
Reusable, Instant and Private Payment
Guarantees for Cryptocurrencies

Akash Madhusudan1(B) , Mahdi Sedaghat1 , Samarth Tiwari2 ,
Kelong Cong1 , and Bart Preneel1

1 imec-COSIC, KU Leuven, Leuven, Belgium
{akash.madhusudan,ssedagha,kelong.cong,bart.preneel}@esat.kuleuven.be

2 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
samarth.tiwari@cwi.nl

Abstract. Despite offering numerous advantages, public decentralized
cryptocurrencies such as Bitcoin suffer from scalability issues such as
high transaction latency and low throughput. The vast array of so-called
Layer-2 solutions tackling the scalability problem focus on throughput,
and consider latency as a secondary objective. However, in the context
of retail payments, instant finality of transactions is arguably a more
pressing concern, besides the overarching concern for privacy.

In this paper, we provide an overlay network that allows privacy-
friendly low latency payments in a retail market. Our approach follows
that of a recent work called Snappy, which achieved low latency but
exposed identities of customers and their transaction histories. Our con-
struction ensures this data is kept private, while providing merchants
with protection against double-spending attacks. Although our system
is still based upon customers registering with a collateral, crucially this
collateral is reusable over time.

The technical novelty of our work comes from randomness-reusable
threshold encryption (RRTE), a cryptographic primitive we designed
specifically for the following features: our construction provably guar-
antees payments to merchants, preserves the secret identity of honest
customers and prevents their transactions from being linked. We also
present an implementation of our construction, showing its capacity for
fast global payments in a retail setting with a delay of less than 1 s.

1 Introduction

Public decentralized cryptocurrencies such as Bitcoin and Ethereum offer
increased transparency and avoid trust in a central party. However, these advan-
tages come at the cost of performance, rendering them unfit for high throughput,
real-time applications. The throughput of cryptocurrencies is orders of mag-
nitude lower than that of traditional payment service providers such as Visa.
Further, transactions require time before being considered final: the convention
has been to wait for 6 confirmations or approximately an hour. For this reason,
securely improving throughput and transaction confirmation latency (hereon
referred to as latency) of public cryptocurrencies is a major area of research.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Simpson and M. A. Rezazadeh Baee (Eds.): ACISP 2023, LNCS 13915, pp. 580–605, 2023.
https://doi.org/10.1007/978-3-031-35486-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35486-1_25&domain=pdf
http://orcid.org/0000-0002-1648-0665
http://orcid.org/0000-0002-1507-6927
http://orcid.org/0000-0001-7987-1519
http://orcid.org/0000-0002-2636-4406
http://orcid.org/0000-0003-2005-9651
https://doi.org/10.1007/978-3-031-35486-1_25

Reusable, Instant and Private Payment Guarantees for Cryptocurrencies 581

Layer-2 solutions tackle these constraints by offloading some elements
of transactions off-chain [25]. However, these solutions focus on maximizing
throughput and not on minimizing latency, which is dealt with as a sec-
ondary objective. Rollups, an increasingly popular solution in both industry
and academia alike, increase the transaction throughput of Ethereum up to 100
times compared to its current throughput [7,11,20]. Yet, their latency matches
that of the underlying blockchain. Payment Channel Networks (PCNs), another
popular scaling solution, allow for arbitrarily many transactions on their network
at the cost of a constant number of on-chain transactions, thereby drastically
increasing throughput and reducing transaction fees. Yet, there are various fac-
tors negatively impacting the latency of PCN transactions, such as liveness of
intermediate nodes [18], and the route discovery mechanisms [33]. Retail pay-
ments is a scenario where instant finality (hereon referred to as fast payments) is
of the utmost importance; waiting an hour for a coffee is not an option. Addition-
ally, retail payments are usually unilateral, i.e., from customers to merchants.
An acknowledged problem with PCNs is channel depletion i.e., repeated use of
channels in the same direction results in depleted channels, prohibiting further
payments in the same direction [4]. Unilateral retail transactions only aggra-
vate this issue. Similarly, by updating its layer-1, Ethereum 2.0 has increased its
transaction throughput significantly. However, latency still takes ∼14 min [21].
This suggests a decoupling of two performance measures, namely throughput
and latency, which need to be tackled separately.

Hence, collateral reusability and fast payments become interesting properties
for solutions that perform retail payments with cryptocurrencies. Snappy is a fast
on-chain payment system designed for a retail environment, where payers can
assure payees of their ability to pay for a certain commodity [29]. Payees are pro-
tected from double-spending at rates much faster than the underlying blockchain
while allowing collaterals to be reused. In order to work, Snappy depends on a set
of statekeepers responsible for proactively detecting double-spending attempts
in the system. These statekeepers have access to all transactions made by the
customer, either by simply querying the blockchain or locally logging them when
they receive it. Thus, their system suffers from privacy issues and all transac-
tions involving the same payer can be linked together by third parties, such as,
the statekeepers. The general demand for greater privacy becomes even more
relevant in the retail context. For instance, the retail giant Target was able to
deduce the pregnancy of a teenager even before her own parents found out [27].
Such unfortunate leaks can be prevented, if merchants are unable to link cus-
tomers’ various purchases. Hence, there is a need for a solution that has the
following properties:

P1. Instant payments with double-spending protection that is much faster than
the underlying blockchain (fast payments).

P2. Prevents third parties in the system from being able to link different trans-
actions involving the same honest payer (transaction unlinkability).

P3. Privacy for honest customers is provided efficiently without incurring
latency constraints of payments (efficient privacy).

582 A. Madhusudan et al.

P4. Honest payers do not need to replenish their collaterals (reusability).

At ICDCS’21, Ng et al. [31] proposed LDSP that adds privacy to Snappy.
LDSP achieves P1, P2 and P3; however, at the cost of reusable collaterals (P4).
Thus, previous works either trade-off privacy in order to achieve fast payments
with collateral reusability or vice-versa.

Our Contributions. In this paper, we provide a new overlay network that ful-
fills all aforementioned properties. To the best of our knowledge, we are the first
to simultaneously achieve the combination of properties (P1–4) in a payment
system utilised in a retail context. Our contributions may be split into three as
follows:

Private Low Latency Double-Spending Protection. We provide an overlay network
capable of providing payees protection from double-spent transactions much
faster than the underlying blockchain. No party in the system is able to link
different transactions involving the same honest payer, nor do these privacy
guarantees adversely affect latency of transactions. Customer collaterals are also
reusable, so that customers can repeatedly guarantee payments over time.

Formal Security Analysis. We formally prove that our construction preserves the
secret identity of honest customers (anonymity) and disables anyone from linking
their transactions (unlinkability), yet at the same time guarantees payment to
the merchants (payment certainty).

Implementation and Evaluation. We implement our construction and show that
it allows for fast global retail payments with a delay of less than 1 s.

Outline. The rest of this paper is organized as follows: Sect. 2 gives an overview
of our construction, its participants and how they interact. Section 3 formally
describes our construction, its threat model and proves how our construction
satisfies its security requirements. Section 4 depicts an efficient instantiation of
our construction and lists the cryptographic primitives used in detail. In Sect. 5
we evaluate the performance of this instantiation while focusing on latency. In
Sect. 6 we discuss our limitations and point out the differences our construction
has when compared to similar state-of-the-art research and finally in Sect. 7 we
conclude our paper.

2 Our Construction

2.1 Our Solution

The strawman solution shown in the full version [28] depicts the difficulty of a
straightforward solution in achieving P1–4.

While designing a solution that fulfills all aforementioned properties, we faced
two challenges. First, our construction must utilize a proactive double-spending
protection mechanism that is able to selectively reveal information of dishonest
parties while still keeping all information about honest parties private. Second,

Reusable, Instant and Private Payment Guarantees for Cryptocurrencies 583

since the payment latency needs to be low, we must enable payers to prove
vital information privately yet very efficiently. We address the first challenge
by proposing a novel variant of threshold encryptions, which we hereon refer
to as randomness-reusable threshold encryptions (RRTE) that has the unique
property of revealing the plaintext if two ciphertexts are encrypted using the
same randomness. We use RRTE in combination with Pseudo-Random Functions
(PRF) such that the statekeepers are able to proactively protect from double-
spend attempts without having knowledge of any transaction details; yet, are still
able to reveal vital information in the case of double-spent transactions. The sec-
ond challenge is addressed by a combination of Threshold Structure-Preserving
Signatures (TSPS) [16] and Non-Interactive Zero-Knowledge Proofs (NIZKs).
The compatibility of TSPS with efficient NIZKs enables a payer to prove vital
information to payees in our system in zero-knowledge, without impacting the
latency of transactions.

