
Sung-Shik Jongmans
Antónia Lopes (Eds.)

LN
CS

 1
39

08

Coordination Models
and Languages
25th IFIP WG 6.1 International Conference, COORDINATION 2023
Held as Part of the 18th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2023
Lisbon, Portugal, June 19–23, 2023, Proceedings

Lecture Notes in Computer Science 13908
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Sung-Shik Jongmans · Antónia Lopes
Editors

Coordination Models
and Languages
25th IFIP WG 6.1 International Conference, COORDINATION 2023
Held as Part of the 18th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2023
Lisbon, Portugal, June 19–23, 2023
Proceedings

Editors
Sung-Shik Jongmans
Open University of The Netherlands
Amsterdam, The Netherlands

Antónia Lopes
University of Lisbon
Lisbon, Portugal

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-35360-4 ISBN 978-3-031-35361-1 (eBook)
https://doi.org/10.1007/978-3-031-35361-1

© IFIP International Federation for Information Processing 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-4394-8745
https://orcid.org/0000-0003-0688-3521
https://doi.org/10.1007/978-3-031-35361-1

Foreword

The 18th International Federated Conference on Distributed Computing Techniques
(DisCoTec) took place in Lisbon, Portugal, from June 19 to June 23, 2023. It was
organized by the Department of Computer Science of NOVA School of Science and
Technology, NOVA University Lisbon. The DisCoTec series is one of the major events
sponsoredby the International Federation for InformationProcessing (IFIP). It comprises
three conferences:

– COORDINATION, the IFIP WG 6.1 25th International Conference on Coordination
Models and Languages

– DAIS, the IFIP WG 6.1 23rd International Conference on Distributed Applications
and Interoperable Systems

– FORTE, the IFIP WG 6.1 43rd International Conference on Formal Techniques for
Distributed Objects, Components and Systems

Together, these conferences cover a broad spectrum of distributed computing sub-
jects, ranging from theoretical foundations and formal description techniques to systems
research issues. In addition to the individual sessions of each conference, the event also
included plenary sessions that gathered attendees from the three conferences. These
included joint invited speaker sessions and a joint session for the best papers and arte-
facts from the three conferences. The keynote speakers of DisCoTec 2023 are listed
below:

– Azalea Raad, Imperial College London, UK
– Frank Pfenning, Carnegie Mellon University, USA
– Peter Pietzuch, Imperial College London, UK

Associated with the federated event were also the following satellite events:

– ICE, the 16th Interaction and Concurrency Experience
– BehAPI Tutorial Day, a series of three tutorials covering results from the BehAPI

project

in addition to other short tutorials on relevant topics to DisCoTec.
I would like to thank the Program Committee chairs of the different events for their

help and cooperation during the preparation of the conference, and the Steering Com-
mittee and Advisory Boards of DisCoTec for their guidance, patience, and support. The
organization of DisCoTec 2023 was only possible thanks to the work of the Organiz-
ing Committee, including João Costa Seco, João Leitão, Mário Pereira, Carlos Baquero
(publicity chair), Simão Melo de Sousa (workshops and tutorials chair), Joana Dâmaso
(logistics and finances), as well as all the students who volunteered their time to help.
Finally, I would like to thank IFIP WG 6.1 and NOVA LINCS for sponsoring this event,

vi Foreword

Springer’s Lecture Notes in Computer Science team for their support and sponsorship,
and EasyChair for providing the reviewing infrastructure.

June 2023 Carla Ferreira

Preface

This volume contains the proceedings of the 25th International Conference on
CoordinationModels andLanguages (COORDINATION2023), held during June 19–23,
2023, at NOVA University Lisbon, in Lisbon, Portugal, as part of the 18th International
Federated Conference on Distributed Computing Techniques (DisCoTec 2023).

Modern information systems rely increasingly on combining concurrent, distributed,
mobile, adaptive, reconfigurable, and heterogeneous components. Newmodels, architec-
tures, languages, and verification techniques are necessary to cope with the complexity
induced by the demands of today’s software development. Coordination languages have
emerged as a successful approach, in that they provide abstractions that cleanly separate
behavior from communication, thereby increasing modularity, simplifying reasoning,
and ultimately enhancing software development. COORDINATION provides a well-
established forum for the community of researchers interested in models, languages,
architectures, and implementation techniques for coordination.

COORDINATION 2023 solicited contributions in five different categories: (1) long
regular papers describing thorough and complete research results and experience reports;
(2) short regular papers describing research in progress or opinion papers on past
coordination research, on the current state of the art, or on prospects for the years
to come; (3) short tool papers describing technological artefacts in the scope of the
research topics of coordination; (4) long tool papers describing technological artefacts
in the scope of the research topics of coordination; and (5) survey papers describing
important results and success stories that originated in the context of coordination.

There were 27 paper submissions distributed over the different categories: 14 long
regular papers, seven long tool papers, four short regular papers, and two short tool
papers. The selection of the paperswas entrusted to theProgramCommittee (PC),with 29
members from15 different countries. The selection of the paperswas done electronically,
in two phases. In the first phase, which lasted three weeks, each submission was single-
blind reviewed by at least three program committee members, in some cases with the
help of external reviewers. During the second phase, which lasted slightly less than one
week, the papers were throughly discussed. The decision to accept or reject a paper was
based not only on the review reports and scores but also on these in-depth discussions.
In the end, 14 papers were selected to be presented at the conference: eight long regular
papers, four long tool papers and two short tool papers.

The authors of the accepted papers were subsequently invited to participate in the
EAPLS artefact badging. The 11members of the Artefact Evaluation Committee (AEC),
chaired by Alceste Scalas, awarded the available badge to eight artefacts, the reusable
badge to five artefacts, and the functional badge to three artefacts.

In addition to the selected papers, these proceedings contain a paper that accompanies
the excellent invited talk by Frank Pfenning from Carnegie Mellon University, USA,
entitled “Relating Message Passing and Shared Memory, Proof-Theoretically”. This
paper was subject to a different review process, carried out by the PC chairs.

viii Preface

We are grateful to all involved inCOORDINATION2023. In particular, to the authors
for their submissions, the attendees of the conference for their participation, the PCmem-
bers and external reviewers for their work in reviewing submissions and participating
in the discussions, the AEC members for their effort in the evaluation of the artefacts,
and the Steering Committee, chaired by Mieke Massink, for their guidance and support.
We are also grateful to the Organizing Committee, chaired by Carla Ferreira, for their
excellent job. We also thank the providers of EasyChair Conference Management Sys-
tem, which was a great help in organizing the submission and reviewing process and
in the preparation of the proceedings. We would also like to acknowledge the prompt
and professional support from Springer, who published these proceedings in printed and
electronic volumes as part of their LNCS and LNPSE book series.

June 2023 Sung-Shik Jongmans
Antónia Lopes

Organization

General Chair

Carla Ferreira NOVA University Lisbon, Portugal

Program Committee Chairs

Sung-Shik Jongmans Open University of the Netherlands,
The Netherlands

Antónia Lopes University of Lisbon, Portugal

Program Committee

Giorgio Audrito University of Turin, Italy
Marco Autili Università dell’Aquila, Italy
Massimo Bartoletti Università degli Studi di Cagliari, Italy
Laura Bocchi University of Kent, UK
Marcello Bonsangue Leiden University, The Netherlands
Javier Cámara University of Malaga, Spain
Ilaria Castellani Inria, France
Adrian Francalanza University of Malta, Malta
Vashti Galpin University of Edinburgh, UK
Eva Kühn Vienna University of Technology, Austria
Narges Khakpour Newcastle University, UK
Alberto Lluch Lafuente Technical University of Denmark, Denmark
Michele Loreti University of Camerino, Italy
Mieke Massink CNR-ISTI, Italy
Sung Meng Peking University, China
Hernán Melgratti University of Buenos Aires, Argentina
Fabrizio Montesi University of Southern Denmark, Denmark
Rumyana Neykova Brunel University London, UK
Anna Philippou University of Cyprus, Cyprus
José Proença Polytechnic Institute of Porto, Portugal
Rosario Pugliese University of Florence, Italy
Marjan Sirjani Mälardalen University, Sweden

x Organization

Violet Ka I Pun Western Norway University of Applied Sciences,
Norway

Carolyn Talcott SRI International, USA
Silvia Tapia Tarifa University of Oslo, Norway
Maurice ter Beek CNR-ISTI, Italy
Peter Thiemann Universität Freiburg, Germany
Emilio Tuosto Gran Sasso Science Institute, Italy
Mirko Viroli University of Bologna, Italy

Artefact Evaluation Committee

Lorenzo Bacchiani University of Bologna, Italy
Manel Barkallah University of Namur, Belgium
Christian B. Burlò Gran Sasso Science Institute, Italy
Luca Di Stefano University of Gothenburg, Sweden
Marco Giunti NOVA University Lisbon, Portugal
Stefano Mariani Università degli Studi di Modena e Reggio

Emilia, Italy
Florian Rademacher University of Applied Sciences and Arts

Dortmund, Germany
Aniqa Rehman University of Camerino, Italy
Neea Rusch Augusta University, USA
Larisa Safina Inria - Lille Nord Europe, France
Alceste Scalas (Chair) Technical University of Denmark, Denmark

Steering Committee

Gul Agha University of Illinois Urbana-Champaign, USA
Farhad Arbab CWI and Leiden University, The Netherlands
Simon Bliudze Inria Lille, France
Laura Bocchi University of Kent, UK
Ferruccio Damiani University of Turin, Italy
Ornela Dardha University of Glasgow, UK
Wolfgang De Meuter Vrije Universiteit Brussels, Belgium
Rocco De Nicola IMT School for Advanced Studies Lucca, Italy
Giovanna di Marzo Serugendo Université de Genève, Switzerland
Tom Holvoet KU Leuven, Belgium
Jean-Marie Jacquet University of Namur, Belgium
Christine Julien University of Texas at Austin, USA
Eva Kühn Vienna University of Technology, Austria

Organization xi

Alberto Lluch Lafuente Technical University of Denmark, Denmark
Michele Loreti Università di Camerino, Italy
Mieke Massink (Chair) ISTI-CNR, Pisa, Italy
José Proença CISTER, ISEP, Portugal
Rosario Pugliese Università di Firenze, Italy
Hanne Riis Nielson Technical University of Denmark, Denmark
Marjan Sirjani Mälardalen University, Sweden
Carolyn Talcott SRI International, USA
Maurice ter Beek CNR-ISTI, Italy
Emilio Tuosto Gran Sasso Science Institute, Italy
Vasco T. Vasconcelos University of Lisbon, Portugal
Mirko Viroli Università di Bologna, Italy
Gianluigi Zavattaro Università di Bologna, Italy

Organizing Committee

Carla Ferreira (General Chair) NOVA University Lisbon, Portugal
João Costa Seco NOVA University Lisbon, Portugal
João Leitão NOVA University Lisbon, Portugal
Mário Pereira NOVA University Lisbon, Portugal
Carlos Baquero (Publicity Chair) University of Porto, Portugal
Simão Melo de Sousa (Workshops

and Tutorials Chair)
University of Beira Interior, Portugal

Additional Reviewers

Peter Ahn
Gianluca Aguzzi
Sara Abbaspour Asadollah
Henning Basold
Roberto Casadei
Erik De Vink
Dimitrios Kouzapas
Zahra Moezkarimi
Maghsood Salimi
Volker Stolz
Jasmine Xuereb

Contents

Keynote

Relating Message Passing and Shared Memory, Proof-Theoretically 3
Frank Pfenning and Klaas Pruiksma

Collective Adaptive Systems and Aggregate Computing

MacroSwarm: A Field-Based Compositional Framework for Swarm
Programming . 31

Gianluca Aguzzi, Roberto Casadei, and Mirko Viroli

ScaRLib: A Framework for Cooperative Many Agent Deep Reinforcement
Learning in Scala . 52

Davide Domini, Filippo Cavallari, Gianluca Aguzzi, and Mirko Viroli

Programming Distributed Collective Processes for Dynamic Ensembles
and Collective Tasks . 71

Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, Gianluca Torta,
and Mirko Viroli

Cyber-Physical Systems

Shelley: A Framework for Model Checking Call Ordering on Hierarchical
Systems . 93

Carlos Mão de Ferro, Tiago Cogumbreiro, and Francisco Martins

Stark: A Software Tool for the Analysis of Robustness in the unKnown
Environment . 115

Valentina Castiglioni, Michele Loreti, and Simone Tini

Verification and Testing

RSC to the ReSCu: Automated Verification of Systems of Communicating
Automata . 135

Loïc Desgeorges and Loïc Germerie Guizouarn

Reasoning About Choreographic Programs . 144
Luís Cruz-Filipe, Eva Graversen, Fabrizio Montesi, and Marco Peressotti

xiv Contents

Caos: A Reusable Scala Web Animator of Operational Semantics 163
José Proença and Luc Edixhoven

JoT: A Jolie Framework for Testing Microservices . 172
Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti,
Florian Rademacher, and Narongrit Unwerawattana

Languages and Processes

Rollback Recovery in Session-Based Programming . 195
Claudio Antares Mezzina, Francesco Tiezzi, and Nobuko Yoshida

Safe Asynchronous Mixed-Choice for Timed Interactions 214
Jonah Pears, Laura Bocchi, and Andy King

A Formal MDE Framework for Inter-DSL Collaboration . 232
Salim Chehida, Akram Idani, Mario Cortes-Cornax, and German Vega

Run-Time Changes

Legal Contracts Amending with Stipula . 253
Cosimo Laneve, Alessandro Parenti, and Giovanni Sartor

Toward Run-time Coordination of Reconfiguration Requests in Cloud
Computing Systems . 271

Salman Farhat, Simon Bliudze, Laurence Duchien,
and Olga Kouchnarenko

Author Index . 293

Keynote

Relating Message Passing and Shared
Memory, Proof-Theoretically

Frank Pfenning1(B) and Klaas Pruiksma2

1 Carnegie Mellon University, Pittsburgh, PA, USA
fp@cs.cmu.edu

2 University of Stuttgart, Stuttgart, Germany
klaas.pruiksma@sec.uni-stuttgart.de

Abstract. We exhibit a strong bisimulation between asynchronous mes-
sage passing concurrency with session types and shared memory con-
currency with futures. A key observation is that both arise from closely
related interpretations of the semi-axiomatic sequent calculus with recur-
sive definitions, which provides a unifying framework. As a further result
we show that the bisimulation applies to both linear and nonlinear ver-
sions of the two languages.

Keywords: Session types · futures · bisimulation

1 Introduction

At first sight, message passing concurrency is quite different from shared memory
concurrency. Then we remember the well-known encoding of shared memory cells
in the π-calculus [25] and also implementations of message passing abstractions
using shared memory [20]. Such mutual encodings are significant, but far from
straightforward and difficult to reason about rigorously.

This paper is an attempt to reduce the relationship to its essence in the
typed setting. On one side we have a language for asynchronous message passing
using session types [14]. On the other side we have typed futures [13,23]. The
key conceptual tools in understanding their relationship are the semi-axiomatic
sequent calculus [10] (SAX) and the polarities of the connectives [1,18]. We
introduce the relevant aspects of these tools one by one. At the end, we arrive at
two strong bisimulations between the two sides, one each for linear and nonlinear
versions of message passing and shared memory. This is the closest connection
we could reasonably hope for.

2 Proof Reduction as Communication

The so-called Curry-Howard correspondence [8,16] is often summarized as saying
that propositions are types and proofs are programs. This neglects an even deeper

Notes to an invited talk by the first author.
c© IFIP International Federation for Information Processing 2023
S.-S. Jongmans and A. Lopes (Eds.): COORDINATION 2023, LNCS 13908, pp. 3–27, 2023.
https://doi.org/10.1007/978-3-031-35361-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35361-1_1&domain=pdf
https://doi.org/10.1007/978-3-031-35361-1_1

4 F. Pfenning and K. Pruiksma

aspect of the relationship between logic and computation: proof reduction is
computation. In natural deduction, the fundamental engine of proof reduction
is substitution; in Hilbert-style calculi it is combinatory reduction. What about
sequent calculus? At the logical level, we write a sequent as

A1, . . . , An � C

where propositions Ai are the antecedents and C is the succedent. In our inves-
tigation, the succedent will always be a singleton since we restrict ourselves to
intuitionistic logic.

We examine the computational interpretation first in the context of a purely
linear calculus, that is, we take exchange between antecedents for granted, but
we allow neither weakening nor contraction. We write

P
a1 : A1, . . . , an : An � c : C

where the ai and c stand for means of communication for the proof (= process)
P . Under a message passing interpretation names ai and c stand for channels;
under a shared memory interpretation, they stand for addresses. We use Γ and
Δ to stand for a collection of antecedents, always presupposing that all names
ai and c are distinct.

For the moment, we stick with the message passing interpretation. Then cut
represents two processes P and Q that are connected via a private communica-
tion channel x.

P (x)
Γ1 � x : A

Q(x)
Γ2, x : A � c : C

Γ1, Γ2 � c : C
cut

It is a private communication channel because by our general presupposition x
must be different from c and must not already occur in Γ1 or Γ2.

The propositions A are interpreted as session types that govern the particular
kinds of messages that are exchanged along a private channel x : A. As an
example we consider A ⊕ B, which is the linear rendering of disjunction A ∨ B.
Here is a principal cut reduction for this proposition/type.

P ′(x′)
Γ1 � x′ : A

Γ1 � x : A ⊕ B
⊕R1

Q1(x′)
Γ2, x

′ : A � c : C
Q2(x′)

Γ2, x
′ : B � c : C

Γ2, x : A ⊕ B � c : C
⊕L

Γ1, Γ2 � c : C
cut

−→

P ′(x′)
Γ1 � x′ : A

Q1(x′)
Γ2, x

′ : A � c : C

Γ1, Γ2 � c : C
cut

Relating Message Passing and Shared Memory 5

We see that the first premise of the cut (rule ⊕R1) has a single premise, while
the second premise of the cut (rule ⊕L) has two branches (Q1 and Q2). In
essence, the proof of the first premise (either ⊕R1 or ⊕R2) selects one of the
two branches of the second premise. So the information flows along the channel
x from left to right. The message itself therefore should be one bit to indicate
whether the first or second branch was chosen.

In this example, the communication between processes P and Q (the two
premises of the cut) is synchronous because P evolves to P ′ and Q evolves to Q1.
Other connectives of linear logic follow the same pattern and we conclude [4,5]:

Principal cut reduction in the linear sequent calculus corresponds to syn-
chronous message passing communication.

3 Asynchronous Communication

In order to model asynchronous communication proof-theoretically we should
have a proof that corresponds to a message. The salient aspects of a message are
that (a) it carries relevant information, and (b) it does not have a continuation.
We can achieve both if we represent messages as axioms.

Continuing the example from the previous section, we have two axioms for
disjunction, where we write X for axiom instead of R for right rule.

a : A � c : A ⊕ B
⊕X1 b : B � c : A ⊕ B

⊕X2

The principal case of cut then becomes

a : A � x : A ⊕ B
⊕X1

Q1(x′)
Γ2, x

′ : A � c : C
Q2(x′)

Γ2, x
′ : B � c : C

Γ2, x : A ⊕ B � c : C
⊕L

Γ2, a : A � c : C
cut

−→
Q1(a)

Γ2, a : A � c : C

We see that the reduction corresponds to the message represented by the first
premise being received by the second premise (process Q that ends in ⊕L). The
message “disappears” and process Q continues as [a/x′]Q1(x′) which we write
just as Q1(a). And while we have changed the two conventional ⊕R rules into
axioms, the ⊕L rules remains the same.

We also observe that the message contains not only the bit to choose the
first or second branch, it also contains a continuation channel a. This would be
either of type A or B, depending on whether it is an instance of ⊕X1 or ⊕X2.

We can continue this pattern. For each connective of (purely) linear logic,
either the right or left rule is invertible and the other one is noninvertible. Intu-
itively, the invertible rule carries no specific information (after all, the premise(s)

6 F. Pfenning and K. Pruiksma

are derivable iff the conclusion is) while the noninvertible rule makes a choice.
Therefore, we turn all noninvertible rules into axioms and keep the invertible
rules as they are. The result is the linear semi-axiomatic sequent calculus [9,10]
(Semi-axiomatic since half the usual rules are now axioms.) We conclude:

Principal cut reduction in the semi-axiomatic sequent calculus corresponds
to asynchronous message passing communication.

The reader might wonder how we send a message, now that, for example,
the ⊕R1 and ⊕R2 processes are no longer available. The solution is actually
the same as in the asynchronous π-calculus: we use cut (= parallel composition)
itself. For example,

P (x)
Γ1 � x : A x : A � c : A ⊕ B

⊕X1

Γ1 � c : A ⊕ B
cut

sends the message “choose the first branch and continue with channel x” along
the channel c. We retain our connection to the receiving process via the new
continuation channel x. This technique is made explicit by Kobayashi et al. [17]
and can also be identified in other examples for the π-calculus [19,25].

4 A Language for Asynchronous Communication

Following the motifs in the previous section, we now present a complete language
for asynchronous message passing communication. We also specify the typing
rules and how processes behave dynamically. For the purpose of more readable
examples, we generalize binary sums to ⊕�∈L(� : A�) for a finite set L of labels
and, correspondingly, binary additive conjunction to ��∈L(� : A�).

Types A,B,C ::= A ⊗ B | 1 | ⊕�∈L(� : A�) (positive)
| A � B | ��∈L(� : A�) (negative)
| t (type names)

Contexts Γ ::= · | Γ, x : A | Γ, a : A

Type names represent equirecursive types whose definitions are collected in a
global signature Σ. Correspondingly, we allow mutually recursive process defi-
nitions, collected in the same signature. We use a, b, and c for channels (which
are runtime objects) and x, y, and z for variables occurring in a process that
stand for channels. Strictly speaking, we should introduce a category of symbol
which may either be a variable or a channel, but since the rules do not need to
distinguish between them we just follow the convention that we use x, y, and z
for variables that are bound in a process expression and a, b, and c for channels
or variables that are free. At runtime, a process will have only free channels and
internally bound variables.

Relating Message Passing and Shared Memory 7

Processes are typed with

a1 : A1, . . . , an : An
︸ ︷︷ ︸

use

� P :: (c : C)
︸ ︷︷ ︸

provide

where we say process P provides channel c and uses channels ai. We also refer
to P as a client of ai and a provider of c.

Channels carry messages with small values V , which are either pairs of chan-
nels 〈a, b〉, a unit message 〈 〉, or tagged channels k(a) for labels k. The direction
of the message depends on the polarity of the types. For a channel of positive
type C the provider will send a message and the client will receive it. For a
negative type the client will send a message and the provider will receive it.

4.1 The Dynamics of Process Configurations

We describe the state of the computation by a multiset of semantic objects we call
a configuration. The possible state transitions are defined by multiset rewriting
rules [7]. The left-hand side of a rule is matched against some objects in the
configuration which are then replaced by the right-hand side. Later, we will
refine this point of view slightly to allow persistent objects that always remain
in a configuration.

As a first example, consider the construct x ← P (x) ; Q(x). A process of this
form will allocate a new private channel a that is provided by P (a) and used by
Q(a). Logically, it is a cut.

Γ1 � A Γ2, A � C

Γ1, Γ2 � C
cut

Γ1 � P (x) :: (x : A) Γ2, x : A � Q(x) :: (c : C)
Γ1, Γ2 � (x ← P (x) ; Q(x)) :: (c : C)

cut

Our first semantic object is proc P that represents a running process P . In the
dynamics, a cut process evolves into two.

proc (x ← P (x) ; Q(x))
→ proc P (a), proc Q(a) (a a fresh channel)

We now dive into the meaning of each of the logical connectives, extracting their
computational meaning.

4.2 Positive Connectives

Internal choice ⊕�∈L(� : A�). As motivated in the preceding section, the right
rules for sums are replaced by axioms. At the same time, we generalize from
binary disjunction to finite sums, indexed by a label set L. This is a strict
generalization under the definition A ⊕ B � (inl : A) ⊕ (inr : B)

A � A ⊕ B
⊕X1 B � A ⊕ B

⊕X2

(k ∈ L)
b : Ak � send+ a k(b) :: (a : ⊕�∈L(� : A�))

⊕X

8 F. Pfenning and K. Pruiksma

The intent is for the process send+ a k(b) to send the tagged channel k(b) along
channel a. The polarity annotation of the send construct is not syntactically
necessary, but the redundant information will be helpful later in formulating
the connection between message passing and futures. In order to express the
dynamics, we use a second kind of semantic object msg a V , representing the
value V as a message on channel a. Computationally, a sending process “becomes”
a message.

proc (send+ a k(b))
→ msg+ a k(b)

The left rule for sums branches on the label received.
Γ,A � C Γ,B � C

Γ,A ⊕ B � C
⊕L

Γ, x : A� � P�(x) :: (d : C) (∀� ∈ L)
Γ, c : ⊕�∈L(� : A�) � recv+ c (�(x) ⇒ P�(x))�∈L :: (d : C)

⊕L

A receiving process blocks until a message arrives. In the dynamics we represent
a process blocked on channel a as a continuation object cont a K. Here K is the
continuation to invoke once a message has arrived. In the case of sums, this is
the branching construct.

proc (recv+ a (�(x) ⇒ P�(x))�∈L)
→ cont+ a (�(x) ⇒ P�(x))�∈L

Messages always interact with continuations. Here, the message selects one of
the branches and also carries the continuation channel for subsequent commu-
nication.

msg+ a k(b), cont+ a (�(x) ⇒ P�(x))�∈L
→ proc Pk(b)

Pairs A ⊗ B. Because A ⊗ B is a positive type, we turn the usual right rule of
the sequent calculus into an axiom.

A,B � A ⊗ B
⊗X

a : A, b : B � send+ c 〈a, b〉 :: (c : A ⊗ B)
⊗X

As for sums, a sending process simply becomes a message.

proc (send+ a 〈b, c〉)
→ msg+ a 〈b, c〉
The left rule of the sequent calculus corresponds to the receipt of a message.

Γ,A,B � C

Γ,A ⊗ B � C
⊗L

Γ, x : A, y : B � P (x, y) :: (d : C)
Γ, c : A ⊗ B � recv+ c (〈x, y〉 ⇒ P (x, y)) :; (d : C)

⊗L

Again, just as for sums, a process receiving along a channel c will block until the
message arrives. This is modeled by turning it into a continuation, which can
then interact with a message.

proc (recv+ c (〈x, y〉 ⇒ P (x, y)))
→ cont+ c (〈x, y〉 ⇒ P (x, y))

msg+ c 〈a, b〉, cont+ c (〈x, y〉 ⇒ P (x, y))
→ proc P (a, b)

Relating Message Passing and Shared Memory 9

Unit 1. The (multiplicative) unit type 1 is also positive. Instead of a pair of
channels, messages of unit type are just 〈 〉 and carry no information, except
that there is a message. The rules are the nullary versions of the rules for A⊗B.

· � 1 1X · � send+ c 〈 〉 :: (c : 1)
⊗X

Γ � C
Γ, 1 � C

1L
Γ � P :: (d : C)

Γ, c : 1 � recv+ c (〈 〉 ⇒ P) :: (d : C) 1L

proc (send+ c 〈 〉)
→ msg+ c 〈 〉
proc (recv+ c (〈 〉 ⇒ P))
→ cont+ c (〈 〉 ⇒ P)
msg+ c 〈 〉, cont+ c (〈 〉 ⇒ P)
→ proc P

4.3 Refactoring the Rules of Computation

At this point we reflect on the dynamic rules and we see that we can refactor
them, since both sending and receiving processes always turn into messages or
continuations, respectively.

proc (x ← P (x) ; Q(x))
→ proc P (a), proc Q(a) (a fresh)
proc (send+ c V)
→ msg+ c V
proc (recv+ c K)
→ cont+ c K
msg+ c V, cont+ c K
→ proc (V � K)

Passing a value to a continuation is handled as a separate operation.

k(a) � (�(x) ⇒ P�(x))�∈L = Pk(a) (⊕)
〈a, b〉 � (〈x, y〉 ⇒ P (x, y)) = P (a, b) (⊗)
〈 〉 � (〈 〉 ⇒ P) = P (1)

4.4 Process Definitions

Recall that all process definitions are collected in a global signature. At a call
site we just check that the types of the channel used and provided match those
described in the type declaration for a process.

(x1 : A1, . . . , xn : An � f :: (z : C)) ∈ Σ

a1 : A1, . . . , an : An � f c [a1, . . . , an] :: (c : C) call

In the first position after f is always the channel provided by the definition
followed by a the list of channels used.

proc (call f c [a1, . . . , an])
→ proc P (c, a1, . . . , an)

for (f z [x1, . . . , xn] = P (z, x1, . . . , xn)) ∈ Σ

10 F. Pfenning and K. Pruiksma

4.5 Some Examples

Even though our language is quite incomplete, we can already give some small
examples. First, a process that flips a bit. We do not give an an explicit type
declaration of the process flip, but show the type of the channel it provides
(always first, here y) and the types of the channels it uses (here just x) in the
left-hand side of the definition. We use sans serif for type names, fixed width
for labels, bold for language keywords, and italics for process names.

bit = (b0 : 1) ⊕ (b1 : 1)
flip (y : bit) [x : bit] =

recv x (b0(u) ⇒ send y b1(u)
| b1(u) ⇒ send y b0(u))

Slightly more interesting is a recursive type that models an infinite stream of
bits, and a process that flips them in turn.

bits = (b0 : bits) ⊕ (b1 : bits)
flips (ys : bits) [xs : bits] =
recv xs (b0(xs′) ⇒ ys′ ← call flips ys′ [xs′] ;

send ys b1(ys′)
| b1(xs′) ⇒ ys′ ← call flips ys′ [xs′] ;

send ys b0(ys′))

Next, a simple pipeline of two bit-flipping processes which should be the identity,
with some delay between incoming and outgoing messages.

bits = (b0 : bits) ⊕ (b1 : bits)
flip2 (zs : bits) [xs : bits] =

ys ← call flips ys [xs] ;
call flips zs [ys]

A very similar type is that of a binary number, where zero is represented by
the label e followed by the unit. We start programming processes representing
zero and computing the successor of a given stream (assuming the least signifi-
cant bit arrives first).

bin = (b0 : bits) ⊕ (b1 : bits) ⊕ (e : 1)

zero (y : bin) [] =
u ← send u 〈 〉 ;
send y e(u)

succ (y : bin) [x : bin] =
recv x (b0(x′) ⇒ send y b1(x′)

| b1(x′) ⇒ y′ ← call succ y′ [x′] ;
send y b0(y′)

| e(u) ⇒ y′ ← send y′ e(u) ;
send y b1(y′))

Relating Message Passing and Shared Memory 11

4.6 Negative Connectives

The negative connectives communicate in the opposite direction: the provider
receives while the client sends. This is often the initial state of a provider/client
system. In our language there are two such connectives: external choice A � B
and linear implication A � B. There could also be ⊥ (dual to 1), but it would
require an empty succedent, representing a process without a client. We choose
to avoid this syntactic complication.

External choice A � B. The right rule of additive conjunction or external
choice of linear logic has two premises, and these remain the same in SAX since
it is a negative connective. For programming convenience, we generalize from
the binary to a finitary choice, where A � B � (fst : A) � (snd : B).

Γ � A Γ � B
Γ � A � B

�R
Γ � P�(x) :: (x : A�) (∀� ∈ L)

Γ � recv− c (�(x) ⇒ P�(x))�∈L :: (c : ��∈L(� : A�))
�R

Symmetrically to the internal choice, the client now picks among the alterna-
tives by sending a suitable message. In this way, a process providing an external
choice represents an object, where each alternative is a method. This view of com-
munication was already present in the original work on session types [14,15].

A � B � A
�X1 A � B � B

�X2

c : ��∈L(� : A�) � send− c k(a) :: (a : Ak)
�X

It turns out that dynamically there is nothing new: the receiving process sus-
pends, and the sending process becomes a message. We repeat the relevant prior
rules only to note the different polarities.

proc (recv− c K)
→ cont− c K
proc (send− c V)
→ msg− c V
cont− c K,msg− c V
→ proc (V � K)

k(a) � (�(x) ⇒ P�(x))�∈L = Pk(a) (�)

The constructs exhibit a remarkable symmetry in SAX, usually associated with
classical linear logic [11]. While it is possible to give a message passing interpreta-
tion for classical linear logic [5,28], we stick with the intuitionistic version because
of its conceptual and syntactic proximity to functional programming [12]. In par-
ticular, it helps to elucidate the connection to futures which have their origin in
functional languages.

As an example of negative types, consider a binary counter that can receive a
message to increment its value (inc) and to return its value (val). It maintains
local state through a channel x that holds the current value as a binary number.
In the case of a value request, we would like to “return” just that number. The

12 F. Pfenning and K. Pruiksma

way we can accomplish that is a forwarding construct fwd c a that forwards
messages from a to c. It turns out to be a process assignment for the identity
rule of the sequent calculus, which we explain in Sect. 4.7.

ctr = (inc : ctr) � (val : bin)

counter (c : ctr) [x : bin] =
recv c (inc(c′) ⇒ y ← call succ y [x] ;

call counter c′ [y]
| val(x′) ⇒ fwd x′ x

init (c : ctr) [] =
z ← call zero z [] ;
call counter c [z])

two (x : bin) [] =
c0 ← call init c0 [] ;
c1 ← send c0 inc(c1) ;
c2 ← send c1 inc(c2) ;
send c2 val(x)

Linear Implication A � B. Linear implication A � B is the type of a process
that receives a channel of type A together with a continuation channel of type
B.

Γ,A � B

Γ � A � B
�R

Γ, x : A � P :: (y : B)
Γ � recv− c (〈x, y〉 ⇒ P (x, y)) :: (c : A � B) �R

Sending, as for all other constructs, is asynchronous.

A,A � B � B
�X

a : A, c : A � B � send− c 〈a, b〉 :: (b : B)
�X

The dynamics once again does not change. We just recall

〈a, b〉 � (〈x, y〉 ⇒ P (x, y)) = P (a, b)

As an example, consider a stack with push and pop methods. When the stack is
empty, the response to pop will be none after which the stack process terminates.
We don’t treat first-class polymorphism here, so we think of stackA as a family
of types indexed by A.

stackA = (push : A � stackA)
� (pop : (some : A ⊗ stackA) ⊕ (none : 1))

empty (s : stackA) [] =

Relating Message Passing and Shared Memory 13

recv s (push(s′) ⇒ recv s′ (〈x, s′′〉 ⇒
t ← call empty t [] ;
call elem s′′ [x, t])

| pop(s′) ⇒ u ← send u 〈 〉 ;
send s′ none(u))

elem (s : stackA) [x : A, t : stackA] =
recv s (push(s′) ⇒ recv s′ (〈y, s′′〉 ⇒

t′ ← call elem t′ [x, t] ;
call elem s′′ [y, t′])

| pop(s′) ⇒ p ← send p 〈x, t〉 ;
send s′ some(p))

stack10 (s10 : stackbin) [] =
n0 ← call zero [] ;
s0 ← call empty [] ;
s′
0 ← send s0 push(s′

0) ;
s1 ← send s′

0 〈n0, s1〉 ;
n0 ← call zero [] ; % necssary for linearity
n1 ← call succ [n0] ;
s′
1 ← send s1 push(s′

1) ;
send s′

1 〈n1, s10〉

4.7 Identity as Forwarding

The sequent calculus rule of identity essentially equates two channels. The way
we define this in our dynamics is for the identity to become a form of continua-
tion, waiting to forward a message on one channel to the other.

A � A
id

a : A � fwd± c a :: (c : A)
id

The direction of the messages is prescribed by the polarity of the type, so we
split the dynamics into two rules, forwarding message on one channel to another.

proc (fwd+ c a)
→ cont+ a c
msg+ a V, cont+ a c
→ msg+ c V

proc (fwd− c a)
→ msg− a c
cont− a K,msg− a c
→ cont− c K

This means a channel is another form of extended value or continuation. We
write V̂ and K̂ when we need to include channels as values or continuations,
respectively.

5 Preservation and Progress

The recursion-free fragment of SAX satisfies a variant of the cut elimination
theorem that guarantees a subformula property [10]. In the presence of recur-
sion, we are more interested in preservation and progress. These are properties

14 F. Pfenning and K. Pruiksma

of configurations, so we need to provide typing rules for configurations. Even
though configurations are unordered collection of semantic objects, the typing
rules impose a partial order where the provider of a channel always precedes its
client. We treat the join as an associative operation, with the empty configura-
tion as its unit. Globally, in a configuration, each channel must be provided and
used at most once.

It is convenient for the typing of messages and continuations objects to refer
to a corresponding process for its typing to avoid a proliferation of typing rules.

Δ � (·) :: Δ
empty

Δ1 � C1 :: Δ2 Δ2 � C2 :: Δ3

Δ1 � C1, C2 :: Δ3
join

Γ � P :: (a : A)
Δ,Γ � proc P :: (Δ, a : A)

proc

Γ � send+ a V :: (a : A)
Δ,Γ � msg+ a V :: (Δ, a : A)

msg+
Γ � recv+ a K :: (c : C)

Δ,Γ � cont+ a K :: (Δ, c : C) cont+

Γ � send− a V :: (c : C)
Δ,Γ � msg− a V :: (Δ, c : C)

msg− Γ � recv− a K :: (a : A)
Δ,Γ � cont− a K :: (Δ, a : A) cont−

Δ, a : A � cont+ a c :: (Δ, c : A) fwd+

Δ, a : A � msg− a c :: (Δ, c : A) fwd−

With this bit of bureaucracy settled, we can now state the preservation theorem.
Even though internally new channels might be created or closed, externally the
interface to a configuration remains constant. For reference, the language and
its operational semantics can be found in Fig. 1, the typing rules are collected in
Fig. 2.

Theorem 1 (Preservation for Linear Message Passing). If Δ1 � C :: Δ2

and C
→ D then Δ1 � D :: Δ2.

Proof. By induction on the typing of a configuration, using inversion on the
typing of the semantic objects to observe that the endpoints of each channel
perform complementary actions and that the continuation channels once again
have matching types.

For the progress theorem, it is convenient to assume that we are executing
a closed configuration, providing a finite collection Δ of channels. Such a con-
figuration is terminal if all semantic objects are positive messages or negative
continuations.

Theorem 2 (Progress for Linear Message Passing). If · � C :: Δ then
either C
→ D for some D, or C is terminal.

Proof. We proceed by right-to-left induction over the typing derivation of a
configuration, analyzing the rightmost semantic object. We observe that C =
(C1, φ) for a semantic object φ can make a transition if C1 can. So we may
assume C1 is terminal. We distinguish cases based on the shape of φ.

Relating Message Passing and Shared Memory 15

(i) proc P can always make a transition.
(ii) msg+ a V is terminal, and therefore C is.
(iii) cont− a K is terminal, and therefore C is.
(iv) For msg− a V̂ there must be a continuation cont− a K in C1. By inversion

on typing, the two can interact.
(v) For cont+ a K̂ there must be a message msg+ a V in C1. By inversion on

typing, the two can interact.

Summary. A summary of the asynchronous linear message passing language
using session types can be found in Figs. 1 and 2. Here is a summary of the salient
aspects of the language. We show the actions from the provider’s perspective;
the client will take the matching opposite reaction.

cut Channel allocation and process spawn
id Message forwarding
call Invoking defined process
⊕�∈L(� : A�) sending a label with continuation channel
A ⊗ B sending a pair of channels
1 sending unit
��∈L(� : A�) receiving and branching on a label with continuation channel
A � B receiving a pair of channels

6 Linear Futures

We stay with the SAX system of logical inference, giving a new interpretation
to sequents and proofs. Instead of channels, variables now stand for addresses of
memory cells. A sequent is read as follows:

a1 : A1, . . . , an : An
︸ ︷︷ ︸

read from

� P :: (c : C)
︸ ︷︷ ︸

write to

Cut allocates a new memory cell a and spawns a process to write to a. As for
futures [13], every cell has exactly one writer. Because futures are linear for
now, every cell also has exactly one reader, a discipline sketched by Blelloch and
Reid-Miller [3].

6.1 Statics and Dynamics of Futures

In our message passing interpretation, the type of a channel specifies a commu-
nication protocol. Here, the type of a cell specifies the shape of its contents.

16 F. Pfenning and K. Pruiksma

Fig. 1. Language for asynchronous message passing

Relating Message Passing and Shared Memory 17

This approach leads to the following correspondences. We refer to antecedents
in a sequent as “left” and succedents as “right”.

Logic Message Passing Shared Memory
Positive/Right Axiom send value V write value V

Positive/Left Rule receive value V read value V

Negative/Right Rule receive value V write continuation K

Negative/Left Axiom send value V read continuation K

The language of types and values does not change, and continuations only change
to the extent that the embedded processes now have a different syntax.

Storable S ::= V | K

Processes P,Q ::= x ← P (x) ; Q(x) (spawn P (a), continue as Q(a), a fresh)
| move± c a (move storable from a to c)
| write± c S (write storable S to c)
| read± c S (read storable from c and pass to S)
| call f c [a1, . . . , an] (call f with dest. c, reading a1, . . . , an)

Note that defined processes f are always called with a destination [27]. Remark-
ably, we do not need any new typing rules! Instead we define

move± c a � fwd± c a

write+ c V � send+ c V

read+ c K � recv+ c K

write− c K � recv− c K

read− c V � send− c V

and the previous set of rules apply!
The dynamics can be similarly derived. Instead of messages and continuations

we have memory cells cell± c S and suspensions susp± c S. A suspension may
block because the corresponding cell may not have been written yet. These can
be defined from the message passing dynamics.

cell+ c V � msg+ c V

susp+ c K̂ � cont+ c K̂

cell− c K � cont− c K

susp− c V̂ � msg− c V̂

Under the shared memory semantics, forwarding becomes a move from one cell
to another—simpler than in the message passing semantics. The correspondences
continue to hold if we generalize suspensions to allow the form susp± a c where
a is a channel to read a storable S from, and c is the destination write S to.

18 F. Pfenning and K. Pruiksma

The table below visualizes the correspondences.

Shared Memory Message Passing

proc (move+ c a)
→ susp+ a c proc (fwd+ c a)
→ cont+ a c

proc (move− c a)
→ susp− a c proc (fwd− c a)
→ msg− a c

cell+ a V, susp+ a c
→ cell+ c V msg+ a V, cont+ a c
→ msg+ c V

cell− a K, susp− a c
→ cell− c K cont− a K,msg− a c
→ cont− c K

Theorem 3 (Bisimulation). There is a strong bisimulation between the shared
memory and the message passing semantics on well-typed processes.

Proof. Under the correspondences shown above, the steps of the two operational
semantics rules correspond exactly, by definition.

Corollaries of this bisimulation are analogues of preservation, terminal con-
figurations, and progress. We say a configuration is final if it consists only of
objects cell± a S.

Corollary 1 (Preservation and Progress for Linear Futures).

1. If Δ1 � C :: Δ2 and C
→ D then Δ1 � D :: Δ2.
2. If · � C :: Δ then either C
→ D for some D, or C is final.

Proof. By the correspondence with the message passing semantics and Theo-
rems 1 and 2.

6.2 Shared Memory Examples

We can transliterate the earlier examples. Here is just one.

bin = (b0 : bin) ⊕ (b1 : bin) ⊕ (e : 1)

zero (y : bin) [] =
u ← write u 〈 〉 ;
write y e(u)

succ (y : bin) [x : bin] =
read x (b0(x′) ⇒ write y b1(x′)

| b1(x′) ⇒ y′ ← call succ y′ [x′] ;
write y b0(y′)

| e(u) ⇒ y′ ← write y′ e(u) ;
write y b1(y′))

As an example that uses two negative types (external choice and linear impli-
cation), we revisit the stack data structure. The empty and elem processes, for
example, write a continuation to memory and thereby terminate immediately.

Relating Message Passing and Shared Memory 19

A client reads this continuation and passes it either a push or pop label together
with a destination for the results. In general, all functions and objects are writ-
ten in destination-passing style [27]. Processes never return a value; instead they
are given a destination where to write the result.

stackA = (push : A � stackA)
� (pop : (some : A ⊗ stackA) ⊕ (none : 1))

empty (s : stackA) [] =
write s (push(s′) ⇒ write s′ (〈x, s′′〉 ⇒

t ← call empty t [] ;
call elem s′′ [x, t])

| pop(s′) ⇒ u ← write u 〈 〉 ;
write s′ none(u))

elem (s : stackA) [x : A, t : stackA] =
write s (push(s′) ⇒ write s′ (〈y, s′′〉 ⇒

t′ ← call elem t′ [x, t] ;
call elem s′′ [y, t′])

| pop(s′) ⇒ p ← write p 〈x, t〉 ;
write s′ some(p))

stack10 (s10 : stackbin) [] =
n0 ← call zero [] ;
s0 ← call empty [] ;
s′
0 ← read s0 push(s′

0) ;
s1 ← read s′

0 〈n0, s1〉 ;
n0 ← call zero [] ;
n1 ← call succ [n0] ;
s′
1 ← read s1 push(s′

1) ;
read s′

1 〈n1, s10〉
This program highlights that there is a rather immediate sequential inter-

pretation of parallel composition x ← P (x) ; Q(x). As usual, we allocate a fresh
memory cell a for x, but rather than executing P (a) and Q(a) in parallel, we first
complete the execution of P (a) (which will write to cell a), and then proceed
with Q(a). This corresponds to an eager (by-value) strategy. We can also pursue
a lazy (by-need) strategy: postpone computation of P (a) and start with Q(a).
When Q(a) attempts to read from a, P (a) is awakened and will run to comple-
tion (writing to a), after which Q(a) continues by reading from a. This embodies
call-by-need and not call-by-name because other readers of a now directly access
the value stored in the cell.

Such simple sequential interpretations of computations are not immediately
available in the message passing setting, but are quite clear here. In particular,
in our language all memory allocation is for futures. In a more realistic language
we would have both parallel composition, and maybe two forms of sequential
composition: one eager and one lazy.

20 F. Pfenning and K. Pruiksma

7 From Linear to Nonlinear Futures

So far all constructs, whether message passing or shared memory, have been
strictly linear. It is easy to imagine how we can take the shared memory inter-
pretation and make it nonlinear. We add two rules, one for weakening and one
for contraction.

Γ � P :: (c : C)
Γ, a : A � P :: (c : C) weaken

Γ, a : A, a : A � P :: (c : C)
Γ, a : A � P :: (c : C)

contract

At this point an object cell a S may have multiple readers. This means when
it is read, it cannot be immediately deallocated but has to be left for eventual
garbage collection. Therefore memory cells in the operational semantics are now
persistent. In multiset rewriting we indicate this by prefixing a semantic object
with an exclamation mark “ !” (the exponential of linear logic). Such objects,
when matched on the left of a rule are carried over implicitly and remain in the
configuration. We call the others ephemeral.

In our semantics, now formulated using the syntax of shared memory, cells
are persistent and processes as well as suspensions remain linear. That must
be the case so that they can change state. A “persistent process” !proc P could
transition over and over again and, for example, allocate an unbounded amount
of memory without ever making progress. Parallel composition (cut) and call
(definitions) remain unchanged.

proc (write± c S)
→ !cell± c S
proc (read± c S)
→ susp± c S

!cell+ a V, susp+ a K
→ proc (V � K)
!cell− a K, susp− a V
→ proc (V � K)

proc (move± c a)
→ susp± a c
!cell± a S, susp± a c
→ !cell± c S

The move process now copies from one cell to another. We postpone the
metatheory of the nonlinear version of future to Corollary 2.

Now we consider a binary trie as a data structure for maintaining sets of
binary numbers (and other data that can be interpreted in this form). We take
the liberty of writing an underscore (_) for an anonymous variable and com-
bining consecutive pattern matches and consecutive writes. The interface to this
data structure would construct empty and singleton tries, as well as union, inter-
section and difference. We show only empty, singleton, and difference.

First, the straightforward setup of the booleans with the operation of b∧¬c.
If we were to show the definitions of union and intersection we would also need
conjunction and disjunction.

bool = (true : 1) ⊕ (false : 1)

true (b : bool) [] = u ← write u 〈 〉 ; write b true(u)
false (b : bool) [] = u ← write u 〈 〉 ; write b false(u)

Relating Message Passing and Shared Memory 21

andnot (d : bool) [b : bool, c : bool] =
read b (true(_) ⇒ read c (true(_) ⇒ call false d []

| false(_) ⇒ call true d [])
| false(_) ⇒ call false d [])

We reuse the binary numbers and define tries as being either a leaf or a node
containing three addresses: the left subtrie selected for the bit 0, the boolean b
which is true if the sequence of bits which led to this node is in the trie, and the
right subtrie selected for the bit 1.

The process empty constructs a leaf (the empty trie), while singleton traverses
a binary number, constructing a trie with exactly one node marked true.

trie = (leaf : 1) ⊕ (node : trie ⊗ bool ⊗ trie)

empty (r : trie) [] =
u ← write u 〈 〉 ; write r leaf(u)

singleton (r : trie) [x : bin] =
read x (b0(x′) ⇒ r0 ← call singleton r0 [x′] ;

b ← call false [] ;
r1 ← call empty [] ;
write r node〈r0, b, r1〉

| b1(x′) ⇒ r0 ← call empty [] ;
b ← call false [] ;
r1 ← call singleton r1 [x′] ;
write r node〈r0, b, r1〉

| e(_) ⇒ r′ ← call empty r′ [] ;
b ← call true b [] ;
write r node〈r′, b, r′〉)

Finally, the diff process traverses the two tries in parallel, short-circuiting if
one is a leaf. If not, it applies the andnot operation to decide if the resulting
node should be true. While singleton can easily be made linear, this would take
significant effort here. For example, when s is empty, t is ignored entirely. The
remove process just computes the difference with a singleton.

diff (r : trie) [s : trie, t : trie] =
read s (leaf〈 〉 ⇒ call empty r []

| node〈s0, b, s1〉 ⇒
read t (leaf〈 〉 ⇒ move r s

| node〈t0, c, t1〉 ⇒
r0 ← call diff r0 [s0, t0] ;
d ← call andnot d [b, c] ;
r1 ← call diff r1 [s1, t1] ;
write r node〈r0, d, r1〉))

remove (r : trie) [s : trie, x : bin] =
t ← call singleton t [x] ;
call diff r [s, t]

22 F. Pfenning and K. Pruiksma

8 Backporting Persistence to Message Passing

Persistent cells are quite easy to understand from the shared memory perspec-
tive. Now we can use our correspondences in the opposite direction to obtain a
bisimilar version of message passing in which certain messages and suspensions
are persistent! The language of programs itself does not change, but as defined
above the client can use weakening and contraction on channels it uses.

A positive message, flowing from the provider to the client, may then have
multiple recipients. We therefore make such messages persistent in the dynamic
rules. The recipient of such a message only reacts once, so it will not be persistent.
Conversely, a negative suspension may be waiting for messages from multiple
clients and therefore should be persistent, but each such message should be
processed only once.

!cell+ c V � !msg+ c V

susp+ c K � cont+ c K

!cell− c K � !cont− c K

susp− c V � msg− c V

susp+ a c � cont+ c a

susp− a c � msg− c a

8.1 Examples

As example we start with nor which takes two bits x and y and produces the
negation of the disjunction of x and y on the output channel z.

bit = (b0 : 1) ⊕ (b1 : 1)

nor (z : bit) [x : bit, y : bit] =
recv x (b0(_) ⇒ recv y (b0(u) ⇒ send z b1(u)

| b1(u) ⇒ send z b0(u))
| b1(_) ⇒ recv y (b0(u) ⇒ send z b0(u)

| b1(u) ⇒ send z b0(u)))

We now use this in the construction of a latch which uses a feedback loop
and recursion.

In the code below the stream of pairs of signals R and S is represented by channel
in : bits2 and the pair of signals Q and Q is represented by out : bits2. The initial
(and in later calls, previous) value of Q and Q is provided on the channels q and
q. We have combined two consecutive receives and sends for readability.

Relating Message Passing and Shared Memory 23

bits2 = (bit ⊗ bit) ⊗ bits2

latch (out : bits2) [q : bit, q : bit, in : bits2] =
recv in (〈〈r, s〉, in′〉 ⇒

q′ ← call nor q′ [r, q] ;
q′ ← call nor q′ [s, q] ;
out′ ← call latch out′ [q′, q′, in′] ;
send out 〈〈q′, q′〉, out′〉)

8.2 Metatheory

The metatheory for nonlinear message passing changes systematically from the
linear case, reflecting persistence of positive messages and negative suspensions.
Instead of splitting the context to check the processes, messages, and continua-
tions embedded in them, we pass all channels in all configuration typing rules.

Δ � (·) :: Δ
empty

Δ1 � C1 :: Δ2 Δ2 � C2 :: Δ3

Δ1 � C1, C2 :: Δ3
join

Δ � P :: (a : A)
Δ � proc P :: (Δ, a : A)

proc

Δ � send+ a V :: (a : A)
Δ � msg+ a V :: (Δ, a : A)

msg+
Δ � recv+ a K :: (c : C)

Δ � cont+ a K :: (Δ, c : C) cont+

Δ � send− a V :: (c : C)
Δ � msg− a V :: (Δ, c : C)

msg− Δ � recv− a K :: (a : A)
Δ � cont− a K :: (Δ, a : A) cont−

a : A ∈ Δ
Δ � cont+ a c :: (Δ, c : A) fwd+ a : A ∈ Δ

Δ � msg− a c :: (Δ, c : A) fwd−

In the statement of preservation we now have to account for a freshly allocated
channel to become visible at the external interface to the configuration.

Theorem 4 (Preservation for Nonlinear Message Passing).
If Δ1 � C :: Δ2 and C
→ D then Δ1 � D :: Δ′

2 for some Δ′
2 ⊇ Δ2.

Proof. By induction on the typing of a configuration as before. In the case the
step is a spawn which allocates a fresh channel a : A, we have Δ′

2 = (Δ2, a : A).

Recall that a configuration was defined to be terminal if all semantics objects
are positive messages or negative continuations. These objects are precisely those
that become persistent, so terminal configurations now consist entirely of per-
sistent objects.

Theorem 5 (Progress for Nonlinear Message Passing). If · � C :: Δ then
either C
→ D for some D, or C is terminal.

24 F. Pfenning and K. Pruiksma

Fig. 2. Typing for Message Passing

Relating Message Passing and Shared Memory 25

Proof. As before, by right-to-left induction over the typing derivation of the
given configuration.

Now we can transport this result to nonlinear futures as before.

Corollary 2 (Preservation and Progress for Nonlinear Futures).

1. If Δ1 � C :: Δ2 and C
→ D then Δ1 � D :: Δ′
2 for some Δ′

2 ⊇ Δ2.
2. If · � C :: Δ then either C
→ D for some D, or C is final.

Proof. By the correspondence with the message passing semantics and Theo-
rems 4 and 5.

9 Conclusion

We have taken the journey from linear asynchronous message passing through
linear futures and nonlinear futures back to nonlinear asynchronous message
passing. In each layer, the operational semantics of message passing and futures
are (strongly) bisimilar. This tight relationship is possible because all formalisms
are based on the semi-axiomatic sequent calculus. The two kinds of interpreta-
tions have different characteristics: message passing exchanges only small mes-
sages (〈 〉, 〈a, b〉, and k(a) for channels a, b, and labels k), while futures allow
two natural sequential interpretations (eager and lazy) in addition to the parallel
one.

We have not discussed type checking for the languages here, but standard
techniques, including input/output contexts [6] apply. We can also use standard
translations from natural deduction to sequent calculi to map a more familiar
functional syntax to either message passing or futures (see, for example, [26]).

An alternative operational semantics for the language with weakening and
contraction tracks multiple clients precisely, which can then be deallocated
eagerly, avoiding the need for a general garbage collector [22]. This dynamics
is significantly more complex than the model we have presented here, so we have
not yet attempted to relate message passing and futures when both use explicit
deallocation.

We can easily extend our bisimulation further by following the blueprint of
mixed linear/nonlinear logic [2] and its generalization in adjoint logic [21,24]. In
brief, we can extend the type systems of this paper by introducing multiple modes
of types, potentially with different structural properties (e.g., linear/nonlinear, or
message passing/futures), and then combine them using adjoint pairs of modal-
ities. We have already investigated adjoint types separately for message pass-
ing [22] and futures [23]. These prior formulations are incompatible with each
other, and the present paper recasts them into a single unifying framework of
SAX.

Acknowledgments. We would like to thank Henry DeYoung, Luiz de Sa, and Siva
Somayyajula for helpful discussions regarding the subject of this paper and comments
on an earlier draft.

26 F. Pfenning and K. Pruiksma

References

1. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. J. Log.
Comput. 2(3), 197–347 (1992)

2. Benton, P.N.: A mixed linear and non-linear logic: Proofs, terms and models. In:
Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 121–135. Springer,
Heidelberg (1995). https://doi.org/10.1007/BFb0022251

3. Blelloch, G.E., Reid-Miller, M.: Pipeling with futures. Theory Comput. Syst. 32,
213–239 (1999)

4. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4_16

5. Caires, L., Pfenning, F., Toninho, B.: Linear logic propositions as session types.
Math. Struct. Comput. Sci. 26(3), 367–423 (2016). Special Issue on Behavioural
Types

6. Cervesato, I., Hodas, J.S., Pfenning, F.: Efficient resource management for linear
logic proof search. Theoret. Comput. Sci. 232(1–2), 133–163 (2000). Special issue
on Proof Search in Type-Theoretic Languages

7. Cervesato, I., Scedrov, A.: Relating state-based and process-based concurrency
through linear logic. Inf. Comput. 207(10), 1044–1077 (2009)

8. Curry, H.B.: Functionality in combinatory logic. Proceed. Nat. Acad. Sci. U.S.A.
20, 584–590 (1934)

9. DeYoung, H., Pfenning, F.: Data layout from a type-theoretic perspective. In:
Proceedings of the 38th Conference on the Mathematical Foundations of Program-
ming Semantics (MFPS 2022). Electronic Notes in Theoretical Informatics and
Computer Science, vol. 1 (2022). https://arxiv.org/abs/2212.06321v6

10. DeYoung, H., Pfenning, F., Pruiksma, K.: Semi-axiomatic sequent calculus. In:
Ariola, Z. (ed.) 5th International Conference on Formal Structures for Computation
and Deduction (FSCD 2020), pp. 1–22. LIPIcs 167, Paris, France (2020)

11. Girard, J.Y.: Linear logic. Theoret. Comput. Sci. 50, 1–102 (1987)
12. Girard, J.Y., Lafont, Y.: Linear logic and lazy computation. In: Ehrig, H., Kowalski,

R., Levi, G., Montanari, U. (eds.) TAPSOFT 1987. LNCS, vol. 250, pp. 52–66.
Springer, Heidelberg (1987). https://doi.org/10.1007/BFb0014972

13. Halstead, R.H.: MultiLisp: a language for parallel symbolic computation. ACM
Trans. Program. Lang. Syst. 7(4), 501–539 (1985)

14. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57208-2_35

15. Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In:
America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg
(1991). https://doi.org/10.1007/BFb0057019

16. Howard, W.A.: The formulae-as-types notion of construction (1969), unpublished
note. An annotated version appeared. In: To H.B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism, 479–490, Academic Press (1980)

17. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. In:
Boehm, H.J., Steele, G. (eds.) Proceedings of the 23rd Symposium on Principles of
Programming Languages (POPL1996), pp. 358–371. ACM, St. Petersburg Beach,
Florida, USA (1996)

18. Laurent, O.: Syntax vs. semantics: a polarized approach. Theoret. Comput. Sci.
343(1–2), 177–206 (2005)

https://doi.org/10.1007/BFb0022251
https://doi.org/10.1007/978-3-642-15375-4_16
https://arxiv.org/abs/2212.06321v6
https://doi.org/10.1007/BFb0014972
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0057019

Relating Message Passing and Shared Memory 27

19. Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press (1999)

20. OpenMP. http://openmp.org
21. Pruiksma, K., Chargin, W., Pfenning, F., Reed, J.: Adjoint logic (2018). http://

www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
22. Pruiksma, K., Pfenning, F.: A message-passing interpretation of Adjoint logic. J.

Logical Algebr. Methods Programm. 120, 100637 (2021)
23. Pruiksma, K., Pfenning, F.: Back to futures. J. Funct. Program. 32, e6 (2022)
24. Reed, J.: A judgmental deconstruction of modal logic (2009). http://www.cs.cmu.

edu/~jcreed/papers/jdml2.pdf
25. Sangiorgi, D., Walker, D.: The π-Calculus: a Theory of Mobile Processes. Cam-

bridge University Press (2001)
26. Toninho, B., Caires, L., Pfenning, F.: Functions as session-typed processes. In:

Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 346–360. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-28729-9_23

27. Wadler, P.: Listlessness is better than laziness: lazy evaluation and garbage collec-
tion at compile-time. In: Conference on Lisp and Functional Programming (LFP
1984), pp. 45–52. ACM, Austin, Texas (1984)

28. Wadler, P.: Propositions as sessions. In: Proceedings of the 17th International
Conference on Functional Programming (ICFP 2012), pp. 273–286. ACM Press,
Copenhagen, Denmark (2012)

http://openmp.org
http://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
http://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
http://www.cs.cmu.edu/~jcreed/papers/jdml2.pdf
http://www.cs.cmu.edu/~jcreed/papers/jdml2.pdf
https://doi.org/10.1007/978-3-642-28729-9_23

Collective Adaptive Systems
and Aggregate Computing

MacroSwarm: A Field-Based
Compositional Framework for Swarm

Programming

Gianluca Aguzzi(B) , Roberto Casadei , and Mirko Viroli

Alma Mater Studiorum – Università di Bologna, Cesena, Italy
{gianluca.aguzzi,roby.casadei,mirko.viroli}@unibo.it

Abstract. Swarm behaviour engineering is an area of research that
seeks to investigate methods for coordinating computation and action
within groups of simple agents to achieve complex global goals like col-
lective movement, clustering, and distributed sensing. Despite recent
progress in the study and engineering of swarms (of drones, robots, vehi-
cles), there is still need for general design and implementation methods
that can be used to define complex swarm coordination in a principled
way. To face this need, this paper proposes a new field-based coordi-
nation approach, called MacroSwarm, to design fully composable and
reusable blocks of swarm behaviour. Based on the macroprogramming
approach of aggregate computing, it roots on the idea of modelling each
block of swarm behaviour by a purely functional transformation of sens-
ing fields into actuation description fields, typically including movement
vectors. We showcase the potential of MacroSwarm as a framework for
collective intelligence by simulation, in a variety of scenarios including
flocking, morphogenesis, and collective decision-making.

