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Abstract In the AEC sector, energy performance targets of buildings continuously 
increase for contributing to reduce carbon dioxide. This is usually done on building 
level, but the focus continuously shifts to larger scales such as neighborhoods, e.g. 
for identifying buildings with the most retrofitting potential. For this, low detailed 
GIS models can serve as a basis for energy simulations and are broadly available. 
However, neighborhood energy simulations hold many challenges, such as the lack 
of accurate and sufficient data to perform reliable simulations. Information such as 
window positions or thermal parameters of the building elements can thereby help 
to increase the quality of the energy simulation results. Therefore, in this paper, 
challenges of data collection are presented and discussed. To enable users to find 
a trade-off between accuracy and reliability of a neighborhood simulation and the 
effort to provide this data, the authors developed the concept of the Neighborhood 
Model States (NMS). Furthermore, occurring challenges in enriching the GIS model 
for each NMS are discussed on the example of buildings from the UBC campus. 

Keywords Energy Simulation · Neighborhood Level · Neighborhood Model 
States · Level of Detail (LOD) · Level of Granularity · Geometric information ·
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1 Introduction 

Climate change is certainly one of the most pressing problems in this day and age. 
As current reports show, there is a huge potential to save energy in the AEC sec-
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tor [ 1]. This can be reached e.g. through developing suitable retrofit strategies by 
replacing fossil fuel-based heating systems with electric heat pumps and improving 
building insulation. As a result, many governmental agencies and control bodies in 
different countries have developed strategies and encourage energy retrofits through 
implementing certain laws and offering financial incentives to building owners. To 
reach Global Climate targets as set in the Paris Agreement [ 2, 3], it is important to 
focus on larger scales and conduct energy analysis at neighborhood levels instead 
of individual buildings. For this aim, it is necessary to develop and use tools that 
can estimate the energy consumption of neighborhoods [ 4]. As the authors in [ 5, 6] 
highlight, the estimation of energy consumption at the neighborhood level enables 
the opportunity to combat climate change by creating livable and energy efficient 
neighborhoods, as well as to support energy efficiency, sustainability, and manage-
ment of cities. More particularly, automated energy simulations on a neighborhood 
level can be used for evaluating the impacts of potential retrofitting measures, or for 
identifying specific critical buildings with a priority to be energy retrofitted [ 5, 7]. 
According to [ 7], changing the retrofit analysis perspective from individual buildings 
to neighborhoods has a great potential for bigger savings and lower investments. In 
this way, the decision makers can quickly identify the most critical buildings that 
need retrofitting and can then perform more precise and intensive analysis on those 
specific buildings. This can be especially beneficial to large owners of buildings with 
close proximity to each other, such as university and hospital campuses, etc. How-
ever, most currently available energy simulation tools are designed to analyze only 
individual buildings, which require a large amount of data with high level of preci-
sion. This is why it is a fundamental research challenge to change the perspective 
from individual buildings to neighborhood levels [ 4]. 

To perform energy simulations on any level, several parameters must be known. 
These include, on the one hand, geometric information such as the height and foot-
print of the buildings. On the other hand, non-geometric information like the thermal 
parameters of the exterior wall layers and the type of the installed HVAC system. 
However, on a large scale, such as neighborhoods, there are significant challenges 
that surface when it comes to availability of the data, data inconsistencies, and data 
privacy issues [ 8]. Although these challenges can also apply to individual buildings, 
they become even more challenging on a larger scale. While data for individual 
buildings can be collected on site from Building Information Models (BIMs), build-
ing drawings, and other project documents, this level of data collection is no longer 
feasible for larger scales, such as neighborhoods, due to the availability and consis-
tency of the required data. This is why, when analyzing a collection of buildings, 
such as in a neighborhood, practitioners are often limited to only relying on the data 
from Geographic Information Systems (GIS) with low levels of detail. Since GIS 
data that is used for performing neighborhood energy simulations is often inhomo-
geneous regarding the provided amount of information as well as their reliability [ 9], 
practitioners need to find ways to enrich the GIS data to be able to conduct useful 
and reliable simulations that can be used for developing retrofit strategies. However, 
enriching GIS data is complicated, cumbersome and expensive [ 10].



A Multi-stage Neighborhood Model State Approach 369

Therefore, the main research objective is to address this gap between the required 
data for energy simulations and the available data. This is done by investigating 
and understanding the challenges and resulting efforts when gathering additional 
geometric and non-geometric information (Sect. 4). 