Participants. First, in order to explain the interplay of these cryptographic
primitives that solve the aforementioned challenges and fulfill P1–4, we intro-
duce the participants of our construction. Similar to Snappy, our participants
include: (1) customers willing to purchase products/services using their cryp-
tocurrencies while expecting low latency; (2) an established consortium of mer-
chants willing to accept cryptocurrency payments and (3) statekeepers who are
selected from the merchant consortium. Additionally, we also include a group
of authorities trusted for registration of users and verification of collaterals.
Although authorities have greater power during the setup of our network, they do
not have any access to future transactions between a customer and a merchant.
For more discussion on these trust assumptions see Sect. 6.

Interaction of Participants. In our construction, the participants function
as follows; each customer in our systems owns collateral(s), which is uniquely
linked to a secret PRF key(s). This secret PRF key is signed by the group
of authorities by utilizing TSPS once they verify its existence on the arbiter
smart contract. The PRF is used in combination with our RRTE to set up our
double-spending protection. By using this signed secret PRF key, each customer
generates a randomness, which they then use in combination with the public
key of target merchant to encrypt their secret identity. For encryption we use
RRTE, that reveals the secret identity of a malicious customer (plaintext) when
they double-spend. More precisely, double-spending in our system amounts to
certifying multiple transactions with the same collateral, by which RRTE reveals
the dishonest customer’s identity. Thus, our construction fulfills P1 by enabling
any statekeeper who receives two ciphertexts that are encrypted using the same
randomness to catch double-spending and reveal the identity of the perpetrator.
However, honest customers who only certify one transaction per collateral remain
unaffected; hence, also fulfilling P2.

Next, the customer needs to convince the target merchant about the existence
of their collateral. However, they must do this without revealing any identifying
details. To achieve this, we utilize TSPS and NIZKs. The payment guarantee
is an indirect proof of collateral by proving knowledge of the TSPS provided

584 A. Madhusudan et al.

to them by the authorities. In case of a double-spend attempt, this payment
guarantee is sufficient for the merchant to be reimbursed. This can be done
efficiently by efficient proof systems fulfilling P3.

Fig. 1. Timeline of a transaction.

Finally, our construction also allows a customer to reuse their collaterals after
a certain time interval in order to achieve P4. As illustrated in Fig. 1, a collateral
is considered locked for the time period between the customer sending a pay-
ment guarantee to the merchant and the actual confirmation of their blockchain
transaction. However, after the confirmation of a blockchain transaction, the
customer’s collateral can be reused. Note that this is similar to the execution
of a multi-hop payment on PCNs, that rely on Hashed-Time-Locked-Contracts,
locking up the collateral for a similar time period [1,33]. Thus, using a collateral
twice in quick succession is treated as a double-spend and can be detected, but
it may be reused once the locking period of the collateral has elapsed.

Construction Overview. Figure 2 illustrates our construction. In order to
explain our construction, we assume an established set of authorities and a fixed
merchant consortium. The payment protocol between a customer and a mer-
chant has off-chain and on-chain components that have been depicted in Fig. 2
with dotted and solid arrows respectively. The protocol proceeds as follows:

Fig. 2. Our construction.

1) The customer begins by registering themselves with a set of authorities.
2) The customer deposits a collateral in the smart contract, controlled by this set

Reusable, Instant and Private Payment Guarantees for Cryptocurrencies 585

of authorities. 3) Once the deposit is confirmed on the blockchain, the customer
requests a collateral certification, which is necessary to generate payment guar-
antees for merchants. 4) Upon receiving the certification request of the customer,
the authorities check the smart contract to confirm if the customer deposited
a collateral. 5) The authorities provide the customer with a signed collateral
certification. 6a) During a transaction in the retail market, the customer makes
a payment to the target merchant using the underlying cryptocurrency. This is
done by sending a payment to the merchant through the smart contract. 6b) The
customer simultaneously generates an encrypted payment guarantee by using
the collateral certification and sends this to the target merchant along with the
transaction identifier of their cryptocurrency payment. 7) The target merchant
forwards this encrypted payment guarantee to the statekeepers who individu-
ally confirm that it is not a double-spend attempt. The statekeepers compare
the received guarantee with each guarantee they received within a fixed time
period. If none of these comparisons reveal the plaintext, i.e., secret identity of
the customer, they are guaranteed about its uniqueness. Note that this verifica-
tion can be done by utilizing our proposed RRTE and does not require knowing
a customer’s identity. 8) Each statekeeper returns a signed payment guarantee
to the merchant. 9) If a majority of the statekeepers return a confirmation, the
merchant aggregates these signatures and accepts the payment guarantee and
provides the customer with necessary services/products.

Double-Spending. Double-spending in our construction means a scenario
where the customer is malicious and wants to double-spend their payment guar-
antee, i.e., use the same collateral to promise payments to two distinct merchants.
In this case, when the statekeepers receive these guarantees from two distinct
merchants, they are able to combine them and reveal the secret identity of the
cheating customer. Along with this identity, a secret to the customer’s collateral
is also revealed. This secret is used by the victim merchant for remuneration.
This is depicted in Fig. 3.

More details about how RRTE enables statekeepers to reveal the secret iden-
tity of a malicious customer are given in its formal definition in Sect. 4.

Fig. 3. Proactive double-spending detection.

Limitations. Although we address the privacy shortcomings of Snappy’s design,
our construction still inherits some of its other limitations, such as, the large

586 A. Madhusudan et al.

collateral requirement for statekeepers and inadequately defined user incentives.
To be specific, we also require the merchants to deposit collaterals in order
to play the role of statekeepers fairly. We also assume that the amount of a
customer’s deposit is fixed. The assumption of a fixed set of merchants is also
an additional concern, since it does not allow for any merchant churn in the
protocol. However, in this paper we do not attempt to address these concerns.
A more thorough discussion about these shortcomings is given in Sect. 6.

3 Preliminaries and Formal Construction

Throughout this paper, we let the security parameter of the scheme to be λ
with unary representation of 1λ, and negl(λ) denotes a negligible function. We
use x ←$X to denote that x is sampled uniformly from the set X. [n] denotes
the set of integers in the range of 1 to n. For clarity, the secret values in our
construction are represented with a hat operator (e.g., ŝk) and masked values
are represented with the notation x′ for the value x.

Threat Model. Our construction is designed to resist active adversaries that
can corrupt a set of customers, merchants (which are also statekeepers) and
authorities. To be precise, an adversary can only corrupt a minority of author-
ities during the initialization phase. During the processing of transactions, the
adversary can corrupt all but one customers, and a minority of merchants.

Network Assumptions. We assume the existence of secure and reliable communi-
cation channels so that parties receive messages sent by honest parties eventually.
The honest merchants/statekeepers are also assumed to be live and responsive,
for the verification of transactions. We do not expect the customers to be online,
unless they need to transact with a merchant. The underlying blockchain is
assumed to be persistent and live and the adversary cannot influence the con-
sensus mechanism.

Beyond the Threat Model. Let us mention a few considerations that are outside
the scope of our model. Firstly, we consider protocol-level privacy, and not the
privacy of the underlying blockchain. We do not consider side-channel attacks,
such as metadata-level attacks on communication channels. Finally, the selection
of authorities is also orthogonal to our work. One possibility is to choose them
from the set of reputable merchants in the consortium, and have them shuffled
periodically to ensure a majority of authorities always remain honest.

We would also like to note that weaker assumptions of trust or liveness
are possible without compromising security. However, we select a simple set of
assumptions, following those of Snappy, in order to focus on the privacy aspect
instead of system-level optimizations.

Formal Construction. Our construction builds on Pseudo-Random Function
(PRF), Non-Interactive Zero-Knowledge (NIZK) arguments, Digital Signatures
(DS), Threshold Structure-Preserving Signatures (TSPS), Commitments (CO),
and a novel randomness-reusable Threshold Encryption (RRTE). We list the

Reusable, Instant and Private Payment Guarantees for Cryptocurrencies 587

formal definition and the security properties in the full version [28] and out-
line the scheme in Algorithm 1 for a relation RL over three main NP-languages
L := (L1,L2,L3). The list of master public keys, mpk, is considered as an implicit
input for all algorithms except the parameter generation algorithm (PGen). Addi-
tionally, all algorithms are PPT unless otherwise specified. We now formalise the
functions in the Algorithm 1. All functions are split based on when they happen
in our construction and are formalized as follows:

Bootstrapping Phase as Depicted in Fig. 2:

– PGen(1λ,RL) takes λ in its unary representation and relation RL as inputs
and returns the master public key mpk.

