q'h

Check for
updates

JoT: A Jolie Framework for Testing
Microservices

Saverio Giallorenzo!2®) @ Fabrizio Montesi®*®, Marco Peressotti*®,
Florian Rademacher®5@®, and Narongrit Unwerawattana?

! Universita di Bologna, Bologna, Italy
2 INRIA, Sophia Antipolis, France
saverio.giallorenzo@gmail.com
3 University of Southern Denmark, Odense, Denmark
{fmontesi, peressotti}@imada.sdu.dk, nau@sdu.dk
4 Software Engineering, RWTH Aachen University, Aachen, Germany
rademacher@se-rwth.de
5 IDIiAL Institute, University of Applied Sciences and Arts Dortmund,
Dortmund, Germany

Abstract. We present JoT, a testing framework for Microservice Archi-
tectures (MSAs) based on technology agnosticism, a core principle of
microservices. The main advantage of JoT is that it reduces the amount
of work for a) testing for MSAs whose services use different technol-
ogy stacks, b) writing tests that involve multiple services, and c) reusing
tests of the same MSA under different deployment configurations or after
changing some of its components (e.g., when, for performance, one reim-
plements a service with a different technology). In JoT, tests are orches-
trators that can both consume or offer operations from/to the MSA under
test. The language for writing JoT tests is Jolie, which provides con-
structs that support technology agnosticism and the definition of terse test
behaviours. We present the methodology we envision for testing MSAs
with JoT and we validate it by implementing non-trivial test scenarios
taken from a reference MSA from the literature (Lakeside Mutual).

Keywords: Microservice Architectures - Testing Frameworks -
Service-Oriented Programming

1 Introduction

The paradigm of microservices is one the modern gold standards for developing
distributed applications. In this setting, a distributed application emerges as
the composition of multiple services (the “microservices”). Each microservice
implements a set of business capabitilies, and is independently executable and
deployable. Microservices interact with each other via message-passing APIs [4].

Two important factors in the diffusion of microservices are the scalability and
flexibility that they support. Scaling is efficient because one can focus scaling
actions precisely on those components impacted by traffic fluctuations. Flexibility
is given by the usage of technology-agnostic APIs, which allows for using different

© IFIP International Federation for Information Processing 2023
S.-S. Jongmans and A. Lopes (Eds.): COORDINATION 2023, LNCS 13908, pp. 172-191, 2023.
https://doi.org/10.1007/978-3-031-35361-1_10

https://eapls.org/pages/artifact_badges/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35361-1_10&domain=pdf
http://orcid.org/0000-0002-3658-6395
http://orcid.org/0000-0003-4666-901X
http://orcid.org/0000-0002-0243-0480
http://orcid.org/0000-0003-0784-9245
https://doi.org/10.1007/978-3-031-35361-1_10

JoT: A Jolie Framework for Testing Microservices 173

implementation technologies for different microservices without renouncing inte-
gration.

However, the good traits of microservices do not come for free. Here, we focus
on one of the most prominent elements impacted by the microservices style: testing
sets of microservices, or Microservice Architectures (MSAs). Indeed, for unit test-
ing, one can rely on existing frameworks tailored for and idiomatic to the general-
purpose implementation technology used to develop a single microservice (e.g.,
Java, JavaScript, Rust, C). However, when tests cover more microservices, it can
become cumbersome to specify the coordination and invocation of services devel-
oped with different technologies using a framework designed for testing the “inter-
nals” of a service.

To make a concrete example, imagine using JUnit [8] (in Java) to specify the
connections to and the coordination and consumption of multiple operations of
several microservices. This would not only entail the specification of (possibly
complex) coordination logic in Java, but it would also mean adding, on top of the
latter, the logic that encodes the data structures that microservices exchange, how
connections are established and handled (including errors)—in terms of transport
and application layers, etc. Besides their complexity, tests written in this way are
difficult to be reused in other tests or under different deployment settings (imagine
repurposing a test that uses HT'TP endpoints to verb-based binary protocols).

Motivated by these observations we present JoT (Jolie Testing), a testing
framework for MSAs based on technology agnosticism. Responding to its motivat-
ing points, JoT reduces the amount of work for a) testing for MSAs whose services
use different technology stacks, b) writing tests that involve multiple services, and
c) reusing tests of the same MSA under different deployment configurations or
after changing some of its components (e.g., when, for performance, one reimple-
ments a service with a different technology). In JoT, tests are orchestrators that
can both consume or offer operations from/to the MSA under test. The language
for writing JoT tests is Jolie [17], which provides constructs that support technol-
ogy agnosticism [16] and the definition of terse test behaviours. One of the most
relevant features introduced by JoT is the provision of Jolie annotations that users
can use to structure and specify the sequence of actions that the tool needs to fol-
low to run each test (e.g., test setup, cases, and clean up).

In Sect.2, we discuss the methodology we envision for testing MSAs with
JoT, following an example where we use JoT annotations to build a test case.
In Sect. 3, we provide initial validation to JoT’s approach by presenting imple-
mentations of non-trivial test scenarios taken from a reference MSA from the
literature [23] (Lakeside Mutual). We draw conclusions, compare to related work,
and discuss future steps in Sect. 4.

2 Methodology and Structure of Tests

To illustrate the structure of tests and the architecture of the testing framework,
we start by describing the methodology we envision for building tests in JoT,
i.e., the steps users should follow to define a test using the framework.