For understanding the GIS model enrichment, an innovative Neighborhood Model 
State (NMS) concept is developed. This concept consists of four model states with 
their respective geometric and non-geometric information components that can be 
added to the original GIS data. The information content for each NMS increases 
progressively, and each state is respectively analyzed for the challenges in data acqui-
sition and their potential impacts on the quality of the energy simulation outcomes. 
To demonstrate the concept of NMS, two representative use case buildings, the 
Engineering Student Center (ESC) and the Centre for Interactive Research on Sus-
tainability (CIRS) at the University of British Columbia (UBC) Vancouver Campus 
in Canada are used in this work. A GIS model for the entire UBC Vancouver campus 
is available, where the selected buildings could be extracted for further analysis. 

In the following Section, an overview about the role of the data in neighborhood 
energy simulations, as well as energy simulations on large scales in general, is given. 
Then, in Sect. 3, the research methodology is presented. In Sect. 4 the concept of the 
NMS are introduced and examples for challenges in data acquisition for different 
neighborhood model states are presented and discussed. Finally, in Sect. 5 the results 
of the research are concluded. 

2 Background 

As described, for existing buildings, usually only limited digital data is available, and 
what is available, is mostly unstructured. Therefore, extensive and time-consuming 
on-site explorations and measurements can be the consequence to acquire needed 
information like wall layers, materials, geometric dimensions etc. On a small scale, 
the collection of these geometric and non-geometric information is manageable, 
but for multiple buildings e.g. on a neighborhood level this procedure is too time-
consuming and in consequence not applicable. To give an insight about how energy 
advisors and engineers gather their data for energy simulations on neighborhood 
levels, a detailed literature review was conducted. 

2.1 The Role of Data for Energy Simulations 

As is well known, BIM’s on the scale of individual buildings can serve as the basis 
for different stakeholders during the planning and operational phase. It thereby can 
be a collection of different specialist models and can include necessary information 
for energy simulations. Energy related specialist models are commonly referred to as 
BEM (Building Energy Modeling). By increasing the scope to a neighborhood level, 
a comparable method exists, namely UBEM (Urban Energy Modeling) or USEM
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Table 1 Needed data to perform energy simulations (based on [ 9]) 

Minimum information Additional information 

Geometric Footprint Glazing (WWR) 

Envelope composition (layers) Basement 

Roof type and shape 

Interaction with adjacent 

buildings (shading) 

Non-geometric Weather data Year of construction 

Heating system Thermal zones/stories 

HVAC information 

Number of Occupants 

Occupant behavior 

(Urban-Scale Energy Modeling), for which researchers see a strong potential [ 8, 11] 
but also are challenging due to the complexity of urban energy systems [ 12]. Energy 
simulation on large scales can basically be classified into two approaches: top-down 
and bottom-up. The top-down approach is usually data-driven and can be based 
on statistical energy use and historical data, among others [ 8]. On the other hand, 
there is the bottom-up approach, which is physics-based and engineering models and 
simulations are used. Therefore, usually more individual data is necessary which can 
have significant uncertainties in building energy estimates at an urban scale, as the 
authors in [ 8] are stating. Additionally, when buildings are modeled individually, it 
can require a higher computational power regarding the provided information [ 13]. 

In this context, the bottom-up physics-based approach is chosen, since it is very 
suitable for in-depth urban scale analyses [ 8]. This results in a need for extensive 
data that has to be gathered as it builds the foundation for the simulation. Therefore, 
an overview about the needed data is given in Table 1. These parameters are in the 
literature often categorized as geometric and non-geometric information, which is 
taken up in this publication. Furthermore, the authors distinguish the data in between 
minimum mandatory data that is needed to get at least a result from the simulation, 
and additional data that can lead to more reliable results if provided. 

To grade the complexity and amount of included geometric and non-geometric 
information of the respective data, the concept of Level of Detail (LOD) is common 
and well known on the building level from the BIM methodology. For GIS, this 
concept has been adopted, although different GIS have different definitions. 