– AuKeyGen(AU) is executed by AU that returns (ˆsgkai, vkai) for i ∈ [n] along
with a global verification key vka. AU [ˆsgkai, vkai, vka]ni=1 represents the list
of credentials for AU .

– MKeyGen(Mm) is executed by merchant Mm ∈ M in order to join the net-
work. It initially generates a pair of signing/verification keys (ˆsgkbm, vkbm)
and returns a tuple (ˆsgkbm, vkbm, pkbm =⊥). The list of keys belonging to the
group of merchants is recorded in M[ˆsgkbi, vkbi]�i=1.

– MRegister(AU [ˆsgkai]ti=1,M[vkbi]�i=1) is executed by any subset of AU of size at
least t to register the merchants who deposit a collateral to join the merchant
consortium and assign them a public key pkbm. For each merchant Mm ∈ M,
it takes the secret signing key of the authorities AU [ˆsgkai] for 1 ≤ i ≤ t, and
returns public key pkbm as output. After this phase, the list of parameters for
the mth merchant can be updated as M[ˆsgkbm, vkbm, pkbm].

– CuKeyGen(Cn) is executed by the customers, that for each customer Cn ∈ C,
a Pseudo-ID generator function (PID) generates an initial secret key ŝkcn and
its corresponding public key pkcn. It returns a tuple of (pkcn, ŝkcn, ˆcertcn =⊥)
with a NIZK proof π1 to prove that the relation RL1 fulfills. The list of
customers’ keys are kept in C[ŝkci, pkci, ˆcertci =⊥]ki=1.

Protocol as Depicted in Fig. 2:

– CuRegister(AU [ˆsgkai]ti=1, C[pkcn], π1) is depicted in step 1 of Fig. 2. It is exe-
cuted by any subset of AU of size at least t to certify the public key pkcn of
a customer Cn corresponds to some secret value ŝkcn under the relation RL1 .
Once the customer Cn is registered by the authorities, it receives a certificate
ˆcertcn and it updates C[pkcn, ŝkcn, ˆcertcn].

– CuCreate(C[ŝkcn, ˆcertcn]) is depicted in step 2–3 of Fig. 2. It is executed by
the customer to request for certification of their collateral. A successfully
registered customer Cn, with certificate ˆcertcn �=⊥, can deposit collaterals in
the smart contract. For each deposit j in the smart contract, the customer
samples a random value kj from a uniform distribution KPRF in a way that
the deposit is not directly linkable to the customer. Then it returns a tuple
CL[k̂j , k

′
j ,⊥] as an uncertified collateral along with a proof π2 depicting the

fact that the relation RL2 fulfills.

588 A. Madhusudan et al.

Algorithm 1: Our Construction.

Function PGen(1λ,RL):

(�crs, �̂ts, �̂te) ← ZK.K �crs(1
λ,RL)

(pp) ← T SPS.Setup(1λ)
return mpk := (pp, �crs)

Function AuKeyGen(AU):

(�̂sgka, �vka, vka) ←
T SPS.KGen(mpk, n, t)

return (AU [ˆsgkai, vkai, vka]ni=1)

Function MKeyGen(Mm):

(ˆsgkbm, vkbm) ← DS.KGen(pp)
return (M[ˆsgkbm, vkbm])

Function
MRegister(AU [ˆsgkai]

t
i=1, M[vkbi]

�
i=1):

for j ∈ range(�) do
(pkbj , pkb) ←
RRT E.KGen(mpk, �, t, 2)

return (M[pkbi]
�
i=1, pkb)

Function CuKeyGen(Cn):

ŝkcn := PID(Cn) ∈ Z
∗
p

sk′
cn ← CO.Com(pp, ŝkcn)

pkcn := (sk′
cn, M1, M2) ←

iDHH(sk′
cn, ŝkcn)

x1 = (pkcn)
ŵ1 = (ŝkcn)
π1 ← ZK.P(RL1 , �crs, x1, ŵ1)

return (C[pkcn, ŝkcn], π1)

Function
CuRegister(AU [ˆsgkai]

t
i=1, C[pkcn], π1):

if ZK.Vf(RL1 , �crs, x1, π1) = 1 then
(ˆcertcn) ←
T SPS.Sign(AU [ˆsgkai]

t
i=1, pkcn)

return (C[ˆcertcn])

Function CuCreate(C[ŝkcn, ˆcertcn]):

k̂j ← PRF .KGen(pp)

k′
j ← CO.Com(pp, k̂j)

Mj := (k′
j , M1, M2) ← iDHH(k′

j , kj)
x2 = (k′

j)

ŵ2 = (k̂j , ŝkcn, ˆcertcn)
π2 ← ZK.P(RL2 , �crs, x2, ŵ2)

return (CL[k̂j , Mj], C[cert′cn], π2)

Function AuCreate(AU [ˆsgkai, vka]ti=1,

C[cert′cn], CL[k̂j , k′
j], π2):

if ZK.Vf(RL2 , �crs, x2, π2) = 1 then
(ˆcertj) ←
T SPS.ParSign(AU [ˆsgkai]

t
i=1, Mj)

return (CL[ˆcertj])

Function Spend(C[ˆcertcn, ŝkcn],
CL[k̂j , ˆcertj], M[pkbm], t):

(rt) ← PRFk̂j
(t)

Rt := e(rt, h) � h is the generator of G2.
Ctm ← RRT E.Enc(pkbm, ŝkcn; rt)

ŵ3 = (ˆcertj , k̂j , rt, ŝkcn)
x3 = (Rt, Ctm, t)
π3 ← ZK.P(RL3 , �crs, x3, ŵ3)
return (T [π3, x3, TxID])

Function Vf(M[pkbm], T [π3, x3, TxID], t):
if ZK.Vf(RL3 , �crs, x3, π3) = 1 then

for i ∈ StK do

if Rt �∈ Li then

(σRt,i) ← DS.Sign(ˆsgkbi, Rt)

if DS.Vf(vkbi, σRt,i) = 1 ∧ |σRt | ≥
(|StK|/2) + 1 then

return 1

Function RevealID(Ctm, Ctm′ , v):
(ŝkcn) ← RRT E.Dec(Ctm, Ctm′ , v)
return (skcn)

– AuCreate(AU [ˆsgkai]ti=1, C[cert′cn], CL[k̂j , k
′
j], π2) is depicted in step 4–5 of

Fig. 2. It is executed by a group of authorities AU of size at least t. It takes
the authorities’ secret signing keys (ˆsgkai), an indexed DH message space of
PRF key and a NIZK proof π2 as inputs. To create a certified collateral, it
checks the validity of the proof π2 and whether this collateral exists in the
smart contract, and returns certificate ˆcertj as output. The list of parameters
for each collateral is kept by CL[k̂j , k

′
j , ˆcertj].

– Spend(C[ŝkcn, ˆcertcn], CL[k̂j , ˆcertj],M[pkbm], t) is depicted in step 6a and 6b
of Fig. 2. It is executed by a customer Cn ∈ C who performs a payment to

Reusable, Instant and Private Payment Guarantees for Cryptocurrencies 589

the merchant Mm ∈ M using the underlying cryptocurrency of their choice
at time t. The registered customer uses a certified collateral CL[k̂j , ˆcertj] to
provide a payment guarantee to the merchant Mm. The payment made by the
customer is always bounded by a publicly known collateral amount. It returns
the transaction details as a list of parameters T [x3, π3, TxID], which contains
a pair of instance and proof (x3, π3), along with a set of auxiliary data Rt.
This function is executed in parallel with an on-chain payment. In particular,
the customer must first sign and broadcast an on-chain transaction Tx, and
then include its identifier (TxID) in the payment guarantee of Spend. The
TxID could have different formats depending on the underlying blockchain.1

– Vf(M[pkbm], T [πm, xm, TxID], t) is depicted in step 7–9 of Fig. 2. The mer-
chant Mm ∈ M executes it to check the validity of a received payment guar-
antee. Once the proof is verified successfully by merchant Mm along with the
majority of statekeepers, StK, confirmation that they have not seen a similar
payment guarantee in the current epoch (by providing their signatures), the
merchant verifies their individual signatures and aggregates them. Once the
aggregation is complete, and if TxID specifies the merchant’s address as the
receiver of funds, the merchant provides the items/services to the customer
without waiting for the transaction confirmation of the customer’s original
payment on the blockchain. If the proof verification fails, or the majority of
statekeepers do not confirm the guarantee, or the on-chain transaction speci-
fies the wrong receiver address, the merchant rejects the payment guarantee.