174 S. Giallorenzo et al.

2.1 Building a Test in JoT

Following general testing practice, the first step for building a test in JoT is
defining the subject under test. Our subject is an architecture of services (one
or more) that can interact with each other. Considering that the subject under
test are the services of an architecture, in the remainder, we use interchangeably
the terms “subject under test” and “architecture under test” and use the term
“service under test” to indicate a service that is part of an architecture under
test (which includes the degenerate case of an architecture made of one service).
For example, in the first case in Sect. 3, the architecture under test is made of
two services—CustomerCore and CustomerManagement—that manage the users
of an online platform.

Once we defined the subject of the test, we need to identify the cases we
want to test, i.e., the functionality whose implementation we want to verify.
This can range from a single invocation, e.g., calling one operation of one ser-
vice, to complex behaviours that compose several operations of different ser-
vices. For example, by having as the subject under test the CustomerCore-
CustomerManagement architecture, we can check that users are coherently cre-
ated, fetched, and modified by the two services. For instance, we can interact
with CustomerCore to create a user, then we update the data related to that
user via the operations provided by CustomerManagement, and then verify that
the update was successful, by fetching and checking the user’s information from
CustomerCore.

Once we defined the subject under test and the functionality we want to test,
we can proceed with the actual implementation of the JoT test and its cases.

Since a JoT test is a service itself (and an orchestrator, in particular) the
information we need to provide to a JoT test coincides with the three main
elements that define services in general [11]. The first two are the Application
Programming Interfaces, interfaces for short, and the access points which, com-
bined, define the public contract of the services (under test). The third element
is the private, internal behaviour of the service, which implements the logic of
each test case.

Interfaces. The interface of a service specifies what operations it offers to clients.
There exist many guidelines and technologies for the description of interfaces [4].
However, we can abstract an interface as the set of labelled operations that a
service promises to support. The description of the set of operations can also
carry the messaging pattern (e.g., one-way, request-reply calls) of each operation
and the structure of the data exchanged through each of them.

For example, one can provide them in the form of an informal list of resources
that one can call, e.g., as URL addresses, and describe the shape of the in-/out-
bound data similarly. Alternatives include the usage of formal languages for
the specification of service interfaces, such as WSDL, and the description of
interfaces using metamodels [11,20] which support the generation of the same
service interface under different formats (formal and informal).

JoT: A Jolie Framework for Testing Microservices 175

Thanks to the flexibility of Jolie interfaces, JoT adopts a permissive attitude,
where the minimal amount of information users need to provide regarding inter-
faces is: a) the list of operation labels that the test is going to use and b) the
messaging pattern that characterises each operation.

For example, a minimal Jolie interface to test the “createCustomer” operation
of the CustomerCore is

interface CustomerCoreInterface {
requestResponse: createCustomer
}

In the code, we specify that the operation createCustomer has a request-
response behaviour (from the user side, this means invoking the service on the
operation and waiting for the server to answer with some response) and that
the operation belongs to the CustomerCoreInterface interface (the latter’s
name is immaterial for the service under test, and it is just a reference to the
interface’s content within the test itself).

Interestingly, JoT provides support for specifying test invariants on the
exchanged data already at the level of interfaces. Indeed, users can specify the
structure of the data they expect to see in tests via Jolie types. Jolie types have
a tree-shaped form, made of two components: the root of the tree, associated
with a basic type (e.g., integer, string, etc.), and a set of nodes that defines
the internal fields of the data structure—each node is an array with specified
minimal and maximal cardinality.

For example, we can enrich CustomerCoreInterface with types, to both
specify the kind of data we promise to provide within the test (cases)—in the
request part of the createCustomer operation—and the shape of the data we
expect the service under test to send back as the response.

For example, in the code below, we show one such interface where the request
to the createCustomer operation needs to carry the name and surname of the
user (as strings), while the operation responds with the identification number of
the user (as an integer).

type CustomerRequest { name: string, surname: string }
type CustomerResponse { id: int }
interface CustomerCoreInterface {
requestResponse :
createCustomer (CustomerRequest) (CustomerResponse)

Access Points. The access point completes the public contract of a service’s
interface by defining where and how to contact the service, i.e., defining the
stack of technologies that clients can use to interact with the service.

176 S. Giallorenzo et al.

Specifically, the technology stack determines the media and protocols used
to support the communication between a service and its clients and the format
of the data that these exchange. For instance, one can decide to use SOAP and
TCP/IP as a technology stack for communication and use XML to format the
data.

By relying on Jolie ports, JoT makes it easy to adapt a test to the access-
point specifications of a given service incarnation. For example, this allows users
to write a test case that they initially want to run at the development stage,
e.g., using a message broker [6] and some binary format, and then change the
ports settings to test the service in production, e.g., switching the port to use
TCP/IP, HTTP, and the JSON format—other examples include SOAP-based
web services [17] and REST ones [16].

As we discuss below, JoT provides direct support to this level of flexibility
via configuration parameters that the user can pass to the test, so that one
can run the same test on different deployment settings programmatically. As an
example, following the simple case made above, we can define the port to contact
the CustomerCore service in a JoT test in the following way:

outputPort CustomerCore {
location: parameters.customerCore.location
protocol: parameters.customerCore.protocol
interfaces: CustomerCorelInterface

Above, we define an outputPort called CustomerCore, which repre-
sents an external service that we can invoke. Through the port definition,
we declare that we expect that the CustomerCore service implements the
CustomerCoreInterface. Notice that the location and protocol of the
port are (elements of the variable) parameters. We used this definition of the
port to illustrate how the user can change the medium technology and end-
point definition (location) and the communication protocol and data format
(protocol) by passing this information as parameters of the test instantiation.

Test Logic. The last element of the test is the definition of the actions that the
test needs to enact to implement its logic.