One of the most well-known GIS is CityGML on which the concept of LOD will be 
elaborated. CityGML provides geometrical data of neighborhoods or even municipal-
ities by using an XML-based format and is defined in the OGC CityGML Encoding 
Standard [ 14]. This geospatial data is largely available, e.g. for most European coun-
tries [ 15]. CityGML is currently being revised, the upcoming version of CityGML 
will be version 3. In the previous version, a LOD was describing the whole building 
(e.g. LOD4 means very detailed facade including furniture) but is now getting har-
monized in version 3 with the definition of BIM. There, the LOD does not obligato-
rily mean the whole building, but can describe specific components individually. For
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example, it is now possible to have a very low LOD of the outer shell combined with 
a highly detailed inner interior model. So, all the building parts can have their own 
LOD, as known from BIM [ 16]. Additionally, the LOD of CityGML models varies 
significantly depending on regions [17]. Furthermore, Biljecki et al. [ 18] showed, that 
the CityGML 2.0 LOD concept as currently defined in [14] is inconclusive, since each 
LOD can be interpreted in multiple ways [ 18]. However, in the upcoming CityGML 
version 3 the usability and inconsistencies are improved [ 19]. 

When it comes to geometric representations, most of the existing tools are using 
GIS models (namely CityGML). Even though low detailed CityGML models offer 
only a specific amount of information as well as a limited accuracy regarding geo-
metric representations, this data source is commonly used as a basis for energy sim-
ulations on neighborhood levels. Next to CityGML, more possibilities to exchange 
geospatial data are GeoJSON and Shapefile. Unfortunately, these data types do not 
provide schemas to further define building properties [ 20]. It is also worth men-
tioning KML (Keyhole Markup Language) as an alternative file format and data 
source for retrieving geometric and geospatial data. KML is used, for example, by 
Google to display geographic data in Google Earth and is based on the XML standard 
[ 21]. While the acquisition of geometrical data on neighborhood levels is well doc-
umented, existing reviews with profound discussions on non-geometric acquisition 
for UBEMs are lacking [ 10]. 

The quality of the simulation can be continuously improved by adding more known 
details as expected and by increasing its LOD. The influence of the different input 
parameters have been dissected through several sensitivity analyses [ 4, 9, 17, 18, 
22]. As an example, the authors in [ 4] showed the influence of different parameters 
on the quality of energy simulations by performing a sensitivity analysis through 
varying individual geometrical and physical factors. Therefore, they used six case 
study buildings of different building types. They found out that for the geometry, 
the deviation of between LOD1 and LOD2 models is smaller or equal to 10%, the 
comparison between LOD2 and LOD3 is again smaller than 12%. Furthermore, they 
varied parameters such as the windows-to-wall ratio, U-values of the walls among 
others. They concluded that depending on the data availability and assumptions 
being made, errors up to 80% could occur. For the user behavior parameters, errors 
up to 40% have been encountered. These numbers underline the necessity of having 
reliable underlying data for energy simulations. 

The authors from another study that is concerned with a sensitivity analysis is 
[ 9]. Here, the authors used a comprehensive neighborhood data set of approx. 8,600 
buildings from a city in Germany. They limited their analysis to the comparison of 
LOD1 and LOD2 representations, even though they looked at a considerably large 
dataset. The authors looked into the effect of varying parameters like the error of 
using LOD2 instead of LOD1 models, the role of basements, attics, window-to-wall 
ratio, air change behavior, internal gains, among others. Eventually, they come to a 
similar conclusion as the authors from [ 4]. They noted that the available LOD affects 
other parameters with sizable roles regarding the result of the energy simulation. Due 
to a lack of LOD3 data, they couldn’t assume their influence on the energy simulation 
result. Finally, they provided a ranking about must-have parameters (besides a LOD1
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city model), which are absolutely essential for doing neighborhood simulations, such 
as the building year of construction, the building function, refurbishment information, 
and residence type. Further information has a less impactful consequence when 
missing than these (error over 30%). 

However, since this assessment in both case studies have been done by the simu-
lation platform SimStadt, which is inferring information from data sets and bench-
marking data libraries [ 9], it may not be transferable to other simulation tools. 

2.2 Energy Simulations on Neighborhood Level 

The Building Energy Simulation Tools web directory (BEST-D) lists over 170 dif-
ferent tools to perform energy simulations. More than 50 can be used for a whole-
building energy simulation [ 23]. However, most building energy evaluation tools are 
for the analyses of individual buildings and require a high amount of data [ 4]. There 
are some tools that originated mostly from research projects, to overcome this prob-
lem. Popular ones, SimStadt, CitySim, UrbanSim and CityBES will be presented in 
the following. 