Double-Spend Detection as Depicted in Fig. 3:

– RevealID(Ctm, Ctm′ , v) is a deterministic algorithm that takes two ciphertexts
Ctm and Ctm′ generated under the public key of two distinct merchants Mm

and Mm′ and returns the plaintext, i.e., the identity of the customer and the
secret to their collateral to redeem it. This ID, skcn, is no longer hidden and
can be used by AU to blacklist the cheating customer and its collateral(s)
can be used to remunerate the victim merchant.

3.1 NIZK Languages

In the proposed generic construction in Algorithm 1 we rely on three languages
for the NIZK systems, described below.

– Language L1: Used to prove the correct formation of the customers’ public
key pkcn, based on the knowledge of secret key ŝkcn. We depict this language
formally below, which is used during CuKeyGen(Cn).

L1 = NIZK
{
(ŝkcn) | sk′

cn := CO.Com(ŝkcn)
}

1 For a public blockchain such as Bitcoin or Ethereum, TxID could be the hash of a
transaction (H[Tx]); for an anonymous blockchain like Zcash, it could be the viewing
key of the transaction that enables the merchant to check if he is the receiver of the
shielded transaction [19].

590 A. Madhusudan et al.

– Language L2: Used to prove eligibility to request a collateral by deriving
certificate fulfillment. This language is used during CuCreate(C[ˆcertcn]).

L2 = NIZK
{
(k̂j , ŝkcn, ˆcertcn) |k′

j := CO.Com(k̂j), k̂j ∈ KPRF, T SPS.Vf(pkcn, ˆcertcn) = 1
}

– Language L3: Used to prove the possession of a valid collateral, correctness
of PRF evaluation algorithm and RRTE’s ciphertext. This language is used
during Spend(C[ŝkcn, ˆcertcn], CL[k̂j , ˆcertj],M[pkbm], t).

L3 =NIZK
{
(ˆcertj , k̂j , rt, ŝkcn) | rt ← PRFk̂j

(t), Rt := e(rt, h),

Ctm := RRT E .Enc(pkbm, ŝkcn; rt), T SPS.Vf(Mj , ˆcertj) = 1
}

3.2 Security Analysis

Next we formally define the two main security requirements for our construction,
namely (1) Anonymity of honest customers and unlinkability of payment guar-
antees, and (2) Payment certainty for honest merchants. Note that the AllGen(.)
algorithm (see Fig. 4) generates all system setup parameters at once. In the
described definitions, it is implicitly assumed that there exists a PPT adversary
A who has access to the following oracles provided by the challenger B:

– Oracle OAuCorrupt(Aui): By calling this oracle under the input Aui, A can
corrupt Aui and receive its internal states. The set of corrupted authorities
is denoted by AU ′ and we have |AU ′| < t.

– Oracle OCuCorrupt(.): Adversary A can corrupt any customer Cn ∈ C by query-
ing this oracle, and receive its uncertified secret key ŝkcn.

– Oracle OColCorrupt(.): A can corrupt at most qD collaterals CLj ∈ CL to
receive their uncertified secret value k̂j . The list of corrupted collaterals is
represented by CL′.

– Oracle OMCorrupt(.): Adversary A can corrupt a minority set of merchants
(statekeepers) like Mm ∈ M and receives its pair of public key pkbm and
secret signing key ˆsgkbm. The list of corrupted merchants is denoted by M′

s.t. we have, |M′| < |stk|/2.
– Oracle ORevoke(.): Adversary A can revoke at most qR certified collaterals

CLj ∈ CL and redeem the deposited money.
– Oracle OSpend(.): A can make at most qS payment guarantees created by any

arbitrary non-corrupted customer to any non-corrupted merchant.

Definition 1 (Payment Unlinkability and Anonymity). This con-
struction preserves the anonymity of honest customers and provides unlink-
ability of payment guarantees, if no PPT adversary A by getting access
to OAuCorrupt,OCuCorrupt,OMCorrupt,OSpend oracles, OANON in short, and with
advantage of AdvANON

A (λ, β) = 2
(
(ExpANON

A (1λ, β) = 1) − 1/2
)
, has a non-

negligible chance of winning the experiment described in Fig. 4, i.e. we have,∣
∣AdvANON

A (λ, β = 0) − AdvANON
A (λ, β = 1)

∣
∣ ≤ negl(λ).

Reusable, Instant and Private Payment Guarantees for Cryptocurrencies 591

Fig. 4. Security Games.

Definition 2 (Payment Certainty). This construction provides payment
certainty (PC) if no transaction τ is approved with a non-negligible advan-
tage s.t. qS + qR + τ > qD. No PPT adversary A with access to
OAuCorrupt,OCuCorrupt,OColCorrupt,ORevoke,OSpend oracles, OPC in short, can win the
experiment described in Fig. 4 with a non-negligible advantage in λ and we can
write, AdvPC

A (λ) := Pr[ExpPC
A (1λ) = 1] ≤ negl(λ).

As a consequence of payment unlinkability and anonymity, no PPT adversary
can expose any information about the transaction such as the identity of honest
customers or be able to link it to any other transaction made by the customer.
As a consequence of payment certainty, no entity, not even after colluding with a
group of participants, can transfer and/or revoke more money than the amount
deposited. Finally, any system satisfying both these definitions simultaneously
reveals the identity of a malicious customer attempting to use one collateral to
pay multiple merchants at the same time.

Theorem 1. The proposed generic construction in Algorithm 1 satisfies the
unlinkability and anonymity of payment guarantees as defined in Definition 1.

Proof. For each payment request, the customer should transfer a tuple
T [π, x, Rt,H(Tx)] where Rt is the auxiliary data at time slot t to convince
the merchant and the group of statekeepers about the uniqueness of a col-
lateral. Under the existence of a privacy-preserving blockchain TxID does not
reveal any information beyond the validity of the transaction and it protects
the anonymity of the costumers. In this case, to prove that our construction pre-
serves the anonymity of honest customers and provides unlinkability of payments

592 A. Madhusudan et al.

we show that no PPT adversary, A, by providing two pair of challenge secret
keys/collateral keys (ŝk

∗
0, k̂

∗
0) and (ŝk

∗
1, k̂

∗
1), can distinguish between (π0, x0, Rt,0)

and (π1, x1, Rt,1) as the output of the spending algorithm. This property is guar-
anteed because of the following main security properties for the given primitives:
Zero-Knowledge property of the given NIZK proof system, computationally hid-
ing property of the given commitment scheme, static-semantically secure prop-
erty of the given randomness-reusable threshold encryption in bilinear groups
and also the weak robustness of the given PRF.

Let the hybrid Hβ be the case where the Anonymity experiment,
ExpANON

A (λ, β) is run for β = {0, 1}. In this case, we form a sequence of hybrids
and show that each of the successive hybrids are computationally indistinguish-
able from the preceding ones.

– Hybrid Hβ
1 : In this game, we assume the existence of an efficient simulator

Sim and then modify the previous hybrid, Hβ , by generating the challenge
NIZK proof πβ via the simulation algorithm, π′

β ← ZK.Sim(�crs, �̂ts, xβ).

The Zero-Knowledge property of NIZK arguments guarantees that this experi-
ment is indistinguishable from the one for Hβ and we can write Hβ

1 ≈λ Hβ .

– Hybrid H2
β: In this game, we modify Hβ

1 s.t. for generating the index id the

challenger commits ŝk
∗
1−β instead of ŝk

∗
β .

According to the hiding property of the given commitment scheme, this experi-
ment is indistinguishable from H1

β and we can write, Hβ
2 ≈λ Hβ

1 .

– Hybrid H: In this game, we modify H2
β by assuming the challenger runs the

RRTE encryption algorithm under the message m1−β instead of mβ .

According to the Static Semantic Security property of the proposed randomness-
reusable Threshold encryption, this experiment is indistinguishable from H2

β . To
be more concrete, A cannot distinguish between Ctβ and Ct1−β as long as no
twin ciphertext is generated even if the proofs are simulated. Thereby we have,
H0 ≈λ H1

0 ≈λ H2
0 ≈λ H ≈λ H1

1 ≈λ H2
1 ≈λ H1.

