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Abstract Ancient bridges lack adequate maintenance strategies and public attention 
compared to modern bridges. The current bridge maintenance standards are tailored 
for modern bridges and cannot be directly applied to ancient bridge maintenance 
because of differences in structure designs and construction materials. Besides, due 
to the urban development and the evolution of traffic, the frequency of using the 
ancient bridges has tapered off; people gradually elided the maintenance of ancient 
bridges. Nevertheless, some ancient bridges still serve as integral hubs in the trans-
portation network and require more inspection due to their common features of 
aging structures and complex damage history. Previous studies have mainly applied 
sensor-based analysis for structural deformation problems in ancient bridge health 
monitoring. The mainstream inspection technologies include sonic transmission, 
radiography, infrared thermography, and ground-penetrating radar (GPR). However, 
these methods can only partially depict the interior condition of the bridge, and 
are time-consuming and complicated to implement in practice; their feasibility on 
ancient bridge maintenance is debatable. This paper proposes an image-based detec-
tion method to provide an effective solution for the maintenance of ancient bridges 
using Deep Neural Networks (DNNs). A masonry arch bridge in Hong Kong, built 
in the 1880s, was investigated. Unmanned Aerial Vehicles (UAVs) were deployed 
to collect the bridge surface information, and a 3D model generated with Structure 
from Motion (SfM) was preserved for further bridge health monitoring. In addition,
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an assessment criterion was purposed to evaluate the ancient bridge health condition, 
which is beneficial for the decision-making on ancient bridge maintenance. 

Keywords Ancient bridge maintenance · Deep Neural Networks (DNNs) ·
Unmanned Aerial Vehicles (UAVs) 

1 Introduction 

Bridges act as a significant role in linking one area to another, making it possible for 
the transportation network to expand and function. As a fundamental infrastructure of 
a nation, bridges are designed to carry pedestrians, road traffic, trains, or even canals 
for waterborne transport. Each day, thousands of cargos and people pass through 
the bridges; these activities create numerous economic values and keep people 
connected. Among the many types of bridges in the present world, beam bridges are 
the most general ones due to their cost-effectiveness. Cable-stayed bridges, suspen-
sion bridges, and arch bridges are also commonly built in many regions. Those 
bridges are mainly constructed with concrete, steel, and brick materials followed 
by modern standardizations, allowing them to be inspected systematically with the 
corresponding specifications. 

Bridge inspection is pivotal in civil infrastructure maintenance, enabling engineers 
to discern trivial defects and potential problematic regions before they grow into irre-
trievable issues. Despite the difference in regulations and practices around the world, 
inspecting a bridge is mandated at least once every two years in most countries [1]. 
The inspection procedure is conventionally carried out by the bucket truck, which is 
also known as the “snooper truck” [2]. At its core, a man-carrying bucket is fitted at the 
end of the hydraulic pole on the truck, where the workers can complete their inspec-
tion jobs safely on the lifted bucket underneath the bridge. There are four mainstream 
bridge inspection methods: superficial, routine, principal, and special inspections [3]. 
Routine and principal inspections refer to periodic and detailed inspections, where 
special inspection is applied to investigate the specific bridge problems. During the 
inspection, inspectors often use four common techniques; they are visual, acoustic, 
thermal, and ground-penetrating radar [3]. 

In contrast to modern bridges, there were no consistent standards for the construc-
tion of ancient bridges. The earliest bridges were spans made of wooden planks or 
stones with simple supports and crossbeam arrangements. The origin of arch bridges 
can be traced back to the Roman Empire thousands of years ago, some of which 
are still standing today. In European countries, many stone arch bridges remained 
a crucial component of modern transportation networks. Brick and mortar bridges 
were later invented, and rope bridges were found to be used in South America in the 
1500 s. During the eighteenth century, engineers designed timber bridges, followed 
by the development of steel bridges in the nineteenth century after the emergence 
of the Industrial Revolution. Up to now, the arch bridge is the one with the greatest 
number preserved by relatively intact structures amidst all ancient bridges. Two
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typical examples are the Pons Fabricius Bridge [4] in Italy and the Anji Bridge [5] in  
China, which were built in 62 B.C. and 605 A.D., respectively. Due to its distinctive 
design and prominent performance of resistance, the arch bridge is still considered 
one of the most popular solutions to span a river, valley, or gorge nowadays. However, 
unlike modern arch bridges built from reinforced steel and concrete, ancient arch 
bridges were prevailing constructed with natural materials, which limited their plia-
bility. With repeated applied stresses and the effects of efflorescence, disintegration 
and cracking may occur over time between the mortar and the natural materials, 
leading to structural problems in ancient arch bridges. Because of its representative-
ness among ancient bridges, a masonry arch bridge was investigated as the research 
subject in this paper. 