The urban simulation tool SimStadt and SimStadt 2.0 respectively was developed 
in research projects finished in 2015 and 2020. The platform analyzes districts or even 
regions regarding their heating requirements, photovoltaic studies, and renewable 
energy supply scenarios [ 24]. For that, it uses a bottom-up physic-based approach. 
Its focus was less on getting as accurate models as possible, but to provide a reliable 
simulation tool using existing data points for basic decision-making. It is validated 
through three case studies [ 25]. 

CitySim is another tool that tries to support urban energy planners to reduce energy 
consumption and emission of greenhouse gasses. It thereby provides the possibility 
to enrich geometrical buildings with thermophysical properties. The calculation is 
based on statistical values for occupants’ presence and behavior and offers typical 
HVAC systems. As a simulation engine, CitySim Solver was developed and comes 
with its own proprietary XML file format. The engine was validated in field studies 
[ 26]. 

City Buildings, Energy, and Sustainability (CityBES) is a web-based data and 
computing platform sponsored by Lawrence Berkeley National Lab. It uses CityGML 
as an open standard and is based on EnergyPlus as a simulation engine. The tool 
allows adding additional data like weather data, information about the building stock 
through CityGML and GeoJSON and further standards and codes. It supports sce-
narios like energy benchmarking and energy retrofit analysis [ 27]. 

As the literature review shows, many research projects are focusing on the devel-
opment of tools that can support city planners when it comes to energy related 
questions. However, it remains an open problem that for bottom-up approaches a 
significant amount of data is required. The research presented in this paper seeks to 
address this gap by identifying openly available data and enriching base models used 
for analysis, such as CityGML files.
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3 Methodology 

The main objective of this research is to investigate the relevance of the granularity 
in geometric and non-geometric building information for energy simulations on the 
neighborhood level, and to highlight the challenges in performing such simulations. 
For this aim, the research team conducted a thorough review of the related litera-
ture to understand the necessity of different impact factors when performing energy 
simulations for neighborhoods (Sect. 2). 

For understanding the information required to perform energy simulations, several 
energy simulation tools were reviewed, and the respective data gathering effort were 
identified. Based on this, a better understanding of a needed trade-off between the 
effort to gather the data and the accuracy of the energy simulation was gained. The 
results of this analysis are presented in Sect. 4.1. 

For the development of the neighborhood model state (NMS) concept, a CityGML 
model of the UBC campus was used as an example. In addition, models of the City 
of Vancouver were examined. These models were then decomposed into individual 
buildings and evaluated for their suitability for energy simulations and their LOD. 
BIMs of selected campus buildings were also used and compared to the CityGML 
models for accuracy. This ultimately allowed the identification of challenges and 
difficulties in neighborhood-level data collection. Based on the literature review 
and the conducted research, difficulties in data acquisition were crystallized and 
the concept of the neighborhood model states was developed which is presented in 
Sect. 4.2. 

The developed NMS concept was then applied to two representative example 
buildings of the UBC campus. The specific challenges resulting from those examples 
are discussed and presented in Sect. 4.3. 

4 Neighborhood Model States (NMS) 

4.1 Data Acquisition and Enrichment for Energy Simulation 
on Neighborhood Level 

As the authors in [ 7] state, energy simulations for neighborhoods can support decision 
makers to better prioritize effective retrofitting measures. Furthermore, the authors 
in [ 17] highlight that decision-makers need access to reliable quantification of the 
energy demand of all (or most of) buildings within a neighborhood to be able to have 
a correct assessment of the feasibility of district energy systems. 

When it comes to the shifting from single buildings to a higher scale, such as a 
neighborhood, there is a trade-off between the accuracy of the simulation outcomes 
and the ease of data acquisition and simplicity of compiling energy simulations. 
Although reaching the highest level of accuracy is desirable, the main purpose of 
such analyses is often identifying the low performing buildings in a neighborhood
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Fig. 1 Discrepancy between NMSs regarding the granularity of geometric and non-geometric 
information 

and choosing suitable investment strategies to address their performance deficien-
cies. In other words, a highly detailed energy simulation wouldn’t be necessarily 
required for this stage and such detailed analysis can be made once the specific low 
performing buildings are selected for the retrofitting process. At that time, compre-
hensive data collection from those specific buildings and a detailed energy analysis 
can be conducted. 