To conclude this security property for the proposed construction, based on
the weakly robust property of the given PRF, it is straightforward to demon-
strate that the output of a PRF under two distinct keys is computationally
indistinguishable and no PPT adversary can distinguish Rt,0 and Rt,1. 	

Theorem 2. The proposed generic construction in Algorithm 1 satisfies the pay-
ment certainty of payment guarantees as defined in Definition 2.

Proof. We prove this security property by contradiction and for the simplicity
we avoid the hat notion for the secret parameters. Let there is a PPT adversary
A that can break the payment certainty of the scheme and pass the verification
phase without meeting at least of the following cases.

Reusable, Instant and Private Payment Guarantees for Cryptocurrencies 593

– Case 1. The adversary A can forge a valid payment guarantee, T .
– Case 2. The adversary A can forge a valid aggregated signature σRt s.t.

|σRt | ≥ (|StK|/2) + 1.

By relying on the existence of a weakly-robust PRF, a Knowledge
Sound NIZK argument, an existentially unforgeable TSPS construction we
show that the success probablity of adversary in “Case 1” is negligi-
ble. Thus having played a sequence of indistinguishable games between
BPRF
WR (1λ),BTSPS

EUF-CiMA(1λ),BNIZK
KS (1λ) and a PPT adversary A, we gradually turn

the payment certainty security game into the security features of the underlying
primitives.

– Game G0: In the first security game, let A forms a challenge transaction τ∗

such that
∑

Lc + τ∗ > colA return a valid pair (π∗, x∗) with a non-negligible
advantage ε. By contradiction, we assume A can win this game with a non-
negligible advantage ε and we can write, AdvPC

A (λ) = Pr[A Wins G0] ≥ ε.
– Game G1: In this game, we modify G0 such that we assume the existence

of an efficient extractor Ext(.). In this case, there exists an extractor that
takes the extraction trapdoor �̂te and the received challenge tuple (π∗, π∗

j , x∗)
as inputs, and returns the corresponding witness (w∗) ← Ext(�te, x∗, π∗) s.t.
w∗ =

(
cert∗, μ∗, sk∗

c , r
∗
t , (M

∗
j , k∗)

)
. To be more precise, the extractor first

extracts the indexed DH message M∗
j := (id∗

j ,M
∗
j1,M

∗
j2), and then can

extracts the secret PRF key k∗ from the proof (π∗
j) as a proof to show the

well-formedness of the index id∗
j . The indistinguishability of G0 and G1 can be

proven via the Knowledge Extraction property of NIZK arguments. This prop-
erty guarantees the existence of the defined extractor under non-falsifiable
assumptions and we can write, AdvPC

A (λ) = Pr[A Wins G0] ≈ Pr[A Wins G1]
and this advantage consequently depends on two possible cases,

Pr[A Wins G1] = Pr[A Wins G1 : (w∗, x∗) ∈ RL] + Pr[A Wins G1 : (w∗, x∗) �∈ RL].

The probability of an adversary in the latter case can be bounded by the
advantage a NIZK’s knowledge soundness.

AdvPC
A (λ) ≤ Pr[A Wins G1 : (w∗, x∗) ∈ RL] + AdvNIZK

Bks
(λ).

Under the assumption that the given NIZK is KS, the adversary A can win
the game when the event of (w∗, x∗) ∈ RL occurs.

– Game G2: The challenger for the payment certainty security game can mod-
ify G1 to an attacker against the weakly-robust PRF security game. The
intended key k∗ is either a valid key k∗ ∈ K s.t. it is not corrupted by the
adversary, i.e. k∗ �∈ CL′ or it is generated under a random key k∗ �∈ K. The
latter case will be bounded by the advantage of BPRF

WR (1λ) attacker, then we
can write,

Pr[A Wins G2] = Pr[A Wins G2 : k∗ ∈ K ∧ k∗ �∈ CL′]+

Pr[A Wins G2 : k∗ �∈ K] ≤ Pr[A Wins G2 : k∗ ∈ K ∧ k∗ �∈ CL′] + AdvPRF
BWR

(λ).

594 A. Madhusudan et al.

– Game G3: This is the game G2, except for a valid pair of witness and state-
ment in RL and a fresh and not queried PRF key, one can reduce it to a
forgery attack for the underlying TSPS scheme. More specifically, if k∗ ∈ K
and not corrupted before then the challenger can generate its iDH message
format M∗

j . Lets the set of authorities indices that are queried before to get
a certificate by the adversary is denoted by S(�,M∗

j2)
. If |S(�,M∗

j2)
∪ AU ′| < t,

BTSPS
EUF-CiMA(1λ) returns the pair (M∗

j , cert∗) as a valid forgery for the defined
threshold EUF-CiMA security game in Def. [16, 4.3]. Thus, we can write,

AdvPC
A (λ) ≤ AdvNIZK

Bks
(λ) + AdvPRF

BWR
(λ) + Pr[A Wins G3 : |S(�,M∗

j2)
∪ AU ′| < t]

+ Pr[A Wins G3 : |S(�,M∗
j2)

∪ AU ′| ≥ t] ≤ AdvNIZK
Bks

(λ)

+ AdvPRF
BWR

(λ) + AdvTSPS
BEUF-CiMA

(λ) + Pr[A Wins G3 : |S(�,M∗
j2)

∪ AU ′| ≥ t].

Since it is assumed that the adversary A should provide a fresh and not
queried collateral, the probability of the event, “A Wins G3 ∧ |S(�,M∗

j2)
∪AU ′| ≥

t”, is equal to zero. Then we can write,

AdvPC
A (λ) ≤ AdvNIZK

Bks
(λ) + AdvPRF

BWR
(λ) + AdvTSPS

BEUF-CiMA
(λ).

Similarly to demonstrate that the probability of Case 2 is negligible we rely
on the unforgeability of the given aggregatable digital signature. If the adversary
A be able to forge a valid aggregated signature for a majority of the statekeepers
then as it is assumed it only can corrupt at most |M′| < |StK|/2, then we can
form an efficient algorithm BDS

EUF-CMA(1λ) to break the EUF-CMA property of
the underlying DS scheme. Then we can write:

AdvPC
A (λ) ≤ AdvNIZK

Bks
(λ) + AdvPRF

BWR
(λ) + AdvTSPS

BEUF-CiMA
(λ) + AdvDS

BEUF-CMA
(λ).

Thus, as long as the underlying primitives are knowledge sound, weakly
robust and existentially unforgeable then we can conclude the theorem. 	

4 An Efficient Instantiation

In this section, we specify the concrete cryptographic primitives used to instanti-
ate our construction. With the exception of RRTE, which is our novel construc-
tion, we refer formal definitions of primitives and their security properties to the
full version [28]. We would like to stress the modularity of our construction. The
below tools are used in a black box manner and can be replaced by superior
tools that future research will inevitably develop.

Reusable, Instant and Private Payment Guarantees for Cryptocurrencies 595

4.1 Randomness-Reusable Threshold Encryption

(, t, k)-RRTE is a new observation on threshold encryption (TE) schemes (see
the full version [28] for the definition) and enables plaintext confidentiality as
long as less than k number of ciphertexts with the same randomness is generated.
Once a data owner issues at least k supplementary ciphertexts, it is publicly
retrievable and everybody can blind out the encrypted data. We formulate this
primitive for compatibility with the rest of our system, but it is worth noting
that the underlying idea is similar to offline double spending detection used in
e-cash schemes.

Definition 3 (Randomness-Reusable Threshold Encryption). For a
given public parameters pp and security parameter λ, a (, t, k)-RRTE, ΨRRTE,
over the message space M and ciphertext space C consists of three main PPT
algorithms defined as follows:

– (�pk, pk) ← RRT E .KGen(pp, 	, t, k): Key generation is a probabilistic and dis-
tributed algorithm that takes pp along with three integers 	, t, k ∈ poly(λ) as
inputs. It then returns a vector of public key �pk of size 	 and a general public
key pk as outputs.

– (Ctj , v) ← RRT E .Enc(pp, pk,m, pkj): The encryption algorithm as a proba-
bilistic algorithm takes pp, global public key pk, a message m ∈ M along with
a public key pkj as inputs. It returns ciphertext Ctj ∈ C associated with the
recipient j ∈ R and an auxiliary value v as outputs.

– (⊥,m) ← RRT E .Dec(pp, {Ctj}j∈K, v): The decryption algorithm takes pp,
a set of ciphertexts {Ctj}j∈K along with an auxiliary value v as inputs. If
|K| ≥ k, it returns m ∈ M, else it responds by ⊥.

