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Abstract. To react to unforeseen circumstances or amend abnormal situations
in communication-centric systems, programmers are in charge of “undoing” the
interactions which led to an undesired state. To assist this task, session-based lan-
guages can be endowed with reversibility mechanisms. In this paper we propose
a language enriched with programming facilities to commit session interactions,
to roll back the computation to a previous commit point, and to abort the session.
Rollbacks in our language always bring the system to previous visited states and
a rollback cannot bring the system back to a point prior to the last commit. Pro-
grammers are relieved from the burden of ensuring that a rollback never restores a
checkpoint imposed by a session participant different from the rollback requester.
Such undesired situations are prevented at design-time (statically) by relying on a
decidable compliance check at the type level, implemented in MAUDE. We show
that the language satisfies error-freedom and progress of a session.

1 Introduction

Reversible computing [1,26] has gained interest for its application to different fields:
from modelling biological/chemical phenomena [18], to simulation [29], debug-
ging [13] and modelling fault-tolerant systems [11,19,32]. Our interest focuses on this
latter application and stems from the fact that reversibility can be used to rigorously
model, implement and revisit programming abstractions for reliable software systems.

Recent works [4,6,24,25,30] have studied the effect of reversibility in
communication-centric scenarios, as a way to correct faulty computations by bringing
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back the system to a previous consistent state. In this setting, processes’ behaviours are
strongly disciplined by their types, prescribing the actions they have to perform within
a session. A session consists of a structured series of message exchanges, whose flow
can be controlled via conditional choices, branching and recursion. Correctness of com-
munication is statically guaranteed by a framework based on a (session) type discipline
[16]. None of the aforementioned works addresses systems in which the participants
can explicitly abort the session, commit a computation and roll it back to a previous
checkpoint. In this paper, we aim at filling this gap. We explain below the distinctive
aspects of our checkpoint-based rollback recovery approach.

Linguistic Primitives to Explicitly Program Reversible Sessions. We introduce three
primitives to: (i) commit a session, preventing undoing the interactions performed so far
along the session; (ii) roll back a session, restoring the last saved process checkpoints;
(iii) abort a session, to discard the session, and hence all interactions already performed
in it, thus allowing another session of the same protocol to start with possible different
participants. Notice that most proposals in the literature (e.g., [2–4]) only consider an
abstract view, as they focus on reversible contracts (i.e., types). Instead, we focus on
programming primitives at process level, and use types for guaranteeing a safe and
consistent system evolution.

Asynchronous Commits. Our commit primitive does not require a session-wide syn-
chronisation among all participants, as it is a local decision. However, its effect is on
the whole session, as it affects the other session participants. This means that each par-
ticipant can independently decide when to commit. Such flexibility comes at the cost
of being error-prone, especially considering that the programmer has not only to deal
with the usual forward executions, but also with the backward ones. Our type discipline
allows for ruling out programs which may lead to these errors. The key idea of our app-
roach is that a session participant executing a rollback action is interested in restoring
the last checkpoint he/she has committed. For the success of the rollback recovery it
is irrelevant whether the ‘passive’ participants go back to their own last checkpoints.
Instead, if the ‘active’ participant is unable to restore the last checkpoint he/she has cre-
ated, because it has been replaced by a checkpoint imposed by another participant, the
rollback recovery is considered unsatisfactory.

In our framework, programmers are relieved from the burden of ensuring the sat-
isfaction of rollbacks, since undesired situations are prevented at design time (stati-
cally) by relying on a compliance check at the type level. To this aim, we introduce
cherry-pi (checkpoint-based rollback recovery pi-calculus), a variant of the session-
based π-calculus [17,36] enriched with rollback recovery primitives. We present here
a binary version of the calculus, which is more convenient to demonstrate the essence
of our rollback recovery approach; the proposed approach can be seamlessly extended
to multiparty sessions (see the companion technical report [27] available online). A
key difference with respect to the standard binary type discipline is the relaxation of
the duality requirement. The types of two session participants are not required to be
dual, but they will be compared with respect to a compliance relation (as in [5]), which
also takes into account the effects of commit and rollback actions. Such relaxation
also involves the requirements concerning selection and branching types, and those
concerning branches of conditional choices. The cherry-pi type system is used to
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infer types of session participants, which are then combined together for the compli-
ance check.

Reversibility in cherry-pi is controlled via two specific primitives: a rollback one
telling when a reverse computation has to take place, and a commit one limiting the
scope of a potential reverse computation. This implies that the calculus is not fully
reversible (i.e., backward computations are not always enabled), leading to have prop-
erties that are relaxed and different with respect to other reversible calculi [9,10,21,30].
We prove that cherry-pi satisfies the following properties: (i) a rollback always brings
back the system to a previous visited state and (ii) it is not possible to bring the com-
putation back to a point prior to the last checkpoint, which implies that our commits
have a persistent effect. Concerning soundness properties, we prove that (a) our compli-
ance check is decidable, (b) compliance-checked cherry-pi specifications never lead
to communication errors (e.g., a blocked communication where there is a receiver with-
out the corresponding sender), and (c) compliance-checked cherry-pi specifications
never activate undesirable rollbacks (according to our notion of rollback recovery men-
tioned above). Property (b) resembles the type safety property of session-based calculi
(see, e.g., [36]), while property (c) is a new property specifically defined for cherry-pi.
The technical development of property proofs turns out to be more intricate than that of
standard properties of session-based calculi, due to the combined use of type and com-
pliance checking. To demonstrate feasibility and effectiveness of our rollback recovery
approach, we have concretely implemented the compliance check using the MAUDE
[8] framework (the code is available at https://github.com/tiezzi/cherry-pi).