Therefore, while the granularity of building data can vastly vary from NMS1 
(rough GIS models) to NMS4 (detailed BIMs), when performing energy simulations 
for neighborhoods, the desired level of granularity in the data can settle somewhere 
between a rough geospatial representation and a highly detailed individual 3D visu-
alization as shown in Fig. 1. 

Since the highly granular models such as BIMs are currently not expected to be 
available for most neighborhoods, the question emerges as to what extent low LOD 
GIS models need to be enriched to achieve sufficient energy simulation outcomes 
for neighborhoods. On this basis, low performing buildings and their performance 
discrepancy to the other neighborhood buildings can be identified while considering 
the accessibility to the needed information. 

To answer this question, it is necessary to investigate whether changes, i.e. increas-
ing the accuracy in geometric data would lead to noticeable better results. The same 
investigation must be conducted for the non-geometric data as well. These investiga-
tions are not mutually exclusive, but the amount of efforts for theextra data acquisition
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and enrichment for each data point must be considered and evaluated to better under-
stand the trade-off between the reliability of the simulation outcomes and the ease 
of data acquisition. For this aim, the new classification of the neighborhood model 
states can be used to provide a better understanding of such trade-offs. 

4.2 Neighborhood Model States for Energy Simulations 

It is often the case that high granularity building data, including BIMs, are not avail-
able for the entire buildings of a neighborhood. On the other hand, there are numerous 
databases available that provide GIS models for many cities and their neighborhoods 
[ 17], which can be used for different neighborhood-based analyses. However, as for 
the energy simulations, the available GIS models are mostly limited to simple geo-
metric representations, and lack in non-geometric data, which potentially can lead to 
imprecise energy simulation results for neighborhoods [ 9]. This is especially critical 
when using energy simulators designed for working with detailed building models 
for the neighborhood analysis purposes. Therefore, GIS models need to be adjusted 
and enriched by adding more detailed information to be more suitable for energy 
simulation purposes. 

As discussed in Sect. 2, there are different interpretations of LOD when dealing 
with GIS models and BIMs. Furthermore, the LOD for GIS models can vary signif-
icantly depending on regions, and also each GIS LOD can be interpreted in multiple 
ways [ 18]. To avoid misinterpretations and inconsistencies, this research proposes a 
new classification for the different neighborhood model states based on the required 
geometric and non-geometric data for each state, in accordance with the difficulty 
of acquiring this data. 

This new classification demonstrates a gradual increase in the granularity of the 
geometric and non-geometric data, which ultimately can be used for high resolution 
energy modelings. In defining these model states, we paid extra attention to the readi-
ness and accessibility of each data point. In this classification, the NMS1 represents 
the lowest granularity of the data with the highest accessibility potential, while the 
NMS4 represents the highest granularity of the data and is comparable to the build-
ing data available in high detailed BIMs. The higher the level of NMS is, the more 
challenging the data acquisition gets so that NMS4 data can often be obtained only 
by having detailed building plans or conducting extensive in-situ explorations using 
LiDAR and other technologies. The details of the new proposed classification for 
neighborhood model states are shown in Table 2, where there is a distinction made 
between geometric and non-geometric data for each neighborhood model state.
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Table 2 Classification of the neighborhood model states (NMS) for energy simulations on neigh-
borhood level. 

NMS1 NMS2 NMS3 NMS4 

Geometric Geometric Geometric Geometric 

1) Rough geometry (. ≤
.LOD1a) 

1) Rough geometry 
(.≤ LOD1) 

1) Rough geometry (. ≤
LOD1). c

1) Rough geometry 
(.≤ LOD1) 

2) GIS position and 
orientation 

2) GIS position and 
orientation 

2) GIS position and 
orientation 

2) GIS position and 
orientation 

3) Rough zone 
determination 

3) Rough zone 
determination 

3) Rough zone 
determination 

3) Rough zone 
determination 

4) Partially 
fenes-tration ratio. b

4) Partially 
fenestration ratiob 

4) Partially 
fenestration ratiob 

5) Roof shape 5) Roof shape 5) Roof shape 

6) Full fenes tration 
ratio. a

6) Full fenestration 
ratioa 

7) Basement 

8) Exact window 
locations 

9) Inner layout & 
exact zones 

10) More accurate 
geometry (.≥ LOD3) 

Non-geometric Non-geometric Non-geometric Non-geometric 

a) Weather data a) Weather data a) Weather data a) Weather data 

b) Building usage type b) Building usage type b) Building usage type 

c) Year of construction c) Year of construction c) Year of construction 

d) Occupancy numbers d) Occupancy numbers d) Occupancy numbers 

e) Heating system e) Heating system 

f) Wall layers f) Wall layers 

g) Occupancy 
behavior 

h) Historical 
operational data (bills) 

i) Exact data of HVAC 
system 

. a In accordance with the CityGML 3.0 definition. 