Keywords: Swarm Behaviours · Field-based Coordination · Aggregate
Computing · Collective Intelligence · Distributed Computing · DSLs

1 Introduction

Recent technological advances foster a vision of swarms of mobile cyber-physical
agents able to compute, coordinate with neighbours, and interact with the envi-
ronment according to increasingly complex patterns, plans, and goals. Notable
examples include swarms of drones and robots [44], fleets of vehicles [45],
and crowds of wearable-augmented people [24]. In these domains, a prominent
research problem is how to effectively engineer swarm behaviour [13], i.e., how
to promote the emergence of desired global-level outcomes with inherent robust-
ness and resiliency to changes and faults in the swarm or the environment.
Complex patterns can emerge through the interaction of simple agents [12], and
centralised approaches can suffer from scalability and dependability issues: as
such, we seek for an approach based on suitable distributed coordination mod-
els and languages to steer the micro-level activity of a possibly large set of
c© IFIP International Federation for Information Processing 2023
S.-S. Jongmans and A. Lopes (Eds.): COORDINATION 2023, LNCS 13908, pp. 31–51, 2023.
https://doi.org/10.1007/978-3-031-35361-1_2

https://eapls.org/pages/artifact_badges/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35361-1_2&domain=pdf
http://orcid.org/0000-0002-1553-4561
http://orcid.org/0000-0001-9149-949X
http://orcid.org/0000-0003-2702-5702
https://doi.org/10.1007/978-3-031-35361-1_2

32 G. Aguzzi et al.

agents. This direction has been explored by various research threads related to
coordination like macroprogramming [16,35], spatial computing [10], ensemble
languages [1,21], field-based coordination [31,33], and aggregate computing [50].

Though a number of approaches and languages have been proposed for spec-
ifying or programming swarm behaviour [4,15,22,28–30,34,41,51], a key feature
that is generally missing or provided only to a limited extent is compositionality,
namely the ability of combining blocks of simple swarm behaviour to construct
swarm systems of increasing complexity in a controlled/engineered way. Addi-
tionally, most of existing approaches tend to be pragmatic, not formally-founded
and quite ad-hoc: they enable construction of certain types of swarm applications
but with limited support for analysis and principled design of complex applica-
tions (e.g. [15,22,30,41]). Exceptions that provide a formal approach exist but
they are typically overly abstract, requiring additional effort to actually code
and execute swarm control programs [32].

The goal of this work is to introduce a formally-grounded Application Pro-
gram Interface (API), expressive and practical enough to concisely and elegantly
encode a wide array of swarm behaviours. This is based on the field-based coor-
dination paradigm [50] and the field calculus [9]: each block of swarm behaviour
is captured by a purely functional transformation of sensing fields into actuation
fields including movement vectors, and such a transformation declaratively cap-
tures the state/computation/interaction mechanisms necessary to achieve that
behaviour. Practically, such specifications can be programmed as Scala scripts
in the ScaFi framework [8,18], a reference implementation for field-based coor-
dination and aggregate computing. Accordingly, we present MacroSwarm, a
ScaFi-based framework to help programming with swarm behaviours by pro-
viding a set of blocks covering key swarming patterns as identified in litera-
ture [13]: flocking, leader-follower behaviours, morphogenesis, and team forma-
tion. To evaluate MacroSwarm, we show a use case that leverage our API
in a simulated environment based on the Alchemist multi-agent system simula-
tor [40].

The remainder of this paper is organised as follows. Section 2 provides context
and motivation. Section 3 reviews background on aggregate computing. Section 4
presents the main contribution of the paper, MacroSwarm. Section 5 provides
a simulation-based evaluation of the approach. Section 6 reviews related works
on swarm programming. Finally, Sect. 7 provides a conclusion and future work.

2 Context and Motivation

Engineering the collective behaviour of swarms is a significant research chal-
lenge [13]. Two main kinds of design methods can be identified [13]: auto-
matic design methods like evolutionary robotics [46] or multi-agent reinforce-
ment learning [14], also called behaviour-based design, involving manually-
implemented algorithms expressed via general-purpose or domain-specific lan-
guages (DSLs). Our focus is on the latter category of methods and especially on
DSLs for expressing swarm behaviour (which are reviewed in Sect. 6).

The MacroSwarm Swarm Programming Framework 33

Another main distinction is between centralised (orchestration-based) and
decentralised (choreographical) approaches. In the former category, programs
generally specify tasks and relationships between tasks, and these descriptions
are used by a centralised entity to command the behaviour of the individual
entities of the swarm. By contrast, decentralised approaches do not rely on any
centralised entity: each robot is driven by a control program and the resulting
execution is decentralised (e.g., based on interaction with neighbours, like in
Meld [4]). In this work, we focus on decentralised solutions, for they support
resilience and scalability by avoiding single-points-of-failure and bottlenecks.

In the general context of behaviour-based swarm design, researchers have
pointed out various issues [13,23] like a general lack of top-down design methods
of collective behaviours (cf. the scientific issue of “emergence programming” [47]
and “self-organisation steering” [25]), the problem of formal verification and val-
idation [32], heterogeneity, and operational/maintenance issues (e.g., scalability,
adaptation, and security).

To address top-down swarm programming, an approach should provide the
means to define and compose blocks of high-level swarm behaviours. Regard-
ing the kinds of blocks that can be provided, it is helpful to look at proposed
taxonomies of collective/swarm behaviour. In a prominent survey on swarm
engineering [13], collective behaviours are classified into (i) spatially-organising
behaviours (e.g., pattern formation, morphogenesis), (ii) navigation behaviours
(e.g., collective exploration, transport, and coordinated motion), (iii) collective
decision-making (e.g., consensus achievement and task allocation), and (iv) oth-
ers (e.g., human-swarm interaction and group size regulation).

Finally, we observe in the literature a rather sharp distinction between
approaches leveraging formal methods for specifying swarm behaviour [32], also
enabling verification, and more pragmatic approaches offering concrete DSLs
that are more usable. In a recent survey on formal specification methods for
swarm robotics [32] it is reported that a major limitation lies in (i) the tooling
and (i) the formalisation of the “last step” of passing from a formal model to
program code. Hence, we seek here for an approach that combines the benefits
of formal methods and the pragmatism of concrete DSLs.

In summary, this work is motivated by the need of an approach for formal-
yet-practical top-down behaviour-based design of decentralised swarm behaviour.

3 Background: Aggregate Computing

Aggregate computing [50] is a field-based coordination [33] and macroprogram-
ming [16] approach especially suitable to express the collective adaptive [36] and
self-organising behaviour of large groups of situated agents.

System Model. In aggregate computing, a system can be simply modelled as a
logical set of computing nodes (also called devices), where each node is equipped
with sensors and actuators, and is connected with other nodes according to
some neighbouring relationships. This abstract logical model does not prescribe

34 G. Aguzzi et al.

particular technological solutions; instead, it uses minimal assumptions on the
capabilities of devices (e.g., regarding synchrony, connectivity, and computing
power).

Execution Model. The approach is generally used to program long-running
control tasks that need several sensing, communication, computation, and actu-
ation steps to be carried out. Accordingly, the execution model is based on (or
can be understood as) a repeated execution, by each device, of asynchronous
sense–compute–interact rounds—fundamentally mimicking self-organisation in
biological systems [12]. For simplicity, we can consider each round to atomically
consist of three steps:

– Sense – the node’s local context is assessed, by sampling sensors and gathering
the most recent (and not expired) message from any neighbour;

– Compute – the so-called aggregate program is evaluated against the local
context, producing an output (which can be used to describe actuations) and
an internal output (invisible to programmers), called an export, that contains
the message to be sent to neighbours for coordination purposes;

– Interact – the export is sent to neighbours (logically, as a broadcast), and
potential actuations can be performed.

In general, programs define the logic for spreading information from neighbour-
hood to neighbourhood, and progressively compute results eventually reaching
convergence once no more changes perturb the system. Interestingly, device fail-
ure, message loss, and the like are automatically tolerated as assessed by context
updates at the beginning of rounds. In order to understand how an aggregate
program executed in this fashion promotes collective adaptive behaviour, we
briefly present the programming model.

Programming Model. Aggregate computing is based on the (computational)
field abstraction [33]. A field is basically a function or map from devices to
computational values. For instance, having a collection of devices query their
temperature sensor would yield a field of real numbers denoting temperature
readings, whereas a field of speed vectors could be use to denote the desired
actuations to make a swarm move.

The field calculus [9] is the minimal core language at the basis of aggregate
computing, which defines the primitives for expressing “space-time universal” [5]
distributed computations in terms of field manipulations. Then, concrete lan-
guages like the Scala-internal DSL ScaFi (Scala Fields) [8,18] can be used to
actually develop aggregate programs.

The reader can refer to [8] for a full presentation of programming with ScaFi.
Here, we briefly introduce the main language constructs.

Construct rep: stateful field evolution. Consider the following example.

// def rep[T](init: T)(f: T => T): T

rep(0)(x => x+1) // type T=Int inferred

The MacroSwarm Swarm Programming Framework 35

This purely local computation, when considered executed by all the devices in
the system, yields a field of integers denoting the number of rounds executed by
each device. This is obtained by applying function f to the value computed the
previous round (or init, initially).

Construct foldhood/nbr: interaction with neighbours. Consider:

// def foldhood[A](init: => A)(acc: (A, A) => A)(expr: => A): A

// def nbr[A](expr: => A): A

foldhood[Set[ID]](Set.empty)(_++_){ Set(nbr(mid())) }

It yields, in each device, the set of identifiers of all its neighbours. This is achieved
by a purely functional fold over the collection of the singleton sets of neighbour
identifiers, starting from the empty set, and aggregating using the set union oper-
ator (++). mid() provides the local identifier. Within the foldhood, a nbr(e)
expression has the twofold role of sending and gathering the local value of e
to/from neighbours. Note that constructs rep and foldhood/nbr can be com-
bined to support the diffusion of information beyond direct neighbours.

Functional Abstraction. New blocks can be defined with standard Scala func-
tions:

def neighbouringField[T](f: => T): Set[T] =

foldhood[Set[T]](Set.empty)(_++_){ Set(nbr(f)) }

def neighbourIDs(): Set[ID] = neighbouringField{ mid() }

Construct branch: splitting computation domains. Consider:

// def branch[A](cond: => Boolean)(th: => A)(el: => A)

branch(sense[Boolean]("hasTemperatureSensor")){

val nearbyTemperatures: Set[Double] =

neighbouringField{ sense[Double]("temperature") }

// ...

}{ noOp }

Here, computation is split into separate subsets of devices. Notice that neigh-
bourhoods are restricted in each computation branch. So, in the first branch, it
is ensured that only the neighbours with a temperature sensor are folded over.

General Resilient Operators. It is possible to identify some general higher-level
operators to account for common self-organisation patterns [49]. These will be
leveraged in Sect. 4 and hence are briefly described.

– Sparse choice (leader election) [38]. Block S(grain:Double):Boolean can
be used to yield a self-stabilising Boolean field which is true in a sparse set
of devices located at a mean distance grain.

– Gradient-cast (distributed propagation) [49]. Block
G[T](source:Boolean,value:T,acc:T=>T):T is used to propagate value
from source devices outwards along the gradient [49] of increasing distances
from them, transforming the value through acc along the way.

36 G. Aguzzi et al.

– Collect-cast (distributed collection) [6]. Block
C[T](sink:Boolean,value:T,acc(T,T)=>T):T is used to summarise dis-
tributed information into sink devices, the values provided by devices
around the system, while aggregating information through acc along the gra-
dient directed towards the sinks.

Examples further showing the compositionality of the approach are in Sect. 4.

Aggregate Computing for Swarm Programming. To motivate why aggre-
gate computing appears to be a good match for swarm programming, we briefly
explain how it helps to address the challenges identified, as studied in previous
papers (presented in Sect. 2).

– Top-down behaviour-based design. It is promoted by the compositionality
and collective stance of aggregate computing, supported by the functional
paradigm and the field abstraction [7,9].

– Scalability. Since execution is fully decentralised and asynchronous, the app-
roach is scalable to hundreds, thousands, and even more devices [19].

– Formal approach. Aggregate computing and ScaFi are based on the field
calculus [8,9], which enables formal analysis of programs and proofs of inter-
esting properties like self-stabilisation [49], universality [5], and others [50].

– Pragmatism. Promoted by layers of abstractions, this is witnessed by open-
source, maintained, concrete software artefacts like the ScaFi DSL [18], sim-
ulation platforms like Alchemist [40] and ScaFi-Web [2]1, and the possibility
to devise libraries of high-level functions [19].

– Operational flexibility. Concrete aggregate computing systems can be
deployed and operated using different architectural styles [17] and execution
policies [39], supporting different technological and resource requirements.

4 MacroSwarm

This section presents the MacroSwarm approach and API. In particular, we
describe its overall architecture, and the main blocks exposed by the API (sum-
marised in Fig. 1), which support the specification of a wide range of high-level
swarm behaviours. The key idea in the design of MacroSwarm lies in the
representation of a swarm behavioural unit as a function mapping sensing and
parameter fields to actuation fields (often, velocity vectors). We have organised
the API into multiple modules, capturing logically related sets of behaviours, and
comprising more fundamental and reusable sets of behaviours as well as more
application-specific sets (e.g., related to movement or team formation).

Movement Blocks. These blocks control the movement of individual agents
within the swarm. The simplest movement expressible with MacroSwarm
is a collective constant movement (Fig. 2a), described through a tuple like
Vector(x,y,z) that devises the velocity vector of the swarm:
1 https://scafi.github.io/web/.

https://scafi.github.io/web/

The MacroSwarm Swarm Programming Framework 37

Macro Swarm

Base Movement

FlockingLeader Based

Team Formation Pattern Formation Swarm
Planning

Resilient
Coordination
Operators

C G S
Field-Coordination

Constructs
rep nbr branch

vShape line centeredCircle

plan

separation

execute

cohesion alignsinkAt alignWith

isTeamFormed teamFormation

goTo

explore

brownian

maintainUntil

Fig. 1. MacroSwarm: architecture overview. The black boxes contained in the green
rectangle represent the main modules of the library.

Vector(2.5, 0, 0) // a constant field which is the same for all the agents

This vector must then be appropriately mapped the right electrical stimulus for
the underlying engine platform of the mobile robot of interest. On top of that,
this module exposes several blocks to explore an environment. Particularly, the
brownian block produces a random velocity vector for each evaluation of the
program. In addition to that simple logic, there are movements based on GPS
like goTo (produces a velocity vector that eventually moves the system to sink
at one single point) and explore (produces a velocity vector that let the system
explore a rectangle defined through minBound and maxBound). The last one is
based on temporal blocks, like maintainTrajectory and maintainUntil. The
former allows the systems to maintain a certain velocity for the time specified.
At that moment, a new velocity is generated according to the given strategy. The
latter, instead, is used to maintain a certain velocity until a condition is met (e.g.,
a target position is reached). This module also exposes an obstacleAvoidance
block (Fig. 2d), which creates a vector pointing away from obstacles.

Even if these blocks are quite simple, it is still possible to combine them to
create interesting behaviours. For instance, program

(maintainVelocity(browian()) + obstacleAvoidance(sense("obs"))).normalize

expresses a collective behaviour in which the nodes will explore the environ-
ment, while avoiding any obstacles perceived through a sensor. Notice how the
composition is achieved by simply summing the computational fields produced
by the sub-blocks. Expression v.normalize yields v as a unit vector (of length
1), while keeping the same direction—useful when combining several vectors
together. A summary of the blocks exposed by this module is reported in the
following listing:

38 G. Aguzzi et al.

// Movement library

def brownian(scale: Double): Vector

// GPS Based

def goTo(target: Point3D): Vector

def explore(minBound: Point3D, maxBound: Point3D): Vector

// Temporal Based

def maintainTrajectory(trajectory: => Vector)(time: FiniteDuration):Vector

def maintainUntil(direction: Vector)(condition: Boolean): Vector

// Obstacle Avoidance

def obstacleAvoidance(obstacles: List[Vector]): Vector

Flocking Blocks. In a swarm-like system, it is often necessary to coordi-
nate the movement of the entire swarm, rather than just individual agents,
to achieve emergent behaviours, and ensure that the nodes move cohesively,
avoid collisions, and strive to be aligned in a common direction. Therefore, in
this module, we have implemented the main blocks to support the flocking of
agents. Several models are available in the literature for this purpose. Particu-
larly, MacroSwarm exposes the Vicsek [48], Cucker-Smale [20], and Reynolds
(Fig. 2e) [42] models. We have also exposed the individual blocks to implement
Reynolds, which are cohesion, separation, and alignment. These blocks can
be used individually by higher-level blocks to implement specific behaviours (e.g.,
following a leader while avoiding collisions).

Another essential aspect that emerges at this level is the concept of a variable
neighbourhood. Indeed, it may happen that the logical neighbourhood model used
by aggregate computing does not match the one used to coordinate the agents.
Thus, the node’s visibility can be more restrictive or extensive according to the
neighbourhood model applied. In particular, in the case of Reynolds, it is typical
for the separation range to be different from that of alignment. Therefore, the
flocking blocks accept a “query” strategy towards a variable neighbourhood. The
main implementation of these queries are:

– OneHopNeighborhood: the same as the aggregate computing model;
– OneHopNeighborhoodWithinRange(radius: Double): it takes all the nodes

in the neighbourhood within the given range.

The flocking models are typically described by an iterated function in which
the velocity at time t+1 depends on the velocity at time t. Taking as an example
the Vicsek rule, it is described as: vi(t + 1) =

∑
j∈N vj(t)

|N | + ηi(t) where N is the
neighbourhood of the node i at time t, vi(t) is the velocity of the node i at
time t, and ηi(t) is a random vector that models the noise of the model. For this
reason, each block receives the previous velocity field as a parameter, rather than
encoding it internally within each block. This is because the previous velocities
may be influenced by other factors, such as constant movements or a target
position. Typical usage of this operator follows the following schema:

rep(initialVelocity) { oldVelocity => flockingOperator(oldVelocity, ..) }

The MacroSwarm Swarm Programming Framework 39

For example, the following program describes a collective movement in which the
nodes try to reach the position (x,y) while maintaining a distance of k meters
from one another:

rep(Point2D.Zero) {

v => (goTo(Point2D(x, y)) +

separation(v, OneHopNeighbourhoodWithinRange(k))).normalize

}

Leader-Based Blocks. These blocks allow agents to follow a designated leader.
The idea behind leadership in swarm systems is that a leader can act as a
coordinator, influencing the followers that recognise it as such. In the context of
aggregate computing, leaders are typically defined as Boolean fields holding true
for leaders and false for non-leaders. Leaders can be predetermined (i.e., nodes
with certain characteristics), virtual (i.e., nodes that do not actually exist in the
system but are simulated for collective movement steering), or chosen in space
(e.g., using the S block—see Sect. 3). A leader can be thought of as creating an
area of influence, affecting the actions of its followers.

Currently, we have identified alignWithLeader and sinkAt (Fig. 2b) as
essential blocks. The former propagates the leader’s velocity throughout its area
of influence (e.g., via G—see Sect. 3), with followers adjusting their velocity to
it. However, sometimes it may also be desirable to create a sort of attraction
towards the leader, so that the nodes remain cohesive with it. For this reason,
the sinkAt block creates a computational field in which nodes tend to move
towards the leader. These blocks are useful for higher-level blocks, such as those
associated with the creation of teams or spatial formations.

Team Formation Blocks. These blocks allow agents to form teams or sub-
groups within the swarm, useful e.g. for work division or situations requiring
intervention by few agents. In general, the formation of a team creates a “split” in
the swarm logic, conceptually creating multiple swarms with potentially different
goals (cf. Fig. 2c). One way to create teams is by using the branch construct (see
Sect. 3). For example, the following program,

def alignVelocity(id: Int) =

alighWithLeader(id == mid(), rep(browian())(x => x)

branch(mid() < 50) { alignVelocity(0) } { alignVelocity(50) }

creates two groups, each of which follows a certain velocity dictated by the
leaders (0 and 50).

Other times, one needs to create teams based on the spatial structure of the
network or when certain conditions are met. The teamFormation block supports
this scenario. By internally using S, it allows for the creation of teams based on
certain spatial constraints expressed through parameters intraDistance (i.e.,
the distance between team members) and targetExtraDistance (i.e., the size
of the leader’s area of influence). It is also possible to create teams based on

40 G. Aguzzi et al.

(a) (b) (c)

(d) (e)

Fig. 2. Overview of swarm behaviours expressible with MacroSwarm.

predetermined leaders, denoted explicitly by Boolean fields. Moreover, since team
formation may take time to complete, or require conditions to be met (e.g., that
at least N members are present, or that the minimum distance between all
nodes is less than a certain threshold), we also parameterise teamFormation
by a condition predicate. An example of built-in predicate is isTeamFormed,
which verifies that each node under the influence of the leader has a necessary
a number of neighbours within a targetDistance radius. An example is as
follows.

teamFormation(targetIntraDistance = 30, // separation

targetExtraDistance = 300, // influence of the leader

condition = leader => isTeamFormed(leader, targetDistance = 40)

).velocity // use the velocity vector to create the Team

Each team must refer to a single leader, who can coordinate the associated
nodes (using the APIs exposed by the Leader Based Block). In particular,
to execute a certain behaviour within a team, the insideTeam method must
be used. Given the ID of the leader to which a node belongs, this method can
define the movement logic relative to that leader. For instance, this code aligns
the followers with a velocity generated by a leader,

team.insideTeam{leader => alignWithLeader(leader)(rep(brownian())(x => x))}

The MacroSwarm Swarm Programming Framework 41

Fig. 3. Examples of the supported patterns. From left to right: line formation, v-like
formation, and circular formation.

Pattern Formation Blocks. Team formation blocks can be used to create
groups of agents with certain characteristics. However, sometimes we are also
interested in the spatial structure of the group. In swarm behaviours, the spatial
structures of the teams can be instrumental for performing certain tasks (e.g.,
coverage or transportation tasks). In MacroSwarm some of the most idiomatic
spatial structures are available.

The implementation is as follows. First of all, the formation of structures is
based on the presence of a leader that collects the hop-by-hop distances of their
followers (leveraging G and C) and sends them a direction in which they should
go to form the required structure (using G).

The structures currently supported (Fig. 3) are v-like shapes (vShape), lines
(line), and circular formations (centeredCircle). These structures are self-
healing : if there is a disturbance of the structure, the group tends to reconstruct
itself and return to a stable structure. Additionally, it is assumed that the leader
has his own speed logic. In this way, the group will follow the leader maintaining
the chosen structure.

Swarm Planning Blocks. With the previous blocks available, there is a need
for a handy mechanism to express a series of plans that change over time and
move the swarm towards different targets. For this reason, MacroSwarm also
exposes the concept of swarm planning. The idea is to express a series of plans
(or missions) defined by a behaviour (i.e., the logic of production of a velocity
vector) and a goal (defined as a boolean predicate condition). At any given
time, the swarm will be executing a certain sub-plan, which will be considered
complete only when the boolean condition is satisfied. At this point, the swarm
will follow the next objective described by the overall plan. The exposed API
allows for the creation of these collective plans in the following way:

execute.once {

plan(goTo(goalOne).endWhen(isClose(goalOne)),

plan(goTo(goalTwo).endWhen(isClose(goalTwo)),

}.run() // will trigger the execution of the plan

This snippet creates a plan in which the nodes will first go to goalOne, and once
reached (isClose verifies that the node is close enough to the point passed),
it will move on to the next objective goalTwo. Since it is specified that the
mission is executed once, after the completion of the last plan, the group will

42 G. Aguzzi et al.

stop moving. To make the group repeat the plan, the repeat method can be used
instead of once. Note that there is no coordination between agents in the above
code, but you can enforce it using lower-level blocks (e.g., flocking or team-based
behaviours). For example, MacroSwarm enables describing a swarm behaviour
where: (i) a group of nodes gather around a leader, (ii) the leader brings the entire
group towards the goalOne, (iii) the leader brings the entire group towards the
goalTwo. This can be described using the following code:

execute.once(// if it is repeated, you can use ‘repeat’

plan{sinkAt(leaderX)}.endWhen{isTeamFormed(leaderX, targetDistance=100)},

plan(goTo(goalOne)).endWhen{ G(leaderX, isClose(goalOne), x => x)},

plan(goTo(goalTwo)).endWhen{ G(leaderX, isClose(goalTwo), x => x)},

).run()

The use of G in this way is a recurrent pattern, and in ScaFi it is exposed
through the broadcast[T](center: Boolean, value: T): T block.

5 Evaluation

To validate the proposed approach and API we define a simulated find-and-
rescue case study, to show the ability of MacroSwarm to express complex
swarm behaviours (Sect. 5.1). Then, we discuss the results of the case study and
the applicability of the proposed approach in real-world scenarios (Sect. 5.2).

5.1 Case Study: Find and Rescue

In our scenario, we want a fleet of drones to patrol a spatial area. In the area,
dangerous situations may arise (e.g., a fire breaks out, a person gets injured,
etc.). In response to these, a drone designated as a healer must approach and
resolve them. Exploration must be carried out in groups composed of at least one
healer and several explorers, who will help the healer identify alarm situations.

Goal. The goal of the proposed case study is to demonstrate the effectiveness of
the proposed API in terms of expressiveness (i.e., the ability to describe complex
behaviours easily) and correctness (i.e., the described behaviour collectively does
what is expressed). For the first point, since it is a qualitative metric, we will show
the development process that led to the implementation of the produced code,
demonstrating its ease of understanding. For the second point, since deploying
a swarm of drones is costly, we will make use of simulations to verify that the
program is functioning correctly both qualitatively (e.g., observing the graphical
simulation) and quantitatively (i.e., extracting the necessary data and computing
metrics that allow us to understand if the system behaves as it should).

The MacroSwarm Swarm Programming Framework 43

(a) Team formation (b) Circle formation (c) Explore

Fig. 4. The first phases of the scenario described in Sect. 5. At the beginning, the
system is split into teams; afterwards, the teams assume a spatial formation (circular,
in this case); finally, the teams start exploring the overall area.

Setup. Initially, 50 explorers and 5 healers are randomly positioned in an area
of 1km2. Each drone has a maximum speed of approximately 20 km/h and a
communication range of 100 m. The alarm situations are randomly generated at
different times within the spatial area in a [0, 50] minutes time-frame. Each sim-
ulation run lasts 90 min, during which we expect the number of alarm situations
to reach a minimum value. The node should form teams of at least one healer
and several explorers, maintaining a distance of at least 50 m between the node
and the leader

Implementation Details. To structure the desired swarm behaviour, we break
the problem into parts:

1. the swarm must split into teams regulated by a healer, who works as a leader
(Fig. 4a);

2. teams must assume a spatial formation promoting the efficiency of the explo-
ration (Fig. 4b);

3. the teams must explore the overall area (Fig. 4c);
4. when any node detects an alarm zone, it must point that to the healer;
5. the healer node approaches the dangerous situation to fix it;
6. then, the team should return to the exploration phase.

We now describe the implementation of each part, leveraging the MacroSwarm
API. First of all, for creating teams, we can use the Team Formation blocks:

val teamFormedLogic =

(leader: ID) => isTeamFormed(leader, minimumDistance + confidence)

def createTeam() =

teamFormation(sense("healer"), minimumDistance, teamFormedLogic)

where minimumDistance is the minimum distance between nodes during the
team formation phases and confidence is the confidence interval used to check
if the team is formed through the isTeamFormed method. Each team then should
follow the aforementioned steps, expressible using the Swarm Planning API:

44 G. Aguzzi et al.

def insideTeamPlanning(team: Team): Vector =

team.insideTeam {

healerId =>

val leading = healerId == mid() // team leader

execute.repeat(

plan(formation(leading)).endWhen(circleIsFormed), // shape formation

plan(wanderInFormation(leading)).endWhen(dangerFound), // exploration

plan(goToHealInFormation(leading, inDanger)).endWhen(dangerReached),

plan(heal(healerId, inDanger)).endWhen(healed(dangerFound)) // healing

).run() // repeat the plan

}

The first step is the formation of the teams, based on method formation which
internally uses centeredCircle to place the nodes in a circle around the leader
node. Function circleIsFormed verifies whether the nodes are in a circle for-
mation, i.e., that the distance between any node and the leader is less than
radius (set to 50 m in this scenario). The second step is the exploration phase,
implemented by method wanderInFormation, which uses the explore function
to move the nodes to a random direction within given bounds while keeping the
circle formation. This leverages centeredCircle, passing the movement logic of
the healer (leader) to the block. Exploration will go on until someone finds a
danger node, denoted by predicate dangerFound. This internally uses C and G
to collect the danger nodes’ psitions and share them within the team:

def dangerFound(healer: Boolean): Boolean = {

val dangerNodes =

C(sense("healer"), combinePosition, List(sense("danger")), List.empty)

broadcast(healer, dangerNodes.nonEmpty)

}

The third step is the movement towards the danger node, which is implemented
by the goToHealInFormation method, which uses again the centeredCircle
function with a delta vector that moves the leader node towards the danger
node. inDanger is computed similarly to dangerFound, but, in this case, the
position will be shared instead. dangerReached is a Boolean field indicating if
the healer node is close enough to the danger node. The last step is the healing
of the danger node, which is modelled as an actuation of the healer. The rescue
ends when the danger node is healed. As a final note, we also want the nodes
to be able to avoid each other when they are too close, even if they are not in
the same team. For this, we leverage the Flocking API the separation block
outside the team logic. Then, the main program is as follows:

val team = createTeam()

rep(Vector.Zero) { v =>

insideTeamPlanning(team) +

separation(v, OneHopNeighbourhoodWithinRange(avoidDistance))

}.normalize

This program shows that the API is flexible enough to create complex behaviours
handling various coordination aspects.

The MacroSwarm Swarm Programming Framework 45

Results. We validated the results by effectively running simulations, publicly
available at https://zenodo.org/badge/latestdoi/611692727. For this task, we
used Alchemist [40], a general simulator for multi-agent and pervasive systems.
We launched 64 simulation runs with different random seeds: Fig. 5 shows the
average results obtained. We extracted the following data:

– intra-team distance: after an initial adjustment phase, the system should con-
verge to an average distance of 50 m (Fig. 5a);

– minimum distance between each node: as we want to avoid collisions, the
minimum distance between two nodes should always be greater than zero
(Fig. 5b);

– number of nodes in danger : we expect the nodes in danger to increase up to
50 min and then decrease, tending towards zero (Fig. 5c).

The results (Fig. 5) show that the system can achieve the expected outcomes.

5.2 Discussion

Despite its simplicity, this use case allowed us to demonstrate the capability
of MacroSwarm, both in qualitative terms (i.e., the produced code is simple
and understandable) and quantitative terms (i.e., the data show that the swarm
follows the given instructions correctly).

That being said, there are several things to consider when using the library
in real-world contexts. Ours is a top-down approach, in which we have defined
an evaluation and implementation system that is general enough to be executed
in various multi-robot systems. Specifically, we require that at least: i) nodes
can perceive and interact with neighbours and approximate a direction vector to
each of them; ii) they can move in a specific direction with a certain velocity; and
iii) they can perceive distance and direction for certain obstacles. As for point
i), this can be developed using specific local sensors (e.g., range and bearing
systems [11]), by using GPS, by approximating distances using cameras mounted
on each drone, or by using Bluetooth direction finding [43]. Concerning the point
ii) the velocity vector can be mapped to the motors of the UAVs, or the motor’s
wheels of the ground robots [27], so it can be easily implemented in real case
scenarios. Finally, concerning iii), there are several solutions for perceiving the
direction of obstacles by leveraging various sensors, like Laser Imaging Detection
And Ranging (LIDAR) systems [37].

That being said, we know that the reality gap for real-world scenarios
could introduce divergences from the behaviours shown, as the used simulator,
although general, does not simulate many aspects of reality, such as communi-
cation delay, friction, and possible perception errors. We aim to test the API in
more realistic simulators (like Gazebo [26]) or real systems as a future work.

https://zenodo.org/badge/latestdoi/611692727

46 G. Aguzzi et al.

Fig. 5. Quantitative plots of the simulated scenario. Figure 5a shows the average team
distance in the first two minutes. Figure 5b shows the minimum distance between nodes.
Figure 5c shows the nodes in danger through time. Since we run several simulations, the
lines show the average values, whereas the area around the lines shows the confidence
interval throughout the simulations.

6 Related Work

Related programming approaches for swarms include Meld [4], Buzz [41],
Voltron [34], TeCoLa [29], Dolphin [30], Maple-Swarm [28], PARoS [22],
Resh [15], and [51]. In the following, we review the works that are more related
to MacroSwarm, which are those for expressing decentralised behaviours.

Buzz [41] is a mixed imperative-functional language for programming swarms.
In Buzz, swarms are first-class abstractions: they can be explicitly created,
manipulated, joined (e.g., based on local conditions), and used as a way to
address individual members (e.g., for tasking them). For individual robots, the
language provides access to local features and the local set of neighbours, for
interaction. For swarm-wide consensus, a notion of virtual stigmergy is lever-
aged, based on distributed tuple spaces. Buzz is designed to be an extensible
language, since new primitives can be added. Indeed, Buzz is based on a set
of quite effective but ad-hoc mechanisms. By contrast, MacroSwarm uses few
general and expressive primitives, and supports swarm programming through a
library of reusable, composable blocks. Additionally, MacroSwarm can lever-
age theoretical results from field calculi [49,50], making programs amenable for
formal analysis.

Voltron [34] is a programming model for team-level design of drone systems.
It represents a group of individual drones through a team abstraction, which

The MacroSwarm Swarm Programming Framework 47

is responsible for the overall task. The details of individual drone actions and
their timing are delegated to the platform system during runtime. The pro-
grammer issues action commands to the drone team, along with spatiotemporal
constraints. The tasks in Voltron are associated with spatial locations, and the
team self-organises to populate multisets of future values that represent the
task’s eventual result at a specific location. However, Voltron is imperative in
nature, limiting the compositionality of team-level behaviours.

Meld [4] is a logic-based language for programming modular ensembles, for
systems where communication is limited to immediate neighbours. It leverages
facts with side-effects to handle actuation, production rules to generate new facts
from existing facts, and aggregate rules to combine multiple facts into one fact
by folding (e.g., maximisation or summation). The runtime deals with commu-
nication of facts and removal of invalidated facts. The declarativity and logical
foundation make Meld an interesting macroprogramming system; however, it
is not clear how it can scale with the complexity of general swarm behaviour.
Indeed, it is mainly adopted for shape formation and self-reconfiguring ensem-
bles.

Finally, we mention another category of related works, which are task orches-
tration languages for swarms (e.g., TeCoLa [29], Dolphin [30], Maple-Swarm [28],
PARoS [22], Resh [15], and [51]): they adopt quite a different approach that lever-
ages centralised entities to control the activity of the swarm members based on
the provided task descriptions.

7 Conclusion and Future Work

We presented MacroSwarm, a framework for top-down swarm program-
ming that provides composable blocks capturing common decentralised swarm
behaviours. It builds on aggregate computing, a formally-grounded field-based
coordination paradigm, and is implemented on top of the ScaFi toolkit/DSL.
We show through examples and a simulated case study that the approach is
compositional, practical, and expressive.

As future work, we plan to make the API more comprehensive, by cover-
ing all the main patterns from notable taxonomies of swarm behaviour [13].
Additionally, it would be interesting to investigate approaches for synthesis-
ing compositions of MacroSwarm blocks, e.g., by following the reinforcement
learning-based approach of [3]. Last but not least, we would like to deploy and
test the framework on real testbeds.

Acknowledgements. This work was supported by the Italian PRIN project “Com-
monWears” (2020HCWWLP) and the EU/MUR FSE PON-R&I 2014-2020.

Data Availability Statement. The artifact is available in the Zenodo repository:
doi:10.5281/zenodo.7829208

https://doi.org/10.5281/zenodo.7829208

48 G. Aguzzi et al.

References

1. Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming interactions in collec-
tive adaptive systems by relying on attribute-based communication. Sci. Comput.
Program. 192 (2020)

2. Aguzzi, G., Casadei, R., Maltoni, N., Pianini, D., Viroli, M.: ScaFi-Web: a
web-based application for field-based coordination programming. In: Damiani,
F., Dardha, O. (eds.) COORDINATION 2021. LNCS, vol. 12717, pp. 285–299.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78142-2 18

3. Aguzzi, G., Casadei, R., Viroli, M.: Towards reinforcement learning-based aggre-
gate computing. In: ter Beek, M.H., Sirjani, M. (eds.) DisCoTec 2022. LNCS,
vol. 13271, pp. 72–91. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
08143-9 5

4. Ashley-Rollman, M.P., Goldstein, S.C., Lee, P., Mowry, T.C., Pillai, P.: Meld:
a declarative approach to programming ensembles. In: 2007 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 2794–2800. IEEE (2007).
https://doi.org/10.1109/IROS.2007.4399480

5. Audrito, G., Beal, J., Damiani, F., Viroli, M.: Space-time universality of field cal-
culus. In: Serugendo, G.D.M., Loreti, M. (eds.) DisCoTec 2018. LNCS, vol. 10852,
pp. 1–20. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92408-3 1

6. Audrito, G., Casadei, R., Damiani, F., Pianini, D., Viroli, M.: Optimal resilient
distributed data collection in mobile edge environments. Comput. Electr. Eng.
96(Part), 107580 (2021). https://doi.org/10.1016/j.compeleceng.2021.107580

7. Audrito, G., Casadei, R., Damiani, F., Salvaneschi, G., Viroli, M.: Functional
programming for distributed systems with XC. In: Ali, K., Vitek, J. (eds.) 36th
European Conference on Object-Oriented Programming, ECOOP 2022, 6–10 June
2022, Berlin, Germany. LIPIcs, vol. 222, pp. 20:1–20:28. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.ECOOP.2022.20

8. Audrito, G., Casadei, R., Damiani, F., Viroli, M.: Computation against a neigh-
bour: addressing large-scale distribution and adaptivity with functional pro-
gramming and scala. Logical Methods Comput. Sci. 19(1) (2023). https://lmcs.
episciences.org/10826

9. Audrito, G., Viroli, M., Damiani, F., Pianini, D., Beal, J.: A higher-order calculus
of computational fields. ACM Trans. Comput. Logic 20(1), 5:1–5:55 (2019). http://
doi.acm.org/10.1145/3285956

10. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate:
languages for spatial computing. In: Formal and Practical Aspects of Domain-
Specific Languages: Recent Developments, Chap. 16, pp. 436–501. IGI Global
(2013). https://doi.org/10.4018/978-1-4666-2092-6.ch016

11. Bilaloglu, C., Sahin, M., Arvin, F., Sahin, E., Turgut, A.E.: A novel time-of-flight
range and bearing sensor system for micro air vehicle swarms. In: Dorigo, M.,
et al. (eds.) ANTS 2022. LNCS, vol. 13491, pp. 248–256. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-20176-9 20

12. Bonabeau, E., Dorigo, M., Théraulaz, G.: Swarm intelligence: from natural to
artificial systems. Santa Fe Institute Studies in the Sciences of Complexity, Oxford
University Press (1999)

13. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013). https://
doi.org/10.1007/s11721-012-0075-2

https://doi.org/10.1007/978-3-030-78142-2_18
https://doi.org/10.1007/978-3-031-08143-9_5
https://doi.org/10.1007/978-3-031-08143-9_5
https://doi.org/10.1109/IROS.2007.4399480
https://doi.org/10.1007/978-3-319-92408-3_1
https://doi.org/10.1016/j.compeleceng.2021.107580
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://lmcs.episciences.org/10826
https://lmcs.episciences.org/10826
http://doi.acm.org/10.1145/3285956
http://doi.acm.org/10.1145/3285956
https://doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.1007/978-3-031-20176-9_20
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/s11721-012-0075-2

The MacroSwarm Swarm Programming Framework 49

14. Busoniu, L., Babuska, R., Schutter, B.D.: A comprehensive survey of multiagent
reinforcement learning. IEEE Trans. Syst. Man Cybern. Part C 38(2), 156–172
(2008). https://doi.org/10.1109/TSMCC.2007.913919

15. Carroll, M., Namjoshi, K.S., Segall, I.: The Resh programming language for multi-
robot orchestration. In: IEEE International Conference on Robotics and Automa-
tion, ICRA 2021, Xi’an, China, 30 May–5 June 2021, pp. 4026–4032. IEEE (2021).
https://doi.org/10.1109/ICRA48506.2021.9561133

16. Casadei, R.: Macroprogramming: concepts, state of the art, and opportunities of
macroscopic behaviour modelling. ACM Comput. Surv. (2023). https://doi.org/
10.1145/3579353

17. Casadei, R., Pianini, D., Placuzzi, A., Viroli, M., Weyns, D.: Pulverization in cyber-
physical systems: Engineering the self-organizing logic separated from deployment.
Future Internet 12(11), 203 (2020). https://doi.org/10.3390/fi12110203

18. Casadei, R., Viroli, M., Aguzzi, G., Pianini, D.: ScaFi: a Scala DSL and toolkit for
aggregate programming. SoftwareX 20, 101248 (2022). https://doi.org/10.1016/j.
softx.2022.101248

19. Casadei, R., Viroli, M., Audrito, G., Pianini, D., Damiani, F.: Engineering collec-
tive intelligence at the edge with aggregate processes. Eng. Appl. Artif. Intell. 97,
104081 (2021). https://doi.org/10.1016/j.engappai.2020.104081

20. Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control
52(5), 852–862 (2007). https://doi.org/10.1109/TAC.2007.895842

21. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: The SCEL language. ACM Trans. Auton. Adapt. Syst. 9(2),
7:1–7:29 (2014)

22. Dedousis, D., Kalogeraki, V.: A framework for programming a swarm of UAVs.
In: 11th PErvasive Technologies Related to Assistive Environments Confer-
ence (PETRA’18), Proceedings, pp. 5–12. ACM (2018). https://doi.org/10.1145/
3197768.3197772

23. Dorigo, M., Theraulaz, G., Trianni, V.: Reflections on the future of swarm robotics.
Sci. Robot. 5(49), 4385 (2020). https://doi.org/10.1126/scirobotics.abe4385

24. Galinina, O., Mikhaylov, K., Huang, K., Andreev, S., Koucheryavy, Y.: Wirelessly
powered urban crowd sensing over wearables: trading energy for data. IEEE Wirel.
Commun. 25(2), 140–149 (2018). https://doi.org/10.1109/MWC.2018.1600468

25. Gershenson, C., Trianni, V., Werfel, J., Sayama, H.: Self-organization and artificial
life. Artif. Life 26(3), 391–408 (2020). https://doi.org/10.1162/artl a 00324

26. Koenig, N.P., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Sendai, Japan, 28 September–2 October 2004, pp. 2149–2154.
IEEE (2004). https://doi.org/10.1109/IROS.2004.1389727

27. Koren, Y., Borenstein, J.: Potential field methods and their inherent limitations
for mobile robot navigation. In: Proceedings of the 1991 IEEE International Con-
ference on Robotics and Automation, Sacramento, CA, USA, 9–11 April 1991,
pp. 1398–1404. IEEE Computer Society (1991). https://doi.org/10.1109/ROBOT.
1991.131810

28. Kosak, O., Huhn, L., Bohn, F., Wanninger, C., Hoffmann, A., Reif, W.: Maple-
swarm: programming collective behavior for ensembles by extending HTN-
planning. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020, Part II. LNCS, vol.
12477, pp. 507–524. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
61470-6 30

https://doi.org/10.1109/TSMCC.2007.913919
https://doi.org/10.1109/ICRA48506.2021.9561133
https://doi.org/10.1145/3579353
https://doi.org/10.1145/3579353
https://doi.org/10.3390/fi12110203
https://doi.org/10.1016/j.softx.2022.101248
https://doi.org/10.1016/j.softx.2022.101248
https://doi.org/10.1016/j.engappai.2020.104081
https://doi.org/10.1109/TAC.2007.895842
https://doi.org/10.1145/3197768.3197772
https://doi.org/10.1145/3197768.3197772
https://doi.org/10.1126/scirobotics.abe4385
https://doi.org/10.1109/MWC.2018.1600468
https://doi.org/10.1162/artl_a_00324
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/ROBOT.1991.131810
https://doi.org/10.1109/ROBOT.1991.131810
https://doi.org/10.1007/978-3-030-61470-6_30
https://doi.org/10.1007/978-3-030-61470-6_30

50 G. Aguzzi et al.

29. Koutsoubelias, M., Lalis, S.: Tecola: a programming framework for dynamic and
heterogeneous robotic teams. In: Proceedings of the 13th International Conference
on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQ-
uitous 2016), pp. 115–124. ACM (2016). https://doi.org/10.1145/2994374.2994397

30. Lima, K., Marques, E.R.B., Pinto, J., Sousa, J.B.: Dolphin: a task orchestration
language for autonomous vehicle networks. In: 2018 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, IROS 2018, Madrid, Spain, 1–5 October
2018, pp. 603–610. IEEE (2018). https://doi.org/10.1109/IROS.2018.8594059

31. Lluch-Lafuente, A., Loreti, M., Montanari, U.: Asynchronous distributed execution
of fixpoint-based computational fields. Log. Methods Comput. Sci. 13(1) (2017)

32. Luckcuck, M., Farrell, M., Dennis, L.A., Dixon, C., Fisher, M.: Formal specification
and verification of autonomous robotic systems: a survey. ACM Comput. Surv.
52(5), 100:1–100:41 (2019). https://doi.org/10.1145/3342355

33. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applica-
tions with the TOTA middleware. In: Pervasive Computing and Communications,
pp. 263–273. IEEE (2004)

34. Mottola, L., Moretta, M., Whitehouse, K., Ghezzi, C.: Team-level programming of
drone sensor networks. In: Proceedings of the 12th ACM Conference on Embedded
Network Sensor Systems (SenSys’14), pp. 177–190. ACM (2014). https://doi.org/
10.1145/2668332.2668353

35. Newton, R., Welsh, M.: Region streams: functional macroprogramming for sensor
networks. In: Workshop on Data Management for Sensor Networks, pp. 78–87
(2004)

36. De Nicola, R., Jähnichen, S., Wirsing, M.: Rigorous engineering of collective adap-
tive systems: special section. Int. J. Softw. Tools Technol. Transfer 22(4), 389–397
(2020). https://doi.org/10.1007/s10009-020-00565-0

37. Peng, Y., Qu, D., Zhong, Y., Xie, S., Luo, J., Gu, J.: The obstacle detection and
obstacle avoidance algorithm based on 2-d lidar. In: IEEE International Conference
on Information and Automation, ICIA 2015, Lijiang, China, 8–10 August 2015, pp.
1648–1653. IEEE (2015). https://doi.org/10.1109/ICInfA.2015.7279550

38. Pianini, D., Casadei, R., Viroli, M.: Self-stabilising priority-based multi-leader elec-
tion and network partitioning. In: Casadei, R., et al. (eds.) IEEE International
Conference on Autonomic Computing and Self-Organizing Systems, ACSOS 2022,
Virtual, CA, USA, 19–23 September 2022, pp. 81–90. IEEE (2022). https://doi.
org/10.1109/ACSOS55765.2022.00026

39. Pianini, D., Casadei, R., Viroli, M., Mariani, S., Zambonelli, F.: Time-fluid field-
based coordination through programmable distributed schedulers. Log. Methods
Comput. Sci. 17(4) (2021). https://doi.org/10.46298/lmcs-17(4:13)2021

40. Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of computa-
tional systems with ALCHEMIST. J. Simulation 7(3), 202–215 (2013). https://
doi.org/10.1057/jos.2012.27

41. Pinciroli, C., Beltrame, G.: Buzz: an extensible programming language for hetero-
geneous swarm robotics. In: 2016 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, IROS 2016, Daejeon, South Korea, 9–14 October 2016,
pp. 3794–3800. IEEE (2016). https://doi.org/10.1109/IROS.2016.7759558

42. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In:
Stone, M.C. (ed.) Proceedings of the 14th Annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH 1987, Anaheim, California, USA, 27–
31 July 1987, pp. 25–34. ACM (1987), https://doi.org/10.1145/37401.37406

https://doi.org/10.1145/2994374.2994397
https://doi.org/10.1109/IROS.2018.8594059
https://doi.org/10.1145/3342355
https://doi.org/10.1145/2668332.2668353
https://doi.org/10.1145/2668332.2668353
https://doi.org/10.1007/s10009-020-00565-0
https://doi.org/10.1109/ICInfA.2015.7279550
https://doi.org/10.1109/ACSOS55765.2022.00026
https://doi.org/10.1109/ACSOS55765.2022.00026
https://doi.org/10.46298/lmcs-17(4:13)2021
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1109/IROS.2016.7759558
https://doi.org/10.1145/37401.37406

The MacroSwarm Swarm Programming Framework 51

43. Sambu, P., Won, M.: An experimental study on direction finding of bluetooth 5.1:
Indoor vs outdoor. In: IEEE Wireless Communications and Networking Confer-
ence, WCNC 2022, Austin, TX, USA, 10–13 April 2022, pp. 1934–1939. IEEE
(2022). https://doi.org/10.1109/WCNC51071.2022.9771930

44. Schranz, M., Umlauft, M., Sende, M., Elmenreich, W.: Swarm robotic behaviors
and current applications. Front. Robot. AI 7, 36 (2020). https://doi.org/10.3389/
frobt.2020.00036

45. Tahir, A., Böling, J., Haghbayan, M.H., Toivonen, H.T., Plosila, J.: Swarms of
unmanned aerial vehicles - a survey. J. Ind. Inf. Integr. 16, 100106 (2019). https://
doi.org/10.1016/j.jii.2019.100106

46. Trianni, V.: Evolutionary Swarm Robotics - Evolving Self-Organising Behaviours
in Groups of Autonomous Robots. SCI, vol. 108. Springer, Cham (2008). https://
doi.org/10.1007/978-3-540-77612-3

47. Varenne, F., Chaigneau, P., Petitot, J., Doursat, R.: Programming the emergence
in morphogenetically architected complex systems. Acta. Biotheor. 63(3), 295–308
(2015). https://doi.org/10.1007/s10441-015-9262-z

48. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase
transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229
(1995). https://link.aps.org/doi/10.1103/PhysRevLett.75.1226

49. Viroli, M., Audrito, G., Beal, J., Damiani, F., Pianini, D.: Engineering resilient col-
lective adaptive systems by self-stabilisation. ACM Trans. Model. Comput. Simul.
28(2), 16:1–16:28 (2018). https://doi.org/10.1145/3177774

50. Viroli, M., Beal, J., Damiani, F., Audrito, G., Casadei, R., Pianini, D.: From dis-
tributed coordination to field calculus and aggregate computing. J. Log. Algebraic
Methods Program. 109 (2019)

51. Yi, W., et al.: An actor-based programming framework for swarm robotic systems.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
2020, Las Vegas, NV, USA, 24 October 2020–24 January 2021, pp. 8012–8019.
IEEE (2020). https://doi.org/10.1109/IROS45743.2020.9341198

https://doi.org/10.1109/WCNC51071.2022.9771930
https://doi.org/10.3389/frobt.2020.00036
https://doi.org/10.3389/frobt.2020.00036
https://doi.org/10.1016/j.jii.2019.100106
https://doi.org/10.1016/j.jii.2019.100106
https://doi.org/10.1007/978-3-540-77612-3
https://doi.org/10.1007/978-3-540-77612-3
https://doi.org/10.1007/s10441-015-9262-z
https://link.aps.org/doi/10.1103/PhysRevLett.75.1226
https://doi.org/10.1145/3177774
https://doi.org/10.1109/IROS45743.2020.9341198

ScaRLib: A Framework for Cooperative
Many Agent Deep Reinforcement Learning

in Scala

Davide Domini , Filippo Cavallari , Gianluca Aguzzi(B) ,
and Mirko Viroli

Alma Mater Studiorum – Università di Bologna, Cesena, Italy
filippo.cavallari2@studio.unibo.it,

{davide.domini2,gianluca.aguzzi,mirko.viroli}@unibo.it

Abstract. Multi Agent Reinforcement Learning (MARL) is an emerg-
ing field in machine learning where multiple agents learn, simultaneously
and in a shared environment, how to optimise a global or local reward
signal. MARL has gained significant interest in recent years due to its suc-
cessful applications in various domains, such as robotics, IoT, and traffic
control. Cooperative Many Agent Reinforcement Learning (CMARL) is
a relevant subclass of MARL, where thousands of agents work together
to achieve a common coordination goal.

In this paper, we introduce ScaRLib, a Scala framework relying on
state-of-the-art deep learning libraries to support the development of
CMARL systems. The framework supports the specification of cen-
tralised training and decentralised execution, and it is designed to be
easily extensible, allowing to add new algorithms, new types of environ-
ments, and new coordination toolchains.

This paper describes the main structure and features of ScaRLib
and includes basic demonstrations that showcase binding with one such
toolchain: ScaFi programming framework and Alchemist simulator can
be exploited to enable learning of field-based coordination policies for
large-scale systems.

Keywords: Many Agent Reinforcement Learning · Deep Learning ·
Aggregate Computing

1 Introduction

Recent advances in machine learning have led to the development of Multi
Agent Reinforcement Learning (MARL) [9], in which multiple agents learn
simultaneously within a shared environment to optimise either a global or local
reward signal. This area of research has gained significant interest in recent
years due to its successful applications in various domains, such as robotics [21],

Supported by Department of Computer Science and Engineering @ Alma Mater Stu-
diorum - University of Bologna.
c© IFIP International Federation for Information Processing 2023
S.-S. Jongmans and A. Lopes (Eds.): COORDINATION 2023, LNCS 13908, pp. 52–70, 2023.
https://doi.org/10.1007/978-3-031-35361-1_3

https://eapls.org/pages/artifact_badges/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35361-1_3&domain=pdf
http://orcid.org/0009-0006-8337-8990
http://orcid.org/0009-0006-4050-9989
http://orcid.org/0000-0002-1553-4561
http://orcid.org/0000-0003-2702-5702
https://doi.org/10.1007/978-3-031-35361-1_3

Cooperative Many Agent Deep Reinforcement Learning in Scala 53

IoT [19], and traffic control [13]. MARL provides a powerful approach to tackling
complex problems that cannot be easily solved by single-agent reinforcement
learning. Most specifically, Cooperative Many Agent Reinforcement Learning
(CMARL) [16,33] is a relevant subclass of MARL, where thousands of agents
work together to achieve a common coordination goal. CMARL finds several
applications in contexts like swarm robotics [17], wireless sensor networks, and
smart grid management. CMARL offers significant opportunities in the design
of large-scale systems requiring agents to coordinate and collaborate effectively,
even in environments with partial observability and intrinsic unpredictability.
Therefore, there is a need for effective frameworks (and tools) that can foster
CMARL adoption.

However, although several frameworks exist both for describing and solving
CMARL problems (Ray [24]) and for using and defining multi-agent environ-
ments (PettingZoo [31]) they generally lack the following aspects: (i) setting up
complex environments (and hence simulation scenarios) is particularly difficult,
and (ii) they are typically tailored for handling a limited number of agents,
and for non-collaborative tasks. To start addressing these problems, in this work
we present ScaRLib, a framework for the design of effective CMARL systems.
ScaRLib offers several key features, including support for centralised training
and decentralised execution, easy extensibility, and a Domain Specific Language
(DSL) for expressing complex cooperative scenarios. Additionally, ScaRLib inte-
grates with the Alchemist [25] simulator for large-scale pervasive computing
systems and provides the ability to express field-based coordination problems
through its integration with ScaFi [11]. The latter, in particular, provides a
high-level language for distributed computing that provides a declarative and
compositional ways of expressing complex coordination tasks.

The remainder of this paper is organised as follows: Sect. 2 provides key
background in the context of learning and the Alchemist/Scafi toolchain, Sect. 3
presents the ScaRLib tool, Sect. 4 presents demos of ScaRLib, Sect. 5 discuss
some state-of-the-art solutions, and finally Sect. 6 concludes and presents future
works.

2 Background

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a subfield of machine learning, other than super-
vised and unsupervised learning, that focuses on solving sequential decision prob-
lems: giving an agent that can interact with an environment, the RL goal is to
learn a policy (i.e., the action to take in a certain state of the environment)
that maximises a reward signal. Most specifically, the dynamics of these agent-
environment interactions are modelled in discrete steps (i.e., t = 0, 1, 2, . . .).
At each step, the agent receives an observation St ∈ S (S is the set of all the
possible states) from the environment and takes an action At ∈ A(St) (A(St)
is the action space from the state St). One time step later, the agent receives
a reward Rt+1 ∈ R and the new state St+1. The agent decisions are based on

54 D. Domini et al.

(a) Q-Learning (b) Deep Q-Learning

Fig. 1. Q-Learning and Deep Q-Learning visual comparison

a probabilistic policy πt(a|s), which indicates the probability of choosing action
a from the state s at time t. In order for RL to be effective, two conditions are
fundamental: (i) all is meant by goals/purposes/success can be well thought of
as the maximization of the expected value of the cumulative sum of the reward
(i.e., a scalar signal) – called the reward hypothesys; and (ii) the environment
state should summarise the past compactly so that future states only depend on
the current state (and not on past states) – the markov property.

In literature, several algorithms can be used to solve RL problems. In this
work, we will focus on two of them: the Q-Learning [32] algorithm and the
Deep Q-Learning [22] algorithm. The core part of both of these algorithms is
the Q-function, which maps each state-action pair to a value that represents
the expected future reward of taking that action in that state. Using a modified
Bellman equation update, the Q-function is iteratively updated based on the
rewards received by the agent as it takes actions in the environment. From the
Q-function, the agent can follow both an exploration policy during the train-
ing phase and a behavioural policy once the learning phase is complete. The
behavioural policy is a greedy policy, in which the agent chooses the action with
the highest Q-value in a given state. This policy ensures that the agent always
chooses the best action to maximise its expected future reward. On the other
hand, during the exploration phase, the agent uses an ε-greedy policy, where it
chooses a random action with probability ε and the best action (according to the
Q-table) with probability 1-ε. This allows the agent to explore the environment
and learn from new experiences.

The main difference between the two algorithms is that in Q-Learning the Q-
table is represented as a table, while in Deep Q-Learning it is approximated by a
neural network. Therefore, the first approach works well for simple problems, but
it struggles to scale to complex problems due to the explosion of the state space;
the second approach, on the other hand, addresses large-scales but requires much
data to train the neural network (Fig. 1).

2.2 Multi Agent Reinforcement Learning

MARL is an extension of RL where multiple agents interact with one another
and with the environment. Usually, MARL is modelled as a Markov Game (or
Stochastic Game S) [20] in which we have:

Cooperative Many Agent Deep Reinforcement Learning in Scala 55

– A tuple S =< N,S, {Ai}, P, {Ri} > with i ∈ 1 . . . N
– The number of agents N > 1
– The action space of the i-th agent Ai. The global action space is defined as

A = A1 × A2 × · · · × AN

– A function describing the transition dynamics P : S × A → P(S)
– The reward function Ri : S × A × S → R for each agent i

Based on the reward function used by the agents, MARL can be divided into
two categories: i) cooperative, where all the agents trying to maximise the same
reward function (e.g., a group of robots trying to clean a room); ii) competitive,
where, potentially, each agent has its own reward function that is conflictual
with the other (e.g., a rock-paper-scissor game). Cooperative MARL can be
further divided into two additional categories (based on the policy), namely: i)
homogeneous, where all the agents have the same capabilities, i.e., they use the
same policy ii) heterogeneous, where each agent may have its own policy

In this work, we focus on a subset of MARL, namely: Many Agent Reinforce-
ment Learning [33]. The only difference between the two approaches is in the
number of agents involved. Typically, in Many Agent Reinforcement Learning
the number of agents may range from a hundred to one or two thousand whereas,
in Multi Agent Reinforcement Learning, there are only a few tens [6,28]. More-
over, we focus on cooperative homogeneous and heterogeneous learning.

2.3 Alchemist

Alchemist1 [25] is meta-simulator mainly designed for simulating complex dis-
tributed systems in a rich variety of scenarios like swarm robotics [12], large-scale
sensor networks [2], crowd simulation [7], path planning, and even morphogen-
esis of multi-cellular systems. The simulator is meta in nature, as it is based
on general abstractions that can be mapped to specific use cases (i.e., incar-
nations). Inspired by biochemistry, the meta-model consists of a set of nodes
that exist in an environment and are linked together by relationship rules. Each
node contains a sequence of molecules and reactions. A molecule represents a
variable, which acts as a container for data. Reactions instead are events that
occur based on a set of conditions, and are fired according to a time distribution,
producing an effect that is described as an action. This abstraction allows the
simulator to be flexible and adaptable to a variety of use cases and node numbers
(it could support thousands of nodes), while maintaining a consistent underlying
structure.

The Alchemist simulator features four incarnations: biochemistry, Sapere,
Protelis, and ScaFi, each with a different way of modelling molecules and actions.
Moreover, the simulator offers an effortless method for loading simulations. The
process requires a YAML file that includes essential parameters, such as the
incarnation type, neighbour connection model, and node deployment. In Fig. 2,
we have provided an example YAML file that creates a simulation using the ScaFi

1 http://alchemistsimulator.github.io/.

http://alchemistsimulator.github.io/

56 D. Domini et al.

incarnation (first row). It also defines the neighbourhood relationship based on
fixed distances (0.5 in this case), placing nodes in a fixed grid of size 10 × 10
starting at -(5,5) and ending at (5,5), with a node-to-node distance of 0.25.
Finally, it loads the ScaFi program called “program”, which is evaluated at each
node with a frequency 1Hz.

Fig. 2. An Alchemist simulation example. The simulation result on the right is obtained
by running the simulation described on the left.

2.4 ScaFi

ScaFi (Scala Fields2) [11] is a scala framework for developing large-scale dis-
tributed applications and simulating systems of networked agents. ScaFi is
designed for Aggregate Programming [7], which is a top-down global-to-local
macro-programming [10] paradigm for distributed systems where the focus is
on the collective behaviour of the system rather than on the individual agents
that make up the system. One of the unique features of aggregate computing
is its support for self-organising systems – that are systems that can adapt to
changes in the environment and maintain their functionality without requiring
centralised control.