Outline. Section 2 illustrates the key idea of our rollback recovery approach; Sect. 3
introduces the cherry-pi calculus; Sect. 4 introduces typing and compliance checking;
Sect. 5 presents the properties satisfied by cherry-pi; Sect. 6 concludes the paper with
related and future work. Omitted rules, extension to multiparty sessions, proofs of the
results, and a further example are reported on the companion technical report [27].

2 A Reversible Video on Demand Service Example

We discuss the motivations underlying our work by introducing our running example,
a Video on Demand (VOD) scenario. The key idea is that a rollback requester is satis-
fied only if her restored checkpoint was set by herself. In Fig. 1(a), a service (S) offers
to a user (U) videos with two different quality levels, namely high definition (HD) and
standard definition (SD). After the login, U sends her video request, and receives the cor-
responding price and metadata (actors, directors, description, etc.) from S. According to
this information, U selects the video quality. Then, she receives, first, a short test video
(to check the audio and video quality in her device) and, finally, the requested video. If
the vision of the HD test video is not satisfactory, U can roll back to her last checkpoint
to possibly change the video quality, instead in the SD case U can abort the session.

Let us now add commit actions as in the run shown in Fig. 1(b). After receiving the
price, U commits, while S commits after the quality selection. In this scenario, however,
if U activates the rollback, she is unable to go back to the checkpoint she set with her
commit action because the actual effect of rollback is to restore the checkpoint set by
the commit action performed by S.

https://github.com/tiezzi/cherry-pi
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Fig. 1. VOD example: (a) a full description without commit actions; (b, d) runs with undesired
rollback; (c) a run with satisfactory rollback.

In the scenario in Fig. 1(c), instead, S commits after sending the price to U. In this
case, no matter who first performed the commit action, the rollback results to be satis-
factory. Also if S commits later, the checkpoint of U remains unchanged, as U performed
no other action between the two commits. This would not be the case if both U and S
committed after the communication of the metadata, as in Fig. 1(d). If S commits before
U, no rollback issue arises, but if U commits first it may happen that her internal decision
is taken before S commits. In this case, Uwould not be able to go back to the checkpoint
set by herself, and she would be unable to change the video quality.

These undesired rollbacks are caused by bad choices of commit points. We propose
a compliance check that identifies these situations at design time.

3 The cherry-pi Calculus

In this section, we introduce cherry-pi, a calculus (extending that in [36]) devised for
studying sessions equipped with our checkpoint-based rollback recovery mechanism.

Syntax. The syntax of the cherry-pi calculus relies on the following base sets: shared
channels (ranged over by a), used to initiate sessions; session channels (ranged over by
s), consisting of pairs of endpoints (ranged over, with a slight abuse of notation, by s,
s̄) used by the two parties to interact within an established session; labels (ranged over
by l), used to select and offer branching choices; values (ranged over by v), including
booleans, integers and strings (whose sorts, ranged over by S, are bool, int and str,
respectively), which are exchanged within a session; variables (ranged over by x, y, z),
storing values and session endpoints; process variables (ranged over by X), used for
recursion.

Collaborations, ranged over by C, are given by the grammar in Fig. 2. The key
ingredient of the calculus is the set of actions for controlling the session rollback.
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Fig. 2. cherry-pi syntax.

Actions commit, roll and abort are used, respectively, to commit a session (produc-
ing a checkpoint for each session participant), to trigger the session rollback (restor-
ing the last committed checkpoints) or to abort the whole session. We discuss below
the other constructs of the calculus, which are those typically used for session-based
programming [15]. A cherry-pi collaboration is a collection of session initiators, i.e.
terms ready to initiate sessions by synchronising on shared channels. A synchronisation
of two initiators ā(x).P and a(y).Q causes the generation of a fresh session channel,
whose endpoints replace variables x and y in order to be used by the triggered pro-
cesses P and Q, respectively, for later communications. No subordinate sessions can be
initiated within a running session.

When a session is started, each participant executes a process. Processes are built up
from the empty process 0 and basic actions by means of action prefix . , conditional
choice if e then else , and recursion μX. . Actions x!xey and y?(z : S) denote output
and input via session endpoints replacing x and y, respectively. These communication
primitives realise the standard synchronous message passing, where messages result
from the evaluation of expressions, which are defined by means of standard operators
on boolean, integer and string values. Variables that are arguments of input actions are
(statically) typed by sorts. There is no need for statically typing the variables occur-
ring as arguments of session initiating actions, as they are always replaced by session
endpoints. Notice that in cherry-pi the exchanged values cannot be endpoints, mean-
ing that session delegation (i.e., channel-passing) is not considered. Actions x Ÿ l and
x Ź {l1 : P1, . . . , ln : Pn} denote selection and branching (where l1, . . . , ln are
pairwise distinct).