Here, Jolie provides different ways to define the logic of the service, e.g., by
allowing developers to use Java or JavaScript. We deem using these languages a
viable route, e.g., if one needs to use libraries that would be difficult to expose
otherwise or wants to re-use some test logic written in those languages. Notwith-
standing this possibility, we envision users to mainly write JoT tests using the
Jolie behaviour language. Indeed, Jolie provides a concise-yet-expressive lan-
guage for behaviour specification that makes it easy to assemble even complex
coordination logic, like speculative parallelism [3] and partial joins [7], which one
can use to reproduce edge cases of highly-concurrent systems.

JoT: A Jolie Framework for Testing Microservices 177

Ports make it possible to keep the logic of Jolie programs, and JoT tests,
loosely coupled w.r.t. the deployment technology. For instance, let us look at a
simple behaviour snippet for our example

createCustomer@CustomerCore ({name = "John", surname = "Doe"}) (resp)
if(resp.id <= 0){
throw (TestFailed, "Users need to have positive id numbers")

}

Above, we define an elementary test for the createCustomer operation,
where we send a legit request (according to the interface we defined) and check
that the response has the expected shape (verified by the Jolie type checker, given
the interface definition of createCustomer) and that the identifier is positive.
In case the test fails, we throw a fault, which interrupts the execution of the
tests and reports to the user the failing case. Later in Sect. 3 we use the assertion
library provided by JoT, which helps users in verifying the compliance of the
results against the expected values even in the case of complex data structures
(multi-level nested trees).

2.2 Writing a Complete Test

Before detailing the architecture of JoT, we illustrate the remaining important
items that make up a JoT test. For this purpose, we show a working JoT test
example by assembling the interface, port, and behaviour shown above with the
remaining elements that characterise a JoT test—for brevity, we elide most of
the constructs discussed above to focus on the new parts.

type CustomerRequest ...
interface CustomerCoreInterface { ... }

interface TestInterface {
requestResponse:
///@Test

testCreateCustomer () () throws TestFailed(string)
}

service Main(parameters: undefined) {
outputPort CustomerCore {
location: parameters.customerCore.location
}

inputPort Input {

interfaces: TestInterface

}

main {
testCreateCustomer () () {

178 S. Giallorenzo et al.

createCustomer@CustomerCore({ name = "John", surname = "Doe" }) (resp
)

oo}

}}

The salient additional parts in the example are four, described below follow-
ing their top-to-bottom order of appearance in the code.

First, we have an interface, called TestInterface, which defines the
sequence of operations the JoT framework shall run from the current test.
This is done—similarly to other testing frameworks, e.g., JUnit—using com-
ment annotations of the form ///@Annotation. JoT currently supports five
kinds of annotations: ///@BeforeAll, ///@BeforeEach, ///@AfterEach,
///@AfterAll, and ///@Test. Respectively, these indicate operations in the
body of the test that we invoke once before all test cases, before calling each test
case, after we called each test case, and once after we invoked all test cases. The
last annotation is to indicate test-case operations. JoT does not impose order
among the operations in a given annotation category.

Second, we have a service (conventionally called Main), which is the Jolie
program unit that the JoT framework instantiates to run the tests. When per-
forming the instantiation, the framework passes the configuration parameters
for the test defined by the user, which the service holds in the parameters
variable (here, we leave its type undefined). In the example, we use the
parameters variable to carry the information to contact the CustomerCore
in the related outputPort.

Third, we have an inputPort (complementary inbound access points to
outputPorts) that allows the JoT framework orchestrator to govern the oper-
ations offered by the test (service). Indeed, the inputPort publishes the
TestInterface defined earlier.

Fourth, there is the main execution block, which encloses the behaviour of
the test cases and the surrounding operations (before-all /each and after-all/each)
of the test. In the body of the main, we find the test testCreateCustomer,
which, at invocation, runs the test-case behaviour we previously commented on.

2.3 Executing JoT Tests

By design, JoT does not manage the deployment of the architecture under test.
This is to let developers decide the best way to run the architecture. For example,
the developer of our exemplary test could execute the service locally (using
private network addresses) and later on re-use the same test logic to check the
behaviour of the service in production (using public addresses). JoT achieves
this flexibility via file-based configurations. Concretely, JoT configurations are
JSON files that contain test parameters, such as a tested service’s address or
protocol. Listing 1 shows an example of a JoT configuration file. It configures
the execution of the JoT test whose excerpts were shown in previous listings
and which is stored in a Jolie program called “TestCustomerCore.ol” (“.0l” is the
extension for Jolie programs).

JoT: A Jolie Framework for Testing Microservices 179

Listing 1. Example JoT configuration file.

{ "testsPath": ".",
"params": {
"TestCustomerCore.ol": [{
"name": "Main",
"params": {}
Y10})

The testsPath element specifies the file path of the test source, relative to
the configuration file. The params element is where users link tests to parame-
ters. For this purpose, each member of the element is a key-value pair consisting
of (i) the name of the file that contains the code of the test; (ii) an array of con-
figuration objects. Namely, the element name is the name of the Jolie service
that wraps the test code (e.g., Main) while the params node contains the param-
eters for the test.

To execute a test with file-based configuration, the user can save the JSON
data in a “params.json” file and then launch the test with the command jot
params. json.

When testing architectures, our suggestion is to pair JoT with widely adopted
microservice deployment technologies, like Kubernetes and Docker-compose, to
further automate the running of test batteries. This is the practice we follow,
e.g., in Sect. 3, where the services of the architecture under test are containers,
deployed through a single Docker Compose file.

JoT’s source code is available on GitHub!, and a publicly downloadable video
illustrates JoT’s architecture and usage 2.