.b2 WWR: Window-to-Wall Ratio. 

. c The dimensions of the geometry should be validated. 
Crossed: obsolete, replaced by a more accurate feature.
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Fig. 2 CityGML Model (LOD1, provided by UBC) of UBC Campus, Vancouver 

4.3 Challenges of Data Acquisition on the Example of UBC 
Buildings 

To discuss the data acquisition and its challenges for each NMS, an exemplary neigh-
borhood as a use case is selected. The chosen neighborhood is the campus of the 
University of British Columbia (UBC) in Vancouver, Canada. For this neighborhood, 
a low detailed CityGML GIS model is available (Fig. 2). Considering UBC as the 
exemplary neighborhood also has the convenience of having access to operational 
data when it comes to the validation of the simulations. 

As example buildings for the UBC neighborhood, the Engineering Student Center 
(ESC) as well as the Centre for Interactive Research on Sustainability (CIRS) were 
selected. The architecture of the ESC is simple and squares well regarding the com-
plexity. It was opened in 2015 as a break and study room for undergrad engineering 
students. The CIRS building however represents a complex geometry with a versatile 
facade, which was created as a case study building for an energy efficient building. 
The CIRS building was opened in 2011. 

The selected buildings will be used as examples in the following subsection, where 
the process of collecting geometric and non-geometric data and their respective 
challenges for the data acquisition for each NMS will be discussed. 

Neighborhood Model State 1 (NMS1). The geometry data for NMS1 is very basic 
and can be obtained from various sources, e.g. from municipalities, databases or 
operators of large facilities (such as universities, hospitals etc.). This can be GIS 
models such as CityGML models. These data are usually widely-used and easy to 
obtain, but they are mostly not more detailed than LOD1 (floor area and average 
height of the building). Therefore, the quality of the geometry may vary. As for 
the UBC sample buildings, the geometry of the CIRS building is very accurate. 
In contrast, the geometry of the ESC building in the GIS model is too small by a
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factor of 2 in each dimension, resulting in a significantly underestimated volume. The 
fact, that the building is surrounded by large buildings could be a contributor to this 
outcome. If the number of stories is determined by the average height of the building, 
these geometric inaccuracies can have an impact. Assuming an average story height 
of 3.00 m, the ESC building would have only one story, since it’s CityGML model 
height is 4.35 m. This is not the case, since the ESC building actually consists of 2 
stories. 

The originally GIS models usually do not come with many non-geometric infor-
mation and therefore an adjustment should be conducted. If the simulation should be 
run based on the available information of NMS1, many additional assumptions need 
to made, such as the layers of the walls, the building type, setpoint temperatures and 
the heating system. 

Neighborhood Model State 2 (NMS2). The NMS2 is based on NMS1, which is basi-
cally the rough CityGML geometry. In NMS1, important features like the Window-
To-Wall-Ratio (WWR) and information about the roof shape are usually missing. 
These should be added in NMS2. The fenestration of a building is a major feature 
for energy simulations, since it can have a significant influence on the U-Value of 
the building envelope. This is especially because windows usually have a higher heat 
transmission than the surrounding wall. 

Some non-geometric parameters such as building usage type, year of construction, 
and information about the number of occupants, are further features that can con-
tribute to a more reliable simulation. These parameters are often easy to access and 
therefore should be considered as model enrichment measures to reach NMS2. While 
the building type may be found in some NMS1 models, the year of construction and 
the number of occupants are usually not available. The building type can give hints 
for the schedule and density of the building occupants. The year of construction can 
be important, since the building envelope of a building could be estimated based on 
typical related archetypes. The number of occupants in accordance with the building 
schedule can have a significant impact on the simulation. 