Example 1. Let us consider the VOD example informally introduced in Sect. 2. The
scenario described in Fig. 1(a) with commit actions placed as in Fig. 1(b) is rendered in
cherry-pi as CUS “ login(x). PU | login(y). PS, where:

PU “ x!xvreqy. x?(xprice : int). commit. x?(xmeta : str). if (feval(xprice, xmeta))
then x Ÿ lHD. x?(xtestHD : str).

(if (fHD(xtestHD)) then x?(xvideoHD : str).0 else roll)
else x Ÿ lSD. x?(xtestSD : str).

(if (fSD(xtestSD)) then x?(xvideoSD : str).0 else abort)
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Fig. 3. cherry-pi runtime syntax (the rest of processes P and expressions e are as in Fig. 2).

PS “ y?(yreq : str). y!xfprice(yreq)y. y!xfmeta(yreq)y.
y Ź { lHD : commit. y!xftestHD(yreq)y. y!xfvideoHD(yreq)y.0 ,

lSD : commit. y!xftestSD(yreq)y. y!xfvideoSD(yreq)y.0 }
Notice that expressions used for decisions and computations are abstracted by rela-
tions fn(¨), whose definitions are left unspecified. Considering the placement of com-
mit actions depicted in Fig. 1(c), the cherry-pi specification of the service’s process
becomes:

y?(yreq : str). y!xfprice(yreq)y. commit. y!xfmeta(yreq)y.
y Ź { lHD : y!xftestHD(yreq)y. y!xfvideoHD(yreq)y.0 ,

lSD : y!xftestSD(yreq)y. y!xfvideoSD(yreq)y.0 }
Finally, considering the placement of commit actions depicted in Fig. 1(d), the

cherry-pi specification of the user’s process becomes:

x!xvreqy. x?(xprice : int). x?(xmeta : str). commit. if (feval(xprice, xmeta)) then . . .

Semantics. The operational semantics of cherry-pi is defined for runtime terms, gen-
erated by the extended syntax of the calculus in Fig. 3 (new constructs are highlighted
by a grey background). We use r to denote session identifiers, i.e. session endpoints and
variables. Those runtime terms that can be also generated by the grammar in Fig. 2 are
called initial collaborations.

At collaboration level, two constructs are introduced: (νs : C1) C2 represents a
session along the channel s with associated starting checkpoint C1 (corresponding to
the collaboration that has initialised the session) and code C2; xP1y§P2 represents a log
storing the checkpoint P1 associated to the code P2. At process level, the only difference
is that session identifiers r are used as first argument of communicating actions. We
extend the standard notion of binders to take into account (νs : C1) C2, which binds
session endpoints s and s̄ in C2 (in this respect, it acts similarly to the restriction of
π-calculus, but its scope cannot be extended in order to avoid involving processes that
do not belong to the session in the rollback effect). The derived notions of bound and
free names (where names stand for variables, process variables and session endpoints),
alpha-equivalence, and substitution are standard and we assume that bound names are
pairwise distinct. The semantics of the calculus is defined for closed terms, i.e. terms
without free variables and process variables.

Not all processes allowed by the extended syntax correspond to meaningful collab-
orations. In a general term the processes stored in logs may not be consistent with the
computation that has taken place. We get rid of such malformed terms, as we will only
consider those runtime terms, called reachable collaborations, obtained by means of
reductions from initial collaborations.
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Fig. 4. cherry-pi semantics: auxiliary labelled relation.

The operational semantics of cherry-pi is given in terms of a standard structural
congruence ” [17] and a reduction relation � given as the union of the forward reduc-
tion relation � and backward reduction relations ù. The definition of the relation �
over closed collaborations relies on an auxiliary labelled relation �Ñ́ over processes that
specifies the actions that processes can initially perform and the continuation process
obtained after each such action. Given a reduction relation R, we will indicate with R`
and R˚ respectively the transitive and the reflexive-transitive closure of R.

The operational rules defining the auxiliary labelled relation are in Fig. 4 (omitted
rules are in [27]). We use k to denote generic session endpoints (s or s̄). Action label
� stands for either k!xvy, k?(x), k Ÿ l, k Ź l, cmt , roll , abt , or τ . The meaning of the
rules is straightforward, as they just produce as labels the actions currently enabled in
the process. In doing that, expressions of sending actions and conditional choices are
evaluated (auxiliary function e Ó v says that closed expression e evaluates to value v).

