
Exploring Formal Methods
for Cryptographic Hash Function

Implementations

Nicky Mouha(B)

Strativia, Largo, MD, USA
nicky@mouha.be

Abstract. Cryptographic hash functions are used inside many applica-
tions that critically rely on their resistance against cryptanalysis attacks
and the correctness of their implementations. Nevertheless, vulnerabili-
ties in cryptographic hash function implementations can remain unno-
ticed for more than a decade, as shown by the recent discovery of a
buffer overflow in the implementation of SHA-3 in the eXtended Kec-
cak Code Package (XKCP), impacting Python, PHP, and several other
software projects. This paper explains how this buffer overflow vulner-
ability in XKCP was found. More generally, we explore the application
of formal methods to the five finalist submission packages to the NIST
SHA-3 competition, allowing us to (re-)discover vulnerabilities in the
implementations of Keccak and BLAKE, and also discover a previously
undisclosed vulnerability in the implementation of Grøstl. We also show
how the same approach rediscovers a vulnerability affecting 11 out of
the 12 implemented cryptographic hash functions in Apple’s CoreCrypto
library. Our approach consists of removing certain lines of code and then
using KLEE as a tool to prove functional equivalence. We discuss the
advantages and limitations of our approach and hope that our attempt
to consolidate some earlier approaches can lead to new insights.

Keywords: SHA-3 · Hash Function · Keccak · BLAKE · Grøstl ·
CoreCrypto

1 Introduction

A (cryptographic) hash function takes a message of a variable length and turns it
into a fixed-length output, known as a “hash value” or “hash.” For a hash function
to be secure, it should be computationally infeasible to invert the function for a
given hash (preimage resistance) or to find two distinct messages that result in
the same hash (collision resistance). These properties allow the use of the hash
value in place of the message itself in a digital signature scheme, so that successful
verification of the signature confirms that the message has not been altered.

In response to the cryptanalysis attack on the SHA-1 hash function presented
at CRYPTO 2005 by Wang et al. [36], NIST decided to launch the SHA-3 com-
petition for a new hash function standard [29]. The competition was announced
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Simpson and M. A. Rezazadeh Baee (Eds.): ACISP 2023, LNCS 13915, pp. 177–195, 2023.
https://doi.org/10.1007/978-3-031-35486-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35486-1_9&domain=pdf
http://orcid.org/0000-0001-8861-782X
https://doi.org/10.1007/978-3-031-35486-1_9

178 N. Mouha

in November 2007. By October 2008, 64 entries were received, and 51 were
selected as first-round candidates in December 2008. Fourteen of these advanced
as second-round candidates in July 2009, and the five finalists (BLAKE, Grøstl,
JH, Keccak, and Skein) were announced in December 2010. The SHA-3 compe-
tition ended in October 2012, when Keccak was declared to be the winner.

Submission packages to the SHA-3 competition were required to include refer-
ence and optimized implementations in the C programming language [27]. NIST
specified the Application Programming Interface (API) to be used (see Sect. 3)
as well as the test vectors that were required in every submission package.

As the submission packages to the SHA-3 competition were subjected to
public scrutiny, bugs were reported for several submissions in 2008 and 2009. A
systematic analysis by Forsythe and Held of Fortify Software [18] found many
bugs that commonly appear in C code, such as out-of-bounds reads, memory
leaks, and null pointer dereferences. No bugs were reported during the remainder
of the competition, and eventually, the resulting SHA-3 standard became widely
implemented in many cryptographic libraries.

However, in September 2015, the implementation on the BLAKE website
was updated with the comment: “fixed a bug that gave incorrect hashes in
specific use cases” [4]. In 2018, Mouha et al. [24] rediscovered the bug using a
new testing methodology that was eventually integrated into Google’s Project
Wycheproof [10] and showed that the bug allows the collision resistance of the
hash function to be violated.

At CT-RSA 2020, Mouha and Celi [22] showed a vulnerability affecting 11
out of the 12 implemented hash functions in Apple’s CoreCrypto library. The
vulnerability required invoking the implementation on inputs of at least 4 GiB,
which led to an infinite loop. This vulnerability showed a limitation in NIST’s
Cryptographic Algorithm Validation Program (CAVP), which did not perform
tests on hash functions for inputs larger than 65 535 bits. To overcome this
limitation, NIST introduced the Large Data Test (LDT).

In October 2022, a vulnerability was disclosed by Mouha [31] that impacted
both the final-round Keccak submission package and the resulting SHA-3 imple-
mentation by its designers. Depending on the specific inputs that were provided,
the vulnerability resulted in either an infinite loop or a buffer overflow where
attacker-provided values are XORed into memory [23].

Our Contributions. A shortcoming of previous work on finding vulnerabili-
ties in hash function implementations is that they lack generality and clearly fall
short as new vulnerabilities keep being found that remained unnoticed for over
a decade (in spite of extensive public scrutiny). The novel contribution of this
paper is to try to overcome this problem by introducing a new approach that can
be used to find vulnerabilities in the hash function implementations of Apple’s
CoreCrypto library, as well as in three out of the five SHA-3 finalist submissions:
BLAKE, Keccak, and Grøstl. This paper explains how the vulnerability in Kec-
cak was found. The vulnerability in Grøstl is a new contribution in this paper

Exploring Formal Methods for Cryptographic 179

that has not been reported before. Our approach involves symbolic execution to
find bugs within seconds, whereas test vectors may take much longer to execute.

2 Background and Related Work

The NIST approach to testing cryptographic implementations dates back to
1977, with the introduction of two sets of test vectors for the Data Encryption
Standard (DES) in SP 500-20 [25]. Now known as Known Answer Tests (KATs)
or static Algorithmic Functional Tests (AFTs), the first set of test vectors were
intended to “fully exercise the non-linear substitution tables” (S-boxes) of the
DES. The second set of test vectors, called Monte Carlo Tests (MCTs), contained
“pseudorandom data to verify that the device has not been designed just to pass
the test set”. Although originally intended to test hardware implementations,
this approach can be applied to both hardware and software and forms the basis
of NIST’s Cryptographic Algorithm Validation Program (CAVP).