In ScaFi, agents are represented as nodes in a logical network, and the inter-
actions between agents are modelled as the exchange of messages over edges
in the graph. ScaFi provides a set of primitives for expressing distributed algo-
rithms, which can all be interpreted as field-based coordination policies, namely,

2 https://scafi.github.io/.

https://scafi.github.io/

Cooperative Many Agent Deep Reinforcement Learning in Scala 57

Fig. 3. ScaRLib main modules

distributed computations of maps from nodes to values (i.e. fields). These primi-
tives are designed to be composable and reusable, allowing programmers to build
complex distributed algorithms from simple building blocks.

3 ScaRLib

ScaRLib3,4 is a research Scala framework designed to support the development
of CMARL systems by JVM-based high-level specification, and with learning
performed under the hood by PyTorch5. This project aims to provide a tool
that allows easy and powerful system specification. To meet this purpose we
have designed many abstractions, that model high-level aspects of the CMARL
domain, without caring about low-level implementation details. Basically, ScaR-
Lib is composed of three main modules (Fig. 3), namely: i) scarlib-core that
implements the main abstractions over the CMARL domain, ii) dsl-core that
provides a high-level language to specify the system, and iii) alchemist-scafi
that provides bindings between ScaRLib and the two tools Alchemist and ScaFi.
It is important to note that ScaRLib is not limited to the Alchemist-Scafi com-
bination, since it is possible to implement other bindings to other tools (e.g., by
replacing Alchemist with some other simulator, for example, FLAME GPU [27]).

3.1 Core Abstraction

The module scarlib-core implements the core functionalities and abstractions
of the framework, such as the definition of the main data structures and the
implementation of the main algorithms. All the abstractions (Fig. 4) are built
around a bunch of concepts. The key element is the System, which is a collection
of agents that interact within a shared environment and that are trained to opti-
mise a reward signal expressed by a reward function. The tool comes with two
types of systems already implemented that are very common in literature [14],
i.e., centralised training and decentralised execution (CTDESystem) and decen-
tralised training and execution (DTDESystem). Furthermore, an implementation
of the DQN algorithm [23] is provided and used to train agents. The end-user

3 Tool available on GitHub at https://github.com/ScaRLib-group/ScaRLib.
4 Demo video at: https://github.com/ScaRLib-group/ScaRLib-demo-video.
5 https://pytorch.org/.

https://github.com/ScaRLib-group/ScaRLib
https://github.com/ScaRLib-group/ScaRLib-demo-video
https://pytorch.org/

58 D. Domini et al.

Fig. 4. ScaRLib core architecture

who wants to run a learning process only has to implement four elements to
define his own system with the desired collective goal, which are: i) the environ-
ment, ii) the agent state space, iii) the action space and, iv) the reward function.
Only by using this module, it is possible to run a simple learning process in a
simulated environment based on our platform.

To better understand the dynamics of the system it is useful to explain some
of the internals. Both systems utilise a training process that consists of multiple
epochs, with each epoch comprising a set of episodes. During each episode, the
agents receive the current state as input and execute an action based on that
state. This collective action causes the environment to move to the next state,
advancing the simulation to the next episode. At the end of an epoch, the envi-
ronment is reset and the agents are trained using the collected experience. Most
specifically, if the chosen system is a CTDESystem (Fig. 5a) the agents are trained
in a centralised way, for that reason, there is a single central dataset, where the
global experience of all the agents is stored, and a single central learner that
is responsible for the training process and for the improvement of the policy
neural network. The system is also responsible for the execution of all the agents
and the notification of the updated policy. In this way, it is possible to easily
extend the system in order to modify the execution flow, e.g., if a concurrent
and distributed execution is needed. The DTDESystem (Fig. 5b) works similarly,
the only difference is that every agent has its own dataset and learner.

Regarding the training process, since the tool aims to support neural-
network-based RL algorithms (like DQN), we chose to use the current de
facto standard framework for building neural networks, which is PyTorch—
alternatives include DL4J6, which could be subject of future investigation.

6 https://deeplearning4j.konduit.ai/.

https://deeplearning4j.konduit.ai/

Cooperative Many Agent Deep Reinforcement Learning in Scala 59

(a) CTDE System

(b) DTDE System

Fig. 5. Examples of developed System dynamics. On the left, there is the centralised
system, where a learner with a global view of the system updates the policy shared
with all agents. On the right, there is a decentralised system, where each agent has a
local policy and a local policy.

One way to integrate this library into a JVM environment could be to rely
on its native core (LibTorch) using JNI – as was done in scala_torch7 project.
In ScaRLib, we chose a convenient approach that allowed us not only to access
PyTorch but also all the libraries connected to it (e.g., torch geometric [15], etc.),
which is to use ScalaPy [18] to interact directly with the Python API of these
libraries. This integration generally involves: i) setting up a Python environment
in which the libraries of interest are instantiated, and ii) creating a Scala API
that isolates what is necessary to access the Python ecosystem. In this case,
we have isolated everything in DQN, which is, therefore, the entry point for
accessing Torch.

7 https://github.com/microsoft/scala_torch.

https://github.com/microsoft/scala_torch

60 D. Domini et al.

Fig. 6. ScaRLib alchemist-scafi architecture. A ScafiProgram should be passed to
the AlchemistEnvironment in order to start the learning process.

3.2 ScaFi-Alchemist Integration:

In addition to the core, we have implemented another module called
alchemist-scafi (Fig. 6) in which there is integration with the two tools:
Alchemist [25] and ScaFi [11]. Such integration enables the possibility to run
the learning process in an aggregate computing context. This is a key part of
this contribution. In fact, although Alchemist has been used for CMARL with
ScaFi in the past [3,5], ad-hoc solutions were always created that were difficult
to reuse, rigid, untested, and had interoperability issues between Alchemist and
the chosen native libraries. With this integration, we want to provide a usable
system once and for all, to bring the Many-agent RL community closer to the
use of this simulator and this paradigm, which has proven flexible in describing
the most diverse environments – from robotic swarms [12] to data centres.

The specification of a learning system does not change, only two new elements
are added: the specification of the Alchemist simulation and the implementation
of the ScaFi-based logic. In particular, the Alchemist simulation will be defined as
shown in Fig. 2, by passing a ScaFi class as a program, which contains aggregate
programming code. In order to advance the training process, a molecule with
the current action to be taken (a subtype of Action class) will be present in the
ScaFi program. This will be injected by a learner that contains the RL policy.
Moreover, the aggregate program will evaluate the environment state (which
must be a subtype of State) using computeState and insert it into the state
molecule, that will be used by the learner to update the policy.

3.3 DSL for Learning Configurations

The latest module developed is an internal DSL that allows for agile and flex-
ible creation of CMARL training systems. We made this choice to bridge the
gap between the MARL system designer’s idea and the actual training system.
Additionally, by using a system like Scala, creating a typed DSL allows for cap-
turing errors during compilation, rather than waiting for the actual system runs
to intercept simple configuration errors.

The exposed DSL is a simple facade to the abstractions shown in the
scarlib-core module. Therefore, if a developer wants to start their simulation
they must first define a reward function that indicates how good is the current
state of a certain agent is compared to the current environmental condition.

Cooperative Many Agent Deep Reinforcement Learning in Scala 61

class MyRewardFunction extends CollectiveRewardFunction:
override def computeReward(

state: State, action: Action, nextState: State
): Double = ...

Consequently, they must decide which actions are supported by the agents living
in the chosen system. Since we are talking about CMARL systems, we suppose
that each agent has the same action space. Thus, it is possible to define a set of
actions as a product type:

sealed trait MyAction extends Action
object MyAction:

case object A extends MyAction
case object B extends MyAction
case object C extends MyAction
def all: Seq[MyAction] = Seq(A, B, C)

Final refinements required include: i) choosing the class of the Alchemist envi-
ronment to instantiate, ii) defining the number of agents living in the chosen
environment, and iii) defining the size of the buffer in which the memory will be
stored, expressed as follows:

val system = learningSystem {
rewardFunction { new MyRewardFunction() }
actions { MyAction.all}
dataset { ReplayBuffer[State, Action](10000) }
agents { 50 } // select the number of agent
environment {

// select a specific environment
"it.unibo.scarlib.experiments.myEnvironment"

}
}

3.4 Tool Usage

The tool is published on Maven Central and it is possible to include it in your
project, for example, through a build system. In the case of Gradle, for instance,
you will need to add the following instructions:

implementation("io.github.davidedomini:scarlib-core:1.5.0")
implementation("io.github.davidedomini:dsl-core:1.5.0")

At this point, it will be possible to create your own training system as shown in
the DSL section. To start the training, you will then need to write:

learningSystem.train(episodes = 1000, episodeLength = 100)

62 D. Domini et al.

Of course, the system can also be used to verify a certain policy that has been
learned during a training process. To do this, first, you will need to load the
neural network extracted during training:

val network = PolicyNN(path, inputSize = ..., hiddenSize = ...)

Then you can execute the test in the following way:

system.runTest(episodeLength = 100, network)

For further details on how to specify simulations and environments, please refer
to the repository README, the presentation video and the developed simulation
(following section).

4 Experiments

4.1 Scenario Description

To test ScarLib’s functionality, we develop an experiment8 involving a relatively
large number of agents and non-trivial coordination tasks. We aim to create a
flock of drones that moves to avoid collisions with each others, by learning a
policy by which each agents decide how to move based on neighbors relative
position. This is a well-known problem, and various models and algorithms exist
which we draw upon [26,36]. In this case, we assumed that agents position them-
selves in an unlimited 2D environment with a fixed neighborhood (the closest
five, in our experiments, though this is a simulation parameter) and have the
ability to perform movement steps in the 8 directions of a square grid (hori-
zontally, vertically, or diagonally). The environment state, as perceived by the
single agent, is the relative distance to the closest neighbors. Particularly, it was
expressed through ScaFi as:

val state = foldhoodPlus(Seq.empty)(_ ++ _)(Set(nbrVector))

where nbrVector is the vector representing the relative position of the neighbor.
foldhoodPlus is a ScaFi function that allows to fold over the neighborhood and
++ is the concatenation operator for sequences.

The crucial point for this task is the definition of the reward function. In
this simulation, we based it on collision and cohesion factors. We aim to learn a
policy by which agents, initially spread in a very sparse way in the environment,
move toward each other until reaching approximate δ distance without colliding,
ultimately forming one or many close groups.

The collision factor comes into play when the distance is less than δ, and
exponentially weighs the distance d relative to its closest neighbour:

collision =

{
0 if d > δ

exp
(−d

δ

)
otherwise

(1)

8 Repository available at https://github.com/ScaRLib-group/ScaRLib-flock-demo.

https://github.com/ScaRLib-group/ScaRLib-flock-demo

Cooperative Many Agent Deep Reinforcement Learning in Scala 63

Fig. 7. Cohesion-Collision reward function: the red vertical line represents the target
distance d. The portion of the graph to the right of the red line represents the influence
of the cohesion term, while the left one represents the influence of the collision term.
(Color figure online)

In this way, when the negative factor is taken into account: the system will tend
to move nodes away from each other.

However, if only this factor were used, the system would be disorganised. This
is where the cohesion factor comes in. Given the neighbor with the maximum
distance D, it linearly adjusts the distance relative to the node being evaluated
by function:

cohesion =

{
0 if d < δ

−(D − δ) otherwise
(2)

The overall reward function is defined as the sum of these two factors (cohesion+
collision) as shown in Fig. 7.

4.2 Results

To verify the functionality of the described simulation, we divided the evaluation
into two parts. In the first part, we trained the system for a total of 1000 epochs,
each consisting of 100 episodes (or steps). For each epoch, we randomly place 50
agents in a grid large 50× 50 meters. We set the target distance δ at 2m.

Given the flexibility of ScaRLib, we tested the training with both CDTE and
DTDE processes to ensure that the system could produce policies capable of
solving the described task in both cases. With the homogeneous policies found
(i.e., the one extracted from the CTDE process), we verified that the system’s
behavior was consistent with what was learned by varying the initial seed in
16 simulations With the CDTE policy, since we considered the system homoge-
neous, we also verified the behavior as the number of nodes varied, expecting
similar performance as the nodes increased.

The graphs shown in Fig. 8 demonstrate the multi-objective nature of the
problem. In fact, cohesion and collision are two contrasting signals, and the
system had to find a balance between these two values. The graphs show that
DQN can generally optimise one signal at a time, with cohesion tending towards
zero and collision increasing. Nonetheless, after 500 epochs in CTDE simulation,

64 D. Domini et al.

Fig. 8. Cohesion and collision experiment results. The y-axis represents the reward
value. The x-axis represents the total number of episodes. The first three graphs show
the results of the CDTE learning process, while the last three show the results of the
DTDE learning process.

we see that the system had already found a balance between these two factors.
In the case of DTDE learning, we observe that convergence is achieved in fewer
steps (5̃0). This is because there is a greater number of policies and therefore
greater overall complexity compared to a single homogeneous policy.

During the testing phase (Fig. 9 shows a series of snapshots of the learned
policy), we observed that the system is capable of maintaining a distance of
approximately δ, both in the CDTE and DTDE cases. Most specifically, we
note that the homogeneous policy is generally a winning choice for homogeneous
CMARL tasks. Increasing the number of agents (from 50 to 200), we can observe
that collective performances are similar to those with few agents (Fig. 10).

5 Related Work

MARL has gained significant interest in the past decade, leading to the develop-
ment of several frameworks for use in both research and industry communities.
Here, we highlight current state-of-the-art solutions for MARL problems and
compare them to the tools presented in this work.

Many Agent Simulators: Unlike supervised learning, where a large dataset
is required to improve neural network performance, in RL, algorithms require
a simulator to gain experience. One such comprehensive solution for MARL
is PettingZoo [31], which provides both competitive and cooperative settings
for simulations with multiple agents. Another option for many-agent scenarios
is NeuralMMO [30], a GPU-optimised simulator for MMO-like games that is
designed to handle large-scale simulations of thousands of agents. Vectorized

Cooperative Many Agent Deep Reinforcement Learning in Scala 65

(a) (b) (c)

(d) (e) (f)

Fig. 9. Snapshots of the learned policy, the time flow is from left to right. In the first
row, there are 50 agents, whereas in the second row, there are 200 agents. In the last
step of the simulation, the agents converged to a distance of approximately δ.

Multi-agent Simulator [8] is another promising solution, as it is optimised for
collective tasks through GPU computation, and it can be extended with addi-
tional environments. While ScarLib is not directly linked to any simulator, its
main abstraction can be potentially linked to both JVM-based simulators and
gym-based Python environments. Our choice of Alchemist was mainly due to its
ability to express CMARL settings easily, but potentially it can be used with
any of the above-described solutions.

Multi-Agent Deep RL Libraries: Since the importance of multi-agent set-
tings several libraries have been developed in recent years. Ray [24] is one of
the most comprehensive frameworks, originally designed for single-agent RL but
now integrated with basic concepts for MARL solutions thanks to MALib. It
offers various MARL algorithms, supports different gym-like environments, and
is highly customizable through configuration files. PyMARL [29] is one of the
first solutions in Python for MARL, though it is limited to specific algorithms
(like VDN and QMIX), and it is not generalizable. ScaRLib is more similar to
the first framework, even though it is primarily designed for cooperative applica-
tions. However, since it was developed specifically for CMARL, it includes some
abstractions and configurations that are not present in Ray, such as the concept
of a collective reward function and the configuration for CTDE. This reduces
the time required to use ScarLib compared to Ray. Additionally, ScarLib has a

66 D. Domini et al.

Fig. 10. The performance of the learned policy. The y-axis represents the distance
between the agents. The x-axis represents the time. The green line is equal to δ. In the
charts, as the number of agents varies, the performance of the learned policy is similar.
Moreover, the minimum (blue line) distance between the agents is always greater than
δ. The average distance (orange line) stays close to 2 * δ (after convergence). (Color
figure online)

simple DSL that is easier to use than Ray’s configuration system and is aided
by the type system.

Finally, some innovative approaches aim to scale solutions to large popula-
tions of cooperative agents, such as mean-field RL. However, only a few imple-
mentations currently exist, and they are not considered to be general-purpose.
ScarLib, on the other hand, offers a practical, simple implementation that can
be leveraged in CMARL settings.

Overall, CMARL is a high-level framework that reduces the effort required for
developers and practitioners to define and implement CMARL problems when
compared to current state-of-the-art solutions.

Many-Agent Proof of Concept: The above RL library solutions are mainly
created for multi-agent systems, so they generally do not scale well with large
populations of agents. Novel approaches aim to scale the solution to potentially
infinite populations of cooperative agents. In particular, mean-field RL [34] is
probably one of the most interesting solutions in this context, as it abstracts
over the entire agent population by considering only the average response of

Cooperative Many Agent Deep Reinforcement Learning in Scala 67

the neighborhood. Currently, however, only a few implementations exist9 and
they are not considered to be general-purpose. ScaRLib instead is practical and
already provides a simple implementation that can be leveraged in CMARL
settings.

6 Conclusion and Future Work

In this paper, we presented ScaRLib: a collaborative many-agent deep rein-
forcement learning framework that integrates the functionalities of ScaFi and
Alchemist. The framework enables the definition of simulations of large-scale
distributed scenarios and the creation of complex scenarios with ease through
its exposed DSL. With ScaRlib, developers can effectively and efficiently sim-
ulate and experiment with different reinforcement learning algorithms, thereby
providing a valuable tool for the advancement of coordination and multi-agent
systems research. Looking forward, ScaRLib presents a promising solution for
expressing collaborative multi-agent reinforcement learning applications – like
hybrid aggregate computing solutions [1,3–5]. However, further development and
integration is necessary for it to be more easily adopted by non-expert users. One
area of improvement would be to integrate additional learning algorithms such
as MAPPO [35] and mean field reinforcement learning [34], as DQN is only a
baseline approach. Another aspect to be considered is the potential bottleneck
that Alchemist may create during the learning phase since it is a JVM-based
systems. To address this, we propose integrating a new environment, FLAME
GPU [27], which has the ability to run entirely on GPU, thus providing faster
learning and reducing the computational load. This integration would further
enhance the capabilities of ScaRLib and make it a more practical and efficient
tool for CMARL research.

Data Availability Statement

The artifact is available in the Zenodo repository:

doi:10.5281/zenodo.7831045

References

1. Aguzzi, G.: Research directions for aggregate computing with machine learning. In:
2021 IEEE International Conference on Autonomic Computing and Self-Organizing
Systems Companion (ACSOS-C). IEEE (2021). https://doi.org/10.1109/acsos-
c52956.2021.00078

2. Aguzzi, G., Casadei, R., Pianini, D., Viroli, M.: Dynamic decentralization domains
for the internet of things. IEEE Internet Comput. 26(6), 16–23 (2022). https://
doi.org/10.1109/mic.2022.3216753

9 https://github.com/mlii/mfrl.

https://doi.org/10.5281/zenodo.7831045
https://doi.org/10.1109/acsos-c52956.2021.00078
https://doi.org/10.1109/acsos-c52956.2021.00078
https://doi.org/10.1109/mic.2022.3216753
https://doi.org/10.1109/mic.2022.3216753
https://github.com/mlii/mfrl

68 D. Domini et al.

3. Aguzzi, G., Casadei, R., Viroli, M.: Addressing collective computations effi-
ciency: Towards a platform-level reinforcement learning approach. In: Casadei, R.,
et al. (eds.) IEEE International Conference on Autonomic Computing and Self-
Organizing Systems, ACSOS 2022, Virtual, CA, USA, 19–23 September 2022, pp.
11–20. IEEE (2022). https://doi.org/10.1109/ACSOS55765.2022.00019

4. Aguzzi, G., Casadei, R., Viroli, M.: Machine learning for aggregate comput-
ing: a research roadmap. In: 2022 IEEE 42nd International Conference on Dis-
tributed Computing Systems Workshops (ICDCSW). IEEE (2022). https://doi.
org/10.1109/icdcsw56584.2022.00032

5. Aguzzi, G., Casadei, R., Viroli, M.: Towards reinforcement learning-based aggre-
gate computing. In: ter Beek, M.H., Sirjani, M. (eds) Coordination Models and
Languages. COORDINATION 2022. IFIP Advances in Information and Commu-
nication Technology, vol. 13271, pp. 72–91. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-08143-9_5

6. Baker, B., et al.: Emergent tool use from multi-agent autocurricula (2019). https://
doi.org/10.48550/ARXIV.1909.07528. https://arxiv.org/abs/1909.07528

7. Beal, J., Pianini, D., Viroli, M.: Aggregate programming for the internet of things.
Computer 48(9), 22–30 (2015). https://doi.org/10.1109/mc.2015.261

8. Bettini, M., Kortvelesy, R., Blumenkamp, J., Prorok, A.: VMAS: a vectorized
multi-agent simulator for collective robot learning. The 16th International Sympo-
sium on Distributed Autonomous Robotic Systems (2022)

9. Busoniu, L., Babuska, R., Schutter, B.D.: A comprehensive survey of multiagent
reinforcement learning. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 38(2),
156–172 (2008). https://doi.org/10.1109/tsmcc.2007.913919

10. Casadei, R.: Macroprogramming: Concepts, state of the art, and opportunities of
macroscopic behaviour modelling. ACM Computing Surveys (2023). https://doi.
org/10.1145/3579353

11. Casadei, R., Viroli, M., Aguzzi, G., Pianini, D.: ScaFi: a scala DSL and toolkit for
aggregate programming. SoftwareX 20, 101248 (2022). https://doi.org/10.1016/j.
softx.2022.101248

12. Casadei, R., Viroli, M., Audrito, G., Pianini, D., Damiani, F.: Engineering collec-
tive intelligence at the edge with aggregate processes. Eng. Appl. Artif. Intell. 97,
104081 (2021). https://doi.org/10.1016/j.engappai.2020.104081

13. Chu, T., Wang, J., Codecà, L., Li, Z.: Multi-agent deep reinforcement learning
for large-scale traffic signal control (2019). https://doi.org/10.48550/ARXIV.1903.
04527. https://arxiv.org/abs/1903.04527

14. Du, W., Ding, S.: A survey on multi-agent deep reinforcement learning: from the
perspective of challenges and applications. Artif. Intell. Rev. 54(5), 3215–3238
(2020). https://doi.org/10.1007/s10462-020-09938-y

15. Fey, M., Lenssen, J.E.: Fast graph representation learning with pyTorch geometric
(2019)

16. He, K., Doshi, P., Banerjee, B.: Many agent reinforcement learning under partial
observability (2021). https://doi.org/10.48550/ARXIV.2106.09825. https://arxiv.
org/abs/2106.09825

17. Hüttenrauch, M., Adrian, S., Neumann, G., et al.: Deep reinforcement learning for
swarm systems. J. Mach. Learn. Res. 20(54), 1–31 (2019)

18. Laddad, S., Sen, K.: ScalaPy: seamless python interoperability for cross-platform
scala programs. In: Proceedings of the 11th ACM SIGPLAN International Sym-
posium on Scala. ACM (2020). https://doi.org/10.1145/3426426.3428485

https://doi.org/10.1109/ACSOS55765.2022.00019
https://doi.org/10.1109/icdcsw56584.2022.00032
https://doi.org/10.1109/icdcsw56584.2022.00032
https://doi.org/10.1007/978-3-031-08143-9_5
https://doi.org/10.1007/978-3-031-08143-9_5
https://doi.org/10.48550/ARXIV.1909.07528
https://doi.org/10.48550/ARXIV.1909.07528
https://arxiv.org/abs/1909.07528
https://doi.org/10.1109/mc.2015.261
https://doi.org/10.1109/tsmcc.2007.913919
https://doi.org/10.1145/3579353
https://doi.org/10.1145/3579353
https://doi.org/10.1016/j.softx.2022.101248
https://doi.org/10.1016/j.softx.2022.101248
https://doi.org/10.1016/j.engappai.2020.104081
https://doi.org/10.48550/ARXIV.1903.04527
https://doi.org/10.48550/ARXIV.1903.04527
https://arxiv.org/abs/1903.04527
https://doi.org/10.1007/s10462-020-09938-y
https://doi.org/10.48550/ARXIV.2106.09825
https://arxiv.org/abs/2106.09825
https://arxiv.org/abs/2106.09825
https://doi.org/10.1145/3426426.3428485

Cooperative Many Agent Deep Reinforcement Learning in Scala 69

19. Lei, L., Tan, Y., Zheng, K., Liu, S., Zhang, K., Shen, X.: Deep reinforcement
learning for autonomous internet of things: Model, applications and challenges.
IEEE Commun. Surv. Tutorials 22(3), 1722–1760 (2020). https://doi.org/10.1109/
comst.2020.2988367

20. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learn-
ing. In: Cohen, W.W., Hirsh, H. (eds.) Machine Learning Proceedings 1994, pp.
157–163. Morgan Kaufmann, San Francisco (CA) (1994). https://doi.org/10.1016/
B978-1-55860-335-6.50027-1. https://www.sciencedirect.com/science/article/pii/
B9781558603356500271

21. Long, P., Fanl, T., Liao, X., Liu, W., Zhang, H., Pan, J.: Towards optimally decen-
tralized multi-robot collision avoidance via deep reinforcement learning. In: 2018
IEEE International Conference on Robotics and Automation (ICRA). IEEE (2018).
https://doi.org/10.1109/icra.2018.8461113

22. Mnih, V., et al.: Playing Atari with deep reinforcement learning (2013). https://
doi.org/10.48550/ARXIV.1312.5602. https://arxiv.org/abs/1312.5602

23. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015). https://doi.org/10.1038/nature14236

24. Moritz, P., et al.: Ray: a distributed framework for emerging AI applications (2017).
https://doi.org/10.48550/ARXIV.1712.05889. https://arxiv.org/abs/1712.05889

25. Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of computa-
tional systems with ALCHEMIST. J. Simulation 7(3), 202–215 (2013). https://
doi.org/10.1057/jos.2012.27

26. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In:
Stone, M.C. (ed.) Proceedings of the 14th Annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH 1987, Anaheim, California, USA, 27–
31 July 1987, pp. 25–34. ACM (1987). https://doi.org/10.1145/37401.37406

27. Richmond, P., Coakley, S., Romano, D.M.: A high performance agent based mod-
elling framework on graphics card hardware with Cuda. In: Proceedings of The 8th
International Conference on Autonomous Agents and Multiagent Systems - Vol-
ume 2, pp. 1125–1126. AAMAS 2009, International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC (2009)

28. Samvelyan, M., et al.: The starcraft multi-agent challenge (2019). https://doi.org/
10.48550/ARXIV.1902.04043. https://arxiv.org/abs/1902.04043

29. Samvelyan, M., et al.: The StarCraft Multi-Agent Challenge. CoRR
abs/1902.04043 (2019)

30. Suarez, J., Du, Y., Isola, P., Mordatch, I.: Neural MMO: a massively multiagent
game environment for training and evaluating intelligent agents (2019). https://
doi.org/10.48550/ARXIV.1903.00784. https://arxiv.org/abs/1903.00784

31. Terry, J., et al.: PettingZoo: Gym for multi-agent reinforcement learning. In:
Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.)
Advances in Neural Information Processing Systems. vol. 34, pp. 15032–15043.
Curran Associates, Inc. (2021). https://proceedings.neurips.cc/paper/2021/file/
7ed2d3454c5eea71148b11d0c25104ff-Paper.pdf

32. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3-4), 279–292 (1992).
https://doi.org/10.1007/bf00992698

33. Yang, Y.: Many-agent reinforcement learning, Ph. D. thesis, UCL (University Col-
lege London) (2021)

34. Yang, Y., Luo, R., Li, M., Zhou, M., Zhang, W., Wang, J.: Mean field
multi-agent reinforcement learning (2018). https://doi.org/10.48550/ARXIV.1802.
05438. https://arxiv.org/abs/1802.05438

https://doi.org/10.1109/comst.2020.2988367
https://doi.org/10.1109/comst.2020.2988367
https://doi.org/10.1016/B978-1-55860-335-6.50027-1
https://doi.org/10.1016/B978-1-55860-335-6.50027-1
https://www.sciencedirect.com/science/article/pii/B9781558603356500271
https://www.sciencedirect.com/science/article/pii/B9781558603356500271
https://doi.org/10.1109/icra.2018.8461113
https://doi.org/10.48550/ARXIV.1312.5602
https://doi.org/10.48550/ARXIV.1312.5602
https://arxiv.org/abs/1312.5602
https://doi.org/10.1038/nature14236
https://doi.org/10.48550/ARXIV.1712.05889
https://arxiv.org/abs/1712.05889
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1145/37401.37406
https://doi.org/10.48550/ARXIV.1902.04043
https://doi.org/10.48550/ARXIV.1902.04043
https://arxiv.org/abs/1902.04043
https://doi.org/10.48550/ARXIV.1903.00784
https://doi.org/10.48550/ARXIV.1903.00784
https://arxiv.org/abs/1903.00784
https://proceedings.neurips.cc/paper/2021/file/7ed2d3454c5eea71148b11d0c25104ff-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/7ed2d3454c5eea71148b11d0c25104ff-Paper.pdf
https://doi.org/10.1007/bf00992698
https://doi.org/10.48550/ARXIV.1802.05438
https://doi.org/10.48550/ARXIV.1802.05438
https://arxiv.org/abs/1802.05438

70 D. Domini et al.

35. Yu, C., et al.: The surprising effectiveness of PPO in cooperative, multi-agent games
(2021). https://doi.org/10.48550/ARXIV.2103.01955. https://arxiv.org/abs/2103.
01955

36. Šošić, A., KhudaBukhsh, W.R., Zoubir, A.M., Koeppl, H.: Inverse reinforcement
learning in swarm systems (2016). https://doi.org/10.48550/ARXIV.1602.05450.
https://arxiv.org/abs/1602.05450

https://doi.org/10.48550/ARXIV.2103.01955
https://arxiv.org/abs/2103.01955
https://arxiv.org/abs/2103.01955
https://doi.org/10.48550/ARXIV.1602.05450
https://arxiv.org/abs/1602.05450

Programming Distributed Collective
Processes for Dynamic Ensembles

and Collective Tasks

Giorgio Audrito1 , Roberto Casadei2(B) , Ferruccio Damiani1 ,
Gianluca Torta1 , and Mirko Viroli2

1 Università di Torino, Torino, Italy
{giorgio.audrito,ferruccio.damiani,gianluca.torta}@unito.it

2 Università di Bologna, Cesena, Italy
{roby.casadei,mirko.viroli}@unibo.it

Abstract. Recent trends like the Internet of Things (IoT) suggest a
vision of dense and multi-scale deployments of computing devices in
nearly all kinds of environments. A prominent engineering challenge
revolves around programming the collective adaptive behaviour of such
computational ecosystems. This requires abstractions able to capture
concepts like ensembles (dynamic groups of cooperating devices) and col-
lective tasks (joint activities carried out by ensembles). In this work, we
consider collections of devices interacting with neighbours and that exe-
cute in nearly-synchronised sense–compute–interact rounds, where the
computation is given by a single control program. To support program-
ming whole computational collectives, we propose the abstraction of a
distributed collective process (DCP), which can be used to define at
once the ensemble formation logic and its collective task. We imple-
ment the abstraction in the eXchange Calculus (XC), a core language
based on neighbouring values (maps from neighbours to values) where
state management and interaction is handled through a single primitive,
exchange. Then, we discuss the features of the abstraction, its suitability
for different kinds of distributed computing applications, and provide a
proof-of-concept implementation of a wave-like process propagation.

Keywords: collective computing · collective processes · ensembles ·
formation control

1 Introduction

Programming the collective behaviour of large collections of computing and
interacting devices is a major research challenge, promoted by recent trends

This publication is part of the project NODES which has received funding from the
MUR - M4C2 1.5 of PNRR with grant agreement no. ECS00000036. The work was also
partially supported by the Italian PRIN project “CommonWears” (2020HCWWLP) and
the EU/MUR FSE PON-R&I 2014-2020.
c© IFIP International Federation for Information Processing 2023
S.-S. Jongmans and A. Lopes (Eds.): COORDINATION 2023, LNCS 13908, pp. 71–89, 2023.
https://doi.org/10.1007/978-3-031-35361-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35361-1_4&domain=pdf
http://orcid.org/0000-0002-2319-0375
http://orcid.org/0000-0001-9149-949X
http://orcid.org/0000-0001-8109-1706
http://orcid.org/0000-0002-4276-7213
http://orcid.org/0000-0003-2702-5702
https://doi.org/10.1007/978-3-031-35361-1_4

72 G. Audrito et al.

like the Internet of Things [6] and swarm robotics [15]. This challenge is
investigated and addressed by several related research threads including coordi-
nation [24,42], multi-agent systems [14], collective adaptive systems [23], macro-
programming [18,40], spatial computing [13], field-based coordination [36], aggre-
gate computing [49], and attribute-based communication [1].

This activity can be supported by suitable programming abstractions sup-
porting declarative specifications of collective behaviours. Examples of abstrac-
tions include ensembles [41], computational fields [49], collective communication
interfaces [1,50], and collective orchestration tasks [46]. In this work, we cover
the abstraction of a distributed collective process (DCP), inspired by aggregate
processes [20,21,48], which consists of a model for concurrent collective tasks
running and spreading on dynamic domains of devices. We provide an abstract
model of the abstraction on event structures, and discuss its implementation
on the eXchange Calculus (XC) [9], a language, inspired by field calculi [49],
for programming homogeneous systems of neighbour-interacting devices. Then,
we discuss how the DCP abstraction can support multiple patterns of collective
behaviour and self-organisation.

The paper is organised as follows. Section 2 provides context, related work,
and motivation. Section 3 reviews the basics of the XC language. Section 4 pro-
vides the contribution. Section 5 discusses features and applications of the app-
roach, and provides a proof-of-concept implementation. Section 6 summarises
results and points out directions for future work.

2 Context, Related Work, and Motivation

This work lies in the context of models and languages for programming collective
behaviour [15,17,23]. Indeed, achieving the desired collective behaviour is an
engineering goal for different domains and applications:

– Swarm robotics. Multiple robots may be tasked to move and act as a collective
to explore an unknown environment [37], to search and rescue victims for
humanitarian aid after disasters [5], to map a crop field for the presence of
weeds [3], to transport objects exceeding [26], etc.

– The IoT. The things should coordinate to promote application-level goals
(e.g., by gathering and processing relevant data) while making efficient use of
resources. For instance, the nodes could support the aggregation of machine
learning models [47], or collaborate to measure the collective status of the
network to support various activities from environment sensing [35] to remote
attestation of system integrity [4].

– Hybrid Collective Intelligence (CI). Socio-technical systems involving humans
and computing devices could be programmed as “social machines” [30] exe-
cuting coordinated tasks [46], or promoting the emergence of collective knowl-
edge [27].

– Computing ecosystems. Modern infrastructures spanning the edge–fog–cloud
layers can be considered as collective systems. The computing nodes should

Programming Distributed Collective Processes 73

exchange and process information to create suitable topologies and struc-
tures [33,45] and coordinate task allocation [38], resiliently.

This problem is at the heart of several related research threads. The field of
coordination [24,42] addresses it by governing interaction; collective adaptive
systems engineering [23] investigates means for collective adaptation in large
populations of agents; spatial computing [13] leverages spatial abstractions to
guide behaviour and perform computation; macroprogramming [18,40] takes a
programming language-perspective to expressing macroscopic behaviour; multi-
agent systems programming [14] considers autonomy, cognitive, and organisa-
tional concerns; and so on.

In this work, we consider a language-based software engineering perspec-
tive [29]. In other words, we seek for abstractions supporting expressing collective
behaviour. Examples of abstractions proposed in previous research include:

– ensembles [41]: dynamic composites of devices, e.g., formed by attribute-based
formation rules;

– computational fields [36,49]: maps from devices to values, used to capture
collective inputs, and collective outputs;

– aggregate computations [49]: functions mapping input computational fields to
output computational fields, implicitly handling coordination;

– aggregate processes [10,11,20,21]: dynamic aggregate computations [49] on
evolving domains of devices;

– collective communication interfaces [50]: abstractions able to flexibly express
the targets of communications actions, e.g., via attributes [1,41];

– collective-based tasks [46]: abstractions keeping track of the lifecycle and state
of tasks assigned to collectives.

In particular, we consider collective systems, namely largely homogeneous col-
lections of devices or agents. Each device can be thought of as a resource that
provides capabilities and provides access to a local context that depends on its
situation on the environment and possibly its state. For instance, in a smart city,
fixed smart lights may be located nearby streets, smart cameras may support mon-
itoring of facilities, smart vehicles may move around to gather city-wide infras-
tructural data, etc. Since we would like to avoid bottlenecks and single-points-
of-failure, we avoid centralisations and opt for a fully decentralised approach: a
device can generally interact only within its local context, which may include a
portion of the environment and other nearby devices. If our goal is to exploit the
distributed, pervasive computer made of an entire collection of situated devices,
an idea could be to run collaborative tasks involving subsets of devices—to exploit
their resources, capabilities, and contexts. Since a process may not know before-
hand the resources/capabilities it needs and the relevant contexts, it may embed
the logic to look for them, i.e., to spread over the collective system until its proper
set of supporting devices have been identified. Moreover, the requirements of the
process may change over time, dynamically self-adapting to various environmen-
tal conditions and changing goals. Within a process that concurrently spans a
collection of devices, local computations may be scheduled and information may

74 G. Audrito et al.

flow around in order to support collective activities [15,53] such as collective per-
ception [28], collective decision-making [16], collective movement [39], etc. So, if
the collective that sustains the process decides that more resources are needed,
the process may spread to a larger set of devices; conversely, if the collective task
has been completed, the devices may quit the process, eventually making it van-
ish. This is, informally, our idea of a distributed collective processes (DCP), i.e.,
a process (i.e., a running program or task) which is collective (i.e., a joint activ-
ity carried out by largely homogeneous entities) and distributed (i.e., concurrently
active on distinct networked devices), whereby the collective task and the under-
lying ensemble can mutually affect each other, and ensemble formation is driven
by decentralised device-to-device interaction.

In the following, we explain a formal framework (Sect. 3) particularly suitable
to study and implement this DCP abstraction; then, we formalise a language
construct (Sect. 4) to effectively program such DCP; and finally discuss features
and applications enabled by our abstraction implementation (Sect. 5).

3 Background: The eXchange Calculus

We consider the eXchange Calculus (XC) [9] as the formal framework for mod-
elling, reasoning about, and implementing DCPs. In this section, we first present
the system and execution model (Sect. 3.1), providing an operational view of the
kinds of systems we target, and then describe the basic constructs of XC that
we leverage in this work (Sect. 3.2).

3.1 System Model

The target system that we would like to program can be modelled as a collection
of nodes, able to interact with the environment through sensors and actuators,
and able to communicate with neighbours by exchanging messages. We assume
that each node runs in asynchronous sense–compute–act rounds, where

1. sense: the node queries sensors for getting up-to-date environmental values,
and gathers recent messages from neighbours (which may expire after some
time)—all this information is what we call as the node’s context ;

2. compute: the node evaluates the common control program, mapping the con-
text (i.e., inputs from sensors and neighbours) to an output describing the
actions to perform (i.e., actuations and communications);

3. act : the node executes the actions as dictated by the program, possibly result-
ing into environment change or message delivery to neighbours.

This kind of loop is used to ensure that the context is continuously assessed (at
discrete times), and the reactions are also computed and performed continuously.
This model has shown to be particularly useful to specify self-organising and col-
lective adaptive behaviours, especially for long-running coordination tasks [49].

The semantic of a system execution can be expressed as an event structure
(see Fig. 1), where events ε denote whole sense–compute–act rounds, and arrows

Programming Distributed Collective Processes 75

ε11 ε12 ε13

ε21 ε22 ε23 ε24 ε25

ε31 ε32 ε33 ε34

ε41 ε42 ε43 ε44 ε45 ε46

ε51 ε52 ε53

Devices

Time

Fig. 1. Example of an event structure modelling a distributed system execution. Nodes
labelled by εδ

k denote the k-th round of device δ. The yellow background highlights a
reference event, from which its past (green) and future (blue) are identified through
the causal relationship implied by the arrows denoting neighbour events. (Color figure
online)

between events denote that certain source events have provided inputs (i.e.,
messages) to target events. In particular, if event ε′ is connected with an arrow
to ε, we say that ε′ is a neighbour of ε, denoted ε′ � ε. We denote with N (ε) the
set of all neighbours of ε, and with d(ε) the device where event ε happens, i.e.,
where it is executed.

Programming the systems described in this section thus means defining the
control rules that specify how the context at each event is mapped to the mes-
sages to be sent to neighbour events.

3.2 XC Key Data Type: Neighbouring Values

In XC we distinguish two types of values. The Local values � include classic
atomic and structured types A such as int, float, string or list. The neighbouring
values (nvalues) are instead maps w from device identifiers δi to corresponding
local values �i, with an additional local value � that acts as a default :

w = �[δ1 �→ �1, ... , δn �→ �n]

A nvalue specifies a (set of) values received from or sent to neighbours: received
values are gathered into nvalues, then can be locally processed, and the final
resulting nvalue can be interpreted as messages to be sent back to neighbours.
The devices with an associated entry in the nvalue are thus typically a (small)
subset of all devices, namely those that are close-enough to the current device,
and which are of course working correctly.

76 G. Audrito et al.

The default is used when a value is not available for some neighbour δ′,
e.g., because δ′ has just been switched on and has not yet produced a value,
or because it has just moved close enough to the current device δ to become
one of its neighbours. The notation above should therefore read as “the nvalue w
is � everywhere (i.e., for all neighbours) except for devices δ1, ... , δn which have
values �1, ... , �n.

To exemplify nvalues, in Fig. 1, upon waking up for computation ε32, device δ3
may process a nvalue w = 0[δ4 �→1, δ3 �→2, δ2 �→3], corresponding to the messages
carrying scalar values 1, 2, and 3 received when asleep from δ4, δ3 (i.e., itself at
the previous round), and δ2. The entries for all other (neighbour) devices default
to 0. After the computation, δ2 may send out the messages represented by the
nvalue w′ = 0[δ4 �→ 5, δ3 �→ 6]; so that 5 is sent to δ4, 6 is sent to δ3, and 0 is
sent to every other device, such as a newly-connected device. For convenience,
we may use the notation w(δ′) for the local value (specific or default) associated
with δ′ by w.

Note that a local value � can be naturally converted to a nvalue �[] where
it is the default value for every device. Except for clarity, thus local values and
nvalues can be treated uniformly. Functions on local values are implicitly lifted
to nvalues, by applying them on the maps’ content pointwise. For example, if w1
assigns value 2 to δ3 and w2 assigns default value 1 to δ3, then w3 = w1 · w2 shall
assign value 2 · 1 = 2 to δ3.

A fundamental operation on nvalues is provided by the built-in function
nfold(f : (A,B) → A, w : B, � : A) : A. As suggested by the name, the function
folds over a nvalue w, i.e., starting from a base local value � it repeatedly applies
function f to neighbours’ values in w, excluding the value for the current device.
For instance, if δ2 with set of neighbours {δ1, δ3, δ4} performs a nfold operation
nfold(∗, w, 1), the output will be 1 ·w(δ1) ·w(δ3) ·w(δ4). Note that, as nvalues are
unordered maps, it is sensible to assume that f is associative and commutative.

Two built-in operations on nvalues act on the value associated with the cur-
rent (self) device:

– self(w : A) : A returns the local value w(δ) in w for the self device δ
– updateSelf(w : A, � : A) : A returns a nvalue where the value for the self

device δ is set to �.

There are several other fundamental built-in operators in XC, such as
exchange and mux, which are however not necessary for understanding the rest
of this paper. Please refer to [9] for their detailed, formal description.

4 Distributed Collective Processes in XC

In this section, we present an implementation of DCPs in XC. First, we char-
acterise the implementation in terms of an abstract notation and formulas on
event structures (Sect. 4.1). Then, we provide a formalisation of DCPs in terms
of the big-step operational semantics for a new XC construct (Sect. 4.2), that
can be used to actually program DCPs.

Programming Distributed Collective Processes 77

Auxiliary definitions:

θ ::= 〈θ〉 ∣
∣ w〈θ〉 ∣

∣ � �→ θ value-tree

π�(� �→ θ) = θi s.t. �i = � if it exists else •
Auxiliary evaluation rules: δ;σ;Θ � f(w) ⇓∗ w; θ

[A-SPAWN]
k1, ... , kn = wk(δ) ∪ {k for δ′ ∈ dom (Θ), k �→ b〈θ〉 ∈ Θ(δ′) with b(δ) = True}
δ;σ;π1(πki(Θ)) � wp(ki) ⇓ wi; θi where wi = pair(vi, bi) for i ∈ 1, ... , n

δ;σ;Θ � spawn(wp, wk) ⇓∗ k �→ w; k �→ b〈θ〉

Fig. 2. Device (big-step) operational semantics of FXC

4.1 Modelling on Event Structures

In this discussion, we refer to an event structure as the one depicted in Fig. 1. A
distributed collective process (DCP) P is a computation with given programmed
behaviour. A single DCP can be run in multiple process instances Pi, each asso-
ciated to a unique process identifier (PID) i, which we assume also embeds
construction parameters for the process instance. New instances of an aggregate
process P are spawned through a generation field GP , producing a set of iden-
tifiers G(ε) = {i ...} in each event ε, of process instances that need to be created
in that event ε (which we call initiator for Pi). For each process instance Pi,
we use the Boolean predicate πPi

(ε) to denote whether such instance is being
executed at event ε (either being initiated by ε, or through propagation from pre-
vious events). Each process instance Pi, if active in an event ε (i.e., πPi

(ε) = �),
locally computes both an output OPi

(ε) (returned to the process caller) and a
status sPi

(ε), which is an nvalue mapping the device d of each neighbour event
ε ∈ N to a bool value.

A process instance Pi which is active in an event ε potentially propagates the
process to any event ε′ of which ε is a neighbour (ε � ε′) depending on the value
of sPi

(ε). In formulas:

πPi
(ε) =

⎧
⎪⎨

⎪⎩

� if i ∈ GP (ε)
� if ∃ε′ � ε. πPi

(ε′) ∧ sPi
(ε′)(d(ε)) = �

⊥ otherwise.

The XC defines a built-in construct spawnXC (P,GP) that runs indepen-
dent instances of a field computation P , where new instances are locally gen-
erated according to generation field GP as explained above. The output of a
spawnXC (P,GP) expression in an event ε is the set of pairs {(i,OPi

(ε)), ...} for
which πPi

(ε) = �.

4.2 Formalisation

The spawnXC construct, defined mathematically in the previous Sect. 4.1,
embeds naturally in XC as a built-in function, derived by converting the clas-
sical spawn construct [20] into XC. As a built-in in XC, spawn assumes the

78 G. Audrito et al.

same type as the classical spawn construct in field calculus: ∀αk, αv.((αk) →
pair[αv, bool], set[αk]) → map[αk, αv]. However, in XC every type allows nval-
ues, which translates into practical differences.

Figure 2 presents the semantics of the spawn built-in, relative to the XC
semantics presented in [9], which we do not include for brevity. As in [32], the
overbar notation indicates a (possibly empty) sequence of elements, and multiple
overbars are expanded together, e.g., x �→ y is short for x1 �→ y1, ... , xn �→ yn
(n ≥ 0). The semantics is given by the auxiliary evaluation judgement for built-
ins δ;σ;Θ � b(w) ⇓∗ w; θ, to be read as “expression b(w) evaluates to nvalue
w and value-tree θ on device δ with respect to sensor values σ and value-tree
environment Θ”, where:

– θ is an ordered tree with nvalues on some nodes, representing messages to be
sent to neighbours by tracking necessary nvalues and stack frames produced
while evaluating b(w);

– Θ collects the most recent value-trees received by neighbours of δ, as a map
δ1 �→ θ1, ..., δn �→ θn (n ≥ 0) from device identifiers to value-trees.

In order to introduce the spawn construct, it is necessary to extend the auxiliary
definition of value-trees (highlighted in grey), to also allow for maps from local
literals � (identifiers of the running processes) to their corresponding value-trees.
Then, rule [A-SPAWN] can be written by naturally porting the similar rule in [20],
while using the fact that the Boolean returned by the process is an nvalue, and
thus can be different for different neighbours. In this rule, a list of process keys k is
computed by adjoining (i) the keys wk(δ) currently present in the second argument
wk of spawn for the current device δ; (ii) the keys that any neighbour δ′ broadcast in
their last message Θ(δ′), provided that the corresponding Boolean value b returned
was true for the current device b(δ) = True (thus, demanding process expansion
to δ). To realise “multiple alignment”, for each key ki, the process wp is applied to ki
with respect to the part of the value-tree environment π1(πki(Θ)) that corresponds
to key ki, producing wi; θi as a result. Finally, the construct concludes returning
the maps k �→ w; k �→ θ mapping process keys to their evaluation result.

5 Discussion and Proof-of-Concept

In this section, we discuss the proposed abstraction (Sect. 5.1), the characteristics
of the proposed programming model for DCPs (Sect. 5.2), then provide examples
of applications (Sect. 5.3), and provide a proof-of-concept implementation of a
wave-like propagation of a DCP (Sect. 5.4).

5.1 The DCP Abstraction

The crucial problem that we investigate in this paper revolves around the def-
inition of collaborative activities carried out by dynamic collections of devices
(a.k.a. ensembles [41]). We call these DCPs since they are defined by a common
control program that regulates the behaviour of a largely homogeneous set of
devices.

Programming Distributed Collective Processes 79

In particular, a device may participate concurrently to multiple collective
processes, or to multiple ensembles. How participation to multiple DCPs relates
to local resource usage (cf. resource-constrained devices) is abstracted away and
may be dealt both programmatically (e.g., through a status computed depending
on the resource availability perceived through a sensor) or automatically at the
virtual machine level (e.g., by runtime checks). Furthermore, notice that, in any
single round, a device executes the computation associated to all the currently
joined DCPs. That is, in the basic model, the number of processes joined by
a device has no effect whatsoever on the number of rounds, which follow a
given scheduling policy. Therefore, the participation to several processes may
in principle increase the duration of rounds significantly, possibly slowing down
the reactivity of a device; so, real-world implementations have also to consider
these aspects. Associating different scheduling policies to different processes is
however possible, but requires an extension to the basic execution model, e.g.,
along the lines of [44].

We define as the domain of a DCP the set of the nodes that are currently
running it. We define as the shape of a DCP the spatiotemporal region that is
identified by the spatiotemporal locations of the nodes belonging to the domain
of the DCP. Often, DCPs are transient, i.e., they have a limited lifetime: they
start to exist at some time, and they dissolve once no more nodes run them.

In this work, we are mainly concerned with studying how to create and
manipulate these DCPs. The supporting formal framework and implementation
is described in Sect. 4. In summary, the developer has the following mechanisms
for defining systems of DCPs:

– generation logic: the need for collective activities can be encoded in a rule for
generating new instances of DCPs;

– identity logic: the logic used to identify DCPs can be used to distinguish
between them and hence to regulate their domains (e.g., for controlling the
granularity of teams);

– internal logic: this logic defines a collective computation (scoped within the
domain of a single DCP) promoting decentralised decision-making, e.g., in
terms of typical self-organisation patterns (collection, propagation, leader
election, evaporation, etc.);

– shape control logic: it is possible to specify rules for the local expansion of the
domains of DCPs (e.g., to gather more participants), typically also leveraging
results from the internal computation itself—the XC implementation provides
an especially flexible way to specify this, as different neighbours can receive
different information;

– termination logic: this logic, strictly related to shape control, enables to spec-
ify how individual agents may leave a DCP instance as well as how an entire
DCP may be terminated;

– input logic: existing DCPs may also be controlled be specifying “external
inputs” provided as explicit arguments or closed over a lambda closure—an
example is meta-control logic, based on inspecting the (results of) multiple
DCPs to take decisions about their evolution.

80 G. Audrito et al.

In the following, we discuss features and examples of use of the abstraction.

5.2 Features of the Abstraction and Programming Model

Progressive and Live Construction of Ensembles (cf. Self-organisation, Self-
healing, etc.). The DCPs have a dynamic domain, that evolves progressively to
include more or less devices. The devices at the border of the DCP can choose
to expand it to (a subset of) their neighbours and the neighbours themselves
can opt in or out. Moreover, since evaluation of the program is repeated over
time, the border is live, meaning that membership can be always re-evaluated, in
order to consider the up-to-date context. Conversely, members that are no longer
interested in participating in the collective task, or that have completed the tasks
associated to their role, can leave the process by returning False[] in the spawn
routine, or even start process termination patterns as those investigated in [11].

Flexible Control of Collective Process Shape and State. The shape and state of a
DCP can be regulated flexibly, by leveraging different kinds of mechanisms. For
instance, the state and shape of a process can be controlled at a collective level,
as a result of a collective consensus or decision-making activity. As an alterna-
tive, the leader or owner of the DCP may centralise some of the decision-making:
for instance, it may gather statistics from its members (using adaptive collection
algorithms [8]), and use locally-computed policies to decide whether to let more
members join (sharing the local decision with a resilient broadcast algorithm
[49]). Between fully centralised and fully decentralised settings, there are inter-
mediate solutions based e.g. on a partitioning of the DCP into sub-groups using
partitioning mechanisms that can be applied at the aggregate programming level
[2,19]. The state can be used, for instance, to denote different phases of a collec-
tive task [22], hence it is important that all the members of the DCP eventually
become aware of the up-to-date situation. Regarding shape control, further flex-
ibility is provided by XC, thanks to differentiated messages to neighbours: this
feature could be used to essentially control the direction of process propagation
(e.g., by filtering, random selective choice, or any other ad-hoc mechanisms).

Support for Privacy-preserving Collective Computations. The possibility in XC
to send differentiated messages to neighbours (unlike classical field calculi [49]),
especially when supported infrastructurally through point-to-point communica-
tion channels, can also promote privacy in collective computations. This way,
devices that are unrelated to certain tasks, are not exposed to the information
that those tasks are being carried out.

5.3 Examples

Given its features, the DCP abstraction could turn useful to program several
kinds of higher-level distributed computing abstractions and tasks such as, for
instance, the following.

Programming Distributed Collective Processes 81

Modelling of Teams or Ensembles of Agents [41]. A DCP can represent, through
its very domain, the set of agents that belong to a certain team or ensemble. It
can spread around the system to gather and (re-)evaluate a membership con-
dition, to effectively recruit agents into different organisational structures [31].
Two main mechanisms regulate the joining of devices into DCPs: the propaga-
tion of PIDs to neighbours (i.e., an internal control of the process border), and
the possibility to leave a process by a device that received a PID, which would
not propagate the process further (i.e., an external control of the process bor-
der). The former mechanism is directly supported by our XC implementation,
through the notion of differentiated messages to neighbours, enabled by nvalues.
Concurrent participation to multiple teams is directly supported by the fact that
a single device can participate in an arbitrary number of DCPs. As participation
to multiple DCPs leads to increased resource requirements (in both computation
time and message size), the programmer has to take into account performance
issues when designing the generation and propagation logic of concurrent DCPs.
However, the fully asynchronous and resilient nature of XC implies that some
additional slack can be used on top of resource bounds posed by the architecture,
as longer round execution or message exchange time (or even a device crash) can
be handled seamlessly by the XC programming model. Last but not least, the
activity within a DCP can be used to support the coordination within the ensem-
ble it represents, e.g., through gossip or information spreading algorithms, whose
scope is limited to the domain of the DCP; therefore, it may be useful also for
privacy-preserving computations.

Space-based Coordination (e.g., Spatiotemporal Tuples [22]). A DCP could also
be attached to a spatial location—to implemented spatially-attached processes.
This could be used to support space-based coordination, or to implement coor-
dination models like spatiotemporal tuples [22], whereby tuples and tuple oper-
ations can be emitted to reside at or query a particular spatial location. To
implement the spatiotemporal tuples model, an DCP instance can be used to
represent a single out (writing), rd (reading), and in (retrieval) operation—see
Fig. 3 for a visual example. A tuple is denoted by its out process: it exists as
long as its DCP is alive in some device. Creating tuples that reside at a fixed
spatial location/area (e.g., as described by geodetic coordinates) or that remain
attached to a particular mobile device is straightforward. In the former case, the
DCP membership condition is just that the device’s current location is inside or
close by the provided spatial location. In the latter case, the DCP membership
condition is just that the device’s current distance to the DCP source device
(which may be computed by a simple gradient) is within a certain threshold.
We may call these node-attached processes: as a node moves, a DCP attached
to it can follow through, to support collective contextual services; for instance,
a node may recruit other nodes and resources for mobile tasks.

Creation of Adaptive System Structures to Support Communication and Coordi-
nation. The ability of DCPs to capture both the formation evolution and the
collective activity of a group of devices within a pervasive computing system can

82 G. Audrito et al.

Fig. 3. Graphics of interacting DCPs modelling spatiotemoral tuple operations. Each
DCP is denoted as a trapezoid-like shape that springs out at a certain event (a round
by a single device). Notation: εin and εout mean that the event generates a process
modelling an in (retrieval) and out (writing) tuple operation, respectively; εM means
that a matching out tuple for an in operation has been found; εC means that the out
tuple process has reached consensus about the in process to serve; the † superscript
denotes a termination event, starting a process to close an existing process.

be leveraged to create resilient structures supporting non-local or system-wide
coordination. For instance, this can be used to implement messaging channels in
a peer-to-peer network of situated neighbour-interacting devices (e.g., in a smart
city) [20]: the channel consists only of the devices between the source and the
destination of a message, hence avoiding expensive gossip or flooding processes
that would (i) consume resources of possibly all the devices in the system, and
(ii) exacerbate privacy and security issues. As another example, consider the
Self-organising Coordination Regions (SCR) pattern [19]: it is a mechanism to
control the level of decentralisation in systems to flexibly support situated tasks,
based on (i) decentralised leader election [43]; (ii) creation of areas around the
leaders to basically partition the overall system into manageable regions [51];
and (iii) supporting intra-region and inter-region coordination e.g. by means of
information flows [52]. Now, traditional solutions based on field calculi [19] do
not easily allow for the partitions to overlap: this, instead, could be desired for
fault-tolerance, flexibility, and improved interaction between adjacent regions,
and it turns out to be easily implementable using DCPs.

Modelling of Epidemic Processes [25]. Finally, DCP also represent a tool for
studying how to relate computation, coordination, and epidemic processes. By
the ability of programmatically controlling how processes spread, possibly using

Programming Distributed Collective Processes 83

conditions that depend on the collective computation carried out by the current
ensemble, it is possible to model complex diffusion dynamics. In future work,
it would be interesting to explore how XC programs leveraging DCPs could
promote network-based and agent-based simulation models for epidemic spread,
e.g. such as those reviewed in [34].

5.4 Proof-of-Concept Implementation

As a proof-of-concept of the techniques described in this paper, we have imple-
mented a simple use case exploiting the FCPP simulator [7,12], which has been
extended to support the XC and, in particular, the spawnXC built-in construct
described above. The implemented use case is a network of devices where, at
some point in time, a source device δFROM sends a message through a DCP to
reach a destination device δTO. For simplicity, we considered devices to be sta-
tionary in the simulation, thus inducing a fixed network topology (although the
proof-of-concept program could be run with dynamic topologies as well). Round
durations are not identical (they can vary by 10% from base value).

We implement a spherical propagation, where the message originating in
δFROM spreads radially in 3D trying to reach δTO. The process function executed
by each process node implements the following logic:

1. if the self device δ is δTO just return a false nvalue F [] (no propagation, since
destination has been reached);

2. if it is the first round that δ executes the process, and the neighbours it knows
(i.e., that have propagated the process to δ) are δ1, ... , δk, it propagates it to
itself and to its new neighbours (that are not yet in the process) by returning
an nvalue T [δ �→T, δ1 �→F, ...];

3. finally, at the second round δ exits itself the process by returning a false
nvalue F [].

The following snippet of FCPP code shows the core of the simple function
described above:

1 i f (dest)
2 fdwav = field<bool>(false) ;
3 else i f (rnd == 1) {
4 fdwav = field<bool>(false) ;
5 fdwav = mod_self(CALL, fdwav, true) ;
6 fdwav = mod_other(CALL, fdwav, true) ;
7 } else
8 fdwav = field<bool>(false) ;

Note that: flag dest is true only on device δTO; fdwav if the field that determines
process propagation; a call to field < bool > (false) constructs a constant
field of Booleans set to false; and a call to mod_self (resp. mod_other) sets
the value in a field for the current device (resp. its known neighbours).

84 G. Audrito et al.

time

ap
ro
c tvar = 10, dens = 10, hops = 20, speed = 0

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

spherical (xc)

Fig. 4. Average number of active processes over time for the single-process use case.

time

ap
ro
c tvar = 10, dens = 10, hops = 20, speed = 0

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

spherical (xc)

Fig. 5. Average number of active processes over time for the multi-process use case.

We exploit FCPP to simulate a first use case where only one process is
generated. The simulation shows that the process propagates as a wave starting
from δFROM outwards. Immediately after the wave front goes beyond a device,
the device itself exits the process thus releasing potentially precious resources
for other computations. Figure 4 shows the average number of active processes
(aproc) within the network of devices in one specific execution of the use case
(which took a time interval [1, 50]). For the first 10 sec, the average is 0, since
no process has been created yet. After the process is created by δFROM , it
propagates until it reaches its destination, and then quickly vanishes.

In a second use case, we let 10 different devices generate a new process at
each round with probability 5%, in the time interval [1, 25]. Figure 5 shows that
the average number of active processes aproc grows from 0 (at time 0) up to
slightly more than 1.6 (just after 25), and then quickly drops again down to
0. Given that more than 10 processes are generated during the use case, the
average number of active processes is kept low by the fact that the nodes exploit
spawnXC to immediately exit processes after entering and propagating them.

Programming Distributed Collective Processes 85

6 Conclusion

In this paper, we have covered the abstraction of a distributed collective process
(DCP), which supports the definition of the collective adaptive behaviour of per-
vasive collections of neighbour-interacting devices working in sense–compute–
interact rounds. In particular, DCPs model decentralised collective tasks that
also move, spread, and retract over the collective system in which they are
spawned. We have discussed the abstraction, analysed it in the general frame-
work of event structures, and implemented it in the eXchange Calculus (XC),
a minimal core language particularly suitable for implementing DCPs, for its
Neighbouring Value data structure, that enables fine-tuned control of what data
gets shared with neighbours. Finally, we have discussed its features and applica-
bility, and have shown a proof of concept implementation of a wave-propagation
algorithm—which may be used for model resource-efficient information flows.