The operational rules defining the reduction relation � are reported in Fig. 5 (stan-
dard rules for congruence, in the forward and backward case, are omitted). We com-
ment on salient points. Once a session is created, its initiating collaboration is stored in
the session construct (rule [F-CON]). Communication, branching selection and internal
conditional choices proceed as usual, without affecting logs (rules [F-COM], [F-LAB]
and [F-IF]). A commit action updates the checkpoint of a session, by replacing the pro-
cesses stored in the logs of the two involved parties (rule [F-CMT]). Notably, this form
of commit is asynchronous as it does not require the passive participant to explicitly
synchronise with the active participant by means of a primitive for accepting the com-
mit. On the other hand, under the hood, a low-level implementation of this mechanism
would synchronously update the logs of the involved parties. Conversely, a rollback
action restores the processes in the two logs (rule [B-RLL]). The abort action (rule
[B-ABT]), instead, kills the session and restores the collaboration stored in the session
construct formed by the two initiators that have started the session; this allows the initia-
tors to be involved in new sessions. The other rules simply extend the standard parallel,
restriction rules to forward and backward relations.

Example 2. Consider the first cherry-pi specification of the VOD scenario given in
Example 1. In the initial state CUS of the collaboration, U and S can synchronise in order
to initialise the session, thus evolving to C1

US “ (νs : CUS) (xPU[s̄/x]y § PU[s̄/x] |
xPS[s/y]y § PS[s/y]).
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Fig. 5. cherry-pi semantics: forward and backward reduction relations.

Let us consider now a possible run of the session. After three reduction steps, U
executes the commit action, obtaining the following runtime term:

C2
US “ (νs : CUS) (xP ′

Uy § P ′
U | xP ′

Sy § P ′
S)

P ′
U “ s̄?(xmeta : str). if (feval(vprice, xmeta)) then . . . P ′

S “ s!xfmeta(vreq)y. y Ź { . . . }

After four further reduction steps, U chooses the HD video quality and S commits as
well; the resulting runtime collaboration is as follows:

C3
US “ (νs : CUS) (xP ′′

U y § P ′′
U | xP ′′

S y § P ′′
S )

P ′′
U “ s̄?(xtestHD : str). if (fHD(xtestHD)) then s̄?(xvideoHD : str).0 else roll

P ′′
S “ s!xftestHD(vreq)y. s!xfvideoHD(vreq)y.0

In the next reductions, U evaluates the test video and decides to revert the session exe-
cution, resulting in C4

US “ (νs : CUS) (xP ′′
U y§ roll | xP ′′

S y§s!xfvideoHD(vreq)y.0). The
execution of the roll action restores the checkpoints P ′′

U and P ′′
S , that is C4

US ù C3
US.

After the rollback, U is not able to change the video quality as her own commit point
would have permitted; in fact, it holds C4

US ù/ C2
US.

4 Rollback Safety

The operational semantics of cherry-pi provides a description of the functioning of
the primitives for programming the checkpoint-based rollback recovery in a session-
based language. However, as shown in Example 2, it does not guarantee high-level
properties about the safe execution of the rollback. To prevent such undesired rollbacks,
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Fig. 6. Typing system for cherry-pi collaborations.

we propose the use of compliance checking, to be performed at design time. This check
is not done on the full system specification, but only at the level of session types.

Session Types and Typing. The syntax of the cherry-pi session types T is defined as
follows. Type ![S].T represents the behaviour of first outputting a value of sort S (i.e.,
bool, int or str), then performing the actions prescribed by type T . Type ?[S].T is
the dual one, where a value is received instead of sent. Types end and err represent
inaction and faulty termination, respectively. Type Ÿ[l].T represents the behaviour that
selects the label l and then behaves as T . Type Ź[l1 : T1, . . . , ln : Tn] describes a
branching behaviour: it waits for one of the n options to be selected, and behaves as
type Ti if the i-th label is selected (external choice). Type T1 ‘ T2 behaves as either
T1 or T2 (internal choice). Type μt.T represents a recursive behaviour. Type cmt.T
represents a commit action followed by the actions prescribed by type T . Finally, types
roll and abt represent rollback and abort actions.

The cherry-pi type system does not perform compliance checks, but only infers
the types of collaboration participants, which will be then checked together according
to the compliance relation. Typing judgements are of the form C § A, where A, called
type associations, is a set of session type associations of the form â : T , where â stands
for either ā or a. Intuitively, C § A indicates that from the collaboration C the type
associations in A are inferred. The definition of the type system for these judgements
relies on auxiliary typing judgements for processes, of the form Θ;Γ � P § Δ,
where Θ, Γ and Δ, called basis, sorting and typing respectively, are finite partial maps
from process variables to type variables, from variables to sorts, and from variables to
types, respectively. Updates of basis and sorting are denoted, respectively, by Θ ¨ X : t
and Γ ¨ y : S, where X /P dom(Θ), t /P cod(Θ) and y /P dom(Γ ). The judgement
Θ;Γ � P § Δ stands for “under the environment Θ;Γ , process P has typing Δ”. In
its own turn, the typing of processes relies on auxiliary judgments for expressions, of
the form Γ � e § S. The axioms and rules defining the typing system for cherry-pi
collaborations and processes are given in Figs. 6 and 7; typing rules for expressions
are standard (see [27]). The type system is defined only for initial collaborations, i.e.
for terms generated by the grammar in Fig. 2. Other runtime collaborations are not
considered here, as no check will be performed at runtime. We comment on salient
points. Typing rules at collaboration level simply collect the type associations of session
initiators in the collaboration. Rules at process level instead determine the session type
corresponding to each process, by mapping each process operator to the corresponding
type operator. Data and expression used in communication actions are abstracted as
sorts, and a conditional choice is rendered as an internal non-deterministic choice.