Submissions to the NIST SHA-3 competition were required to include imple-
mentations in the C programming language. NIST specified an API [27] and
provided source code to generate KATs and MCTs [28]. These KATs and MCTs
helped to ensure that various implementations of the same algorithm were con-
sistent. Moreover, an interesting innovation was the inclusion of an Extremely
Long Message KAT, which provided a 1 GiB message with the goal of ensuring
that large inputs are processed correctly.

For (authenticated) encryption algorithms, the SUPERCOP [7] and BRU-
TUS [34] frameworks perform some additional tests, such as checking whether
overlapping inputs are handled correctly or whether encryption followed by
decryption returns the original plaintext.

Aumasson and Romailler introduced crypto differential fuzzing [3] which uses
a fuzzer to compare the outputs of different cryptographic libraries and find
discrepancies. This approach turned out to be very effective, as shown by the
many bugs found by Vranken’s Cryptofuzz project [35].

Formal methods and program verification can also be applied to hash func-
tion implementations. Chudnov et al. [15] demonstrated that the Keyed-Hash
Message Authentication Code (HMAC) implementation (using the SHA-256
hash function) of Amazon’s s2n library conforms to a formal specification by
using Galois’s Software Analysis Workbench (SAW). The HACL∗ cryptographic
library [32,38] is formally verified using the F∗ verification framework. We refer
to Protzenko and Ho [33] for an explanation of how its hash function implemen-
tations have recently been completely overhauled. Lastly, we mention Chapman
et al.’s SPARKSkein [13] as an implementation of the SHA-3 finalist Skein that
was written and verified using the SPARK [1] language and toolset.

Chapman et al. [13] pointed out a bug in the Skein submission package to
NIST. The bug involves messages of more than 264−8 bits. Although impractical,
this violates a requirement in the SHA-3 call for submissions that a candidate
algorithm (and therefore logically also a correct implementation of the algorithm)
“shall support a maximum message length of at least 264 − 1 bits” [26].

180 N. Mouha

Fig. 1. An evaluation of a hash value on a message that is provided “on the fly” using
any number of calls to Update() of arbitrary lengths.

Fig. 2. To prove that any number of calls to Update() with arbitrary lengths result in
a correct computation, it is sufficient to prove that two calls to Update() are equivalent
to one larger call to Update() on the concatenation of both inputs.

3 Cryptographic Hash Function Interfaces

An API for the SHA-3 competition was specified by NIST [27], requiring the
hashState data structure and four function calls: Init(), Update(), Final(),
and Hash(). The API was designed for 64-bit operating systems, which were
already common at the start of the SHA-3 competition.

The purpose of the hashState data structure is to contain “all information
necessary to describe the current state of the SHA-3 candidate algorithm”. It
must contain the hashbitlen variable to indicate the output size of the partic-
ular instantiation of the hash function.

The four function calls show how hashState is intended to be used:

– Init() initializes the hashState data structure.
– Once initialized, any number of calls to Update() can be made to process

parts of the message by updating hashState correspondingly. In practice,
this “incremental hashing” API offers a major efficiency improvement if the

Exploring Formal Methods for Cryptographic 181

message is not available all at once or split over two or more non-contiguous
arrays [33, p. 9].

– Final() performs any final processing needed on hashState to output the
hash value.

– Hash() processes the message all-at-once by calling Init(), Update(), and
Final().

Let us assume that the all-at-once computation using Init(), Update(),
and Final() is correct. Then, a sufficient (but not necessary) condition for the
correctness of a computation using any number of calls to Update() (as shown
in Fig. 1) is:

Condition 1. Two consecutive calls to Update() change hashState in the
same way as one call to Update() on the concatenation of both inputs.

It can be seen that Condition 1 is sufficient by means of a proof by contradic-
tion where the condition is applied recursively as illustrated in Fig. 2. However,
there are several cases where Condition 1 is not necessary:

– Let us denote a hashState as valid if and only if is reachable from Init()
followed by any number of calls to Update(). Then, it is not necessary that
Condition 1 holds if hashState is invalid.

– If the Final() function can return the same hash value on two distinct but
valid hashState data structures, Condition 1 is not necessary either. How-
ever, this does not seem to occur in practice, as we have only encountered
implementations where hashState uniquely represents the message processed
so far.

– In the NIST SHA-3 API, all lengths are provided in bits using a 64-bit
unsigned integer [27], and a candidate algorithm may impose a maximum
message length of 264−1 bits [26]. If this maximum message length is imposed,
Condition 1 is not necessary for a sequence of two Update() calls that exceed
the maximum message length (as the hash function may not be defined in
this case).

– The NIST SHA-3 API document specifies that all calls to Update() contain
data lengths (in bits) that are divisible by eight, except possibly the last call.
Therefore, for two consecutive calls to Update(), we may restrict the first call
to a data length that is a multiple of eight bits.

In the next section, our goal will be to verify Condition 1 for a given hash
function implementation, possibly along with some preconditions to exclude the
aforementioned cases where Condition 1 is not necessary. We will remove some
lines of code: as in many previous works we are aiming for the “less ambitious
but still important goal of stating partial specifications of program behavior and
providing methodologies and tools to check their correctness” [5].

Before concluding this section, note that we will assume throughout this
paper that Init(), Update(), and Final() are called in the “correct” order.

182 N. Mouha

In practice it can be desirable to call Update() after Final(). However, as
shown by Benmocha et al. [6], this can be highly insecure for cryptographic
libraries that do not expect such usage.

4 Program Verification Using KLEE

In this paper, we will use KLEE [11], which is a symbolic execution tool built
on top of the LLVM (Low-Level Virtual Machine) [21] compiler architecture.

Although a typical use of KLEE is to automatically generate test vectors
that achieve high code coverage, it can also be used to prove the full functional
equivalence of two implementations [11, § 5.5]. Whenever KLEE encounters an
execution branch based on a symbolic value, it will (conceptually) follow both
branches, maintaining a set of constraints called path conditions for each branch.
A downside of this approach is that the number of paths can grow very quickly.
To overcome this path explosion problem, KLEE employs a variety of strategies
to reduce the number of queries that are sent to the underlying constraint solver.