3 Validation

We now show a preliminary validation of JoT by writing a pair of tests (and
related test cases) drawn from the Lakeside Mutual [23] architecture® Briefly,
Lakeside Mutual is a fictitious insurance company that provides its employees
and customers with a software platform to, e.g., manage personal data and insur-
ance policies. In total, Lakeside Mutual—in the continuation, we use the term
to indicate the insurance company’s software platform—consists of five backend
microservices, four frontend components enabling users to operate on the data
maintained by the backend microservices, and two infrastructure components
for service discovery and technical administration.

! https://github.com /jolie/jot.

2 https://drive.google.com/file/d/1VimUbh6stPQoyB_EeLJLIwLs5Vj82wX /view?
usp=sharing.

3 As retrieved at version https://github.com/Microservice- API-Patterns/Lakeside
Mutual /commit /aaebc590832c9ffc064fa3a22eae20db17ab31d9

https://github.com/jolie/jot
https://drive.google.com/file/d/1VimUbh6stPQoyB_EeLJLllwLs5Vj82wX/view?usp=sharing
https://drive.google.com/file/d/1VimUbh6stPQoyB_EeLJLllwLs5Vj82wX/view?usp=sharing
https://github.com/Microservice-API-Patterns/LakesideMutual/commit/aaebc590832c9ffc064fa3a22eae20db17ab31d9.
https://github.com/Microservice-API-Patterns/LakesideMutual/commit/aaebc590832c9ffc064fa3a22eae20db17ab31d9.
https://github.com/Microservice-API-Patterns/LakesideMutual/commit/aaebc590832c9ffc064fa3a22eae20db17ab31d9.

180 S. Giallorenzo et al.

3.1 Tested Interaction Scenarios

We implement two testing scenarios.

Scenario 1 involves the interaction of two microservices, namely Customer-
Core and CustomerManagement. The CustomerCore microservice provides
basic capabilities to manage a customer’s data. The CustomerManagement
microservice acts as a fagade for CustomerCore and is responsible for providing
clients with a stable interface, thereby facilitating the evolution of Customer-
Core. The testing logic for Scenario 1 covers the update of an existing insurance
customer triggered by a client. Figure 1 shows the specification of the scenario
as a UML sequence diagram [18].

getCustomer(id)

‘ | ‘
X

getCustomer(id)

responseGC = getCustomer(-) I |

responseGC = getCustomer(-)

change(responseGC)

changedC=change(-)
e
updateCustomer(changedC)

T
'
'
i
'
i
'
'
'
'
'
I
'
i
'
'
'

updateCustomer(changedC)

updateCustomer(-)

updateCustomer(-)

Fig. 1. Specification of tested interaction Scenario 1 as a UML sequence diagram.

In Fig. 1, the Client initiates the scenario by retrieving an existing customer
with a given id, using the CustomerManagement operation getCustomer.
CustomerManagement forwards the request to CustomerCore and returns
the response of the latter to the Client. Next, the C1ient updates the received
data (e.g., it can change the address of the queried customer) and calls update-
Customer with the updated data on CustomerManagement. Again, Cus-
tomerManagement forwards this call to CustomerCore to perform the actual
update of the database.

Scenario 2 includes, on top of the services seen in Scenario 1, another
microservice, i.e., CustomerSelfService. In this scenario, CustomerSelf-
Service provides customers with the functionality to register themselves in
the system. Scenario 2 focuses on this registration process and the correct exe-
cution of the getCustomers operation to find the newly registered customer.
Thus, differently from Scenario 1, Scenario 2 covers a dedicated business pro-
cess rather than an activity that is part of several processes. Indeed, Scenario 2
is more complex than the first one and illustrates JoT’s capability to perform
testing of interactions comprising more than the microservices directly accessed
by the test, i.e., the test entails the correct interaction between CustomerCore

JoT: A Jolie Framework for Testing Microservices 181

and CustomerManagement. Figure2 shows the specification of Scenario 2 as
a UML sequence diagram.

CustomerSelfService CustomerManagement

I I
registerCustomer(newCustomer)_ 1 '

I
I

createCustomer(newCustomer)_

I
i

I

I

I

createCustomer(-) | i
T I
registerCustomer(-) | |
I I

I I

. .

i

I

T
getCustomers(filter= newCustomerlfirstName)
i

>

| o getCustomers(filter=newCustomer firstName),

lf‘ilteredNewCus(omeF getCustomers(-)
'

I
filteredNewCustomer= getCustomlers(-) !

Fig. 2. Specification of tested interaction Scenario 2 as a UML sequence diagram.

In Fig.2, a Client registers a new customer by calling the register-
Customer operation of the CustomerSelfService with the new customer’s
data. CustomerSelfService partially acts as a facade to CustomerCore, to
which it forwards the request for customer registration as a call to createCus-
tomer. After the completion of registerCustomer, the Client continues
by executing the getCustomers operation of CustomerManagement. This
operation allows fetching customers via filters, e.g., via their names. This call is
also forwarded to CustomerCore, which queries its database and performs the
actual fetching.

3.2 JoT Test of Scenario 1

We move to implement Scenario 1 (cf. Fig. 1) using JoT. In the scenario, the JoT
tests correspond to the Client components (cf. Section 3.1). We start by intro-
ducing the Jolie interfaces and access points for the test, and then we describe
its logic.

Interfaces. Following the scenario specification (cf. Figure 1), the test program
must invoke the getCustomer and updateCustomer operations on Cus-
tomerManagement to test its correct behaviour, which entails interacting with
CustomerCore. Here, we let the test directly interact with CustomerCore, in
the “setup” phase, to create the customer (via the createCustomer operation)
that we want to get and update in the test case. Listing 2 shows the Jolie
interfaces of the test for Scenario 1.