Compliance Checking. To check compliance between pairs of session parties, we con-
sider type configurations of the form (T, T ′) : xT̃1y § T2 ‖ xT̃3y § T4, consisting in a
pair (T, T ′) of session types, corresponding to the types of the parties at the initiation



204 C. A. Mezzina et al.

Fig. 7. Typing system for cherry-pi processes.

of the session, and in the parallel composition of two pairs xT̃cy § T , where T is the
session type of a party and T̃c is the type of the party’s checkpoint. We use T̃ to denote
either a type T , representing a checkpoint committed by the party, or T , representing a
checkpoint imposed by the other party. The semantics of type configurations, necessary
for the definition of the compliance relation, is given in Fig. 8, where label λ stands for
either ![S], ?[S], Ÿ l, Ź l, τ , cmt, roll, or abt. We comment on the relevant rules. In
case of a commit action, the checkpoints of both parties are updated, and the one of the
passive party (i.e., the party that has not performed the commit) is marked as ‘imposed’
(rule [TS-CMT]1). However, if the passive party did not perform any action from its
current checkpoint, this checkpoint is not overwritten by the active party (rule [TS-
CMT]2), as discussed in Sect. 2 (Fig. 1(c)). In case of a roll action (rule [TS-RLL]1),
the reduction step is performed only if the active party (i.e., the party that has performed
the rollback action) has a non-imposed checkpoint; in all other situations the configu-
ration cannot proceed with the rollback. Finally, in case of abort (rule [TS-ABT]1), the
configuration goes back to the initial state; this allows the type computation to proceed,
in order not to affect the compliance check between the two parties.

On top of the above type semantics, we define the compliance relation, inspired by
the relation in [3], and prove its decidability.

Definition 1 (Compliance). Relation - on configurations is defined as follows:
(T, T ′) : xŨ1y § T1 - xŨ2y § T2 holds if for all U ′

1, T ′
1, U ′

2, T ′
2 such that (T, T ′) :

xŨ1y § T1 ‖ xŨ2y § T2 � Ñ́˚ (T, T ′) : xŨ ′
1y § T ′

1 ‖ xŨ ′
2y § T ′

2 � Ñ́/ we have
that T ′

1 “ T ′
2 “ end. Two types T1 and T2 are compliant, written T1 - T2, if

(T1, T2) : xT1y § T1 - xT2y § T2.

Theorem 1. Let T1 and T2 be two session types, checking if T1 - T2 holds is decidable.

This compliance relation is used to define the notion of rollback safety.

Definition 2 (Rollback safety). Let C be an initial collaboration, then C is rollback
safe (shortened roll-safe) if C § A and for all pairs ā : T1 and a : T2 in A we have
T1 - T2.
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Fig. 8. Semantics of types and type configurations (symmetric rules for configurations are omit-
ted).

Example 3. Let us consider again the VOD example. As expected, the first cherry-pi
collaboration defined in Example 1, corresponding to the scenario described in
Fig. 1(b), is not rollback safe, because the types of the two parties are not compliant.
Indeed, the session types TU and TS associated by the type system to the user and the
service processes, respectively, are as follows:

TU “ ![str]. ?[int]. cmt. ?[str]. (Ÿ[lHD]. ?[str]. ( ?[str]. end ‘ roll )
‘ Ÿ [lSD]. ?[str]. ( ?[str]. end ‘ abt ) )

TS “ ?[str]. ![int]. ![str]. Ź [lHD : cmt. ![str]. ![str]. end ,
lSD : cmt. ![str]. ![str]. end]

Thus, the resulting initial configuration is (TU, TS) : xTUy § TU ‖ xTSy § TS, which
can evolve to the configuration (TU, TS) : xT y § roll ‖ xUy§![str].end, with T “
?[str]. (?[str]. end ‘ roll) and U “![str]. ![str]. end. This configuration evolves
to (TU, TS) : xT y § err ‖ xUy § err, which cannot further evolve and is not in a
completed state (in fact, type err is different from end), meaning that TU and TS are
not compliant.

In the scenario described in Fig. 1(c), instead, the type of the server process is as
follows: T ′

S “ ?[str]. ![int]. cmt. ![str]. Ź [lHD : ![str]. ![str]. end , lSD : ![str].
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![str]. end] and we have TU - T ′
S. Finally, the types of the processes depicted in

Fig. 1(d) are:

T ′
U “ ![str]. ?[int]. ?[str]. cmt. (Ÿ[lHD]. . . . ‘ Ÿ[lSD]. . . . )

T ′′
S “ ?[str]. ![int]. ![str]. cmt. Ź [lHD : ![str]. ![str]. end, lSD : ![str]. ![str]. end]

and we have T ′
U -/ T ′′

S . Indeed, the corresponding initial configuration can evolve to the
configuration (T ′

U, T
′′
S ) : xŸ[lHD]. . . .y § roll ‖ xŹ[lHD : . . . , lSD : . . .]y§![str].end,

which again evolves to a configuration that is not in a completed state.