Unlike CBMC [16], which is a Bounded Model Checker for C and C++
programs, KLEE does not require a bound on the number of iterations for every
loop. The NIST SHA-3 competition required a maximum message length of at
least 264 − 1 bits, and it is common to see hash functions that process the
message iteratively using a compression function that takes 512 or 1024 bits of
input. Computing the hash for such large messages is not possible in practice,
however, we will see that our approach using KLEE handles such inputs quite
quickly (and without the need for loop unwinding nor manual efforts to rewrite
loops).

In the following sections, we will show how to apply KLEE to the reference
implementations of the five SHA-3 finalists, as well as to the SHA-3 implemen-
tation of XKCP and the hash functions implemented in Apple’s CoreCrypto
library. In this paper, we only provide the full source code for our KLEE exper-
iments on the JH algorithm. However. the code for all our experiments will be
made available as a software artifact.

Table 1 summarizes the runtimes for a 256-bit hash output value, except for
Keccak and SHA-3 where we will choose a rate of 1024 bits. We found that the
execution time typically does not depend on the length of the hash value. Our
experiments were performed on an Intel Core i7-1165G7 processor using KLEE
2.3 with the default STP (Simple Theorem Prover) solver [12,19].

4.1 JH

JH [37] is a hash function designed by Hongjun Wu that advanced to the final
round of the NIST SHA-3 competition. As required for all submissions [26], JH
supports hash lengths of 224, 256, 384, and 512 bits. The message is padded to
a multiple of 512 bits and then split into 512-bit blocks which are processed by
the same compression function F8().

Exploring Formal Methods for Cryptographic 183

Table 1. KLEE runtimes (in minutes and seconds) for a rate of 1024 bits (for Kec-
cak and SHA-3) or a 256-bit hash output length (for all other hash functions). The
second column is the runtime to find a test vector that reveals a bug (if the code is
incorrect), and the third column is the runtime to prove correctness (after patching
the implementation if there is a bug).

Implementation Buggy Correct

BLAKE 5 s 11 m 59 s
Grøstl 6 s 10 s

JH — 50 s
Keccak 1 s 39 s
Skein — 34 s

XKCP (SHA-3) 1 s 20 s
CoreCrypto 1 s 2 m 41 s

We provide the entire jh klee.c that we used in our experiment in Listing 1.
It contains the Update() function that is specified in jh ref.h of the JH submis-
sion package. For readability, we adjusted the indentation, and for compactness,
we removed the source code comments. The only other change that we made
to Update() is to comment out the lines involving memcpy() and F8(), as our
(partial) equivalence checking does not involve the contents of the message (only
its length), nor does it involve the implementation of the compression function
F8(). Moreover, throughout this paper we do not make any statements about
the correctness of Init(), Final(), nor Hash().

In Listing 2, we provide the Makefile that uses Docker as an easy and portable
way to run KLEE on jh klee.c. It will either return a test vector that violates
Condition 1, or prove that no such test vector exists. We find that after 50 s,
KLEE proves the (partial) consistency of the Update() function. An overview
of the execution times for all our experiments is given in Table 1.

Five lines in Listing 1 are marked with the comment // optional following
the reasoning in Sect. 3. They can be safely omitted with the only downside that
they roughly double the execution time of KLEE. However, these five lines can
be helpful to adapt the approach to other SHA-3 candidate implementations
where they may be needed.

Listing 1. Application to JH (jh klee.c).

1 #include <assert.h>

2 #include <klee/klee.h>

3

4 typedef unsigned char BitSequence;

5 typedef unsigned long long DataLength;

6 typedef enum { SUCCESS = 0, FAIL = 1,

7 BAD_HASHLEN = 2 } HashReturn;

8 typedef struct {

9 int hashbitlen;

184 N. Mouha

10 unsigned long long databitlen;

11 unsigned long long datasize_in_buffer;

12 } hashState;

13

14 HashReturn Update(hashState *state , const BitSequence

15 *data , DataLength databitlen)

16 {

17 DataLength index;

18 state ->databitlen += databitlen;

19 index = 0;

20

21 if ((state ->datasize_in_buffer > 0) &&

22 ((state ->datasize_in_buffer+databitlen) <512)) {

23 if ((databitlen & 7) == 0) {

24 // memcpy(state ->buffer +

25 //(state ->datasize_in_buffer >> 3), data ,

26 //64-(state ->datasize_in_buffer >> 3));

27 }

28 //else memcpy(state ->buffer +

29 // (state ->datasize_in_buffer >> 3), data ,

30 // 64-(state ->datasize_in_buffer >> 3)+1);

31 state ->datasize_in_buffer += databitlen;

32 databitlen = 0;

33 }

34

35 if ((state ->datasize_in_buffer > 0) &&

36 ((state ->datasize_in_buffer+databitlen) >=512)) {

37 // memcpy(state ->buffer +

38 // (state ->datasize_in_buffer >> 3), data ,

39 // 64-(state ->datasize_in_buffer >> 3));

40 index = 64-(state ->datasize_in_buffer >> 3);

41 databitlen = databitlen -

42 (512 - state ->datasize_in_buffer);

43 //F8(state);

44 state ->datasize_in_buffer = 0;

45 }

46

47 for (; databitlen >= 512; index = index +64,

48 databitlen = databitlen - 512) {

49 // memcpy(state ->buffer , data+index , 64);

50 //F8(state);

51 }

52

53 if (databitlen > 0) {

54 //if ((databitlen & 7) == 0)

55 // memcpy(state ->buffer , data+index ,

56 // (databitlen & 0x1ff) >> 3);

57 //else

58 // memcpy(state ->buffer , data+index ,

59 // ((databitlen & 0x1ff) >> 3)+1);

Exploring Formal Methods for Cryptographic 185

60 state ->datasize_in_buffer = databitlen;