In future work, we would like to further study DCPs by a dynamical perspec-
tive, and possibly explore its ability to model and simulate epidemic processes.
Further, we would like to implement in XC a library of reusable functions cap-
turing common patterns of DCPs usage, to streamline pervasive and collective
computing application development.

References

1. Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming interactions in collec-
tive adaptive systems by relying on attribute-based communication. Sci. Comput.
Programm. 192, 102428 (2020). https://doi.org/10.1016/j.scico.2020.102428

2. Aguzzi, G., Audrito, G., Casadei, R., Damiani, F., Torta, G., Viroli, M.: A field-
based computing approach to sensing-driven clustering in robot swarms. Swarm
Intell. 17(1), 27–62 (2023). https://doi.org/10.1007/s11721-022-00215-y

3. Albani, D., IJsselmuiden, J., Haken, R., Trianni, V.: Monitoring and mapping with
robot swarms for agricultural applications. In: 14th IEEE International Conference
on Advanced Video and Signal Based Surveillance, AVSS 2017, Lecce, Italy, 29
August - 1 September 2017, pp. 1–6. IEEE Computer Society (2017). https://doi.
org/10.1109/AVSS.2017.8078478

4. Ambrosin, M., Conti, M., Lazzeretti, R., Rabbani, M.M., Ranise, S.: Collective
remote attestation at the internet of things scale: state-of-the-art and future chal-
lenges. IEEE Commun. Surv. Tutorials 22(4), 2447–2461 (2020). https://doi.org/
10.1109/COMST.2020.3008879

5. Arnold, R., Jablonski, J., Abruzzo, B., Mezzacappa, E.: Heterogeneous UAV multi-
role swarming behaviors for search and rescue. In: Rogova, G., McGeorge, N.M.,
Ruvinsky, A., Fouse, S., Freiman, M.D. (eds.) IEEE Conference on Cognitive and
Computational Aspects of Situation Management, CogSIMA 2020, Victoria, BC,
Canada, 24–29 August 2020, pp. 122–128. IEEE (2020). https://doi.org/10.1109/
CogSIMA49017.2020.9215994

6. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Net-
works 54(15), 2787–2805 (2010). https://doi.org/10.1016/j.comnet.2010.05.010

https://doi.org/10.1016/j.scico.2020.102428
https://doi.org/10.1007/s11721-022-00215-y
https://doi.org/10.1109/AVSS.2017.8078478
https://doi.org/10.1109/AVSS.2017.8078478
https://doi.org/10.1109/COMST.2020.3008879
https://doi.org/10.1109/COMST.2020.3008879
https://doi.org/10.1109/CogSIMA49017.2020.9215994
https://doi.org/10.1109/CogSIMA49017.2020.9215994
https://doi.org/10.1016/j.comnet.2010.05.010

86 G. Audrito et al.

7. Audrito, G.: FCPP: an efficient and extensible field calculus framework. In:
International Conference on Autonomic Computing and Self-Organizing Systems
(ACSOS), pp. 153–159. IEEE (2020). https://doi.org/10.1109/ACSOS49614.2020.
00037

8. Audrito, G., Casadei, R., Damiani, F., Pianini, D., Viroli, M.: Optimal resilient
distributed data collection in mobile edge environments. Comput. Electr. Eng.
96(Part), 107580 (2021). https://doi.org/10.1016/j.compeleceng.2021.107580

9. Audrito, G., Casadei, R., Damiani, F., Salvaneschi, G., Viroli, M.: Functional
programming for distributed systems with XC. In: Ali, K., Vitek, J. (eds.) 36th
European Conference on Object-Oriented Programming, ECOOP 2022, 6–10 June
2022, Berlin, Germany. LIPIcs, vol. 222, pp. 20:1–20:28. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.ECOOP.2022.20

10. Audrito, G., Casadei, R., Torta, G.: Towards integration of multi-agent planning
with self-organising collective processes. In: IEEE International Conference on
Autonomic Computing and Self-Organizing Systems, ACSOS 2021, Companion
Volume, Washington, DC, USA, 27 September - 1 October 2021, pp. 297–298.
IEEE (2021). https://doi.org/10.1109/ACSOS-C52956.2021.00042

11. Audrito, G., Casadei, R., Torta, G.: On the dynamic evolution of distributed com-
putational aggregates. In: IEEE International Conference on Autonomic Com-
puting and Self-Organizing Systems Companion, ACSOS-C 2022, Virtual, CA,
USA, 19–23 September 2022, pp. 37–42. IEEE (2022). https://doi.org/10.1109/
ACSOSC56246.2022.00024

12. Audrito, G., Rapetta, L., Torta, G.: Extensible 3D simulation of aggregated sys-
tems with FCPP. In: ter Beek, M.H., Sirjani, M. (eds.) Coordination Models and
Languages. COORDINATION 2022. IFIP Advances in Information and Commu-
nication Technology, vol. 13271, pp. 55–71. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-08143-9_4

13. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate:
languages for spatial computing. In: Formal and Practical Aspects of Domain-
Specific Languages: Recent Developments, chap. 16, pp. 436–501. IGI Global
(2013). https://doi.org/10.4018/978-1-4666-2092-6.ch016

14. Boissier, O., Bordini, R.H., Hubner, J., Ricci, A.: Multi-agent oriented program-
ming: programming multi-agent systems using JaCaMo. Mit Press (2020)

15. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013). https://
doi.org/10.1007/s11721-012-0075-2

16. Bulling, N.: A survey of multi-agent decision making. KI - Künstliche Intelligenz
28(3), 147–158 (2014). https://doi.org/10.1007/s13218-014-0314-3

17. Casadei, R.: Artificial collective intelligence engineering: a survey of concepts and
perspectives (2023). https://doi.org/10.48550/ARXIV.2304.05147. https://arxiv.
org/abs/2304.05147. Accepted for Publication in the Artificial Life Journal (MIT
Press)

18. Casadei, R.: Macroprogramming: Concepts, state of the art, and opportunities of
macroscopic behaviour modelling. ACM Computing Surveys (2023). https://doi.
org/10.1145/3579353

19. Casadei, R., Pianini, D., Viroli, M., Natali, A.: Self-organising coordination regions:
a pattern for edge computing. In: Riis Nielson, H., Tuosto, E. (eds.) COORDINA-
TION 2019. LNCS, vol. 11533, pp. 182–199. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-22397-7_11

https://doi.org/10.1109/ACSOS49614.2020.00037
https://doi.org/10.1109/ACSOS49614.2020.00037
https://doi.org/10.1016/j.compeleceng.2021.107580
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://doi.org/10.1109/ACSOS-C52956.2021.00042
https://doi.org/10.1109/ACSOSC56246.2022.00024
https://doi.org/10.1109/ACSOSC56246.2022.00024
https://doi.org/10.1007/978-3-031-08143-9_4
https://doi.org/10.1007/978-3-031-08143-9_4
https://doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/s13218-014-0314-3
https://doi.org/10.48550/ARXIV.2304.05147
https://arxiv.org/abs/2304.05147
https://arxiv.org/abs/2304.05147
https://doi.org/10.1145/3579353
https://doi.org/10.1145/3579353
https://doi.org/10.1007/978-3-030-22397-7_11
https://doi.org/10.1007/978-3-030-22397-7_11

Programming Distributed Collective Processes 87

20. Casadei, R., Viroli, M., Audrito, G., Pianini, D., Damiani, F.: Aggregate processes
in field calculus. In: Riis Nielson, H., Tuosto, E. (eds.) COORDINATION 2019.
LNCS, vol. 11533, pp. 200–217. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-22397-7_12

21. Casadei, R., Viroli, M., Audrito, G., Pianini, D., Damiani, F.: Engineering collec-
tive intelligence at the edge with aggregate processes. Eng. Appl. Artif. Intell. 97,
104081 (2021)

22. Casadei, R., Viroli, M., Ricci, A., Audrito, G.: Tuple-based coordination in large-
scale situated systems. In: Damiani, F., Dardha, O. (eds.) COORDINATION 2021.
LNCS, vol. 12717, pp. 149–167. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-78142-2_10

23. De Nicola, R., Jähnichen, S., Wirsing, M.: Rigorous engineering of collective adap-
tive systems: special section. Int. J. Softw. Tools Technol. Transfer 22(4), 389–397
(2020). https://doi.org/10.1007/s10009-020-00565-0

24. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
mun. ACM 35(2), 96–107 (1992). https://doi.org/10.1145/129630.376083

25. Giudice, N.D., Matteucci, L., Quadrini, M., Rehman, A., Loreti, M.: Sibilla: a tool
for reasoning about collective systems. In: ter Beek, M.H., Sirjani, M. (eds.) Coor-
dination Models and Languages. COORDINATION 2022. IFIP Advances in Infor-
mation and Communication Technology, vol. 13271, pp. 92–98. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-08143-9_6

26. Groß, R., Dorigo, M.: Towards group transport by swarms of robots. Int. J. Bio
Inspired Comput. 1(1/2), 1–13 (2009). https://doi.org/10.1504/IJBIC.2009.022770

27. Gruber, T.: Collective knowledge systems: where the social web meets the semantic
web. J. Web Semant. 6(1), 4–13 (2008). https://doi.org/10.1016/j.websem.2007.11.
011

28. Gunther, H., Riebl, R., Wolf, L.C., Facchi, C.: Collective perception and decen-
tralized congestion control in vehicular ad-hoc networks. In: 2016 IEEE Vehicular
Networking Conference, VNC 2016, Columbus, OH, USA, 8–10 December 2016,
pp. 1–8. IEEE (2016). https://doi.org/10.1109/VNC.2016.7835931

29. Gupta, G.: Language-based software engineering. Sci. Comput. Program. 97, 37–40
(2015). https://doi.org/10.1016/j.scico.2014.02.010

30. Hendler, J., Berners-Lee, T.: From the semantic web to social machines: a research
challenge for AI on the world wide web. Artif. Intell. 174(2), 156–161 (2010).
https://doi.org/10.1016/j.artint.2009.11.010

31. Horling, B., Lesser, V.R.: A survey of multi-agent organizational paradigms. Knowl.
Eng. Rev. 19(4), 281–316 (2004). https://doi.org/10.1017/S0269888905000317

32. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396–450 (2001)

33. Karagiannis, V., Schulte, S.: Distributed algorithms based on proximity for self-
organizing fog computing systems. Pervasive Mob. Comput. 71, 101316 (2021).
https://doi.org/10.1016/j.pmcj.2020.101316

34. Li, J., Xiang, T., He, L.: Modeling epidemic spread in transportation networks: a
review. J. Traffic Transport. Eng. (English Edit.) 8(2), 139–152 (2021). https://
doi.org/10.1016/j.jtte.2020.10.003

35. Liu, C., Hua, J., Julien, C.: SCENTS: collaborative sensing in proximity iot net-
works. In: IEEE International Conference on Pervasive Computing and Commu-
nications Workshops, PerCom Workshops 2019, Kyoto, Japan, 11–15 March 2019,
pp. 189–195. IEEE (2019). https://doi.org/10.1109/PERCOMW.2019.8730863

https://doi.org/10.1007/978-3-030-22397-7_12
https://doi.org/10.1007/978-3-030-22397-7_12
https://doi.org/10.1007/978-3-030-78142-2_10
https://doi.org/10.1007/978-3-030-78142-2_10
https://doi.org/10.1007/s10009-020-00565-0
https://doi.org/10.1145/129630.376083
https://doi.org/10.1007/978-3-031-08143-9_6
https://doi.org/10.1504/IJBIC.2009.022770
https://doi.org/10.1016/j.websem.2007.11.011
https://doi.org/10.1016/j.websem.2007.11.011
https://doi.org/10.1109/VNC.2016.7835931
https://doi.org/10.1016/j.scico.2014.02.010
https://doi.org/10.1016/j.artint.2009.11.010
https://doi.org/10.1017/S0269888905000317
https://doi.org/10.1016/j.pmcj.2020.101316
https://doi.org/10.1016/j.jtte.2020.10.003
https://doi.org/10.1016/j.jtte.2020.10.003
https://doi.org/10.1109/PERCOMW.2019.8730863

88 G. Audrito et al.

36. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applica-
tions with the TOTA middleware. In: Pervasive Computing and Communications,
2004, pp. 263–273. IEEE (2004). https://doi.org/10.1109/PERCOM.2004.1276864

37. McGuire, K., Wagter, C.D., Tuyls, K., Kappen, H.J., de Croon, G.C.H.E.: Minimal
navigation solution for a swarm of tiny flying robots to explore an unknown environ-
ment. Sci. Robotics 4(35), eaaw9710 (2019). https://doi.org/10.1126/scirobotics.
aaw9710

38. Mohan, N., Kangasharju, J.: Edge-Fog cloud: a distributed cloud for internet of
things computations. In: 2016 Cloudification of the Internet of Things, CIoT 2016,
Paris, France, 23–25 November 2016, pp. 1–6. IEEE (2016). https://doi.org/10.
1109/CIOT.2016.7872914

39. Navarro, I., Matía, F.: A survey of collective movement of mobile robots. Int. J.
Adv. Robotic Syst. 10(1), 73 (2013). https://doi.org/10.5772/54600

40. Newton, R., Welsh, M.: Region streams: Functional macroprogramming for sensor
networks. In: Workshop on Data Management for Sensor Networks, pp. 78–87
(2004). https://doi.org/10.1145/1052199.1052213

41. Nicola, R.D., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the SCEL language. ACM Trans. Auton. Adapt. Syst. 9(2),
1–29 (2014). https://doi.org/10.1145/2619998

42. Papadopoulos, G.A., Arbab, F.: Coordination models and languages. Adv. Com-
put. 46, 329–400 (1998). https://doi.org/10.1016/S0065-2458(08)60208-9

43. Pianini, D., Casadei, R., Viroli, M.: Self-stabilising priority-based multi-leader elec-
tion and network partitioning. In: IEEE International Conference on Autonomic
Computing and Self-Organizing Systems, ACSOS 2022, Virtual, CA, USA, 19–23
September 2022, pp. 81–90. IEEE (2022). https://doi.org/10.1109/ACSOS55765.
2022.00026

44. Pianini, D., Casadei, R., Viroli, M., Mariani, S., Zambonelli, F.: Time-fluid field-
based coordination through programmable distributed schedulers. Log. Methods
Comput. Sci. 17(4), 18 (2021). https://doi.org/10.46298/lmcs-17(4:13)2021

45. Pianini, D., Casadei, R., Viroli, M., Natali, A.: Partitioned integration and coordi-
nation via the self-organising coordination regions pattern. Future Gener. Comput.
Syst. 114, 44–68 (2021). https://doi.org/10.1016/j.future.2020.07.032

46. Scekic, O., Schiavinotto, T., Videnov, S., Rovatsos, M., Truong, H.L., Miorandi,
D., Dustdar, S.: A programming model for hybrid collaborative adaptive systems.
IEEE Trans. Emerg. Top. Comput. 8(1), 6–19 (2020). https://doi.org/10.1109/
TETC.2017.2702578

47. Sudharsan, B., Yadav, P., Nguyen, D., Kafunah, J., Breslin, J.G.: Ensemble meth-
ods for collective intelligence: combining ubiquitous ML models in IoT. In: 2021
IEEE International Conference on Big Data (Big Data), Orlando, FL, USA,
15–18 December 2021, pp. 1960–1963. IEEE (2021). https://doi.org/10.1109/
BigData52589.2021.9671901

48. Testa, L., Audrito, G., Damiani, F., Torta, G.: Aggregate processes as distributed
adaptive services for the industrial internet of things. Pervasive Mob. Comput. 85,
101658 (2022). https://doi.org/10.1016/j.pmcj.2022.101658

49. Viroli, M., Beal, J., Damiani, F., Audrito, G., Casadei, R., Pianini, D.: From
distributed coordination to field calculus and aggregate computing. vol. 109 (2019).
https://doi.org/10.1016/j.jlamp.2019.100486

https://doi.org/10.1109/PERCOM.2004.1276864
https://doi.org/10.1126/scirobotics.aaw9710
https://doi.org/10.1126/scirobotics.aaw9710
https://doi.org/10.1109/CIOT.2016.7872914
https://doi.org/10.1109/CIOT.2016.7872914
https://doi.org/10.5772/54600
https://doi.org/10.1145/1052199.1052213
https://doi.org/10.1145/2619998
https://doi.org/10.1016/S0065-2458(08)60208-9
https://doi.org/10.1109/ACSOS55765.2022.00026
https://doi.org/10.1109/ACSOS55765.2022.00026
https://doi.org/10.46298/lmcs-17(4:13)2021
https://doi.org/10.1016/j.future.2020.07.032
https://doi.org/10.1109/TETC.2017.2702578
https://doi.org/10.1109/TETC.2017.2702578
https://doi.org/10.1109/BigData52589.2021.9671901
https://doi.org/10.1109/BigData52589.2021.9671901
https://doi.org/10.1016/j.pmcj.2022.101658
https://doi.org/10.1016/j.jlamp.2019.100486

Programming Distributed Collective Processes 89

50. Welsh, M., Mainland, G.: Programming sensor networks using abstract regions. In:
Morris, R.T., Savage, S. (eds.) 1st Symposium on Networked Systems Design and
Implementation (NSDI 2004), 29–31 March 2004, San Francisco, California, USA,
Proceedings. pp. 29–42. USENIX (2004). http://www.usenix.org/events/nsdi04/
tech/welsh.html

51. Weyns, D., Holvoet, T.: Regional synchronization for simultaneous actions in situ-
ated multi-agent systems. In: Mařík, V., Pěchouček, M., Müller, J. (eds.) CEEMAS
2003. LNCS (LNAI), vol. 2691, pp. 497–510. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-45023-8_48

52. Wolf, T.D., Holvoet, T.: Designing self-organising emergent systems based on infor-
mation flows and feedback-loops. In: Proceedings of the First International Con-
ference on Self-Adaptive and Self-Organizing Systems, SASO 2007, Boston, MA,
USA, 9–11 July 2007, pp. 295–298. IEEE Computer Society (2007). https://doi.
org/10.1109/SASO.2007.16

53. Wood, Z., Galton, A.: A taxonomy of collective phenomena. Appl. Ontol. 4(3–4),
267–292 (2009). https://doi.org/10.3233/ao-2009-0071

http://www.usenix.org/events/nsdi04/tech/welsh.html
http://www.usenix.org/events/nsdi04/tech/welsh.html
https://doi.org/10.1007/3-540-45023-8_48
https://doi.org/10.1007/3-540-45023-8_48
https://doi.org/10.1109/SASO.2007.16
https://doi.org/10.1109/SASO.2007.16
https://doi.org/10.3233/ao-2009-0071

Cyber-Physical Systems

Shelley: A Framework for Model
Checking Call Ordering on Hierarchical

Systems

Carlos Mão de Ferro1 , Tiago Cogumbreiro2(B) , and Francisco Martins3

1 LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
carlos@maodeferro.pt

2 University of Massachusetts, Boston, USA
tiago.cogumbreiro@umb.edu

3 Faculdade de Ciências e Tecnologia, Ponta Delgada, Portugal

francisco.cc.martins@uac.pt

Abstract. This paper introduces Shelley, a novel model checking frame-
work used to verify the order of function calls, developed in the context
of Cyber-Physical Systems (CPS). Shelley infers the model directly from
MicroPython code, so as to simplify the process of checking require-
ments expressed in a temporal logic. Applications for CPS need to reason
about the end of execution to verify the reclamation/release of physical
resources, so our temporal logic is stated on finite traces. Lastly, Shelley
infers the behavior from code using an inter-procedural and composi-
tional analysis, thus supporting the usual object-oriented programming
techniques employed in MicroPython code. To evaluate our work, we
present an experience report on an industrial application and evaluate
the bounds of the validity checks (up to 1212 subsystems under 10 s on
a desktop computer).

1 Introduction

This paper introduces a novel model checking framework to verify a MicroPy-
thon code base against a set of requirements stated in a temporal logic on ordered
function calls. MicroPython [31] is an implementation of the Python program-
ming language designed for microcontrollers, providing a large subset of standard
Python features in a reduced memory footprint. A major challenge of applying for-
mal methods to the development of embedded cyber-physical systems, is the gap
between code and the requirements being checked [9,25,43,45,56,57]. To bridge
this gap, our approach is to automatically infer the model from the code and let
the user focus on stating requirements in a way that is close to the subject matter.

Our research is guided by three main goals. Firstly, the requirements and
the system’s behavior should be represented as ordered actions (which denote
function calls), not as a transition system. Since the behavior being analyzed is
a call-order graph, then the model and its requirements should closely mirror
the given abstraction. In contrast, general-purpose model checkers express their
models as state-transitions systems and the requirements are stated in terms of
variables of these state-transition systems [7,12,13,27,40,52,59,66]. Addition-
ally, model-checking approaches are usually focused on process communication,
which is outside of the scope of the subject of our research.
c© IFIP International Federation for Information Processing 2023
S.-S. Jongmans and A. Lopes (Eds.): COORDINATION 2023, LNCS 13908, pp. 93–114, 2023.
https://doi.org/10.1007/978-3-031-35361-1_5

https://eapls.org/pages/artifact_badges/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35361-1_5&domain=pdf
https://orcid.org/0000-0001-6835-3097
https://orcid.org/0000-0002-3209-9258
https://orcid.org/0000-0002-2379-7257
https://doi.org/10.1007/978-3-031-35361-1_5

94 C. M. de Ferro et al.

Secondly, our domain of interest is finite, so our temporal logic must be stated
on finite traces. When developing code that handles cyber-physical resources, it
is crucial to reason (formally) about the release of such resources. Our model
checking framework features linear temporal logic on finite traces (LTLf) [3,18].
While it is possible to encode LTLf in model checker that uses infinite linear
temporal logic, such an encoding must be carefully implemented to avoid subtle
mistakes [17]; any encoding to infinite traces should be handled automatically.

Thirdly, code reuse is encouraged. Since our modeling language is the code
being run, then our analysis must support behavior (i.e., function calls) that
spans across multiple procedures (say, methods, or functions). A major feature
of our model checking framework is to support a compositional interprocedu-
ral analysis that follows the usual abstraction and encapsulation techniques of
MicroPython codes. Further, Shelley automatically guarantees the correct usage
of each system, through function calls, according to their specifications, which
reduces the number of correctness claims needed to be written for each system.
The idea behind our analysis is akin to protocol conformance in the context of
behavior protocols [67].

In summary, our paper makes the following contributions:

1. A domain-specific language to specify stateful systems while abstracting away
the internal details of the implementation. (Sect. 3)

2. A formalization of generating a system’s internal behavior and of checking its
validity and decidability results. (Sect. 4.2 and Sect. 4.3)

3. A toolchain that model-checks requirements expressed by a temporal
logic at different hierarchy levels, ensuring correct-by-construction software.
(Sect. 4.4)

4. An evaluation of our framework: verifying the Aquamote® software written
in MicroPython; assessing the performance impact of behavior checking (up
to 1212 subsystems under 10 s on a desktop computer). (Sect. 5)

Finally, Sect. 6 discusses related work and Sect. 7 concludes the paper. Shelley
is open-source and available online1. We provide a demonstration video of our
tool2 and an artifact [26].

2 Overview

In this section, we motivate the challenge of verifying the order of method calls in
a object hierarchy, and we overview using Shelley to enforce specified behaviors.
The running examples in this paper are taken from an industrial application that
motivated our research: Aquamote® is a battery-operated wireless controller
that switches water valves according to a scheduled irrigation plan. Following,
we verify the controller software that automatically adapts its plan based on the
weather forecast and sensor information yielding optimal water consumption
results. Listing 2.1 shows the Shelley model of our running example, which is
automatically extracted form MicroPython code.
1 https://github.com/cajomferro/shelley.
2 https://www.youtube.com/watch?v=ZiGPZRQHTWc.

https://github.com/cajomferro/shelley
https://www.youtube.com/watch?v=ZiGPZRQHTWc

Shelley: A Framework for Model Checking Call Ordering 95

Listing 2.1: Shelley specifications for our running example.
1 base Valve {
2 initial test -> open, clean;
3 open -> close;
4 final close -> test;
5 final clean -> test;}
6

7 Sector (a: Valve, b: Valve) {
8 initial try_open_1 -> close {
9 a.test; a.open; b.test; b.open;

10 }
11 initial try_open_2 -> fail {
12 { a.test; a.clean; } +
13 { a.test; a.open; b.test; b.clean; a.close;}
14 }
15 initial try_open -> try_open_1, try_open_2 {}
16 final fail -> try_open {}
17 final close -> try_open {a.close; b.close;}
18

19 check (!b.open) W a.open;
20 }

21 AppV1 (a: Valve, b: Valve) {
22 final main_1 -> {
23 a.test; a.open; b.test;
24 b.open; a.close; b.close;
25 }
26 final main_2 -> {
27 a.test; a.open; b.test;
28 b.clean; a.close;
29 }
30 final main_3 -> {
31 a.test; a.clean;
32 }
33 initial main ->
34 main_1, main_2, main_3 {}
35

36 check (!b.open) W a.open;
37 }
38

39 AppV2 (s: Sector) {
40 final main_1 -> {
41 {s.try_open; s.close;} +
42 {s.try_open; s.fail;}
43 }
44 initial main -> main_1 {}}

Finite Behaviors. Shelley is designed to verify finite behaviors. For applications
that run on battery, it is paramount to specify the explicit release of resources,
e.g., turning off the WiFi before suspending. Otherwise, the programmer risks
exhausting the device’s battery while in suspend mode. Since reasoning about
finite executions on a temporal logic based on infinite traces can lead to subtle
errors [17], Shelley features LTLf and the behavior of our models are all finite.
Note that Shelley can easily verify long-running applications. Indeed, there is no
notion of battery in Shelley, just termination. The specification in Listing 2.1
could very well be of a control software that is connected to an electrical grid.
The key point is that Shelley lets us reason about the eventual termination of a
program, e.g., specify and enforce that all resources are freed before halting.

Model Extraction. This paper discusses the verification of Shelley models. Our
tool infers Shelley models from MicroPython code automatically. However, the
discussion of the inference process and of its correctness are outside of the scope
of this work. Shelley over-approximates the behavior of MicroPython programs
in the following ways, i.e., admits false alarms. The code of each method must be
expressed as a regular expression representing any possible sequence of method
calls. Shelley features sequencing, nondeterministic choice, and terminating loops
(via the Kleene-star operator). Non-terminating programs and recursive calls are
unsupported. Further, our tool disregards the program’s internal state, e.g., the
arguments of method calls, the condition used to branch, and the loop bounds.

96 C. M. de Ferro et al.

Listing 2.2: Class Valve and a diagram specifying its intended behavior.
1 class Valve:
2 def __init__(self):
3 self.control = Pin(27, Pin.OUT)
4 self.clean = Pin(28, Pin.OUT)
5 self.status = Pin(29, Pin.IN)
6

7 @op_initial
8 def test(self):
9 if self.status.value():

10 return "open"
11 else:
12 return "clean"
13

14 @op
15 def open(self):
16 self.control.on()
17 return "close"

18 @op_final
19 def close(self):
20 self.control.off()
21 return "test"
22

23 @op_final
24 def clean(self):
25 self.clean.on()
26 return "test"

2.1 Restricting the Behavior and Usage of Systems

As an example of a requirement, a user must test a valve before opening it, so as
to minimize the chance of clogging that valve, which would render it unusable.
Similarly, to conserve battery, we may want to enforce that the user must test the
valve before cleaning up debris. Next, we describe code annotations we defined
to achieve the ordering specified in the diagram of Listing 2.2. Our verification
goal is to enforce that usages of class Valve follow the order specified by its code.

Listing 2.2 shows a high-level API, class Valve, written in MicroPython, to
control programmatically a valve. Since we need precise control over resource
allocation, we declare which methods can be considered safe to execute at the
beginning and ending of an object’s lifetime. Given that only test is marked as
op initial, then after creating an instance of Valve the only method that can
be invoked is test (Lines 8 to 12). We then extract the ordering behavior based
on the return values. The method test returns either an open or clean label,
which signifies the following method that can be called. In this case, after testing,
the valve can be opened or cleaned, but neither closed nor tested consecutively.
When enabled, method open opens the valve (Lines 15 to 16); after that we can
only close the valve (Lines 19 to 20). Finally, we can clean the valve from debris
(Lines 24 to 25). Modifier op final declares that method close can be the last
method called, with respect to the object’s lifetime; method clean is also marked
as final. Since open is not marked as final, the valve cannot be left open, as long
as the usage of the valve follows its specification.

2.2 Encapsulation Complicates Verification

We now introduce two versions of the same application, which controls two
valves. The first version, called AppV1, invokes the valves directly. The second
version, called AppV2, adds an extra abstraction layer Sector that generalizes
using both valves as a whole. Our intent is to illustrate the kind of programs we
are interested in and how different levels of abstraction complicate verification.

Shelley: A Framework for Model Checking Call Ordering 97

Listing 2.3: Class AppV1 and a diagram specifying the internal behavior.
1 @claim("(! b.open) W a.open")
2 class AppV1:
3 def __init__(self):
4 self.a=Valve();self.b=Valve()
5

6 @op_initial_final
7 def main(self):
8 match self.a.test():
9 case "open":

10 self.a.open()
11 match self.b.test():
12 case "open":
13 self.b.open()
14 self.a.close()
15 self.b.close()
16 return ""
17 case "clean":
18 self.b.clean()
19 self.a.close()
20 print("Failed to open valves")
21 return ""
22 case "clean":
23 self.a.clean()
24 print("Failed to open valves")
25 return ""

Version 1. Listing 2.3 lists a program that controls two valves, along with a
diagram that summarizes its internal behavior. Our program expresses two side-
effects: the first represents when both valves are open; and the second is when
one of the valves fails to open and must be cleaned. As an example, should
we omit the call open in Line 13 and Shelley would output the following error
message:
Error in specification: INVALID SUBSYSTEM USAGE
Counter example: a.test, a.open, b.test, a.close, >b.close<
Subsystems errors:

* Valve ’b’: test, >close< (after test, expecting open or clean)

Besides automatically verifying that each valve is being used according to
the specification in Listing 2.2, we also want to verify temporal requirements.
The claim in Line 1 of Listing 2.3 guarantees that we only open valve b after
opening valve a. For instance, should we switch the calls to subsystems a and b
in such a way that we try to test valve b before valve a and Shelley would output
the following error message:
Error in specification: FAIL TO MEET REQUIREMENT
Formula: (!b.open) W a.open
Counter example: b.test, b.open, a.test, a.clean, b.close

Correctness claims express properties on the ordering of the internal calls
to subsystems during the life cycle of that object. Such claims are of great
importance for software maintenance, as Shelley checks if code changes preserve
the specified internal behavior.

Version 2. In Listing 2.4, our top-level system AppV2 operates the valves
via a Sector class (in irrigation jargon, a sector is an irrigation zone where

98 C. M. de Ferro et al.

Listing 2.4: Classes Sector and AppV2 and a diagram specifying the Sector inter-
nal behavior.
1 @claim("(! b.open) W a.open")
2 class Sector:
3 def __init__(self):
4 self.a = Valve(); self.b = Valve()
5

6 @op_initial
7 def try_open(self):
8 match self.a.test():
9 case "open":

10 self.a.open()
11 match self.b.test():
12 case "open":
13 self.b.open()
14 return "close"
15 case "clean":
16 self.b.clean(); self.a.close()
17 return "fail"
18 case "clean":
19 self.a.clean()
20 return "fail"
21

22 @op_final
23 def fail(self):
24 print("Failed to open valves")
25 return "try_open"
26

27 @op_final
28 def close(self):
29 self.a.close(); self.b.close()
30 return "try_open"
31

32 class AppV2:
33 def __init__(self):
34 self.s = Sector()
35

36 @op_initial_final
37 def main(self):
38 match self.s.try_open():
39 case "close":
40 self.s.close()
41 return ""
42 case "fail":
43 self.s.fail()
44 return ""

several water valves are grouped together), adding an extra layer of encapsu-
lation. Moreover, to make our code more reusable, class Sector abstracts try-
ing to open both valves in method try_open (one side effect) and then clos-
ing both valves in method close (another side effect). When modeling class
Sector, methods that produce multiple side effects must be distinguished as dif-
ferent operations: we write operation try open 1 to express the single trace in
method try open that returns "close" and we write operation try open 2 to
express both traces of method try open that return "fail".

Since Sector exposes more methods, its behavior is more general than that
of AppV1. We note, however, that the correctness claim of version 1 also holds in
version 2 (Line 1). Deriving the internal behavior is not entirely obvious: e.g.,
every trace in method try open that returns "close" must be able to precede
any sequence of method close; similarly, every trace of method try open that
returns fail must be able to precede method fail.

Verifying a Sector is more complicated than verifying an AppV1, not just
because the code is scattered across several methods, but because verifying
the life cycle of a Sector entails reasoning about the internal behavior that
arises from all possible usages of Sector, which in turn depends on the ordering
constraints of each method. Therefore, as an application complexity increases
vertically (by arranging systems hierarchically) and horizontally (by having
more operations and more systems in each level) the code gets more and more

Shelley: A Framework for Model Checking Call Ordering 99

partitioned and we rapidly lose track of the sequence of calls that represent the
behavior of our program. Shelley model checks the Sector by deriving the inter-
nal behavior, which captures all possible internal traces that arise during the
life cycle of Sector. To this end, Shelley must consider all possible orderings of
operations and all possible internal traces that such orderings may generate.

3 The Shelley Language

Shelley’s specification language precisely defines the ordering constraints of calls
when arranging systems hierarchically. We have a specification per system that
is usually defined in a text file with the .shy extension. We now describe the
abstract syntax of Shelley using EBNF notation.

S = base X s� c� | X (x : X)� o� c� s = initial? final? y → z�

o = s {e} e = skip | x.y | e; e | {e} + {e} | loop {e} c = claim φ

φ = a | ¬φ | φ1 ∧ φ2 | Xφ | φ1 U φ2

A system S can either be a base or a composite system. The former is identi-
fied by keyword base, has a name X and a zero or more operation signatures s.
Meta-variable X ranges over system names, and meta-variables y, z range over
operation names distinct from system names. A composite system uses zero or
more subsystems, notation (x : X), with each subsystem having a unique inter-
nal identifier x and the name of its system’s definition X. Finally, a composite
system defines zero or more operations o, each holding a signature and an oper-
ation body e. A signature s declares an operation y and has, optionally, an
initial and a final modifier; we also declare zero or more operations z that can
succeed y. An operation body is a regular expression, where skip corresponds
to ε, x.y corresponds to a call, sequencing is represented by e; e, union is given
by {e} + {e}, and the Kleene-star is denoted by loop {e}.

Shelley accepts correctness claims expressed in terms of a linear temporal
logic on finite traces (LTLf) [18]. A formula of LTLf , notation φ, uses the famil-
iar LTL notation. Let P be a set of propositional symbols (representing opera-
tions/calls) closed under the boolean connectives, where a ∈ P. Formula Xφ says
that φ holds in the next instant. Formula φ1 U φ2 states that φ1 holds until φ2

eventually holds. Standard boolean abbreviations are used: true, false, ∨ (dis-
junction), and =⇒ (implication). Derived formulas include: Fφ = true U φ
stands for φ eventually holds; Gφ = ¬F¬φ stands for φ hold at every step of
the trace; φ1 W φ2 = (φ1 U φ2) ∨ Gφ1 stands for φ1 has to hold at least until φ2

or φ1 must remain true forever. Although LTL and LTLf share the same syntax,
their semantics differ. The same formula can have different meanings according
to its interpretation on finite (LTLf) or infinite (LTL) traces [17]. The fact that
traces can be arbitrarily long but finite is a key characteristic of our domain of
interest, as we want to verifying what happens at the end of the life cycle of each
object, e.g., to permit resource deallocation or protocol termination.

100 C. M. de Ferro et al.

4 The Shelley Framework

We depict the structure of the Shelley framework in Fig. 1. In the following
sections, we detail each step of the framework and we formalize external and
internal behavior generation and validity. Our main theoretical result is the
decidability of the checking procedure.

Fig. 1. The structure of the Shelley framework.

Automata Theory Background. We use standard automata theory to for-
malize our verification process, e.g., as found in [73]. Here we briefly give the
relevant background to make the reading self contained. An NFA is a tuple
N = (Q,Σ,Δ, q0, F) consisting of a finite set of states Q, a finite set of input
symbols Σ called the alphabet, a transition function Δ : Q × Σ ∪ {ε} → ℘(Q),
where ℘(Q) is the power set of Q, an initial state q0 ∈ Q, and a set of final states
F ⊆ Q. A DFA is a tuple D = (Q,Σ, δ, q0, F) consisting of a finite set of states
Q, a finite set of input symbols Σ, a transition function δ : Q×Σ → Q, an initial
state q0 ∈ Q, and a set of final states F ⊆ Q. A word w = a1a2 . . . an over the
alphabet Σ is accepted by an NFA N if, and only if, exists a sequence of states
r0, r1, . . . , rn from Q such that r0 = q0, ri+1 ∈ Δ(ri, ai+1), for i = 0, . . . , n − 1,
and rn ∈ F . The language of N is the set of words accepted by N and denoted by
L(N). The language of a DFA is defined similarly. Let f : Σ → Γ∗ be a function
from one alphabet Σ to words over another alphabet Γ. An extension of function
f to Σ∗ → Γ∗ such that f(ε) = ε and f(wσ) = f(w)f(σ), for any w ∈ Σ∗ and
σ ∈ Σ is called an homomorphism. We can extend this function to any language
F by letting f(L) = {f(w)|w ∈ L}. When X is an automaton, we denote δX to
be the transition function of X, QX denotes the states of X, and FX denotes
the final states of X.

4.1 System Declaration

The first step in our framework is to parse the Shelley language into a system
declaration that is then used throughout the verification process. The following
definition makes precise the notion of a system declaration.

Definition 1 (System declaration). A system declaration is a tuple S =
(O, I, F,B,C, σ, ρ) where O is a set of operations a system exposes (its interface),
I ⊆ O is a set of initial operations, with I 	= ∅, F ⊆ O is a set of final operations,

Shelley: A Framework for Model Checking Call Ordering 101

B ⊆ O × O is a set of operation transitions (the external system behavior),
σ : U → S is a function from system names to systems, ρ : O → D is a function
from operations to DFAs over subsystems (the internal system behavior), and C
is a set of LTLf formulas (correctness claims).

4.2 Behavior Generation

The second step in our framework concerns system’s behavior generation. This
section formalizes deriving the external (vide Definition 2) and internal (vide
Definition 4) behaviors.

External System’s Behavior. We make precise the notion of the external
behavior by means of an NFA. The set of states includes an initial state q0 and
a state per operation. The transition function can be obtained by following the
signature section of each operation. It contains a transition from q0 to each state
that corresponds to an initial operation, and a transition from each operation
state to the succeeding operation state. An operation state is accepting whenever
the corresponding operation is final.

Definition 2 (External behavior). Let S = (O, I, F,B,C, σ, ρ). The exter-
nal behavior of S, notation Lsys(S), is defined as Lsys(S) = L(Nsys(S)), where
Nsys(S) = (O ∪ {q0}, O, δ, q0, F), for some q0, and δ is defined below.

δ(o1, o2) = {o2} if (o1, o2) ∈ B δ(q0, o) = {o} if o ∈ I

A given system is considered a subsystem if it is integrated by another system.
When declaring a subsystem, a unique name is assigned to it and prefixed to
every usage of an operation of that subsystem. Definition 3 makes precise the
notion of subsystem behavior.

Definition 3 (Subsystem behavior). Let S = (O, I, F,B,C, σ, ρ). We say
that the instantiation of S with u, notation Lsub(S, u), is the regular language
given by the homomorphism f over Lsys(S) where f(o) = u.o, binding the sub-
system named u to every operation o of every word in Lsys(S).

Internal System’s Behavior. Intuitively, Shelley derives the internal behavior
of a system by replacing each operation-edge in the external behavior by the
behavior representing each operation body. Definition 4 makes precise the notion
of the internal behavior. Figure 2 is the NFA that results from applying the
definition below to the Sector of Listing 2.1. We denote X � Y = X ∪ Y where
X ∩ Y = ∅. For brevity, let Lint(S) = L(Nint(S)).

Definition 4 (Internal behavior). Let S = (O, I, F,B,C, σ, ρ) and let M =
Nsys(S). The internal behavior, Lint(S), is defined as Lint(S) = L(Nint(S)),
where Nint(S) = (Q,Σ, δ, q0, F) for Q = QM

⊎

o∈O

Qρ(o), Σ =
⋃

u∈dom(σ)

Σu, Σu

102 C. M. de Ferro et al.

Fig. 2. Internal behavior of Sector given as a state diagram (NFA). Sink states are
omitted.

is the alphabet of the DFA that recognizes Lsub(σ(u), u), and δ is defined below
where q0,o denotes the initial state of ρ(o):

δ(q, ε) = {q0,o | o ∈ δM (q, o)} if q ∈ QM

δ(q, u.o) = {δρ(o′)(q, u.o)} if q ∈ Qρ(o′)

δ(q, ε) = {o} if q ∈ Fρ(o)

4.3 Valid Behavior Checking

The third step, which concerns behavior checking, ensures that both the external
and internal behaviors are valid. This section formalizes both techniques and
details how Shelley reports errors in case of an invalid internal behavior.

External Behavior Validity. Shelley ensures that all operations are reachable
from an initial operation in at least one usage of the system.

Definition 5 (Valid external behavior). An operation o is valid if o ∈ t
and t ∈ Lsys(S) for some trace t. A system’s external behavior is valid if all of
its operations are valid.

The algorithm used in Theorem 1 ensures that all operations of a system
declaration appear in at least one trace, thus disallowing erroneous cases.

Theorem 1 (Decidability of valid external behavior). Given a system S
we can decide whether S has a valid external behavior.

Proof. Let S = (O, I, F,B,C, σ, ρ) and let o ∈ O. We must show that it is
decidable to find a trace t such that o ∈ t and t ∈ Lsys(S). Step 1: build a
regular expression with all traces that contain o, using O as the alphabet. Step
2: intersect the regular language of step 1 with the regular language of Lsys(S).
Step 3: if the intersection is empty, then o ∈ t and t ∈ Lsys(S); otherwise o is
invalid. The algorithm is decidable because all steps are build from decidable
regular language operations.

Shelley: A Framework for Model Checking Call Ordering 103

Internal Behavior Validity. Shelley considers the internal behavior of a sys-
tem valid when every subsystem being used follows its specification. The fol-
lowing definitions make precise the notions of usage behavior and valid internal
behavior.

Definition 6 (Usage behavior). Let S = (O, I, F,B,C, σ, ρ). The projection
of S on u, notation proj(S, u), is the regular language given by the homomor-
phism f from Nint(S) into σ(u) with f(u.o) = o and f(u′.o) = ε when u 	= u′.

Definition 7 (Valid internal behavior). Let S = (O, I, F,B,C, σ, ρ). Sys-
tem S has a valid internal behavior if for all u ∈ dom(σ), then L(proj(S, u)) ⊆
Lsub(S, u).

Theorem 2 (Decidability of valid internal behavior). Given a system S
we can decide whether S has a valid internal behavior.

Proof. Let S = (O, I, F,B,C, σ, ρ) and let u ∈ dom(σ). We must show that
L(proj(S, u)) ⊆ Lsub(S, u) is decidable. L(proj(S, u)) is a regular language, since
it is a homomorphism from a regular language (Nint(S)). Likewise, Lsub(S, u)
is a regular language, since it is also a homomorphism from a regular language
Lsys(S). Set inclusion between regular languages is decidable.

Error Provenance. A crucial feature of any checker is giving meaningful feed-
back when verification fails. When a system’s internal behavior is invalid, our
tool: 1) finds a trace of calls that misuse at least one subsystem (internal trace);
2) determines which trace of operations caused that trace of calls; 3) identifies
the root-cause of the misusage. To obtain (1) (automata-)subtract the subsys-
tem behavior from the usage behavior; Shelley identifies the smallest internal
trace in the resulting FSM, with a breadth-first search. To obtain (2) annotate
the states of the internal behavior with the operation that produced each call.
To obtain (3) use the internal trace to navigate the behavior FSM, transitioning
from state to state according to the sequence of calls; if after a transition, the
algorithm finds itself in a non-accepting state that cannot reach any accepting
state, then the call used to transition is the root-cause of the error.

4.4 Model Generation and Claim Checking

Shelley model checks an NFA against an LTLf formula to verify correctness
claims. To this end, we rely on NuSMV [13]. Shelley converts an NFA into a
Kripke structure, and converts an LTLf into an LTL. The NFA may represent
either an external behavior or an internal behavior, but such distinction is irrel-
evant at this stage.

Translating from an LTLf Claim into an LTL Claim. Our implementation
follows [17]. Given an LTLf formula φ, function �·� yields an equivalent (infinite)
LTL. The idea is to use a sentinel variable end that encodes the end of a finite
trace. Let P represent the set of propositional symbols. Variable end must be
distinct from all variables mentioned in φ, i.e., end /∈ P. The translation must

104 C. M. de Ferro et al.

ensure that: variable end eventually holds, F end; once end is true it remains
true, G end =⇒ X end; and, no other variable in P becomes true after end is
true, G (end =⇒ ∧

a∈P ¬a). Finally, we define �·� as follows:

�a� = a �¬φ� = ¬�φ� �φ1 ∧ φ2� = �φ1� ∧ �φ2� �Xφ� = X (�φ� ∧ ¬end)

�φ1 U φ2� = �φ1� U (�φ2� ∧ ¬end)

Translating from an NFA into a NuSMV Model. We implement the
word-acceptance decision procedure of an automata in NuSMV. Let NFA
N = (Q,Σ,Δ, q0, F). Variable state ranges over Q and is initialized to q0;
variable action ranges over Σ and represents the next character of the string
being recognized; boolean variable end represents the end of the string being
recognized. The key insight is to use variables state and end to represent the
current state of automata N and variable action to represent the next character
of the string being recognized. A NuSMV simulation should only proceed until
variable end becomes true. While end 	= true update each variable as follows.
Update action non-deterministically from Σ. Update state by applying δ to the
current state and the next action, i.e., δ(state, action). Update end by checking
if the upcoming state is final; the intent is to let NuSMV non-deterministically
stop if the following state is final, otherwise it should continue (and end be set to
false). Formally, if δ(state, action) ∈ F , then set variable end to any boolean
non-deterministically. Otherwise set variable end to false. Our encoding requires
a fairness constraint on variable end.

5 Evaluation

In Sect. 5.1 we present statistics of the Aquamote® verification, along with cor-
rectness claims and counterexamples. We assess the bounds of the validity checks
of Shelley in a benchmark (Sect. 5.2), by increasing the number of levels of hierar-
chy (vertical), and by increasing the number of operations and calls (horizontal).
To further exercise the correctness of our implementation we run Shelley against
a test suite of 297 specifications, which include 33 negative tests.

Setup. Our experiments run on an 8-core Apple M1 Chip with 16GiB of RAM ,
and Python 3.10.5. We follow the start-up performance methodology detailed by
Georges et al. [32], taking 11 samples of the execution time of each benchmark
and discarding the first sample. Next, we compute the mean of the 10 samples
with a confidence interval of 95%, using the standard normal z-statistic.

5.1 Verifying Aquamote® with Shelley

Our use case is based on the Aquamote®, a wireless controller that switches
water valves according to a scheduled irrigation plan. The software consists of
9 classes, which yield 9 Shelley system declarations. Class App is the entry point

Shelley: A Framework for Model Checking Call Ordering 105

Table 1. Checking Aquamote® with Shelley.

MicroPython Shelley NuSMV

System LoC Annot. LoC Claims Subs. Oper. Calls LoC

App 34 3 6 1 1 2 19 103

Controller 72 12 29 5 3 9 18 237

HTTP 177 12 12 1 0 10 0 –

Power 13 3 3 0 0 2 0 –

Sectors 45 7 14 1 5 4 12 152

Timer 12 2 2 0 0 1 0 –

Valve 17 3 3 0 0 2 0 –

WiFi 71 8 8 1 0 6 0 –

Wireless 84 13 30 4 2 11 21 301

TOTAL 525 63 107 13 11 47 70 793

and it uses an instance of class Controller. The latter encapsulates handling the
success/error conditions of the communication layer (one instance of Wireless),
decides when to operate the group of valves (one instance of Sectors), and
decides when to suspend (one instance of Power). Class Sectors (an extension
from Listing 2.4) integrates four valves (Valve) and one timer (Timer), encapsu-
lating the behavior where the four valves are open and the four valves are shut,
mediated by a timer. Class Wireless integrates a Wi-Fi client and an HTTP
client, encapsulating both protocols within a single communication interface.
The remaining classes are all base classes.

Statistics. Table 1 lists statistics for each system declaration. For instance, class
Wireless has 90 lines of code, 13 lines are source code annotations to generate
the specification, which includes 4 claims, one per line. Our MicroPython exten-
sion automatically generates a Wireless specification of 30 lines of Shelley code.
Shelley then generates the external and internal behaviors from the specification,
checks the validity of both behaviors, and, finally, generates a NuSMV model with
301 lines of code that corresponds to the internal specification. For each system
we report information about 1) MicroPython source code: lines of code (LoC) and
number of Shelley annotations (Annot.); 2) Shelley: lines of code and number of
correctness claims (Claims), subsystems (Subs.), system operations (Oper.) and
calls (Calls); and 3) NuSMV model: lines of code. The NuSMV model is only gen-
erated for systems with claims. We present the verification time in Fig. 3.

Checking Requirements. We illustrate how claims can be used to enforce
strict temporal properties that relate more than one subsystem. We discuss an
example of a requirement that is checked using a temporal claim taken from the
specification of Sectors: after turning a valve on, a timer must be waited upon,
and exactly after that, the valve must be turned off. The claim shown below
applies this requirement to the four valves:
check G ((v1.on -> X (t.wait & (X (v1.off)))) & (v2.on -> X (t.wait & (X (v2.off))))

& (v3.on -> X (t.wait & (X (v3.off)))) & (v4.on -> X (t.wait & (X (v4.off)))));

https://github.com/cajomferro/shelley/blob/4a83694d509823f56cf55941b3ff721b241a17f2/demos/paper_aquamote_example/sectors.py

106 C. M. de Ferro et al.

Fig. 3. Mean verification time in seconds for each specification, which includes gener-
ating the FSMs for the external and internal behaviors, the validity checks, generating
the NuSMV model, and invoking NuSMV. Total verification time for all systems is
3.99 s.

The specification of Timer states that method wait can be invoked without
restrictions. However, our temporal claim constraints the timer when it is used
after a valve is turned on. Calling t.wait twice in between valve activation results
in the following error message:
Error in specification: FAIL TO MEET REQUIREMENT
Formula: G ((v1.on -> X (t.wait & (X (v1.off)))) & (v2.on -> X (t.wait & (X (v2.off))))

& (v3.on -> X (t.wait & (X (v3.off)))) & (v4.on -> X (t.wait & (X (v4.off)))))
Counter example: v2.on, t.wait, v2.off, v1.on, >t.wait, t.wait<, v1.off

We further note that the temporal claim disallows opening more than one valve
at the same time, which is crucial in the Aquamote® use case given that in
many cases the water pressure is insufficient.

5.2 Performance Impact of Behavior Checking

In this section, we measure the performance of behavior generation (cf. Sect. 4.2)
and valid behavior checking (cf. Sect. 4.3). In this experiment, the models have
no claims, so the claim checking algorithm does not run.

Experiment A. We evaluate the effect of increasing the number of hierarchy
levels in terms of time, by ranging from 1 to 12 levels. Level 1 instantiates
twelve base systems. Every subsequent level instantiates twelve systems of the
level below, e.g., the system in level 5 instantiates twelve systems of level 4.

Discussion. In Fig. 4a, we see that the verification time grows logarithmically.
The verification takes ∼1.5 s per level and each level grows exponentially in the
number of systems. Shelley verifies a total of 1212 (∼243) systems (approximately
9 trillion system) under 10 s. Since every system has exactly one operation,
this is also equivalent to checking a specification with 9 trillion operations. The
benchmarks show that the vertical growth follows a logarithmic increase, which
contrasts with the exponential increase of the horizontal growth.

https://github.com/cajomferro/shelley/blob/c17c878d55d49764c40ae453be5df0ab16a68c4e/demos/paper_aquamote_example/timer.py

Shelley: A Framework for Model Checking Call Ordering 107

Experiment B. We explore the limits of increasing the number of operations
that can be verified under 10 s of time, as shown in Fig. 4c. We define different
systems with an increasing number of operations. Figure 4b shows the impact of
varying the number of operations between 1 and 81, in increments of 10.

Experiment C. We explore the limits of increasing the number of operations,
and, separately, the number of calls, that can be verified under 10 s of time, as
shown in Fig. 4c. We define different systems with an increasing number of calls.
Every system has exactly one operation and one subsystem. Figure 4c shows the
impact of varying the number of calls between 1 and 311, in increments of 10.

Discussion of Experiments B and C. Adding calls has a smaller impact in the
verification time than adding operations. For instance, checking 71 operations
takes ∼4, 5 s while checking the same number of calls takes less than 1 s. These
results highlight the importance of encapsulation to achieve compositional ver-
ification. For instance, checking a single system that integrates a total of 71
calls takes ∼9 s (Fig. 4b), versus verifying a system with 122 subsystems that
integrates a total of 144 calls takes less than 2 s (Fig. 4a).

(a) Experiment A: versus
total number of subsys-
tems (log-log scale). We
increase the number of hi-
erarchy levels in terms of
time, by ranging from 1
to 12 levels, where sub-
sequent level instantiates
twelve systems of the level
below.

(b) Experiment B: versus
number of operations (lin-
ear scale). We define dif-
ferent systems with an in-
creasing number of oper-
ations ranging between 1
and 81, in increments of
10.

(c) Experiment C: versus
number of calls per opera-
tion (linear scale). We de-
fine different systems with
an increasing number of
calls ranging between 1
and 311, in increments of
10. Every system has ex-
actly one operation and
one subsystem.

Fig. 4. Measuring the behavior checking time, in seconds.

6 Related Work

Many model checkers address concurrency problems focusing on process com-
munication and internal state-change, rather than on ordering constraints. This
includes well-known tools such as SPIN [40], MCLR2 [35], UPPAAL [52],
NuSMV [13], LTSA [55], and TLA+ [49]. Java PathFinder [33] and the Ban-
dera Tool Set [38], for Java, and JKind [27], for Lustre, are examples of model
checkers targeting general-purpose programming languages [27,33,38] but again
they focus on concurrency rather than ensuring specific requirements about the

108 C. M. de Ferro et al.

behavior of a program. Assume-guarantee reasoning [58,68] specifies require-
ments in terms of an internal state and pre-/post-conditions, and overcomes the
problem of state explosion with compositional verification [10,64]. This tech-
nique has been used by different modeling tools [1,53,55]. The Gamma State-
chart Composition Framework [60] offers a modeling language to compose Stat-
echarts [37,69], which can then be model-checked. Statecharts have been applied
in many different contexts, including object-oriented languages [14] and verified
using process calculi as well [70]. VeriSolid [59,63] applies formal methods to ver-
ify smart contracts specified as transition-systems, and includes a visualization
tool.

Typestates [77] refine the concept of type with information about which oper-
ations can be used in a particular context. Multiple authors apply typestates
to object-oriented programming [2,8,11,16,24,28,29,44,48,61,62,78]. Plaid is
a programming language designed from the ground up to explore types-
tates [2,8,28,78]. The main challenges being tackled include object aliasing, lin-
earity, and access permission. Some authors are applying typestates to general-
purpose programming languages [4,11,19,24,44,48,61,81]. Shelley explores a
similar notion but from a model checking perspective; moreover typestates are
based on state-change, rather than on call ordering constraints.

Type systems allow for the verification of a fix set of properties that are
guaranteed by the type discipline itself. Type-and-effect systems [34,47,65,75,
76,79] and permissive interfaces [39] are concerned with checking that a program
respects a certain effect discipline. Sequential effect systems [79] reason about
the program order.

Session types [15,20,41,42,50,51,82], a form of behavioral type, encode the
data flow in a conversation between two or more parties [20,51,82] and focus on
reasoning about the data flow in a conversation between two or more parties.
Session types have been also explored for object-oriented languages [23,30,71,
72,80]. Similar to Shelley, session types express ordered operations, but it is not
possible to compose parties hierarchically and achieve a modular verification.

Behavior protocols [46,54,66,67] have been used to verify software compo-
nents. They can describe stateful component systems, be automatically checked
for behavior validity (known as protocol conformance) [54], and model-checked
at different levels [46,66] but lack any form of component hierarchy, as this for-
malism was envisioned to describe peer-to-peer and client-server architectures.

Finally, the following are programming languages that can be verified for
correctness, but lack the notion of hierarchy of events that we explore in this
paper. P [22] is a domain-specific programming language to specify a system as a
collection of interacting state machines that asynchronously communicate with
each other using events. ModP [21] extends P with a notion of compositionality
expressed as an actor system. Rebeca [74] follows similar principles and focus
on implementations details. JavaBIP [9] is a framework that uses annotations
directly on Java code in order to coordinate existing concurrent software com-
ponents. Synchronous reactive languages [5,6,36] share a focus with Shelley on
ordered event systems.

Shelley: A Framework for Model Checking Call Ordering 109

7 Conclusion

In this paper, we introduce Shelley, a domain-specific model checker where the
models represent ordered actions and the requirements are LTLf formulas. We
formalize the process of obtaining the internal behavior from a Shelley model,
as well as a decision procedure to check its validity with respect to the given
ordering constraints, which we prove to be decidable. Further, we present a
translation from a model’s behavior into an off-the-shelf model checker. We assess
our approach on an industrial case study, which includes detailed statistics of
our specification, e.g., 107 lines of Shelley generate 793 lines of NuSMV, verified
in less than 4 s. Finally, we evaluate the performance of our integration checker
on three scenarios and show that Shelley can check 1212 subsystems under 10 s,
highlighting the importance of our modular verification.

Acknowledgements. This material is based upon work supported by the National
Science Foundation under Grant No. 2204986. This work was supported by FCT
through PhD scholarship SFRH/BD/131418/2017, and the LASIGE Research Unit,
ref. UIDB/00408/2020 and ref. UIDP/00408/2020.

