis Success)

FW Matches [#] Fulfilled
[FW Matches

FWs Total
]

Extraction 116 0.9133

Kernel Version 116 0.9133

Architecture Detection 103 0.8110

Kernel Configuration 44 0.3464

S2 Requirement (File Reference in Linux Kernel CVE)

CVE Matches Fulfilled
[CVE Matches

CVEs Total
]

Full Path Reference 1743 0.5990

File Only Reference 129 0.0443

No Reference 1038 0.3567

considering that a) IKCONFIG must be explicitly enabled to embed kernel config-
urations into binary representations and b) it is common practice for vendors to
strip unnecessary information for memory saving and obfuscation purposes.

For requirement S2 (affected files must be referenced in Linux kernel CVE
descriptions), data analysis over all Linux CVEs inside the NVD yields three
different categories: Files are either referenced as Full Path relative to the ker-
nel’s source tree, or the reference is File Only (location in the source tree is
unknown), or No Reference exists at all. Table 1 distributes all 2,910 Linux
kernel CVEs across these classes, showing that the proposed approach is appli-
cable to 1, 872 (64.33%) kernel CVEs. For CVEs with no included file reference,
the approach falls back to version-based CVE matching and, thus, cannot add
value to result reliability.

4.3 R2 Analysis – Impact on CVE Attribution Result Reliability

We approach research question R2 by analyzing the attribution results of all 44
firmware images our methodology is applicable to (cf., Sect. 4.2). Subject samples

Fig. 2. Filter verdict distribution of our pipeline relative to the baseline CVE attribu-
tion results for each of the 44 analyzed kernels.
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include kernels ranging from v3.4.0 to v4.4.60. At the time of this evaluation,
none of these are still actively maintained by the mainline kernel team.

The baseline method attributes a median of 1,196 CVEs per firmware image,
which is roughly 40% of all Linux kernel CVEs present in the NVD. A possi-
ble explanation lies within unsound and/or unmaintained CVE records in the
NVD [1,11]. Based on the results we present in the following paragraphs, there
is reason to assume that the baseline yields exceedingly high false-positive rates.

Version-based CVE attribution is an intermediate result of our methodol-
ogy (cf., Sect. 3). To estimate the impact our pipeline has on result reliability,
we consolidate all decisions of the build log-assisted filtering to classify them into
four categories of verdict confidence:

– Applicable (High) – CVE references affected files and full file path is wit-
nessed in build log.

– Not Applicable (High) – CVE references affected files but none of them
is present in the build log.

– Applicable (Medium) – CVE references affected files but does not state
full file paths. A file was matched and seen in the build log, but ambiguity
exists due to duplicate names in the source tree.

– Applicable (Low) – No file references, we cannot decide on applicability
and fall back to version-based matching.

The idea is to map persuasiveness of additional evidence the pipeline gathers
within a trial: File matches are witnesses for CVE applicability, but not every
match is equally credible.

Figure 2 shows the filter verdict distribution of our pipeline relative to the
baseline CVE attribution results for each analyzed kernel. Versions are ordered
from oldest (left) to newest (right). Note that a single kernel was found in each
one of the 44 analyzed samples. Thus, each entry on the horizontal axis represents
a unique firmware. All distribution values are medians across all samples.

The proposed Linux kernel CVE attribution methodology made a medium to
high confidence decision for 80.6% of all version-based matches. The portion of
high confidence applicable CVE matches is 12.04%. Relative path matches yield-
ing medium confidence applicability are negligible with 0.19%. As indicated by
the bottom bars belonging to the class of Not Applicable (High), our pipeline
attributes 68.37% of all version-based CVE matches as false-positives and filters
them out of the result set. Out of the median 1,196 matches per firmware, we
reduce the set of potentially applicable CVEs to roughly 378. Thus, we signif-
icantly reduce the result set of potentially applicable CVEs requiring manual
verification by analysts and vendors. The portion of low confidence applicability
due to missing file references is 19.4%. Unfortunately, our methodology does not
generate added value for this subset.

5 Limitations

We identify methodological shortcomings in three dimensions: applicability,
sound ground truth, and functionality.
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In terms of applicability, our Linux kernel CVE attribution pipeline is bound
to FACT’s static analysis success. If the kernel version, ISA, and build configura-
tion remain unknown, our method cannot identify possibly included components
for reliable CVE filtering. Yet, the case study in Sect. 4 shows that there is still
a considerable amount of firmware fulfilling all requirements.

As for sound ground truth, reliable and true-positive CVE attribution is lim-
ited by the quality of its underlying dataset. Unsound Linux kernel CVE records
that reference unaffected versions or source files can introduce false matches
in our proposed method. Our assumption of vendors using mainline kernels is
another limiting factor that affects reliability, but a methodical necessity due
to missing insider information. Vendors may cherry-pick patches or introduce
custom fixes, which are not detectable by our approach. While some of the
modifications might be obtainable through GPL portals, we identify the issue of
scalable accessibility. Another limitation comes from the file-based filtering. Ker-
nel builds can in- or exclude only parts of a file based on configuration options.
This can lead to exclusion of vulnerable code, while the affected file still appears
in the build log.

Regarding functional limits, we stress the inherent limitations of static anal-
ysis. It may use heuristics to find indicators of bug presence but can hardly serve
definitive proof – which usually requires triggering the bug during runtime.

Finally, the conducted case study is limited in its validity, as the used corpus
lacks device class heterogeneity.

6 Conclusion and Future Work

In this paper, we present a method to improve result reliability of version-based
CVE matching for the special case of binary Linux kernels in large-scale static
firmware analyses. This is achieved by enriching naive version-based CVE match-
ing with a static attribution pipeline that detects kernel configurations and ISAs
in firmware images. We reconstruct the kernel build process and infer included
source files. Combined with kernel CVE information, where affected files are
explicitly stated, this can be used to remove most false-positive CVE annota-
tions.

The case study shows that, with the limitations discussed in Sect. 5 in mind,
our method is scalable and moderately applicable: For 34.64% of firmware
images, the technical requirements are fulfilled and about 65% of all Linux kernel
CVEs reference affected files in their description. Compared to naive version-
based matching, the method generates a high-confidence filter verdict for 80.6%
of all attributed CVEs. Specifically, 68.37% of attributed CVEs are discarded
as false-positives. We contributed stage one of our pipeline to the publicly avail-
able FACT [4] and published the scripts for stage two on GitHub (https://github.
com/fkie-cad/cve-attribution-s2).

In future work, we want to address the reliance on inline kernel configura-
tion that leads to the moderate applicability by researching alternative options
to infer configuration from binary kernels. Also, the fine-granular commit-based

https://github.com/fkie-cad/cve-attribution-s2
https://github.com/fkie-cad/cve-attribution-s2
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version tracking as offered by linuxkernelcves.com is a promising alternative
data source for initial version-based attribution. Furthermore, partial file compi-
lation and custom backports should be addressed. Finally, we plan a large-scale
evaluation addressing missing device class heterogeneity, like [2,6].
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Abstract. Despite the high level of automation that fuzzing has brought
into the vulnerability research process, the assessment of a discovered
vulnerability’s implications mostly requires human expertise and intu-
ition. A promising approach to reduce such a manual effort is the auto-
matic extraction of vulnerability characteristics that provide vital clues
for exploitability. In this work, we focus on out-of-bounds write vulnera-
bilities and investigate how to automatically distill the set of source code-
level objects affected by such unintended writes. As this poses unique
challenges with regard to the invasiveness of the analysis methods, we
propose a novel approach that enables monitoring a compiled program for
spatial memory safety violations without the need for heavy instrumen-
tation. We implement Divak, a prototype of our design, and we evaluate
it on both benchmarks and real-world vulnerabilities, showing that its
detection and characterization capabilities outperform instrumentation-
based tools in several scenarios, at the cost of an increased overhead.

Keywords: Vulnerability Analysis · Out-of-bounds Writes

1 Introduction

Out-of-bounds (OOB) writes [1] are still regarded as one of the most dangerous
types of software vulnerabilities [22]. Over the years, a vast number of defenses
against OOB writes and other memory corruption bugs have been proposed. Pre-
ventive approaches such as the deprecation of unsafe functions [16] and memory-
safe languages [12,19] reduce the risk but cannot solve the problem without full
adoption. Mitigation approaches introduced into operating systems and compil-
ers complicate or prevent exploitation [9,27], but attackers continue to find ways
for evading them. Detection approaches based on static and dynamic analysis
have been hugely successful [11]. However, only a relatively small share of dis-
covered bugs has relevant security implications. Thus, further investigation into
the severity of discovered bugs and prioritization for patching is essential.

As triaging, root cause analysis, and patching of discovered bugs are usually
conducted manually by humans, this is often an expensive and time-consuming
process, causing potentially severe vulnerabilities to remain unpatched for a long

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Gruss et al. (Eds.): DIMVA 2023, LNCS 13959, pp. 211–232, 2023.
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time. Therefore, further automating the process that follows the discovery of a
bug can substantially decrease the time required to develop a patch. Unfor-
tunately, this process is often an intricate task that largely relies on human
expertise and intuition, making full automation difficult.

Recent research [32] has shown that partial automation is a promising
alternative to approaches based on fully Automatic Exploit Generation (AEG)
[3,5,14,15,40]. By automatically distilling characteristics of a vulnerability that
are decisive for its exploitability, experts can base their assessment of the bug’s
security implications on a concise high-level summary, accelerating the triaging
process. Besides, AEG based on human-interpretable vulnerability characteris-
tics can make intermediate results substantially more helpful for manual analysis.

We study how to automatically distill such characteristics of OOB writes
from programs. In contrast to the state-of-the-art, we aim to extract capabilities
that are truthful to the form in which the program under test is deployed in
practice, thus revealing vulnerability characteristics that are relevant not only
in laboratory or debugging settings but for the program’s real-world usage. We
realize this by developing a system that takes a program under test together with
an input that is suspected of causing an OOB write and dynamically performs
fine-grained monitoring for OOB writes, mapping affected memory regions to
the corresponding source code-level entities and reporting the results in a concise
and easily interpretable form. Our system is meant to assist security analysts
in triaging potential OOB write vulnerabilities, automating their identification
and capability extraction phase.

Designing such a system comes with three main challenges: (1) Many
approaches are invasive due to heavy instrumentation, modifying the memory
layout and runtime behavior of the program and thus making insights inappli-
cable to the original program; (2) The compilation to machine code causes large
parts of source code semantics to be lost, including entities like variables and
data types, as well as information on which entity a specific write to memory is
intended to modify according to the program semantics. However, this informa-
tion is vital for detecting OOB writes, and is essential for achieving easy inter-
pretability of the results; (3) Modern compilers perform optimizations during
compilation to increase the program’s efficiency, which often causes substantial
modifications to the program’s machine code-level structure and memory layout.

To address such challenges, we propose a new approach for the dynamic charac-
terization of OOB write vulnerabilities in C programs. Contrary to existing works,
our approach does not modify the program through instrumentation and, as such,
is entirely non-invasive. Instead, we provide a conceptual framework for mak-
ing source code-level semantic information available to our low-level OOB write-
checking technique. As the issue of invasiveness predominantly concerns the stack
and global sections, we only focus on the characterization of OOB write vulner-
abilities within these regions of programs written in C, compiled with Clang for
Linux on AMD64 platforms, and leave out heap-based OOB writes from our anal-
ysis. We implement our approach in a system named Divak, which achieves a
detection rate of 89% on the RIPE benchmark [39], compared to the 70% and 34%
achieved by the instrumentation-based current state-of-the-art approaches ASan



Non-invasive Characterization of OOB Write Vulnerabilities 213

and SoftBound—at the cost of an increased execution time overhead, along with a
slightly increased chance of false positives. Ultimately, Divak precisely highlights
the source code-level objects affected by OOB writes, assisting humans in triaging
potential vulnerabilities.

Fig. 1. Motivating example.

Contributions. We make the following contributions:

– We introduce a technique for low-level bounds-checking by leveraging the
intermediate program representation during compilation, overcoming the lack
of source code-level semantic information.

– We design a non-invasive OOB write characterization approach able to triage
spatial memory safety violations on the stack and in the global sections.

– We implement Divak and we evaluate it on artificial benchmarks and real-
world vulnerabilities, showing its advantages over state-of-the-art tools.

We make our dataset and code available: https://github.com/utwente-scs/divak.

2 Motivation

No existing tool for detecting OOB writes is suitable for characterizing their
capabilities and identifying their source code-level consequences. In fact, for our
scenario, i.e., triaging potential vulnerabilities in real conditions, all publicly
available approaches suffer from one or more of the following limitations.

Inability to Detect Intra-object OOB Writes. Many approaches cannot
detect intra-object OOB writes within composite objects such as structures [8,
20,29,31,37,41]. However, intra-object OOB writes are well capable of inducing
security issues and need proper triaging, as is illustrated in Fig. 1. Here, an
overflow of username can corrupt the isAdmin flag, enabling a non-control data
attack. Thus, their inclusion in a vulnerability’s capability profile is critical.

Required Hardware Support. Some approaches [8,26,30] rely on extensions
to the ISA of the CPU to perform OOB write detection. While such ISA exten-
sions are available for SPARC [30], ARM64 [8], and some historic Intel AMD64
CPUs [26], they are not included in the ISA of any recent AMD64 CPUs.

https://github.com/utwente-scs/divak
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Invasive Modification of the Program. Existing approaches significantly
affect the program’s memory layout due to their instrumentation. Such modifi-
cations fall into the following categories: (1) Introduction of poisoned red zones
around memory objects; (2) Introduction of new memory regions to store meta-
data, e.g., as shadow memory; (3) Direct and indirect modification of stack
frames caused by storing metadata and performing checks. Consider the snippet
shown in Fig. 1 and its stack layout as implemented by ASan [29] and SoftBound
[23] in Fig. 2. We can clearly see both solutions heavily modify the stack frame
layout. This, accompanied with the extra register spilling introduced by the
checking logic as well as compiler optimizations on the instrumented program,
makes reliably identifying and triaging the memory objects affected by OOB
writes within the non-instrumented program challenging.

Fig. 2. Stack layouts of the function in Fig. 1 (Default, ASan, and SoftBound).

Table 1. Our approach vs. existing memory sanitizers.
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OOB writes detection in globals � � × � � � � � � �
OOB writes detection on stack � � × � � � � � � �
OOB writes detection on heap � � � × � � � � � ×
Strong spatial guarantees* × × × × � × � × × �
Intra-object OOB write detection × × × × (�) × � � × �
Instrumentation type CTI CTI DBI DBI CTI CTI CTI SBI CTI n.a.

No need for hardware support � × � � � � × � � �
No mem. layout modification × × � � × × × × × �
Compatible with external code � × � � × � �(?) �(?) � �
Detection approach TW PB TW HR PB PB PB PB OB PB

Performance overhead L L H ? L L M M L H

Memory overhead H L ? ? L L M ? L H
*: Ability to non-probabilistically detect non-continuous and underflowing OOB writes.
TW : tripwire, OB: object-based, HR: heuristics, PB: pointer-based
L: 0x-1x overhead, M : 1x-3x overhead, H : 3x+ overhead, ?: no data
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Instability After Out-of-Bounds Write. Most tools terminate the program’s
execution after detecting one OOB write. While this behavior can often be cir-
cumvented, it might cause the program to follow invalid execution paths for the
non-instrumented program. Consider a detection approach that uses the stack to
store metadata such as bounds information. An OOB write that overwrites this
metadata may result in false positives and negatives or let the program crash.
As we wish to reliably triage OOB writes during the execution of a program,
this limitation makes most existing approaches unusable for our case.

3 Divak: Design

To overcome the challenges described in Sect. 2, we design Divak, a pointer-
based OOB write detection approach that characterizes spatial memory vio-
lations on the stack and in the global sections in a deterministic fashion. By
not interfering with the compiled machine code, Divak is entirely non-invasive
and does not rely on special hardware support. As such, differently from existing
work (Table 1), any insights about the effects of OOB write vulnerabilities in the
examined binary also hold when the program is not monitored by our approach.

Our approach categorizes memory objects for bounds-checking. For composite
objects like structs and arrays of structs, we consider the inner structure for
the detection of intra-object OOB writes. Any other object is instead a unitary
object—a homogeneous chunk of memory for which we disregard inner structure.

We focus on detecting OOB writes occurring in the static sections .data
and .bss, as well as on the stack. We disregard heap-based OOB writes, as their
characteristics are not necessarily distorted by instrumentation-based detection
approaches—e.g., SoftBound neither allocates heap memory nor affects the allo-
cator. Thus, Divak’s main novelty, i.e., its non-invasiveness, is not essential in
this scenario. Nevertheless, Divak could be extended to support heap-based
OOB writes with little engineering effort, and it is compatible with existing
tools that target the heap [13,29]. Besides, we assume that target programs are
compiled without frame pointer omission and tail call optimization. Finally, as
the majority of memory-modifying instructions that can potentially cause OOB
writes are those of the mov family, we focus our bounds-checking on this family.