182 S. Giallorenzo et al.

Listing 2. Interfaces of the test for Scenario 1.

1 | type CustomerProfileUpdateRequest { firstName:string,

lastName:string, ... }
2
3 | type CustomerResponse {
4| customerId? :string, firstName? :string, lastName? :string,
5]}
6
7 | interface CustomerInformationHolder CustomerCore {
8 | RequestResponse:
9 createCustomer (CustomerProfileUpdateRequest) (
CustomerResponse)
10 |}
11

12 | type GetCustomerRequest {
13| ids:string, fields?:string
14 |}

15
16 | type UpdateCustomerRequest {

17| customerId:CustomerId

18 | requestDto:CustomerProfileUpdateRequest
19 |}

20
21 | interface CustomerInformationHolder_CustomerManagement {
22 | RequestResponse:

23 getCustomer (GetCustomerRequest) (CustomerResponse),
24 updateCustomer (UpdateCustomerRequest) (CustomerResponse)
251}

The CustomerInformationHolder CustomerCore interface? in
Lines 7-10 specifies the signature of the CustomerCore microservice’s
createCustomer operation used to setup the test database. The operation
is a synchronous request-response operation (cf. Figurel), and expects an
instance of the CustomerProfileUpdateRequest type (cf. Line 1) as input
and returns a CustomerResponse (cf. Lines 3-5) as output, whereby the
most of the fields of the CustomerResponse type correspond to those of
CustomerProfileUpdateRequest with optional cardinality (?)—Jolie also
provides the » cardinality that means a 0O-to-unbound number of elements of
that type. An exception is the customerId field by which the CustomerCore
microservice informs invokers of createCustomer about the unique identifier
of a newly created customer.

The CustomerInformationHolder_ CustomerManagement interface
in Lines 21-25 specifies the getCustomer and updateCustomer operations

4 Note that the prefix CustomerInformationHolder refers to the microservice
API pattern Information Holder Resource conceived by the developers of Lakeside
Mutual, and enabling the provisioning of domain data with integrity and quality
preservation [23].

JoT: A Jolie Framework for Testing Microservices 183

used in the test. The operation getCustomer expects an instance of the Get -
CustomerRequest type (cf. Lines 12-14) to determine the identifiers of the
customers to be retrieved and optionally a list of relevant fields. The operation
then returns matching data in a CustomerResponse instance. Operation up-
dateCustomer requires an instance of the type UpdateCustomerRequest
(cf. Lines 16-19) with the customer identifier to be updated by the passed Cus-
tomerProfileUpdateRequest instance. As for getCustomer, update-
Customer then returns its results in the form of CustomerResponses.

Access Points. As mentioned, the JoT test for Scenario 1 has two output ports,
CustomerCore and CustomerManagement. Listing 3 shows the expected
bindings.

Listing 3. Access points of the test for Scenario 1.

outputPort customerCore {
location: parameters.customerCore.location

interfaces: CustomerInformationHolder_CustomerCore
}

outputPort customerManagement {
location: parameters.customerManagement.location

interfaces: CustomerInformationHolder_ CustomerManagement
}

[
= O © 00 3O Uik W N

—_

We specify at Lines 1-5 the output port for the CustomerCore microservice
while at Lines 7-11 we report the output port for the CustomerManagement
microservice. Notice that the actual binding of the ports (location, protocol) is
parametric (passed through the parameters variable of the test).

Test Logic. Listing 4 shows the testing logic of Scenario 1. Notice that
we import the same interface CustomerInformationHolder from
different files (i.e., customer-core.interfaces and customer-
management.interfaces) and we alias them (with the as key-
Word) resp. CustomerInformationHolder_ CustomerCore and
CustomerInformationHolder_CustomerManagement, so that we
obtain a similar result as the code in Listing 2.

Listing 4. Logic of the test for Scenario 1.

1|// cf. Listing 2

2 | from customer-core.interfaces import
CustomerInformationHolder

3| as CustomerInformationHolder_CustomerCore

4 | from customer-management.interfaces import
CustomerInformationHolder

5| as CustomerInformationHolder_CustomerManagement

184 S. Giallorenzo et al.

6

7 | interface TestInterface {

8 | RequestResponse:

9 /// @BeforeEach

10 setup (void) (void) ,

11 /// @Test

12 testScenariol (void) (void)
1311}

14

15 | service Main {

16 | outputPort customerCore { cf. Listing 3 }

17| outputPort customerManagement { cf. Listing 3 }
18 | inputPort Input { ... }

19
20 | main {

21 /* Setup Test =*/

22 [setup() () {

23 request << { firstName = "Jane", lastName = "Doe", ... }

24 createCustomer@customerCore (request) (actual)

25 global .user_id = actual.customerId

26 } o]

27

28 /* Test Scenario 1 x/

29 [testScenariol() () {

30 // Step 1

31 getCustomer@customerManagement ({ ids = global.user_id })(
resp)

32 equals@assertions ({ actual << resp.customerId, expected
<< global.user_id }) ()

33

34 // Step 2

35 undef (resp.customerId)

36 resp.firstName = "John2"

37 updateCustomer@customerManagement ({ customerId = global.
user_id, requestDto << resp }) (resp2)

38 equals@assertions({ actual = resp2.firstName, expected =
"John2" }) ()

39

40 // Step 3

41 getCustomers@customerManagement ({ ids = global.user_id })
(resp3)

42 equals@assertions({ actual = #resp3.customers, expected =
130

43 Y1}

Briefly, Lines 2-5 import the types and interfaces for the CustomerCore
and CustomerManagement microservices (cf. Listing 2).