Data Availability Statement. The artifact is available in the Zenodo repository:
doi:10.5281/zenodo.7884206

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, Cambridge (2010)

2. Aldrich, J., Sunshine, J., Saini, D., Sparks, Z.: Typestate-oriented programming.
In: OOPSLA, New York, NY, USA, pp. 1015–1022. ACM (2009). https://doi.org/
10.1145/1639950.1640073

3. Bauer, A., Leucker, M., Schallhart, C.: Comparing ltl semantics for runtime veri-
fication. J. Log. Comput. 20(3), 651–674 (2010)

4. Beckman, N.E., Kim, D., Aldrich, J.: An empirical study of object protocols in
the wild. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 2–26. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22655-7 2

5. Benveniste, A., Le Guernic, P., Jacquemot, C.: Synchronous Programming with
Events and Relations: the SIGNAL Language and Its Semantics. Sci. Comput.
Program. 16(2), 103–149 (1991). https://doi.org/10.1016/0167-6423(91)90001-E

6. Berry, G., Cosserat, L.: The ESTEREL synchronous programming language and
its mathematical semantics. In: Brookes, S.D., Roscoe, A.W., Winskel, G. (eds.)
CONCURRENCY 1984. LNCS, vol. 197, pp. 389–448. Springer, Heidelberg (1985).
https://doi.org/10.1007/3-540-15670-4 19

7. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 16

8. Bierhoff, K., Aldrich, J.: Modular typestate checking of aliased objects. In: Gabriel,
R.P., Bacon, D.F., Lopes, C.V., Jr., G.L.S. (eds.) OOPSLA. pp. 301–320. ACM
(2007). https://doi.org/10.1145/1297027.1297050

https://doi.org/10.5281/zenodo.7884206
https://doi.org/10.1145/1639950.1640073
https://doi.org/10.1145/1639950.1640073
https://doi.org/10.1007/978-3-642-22655-7_2
https://doi.org/10.1016/0167-6423(91)90001-E
https://doi.org/10.1007/3-540-15670-4_19
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1145/1297027.1297050

110 C. M. de Ferro et al.

9. Bliudze, S., Mavridou, A., Szymanek, R., Zolotukhina, A.: Exogenous coordination
of concurrent software components with Javabip. Softw. Pract. Exp. 47(11), 1801–
1836 (2017). https://doi.org/10.1002/spe.2495

10. Bourbouh, H., et al.: Integrating formal verification and assurance: an inspection
rover case study. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez, I.
(eds.) NFM 2021. LNCS, vol. 12673, pp. 53–71. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-76384-8 4

11. Bravetti, M., et al.: Behavioural types for memory and method safety in a core
object-oriented language. In: Oliveira, B.C.S. (ed.) APLAS 2020. LNCS, vol. 12470,
pp. 105–124. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64437-6 6

12. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1 2

13. Cimatti, A., et al.: NuSMV 2: an OpenSource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

14. Coleman, D., Hayes, F., Bear, S.: Introducing Objectcharts or How to Use State-
charts in Object-Oriented Design. IEEE Trans. Software Eng. 18(1), 9–18 (1992).
https://doi.org/10.1109/32.120312

15. Coppo, M., Dezani-Ciancaglini, M., Padovani, L., Yoshida, N.: A gentle introduc-
tion to multiparty asynchronous session types. In: Bernardo, M., Johnsen, E.B.
(eds.) SFM 2015. LNCS, vol. 9104, pp. 146–178. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-18941-3 4

16. Dai, Z., Mao, X., Lei, Y., Qi, Y., Wang, R., Gu, B.: Compositional mining of
multiple object API protocols through state abstraction. Sci. World J. (2013).
https://doi.org/10.1155/2013/171647

17. De Giacomo, G., De Masellis, R., Montali, M.: Reasoning on LTL on finite traces:
insensitivity to infiniteness. In: AAAI, pp. 1027–1033. AAAI Press (2014)

18. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: IJCAI, pp. 854–860. AAAI Press (2013)

19. DeLIne, R., Fahndrich, M.: The fugue protocol checker: Is your software baroque?
Tech. report MSR-TR-2004-07, January 2004. https://www.microsoft.com/en-us/
research/publication/the-fugue-protocol-checker-is-your-software-baroque/

20. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2 10

21. Desai, A., Phanishayee, A., Qadeer, S., Seshia, S.A.: Compositional program-
ming and testing of dynamic distributed systems. Proc. ACM Program. Lang.
2(OOPSLA) (2018). https://doi.org/10.1145/3276529

22. Desai, A., et al.: P: Safe Asynchronous Event-driven Programming. In: PLDI, pp.
321–332. ACM (2013)

23. Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Drossopoulou, S.: Session types
for object-oriented languages. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067,
pp. 328–352. Springer, Heidelberg (2006). https://doi.org/10.1007/11785477 20

24. Duarte, J., Ravara, A.: Retrofitting typestates into rust. In: Vasconcellos, C.D.,
Roggia, K.G., Bousfield, P., Collereii, V., Fernandes, J.P., Pereira, M. (eds.) SBLP,
pp. 83–91. ACM (2021). https://doi.org/10.1145/3475061.3475082

25. Dutle, A., et al.: From requirements to autonomous flight: an overview of the
monitoring ICAROUS project. In: Luckcuck, M., Farrell, M. (eds.) FMAS. EPTCS,
vol. 329, pp. 23–30 (2020). https://doi.org/10.4204/EPTCS.329.3

https://doi.org/10.1002/spe.2495
https://doi.org/10.1007/978-3-030-76384-8_4
https://doi.org/10.1007/978-3-030-76384-8_4
https://doi.org/10.1007/978-3-030-64437-6_6
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1109/32.120312
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1155/2013/171647
https://www.microsoft.com/en-us/research/publication/the-fugue-protocol-checker-is-your-software-baroque/
https://www.microsoft.com/en-us/research/publication/the-fugue-protocol-checker-is-your-software-baroque/
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1145/3276529
https://doi.org/10.1007/11785477_20
https://doi.org/10.1145/3475061.3475082
https://doi.org/10.4204/EPTCS.329.3

Shelley: A Framework for Model Checking Call Ordering 111

26. de Ferro, C.M., Cogumbreiro, T., Martins, F.: Shelley: a framework for model
checking call ordering on hierarchical systems, May 2023. https://doi.org/10.5281/
zenodo.7884206

27. Gacek, A., Backes, J., Whalen, M., Wagner, L., Ghassabani, E.: The JKind model
checker. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982,
pp. 20–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96142-2 3

28. Garcia, R., Tanter, E., Wolff, R., Aldrich, J.: Foundations of typestate-oriented
programming. ACM Trans. Program. Lang. Syst. 36(4) (2014). https://doi.org/
10.1145/2629609

29. Gay, S.J., Gesbert, N., Ravara, A., Vasconcelos, V.T.: Modular session types for
objects. Log. Methods Comput. Sci. 11(4) (2015). https://doi.org/10.2168/LMCS-
11(4:12)2015

30. Gay, S.J., Vasconcelos, V.T., Ravara, A., Gesbert, N., Caldeira, A.Z.: Modular ses-
sion types for distributed object-oriented programming. In: Hermenegildo, M.V.,
Palsberg, J. (eds.) POPL, pp. 299–312. ACM (2010). https://doi.org/10.1145/
1706299.1706335

31. George, D.: MicroPython (2022). https://micropython.org
32. Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous java performance

evaluation. In: OOPSLA, pp. 57–76. ACM (2007)
33. Giannakopoulou, D., Păsăreanu, C.S.: Interface generation and compositional ver-

ification in JavaPathfinder. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS,
vol. 5503, pp. 94–108. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-00593-0 7

34. Gordon, C.S.: Polymorphic iterable sequential effect systems. ACM Trans. Pro-
gram. Lang. Syst. 43(1) (2021). https://doi.org/10.1145/3450272

35. Groote, J.F., Keiren, J.J.A., Luttik, B., de Vink, E.P., Willemse, T.A.C.: Modelling
and analysing software in mCRL2. In: Arbab, F., Jongmans, S.-S. (eds.) FACS
2019. LNCS, vol. 12018, pp. 25–48. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-40914-2 2

36. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language LUSTRE. Proc. IEEE 79(9), 1305–1320 (1991)

37. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987). https://doi.org/10.1016/0167-6423(87)90035-9

38. Hatcliff, J., Dwyer, M.: Using the Bandera tool set to model-check properties of
concurrent Java software. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001.
LNCS, vol. 2154, pp. 39–58. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-44685-0 5

39. Henzinger, T.A., Jhala, R., Majumdar, R.: Permissive interfaces. In: ESEC/FSE.
p. 31–40. ACM (2005). https://doi.org/10.1145/1081706.1081713

40. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997). https://doi.org/10.1109/32.588521

41. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

42. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1-9:67 (2016). https://doi.org/10.1145/2827695

43. Jacklin, S.A.: Survey of verification and validation techniques for small satellite
software development. Technical report (2015)

https://doi.org/10.5281/zenodo.7884206
https://doi.org/10.5281/zenodo.7884206
https://doi.org/10.1007/978-3-319-96142-2_3
https://doi.org/10.1145/2629609
https://doi.org/10.1145/2629609
https://doi.org/10.2168/LMCS-11(4:12)2015
https://doi.org/10.2168/LMCS-11(4:12)2015
https://doi.org/10.1145/1706299.1706335
https://doi.org/10.1145/1706299.1706335
https://micropython.org
https://doi.org/10.1007/978-3-642-00593-0_7
https://doi.org/10.1007/978-3-642-00593-0_7
https://doi.org/10.1145/3450272
https://doi.org/10.1007/978-3-030-40914-2_2
https://doi.org/10.1007/978-3-030-40914-2_2
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1007/3-540-44685-0_5
https://doi.org/10.1007/3-540-44685-0_5
https://doi.org/10.1145/1081706.1081713
https://doi.org/10.1109/32.588521
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/2827695

112 C. M. de Ferro et al.

44. Jakobsen, M., Ravier, A., Dardha, O.: Papaya: global typestate analysis of aliased
objects. In: Veltri, N., Benton, N., Ghilezan, S. (eds.) PPDP, pp. 19:1–19:13. ACM
(2021). https://doi.org/10.1145/3479394.3479414

45. Katis, A., Mavridou, A., Giannakopoulou, D., Pressburger, T., Schumann, J.:
Capture, analyze, diagnose: Realizability checking of requirements in FRET. In:
Shoham, S., Vizel, Y. (eds.) CAV. LNCS, vol. 13372, pp. 490–504. Springer (2022).
https://doi.org/10.1007/978-3-031-13188-2 24

46. Kofron, J.: Checking software component behavior using behavior protocols and
spin. In: Proceedings of SAC, pp. 1513–1517. ACM (2007). https://doi.org/10.
1145/1244002.1244326

47. Koskinen, E., Terauchi, T.: Local temporal reasoning. In: CSL-LICS. ACM (2014).
https://doi.org/10.1145/2603088.2603138

48. Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking protocols with
mungo and stmungo: a session type toolchain for java. Sci. Comput. Program.
155, 52–75 (2018). https://doi.org/10.1016/j.scico.2017.10.006

49. Lamport, L.: Who builds a house without drawing blueprints? Commun. ACM
58(4), 38–41 (2015). https://doi.org/10.1145/2736348

50. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: POPL, pp. 221–232. ACM (2015). https://doi.org/10.1145/
2676726.2676964

51. Lange, J., Yoshida, N.: Verifying asynchronous interactions via communicating
session automata. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
97–117. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 6

52. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1–2), 134–152 (1997). https://doi.org/10.1007/s100090050010

53. Liu, J., Backes, J.D., Cofer, D., Gacek, A.: From design contracts to component
requirements verification. In: Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016.
LNCS, vol. 9690, pp. 373–387. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40648-0 28

54. Mach, M., Plásil, F., Kofron, J.: Behavior protocol verification: fighting state explo-
sion. Int. J. Comput. Inf. Sci. 6(1), 22–30 (2005)

55. Magee, J., Kramer, J.: Concurrency: State Models and Java Programs. Wiley, 2
edn. (2006)

56. Mavridou, A., Bourbouh, H., Garoche, P., Giannakopoulou, D., Pressburger, T.,
Schumann, J.: Bridging the gap between requirements and simulink model analysis.
In: Sabetzadeh, M., et al. (eds.) REFSQ. CEUR Workshop Proceedings, vol. 2584.
CEUR-WS.org (2020)

57. Mavridou, A., et al.: The ten lockheed martin cyber-physical challenges: formalized,
analyzed, and explained. In: Breaux, T.D., Zisman, A., Fricker, S., Glinz, M. (eds.)
RE, pp. 300–310. IEEE (2020). https://doi.org/10.1109/RE48521.2020.00040

58. Mavridou, A., Katis, A., Giannakopoulou, D., Kooi, D., Pressburger, T., Whalen,
M.W.: From partial to global assume-guarantee contracts: compositional realiz-
ability analysis in FRET. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM
2021. LNCS, vol. 13047, pp. 503–523. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-90870-6 27

59. Mavridou, A., Laszka, A., Stachtiari, E., Dubey, A.: Verisolid: Correct-by-design
smart contracts for ethereum. CoRR abs/1901.01292 (2019). http://arxiv.org/abs/
1901.01292

https://doi.org/10.1145/3479394.3479414
https://doi.org/10.1007/978-3-031-13188-2_24
https://doi.org/10.1145/1244002.1244326
https://doi.org/10.1145/1244002.1244326
https://doi.org/10.1145/2603088.2603138
https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/10.1145/2736348
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/978-3-319-40648-0_28
https://doi.org/10.1007/978-3-319-40648-0_28
https://doi.org/10.1109/RE48521.2020.00040
https://doi.org/10.1007/978-3-030-90870-6_27
https://doi.org/10.1007/978-3-030-90870-6_27
http://arxiv.org/abs/1901.01292
http://arxiv.org/abs/1901.01292

Shelley: A Framework for Model Checking Call Ordering 113

60. Molnár, V., Graics, B., Vörös, A., Majzik, I., Varró, D.: The Gamma statechart
composition framework: design, verification and code generation for component-
based reactive systems. In: ICSE, pp. 113–116. ACM (2018). https://doi.org/10.
1145/3183440.3183489

61. Mota, J., Giunti, M., Ravara, A.: Java Typestate checker. In: Damiani, F., Dardha,
O. (eds.) COORDINATION 2021. LNCS, vol. 12717, pp. 121–133. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-78142-2 8

62. Naeem, N.A., Lhoták, O.: Typestate-like analysis of multiple interacting objects.
In: Harris, G.E. (ed.) OOPSLA, pp. 347–366. ACM (2008). https://doi.org/10.
1145/1449764.1449792

63. Nelaturu, K., Mavridou, A., Veneris, A.G., Laszka, A.: Verified development and
deployment of multiple interacting smart contracts with VeriSolid. In: ICBC, pp.
1–9. IEEE (2020). https://doi.org/10.1109/ICBC48266.2020.9169428

64. Nguyen, T.K., Sun, J., Liu, Y., Dong, J.S.: A model checking framework for hierar-
chical systems. In: ASE, pp. 633–636. IEEE (2011). https://doi.org/10.1109/ASE.
2011.6100143

65. Nielson, F., Nielson, H.R.: Type and effect systems. In: Olderog, E.-R., Steffen, B.
(eds.) Correct System Design. LNCS, vol. 1710, pp. 114–136. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48092-7 6

66. Paŕızek, P., Plasil, F., Kofron, J.: Model checking of software components: combin-
ing java pathfinder and behavior protocol model checker. In: Proceedings of SEW,
pp. 133–141. IEEE (2006). https://doi.org/10.1109/SEW.2006.23

67. Plasil, F., Visnovsky, S.: Behavior protocols for software components. IEEE
Trans. Software Eng. 28(11), 1056–1076 (2002). https://doi.org/10.1109/TSE.
2002.1049404

68. Pnueli, A.: In Transition From Global to Modular Temporal Reasoning about
Programs. In: Apt, K.R. (ed.) LMCS. NATO ASI Series, vol. 13, pp. 123–144.
Springer, Heidelberg (1984). https://doi.org/10.1007/978-3-642-82453-1 5

69. Pnueli, A., Shalev, M.: What is in a step: on the semantics of statecharts. In:
Ito, T., Meyer, A.R. (eds.) TACS 1991. LNCS, vol. 526, pp. 244–264. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-54415-1 49

70. Roscoe, A.W., Wu, Z.: Verifying statemate statecharts using CSP and FDR. In:
Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 324–341. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11901433 18

71. Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multiparty
sessions for safe distributed programming. In: Müller, P. (ed.) ECOOP. LIPIcs,
vol. 74, pp. 24:1–24:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017).
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24

72. Scalas, A., Yoshida, N.: Lightweight session programming in scala. In: Krish-
namurthi, S., Lerner, B.S. (eds.) ECOOP. LIPIcs, vol. 56, pp. 21:1–21:28.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.org/10.
4230/LIPIcs.ECOOP.2016.21

73. Sipser, M.: Introduction to the Theory of Computation, 1st edn.. International
Thomson Publishing (1996)

74. Sirjani, M., Jaghoori, M.M.: Ten years of analyzing actors: Rebeca experience.
In: Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Sys-
tems, Biological Systems. LNCS, vol. 7000, pp. 20–56. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24933-4 3

75. Skalka, C.: Trace effects and object orientation. In: PPDP, pp. 139–150. ACM
(2005). https://doi.org/10.1145/1069774.1069787

https://doi.org/10.1145/3183440.3183489
https://doi.org/10.1145/3183440.3183489
https://doi.org/10.1007/978-3-030-78142-2_8
https://doi.org/10.1145/1449764.1449792
https://doi.org/10.1145/1449764.1449792
https://doi.org/10.1109/ICBC48266.2020.9169428
https://doi.org/10.1109/ASE.2011.6100143
https://doi.org/10.1109/ASE.2011.6100143
https://doi.org/10.1007/3-540-48092-7_6
https://doi.org/10.1109/SEW.2006.23
https://doi.org/10.1109/TSE.2002.1049404
https://doi.org/10.1109/TSE.2002.1049404
https://doi.org/10.1007/978-3-642-82453-1_5
https://doi.org/10.1007/3-540-54415-1_49
https://doi.org/10.1007/11901433_18
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.1007/978-3-642-24933-4_3
https://doi.org/10.1145/1069774.1069787

114 C. M. de Ferro et al.

76. Skalka, C., Smith, S., Van Horn, D.: Types and trace effects of higher order
programs. J. Funct. Program. 18(2), 179–249 (2008). https://doi.org/10.1017/
S0956796807006466

77. Strom, R.E., Yemini, S.: Typestate: a programming language concept for enhancing
software reliability. IEEE Trans. Softw. Eng. 12(1), 157–171 (1986). https://doi.
org/10.1109/TSE.1986.6312929

78. Sunshine, J., Naden, K., Stork, S., Aldrich, J., Tanter, É.: First-class state change
in plaid. In: Lopes, C.V., Fisher, K. (eds.) OOPSLA, pp. 713–732. ACM (2011).
https://doi.org/10.1145/2048066.2048122

79. Tate, R.: The sequential semantics of producer effect systems. In: POPL, pp. 15–26.
ACM (2013). https://doi.org/10.1145/2429069.2429074

80. Vasconcelos, V.T.: Sessions, from types to programming languages. Bull. EATCS
103, 53–73 (2011)

81. Voinea, A.L., Dardha, O., Gay, S.J.: Typechecking Java protocols with [ST]Mungo.
In: Gotsman, A., Sokolova, A. (eds.) FORTE 2020. LNCS, vol. 12136, pp. 208–224.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50086-3 12

82. Zeng, H., Kurz, A., Tuosto, E.: Interface automata for choreographies. Electron.
Proc. Theor. Comput. Sci. 304, 1–19 (2019). https://doi.org/10.4204/eptcs.304.1

https://doi.org/10.1017/S0956796807006466
https://doi.org/10.1017/S0956796807006466
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1145/2048066.2048122
https://doi.org/10.1145/2429069.2429074
https://doi.org/10.1007/978-3-030-50086-3_12
https://doi.org/10.4204/eptcs.304.1

STARK: A Software Tool for the Analysis
of Robustness in the unKnown Environment

Valentina Castiglioni1(B) , Michele Loreti2 , and Simone Tini3

1 Reykjavik University, Reykjavik, Iceland
vale.castiglioni@gmail.com

2 University of Camerino, Camerino, Italy
3 University of Insubria, Como, Italy

Abstract. Cyber-Physical Systems (CPSs) are characterised by the interaction
of various agents operating under highly changing and, sometimes, unpredictable
environmental conditions. It is therefore fundamental to verify whether these sys-
tems are robust against perturbations, i.e., whether systems are able to function
correctly even in perturbed circumstances. In this paper we present the Software
Tool for the Analysis of Robustness in the unKnown environment (STARK), our
Java tool for the specification, analysis and testing of robustness properties of
CPSs. STARK includes: (i) a specification language for systems behaviour, per-
turbations, distances on systems behaviours, and properties of those distances; (ii)
a module for the simulation of system behaviours and their perturbed versions;
(iii) a module for the evaluation of distances between behaviours; (iv) a statistical
model checker for formulae in the Robustness Temporal Logic (RobTL), a tem-
poral logic for the specification and verification of properties on the evolution of
distances between the behaviours of CPSs, and thus also of robustness properties.

1 Introduction

Cyber-Physical Systems (CPSs) are characterised by the interaction of various agents
operating under highly changing and, sometimes, unpredictable environmental condi-
tions. For instance, the dynamic physical environmental processes can only be approx-
imated in order to become computationally tractable; some agents may appear, disap-
pear, or become temporarily unavailable, thus causing faults or conflicts; sensors may
introduce measurement errors; etc. This means that the behaviour of the agents in a
CPS is subject to uncertainty and perturbations. On top of that, there is a class of secu-
rity threats which is unique to CPSs, namely cyber-physical attacks: for instance, an
attacker can induce a series of perturbations in the sensed data in order to entail unex-
pected, hazardous, behaviour of the system.

It is therefore fundamental to verify whether a CPS is robust against perturbations,
i.e., whether the system is able to function correctly even in the presence of perturba-
tions. Although there is lack of agreement on the “correct” mathematical formalisation
of robustness (see, e.g., [9,21,23,24]), this notion is usually presented as a measure of
the capability of a system to tolerate perturbations in the environmental conditions and
still fulfil its tasks. In other words, robustness can be specified, in general, as a temporal
property of distances between the nominal and the perturbed behaviours of a system.
To this purpose, we have recently proposed the Robustness Temporal Logic (RobTL) [4]
c© IFIP International Federation for Information Processing 2023
S.-S. Jongmans and A. Lopes (Eds.): COORDINATION 2023, LNCS 13908, pp. 115–132, 2023.
https://doi.org/10.1007/978-3-031-35361-1_6

https://eapls.org/pages/artifact_badges/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35361-1_6&domain=pdf
http://orcid.org/0000-0002-8112-6523
http://orcid.org/0000-0003-3061-863X
http://orcid.org/0000-0002-3991-5123
https://doi.org/10.1007/978-3-031-35361-1_6

116 V. Castiglioni et al.

to capture robustness properties: RobTL is the first temporal logic for the specification
and analysis of distances between the behaviours of CPSs over a finite time horizon.

In this paper we pursue our quest for a formal framework allowing us to specify and
analyse distances between behaviours of systems operating in the presence of uncer-
tainties, by presenting the Software Tool for the Analysis of Robustness in the unKnown
environment (STARK), available at https://github.com/quasylab/jspear1. STARK is a Java
tool for the specification, analysis and testing of robustness properties of CPSs that
is based on the evolution sequence model from [3] for the representation of systems
behaviour, and on RobTL for the specification of distances, perturbations, and proper-
ties. Briefly, evolution sequences are countable sequences of probability measures over
a set of application-relevant data, each representing the interaction of the agents with the
environment at a given time step. Then, atomic propositions in RobTL are defined by
means of two simple languages: one to specify the effect of perturbations over an evo-
lution sequence, and one to specify distance expressions between an evolution sequence
and its perturbed version.

Specifically, STARK consists of a front-end and a Java library, and includes:

– A specification language for the system (agents, environment, and their interaction),
for perturbations, for distance expressions, and for RobTL formulae;

– A module for the simulation of systems behaviours and their perturbed versions;
– A module for the evaluation of distances between behaviours;
– A statistical model checker for RobTL formulae.

We remark that since the simulation of system behaviours and the evaluation of dis-
tances are based on statistical inference, the evaluation of RobTL formulae is based on
a three-valued semantics that takes possible statistical errors into account.

To showcase the various features of the tool, we apply it to a case-study in the
analysis of CPSs proposed in [18]: we consider two unmanned ground vehicles that are
moving along a straight path, in line, and have to autonomously set their acceleration
in order to avoid collision with a static obstacle. Moreover, the second vehicle needs
also to avoid collisions with the first one. We model both cyber-physical attacks and
equipment malfunctioning in terms of perturbations in sensed data, and we study the
robustness of the vehicles against the attacks and malfunctioning.

2 The Model

We consider systems consisting of a set of agents and an environment, whose interaction
produces changes on a shared data spaceD, containing the values assumed by variables,
representing: (i) physical quantities, (ii) sensors, (iii) actuators, and (iv) internal variables
of the agents.We call system configuration the triple consisting of the set of internal states
of the agents, the set of functions constituting the environment, and the current state of
the data space, called data state and represented by a mapping d from variables to val-
ues. At each step, the agents and the environment induce some changes on the data state
providing thus a new data state at the next step. Those modifications are also subject to

1 The tool has been also published on Software Heritage with ID swh:1:dir:98532d8c770f9d115
c692e932869c446417d8b34.

https://github.com/quasylab/jspear
https://archive.softwareheritage.org/browse/revision/03a10b639582c2029e8c410224646c4988560410/?branch=refs/heads/working&origin_url=https://github.com/quasylab/jspear&snapshot=8f38d25fba8b97ec685a64806878c60cc64d5593
https://archive.softwareheritage.org/browse/revision/03a10b639582c2029e8c410224646c4988560410/?branch=refs/heads/working&origin_url=https://github.com/quasylab/jspear&snapshot=8f38d25fba8b97ec685a64806878c60cc64d5593

STARK: A Software Tool for the Analysis of Robustness 117

V1V2

static
obstacle

p distance V2

p distance V1 V2 p distance V1

p speed V2 p speed V1

s distance V2

s distance V1 V2 s distance V1

s speed V2 s speed V1

Fig. 1. The two agents and their variables: in black we report the main physical (real) data, in blue
the sensed data by V1, and in red those by V2. See Table 1 for the complete list of variables.

the presence of uncertainties, meaning that it is not always possible to determine exactly
the values assumed by data at the next step. Hence, following [3], we model the changes
induced at each step as a probability measure on the attainable data states. The behaviour
of the system is then entirely expressed by its evolution sequence, i.e., the sequence of
probability measures over the data states obtained at each step. In other words, the evo-
lution sequence is the discrete-time version of the cylinder of all possible trajectories of
the system. In this paper we do not focus on how evolution sequences are generated: we
simply assume aMarkov kernel governing the evolution of the system, and the evolution
sequence is theMarkov process generated by it. We refer the interested reader to [3] for
the details on the specification of the agents and the environment, and on the semantic
mapping allowing for deriving the Markov kernel at hand.

Definition 1 (Evolution sequence, [3]).Given a data space D, let BD denote the Borel
σ-algebra over D, and let Π(D,BD) be the set of probability measures (henceforth
simply called distributions) over the space (D,BD).

Assume a Markov kernel step : D → Π(D,BD) generating the behaviour of a
system s having μ as initial distribution. Then, the evolution sequence of s is a countable
sequence Sμ = S0

μ,S1
μ, . . . of distributions in Π(D,BD) such that, for all D ∈ BD:

S0
μ(D) = μ(D) Si+1

μ (D) =
∫

D
step(d)(D) dSi

μ(d).

2.1 Case Study: Unmanned Ground Vehicles

We present the case study that will allow us to showcase the features of our tool. We
consider two unmanned ground vehicles, agents V1 and V2, that have to autonomously
set their acceleration in order to avoid collisions with a static obstacle and with each
other. This example was originally proposed, with a single vehicle, in [18]. We remark
that our aim is not to specify a complex real-world scenario, but rather to illustrate an
application of the tool. Hence, we model the system in a simplified setting: we consider
the agents and the obstacle as one-dimensional objects (as done in, e.g., [6,27]), we
assume that the two agents are identical, that they can move only along one direction,
proceeding in line, and we consider simple versions of their control units.

Figure 1 illustrates our setting for the system: Vx is at p distance Vx m from the
obstacle and moves towards it at a speed of p speed Vx m/s. Then, the distance between

118 V. Castiglioni et al.

Table 1. The variables, x ∈ {1, 2}.

Name Domain Role

p speed Vx [0,MAX SPEED] physical speed of Vx (m/s)

s speed Vx [0,MAX SPEED] sensor detecting the value of p speed Vx

p distance Vx [0, INIT DISTANCE Vx] distance of Vx from the obstacle (m)

s distance Vx [0, INIT DISTANCE Vx] sensor detecting the value of p distance Vx

accel Vx {A,N, −B} actuator for acceleration (m/s2), with A,B > 0,N = 0

timer Vx [0,TIMER] countdown for checks by the controller of Vx

braking dist Vx [0, INIT DISTANCE Vx] space required by Vx to stop if accel Vx = −B

required dist Vx [0, INIT DISTANCE Vx] braking dist Vx plus SAFETY DISTANCE

safety gap Vx [0, INIT DISTANCE Vx] p distance Vx - required dist Vx

brake light Vx {0, 1} actuator for brake lights of Vx (1 = ON)

p distance V1 V2 [0, INIT DISTANCE V1 V2] distance of V2 from V1 (m)

s distance V1 V2 [0, INIT DISTANCE V1 V2] sensor detecting the value of p distance V1 V2

safety gap V1 V2 [0, INIT DISTANCE V1 V2] p distance V1 V2 - required dist V2

crashed Vx {0, 1} gets 1 if a collision occurred

warning Vx {0, 1} message from IDS Vx (1 = DANGER)

the two vehicles is p distance V1 V2 m. These values are detected by the controllers of
V1 and V2 through sensors s distance Vx, s speed Vx, and s distance V1 V2, respec-
tively. For simplicity, we assume that the values detected by sensors coincide with the
physical ones, i.e., that there are no measurements errors. We will introduce noise and
tampering on sensors later on, by means of perturbations. The vehicles can either accel-
erate or brake. In the former case, a vehicle has a positive acceleration, A m/s2. In the
latter case, the vehicle has a negative acceleration, whose absolute value corresponds
to B m/s2. When Vx brakes, the brake lights are switched on, as expressed by actuator
brake light Vx. The controller of Vx, for x ∈ {1, 2}, checks regularly whether Vx can
safely accelerate or if it has to brake, and sets the acceleration actuator accel Vx accord-
ingly. The decision is taken by the controller on the basis of both the speed of Vx and
its distance from the obstacle, or (for V2) from the preceding vehicle. V2 brakes also
when the lights of V1 are on. The decision between accelerating or braking is taken by
the controller every TIMER seconds: variable timer Vx is initially set to TIMER and the
controller is woken up whenever it reaches zero. The speed can never be negative, and
when the speed becomes zero then the actuator accel Vx is set to N = 0.

The variables are listed in Table 1. Besides the variables associated to physical
quantities, actuators and sensors described above, we use: (i) braking dist Vx for the
space required to stop Vx if it starts to brake immediately; (ii) required dist Vx for
braking dist Vx incremented by constant SAFETY DISTANCE; (iii) safety gap Vx for
the difference between p distance Vx and required dist Vx, and safety gap V1 V2 for
that between p distance V1 V2 and required dist V2: if a safety gap is negative, the
vehicles are at risk of a collision; (iv) crashed Vx to signal if Vx collided either against
the obstacle or the other vehicle.

Each controller is paired with an intrusion detection system IDS Vx, whose task
is to detect odd or hazardous behaviours. In case of anomalies, IDS Vx uses variable

STARK: A Software Tool for the Analysis of Robustness 119

warning Vx to raise a warning message and induce the controller to react. Specifi-
cally, IDS Vx checks whether the physical distances are large enough to guarantee a
safe behaviour, expressed as p distance V1 > 2 · TIMER · SAFETY DISTANCE and
p distance V1 V2 > 2 · TIMER · SAFETY DISTANCE; if this is not the case and Vx
has a positive acceleration, the warning is raised, and Vx is required to decelerate.

3 The Robustness Temporal Logic

The Robustness Temporal Logic (RobTL) has been introduced in [4] as the first logic
allowing one to express temporal properties of distances over systems behaviours. It is
the core of our tool for the specification and analysis of robustness properties of CPSs
against uncertainties and perturbations. This is made possible by using atomic propo-
sitions of the form Δ(exp, p) �� η to evaluate the distance specified by an expression
exp at a given time step between a given evolution sequence and its perturbed version,
obtained by some perturbation p, and to compare it with the threshold η. Then, we
combine atomic propositions with classic Boolean and temporal operators, in order to
extend these evaluations to the entire evolution sequences.

Hence, there are three main components constituting RobTL formulae: 1. A lan-
guage Exp to specify distance expressions; 2. A language P to specify perturbations;
3. Classic Boolean and temporal operators to specify requirements on the evolution of
distances in time. In this section we give only a bird’s-eye view on these components.
We refer the interested reader to [4] for a detailed presentation of RobTL.

Distance Expressions. We use expressions in Exp to define distances over evolution
sequences. The idea is to introduce a distance over distributions on data states mea-
suring their differences with respect to a given target, and then use the operators of the
logic to extend it to the evolution sequences, while possibly taking into account differ-
ent objectives and perturbations over time. Following [3], to capture a particular task,
we use a penalty function ρ : D → [0, 1], i.e., a function that assigns to each data state d
a penalty in [0, 1] expressing how far the values of the parameters related to the consid-
ered task in d are from their desired ones. Then we use ρ to obtain a distance on data
states, i.e., the 1-bounded hemimetric mρ defined for all d1,d2 ∈ D by:

mρ(d1,d2) = max{ρ(d2) − ρ(d1), 0}.

Note that mρ(d1,d2) expresses how much d2 is worse than d1 according to ρ. Then,
we need to lift the hemimetric mρ to a hemimetric over Π(D,BD). To this end, we
make use of the Wasserstein lifting [25]: for any two distributions μ, ν on (D,BD), the
Wasserstein lifting of mρ to a distance between μ and ν is defined by

W(mρ)(μ, ν) = inf
w∈W(μ,ν)

∫
D×D

mρ(d,d′) dw(d,d′)

whereW(μ, ν) is the set of the couplings of μ and ν, namely the set of joint distributions
w over the product space (D×D,B(D×D)) having μ and ν as left and right marginal,
respectively, i.e., w(D × D) = μ(D) and w(D × D) = ν(D), for all D ∈ B(D).

120 V. Castiglioni et al.

Definition 2 (Distance expressions). Expressions in Exp are defined as follows:

exp :: = <ρ | >ρ | FI exp | GI exp | exp UI exp |
min (exp, exp) | max (exp, exp) |

∑
k∈K

wk · expk | σ(exp, �� ζ)

where ρ ranges over penalty functions, I is an interval, K is a finite set of indexes,
wk ∈ (0, 1] for each k ∈ K,

∑
k∈K wk = 1, and ζ ∈ [0, 1].

Distance expressions are evaluated over a pair of evolution sequences and a time
step: given two evolution sequences S1,S2 and a time step τ , the evaluation of expres-
sions in the triple S1,S2, τ is given by function �·�τ

S1,S2
: Exp → [0, 1] which is defined

inductively over expressions. It bases on two atomic expressions, <ρ and >ρ, where ρ
is a penalty function, as follows:

�<ρ�τ
S1,S2

= W(mρ)(Sτ
1 ,Sτ

2) �>ρ�τ
S1,S2

= W(mρ)(Sτ
2 ,Sτ

1).

Then we provide three temporal expression operators, namely FI , GI and UI , allowing
for the evaluation of minimal and maximal distances over time: their semantics follows
from that of the corresponding (bounded) temporal operators (resp., eventually, always,
and until) by associating existential quantifications with minima, and universal quantifi-
cations with maxima. The min , max and convex combination

∑
K wk operators are as

expected. The comparison operator σ(exp, �� ζ) returns a value in {0, 1} used to estab-
lish whether the evaluation of exp is in relation �� with the threshold ζ. Summarising,
by means of expressions we can measure the differences between evolution sequences
with respect to various tasks (penalty functions) and temporal constraints.

Perturbations. A perturbation is the effect of unpredictable events, that can be repeated
or different in time, on the current state of the system. In [4], a perturbation is therefore
modelled as a time-dependent function that maps a data state into a distribution over
data states. Specifically, a perturbation p is a list of mappings in which the i-th element
describes the effects of p at time i, and that is specified in the following language:

Definition 3 (Perturbations). Perturbations in P are defined as follows:

p :: = nil | f@τ | p1 ; p2 | pn

where p ranges over P, n and τ are finite natural numbers, and:

– nil is the perturbation with no effects, i.e., at each time step it behaves like the
identity function id : D → Π(D,BD) such that id(d) = δd for all d ∈ D, with δd
the Dirac distribution defined by δd(D) = 1 if d ∈ D and δd(D) = 0 otherwise;

– f@τ is an atomic perturbation, i.e., a function f : D → Π(D,BD) such that the
mapping d �→ f(d)(D) is BD-measurable for all D ∈ BD, and that is applied after
τ time steps from the current instant;

– p1 ; p2 is a sequential perturbation, i.e., perturbation p2 is applied at the time step
subsequent to the (final) application of p1;

STARK: A Software Tool for the Analysis of Robustness 121

– pn is an iterated perturbation, i.e., perturbation p is applied for a total of n times.

The semantics of perturbations is then defined by means of two auxiliary functions:
effect(p), that describes the effect of p at the current step, and next(p), that identifies
the perturbation that will be applied at the next step. These two functions are defined
inductively over the structure of p. Due to space limitations, we omit their formal def-
inition, and refer the interested reader to [4]. We make use of effect and next to define
the mapping 〈〈·〉〉 : P → (D × N → Π(D,BD)) such that, for all d ∈ D and i ∈ N:

〈〈p〉〉(d, i) = effect(nexti(p))(d),

where next0(p) = p and nexti(p) = next(nexti−1(p)), for all i > 0.
Now we can define the perturbation of an evolution sequence.

Definition 4 (Perturbation of an evolution sequence). Given an evolution sequence
Sμ, with μ as initial distribution, and a perturbation p, we define the perturbation of Sμ

via p as the evolution sequence Sp
μ obtained as follows:

Sp,0
μ (D) =

∫
D

〈〈p〉〉(d, 0)(D) dμ(d)

Sp,i+1
μ (D) =

∫
D

(∫
D

〈〈p〉〉(d′, i + 1)(D) d step(d)(d′)
)

dSp,i
μ (d),

where function step is the Markov kernel that generates Sμ.

Remark 1. Functions effect and next are such that, for each i ∈ N, 〈〈p〉〉(d, i) is either
the Dirac distribution over d, or the distribution f(d) induced by an atomic perturbation
with function f. In both cases, the mapping d �→ 〈〈p〉〉(d, i)(D) is guaranteed to be BD-
measurable for all D ∈ BD. Hence, the integrals in Definition 4 are well defined (see
also [4, Proposition 4.7]).

RobTL Formulae. We use formulae in RobTL for the specification and analysis of
distances between nominal and perturbed evolution sequences over a finite time hori-
zon, henceforth denoted by h. The idea is that by combining atomic propositions with
temporal operators, we can apply (possibly) different distance expressions and pertur-
bations at different time steps, thus allowing for the analysis of systems behaviour in
complex scenarios.

Definition 5 (RobTL). RobTL consists in the set of formulae L defined by:

ϕ :: = � | Δ(exp, p) �� η | ¬ϕ | ϕ ∧ ϕ | ϕ UI ϕ

whereϕ ranges over L, exp ranges over expressions in Exp, p ranges over perturbations
in P, �� ∈ {<,≤,≥, >}, η ∈ [0, 1], and I ⊆ [0, h] is a bounded time interval.

Formulae are evaluated in an evolution sequence and a time instant. Notice that, due
to the presence of uncertainties and probability, the procedures that we use to 1. sim-
ulate the evolution sequences and the effects of perturbations, and 2. evaluate distance
expressions, are based on statistical inference.

122 V. Castiglioni et al.

Hence, the presence of statistical errors has to be taken into account also when
checking the satisfaction of RobTL formulae. Consequently, our model checker will
assign a three-valued semantics to formulae by adding the truth value unknown (�) to
the classic true (�) and false (⊥). Intuitively, unknown is generated by the comparison
between the distance and the chosen threshold in atomic propositions: if the threshold η
does not lie in the confidence interval of the evaluation of the distance, then the formula
will evaluate to � or ⊥ according to whether the relation �� η holds or not. Conversely,
if η belongs to the confidence interval, then the atomic proposition evaluates to �, since
the validity of the relation �� η may depend on the particular samples obtained in the
simulation. Starting from atomic propositions, the three-valued semantics is extended
to the Boolean and temporal operators in the standard way [13,26]. We assign a three-
valued semantics to RobTL formulae via the satisfaction function ΩS : L × [0, h] →
{�,�,⊥}, defined inductively on the structure of RobTL formulae. Specifically, on
atomic propositions ΩS is defined as follows:

ΩS(Δ(exp, p) �� η, τ) =

⎧⎪⎨
⎪⎩

� if η ∈ CIexp
� if �exp�τ

S,S|p,τ
�� η

⊥ otherwise,

where CIexp is the confidence interval on the evaluation of �exp�τ
S,S|p,τ

with respect

to the chosen coverage probability, and S|p,τ is the evolution sequence obtained by
applying the perturbation p to S at time τ :

(S|p,τ)
t =

{
St if t < τ,

Sp,t−τ
Sτ if t ≥ τ.

Hence, for the first τ − 1 steps S|p,τ is identical to S. At time τ the perturbation p is
applied, and the distributions in S|p,τ are thus given by the perturbation via p of the
evolution sequence having Sτ as initial distribution (cf. Definition 4).

Examples. We now provide a few examples of the use of RobTL for the specification
of robustness properties of the two vehicles from Sect. 2.1.

Example 1 (Cyber-physical attacks). In this example, we use RobTL to express robust-
ness properties against cyber-physical attacks modelled by perturbations. Let us con-
sider an attack on the speed sensor of V2 that consists in diminishing the detected value
of the speed, according to a chosen probabilistic offset. This attack aims at inducing
sudden accelerations of the vehicle, thus increasing the risk of a collision with V1.
Hence, we say that the system is robust against the attack if it can limit the risk of a
collision between the two vehicles. Firstly, we model the attack by means of the pertur-
bation pItSlow = id@0 ; (pslow)150, where pslow = slow@(TIMER − 1). Perturbation
pItSlow has no effect on the initial step (id@0), then we apply function slow every
TIMER steps (slow@(TIMER − 1)), for a total of 150 times. The choice of skipping
the initial step, and applying the perturbation only every TIMER steps, is related to the
frequency at which the controller checks the value of the speed sensor. (We recall that

STARK: A Software Tool for the Analysis of Robustness 123

perturbations are lists of effects to be applied starting from the current step, which is
identified with 0. So @(TIMER − 1) is a list of length TIMER.) An application of slow
to a data state d is given by the following system of equations:

v ∼ U(0,MAX OFFSET)
fake speed = min{MAX SPEED,d(p speed V2) − v · d(p speed V2)}

fake bd =
fake speed2 + (A + B)(A · TIMER2 + 2 · fake speed · TIMER)

2 · B
d(s speed V2) = fake speed

d(safety gap V1 V2) = d(p distance V1 V2) − (fake bd + SAFETY DISTANCE).

As a consequence, we have d(s speed V2) < d(p speed V2) and an augmented value
for d(safety gap V1 V2) (the nominal one is computed by using d(braking dist V2)
instead of fake bd). This tricks the controller of V2 into accelerating (or idling) when
it should brake. Hence, attack pItSlow affects the distance between the two vehicles
and, thus, the variation in time of variable p distance V1 V2. To measure the effects
of pItSlow on the system, we evaluate the probability of a collision to occur upon its
application. To this end, we can make use of the penalty function

ρcrash(d) =

{
0 if d(p distance V1 V2) > 0,
1 otherwise,

and of the distance expression expcrash = G[t1,t2] <ρcrash to quantify the maximal
probability of a collision along the time interval [t1, t2], where the time bounds t1, t2
are chosen according to the other system’s parameters. Then, we express the robustness
of the system against attack pItSlow via the RobTL formula

ϕslow = �HΔ(expcrash, pItSlow) ≤ ηslow

where H = [0, h], with h the chosen time horizon, and the threshold ηslow represents
the maximum acceptable risk of collision.

Similarly, we can model an attack aimed at inducing sudden decelerations of V1 by
means of perturbation pItFast = id@0 ; (pfast)150 where pfast = fast@(TIMER−1),
and function fast differs from slow only for the use of variables of V1, and for sign
of the offset v · d(p speed V1), which is added to p speed V1.

We can also combine the perturbations above to model an attack on both vehi-
cles: pcomb = id@0 ;

(
p3fast ; p

3
slow

)50
. We can then exploit RobTL to combine various

requirements on the behaviour with respect to different attacks, and test elaborate guar-
antees on the system. For instance, we use the formula ϕcrash below to test whether it is
sufficient for the two vehicles to be robust each against their own attack, to ensure the
robustness of the entire system against a combined attack:

ϕfast = �HΔ(expcrash, pItFast) ≤ ηfast ϕcomb = �HΔ(expcrash, pcomb) ≤ ηcomb

ϕcrash = ϕfast ∧ ϕslow =⇒ ϕcomb.

124 V. Castiglioni et al.

Example 2 (Collision severity). In this example, we use RobTL to express robustness
against severity of collisions. Assume that, due to some malfunction, the sensors used
by V2 over-approximate the distances from both V1 and the static obstacle. This may
cause sudden accelerations of V2 and, possibly, a collision. Hence, we want to analyse
the severity of potential collisions induced by sensor malfunction. Intuitively, the sever-
ity depends on the speed of V2 at collision instant. Hence, we say that the system is
robust against sensor malfunction if it can limit the severity of collisions.

Perturbation pItDistSens = id@0 ; (pdistSens)n allows us to model this malfunction,
where pdistSens is the perturbation distSens@(TIMER − 1), and function distSens
applied to a data state d has the effect given by the following system of equations:

offset ∼ U(0,MAX DISTANCE OFFSET)
d(s distance V1 V2) = d(p distance V1 V2)(1 + offset)
d(s distance V2) = d(p distance V2)(1 + offset)
d(safety gap V1 V2) = d(p distance V1 V2)(1 + offset) − d(required dist V2)
d(safety gap V2) = d(p distance V1 V2)(1 + offset) − d(required dist V2)

By sensing distances greater than the real ones and reading augmented values for both
safety gap V1 V2 and safety gap V2, the controller of V2 may opt for accelerating
instead of braking. A collision may follow, whose severity can be quantified by the
penalty function

ρcrash speed(d) =

⎧⎪⎨
⎪⎩

d(p speed V2)
MAX SPEED if d(crashed V2) = 0 and

min(d(p distance V1 V2),d(p distance V2)) ≤ 0
0 otherwise.

Here, d(crashed V2) = 0 if and only if there was no crash in the past. In that case, it
holds thatmin(d(p distance V1 V2),d(p distance V2)) ≤ 0 if a collision occurred at
the current time step. Then, when a collision occurs, ρcrash speed returns a value in [0,1]
expressing the severity of it, whose computation depends on the speed of V2: severity
is expressed as the ratio of the speed at the moment of impact, and the maximal speed.
The distance expression expcrash speed = G[t1,t2] <ρcrash speed allows us to capture the
max given by ρcrash speed in a suitable interval of time. Then, we express the robustness
of the system against sensors’ malfunction via the RobTL formula

ϕcrash speed = �HΔ(expcrash speed, pItDistSens) ≤ ηcrash speed

where the threshold ηcrash speed represents the maximum acceptable collision severity.

4 The STARK Tool

In this section, we provide an overview of the tool Software Tool for the Analysis of
Robustness in the unKnown environment (STARK). STARK, developed in Java, is a
tool supporting specification, analysis and testing of robustness properties of CPSs. A
detailed description of STARK together with a video describing the basic features of our
tool is available at http://quasylab.unicam.it/stark/. STARK consists of five modules, Mod-
els, Simulation, Statistical Model-Checker, Specification and Front-end, that are briefly
described below.

http://quasylab.unicam.it/stark/

STARK: A Software Tool for the Analysis of Robustness 125

Models. This module provides interfaces and classes that can be used to describe
the computational model and the resulting evolution sequence outlined in Sect. 2, and
RobTL formulae discussed in Sect. 3. Below, we provide a short overview of the avail-
able interfaces and classes.

A system is described by the interface SystemState, that provides the methods used
by the simulator and the model checker described later in this section. The interface is
implemented by the class ControlledSystem that describes a system composed by:

– a DataState, modelling a data state;
– a DataStateFunction, describing how the environment affects a data state; and
– a Controller, describing the behaviour of the agents in the system.

To describe the behaviour of a system, the class EvolutionSequence is used. This
consists of a sequence of samplings containing at the position i the set of configura-
tions that are reachable after i-steps of computation. Efficient mechanisms have been
implemented to generate the elements in an EvolutionSequence only on demand.

To model perturbations (see Definition 3) the interface Perturbation is available. A
perturbation can be applied to a SystemState to obtain a PerturbedSystem. Similarly,
the same perturbation can be applied to an EvolutionSequence to obtain an instance of
class PerturbedEvolutionSequence.

Moreover, to measure the distance between two EvolutionSequences, the interface
DistanceExpression is available. This is implemented, following the classic pattern
expression, to mimic the structure of Definition 2. Similarly, to represent the formu-
lae in Definition 5, the interface RobustnessFormula is used.

Simulation. This module contains all the interfaces and classes used to generate an
EvolutionSequence (or a PerturbedEvolutionSequence), starting from a SystemState.
Specifically, we rely on the class SampleSet, that allows us to manage sets of (sampled)
system configurations.

We also provide classes to evaluate penalty functions from a evolution sequence and
to collect statistical information. The classes rely on The Apache Commons Mathemat-
ics2. The simulation process can be performed following either a sequential or a multi-
threading approach. In the second case Java Concurrency API and stream oriented
computations are used to take advantage of the parallelism of the hosting architecture.

Statistical Model-Checker. This module provides the classes that can be used to check
if a given RobustnessFormula is satisfied or not by an EvolutionSequence. Two mech-
anisms can be used to measure the satisfaction of a formula: one based on the classic
Boolean semantics, the other based on a three-valued semantics. Both the approaches,
based on the pattern visitor [11], evaluate the satisfaction of the formula by inspecting
its syntax structure.

2 https://commons.apache.org/proper/commons-math/.

https://commons.apache.org/proper/commons-math/

126 V. Castiglioni et al.

Specification. The STARK Specification Language (SSL) is a domain specific language
that permits defining system behaviour and properties. This module provides the classes
that can be used to load a SSL model from a file. A SSL model consists of:

– a set of global variables;
– a set of components;
– an environment;
– a set of properties.

Global variables are used to represent value in the data state that are not associated
with a specific component and that are not under the direct control of a controller. In
our examples these are3:

cons t SAFETY DISTANCE = 200 ;
cons t TIMER = 5 ;
cons t MAX SPEED = 40 ;

g l o b a l v a r i a b l e s {
r e a l p speed V1 range [0 , MAX SPEED] = 25 ;
r e a l p speed V2 range [0 , MAX SPEED] = 25 ;
. . .

}

A component identifies an agent in the system. It consists of a set of local variables
and a controller. In our running example we have a component for each of the two
vehicles, with the following structure:

component Veh i c l e1 {
v a r i a b l e s {

r e a l s speed V1 range [0 , MAX SPEED] = 25 ;
r e a l s d i s t a n c e V1 range [0 , INIT DISTANCE V1] = 10000 ;
. . .

}
c o n t r o l l e r {

s t a t e C t r l {
i f (s speed V1 > 0) {

i f (s a f e t y g a p V1 > 0) {
acce l V1 ′ = A;
t imer V1 ′ = TIMER ;
b r a k e l i g h t V 1 ′ = 0 ;
exec Acc e l e r a t e V1 ;

} e l s e {
acce l V1 ′ = − B;
t imer V1 ′ = TIMER ;
b r a k e l i g h t V 1 ′ = 1 ;
exec Dec e l e r a t e V1 ;

} e l s e {
acce l V1 ′ = N;
t imer V1 ′ = TIMER ;
exec Stop V1 ;

}
}
s t a t e IDS {

. . .
}

3 Due to a lack of space only a small code snippet is provided. Complete specification is available
at http://quasylab.unicam.it/stark/.

http://quasylab.unicam.it/stark/

STARK: A Software Tool for the Analysis of Robustness 127

. . .
}
i n i t C t r l | | IDS

}
component Veh i c l e2 {

. . .
}

The environment consists of a set of equations describing how variables are changed
after one step:

env i r onmen t {
t ime r V1 ′ = t imer V1 −1;
t imer V2 ′ = t imer V2 −1;
p speed V1 ′ = p speed V1+acce l V1 ;
. . .

}

Front-end. In this module all the classes for the user interaction are provided. First
of all, a set of utility classes are provided to read/write data in different formats, such
as CSV. These classes can be used to perform some analysis on the behaviour of a
CPS even if we do not have information on its specification. Indeed, we can collect the
observations on the data of the system into a CSV file, build the observed evolution
sequence from it, and then use the tool (in particular the module for the evaluation of
distances) to compare this observed behaviour with an ideal one, or to compare vari-
ous observed evolution sequences. This means that we can measure the impact of real
world uncertainties and perturbations on the behaviour of the system, without having to
specify them, i.e., without assuming any information on which data will be manipulated
by them, and on how and when such manipulations occur. A command line interpreter
is also provided to interact with the STARK modules and permits performing all the
analyses outlined above. This interpreter can be either used interactively or in a batch
mode to execute saved scripts.

5 The Tool in Action

We now apply STARK to carry out the analysis on our case study discussed in Sect. 3.

Example 3 (Cyber-physical attacks, continued). Consider the formulae ϕslow and
ϕcomb from Example 1. In Fig. 2 we depict their three-valued evaluations in various
situations, using the identifications � = 1, � = 0, and ⊥ = −1. The plots in the
upper part of the figure report the evaluations of ϕslow, while those in the lower part
are related to ϕcomb. We focus only on ϕslow, as the analysis for ϕcomb is similar, with
the following parameters: h = 450, t1 = 350, t2 = 450, ηslow = 0.1. Hence, we test
whether, when applying the attack at any step τ ∈ [0, 450], the maximum probabil-
ity of a collision, computed between steps τ + 350 and τ + 450, is at most 0.1. We
used the following parameters: both vehicles start with an initial speed of 25.0 m/s,
with V1 at a distance of 10000 m from the obstacle, and V2 at a distance of 5000
m from V1; A= 1.0 m/s2, B= 2.0 m/s2, TIMER= 5, MAX SPEED= 40 m/s, and
SAFETY DISTANCE= 200 m. In each plot, we report the evaluations with respect to

128 V. Castiglioni et al.

Fig. 2. Evaluations of formulae ϕslow (top) and ϕcomb every 10, 30, and 50 steps, and with respect
to different offsets (MAX OFFSET ∈ {0.2, 0.3, 0.4}).

three different instances of the parameterMAX OFFSET, namely 0.2, 0.3, and 0.4, used
by the perturbations to set the random offset on speed sensors readings. The system is
robust against the attacks usingMAX OFFSET= 0.2, and not robust against those using
MAX OFFSET= 0.4 (we postpone the discussion on the evaluation after step 375). In
the case of MAX OFFSET= 0.3 the formulae evaluate to �, since the threshold ηslow
is included in the 95% confidence intervals on the computation of distances. Although
the evaluation gives (mostly) unknown, the intuition is that the system is not robust in
this case. In fact, by comparing the plots, we notice that there are certain time steps,
like 0, at which the evaluation changes when working with different simulations of the
perturbed evolution sequence. This means that the value of ηslow (and ηcomb) is in an ε-
neighbourhood of the lower bound of the confidence interval, for an ε close to 0. Hence,
a tiny variation in the confidence interval is sufficient to change the evaluation between
� and ⊥. The plots have been obtained by considering 10 evaluations of the formula,
taken, respectively, every 10, 30, and 50 steps, thus giving us a general idea of the
potential impact of the attack on the behaviour of the system, at different moments in
time. Notice that, if the attack is applied after step 400, then the formula evaluates to �
regardless of the value of the offset. Actually, this holds whenever the attack is applied
after step 374. The reason becomes clear when simulating the nominal behaviour of
the system: at step 375 variable p speed V2 assumes value 0. Clearly, the attack has
no effect on a stationary vehicle. Similarly, pcomb has no effect whenever applied after
step 350. The temporal discrepancy is due to the fact that in pcomb the attack on V2 is
delayed by that on V1 that takes 15 steps to be completed (and has no side effects as
V1 becomes stationary at step 260). At that point V2 is already too close to V1 to be
tricked by the attack.

Example 4 (Collision severity, continued). Consider the formula ϕcrash speed from
Example 2. In Fig. 3 we depict its three-valued evaluation in various situations, using
again the identifications � = 1, � = 0, and ⊥ = −1. As in Example 3, the plots have
been obtained by considering 10 evaluations of the formula, taken, respectively, every

STARK: A Software Tool for the Analysis of Robustness 129

Fig. 3. Evaluations of formulae ϕcrash speed every 10, 30, and 50 steps, and with respect to differ-
ent thresholds ηcrash speed ∈ {0.05, 0.1, 0.15}.

10, 30, and 50 steps. The plots report the evaluations of the formula with the following
parameters: h = 450, t1 = 10, t2 = 400. Hence, we test whether a malfunction on
distance sensors originating at any step τ ∈ [0, 450] gives rise to a maximum severity
of a collision, computed between steps τ + 10 and τ + 400, of at most ηcrash speed. We
used the same parameters for the initial speeds, distances and acceleration rates as in
Example 3. In Fig. 3, we report the evaluations with respect to three different instances
of ηcrash speed, namely 0.05, 0.1, and 0.15. If the attack is applied after step 350, then
the formula evaluates to �, the reason being that in all simulations of the nominal
behaviour of the system, after step 350 V2 is very close to V1 and also the corrupted
value of the distance is enough low to induce the controller to keep braking. The system
is robust against the malfunction using ηcrash speed = 0.15, and not robust against that
using ηcrash speed = 0.05. In the case of ηcrash speed = 0.1 the formulae (mostly) evaluate
to �, since the threshold on the severity is included in the 95% confidence intervals that
we considered on the evaluation of the distances.

6 Concluding Remarks

We have presented STARK, a Java-based tool for the analysis of robustness properties of
CPSs operating in the presence of uncertainties and perturbations. The core of STARK is
constituted by the evolution sequence model for system behaviour, and the logic RobTL
for the specification of temporal properties over distances between evolution sequences,
and thus of requirements on system’s robustness.

In the literature, we can find several proposals of tools and techniques for robust-
ness testing for systems with a finite/discrete state space (see [16] for a survey). How-
ever, evolution sequences (that can be either obtained through the simulation module in
STARK, or via direct measurements on the real system) are defined over a continuous
state space, in order to avoid the introduction of arbitrary simplifying assumptions on
the behaviour of the environment. This means that in STARK we can capture even the
slightest modification on behaviour that is induced by the uncertainties.

Moreover, an evolution sequence is a discrete-time version of the cylinder of all
possible trajectories of the system, which means that when we check RobTL proper-
ties, we do it by taking into account all possible system behaviours. This is a clear
distinction with existing model checking tools, in which properties are tested on a sin-
gle trajectory of the system (see [1,15,22]). It will be interesting to see how this feature

130 V. Castiglioni et al.

will impact the future development of STARK. In fact, we plan to investigate the synthe-
sis of predictive monitors [5] for RobTL specifications, and to add to STARK a module
for the verification of robustness properties at run-time. Clearly, although the monitor
attached to the system can observe only a single trajectory at run-time, it will need to
take into account all possible future behaviours, and thus the evolution sequence, to
make its predictions and take decisions. For completeness, we recall that several useful
tools for monitoring (spatio-)temporal properties of CPSs have been proposed in classic
run-time monitoring (i.e., without predictions) literature (see [2] for a survey). Those
tools are based on temporal logics like, e.g., STL [7], MTL [14], or SSTL [26], that
specify properties of a single trajectory of the system at a time.

We also plan to apply our framework to the analysis of biological networks. Some
quantitative extensions of temporal logics have already been proposed in that setting
(e.g. [8,19,20]) to capture the notion of robustness from [12] or similar proposals [17].
It would be interesting to see whether the use of RobTL and evolution sequences, and
thus of STARK, can lead to new results.

At this stage in its development, STARK is meant to be used in the testing phase
of a system. We leave as future work an investigation of its employment in the design
phase. We will also study a possible integration of STARK with SCENIC [10], a domain-
specific scenario description language that has been recently introduced for the design
of Machine Learning-based CPSs. SCENIC allows us to synthetically generate data for
training the system against rare events that are quite difficult to obtain from collections
of real-world data. It is a probabilistic programming language for the specification of
scenes, i.e., configurations of objects and their spatio-temporal features, and scenarios,
i.e., a distribution over scenes and the behaviour of the agents operating in them over
time. We remark that requirements over system behaviour in SCENIC are specified in
MTL, and are therefore tested on a single trajectory of the system at a time.

Acknowledgements. This work has been supported by the project “Programs in the wild:
Uncertainties, adaptabiLiTy and veRificatiON” (ULTRON) of the Icelandic Research Fund (grant
No. 228376-051).

Data Availability Statement. The artifact is available in the Software Heritage repository:
swh:1:dir:98532d8c770f9d115c692e932869c446417d8b34

References

1. Baier, C.: Probabilistic model checking. In: Esparza, J., Grumberg, O., Sickert, S. (eds.)
Dependable Software Systems Engineering, NATO Science for Peace and Security Series -
D: Information and Communication Security, vol. 45, pp. 1–23. IOS Press (2016). https://
doi.org/10.3233/978-1-61499-627-9-1

2. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a survey on
theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Ver-
ification. LNCS, vol. 10457, pp. 135–175. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-75632-5 5

3. Castiglioni, V., Loreti, M., Tini, S.: How adaptive and reliable is your program? In: Peters,
K., Willemse, T.A.C. (eds.) FORTE 2021. LNCS, vol. 12719, pp. 60–79. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-78089-0 4

https://archive.softwareheritage.org/browse/revision/03a10b639582c2029e8c410224646c4988560410/?branch=refs/heads/working&origin_url=https://github.com/quasylab/jspear&snapshot=8f38d25fba8b97ec685a64806878c60cc64d5593
https://doi.org/10.3233/978-1-61499-627-9-1
https://doi.org/10.3233/978-1-61499-627-9-1
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-030-78089-0_4

STARK: A Software Tool for the Analysis of Robustness 131

4. Castiglioni, V., Loreti, M., Tini, S.: RobTL: a temporal logic for the robustness of cyber-
physical systems. CoRR abs/2212.11158 (2022). 10.48550/arXiv. 2212.11158

5. Chen, X., Sankaranarayanan, S.: Model predictive real-time monitoring of linear systems. In:
Proceedings of RTSS 2017, pp. 297–306. IEEE Computer Society (2017). https://doi.org/10.
1109/RTSS.2017.00035

6. Chong, S., Lanotte, R., Merro, M., Tini, S., Xiang, J.: Quantitative robustness analysis of
sensor attacks on cyber-physical systems. In: 26th ACM International Conference on Hybrid
Systems: Computation and Control (2023)

7. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chat-
terjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

8. Fages, F., Rizk, A.: On temporal logic constraint solving for analyzing numerical data time
series. Theor. Comput. Sci. 408(1), 55–65 (2008). https://doi.org/10.1016/j.tcs.2008.07.004

9. Fränzle, M., Kapinski, J., Prabhakar, P.: Robustness in cyber-physical systems. Dagstuhl
Reports 6(9), 29–45 (2016). https://doi.org/10.4230/DagRep.6.9.29

10. Fremont, D.J., et al.: Scenic: a language for scenario specification and data generation. Mach.
Learn. (2022). https://doi.org/10.1007/s10994-021-06120-5

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design patterns: elements of reusable
object-oriented software. Addison-Wesley Professional, 1 edn. (1994)

12. Kitano, H.: Towards a theory of biological robustness. Mol. Syst. Biol. 3(1), 137 (2007).
https://doi.org/10.1038/msb4100179

13. Kleene, S.C.: Introduction to Metamathematics. Princeton, NJ, USA: North Holland (1952).
https://doi.org/10.2307/2268620

14. Koymans, R.: Specifying real-time properties with metric temporal logic. Real Time Syst.
2(4), 255–299 (1990). https://doi.org/10.1007/BF01995674

15. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Bernardo, M.,
Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-72522-0 6

16. Micskei, Z., Madeira, H., Avritzer, A., Majzik, I., Vieira, M., Antunes, N.: Robustness test-
ing techniques and tools. In: Wolter, K., Avritzer, A., Vieira, M., van Moorsel, A. (eds.)
Resilience Assessment and Evaluation of Computing Systems. Springer, Berlin, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29032-9 16

17. Nasti, L., Gori, R., Milazzo, P.: Formalizing a notion of concentration robustness for bio-
chemical networks. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF 2018. LNCS, vol.
11176, pp. 81–97. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04771-9 8

18. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer (2018). https://doi.
org/10.1007/978-3-319-63588-0

19. Rizk, A., Batt, G., Fages, F., Soliman, S.: A general computational method for robustness
analysis with applications to synthetic gene networks. Bioinform. 25(12), 169–178 (2009).
https://doi.org/10.1093/bioinformatics/btp200

20. Rizk, A., Batt, G., Fages, F., Soliman, S.: Continuous valuations of temporal logic specifica-
tions with applications to parameter optimization and robustness measures. Theor. Comput.
Sci. 412(26), 2827–2839 (2011). https://doi.org/10.1016/j.tcs.2010.05.008

21. Rungger, M., Tabuada, P.: A notion of robustness for cyber-physical systems. IEEE Trans.
Autom. Control 61(8), 2108–2123 (2016)

22. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic systems.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 266–280. Springer,
Heidelberg (2005). https://doi.org/10.1007/11513988 26

23. Shahrokni, A., Feldt, R.: A systematic review of software robustness. Inf. Softw. Technol.
55(1), 1–17 (2013). https://doi.org/10.1016/j.infsof.2012.06.002

https://doi.org/10.1109/RTSS.2017.00035
https://doi.org/10.1109/RTSS.2017.00035
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1016/j.tcs.2008.07.004
https://doi.org/10.4230/DagRep.6.9.29
https://doi.org/10.1007/s10994-021-06120-5
https://doi.org/10.1038/msb4100179
https://doi.org/10.2307/2268620
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-3-642-29032-9_16
https://doi.org/10.1007/978-3-030-04771-9_8
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1093/bioinformatics/btp200
https://doi.org/10.1016/j.tcs.2010.05.008
https://doi.org/10.1007/11513988_26
https://doi.org/10.1016/j.infsof.2012.06.002

132 V. Castiglioni et al.

24. Sontag, E.D.: Input to State Stability: Basic Concepts and Results, pp. 163–220. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-77653-6 3

25. Vaserstein, L.N.: Markovian processes on countable space product describing large systems
of automata. Probl. Peredachi Inf. 5(3), 64–72 (1969)

26. Vissat, L.L., Loreti, M., Nenzi, L., Hillston, J., Marion, G.: Analysis of spatio-temporal prop-
erties of stochastic systems using TSTL. ACM Trans. Model. Comput. Simul. 29(4), 1–24
(2019). https://doi.org/10.1145/3326168

27. Xiang, J., Fulton, N., Chong, S.: Relational analysis of sensor attacks on cyber-physical
systems. In: 34th IEEE Computer Security Foundations Symposium, CSF 2021, Dubrovnik,
Croatia, 21–25 June 2021, pp. 1–16. IEEE (2021). https://doi.org/10.1109/CSF51468.2021.
00035

https://doi.org/10.1007/978-3-540-77653-6_3
https://doi.org/10.1145/3326168
https://doi.org/10.1109/CSF51468.2021.00035
https://doi.org/10.1109/CSF51468.2021.00035

Verification and Testing

RSC to the ReSCu: Automated
Verification of Systems of Communicating

Automata

Löıc Desgeorges and Löıc Germerie Guizouarn(B)

Université Côte d’Azur, CNRS, I3S, Sophia Antipolis, France
{loic.desgeorges,loic.germerie-guizouarn}@univ-cotedazur.fr

Abstract. We present ReSCu, a model-checking tool for RSC (Real-
isable with Synchronous Communication) systems of communicating
automata. Communicating automata are a formalism used to model
communication protocols: each participant is represented by a finite
state automaton, whose transitions are labelled by sending and receiv-
ing actions. In the general case, such automata exchanging messages
asynchronously via FIFO or bag buffers are Turing-powerful, therefore
most safety verification problems are undecidable. In RSC systems, the
reception of a message may happen right after its send action. A lot of
verification problems, e.g. reachability of a control state, are decidable
for RSC systems. ReSCu checks whether a system is RSC, allowing to
observe that a significant portion of protocols from the literature is RSC.
This tool can also perform verification of safety properties for those sys-
tems, and is competitive in terms of time compared to non–RSC specific
tools.