3.1 Approach Overview

Our approach takes as input the source code of a program and a proof-of-concept
(PoC) input suspected of causing an OOB write and it outputs information about
the effects of all discovered OOB writes on source code-level objects. At a high
level, we perform three phases: preliminary analysis, static analysis, and dynamic
analysis. In the first phase, we instrument the compilation phase of the target
program to passively collect information about debug symbols, data structures,
and write operations. This information enables us to map properties of source
code to compiled code, which allows us to later pinpoint the specific source code-
level objects affected by OOB writes. Besides, it also allows us to handle the loss
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of semantics caused by the compilation process, which is critical to characterize
OOB writes without requiring invasive modifications of the program.

In the second phase, leveraging the collected information at compile time, we
statically analyze the target binary to identify variables and parameters stored
on the stack or in the globals, determine their sizes, identify pointer-creating
instructions, and determine the destination objects of write operations. Besides,
in this phase, we determine the internal structure of composite types such as
struct, which is essential to detect intra-object OOB writes.

In the third phase, we dynamically analyze the target program by using
the findings obtained through static analysis, taint pointers, and identify write
operations that have an effect beyond the boundaries of the intended destination
objects (IDOs). Here, we map our results back to the source code domain using
the information we collect in the previous phases. Finally, because we do not alter
the state or memory layout of the program at run-time, our approach guarantees
that, by design, execution continues reliably after detecting an OOB write.

Although the goals of preliminary and static analysis could theoretically be
achieved by modifying the compiler, this would come with several drawbacks:
(1) Heavy modifications of highly complex code at multiple compilation stages
with little documentation; (2) Potentially altered binaries due to modifications,
including in production builds; (3) Incompatibility with custom or new opti-
mization passes. Therefore, we opted for the more portable hybrid approach.

Our design for detecting OOB writes relies on the identification and special
treatment of the following types of machine code instructions.

Independent Writes. For independent writes in the machine code, the domi-
nant component from which the destination address is computed in the operand
is either given by an immediate value or a stack frame boundary register (rbp or
rsp). This has two important implications. First, independent writes can only
write to global objects or within the stack frame of the containing function. Sec-
ond, their intended destination object does not change at runtime. An example
of an independent write is the instruction mov [rsp + rax], cl, which may
access an array on the stack. Here, rsp constitutes the dominant component of
the address calculation as its value will be substantially larger than the value in
rax. Now, rsp being a stack boundary register makes this an independent write.

Dependent Writes. For dependent writes, the dominant component used to
compute the destination address is given by a general-purpose register as opposed
to a stack frame boundary register. Thus, dependent writes rely on a previous
instruction for determining the pointer used as the basis of the address computa-
tion. This requires detaching the logic for determining the intended destination
object from the logic for checking the legality of the write. An example of a
dependent write is the instruction mov [rcx + rax*8], rdx, which may access
an array based at the address specified by rcx. Here, the dominant component
is given by a general-purpose register, making this a dependent write.

Pointer-creating Instructions (PCIs). To facilitate bounds-checking of
dependent writes, it is essential to taint pointers with their intended pointee
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object as early as possible by identifying the instructions at which pointers are
created.

Bounds-narrowing Instructions (BNIs). Children of composite objects are
often accessed by offsetting a pointer to the object. To detect intra-object OOB
writes, it is therefore essential to adjust a pointer’s bounds information as soon
as it starts pointing to a child object. While PCIs create a new pointer, BNIs
transform an existing pointer to a pointer referencing the original object’s child.

Algorithm 1 shows a high-level overview of our approach’s dynamic analysis
stage, and is intended to be applied to every instruction of the program upon
its execution. Operations related to the core challenges solved by our design are
marked in orange. For a dependent write, we identify the intended destination
object from the destination pointer’s taint. Using the bounds-narrowing informa-
tion associated with the dependent write, we check if a write is fully in-bounds.
For independent writes, the intended destination object is fixed at compile time,
thus we check if the write is in bounds from the knowledge of the written bytes
and the exact instruction. For PCIs and BNIs, we taint newly created pointers
and re-taint existing ones to narrow their bounds according to the new pointee.

3.2 Memory Layout Extraction

Maintaining information on which objects occupy which memory regions during
dynamic analysis is essential for detecting OOB writes and mapping the affected
regions to their corresponding objects. To do so, we leverage DWARF debug
data during static analysis. While the locations of global objects are generally
specified by a fixed address, stack objects are referenced as offsets from a stack
frame register. We track the program’s call stack at runtime by determining the
start addresses of functions and monitoring for call and ret instructions.

Compiler optimizations, which typically decrease the number of objects
stored on the stack, frequently reduce the lifetime of objects in memory to one or
more instruction address intervals, using the space for different purposes during

Algorithm 1. High-level pseudocode description of our dynamic analysis stage.
1: if inst is write then
2: dstAddr ← getWriteDstAddr(inst)
3: nBytes ← getWriteBytesNum(inst)
4: if inst is dependent write then
5: taint ← getPointerTaint(dstAddr)
6: ido ← getObjectFromTaint(taint)
7: if inst is BNI then
8: bniTarget ← getBoundsNarrowingTarget(inst)
9: ido ← narrowObject(ido, bniTarget)
10: else
11: ido ← getObjectFromIndependentWrite(inst)
12: if [dstAddr, nBytes - 1] is not in [ido.start, ido.end] then
13: reportOOBw()
14: else if inst is PCI or BNI then
15: bniTarget ← getBoundsNarrowingTarget(inst)
16: ptr ← getResultingPointer(inst)
17: ido ← getPointeeObject(ptr, bniTarget)
18: taintPointer(ptr, ido)
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the remaining part of the function. As DWARF provides detailed information
on the lifetimes of objects, we leverage this to record the location of objects not
only in a spatial but also in a temporal dimension.

3.3 Intended Destination Objects Identification

For bounds-checking independent writes, we rely on the fact that their intended
destination object is fixed at compile time. As high-level semantics are lost dur-
ing compilation, we implement bounds-checking as a final LLVM IR analysis
pass, before the translation into machine code. By leveraging the IR, we avoid
directly matching independent writes to memory objects and instead take a
detour as follows: (1) Identify independent writes in the IR and determine their
destination variable; (2) Match each independent write in ASM to its corre-
sponding independent write in the IR; (3) Match each destination IR variable
to its corresponding object in memory.

Determining Independent IR Writes and Destination Variables. For
identifying independent writes in the IR during the preliminary analysis, we
focus on three typical representations of mov-family instructions in the IR: the
store instruction, and the llvm.memcpy and llvm.memset intrinsics. To test
whether an IR write is independent and to find the variable it modifies, we
trace back its def-use chain. Starting from the write’s operand that specifies
the destination, we find the definition that created this pointer and repeat this
procedure until there are no more unambiguous predecessors. If we end up at a
local or global variable definition, we conclude the write is independent. If we
encounter a BNI in the def-use chain, we keep track of the child to which the
pointer is modified.

Matching Independent Writes from ASM to IR. To find the corresponding
independent IR write of each independent ASM write during static analysis, we
rely on line number debug information that maps instructions to the source
file, line, and column at which the corresponding source code is located. While
the conveyed location information is irrelevant to us, we can use its distinctive
features to map write instructions in the machine code to the IR domain. In
practice, however, this mapping is rarely bijective. This is caused by the inherent
differences between AMD64 assembly and the IR and our disregard for certain
memory-modifying instructions in ASM and the IR. As such, this constitutes a
best-effort approach that occasionally fails to match an independent write.

Matching IR Variables to Memory Objects. Determining the destination
object for independent IR writes is arguably the simplest step as we can match
on the variable names during the preliminary analysis. If bounds-narrowing
traversable definitions are encountered in the write’s def-use chain, and the
intended destination object is thus a child of a composite object, we leverage
the information obtained while handling the BNI to determine this child.
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3.4 Pointer-Creating Instructions Identification

According to our experience, two types of instructions are responsible for virtu-
ally all pointer creations in machine code generated by Clang. First, instructions
such as lea rax, [rbp + 8*rbx - 72] combine several arithmetic operations
and registers to compute an address. This causes the lea instruction to be used
for almost all cases in which a pointer relative to a stack frame boundary register
is created, as it occurs when creating a pointer to an automatic variable. Sec-
ond, mov instructions with a source address into a static section (e.g., mov edi,
0x409678) are typically emitted when a pointer to a static variable is created.

3.5 Bounds-Narrowing Instructions Detection

Within compiled code, identifying the locations where bounds-narrowing is per-
formed is challenging. For this, we again leverage the LLVM IR, where pointer
manipulation is performed with getelementptr (GEP) instructions. For each
of them, we test during the preliminary analysis whether the instruction trans-
forms a composite object pointer into one of its (recursive) children. If so, we
determine the narrowed child from the instruction. We hereafter refer to this as
the bounds-narrowing target (BNT).

In compiled code, three types of instructions are, according to our experience,
potential candidates for BNIs that are relevant to our goal of bounds-checking
writes. First, add instructions, which are frequently used for offsetting pointers to
struct fields and can be bounds-narrowing if the incremented number is stored in
a general-purpose register capable of holding a pointer. Second, lea instructions,
which we also previously identified as pointer-creating. As the creation of a
pointer to a composite object’s child requires bounds-narrowing to be performed
immediately upon pointer creation, their consideration is essential. Third, the
mov family, which can act as BNIs in three ways: (1) If it is a PCI to the child
of a composite static variable; (2) If a pointer to the beginning of the first child
of a composite object is created from a pointer to the composite object; (3) If it
writes to the child of a composite object, the address to which is only calculated
within the destination operand. Here, the narrowed pointer is used immediately
for writing and discarded afterwards. To match BNIs in the IR to their compiled
counterparts, we again leverage line number debug information.

3.6 Intended Pointee Objects Determination

Determining a pointer’s intended pointee object (IPO) during dynamic anal-
ysis is essential for bounds-checking dependent writes. We do so by leveraging
memory layout information from debug metadata and bounds-narrowing targets
identified during the IR analysis. The need of determining an IPO arises at four
different types of instructions in our design: bounds-narrowing dependent writes,
bounds-narrowing PCIs, ordinary BNIs, and ordinary PCIs. For each type, the
required actions, depending on if the pointer is tainted, are shown in Table 2.



220 L. Hafkemeyer et al.

4 Implementation

We implemented Divak in 2,700 SLOC of C++ and 1,900 SLOC of Python code
on top of the S2E in-vivo symbolic execution platform [7] and an LLVM pass
(Fig. 3). The choice of S2E as an analysis platform was mainly motivated by its
facilitation of quick prototyping in this case, minimizing the development effort
for the non-core functionality of Divak. Furthermore, its symbolic execution
capabilities provide us with the ability to perform taint analysis with effectively
infinitely many taint colors by maintaining a mapping from symbolic values’
internal identifiers to pointee objects. As a negative side-effect, S2E introduces
significant performance overhead, which indicates that it may not be the ideal
choice in real-world applications. We discuss this aspect in Sect. 6.

Preliminary Analysis. Divak’s first stage concerns the compilation using
Clang 13.0.1 and our analysis of the LLVM IR. By doing so, we get the
required analysis results without modifying the program, thereby achieving non-
invasiveness.

To reduce complexity, we disregard two types of BNIs: (1) Dynamic BNIs
are those BNIs for which the (recursive) child to which a pointer is created is
only determined at run time. While omitting them can cause intra-object OOB
writes to remain undetected, they typically only occur when arrays of structs
are indexed. (2) Bounds-shifting instructions serve to calculate the pointer to a
sibling element in the same array, thus violating our assumption that a pointer’s
bounds can be narrowed by a BNI but can never be widened again. Omitting
them can potentially cause legitimate dependent writes to be reported as OOB.

Table 2. Approach for determining the intended pointee object of a pointer in different
scenarios. DW=Dependent Write.

Pointer is tainted Pointer is not tainted

BNI+ DW Narrow pointer bounds
according to target and use
immediately to check write

Previously missed pointer
tainting. Cannot identify IPO,
hence cannot narrow bounds

BNI+ PCI Not actually a PCI, treat like
BNI

Determine pointee from BNT
and memory layout, taint
pointer

BNI Narrow pointer bounds
according to target and re-taint

Previously missed pointer
tainting. Treat like BNI + PCI

PCI Is a BNI but was not matched.
Cannot narrow bounds

Determine pointee from memory
layout, taint pointer

To alleviate poor line number debug information arising from optimizations,
we attach random synthetic line numbers to independent IR writes and BNIs
that are missing line numbers in the LLVM IR.
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Fig. 3. Schematic diagram of Divak, the pipeline implementing our design.

Static Analysis. The second stage in our pipeline analyzes the compiled binary
and combines the obtained results with the high-level semantic information
extracted from the LLVM IR. We identify all variables and formal parameters
stored on the stack or in the globals from the DWARF debug information to
facilitate memory layout tracking, recording their location, lifetime, and type.
We consider the smallest interval encompassing all DWARF-specified lifetime
intervals as the object’s lifetime. Besides, we determine the sizes of all specified
types, as well as the inner structure of composite types. To address the chal-
lenges arising from representing memory lifetimes as a single interval, we merge
objects with identical spatial dimensions whose lifetimes overlap.

To find pointer-creating instructions and independent ASM writes, we iden-
tify the instructions satisfying our definitions (Sect. 3). We then obtain their
debug information and find their corresponding independent IR writes with
identical files, lines, and column information. By finding the DWARF-specified
object corresponding to each independent IR write’s destination object through
name-based matching, we identify the bounds of each matched independent ASM
write’s destination object and ease bounds-checking during dynamic analysis.

Dynamic Analysis. Divak runs and monitors the target program implement-
ing Algorithm 1 in three plugins for S2E [7]. We distinguish dependent and inde-
pendent writes based on their destination address. If it is symbolic, the write
is dependent, and we obtain the intended destination object from the pointer’s
taint to test if all written bytes are within the object’s interval. If it is concrete
and we statically identified an independent write at this location, we check if all
written bytes are part of the independent write’s intended destination object.

We register callbacks that are invoked when executing instructions identified
as a PCI or BNI during static analysis. When a PCI or BNI is executed, it is
handled as described in Sect. 3. We determine the new intended pointee object
based on the taint of the pointer, the instruction type, the bounds-narrowing
information, as well as the type of the old intended pointee object. We then
taint the pointer accordingly. We refrain from tainting pointers that are not
stored in a register but immediately written to memory. To further improve per-
formance, we intercept function calls to several standard library functions such
as memcpy and perform premature bounds-checking if the destination pointer is
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Table 3. Detection performance of Divak for dependent OOB writes in RIPE testbed
at different optimization levels.
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tainted. Afterward, we untaint all function arguments to allow for faster emu-
lated execution of the library function. Finally, we group OOB writes occurring
at the same instruction and identical call stack, merge the overwritten intervals,
identify affected source code-level objects, and report our results in a JSON
format.

5 Evaluation

We evaluate Divak’s performance in terms of OOB write detection efficacy both
under laboratory conditions and in real-world programs, as well as performance
overhead, and we compare it with ASan and SoftBound.

5.1 Dependent OOB Writes Detection

To measure Divak’s ability to detect dependent OOB writes, we use a subset of
a 64-bit version [28] of the RIPE testbed [39]—designed to test defenses against
buffer overflow exploits. By varying the location, the type of overwritten pointer,
and the function causing the OOB write, we obtain 122 test cases. By the design
of RIPE, some parameter combinations are not possible. We conduct a manual
best-effort validation of the affected memory objects identified by Divak by
comparing our results with the DWARF memory layout, the memory layout to
be expected from the source code, and by inspecting the disassembled code.

Results. Divak achieves a detection rate of 89%, as shown in Table 3. Fail-
ing test cases are limited to intra-object OOB writes under optimizations, with
incomplete line number debug information for the corresponding BNI as the root
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Table 4. Detection performance of ASan for dependent OOB writes in RIPE testbed
at several optimization levels.
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cause. Manually validating Divak’s output yields flawless results for OOB writes
in the global sections. On the stack, overwritten ranges are correctly identified.
However, with optimizations enabled, the high-level counterparts of roughly 30%
of the affected stack objects are not identified due to incomplete DWARF data.

ASan achieves a detection rate of 70%, as shown in Table 4. From our results,
it is clear that ASan’s primary drawback lies in the inability to detect intra-object
OOB writes. While they were detected for sscanf and fscanf, manual analysis
suggests this is caused by a bug in the testbed. SoftBound detects 34% of OOB
writes. Similarly, SoftBound is limited by the inability to detect intra-object
OOB writes and its reliance on six unimplemented wrapper functions.

5.2 Independent OOB Writes Detection

We evaluate Divak’s independent OOB write detection performance using a
testbed we designed for this purpose and release along with our code. The testbed
comprises four parameter dimensions with a total of 44 test cases and largely
reproduces the vulnerability scenarios of RIPE using independent writes.