61 }

62

63 return(SUCCESS);

64 }

65

66 void test(int hashbitlen) {

67 hashState s, s2;

68 DataLength databitlen , databitlen1 , databitlen2;

69

70 klee_make_symbolic (&s, sizeof(s), "s");

71 klee_make_symbolic (&s2, sizeof(s2), "s2");

72 klee_make_symbolic (& databitlen , sizeof(databitlen),

73 "databitlen ");

74 klee_make_symbolic (& databitlen1 , sizeof(databitlen1),

75 "databitlen1 ");

76 klee_make_symbolic (& databitlen2 , sizeof(databitlen2),

77 "databitlen2 ");

78

79 s.hashbitlen = hashbitlen;

80 s2.hashbitlen = hashbitlen;

81

82 klee_assume(s.databitlen == s2.databitlen);

83 klee_assume(s.datasize_in_buffer ==

84 s2.datasize_in_buffer);

85 klee_assume(s.datasize_in_buffer < 512); // optional

86 klee_assume(s2.datasize_in_buffer < 512); // optional

87

88 klee_assume(databitlen == databitlen1 + databitlen2);

89 klee_assume(databitlen >= databitlen1); // optional

90 klee_assume(databitlen >= databitlen2); // optional

91 klee_assume(databitlen1 % 8 == 0); // optional

92

93 Update (&s, NULL , databitlen);

94

95 Update (&s2, NULL , databitlen1);

96 Update (&s2, NULL , databitlen2);

97

98 if (s.databitlen != s2.databitlen)

99 klee_assert (0);

100 if (s.datasize_in_buffer != s2.datasize_in_buffer)

101 klee_assert (0);

102 }

103

104 int main() {

105 //test (224);

106 test (256);

107 //test (384);

108 //test (512);

109

186 N. Mouha

110 return 0;

111 }

Listing 2. Application to JH (Makefile with visible tabs for readability).

1 TARGET = jh_klee

2

3 all: $(TARGET)
4

5 $(TARGET): $(TARGET).c
6 docker run --rm -v $(CURDIR):/home/klee/host \

7 --ulimit='stack=-1:-1' klee/klee :2.3 \

8 /tmp/llvm -110- install_O_D_A/bin/clang -I \

9 klee_src/include -emit -llvm -c -g3 -O3 \

10 host/$(TARGET).c -o host/$(TARGET).bc
11 time docker run --rm -v $(CURDIR):/home/klee/host \

12 --ulimit='stack=-1:-1' klee/klee :2.3 \

13 klee_build/bin/klee -exit -on-error -type=Assert \

14 host/${TARGET }.bc
15 docker run --rm -v $(CURDIR):/home/klee/host \

16 --ulimit='stack=-1:-1' klee/klee :2.3 \

17 klee_build/bin/ktest -tool $$(docker run --rm -v \

18 $(CURDIR):/home/klee/host --ulimit='stack=-1:-1' \

19 klee/klee :2.3 sh -c "ls \

20 host/klee -last /*. assert.err" | head -n 1 | sed \

21 's/. assert.err/.ktest/')
22

23 clean:

24 \rm -rf *.bc klee -last klee -out -*

4.2 Skein

Skein is a final-round SHA-3 submission designed by Ferguson et al. [17]. Like
JH, its primary proposal processes the message in 512-bit blocks regardless of
the hash value length.

Although the algorithm used by Skein’s implementation to process the mes-
sage in blocks follows a completely different approach compared to JH, the KLEE
proving harness looks quite similar with the main difference that the assertion
on datasize in buffer is replaced by an assertion on u.h.bCnt.

The execution time is even less than for JH, as KLEE only needs 34 s to
prove that there are no test vectors that violate the assertions.

4.3 BLAKE

Another final-round SHA-3 submission is the hash function BLAKE by Aumas-
son et al. [2]. Depending on the hash length, BLAKE uses either a 512-bit or

Exploring Formal Methods for Cryptographic 187

a 1024-bit compression function. It has a datalen variable to keep track of the
number of bits in the buffer, similar to datasize in buffer for JH.

However, it also keeps track of a counter for the total number of message bits
processed so far. Depending on the hash length, this counter is stored either in
an array with two 32-bit unsigned integers, or an array with two 64-bit unsigned
integers.

In September 2015, the BLAKE website [4] was updated to correct a bug in all
implementations submitted during the SHA-3 competition. Using our approach,
KLEE easily rediscovers this bug in just five seconds.

More specifically, for the 256-bit hash value, it provides a test vector showing
that Update() on 384 bits followed by 512 bits results in a different state than
a single update of 384 + 512 = 896 bits.

This is consistent with the bug conditions described by Mouha et al. [24]:
the bug occurs when an incomplete block (less than 512 bits) is followed by a
complete block (512 bits).

Using the updated code on the BLAKE website [4], we run into an obstacle
when running KLEE. It does not terminate within a reasonable amount of time,
as it suffers from the path explosion problem mentioned in Sect. 2.

Further analysis shows that an if-branch inside the while-loop is the culprit
of the path explosion. For the 512-bit block size, the BLAKE code is as follows:

while(databitlen >= 512) {
state->t32[0] += 512;
if (state->t32[0] == 0)

state->t32[1]++;

//compress32(state, data);
data += 64;
databitlen -= 512;

}

We found that this path explosion can be avoided if the counter of the mes-
sage bits hashed so far is not stored as an array of two unsigned 32-bit variables,
but as one unsigned 64-bit variable. More specifically, we change the BLAKE
code as follows:

while(databitlen >= 512) {
state->t64 += 512;

//compress32(state, data);
data += 64;
databitlen -= 512;

}

With this replacement, KLEE proves that the assertions are unreachable in
less than 12 min. Clearly, the execution time is an order of magnitude higher than
in the previous examples. It appears that this is due to the additional counter

188 N. Mouha

variable used by the BLAKE hash function. If this counter variable is removed,
the execution time of KLEE is reduced to only nine seconds.