Note that in the full version [28] we elaborate more on the security require-
ments and then we propose an efficient construction based on threshold ElGamal
encryptions.

4.2 Pseudo-Random Function

We utilise a weakly-robust PRF proposed by Dodis and Yampolskiy [17] in order
to make customers’ collaterals reusable. This PRF enables us to define a time
of payment, i.e. x in PRFk(x) = g1/(k+x) function and prove the validity of
operations, efficiently. This ensures that a customer always has to input the
time of payment, which is then verified by a receiving merchant. By utilizing
this property and its combination with RRTE, as discussed in Sect. 1, we can
block a customer from reusing the same collateral for a pre-defined time period.

4.3 Digital Signature Schemes

We require two types of signatures, one for the authorities and another for the
statekeepers. These signatures need non-overlapping properties which we detail
below.

596 A. Madhusudan et al.

– Threshold Structure-Preserving Signatures [16]. There are two reasons to use
the TSPS scheme proposed by Crites et al. Firstly, like any other digital
signature, it provides authentication, such that no entity except the qualified
authorities can issue collateral proofs. Secondly, due to its threshold nature,
TSPS enables our construction to rely on an honest majority (authorities)
instead of a central trusted party.

– BLS Signatures [8]. BLS Signatures are efficiently aggregatable, and thus
they are useful in our setting. A statekeeper must validate payment requests
from various merchants, and they do so using BLS signatures. For a victim
merchant to redeem user collateral from the smart contract, they may first
aggregate the signatures allowing for a shorter interaction.

4.4 Commitment Scheme

In our construction, we use the Pedersen commitment scheme [32] due to the
following reasons; firstly, the TSPS construction is defined over the indexed DH
message spaces (see the full version for the exact definition) and each secret PRF
key needs to get an index. Hence, these commitments are used to the secret scalar
PRF keys as an index. Secondly, the hiding property of such commitments masks
the secret PRF keys used in our construction. In addition, the binding property
of Pedersen commitments ensures the unforgeability of these secret PRF keys.
Finally, Pedersen commitments are compatible with discrete logarithm-based
proofs like original Sigma protocols and enables customers to efficiently prove
knowledge of these committed values.

4.5 NIZK Proofs

To instantiate the described NP-relations in Sect. 3.1, we utilize three main proof
systems: Sigma protocols [34], range-proofs [10] and GS proof systems [24] (see
the full version). Sigma protocols are an efficient choice as the main proof system
in our implementation; we use the Fiat-Shamir heuristic [22] to make then non-
interactive. Range-proofs enable us to prove that a hidden value lies in a range
interval. GS proof systems are useful as they are secure in the standard model and
support a straight-line extraction of the witnesses. Additionally, the instantiation
of these proofs does not require any trusted setup and can be batched: this
enables an efficient verification [26].

5 Performance Analysis

In this section, we demonstrate the performance of our system. Based on the
application, the costs incurred in each phase are divided into two parts, termed
“offline phase” and “online phase”. The former includes the parameter genera-
tion, key generation and registration functions. The latter is solely responsible
for spending and verification and is the main focus of this evaluation.

Reusable, Instant and Private Payment Guarantees for Cryptocurrencies 597

Fig. 5. Experimental setup. Dotted lines and shapes represent parties and workload
that do not affect the leftmost customer or the leftmost merchant. Our experiment only
considers the solid lines and shapes. From the perspective of the leftmost client and
the leftmost merchant, this is equivalent to running the full system. While statekeepers
are the same as merchants, we make these two sets distinct for clarity.

Our experimental setup is similar to the one in Snappy. Namely, we distribute
various parties in different regions around the world and measure the end to
end latency of transactions2. Specifically, our implementation uses the Charm-
Crypto framework [15], a Python library for Pairing-based Cryptography and
obtained the benchmarks on four AWS EC2 instances. The scenario we consider
is similar to the one in Snappy. Namely, merchants, customers and statekeepers
are globally distributed in four different locations and we create 1 000 tps in
order to measure the average time it takes for one transaction to complete.
Since transactions are distributed to many merchants and the merchants run
independently, it is possible to create an equivalent scenario and only consider
the work needed for one merchant. Consider the workload from the perspective
of a single statekeeper: its workload depends on transactions that are passing
through all other merchants. To accurately estimate the workload of a single
statekeeper, we injecting artificial verification requests to it. Our scenario is
summarized in Fig. 5.

All our EC2 instances had the same computational configuration, i.e., an
Ubuntu Server 20.04 LTS (HVM) with an Intel (R) Xeon(R) CPU @ 2.50 GHz
and 16 GB of memory. We apply the Barreto-Naehrig (BN254) curve (also known
as type F groups), y2 = x3+b with embedding curve degree 12 [3]. In this pairing
group, the base field order is 256 bits.

2 The open-source implementation can be found in this repository.

https://github.com/PrinsPayments/PRINS

598 A. Madhusudan et al.

Fig. 6. Latency comparison. Total transaction time for 1000 tx per second vs the
number of statekeepers.

Latency. As illustrated in Fig. 6, the latency for each transaction grows lin-
early with the number of statekeepers verifying this transaction (depicted with
the orange line). During our evaluations, we noticed that the time required for
a customer to generate and send a payment guarantee (depicted with the red
line) is mostly constant, i.e., ∼240 ms. However, in the case of 40 statekeep-
ers, our construction allows a customer and merchant to successfully transact
within ∼550 milliseconds (ms). In contrast, in the case of 200 statekeepers, a
transaction takes ∼1.3 seconds (s). Hence, the time required to guarantee a pay-
ment to merchants in our construction is bounded by the set of statekeepers. A
direct comparison with Snappy is not possible for two reasons; firstly, the evalu-
ation of Snappy only considers the time taken for payment approval, i.e., it does
not consider the time spent on customer-merchant interaction. Secondly, their
simulation code is not freely available. A standalone analysis shows that our con-
struction provides privacy against statekeepers without impacting the latency of
payments. Greater number of statekeepers provides more robustness and better
protection against double-spends, but requires stronger liveness assumptions on
top of increasing the latency. We find 120 statekeepers to be an optimal trade-off
of these factors, ultimately leading to latency lower than 1 s.

Smart Contract Cost. The transition between states happens depending on
the function calls on the smart contract. For simplicity, we describe here only
the functionality of the smart contract focusing on one customer and multiple
merchants. We refer to our smart contract as AuthSC , an entity is referred to
as ex where x = c or m for customer or merchant respectively. The underlying
ledger is referred to as LSC and an entity’s account on that ledger is referred to
as Accx

L where x = c or m respectively. The private ledger of the merchants is
referred to as Bullm, since it behaves like a bulletin board. AuthSC has seven
states as follows:

init: AuthSC is deployed. ec can now deposit funds (colc). If so, then change
state to ready. Else do not change state.
ready: ec successfully registers by depositing colc in AuthSC . If colc is available
in AuthSC , change state to pay. Else do not change state.

Reusable, Instant and Private Payment Guarantees for Cryptocurrencies 599

pay: If ec has made payment (paymi
), change state to reclaimm. Else do not

change state.
reclaimm: Check Bullm for double-spends from ec. If double-spend present,
use secret to reclaim paymi

and change state to withdraw. If no double-spend
found until actual payment received, change state to reclaimc.
reclaimc: If 1 day has passed since paymi

, reclaim paymi
and add it to colc.

Then, change state to withdraw. Else do not change state.
withdraw: If ec wants to exit the system and the state is withdraw or ready,
send money from AuthSC to Accc

L and change state to exit. If ew wants to
exit the system and the state is withdraw, send money from AuthSC to Accw

L

and change state to exit. Else do not change state.
exit: Remove ex from AuthSC and change state to init.

Table 1 lists the gas fees of executing various functions of our system. In the
first column, we mention the amount of base gas fee, and then we express it as a
proportion of minimum gas fee of a transaction. The minimum gas fee is set to
21 000 GWei, which is also the amount of gas that standard on-chain payments
require. Note that the table reflects the fees users can expect to pay, although
the actual amount also depends on the so-called priority fee which depends on
the current traffic in the Ethereum transaction market. More information about
the costs incurred due to our SC is given in Sect. 6.

Table 1. Costs of transactions on our smart contract deployed on Ethereum, and the
cost as a proportion of a standard transaction Δ = 21 000.

Function Customer reg. Pay Merchant reg. Reclaim Withdraw Bal.