Results. Divak successfully detects the OOB write in 95% of the test cases
(Table 5). In 13% of the configurations, however, a false positive is detected.
Detection succeeds for all inter-object OOB writes and only fails for some intra-
object OOB writes on the stack and in the .data section. In these cases, the
fault occurs in the IR analysis, where tracing the write’s declaration chain
terminates prematurely. Specifically, the source pointer of a bounds-narrowing
getelementptr instruction is cast from the original structure, consisting of an
array of 255 bytes and a pointer, to an array of 256 bytes. This causes the anal-
ysis to conclude that this is not a relevant BNI, as the subject is not an object
we consider composite.



224 L. Hafkemeyer et al.

Table 5. Detection of independent OOB writes in our testbed. OOB writes occur in
isolation (iso) or in a function containing further unrelated writes (svd).

Divak ASan SoftBound
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Investigating the series of false positives raised by Divak reveals a violation
of our assumption that pointers point to their intended destination object upon
creation. When compiled with -O1, a pointer to a stack object is created using
a lea but only offset to its intended pointee object by an add that immediately
follows. Thus, the pointer is incorrectly tainted. As the integration of the add
into the lea would have required fewer bytes and would presumably execute
faster, the compiler’s reason for splitting them remains unclear.

Manually validating the overview of affected objects generated by our app-
roach yields similar results as the previous experiment. While the results appear
correct and complete for -O0, several stack objects are missing from the summary
when optimizations are employed. A closer investigation again reveals incomplete
debug information generated by the compiler to be at fault.

ASan detects the OOB write in 36% of all tests. Most failures can be
attributed to the inability to detect intra-object OOB writes, as well as the
reliance on red zones, preventing it from detecting jumping OOB writes. Soft-
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Bound successfully detects the OOB write in 73% of the test cases. All inter-
object OOB writes are found, while intra-object OOB writes remain undetected.

5.3 Testing Real-World Programs

We evaluate Divak on three real-world vulnerabilities found in open source soft-
ware. Besides, we run each program under test with a benign input to assess the
false positives of Divak. To evaluate the performance of our static analysis, we
assess the independent write and BNI matching performance. For the dynamic
analysis, we collect statistics of three categories: (1) The number of dependent,
independent, and unchecked writes; (2) Statistics about successful, ignored, and
failed BNIs; (3) The successful pointee inferences from memory.

Fig. 4. Causes for unmatched inde-
pendent writes.

Fig. 5. Causes for unmatched BNIs.

Table 6. Detection performance for three real-world vulnerabilities.
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=detected, =not detected + fp, =partly detected, =not possible

libxml (CVE-2017-9047). This vulnerability in the libxml library is a stack-
based buffer overflow [4]. While attributed to the same root cause, OOB writes
occur at two different instructions. As shown in Table 6, Divak successfully
detects both OOB writes at all four optimization levels and does not yield any
false positives for the PoC or the benign input. Furthermore, due to its non-
invasiveness, Divak is the only tool to detect all occurring OOB writes. As
presented in Fig. 4, independent write matching achieves a 0% failure rate with-
out optimizations, which increases to 25% at -O3 due to overlapping memory
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objects and missing line number debug information. BNI matching (Fig. 5) also
performs best without optimizations but has a higher failure rate, mostly due to
a lack of line number debug information.

For this vulnerability, most checked writes are dependent. The share of
checked writes ranges from 100% down to 31%, the latter being caused by one or
more independent writes remaining unmatched. Most encountered BNIs concern
pointers to unmonitored sections, mainly the heap. Last, determining a pointer’s
intended pointee object ranges from a 100% success rate at -O0 to a 95% success
rate at -O3 for the PoC input. Most failures come from incomplete memory lay-
out information caused by optimizations. Our assumption of memory object’s
lifetimes being representable by a single interval is responsible for at most 1% of
failed pointee inferences. Manual validation of the affected objects identified by
Divak yields that the results are largely correct and complete, except for a few
objects that are not recorded in DWARF and thus not identified as affected.

While the OOB write affects many objects and stack frames at -O0 and -O1,
rearrangement of stack objects at -O3 and -Oz causes it to only affect a single
5000-byte buffer. While the vulnerability can easily be used to divert control
flow at -O0 and -O1 if no countermeasures are deployed, this is likely impossible
at -O3 and -Oz if the PoC cannot be modified to affect a larger range.

ASan detects the first OOB write at each optimization level. The second
OOB write, however, is not detected, likely due to the overwritten byte not
being located in a red zone. Instrumenting with SoftBound at -O0 causes the
compiler to crash. With employed optimizations, SoftBound reports an OOB
write early during execution and crashes with a segmentation fault.

libpng (CVE-2018-14550). This stack-based buffer overflow is located in the
pnm2png tool, part of the libpng library [21]. While attributed to the same
root cause, OOB writes occur at two different instructions. As shown in Table 6,
Divak successfully detects both OOB writes in pnm2png without raising false
positives at any tested optimization level. For the benign input, however, false
positives occur when optimizations are enabled. Manual validation of the affected
objects identified by Divak reveals that the results are largely correct at all opti-
mization levels, missing only an 8-byte object not present in DWARF when
employing optimizations. Running an optimized version of pnm2png with a
benign input using Divak causes multiple false positives in one function to
be reported. Manually investigating the reason for this shows that the compiler
optimized the zero-initialization of a struct by using a pointer to one of its fields
for zeroing both the field and its sibling fields. ASan and SoftBound detect OOB
writes at both locations for all tested optimization levels.

gzip (CVE-2001-1228). This is a .bss buffer overflow in the gzip utility. As
shown in Table 6, Divak successfully detects the OOB write at all four opti-
mization levels and yields no false positives for the PoC input. For the benign
input, multiple false positives are reported. While independent write matching
performs reasonably well (Fig. 4), BNI matching works poorly (sps 5). Only 10%
are matched at -O0 and less than 1% are matched at -O3. This is primarily
caused by dynamic BNIs, which comprise between 70% and 85% of all BNIs.



Non-invasive Characterization of OOB Write Vulnerabilities 227

Furthermore, a non-negligible number of bounds-shifting instructions is found
at -O3. Manual validation of Divak’s output shows that all affected objects are
correctly identified at all optimization levels. This demonstrates that the issues
of an incomplete memory layout extraction are limited to the stack.

When using a benign input, three false positives are reported at -O0 and -O1,
and one is reported at -O3 and -Oz. All of these are caused by our disregard for
bounds-shifting instructions. In each case, a struct pointer passed to a function
is used to access adjacent structs in the same array, causing Divak to incorrectly
report OOB writes. Both ASan and SoftBound detect the vulnerability.

5.4 Performance Overhead

We evaluate Divak’s overhead on the three real-world programs when feeding
them benign inputs. We execute the programs using ASan, SoftBound, Divak,
and natively under different optimization levels. We run each configuration ten
times and consider the means. All measurements are performed on an Intel Xeon
E3-1231v3 running Ubuntu 20.04. Table 7 shows the mean runtime overheads.
Since our measurements indicate no substantial differences between optimization
levels, we only present the results for -O1. As expected, Divak currently incurs
a massive performance overhead (8,000 – 44,000×). ASan and SoftBound, on
the other hand, incur at most a sixfold overhead. While Divak’s performance
overhead might seem to make it unusable in practice, it is important to note
that little regard was given to performance during the implementation of this
prototype, resulting in design decisions with a highly detrimental impact on
performance. The most severe decision is the usage of S2E, which introduces
a considerable overhead by executing most of the program’s code in symbolic
mode. We discuss a possible approach for reducing the overhead in Sect. 6.

Table 7. Performance overhead for each program at -O1.

Program Divak ASan SoftBound

xmllint 8113× 5.4× -

pnm2png 8592× 4.4× 3.9×
gzip 44097× 4.8× 1.5×

6 Discussion

Our experiments show that Divak is well capable of characterizing OOB writes.
While ASan and SoftBound cannot detect intra-object OOB writes, Divak’s
logic for detecting them is not perfect. Besides the false positives raised for the
real-world vulnerabilities, intra-object OOB writes are the only test cases in
our testbed experiments for which detection fails. However, the former can be
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reduced by introducing a small number of heuristics, for example disregarding
OOB writes relative to pointers created in the current function scope and not
modified by pointer arithmetic. Despite these limitations, our experiments show
that Divak’s capabilities outperform ASan and SoftBound, with a false positive
in the dependent write testbed being the only apparent downside.

Divak’s main drawback is the excessive performance overhead. A promising
approach to combat this is to replace the full-system emulation of S2E with
dynamic binary instrumentation, e.g., Intel Pin. This would allow implementing
pointer tracking by performing taint analysis through libdft [17], eliminating the
overhead introduced by the use of symbolic variables. Although Pin would mod-
ify the program’s memory layout by allocating space for its own metadata, the
arrangement of objects within the program’s sections would remain untouched.
Thus, our goal of non-invasiveness would in practical terms be achieved. With
the authors of libdft having measured an overhead of at most 6× for typical
programs, our tool would experience a substantial decrease in overhead, even
with a very conservative estimate of additional 50× overhead due to the amount
of tainted data and our analysis logic. While Divak’s need for a large number of
taint colors would increase the load on libdft, limiting the set of colors by reusing
them at the cost of a low chance for false negatives would be conceivable.

Thus, we conclude that, for use cases where only a low number of executions
are necessary, e.g., bug triaging, a high recall is desirable, and false positives
are tolerable, Divak is superior to instrumentation-based tools like ASan and
SoftBound. This is especially true if intra-object OOB writes are to be detected.
In addition to these benefits, it is important to keep in mind that our work’s pri-
mary goal was to design a non-invasive OOB write detection approach that can
be used to faithfully characterize the real effects of vulnerabilities as they exist
in programs deployed in production environments: Divak is the only approach
that guarantees faithful results in terms of affected memory objects.

Limitations. Divak assumes that, once the bounds attached to a pointer are
narrowed to a composite child, any derived pointer requires identical or narrower
bounds. This does not hold for bounds-shifting instructions, causing false posi-
tives. Nevertheless, this can be mitigated by handling such instructions akin to
BNIs. A drawback of Divak’s reliance on DWARF debug information is a depen-
dence on its correctness and completeness. While we did not encounter cases
of incorrect information, we observed incomplete location descriptions under
optimizations caused by compiler bugs. This occasionally causes Divak to fail
tainting pointers or deliver incomplete memory layout results. However, as the
analysis of such bugs gained traction in the past years [2,10], enabling them to
be fixed, their impact on Divak’s results can be expected to decrease.

Another current limitation is the assumption that a single interval can
describe the lifetime of any object, as outlined in Sect. 4. This occasionally causes
overlapping objects, which we try to combat by merging identically-sized objects.
Nevertheless, this often leaves some overlapping objects in heavily inlined code,
for which we observed up to 3% of objects to overlap with one another.
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Lastly, we assume the program under test to be built without frame
pointer omission and tail call optimizations, arguably violating Divak’s non-
invasiveness. Furthermore, we currently do not support position-independent
executables. Both issues, however, are merely limitations of our current pro-
totype that do not invalidate our results and can be alleviated with limited
implementation effort.

Future Work. A subject for future work is the extension of our design with
omitted features, e.g., dynamic BNIs and bounds-shifting instructions. More-
over, re-implementing Divak to decrease its performance overhead is desirable
to make it scalable as a part of other pipelines. Although Divak is meant to
triage identified vulnerabilities and the discovery of new vulnerabilities is out of
scope, a future research direction is the combination of Divak with approaches
for finding alternative vulnerable paths, e.g., directed fuzzing, to create a more
complete profile of the vulnerability capabilities. As the issue of invasiveness
predominantly concerns the stack and globals, we do not consider heap-based
OOB writes. However, Divak can be extended to intercept calls to memory
allocators. Alternatively, one may use ASan’s heap-based OOB analysis with
disabled instrumentation of stack and global sections to largely maintain non-
invasiveness.

7 Related Work

Several approaches have been proposed for detecting spatial memory bugs. Most
of them rely on compile-time instrumentation (CTI) to insert their checking logic
into the program [8,20,23,29], allowing for low overhead at the cost of highly
invasive program modifications. Binary instrumentation-based approaches suffer
from the lack of high-level semantic information, preventing them from providing
strong spatial guarantees for the detection of certain OOB write types [31,33,37].
Similarly, binary-level pointer analysis [18] is often course-grained and cannot
guarantee sufficient precision to track OOB writes that have marginal effects.

Identity-based approaches check whether the accessed memory locations are
part of the expected object according to high-level program semantics. For
accesses relative to pointers, this requires a sophisticated approach to main-
tain a mapping between pointers and intended pointee objects. Pointer-based
approaches like Divak augment pointers with additional metadata, by embed-
ding bounds information into pointers at pointer-creation sites [8,20,23,26,30].
Object-based approaches associate metadata only with memory objects, not with
pointers [41], and test whether pointer arithmetic instructions have the same
pointee before and after the operation. However, such approaches generally can-
not detect intra-object OOB writes as composite objects overlap with their chil-
dren.

Tripwire-based approaches [29,31] insert red zones around objects to detect
OOB accesses. The main example of such approaches is ASan [29]. Its low-
performance overhead makes it ideal for use cases such as fuzzing. A hardware-
assisted variation for ARM64 [8] further decreases the memory overhead, while a
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kernel variation, KASAN [36] facilitates kernel fuzzing. One shortcoming is that
non-contiguous OOB writes jumping over the red zone remain undetected. Fur-
thermore, the insertion of new memory objects makes them invasive by design.

SoftBound [23] is a pointer-based sanitizer using CTI that provides relatively
strong spatial detection guarantees but is heavily invasive and relies on wrappers
for external function calls. While it promises to be able to detect intra-object
OOB writes, we discovered this is not implemented in the publicly available tool.

Memcheck [31] and SGcheck [37] are tools for the Valgrind platform [24] and
use a tripwire and heuristic-based approach, leveraging dynamic binary instru-
mentation without high-level semantic information. Orthogonally to our app-
roach, QASan [13] detects heap memory violations. Intel MPX [26] is an AMD64
ISA extension that leverages CTI to get strong spatial guarantees. However, its
deprecation caused its support to be removed from most compilers.

Besides in sanitizers, OOB write detection has application scenarios in larger
pipelines. KOOBE [6] leverages KASAN and a pointer-based approach, similar to
Divak, for heap-based kernel exploitation. BORG [25] discovers buffer overreads
by employing a heuristic approach for recovering memory layout. Revery [38]
employs a software-based memory tagging approach for heap-based AEG.

Finally, other related approaches identify memory errors at the LLVM IR
level [34,35], however, they focus on different classes of bugs, such as memory
leaks and use-after-free, which intrinsically require a less intrusive analysis.