1 Introduction

Ensuring safety of communication protocols is admittedly a very important task.
Systems of communicating automata (CA for short) are one of the formalisms
modelling such protocols: each participant of the communication is represented
by a finite state automaton, the transitions of which are labelled with actions,
either to send or receive messages. Model-checking a system consists in verify-
ing that it satisfies safety properties, e.g. whether an undesired configuration
of control states is reachable. In this model, communications are asynchronous:
messages are sent to unbounded buffers, waiting there to be received. The sender
may immediately proceed with its subsequent actions. The main semantics for
buffers are FIFO, for First In First Out, and bag. FIFO buffers behave like
queues, messages are received in the same order as they were sent, whereas
bag buffers allow receptions of messages in any order. Systems may be equipped
with different structures of buffers named communication architecture. The most
common ones being peer-to-peer, where there is one buffer per direction between

This work has been supported by the French government, through the EUR DS4H
Investments in the Future project managed by the National Research Agency (ANR)
with the reference number ANR-17-EURE-0004.

c© IFIP International Federation for Information Processing 2023
S.-S. Jongmans and A. Lopes (Eds.): COORDINATION 2023, LNCS 13908, pp. 135–143, 2023.
https://doi.org/10.1007/978-3-031-35361-1_7

https://eapls.org/pages/artifact_badges/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35361-1_7&domain=pdf
https://doi.org/10.1007/978-3-031-35361-1_7

136 L. Desgeorges and L. Germerie Guizouarn

each pair of participants, and mailbox, were each participant receives its mes-
sages from a single buffer.

From its asynchrony, comes a limitation of this model: buffers can encode the
tape of a Turing Machine and therefore, deciding the reachability of a configura-
tion of control states is undecidable [8]. Different strategies arose to circumvent
this difficulty, the main ones being using semi-algorithms for verification, and
restricting systems to classes in which verification problems become decidable.

The latter approach is the one we used in [13] and developed in [12]. Intu-
itively, a system is Realisable with Synchronous Communication (RSC for short)
if all its executions can be reorganised to mimic a synchronous behaviour, where
send and receive actions of the same message happen at the same time. Reach-
ability of a regular set of configurations was shown to be decidable for RSC
systems. Membership to the class of RSC systems is decidable as well, allowing
to select the protocols on which the reachability algorithms can be used.

We present ReSCu (for Realisable with Synchronous Communication), a
model-checking tool for RSC systems of CA. This tool can answer whether
a given system is RSC or not, and whether a specified bad configuration is
reachable. ReSCu works on systems with any communication architecture (not
restricted to peer-to-peer or mailbox) and either with bag or FIFO buffers.

Outline. After a discussion about related works, we will begin with some intu-
ition about CA in Sect. 2. In Sect. 3, we present the tool itself, how it is imple-
mented and how it can be used. Before concluding (Sect. 5), we will present some
results and benchmarks we obtained with our tool in Sect. 4.

Related Works. The closest tool to ReSCu is McScM [15]. It takes a descrip-
tion of a system and a set of bad configurations (defined as QDDs [5]), and
checks whether a bad configuration is reachable. This tool implements various
model-checking approaches, based on abstract interpretation. It is not limited
to systems of a specific class. Contrary to ReSCu, most of these approaches are
semi-algorithms and need a time-out to be set arbitrarily. However, the strength
of McScM is the multiplicity of model-checking engines it provides, increasing the
likelihood of a conclusive result for any system. We use its description language
as a way to input systems in ReSCu.

The notion of stability, introduced in [4], is close to RSC. A system is k-
stable if its behaviour with any bound k′ > k is equivalent (with several notions
of equivalence possible) to its behaviour with a bound k. Model-checking can be
performed with bounded buffers for stable systems. Stability was shown to be
undecidable for FIFO systems in [3], but decidable with bag buffers (for a specific
notion of equivalence) [2]. The authors of [2,3] developed STABC: a tool using
semi-algorithms to check k-stability of systems. Contrary to ReSCu, it does not
perform verification of safety properties, but provides only membership results.

Lange and Yoshida proposed another tool: KMC [20], for k Multiparty Com-
patibility. It checks whether a system could have been obtained by projection of
a global type, relying on the theory of Multiparty Session Types [16] (another

RSC to the ReSCu 137

Client

0 1 2 0

Server

1 2 2 0

Database

s?req c!res s?ack

d!log

s!req c?res

s!ack
d?log

Fig. 1. Protocol from Example 1

way to model distributed systems). If a system is k-MC, various safety proper-
ties are ensured, and it is not necessary to specify them as it is for McScM or
ReSCu.

2 Communicating Automata

We begin with a small example of protocol, borrowed from [3].

Example 1 (Communication protocol). We will consider a generic client/server
protocol, enhanced with a database logging activity. In this protocol, the client
may send a request to the server, and when it receives a result for this request,
it sends an acknowledgement back to the server. The server waits for a request,
and upon receiving it, it sends a result to the client. After that, it waits for an
acknowledgement from the client and sends a logging message to the database.
Those behaviours can be repeated indefinitely. ��

Figure 1 is a graphical representation of the system of CA modelling the
protocol from Example 1. Each participant is represented by an automaton,
which can change states by executing the actions labelling its transitions. An
action i!v means that message v is sent in buffer i, and i?v that v is received from
buffer i. In this system each participant receives all its messages in a single FIFO
buffer (mailbox). Informally, a configuration is the product of the control states
of each participant, paired with the content of the buffers. A configuration is
reachable if a sequence of actions of the system can lead to it. We focus on safety
properties that can be expressed as a regular language of ‘bad’ configurations of
a system. We say that such a safety property is satisfied if no configuration of
the language is reachable in the system.

Example 2 (Safety specifications). In Example 1, the configuration where the
server is in state 1, and the client in state 0 is a bad configuration: it means
those two participants are not at the same step of the protocol any more. Both
the server and the client are not ready to receive the messages they are about
to send each other. In this tiny example, it is easy to see that such a configu-
ration is not reachable, but on bigger systems an automatic verification may be
useful to ensure such properties. Another example: a set of bad configurations
is formed by the ones where the server is in state 0, and the first message in
buffer s is not req, preventing any further reception to happen for this partici-
pant (indeed, remember we use FIFO buffers, only the first message of a buffer
may be received). ��

138 L. Desgeorges and L. Germerie Guizouarn

scm client_server_database :

nb_channels = 3;
parameters: int req; int res;
int log; int ack;

automaton server:
initial: 0
state 0:
to 1: when true , 0 ? req;
state 1:
to 2: when true , 1 ! res;
state 2:
to 3: when true , 0 ? ack;
state 3:
to 0: when true , 2 ! log;

automaton database:
initial: 0
state 0:
to 0: when true , 2 ? log;

automaton client:
initial: 0
state 0:
to 1: when true , 0 ! req;
state 1:
to 2: when true , 1 ? res;
state 2:
to 0: when true , 0 ! ack;

bad_states:
(automaton client: in 0: true
automaton server: in 1: true)

(automaton server: in 0: true with
(log|res|ack).(req|res|log|ack)^*.#.
(req|res|log|ack)^*.#.
(req|res|log|ack)^*)

Fig. 2. SCM representation of Example 1

Intuitively, a system of CA is RSC if send actions and their respective recep-
tion can happen at the same time: there is no need for another action to be
performed between sending a message and receiving it. The work in [12] provides
formal definitions of CA and RSC systems, as well as algorithms for deciding
membership to the class of RSC systems and reachability of a configuration.

3 ReSCu

ReSCu is a tool using the properties of RSC systems to perform model-checking.
It is an OCaml implementation of the algorithms in [12]. While working on this
implementation, we discovered a bug in the membership algorithm; we provide
in [11] the fixed algorithms, generalised to take into account bag buffers. ReSCu
provides a command line interface that takes a file describing a system of CA and
its safety specifications, and outputs whether this system is RSC, and whether a
bad configuration is reachable or not. If a bad configuration is reachable, ReSCu
can display the execution leading to the safety counterexample. Similarly, if non-
RSC executions are possible, one of them may be displayed. This tool is available
at [10].

SCM Description Language. We chose, as an input format, the SCM language
used in [15]. This allowed to rely on the parser that was already available thanks
to the developers of McScM, and to compare easily ReSCu with this tool. Figure 2
shows the SCM description of the system in Example 1. The set of messages is
declared after the keyword parameters, and the number of buffers after the key-
word nb channels (‘channel’ is the name used for buffers in SCM). An automa-
ton is declared as a list of states, each of them containing a (possibly empty)
list of transitions. SCM allows specification of model features we did not take

RSC to the ReSCu 139

Protocol |P| S T RSC trsc k-MC tkmc

SMTP [17,22] 2 64 108 Yes 17 Yes 34
HTTP [18,22] 2 12 48 Yes 17 Yes 28
Elevator [6] 3 13 23 No 7 Yes 41
Commit protocol [6] 4 12 12 Yes 4 Yes 15
Travel agency [22] 3 17 20 Yes 8 Yes 15
SH [22] 3 22 30 Yes 18 Yes 33

(a) Comparison with KMC

Protocol |P| S T RSC trsc k tstabc
Estelle specification [19] 2 7 9 No 5 max 82,625
FTP transfer [7] 3 20 17 Yes 6 4 89,465
SQL server [23] 4 33 38 Yes 13 3 90,553
SSH [21] 4 27 28 Yes 7 2 43,855
Bug report repository [14] 4 11 11 Yes 4 max 134,796
Restaurant service [1] 3 16 16 No 5 2 52,793

(b) Comparison with STABC, using FIFO buffers and ‘strong
equivalence’. max means the arbitrary limit for k, set at 10,
was reached.

Table 1. Membership results of ReSCu compared with KMC and STABC. |P| is the
number of participants, S the number of states, and T the number of transitions. trsc,
tkmc and tstabc denote the time (in ms) of computation of ReSCu, KMC and STABC.

into consideration, hence the ‘when true’ in the transitions, or the types of each
message. Bad configurations are declared after the keyword ‘bad states’, each
one of them being a list of control states and an optional regular expression
describing buffer contents. The bad states of this listing correspond to the ones
in Example 2.

Usage. The command line utility allows to check both membership and safety of
a system: rescu -isrsc <system> checks whether the system described in the
SCM file <system> is RSC, and rescu -mc <system> checks that no bad con-
figuration is reachable. The two options can be combined in one call to ReSCu.
Option -bag specifies that all buffers should be considered as bag buffers. In
this case bad specifications including a description of the buffer contents are not
accepted. For convenience while testing, we included a feature allowing to output
a DOT representation of an SCM file. A video demonstrating the use of ReSCu
is available at [9].

Implementation Choices. McScM was designed as a framework, allowing addi-
tion of model-checking engines as modules. We opted for a stand-alone tool as
the interface with McScM is way more involved than what is required for RSC
algorithms. In addition, McScM is no longer maintained, and in its current state
it is not possible to compile it with a modern version of OCaml.

4 Results

We used ReSCu on the set of examples provided with McScM, and we ported
examples of systems available with STABC [3] and KMC [20]. This allowed to
test our tool on a lot of systems, some of which modelling actual protocols.

Proportion of RSC Systems in the Wild. We used ReSCu to check the existence
of RSC systems among examples from the literature. Using FIFO buffers, 30%
of the systems from [15], 60% of those from [20] and 38% of those from [3]
are RSC. Using bag buffers, the results are respectively 12%, 41% and 11%.
These figures are to be interpreted carefully however, as the examples coming

140 L. Desgeorges and L. Germerie Guizouarn

from KMC and STABC are not all random examples. Examples of systems from
KMC are CSA, for communicating session automata, which is a class of systems
where there cannot be sending and receiving transitions leaving the same state.
Some systems where even (slightly) modified to become CSA. To provide a more
realistic overview of the importance of RSC systems in the literature, we show
in Table 1 some membership results for interesting protocols that were featured
in [20] and [3]. It shows a comparison of the results of ReSCu on one hand, and
the results we reproduced with their respective tools on the other hand. The k
value provided by STABC is a buffer bound that may be applied to the system
without restricting its behaviour. An extended version of those tables is available
in [11].

Performance of our Tool. We ran both our tool and McScM on several RSC
examples from McScM, KMC and STABC, and compared the model-checking
time. For the ported examples, we had to design some specifications, as the
tools those systems came from focused only on membership to a class. The bad
configurations we added are similar to the second one of Fig. 2: they enforce
that, for a specific control state of a participant, no configuration where the first
message of the buffer cannot be received is reached. For reference, we ran our
testing on a laptop with an Intel Core i5-8250U CPU at 1.60 GHz, equipped
with 16 Gb of RAM.

Protocol ReSCu absint armc cegar lart
ring 137 (19,708) Tmax 382 1,928
NonRegular 4 60 Tmax 13 10
pop3 33 719 2,143 6,759 Tmax

Nested 4 5 11 320 2045
con disc reg 4 (21) 7 9 4
tcp error∗ 4 (107) 26 66 10
http-fsm 7 44 Tmax Tmax Tmax

smtp 84 236 241 174 173
FTP 51 29 54 61 82
SSH 207 574 368 188 910

Table 2. Model-checking time
(in ms) of ReSCu and McScM.
Figures in brackets correspond
to inconclusive verification.

Table 2 presents the times of computation of
the different algorithms, averaged over 3 runs. The
shortest time for each protocol is highlighted. The
three horizontal sections of the table correspond
to the origin of the examples: McScM, KMC and
STABC, in that order. The runs that reached the
time limit of 2 minutes are marked Tmax. The
columns for cegar and lart present the best time
of the four variants of these algorithms.

As an example, we detail the results for a pro-
tocol: ring, a token passing protocol in a ring with
four peers. The first algorithm, absint, did not
provide a conclusive answer, and ran for about

19 s. The second one, armc, reached the time limit we set at 2 min without fin-
ishing. The next algorithms have four variants each, and even if cegar is the
fastest in this example, one of its variant times out. Two of the variants of lart
time out as well.

The protocol tcp error∗ is a simplified version of TCP, intentionally modi-
fied to be erroneous. It is not RSC, but we included it as ReSCu can still find one
of its bad configurations. Even though ReSCu cannot certify that a non-RSC
protocol is safe, it can still help finding bugs quickly.

The rightmost column in Tables 1a and 1b gives an overview of the perfor-
mance of the membership algorithm, compared to KMC and STABC respec-
tively. Note that KMC checks the safety of a protocol, while knowing if a given

RSC to the ReSCu 141

system is RSC merely allows to know if our model-checking algorithm is suitable
for it.

5 Conclusion

We presented ReSCu, a tool relying on the properties of RSC systems of commu-
nicating automata to verify safety of communication protocols. Through exten-
sive testing and comparison with other tools, ReSCu proved to be performant,
and allowed to notice that a significant portion of actual protocols from the
literature are indeed RSC.

This tool has some limitations however: some systems are not RSC, and
ReSCu cannot certify safety of those. Another drawback is that while other
tools can check various safety properties taking only the description of the pro-
tocol, we need the users to define correctly the safety properties they want to
check. While our current setting allows for some flexibility, generating bad con-
figurations automatically for properties like unspecified reception, or progress
(see [12]), could be an interesting improvement of ReSCu, and is left as future
work.

Acknowledgements. We would like to thank all the COORDINATION reviewers for
their comments that greatly improved the present paper.

Data Availability Statement. The artifact is available in the Software Heritage
repository: swh:1:dir:a9fb15adfc33656029d9d84d34ec34c129ebfc34.

References

1. van der Aalst, W.M.P., Mooij, A.J., Stahl, C., Wolf, K.: Service interaction: pat-
terns, formalization, and analysis. In: Bernardo, M., Padovani, L., Zavattaro, G.
(eds.) SFM 2009. LNCS, vol. 5569, pp. 42–88. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01918-0 2

2. Akroun, L., Salaün, G.: Automated verification of automata communicating via
FIFO and bag buffers. Formal Methods Syst. Des. 52(3), 260–276 (2017). https://
doi.org/10.1007/s10703-017-0285-8

3. Akroun, L., Salaün, G., Ye, L.: Automated analysis of asynchronously communi-
cating systems. In: Bošnački, D., Wijs, A. (eds.) SPIN 2016. LNCS, vol. 9641, pp.
1–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32582-8 1

4. Basu, S., Bultan, T.: Automatic verification of interactions in asynchronous sys-
tems with unbounded buffers. In: ACM/IEEE International Conference on Auto-
mated Software Engineering, ASE, pp. 743–754. ACM (2014). https://doi.org/10.
1145/2642937.2643016

5. Boigelot, B., Godefroid, P.: Symbolic verification of communication protocols with
infinite state spaces using QDDs. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996.
LNCS, vol. 1102, pp. 1–12. Springer, Heidelberg (1996). https://doi.org/10.1007/
3-540-61474-5 53

https://archive.softwareheritage.org/browse/directory/a9fb15adfc33656029d9d84d34ec34c129ebfc34/?origin_url=https://src.koda.cnrs.fr/loic.germerie.guizouarn/rescu&revision=f312de0f2cfbc6bf531375620a1591f29cd8fc99&snapshot=bfba76c9f84ca3024019edd710b26245427afd6e
https://doi.org/10.1007/978-3-642-01918-0_2
https://doi.org/10.1007/978-3-642-01918-0_2
https://doi.org/10.1007/s10703-017-0285-8
https://doi.org/10.1007/s10703-017-0285-8
https://doi.org/10.1007/978-3-319-32582-8_1
https://doi.org/10.1145/2642937.2643016
https://doi.org/10.1145/2642937.2643016
https://doi.org/10.1007/3-540-61474-5_53
https://doi.org/10.1007/3-540-61474-5_53

142 L. Desgeorges and L. Germerie Guizouarn

6. Bouajjani, A., Enea, C., Ji, K., Qadeer, S.: On the completeness of verifying mes-
sage passing programs under bounded asynchrony. In: Chockler, H., Weissenbacher,
G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 372–391. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96142-2 23

7. Bracciali, A., Brogi, A., Canal, C: A formal approach to component adaptation.
In: J. Syst. Softw. 74(1), pp. 45–54 (2005)

8. Brand, D., Zafiropulo, P.: On communicating finite-state machines. ACM 30(2),
323–342 (1983). https://doi.org/10.1145/322374.322380

9. Desgeorges, L., Germerie Guizouarn, L.: Demonstration video of ReSCu. https://
seafile.celazur.fr/f/bfa8e1380ce540f5bddb/?dl=1

10. Desge orges, L., Germerie Guizouarn, L.: ReSCu archive. https://archive.
softwareheritage.org/browse/origin/directory/?originhttps://src.koda.cnrs.fr/loic.
germerie.guizouarn/rescu

11. Desgeorges, L., Germerie Guizouarn, L.: RSC to the ReSCu: Automated Verifica-
tion of Systems of Communicating Automata. https://hal.science/hal-04090204.
Long version (2023)

12. Di Giusto, C., Germerie Guizouarn, L., Lozes, É.: Multiparty half-duplex systems
and synchronous communications. J. Logic. Algebraic Methods Program. 131,
100843. ISSN: 2352–2208 (2023). https://doi.org/10.1016/j.jlamp.2022.100843

13. Di Giusto, C., Germerie Guizouarn, L., Lozes, É.: Towards generalised half-duplex
systems. In: 14th Interaction and Concurrency Experience, ICE, Proceedings
EPTCS, vol. 347, pp. 22–37 (2021) https://doi.org/10.4204/EPTCS.347.2

14. Gössler, G., Salaün, G.: Realizability of choreographies for services interacting
asynchronously. In: Arbab, F., Ölveczky, P.C. (eds.) FACS 2011. LNCS, vol.
7253, pp. 151–167. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-35743-5 10

15. Heußner, A., Le Gall, T., Sutre, G.: McScM: a general framework for the veri-
fication of communicating machines. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 478–484. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28756-5 34

16. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL, Proceedings. ACM, pp. 273–284 (2008). https://doi.org/10.1145/
1328438.1328472

17. Hu, R.: Distributed programming using Java APIs generated from session types.
In: Behavioural Types: From Theory to Tools River Publishers, pp. 287–308 (2017)

18. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: Stevens, P., Wasowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 401–418.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49665-7 24

19. Jéron, T., Claude Jard, C.: Testing for unboundedness of & #xC;fo channels. In:
Theoretical Computer Science 113(1), pp. 93–117 (1993)

20. Lange, J., Yoshida, N.: Verifying asynchronous interactions via communicating
session automata. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
97–117. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 6

21. Mart́ın, J.A., Pimentel, E.: Contracts for security adaptation. In: J. Logic Algebraic
Program. 80(3), pp. 154–179 (2011)

22. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: compile-
time API generation of distributed protocols with refinements in F#. In: 27th
International Conference on Compiler Construction, CC, Proceedings, pp. 128–
138. ACM (2018) https://doi.org/10.1145/3178372.3179495

https://doi.org/10.1007/978-3-319-96142-2_23
https://doi.org/10.1145/322374.322380
https://seafile.celazur.fr/f/bfa8e1380ce540f5bddb/?dl=1
https://seafile.celazur.fr/f/bfa8e1380ce540f5bddb/?dl=1
https://archive.softwareheritage.org/browse/origin/directory/?origin
https://archive.softwareheritage.org/browse/origin/directory/?origin
https://src.koda.cnrs.fr/loic.germerie.guizouarn/rescu
https://src.koda.cnrs.fr/loic.germerie.guizouarn/rescu
https://hal.science/hal-04090204
https://doi.org/10.1016/j.jlamp.2022.100843
https://doi.org/10.4204/EPTCS.347.2
https://doi.org/10.1007/978-3-642-35743-5_10
https://doi.org/10.1007/978-3-642-35743-5_10
https://doi.org/10.1007/978-3-642-28756-5_34
https://doi.org/10.1007/978-3-642-28756-5_34
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1145/3178372.3179495

RSC to the ReSCu 143

23. Poizat, P., Salaün, G.: Adaptation of open component-based systems. In: Bon-
sangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 141–156.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72952-5 9

https://doi.org/10.1007/978-3-540-72952-5_9

Reasoning About Choreographic Programs

Lúıs Cruz-Filipe , Eva Graversen(B) , Fabrizio Montesi ,
and Marco Peressotti

Department of Mathematics and Computer Science, University of Southern Denmark,
Odense, Denmark

efgraversen@imada.sdu.dk

Abstract. Choreographic programming is a paradigm where a concur-
rent or distributed system is developed in a top-down fashion. Programs,
called choreographies, detail the desired interactions between processes,
and can be compiled to distributed implementations based on message
passing. Choreographic languages usually guarantee deadlock-freedom
and provide an operational correspondence between choreographies and
their compiled implementations, but until now little work has been done
on verifying other properties.

This paper presents a Hoare-style logic for reasoning about the
behaviour of choreographies, and illustrate its usage in representative
examples. We show that this logic is sound and complete, and discuss
decidability of its judgements. Using existing results from choreographic
programming, we show that any functional correctness property proven
for a choreography also holds for its compiled implementation.

1 Introduction

Programming communicating systems is hard, because of the challenge of ensur-
ing that separate communication actions (like sending or receiving a message)
executed by independent programs match each other correctly at runtime [21].

In the paradigm of choreographic programming [26], this challenge is tack-
led by providing high-level abstractions that allow programmers to express the
desired flow of communications safely from a ‘global’ viewpoint [6,8,9,13,17,
18,20,23,27]. In a choreography program, or choreography, communication is
expressed in some variation of the communication term from security protocol
notation, Alice -> Bob : M , which reads “Alice communicates the message M to
Bob” [29]. These terms can be composed in structured choreographies using com-
mon programming language constructs. Then, a compiler can automatically gen-
erate an executable distributed implementation [6,13,16], as depicted in Fig. 1.

So far, research on choreographic programming has mostly focused on
improving the expressivity of choreographic programming languages, their imple-
mentation, and the formalisation of general properties about compilation. The-
ory of choreographic programming typically comes with proofs of correctness of
the accompanying compilation procedure. A hallmark result is deadlock-freedom
by design: since mismatched communication actions cannot be syntactically
expressed in choreographies, the compiled code cannot incur deadlocks [6].
c© IFIP International Federation for Information Processing 2023
S.-S. Jongmans and A. Lopes (Eds.): COORDINATION 2023, LNCS 13908, pp. 144–162, 2023.
https://doi.org/10.1007/978-3-031-35361-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35361-1_8&domain=pdf
http://orcid.org/0000-0002-7866-7484
http://orcid.org/0000-0002-9430-4907
http://orcid.org/0000-0003-4666-901X
http://orcid.org/0000-0002-0243-0480
https://doi.org/10.1007/978-3-031-35361-1_8

Reasoning About Choreographic Programs 145

A -> B : x;
A -> C : y;
C computes z;
C -> B : z;
. . .

Choreography with n participants

Projection

send x to B;
send y to C;
. . .

Code for participant A

. . . projected behaviour

Code for participant n

Fig. 1. Choreographic programming: the communication and computation behaviour
of a system is defined in a choreography, which is then projected (compiled) to deadlock-
free distributed code (adapted from [17]).

By contrast, little research has been done on general methods for proving
functional correctness properties about choreographies. Yet choreographies cod-
ify distributed protocols, and reasoning about the effect that these protocols
have on the states of participants is usually important.

This Work. In this work, we present a Hoare logic for reasoning about chore-
ographies. Hoare logic [2,19] is a common way of reasoning about programs. A
Hoare assertion is a triple, {ϕ}P{ψ}, where ϕ and ψ are formulas (respectively
called the precondition and postcondition) and P is a program. This triple states
that if P is executed from a state that satisfies ϕ and terminates, then the final
state satisfies ψ. We develop a Hoare logic where programs are choreographies
and formulas can talk about the states of multiple processes jointly.

Our framework is based on well-studied theories of choreographic pro-
gramming [10,27], in particular on properties that have been formalised in
Coq [11,12]. This helps with the generality and elegance of our development.
For example, we leverage the property of confluence in metatheoretical proofs,
and we rely on the compiler correctness results proven previously to transfer
properties proven with our logic to distributed implementations compiled from
choreographies.

Contribution. We define a Hoare logic for reasoning about choreographic pro-
grams expressed in standard ways, thanks to a modular design parametrised on
the language of state formulas. We prove that our logic has the expected prop-
erties of a Hoare logic (soundness and partial completeness), and illustrate how
it can be used to prove important properties of specific protocols encoded as
choreographies.

146 L. Cruz-Filipe et al.

Structure. We review the choreographic language from [10] in Sect. 2. In Sect. 3
we describe our logic and prove its soundness. Section 4 introduces weakest liberal
preconditions, and uses them to show completeness and decidability results.
Section 5 discusses additional related work. Illustrative examples are included
throughout the text.

2 Language

In this section we recall the choreographic language from [10], which we will be
reasoning about. This language models systems of independent processes (net-
works), which interact by means of synchronous communication. Each process
is uniquely identified by a name, which is known by all other processes in the
network, and can store values locally in memory referenced by variables. The
set of variable names is assumed to be the same for all processes. The set of all
processes is denoted by P.

There are two kinds of messages that can be exchanged: values are results of
evaluating expressions locally; and selection labels are special constants used to
implement agreement on choices about alternative distributed behaviour.

The actual sets of expressions and labels are left unspecified, but we make
some assumptions. Labels are taken from a (small) finite set. Expressions are
freely generated from a (typed) signature Ξ and the set of process variables.
Expressions that evaluate to a Boolean value are also called Boolean expressions.

2.1 Syntax

Formally, the syntax of choreographies is defined by the grammar

C :: = I;C | if p.b thenC1 elseC2 | X | ��q,X�C | 0
I :: = p.x := e | p.e → q.x | p → q[l]

where C is a choreography, I is an instruction, p and q are processes names, e
is an expression, v is a value, x is a variable, b is a Boolean expression, l is a
selection label, and X is a procedure name.

Choreographies can be built as: an instruction I followed by a choreography;
alternative composition of two choreographies C1 and C2; procedure calls; or
the terminated choreography 0. There are two terms for procedure calls, corre-
sponding to: (a) a procedure that has yet to be entered by any processes (X) or
(b) one which has already started, annotated with the set of processes that still
have to enter it (��q,X�C).

There are three types of instructions: local assignment (p.x := e), where p
evaluates expression e and stores the result in its local variable x; value commu-
nication, where p evaluates e and sends the result to q, who stores it in variable
x; and label selection, where p sends a label l to q (typically to communicate
the result of a local choice – see below).

In a conditional, if p.b thenC1 elseC2, process p evaluates the expression b
to decide whether the choreography should continue as C1 or C2. Since only p

Reasoning About Choreographic Programs 147

knows the result of the evaluation, the remaining processes need to be informed
of how they should behave – this knowledge is typically propagated to other
participants by means of label selections.1

Repetitive and iterative behaviour in this language is achieved by means of
procedure calls. Calling a procedure X simply invokes the choreography corre-
sponding to X, given in a separate mapping of procedure definitions C . Since
choreography execution is distributed, processes do not need to synchronise when
entering a procedure. This requires a runtime term, ��q,X�C, to denote a proce-
dure call that only some processes have entered. This term keeps track of both
the set of processes �q that still need to enter X and the execution state of the
choreography, C. As we show below, the semantics of choreographies allows for
out-of-order execution, and consequently some processes may start executing
their part of the procedure before others have entered it.

Example 1 (Diffie-Hellman). Consider the Diffie-Hellman key exchange proto-
col [14] which allows two parties, p and q, to establish a shared secret, s, that
they can later use for symmetric encryption. To implement this protocol in our
choreographic language we need only communication, local computation, and a
language of expressions with modular exponentiation (be mod m) [16,27]. The
protocol assumes that participants have a private key each (a, b) and that they
share a prime number m and a primitive root modulo m, g.

DH = p.(ga mod m) → q.a; p computes its public key and sends it to q

q.(gb mod m) → p.b; q computes its public key and sends it to p

p.s := ba mod m; p generates the shared secret

q.s := ab mod m; q generates the shared secret
0 �

Example 2 (Zeros). Searching for a zero of a function is a common textbook
example for program verification using Hoare-style logics [3]. In this example,
we consider a version of the problem where p and q coordinate to find a zero of
a function f over natural numbers: p is responsible for selecting the values to
test and q for evaluating f and choosing whether to stop or continue searching.
We capture this iterative protocol with the following recursive procedure.

C (Z) = p.x → q.x;
if q.f(x) = 0 then (q → p[L];0)

else (q → p[R]; p.x := 1 + x;Z)

Then, to search the domain of f , we run the choreography p.x := 0;Z. �

We define a function pn that returns the set of processes involved in an
instruction or choreography. This function is defined inductively in the natural
way.
1 For this reason, the set of labels is often fixed to be a two-element set, one for each

branch of a choice.

148 L. Cruz-Filipe et al.

pn(p.x := e) = {p} pn(p.e → q.x) = pn(p → q[l]) = {p, q}
pn(I;C) = pn(I) ∪ pn(C) pn(if p.b thenC1 elseC2) = {p} ∪ pn(C1) ∪ pn(C2)
pn(X) = P pn(��q,X�C) = �q ∪ pn(C)

For simplicity we assume that all processes are involved in all procedures; an
alternative is to annotate procedure names with the set of processes they use,
see [12]. This does not affect the behaviour of any processes actually involved
in the procedure, and semantically only means that a process which would oth-
erwise be considered terminated may first have to enter some number of empty
procedure calls.

2.2 Semantics

The semantics of choreographies uses a notion of state, which maps each variable
at each process to the value it currently stores. It is convenient to define a local
state as a mapping from variables to values (representing the memory state at
one process), and a global state as a function Σ such that Σ(p) is the local state
at p.

To evaluate expressions, we assume that there is an evaluation function that
takes a local state as parameter, evaluates variables to their value according to
the state, and proceeds homeomorphically. In other words, evaluation maps each
symbol in Ξ to a function from values to values. We assume that all choreogra-
phies and functions are well-typed, in the sense that the values stored in each
variable match the types expected in the expressions in which they occur. Fur-
thermore, we assume that evaluation always terminates, and write e ↓Σ(p) v to
denote that e evaluates to v according to state Σ(p) (local at p).

The formal semantics of choreographies is defined by means of a labelled
transition system capturing the intuitions given above, whose rules are given
in Fig. 2. Transitions are labelled by transition labels, which abstract from the
possible choreography actions that can be observed: communications of values
(p.v → q) and labels (p → q[l]), or internal actions (τ@p). The function pn is
naturally extended to these.

pn(τ@p) = {p} pn(p.v → q) = pn(p → q[l]) = {p, q}

Rules C|Assign, C|Com, C|Sel, C|Then and C|Else capture the intuition
behind the different choreographic primitives given earlier. The next three rules
deal with procedure invocation: the procedure starts when one process decides
to enter it, and all remaining processes are put on a “waiting list” (rule C|Call);
whenever a new process enters it, it is removed from the set of waiting processes
(rule C|Enter); and when the last process enters the call the set is removed
(rule C|Finish).

Reasoning About Choreographic Programs 149

e ↓Σ(p) v

〈p.x := e;C, Σ〉 τ@p−−→C 〈C, Σ[〈p, x →�〉 v]〉
C|Assign

e ↓Σ(p) v

〈p.e → q.x;C, Σ〉 p.v→q−−−−→C 〈C, Σ[〈q, x →�〉 v]〉
C|Com

〈p → q[l];C, Σ〉 p→q[l]−−−−→C 〈C, Σ〉
C|Sel b ↓Σ(p) true

〈if p.b thenC1 elseC2, Σ〉 τ@p−−→C 〈C1, Σ〉
C|Then

b ↓Σ(p) false

〈if p.b thenC1 elseC2, Σ〉 τ@p−−→C 〈C2, Σ〉
C|Else

C (X) = C

〈X, Σ〉 τ@r−−→C 〈�pn(C) \ r, X�C, Σ〉
C|Call

r ∈ �q �q \ r
= ∅
〈��q, X�C, Σ〉 τ@r−−→C 〈��q \ r, X�C, Σ〉

C|Enter
〈�q, X�C, Σ〉 τ@q−−→C 〈C, Σ〉

C|Finish

〈C, Σ〉 μ−→C 〈C′, Σ′〉 pn(I) # pn(μ)

〈I;C, Σ〉 μ−→C 〈I;C′, Σ′〉
C|DelayI

〈C1, Σ〉 μ−→C 〈C′
1, Σ

′〉 〈C2, Σ〉 μ−→C 〈C′
2, Σ

′〉 p /∈ pn(μ)

〈if p.b thenC1 elseC2, Σ〉 μ−→C 〈if p.b thenC′
1 elseC′

2, Σ
′〉

C|DelayC

〈C, Σ〉 μ−→C 〈C′, Σ′〉 �q# pn(μ)

〈��q, X�C, Σ〉 μ−→C 〈��q, X�C′, Σ′〉
C|DelayP

Fig. 2. Semantics

The last three rules deal with out-of-order execution: processes can always
execute what for them is the next action, regardless of what other processes are
doing. This is modelled by rules C|DelayI, C|DelayC and C|DelayP, which allow
execution of an action that is not syntactically the first instruction, conditional
or procedure entering, respectively. The side conditions in these rules state that
the processes involved in the action being executed do not participate in the
actions being skipped (we write X # Y for X ∩ Y = ∅). Additionally, the action
being performed in C|DelayC must be an action that can be made regardless of
what p chooses.

The reflexive and transitive closure of transition is denoted by →∗
C ; we omit

the sequente of transition labels, as this is immaterial for the current presentation.
For our proofs we also need the concept of head transition, which is the

transition relation defined by the first 8 rules in Fig. 2 – that is, disallowing

150 L. Cruz-Filipe et al.

out-of-order execution. We write 〈C,Σ〉 μ
=⇒C 〈C ′, Σ′〉 to denote that C makes

a head transition to C ′, and ⇒∗
C for the reflexive and transitive closure of this

relation.

3 A Hoare Calculus for Choreographies

In this section we introduce our formal calculus for proving semantic properties
of choreographies based on Hoare logic. Our judgements are triples {ϕ}C{ψ},
interpreted as “if choreography C is executed from a state satisfying formula ϕ
and execution terminates, then the final state satisfies formula ψ”.

In this section we formally define the syntax and the semantics of this calcu-
lus, starting with the state logic – the language in which formulas ϕ and ψ are
written.

3.1 State Logic

State logics in Hoare calculi typically express properties as “variable x stores a
value v”, which are easily expressible in equational logic. We follow this tradition,
and define our state logic to be an extension of equational logic. In order to
deal with assignments, we need to be able to update formulas in a way that
corresponds to the state update in rule C|Assign – but without computing values.
This can be achieved by substituting the expression communicated in the original
formula – but this means that expressions may suddenly refer to variables stored
in different processes, so that they are no longer evaluated locally.

To deal with these issues, our state logic is parameterised on a set of expres-
sions that is freely generated from the same signature Ξ, but using localised
variables p.x. We denote these expressions as E , and extend evaluation to them
in the natural way.

State formulas are defined as

ϕ,ψ :: = (E = X) | δ | ϕ ∧ ϕ | ¬ϕ

where X is a (logical) variable and δ ∈ D, where D is a decidable theory whose
terms include the logical variables. Parameterising the language on D keeps the
syntax of formulas simpler, while giving the user flexibility to define additional
needed formulas. This is similar to our treatment of the local language. For
example, if D includes X > X ′, then the state logic is able to express constraints
such as p.x > q.y, assuming values are integers: this can be written as p.x =
X ∧ q.y = Y ∧ X > Y. Disjunction and implication are defined as abbreviations
in the usual way.

Given a state Σ, a formula ϕ and an assignment ρ from logical variables to
values, we define Σ �ρ ϕ, read “Σ satisfies ϕ under ρ”, by the rules

E ↓Σ ρ(X)
Σ �ρ E = X

δ ∈ D ϕ is true
Σ �ρ δ

together with the usual rules for logical connectives.

Reasoning About Choreographic Programs 151

As usual in Hoare logics, assignment is dealt with using substitution – for
example, we expect to be able to prove something like

{ϕ′}p.x := e;0{ϕ}

where ϕ′ is obtained by ϕ by substituting p.x with e. However, simply replacing
every occurrence of p.x with e yields in general an invalid formula (due to the dif-
ferent variables in choreographies and state formulas). We define the localisation
of e at p, L(p, e), as the (logical) expression obtained from e by replacing every
(choreography) variable x with p.x; and the localised substitution E [q.x := p.e]
as the expression obtained from E by replacing every occurrence of q.x with
L(p, e). (The rule for communication uses different values for p and q.) Observe
that these operations can both be defined by structural recursion on expressions.
Localised substitution extends to formulas in the natural way.

Example 3. Take ϕ to be the formula p.x > 3 and e to be the expression y − z.
Replacing p.x with y − z in ϕ would yield the ill-formed formula p.(y − z) >
3. Instead, replacing p.x with L(p, y − z) = p.y − p.z yields the right formula
p.y − p.z > 3, and the above judgement becomes

{p.y − p.z > 3}p.x := y − z;0{p.x > 3}

which is syntactically well-formed. �

We now show that an expression that has been localised to p is interpreted
as its original evaluation in p.

Lemma 1. Let Σ be a state, v be a value, X be a logical variable and ρ be an
assignment such that ρ(X) = v. For any process p and expression e, e ↓Σ(p) v
iff Σ �ρ L(p, e) = X .

Proof. Follows from induction on the structure of e. ��
We then show that doing a localised substitution in a formula is equivalent

to changing the value of that variable in the environment.

Corollary 1. Let Σ be a state, p be a process, e be an expression and v be a value
such that e ↓Σ(p) v. For any formula ϕ and assignment ρ, Σ[〈p, x〉 �→ v] �ρ ϕ iff
Σ �ρ ϕ[q.x := p.e].

Proof. By structural induction on ϕ. One of the base cases is simply Lemma 1,
while the other is trivially empty (since formulas in D are not affected by substi-
tution). The two inductive cases follow directly by induction hypothesis. ��

152 L. Cruz-Filipe et al.

�C {ϕ}0{ϕ} H|Nil
�C {ϕ}C{ϕ′}

�C {ϕ[p.x := p.e]}p.x := e;C{ϕ′} H|Assign

�C {ϕ}C{ϕ′}
�C {ϕ[q.x := p.e]}p.e → q.x;C{ϕ′} H|Com

�C {ϕ}C{ϕ′}
�C {ϕ}p → q[l];C{ϕ′} H|Sel

�C {ϕ ∧ L(p, b) X= true}C1{ψ} �C {ϕ ∧ L(p, b) X= false}C2{ψ} X fresh
�C {ϕ}if p.b thenC1 elseC2{ψ} H|Cond

C(X) = 〈ϕ, ψ〉
�C {ϕ}X{ψ} H|Call

�C {ϕ}C{ψ}
�C {ϕ}��q, X�C{ψ} H|Call’

D |= ϕ → ϕ′ �C {ϕ′}C{ψ′} D |= ψ′ → ψ

�C {ϕ}C{ψ} H|Weak

Fig. 3. Inference rules

3.2 Hoare Logic

We are now ready to introduce the rules for our calculus, which are depicted
in Fig. 3. To deal with procedure definitions, we need additional information
about their effect on states. This is achieved by the procedure specification map
C, which maps each procedure name to a pair 〈ϕ,ψ〉 with intended meaning that
the judgement {ϕ}C{ψ} should hold, where C is the definition of X.

The rule for assignment H|Assign has already been motivated earlier, and is
similar to the rule in standard Hoare calculi for imperative programs; likewise,
rules H|Nil and H|Cond are also standard. The notation L(p, b) X= true in rule
H|Cond abbreviates the conjunction L(p, b) = X ∧ X = true.

Rule H|Weak is a weakening rule, which allows us to include reasoning in
the state logic. The notation D |= ϕ stands for “ϕ is a valid formula”.

Rules H|Com and H|Sel adapt the intuitions behind those rules to our chore-
ography actions — a communication is essentially an assignment of a variable
located at a different process, while selection does not affect the state.

Rule H|Call deals with unexpanded procedure calls by reading the corre-
sponding judgement from the specification map, while H|Call’ reflects the fact
that the current state of the expanded procedure is explicitly given and a process
entering a procedure does not affect the state.

These rules only make sense if the specification map is consistent with the
procedure definitions in the following sense.

Definition 1. A procedure specification map C is consistent with a set of pro-
cedure definitions C if �C {fst(C(X))}C (X){snd(C(X))} for every X, where fst
and snd are the standard projection operators for pairs.

Reasoning About Choreographic Programs 153

This notion plays a similar role to the more usual concept of “being a loop
invariant” in Hoare logics for languages with while-loops, stating that fst(C(X))
always holds whenever X is called.

Example 4 (Diffie-Hellman, functional correctness). Consider Example 1, and
assume D is a theory for deciding equality of arithmetic expressions with modular
exponentiation. Functional correctness for the Diffie-Hellman protocol, states if
p and q have the same modulus m and base g then they will share the same secret
s once the protocol terminates. These pre- and postconditions are captured by
the following state formulas ϕ = (p.g G= q.g ∧ p.m

M= q.m) and ψ = p.s
S= q.s.

Thus, we can show the correctness of DH by deriving � {ϕ}DH{ψ}:

D |= ϕ → ϕ1

� {ψ}0{ψ} H|Nil

� {ϕ4}q.s := ab mod m;0{ψ} H|Assign

� {ϕ3}p.s := ba mod m; . . .{ψ} H|Assign

� {ϕ2}q.(gb mod m) → p.b; . . .{ψ} H|Com

� {ϕ1}p.(ga mod m) → q.a; . . .{ψ} H|Com

� {ϕ}DH{ψ} H|Weak

where:

ϕ1 = ϕ2[q.a := p.ga mod m]

= (q.gq.b mod q.m)
p.a

mod p.m
S= (p.gp.a mod p.m)q.b mod q.m

ϕ2 = ϕ3[p.b := q.gb mod m] = (q.bq.b mod q.m)
p.a

mod p.m
S= q.aq.b mod q.m

ϕ3 = ϕ4[p.s := p.ba mod m] = p.bp.a mod p.m
S= q.aq.b mod q.m

ϕ4 = ψ[q.s := q.ab mod m] = p.s
S= q.aq.b mod q.m �

We can now show that this calculus is sound, in the sense that it only derives
valid judgements. Given confluence of the transition system for the semantics
of choreographies [12], it suffices to show that this holds for head transitions: if
execution terminates, any path of execution must lead to the same final state.

Lemma 2. Assume that C is consistent with C and that �C {ϕ}C{ψ}. For every
state Σ and assignment ρ, if Σ �ρ ϕ and 〈C,Σ〉 ⇒∗

C 〈0, Σ′〉, then Σ′ �ρ ψ.

Proof. The proof is by induction on the number of transitions from 〈C,Σ〉 to
〈0, Σ′〉. Within each case, we use induction on the size of the derivation of
�C {ϕ}C{ψ}. We include some representative cases.

– If the number of transitions is 0, then C = 0 and Σ = Σ′. The derivation of
�C {ϕ}0{ψ} must then end with an application of H|Nil – which implies that
ψ = ϕ, establishing the thesis – or of H|Weak – and the induction hypothesis
together with soundness of D establishes the thesis.

154 L. Cruz-Filipe et al.

– Assume that 〈C,Σ〉 τ@p−−→C 〈C ′, Σ′〉 →∗
C 〈C ′′, Σ′′〉 and that the first transition

is derived by rule C|Assign. Then C has the form p.x := e;C ′, e ↓Σ(p) v, and
Σ′ = Σ[〈p, x〉 �→ v]. There are two cases, depending on the last rule applied
in the derivation of �C {ϕ}C{ψ}.
If the derivation terminates with an application of H|Assign, then ϕ is
ϕ′[p.x := p.e] for some formula ϕ′ such that �C {ϕ′}C ′{ψ}. By Corollary
1 it follows that Σ′ �ρ ϕ′, and the induction hypothesis applied to C ′ estab-
lishes the thesis.
If the derivation terminates with an application of H|Weak, then the thesis
is established by the induction hypothesis over the derivation, as in the base
case.

– Assume that 〈C,Σ〉 τ@p−−→C 〈C ′, Σ′〉 →∗
C 〈C ′′, Σ′′〉 and that the first transition

is derived by rule C|Call. Then C has the form X, �pn(C) \ r,X�C (X) and
Σ′ = Σ. Again there are two cases, depending on the last rule applied in the
derivation of �C {ϕ}C{ψ}.
If the derivation terminates with an application of H|Call, then by con-
sistency of C and C we know that �C {ϕ}C (X){ψ}, from which we can
infer (using H|Call’) that also �C {ϕ}�pn(C) \ r,X�C (X){ψ}. The induc-
tion hypothesis applies to this choreography to establish the thesis.
If the derivation terminates with an application of H|Weak, then the thesis
is established as in the previous cases. ��

Theorem 1 (Soundness). Assume that C is consistent with C and we have
�C {ϕ}C{ψ}. For every state Σ and assignment ρ, if Σ �ρ ϕ and 〈C,Σ〉 →∗

C

〈0, Σ′〉, then Σ′ �ρ ψ.

Proof. By the results in [12], if 〈C,Σ〉 →∗
C 〈0, Σ′〉 then also 〈C,Σ〉 ⇒∗

C 〈0, Σ′〉
(combining deadlock-freedom with confluence). Lemma 2 then establishes the
thesis. ��
Example 5 (Zeros, functional correctness). Correctness for the program from
Example 2 requires that if f has a zero, the program terminates finding it or,
equivalently, that the postcondition ψ = ((f(p.x) = 0) Z= true) holds. Since there
are no hypothesis on the initial state, we can use as a precondition φ any tautol-
ogy (preferably one without occurrences of variables used in the program) e.g.,
ϕ = (true T= true). The following derivation shows that the procedure specifica-
tion map C(Z) = 〈ϕ,ψ〉 is consistent with C from Example 2:

D |= ϕ → ϕ1

�C {ψ}0{ψ} H|Nil

�C {ψ}q → p[L];0{ψ} H|Sel

C(Z) = 〈ϕ,ψ〉
�C {ϕ}Z{ψ} H|Call

�C {ϕ}p.x := x + 1;Z{ψ} H|Assign

�C {ϕ}q → p[R]; . . .{ψ} H|Sel
�C {ϕ2}if q.f(x) = 0 then . . . else . . .{ψ} H|Cond

�C {ϕ1}p.x → q.x; . . .{ψ} H|Com

�C {ϕ}C (Z){ψ} H|Weak

Reasoning About Choreographic Programs 155

where:

ϕ1 = ((f(p.x) = 0) Z= true → ψ) ∧ ((f(p.x) = 0) Z= false → ϕ)

ϕ2 = ((f(q.x) = 0) Z= true → ψ) ∧ ((f(q.x) = 0) Z= false → ϕ)

The same pre- and postconditions hold for the whole program:

C(Z) = 〈ϕ,ψ〉
�C {ϕ}Z{ψ} H|Call

�C {ϕ}p.x := 0;Z{ψ} H|Assign

If follows from soundness, that any terminating execution ends in a state Σ
s.t., f(x) = 0 ↓Σ(p) true. Termination follows by observing that p scans natural
numbers starting from 0 proceeding by single increments and thus, if f has any
zero, p will eventually send the first of them to q which in turn will choose to
terminate the search. �

4 Completeness of the Hoare Calculus

To establish a completeness result for our calculus, we follow standard techniques
from the literature, by using a notion of weakest liberal precondition – the weakest
assertion ϕ, given C, C and ψ, such that �C {ϕ}C{ψ}.

4.1 Weakest Liberal Preconditions

In this section we define the weakest liberal precondition operator and show that
it satisfies the expected properties.

Definition 2. Let C be a choreography, ψ be a formula and C be a proce-
dure specification map. The weakest liberal precondition for C and ψ under
C, wlpC(C,ψ), is defined as follows.

wlpC((p.x := e;C), ψ) = wlpC(C,ψ)[p.x := p.e]
wlpC((p.e → q.x;C), ψ) = wlpC(C,ψ)[q.x := p.e]
wlpC((p → q[l];C), ψ) = wlpC(C,ψ)

wlpC(if p.b thenC1 elseC2, ψ) = (L(p, b) X= true → wlpC(C1, ψ))

∧ (L(p, b) X= false → wlpC(C2, ψ))
wlpC(X,ψ) = fst(C(X))

wlpC(��q,X�C,ψ) = wlpC(C,ψ)
wlpC(0, ψ) = ψ

This operator is essentially mimicking the rules from Fig. 3. In the clause for
conditionals, X is fresh. The only potentially surprising item is the definition

156 L. Cruz-Filipe et al.

of wlpC(X,ψ), which ignores the actual formula ψ: this is again due to the fact
that our results require an additional condition on C (namely, that the conditions
given are compatible with the definition of wlpC), which indirectly ensures that
ψ is also considered.

Example 6 (Diffie-Hellman, WLP). Consider the choreography DH from Exam-
ple 1 and the postcondition ψ = (p.s S= q.s) from Example 4, wlp(DH,ψ) is the
formula ϕ1 from Example 4. �

Definition 3. A procedure specification map C is adequate for ψ given a set
of procedure definitions C if, for any procedure name X, fst(C(X)) is logically
equivalent to wlpC(C (X), ψ) and snd(C(X)) = ψ.

In other words, for each ψ we are interested in a mapping C that, for each
procedure, includes the right precondition that ensures that ψ will hold if that
procedure terminates.

Example 7 (Zeros, WLP). The procedure specification map C from Example
5 is adequate for the postcondition from the same example given the set of
procedure definitions C from Example 2. In fact, wlpC(C (Z), f(p.x) = 0 Z= true)
is the formula ϕ1 from Example 5, which is logically equivalent to fst(C(Z)). �

The next results show that wlpC(C,ψ) precisely characterises the set of states
from which execution of C guarantees ψ.

Lemma 3. Assume that C is adequate for ψ given C . Then, for every choreog-
raphy C, �C {wlpC(C,ψ)}C{ψ}.
Proof. By structural induction on C. Most cases immediately follow from the
definition of wlpC together with the induction hypothesis. We detail the only
nontrivial ones.

– If C is if p.b thenC1 elseC2, we observe that �C {wlpC(C1, ψ)}C1{ψ}. Since

(wlpC(if p.b thenC1 elseC2, ψ) ∧ L(p, b) X= true) → wlpC(C1, ψ)

is a valid propositional formula, we can apply rule H|Weak to derive �C

{wlpC(if p.b thenC1 elseC2, ψ) ∧ L(p, b) X= true}C1{ψ}. A similar reasoning
applied to C2 derives the other hypothesis for rule H|Cond, and combining
them establishes the thesis.

– If C is X, then the thesis follows from the assumption that snd(C(X)) = ψ.
��

Corollary 2. If C is adequate for ψ given C , then C is consistent with C .

Corollary 3. Assume that C is adequate for ψ given C . For every choreography
C, state Σ, and assignment ρ, if Σ �ρ wlpC(C,ψ) and 〈C,Σ〉 →∗

C 〈0, Σ′〉 for
some state Σ′, then Σ′ �ρ ψ.

Reasoning About Choreographic Programs 157

Proof. By Lemma 3, �C {wlpC(C,ψ)}C{ψ}. By Corollary 2, C is consistent with
C . The thesis then follows by Theorem 1. ��
Lemma 4. Assume that C is adequate for ψ given C . Let C be a choreography,
Σ and Σ′ be states, and ρ be an assignment. If 〈C,Σ〉 ⇒∗

C 〈0, Σ′〉 and Σ′ �ρ ψ,
then Σ �ρ wlpC(C,ψ).

Proof. By induction on the number of transitions from C to 0. If this number
is 0, then C is 0 and the thesis trivially follows. Otherwise, we detail some
representative cases. We do case analysis on C to determine the first transition.

– If C is p.x := e;C ′′, then 〈C,Σ〉 τ@p
==⇒C 〈C ′′, Σ′′〉 ⇒∗

C 〈0, Σ′〉, and Σ′′ �ρ

wlpC(C ′′, ψ) by induction hypothesis. But Σ′′ = Σ[〈p, x〉 �→ v] where e ↓Σ(p)

v, hence Σ �ρ wlpC(C ′′, ψ)[p.x := p.e] by Corollary 1, establishing the thesis.
– If C is if p.b thenC1 elseC2, then there are two cases. Assume wlog that b ↓Σ(p)

true. Then 〈if p.b thenC1 elseC2, Σ〉 τ@p
==⇒C 〈C1, Σ〉 ⇒∗

C 〈0, Σ′〉, and Σ �ρ

wlpC(C1, ψ) by induction hypothesis. The only nontrivial case is when ρ(X) =
true – otherwise the antecedents of both implications in wlpC(C,ψ) are false
and the thesis trivially holds. If ρ(X) = true, then Σ �ρ L(p, b) = X by
Lemma 1, and again both implications in wlpC(C,ψ) are true (the first one
has true premise and conclusion, while the premise in the second one is false).
The case where b ↓Σ(p) false is analogous.

– If C is X, then 〈X,Σ〉 ⇒∗
C 〈C (X), Σ〉 ⇒∗

C 〈0, Σ′〉 by applying rules C|Call,
C|Enter and C|Finish until all processes have entered X. By adequacy,
fst(C(X)) = wlpC(C (X), ψ), and the induction hypothesis establishes the
thesis. ��

Corollary 4. Assume that C is adequate for ψ given C . Let C be a choreography,
Σ and Σ′ be states, and ρ be an assignment. If 〈C,Σ〉 →∗

C 〈0, Σ′〉 and Σ′ �ρ ψ,
then Σ �ρ wlpC(C,ψ).

Proof. Combining Lemma 4 with deadlock-freedom and confluence of the seman-
tics, as in the proof of Theorem 1. ��

4.2 Completeness

Combining the results in the previous section, we obtain a completeness result
for our calculus.

Theorem 2 (Partial completeness). Let C be a choreography, ϕ and ψ be
formulas, and assume that C is adequate for ψ given C . Assume that, for all
states Σ and Σ′ and assignment ρ, if Σ �ρ ϕ and 〈C,Σ〉 →∗

C 〈0, Σ′〉, then
Σ′ �ρ ψ. Then �C {ϕ}C{ψ}.
Proof. Let Σ be a state such that 〈C,Σ〉 →∗

C 〈0, Σ′〉, implies Σ′ �ρ ψ. Then
Σ �ρ wlpC(C,ψ) by Corollary 4. Since this is the case for all states Σ such that
Σ �ρ ϕ, it follows that D � ϕ → wlpC(C,ψ). But �C {wlpC(C,ψ)}C{ψ} by
Lemma 3, whence by H|Weak the thesis holds. ��

158 L. Cruz-Filipe et al.

Theorems 1 and 2 can be combined with the EPP theorem from [12], which
relates the behaviour of choreographies with the behaviour of their projections,
to yield results on execution of distributed implementations generated by chore-
ographies. This means that properties of these implementations can be analysed
at the choreographic level, which is arguably simple, without the need for a
specialised Hoare calculus for process languages.

4.3 Decidability

Finally we establish some decidability results for the Hoare calculus. We start by
pointing out that we assume D is decidable; since propositional logic is decidable
and evaluation converges, the judgments of the form D |= ϕ that appear on the
premises of rule H|Weak are also decidable.

Lemma 5. The judgement �C {ϕ}C{ψ} is decidable.

Proof. Assume that �C {ϕ}C{ψ}. By Theorem 1, for every state Σ and assign-
ment ρ such that Σ �ρ ϕ it is the case that: if 〈C,Σ〉 →∗

C 〈0, Σ′〉, then
Σ′ �ρ ψ. By Corollary 4, this means that Σ �ρ wlpC(C,ψ), and therefore
D |= ϕ → wlpC(C,ψ).

Conversely, if D |= ϕ → wlpC(C,ψ), then for every state Σ and assignment ρ
such that Σ �ρ ϕ it is the case that Σ �ρ wlpC(C,ψ), and therefore if 〈C,Σ〉 →∗

C

〈0, Σ′〉 it must hold that Σ′ �ρ by Corollary 3. By Theorem 2 this means that
�C {ϕ}C{ψ}.

This shows that �C {ϕ}C{ψ} iff D |= ϕ → wlpC(C,ψ). Since wlpC is com-
putable and validity is decidable, it follows that �C {ϕ}C{ψ} is decidable. ��

Although the set of procedure names can in principle be infinite, most prac-
tical applications only use a finite subset of them.2 In this case, consistency and
adequacy also become decidable.

Corollary 5. If the set of procedure names is finite, then consistency between a
procedure specification map C and a set of procedure definitions C is decidable.

Lemma 6. If the set of procedure names is finite, then adequacy of a procedure
specification map for a formula and set of procedure definitions is decidable.

Proof. Immediate from the definition. ��
We end this section with a negative result: it is not possible to compute an

adequate procedure specification map.

Lemma 7. There is no algorithm that, given a set of procedure definitions C
and a formula ψ, always returns a procedure specification map C that is adequate
for ψ given C .

2 This disallows choreographies where e.g. each procedure Xi calls procedure Xi+1,
which do not occur in practice.

Reasoning About Choreographic Programs 159

Proof. Consider the formula ψ = ⊥, which never holds. For any choreography C
and satisfiable formula ϕ, the judgement {ϕ}C{⊥} holds iff C never terminates
from a state that satisfies ϕ.

This means that, if C is adequate for ⊥ given C , then wlpC(C,⊥) characterises
the set of states from which execution of C diverges. In particular, C never
terminates if wlpC(C,⊥) is logically equivalent to � – which is decidable in our
state logic. But Rice’s Theorem implies that the class of choreographies that
always diverge is undecidable, therefore C cannot be computable. ��

Although this result states that adequate procedure specification maps are
in general not computable, there is still the possibility that they can be shown to
exist always. Such a result would entail that our calculus is strongly complete.
We plan to investigate this issue in future work.