Gas 107 400 44 055 54 317 34 972 22 352

×Δ 5.1 2.09 2.59 1.65 1.06

6 Discussion

6.1 Collateral Reusability

This property can be understood by comparing to PCNs such as Lightning [33],
Raiden [30]. Our work is similar to PCNs since we are both reliant on collaterals
for guaranteeing security of transactions. PCNs enable quick and cheap trans-
actions over established channels between parties (routes), but suffer from route
availability issues in case any involved party is unresponsive. They are capital
dependent, since each channel in a path must individually have sufficient capital
to route a certain transaction [25].

The main point of difference between our work and PCNs is the suitability
for supporting retail markets. The capital locked into a payment channel is only
suitable for a specific kind of payments, while our collaterals allow customers to

600 A. Madhusudan et al.

pay any merchant in the system. This is because PCNs aren’t designed to tackle
the unilateral nature of payments in retail markets. The funds locked in a channel
deplete quickly, and hence their capability to act as intermediaries decreases [29].
Although fund rebalancing techniques [4] exist to mitigate channel depletion,
they require a user to have multiple channels and are ineffective for managing
unilateral payments. Rebalancing is generally not possible for a user that only
employs their channels for payments and not for getting paid. Our protocol is
tailor made to this economic environment, and so we believe it supplements
PCNs, rather than directly competing with them.

6.2 Trust Assumptions

There is a general trade-off between the efficiency and privacy of a financial sys-
tem and the level of trust assumed between participants. For instance, a trusted
central entity can efficiently set up a digital currency system, as evidenced by
Chaumian e-cash. Measures of transaction latency and throughput thrive at
the high cost of trust in the central authority. On the other end, decentralized
blockchains achieve functional but slow financial systems without requiring trust
in any single party.

The performance of our construction is based on a set of trust assumptions.
Our architecture is semi-decentralized in the sense that we rely on an honest
majority of authorities to initialize our construction. This is similar to the app-
roach of LDSP [31] with the crucial distinction that our authorities do not play
any role in our payment protocol. The merchants and statekeepers have greater
power to punish dishonest customers by confiscating their collateral. Yet, we
allow an honest majority of merchants to do so only against customers who
attempt to double-spend, not honest customers. Moreover, the design is per-
missionless in that cryptocurrency holders can freely participate as customers.
Considering the general trade-off between centrality, trust, performance and effi-
ciency, we consider our setup to lie in a “sweet spot” where balance is achieved
through cryptographic innovations. We call for further cryptographic innovations
and welcome research into even more trustless, robust and secure systems.

A similar trade-off has been observed in PCN, a promising scalability solution
for cryptocurrencies, by Avarikioti et al. [2], who suggest that PCN are more
stable and efficient when centralized structures are present. In an empirical sur-
vey, Zabka et al. [35] observe the rising centrality in the Lightning Network as
the capacity and capabilities of Lightning grew over time.

6.3 Privacy

The main idea underlying our private double-spending protection, goes all the
way back to the e-cash schemes introduced by Chaum [14]. The approach of real-
izing offline payments while detecting double-spending, known as the Chaum-
Fiat-Naor (CFN) approach was adopted and improved by several following e-
cash systems [5,9,12,13,23]. The existing plethora of literature has made several

Reusable, Instant and Private Payment Guarantees for Cryptocurrencies 601

improvements to Chaum’s e-cash, however, all work with centrally issued cur-
rency and mostly rely on a custodian bank to catch double-spending. Our work
is also an application of the CFN approach, with the major difference of build-
ing upon decentralized cryptocurrencies for safely reducing latency, instead of
building an entire e-cash scheme from the ground up. When compared to double-
spend detection techniques in e-cash (for instance the one recently used in [6]),
our novel RRTE is more efficient in terms of communication rounds, allows the
deposited collaterals to be reused and by default enables anyone to track double-
spends.

However, on-chain privacy is derived from the underlying blockchain, and
is the highest level of privacy that one can hope to achieve at the protocol
level. In other words, implementing our overlay on a completely de-anonymized
and public blockchain cannot make the payments private, since the underlying
blockchain will reveal private data no matter how secure the protocol. Similarly,
developing on top of private blockchains such as Monero doesn’t directly solve
the privacy issues of earlier works that allowed transactions of the same user to
be linked. In this way, the question of blockchain-level privacy is relevant yet
orthogonal to our work. While Snappy claims that future improvements such as
deployment on privacy-preserving blockchains that support privacy-preserving
SC will enable their construction to provide on-chain privacy, that is not true.
A detailed explanation is given in Sect. 2 of the full version [28].

6.4 On-Chain Transaction Fees

The transaction fees in our system differ from conventional fees since the cus-
tomer pays the merchant indirectly through a smart contract (SC). This is neces-
sary to prevent an on-chain double-spend by a malicious customer. By on-chain
double-spend, we mean to distinguish between a double-spend attempt of cus-
tomer collateral, and a double-spend on the underlying blockchain itself. Even if
a malicious customer can influence miners and induce a blockchain double-spend,
the SC-based transaction is able to remunerate the affected merchant. Simply
put, the SC can escrow the funds until sufficient confirmations of on-chain pay-
ment have been found. We stick to the convention of 6 succeeding blocks after
said transaction. As discussed in Sect. 5, executing payment through our SC
incurs twice the on-chain transaction fees of a standard on-chain Ethereum pay-
ment. There is an additional fee incurred by the merchant during withdrawal
of payments, but this is far less frequent than the former. Nevertheless, it is
desirable to construct a more cost efficient yet secure system for direct customer
to merchant payments.

A potential fix could be to encode specific spend conditions for user collater-
als. To be precise, any merchant can move the collateral by providing evidence of
a conflicting transaction on the blockchain. This could be implemented via a pay-
ment guarantee to said merchant, along with on-chain evidence of a conflicting
payment. We leave this implementation, along with other possible optimizations
of fees, for future work.

602 A. Madhusudan et al.

6.5 Incentives of Involved Parties

This work deals with the cryptographic challenges of achieving privacy while
reducing latency of cryptocurrency payments. Our focus is admittedly myopic,
as we overlook practical aspects of incentives. For instance, we refer to authori-
ties that register merchants and customers, but these authorities lack a concrete
incentive to fulfil this role honestly. As an initial and arbitrary choice, we selected
a subset of involved merchants to play this role of authorities, while requiring
an honest majority of authorities. It is unclear who should be playing this role,
and what their incentives should be. Could we perhaps allocate a small fee per
merchant to authority? Or automatically grant a fraction of collaterals confis-
cated from dishonest users? Or even eliminate this issue entirely by building
more advanced cryptography so that our overlay can be set up even without
their existence?

Similarly, we lack a clear explanation of incentives for statekeepers. A basic
solution would be to allocate a certain fraction of each transaction value to the
statekeepers; however, this still needs to be properly analyzed in order to confirm
if such an incentive is sufficient.

7 Conclusion

In this paper, we present a new overlay network for instant confirmation of cryp-
tocurrency transactions, that also maintains anonymity of users and unlinkability
of their transactions. On the one hand, it allows merchants in a retail system
to safely accept fast payments without risk of double-spending. On the other,
dishonest customers who attempt to double-spend get their identities exposed
and their collateral confiscated to reimburse the merchants. Honest customers,
however, are able to reuse their collaterals.

To this end, we designed a novel randomness-reusable threshold scheme, that
enables participants to audit the payments in the network and reveal the identity
of malicious customer who perform double-spending. This threshold encryption
scheme maintains the privacy of honest customers who do not attempt to double-
spend. We provide a formal proof of security with respect to three main features
namely customers’ anonymity, unlinkability of transactions and payment cer-
tainty for merchants. We motivate our choice of cryptographic primitives and
efficiently implement them. Our evaluation shows that our construction allows
for fast global payments with a delay of less than 1 s.

Acknowledgment. We would like to thank Svetla Nikova, Philipp Jovanovic, Chris-
tian Badertscher and Daniel Slamanig for the helpful discussions and the anony-
mous reviewers for their valuable comments. Akash Madhusudan, Mahdi Sedaghat
and Bart Preneel were supported in part by the Flemish Government through the
FWO SBO project SNIPPET S007619, the Research Council KU Leuven C1 on Secu-
rity and Privacy for Cyber-Physical Systems and the Internet of Things with contract
number C16/15/058 and by CyberSecurity Research Flanders with reference number
VR20192203. Samarth Tiwari was supported by ERC Starting Grant QIP–805241.