8 Conclusion

We proposed Divak, a tool to detect OOB writes in a non-invasive manner and
to distill their capabilities by identifying the affected source code-level objects
stored in memory. Using two benchmarks and three real-world vulnerabilities,
we showed that Divak can keep up with, and in some cases even exceed, the
detection performance of current instrumentation-based OOB write detection
approaches, yielding negligible false positives, at the cost of higher overhead.
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4. Böhme, M.: oss-security - Invalid writes and reads in libxml2 (2017)
5. Cha, S.K., Avgerinos, T., Rebert, A., Brumley, D.: Unleashing Mayhem on Binary

Code. In: Proceedings of the IEEE Symposium on Security and Privacy (S&P)
(2012)



Non-invasive Characterization of OOB Write Vulnerabilities 231

6. Chen, W., Zou, X., Li, G., Qian, Z.: KOOBE: towards facilitating exploit genera-
tion of kernel out-of-bounds write vulnerabilities. In: Proceedings of the USENIX
Security Symposium (2020)

7. Chipounov, V., Kuznetsov, V., Candea, G.: S2E: a platform for in-vivo multi-path
analysis of software systems. In: Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS) (2011)

8. Clang: hardware-assisted addresssanitizer design documentation (2022)
9. Cowan, C., et al.: StackGuard: automatic adaptive detection and prevention of

buffer-overflow attacks. In: Proceedings of the USENIX Security Symposium (1998)
10. Di Luna, G.A., Italiano, D., Massarelli, L., Österlund, S., Giuffrida, C., Querzoni,

L.: Who’s debugging the debuggers? Exposing debug information bugs in optimized
binaries. In: Proceedings of the ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS) (2021)

11. Ding, Z.Y., Goues, C.L.: An Empirical Study of OSS-Fuzz Bugs (2021)
12. Donovan, A.A., Kernighan, B.W.: The go programming language. Addison-Wesley

Professional (2015)
13. Fioraldi, A., D’Elia, D.C., Querzoni, L.: Fuzzing binaries for memory safety errors

with qasan. In: Proceedings of the IEEE Secure Development Conference (2020)
14. Heelan, S.: Automatic generation of control flow hijacking exploits for software

vulnerabilities, Master’s thesis, University of Oxford (2009)
15. Huang, S.K., Huang, M.H., Huang, P.Y., Lai, C.W., Lu, H.L., Leong, W.M.:

CRAX: software crash analysis for automatic exploit generation by modeling
attacks as symbolic continuations. In: Proceedings of the IEEE International Con-
ference on Software Security and Reliability (SERE) (2012)

16. ISO Central Secretary: Programming languages - C. Standard ISO/IEC 9899:2011.
International Organization for Standardization, Geneva, CH (2011)

17. Kemerlis, V.P., Portokalidis, G., Jee, K., Keromytis, A.D.: libdft: practical dynamic
data flow tracking for commodity systems. In: Proceedings of the 8th ACM Con-
ference on Virtual Execution Environments (2012)

18. Kim, S.H., Zeng, D., Sun, C., Tan, G.: Binpointer: towards precise, sound, and
scalable binary-level pointer analysis. In: Proceedings of the ACM International
Conference on Compiler Construction (2022)

19. Klabnik, S., Nichols, C.: The rust programming language. No Starch Press (2018)
20. Kroes, T., Koning, K., van der Kouwe, E., Bos, H., Giuffrida, C.: Delta pointers:

buffer overflow checks without the checks. In: Proceedings of the EuroSys Confer-
ence (2018)

21. Luo, Z.: Stack-buffer-overflow in pnm2png in function get token (2018)
22. MITRE Corporation: CWE Top 25 Most Dangerous Software Weaknesses (2021)
23. Nagarakatte, S., Zhao, J., Martin, M.M., Zdancewic, S.: SoftBound: highly com-

patible and complete spatial memory safety for C. In: Proceedings of the ACM
Conference on Programming Language Design and Implementation (PLDI) (2009)

24. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: Proceedings of the ACM Conference on Programming Lan-
guage Design and Implementation (PLDI) (2007)

25. Neugschwandtner, M., Comparetti, P.M., Haller, I., Bos, H.: The BORG:
nanoprobing binaries for buffer overreads. In: Proceedings of the ACM Confer-
ence on Data and Application Security and Privacy (CODASPY) (2015)

26. Oleksenko, O., Kuvaiskii, D., Bhatotia, P., Felber, P., Fetzer, C.: Intel MPX
explained: an empirical study of intel MPX and software-based bounds checking
approaches (2017)



232 L. Hafkemeyer et al.

27. PaX Team: Address Space Layout Randomization (2001)
28. Rosier, H.: ripe64 (2019). https://github.com/hrosier/ripe64
29. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: AddressSanitizer: a fast

address sanity checker. In: Proceedings of the USENIX Annual Technical Confer-
ence (2012)

30. Serebryany, K., Stepanov, E., Shlyapnikov, A., Tsyrklevich, V., Vyukov, D.: Mem-
ory tagging and how it improves C/C++ memory safety (2018)

31. Seward, J., Nethercote, N.: Using Valgrind to detect undefined value errors with
bit-precision. In: Proceedings of the USENIX Annual Technical Conference (2005)

32. Shoshitaishvili, Y., et al.: Rise of the HaCRS: augmenting autonomous cyber rea-
soning systems with human assistance. In: Proceedings of the ACM SIGSAC Con-
ference on Computer and Communications Security (CCS) (2017)

33. Slowinska, A., Stancescu, T., Bos, H.: Body armor for binaries: preventing buffer
overflows without recompilation. In: Proceedings of the USENIX Annual Technical
Conference (2012)

34. Sui, Y., Xue, J.: SVF: interprocedural static value-flow analysis in LLVM. In: Pro-
ceedings of the ACM International Conference on Compiler Construction (2016)

35. Sui, Y., Ye, D., Xue, J.: Static memory leak detection using full-sparse value-flow
analysis. In: Proceedings of the International Symposium on Software Testing and
Analysis (2012)

36. The kernel development community: The Kernel Address Sanitizer (KASAN) -
The Linux Kernel documentation (2021)

37. Valgrind Developers: SGCheck: an experimental stack and global array overrun
detector (2012). http://valgrind.org/docs/manual/sg-manual.html

38. Wang, Y., et al.: Revery: from proof-of-concept to exploitable. In: Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security (CCS)
(2018)

39. Wilander, J., Nikiforakis, N., Younan, Y., Kamkar, M., Joosen, W.: RIPE: runtime
intrusion prevention evaluator. In: Proceedings of the Annual Computer Security
Applications Conference (ACSAC) (2011)

40. Xu, L., Jia, W., Dong, W., Li, Y.: Automatic exploit generation for buffer overflow
vulnerabilities. In: Proceedings of the IEEE International Conference on Software
Quality, Reliability and Security Companion (QRS) (2018)

41. Younan, Y., Philippaerts, P., Cavallaro, L., Sekar, R., Piessens, F., Joosen, W.:
PAriCheck: an efficient pointer arithmetic checker for C programs. In: Proceedings
of the ACM Symposium on Information, Computer and Communications Security,
(ASIACCS) (2010)

https://github.com/hrosier/ripe64
http://valgrind.org/docs/manual/sg-manual.html


Flow Integrity and Security



CEFI : Command Execution Flow
Integrity for Embedded Devices

Anni Peng1,3, Dongliang Fang2,3, Wei Zhou3,4, Erik van der Kouwe3,5,
Yin Li1,3, and Yuqing Zhang1,3,6(B)

1 National Computer Network Intrusion Protection Center, UCAS, Beijing, China
zhangyq@nipc.org.cn

2 Institute of Information Engineering, CAS, Beijing, China
3 School of Cyber Security, UCAS, Beijing, China

4 School of Cyber Science and Engineering, HUST, Wuhan, China
5 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
6 School of Cyberspace Security, Hainan unversity, Haikou, China

Abstract. As embedded devices are widely used in increasingly com-
plex settings (e.g., smart homes and industrial control systems), one
device is usually connected with multiple entities, such as mobile apps
and the cloud. Recent research has shown that privilege separation vul-
nerabilities, which allow violations of authority between different enti-
ties, are occuring in IoT systems. Because such vulnerabilities can be
exploited without violating static control flow and data flow, existing
CFI and DFI solutions cannot prevent them. We present CEFI , the first
method to enforce integrity of command execution on embedded devices
after deployment. CEFI provides fine-grained Command Execution Flow
Integrity by preventing external commands from being executed on con-
trol flow paths belonging to interaction channels that are not authorized
to perform them. Using minimal manual annotations as a starting point,
CEFI statically determined the legal path set (from the start to the
end point) and instruments the program to verify the legitimacy of the
command execution at runtime by checking whether the calling context
is consistent between the runtime executed path and statically obtained
legal path set. We evaluate our prototype with five real-world firmware
samples, and show that CEFI has an average performance overhead of
just 0.18%, an average memory overhead of 0.19%, and that CEFI can
effectively protect embedded devices against attacks on privilege separa-
tion vulnerabilities even if they do not violate control flow.

Keywords: Internet of Things (IoT) · embedded devices · enforcement

1 Introduction

With the development of the Internet of Things (IoT), the application scenarios
of embedded devices are becoming broader and more complicated. For exam-
ple, embedded devices have long been restricted to closed environments, such as
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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industrial plants and vehicle communication systems, but nowadays are increas-
ingly connected, communicating with external systems to carry out their own
functionality. Embedded systems often communicate with multiple external sys-
tems in different roles. For example, a smart watch might communicate with
one server over WiFi to receive updates, with another over a 4G cellular net-
work to share location data, and also handle diagnostics and configuration com-
mands received by traditional SMS. The attack surface has greatly increased over
time. Attacks can send malicious data to an interaction channel by exploiting
many low-level security bugs (such as buffer overflows like CVE-2020-25066,
CVE-2020-27337, CVE-2020-27338, etc.) in firmware. Furthermore, attackers
also leverage missing checks among different interaction channels to perform
unauthorized functions.

Taking a smart home scenario as an example, a smart lock interacts with
the IoT cloud and mobile app simultaneously. Specifically, the smart lock can
receive operation commands both from the remote cloud and the local mobile
app. The remote cloud can control the smart lock to update its firmware, and
the local app can control the smart lock to perform lock operations (e.g., lock or
unlock the door). Typically, different interaction channels are designed to serve
different purposes. For this example, firmware updates can only be initiated from
the trusted cloud. However, if firmware fails to properly verify its interaction
channels, a local attacker can issue a malicious firmware update command to
the device. This type of attack has been demonstrated in the previous research,
which has uncovered 69 similar bugs [30]. Even worse, such an attack is stealthy,
as a firmware update is considered to be a normal device operation. The received
command does not deviate from normal ones, and there is no violation from the
viewpoint of control-flow integrity. Although there is a large body of research
on protecting low-end embedded devices [1,6,7,16,20,24], they only focus on
basic security properties like control-flow integrity and data-flow integrity. Most
recently, OAT [24] provides an attestation method that prevents both control-
flow and data-only attacks on embedded devices. However, newly discovered
hazards [30,35,36] involved in IoT interaction channels have enlarged attack
surfaces of embedded devices. Moreover, as seen in the example, such attacks
do not carry abnormal data or violate the control flow, so none of the previous
works can detect such attacks on the device side. Note that this attack differs
from data-only attacks [13], which usually require the exploitation of memory
corruption bugs. The root cause of our example is a logical flaw in the design
or implementation of the product, which remains unknown to both vendors and
users. It is different from the issue of implicit authorization, as discussed in
SmartAuth [26]. Implicit authorization refers to the mobile app gaining more
privileges without notifying the user, which is a problem that vendors are aware
of but users are not. This also differs from research that primarily analyzes
the mobile applications to identify and exploit potential security issues, as seen
in studies such as [11,12]. Although there has been considerable research on
security issues in mobile applications, we found mitigating logic flaws in IoT
embedded devices have not yet been systematically studied in the literature.
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In this work, we propose the first interaction command based attestation
method that verifies whether the requested operation is trustworthy when it
carries out one received command execution, even when strictly following its
designed purpose. We automatically enforce this verification even if part of the
call stack is shared between command handlers, requiring only minimal man-
ual annotations to indicate which commands are allowed on which interfaces.
We assign a unique code (i.e., an integer value) to each different code path, and
automatically generate and enforce an allowlist that specifies all legal code paths.
To prevent attackers from manipulating the unique code and the allowlist, we
store both in secure memory on ARM-based devices using on the widely deployed
TrustZone extension. This allows us to prevent attackers from executing com-
mands from contexts where they are not authorized, even if executing them
would not violate control-flow and data-flow integrity.
Contributions. Our work makes the following contributions:

– We propose Command Execution Flow Integrity (CEFI), the first method
to enforce integrity of command execution on embedded devices after deploy-
ment, even against attacks that violate neither static control flow nor static
data flow.

– We apply a calling context encoding algorithm to classify each unique control
flow of the program, which is lightweight and suitable for resource-constrained
embedded devices.

– We implement CEFI and conduct evaluation over five real-world embedded
programs that broadly cover multiple use cases in IoT devices, demonstrating
the practicality of CEFI in real-world application scenarios. CEFI is available
at https://github.com/mituanzi/CEFI.

2 Background

2.1 IoT Architecture

IoT architectures typically involve multiple types of entities [35,36] including
IoT device, cloud backend, and the companion mobile apps running on smart-
phones (see Fig. 1). Each entity has different responsibilities and design goals.
The IoT device is designed to interact with the physical world through sensors
and actuators. It sends collected real-time information (e.g., device status and
environment events) to the cloud or the mobile application. The cloud backend
manages devices and mobile app user accounts, including the binding between
devices and user accounts. In addition, device firmware can be updated from
the cloud when needed. When users are not in the same LAN with the devices,
the cloud can act as a proxy to forward device control commands from remote
users, and forward the device status or command execution results back to the
app. Mobile apps provide users with an interface to manage devices (e.g., bind-
ing the device, viewing device status, and issuing control commands). Generally,
mobile apps can control the device in two ways: 1) directly send the commands
to the device if they are in the same LAN, or 2) indirectly send the requests to

https://github.com/mituanzi/CEFI
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Fig. 1. Interaction model of IoT platform

the device via the cloud remotely. There are bidirectional interaction channels
between each pair of entities (see Fig. 1).

2.2 Interaction Channels on IoT Platform

In the IoT platform, each entity plays a different role and takes on differ-
ent responsibilities. As a result, the interaction channels between these entities
present a certain complexity. Specifically, i) There are many interaction channels
derived from multiple entities. First, the relationship between the entities is not
only in a one-to-one pattern, but also a one-to-many or many-to-many pattern.
For example, a device can be accessed by multiple different users and delegated
to multiple different third-party platforms [31] (e.g., Philips Hue, LIFX, Google
cloud, etc.). Second, entities may also have many interactions inside. For exam-
ple, a smart hub can interact with multiple smart lights via ZigBee. Finally,
a human may also participate in the interaction model directly and bring new
interaction channels, such as controlling the device based on the human voice
or directly controlling the device with a physical touch screen. ii) Each channel
has a different design purpose, which is mentioned in Sect. 2.1. In order to suit
the situation, the interaction channels involve a variety of different communica-
tion protocols, such as Bluetooth, Zigbee, MQTT, HTTP, etc. iii) There may be
functional overlap between different interaction channels. For example, both the
cloud and the mobile app have the same functionality in controlling the device
(e.g., turn on/off the device), recall that the cloud can act as a proxy to for-
ward control commands from the mobile app. We also note that the app→device
channel and cloud→device channel have different responsibilities to manage the
device account [30].

The complex interaction model among multiple entities in IoT platforms
makes maintaining design purpose more complicated, increasing the security risk
of many critical tasks, such as authentication [22,36], privilege separation [15,30,
31], state synchronization [21], and task isolation [14], etc. This paper focuses on
mitigating Privilege Separation Vulnerabilities (PSVs) that violate the privilege
separation model [30] (see Sect. 3.1).
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2.3 ARM TrustZone

Our system relies on ARM TrustZone to protect critical state. TrustZone offers
a trusted execution environment on ARM. It is available even on Cortex-M
microcontrollers, which allows our system to be used even on low-cost CPUs
optimized for ultra-low power embedded applications.

TrustZone introduces two protection domains with different permissions at
the processor level, the Secure World and the Normal World. The two worlds are
completely isolated by the hardware and have different permissions. While code
executed from Secure World can access memory in both secure and non-secure
regions, both applications and operating systems running in the Normal World
are prevented from accessing the resources of the Secure World. Access is only
possible through API interfaces specifically offered for this purpose by software
in the Secure World. Properties such as hardware isolation and different permis-
sions between the two worlds provide an effective mechanism for protecting an
application’s code and data, even in the face of a compromised operating system
kernel. Therefore, TrustZone can be used to protect the state that is critical for
security of our system from tampering.

3 Motivation

3.1 Problem Statement

In this section, we show the dangers of privilege separation vulnerabilities, and
the need for a lightweight system to mitigate them, especially on low-powered
IoT devices. Following Yao et al. [30], we define privilege separation vulnerabil-
ities as vulnerabilities that violate the privilege separation model. The privilege
separation model defines the privileges of each involved role (e.g., remote cloud,
local app), which can be inferred from the specification, program context, empir-
ical knowledge, etc.

In order to explain the vulnerabilities in detail, we abstracted a piece of
pseudocode from a real example, as shown in Listing 1.1. It demonstrates
two types of privilege separation vulnerabilities, based on examples in prior
work [30]. The code implements two independent handlers (i.e., cloud handler
and local handler) to process data from the remote cloud and the local app
respectively (line 5). Both handlers use similar processing logic (line 10-39): they
receive data over a network, perform authentication, and parse the data. Both
invoke the extract cmd function whenever a command is specified. However,
cloud handler and local handler may use different receive functions (e.g.,
ssl recv and tcp recv), different protocols (e.g., MQTT and HTTP), and dif-
ferent data formats (e.g., encrypted format and JSON format). The extract cmd
function extracts the specific command and its parameters, and after some checks
(e.g., format and value range checks), it executes the command by invoking the
corresponding execution functions.
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1 void task_main(void) {
2 /* initializations (e.g., variable declarations */
3 /* and definitions , memory allocations , etc) */
4 // ......
5 func_t handlers [2] = {cloud_handler , local_handler };
6 /* register remote handler and local handler */
7 // ......
8 }
9

10 void cloud_handler(void) {
11 /* initializations */
12 // ......
13 char *buf = remote_recv (); // e.g., ssl_recv
14 if (auth(buf)) {
15 parse_remote_data(buf);
16 /* check whether it contains command */
17 // ......
18 if (remote_control) {
19 extract_cmd(buf);
20 }
21 // ......
22 }
23 /* error handling and response */
24 }
25
26 void local_handler(void) {
27 /* initializations */
28 char *buf = local_recv (); // e.g., tcp_recv
29 if (auth(buf)) {
30 parse_local_data(buf);
31 /* check whether it contains command */
32 // ......
33 if (local_control) {
34 extract_cmd(buf);
35 }
36 // ......
37 }
38 /* error handling and response */
39 }
40
41 void extract_cmd(char *buf) {
42 cmd_t *cmd = parse_command(buf);
43 parameter_t *para = parse_parameter(buf);
44 /* check whether cmd and parameters are valid */
45 /* (e.g., check its format , value range , etc) */
46 // ......
47 switch (cmd.type) {
48 case OP_1_TYPE: exec_turnOn(cmd , para); break;
49 case OP_2_TYPE: exec_update(cmd , para); break;
50 case OP_3_TYPE: exec_turnOff(cmd , para); break;
51 case OP_4_TYPE: exec_reboot(cmd , para); break;
52 // ......
53 }
54 // .....
55 }

Listing 1.1. Simplified Code Snippet on interaction channel processing logic.