4.4 Grøstl

We now move on to another SHA-3 finalist: Grøstl by Gauravaram et al. [20]. The
message is split into either 512-bit or 1024-bit blocks, depending on the length
of the hash value. To the best of our knowledge, no bugs have been reported for
this implementation.

In the reference implementation of Grøstl, not all loops are inside Update()
but also inside the function Transform() that does not just process one block,
but any number of complete blocks. We already notice a first problem here: all
variables representing the message length are 64-bit integers, but the function
Transform() is declared with a parameter of the (user-defined) 32-bit type u32,
resulting in an incorrect implicit cast.

As we apply our approach using KLEE, it takes six seconds to find a second
bug. The bug is again due to the use of incorrect types: the variable index is
declared as int, which is a 32-bit datatype on 64-bit processors. However, for
sufficiently large message inputs, the value of index overflows, which results in
undefined behavior in the C programming language.

In Listing 3, we provide a program to demonstrate the bug. When com-
piled using gcc, the program writes a large amount of data into memory, almost
certainly resulting in a crash. It gets more interesting when we compile this
program using clang. The undefined behavior causes clang to perform an opti-
mization that avoids a buffer overflow but instead outputs the same hash for two
messages of a different length. Thereby, the implementation violates the collision
resistance property (see Sect. 1).

We searched for implementations that may be vulnerable due to this bug
but did not identify any projects or products that might be impacted. For this
reason, we did not submit a vulnerability report. The most notable use of Grøstl
that we found was as a part of the proof-of-work algorithm of the initial version
of the Monero cryptocurrency. However, the use of Grøstl there has long been
discontinued.

With the two type errors fixed, proving the correctness using KLEE turned
out to be much more difficult than expected. We again face a path explosion
problem, which we addressed by hard-coding the block size and rewriting a loop
that copied data byte-by-byte into a buffer. With these modifications, KLEE
terminated in ten seconds with a proof that the assertions are unreachable.

Listing 3. Due to undefined behavior, the Grøstl bug results in a segmentation fault
when compiled using gcc, or a collision when compiled using clang (groestl bug.c).

1 #include <stdio.h>

2 #include <sys/mman.h>

3 #include "Groestl -ref.h"

4

5 int main() {

Exploring Formal Methods for Cryptographic 189

6 int hashbitlen = 256;

7 DataLength len1 = (1uLL <<35) + 8;

8 DataLength len2 = 8;

9

10 BitSequence* Msg = (BitSequence *) mmap(NULL , len1/8,

11 PROT_READ , MAP_PRIVATE | MAP_ANONYMOUS , -1, 0);

12

13 BitSequence digest [64];

14

15 printf (" Hashing %llu -bit message ... \nHash: ", len1);

16

17 Hash(hashbitlen , Msg , len1 , digest);

18

19 for (int i = 0; i < hashbitlen /8; i++) {

20 printf ("%02x", digest[i]);

21 }

22 printf ("\n");

23

24 printf (" Hashing %llu -bit message ... \nHash: ", len2);

25

26 Hash(hashbitlen , Msg , len2 , digest);

27

28 for (int i = 0; i < hashbitlen /8; i++) {

29 printf ("%02x", digest[i]);

30 }

31 printf ("\n");

32

33 return 0;

34 }

4.5 Keccak

The only SHA-3 finalist that we did not yet study in this paper, is the submis-
sion that won the competition: Keccak by Bertoni et al. [9]. Keccak pads the
message and splits it into blocks, which are then processed by a cryptographic
permutation. The block size, also known as the rate, has a default value of 1024
bits [9]. We will focus on this default value for now, and discuss the impact of
the block size later.

A vulnerability was reported by Mouha and assigned CVE-2022-37454 [31].
As the winner of the SHA-3 competition, the Keccak reference code is quite
widespread, and the vulnerability impacted various projects such as Python and
PHP. For the details of the vulnerability, we refer to Mouha and Celi [23]. In
this paper, we explain how the vulnerability was discovered using KLEE.

A straightforward approach using KLEE does not terminate in a reasonable
amount of time. Therefore, it can be good to rule out an infinite loop in the
Keccak implementation, as this would lead KLEE to enter into an infinite loop
as well.

190 N. Mouha

For while(i < databitlen) to terminate, a sufficient but not necessary
condition is that i advances in every loop iteration. This is easy to check by
introducing an old i variable that is initialized to i. When the variable i is
modified, we ensure that it is different from the previous loop iteration:

if (i == old_i) klee_assert(0);

At the end of the loop, we set old i = i. With this additional code to detect
infinite loops, it takes KLEE less than a second to output an assertion error. By
analyzing the test vector provided by KLEE, we can confirm that we have indeed
found an infinite loop. Note that this additional code is only used to allow us to
easily detect an infinite loop in KLEE, the additional code is not necessary for
a correct implementation (which does not contain an infinite loop).

It turns out that there is not only an input that leads to an infinite loop, but
another input that causes a large amount of data to be written into memory,
leading to a segmentation fault. The details of this buffer overflow are given by
Mouha and Celi [23] and outside the scope of this paper.

The bug presents itself when there are already x bits of data in the buffer,
and then an Update() of 232 − x bits or more is made. Two problems can occur
in Keccak’s code below: the higher bits may be discarded due to an incorrect
cast to a 32-bit integer, and the addition may overflow:

partialBlock = (unsigned int) (databitlen - i);
if (partialBlock + state->bitsInQueue > state->rate)

partialBlock = state->rate - state->bitsInQueue;

We can correct this bug by rearranging the code a bit, so that partialBlock
is at most equal to the block size. In that case, a 32-bit integer suffices for
partialBlock:

if (databitlen - i > state->rate - state->bitsInQueue)
partialBlock = state->rate - state->bitsInQueue;

else
partialBlock = (unsigned int) (databitlen - i);

For the corrected code, KLEE requires only 39 s to prove that the assertions
cannot be violated.