Next, in Lines 7-13 we specify the TestInterface of the test. This has
two operations with JoT-specific annotation. We use @BeforeEach to invoke

JoT: A Jolie Framework for Testing Microservices 185

the setup operation before each test (here, just one). Then, we annotate with
@Test testScenariol, which will execute after all @BeforeEach (here, one)
operations.

Starting from Line 15 we find the implementation of the test, as a Jolie
service. There, we find the output ports to access CustomerCore and Cus-
tomerManagement microservices (cf. Lines 16 and 17), the input port In-
put that offers the test operations found in the TestInterface to the JoT
framework orchestrator. The main block encloses the implementation of the
logic of the test.

Specifically, we find at Lines 2226 the behaviour of the setup operation,
which creates a request value with test data based on the structure of the
CustomerProfileUpdateRequest type (cf. Listing 2) and it uses the latter
in the invocation of createCustomer of CustomerCore. Since setup is
run before all tests (as per its annotation), the @Tests can assume that the
microservice’s database has the test entry. The resulting identifier of the created
customer is then stored in a global field called user_id, accessible by all test
cases.

Lines 29-43 comprise the actual logic for the test operation of Scenario 1,
i.e., testScenariol. First, the operation retrieves the test customer previously
created by the setup operation. However, this call addresses the Customer-
Management rather than the CustomerCore microservice and thus verifies
whether CustomerManagement actually behaves as a fagade for Customer-
Core as anticipated by Lakeside Mutual’s architecture design (cf. Figure1). In
the second step, the test operation changes the name of the test customer from
“Jane” to “John2” and issues a request to the updateCustomer operation of
the CustomerManagement microservice. The response of the latter operation
is then checked to report the new name of the customer as expected by up-
dateCustomer after a successful update of customer data. In its final step,
testScenariol verifies that the update is persistent by issuing a getCus-
tomers request to the CustomerManagement microservice.

3.3 JoT Test of Scenario 2

We describe the JoT test of Scenario 2 (Fig.2) following the same structure of
Sect. 3.2: interfaces, access points, logic.

Interfaces. Listing 5 shows the type definitions and operations of the interfaces
of the CustomerSelfService and CustomerManagement for Scenario 2
(cf. Fig. 2).

Listing 5. Interfaces of the Jolie test program for Scenario 2.

1 | type CustomerRegistrationRequest { firstName:string,

lastName:string, ... }
2
3 | interface CustomerInformationHolder_ CustomerSelfService {
4| RequestResponse:

186 S. Giallorenzo et al.

5 registerCustomer (CustomerRegistrationRequest) (
CustomerResponse)

type GetCustomersRequest {
9| filter?:string, fields?:string, limit?:int, offset?:int
10| 3}

12 | type PaginatedCustomerResponse {

13| filter?:string, limit?:int, offset?:int, size?:int

14| customers*:CustomerResponse // cf. Lines 3-5 in Listing 2
15|}

17 | interface CustomerInformationHolder_CustomerManagement {
18 | RequestResponse:

19 getCustomers (GetCustomersRequest) (
PaginatedCustomerResponse)

20 |}

The CustomerInformationHolder_ CustomerSelfService interface
of CustomerSelfService specifies the registerCustomer operation for
the registration of new insurance customers with the Lakeside Mutual plat-
form. It requires an instance of the CustomerRegistrationRequest type
(cf. Line 1) as input and returns an instance of the CustomerResponse type
(cf. Lines 3-5 in Listing 2).

The CustomerInformationHolder CustomerManagement interface
of CustomerManagement gathers the getCustomers operation (cf. Lines 17—
20 in Listing 5), which lets users fetch customers based on the GetCustomers-
Request type (cf. Line 10). An instance of the type determines the filter
string and fields for customer matching. In case one of the fields of the record
associated with a registered customer includes the filter string, the record
will be part of the set of customers returned by getCustomers. The size of the
set can be controlled by the 1imit and offset fields of GetCustomersRe-
quest—the former prescribes the number of records in the set and the latter
indicates by which offset customer matching shall start. With this mechanism,
getCustomers supports paginated requests of customer records as modelled
by the operation’s return type PaginatedCustomerResponse (cf. Lines 12—
15). An instance of the type informs the caller about the employed filter
string, the prescribed 1imit and offset, as well as the size of the resulting
record set. The set itself is comprised by the list of CustomerResponses in
the customers field.

Access Points. In Scenario 2, the Client performs direct interactions with cus-
tomerSelfService and customerManagement and the test has the related
ports. Since it introduces no salient elements, we omit to show the access point
code for brevity.

Test Logic. Listing 6 shows the test logic for Scenario 2.The imports we have
at the beginning are similar to the ones included for Scenario 1, i.e., we alias
CustomerInformationHolder for either the CustomerManagement and
the CustomerSelfService resp. as CustomerInformationHolder_ Cus-
tomerManagement and CustomerInformationHolder_CustomerSelf-
Service, so that we obtain a similar result as the code in Listing 5. In the code,
we use both the Jolie value-assignment operator = and the deep-copy operator
«. The first just copies the topmost element of the expression on its right. The

JoT: A Jolie Framework for Testing Microservices

second copies the whole structure referred by the expression on the right.

>

(o BN BRG]

11
12
13
14
15
16
17
18
19
20
21

22
23

24
25
26
27
28

29
30

Listing 6. Logic of the Jolie test program for Scenario 2.