MAUDE Implementation. To show the feasibility of our approach, we have imple-
mented the semantics of type configurations in Fig. 8 in the MAUDE framework [8].
MAUDE provides an instantiation of rewriting logic [22] and it has been used to imple-
ment the semantics of several formal languages [23].

The syntax of cherry-pi types and type configurations is specified by defining
algebraic data types, while transitions and reductions are rendered as rewrites and,
hence, inference rules are given in terms of (conditional) rewrite rules. Since MAUDE
specifications are executable, we have obtained in this way an interpreter for cherry-pi
type configurations, which permits to explore the reductions arising from the initial con-
figuration of two given session types.

Our implementation consists of two MAUDE modules. The CHERRY-TYPES-
SYNTAX module provides the definition of the sorts that characterise the syntax of
cherry-pi types, such as session types, selection/branching labels, type variables and
type configurations. In particular, basic terms of session types are rendered as constant
operations on the sort Type; e.g., the roll type is defined as

op roll : -> Type .

The other syntactic operators are instead defined as operations with one or more argu-
ments; e.g., the output type takes as input a Sort and a continuation type:

op ![_]._ : Sort Type -> Type [frozen prec 25] .

To prevent undesired rewrites inside operator arguments, following the approach
in [33], we have declared these operations as frozen. The prec attribute has been
used to define the precedence among operators. The CHERRY-TYPES-SEMANTICS
module provides rewrite rules, and additional operators and equations, to define the
cherry-pi type semantics. For example, the operational rule [TS-SND] is rendered as
follows:

r l [TS-Snd] : ![S].T => {![S]}T .

The correspondence between the operational rule and the rewrite rule is one-to-one;
the only peculiarity is the fact that, since rewrites have no labels, we have made the
transition label part of the resulting term. Reduction rules for type configurations are
instead rendered in terms of conditional rewrite rules with rewrites in their conditions.
For example, the [TS-COM] rule is rendered as:
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c r l [TS-Com] :
init(T,T’) CT1 > T1 || CT2 > T2 => init(T,T’) CT1 > T1’ || CT2 > T2’
i f T1 => {![S]}T1’ /\ T2 => {?[S]}T2’ .

Again, there is a close correspondence between the operational rule and the rewrite one.
The compliance check between two session types can be then conveniently realised

on top of the implementation described above by resorting to the MAUDE command
search. This permits indeed to explore the state space of the configurations reachable
from an initial configuration. Specifically, the compliance check between types T1 and
T2 is rendered as follows:

search
init(T1,T2) ckp(T1) > T1 || ckp(T2) > T2
=>!
init(T:Type,T’:Type) CT1:CkpType > T1’:Type || CT2:CkpType > T2’:Type

such that T1’ =/= end or T2’ =/= end .

This command searches for all terminal states (=>!), i.e. states that cannot be rewritten
any more (see � Ñ́/ in Definition 1), and checks if at least one of the two session types
in the corresponding configurations (T1’ and T2’) is different from the end type.
Thus, if this search has no solution, T1 and T2 are compliant; otherwise, they are not
compliant and a violating configuration is returned.

Example 4. Let us consider the cherry-pi types defined in Example 3 for the scenario
described in Fig. 1(b). In our MAUDE implementation of the type syntax, the session
types TU and TS, and the corresponding initial type configuration, are rendered as fol-
lows:

eq Tuser = ![str]. ?[int]. cmt. ?[str].
((sel[’hd]. ?[str]. ((?[str]. end) (+) roll))
(+) (sel[’sd]. ?[str]. ((?[str]. end) (+) abt))) .

eq Tservice = ?[str]. ![int]. ![str].
brn[brnEl(’hd, cmt. ![str]. ![str]. end);

brnEl(’sd, cmt. ![str]. ![str]. end)] .

eq InitConfig = init(Tuser,Tservice)
ckp(Tuser) > Tuser || ckp(Tservice) > Tservice .

where (+) represents the internal choice operator, sel the selection operator, brn the
branching operator, brnEl an option offered in a branching, and ckp a non-imposed
checkpoint. The compliance between the two session types can be checked by loading
the two modules of our MAUDE implementation, and executing the following com-
mand:

search InitConfig
=>!
init(T:Type,T’:Type) CT1:CkpType > T1:Type || CT2:CkpType > T2:Type

such that T1 =/= end or T2 =/= end .

This search command returns the following solution:

CT1 --> ickp(?[str]. ((?[str]. end)(+)roll))
T1 --> err
CT2 --> ckp(![str]. ![str]. end)
T2 --> err
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As explained in Example 3, the two types are not compliant. Indeed, the configuration
above is a terminal state, and T1 and T2 are clearly different from end.

The scenario in Fig. 1(c) is rendered by the following implementation of the service
type:

eq Tservice’ = ?[str]. ![int]. cmt. ![str].
brn[brnEl(’hd, ![str]. ![str]. end);

brnEl(’sd, ![str]. ![str]. end)] .