Finally, we note that KLEE did not seem to terminate within a reason-
able amount of time for block sizes that are not a multiple of two. Such block
sizes were proposed during the SHA-3 competition to handle different levels of
security. Unfortunately, it appears to be a common issue that solvers have diffi-
culties handling divisions by a constant that is not a power of two. KLEE has
a -solver-optimize-divides flag that tries to optimize such divisions before
passing them to the solver. However, even with this flag, we could not find a way
to make KLEE terminate for block sizes that are not a multiple of two.

Exploring Formal Methods for Cryptographic 191

4.6 XKCP (SHA-3)

The eXtended Keccak Code Package (XKCP) [8] is maintained by the Keccak
team. It contains the NIST-standardized variant of the Keccak hash function.
Between the final-round Keccak submission and the SHA-3 standard, only the
message padding is different.

The implementation of SHA-3 in XKCP is based on the implementation of
the final-round Keccak submission. However, it has gone through quite a bit of
refactoring. For this reason, we list XKCP’s SHA-3 as a separate implementation
in Table 1.

The same bug that impacts the final-round Keccak submission is present in
XKCP as well, although two calls to Update() with a combined length of 232

bytes (4 GiB) rather than 232 bits (512 MiB) are required to trigger it. More-
over, it has another bug (not present in the Keccak submission) where messages
slightly below 264 bytes result in an infinite loop. This is due to an overflow in
the comparison operation (dataByteLen >= (i + rateInBytes)), which has
been replaced by dataByteLen-i >= rateInBytes in the corrected version of
the code.

Using KLEE, it takes less than one second to provide a test vector that
triggers the bug, assuming we again augment the code to detect infinite loops.
For a 1024-bit block size, KLEE requires 20 s to prove that the assertions are
unreachable.

4.7 CoreCrypto

Lastly, we would like to revisit the infinite loop in Apple’s CoreCrypto library.
The vulnerability impacted 11 out of the 12 implemented hash functions and
was assigned CVE-2019-8741 [30]. For details of the bug, we refer to Mouha and
Celi [22].

The approach using KLEE is quite straightforward to implement. KLEE finds
a vulnerable test vector in less than a second for the original implementation
and can prove that the assertions are unreachable in less than three minutes for
the updated implementation.

We want to point out an interesting coincidence here. If we start from Apple
CoreCrypto’s corrected implementation of Update(), with just a little bit of
refactoring (such as replacing len by dataByteLen-i, renaming variables and
functions, and removing unneeded code), we end up with the corrected imple-
mentation of Update() that is used by XKCP. It seems that Update() is simple
enough that two teams can independently arrive at the same implementation
(up to simple refactoring), but complex enough to contain vulnerabilities that
remained undiscovered for over a decade.

5 Limitations and Discussion

After the SHA-3 competition ended in 2012, vulnerabilities were found in the
implementations of the SHA-3 finalist BLAKE in 2015 [4], in 11 out of the 12

192 N. Mouha

implemented hash functions of Apple’s CoreCrypto library in 2019 [30], and
recently in the reference implementation of the SHA-3 winner Keccak [31].

These vulnerabilities were all related to the Update() function that is used
to process the message in blocks. Nevertheless, the impact of the vulnerabilities
is quite different. Whereas XKCP’s SHA-3 implementation contained a buffer
overflow vulnerability with the possibility of arbitrary code execution, the impact
of the vulnerability in Apple’s CoreCrypto library is limited to an infinite loop.
The BLAKE vulnerability cannot be used to trigger any runtime error, however,
it can be used to violate the collision resistance property of the hash function.

This allows us to make a first observation that approaches to avoid memory
safety problems (such as enforcing coding standards, sandboxing, or moving
away from C/C++ to safer programming languages) would be helpful, but not
sufficient to avoid the vulnerabilities described in this paper. We are also reaching
the limits of approaches using test vectors: the Large Data Test (LDT) can take
quite a long time to execute on a 4 GiB message to detect bugs in Apple’s
CoreCrypto library, and for the XKCP bug, a single large call to Update() does
not trigger the vulnerability (as it requires that some data is already present in
the buffer).

Therefore, it can be interesting to consider approaches using symbolic execu-
tion. The approach we describe in this paper using KLEE turns out to be quite
easy to deploy. We performed (partial) equivalence checking on the Update()
function with lines involving the message contents and the compression function
commented out. In a production environment, the proving harness would over-
ride these functions rather than commenting them out, so that the proofs can
be part of a continuous integration process similar to how Amazon Web Services
currently deploys CBMC [14].

Whereas approaches using large test vectors can take quite some time to
execute (especially on slow hardware), symbolic execution can find bugs in a
few seconds or prove correctness in less than 12 min, as shown by our timings
in Table 1. This makes our approach a low-cost entry towards formal methods
and program verification, and perhaps even a stepstone towards more rigorous
approaches used in projects such as HACL∗ [32,38] or SPARKSkein [13].

Indeed, the litmus test here would be to see how easily our approach extends
to other submissions in the SHA-3 competition. We studied the implementa-
tions of all five finalists of the competition and found that we can either prove
correctness or unearth new bugs (as in the case of Grøstl, where we show how
undefined behavior can violate the collision resistance of the hash function imple-
mentation). And although our approach intends to check whether two calls to
Update() are consistent with one call on the concatenation of both inputs, it
also finds bugs that can be triggered by one call to Update(), as shown by the
bugs in Grøstl and Apple’s CoreCrypto library (as they cause KLEE to enter
into an infinite loop).

Lastly, although our approach was helpful to discover bugs, we stress again
that it is insufficient to claim that the implementations are correct. For example,
we make no statements about potential bugs in Init(), Final(), or Hash(),

Exploring Formal Methods for Cryptographic 193

nor potential bugs in the lines of Update() that were commented out. We also
do not look into bugs related to the use of the API, such as those found by
Benmocha et al. [6].

6 Conclusion and Future Work

We revisited the implementations of the five finalists of the NIST SHA-3 compe-
tition. These had been subject to a rigorous public review process from 2008 to
2012. However, it was not until 2015 that a vulnerability was discovered in the
implementation of BLAKE, and very recently in the winning Kecak submission
using the technique that is first described in this paper.