It is generally known that the longer the time, the greater the opportunity of 
the object being damaged, and this also applies to ancient bridges. Ancient bridges 
have accumulated more injuries than modern ones and undertook many circles of 
stresses to their surfaces and internal structures. Therefore, it is imminent to see 
that additional maintenance is added to prolong the lifespan of ancient bridges. 
Unfortunately, current specifications only focus on the inspection and maintenance 
of recently built bridges, while the maintenance of ancient bridges lacks explicit 
provisions. One reason is that variations in characteristics such as modality, material, 
age, and span make ancient bridges difficult to be classified. Another ground is that 
the use of bridges built earlier as main transport arteries is becoming less and less 
frequent, as the development of advanced transportation networks relied more on 
modern bridges in the present day. So far, many countries and regions have begun 
to pay more attention to the maintenance of ancient bridges, as many are still being 
used as the main traffic routes. However, the problem of lacking inspection remained 
unaddressed in the overwhelming number of ancient bridges around the world. 

2 UAV-Based Ancient Bridge Inspection 

2.1 Background of UAV-Based Inspection 

Although traditional inspection tasks are performed by professional inspectors, it 
still faces the problems of low efficiency and high cost [6, 7]. One major challenge in 
the inspection task is the difficulty of accessing the corner and bottom of the bridge. 
Another challenge is the complex environment during the bridge inspection process. 
In some cases, the inspection work consumes considerable time to inspect all the 
details of the bridge. Safety is another concern, while falling from the bridge would 
be a fatal accident [7]. 

With the development of aerial robotics, UAVs (Unmanned Aerial Vehicles) offer 
bridge inspectors a solution to overcome the problems discussed above. UAVs, by 
another name, are drones and can be defined as a class of automated or remotely 
controlled aircrafts. Nowadays, most commercial drones are equipped with wireless
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transmission and camera systems. The operator can visualize and capture the images 
by the remote controller, which can protect the inspectors from danger. Due to the 
drone’s highly autonomous controller and agile flying ability, it can improve its 
working efficiency significantly [8]. The UAV can be divided into several types, 
including fixed wing, airship, helicopter, and multirotor [8, 9]. Researchers have 
tried different platforms for the inspection task. Fixed-wing drones are suitable for 
long-distance and large-scale surveys, but inspecting the side of constructions is 
strenuous. Meanwhile, airship and helicopter drones are inappropriate for conducting 
civil infrastructure inspections due to their massive size. Multirotor drones can take 
off and land vertically in a tiny space and hover stably in the air. With the assistance 
of gimbals, multirotor can take images from different angles. Benefiting from these 
advantages, the multirotor is more suitable for bridge inspection tasks. 

Today, UAVs are used in civil engineering to solve various problems with high-
definition cameras. Kumar et al. [10] employed the UAV to perform the damage 
detection task and achieved the automatic detection pipeline. Ellenberg et al. [11] 
developed a monitoring system for the bridge using UAV. Costa [12] and Álvares [6] 
applied the UAV in the working progress monitoring and safety checking. Predictably, 
the use of UAVs in the construction industry will increase in recent years with the 
innovation of technology; this trend can further promote the application of UAVs 
becoming more sophisticated in civil engineering fields, such as bridge inspection. 

2.2 Significance of UAV-Based Inspection for Ancient 
Bridges 

UAVs are flexible platforms that can inspect areas inaccessible to manual inspectors. 
In manual inspection, regions such as corners, bearing connections, and underneath 
bridge regions are difficult from being viewed by inspectors due to spatial constraints. 
The bridge inspection truck, also named the “snooper truck”, will be employed to 
inspect those hard-to-reach regions. For some ancient bridges, the primary issue is 
the difficulty of deploying the snooper truck to the work site. One reason is the 
concern of potential deficiencies caused by structural deterioration, where some 
ancient bridges may not be able to withstand the load of a truck; another is due to 
environmental and geometric limitations of the bridge. For example, it is challenging 
for a working platform on an inspection truck to pass under narrow or various ancient 
bridge structures. Accordingly, many ancient bridges are still not well inspected 
despite the massive development of today’s bridge inspection technologies. 