In this case, as expected, the search command returns:

No solution.

meaning that types Tuser and Tservice’ are compliant. Finally, the search com-
mand applied to the type configuration related to the scenario depicted in Fig. 1(d)
returns a solution, meaning that in that case the user and service types are not com-
pliant.

5 Properties of cherry-pi

This section presents the results regarding the properties of cherry-pi. The statement
of some properties exploits labelled transitions that permit to easily distinguish the exe-
cution of commit and rollback actions from the other ones. To this end, we can instru-
ment the reduction semantics of collaborations by means of labels of the form cmt s,
roll s and abt s, indicating the rule used to derive the reduction and the session on which
such operation has been done.

Rollback Properties. We show some properties concerning the reversible behaviour of
cherry-pi related to the interplay between rollback and commit primitives. The first
two properties, namely Theorem 2 and Lemma 1, are an adaptation of typical properties
of reversible calculi, while Lemma 2 and Lemma 3 are brand new.

The following theorem states that any reachable collaboration is also a forward only
reachable collaboration. This means that all the states a collaboration reaches via mixed
executions (also involving backward reductions) are states that we can reach from the
initial configuration with just forward reductions. This assures us that if the system goes
back it will reach previous visited states.

Theorem 2. Let C0 be an initial collaboration. If C0 �˚ C1 then C0 �˚ C1.

We now show a variant of the so-called Loop Lemma [10]. In a fully reversible cal-
culus this lemma states that each computational step, either forward or backward, can
be undone. Since reversibility in cherry-pi is controlled, we have to state that if a
reversible step is possible (e.g., a rollback is enabled) then the effects of the rollback
can be undone.

Lemma 1 (Safe rollback). Let C1 and C2 be reachable collaborations. If C1 ù C2

then C2 �˚ C1.
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A rollback always brings the system to the last taken checkpoint. We recall that,
since there may be sessions running in parallel, a collaboration may be able to do dif-
ferent rollbacks within different sessions. Thus, determinism only holds relative to a
given session, and rollback within one session has no effect on any other parallel ses-
sion.

Lemma 2 (Determinism). Let C be a reachable collaboration. If C
roll sù C ′ and

C
roll sù C ′′ then C ′ ” C ′′.

Fig. 9. cherry-pi semantics: error reductions.

The last rollback property states that a collaboration cannot go back to a state prior to
the execution of a commit action, that is commits have a persistent effect. Let us note
that recursion does not affect this theorem, since at the beginning of a collaboration
computation there is always a new session establishment, leading to a stack of past
configurations. Hence it is never the case that from a collaboration C you can reach
again C via forward steps.

Theorem 3 (Commit persistency). Let C be a reachable collaboration. If C
cmt s� C ′

then there exists no C ′′ such that C ′ �˚ roll sù C ′′ and C ′′ �` C.

Soundness Properties. The second group of properties concerns soundness guarantees.
The definition of these properties requires formally characterising the errors that may
occur in the execution of an unsound collaboration. We rely on error reduction (as in
[7]) rather than on the usual static characterisation of errors (as, e.g., in [36]), since
rollback errors cannot be easily detected statically. In particular, we extend the syntax
of cherry-pi collaborations with the roll error and com error terms, denoting
respectively collaborations in rollback and communication error states:

C :: “ . . . | xP̃1y § P2 | roll error | com error

where P̃ denotes either a checkpoint P committed by the party or a checkpoint P
imposed by the other party of the session. The semantics of cherry-pi is extended as
well by the (excerpt) of error reduction rules in Fig. 9. The error semantics does not
affect the normal behaviour of cherry-pi specifications, but it is crucial for stating our
soundness theorems. Its definition is based on the notion of barb predicate: P ⇓μ holds
if there exists P ′ such that P ⇒ P ′ and P ′ can perform an action μ, where μ stands for
k?, k! ,kŸl, kŹl, or roll (i.e., input, output, select, branching action along session chan-
nel k, or roll action); ⇒ is the reflexive and transitive closure of τÑ́. The meaning of the
error semantics rules is as follows. A communication error takes place in a collabora-
tion when a session participant is willing to perform an output but the other participant
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is ready to perform neither the corresponding input nor a roll back (rule [E-COM]1)
or vice versa, or one participant is willing to perform a selection but the correspond-
ing branching is not available on the other side or viceversa. Instead, a rollback error
takes place in a collaboration when a participant is willing to perform a rollback action
but her checkpoint has been imposed by the other participant ([E-RLL]2). To enable
this error check, the rules for commit and rollback have been modified to keep track
of imposed overwriting of checkpoints. This information is not relevant for the runtime
execution of processes, but it is necessary for characterising the rollback errors that our
type-based approach prevents.

Besides defining the error semantics, we also need to define erroneous collabora-
tions, based on the following notion of context: C :: “ [¨] | C |C | (νs : C) C.

Definition 3 (Erroneous collaborations). A collaboration C is communication (resp.
rollback) erroneous if C “ C[com error] (resp. C “ C[roll error]).

The key soundness results follow: a rollback safe collaboration never reduces to either
a rollback erroneous collaboration (Theorem 4) or a communication erroneous collab-
oration (Theorem 5).