Reusable, Instant and Private Payment Guarantees for Cryptocurrencies 603

Kelong Cong was supported by the Defense Advanced Research Projects Agency
(DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under
contract No. FA8750-19-C-0502. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the DARPA, the US Government, Cyber Security Research Flan-
ders or the FWO. The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright annotation therein.

References

1. Aumayr, L., Abbaszadeh, K., Maffei, M.: Thora: Atomic and privacy-preserving
multi-channel updates. IACR Cryptol. ePrint Arch. 317 (2022). https://eprint.iacr.
org/2022/317

2. Avarikioti, Z., Heimbach, L., Wang, Y., Wattenhofer, R.: ride the lightning: the
game theory of payment channels. In: Bonneau, J., Heninger, N. (eds.) FC 2020.
LNCS, vol. 12059, pp. 264–283. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51280-4 15

3. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383 22

4. Avarikioti, Z., Pietrzak, K., Salem, I., Schmid, S., Tiwari, S., Yeo, M.: HIDE &
SEEK: privacy-preserving rebalancing on payment channel networks. Cryptology
ePrint Archive, Report 2021/1401 (2021). https://eprint.iacr.org/2021/1401

5. Baldimtsi, F., Chase, M., Fuchsbauer, G., Kohlweiss, M.: Anonymous transferable
E-cash. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 101–124. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 5

6. Bauer, B., Fuchsbauer, G., Qian, C.: Transferable E-cash: a cleaner model and the
first practical instantiation. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12711, pp.
559–590. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75248-4 20

7. Benmeleh, Y.: Blockchain firm starkware valued at $2 billion in funding round
(2021). https://www.bloomberg.com

8. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J.
Cryptol. 17(4), 297–319 (2004). https://doi.org/10.1007/s00145-004-0314-9

9. Brands, S.: Untraceable off-line cash in wallet with observers. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48329-2 26

10. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, pp. 315–334. IEEE Computer Society Press (2018). https://
doi.org/10.1109/SP.2018.00020

11. Buterin, V.: An incomplete guide to rollups (2021). https://vitalik.ca/general/
2021/01/05/rollup.html

12. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 18

13. Canard, S., Gouget, A.: Multiple denominations in E-cash with compact trans-
action data. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 82–97. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3 9

https://eprint.iacr.org/2022/317
https://eprint.iacr.org/2022/317
https://doi.org/10.1007/978-3-030-51280-4_15
https://doi.org/10.1007/978-3-030-51280-4_15
https://doi.org/10.1007/11693383_22
https://eprint.iacr.org/2021/1401
https://doi.org/10.1007/978-3-662-46447-2_5
https://doi.org/10.1007/978-3-030-75248-4_20
https://www.bloomberg.com
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/3-540-48329-2_26
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://vitalik.ca/general/2021/01/05/rollup.html
https://vitalik.ca/general/2021/01/05/rollup.html
https://doi.org/10.1007/11426639_18
https://doi.org/10.1007/978-3-642-14577-3_9

604 A. Madhusudan et al.

14. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) CRYPTO 1982, pp. 199–203. Plenum Press, New York
(1982)

15. Joseph, A.A., et al.: Charm: a framework for rapidly prototyping cryptosystems. J.
Cryptograph. Eng. 3, 111–12 (2013). https://doi.org/10.1007/s13389-013-0057-3

16. Crites, E., Kohlweiss, M., Preneel, B., Sedaghat, M., Slamanig, D.: Thresh-
old structure-preserving signatures. Cryptology ePrint Archive, Paper 2022/839
(2022). https://eprint.iacr.org/2022/839

17. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4 28

18. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: virtual payment
hubs over cryptocurrencies. In: 2019 IEEE Symposium on Security and Privacy,
pp. 106–123. IEEE Computer Society Press (2019). https://doi.org/10.1109/SP.
2019.00020

19. Electric Coin Company: Explaining viewing keys. https://electriccoin.co/blog/
explaining-viewing-keys/. Accessed 13 Feb 2023

20. Ethereum.org: Layer 2 rollups (2021). https://ethereum.org/en/developers/docs/
scaling/layer-2-rollups/

21. ethos.dev: The beacon chain ethereum 2.0 explainer you need to read first. https://
ethos.dev/beacon-chain. Accessed 13 Feb 2023

22. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

23. Frankel, Y., Tsiounis, Y., Yung, M.: “Indirect discourse proofs”: achieving effi-
cient fair off-line e-cash. In: Kim, K., Matsumoto, T. (eds.) ASIACRYPT 1996.
LNCS, vol. 1163, pp. 286–300. Springer, Heidelberg (1996). https://doi.org/10.
1007/BFb0034855

24. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

25. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: SoK: layer-
two blockchain protocols. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS,
vol. 12059, pp. 201–226. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51280-4 12

26. Herold, G., Hoffmann, M., Klooß, M., Ràfols, C., Rupp, A.: New techniques for
structural batch verification in bilinear groups with applications to Groth-Sahai
proofs. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS
2017, pp. 1547–1564. ACM Press (2017). https://doi.org/10.1145/3133956.3134068

27. Hill, K.: How target figured out a teen girl was pregnant before her father did.
https://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-
a-teen-girl-was-pregnant-before-her-father-did/?sh=53d927356668. Accessed 30
Aug 2022

28. Madhusudan, A., Sedaghat, M., Tiwari, S., Cong, K., Preneel, B.: Reusable, instant
and private payment guarantees for cryptocurrencies. Cryptology ePrint Archive,
Paper 2023/583 (2023). https://eprint.iacr.org/2023/583

29. Mavroudis, V., Wüst, K., Dhar, A., Kostiainen, K., Capkun, S.: Snappy: fast on-
chain payments with practical collaterals. In: NDSS 2020. The Internet Society
(2020)

30. Network, Raiden: What is the raiden network (2019). https://raiden.network/101.
html

https://doi.org/10.1007/s13389-013-0057-3
https://eprint.iacr.org/2022/839
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1109/SP.2019.00020
https://doi.org/10.1109/SP.2019.00020
https://electriccoin.co/blog/explaining-viewing-keys/
https://electriccoin.co/blog/explaining-viewing-keys/
https://ethereum.org/en/developers/docs/scaling/layer-2-rollups/
https://ethereum.org/en/developers/docs/scaling/layer-2-rollups/
https://ethos.dev/beacon-chain
https://ethos.dev/beacon-chain
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/BFb0034855
https://doi.org/10.1007/BFb0034855
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1145/3133956.3134068
https://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/?sh=53d927356668
https://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/?sh=53d927356668
https://eprint.iacr.org/2023/583
https://raiden.network/101.html
https://raiden.network/101.html

Reusable, Instant and Private Payment Guarantees for Cryptocurrencies 605

31. Ng, L.K.L., Chow, S.S.M., Wong, D.P.H., Woo, A.P.Y.: LDSP: shopping with
cryptocurrency privately and quickly under leadership. In: 2021 IEEE 41st Inter-
national Conference on Distributed Computing Systems (ICDCS), pp. 261–271
(2021). https://doi.org/10.1109/ICDCS51616.2021.00033

32. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

33. Poon, J., Dryja, T.: The Bitcoin lightning network: scalable off-chain instant pay-
ments (2016). https://lightning.network/lightning-network-paper.pdf

34. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

35. Zabka, P., Foerster, K.T., Schmid, S., Decker, C.: A centrality analysis of the
lightning network (2022). https://doi.org/10.48550/ARXIV.2201.07746, https://
arxiv.org/abs/2201.07746

https://doi.org/10.1109/ICDCS51616.2021.00033
https://doi.org/10.1007/3-540-46766-1_9
https://lightning.network/lightning-network-paper.pdf
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.48550/ARXIV.2201.07746
https://arxiv.org/abs/2201.07746
https://arxiv.org/abs/2201.07746

	Reusable, Instant and Private Payment Guarantees for Cryptocurrencies
	1 Introduction
	2 Our Construction
	2.1 Our Solution

	3 Preliminaries and Formal Construction
	3.1 NIZK Languages
	3.2 Security Analysis

	4 An Efficient Instantiation
	4.1 Randomness-Reusable Threshold Encryption
	4.2 Pseudo-Random Function
	4.3 Digital Signature Schemes
	4.4 Commitment Scheme
	4.5 NIZK Proofs

	5 Performance Analysis
	6 Discussion
	6.1 Collateral Reusability
	6.2 Trust Assumptions
	6.3 Privacy
	6.4 On-Chain Transaction Fees
	6.5 Incentives of Involved Parties

	7 Conclusion
	References