We showed how these bugs can be (re-)discovered in only a matter of sec-
onds, requiring only minimal effort to construct a proving harness for the original
code. Moreover, we also found a vulnerability in the Grøstl submission, allow-
ing the construction of two messages that result in the same hash value when
compiled using clang. Our approach would also have discovered a bug in Apple’s
CoreCrypto library that was reported in 2019.

Our approach requires symbolic execution to check whether two Update()
calls (with some lines of code removed) are equivalent to one Update() call on
the concatenation of both inputs. To check this property, we used the KLEE
symbolic execution framework.

Unfortunately, our approach involves a bit of trial and error. In particular,
to prove that none of the assertions fail, we sometimes needed to rewrite the
code a bit to avoid that KLEE fails to terminate due to path explosion. This is a
limitation as we would ideally like to make no changes at all to the source code,
but perhaps this is an acceptable compromise to achieve the goal of (partial)
program verification.

An interesting direction for future work is to find a way to extend our app-
roach to Keccak and SHA-3 when the block size is not a power of two.

References

1. AdaCore, Thales: Implementation Guidance for the Adoption of SPARK (2020).
https://www.adacore.com/uploads/books/pdf/Spark-Guidance-1.2-web.pdf

2. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE.
submission to the NIST SHA-3 competition (round 3) (2010). https://www.
aumasson.jp/blake/blake.pdf

3. Aumasson, J.P., Romailler, Y.: Automated testing of crypto software using differ-
ential fuzzing. Black Hat USA 2017 (2017). https://yolan.romailler.ch/ddl/talks/
CDF-wp BHUSA2017.pdf

4. Aumasson, J.P.: SHA-3 proposal BLAKE (2015). https://web.archive.org/web/
20150921185010/https://131002.net/blake/

5. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and static driver verifier:
technology transfer of formal methods inside Microsoft. In: Boiten, E.A., Derrick,
J., Smith, G. (eds.) IFM 2004. LNCS, vol. 2999, pp. 1–20. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24756-2 1

https://www.adacore.com/uploads/books/pdf/Spark-Guidance-1.2-web.pdf
https://www.aumasson.jp/blake/blake.pdf
https://www.aumasson.jp/blake/blake.pdf
https://yolan.romailler.ch/ddl/talks/CDF-wp_BHUSA2017.pdf
https://yolan.romailler.ch/ddl/talks/CDF-wp_BHUSA2017.pdf
https://web.archive.org/web/20150921185010/https://131002.net/blake/
https://web.archive.org/web/20150921185010/https://131002.net/blake/
https://doi.org/10.1007/978-3-540-24756-2_1

194 N. Mouha

6. Benmocha, G., Biham, E., Perle, S.: Unintended features of APIs: cryptanalysis
of incremental HMAC. In: Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.)
SAC 2020. LNCS, vol. 12804, pp. 301–325. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-81652-0 12

7. Bernstein, D.J., Lange, T.: eBACS: ECRYPT benchmarking of cryptographic sys-
tems (2022). https://bench.cr.yp.to

8. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Assche, G.V., Keer, R.V.:
eXtended Keccak code package (2022). https://github.com/XKCP/XKCP

9. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak SHA-3 submission.
Submission to the NIST SHA-3 competition (round 3) (2011). https://keccak.
team/files/Keccak-submission-3.pdf

10. Bleichenbacher, D., Duong, T., Kasper, E., Nguyen, Q.: Project Wycheproof
(2019). https://github.com/google/wycheproof

11. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Draves, R., van Renesse,
R. (eds.) OSDI 2008, pp. 209–224. USENIX Association (2008)

12. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-
ically generating inputs of death. In: Juels, A., Wright, R.N., di Vimercati, S.D.C.
(eds.) CCS 2006, pp. 322–335. ACM (2006). https://doi.org/10.1145/1180405.
1180445

13. Chapman, R., Botcazou, E., Wallenburg, A.: SPARKSkein: a formal and fast refer-
ence implementation of skein. In: Simao, A., Morgan, C. (eds.) SBMF 2011. LNCS,
vol. 7021, pp. 16–27. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25032-3 2

14. Chong, N., et al.: Code-level model checking in the software development workflow
at Amazon web services. Softw. Pract. Exp. 51(4), 772–797 (2021). https://doi.
org/10.1002/spe.2949

15. Chudnov, A., et al.: Continuous formal verification of Amazon s2n. In: Chockler,
H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 430–446. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96142-2 26

16. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

17. Ferguson, N., et al.: The skein hash function family. Submission to the NIST SHA-
3 competition (round 3) (2010). https://www.schneier.com/wp-content/uploads/
2015/01/skein.pdf

18. Forsythe, J., Held, D.: NIST SHA-3 competition security audit results
(2009). https://web.archive.org/web/20120222155656if /http://blog.fortify.com/
repo/Fortify-SHA-3-Report.pdf

19. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-73368-3 52

20. Gauravaram, P., et al.: Grøstl - a SHA-3 candidate. Submission to the NIST SHA-3
competition (round 3) (2011). https://www.groestl.info/Groestl.pdf

21. Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program
analysis & transformation. In: CGO 2004, pp. 75–88. IEEE Computer Society
(2004). https://doi.org/10.1109/CGO.2004.1281665

22. Mouha, N., Celi, C.: Extending NIST’s CAVP testing of cryptographic hash func-
tion implementations. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp.
129–145. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3 7

https://doi.org/10.1007/978-3-030-81652-0_12
https://doi.org/10.1007/978-3-030-81652-0_12
https://bench.cr.yp.to
https://github.com/XKCP/XKCP
https://keccak.team/files/Keccak-submission-3.pdf
https://keccak.team/files/Keccak-submission-3.pdf
https://github.com/google/wycheproof
https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1007/978-3-642-25032-3_2
https://doi.org/10.1007/978-3-642-25032-3_2
https://doi.org/10.1002/spe.2949
https://doi.org/10.1002/spe.2949
https://doi.org/10.1007/978-3-319-96142-2_26
https://doi.org/10.1007/978-3-540-24730-2_15
https://www.schneier.com/wp-content/uploads/2015/01/skein.pdf
https://www.schneier.com/wp-content/uploads/2015/01/skein.pdf
https://web.archive.org/web/20120222155656if_/http://blog.fortify.com/repo/Fortify-SHA-3-Report.pdf
https://web.archive.org/web/20120222155656if_/http://blog.fortify.com/repo/Fortify-SHA-3-Report.pdf
https://doi.org/10.1007/978-3-540-73368-3_52
https://www.groestl.info/Groestl.pdf
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/978-3-030-40186-3_7