By design, the IoT devices perform privileged operations that can only be
initiated from specific interaction channels. Therefore, IoT devices should imple-
ment a strict privilege separation model when handling commands from differ-
ent channels (entities) [30]. For example, commands from the remote cloud are
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main

channel1 channel2

extract_cmds

…cmd1 cmd2

auth

Fig. 2. Simplified Call Graph Illustration

responsible for device management, such as binding or unbinding the device
with the owner, and updating the device’s firmware. Commands from the local
apps are used to control interaction with the environment (physical world), e.g.,
turning on/off the switch, locking/unlocking the lock, adjusting the brightness
of the light, etc. Different channels are not supposed to interfere with other’s
responsibilities. For example, the local app should not be able to update the
device’s firmware. These properties can be violated by PSVs. We will discuss
two particular types: over-privilege vulnerabilities and authentication bypass
vulnerabilities.

Over-Privilege Vulnerabilities. Listing 1.1 shows an over-privilege vulnera-
bility. The command handling function extract cmd shared between the inter-
faces supports all commands, even those not authorized on some of them.
There is a “valid” execution path (that is, one not violating CFI properties)
from local handler to exec update, namely with the call trace task main →
local handler → local recv → auth → parse local data → extract cmd
→ exec update. However, based on the program context, it appears that the
“valid” path is unexpected and violates the privilege separation model. We can
infer this from the user app lacking a user interface (e.g., button) that can initi-
ate the exec update behavior. This behavior is not intended for the user app to
perform. However, attackers can bypass the app interface and issue the command
using scripts. This bug has been reported to the vendor and acknowledged [30].
Inferring expected behavior from the program context, including exposed user
interfaces, is already used in existing research [26].

In this paper, we label such bugs as over-privilege vulnerabilities. Over-
privilege vulnerabilities are common in IoT platforms, and previous research has
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1 int auth(char *buf) {
2 /* extract user and password information from the buf*/
3 // ......
4 if (( strcmp(user , "GO") == 0) &&
5 (strcmp(pass , "ON") == 0))
6 return SUCCESS;
7 // ......
8 /* this is the real auth function , it checks */
9 /* user provided data with the credentials */

10 if (real_auth(user ,pass))
11 return SUCCESS;
12 else
13 return FAIL;
14 }

Listing 1.2. Code Snippet from [22] with slight changes.

uncovered many severe bugs [30,35,36]. Over-privilege are at the root of a num-
ber of CVEs, including CVE-2018-10691, CVE-2020-26072, CVE-2022-36782,
and CVE-2022-41627. To better understand the root cause of over-privilege vul-
nerabilities, we show a simplified call graph (see Fig. 2) abstracted from List-
ing 1.1. We assume there is a design goal that cmd1 can only be reached through
channel1, and cmd2 can only be reached by channel2. From the graph, we can
see that there are two unintended paths: channel1 can reach cmd2, and channel2
can reach cmd1. When taking a closer look at its root cause, we have two key
observations: i) before the command execution functions (i.e., cmd1, cmd2) there
is no check on the role or channel that issues the command, and ii) the unin-
tended path uses a shared function extract cmds to dispatch commands. This
function mixes the relationship between channels and privileged operations.

Authentication Bypass Vulnerabilities. In the Listing 1.1, the auth() func-
tion can also be bypassed without having knowledge of user’s credentials. Gen-
erally, attacker may leverage control-flow hijack technique (e.g., based on some
memory bugs) to bypass the authentication process. However, we do not target
memory bugs in this paper, instead, we target the bugs that are derived from
logic violations – the presence of hardcoded authentication credentials in the
authentication routine. Specifically, we show a problematic implementation of
auth() function in the Listing 1.2. There are hardcoded credentials (“GO” and
“ON”) in the auth function. The auth function can be bypassed (i.e., without
calling the real auth function) when the user’s input is consistent with the
hard-coded ones (line 2-4). Consequently, once an attacker analyzes and knows
the relevant content of the hardcoded information, it is not hard for them to
bypass the authentication and gain access to the device. Authentication bypass
vulnerabilities are common, and are at the root of a number of CVEs, including
CVE-2017-8226, CVE-2021-33218, CVE-2021-33220, CVE-2022-29730.

Limitations of Potential Solutions. To defend against the privilege sep-
aration bugs, there are three potential solutions: i) Detection in advance by
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analyzing illegal path reachability. Ideally, we can use static analysis to detect
illegal paths in advance and ensure that cmd1 will never be reached through
channel2. However, since static analysis faces some common challenges (e.g., it
is hard to precisely resolve all indirect calls), it is very hard if not possible to
accurately exclude all paths from channel2 to cmd1. Moreover, any detected bugs
still need code patches (defense solutions) to defend against potential attacks.
ii) Blocking execution by checking input directly at the start point channel2.
Recall the example in Listing 1.1, one may argue that we can easily block the
execution if an “update” command is found at the local recv(). We note that
the received raw data at the entry point has various complex formats (e.g., JSON
format and encrypted formats [30]) and not completely parsed yet at this point.
Therefore, it is infeasible to directly filter illegal commands at the entry point
(i.e., local recv() and remote recv()). Futhermore, different channels are not
completely independent and often have some shared behaviors (e.g., both the
cloud and user app are allowed to issue turn on/off commands) and call shared
functions. Shared functions can easily lead to privilege separation vulnerabilities,
as noted by Yao et al. [30]. Although the program can know which channel is
involved at the entry point, it cannot predict the control flow, since the command
has not yet been parsed at that point. iii) Applying traditional CFI solutions.
However, logic bugs follow a “legal” path in the program implementation. There
is a path from channel2 to cmd1 which does not violate the CFG, so CFI solutions
fundamentally cannot mitigate this type of vulnerability.

3.2 Threat Model

We focus only on privilege separation vulnerabilities, and assume that the
attacker cannot hijack the original control flow and data flow. Note that we
do not consider memory errors in the threat model, as existing work can miti-
gate them. Our approach is orthogonal to existing solutions addressing control
flow hijacking (e.g., [1,20]) and data-flow violations (e.g., [24]). We also assume
that the attacker can access the IoT devices (e.g., via victim’s LAN), so they
have the ability to send the requests to the IoT devices directly or with a MITM
attack. Moreover, we assume the attacker can exploit any logic errors to execute
commands already present in the firmware without authorization. Our system
will be applied by a programmer who has access to the firmware source code,
and has knowledge of its high-level privilege-related design logic. This is realistic
when our system is deployed by the original developer, and also for third parties
in case of properly documented open source firmware. We also assume the trusted
software in the TEE is bug-free and isolated from the Normal World firmware, as
important metadata such as the allowlist is stored there. Considering the small
code base of the TEE-side software and the limited attack surface, this is a rea-
sonable assumption, well accepted by existing TEE-based work [1,20,24]. We do
not consider low-level physical attacks, such as connecting to a JTAG debugger
to re-program the firmware. Finally, we assume our compiler passes are free of
bugs.
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Fig. 3. The architecture of CEFI.

4 CEFI

In this section, we discuss the design and implementation of CEFI . Figure 3
shows the overall design of CEFI . Developers can use CEFI to protect their
firmware. It acts as a compiler pass, and anyone who has access to the firmware
source code can use it to generate a firmware binary hardened against privilege
separation vulnerabilities. CEFI needs minimal manual annotations to specify
the mapping between interfaces that can receive commands and commands per-
mitted on those interfaces, and can then automatically instrument the program
to enforce those policies at runtime, even in the face of logic bugs.

Our approach consists of two phases, which are discussed in this section. The
static calling context encoding (CCE) phase (Sect. 4.1) happens at compile time,
and performs static analysis and instrumentation to create a hardened binary.
It uses the policies specified by the user in the form of minimal annotations to
generate an allowlist that specifies the code paths that satisfy the policy, and
are therefore valid contexts to execute particular commands, and instruments
to code to be able to enforce this allowlist. The dynamic command execution
flow verification phase (Sect. 4.2) offers the necessary support at runtime to
perform these checks in a secure way. We take advantage of secure storage and
isolation provided by Trustzone-M the allowlist at runtime. We use Trustzone
to protect the security of the allowlist, as our approach relies on the guarantee
that it is not illegally written to. Meanwhile, due to the security isolation of
TrustZone, we avoid having to perform checks at all risky (e.g., pointer-based)
write instructions, which is expensive.
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4.1 Calling Context Encoding Instrumentation

We implement CEFI as two LLVM compiler passes, namely the Valid Path
Analyzer and the Calling Context Encoder. We discuss them in this section.

Valid Path Analyzer. To accurately enforce the execution path belonging to
its expected interaction channel, CEFI needs developers to specify a legitimate
pair set between the sensitive command function (i.e., end point) with its corre-
sponding entry function (i.e., start point). There are some manual works annotat-
ing the start point and the end point, and representing their relationship. Taking
Listing 1.3 as an example, function func 1 and function func 2 are two different
entry functions (i.e., start point). The function turn on and update firmware
are two different command execution functions (i.e., end point). The annota-
tions specify a relationship between the start points and the end points, indi-
cating which paths are allowed and which are not. Specifically, the end point
turn on can be reached from start point func 1 and func 2, while end point
update firmware can only be reached by start point func 1. On this basis,
we can obtain many allowed pairs, i.e., (func 1, update firmware), (func 1,
turn on), (func 2, turn on). After annotating, the path analyzer gathers all
available paths from the start point to the end point of each pair based on the
call graph with a function named AllowPathAnalyzer(). In this way, we can
get the valid paths to each command execution function and filter out a lot
of irrelevant code. Note that these valid paths have already filtered the paths
that are not allowed to reach command execution functions, e.g., any paths from
func 2 → update firmware are not regarded valid even if they exist.

1 void __attribute__ (( annotate("entry#role1"))) func_1();
2 void __attribute__ (( annotate("entry#role2"))) func_2();
3 void __attribute__ (( annotate("cmd#role1#role2"))) turn_on ();
4 void __attribute__ (( annotate("cmd#role1"))) update_firmware ();

Listing 1.3. Manual Annotation

Calling Context Encoder. Calling context encoding is a lightweight tech-
nique to record dynamic calling path history, which has been widely used in
many software development processes such as testing, event logging, and pro-
gram analysis [4,23,32,33]. Its basic idea is to instrument function calling point,
so at the runtime, the instrumentation can dynamically update the ID such
that the value of the ID represents the current calling context. To make the ID
uniquely distinguish different contexts, the CCE algorithm solves many chal-
lenges, such as recursive calls, function pointers, etc. Since the CCE algorithm
is not our contribution, we omit the details here. Instead, we directly integrate
the work by Sumner et al. [23] in CEFI . The left-hand side of Fig. 4 (see [23] for
the ID notation) illustrates how it works. In the calling graph, the CCE algo-
rithm assigns a value to each edge between StartPA and EndPA. so the ID can be
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dynamically updated and each path to EndPA can be uniquely mapped to a value
in the runtime. Specifically, before the start point StartPA, the id is initialized
to 1, and at the end point EndPA, the id may have two different values (i.e., 1, 2),
which can uniquely distinguish two different paths (StartPA→f2→f4 →EndPA
and StartPA→f3→f4 →EndPA). When CEFI is deployed, it will instrument a
secure gateway API call at each edge, but it only requires instrumentation at
the edge f3→f4, as the process of “id+ = 0” does not alter the calling context
ID, making instrumentation unnecessary at other edges (such as StartPA→f2,
StartPA→f3, and f2→f4 ). CEFI is lightweight, which can be attributed to the
fact that only a limited amount of instrumentation is required. Besides, the
involved CCE algorithm is safe (i.e., different contexts are guaranteed to have
different ID), reversible (i.e., calling context can be faithfully decoded and recov-
ered) [23].

With the help of CCE, we can generate an allowlist for each end point
(i.e., command execution function), as shown in Algorithm 1, which is denoted
as AllowlistGenerate(). The algorithm takes the pair set of user-defined start
and end points and the whole call graph of the firmware as inputs. The out-
put is the allowlist. For each pair (i.e., StartPA, EndPA), the algorithm first
gets an AllowPathSet using the ValidPathAnalyzer(), and each item in the
set represents an allowed path from StartPA to EndPA. Then, it encodes each
edge of an allowed path using CallingContextEncoding(), and accumulates
the weights (IDs) of each allowed path to EndPA using ComputeID. Specifically,
each call statement on the allowed path will be instrumented to update the value
of context identifier, so that we can obtain a value at the EndPA and check it
against the allowlist. Note that we assign one to the start point instead of zero
as the traditional CCE algorithm does for quickly distinguishing the remaining
paths to the command function with zero values without encoding them. After
traversing every item in pairSet, we obtain the allowlist dictionary, in which the
key is EndPA and the value is AllowedIDset.

Instrumentation with ARMv8-M Security Extension. During instrumen-
tation, the firmware reads the allowlist and resides in the read-only secure mem-
ory before initialization at runtime. Then, all allowed paths are encoded with
CCE as mentioned before. Meanwhile, any ID update before the function call
site will be transferred to TrustZone-protected Secure World, thus we can guar-
antee the security of dynamically computed calling context ID. To enforce the
integrity check before command execution, we also intercept all call instructions
to the command functions (end points) and redirect them to the CEFI verifier
in the Secure World through secure gateway veneers [3]. If the verification is
passed, the control flow returns back to the intended command function.
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Algorithm 1. Algorithm for Allowlist Generation, denote as AllowlistGener-
ate()
Input : PairSet
Input : CallGraph
Output: Allowlist
//PairSet: each item consists of (startPoint, endPoint)
//StartPA: entry function
//EndPA: command function
//Allowlist: a dict, the key is EndPA, the value is an AllowedIDSet
Item ← Head(PairSet)
do

StartPA, EndPA ← GetTuple(Item)
AllowPathSet ← ValidPathAnalyzer(StartPA, EndPA, CallGraph)
EncodedAllowPathSet ← CallingContextEncoding(AllowPathSet)
AllowedIDSet ← ComputeID(EncodedAllowPathSet)
Allowlist ← AddTo(Allowlist, EndPA, AllowedIDSet)
Item ← Next(PairSet);

while Item;

4.2 Command Execution Flow Integrity Enforcement

Figure 4 illustrates the process of dynamic command execution flow integrity
enforcement with CEFI verifier. When a call instruction to a command function
is encountered in the firmware, the control flow will be transferred to the security
gateway veneers and further forwarded to the CEFI verifier. It verifies the current
calling context (current ID value) by looking up the valid ID set to the command
function (e.g., EndPA in Fig. 4) from the allowlist. After verification, if the calling
context is allowed, the control flow redirects back to the command execution. If
the calling context is invalid (e.g., the ID value is not one or two in Fig. 4), the
CEFI verifier will stall the execution and output the current calling context (ID
value) via UART or other peripherals based on user specification.

5 Evaluation

To evaluate CEFI , we conducted experiments on five commonly-used programs
to i) measure its performance in terms of runtime and memory overhead, ii)
perform a security analysis to demonstrate its effectiveness, and iii) show the
manual effort required to use CEFI .

Testing Environment. CEFI is implemented on top of LLVM 10 and runs
on Ubuntu 18.04. CEFI generates hardened binaries that can run on the
STM32L562E-DK discovery kit, a popular IoT development board. This board
features an ARM Cortex-M33 core with TrustZone support, along with 512 kB
Flash memory and 256 kB SRAM. Our prototype does not rely on other board-
specific features, making it adaptable to other ARM Cortex-M chips.
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Benchmark. Our benchmark consists of five embedded programs with practical
application scenarios. They are small in size (the average size is 104.03 kB) com-
pared with traditional software, which is representative of embedded programs
in practical settings, as these CPUs cannot run larger programs. These programs
have been used for evaluation in prior embedded device research [8,10,24].

– Light Controller is used in smart home applications. User can turn the light
on/off remotely by sending control command. It is also used for evaluation
by OAT [24].

– Syringe Pump is used in medical and production applications. The user
can control a device to inject or withdraw fluid automatically by sending
control command with user-provided amount. It is also used by C-FLAT [1]
and OAT [24].