Theorem 4 (Rollback soundness). If C is a roll-safe collaboration, then we have that
C �/ ˚

C[roll error].

Theorem 5 (Communication soundness). If C is a roll-safe collaboration, then we
have that C �/ ˚

C[com error].

We conclude with a progress property of cherry-pi sessions: given a rollback safe
collaboration that can initiate a session, each collaboration reachable from it either is
able to progress on the session with a forward/backward reduction step or has correctly
reached the end of the session. This result follows from Theorems 4 and 5, and from
the fact that we consider binary sessions without delegation and subordinate sessions.

Theorem 6 (Session progress). Let C “ (ā(x1).P1 | a(x2).P2) be a roll-safe collab-
oration. IfC �˚ C ′ then eitherC ′ �C ′′ for someC ′′ orC ′ ”(νs :C)(xQ̃1y§0 |xQ̃2y§0)
for some Q̃1 and Q̃2.

6 Conclusion and Related Work

This paper proposes rollback recovery primitives for session-based programming.
These primitives come together with session typing, enabling a design time compliance
check which ensures checkpoint persistency properties (Lemma 1 and Theorem 3) and
session soundness (Theorems 4 and 5). Our compliance check has been implemented
in MAUDE.

In the literature we can distinguish two ways of dealing with rollback: either using
explicit rollbacks and implicit commits [20], or by using explicit commits and sponta-
neous aborts [11,34]. Differently from these works, we have introduced a way to control
reversibility by both triggering it and limiting its scope. Reversibility is triggered via an
explicit rollback primitive (as in [20]), while explicit commits limit the scope of poten-
tial future reverse executions (as in [11,34]). Differently from [11,34], commit does



Rollback Recovery in Session-Based Programming 211

not require any synchronisation, as it is a local decision. This could lead to run-time
misbehaviours where a process willing to roll back to its last checkpoint reaches a point
which has been imposed by another participant of the session. Our type discipline rules
out such cases.

Reversibility in behavioural types has been studied in different formalisms: con-
tracts [2,4], binary session types [24], multiparty session types [6,25,30,31], and global
graphs [14,28]. In [2,4] choices can be seen as implicit checkpoints and the system can
go back to a previous choice and try another branch. In [2] rollback is triggered non-
deterministically , while in [4] it is triggered by the system only when the computation is
stuck. In both works reversibility (and rollbacks) is used to achieve a relaxed variant of
client-server compliance: if there exists an execution in which the client is able to termi-
nate then the client and server are compliant. Hence, reversibility is used as a means to
explore different branches if the current one leads to a deadlock. In [24] reversibility is
studied in the context of binary session types. Types information is used at run-time by
monitors, for binary [24] and multiparty [25] settings, to keep track of the computational
history of the system. allowing to revert any computational step. where global types are
enriched with computational history. There, reversibility is uncontrolled, and each com-
putational step can be undone. In [6] global types are enriched with history information,
and choices are seen as labelled checkpoints. The information about checkpoints is pro-
jected into local types. At any moment, the party who decided which branch to take in
a choice may decide to revert it, forcing the entire system to go back to a point prior to
the choice. Hence, rollback is confined inside choices and it is spontaneous. meaning
that the former can be programmed while the latter cannot. Checkpoints are not seen
as commits, and a rollback can bring the system to a state prior to several checkpoints.
In [30] an uncontrolled reversible variant of session π-calculus is presented, while [31]
studies different notions of reversibility for both binary and multiparty single sessions.
In [14,28] global graphs are extended with conditions on branches. These conditions
at runtime can trigger coordinated rollbacks to revert a distributed choice. Reversibility
is confined into branches of a distributed choice and not all the computational steps
are reversible; inputs, in fact, are irreversible unless they are inside an ongoing loop.
to trigger a rollback several conditions and constraints about loops have to be satisfied.
Hence, in order to trigger a rollback a runtime condition should be satisfied.

We detach from these works in several ways. Our checkpoint facility is explicit and
checkpointing is not relegated to choices: the programmer can decide at any point when
to commit. This is because the programmer may be interested in committing, besides
choice points, a series of interactions (e.g., to make a payment irreversible). Once a
commit is taken, the system cannot revert to a state prior to it. Our rollback is explicit,
meaning that it is the programmer who deliberately triggers a rollback. The extension
to the multiparty setting is natural and does not rely on a formalism to describe the
global view of the system. Our compliance check, which is decidable, resembles those
of [2–4], which are defined for different rollback recovery approaches based on implicit
checkpoints.

As future work, we plan to extend our approach to deal with sessions where parties
can interleave interactions performed along different sessions. This requires to deal with
subordinate sessions, which may affect enclosing sessions by performing, e.g., commit
actions that make some interaction of the enclosing sessions irreversible, similarly to
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nested transactions [35]. To tackle this issue it would be necessary to extend the notion
of compliance relation to take into account possible partial commits (in case of nested
sub-sessions) that could be undone at the top level if a rollback is performed. Also,
the way our checkpoints are taken resembles the Communication Induced Checkpoints
(CIC) approach [12]; we leave as future work a thoughtful comparison between these
two mechanisms.
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