Nowadays, it is a norm to apply non-destructive testing (NDT) [13] techniques for 
ancient bridge inspection and monitoring. NDT methods are prevalently adopted in 
civil engineering surveys because they do not introduce any damage to the struc-
ture of infrastructures. NDT methods for ancient bridge inspection applications 
include infrared thermography [14], sonic transmission [15], seismic reflection [16],
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ground-penetrating radar (GPR) [17], electrical impedance tomography [18], radio-
graphy [19], and laser scanning [20]. Different NDT approaches have their unique 
operational principles:

. Infrared thermography discovers the subsurface defects based on the radiant 
energy captured by the specialized camera;

. Sonic transmission and seismic reflection can investigate the internal flaws using 
sound waves;

. Ground-penetrating radar detects the irregularities in the subsurface with radar 
pulses;

. Electrical impedance tomography allows the formation of 3D tomographic images 
for particular body parts by measuring the surface electrical properties;

. Radiography records the internal view of an object by penetrating it with 
electromagnetic radiation;

. Laser scanning describes the object surface by generating its 3D point clouds with 
laser beams. 

However, adopting the above NDT methods for ancient bridge inspection normally 
requires professional knowledge and skills. Their implementation is also accompa-
nied by excessive time consumption for equipment manipulation and data analysis. 
Furthermore, their application in bridge inspection is significantly restricted by the 
surrounding environment and equipment size. Lastly, the limited interior bridge infor-
mation obtained by most sensor-based technologies during each detection can hardly 
be utilized to assess the health of entire ancient bridge. Hence, employing a vision-
based inspection of the ancient bridges is more straightforward and efficient than 
using the sensor-based NDT methods. 

The UAV-based inspection provides an effective solution to the ancient bridge 
inspection as three major advantages brought by this robotic application: access to 
more informative data, faster inspection speed, and safer working environment. In 
many cases, inaccessible areas can be inspected by adjusting the angle of the mounted 
camera and the aerial position of the UAVs, which provides adequate information 
for a comprehensive assessment of bridge health. Concurrently, UAVs allow faster 
inspections than human inspectors due to their inherent high maneuverability and 
wider field of view. Most importantly, the entire inspection was carried out using the 
UAVs without imposing any load on the bridge. The deployment of UAVs to inspect 
ancient bridges does not cause any damage to the structure, which further ensures the 
safety of the inspection procedure. In general, due to the various benefits offered by 
UAV applications, it is possible to make UAV-based inspections a universal approach 
for most ancient bridge inspections. 

2.3 Crack Segmentation 

Today, implementing deep neural networks has become a trend in engineering appli-
cations because it can solve the problems of low efficiency and impracticality faced
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by traditional industries. In traditional bridge inspection, detecting defects is labo-
rious, while using deep learning models can detect bridge defects automatically with 
higher efficiency and accuracy. In this research, the segmentation network U-Net [21] 
is employed, instead of using the object detection networks. Because the bounding 
box given by the object detection network will contain multiple objects in the same 
box, the operator may be confused when detecting defects using this method. For 
segmentation, a pixel-wise mask is generated for each object in the image, where 
irrelated issues will be excluded. Two popular architectures, VGG16 and ResNet_ 
101, are used as transfer learning architectures to enhance the model performance 
in this research. U-Net, known as its “U”-shaped structure, is a typical segmentation 
model that can be simply viewed as two parts. The first part of U-Net is used for 
the feature extraction, while the second part is the feature convergence network. The 
output of the U-Net model has the same size as the input image with high resolution, 
and each pixel is classified into a certain class. 

2.4 Evaluation Metrics 

To evaluate the performance of the proposed models, the evaluation metric is adopting 
IoU (Intersection over Union) and Dice, where Dice is also called “F1 score”. For 
object detection methods, the typical evaluation metrics are precision and recall, 
which represent the correct prediction rate in positive samples and ground truth, 
respectively. It is inappropriate to use precision and recall in a segmentation problem 
because they cannot describe the classification of pixels. The IoU and Dice metrics 
are used in segmentation problems as they represent the overlapping between the 
predicted output and target mask. In general, the Dice coefficient often gives a higher 
score than the IoU. Below are the expressions of IoU and Dice: 

I oU  = T P  

T P  + FN  + FP  
(1) 

Dice = 2 × T P  

(T P  + FN  ) + (T P  + FP) 
(2) 