Exploring Formal Methods for Cryptographic 195

23. Mouha, N., Celi, C.: A vulnerability in implementations of SHA-3, SHAKE,
EdDSA, and other NIST-approved algorithms. In: Rosulek, M. (ed.) CT-RSA 2023.
LNCS, vol. 13871, pp. 3–28. Springer, Cham (2023). https://doi.org/10.1007/978-
3-031-30872-7 1

24. Mouha, N., Raunak, M.S., Kuhn, D.R., Kacker, R.: Finding bugs in crypto-
graphic hash function implementations. IEEE Trans. Reliab. 67(3), 870–884
(2018). https://doi.org/10.1109/TR.2018.2847247

25. National Bureau of Standards: Validating the Correctness of Hardware Implemen-
tations of the NBS Data Encryption Standard. NBS Special Publication 500-20
(1977). https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication500-
20e1977.pdf

26. National Institute of Standards and Technology: Announcing Request for Candi-
date Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3)
Family. 72 Fed. Reg. (2007). https://www.federalregister.gov/d/E7-21581

27. National Institute of Standards and Technology: ANSI C Cryptographic API Pro-
file for SHA-3 Candidate Algorithm Submissions (2008). https://csrc.nist.gov/
CSRC/media/Projects/Hash-Functions/documents/SHA3-C-API.pdf

28. National Institute of Standards and Technology: Description of Known Answer
Test (KAT) and Monte Carlo Test (MCT) for SHA-3 Candidate Algo-
rithm Submissions (2008). https://csrc.nist.gov/CSRC/media/Projects/Hash-
Functions/documents/SHA3-KATMCT1.pdf

29. National Institute of Standards and Technology: Hash Functions: SHA-3 Project
(2020). https://csrc.nist.gov/projects/hash-functions/sha-3-project

30. National Vulnerability Database: CVE-2019-8741 (2020). https://nvd.nist.gov/
vuln/detail/CVE-2019-8741

31. National Vulnerability Database: CVE-2022-37454 (2022). https://nvd.nist.gov/
vuln/detail/CVE-2022-37454

32. Polubelova, M., et al.: HACLxN: verified generic SIMD crypto (for all your
favourite platforms). In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) CCS 2020,
pp. 899–918. ACM (2020). https://doi.org/10.1145/3372297.3423352

33. Protzenko, J., Ho, S.: Functional pearl: zero-cost, meta-programmed, dependently-
typed stateful functors in F∗. CoRR abs/2102.01644 (2021). https://arxiv.org/abs/
2102.01644

34. Saarinen, M.J.O.: BRUTUS (2016). https://github.com/mjosaarinen/brutus
35. Vranken, G.: Cryptofuzz - differential cryptography fuzzing (2022). https://github.

com/guidovranken/cryptofuzz
36. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.

(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 2

37. Wu, H.: The hash function JH. Submission to the NIST SHA-3 competition (round
3) (2011). https://www3.ntu.edu.sg/home/wuhj/research/jh/jh round3.pdf

38. Zinzindohoué, J.K., Bhargavan, K., Protzenko, J., Beurdouche, B.: HACL∗: a ver-
ified modern cryptographic library. In: Thuraisingham, B., Evans, D., Malkin, T.,
Xu, D. (eds.) CCS 2017, pp. 1789–1806. ACM (2017). https://doi.org/10.1145/
3133956.3134043

https://doi.org/10.1007/978-3-031-30872-7_1
https://doi.org/10.1007/978-3-031-30872-7_1
https://doi.org/10.1109/TR.2018.2847247
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication500-20e1977.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication500-20e1977.pdf
https://www.federalregister.gov/d/E7-21581
https://csrc.nist.gov/CSRC/media/Projects/Hash-Functions/documents/SHA3-C-API.pdf
https://csrc.nist.gov/CSRC/media/Projects/Hash-Functions/documents/SHA3-C-API.pdf
https://csrc.nist.gov/CSRC/media/Projects/Hash-Functions/documents/SHA3-KATMCT1.pdf
https://csrc.nist.gov/CSRC/media/Projects/Hash-Functions/documents/SHA3-KATMCT1.pdf
https://csrc.nist.gov/projects/hash-functions/sha-3-project
https://nvd.nist.gov/vuln/detail/CVE-2019-8741
https://nvd.nist.gov/vuln/detail/CVE-2019-8741
https://nvd.nist.gov/vuln/detail/CVE-2022-37454
https://nvd.nist.gov/vuln/detail/CVE-2022-37454
https://doi.org/10.1145/3372297.3423352
https://arxiv.org/abs/2102.01644
https://arxiv.org/abs/2102.01644
https://github.com/mjosaarinen/brutus
https://github.com/guidovranken/cryptofuzz
https://github.com/guidovranken/cryptofuzz
https://doi.org/10.1007/11535218_2
https://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf
https://doi.org/10.1145/3133956.3134043
https://doi.org/10.1145/3133956.3134043

	Exploring Formal Methods for Cryptographic Hash Function Implementations
	1 Introduction
	2 Background and Related Work
	3 Cryptographic Hash Function Interfaces
	4 Program Verification Using KLEE
	4.1 JH
	4.2 Skein
	4.3 BLAKE
	4.4 Grøstl
	4.5 Keccak
	4.6 XKCP (SHA-3)
	4.7 CoreCrypto

	5 Limitations and Discussion
	6 Conclusion and Future Work
	References