5 Related Work

The work nearest to ours is [20], where the authors propose a system for
functional correctness of choreographies aimed at reasoning about distributed
choices. While they also propose a Hoare calculus for choreographies, there are
some key differences wrt our work.

Firstly, they introduce a new choreographic language with significant differ-
ences from common practice in choreographic programming, e.g., they require
every choice to involve every process regardless of their involvement in the
branches in the condition. By contrast, we used an existing language with stan-
dard constructs.

Secondly, the logic used in [20] is fixed and used in the choreography language
for Boolean expressions. This coupling compromises the generality of the devel-
opment, because the logic and the syntax of choreographies are not standalone.
Instead, we follow the standard two-layered approach for Hoare logic [2,19], and
define a state logic that is parametric on both the language of expressions in the
choreographies and the theory for reasoning about them.

As a consequence, our development is more readily applicable and adaptable
to other existing choreographic languages.

The only other work combining choreographies and logic is Linear Compo-
sitional Choreographies (LCC) [7], a proof theory based on linear logic for rea-
soning about programs that modularly combine compositional choreographies
[28] with processes. This was inspired by previous work on the correspondence
between linear propositions and session types [5]. LCC, however, is not aimed at
functional correctness: propositions represent communication behaviour rather
than assertions about states.

Design-by-Contract [25] is a framework where each protocol or function is
given a contract specifying its allowed input and resulting output, similar to the
pre- and postconditions of Hoare logic, which has been used to reason about
distributed programs from a global level. The first work in this line [4] defined
a framework for specifying contracts for multiparty sessions. Being based on

160 L. Cruz-Filipe et al.

session types, this work more focussed on specifying properties of communicated
values than ours, which lets them specify more properties than us, but also
requires adding annotations to the language being reasoned about. An extension
of this idea [24] describes chaperone contracts for higher-order binary sessions,
which lets contracts update dynamically at runtime. Design-by-Contract has
also been applied to microservices in the form of Whip [31]. Like our work,
Whip is language-agnostic with regard to the local language, though it uses
global contracts to reason directly on the local language; unlike our logic, Whip
is designed for monitoring communications at runtime.

Another way of reasoning about session types is combining them with depen-
dent types [30]. Like the work of [4], dependent types can be used to reason about
the values being communicated, but unlike our work they are not intended to
reason about pre- and postconditions.

Hoare logic has also been used to reason directly about systems of communi-
cating processes [1,22]. This is far more complex than reasoning about choreogra-
phies, as it requires independently considering properties of each participant’s
protocol and how they are combined in the global system.

6 Conclusions

We have presented a novel Hoare calculus for reasoning about choreographic
programs. Our logic allows for a great deal of flexibility, since it is parametric on
both the local language of the choreographic language and a decidable theory
defined by the user.

We have proven that the standard properties of Hoare logics hold for our
language. Using the operational correspondence theorems for choreographies and
their projections, we also showed that any properties that our logic can prove
for a choreography also hold for the distributed implementation automatically
generated from that choreography.

Our section on decidability left open the question of whether there always
exists an adequate procedure specification map for any target formula, which we
plan to investigate in future work. We also want to look further into the issue
of how our decidability results can be used to implement interesting algorithms,
e.g. for proof automation.

Our formalism only gives us guarantees for terminating execution paths,
which means that we cannot infer any properties of non-terminating choreogra-
phies. However, an inspection of the proofs of soundness and completeness (in
particular, Lemmas 2 and 3) shows that these results actually guarantee some-
thing stronger, namely that the invariants described in C must hold whenever
the choreography reaches a procedure call. We plan to use this observation as a
starting point for an investigation about how our calculus can be used to assert
properties of non-terminating executions of choreographies.

Acknowledgements. This work was partially supported by Villum Fonden, grant nr
29518.

Reasoning About Choreographic Programs 161

References

1. Apt, K.R., Francez, N., de Roever, W.P.: A proof system for communicating
sequential processes. ACM Trans. Program. Lang. Syst. 2(3), 359–385 (1980).
https://doi.org/10.1145/357103.357110

2. Apt, K.R., Olderog, E.: Fifty years of Hoare’s logic. CoRR abs/1904.03917 (2019)
3. Apt, K.R., Olderog, E.-R., Boer, F.S.: Verification of sequential and concurrent

programs, vol. 2. Springer (2009). https://doi.org/10.1007/978-1-84882-745-5
4. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for

distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15375-4 12

5. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 16

6. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: Giacobazzi, R., Cousot, R. (eds.) Procs. POPL, pp. 263–
274. ACM (2013). https://doi.org/10.1145/2429069.2429101

7. Carbone, M., Montesi, F., Schürmann, C.: Choreographies, logically. Distributed
Computing 31(1), 51–67 (2017). https://doi.org/10.1007/s00446-017-0295-1

8. Cruz-Filipe, L., Graversen, E., Lugovic, L., Montesi, F., Peressotti, M.: Functional
choreographic programming. In: Seidl, H., Liu, Z., Pasareanu, C.S. (eds.) Theoreti-
cal Aspects of Computing – ICTAC 2022. ICTAC 2022. Lecture Notes in Computer
Science, vol. 13572, pp. 212–237. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-17715-6 15

9. Cruz-Filipe, L., Montesi, F.: Procedural choreographic programming. In: Bouaj-
jani, A., Silva, A. (eds.) FORTE 2017. LNCS, vol. 10321, pp. 92–107. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-60225-7 7

10. Cruz-Filipe, L., Montesi, F.: A core model for choreographic programming. Theor.
Comput. Sci. 802, 38–66 (2020). https://doi.org/10.1016/j.tcs.2019.07.005

11. Cruz-Filipe, L., Montesi, F., Peressotti, M.: Certifying choreography compilation.
In: Cerone, A., Ölveczky, P.C. (eds.) ICTAC 2021. LNCS, vol. 12819, pp. 115–133.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85315-0 8

12. Cruz-Filipe, L., Montesi, F., Peressotti, M.: Formalising a Turing-complete choreo-
graphic language in Coq. In: Cohen, L., Kaliszyk, C. (eds.) Procs. ITP. LIPIcs, vol.
193, pp. 1–18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://
doi.org/10.4230/LIPIcs.ITP.2021.15

13. Dalla Preda, M., Gabbrielli, M., Giallorenzo, S., Lanese, I., Mauro, J.: Dynamic
choreographies: theory and implementation. Log. Methods Comput. Sci. 13(2),
1–57 (2017). https://doi.org/10.23638/LMCS-13(2:1)2017

14. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976). https://doi.org/10.1109/TIT.1976.1055638

15. Gastin, P., Laroussinie, F. (eds.): CONCUR 2010. LNCS, vol. 6269. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-15375-4

16. Giallorenzo, S., Montesi, F., Peressotti, M.: Choreographies as objects. CoRR
abs/2005.09520 (2020), https://arxiv.org/abs/2005.09520

17. Giallorenzo, S., Montesi, F., Peressotti, M., Richter, D., Salvaneschi, G., Weisen-
burger, P.: Multiparty languages: the choreographic and multitier cases (pearl).
In: Møller, A., Sridharan, M. (eds.) Proceedings ECOOP. LIPIcs, vol. 194, pp.
1–27. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/
10.4230/LIPIcs.ECOOP.2021.22

https://doi.org/10.1145/357103.357110
https://doi.org/10.1007/978-1-84882-745-5
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1007/s00446-017-0295-1
https://doi.org/10.1007/978-3-031-17715-6_15
https://doi.org/10.1007/978-3-031-17715-6_15
https://doi.org/10.1007/978-3-319-60225-7_7
https://doi.org/10.1016/j.tcs.2019.07.005
https://doi.org/10.1007/978-3-030-85315-0_8
https://doi.org/10.4230/LIPIcs.ITP.2021.15
https://doi.org/10.4230/LIPIcs.ITP.2021.15
https://doi.org/10.23638/LMCS-13(2:1)2017
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/978-3-642-15375-4
https://arxiv.org/abs/2005.09520
https://doi.org/10.4230/LIPIcs.ECOOP.2021.22
https://doi.org/10.4230/LIPIcs.ECOOP.2021.22

162 L. Cruz-Filipe et al.

18. Hirsch, A.K., Garg, D.: Pirouette: higher-order typed functional choreographies.
Proc. ACM Program. Lang. 6(POPL), 1–27 (2022). https://doi.org/10.1145/
3498684

19. Hoare, C.: An axiomatic basis for computer programming. Commun. ACM 12(10),
576–580 (1969). https://doi.org/10.1145/363235.363259

20. Jongmans, S., van den Bos, P.: A predicate transformer for choreographies - com-
puting preconditions in choreographic programming. In: Sergey, I. (eds.) Program-
ming Languages and Systems. ESOP 2022. Lecture Notes in Computer Science,
vol. 13240, pp. 520–547. Springer, Cham (2022). https://doi.org/10.1007/978-3-
030-99336-8 19

21. Leesatapornwongsa, T., Lukman, J.F., Lu, S., Gunawi, H.S.: Taxdc: A taxonomy of
non-deterministic concurrency bugs in datacenter distributed systems. In: Conte,
T., Zhou, Y. (eds.) Procs. ASPLOS, pp. 517–530. ACM (2016). https://doi.org/
10.1145/2872362.2872374

22. Levin, G., Gries, D.: A proof technique for communicating sequential processes.
Acta Informatica 15, 281–302 (1981). https://doi.org/10.1007/BF00289266

23. López, H.A., Nielson, F., Nielson, H.R.: Enforcing availability in failure-aware com-
municating systems. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688,
pp. 195–211. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-
8 13

24. Melgratti, H.C., Padovani, L.: Chaperone contracts for higher-order sessions. Proc.
ACM Program. Lang. 1(ICFP), 1–29 (2017). https://doi.org/10.1145/3110279

25. Meyer, B.: Applying “design by contract.” Computer 25(10), 40–51 (1992).
https://doi.org/10.1109/2.161279

26. Montesi, F.: Choreographic programming, Ph. D. Thesis, IT University of Copen-
hagen (2013)

27. Montesi, F.: Introduction to Choreographies. Cambridge University Press (2023)
28. Montesi, F., Yoshida, N.: Compositional choreographies. In: D’Argenio, P.R., Mel-

gratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 425–439. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40184-8 30

29. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21(12), 993–999 (1978). https://doi.org/
10.1145/359657.359659

30. Toninho, B., Caires, L., Pfenning, F.: Dependent session types via intuitionistic
linear type theory. In: Schneider-Kamp, P., Hanus, M. (eds.) Procs. PPDP, pp.
161–172. ACM (2011). https://doi.org/10.1145/2003476.2003499

31. Waye, L., Chong, S., Dimoulas, C.: Whip: higher-order contracts for modern ser-
vices. Proc. ACM Program. Lang. 1(ICFP), 1–28 (2017). https://doi.org/10.1145/
3110280

https://doi.org/10.1145/3498684
https://doi.org/10.1145/3498684
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-030-99336-8_19
https://doi.org/10.1007/978-3-030-99336-8_19
https://doi.org/10.1145/2872362.2872374
https://doi.org/10.1145/2872362.2872374
https://doi.org/10.1007/BF00289266
https://doi.org/10.1007/978-3-319-39570-8_13
https://doi.org/10.1007/978-3-319-39570-8_13
https://doi.org/10.1145/3110279
https://doi.org/10.1109/2.161279
https://doi.org/10.1007/978-3-642-40184-8_30
https://doi.org/10.1145/359657.359659
https://doi.org/10.1145/359657.359659
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1145/3110280
https://doi.org/10.1145/3110280

Caos: A Reusable Scala Web Animator
of Operational Semantics

José Proença1(B) and Luc Edixhoven2,3

1 CISTER, ISEP, Polytechnic Institute of Porto, Porto, Portugal
pro@isep.ipp.pt

2 Open University, Heerlen, The Netherlands
led@ou.nl

3 CWI, Amsterdam, The Netherlands

Abstract. This tool paper presents Caos: a methodology and a pro-
gramming framework for computer-aided design of structural operational
semantics for formal models. This framework includes a set of Scala
libraries and a workflow to produce visual and interactive diagrams that
animate and provide insights over the structure and the semantics of a
given abstract model with operational rules.

Caos follows an approach in which theoretical foundations and a prac-
tical tool are built together, as an alternative to foundations-first design
(“tool justifies theory”) or tool-first design (“foundations justify prac-
tice”). The advantage of Caos is that the tool-under-development can
immediately be used to automatically run numerous and sizeable exam-
ples in order to identify subtle mistakes, unexpected outcomes, and
unforeseen limitations in the foundations-under-development, as early
as possible.

We share two success stories of Caos’ methodology and framework in
our own teaching and research context, where we analyse a simple while-
language and a choreographic language, including their operational rules
and the concurrent composition of such rules. We further discuss how
others can include Caos in their own analysis and Scala tools.

Demo video: https://zenodo.org/record/7876060 & https://youtu.be/
Xcfn3zqpubw

Hands-on tutorial: In a companion report [17, Appendix A].

1 Introduction

Designing formal methods can be hard. Typical challenges of formal-methods-
related research include identifying and dealing with corner cases, discover-
ing missing assumptions, finding the right abstraction level, and—of course—
proving theorems (and adequately decomposing them into lemmas). Curiously,
and unlike other scientific disciplines, we find that a large majority of papers writ-
ten in our community primarily focuses on research results instead of methods.
In contrast, this tool paper contributes to the methodology of designing formal
methods, with special emphasis on Structural Operational Semantics (SOS): we

c© IFIP International Federation for Information Processing 2023
S.-S. Jongmans and A. Lopes (Eds.): COORDINATION 2023, LNCS 13908, pp. 163–171, 2023.
https://doi.org/10.1007/978-3-031-35361-1_9

https://eapls.org/pages/artifact_badges/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35361-1_9&domain=pdf
http://orcid.org/0000-0003-0971-8919
http://orcid.org/0000-0002-6011-9535
https://zenodo.org/record/7876060
https://youtu.be/Xcfn3zqpubw
https://youtu.be/Xcfn3zqpubw
https://doi.org/10.1007/978-3-031-35361-1_9

164 J. Proença and L. Edixhoven

share our experiences with computer-aided design of SOS for formal methods
with a set of examples produced by our toolset Caos. Source code and a compi-
lation of examples can be found at https://github.com/arcalab/caos. We hope
that it may inspire colleagues both to apply our methodology and tools, and to
share their own methodology-related experiences to our community’s benefit.

In a nutshell, in Caos, theoretical foundations and a practical tool are built
together side-by-side, from the start, as an alternative to the more typical
foundations-first design (“tool justifies theory”) or tool-first design (“founda-
tions justify practice”). The main advantage of Caos is that the tool-under-
development can immediately be used to automatically run numerous and size-
able examples in order to identify subtle mistakes, unexpected outcomes, and/or
unforeseen limitations in the foundations-under-development, as early as possi-
ble. This need for validation and supporting tools in formal methods has been
acknowledged, e.g., by Garavel et al. in a recent survey over formal methods in
critical systems [12].

The Caos toolset is based on ReoLive,1 which was developed as an online set
of Scala & JavaScript (JS) tools to analyse Reo connectors [6]. Currently it also
hosts many extensions unrelated to Reo [5,13], where common code blocks can
be compiled both to JS (client) and to Java binaries (server), allowing computa-
tions to be delegated to a remote server. Consequently, it became a monolithic
implementation with many replicated blocks of code for different independent
extensions, and it is non-trivial to reuse it for different projects. Our alternative
Caos toolset aims at addressing these issues, targeting the following requirements:

– R1: Caos should use a general programming language, facilitating adoption
and supporting more complex back-ends when desired;

– R2: The output from Caos-supported implementation should be easy to exe-
cute and use, without requiring specific platforms or complex installations;

– R3: Caos should be easily reused, and Caos-supported implementations should
be modular and easily extended with new analyses.

Guided by these requirements, our Caos toolset is implemented in Scala (R1),
compiles to JS that generates intuitive and interactive websites (R2), and
includes a simple-to-extend API that facilitates its usage and reuse by other
developers (R3). By using the Caos toolset, one can produce a webpage such as
the one in Fig. 1. This webpage has an input text box and a collection of wid-
gets that depict or animate different analyses over the input program, exploiting
possible operational semantics when applicable. This example will be further
detailed in Sect. 2, which analyses a simple while-language (with contracts).

Caos includes dedicated support for SOS, by animating, depicting, or com-
paring terms that implement a next and an accepting method. It further sup-
ports building SOS for networks of interacting components, mentioned in Sect. 3.

Similar approaches to support the development of language semantics exist,
such as the ones below, which do not address all of the 3 requirements above.

1 https://github.com/ReoLanguage/ReoLive.

https://github.com/arcalab/caos
https://github.com/ReoLanguage/ReoLive

Caos: A Reusable Scala Web Animator of Operational Semantics 165

Fig. 1. Screenshot of the web interface to analyse a simple while-language, available
at https://cister-labs.github.io/whilelang-scala/

The Maude language and toolset [3] focus on how to specify (1) a con-
figuration (a state) using a sequence of characters, and (2) a set of possible
rewrite rules capturing how configurations can be modified. It further provides
a set of constructs to facilitate the creation of new syntactical notations, such as
marking operators as being associative and with a given identity. Maude includes
well polished model checkers and other analysis tools; other model checkers (e.g.,
mCRL2 [1], UPPAAL [7]) also have specification languages with an operational
semantics, restricted by design to provide better model-checking support. These
approaches provide a similar functionality but do not target our requirements.

Racket (and its DrRacket graphical frontend) [11] is a Language-Oriented
Programming Language, i.e., a language meant for making languages. It is widely
adopted and comes with a large collection of libraries, and includes a set of con-
structs that facilitate the creation of new syntactical notations, bundled as new
languages, allowing multiple languages in a program to exist and to be created
on the fly. Embedded in Racket, PLT Redex [10] is a domain specific language for
specifying and debugging operational semantics, which receives a grammar and
reduction rules and supports an interactive exploration of the terms. Arguably,
Racket is a general purpose language (R1), although less adopted than Java or
Scala, with extension mechanisms to support reusability (R3), and which we
believe to be harder to deploy products (R2).

Some teaching languages, such as Pyret [16], are designed to be compiled
to JavaScript and to be used when teaching introductory computing, balancing
expressiveness and performance. It includes a powerful runtime to hide from the
user some of the intricacies and limitations of JS, and this and similar languages
include visualisation libraries to better engage students. These languages do not

https://cister-labs.github.io/whilelang-scala/

166 J. Proença and L. Edixhoven

share the same functional goal, and do not use a general programming language
(R1), but can often produce easy-to-run code (R2) and be extendable (R3).

Caos is particularly useful for users familiarised with Scala/Java, and less to
users with some experience in languages such as Maude, Racket, or Pyret.

Paper Structure: This paper starts by describing our experience with Caos
both in a teaching (Sect. 2) and a research (Sect. 3) context, focused on what
can be produced using the toolset. Section 4 describes how the Caos toolset is
structured and how it can be used by others, and Sect. 5 concludes this paper.

2 Use-Case: A While-Language for Teaching

In the context of a university course, students were taught about natural and
operational semantics, and how to infer weakest preconditions. We, as teachers,
used a simple while-language with integers to describe these concepts. We created
a simple website in a couple of days using Caos, depicted in Fig. 1, improving
core widgets over the period of one week. Note that we were familiarised with the
tools and had some experience with writing parsers in Scala. This website was
used by the students to experiment and gain better insights over the concepts.

Figure 1 illustrates the compiled output of Caos: a collection of widgets that
always includes an input widget (here called WhileLang) and a list of example
input programs. The other widgets are custom-made, and include: (1) visual-
isation of a string produced from the program, representing plain text, code,
or a mermaid diagram (a popular Markdown-like language for diagrams);2 and
(2) execution given a next function that evolves the program, which can be pre-
sented either step-wise (interactive) or as a single state diagram with all reach-
able states. Caos also provides widgets for (3) comparing two program behaviours
using bisimilarity or trace equivalence; and (4) checking for errors or warnings
in a program.

Figure 1 depicts a visualisation of the source code (bottom left) and a step-
wise evolution using a small-step semantics with a textual representation (right),
and the remaining widgets are collapsed. These collapsed widgets use different
semantics, provide a view of all steps, or calculate the weakest preconditions, and
are not processed while collapsed. Students could use better understand which
rules could be applied at each moment, and navigate through the state space.

3 Use-Case: Analysing Choreographies in Research

Caos can be used to illustrate research concepts using prototyping tools. We used
it, for example, when investigating choreographic languages. A choreographic
language describes possible sequences of interactions between agents, e.g.,

ctr→wrk1:Work ; ctr→wrk2:Work ; (wrk1→ctr:Done ‖ wrk2→ctr:Done)

2 https://mermaid-js.github.io/mermaid.

https://mermaid-js.github.io/mermaid

Caos: A Reusable Scala Web Animator of Operational Semantics 167

captures a scenario where a controller ctr delegates some Work to two workers,
and they reply once they are Done. Together with Guillermina Cledou and Sung-
Shik Jongmans we published several choreography analyses supported by Caos-
based prototypes, investigating how to detect that the behaviour of the local
agents induce the global behaviour (known as realisability) using a novel underly-
ing mathematical structure [8,9] (https://lmf.di.uminho.pt/b-pomset) and how
to generate APIs that statically guarantee that the local agents follow their
interaction protocol [4,14] (https://lmf.di.uminho.pt/pompset,st4mp).

Fig. 2. Analysis of branching pomsets produced by Caos from a choreography language

An underlying mathematical structure was used to give semantics to chore-
ographies: branching pomsets [9] (which are similar to event structures [2,15]).
As shown in Fig. 2, using Caos it was possible to: (1) visualize the pomset struc-
ture (top left); (2) execute a pomset (B-Pomset Semantics) and the composition
of its projections to each agent involved (Composed Local B-Pomset Semantics);
(3) check well-formedness (Well-formed), a novel syntactic (sound but incom-
plete) realisability check; (4) check realisability using a (complete but more com-
plex) search for a bisimulation between the global behaviour and the composed
behaviour of the projections (Realisability via bisimulation); and (5) generate Scala
code with libraries that can guarantee at compile time that local agents obey
the expected protocol (bottom right). Caos provides constructors for the compo-
sition of the behaviour of the local agents and for the search for bisimulations.
Setting up each of these websites took around half a week of work by one per-
son. During our investigation, the Caos-supported implementation was a crucial
mechanism to experiment with many variations of the semantics and projections
of the choreography language, of the pomset structure, and of the realisability
analysis, ultimately converging to the current version.

https://lmf.di.uminho.pt/b-pomset
https://lmf.di.uminho.pt/{pompset,st4mp}

168 J. Proença and L. Edixhoven

4 Caos framework

This section describes what Caos provides and how to use it to produce animators
such as the ones in Sects. 2 and 3. Figure 3 depicts the structure of a typical Scala
project that uses Caos. The user provides data structures for the input language
with functions to parse this language and to compute analysis (Analysis.scala),
and compiles a collection of widgets that use these functions using special con-
structors (Configuration.scala). Compiling this configuration yields a JS file used
by a provided HTML file. The Configuration is an object that extends an asso-
ciated class in Caos and holds: the name of the language and the website; the
parser for the language; a list of examples, each as a triple (name, program,
description); and a list of widgets using the provided constructors [17].

Fig. 3. Architecture of a Scala project that uses Caos

Fig. 4. Snippets of code and configurations used in the iLambda project

Caos: A Reusable Scala Web Animator of Operational Semantics 169

Tool Demonstration with the iLambda Language

We provide a short demonstration on how to use Caos; an expanded version
can be found in the companion report [17] and the video tutorial [18]. In this
demonstration we implement a lambda-calculus language with integers (iLambda);
the full source-code can be found in https://github.com/arcalab/lambda-caos.

This project requires JVM (>=1.8) and SBT (Scala Builder Tool) to compile,
and a web-browser to execute. The top folder should contain the following files:

– build.sbt – is the main configuration file of the project (top-left of Fig. 4);
– project/plugins.sbt – describes the plug-in to compile to JS, in our case with

addSbtPlugin("org.scala-js" % "sbt-scalajs" % "1.7.1");
– lib/Caos – includes all Caos files, as-is in its git repository; and
– src/main/scala/iLambda – includes all the source-code of our project.

Figure 4 presents 4 snippets from the iLambda project. The build.sbt config-
ures the compilation process, including the main class to be compiled and the
target folder to place the compiled JS, marked in bold. The project is compiled
by the command line instruction “sbt fastLinkJS”. The Program.scala defines
the internal data structure, which represents our lambda terms produced by
our parser in src/main/scala/iLambda/syntax/Parser. The Main.scala provides
the Configuration object mentioned above, and the LazySemantics exemplifies
the definition of an SOS semantics. SOS semantics are specified by extending a
SOS[Act,State] class providing a function next(s:State): Set[(Act,State)] that,

given a State s, returns a set of new states labelled by an Action. These instances
can be animated, compared, or combined using provided widget constructors. For
example, lts(e=>e,LazySemantics,Show(_)) builds the LTS, where e=>e states that
the initial state is the original lambda term, LazySemantics defines the semantics,
and Show(_) defines how to visualise states (which are lambda terms).

5 Conclusions and Lessons Learned

This paper follows a computer-aided design approach for formal methods by
means of Caos, introducing its toolset and sharing experiences of its application
to develop operational semantics of different systems. During the development
of new structures and operational semantics, the Caos toolset provided support
to quickly view, simulate, and compare different design choices. We were able to
identify problems and solutions with a small investment of time in tool devel-
opment. We further claim that the Caos toolset is reusable, provides intuitive
outputs, and is expressive by using a general programming language. By using
standard HTML and CSS, the resulting websites can be easily customisable.

Currently we consider two possible improvements. On one hand, to support
a lightweight server (inspired in ReoLive [6] but using, e.g., https://http4s.org)
that could be used to delegate heavier tasks, such as the usage of a model-checker.
On the other hand, to support the parser development with tools such as https://

https://github.com/arcalab/lambda-caos
https://http4s.org
https://antlr.org

170 J. Proença and L. Edixhoven

antlr.org instead of using parsing combinators. All tools are available as open-
source, and we welcome any feedback, contribution, or sharing of experiences.

Acknowledgments. This work was supported by the CISTER Research Unit (UID-
P/UIDB/04234/2020), financed by National Funds through FCT/MCTES (Portuguese
Foundation for Science and Technology) and by project PTDC/CCI-COM/4280/2021
financed by national funds through FCT. It is also a result of the work developed
under projects and Route 25 (ref. TRB/2022/00061 - C645463824-00000063) funded
by the EU/Next Generation, within the Recovery and Resilience Plan (RRP); and
project VALU3S (ECSEL/0016/2019 - JU grant nr. 876852) financed by national funds
through FCT and European funds through the EU ECSEL JU. The JU receives sup-
port from the European Union’s Horizon 2020 research and innovation programme and
Austria, Sweden, Spain, Italy, France, Portugal, Ireland, Finland, Slovenia, Poland,
Netherlands, Turkey - Disclaimer: This document reflects only the author’s view and
the Commission is not responsible for any use that may be made of the information it
contains.

Data Availability Statement. The artifact is available in the Zenodo repository:
doi:10.5281/zenodo.7888538

References

1. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1_2

2. Castellani, I., Dezani-Ciancaglini, M., Giannini, P.: Event structure semantics
for multiparty sessions. In: Boreale, M., Corradini, F., Loreti, M., Pugliese, R.
(eds.) Models, Languages, and Tools for Concurrent and Distributed Program-
ming. LNCS, vol. 11665, pp. 340–363. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-21485-2_19

3. Clavel, M., et al.: The Maude 2.0 system. In: Nieuwenhuis, R. (ed.) RTA 2003.
LNCS, vol. 2706, pp. 76–87. Springer, Heidelberg (2003). https://doi.org/10.1007/
3-540-44881-0_7

4. Cledou, G., Edixhoven, L., Jongmans, S.S., Proença, J.: API generation for multi-
party session types, revisited and revised using Scala 3. In: Ali, K., Vitek, J. (eds.)
36th European Conference on Object-Oriented Programming, ECOOP 2022, 6–10
June 2022, Berlin, Germany. LIPIcs, vol. 222, pp. 27:1–27:28. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.ECOOP.
2022.27

5. Cledou, G., Proença, J., Sputh, B.H.C., Verhulst, E.: Hubs for virtuosonext: online
verification of real-time coordinators. Sci. Comput. Program. 203, 102566 (2021).
https://doi.org/10.1016/j.scico.2020.102566

6. Cruz, R., Proença, J.: ReoLive: Analysing Connectors in Your Browser. In: Maz-
zara, M., Ober, I., Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 336–350.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04771-9_25

7. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015). https://doi.
org/10.1007/s10009-014-0361-y

https://antlr.org
https://doi.org/10.5281/zenodo.7888538
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-21485-2_19
https://doi.org/10.1007/978-3-030-21485-2_19
https://doi.org/10.1007/3-540-44881-0_7
https://doi.org/10.1007/3-540-44881-0_7
https://doi.org/10.4230/LIPIcs.ECOOP.2022.27
https://doi.org/10.4230/LIPIcs.ECOOP.2022.27
https://doi.org/10.1016/j.scico.2020.102566
https://doi.org/10.1007/978-3-030-04771-9_25
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0361-y

Caos: A Reusable Scala Web Animator of Operational Semantics 171

8. Edixhoven, L., Jongmans, S.S.: Realisability of branching pomsets. In: Tapia Tar-
ifa, S.L., Proença, J. (eds.) FACS 2022. LNCS, vol. 13712, pp. 185–204. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-20872-0_11

9. Edixhoven, L., Jongmans, S.S., Proença, J., Cledou, G.: Branching pomsets for
choreographies. In: Aubert, C., Giusto, C.D., Safina, L., Scalas, A. (eds.) Proceed-
ings 15th Interaction and Concurrency Experience, ICE 2022, Lucca, Italy, 17th
June 2022. EPTCS, vol. 365, pp. 37–52 (2022). https://doi.org/10.4204/EPTCS.
365.3

10. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex.
MIT Press, Cambridge (2009). http://mitpress.mit.edu/catalog/item/default.asp?
ttype=2&tid=11885

11. Flatt, M.: Creating languages in racket. Commun. ACM 55(1), 48–56 (2012).
https://doi.org/10.1145/2063176.2063195

12. Garavel, H., Beek, M.H., Pol, J.: The 2020 expert survey on formal methods. In: ter
Beek, M.H., Ničković, D. (eds.) FMICS 2020. LNCS, vol. 12327, pp. 3–69. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58298-2_1

13. Goncharov, S., Neves, R., Proença, J.: Implementing hybrid semantics: from func-
tional to imperative. In: Pun, V.K.I., Stolz, V., Simao, A. (eds.) ICTAC 2020.
LNCS, vol. 12545, pp. 262–282. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64276-1_14

14. Jongmans, S.S., Proença, J.: St4mp: a blueprint of multiparty session typing for
multilingual programming. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022. LNCS,
vol. 13701, pp. 460-478. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-19849-6_26

15. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
Part I. Theor. Comput. Sci. 13, 85–108 (1981). https://doi.org/10.1016/0304-
3975(81)90112-2

16. Politz, J.G., Lerner, B.S., Porncharoenwase, S., Krishnamurthi, S.: Event loops as
first-class values: a case study in pedagogic language design. Art Sci. Eng. Program.
3(3), 11 (2019). https://doi.org/10.22152/programming-journal.org/2019/3/11

17. Proença, J., Edixhoven, L.: Caos: a reusable Scala web animator of opera-
tional semantics (extended with hands-on tutorial). CoRR abs/2304.14901 (2023).
https://doi.org/10.48550/arXiv.2304.14901, https://arxiv.org/abs/2304.14901

18. Proença, J., Edixhoven, L.: Demonstration video of Caos: a reusable Scala web
animator of operational semantics. CoRR, April 2023. https://doi.org/10.5281/
zenodo.7876059, https://zenodo.org/record/7876059

https://doi.org/10.1007/978-3-031-20872-0_11
https://doi.org/10.4204/EPTCS.365.3
https://doi.org/10.4204/EPTCS.365.3
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11885
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11885
https://doi.org/10.1145/2063176.2063195
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/978-3-030-64276-1_14
https://doi.org/10.1007/978-3-030-64276-1_14
https://doi.org/10.1007/978-3-031-19849-6_26
https://doi.org/10.1007/978-3-031-19849-6_26
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.22152/programming-journal.org/2019/3/11
https://doi.org/10.48550/arXiv.2304.14901
https://arxiv.org/abs/2304.14901
https://doi.org/10.5281/zenodo.7876059
https://doi.org/10.5281/zenodo.7876059
https://zenodo.org/record/7876059

JoT: A Jolie Framework for Testing
Microservices

Saverio Giallorenzo1,2(B) , Fabrizio Montesi3 , Marco Peressotti3 ,
Florian Rademacher4,5 , and Narongrit Unwerawattana3

1 Università di Bologna, Bologna, Italy
2 INRIA, Sophia Antipolis, France

saverio.giallorenzo@gmail.com
3 University of Southern Denmark, Odense, Denmark

{fmontesi,peressotti}@imada.sdu.dk, nau@sdu.dk
4 Software Engineering, RWTH Aachen University, Aachen, Germany

rademacher@se-rwth.de
5 IDiAL Institute, University of Applied Sciences and Arts Dortmund,

Dortmund, Germany

Abstract. We present JoT, a testing framework for Microservice Archi-
tectures (MSAs) based on technology agnosticism, a core principle of
microservices. The main advantage of JoT is that it reduces the amount
of work for a) testing for MSAs whose services use different technol-
ogy stacks, b) writing tests that involve multiple services, and c) reusing
tests of the same MSA under different deployment configurations or after
changing some of its components (e.g., when, for performance, one reim-
plements a service with a different technology). In JoT, tests are orches-
trators that can both consume or offer operations from/to the MSA under
test. The language for writing JoT tests is Jolie, which provides con-
structs that support technology agnosticism and the definition of terse test
behaviours. We present the methodology we envision for testing MSAs
with JoT and we validate it by implementing non-trivial test scenarios
taken from a reference MSA from the literature (Lakeside Mutual).

Keywords: Microservice Architectures · Testing Frameworks ·
Service-Oriented Programming

1 Introduction

The paradigm of microservices is one the modern gold standards for developing
distributed applications. In this setting, a distributed application emerges as
the composition of multiple services (the “microservices”). Each microservice
implements a set of business capabitilies, and is independently executable and
deployable. Microservices interact with each other via message-passing APIs [4].

Two important factors in the diffusion of microservices are the scalability and
flexibility that they support. Scaling is efficient because one can focus scaling
actions precisely on those components impacted by traffic fluctuations. Flexibility
is given by the usage of technology-agnostic APIs, which allows for using different
c© IFIP International Federation for Information Processing 2023
S.-S. Jongmans and A. Lopes (Eds.): COORDINATION 2023, LNCS 13908, pp. 172–191, 2023.
https://doi.org/10.1007/978-3-031-35361-1_10

https://eapls.org/pages/artifact_badges/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35361-1_10&domain=pdf
http://orcid.org/0000-0002-3658-6395
http://orcid.org/0000-0003-4666-901X
http://orcid.org/0000-0002-0243-0480
http://orcid.org/0000-0003-0784-9245
https://doi.org/10.1007/978-3-031-35361-1_10

JoT: A Jolie Framework for Testing Microservices 173

implementation technologies for different microservices without renouncing inte-
gration.

However, the good traits of microservices do not come for free. Here, we focus
on one of the most prominent elements impacted by the microservices style: testing
sets of microservices, or Microservice Architectures (MSAs). Indeed, for unit test-
ing, one can rely on existing frameworks tailored for and idiomatic to the general-
purpose implementation technology used to develop a single microservice (e.g.,
Java, JavaScript, Rust, C). However, when tests cover more microservices, it can
become cumbersome to specify the coordination and invocation of services devel-
oped with different technologies using a framework designed for testing the “inter-
nals” of a service.

To make a concrete example, imagine using JUnit [8] (in Java) to specify the
connections to and the coordination and consumption of multiple operations of
several microservices. This would not only entail the specification of (possibly
complex) coordination logic in Java, but it would also mean adding, on top of the
latter, the logic that encodes the data structures that microservices exchange, how
connections are established and handled (including errors)—in terms of transport
and application layers, etc. Besides their complexity, tests written in this way are
difficult to be reused in other tests or under different deployment settings (imagine
repurposing a test that uses HTTP endpoints to verb-based binary protocols).

Motivated by these observations we present JoT (Jolie Testing), a testing
framework for MSAs based on technology agnosticism. Responding to its motivat-
ing points, JoT reduces the amount of work for a) testing for MSAs whose services
use different technology stacks, b) writing tests that involve multiple services, and
c) reusing tests of the same MSA under different deployment configurations or
after changing some of its components (e.g., when, for performance, one reimple-
ments a service with a different technology). In JoT, tests are orchestrators that
can both consume or offer operations from/to the MSA under test. The language
for writing JoT tests is Jolie [17], which provides constructs that support technol-
ogy agnosticism [16] and the definition of terse test behaviours. One of the most
relevant features introduced by JoT is the provision of Jolie annotations that users
can use to structure and specify the sequence of actions that the tool needs to fol-
low to run each test (e.g., test setup, cases, and clean up).

In Sect. 2, we discuss the methodology we envision for testing MSAs with
JoT, following an example where we use JoT annotations to build a test case.
In Sect. 3, we provide initial validation to JoT’s approach by presenting imple-
mentations of non-trivial test scenarios taken from a reference MSA from the
literature [23] (Lakeside Mutual). We draw conclusions, compare to related work,
and discuss future steps in Sect. 4.

2 Methodology and Structure of Tests

To illustrate the structure of tests and the architecture of the testing framework,
we start by describing the methodology we envision for building tests in JoT,
i.e., the steps users should follow to define a test using the framework.

174 S. Giallorenzo et al.

2.1 Building a Test in JoT

Following general testing practice, the first step for building a test in JoT is
defining the subject under test. Our subject is an architecture of services (one
or more) that can interact with each other. Considering that the subject under
test are the services of an architecture, in the remainder, we use interchangeably
the terms “subject under test” and “architecture under test” and use the term
“service under test” to indicate a service that is part of an architecture under
test (which includes the degenerate case of an architecture made of one service).
For example, in the first case in Sect. 3, the architecture under test is made of
two services—CustomerCore and CustomerManagement–that manage the users
of an online platform.

Once we defined the subject of the test, we need to identify the cases we
want to test, i.e., the functionality whose implementation we want to verify.
This can range from a single invocation, e.g., calling one operation of one ser-
vice, to complex behaviours that compose several operations of different ser-
vices. For example, by having as the subject under test the CustomerCore-
CustomerManagement architecture, we can check that users are coherently cre-
ated, fetched, and modified by the two services. For instance, we can interact
with CustomerCore to create a user, then we update the data related to that
user via the operations provided by CustomerManagement, and then verify that
the update was successful, by fetching and checking the user’s information from
CustomerCore.

Once we defined the subject under test and the functionality we want to test,
we can proceed with the actual implementation of the JoT test and its cases.

Since a JoT test is a service itself (and an orchestrator, in particular) the
information we need to provide to a JoT test coincides with the three main
elements that define services in general [11]. The first two are the Application
Programming Interfaces, interfaces for short, and the access points which, com-
bined, define the public contract of the services (under test). The third element
is the private, internal behaviour of the service, which implements the logic of
each test case.

Interfaces. The interface of a service specifies what operations it offers to clients.
There exist many guidelines and technologies for the description of interfaces [4].
However, we can abstract an interface as the set of labelled operations that a
service promises to support. The description of the set of operations can also
carry the messaging pattern (e.g., one-way, request-reply calls) of each operation
and the structure of the data exchanged through each of them.

For example, one can provide them in the form of an informal list of resources
that one can call, e.g., as URL addresses, and describe the shape of the in-/out-
bound data similarly. Alternatives include the usage of formal languages for
the specification of service interfaces, such as WSDL, and the description of
interfaces using metamodels [11,20] which support the generation of the same
service interface under different formats (formal and informal).

JoT: A Jolie Framework for Testing Microservices 175

Thanks to the flexibility of Jolie interfaces, JoT adopts a permissive attitude,
where the minimal amount of information users need to provide regarding inter-
faces is: a) the list of operation labels that the test is going to use and b) the
messaging pattern that characterises each operation.

For example, a minimal Jolie interface to test the “createCustomer” operation
of the CustomerCore is

interface CustomerCoreInterface {
requestResponse: createCustomer
}

In the code, we specify that the operation createCustomer has a request-
response behaviour (from the user side, this means invoking the service on the
operation and waiting for the server to answer with some response) and that
the operation belongs to the CustomerCoreInterface interface (the latter’s
name is immaterial for the service under test, and it is just a reference to the
interface’s content within the test itself).

Interestingly, JoT provides support for specifying test invariants on the
exchanged data already at the level of interfaces. Indeed, users can specify the
structure of the data they expect to see in tests via Jolie types. Jolie types have
a tree-shaped form, made of two components: the root of the tree, associated
with a basic type (e.g., integer, string, etc.), and a set of nodes that defines
the internal fields of the data structure—each node is an array with specified
minimal and maximal cardinality.

For example, we can enrich CustomerCoreInterface with types, to both
specify the kind of data we promise to provide within the test (cases)—in the
request part of the createCustomer operation—and the shape of the data we
expect the service under test to send back as the response.

For example, in the code below, we show one such interface where the request
to the createCustomer operation needs to carry the name and surname of the
user (as strings), while the operation responds with the identification number of
the user (as an integer).

type CustomerRequest { name: string, surname: string }
type CustomerResponse { id: int }
interface CustomerCoreInterface {
requestResponse:
createCustomer(CustomerRequest)(CustomerResponse)

}

Access Points. The access point completes the public contract of a service’s
interface by defining where and how to contact the service, i.e., defining the
stack of technologies that clients can use to interact with the service.

176 S. Giallorenzo et al.

Specifically, the technology stack determines the media and protocols used
to support the communication between a service and its clients and the format
of the data that these exchange. For instance, one can decide to use SOAP and
TCP/IP as a technology stack for communication and use XML to format the
data.

By relying on Jolie ports, JoT makes it easy to adapt a test to the access-
point specifications of a given service incarnation. For example, this allows users
to write a test case that they initially want to run at the development stage,
e.g., using a message broker [6] and some binary format, and then change the
ports settings to test the service in production, e.g., switching the port to use
TCP/IP, HTTP, and the JSON format—other examples include SOAP-based
web services [17] and REST ones [16].

As we discuss below, JoT provides direct support to this level of flexibility
via configuration parameters that the user can pass to the test, so that one
can run the same test on different deployment settings programmatically. As an
example, following the simple case made above, we can define the port to contact
the CustomerCore service in a JoT test in the following way:

outputPort CustomerCore {
location: parameters.customerCore.location
protocol: parameters.customerCore.protocol
interfaces: CustomerCoreInterface

}

Above, we define an outputPort called CustomerCore, which repre-
sents an external service that we can invoke. Through the port definition,
we declare that we expect that the CustomerCore service implements the
CustomerCoreInterface. Notice that the location and protocol of the
port are (elements of the variable) parameters. We used this definition of the
port to illustrate how the user can change the medium technology and end-
point definition (location) and the communication protocol and data format
(protocol) by passing this information as parameters of the test instantiation.

Test Logic. The last element of the test is the definition of the actions that the
test needs to enact to implement its logic.

Here, Jolie provides different ways to define the logic of the service, e.g., by
allowing developers to use Java or JavaScript. We deem using these languages a
viable route, e.g., if one needs to use libraries that would be difficult to expose
otherwise or wants to re-use some test logic written in those languages. Notwith-
standing this possibility, we envision users to mainly write JoT tests using the
Jolie behaviour language. Indeed, Jolie provides a concise-yet-expressive lan-
guage for behaviour specification that makes it easy to assemble even complex
coordination logic, like speculative parallelism [3] and partial joins [7], which one
can use to reproduce edge cases of highly-concurrent systems.

JoT: A Jolie Framework for Testing Microservices 177

Ports make it possible to keep the logic of Jolie programs, and JoT tests,
loosely coupled w.r.t. the deployment technology. For instance, let us look at a
simple behaviour snippet for our example

createCustomer@CustomerCore ({name = "John", surname = "Doe"})(resp)
if(resp.id <= 0){
throw (TestFailed, "Users need to have positive id numbers")
}

Above, we define an elementary test for the createCustomer operation,
where we send a legit request (according to the interface we defined) and check
that the response has the expected shape (verified by the Jolie type checker, given
the interface definition of createCustomer) and that the identifier is positive.
In case the test fails, we throw a fault, which interrupts the execution of the
tests and reports to the user the failing case. Later in Sect. 3 we use the assertion
library provided by JoT, which helps users in verifying the compliance of the
results against the expected values even in the case of complex data structures
(multi-level nested trees).

2.2 Writing a Complete Test

Before detailing the architecture of JoT, we illustrate the remaining important
items that make up a JoT test. For this purpose, we show a working JoT test
example by assembling the interface, port, and behaviour shown above with the
remaining elements that characterise a JoT test—for brevity, we elide most of
the constructs discussed above to focus on the new parts.

type CustomerRequest . . .
interface CustomerCoreInterface { . . . }

interface TestInterface {
requestResponse:
///@Test
testCreateCustomer()() throws TestFailed(string)

}

service Main(parameters: undefined){
outputPort CustomerCore {

location: parameters.customerCore.location
. . .

}

inputPort Input {
. . .
interfaces: TestInterface
}

main {
testCreateCustomer()() {

178 S. Giallorenzo et al.

createCustomer@CustomerCore({ name = "John", surname = "Doe" })(resp
)

. . . }
} }

The salient additional parts in the example are four, described below follow-
ing their top-to-bottom order of appearance in the code.

First, we have an interface, called TestInterface, which defines the
sequence of operations the JoT framework shall run from the current test.
This is done—similarly to other testing frameworks, e.g., JUnit—using com-
ment annotations of the form ///@Annotation. JoT currently supports five
kinds of annotations: ///@BeforeAll, ///@BeforeEach, ///@AfterEach,
///@AfterAll, and ///@Test. Respectively, these indicate operations in the
body of the test that we invoke once before all test cases, before calling each test
case, after we called each test case, and once after we invoked all test cases. The
last annotation is to indicate test-case operations. JoT does not impose order
among the operations in a given annotation category.

Second, we have a service (conventionally called Main), which is the Jolie
program unit that the JoT framework instantiates to run the tests. When per-
forming the instantiation, the framework passes the configuration parameters
for the test defined by the user, which the service holds in the parameters
variable (here, we leave its type undefined). In the example, we use the
parameters variable to carry the information to contact the CustomerCore
in the related outputPort.

Third, we have an inputPort (complementary inbound access points to
outputPorts) that allows the JoT framework orchestrator to govern the oper-
ations offered by the test (service). Indeed, the inputPort publishes the
TestInterface defined earlier.

Fourth, there is the main execution block, which encloses the behaviour of
the test cases and the surrounding operations (before-all/each and after-all/each)
of the test. In the body of the main, we find the test testCreateCustomer,
which, at invocation, runs the test-case behaviour we previously commented on.

2.3 Executing JoT Tests

By design, JoT does not manage the deployment of the architecture under test.
This is to let developers decide the best way to run the architecture. For example,
the developer of our exemplary test could execute the service locally (using
private network addresses) and later on re-use the same test logic to check the
behaviour of the service in production (using public addresses). JoT achieves
this flexibility via file-based configurations. Concretely, JoT configurations are
JSON files that contain test parameters, such as a tested service’s address or
protocol. Listing 1 shows an example of a JoT configuration file. It configures
the execution of the JoT test whose excerpts were shown in previous listings
and which is stored in a Jolie program called “TestCustomerCore.ol” (“.ol” is the
extension for Jolie programs).

JoT: A Jolie Framework for Testing Microservices 179

Listing 1. Example JoT configuration file.

{ "testsPath": ".",
"params": {

"TestCustomerCore.ol": [{
"name": "Main",
"params": {}

}] } }

The testsPath element specifies the file path of the test source, relative to
the configuration file. The params element is where users link tests to parame-
ters. For this purpose, each member of the element is a key-value pair consisting
of (i) the name of the file that contains the code of the test; (ii) an array of con-
figuration objects. Namely, the element name is the name of the Jolie service
that wraps the test code (e.g., Main) while the params node contains the param-
eters for the test.

To execute a test with file-based configuration, the user can save the JSON
data in a “params.json” file and then launch the test with the command jot
params.json.

When testing architectures, our suggestion is to pair JoT with widely adopted
microservice deployment technologies, like Kubernetes and Docker-compose, to
further automate the running of test batteries. This is the practice we follow,
e.g., in Sect. 3, where the services of the architecture under test are containers,
deployed through a single Docker Compose file.

JoT’s source code is available on GitHub1, and a publicly downloadable video
illustrates JoT’s architecture and usage 2.

3 Validation

We now show a preliminary validation of JoT by writing a pair of tests (and
related test cases) drawn from the Lakeside Mutual [23] architecture3 Briefly,
Lakeside Mutual is a fictitious insurance company that provides its employees
and customers with a software platform to, e.g., manage personal data and insur-
ance policies. In total, Lakeside Mutual—in the continuation, we use the term
to indicate the insurance company’s software platform—consists of five backend
microservices, four frontend components enabling users to operate on the data
maintained by the backend microservices, and two infrastructure components
for service discovery and technical administration.

1 https://github.com/jolie/jot.
2 https://drive.google.com/file/d/1VimUbh6stPQoyB_EeLJLllwLs5Vj82wX/view?

usp=sharing.
3 As retrieved at version https://github.com/Microservice-API-Patterns/Lakeside

Mutual/commit/aaebc590832c9ffc064fa3a22eae20db17ab31d9
.

https://github.com/jolie/jot
https://drive.google.com/file/d/1VimUbh6stPQoyB_EeLJLllwLs5Vj82wX/view?usp=sharing
https://drive.google.com/file/d/1VimUbh6stPQoyB_EeLJLllwLs5Vj82wX/view?usp=sharing
https://github.com/Microservice-API-Patterns/LakesideMutual/commit/aaebc590832c9ffc064fa3a22eae20db17ab31d9.
https://github.com/Microservice-API-Patterns/LakesideMutual/commit/aaebc590832c9ffc064fa3a22eae20db17ab31d9.
https://github.com/Microservice-API-Patterns/LakesideMutual/commit/aaebc590832c9ffc064fa3a22eae20db17ab31d9.

180 S. Giallorenzo et al.

3.1 Tested Interaction Scenarios

We implement two testing scenarios.
Scenario 1 involves the interaction of two microservices, namely Customer-

Core and CustomerManagement. The CustomerCore microservice provides
basic capabilities to manage a customer’s data. The CustomerManagement
microservice acts as a façade for CustomerCore and is responsible for providing
clients with a stable interface, thereby facilitating the evolution of Customer-
Core. The testing logic for Scenario 1 covers the update of an existing insurance
customer triggered by a client. Figure 1 shows the specification of the scenario
as a UML sequence diagram [18].

Client CustomerManagement Custom erCore

getCustomer(id)

getCustomer(id)

responseGC = getCustom er(-)

responseGC = getCustom er(-)

change(responseGC)

changedC= change(-)

updateCustomer(changedC)

updateCustomer(changedC)

updateCustom er(-)

updateCustom er(-)

Fig. 1. Specification of tested interaction Scenario 1 as a UML sequence diagram.

In Fig. 1, the Client initiates the scenario by retrieving an existing customer
with a given id, using the CustomerManagement operation getCustomer.
CustomerManagement forwards the request to CustomerCore and returns
the response of the latter to the Client. Next, the Client updates the received
data (e.g., it can change the address of the queried customer) and calls update-
Customer with the updated data on CustomerManagement. Again, Cus-
tomerManagement forwards this call to CustomerCore to perform the actual
update of the database.

Scenario 2 includes, on top of the services seen in Scenario 1, another
microservice, i.e., CustomerSelfService. In this scenario, CustomerSelf-
Service provides customers with the functionality to register themselves in
the system. Scenario 2 focuses on this registration process and the correct exe-
cution of the getCustomers operation to find the newly registered customer.
Thus, differently from Scenario 1, Scenario 2 covers a dedicated business pro-
cess rather than an activity that is part of several processes. Indeed, Scenario 2
is more complex than the first one and illustrates JoT’s capability to perform
testing of interactions comprising more than the microservices directly accessed
by the test, i.e., the test entails the correct interaction between CustomerCore

JoT: A Jolie Framework for Testing Microservices 181

and CustomerManagement. Figure 2 shows the specification of Scenario 2 as
a UML sequence diagram.

Client CustomerSelfService Custom erCore CustomerManagement

registerCustomer(newCustomer)

createCustomer(newCustomer)

createCustom er(-)

registerCustomer(-)

getCustomers(filter= newCustomer.firstName)

getCustomers(filter= newCustomer.firstName)

filteredNewCustomer= getCustomers(-)

filteredNewCustomer= getCustomers(-)

Fig. 2. Specification of tested interaction Scenario 2 as a UML sequence diagram.

In Fig. 2, a Client registers a new customer by calling the register-
Customer operation of the CustomerSelfService with the new customer’s
data. CustomerSelfService partially acts as a façade to CustomerCore, to
which it forwards the request for customer registration as a call to createCus-
tomer. After the completion of registerCustomer, the Client continues
by executing the getCustomers operation of CustomerManagement. This
operation allows fetching customers via filters, e.g., via their names. This call is
also forwarded to CustomerCore, which queries its database and performs the
actual fetching.

3.2 JoT Test of Scenario 1

We move to implement Scenario 1 (cf. Fig. 1) using JoT. In the scenario, the JoT
tests correspond to the Client components (cf. Section 3.1). We start by intro-
ducing the Jolie interfaces and access points for the test, and then we describe
its logic.

Interfaces. Following the scenario specification (cf. Figure 1), the test program
must invoke the getCustomer and updateCustomer operations on Cus-
tomerManagement to test its correct behaviour, which entails interacting with
CustomerCore. Here, we let the test directly interact with CustomerCore, in
the “setup” phase, to create the customer (via the createCustomer operation)
that we want to get and update in the test case. Listing 2 shows the Jolie
interfaces of the test for Scenario 1.

182 S. Giallorenzo et al.

Listing 2. Interfaces of the test for Scenario 1.

1 type CustomerProfileUpdateRequest { firstName:string,
lastName:string, . . . }

2
3 type CustomerResponse {
4 customerId? :string, firstName? :string, lastName? :string,

. . .
5 }
6
7 interface CustomerInformationHolder_CustomerCore {
8 RequestResponse:
9 createCustomer(CustomerProfileUpdateRequest)(

CustomerResponse)
10 }
11
12 type GetCustomerRequest {
13 ids:string, fields?:string
14 }
15
16 type UpdateCustomerRequest {
17 customerId:CustomerId
18 requestDto:CustomerProfileUpdateRequest
19 }
20
21 interface CustomerInformationHolder_CustomerManagement {
22 RequestResponse:
23 getCustomer(GetCustomerRequest)(CustomerResponse),
24 updateCustomer(UpdateCustomerRequest)(CustomerResponse)
25 }

The CustomerInformationHolder_CustomerCore interface4 in
Lines 7–10 specifies the signature of the CustomerCore microservice’s
createCustomer operation used to setup the test database. The operation
is a synchronous request-response operation (cf. Figure 1), and expects an
instance of the CustomerProfileUpdateRequest type (cf. Line 1) as input
and returns a CustomerResponse (cf. Lines 3–5) as output, whereby the
most of the fields of the CustomerResponse type correspond to those of
CustomerProfileUpdateRequest with optional cardinality (?)—Jolie also
provides the * cardinality that means a 0-to-unbound number of elements of
that type. An exception is the customerId field by which the CustomerCore
microservice informs invokers of createCustomer about the unique identifier
of a newly created customer.

The CustomerInformationHolder_CustomerManagement interface
in Lines 21–25 specifies the getCustomer and updateCustomer operations
4 Note that the prefix CustomerInformationHolder refers to the microservice

API pattern Information Holder Resource conceived by the developers of Lakeside
Mutual, and enabling the provisioning of domain data with integrity and quality
preservation [23].

JoT: A Jolie Framework for Testing Microservices 183

used in the test. The operation getCustomer expects an instance of the Get-
CustomerRequest type (cf. Lines 12–14) to determine the identifiers of the
customers to be retrieved and optionally a list of relevant fields. The operation
then returns matching data in a CustomerResponse instance. Operation up-
dateCustomer requires an instance of the type UpdateCustomerRequest
(cf. Lines 16–19) with the customer identifier to be updated by the passed Cus-
tomerProfileUpdateRequest instance. As for getCustomer, update-
Customer then returns its results in the form of CustomerResponses.

Access Points. As mentioned, the JoT test for Scenario 1 has two output ports,
CustomerCore and CustomerManagement. Listing 3 shows the expected
bindings.

Listing 3. Access points of the test for Scenario 1.

1 outputPort customerCore {
2 location: parameters.customerCore.location
3 . . .
4 interfaces: CustomerInformationHolder_CustomerCore
5 }
6
7 outputPort customerManagement {
8 location: parameters.customerManagement.location
9 . . .

10 interfaces: CustomerInformationHolder_CustomerManagement
11 }

We specify at Lines 1–5 the output port for the CustomerCore microservice
while at Lines 7–11 we report the output port for the CustomerManagement
microservice. Notice that the actual binding of the ports (location, protocol) is
parametric (passed through the parameters variable of the test).

Test Logic. Listing 4 shows the testing logic of Scenario 1. Notice that
we import the same interface CustomerInformationHolder from
different files (i.e., customer-core.interfaces and customer-
management.interfaces) and we alias them (with the as key-
word) resp. CustomerInformationHolder_CustomerCore and
CustomerInformationHolder_CustomerManagement, so that we
obtain a similar result as the code in Listing 2.

Listing 4. Logic of the test for Scenario 1.

1 // cf. Listing 2
2 from customer-core.interfaces import

CustomerInformationHolder
3 as CustomerInformationHolder_CustomerCore
4 from customer-management.interfaces import

CustomerInformationHolder
5 as CustomerInformationHolder_CustomerManagement

184 S. Giallorenzo et al.

6
7 interface TestInterface {
8 RequestResponse:
9 /// @BeforeEach

10 setup(void)(void),
11 /// @Test
12 testScenario1(void)(void)
13 }
14
15 service Main {
16 outputPort customerCore { cf. Listing 3 }
17 outputPort customerManagement { cf. Listing 3 }
18 inputPort Input { . . . }
19
20 main {
21 /* Setup Test */
22 [setup()() {
23 request << { firstName = "Jane", lastName = "Doe", . . . }
24 createCustomer@customerCore(request)(actual)
25 global.user_id = actual.customerId
26 }]
27
28 /* Test Scenario 1 */
29 [testScenario1()() {
30 // Step 1
31 getCustomer@customerManagement({ ids = global.user_id })(

resp)
32 equals@assertions({ actual << resp.customerId, expected

<< global.user_id })()
33
34 // Step 2
35 undef(resp.customerId)
36 resp.firstName = "John2"
37 updateCustomer@customerManagement({ customerId = global.

user_id, requestDto << resp })(resp2)
38 equals@assertions({ actual = resp2.firstName, expected =

"John2" })()
39
40 // Step 3
41 getCustomers@customerManagement({ ids = global.user_id })

(resp3)
42 equals@assertions({ actual = #resp3.customers, expected =

1 })()
43 }] } }

Briefly, Lines 2–5 import the types and interfaces for the CustomerCore
and CustomerManagement microservices (cf. Listing 2).

Next, in Lines 7–13 we specify the TestInterface of the test. This has
two operations with JoT-specific annotation. We use @BeforeEach to invoke

JoT: A Jolie Framework for Testing Microservices 185

the setup operation before each test (here, just one). Then, we annotate with
@Test testScenario1, which will execute after all @BeforeEach (here, one)
operations.

Starting from Line 15 we find the implementation of the test, as a Jolie
service. There, we find the output ports to access CustomerCore and Cus-
tomerManagement microservices (cf. Lines 16 and 17), the input port In-
put that offers the test operations found in the TestInterface to the JoT
framework orchestrator. The main block encloses the implementation of the
logic of the test.

Specifically, we find at Lines 22–26 the behaviour of the setup operation,
which creates a request value with test data based on the structure of the
CustomerProfileUpdateRequest type (cf. Listing 2) and it uses the latter
in the invocation of createCustomer of CustomerCore. Since setup is
run before all tests (as per its annotation), the @Tests can assume that the
microservice’s database has the test entry. The resulting identifier of the created
customer is then stored in a global field called user_id, accessible by all test
cases.

Lines 29–43 comprise the actual logic for the test operation of Scenario 1,
i.e., testScenario1. First, the operation retrieves the test customer previously
created by the setup operation. However, this call addresses the Customer-
Management rather than the CustomerCore microservice and thus verifies
whether CustomerManagement actually behaves as a façade for Customer-
Core as anticipated by Lakeside Mutual’s architecture design (cf. Figure 1). In
the second step, the test operation changes the name of the test customer from
“Jane” to “John2” and issues a request to the updateCustomer operation of
the CustomerManagement microservice. The response of the latter operation
is then checked to report the new name of the customer as expected by up-
dateCustomer after a successful update of customer data. In its final step,
testScenario1 verifies that the update is persistent by issuing a getCus-
tomers request to the CustomerManagement microservice.

3.3 JoT Test of Scenario 2

We describe the JoT test of Scenario 2 (Fig. 2) following the same structure of
Sect. 3.2: interfaces, access points, logic.

Interfaces. Listing 5 shows the type definitions and operations of the interfaces
of the CustomerSelfService and CustomerManagement for Scenario 2
(cf. Fig. 2).

Listing 5. Interfaces of the Jolie test program for Scenario 2.

1 type CustomerRegistrationRequest { firstName:string,
lastName:string, . . . }

2
3 interface CustomerInformationHolder_CustomerSelfService {
4 RequestResponse:

186 S. Giallorenzo et al.

5 registerCustomer(CustomerRegistrationRequest)(
CustomerResponse)

6 }
7
8 type GetCustomersRequest {
9 filter?:string, fields?:string, limit?:int, offset?:int

10 }
11
12 type PaginatedCustomerResponse {
13 filter?:string, limit?:int, offset?:int, size?:int
14 customers*:CustomerResponse // cf. Lines 3-5 in Listing 2
15 }
16
17 interface CustomerInformationHolder_CustomerManagement {
18 RequestResponse:
19 getCustomers(GetCustomersRequest)(

PaginatedCustomerResponse)
20 }

The CustomerInformationHolder_CustomerSelfService interface
of CustomerSelfService specifies the registerCustomer operation for
the registration of new insurance customers with the Lakeside Mutual plat-
form. It requires an instance of the CustomerRegistrationRequest type
(cf. Line 1) as input and returns an instance of the CustomerResponse type
(cf. Lines 3–5 in Listing 2).