In this paper, TP (True Positive) indicates the prediction of a defect on the ancient 
bridge is correct; TN (Ture Negative) indicates the prediction of a non-defect object 
is correct; FP (False Positive) represents the prediction of a defect on the ancient 
bridge is wrong; FN (False Negative) represents the prediction of a non-defect object 
is wrong.
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2.5 3D Modelling of Ancient Bridges 

A 3D model of the target bridge will be generated using the images captured by UAVs, 
and the digital bridge information can be stored in the database for bridge health 
monitoring in due course. After acquiring the bridge images from UAVs, the method 
of Structure from Motion (SfM) [22] will be employed to reconstruct the 3D model of 
ancient bridge. Using techniques such as Scale-Invariant Feature Transform (SIFT) 
or the Speeded-Up Robust Features (SURF), correspondences between images can 
be determined, and a 3D model of the bridge can be generated as a result. In SIFT, 
the points of interest of the objects are first detected and stored in the database. Then, 
features extracted from new images were used to compare with the key points in the 
database to find the matches based on Euclidean distance. A feature enhancement 
approach, Difference of Gaussians (DoG), is applied to obtain the features from 
the images. Knowing the match information and filtering out false matches, the 
object location, scale, and orientation can be computed. With sufficient matches and 
feature trajectories, the 3D positions of the object can be determined, along with the 
parameters for camera pose and calibration. Eventually, two-dimensional imagery 
information can be converted into three-dimensional form. 

2.6 Ancient Bridge Maintenance 

Based on the obtained detection results and the 3D reconstruction model, successive 
bridge maintenance strategies can be introduced as the defect information has been 
revealed. However, there is no standard specification for the maintenance of ancient 
bridges. In this paper, an evaluation criterion of health conditions for ancient bridges 
and the corresponding maintenance strategies are proposed for reference. First, the 
health condition of the ancient bridge can be classified into 1 to 5 levels. Level 1 
indicates the bridge is in good condition, and so on; level 5 indicates that the bridge 
has critical problems and cannot be used. The criteria of the ancient bridge health 
condition assessment are listed in Table 1. The assessment is referenced to the modern 
bridge appraisal; the difference is that each ancient bridge has a different degree 
of deterioration. With the assessment of the bridge health level, the corresponding 
measurements can be determined. Table 2 shows the possible defects and the causes 
for these phenomena and provides solutions for each health level of the ancient 
bridges.

Worth mentioning, all ancient bridges were not designed to carry the modern 
traffic volume, but using ancient bridges as the main transport networks is prevalent 
in some regions. For example, some ancient bridges were assigned traffic volumes 
including pedestrians, cars, and heavy trucks; some century-old bridges have been 
incorporated into the railway system and given the mission of rail transportation. 
Bridges in these conditions require particular cautiousness and extra attention, as 
structural deformation can easily occur when ancient bridges experience unexpected
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Table 1 Definition of health condition levels of ancient and modern bridges 

Health 
condition 
level 

Description of ancient bridge Description of modern bridge 

1 Minimal deterioration; no major impact on 
bridge functions 

Well condition; robust functionality 

2 Mild deterioration; capable to maintain normal 
functions 

Minor defects; no major impact on 
bridge functions 

3 Moderate deterioration; pedestrian passage 
allowed; additional loading not recommended 

Moderate defect; capable to 
maintain normal functions 

4 Severe deterioration; normal use cannot be 
guaranteed 

Severe defects on major 
components; normal use cannot be 
guaranteed 

5 Critical deterioration; out of service Critical defects on major 
components; out of service 

Table 2 Possible defects of ancient bridges with different health condition levels and corresponding 
maintenance measures 

Health 
condition level 

Possible defects Possible causes Maintenance measures 

1 A small number of 
cracks, plants, minor 
spalling, or other defects 
on the bridge surface 

Aging process; 
environmental effects 
such as sunlight, rain, 
and wind, etc 

Maintain regular 
inspection 

2 Some defects such as 
cracks, spalling, plants, 
molds, and efflorescence 
on the bridge surface/ 
subsurface; 
no structural deficiency 

Aging process; 
environmental effects 
such as sunlight, rain, 
and wind, etc 

Carry out detailed 
inspection on demand 

3 Some deteriorations on 
bridge surface; mild 
structural deficiencies 

Aging process; 
environmental effects; 
long-term loading 

The bridge should not be 
subjected to heavy loads; 
restoration works need to 
be settled soon 

4 Severe deteriorations on 
bridge surface; several 
structural deformities 

Aging process; 
long-term loading; 
environmental effects; 
transient loading due to 
the modern traffic 

Prohibit bridge 
accessibility; carry out 
rehabilitation work as 
soon as possible 

5 Critical deterioration on 
bridge surface; severe 
structural deformities on 
bridge components 

Aging process; transient 
loading; natural disasters 
such as land sliding, 
heavy storms, flood, etc 

Restrict all access; 
consider demolishing the 
bridge or permanently 
banning its use
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loads. In general, most ancient bridges are experiencing the slow effects of envi-
ronmental problems such as sunlight and rain. It is inevitable to induce a gradual 
deterioration of bridge components and triggers many potential problems for the 
entire bridge structure. 