– Thermostat reads the temperature and humidity from a sensor. If the tem-
perature is too far from a preset temperature it can, for example, trigger
an air conditioning unit. It also accepts commands to retrieve the current
temperature. This program is used by PRETENDER [10].

– RF door lock can be applied to smart door locks. Its commands include
unlocking the door given the correct password, and setting a custom password.
This program is used by PRETENDER [10].

– Steering control is used in autonomous driving. It receives commands from
the computer to control the steering and moving/motoring of the autonomous
vehicle. This program is used by P2IM [8].

Table 1 presents details on the application layer logic of the programs. It does
not consider the boot loader, board support package (BSP), device drivers, or
any other components outside of the application layer. It includes the functions
involved (#Functions), the number of annotations made (#Annotations), the



CEFI : Command Execution Flow Integrity for Embedded Devices 249

number of all allowed paths from the StartPA to EndPA (#AllowedPaths), and
the lines of code of application layer (#LoC).

Table 1. Statistics in Benchmark Programs

Program #Functions #Annotations #AllowedPaths #LoC

Light Controller [24] 33 4 7 286

Syringe Pump [1,24] 51 4 8 569

Thermostat [10] 28 5 4 154

RF door lock [10] 25 4 5 219

Steering control [8] 33 2 8 150

5.1 Performance Overhead

For defense mechanisms to be deployable, they must result in low performance
overhead [25]. This is especially important for resource-constrained embedded
devices. To study the runtime overhead introduced into a system by CEFI , we
measure the execution time with and without CEFI for each test program. We
record end-to-end overhead, based on the time between when a device receives
an event and when a device completes the resulting action. The five programs we
selected all have multiple execution paths that are triggered by different inputs.
Therefore, we design different inputs to trigger each branch of the program. The
reported runtimes are averages over ten executions of each input.

We present the runtime overhead and memory overhead in Table 2. The col-
umn #Trans lists the average transitions between the trusted and normal world
of each programs. The results show that CEFI has very low overhead for each
of the programs, with a geometric mean of just 0.18% over all of them.

Memory overhead consists of Flash overhead and RAM overhead. For Flash
overhead, CEFI adds instrumentation to encode and decode the ID at each call
site. In addition, before the specific function, we need instrumentation to send the
ID to the Secure World to match it against the allowlist. These instrumentations

Table 2. Runtime Overhead and Memory Overhead

Program #Trans Execution Time (ms) Memory Consumption (bytes)

Baseline CEFI Overhead Baseline CEFI Overhead

Light Controller 9 18.49 18.51 0.11% 102888 103172 0.28%

Syringe Pump 7 54.34 54.36 0.04% 110536 110772 0.21%

Thermostat 5 5.04 5.05 0.20% 108184 108332 0.14%

RF door lock 10 2.20 2.21 0.45% 102308 102480 0.17%

Steering control 7 10.74 10.75 0.09% 108724 108888 0.15%

Geometric Mean 0.18% 0.19%
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Table 3. Commands for Smart Light Example

Interaction Channel Annotated Command Functions

Local client switch on, switch off

IoT cloud update firmware, recovery firmware, change password

increase Flash usage. The results show the Flash memory overhead of CEFI .
The geometric mean overhead across all applications is just 0.19%. For RAM
overhead, it mainly consists of the allowlist stored in the Secure World, costing
less than 80 bytes since the biggest allowlist contains less than twenty legal
integer IDs.

5.2 Effectiveness Analysis

Attack detection via CEFI . Although privilege separation vulnerabilities are
common (recent ones include for example CVE-2020-26072, CVE-2021-33220,
and CVE-2022-36782), unfortunately firmware is rarely available open source.
As such, there is no known vulnerable firmware available for us to test. Instead,
we injected the vulnerability shown in Fig. 2 into the test example, and verified
that CEFI could prevent attacks that exploit this vulnerability while running the
program. In order to construct the vulnerability, we added some functions to the
test example, such as switch on, update firmware, change passwd, and so on.
For the experiment, we formulated the following rules: some commands can only
be issued by the cloud, and the others only by local clients. The details are shown
in Table 3. However, we do not implement strict authentication, resulting in the
vulnerability that the remote and local command sets can be mixed together.

In order to realize our enhancement scheme, we carried out the following
steps: first, we annotate the command execution functions and entry functions,
such as switch off, update firmware, etc. Then, the legal IDs of the paths between
entry function and command execution function can be statically obtained. We
traverse all legal operations, and store all legal ID information in TrustZone to
form an allowlist. After getting the allowlist, we can send instructions to the
device at will: for example, send the update firmware command from the IoT
cloud to the device, and the device can normally perform the corresponding
operation, or send the update firmware command from the local client to the
device, and the device prompts that the operation cannot be performed. It can
be seen from this that our scheme is effective. Although this vulnerability is
constructed by ourselves, it tests the most important logic of the vulnerability,
and our solution can indeed discover and defend against such vulnerabilities
during program operation.

Security Analysis. Our threat model does not assume that the attacker can
hijack the original control flow and data flow, as outlined in Sect. 3.2. To evade
CEFI , attackers need to circumvent the validation checks of CEFI . They would
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need to achieve any of the following: 1) disable the instrumentation of the calling
context ID updating logic and validation checks; 2) tamper with the metadata,
which includes the calling context ID and the allowlist; or 3) discover a collision
where a path from the channel (entry point) to disallowed commands (end
point) can produce an calling context ID that is included in the allowlist.

However, 1) is ruled out by the assumption that existing control flow integrity
enforcement has been effectively deployed, and attacks cannot bypass the
execution of instrumented trampoline functions. CEFI prevents 2) by storing
the crucial metadata (i.e., calling context ID and allowlist) in a TrustZone-
protected secure world. The metadata can only be updated by a secure API call
(i.e., instrumented trampoline function call). The assumption of control flow
integrity ensures that secure API call cannot be hijacked and will be correctly
executed. As a result, 2) is prevented as well. Lastly, 3) is prevented by the
nature of CCE algorithm [23], which guarantees the uniqueness of the ID for
each specific calling context.

5.3 Annotation Effort

CEFI requires annotation (see Listing 1.3) to express relationship between the
interaction channel’s entry point and the end point (i.e., command execution
function). Although this is a manual process, it requires only minimal effort
(see Table 1). In our experiments, we anticipate that a few minutes are enough
to complete annotations for a program, assuming that programmers have the
knowledge of its design logic. While these programs may seem particularly small,
this reflects the fact that most embedded programs are by nature required to be
much smaller than regular software. We note that there are currently no standard
benchmarks, but we chose these programs because they are also widely used for
evaluation in related research.

6 Related Work

CEFI is the first approach to enforce integrity of command execution on embed-
ded devices after deployment, even against attacks that violate neither static
control flow nor static data flow, even though such vulnerabilities are common
on embedded devices [35]. The only other work that can identify such vulnerabil-
ities, Gerbil [30], uses symbolic execution to find them in the testing phase, but
cannot prevent exploitation of residual vulnerabilities after deployment. CEFI ’s
very low overhead makes it particularly suitable for this purpose, especially on
resource-constrained embedded devices.

Other existing work focuses mostly on detecting violations of control flow
and data flow. In this section, we first focus on work that enables detection of
such vulnerabilities on resource-constrained embedded devices. Since context-
sensitivity is critical to CEFI ’s ability to detect privilege separation vulnerabili-
ties, we also discuss works that introduce context sensitivity to runtime detection
of violations.
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6.1 Control and Data Flow Integrity on Embedded Systems

Since embedded devices are resource-constrained, solutions to enforce control-
flow integrity (CFI) and data-flow integrity (DFI) are only viable if they are
very lightweight. For example, µRAI [2] uses LLVM compiler passes to enforce
return address integrity by removing the need to spill return addresses to the
stack. Silhouette [34] leverages an incorruptible shadow stack for hardening back-
ward indirect jump and uses a label instruction for protecting forward indirect
jump. CFI CaRE [20] leverages TrustZone to implement a shadow stack mech-
anism. DFI is used to protect the integrity of memory access (e.g., maintaining
and checking bounds information for each memory read or write). DFI requires
much more instrumentation than CFI, because it needs to perform checks at
memory access points rather than just at indirect branches. As such, there are
fewer solutions for DFI than for CFI for embedded systems, as pointed out in
a recent survey [17]. One notable work is OAT [24], selectively protects crit-
ical data on embedded programs. Therefore, it reduces performance overhead
by instrumenting critical variable access, but sacrifices protection. However, this
solution does not affect the protection provided by CEFI . Existing work can-
not prevent exploitation of privilege separation vulnerabilities without violating
control and data flow properties.

6.2 Context Sensitive Defense Solutions

Context sensitivity allows defenses to be more restrictive than traditional CFI
and DFI solutions can be, by considering not just static properties of the con-
trol and data flow graphs, but also the actual control flow path taken at run-
time. Calling context is widely used in context-sensitive defenses [9,18,19,27–
29]. For example, PathArmor [27] conducts context-sensitive static analysis over
the CFG on-demand, and provides context-insensitive CFI policies. However,
PathArmor [27] does not protect against privilege separation vulnerabilities.
Henry et al. [9] and David et al. [28] use the call stack and calling context
for anomaly detection and system call trace consistency, but these methods are
expensive [5]. Qiang et al. [33] propose HeapTherapy for lightweight trace col-
lection and exploit detection, which aims to mitigate traditional heap buffer
overflows. We use calling context encoding to defend against privilege separa-
tion vulnerabilities and logic bugs without control flow violations in resource-
constrained embedded systems.

7 Conclusion

With the development of the Internet of Things (IoT), the application scenar-
ios of embedded devices are becoming broader and more complicated. As a
result, there are interactions between the various entities (i.e., cloud, the IoT
device, mobile app). This causes the rise of a new type of vulnerability, privilege
separation vulnerabilities, that can be exploited to launch attacks (e.g., device
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hijacking attacks) without control flow anomalies. Therefore, we propose CEFI -
Command Execution Flow Integrity, to protect embedded devices against such
attacks. Finally, we apply CEFI on five real-world programs. The evaluation
shows that CEFI can effectively prevent this type of attack, with negligible
runtime overhead of 0.18% and negligible memory overhead of 0.19%. In future
work, we plan to evaluate CEFI on larger IoT systems.
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Abstract. In this paper, we combine static code analysis and symbolic
execution to bypass Intel’s Control-Flow Enforcement Technology (CET)
by exploiting function pointer hijacking. We present Untangle, an open-
source tool that implements and automates the discovery of global func-
tion pointers in exported library functions and their call sites. Then, it
determines the constraints that need to be satisfied to reach those point-
ers. Our approach manages naive built-in types and complex parameters
like structure pointers. We demonstrate the effectiveness of Untangle
on 8 of the most used open source C libraries, identifying 57 unique
global function pointers, reachable through 1488 different exported func-
tions. Untangle can find and verify the correctness of the constraints
for 484 global function pointer calls, which can be used as attack vectors
for control-flow hijacking. Finally, we discuss current and future defense
mechanisms against control-flow hijacking using global function pointers.

Keywords: Binary Exploitation · Control-Flow Integrity ·
Control-Flow Hijacking · Static Analysis · Symbolic Execution

1 Introduction

Binary exploitation is a significant problem and threat due to memory corrup-
tion vulnerabilities [36] in programs written using memory-unsafe languages like
C. Despite this flaw, C is still widely used for its reliability, portability, and per-
formance. Most memory corruption exploits aim to disrupt a program’s control
flow. Recent defense proposals primarily focus on preserving the control flow,
to prevent memory corruption vulnerabilities from being exploited to redirect
it on an unintended path. The main idea behind control-flow preservation is to
perform checks to ensure that only allowed execution paths are taken so that
any deviation from them would be recognized as malicious and stopped. An
example of a state-of-the-art control-flow hijacking defense mechanism is Intel’s
Control-Flow Enforcement Technology(CET) [33], which was designed to
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protect both forward edges (function calls and jumps) and back edges (function
returns) in the Control-Flow Graph (CFG) of a program. Defense mechanisms
like CET make it significantly harder for an attacker to gain arbitrary code exe-
cution, as they drastically reduce the possible attack surface. With such defense
mechanisms in place, an attacker cannot directly tamper with the return address
of a function but must target other control variables like function pointers,
which can be found in different memory sections of a program or library and
constitute a possible attack surface.

This work focuses on global function pointers defined in C libraries. Global
function pointers are easy to identify and find in process memory, and find-
ing such an attack vector in a widespread library makes the approach generic,
enabling the exploitation of binaries having the library as a dependency. Finding
global function pointers in C libraries would simplify exploit writing in CET-
enabled scenarios and would be helpful to C library developers to detect the pres-
ence of such attack vectors. To better understand how an attacker can exploit
function pointers, consider a library that exports a function containing a call to a
global function pointer defined within the library. This exported function is then
used by a program using the library. If this program presents an arbitrary write
vulnerability (i.e., a vulnerability that allows the attacker to write any value to
any memory location), it can be used to overwrite the global function pointer
and redirect the control flow of the program once a call to it is reached through
the exported library function. There are a few complications to this kind of
attack. First of all, global function pointers must be found inside a library. Even
if the source code of the target library is available, one would need to manually
analyze it to find all possible global function pointers, interesting call sites, and
all the conditions leading the execution to them. Doing all this by hand, poten-
tially for several different libraries, is a feasible but highly time-consuming and
demanding task. Our work proposes an approach based on static analysis and
symbolic execution [25] to automate this whole process given the source code of
a C library. Moreover, we identify and solve all the constraints that need to be
satisfied to reach global function pointer calls at runtime.

We present Untangle1, an open-source tool that implements the proposed
approach to aid binary exploitation through global function pointer hijacking.
It is important to highlight that Untangle is also helpful from a defense per-
spective since it helps C library developers to discover the identified attack sur-
face and library users to detect affected libraries. Untangle performs its task
through four main components: the Global Pointers Extractor, the Instrumenter,
the Parser and the Executor. The Global Pointers Extractor performs source
code analysis on the target library to find global function pointers and their
call sites. The Instrumenter instruments the source code of the target library
to prepare it for symbolic execution. The Parser extracts information on struc-
ture types definitions and function signatures to improve the symbolic execution
process. The Executor performs symbolic execution on the instrumented library
binaries and employs a custom memory model designed to ease handling complex

1 https://github.com/untangle-tool/untangle.

https://github.com/untangle-tool/untangle
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function arguments. We evaluate Untangle on several open-source C libraries
(i.e., libgnutls, libasound, libxml2, libfuse, libcurl, libnss, libpcre and
libbsd). Untangle identifies 64 unique global function pointers (57 of which
are reachable through exported functions) and 1488 exported functions that lead
to their calls, finding and verifying the constraints’ correctness to satisfy those
calls in 484 cases. In summary, the contributions are the following:

– A methodology to identify global function pointers, their calls sites reachable
through exported library functions, and how to reach them.

– Untangle, an automatic tool that implements this methodology end-to-
end. It takes the source code of a library as input and produces as output all
the function pointers found inside the library, which are reachable through
exported functions and concrete parameter values that satisfy the conditions
that allow it to reach them.

– An ad-hoc symbolic execution memory model (implemented in Untangle)
that deals with struct pointers passed as function parameters.

2 Background

Static Code Analysis. Static code analysis is the practice of analyzing a pro-
gram without executing it, and is a widely adopted technique for vulnerability
research. It can be performed at the source code level (given the source code of
a program or a library) or at the binary level (given the compiled program or
library). In our work, we perform static source code analysis to identify global
function pointers in library code. To perform this task, we use CodeQL [2], a
static analysis framework developed by GitHub, that provides a formal query
language to specify the targets of the static analysis process.
Symbolic Execution with angr. Symbolic execution is a dynamic program
analysis technique in which the program to be analyzed is driven through its
execution by a specialized interpreter, known as symbolic execution engine. The
engine feeds the program with symbolic inputs, rather than concrete inputs
obtained by the user or the environment. Whenever the analyzed program needs
to evaluate a branch condition involving symbolic data, the engine creates two
expressions constraining the symbolic data: one that satisfies the condition and
one that does not. Then, it duplicates the current state of the program, and two
initially identical states are advanced in parallel on the two different sides of the
branch, keeping track of the constraints on symbolic variables that caused the
state duplication. A critical aspect of a symbolic execution engine is its sym-
bolic memory model, which defines the policies for managing memory accesses.
Because of its Python-based interface, flexibility, and modular plugin system,
we chose angr [1,35,37] as a symbolic execution engine. angr’s memory model,
already analyzed in previous works [12], is fully symbolic, i.e., it emulates every
memory operation by concretizing memory addresses whenever it is needed.