Neighborhood Model State 3 (NMS3). If a rough WWR is known, influences like 
the orientation of the windows can be additionally considered for an even more accu-
rate simulation. The orientation of the windows can thereby have a significant impact 
on the heat transmission through the building envelope [ 28]. However, obtaining the 
orientation of the windows is even more challenging than the guessing of a rough 
WWR. Therefore, advanced algorithms might be necessary. Regarding the possible 
errors in the geometric representation, a check of the underlying model should be 
performed to ensure the basic geometry is correct. 

At this stage, further non-geometric parameters like the heating system and the 
wall layers should be considered more precisely. Thereby, it needs to be differenti-
ated between basically three common heating systems: district heating, fossil fuel 
based heating (gas, oil), and electric heat pumps. However, complex neighborhoods 
like UBC are also likely to have complex heating systems. In the example of the 
ESC building, the heating systems consist of a heat pump which is supported by dis-
trict heating. The heating system of the CIRS building is even more complex. Here
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multiple electrical heat pumps working together, and the system is even overarching 
multiple buildings that exchange heat. Identifying the exact layer composition of 
walls is a comparable challenge. Even for individual buildings, energy advisors need 
to guess the layers in case it is not even known to the homeowner. Due to the risk 
of releasing harmful particles like asbestos, energy advisors are urged to not drill or 
open the walls in any way for investigating the wall layers, which makes it nearly 
impossible to reliably determine the construction of the walls on a large scale. 

Neighborhood Model State 4 (NMS4). The last NMS is the most detailed one. 
It includes all the features that are necessary for a reliable energy simulation. That 
level of detail required for this NMS is comparable to the design BIM version of 
a building with an LOD of 300 and above. However, the data acquisition for this 
NMS is the most challenging one regarding the availability of the data and on a 
district level usually not feasible. Here, different additional data parameters can be 
considered, such as the information about a basement, accurate zone information, 
the inner layout, the exact heating system and the exact wall layers. This information 
is usually available in BIMs, however even here can be considerable differences 
between design, construction and as-build models. Also, non-geometric information 
like historical operational data and the accurate used heating system should be added 
to reach this enrichment. This information can be obtained from owners, but is usually 
not accessible on larger scales. Probably the most challenging part of the NMS4 is 
the acquisition of the occupancy behavior (such as ventilation habits or the actual 
desired temperature). 

5 Discussion 

As the conducted literature review showed, energy simulations on a neighborhood 
level can contribute to reducing the emission of greenhouse gasses and are a promis-
ing instrument to reach the self-imposed objectives in the fight against climate change. 
However, the literature also mentions when performing energy simulations on a large 
scale, it comes with problems that impact the reliability of the simulation. Therefore, 
the authors proposed a multi-stage approach to understand GIS model enrichment on 
a neighborhood level, the Neighborhood Model States (NMS) concept. This consists 
of four levels with increasing amounts of information, based on an initial (and usually 
low detailed) GIS model. The NMS levels are thereby oriented on the feasibility of 
gathering the additional information to enrich the basic GIS model. 

In the course of developing the NMS concept, many problems arose that under-
lined the challenges of enriching low level GIS models with reliable and accessible 
data. To demonstrate the concept, two representative buildings of the UBC campus 
were chosen, the ESC and the CIRS building. Even though both buildings came from 
the same CityGML model, one showed a significant underestimated volume. This 
can lead to not reliable energy simulations. However, these models usually serve as 
basis for neighborhood energy simulations and are used unverified, which is due to a
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lack of verification possibilities. This shows, that there is a strong need of algorithms 
which uses additional databases to further enhance GIS models. 

Since data availability is one of the most challenging problems when it comes to 
simulation on large scales, the authors also want to encourage further deployment of 
comprehensive and accessible databases. For neighborhoods, cities can serve as an 
example, where much more relevant data is being made available through open data 
platforms. 

To be able to do all these kinds of data enrichment, much manual work is required, 
and therefore it is not feasible to do it for multiple buildings on a large scale by hand. 
Based on this work, the authors are currently working on an automatization approach 
for enriching the individual buildings in a neighborhood. For this, they are working 
on AI algorithms to automatically extract window ratios and positions from openly 
available satellite images as well as on an automated dimension validation method. 
This will increase the reliability of the simulations significantly. Also, the authors 
aim to operationalize the NMS concept by scaling it to the extent of the UBC campus. 
Furthermore, the authors are interested in the investigation of the challenges in the 
data exchange between GIS models, UBEMs and energy simulation software. 
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