3 Experiment 

3.1 Site Condition 

The experimental site was chosen the stone bridge located at Tai Tam Tuk Reser-
voir, Hong Kong. The Tai Tam Reservoir Stone Bridge was built in 1888 as an arch 
bridge with vehicular and pedestrian access. Since the bridge has constructed about 
130 years, the surface has been covered with plants, mosses, and molds. Below the 
bridge is a reservoir, where the water level rises or falls with the seasons. Due to the 
water level and the limited arch space, performing traditional manual inspection for 
the Tai Tam Stone Bridge is not feasible. Moreover, applying other inspection tech-
nologies to the entire bridge, such as laser scanning, sonic tomography, or ground-
penetrating radar is not applicable as there is no appropriate space for equipment 
installation and operation. Thus, conducting a UAV-based inspection is preferred in 
this experiment because UAVs can not only eliminate the effects caused by geometric 
constraints but also provide information about the bridge from different perspectives 
(Fig. 1).

3.2 Implementation of RTK 

The DJI Phantom 4 RTK and D-RTK 2 station were used in the experiment to achieve 
better UAV positioning performance. RTK [23] is known as Real Time Kinematics, 
a technique for correcting GNSS (Global Navigation Satellite System) errors. The 
accuracy of RTK is measured in centimeters compared to the positioning accuracy 
of GPS (Global Positioning System), which is measured in meters. In general, the 
location of an object is computed by calculating the distance from satellites to the 
GNSS receiver. The distance is related to the speed of the travelling signal and is 
often accompanied by a delay caused by the Earth’s atmosphere. These delays will 
induce computational errors in signal propagation, so GNSS receivers cannot provide 
data with better than meter-level accuracy. In RTK, there are two receivers: one is 
the static station fixed at a specific location, and another is the rover responsible for 
data collection. In this paper, rover refers to the DJI Phantom 4 drone. In addition, 
the RTK station can be replaced by an NTRIP (Networked Transport of RTCM via 
Internet Protocol) service in certain scenarios. The GNSS errors can be eliminated 
when two receivers in close proximity because signals observed by the two receivers
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Fig. 1 Tai Tam Stone Bridge

can be treated as identical. Furthermore, to achieve centimeter-level accuracy, RTK 
uses carrier phase measurement to resolve the integer ambiguity problem. Carrier 
phase measurement is an advanced technique for calculating the phase of the signal 
wavelength; the distance between the satellite and the GNSS receiver can be deter-
mined accurately. In the experiment, owing to the high real-time precision of RTK, 
the data acquisition is relatively safe and facilitates the post-processing of data. In 
addition, the 3D reconstruction accuracy using SfM is further promised (Fig. 2).

3.3 Dataset and Operational System 

In this paper, around 11,200 images from several public datasets [24–29] were used, 
and all images were resized to 448 × 448. A total of 271 labeled images of the 
Tai Tam Stone Bridge taken by UAVs were utilized to test the proposed method. In 
practice, the model will have good performance if the image contains only cracks 
and a pure background. However, detecting cracks and other defects is intricate in 
reality as different objects will appear in the same image. To improve the robustness 
of the proposed method, the images involved in the training include the categories:

. Pure cracks;

. Cracks with moss;

. Cracks with blocky surfaces;
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Fig. 2 a D-RTK 2 mobile station b working principle of RTK

. Cracks in a large context. 

The experiment is conducted in an environment of Intel Core i7-6700 CPU @ 
3.4 GHz × 8, and an NVIDIA GeForce GTX 1070 GPU. It is clear that the operating 
system used in this research is generic, which demonstrates the universality of the 
proposed approach, as its replication cost is affordable. 