When dealing with a symbolic address, at first angr evaluates how large the
range of values it can assume is. In the case of a single possible value (depend-
ing on the constraints present in the current state), the address is concretized
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and the load/store is performed at the concrete address. However, in the case of
multiple possible values, the behavior differs between load and store operations.
For a store operation, a symbolic address is always concretized to the maximum
possible value satisfying its constraints. This can be useful if the objective of
symbolic execution is to find memory corruption bugs in the analyzed program.
For instance, if an unconstrained 64-bit symbolic pointer is dereferenced for a
store of size 8, its value could be concretized to 0xfffffffffffffff8. For a
load operation, if the range of possible values exceeds a fixed internal thresh-
old, the symbolic address is concretized to an arbitrary value returned by the
solver. Otherwise, if the range is small enough, an If-Then-Else expression is
generated and the address remains symbolic. The issue with the first case is
that unpredictable concrete addresses could be generated, which will likely be
colliding with the addresses of other existing objects. These issues can impact
the chance of successfully traversing the call chain needed to reach the calls to
function pointers we are interested in during symbolic execution. Complex data
types, such as pointers to structure, are an especially problematic case: angr has
no knowledge about struct sizes, and this can cause instances where addresses
of different struct pointers are concretized to contiguous values. This is likely to
cause memory overlaps and generate invalid results.

2.1 Exploitation Techniques and Defenses

Return-Oriented Programming (ROP) [13,16,28,29]. It is a code-reuse
technique that allows the execution of an arbitrary sequence of instructions in
a program without injecting any code. This technique uses a “ROP-chain”: a
chain of short sequences of instructions, called “gadgets”, that end with a return
instruction (thus the name of the technique). ROP gadgets can be found in
the code section of the target binary or any shared library loaded by it and thus
visible in its address space. By chaining multiple gadgets together, each executing
one or more instructions before returning, an attacker can create an arbitrary
sequence of machine instructions. Given the right gadgets, ROP is also Turing-
complete [21] and can execute arbitrary code. The only limits to this technique
are the length of the initial ROP-chain, limited by the number of bytes that can
be written on the stack past the saved return address, and the gadgets available
for use, which depend on the specific program and the libraries it uses. ROP
defeats defense mechanisms such as Write Xor Execute(W ⊕X) since all the
gadgets involved in the ROP-chain are located in executable memory pages. Code
reuse techniques also include Jump-Oriented Programming (JOP) [11] and
Call-Oriented Programming (COP) [30]. JOP is a code reuse technique that
builds and chains gadgets that end with an indirect branch instruction rather
than a return instruction. This eliminates reliance on the stack and return-like
instructions (e.g., a stack pop followed by a jump to the popped value). COP is
a similar code reuse technique that uses gadgets that end in a call instruction.

Defense mechanisms directly affect the impact of code-reuse techniques.
Address Space Layout Randomization (ASLR) [9,32] randomly arranges
the address space of a process before starting its execution: the base address of
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different memory regions (such as the program itself, library code, stack, and
heap) changes with every new execution of the same program. ASLR can andom-
ize the position of a program in memory only if the program is a Position-
Independent Executable (PIE), that is, a program that can properly run
regardless of its position in memory. All the memory accesses of a PIE are
defined using relative offsets rather than absolute addresses so that the base
address where the program is loaded in memory can be arbitrarily chosen and
randomly generated to be different for each execution. This mechanism strongly
impacts the previously discussed exploitation techniques: a ROP-chain cannot
be built without knowing the exact address of each gadget. ASLR is, however,
only effective as long as a potential attacker cannot leak the address of an inter-
esting memory area (e.g., a section of the program binary itself, a loaded library).
If the exact address of any piece of code and data contained within it can be
leaked through vulnerabilities of a program, an attacker would then be able
to compute the exact address of any piece of data contained within it, as off-
sets inside the binary are fixed. Recent defense solutions are directly targeted
at defeating ROP: some examples are kBouncer [27], ROPdefender [20] and
ROPecker [18]. While targeted towards ROP, however, neither of these solutions
can detect and defeat other code-reuse attacks. It has been shown in previous
works that these defenses have some shortcomings and can be bypassed with
low effort [15,31]. Other proposals target the preservation of the control flow
of a program rather than the mitigation of a specific exploitation technique.
Control-Flow Integrity (CFI) [8,10,14,26] is a security policy dictating that
software execution must only follow paths of its CFG, which is determined ahead
of time through source-code analysis, binary analysis or execution profiling. CFI
paved the way for a series of defenses against control-flow hijacking attacks in
hardware and software solutions.

Intel’s Control-Flow Enforcement Technology (CET) is one of the most
recent and advanced CFI enforcement defenses, providing a CPU instruction set
architecture extension that allows the software to easily set up hardware defenses
against ROP, JOP and COP style attacks. CET has two main features: 1 the
use of a Shadow Stack [19] to provide saved return address protection, pre-
venting ROP; 2 Indirect Branch Tracking (IBT) [27] to prevent the misuse
of indirect branch instructions, typical of JOP/COP attacks. CET is available
on all Intel Core CPUs starting from the 11th generation, and AMD recently
announced CET support from its “Series 5000” processors onward. However,
operating systems’ support towards CET is still partial. Because of its accuracy
in protecting both forward and back edges in a CFG, full-CET support in both
kernel and user space would make code reuse techniques relying on overwriting
the saved return address on the stack (ROP) impossible, and the ones relying on
indirect control transfer instructions (JOP, COP) harder, as control-flow would
need to be redirected to legitimate targets, identified by endbranch instructions.
Function Pointer Hijacking. If an attacker wants to redirect the control
flow of a program but cannot tamper with the saved return address on the stack
because there are protection mechanisms such as CET in place, they must target
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other kinds of control data, such as function pointers. Common reasons for
function pointer usage in C library code are providing the user with runtime
hooks for particular function invocations, implementing function callbacks, and
delivering notifications for asynchronous runtime events. To gain arbitrary code
execution through a function pointer in a CET-enabled environment, an attacker
needs to consider two main possible scenarios. In the first scenario, when only
the shadow stack is active, the attacker can overwrite the function pointer with
any address pointing to a memory section containing executable code. In the
second scenario, when IBT is active (regardless of shadow stack usage), the
attacker necessarily needs to overwrite the function pointer with the address of
an endbranch instruction. This could be the start of an interesting function, a
case of a switch statement compiled using a jump table, or similar. In case the
target is a function, the ability to control the parameters supplied to the function
could also be necessary (e.g., targeting the system() function provided by the
standard C library, one would need to pass the command to run as a parameter),
and depends on the specific case at hand. We focus on hijacking global function
pointers in C libraries as a possible exploitation entry point, considering that
given the right conditions, this technique can be used to circumvent Intel CET.

3 Related Work

Non-control data attacks [17,22] are state-of-the-art binary exploitation tech-
niques, and are a viable alternative to “traditional” control-flow hijacking
attacks. They aim at redirecting the program’s control flow without tamper-
ing with control data, acting only on non-control data, such as variables used
by the program to make control decisions. Data-oriented attacks are thus capa-
ble of changing the control flow of a program by bypassing defense mechanisms
that preserve control-flow integrity. Sophisticated non-control data attack tech-
niques and tools that help automate exploitation have been proposed in recent
years. Data-Oriented Programming (DOP) [23] is a technique to construct
expressive non-control data exploits. It allows an attacker to perform arbitrary
computations in program memory by chaining the execution of short sequences
of instructions, called DOP gadgets. It is a powerful technique, with the downside
that the gadget chains must be crafted by hand. Block-Oriented Program-
ming (BOP) [24] is a further improvement of data-oriented attacks: it uses
basic blocks as gadgets and leverages symbolic execution to automatically find
the constraints on variables and memory-resident data needed to redirect the
control flow. BOP attacks are specifically aimed at creating a chain of basic
blocks that does not trigger CFI preservation mechanisms, and since they do
not overwrite the saved return address, they can bypass shadow stacks too. The
advantage of BOP, with respect to DOP, is that the gadget chain-building pro-
cess is automated. These techniques, however, have their limitations: they are
complex and only work in particular situations. Global function pointer hijack-
ing requires less effort and is a viable alternative to perform binary exploitation
in specific settings.
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Discussion. To the best of our knowledge, no existing work explores the automa-
tion of both global function pointer identification and hijacking in library code.
Most of the existing work and research focuses on subsequent exploitation steps
instead. In particular, the BOP Compiler (BOPC) [24], could benefit from our
work: one of the requirements for the tool to work correctly is an entry point, i.e.,
a point from which the tool starts its analysis and constructs the basic block
chain. A function pointer that can be overwritten with an arbitrary address
would be a good starting point for this analysis.

4 Threat Model and Problem Statement

Our exploitation scenario considers a program running on a machine employing
state-of-the-art control-flow hijacking defenses, such as fully enabled Intel CET.
Moreover, the program is also protected through stack canaries, W ⊕ X mem-
ory protection policies, and ASLR. We assume that the program uses functions
exported by a C library (statically linked or dynamically loaded at runtime)
that contain, or can lead to, calls to global function pointers defined within the
library itself. We assume that the program presents a known memory corrup-
tion vulnerability that can lead to an arbitrary memory write, also known as
“write-what-where” primitive, which gives an attacker the ability to write any
value to any writable address. In the case of a dynamic library, we also assume
that the attacker can discover, for example, thanks to an information leak, the
base address at which the target was loaded under ASLR. These assumptions
are realistic and practical since they are in line with the ones of the mechanisms
that aim at preventing arbitrary memory reads and writes from being exploited.
Motivation and Research Goal. One of the fundamental steps while writing
an exploit that aims at gaining arbitrary code execution is to gain control of
the instruction pointer. This is usually achieved by overwriting the saved return
address of a function on the stack, by overwriting a function pointer contained in
an object on the stack or on the heap (e.g., a vtable pointer), or by overwriting
global function pointers (e.g., in shared libraries). If CFI enforcement mecha-
nisms like Intel CET are in place, the first approach cannot be applied because
of the shadow stack. The second approach strongly depends on the specific appli-
cation the attacker wants to exploit, while the last approach is more general and
can be applied to any application using the same shared libraries. Being able to
find global function pointers in libraries would simplify exploit writing for such
applications. For this reason, our goal is to find 1 global function pointers calls
in the source code of a target library; 2 the conditions to reach such calls, giving
us the ability to gain arbitrary code execution. Commonly used C libraries can
be composed of hundreds or even thousands of source code files, while the total
number of lines of code can vary from a few thousand to several hundred thou-
sand. Manually searching for global function pointers and all locations where
they are called is feasible but not trivial: analyzing a large code base would
require considerable time and effort. Even if we could find all function point-
ers and calls manually, it is challenging to identify the conditions over function
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parameters and other global variables that would lead the program to the execu-
tion of such calls. In fact, some libraries contain functions that are hundreds of
source code lines long. Manually keeping track of all the conditions needed to be
satisfied to reach a specific code section at runtime would be demanding, time-
consuming, and error-prone. Therefore, automating the identification of global
function pointer calls is necessary. This would make the whole process faster,
more practical, and more reliable, and would provide library developers with an
effective way to identify and reduce the attack surface in their code.

5 UNTANGLE

Untangle uses a combination of static analysis, library source code instru-
mentation, and symbolic execution to provide precise information on how to
reach global function pointer calls starting from exported functions of a given
C library. This includes information on the constraints on function parameters
and global variables that need to be satisfied to reach these calls. The workflow
of Untangle includes several components: the Global Pointers Extractor, the
Instrumenter, the Parser and the Executor, which contains a custom memory
model for symbolic execution. The Global Pointers Extractor creates a CodeQL
database for the library from its source. CodeQL’s query language allows spec-
ifying precisely the targets of the static analysis: in our case, the targets are
global function pointers, their call sites, and library functions that can reach
them, along with their signatures. After the creation of the database, the Global
Pointers Extractor performs queries to identify these targets. The Instrumenter
then places a call to a uniquely generated target function immediately before
each identified global function pointer call, and builds a new, instrumented ver-
sion of the library. The Parser performs two different tasks: struct parsing and
function signature parsing. The results of both these tasks are passed to the
Executor component: the information on function signatures is used by the sym-
bolic execution engine, while the information on structures is used by the custom
memory model. The Executor uses the instrumented library binaries to evaluate
the reachability of identified global function pointer calls, treating the functions
inserted by the Instrumenter as targets to reach. The actual symbolic execution

Fig. 1. Architecture overview of Untangle.
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is performed by angr. We use angr because its modular design allows us to eas-
ily add new functionality or modify existing behavior. In fact, the Executor uses
a Symbolic Memory Model for angr, developed with its plugin system, specif-
ically designed to ease the handling of complex structure pointer parameters.
The Executor also has a built-in Automatic Result Validation Mechanism, that
we use to test the correctness of the results of the symbolic execution phase. For
an overview of the architecture of our tool, refer to Fig. 1.
Global Pointers Extractor. This component performs the static analysis of
the source code of the library, which is provided as an input to Untangle. As
previously mentioned, we use CodeQL for the static analysis, as it allows us to
accurately specify the targets of the analysis through its formal query language.

First, the Global Pointers Extractor builds a CodeQL database along with
the original library. Then, it runs two queries2 on the database. The first query
performs three simultaneous operations: 1 detection of all existing global func-
tion pointer variables; 2 identification of all the call sites for each detected
variable; 3 discovery of potential entry points to reach the call sites. The last
operation involves traversing CodeQL’s call graph, starting from any function
containing one or more call sites, going backward from callee to caller, and listing
all non-static library functions encountered. We can check whether an iden-
tified library function is exported by looking at the exported symbols of the
library binaries. The second query detects structure definitions, the fields they
are composed of, and their offsets inside the structure. The results of this query
are passed to the Parser, which will use them to create and manage internal
objects representing structure pointers.
Instrumenter. The purpose of the Instrumenter is to provide targets for the
symbolic execution phase through source code instrumentation. This phase must
preserve the original functionality of the library to allow the symbolic execution
phase to provide reliable results. For this purpose, the Instrumenter inserts a call
to a uniquely named dummy target function right before each global function
pointer call found by the Global Pointers Extractor. This new call has only one
artificial side effect that prevents it from being optimized away by the compiler.
The instrumented library source code is then re-compiled, and the resulting bina-
ries contain exported symbols referencing the newly inserted target functions.
This allows providing angr with precise indications on the target addresses.
Parser and Executor. Untangle can find constraints on parameters of
exported functions and global variables that need to be satisfied to reach iden-
tified global function pointer call sites and then evaluate them to find suitable
concrete values. The Parser extracts the number and types of parameters from
the signature of each function that needs to be symbolically executed, creating
symbolic bit-vectors of the appropriate size. For struct pointer parameters, the
Parser also creates the needed StructPointer objects as previously discussed.
The Symbolic Memory Model uses these objects to handle symbolic memory

2 https://github.com/untangle-tool/untangle/blob/main/untangle/analyzer.py#
L82.

https://github.com/untangle-tool/untangle/blob/main/untangle/analyzer.py#L82
https://github.com/untangle-tool/untangle/blob/main/untangle/analyzer.py#L82
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Fig. 2. Load/Store handling using Untangle’s memory model

loads and stores to structure pointers during the symbolic execution. To allow
the identification and evaluation of interesting global variables, the Executor
transforms writable data sections of the library binary (.bss and .data) to
symbolic bit-vectors to verify later whether any memory regions belonging to
these sections were involved in any constraints. This also allows the detection
of constraints on the global function pointers themselves. However, these con-
straints depend on the specific library being tested and need to be evaluated
case by case.
Symbolic Memory Model. Angr’s default address concretization strategy
can cause memory overlaps since it is unaware of variable types and sizes.
Therefore, it cannot reserve specific regions of memory for symbolic pointers.
A prime example is pointers to struct types. To correctly handle struct point-
ers, Untangle extends angr’s memory model implementing ad-hoc logic. This
logic is summarized in Fig. 2. Function arguments that are pointers to known
struct types, extracted through CodeQL, are recursively parsed into an inter-
nal StructPointer object, which holds fields’ offsets, sizes, and symbolic bit-
vectors. During symbolic execution, Untangle keeps track of StructPointer
objects to handle load/store memory operations involving their addresses.
The first load/store operation through the symbolic bit-vector of a tracked
StructPointer p concretizes its value to an address determined by a simple
bump allocator. At this address, Untangle reserves a chunk of symbolic mem-
ory of the needed size to hold the content of the underlying struct that p
is tracking. Then, Untangle stores the symbolic bit-vectors for any nested
StructPointer field of p at the correct offset in the chunk. Any subsequent
load/store operation to the now-concrete address is then forwarded to angr’s
default handler. Using this approach recursively, Untangle can also handle
nested struct pointers.
Automatic Result Validation Mechanism. Untangle is equipped with an
automatic result validation mechanism. Validation is performed by compiling
and running a test C program that uses the solution found through symbolic
execution to appropriately set up a function call to the tested library function.
This is not a simple task, and depending on the library, the test program would
need to be significantly complex to compile correctly. Using a library function
means importing the correct header files, creating variables of the appropriate
type and value (which can, in turn, require additional headers for the type defini-
tions), and linking the right library binary after compilation. Doing this requires
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Table 1. List of tested libraries and number of global function pointers found in each
library by Untangle.