187

// cf. Listing 5

from customer-management.interfaces import
CustomerInformationHolder

as CustomerInformationHolder_CustomerManagement

from customer-self-service.interfaces import
CustomerInformationHolder

as CustomerInformationHolder_CustomerSelfService

interface TestInterface {

RequestResponse:
/// @Test
testScenario2 (void) (void)
}
service Main {
outputPort customerManagement { ... }
outputPort customerSelfService { ... }
inputPort Input { ... }
main {
[testScenario2() () {
// Step 1
customer << { firstName = "Homer2", lastName = "Simpson
", ...}

registerCustomer@customerSelfService (customer) (respl)
equals@assertions({ actual = respl.firstName, expected
"Homer2" }) ()

// Step 2

getCustomers@customerManagement ({ filter = "Homer2" }) (
resp2)

equals@assertions({ actual = #resp2.customers, expected
=130

equals@assertions({ actual = resp2.customers.firstName,
expected = "Homer2" }) ()

} 1}

188 S. Giallorenzo et al.

Similar to Listing 2, we: (i) import the types and interfaces of the microser-
vices involved in the scenario; (ii) define the TestInterface; (iii) specify the
involved microservices’ output ports; and (iv) define the test logic.

Focusing on the latter, Step 1 creates a test customer by invoking the reg-
isterCustomer operation of the customerSelfService microservice. At
Step 2 we use getCustomers of customerManagement to fetch (and filter)
the created customer, checking that there exists exactly one customer with the
given name.

4 Related Work, Discussion, and Conclusion

We presented JoT, a testing framework for MSAs based on technology agnosti-
cism. JoT tests are orchestrators that can consume or offer operations from/to
the MSA under test. Since JoT adopts Jolie as the language for writing tests, it
provides constructs supporting technology agnosticism and the definition of terse
test behaviours. These elements facilitate the testing of MSAs with microser-
vices based on heterogeneous technology stacks and the reuse of tests under
different deployment configurations. Recent surveys and interviews with prac-
titioners [21,22] substantiate this need, pointing out that developers urge for
microservice-specific testing solutions.

We reference [21,22] for a comprehensive survey of the field, while, here,
we compare with the closest proposals to ours. Gremlin [12] is a framework
for MSAs that focuses on testing failure-handling by manipulating inter-service
messages at the network layer. Quenum and Aknine [19] conceive an approach for
the generation of executable test cases from requirements specifications, thereby
focusing on acceptance tests for validating a software system’s conformance with
stakeholder expectations.

Hillah et al. [13] present an approach to automated functional testing based
on formal specifications (of services, relations, etc.). Jayawardana et al. [15]
propose a framework to produce test skeletons from business process models.

All mentioned related works concentrate on different aspects of MSA testing
than JoT. In particular, they do not focus on the specification of advanced MSA
tests tailored to technology agnosticism and expressed using a terse syntax, like
the one provided by JoT thanks to the usage of the Jolie language. We plan
to study the possible interplay between the mentioned work with JoT, e.g., for
semi-automatic test generation geared towards specific traits of the architecture
under test.

To improve the reliability of JoT we intend to conduct more comprehensive
validation of our tool. One such validation entails more varied and complex sce-
narios, including synchronous and asynchronous interactions, design and archi-
tecture patterns, like Sagas for distributed transactions and Circuit Breaker for
increased reliability.

In particular, looking at the design and architecture patterns, we foresee the
language for test behaviours (inherited from Jolie) would play a fundamental
role in helping users express complex testing logic spanning different services.

JoT: A Jolie Framework for Testing Microservices 189

Also this aspect deserves dedicated work, i.e., how the JoT behaviour increases
the productivity of testers w.r.t. existing solutions. Both empirical studies with
practitioners and applying relevant software quality metrics, comparing with
both existing tools for general testing (e.g., JUnit) specific to microservices (e.g.,
zerocode®, Microdot®,” and MounteBank®).

Other future endeavours regard studying the integration of JoT with MSA
modelling languages like LEMMA [20] and MDSL [23], and with choreographic
testing approaches [1,2,9,10]. Such an integration would allow the generation of
test behaviours and coordinators in contexts where a single orchestrator is not
sufficient, e.g., in decentralized, cross-organizational deployments. Furthermore,
Jolie types and interfaces provide natural support for property-based testing [5],
where generators randomly run tests on valid data and operations to assert
relevant invariants. In this context, one could use session types [14] to specify
behavioural invariants that shall hold in the system and test these in a property-
based manner.

Acknowledgements. This work was partially supported by the Independent
Research Fund Denmark, grant no. 0135-00219, Villum Fonden, grant no. 29518, and
Innovation Fund Denmark, grant no. 9142-00001B.

Data Availability Statement

The artifact is available in the Software Heritage repository:

swh:1:dir:11bd4al7c8b8f184a5tbe50d8436719cb7de4956

References

1. Coto, A., Guanciale, R., Tuosto, E.: On testing message-passing components. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476, pp. 22—-38. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-61362-4 2

2. Coto, A., Guanciale, R., Tuosto, E.: An abstract framework for choreographic
testing. J. Log. Algebraic Methods Program. 123, 100712 (2021)

3. Dalla Preda, M., Gabbrielli, M., Lanese, 1., Mauro, J., Zavattaro, G.: Graceful
interruption of request-response service interactions. In: Kappel, G., Maamar,
Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 590-600.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25535-9 45

4. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. In: Present and
Ulterior Software Engineering, pp. 195-216. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67425-4 12

5. Fink, G., Bishop, M.: Property-based testing: a new approach to testing for assur-
ance. ACM SIGSOFT Softw. Eng. Notes 22(4), 74-80 (1997)

5 https://github.com/authorjapps/zerocode.
5 https://github.com/gigya/microdot.

" https://pact.io/.