4 Result and Discussion 

The results obtained from the two proposed models are shown in Table 3. The IoU and 
Dice coefficients of UNet_VGG16 are 0.4727 and 0.6012, while for UNet_ResNet_ 
101, the values of IoU and Dice are 0.3792 and 0.5021. Apparently, the combination 
of U-Net with transfer learning of VGG16 is outperforming the U-Net with ResNet_ 
101. Examples of detection results are shown in Fig. 3. The outcomes indicate that the 
proposed methodology can significantly localize the cracks in the images. A model 
based on SfM has been created to provide a comprehensive view of the Tai Tam Stone 
Bridge. Figure 4 shows the geometric bridge model, which is reconstructed using the 
software “ContextCapture” from Bentley. As shown in the figure, the reconstructed 
model with the aid of RTK is rich in detail. According to the detection results and the 
information observed from the 3D model, the health condition of the Tai Tam Stone 
Bridge is evaluated as level 2. The bridge has experienced mild deterioration and 
can still undertake loads from vehicles and pedestrians. Some cracked areas, such 
as the main road of the Tai Tam Stone Bridge, require to be examined in detail. The 
following inspection can be carried out by NDT methods, such as chain dragging and



14 Z. Liang et al.

Table 3 Performance of the 
proposed models Model IoU Dice 

UNet_VGG16 0.4727 0.6012 

UNet_ResNet_101 0.3792 0.5021 

hammer sounding to identify the delamination areas under the cracks by listening to 
the sounds produced by vibrations. 

Fig. 3 Example of detection results for bridge flank wall and deck images a original images 
b detection results obtained by UNet_VGG16 c detection results obtained by UNet_ResNet_101 

Fig. 4 3D model of Tai Tam Stone Bridge
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Essentially, datasets in this research contain cracks in different occasions and 
backgrounds to achieve the goal of generalization, but the concomitant is a decline 
in the algorithm performance. Another concern regarding the model performance is 
that the cracks with different backgrounds are not evenly distributed in the training 
dataset. Last but not least, a problem revealed in this research is the lack of ancient 
bridge images for training purposes. In future studies, the research direction could 
be focused on developing a model capable of detecting multiple defects with higher 
accuracy. Correspondingly, it requires more data to facilitate more robust predictive 
performance to better solve the ancient bridge inspection problem. Collecting more 
images of ancient bridges and building relevant datasets is of great significance for 
the future image-based maintenance of ancient bridges. 

In this experiment, it is noteworthy that UNet_VGG16 outperforms UNet_ 
ResNet_101, which is against common cognitions. Theoretically, the deeper or more 
complex the network, the better the model performance. As the transfer learning part 
of the model, ResNet_101 is expected to conquer VGG16 because ResNet_101 has 
101 layers, while VGG16 contains only 16 layers. Additionally, ResNet (Residual 
Network) has been proven to surpass VGG in many image detection studies because it 
solved the problem of gradient vanishing and exploding by introducing the shortcut 
connection, whereas plain networks such as VGG always suffer from such prob-
lems. However, the application of more advanced techniques does not make a model 
perform better to some specific problems. Most deep learning models are developed 
to solve problems observed in previous models, which cannot be simply inferred 
that it will appear to work well on other occasions. Moreover, the detection process 
is performed by U-Net, and the impact that transfer learning brings to the perfor-
mance of the final model is elusive. Thus, it is not impossible for UNet_VGG16 to 
outperform UNet_ResNet_101. 

5 Conclusion 

This paper proposes an integrated method using UAV images for ancient bridge 
maintenance. A criterion for the health condition of ancient bridges is established, and 
corresponding measures are suggested for each health status. An ancient stone bridge 
in Tai Tam Tuk Reservoir was chosen for the experiment. As a reservoir surrounds 
the bridge and the inspection truck is not available to enter, employing UAVs has 
become the primary option for the inspection. Defects on the bridge were segmented 
using U-Net with transfer learning of VGG16 and ResNet_101. The results indicate 
that the performance of UNet_VGG16 is better than the combination of U-Net with 
ResNet101. To improve the inspection performance, RTK was introduced in the 
experiment to enhance the localization accuracy. Additionally, based on the SfM, 
a 3D model is generated using UAV images to further monitor the target bridge. 
With the obtained detection results and 3D model, the health condition of the ancient 
bridge can be eventually assessed.
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In summary, the proposed methodology can provide useful guides to ancient 
bridge maintenance. The UAV image-based inspection is considered beneficial in 
ancient bridge inspection regarding automation, flexibility, and inspection deliver-
ability. In future research, by enhancing the detection model and acquiring more 
ancient bridge images, UAV image detection can become more sophisticated and 
thus can be expected to serve as a universal solution for the maintenance of ancient 
bridges. 
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