Library Estimated lines
of source code

Unique global
function pointers

Reachable
function pointers

libgnutls v3.6.16 422 804 15 14

libasound v1.2.4 94 288 3 2

libxml2 v2.9.10 353 481 8 6

libfuse v3.11 21 568 1 1

libcurl v7.84 152 921 5 5

libnss v2.31 10 568 21 18

libpcre v8.39 107 530 3 3

libbsd v0.11.3 11 316 8 8

Total 1 174 476 64 57

multiple steps that change based on the specific library and cannot be easily
done programmatically. We have implemented a simpler automatic verification
method that involves the use of libdl [5] to dynamically load instrumented
libraries at runtime and The GNU Debugger (GDB) to monitor whether
identified call sites are reached through automatically inserted breakpoints. The
goal of this built-in Automatic Validation Mechanism is to avoid false positive
results: if execution reaches a breakpoint set at the target call site while run-
ning under GDB, the solution must inevitably be correct (it could be trivial,
but correct). Therefore, an incorrect solution will never pass validation. This
mechanism can, however, yield false negatives: functions for which Untangle
found a solution but through which the global function pointer call site is not
reached during automatic validation. These are more complex to handle and
require manual testing to be identified. Automatic validation consists of the fol-
lowing steps performed after a symbolic execution run that found a satisfiable
solution: 1 Generate and compile a C program that loads the tested library
using libdl and calls the target function using parameter values taken from the
solution; 2 Run the compiled program under GDB, setting a breakpoint on the
target function corresponding to the global function pointer call site that needs
to be reached; 3 Check whether the breakpoint is reached or not.

6 Experimental Validation

In order to test Untangle we performed full library execution tests on multiple
C libraries commonly used on GNU/Linux systems. The main focus of our tests
was the symbolic execution phase: the success rate of symbolic execution (i.e.,
what percentage of runs can find and return a solution), the validity of found
solutions, and the number of system resources needed to find them. We collected
statistics about the quantity and validity of symbolic execution results, then
about performance in terms of execution time and memory usage.
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Table 2. Number of unique call sites, exported functions, and unique paths to global
function pointer calls for each tested library.

Library Unique call sites Exported functions Unique paths to call
sites

libgnutls v3.6.16 1 338 827 29 817

libasound v1.2.4 383 243 7 739

libxml2 v2.9.10 2 125 225 254 096

libfuse v3.11 110 110 110

libcurl v7.84 271 48 11 238

libnss v2.31 34 15 74

libpcre v8.39 13 12 36

libbsd v0.11.3 8 8 8

Total 4 282 1 488 303 118

Dataset. We selected top-ranked free, open-source C libraries listed under the
“libs” section of the Debian package Popularity Contest [3], using the latest
version provided by Debian 11 packages. We checked the presence of global func-
tion pointers using CodeQL and analyzed them with Untangle. We manually
compiled and checked around 50 libraries, found 8 of them (listed in Table 1), to
contain interesting function pointers, and we tested them.
Experimental Setup. As shown in Table 2, the number of unique code paths
starting from exported library functions and leading to a global function pointer
call can be quite large. Hence, we did not test every single path, as the amount
of time needed for such kind of analysis would have been prohibitive, but rather
focused on analyzing the reachability of any global function pointer call starting
from every single exported function. The machine used for testing is equipped
with a 64-bit Intel Core i9-10900 CPU (base core clock speed of 2.80 GHz),
32 GiB of RAM, and runs Debian 11 GNU/Linux v5.10. Libraries were therefore
compiled for Linux x86-64 using The GNU C Compiler (GCC) version 10.2.1,
the standard compiler for Debian GNU/Linux systems. Where possible and per-
mitted by library configuration scripts, the optimization option chosen was -O2,
and the use of advanced CPU-specific instruction sets (e.g., AVX2, SSE4) was
disabled to avoid issues with PyVEX [7,34], the Python library used by angr for
translation of machine instructions. Since angr does not offer multi-threading
support, all performed symbolic execution runs consist of single-threaded pro-
cesses. Each symbolic execution run was limited to 15 min and 16GiB of RAM
usage (Resident Set Size). Runs exceeding any of the two limits were halted
while still collecting resource usage information for statistical purposes.

6.1 Symbolic Execution Results

The static analysis results found by Untangle are listed in Table 1 and Table 2.
The first table shows the number of unique global function pointers found in each
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Table 3. Symbolic execution results and validation of successful runs.

Library Tested functions Symbolic execution solution Validation result

Found Not Found Pass Fail

libgnutls 827 460 (55.6%) 367 (44.4%) 272 (32.9%) 188 (22.7%)

libasound 243 153 (63.0%) 90 (37.0%) 91 (37.4%) 62 (25.5%)

libxml2 225 139 (61.8%) 86 (38.2%) 60 (26.7%) 79 (35.1%)

libfuse 110 59 (53.6%) 51 (46.4%) 15 (13.6%) 44 (40.0%)

libcurl 48 40 (83.3%) 8 (16.7%) 30 (62.5%) 10 (20.8%)

libnss 15 9 (60.0%) 6 (40.0%) 2 (13.3%) 7 (46.7%)

libpcre 12 9 (75.0%) 3 (25.0%) 6 (50.0%) 3 (25.0%)

libbsd 8 8 (100%) 0 8 (100%) 0

Overall 1488 877 (58.9%) 611 (41.1%) 484 (32.5%) 393 (26.4%)

library: we ruled out the ones that were not reachable through manual analysis.
The output of the static analysis contains a list of all global function pointers
identified and every library function that can reach a call to one of them. Table 2
presents the number of exported functions able to reach a global function pointer
call. Functions that are not exported cannot be called from a program that uses
the library, so they are not interesting for our tests: while testing, we check in the
compiled library binary if a function is exported or not and perform symbolic
execution only on exported functions. As shown in Table 3, we found a solution
for 58.9% (877) of the 1488 total exported library functions analyzed.

As explained in Sect. 5, Untangle has a built-in validation mechanism,
which is necessary to understand which of the solutions found through sym-
bolic execution are correct. Validation results are also summarized in Table 3:
out of the 877 solutions found, 484 of those (55.2% of the found solutions, 32.5%
of the total tests) were proven to be valid using the Automatic Validation Method
described before. We can also notice the result of what we explained in Sect. 2:
instances, where pointers to primitive types need to be passed as function argu-
ments, can be concretized by angr to invalid memory addresses, which can make
automatic validation fail. Due to this reason, even if Untangle was able to find
a solution that did not pass validation, there is a chance that such an instance
is a false negative. Untangle will report the solution, but manual testing is
needed to understand additional and possibly more complex constraints that
were not automatically identified. Finally, looking at runs that did not result in
a found solution, we can break down the reason into four categories (shown in
Table 4): Unreachable, Timeout, Memory, Engine Error.

Unreachable refers to a completed symbolic execution, but the engine deter-
mined that none of the identified call sites is reachable. Apart from angr’s limita-
tions we discussed in Sect. 2, this can happen because the constraints leading to
call sites are impossible to satisfy. Timeout refers to a run halted after exceeding
15 min. Memory refers to a run halted after exceeding 16GiB of used memory.
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Engine error refers to a run halted because of an internal error of the sym-
bolic execution engine. This happens for multiple reasons, the most common
of which are constraints that become too complex (e.g., causing the solver to
exceed Python’s maximum call stack size) or bugs in the engine code. As we
can see from Table 4, the first category is the least common. The most common
failure reason is running out of memory. 16GiB is a reasonable amount of RAM;
exceeding it indicates accumulating too many symbolic states along the way,
which ultimately results in slower running times.

Table 4. Break-down of unsuccessful symbolic execution runs

Library Tested
functions

Solution not
found

Reason

Unreachable Timeout Memory Engine error

libgnutls 827 367 (44.4%) 26 (3.1%) 24 (2.9%) 233 (28.2%) 84 (10.2%)

libasound 243 90 (37.0%) 27 (11.1%) 23 (9.5%) 11 (4.5%) 29 (11.9%)

libxml2 225 86 (38.2%) 10 (4.4%) 12 (5.3%) 41 (18.2%) 23 (10.2%)

libfuse 110 51 (46.4%) 7 (6.4%) 9 (8.2%) 1 (0.9%) 34 (30.9%)

libcurl 48 8 (16.7%) 0 3 (6.2%) 0 5 (10.4%)

libnss 15 6 (40.0%) 0 1 (6.7%) 5 (33.3%) 0

libpcre 12 3 (25.0%) 3 (25.0%) 0 0 0

libbsd 8 0 0 0 0 0

Total 1 488 611 (41.1%) 70 (4.7%) 72 (4.84%) 291 (19.6%) 175 (11.8%)

6.2 Performance Evaluation

The execution time and the memory usage for symbolic execution, as well as the
overall time spent analyzing a given library, are important metrics to measure
Untangle’s performance. As previously mentioned, we limited each symbolic
execution run to 15 min and 16 GiB of RAM, and each run exceeding either
one of these limits was halted. However, we still collected statistics on halted
runs and included them in the computation of the results shown in Table 5. The
tests we performed took 1 min and 36 s (on average) for each function that was
symbolically executed, and the average memory usage was 4373 MiB. Most of
the libraries we analyzed have a much lower average memory usage than the
overall average memory usage. Three of the libraries (libgnutls, libxml2, and
libnss) have a high average memory usage. This could be due to the complexity
of the functions that were symbolically executed: the length of the function, the
number of control decisions the function takes, and the number of other functions
called inside the analyzed function are all factors that can influence the memory
usage of the symbolic execution engine.
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Table 5. Resource usage statistics collected by Untangle.

Library Tested
functions

Runtime Average memory
usageTotal Average

libgnutls 827 20 h 21 m 1 m 29 s 5 252 MiB

libasound 243 7 h 52 m 1 m 56 s 856 MiB

libxml2 225 7 h 29 m 2 m 00 s 4 889 MiB

libfuse 110 2 h 53 m 1 m 34 s 591 MiB

libcurl 48 52 m 50 s 1 m 06 s 862 MiB

libnss 15 31 m 15 s 2 m 05 s 5 746 MiB

libpcre 12 36 s 3 s 290 MiB

libbsd 8 8 s 1 s 318 MiB

Overall 1 488 40 h 1 m 36 s 4 373 MiB

7 Impact and Defenses

Impact. In the previous section, we have shown that Untangle can effectively
find global function pointers in library code and can also provide reliable infor-
mation on how to reach a call to one of those pointers. Our work has shown
how an attacker can identify global function pointers in library code, which are
attack vectors even with Intel CET enabled. To highlight the relevance of the
problem addressed in our work, we searched for all Ubuntu 22.04 LTS packages
using the libraries we tested. The results of this search are collected in Table 6.
The total number of unique packages depending on one or more of the libraries
we tested is 1820. The list of all packages installed by default on Ubuntu 22.04
LTS contains 157 of these packages. This means that 8.54% of the default pack-
ages on Ubuntu 22.04 LTS (which are 1854 by default) have one or more of the
libraries we tested as a dependency. A vulnerability allowing arbitrary writes in
one of these packages would allow global function pointer hijacking and enable
exploitation in CET-enabled scenarios.

A real-world example of such vulnerability is the heap overflow described in
CVE-2021-435273 and CVE-2021-435294, affecting Network Security Ser-
vices (NSS) versions prior to 3.73. This vulnerability affects email clients and
PDF viewers that use NSS for signature verification, such as Mozilla Thunder-
bird, LibreOffice, Evolution, and Evince. NSS is one of the libraries in which we
found global function pointer calls during our tests. For this reason, exploiting
the heap overflow vulnerability (in any of the programs mentioned above) to per-
form an arbitrary memory write would enable an attacker to achieve instruction
pointer control even in CET-enabled scenarios.

3 https://nvd.nist.gov/vuln/detail/CVE-2021-43527.
4 https://nvd.nist.gov/vuln/detail/CVE-2021-43529.

https://nvd.nist.gov/vuln/detail/CVE-2021-43527
https://nvd.nist.gov/vuln/detail/CVE-2021-43529
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Table 6. Number of Ubuntu packages depending on the libraries we used in our tests.
The number between parentheses is the number of unique packages (since some of them
can have more than one of these libraries as a dependency).

Library libgnutls libasound libxml2 libfuse libcurl libnss libpcre libbsd Total

# of packages 252 323 699 31 180 63 209 264 2021 (1820)

Defenses. As previously mentioned, the static code analysis process imple-
mented in Untangle can help library developers to find global function pointers
in their code that can be reached through exported functions. With this informa-
tion, they can employ appropriate measures to prevent global function pointers
from being used as attack vectors for control-flow hijacking exploits.

This paper demonstrated the relevance of securing function pointers to avoid
control-flow hijacking attacks in settings where CFI defenses are in place. Indi-
rect call protection mechanisms already exist in LLVM: Indirect Function Call
Checks (IFCC) checks the original function pointer’s signature against the signa-
ture of the function that is actually called through the function pointer. Unfortu-
nately, this mitigation is still not adopted among the major Linux distributions
as the most used among them (Ubuntu, Debian, Arch, Fedora) use GCC as the
default compiler in their build systems. Consequently, until this countermeasure
becomes widespread, the results of Untangle can still be used for exploita-
tion and underline the relevance of indirect call protection mechanisms. Some
defense proposals are currently being developed with this goal. FineIBT [4] is
a software defense proposal for the Linux kernel that builds over CET, adding
special instrumentation to the generated binary to enforce the verification of
hashes on function prologues whenever these are indirectly called. The hashes
are computed over function, and function pointer prototypes at compile-time
and checked at run-time whenever an indirect call happens.

8 Limitations and Future Work

The main limitations of Untangle come from the tool used for static analysis
of source code: CodeQL. As mentioned in Sect. 5, CodeQL performs its anal-
ysis at the source code level, and it does not provide any information about
the location of specific instructions or basic blocks in the resulting compiled
binaries. First, while it speeds up the search for global function pointer call
sites in library source code with respect to manual inspection, Untangle is
not always able to identify all of the possible call sites. Instances where a call
happens indirectly (and not through the global function pointer identifier) are
not detected: for example, global function pointers might be copied into local
variables, which are then used to perform the actual call later in the code, per-
haps in a different function. Detecting and correctly handling such cases would
require tracking variables’ assignments and copies throughout the entire code
base. CodeQL offers a mechanism to do this through taint analysis but would
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still be unable to cover all instances. An example is when the address contained
in a function pointer is copied using inline assembly, which CodeQL cannot han-
dle. Another limitation of Untangle is the way instrumentation is performed.
Depending on how the library is written, it is not always possible to place a func-
tion call before the identified function pointer call without changing the original
semantics of the program. In fact, in specific situations where complex macros
are involved, we cannot apply our instrumentation method as-is: the only way
to analyze such cases is to manually expand every instance of the macro before
instrumenting it (which was the case with gnutls in our tests). The information
provided by CodeQL makes the location of global function pointer call sites only
identifiable at the source code level. Extracting call site locations in the com-
piled library binaries would remove the need to perform instrumentation of the
source code and allow for it to be performed at a later compilation stage. Frame-
works like the LLVM Compiler Infrastructure [6] that provide introspection
and instrumentation ability at the Intermediate Representation (IR) level
or even at the machine code level could be leveraged to directly instrument
the generated code. Additionally, being able to keep track of the offset within
the .text section of the generated call instruction for each interesting global
function pointer call site, one could provide those directly to angr as a tar-
get for symbolic execution. Because of its design, Untangle needs the library’s
source code to analyze. An improvement possibility that could be explored is the
extension of our approach to binaries with no source code available. Frameworks
such as Joern [38], which enable static analysis of binary executables, could be
leveraged along with heuristics to identify which call sites to consider as global
function pointer calls. Searching for all the indirect calls in a binary and evalu-
ating if they can be hijacked could be an extension of what Untangle already
does and could be interesting to investigate. However, this task is challenging as
it would be computationally expensive to perform through symbolic execution.

9 Conclusions

This work provides an automated methodology for finding global function point-
ers whose calls are reachable through exported C library functions, along with
all the constraints that need to be satisfied to reach them. The approach we
present employs static analysis of the source code of a target library to iden-
tify global function pointer calls and interesting exported functions, combined
with symbolic execution to find constraints on function parameters and global
variables that need to be satisfied to reach such calls. We present Untangle, a
tool that implements this approach to assist manual binary exploitation through
function pointer hijacking. Untangle relies on an ad-hoc symbolic execution
memory model that makes it possible to deal with complex objects, such as
pointers to structures, passed as function parameters. The results from the tests
run on Untangle show that global function pointers can be found in com-
monly used C libraries and that, under the right conditions, it is possible to
reach calls to them starting from exported library functions. Even with Intel
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CET enabled, such variables offer a possibility to gain arbitrary code execution
if they are overwritten with the address of a carefully chosen legitimate target.
Therefore, Untangle provides a reasonable and practical exploitation aid for
function pointer hijacking.
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