8 https://www.mbtest.org/.

https://archive.softwareheritage.org/browse/directory/11bd4a17c8b8f184a5fbe50d8436719cb7de4956/?origin_url=https://github.com/jolie/jot&revision=c0b5ac36883e52914d5e11716a9a0dea28ef9fbb&snapshot=fc65ef826a46b3b99b5f44c3adc3c34e47dd5d35
https://doi.org/10.1007/978-3-030-61362-4_2
https://doi.org/10.1007/978-3-642-25535-9_45
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://github.com/authorjapps/zerocode
https://github.com/gigya/microdot
https://pact.io/
https://www.mbtest.org/

190

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

S. Giallorenzo et al.

Gabbrielli, M., Giallorenzo, S., Lanese, 1., Zingaro, S.P.: A language-based app-
roach for interoperability of iot platforms. In: 51st Hawaii International Confer-
ence on System Sciences, HICSS 2018, Hilton Waikoloa Village, Hawaii, USA, 3—6
January 2018. pp. 1-10. ScholarSpace / AIS Electronic Library (AISeL) (2018)
Gabbrielli, M., Giallorenzo, S., Montesi, F.: Service-oriented architectures: from
design to production exploiting workflow patterns. In: Omatu, S., Bersini, H., Cor-
chado, J.M., Rodriguez, S., Pawlewski, P., Bucciarelli, E. (eds.) Distributed Com-
puting and Artificial Intelligence, 11th International Conference. AISC, vol. 290,
pp. 131-139. Springer, Cham (2014). https://doi.org/10.1007,/978-3-319-07593-
8 17

Gamma, E., Beck, K.: Junit (2006)

Giallorenzo, S., Lanese, I., Russo, D.: ChlP: a choreographic integration process. In:
Panetto, H., Debruyne, C., Proper, H.A., Ardagna, C.A., Roman, D., Meersman,
R. (eds.) OTM 2018. LNCS, vol. 11230, pp. 22—40. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-02671-4 2

Giallorenzo, S., Montesi, F., Peressotti, M.: Choreographies as objects. CoRR
abs/2005.09520 (2020). https://arxiv.org/abs/2005.09520

Giallorenzo, S., Montesi, F., Peressotti, M., Rademacher, F., Sachweh, S.: Jolie and
LEMMA: model-driven engineering and programming languages meet on microser-
vices. In: Damiani, F., Dardha, O. (eds.) COORDINATION 2021. LNCS, vol.
12717, pp. 276-284. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
78142-2 17

Heorhiadi, V., Rajagopalan, S., Jamjoom, H., Reiter, M.K., Sekar, V.: Gremlin:
Systematic resilience testing of microservices. In: 2016 IEEE 36th International
Conference on Distributed Computing Systems (ICDCS), pp. 57-66. IEEE (2016)
Hillah, L.M., et al.: Automation and intelligent scheduling of distributed system
functional testing: model-based functional testing in practice. Int. J. Softw. Tools
Technol. Transfer 19, 281-308 (2017)

Hiittel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. (CSUR) 49(1), 1-36 (2016)

Jayawardana, Y., Fernando, R., Jayawardena, G., Weerasooriya, D., Perera, I.: A
full stack microservices framework with business modelling. In: 2018 18th Interna-
tional Conference on Advances in ICT for Emerging Regions (ICTer), pp. 78-85.
IEEE (2018)

Montesi, F.: Process-aware web programming with Jolie. Sci. Comput. Program.
130, 69-96 (2016)

Montesi, F., Guidi, C., Zavattaro, G.: Service-oriented programming with Jolie. In:
Bouguettaya, A., Sheng, Q., Daniel, F. (eds) Web Services Foundations. Springer,
New York (2014). https://doi.org/10.1007/978-1-4614-7518-7 4

OMG: OMG Unified Modeling Language (OMG UML) version 2.5.1. Standard
formal/17-12-05, Object Management Group (2017)

Quenum, J.G., Aknine, S.: Towards executable specifications for microservices. In:
2018 IEEE International Conference on Services Computing (SCC), pp. 41-48.
IEEE (2018)

Rademacher, F.: A language ecosystem for modeling microservice architecture,
Ph. D. thesis, University of Kassel, Germany (2022). https://kobra.uni-kassel.de/
handle /123456789 /14176

Waseem, M., Liang, P., Méarquez, G., Di Salle, A.: Testing microservices
architecture-based applications: a systematic mapping study. In: 2020 27th Asia-
Pacific Software Engineering Conference (APSEC), pp. 119-128. IEEE (2020)

https://doi.org/10.1007/978-3-319-07593-8_17
https://doi.org/10.1007/978-3-319-07593-8_17
https://doi.org/10.1007/978-3-030-02671-4_2
https://doi.org/10.1007/978-3-030-02671-4_2
https://arxiv.org/abs/2005.09520
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-1-4614-7518-7_4
https://kobra.uni-kassel.de/handle/123456789/14176
https://kobra.uni-kassel.de/handle/123456789/14176

22.

23.

JoT: A Jolie Framework for Testing Microservices 191

Waseem, M., Liang, P., Shahin, M., Di Salle, A., Marquez, G.: Design, monitoring,
and testing of microservices systems: the practitioners’ perspective. J. Syst. Softw.
182, 111061 (2021)

Zimmermann, O., Stocker, M., Liibke, D., Zdun, U., Pautasso, C.: Patterns for API
design: simplifying integration with loosely coupled message exchanges. Addison-
Wesley (2023)

	JoT: A Jolie Framework for Testing Microservices
	1 Introduction
	2 Methodology and Structure of Tests
	2.1 Building a Test in JoT
	2.2 Writing a Complete Test
	2.3 Executing JoT Tests

	3 Validation
	3.1 Tested Interaction Scenarios
	3.2 JoT Test of Scenario 1
	3.3 JoT Test of Scenario 2

	4 Related Work, Discussion, and Conclusion
	References