The CustomerInformationHolder_CustomerManagement interface
of CustomerManagement gathers the getCustomers operation (cf. Lines 17–
20 in Listing 5), which lets users fetch customers based on the GetCustomers-
Request type (cf. Line 10). An instance of the type determines the filter
string and fields for customer matching. In case one of the fields of the record
associated with a registered customer includes the filter string, the record
will be part of the set of customers returned by getCustomers. The size of the
set can be controlled by the limit and offset fields of GetCustomersRe-
quest—the former prescribes the number of records in the set and the latter
indicates by which offset customer matching shall start. With this mechanism,
getCustomers supports paginated requests of customer records as modelled
by the operation’s return type PaginatedCustomerResponse (cf. Lines 12–
15). An instance of the type informs the caller about the employed filter
string, the prescribed limit and offset, as well as the size of the resulting
record set. The set itself is comprised by the list of CustomerResponses in
the customers field.

Access Points. In Scenario 2, the Client performs direct interactions with cus-
tomerSelfService and customerManagement and the test has the related
ports. Since it introduces no salient elements, we omit to show the access point
code for brevity.

JoT: A Jolie Framework for Testing Microservices 187

Test Logic. Listing 6 shows the test logic for Scenario 2.The imports we have
at the beginning are similar to the ones included for Scenario 1, i.e., we alias
CustomerInformationHolder for either the CustomerManagement and
the CustomerSelfService resp. as CustomerInformationHolder_Cus-
tomerManagement and CustomerInformationHolder_CustomerSelf-
Service, so that we obtain a similar result as the code in Listing 5. In the code,
we use both the Jolie value-assignment operator = and the deep-copy operator
«. The first just copies the topmost element of the expression on its right. The
second copies the whole structure referred by the expression on the right.

Listing 6. Logic of the Jolie test program for Scenario 2.

1 // cf. Listing 5
2 from customer-management.interfaces import

CustomerInformationHolder
3 as CustomerInformationHolder_CustomerManagement
4 from customer-self-service.interfaces import

CustomerInformationHolder
5 as CustomerInformationHolder_CustomerSelfService
6
7 interface TestInterface {
8 RequestResponse:
9 /// @Test

10 testScenario2(void)(void)
11 }
12
13 service Main {
14 outputPort customerManagement { . . . }
15 outputPort customerSelfService { . . . }
16 inputPort Input { . . . }
17
18 main {
19 [testScenario2()() {
20 // Step 1
21 customer << { firstName = "Homer2", lastName = "Simpson

", . . . }
22 registerCustomer@customerSelfService(customer)(resp1)
23 equals@assertions({ actual = resp1.firstName, expected =

"Homer2" })()
24
25 // Step 2
26 getCustomers@customerManagement({ filter = "Homer2" })(

resp2)
27 equals@assertions({ actual = #resp2.customers, expected

= 1 })()
28 equals@assertions({ actual = resp2.customers.firstName,

expected = "Homer2" })()
29 }] }
30 }

188 S. Giallorenzo et al.

Similar to Listing 2, we: (i) import the types and interfaces of the microser-
vices involved in the scenario; (ii) define the TestInterface; (iii) specify the
involved microservices’ output ports; and (iv) define the test logic.

Focusing on the latter, Step 1 creates a test customer by invoking the reg-
isterCustomer operation of the customerSelfService microservice. At
Step 2 we use getCustomers of customerManagement to fetch (and filter)
the created customer, checking that there exists exactly one customer with the
given name.

4 Related Work, Discussion, and Conclusion

We presented JoT, a testing framework for MSAs based on technology agnosti-
cism. JoT tests are orchestrators that can consume or offer operations from/to
the MSA under test. Since JoT adopts Jolie as the language for writing tests, it
provides constructs supporting technology agnosticism and the definition of terse
test behaviours. These elements facilitate the testing of MSAs with microser-
vices based on heterogeneous technology stacks and the reuse of tests under
different deployment configurations. Recent surveys and interviews with prac-
titioners [21,22] substantiate this need, pointing out that developers urge for
microservice-specific testing solutions.

We reference [21,22] for a comprehensive survey of the field, while, here,
we compare with the closest proposals to ours. Gremlin [12] is a framework
for MSAs that focuses on testing failure-handling by manipulating inter-service
messages at the network layer. Quenum and Aknine [19] conceive an approach for
the generation of executable test cases from requirements specifications, thereby
focusing on acceptance tests for validating a software system’s conformance with
stakeholder expectations.

Hillah et al. [13] present an approach to automated functional testing based
on formal specifications (of services, relations, etc.). Jayawardana et al. [15]
propose a framework to produce test skeletons from business process models.

All mentioned related works concentrate on different aspects of MSA testing
than JoT. In particular, they do not focus on the specification of advanced MSA
tests tailored to technology agnosticism and expressed using a terse syntax, like
the one provided by JoT thanks to the usage of the Jolie language. We plan
to study the possible interplay between the mentioned work with JoT, e.g., for
semi-automatic test generation geared towards specific traits of the architecture
under test.

To improve the reliability of JoT we intend to conduct more comprehensive
validation of our tool. One such validation entails more varied and complex sce-
narios, including synchronous and asynchronous interactions, design and archi-
tecture patterns, like Sagas for distributed transactions and Circuit Breaker for
increased reliability.

In particular, looking at the design and architecture patterns, we foresee the
language for test behaviours (inherited from Jolie) would play a fundamental
role in helping users express complex testing logic spanning different services.

JoT: A Jolie Framework for Testing Microservices 189

Also this aspect deserves dedicated work, i.e., how the JoT behaviour increases
the productivity of testers w.r.t. existing solutions. Both empirical studies with
practitioners and applying relevant software quality metrics, comparing with
both existing tools for general testing (e.g., JUnit) specific to microservices (e.g.,
zerocode5, Microdot6,7 and MounteBank8).

Other future endeavours regard studying the integration of JoT with MSA
modelling languages like LEMMA [20] and MDSL [23], and with choreographic
testing approaches [1,2,9,10]. Such an integration would allow the generation of
test behaviours and coordinators in contexts where a single orchestrator is not
sufficient, e.g., in decentralized, cross-organizational deployments. Furthermore,
Jolie types and interfaces provide natural support for property-based testing [5],
where generators randomly run tests on valid data and operations to assert
relevant invariants. In this context, one could use session types [14] to specify
behavioural invariants that shall hold in the system and test these in a property-
based manner.

Acknowledgements. This work was partially supported by the Independent
Research Fund Denmark, grant no. 0135-00219, Villum Fonden, grant no. 29518, and
Innovation Fund Denmark, grant no. 9142-00001B.

Data Availability Statement

The artifact is available in the Software Heritage repository:

swh:1:dir:11bd4a17c8b8f184a5fbe50d8436719cb7de4956

References

1. Coto, A., Guanciale, R., Tuosto, E.: On testing message-passing components. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476, pp. 22–38. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-61362-4_2

2. Coto, A., Guanciale, R., Tuosto, E.: An abstract framework for choreographic
testing. J. Log. Algebraic Methods Program. 123, 100712 (2021)

3. Dalla Preda, M., Gabbrielli, M., Lanese, I., Mauro, J., Zavattaro, G.: Graceful
interruption of request-response service interactions. In: Kappel, G., Maamar,
Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 590–600.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25535-9_45

4. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. In: Present and
Ulterior Software Engineering, pp. 195–216. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67425-4_12

5. Fink, G., Bishop, M.: Property-based testing: a new approach to testing for assur-
ance. ACM SIGSOFT Softw. Eng. Notes 22(4), 74–80 (1997)

5 https://github.com/authorjapps/zerocode.
6 https://github.com/gigya/microdot.
7 https://pact.io/.
8 https://www.mbtest.org/.

https://archive.softwareheritage.org/browse/directory/11bd4a17c8b8f184a5fbe50d8436719cb7de4956/?origin_url=https://github.com/jolie/jot&revision=c0b5ac36883e52914d5e11716a9a0dea28ef9fbb&snapshot=fc65ef826a46b3b99b5f44c3adc3c34e47dd5d35
https://doi.org/10.1007/978-3-030-61362-4_2
https://doi.org/10.1007/978-3-642-25535-9_45
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://github.com/authorjapps/zerocode
https://github.com/gigya/microdot
https://pact.io/
https://www.mbtest.org/

190 S. Giallorenzo et al.

6. Gabbrielli, M., Giallorenzo, S., Lanese, I., Zingaro, S.P.: A language-based app-
roach for interoperability of iot platforms. In: 51st Hawaii International Confer-
ence on System Sciences, HICSS 2018, Hilton Waikoloa Village, Hawaii, USA, 3–6
January 2018. pp. 1–10. ScholarSpace / AIS Electronic Library (AISeL) (2018)

7. Gabbrielli, M., Giallorenzo, S., Montesi, F.: Service-oriented architectures: from
design to production exploiting workflow patterns. In: Omatu, S., Bersini, H., Cor-
chado, J.M., Rodríguez, S., Pawlewski, P., Bucciarelli, E. (eds.) Distributed Com-
puting and Artificial Intelligence, 11th International Conference. AISC, vol. 290,
pp. 131–139. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07593-
8_17

8. Gamma, E., Beck, K.: Junit (2006)
9. Giallorenzo, S., Lanese, I., Russo, D.: ChIP: a choreographic integration process. In:

Panetto, H., Debruyne, C., Proper, H.A., Ardagna, C.A., Roman, D., Meersman,
R. (eds.) OTM 2018. LNCS, vol. 11230, pp. 22–40. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-02671-4_2

10. Giallorenzo, S., Montesi, F., Peressotti, M.: Choreographies as objects. CoRR
abs/2005.09520 (2020). https://arxiv.org/abs/2005.09520

11. Giallorenzo, S., Montesi, F., Peressotti, M., Rademacher, F., Sachweh, S.: Jolie and
LEMMA: model-driven engineering and programming languages meet on microser-
vices. In: Damiani, F., Dardha, O. (eds.) COORDINATION 2021. LNCS, vol.
12717, pp. 276–284. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
78142-2_17

12. Heorhiadi, V., Rajagopalan, S., Jamjoom, H., Reiter, M.K., Sekar, V.: Gremlin:
Systematic resilience testing of microservices. In: 2016 IEEE 36th International
Conference on Distributed Computing Systems (ICDCS), pp. 57–66. IEEE (2016)

13. Hillah, L.M., et al.: Automation and intelligent scheduling of distributed system
functional testing: model-based functional testing in practice. Int. J. Softw. Tools
Technol. Transfer 19, 281–308 (2017)

14. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. (CSUR) 49(1), 1–36 (2016)

15. Jayawardana, Y., Fernando, R., Jayawardena, G., Weerasooriya, D., Perera, I.: A
full stack microservices framework with business modelling. In: 2018 18th Interna-
tional Conference on Advances in ICT for Emerging Regions (ICTer), pp. 78–85.
IEEE (2018)

16. Montesi, F.: Process-aware web programming with Jolie. Sci. Comput. Program.
130, 69–96 (2016)

17. Montesi, F., Guidi, C., Zavattaro, G.: Service-oriented programming with Jolie. In:
Bouguettaya, A., Sheng, Q., Daniel, F. (eds) Web Services Foundations. Springer,
New York (2014). https://doi.org/10.1007/978-1-4614-7518-7_4

18. OMG: OMG Unified Modeling Language (OMG UML) version 2.5.1. Standard
formal/17-12-05, Object Management Group (2017)

19. Quenum, J.G., Aknine, S.: Towards executable specifications for microservices. In:
2018 IEEE International Conference on Services Computing (SCC), pp. 41–48.
IEEE (2018)

20. Rademacher, F.: A language ecosystem for modeling microservice architecture,
Ph. D. thesis, University of Kassel, Germany (2022). https://kobra.uni-kassel.de/
handle/123456789/14176

21. Waseem, M., Liang, P., Márquez, G., Di Salle, A.: Testing microservices
architecture-based applications: a systematic mapping study. In: 2020 27th Asia-
Pacific Software Engineering Conference (APSEC), pp. 119–128. IEEE (2020)

https://doi.org/10.1007/978-3-319-07593-8_17
https://doi.org/10.1007/978-3-319-07593-8_17
https://doi.org/10.1007/978-3-030-02671-4_2
https://doi.org/10.1007/978-3-030-02671-4_2
https://arxiv.org/abs/2005.09520
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-1-4614-7518-7_4
https://kobra.uni-kassel.de/handle/123456789/14176
https://kobra.uni-kassel.de/handle/123456789/14176

JoT: A Jolie Framework for Testing Microservices 191

22. Waseem, M., Liang, P., Shahin, M., Di Salle, A., Márquez, G.: Design, monitoring,
and testing of microservices systems: the practitioners’ perspective. J. Syst. Softw.
182, 111061 (2021)

23. Zimmermann, O., Stocker, M., Lübke, D., Zdun, U., Pautasso, C.: Patterns for API
design: simplifying integration with loosely coupled message exchanges. Addison-
Wesley (2023)

Languages and Processes

Rollback Recovery in Session-Based
Programming

Claudio Antares Mezzina1(B) , Francesco Tiezzi2(B) , and Nobuko Yoshida3(B)

1 Università degli Studi di Urbino Carlo Bo, Urbino, Italy
claudio.mezzina@uniurb.it

2 Università degli Studi di Firenze, Florence, Italy
francesco.tiezzi@unifi.it
3 University of Oxford, Oxford, UK
nobuko.yoshida@cs.ox.ac.uk

Abstract. To react to unforeseen circumstances or amend abnormal situations
in communication-centric systems, programmers are in charge of “undoing” the
interactions which led to an undesired state. To assist this task, session-based lan-
guages can be endowed with reversibility mechanisms. In this paper we propose
a language enriched with programming facilities to commit session interactions,
to roll back the computation to a previous commit point, and to abort the session.
Rollbacks in our language always bring the system to previous visited states and
a rollback cannot bring the system back to a point prior to the last commit. Pro-
grammers are relieved from the burden of ensuring that a rollback never restores a
checkpoint imposed by a session participant different from the rollback requester.
Such undesired situations are prevented at design-time (statically) by relying on a
decidable compliance check at the type level, implemented in MAUDE. We show
that the language satisfies error-freedom and progress of a session.

1 Introduction

Reversible computing [1,26] has gained interest for its application to different fields:
from modelling biological/chemical phenomena [18], to simulation [29], debug-
ging [13] and modelling fault-tolerant systems [11,19,32]. Our interest focuses on this
latter application and stems from the fact that reversibility can be used to rigorously
model, implement and revisit programming abstractions for reliable software systems.

Recent works [4,6,24,25,30] have studied the effect of reversibility in
communication-centric scenarios, as a way to correct faulty computations by bringing

This research was funded in whole, or in part, by EPSRC EP/T006544/2, EP/K011715/1,
EP/K034413/1, EP/L00058X/1, EP/N027833/2, EP/N028201/1, EP/T014709/2, EP/V000462/1,
EP/X015955/1, NCSS/EPSRC VeTSS and Horizon EU TaRDIS 101093006. This work was
also partially supported by the Italian MUR PRIN 2020 project NiRvAna, the Italian MUR
PRIN 2017 project SEDUCE n. 2017TWRCNB, the French ANR project ANR-18-CE25-0007
DCore, the INdAM - GNCS Project “Proprietà qualitative e quantitative di sistemi reversibili” n.
CUP E55F2200027001, and the project SERICS (PE00000014) under the NRRP MUR program
funded by the EU - NextGenerationEU. For the purpose of Open Access, the authors have applied
a CC BY public copyright licence to any Author Accepted Manuscript (AAM) version arising
from this submission.

c© IFIP International Federation for Information Processing 2023
S.-S. Jongmans and A. Lopes (Eds.): COORDINATION 2023, LNCS 13908, pp. 195–213, 2023.
https://doi.org/10.1007/978-3-031-35361-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35361-1_11&domain=pdf
http://orcid.org/0000-0003-1556-2623
http://orcid.org/0000-0003-4740-7521
http://orcid.org/0000-0002-3925-8557
https://doi.org/10.1007/978-3-031-35361-1_11

196 C. A. Mezzina et al.

back the system to a previous consistent state. In this setting, processes’ behaviours are
strongly disciplined by their types, prescribing the actions they have to perform within
a session. A session consists of a structured series of message exchanges, whose flow
can be controlled via conditional choices, branching and recursion. Correctness of com-
munication is statically guaranteed by a framework based on a (session) type discipline
[16]. None of the aforementioned works addresses systems in which the participants
can explicitly abort the session, commit a computation and roll it back to a previous
checkpoint. In this paper, we aim at filling this gap. We explain below the distinctive
aspects of our checkpoint-based rollback recovery approach.

Linguistic Primitives to Explicitly Program Reversible Sessions. We introduce three
primitives to: (i) commit a session, preventing undoing the interactions performed so far
along the session; (ii) roll back a session, restoring the last saved process checkpoints;
(iii) abort a session, to discard the session, and hence all interactions already performed
in it, thus allowing another session of the same protocol to start with possible different
participants. Notice that most proposals in the literature (e.g., [2–4]) only consider an
abstract view, as they focus on reversible contracts (i.e., types). Instead, we focus on
programming primitives at process level, and use types for guaranteeing a safe and
consistent system evolution.

Asynchronous Commits. Our commit primitive does not require a session-wide syn-
chronisation among all participants, as it is a local decision. However, its effect is on
the whole session, as it affects the other session participants. This means that each par-
ticipant can independently decide when to commit. Such flexibility comes at the cost
of being error-prone, especially considering that the programmer has not only to deal
with the usual forward executions, but also with the backward ones. Our type discipline
allows for ruling out programs which may lead to these errors. The key idea of our app-
roach is that a session participant executing a rollback action is interested in restoring
the last checkpoint he/she has committed. For the success of the rollback recovery it
is irrelevant whether the ‘passive’ participants go back to their own last checkpoints.
Instead, if the ‘active’ participant is unable to restore the last checkpoint he/she has cre-
ated, because it has been replaced by a checkpoint imposed by another participant, the
rollback recovery is considered unsatisfactory.

In our framework, programmers are relieved from the burden of ensuring the sat-
isfaction of rollbacks, since undesired situations are prevented at design time (stati-
cally) by relying on a compliance check at the type level. To this aim, we introduce
cherry-pi (checkpoint-based rollback recovery pi-calculus), a variant of the session-
based π-calculus [17,36] enriched with rollback recovery primitives. We present here
a binary version of the calculus, which is more convenient to demonstrate the essence
of our rollback recovery approach; the proposed approach can be seamlessly extended
to multiparty sessions (see the companion technical report [27] available online). A
key difference with respect to the standard binary type discipline is the relaxation of
the duality requirement. The types of two session participants are not required to be
dual, but they will be compared with respect to a compliance relation (as in [5]), which
also takes into account the effects of commit and rollback actions. Such relaxation
also involves the requirements concerning selection and branching types, and those
concerning branches of conditional choices. The cherry-pi type system is used to

Rollback Recovery in Session-Based Programming 197

infer types of session participants, which are then combined together for the compli-
ance check.

Reversibility in cherry-pi is controlled via two specific primitives: a rollback one
telling when a reverse computation has to take place, and a commit one limiting the
scope of a potential reverse computation. This implies that the calculus is not fully
reversible (i.e., backward computations are not always enabled), leading to have prop-
erties that are relaxed and different with respect to other reversible calculi [9,10,21,30].
We prove that cherry-pi satisfies the following properties: (i) a rollback always brings
back the system to a previous visited state and (ii) it is not possible to bring the com-
putation back to a point prior to the last checkpoint, which implies that our commits
have a persistent effect. Concerning soundness properties, we prove that (a) our compli-
ance check is decidable, (b) compliance-checked cherry-pi specifications never lead
to communication errors (e.g., a blocked communication where there is a receiver with-
out the corresponding sender), and (c) compliance-checked cherry-pi specifications
never activate undesirable rollbacks (according to our notion of rollback recovery men-
tioned above). Property (b) resembles the type safety property of session-based calculi
(see, e.g., [36]), while property (c) is a new property specifically defined for cherry-pi.
The technical development of property proofs turns out to be more intricate than that of
standard properties of session-based calculi, due to the combined use of type and com-
pliance checking. To demonstrate feasibility and effectiveness of our rollback recovery
approach, we have concretely implemented the compliance check using the MAUDE
[8] framework (the code is available at https://github.com/tiezzi/cherry-pi).

Outline. Section 2 illustrates the key idea of our rollback recovery approach; Sect. 3
introduces the cherry-pi calculus; Sect. 4 introduces typing and compliance checking;
Sect. 5 presents the properties satisfied by cherry-pi; Sect. 6 concludes the paper with
related and future work. Omitted rules, extension to multiparty sessions, proofs of the
results, and a further example are reported on the companion technical report [27].

2 A Reversible Video on Demand Service Example

We discuss the motivations underlying our work by introducing our running example,
a Video on Demand (VOD) scenario. The key idea is that a rollback requester is satis-
fied only if her restored checkpoint was set by herself. In Fig. 1(a), a service (S) offers
to a user (U) videos with two different quality levels, namely high definition (HD) and
standard definition (SD). After the login, U sends her video request, and receives the cor-
responding price and metadata (actors, directors, description, etc.) from S. According to
this information, U selects the video quality. Then, she receives, first, a short test video
(to check the audio and video quality in her device) and, finally, the requested video. If
the vision of the HD test video is not satisfactory, U can roll back to her last checkpoint
to possibly change the video quality, instead in the SD case U can abort the session.

Let us now add commit actions as in the run shown in Fig. 1(b). After receiving the
price, U commits, while S commits after the quality selection. In this scenario, however,
if U activates the rollback, she is unable to go back to the checkpoint she set with her
commit action because the actual effect of rollback is to restore the checkpoint set by
the commit action performed by S.

https://github.com/tiezzi/cherry-pi

198 C. A. Mezzina et al.

Fig. 1. VOD example: (a) a full description without commit actions; (b, d) runs with undesired
rollback; (c) a run with satisfactory rollback.

In the scenario in Fig. 1(c), instead, S commits after sending the price to U. In this
case, no matter who first performed the commit action, the rollback results to be satis-
factory. Also if S commits later, the checkpoint of U remains unchanged, as U performed
no other action between the two commits. This would not be the case if both U and S
committed after the communication of the metadata, as in Fig. 1(d). If S commits before
U, no rollback issue arises, but if U commits first it may happen that her internal decision
is taken before S commits. In this case, Uwould not be able to go back to the checkpoint
set by herself, and she would be unable to change the video quality.

These undesired rollbacks are caused by bad choices of commit points. We propose
a compliance check that identifies these situations at design time.

3 The cherry-pi Calculus

In this section, we introduce cherry-pi, a calculus (extending that in [36]) devised for
studying sessions equipped with our checkpoint-based rollback recovery mechanism.

Syntax. The syntax of the cherry-pi calculus relies on the following base sets: shared
channels (ranged over by a), used to initiate sessions; session channels (ranged over by
s), consisting of pairs of endpoints (ranged over, with a slight abuse of notation, by s,
s̄) used by the two parties to interact within an established session; labels (ranged over
by l), used to select and offer branching choices; values (ranged over by v), including
booleans, integers and strings (whose sorts, ranged over by S, are bool, int and str,
respectively), which are exchanged within a session; variables (ranged over by x, y, z),
storing values and session endpoints; process variables (ranged over by X), used for
recursion.

Collaborations, ranged over by C, are given by the grammar in Fig. 2. The key
ingredient of the calculus is the set of actions for controlling the session rollback.

Rollback Recovery in Session-Based Programming 199

Fig. 2. cherry-pi syntax.

Actions commit, roll and abort are used, respectively, to commit a session (produc-
ing a checkpoint for each session participant), to trigger the session rollback (restor-
ing the last committed checkpoints) or to abort the whole session. We discuss below
the other constructs of the calculus, which are those typically used for session-based
programming [15]. A cherry-pi collaboration is a collection of session initiators, i.e.
terms ready to initiate sessions by synchronising on shared channels. A synchronisation
of two initiators ā(x).P and a(y).Q causes the generation of a fresh session channel,
whose endpoints replace variables x and y in order to be used by the triggered pro-
cesses P and Q, respectively, for later communications. No subordinate sessions can be
initiated within a running session.

When a session is started, each participant executes a process. Processes are built up
from the empty process 0 and basic actions by means of action prefix . , conditional
choice if e then else , and recursion μX. . Actions x!xey and y?(z : S) denote output
and input via session endpoints replacing x and y, respectively. These communication
primitives realise the standard synchronous message passing, where messages result
from the evaluation of expressions, which are defined by means of standard operators
on boolean, integer and string values. Variables that are arguments of input actions are
(statically) typed by sorts. There is no need for statically typing the variables occur-
ring as arguments of session initiating actions, as they are always replaced by session
endpoints. Notice that in cherry-pi the exchanged values cannot be endpoints, mean-
ing that session delegation (i.e., channel-passing) is not considered. Actions x Ÿ l and
x Ź {l1 : P1, . . . , ln : Pn} denote selection and branching (where l1, . . . , ln are
pairwise distinct).

Example 1. Let us consider the VOD example informally introduced in Sect. 2. The
scenario described in Fig. 1(a) with commit actions placed as in Fig. 1(b) is rendered in
cherry-pi as CUS “ login(x). PU | login(y). PS, where:

PU “ x!xvreqy. x?(xprice : int). commit. x?(xmeta : str). if (feval(xprice, xmeta))
then x Ÿ lHD. x?(xtestHD : str).

(if (fHD(xtestHD)) then x?(xvideoHD : str).0 else roll)
else x Ÿ lSD. x?(xtestSD : str).

(if (fSD(xtestSD)) then x?(xvideoSD : str).0 else abort)

200 C. A. Mezzina et al.

Fig. 3. cherry-pi runtime syntax (the rest of processes P and expressions e are as in Fig. 2).

PS “ y?(yreq : str). y!xfprice(yreq)y. y!xfmeta(yreq)y.
y Ź { lHD : commit. y!xftestHD(yreq)y. y!xfvideoHD(yreq)y.0 ,

lSD : commit. y!xftestSD(yreq)y. y!xfvideoSD(yreq)y.0 }
Notice that expressions used for decisions and computations are abstracted by rela-
tions fn(¨), whose definitions are left unspecified. Considering the placement of com-
mit actions depicted in Fig. 1(c), the cherry-pi specification of the service’s process
becomes:

y?(yreq : str). y!xfprice(yreq)y. commit. y!xfmeta(yreq)y.
y Ź { lHD : y!xftestHD(yreq)y. y!xfvideoHD(yreq)y.0 ,

lSD : y!xftestSD(yreq)y. y!xfvideoSD(yreq)y.0 }
Finally, considering the placement of commit actions depicted in Fig. 1(d), the

cherry-pi specification of the user’s process becomes:

x!xvreqy. x?(xprice : int). x?(xmeta : str). commit. if (feval(xprice, xmeta)) then . . .

Semantics. The operational semantics of cherry-pi is defined for runtime terms, gen-
erated by the extended syntax of the calculus in Fig. 3 (new constructs are highlighted
by a grey background). We use r to denote session identifiers, i.e. session endpoints and
variables. Those runtime terms that can be also generated by the grammar in Fig. 2 are
called initial collaborations.

At collaboration level, two constructs are introduced: (νs : C1) C2 represents a
session along the channel s with associated starting checkpoint C1 (corresponding to
the collaboration that has initialised the session) and code C2; xP1y§P2 represents a log
storing the checkpoint P1 associated to the code P2. At process level, the only difference
is that session identifiers r are used as first argument of communicating actions. We
extend the standard notion of binders to take into account (νs : C1) C2, which binds
session endpoints s and s̄ in C2 (in this respect, it acts similarly to the restriction of
π-calculus, but its scope cannot be extended in order to avoid involving processes that
do not belong to the session in the rollback effect). The derived notions of bound and
free names (where names stand for variables, process variables and session endpoints),
alpha-equivalence, and substitution are standard and we assume that bound names are
pairwise distinct. The semantics of the calculus is defined for closed terms, i.e. terms
without free variables and process variables.

Not all processes allowed by the extended syntax correspond to meaningful collab-
orations. In a general term the processes stored in logs may not be consistent with the
computation that has taken place. We get rid of such malformed terms, as we will only
consider those runtime terms, called reachable collaborations, obtained by means of
reductions from initial collaborations.

Rollback Recovery in Session-Based Programming 201

Fig. 4. cherry-pi semantics: auxiliary labelled relation.

The operational semantics of cherry-pi is given in terms of a standard structural
congruence ” [17] and a reduction relation � given as the union of the forward reduc-
tion relation � and backward reduction relations ù. The definition of the relation �
over closed collaborations relies on an auxiliary labelled relation �Ñ́ over processes that
specifies the actions that processes can initially perform and the continuation process
obtained after each such action. Given a reduction relation R, we will indicate with R`
and R˚ respectively the transitive and the reflexive-transitive closure of R.

The operational rules defining the auxiliary labelled relation are in Fig. 4 (omitted
rules are in [27]). We use k to denote generic session endpoints (s or s̄). Action label
� stands for either k!xvy, k?(x), k Ÿ l, k Ź l, cmt , roll , abt , or τ . The meaning of the
rules is straightforward, as they just produce as labels the actions currently enabled in
the process. In doing that, expressions of sending actions and conditional choices are
evaluated (auxiliary function e Ó v says that closed expression e evaluates to value v).

The operational rules defining the reduction relation � are reported in Fig. 5 (stan-
dard rules for congruence, in the forward and backward case, are omitted). We com-
ment on salient points. Once a session is created, its initiating collaboration is stored in
the session construct (rule [F-CON]). Communication, branching selection and internal
conditional choices proceed as usual, without affecting logs (rules [F-COM], [F-LAB]
and [F-IF]). A commit action updates the checkpoint of a session, by replacing the pro-
cesses stored in the logs of the two involved parties (rule [F-CMT]). Notably, this form
of commit is asynchronous as it does not require the passive participant to explicitly
synchronise with the active participant by means of a primitive for accepting the com-
mit. On the other hand, under the hood, a low-level implementation of this mechanism
would synchronously update the logs of the involved parties. Conversely, a rollback
action restores the processes in the two logs (rule [B-RLL]). The abort action (rule
[B-ABT]), instead, kills the session and restores the collaboration stored in the session
construct formed by the two initiators that have started the session; this allows the initia-
tors to be involved in new sessions. The other rules simply extend the standard parallel,
restriction rules to forward and backward relations.

Example 2. Consider the first cherry-pi specification of the VOD scenario given in
Example 1. In the initial state CUS of the collaboration, U and S can synchronise in order
to initialise the session, thus evolving to C1

US “ (νs : CUS) (xPU[s̄/x]y § PU[s̄/x] |
xPS[s/y]y § PS[s/y]).

202 C. A. Mezzina et al.

Fig. 5. cherry-pi semantics: forward and backward reduction relations.

Let us consider now a possible run of the session. After three reduction steps, U
executes the commit action, obtaining the following runtime term:

C2
US “ (νs : CUS) (xP ′

Uy § P ′
U | xP ′

Sy § P ′
S)

P ′
U “ s̄?(xmeta : str). if (feval(vprice, xmeta)) then . . . P ′

S “ s!xfmeta(vreq)y. y Ź { . . . }

After four further reduction steps, U chooses the HD video quality and S commits as
well; the resulting runtime collaboration is as follows:

C3
US “ (νs : CUS) (xP ′′

U y § P ′′
U | xP ′′

S y § P ′′
S)

P ′′
U “ s̄?(xtestHD : str). if (fHD(xtestHD)) then s̄?(xvideoHD : str).0 else roll

P ′′
S “ s!xftestHD(vreq)y. s!xfvideoHD(vreq)y.0

In the next reductions, U evaluates the test video and decides to revert the session exe-
cution, resulting in C4

US “ (νs : CUS) (xP ′′
U y§ roll | xP ′′

S y§s!xfvideoHD(vreq)y.0). The
execution of the roll action restores the checkpoints P ′′

U and P ′′
S , that is C4

US ù C3
US.

After the rollback, U is not able to change the video quality as her own commit point
would have permitted; in fact, it holds C4

US ù/ C2
US.

4 Rollback Safety

The operational semantics of cherry-pi provides a description of the functioning of
the primitives for programming the checkpoint-based rollback recovery in a session-
based language. However, as shown in Example 2, it does not guarantee high-level
properties about the safe execution of the rollback. To prevent such undesired rollbacks,

Rollback Recovery in Session-Based Programming 203

Fig. 6. Typing system for cherry-pi collaborations.

we propose the use of compliance checking, to be performed at design time. This check
is not done on the full system specification, but only at the level of session types.

Session Types and Typing. The syntax of the cherry-pi session types T is defined as
follows. Type ![S].T represents the behaviour of first outputting a value of sort S (i.e.,
bool, int or str), then performing the actions prescribed by type T . Type ?[S].T is
the dual one, where a value is received instead of sent. Types end and err represent
inaction and faulty termination, respectively. Type Ÿ[l].T represents the behaviour that
selects the label l and then behaves as T . Type Ź[l1 : T1, . . . , ln : Tn] describes a
branching behaviour: it waits for one of the n options to be selected, and behaves as
type Ti if the i-th label is selected (external choice). Type T1 ‘ T2 behaves as either
T1 or T2 (internal choice). Type μt.T represents a recursive behaviour. Type cmt.T
represents a commit action followed by the actions prescribed by type T . Finally, types
roll and abt represent rollback and abort actions.

The cherry-pi type system does not perform compliance checks, but only infers
the types of collaboration participants, which will be then checked together according
to the compliance relation. Typing judgements are of the form C § A, where A, called
type associations, is a set of session type associations of the form â : T , where â stands
for either ā or a. Intuitively, C § A indicates that from the collaboration C the type
associations in A are inferred. The definition of the type system for these judgements
relies on auxiliary typing judgements for processes, of the form Θ;Γ � P § Δ,
where Θ, Γ and Δ, called basis, sorting and typing respectively, are finite partial maps
from process variables to type variables, from variables to sorts, and from variables to
types, respectively. Updates of basis and sorting are denoted, respectively, by Θ ¨ X : t
and Γ ¨ y : S, where X /P dom(Θ), t /P cod(Θ) and y /P dom(Γ). The judgement
Θ;Γ � P § Δ stands for “under the environment Θ;Γ , process P has typing Δ”. In
its own turn, the typing of processes relies on auxiliary judgments for expressions, of
the form Γ � e § S. The axioms and rules defining the typing system for cherry-pi
collaborations and processes are given in Figs. 6 and 7; typing rules for expressions
are standard (see [27]). The type system is defined only for initial collaborations, i.e.
for terms generated by the grammar in Fig. 2. Other runtime collaborations are not
considered here, as no check will be performed at runtime. We comment on salient
points. Typing rules at collaboration level simply collect the type associations of session
initiators in the collaboration. Rules at process level instead determine the session type
corresponding to each process, by mapping each process operator to the corresponding
type operator. Data and expression used in communication actions are abstracted as
sorts, and a conditional choice is rendered as an internal non-deterministic choice.

Compliance Checking. To check compliance between pairs of session parties, we con-
sider type configurations of the form (T, T ′) : xT̃1y § T2 ‖ xT̃3y § T4, consisting in a
pair (T, T ′) of session types, corresponding to the types of the parties at the initiation

204 C. A. Mezzina et al.

Fig. 7. Typing system for cherry-pi processes.

of the session, and in the parallel composition of two pairs xT̃cy § T , where T is the
session type of a party and T̃c is the type of the party’s checkpoint. We use T̃ to denote
either a type T , representing a checkpoint committed by the party, or T , representing a
checkpoint imposed by the other party. The semantics of type configurations, necessary
for the definition of the compliance relation, is given in Fig. 8, where label λ stands for
either ![S], ?[S], Ÿ l, Ź l, τ , cmt, roll, or abt. We comment on the relevant rules. In
case of a commit action, the checkpoints of both parties are updated, and the one of the
passive party (i.e., the party that has not performed the commit) is marked as ‘imposed’
(rule [TS-CMT]1). However, if the passive party did not perform any action from its
current checkpoint, this checkpoint is not overwritten by the active party (rule [TS-
CMT]2), as discussed in Sect. 2 (Fig. 1(c)). In case of a roll action (rule [TS-RLL]1),
the reduction step is performed only if the active party (i.e., the party that has performed
the rollback action) has a non-imposed checkpoint; in all other situations the configu-
ration cannot proceed with the rollback. Finally, in case of abort (rule [TS-ABT]1), the
configuration goes back to the initial state; this allows the type computation to proceed,
in order not to affect the compliance check between the two parties.

On top of the above type semantics, we define the compliance relation, inspired by
the relation in [3], and prove its decidability.

Definition 1 (Compliance). Relation - on configurations is defined as follows:
(T, T ′) : xŨ1y § T1 - xŨ2y § T2 holds if for all U ′

1, T ′
1, U ′

2, T ′
2 such that (T, T ′) :

xŨ1y § T1 ‖ xŨ2y § T2 � Ñ́˚ (T, T ′) : xŨ ′
1y § T ′

1 ‖ xŨ ′
2y § T ′

2 � Ñ́/ we have
that T ′

1 “ T ′
2 “ end. Two types T1 and T2 are compliant, written T1 - T2, if

(T1, T2) : xT1y § T1 - xT2y § T2.

Theorem 1. Let T1 and T2 be two session types, checking if T1 - T2 holds is decidable.

This compliance relation is used to define the notion of rollback safety.

Definition 2 (Rollback safety). Let C be an initial collaboration, then C is rollback
safe (shortened roll-safe) if C § A and for all pairs ā : T1 and a : T2 in A we have
T1 - T2.

Rollback Recovery in Session-Based Programming 205

Fig. 8. Semantics of types and type configurations (symmetric rules for configurations are omit-
ted).

Example 3. Let us consider again the VOD example. As expected, the first cherry-pi
collaboration defined in Example 1, corresponding to the scenario described in
Fig. 1(b), is not rollback safe, because the types of the two parties are not compliant.
Indeed, the session types TU and TS associated by the type system to the user and the
service processes, respectively, are as follows:

TU “ ![str]. ?[int]. cmt. ?[str]. (Ÿ[lHD]. ?[str]. (?[str]. end ‘ roll)
‘ Ÿ [lSD]. ?[str]. (?[str]. end ‘ abt))

TS “ ?[str]. ![int]. ![str]. Ź [lHD : cmt. ![str]. ![str]. end ,
lSD : cmt. ![str]. ![str]. end]

Thus, the resulting initial configuration is (TU, TS) : xTUy § TU ‖ xTSy § TS, which
can evolve to the configuration (TU, TS) : xT y § roll ‖ xUy§![str].end, with T “
?[str]. (?[str]. end ‘ roll) and U “![str]. ![str]. end. This configuration evolves
to (TU, TS) : xT y § err ‖ xUy § err, which cannot further evolve and is not in a
completed state (in fact, type err is different from end), meaning that TU and TS are
not compliant.

In the scenario described in Fig. 1(c), instead, the type of the server process is as
follows: T ′

S “ ?[str]. ![int]. cmt. ![str]. Ź [lHD : ![str]. ![str]. end , lSD : ![str].

206 C. A. Mezzina et al.

![str]. end] and we have TU - T ′
S. Finally, the types of the processes depicted in

Fig. 1(d) are:

T ′
U “ ![str]. ?[int]. ?[str]. cmt. (Ÿ[lHD]. . . . ‘ Ÿ[lSD]. . . .)

T ′′
S “ ?[str]. ![int]. ![str]. cmt. Ź [lHD : ![str]. ![str]. end, lSD : ![str]. ![str]. end]

and we have T ′
U -/ T ′′

S . Indeed, the corresponding initial configuration can evolve to the
configuration (T ′

U, T
′′
S) : xŸ[lHD]. . . .y § roll ‖ xŹ[lHD : . . . , lSD : . . .]y§![str].end,

which again evolves to a configuration that is not in a completed state.

MAUDE Implementation. To show the feasibility of our approach, we have imple-
mented the semantics of type configurations in Fig. 8 in the MAUDE framework [8].
MAUDE provides an instantiation of rewriting logic [22] and it has been used to imple-
ment the semantics of several formal languages [23].

The syntax of cherry-pi types and type configurations is specified by defining
algebraic data types, while transitions and reductions are rendered as rewrites and,
hence, inference rules are given in terms of (conditional) rewrite rules. Since MAUDE
specifications are executable, we have obtained in this way an interpreter for cherry-pi
type configurations, which permits to explore the reductions arising from the initial con-
figuration of two given session types.

Our implementation consists of two MAUDE modules. The CHERRY-TYPES-
SYNTAX module provides the definition of the sorts that characterise the syntax of
cherry-pi types, such as session types, selection/branching labels, type variables and
type configurations. In particular, basic terms of session types are rendered as constant
operations on the sort Type; e.g., the roll type is defined as

op roll : -> Type .

The other syntactic operators are instead defined as operations with one or more argu-
ments; e.g., the output type takes as input a Sort and a continuation type:

op ![_]._ : Sort Type -> Type [frozen prec 25] .

To prevent undesired rewrites inside operator arguments, following the approach
in [33], we have declared these operations as frozen. The prec attribute has been
used to define the precedence among operators. The CHERRY-TYPES-SEMANTICS
module provides rewrite rules, and additional operators and equations, to define the
cherry-pi type semantics. For example, the operational rule [TS-SND] is rendered as
follows:

r l [TS-Snd] : ![S].T => {![S]}T .

The correspondence between the operational rule and the rewrite rule is one-to-one;
the only peculiarity is the fact that, since rewrites have no labels, we have made the
transition label part of the resulting term. Reduction rules for type configurations are
instead rendered in terms of conditional rewrite rules with rewrites in their conditions.
For example, the [TS-COM] rule is rendered as:

Rollback Recovery in Session-Based Programming 207

c r l [TS-Com] :
init(T,T’) CT1 > T1 || CT2 > T2 => init(T,T’) CT1 > T1’ || CT2 > T2’
i f T1 => {![S]}T1’ /\ T2 => {?[S]}T2’ .

Again, there is a close correspondence between the operational rule and the rewrite one.
The compliance check between two session types can be then conveniently realised

on top of the implementation described above by resorting to the MAUDE command
search. This permits indeed to explore the state space of the configurations reachable
from an initial configuration. Specifically, the compliance check between types T1 and
T2 is rendered as follows:

search
init(T1,T2) ckp(T1) > T1 || ckp(T2) > T2
=>!
init(T:Type,T’:Type) CT1:CkpType > T1’:Type || CT2:CkpType > T2’:Type

such that T1’ =/= end or T2’ =/= end .

This command searches for all terminal states (=>!), i.e. states that cannot be rewritten
any more (see � Ñ́/ in Definition 1), and checks if at least one of the two session types
in the corresponding configurations (T1’ and T2’) is different from the end type.
Thus, if this search has no solution, T1 and T2 are compliant; otherwise, they are not
compliant and a violating configuration is returned.

Example 4. Let us consider the cherry-pi types defined in Example 3 for the scenario
described in Fig. 1(b). In our MAUDE implementation of the type syntax, the session
types TU and TS, and the corresponding initial type configuration, are rendered as fol-
lows:

eq Tuser = ![str]. ?[int]. cmt. ?[str].
((sel[’hd]. ?[str]. ((?[str]. end) (+) roll))
(+) (sel[’sd]. ?[str]. ((?[str]. end) (+) abt))) .

eq Tservice = ?[str]. ![int]. ![str].
brn[brnEl(’hd, cmt. ![str]. ![str]. end);

brnEl(’sd, cmt. ![str]. ![str]. end)] .

eq InitConfig = init(Tuser,Tservice)
ckp(Tuser) > Tuser || ckp(Tservice) > Tservice .

where (+) represents the internal choice operator, sel the selection operator, brn the
branching operator, brnEl an option offered in a branching, and ckp a non-imposed
checkpoint. The compliance between the two session types can be checked by loading
the two modules of our MAUDE implementation, and executing the following com-
mand:

search InitConfig
=>!
init(T:Type,T’:Type) CT1:CkpType > T1:Type || CT2:CkpType > T2:Type

such that T1 =/= end or T2 =/= end .

This search command returns the following solution:

CT1 --> ickp(?[str]. ((?[str]. end)(+)roll))
T1 --> err
CT2 --> ckp(![str]. ![str]. end)
T2 --> err

208 C. A. Mezzina et al.

As explained in Example 3, the two types are not compliant. Indeed, the configuration
above is a terminal state, and T1 and T2 are clearly different from end.

The scenario in Fig. 1(c) is rendered by the following implementation of the service
type:

eq Tservice’ = ?[str]. ![int]. cmt. ![str].
brn[brnEl(’hd, ![str]. ![str]. end);

brnEl(’sd, ![str]. ![str]. end)] .

In this case, as expected, the search command returns:

No solution.

meaning that types Tuser and Tservice’ are compliant. Finally, the search com-
mand applied to the type configuration related to the scenario depicted in Fig. 1(d)
returns a solution, meaning that in that case the user and service types are not com-
pliant.

5 Properties of cherry-pi

This section presents the results regarding the properties of cherry-pi. The statement
of some properties exploits labelled transitions that permit to easily distinguish the exe-
cution of commit and rollback actions from the other ones. To this end, we can instru-
ment the reduction semantics of collaborations by means of labels of the form cmt s,
roll s and abt s, indicating the rule used to derive the reduction and the session on which
such operation has been done.

Rollback Properties. We show some properties concerning the reversible behaviour of
cherry-pi related to the interplay between rollback and commit primitives. The first
two properties, namely Theorem 2 and Lemma 1, are an adaptation of typical properties
of reversible calculi, while Lemma 2 and Lemma 3 are brand new.

The following theorem states that any reachable collaboration is also a forward only
reachable collaboration. This means that all the states a collaboration reaches via mixed
executions (also involving backward reductions) are states that we can reach from the
initial configuration with just forward reductions. This assures us that if the system goes
back it will reach previous visited states.

Theorem 2. Let C0 be an initial collaboration. If C0 �˚ C1 then C0 �˚ C1.

We now show a variant of the so-called Loop Lemma [10]. In a fully reversible cal-
culus this lemma states that each computational step, either forward or backward, can
be undone. Since reversibility in cherry-pi is controlled, we have to state that if a
reversible step is possible (e.g., a rollback is enabled) then the effects of the rollback
can be undone.

Lemma 1 (Safe rollback). Let C1 and C2 be reachable collaborations. If C1 ù C2

then C2 �˚ C1.

Rollback Recovery in Session-Based Programming 209

A rollback always brings the system to the last taken checkpoint. We recall that,
since there may be sessions running in parallel, a collaboration may be able to do dif-
ferent rollbacks within different sessions. Thus, determinism only holds relative to a
given session, and rollback within one session has no effect on any other parallel ses-
sion.

Lemma 2 (Determinism). Let C be a reachable collaboration. If C
roll sù C ′ and

C
roll sù C ′′ then C ′ ” C ′′.

Fig. 9. cherry-pi semantics: error reductions.

The last rollback property states that a collaboration cannot go back to a state prior to
the execution of a commit action, that is commits have a persistent effect. Let us note
that recursion does not affect this theorem, since at the beginning of a collaboration
computation there is always a new session establishment, leading to a stack of past
configurations. Hence it is never the case that from a collaboration C you can reach
again C via forward steps.

Theorem 3 (Commit persistency). Let C be a reachable collaboration. If C
cmt s� C ′

then there exists no C ′′ such that C ′ �˚ roll sù C ′′ and C ′′ �` C.

Soundness Properties. The second group of properties concerns soundness guarantees.
The definition of these properties requires formally characterising the errors that may
occur in the execution of an unsound collaboration. We rely on error reduction (as in
[7]) rather than on the usual static characterisation of errors (as, e.g., in [36]), since
rollback errors cannot be easily detected statically. In particular, we extend the syntax
of cherry-pi collaborations with the roll error and com error terms, denoting
respectively collaborations in rollback and communication error states:

C :: “ . . . | xP̃1y § P2 | roll error | com error

where P̃ denotes either a checkpoint P committed by the party or a checkpoint P
imposed by the other party of the session. The semantics of cherry-pi is extended as
well by the (excerpt) of error reduction rules in Fig. 9. The error semantics does not
affect the normal behaviour of cherry-pi specifications, but it is crucial for stating our
soundness theorems. Its definition is based on the notion of barb predicate: P ⇓μ holds
if there exists P ′ such that P ⇒ P ′ and P ′ can perform an action μ, where μ stands for
k?, k! ,kŸl, kŹl, or roll (i.e., input, output, select, branching action along session chan-
nel k, or roll action); ⇒ is the reflexive and transitive closure of τÑ́. The meaning of the
error semantics rules is as follows. A communication error takes place in a collabora-
tion when a session participant is willing to perform an output but the other participant

210 C. A. Mezzina et al.

is ready to perform neither the corresponding input nor a roll back (rule [E-COM]1)
or vice versa, or one participant is willing to perform a selection but the correspond-
ing branching is not available on the other side or viceversa. Instead, a rollback error
takes place in a collaboration when a participant is willing to perform a rollback action
but her checkpoint has been imposed by the other participant ([E-RLL]2). To enable
this error check, the rules for commit and rollback have been modified to keep track
of imposed overwriting of checkpoints. This information is not relevant for the runtime
execution of processes, but it is necessary for characterising the rollback errors that our
type-based approach prevents.

Besides defining the error semantics, we also need to define erroneous collabora-
tions, based on the following notion of context: C :: “ [¨] | C |C | (νs : C) C.

Definition 3 (Erroneous collaborations). A collaboration C is communication (resp.
rollback) erroneous if C “ C[com error] (resp. C “ C[roll error]).

The key soundness results follow: a rollback safe collaboration never reduces to either
a rollback erroneous collaboration (Theorem 4) or a communication erroneous collab-
oration (Theorem 5).

Theorem 4 (Rollback soundness). If C is a roll-safe collaboration, then we have that
C �/ ˚

C[roll error].

Theorem 5 (Communication soundness). If C is a roll-safe collaboration, then we
have that C �/ ˚

C[com error].

We conclude with a progress property of cherry-pi sessions: given a rollback safe
collaboration that can initiate a session, each collaboration reachable from it either is
able to progress on the session with a forward/backward reduction step or has correctly
reached the end of the session. This result follows from Theorems 4 and 5, and from
the fact that we consider binary sessions without delegation and subordinate sessions.

Theorem 6 (Session progress). Let C “ (ā(x1).P1 | a(x2).P2) be a roll-safe collab-
oration. IfC �˚ C ′ then eitherC ′ �C ′′ for someC ′′ orC ′ ”(νs :C)(xQ̃1y§0 |xQ̃2y§0)
for some Q̃1 and Q̃2.

6 Conclusion and Related Work

This paper proposes rollback recovery primitives for session-based programming.
These primitives come together with session typing, enabling a design time compliance
check which ensures checkpoint persistency properties (Lemma 1 and Theorem 3) and
session soundness (Theorems 4 and 5). Our compliance check has been implemented
in MAUDE.

In the literature we can distinguish two ways of dealing with rollback: either using
explicit rollbacks and implicit commits [20], or by using explicit commits and sponta-
neous aborts [11,34]. Differently from these works, we have introduced a way to control
reversibility by both triggering it and limiting its scope. Reversibility is triggered via an
explicit rollback primitive (as in [20]), while explicit commits limit the scope of poten-
tial future reverse executions (as in [11,34]). Differently from [11,34], commit does

Rollback Recovery in Session-Based Programming 211

not require any synchronisation, as it is a local decision. This could lead to run-time
misbehaviours where a process willing to roll back to its last checkpoint reaches a point
which has been imposed by another participant of the session. Our type discipline rules
out such cases.

Reversibility in behavioural types has been studied in different formalisms: con-
tracts [2,4], binary session types [24], multiparty session types [6,25,30,31], and global
graphs [14,28]. In [2,4] choices can be seen as implicit checkpoints and the system can
go back to a previous choice and try another branch. In [2] rollback is triggered non-
deterministically , while in [4] it is triggered by the system only when the computation is
stuck. In both works reversibility (and rollbacks) is used to achieve a relaxed variant of
client-server compliance: if there exists an execution in which the client is able to termi-
nate then the client and server are compliant. Hence, reversibility is used as a means to
explore different branches if the current one leads to a deadlock. In [24] reversibility is
studied in the context of binary session types. Types information is used at run-time by
monitors, for binary [24] and multiparty [25] settings, to keep track of the computational
history of the system. allowing to revert any computational step. where global types are
enriched with computational history. There, reversibility is uncontrolled, and each com-
putational step can be undone. In [6] global types are enriched with history information,
and choices are seen as labelled checkpoints. The information about checkpoints is pro-
jected into local types. At any moment, the party who decided which branch to take in
a choice may decide to revert it, forcing the entire system to go back to a point prior to
the choice. Hence, rollback is confined inside choices and it is spontaneous. meaning
that the former can be programmed while the latter cannot. Checkpoints are not seen
as commits, and a rollback can bring the system to a state prior to several checkpoints.
In [30] an uncontrolled reversible variant of session π-calculus is presented, while [31]
studies different notions of reversibility for both binary and multiparty single sessions.
In [14,28] global graphs are extended with conditions on branches. These conditions
at runtime can trigger coordinated rollbacks to revert a distributed choice. Reversibility
is confined into branches of a distributed choice and not all the computational steps
are reversible; inputs, in fact, are irreversible unless they are inside an ongoing loop.
to trigger a rollback several conditions and constraints about loops have to be satisfied.
Hence, in order to trigger a rollback a runtime condition should be satisfied.

We detach from these works in several ways. Our checkpoint facility is explicit and
checkpointing is not relegated to choices: the programmer can decide at any point when
to commit. This is because the programmer may be interested in committing, besides
choice points, a series of interactions (e.g., to make a payment irreversible). Once a
commit is taken, the system cannot revert to a state prior to it. Our rollback is explicit,
meaning that it is the programmer who deliberately triggers a rollback. The extension
to the multiparty setting is natural and does not rely on a formalism to describe the
global view of the system. Our compliance check, which is decidable, resembles those
of [2–4], which are defined for different rollback recovery approaches based on implicit
checkpoints.

As future work, we plan to extend our approach to deal with sessions where parties
can interleave interactions performed along different sessions. This requires to deal with
subordinate sessions, which may affect enclosing sessions by performing, e.g., commit
actions that make some interaction of the enclosing sessions irreversible, similarly to

212 C. A. Mezzina et al.

nested transactions [35]. To tackle this issue it would be necessary to extend the notion
of compliance relation to take into account possible partial commits (in case of nested
sub-sessions) that could be undone at the top level if a rollback is performed. Also,
the way our checkpoints are taken resembles the Communication Induced Checkpoints
(CIC) approach [12]; we leave as future work a thoughtful comparison between these
two mechanisms.

References

1. Aman, B., et al.: Foundations of reversible computation. In: Ulidowski, I., Lanese, I., Schultz,
U.P., Ferreira, C. (eds.) RC 2020. LNCS, vol. 12070, pp. 1–40. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-47361-7 1

2. Barbanera, F., Dezani-Ciancaglini, M., de’Liguoro, U.: Compliance for reversible clien-
t/server interactions. In: BEAT. EPTCS, vol. 162, pp. 35–42 (2014)

3. Barbanera, F., Dezani-Ciancaglini, M., Lanese, I., de’Liguoro, U.: Retractable contracts. In:
PLACES 2015. EPTCS, vol. 203, pp. 61–72 (2016)

4. Barbanera, F., Lanese, I., de’Liguoro, U.: Retractable and speculative contracts. In: Jacquet,
J.-M., Massink, M. (eds.) COORDINATION 2017. LNCS, vol. 10319, pp. 119–137.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59746-1 7

5. Barbanera, F., Lanese, I., de’Liguoro, U.: A theory of retractable and speculative contracts.
Sci. Comput. Program. 167, 25–50 (2018)

6. Castellani, I., Dezani-Ciancaglini, M., Giannini, P.: Concurrent reversible sessions. In: CON-
CUR. LIPIcs, vol. 85, pp. 30:1–30:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2017)

7. Chen, T., Dezani-Ciancaglini, M., Scalas, A., Yoshida, N.: On the preciseness of subtyping
in session types. Logical Methods Comput. Sci. 13(2) (2017)

8. All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1

9. Cristescu, I., Krivine, J., Varacca, D.: A Compositional Semantics for the Reversible p-
Calculus. In: LICS, pp. 388–397. IEEE (2013)

10. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P., Yoshida, N. (eds.)
CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-28644-8 19

11. Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005). https://doi.org/10.1007/
11539452 31

12. Elnozahy, E.N., Alvisi, L., Wang, Y., Johnson, D.B.: A survey of rollback-recovery protocols
in message-passing systems. ACM Comput. Surv. 34(3), 375–408 (2002)

13. Engblom, J.: A review of reverse debugging. In: System, Software, SoC and Silicon Debug
Conference (S4D), pp. 1–6 (Sept 2012)

14. Francalanza, A., Mezzina, C.A., Tuosto, E.: Reversible Choreographies via Monitoring in
Erlang. In: Bonomi, S., Rivière, E. (eds.) DAIS 2018. LNCS, vol. 10853, pp. 75–92. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93767-0 6

15. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline for struc-
tured communication-based programming. In: Hankin, C. (ed.) ESOP 1998. LNCS, vol.
1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0053567

16. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM Comput.
Surv. 49(1), 3:1–3:36 (2016)

17. Kouzapas, D., Yoshida, N.: Globally governed session semantics. Logical Methods Comput.
Sci. 10(4) (2014)

https://doi.org/10.1007/978-3-030-47361-7_1
https://doi.org/10.1007/978-3-319-59746-1_7
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/11539452_31
https://doi.org/10.1007/11539452_31
https://doi.org/10.1007/978-3-319-93767-0_6
https://doi.org/10.1007/BFb0053567

Rollback Recovery in Session-Based Programming 213

18. Kuhn, S., Ulidowski, I.: Local reversibility in a calculus of covalent bonding. Sci. Comput.
Program. 151, 18–47 (2018)

19. Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Concurrent flexible
reversibility. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 370–
390. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6 21

20. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling reversibility in higher-
order Pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 297–311.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-6 20

21. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing higher-order Pi. In: Gastin, P.,
Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15375-4 33

22. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoret. Com-
put. Sci. 96(1), 73–155 (1992)

23. Meseguer, J.: Twenty years of rewriting logic. J. Log. Algebr. Program. 81(7–8), 721–781
(2012)

24. Mezzina, C.A., Pérez, J.A.: Reversibility in session-based concurrency: a fresh look. J. Log.
Algebr. Meth. Program. 90, 2–30 (2017)

25. Mezzina, C.A., Pérez, J.A.: Causal consistency for reversible multiparty protocols. Log.
Methods Comput. Sci. 17(4) (2021)

26. Mezzina, C.A., Schlatte, R., Glück, R., Haulund, T., Hoey, J., Holm Cservenka, M., Lanese,
I., Mogensen, T.Æ., Siljak, H., Schultz, U.P., Ulidowski, I.: Software and reversible systems:
a survey of recent activities. In: Ulidowski, I., Lanese, I., Schultz, U.P., Ferreira, C. (eds.) RC
2020. LNCS, vol. 12070, pp. 41–59. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-47361-7 2

27. Mezzina, C.A., Tiezzi, F., Yoshida, N.: Rollback Recovery in Session-based Programming.
Tech. rep., DiSIA, Univ. Firenze (2023). https://github.com/tiezzi/cherry-pi/raw/main/docs/
cherry-pi TR.pdf

28. Mezzina, C.A., Tuosto, E.: Choreographies for automatic recovery. CoRR abs/1705.09525
(2017). https://arxiv.org/abs/1705.09525

29. Perumalla, K.S., Protopopescu, V.A.: Reversible simulations of elastic collisions. ACM
Trans. Model. Comput. Simul. 23(2), 12:1–12:25 (2013)

30. Tiezzi, F., Yoshida, N.: Reversible session-based pi-calculus. J. Log. Algebr. Meth. Program.
84(5), 684–707 (2015)

31. Tiezzi, F., Yoshida, N.: Reversing single sessions. In: Devitt, S., Lanese, I. (eds.) RC 2016.
LNCS, vol. 9720, pp. 52–69. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40578-0 4

32. Vassor, M., Stefani, J.-B.: Checkpoint/rollback vs causally-consistent reversibility. In: Kari,
J., Ulidowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 286–303. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99498-7 20

33. Verdejo, A., Martı́-Oliet, N.: Implementing CCS in Maude 2. In: WRLA. ENTCS, vol. 71,
pp. 239–257. Elsevier (2002)

34. de Vries, E., Koutavas, V., Hennessy, M.: Communicating transactions. In: Gastin, P.,
Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 569–583. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15375-4 39

35. Weikum, G., Schek, H.J.: Concepts and applications of multilevel transactions and open
nested transactions. In: Database Transaction Models for Advanced Applications, pp. 515–
553. Morgan Kaufmann (1992)

36. Yoshida, N., Vasconcelos, V.T.: Language primitives and type discipline for structured
communication-based programming revisited: two systems for higher-order session com-
munication. Electr. Notes Theor. Comp. Sci. 171(4), 73–93 (2007)

https://doi.org/10.1007/978-3-642-37036-6_21
https://doi.org/10.1007/978-3-642-23217-6_20
https://doi.org/10.1007/978-3-642-15375-4_33
https://doi.org/10.1007/978-3-030-47361-7_2
https://doi.org/10.1007/978-3-030-47361-7_2
https://github.com/tiezzi/cherry-pi/raw/main/docs/cherry-pi_TR.pdf
https://github.com/tiezzi/cherry-pi/raw/main/docs/cherry-pi_TR.pdf
https://arxiv.org/abs/1705.09525
https://doi.org/10.1007/978-3-319-40578-0_4
https://doi.org/10.1007/978-3-319-40578-0_4
https://doi.org/10.1007/978-3-319-99498-7_20
https://doi.org/10.1007/978-3-642-15375-4_39

Safe Asynchronous Mixed-Choice
for Timed Interactions

Jonah Pears(B) , Laura Bocchi , and Andy King

University of Kent, Canterbury, UK
{jjp38,l.bocchi,a.m.king}@kent.ac.uk

Abstract. Mixed-choice has long been barred from models of asyn-
chronous communication since it compromises key properties of com-
municating finite-state machines. Session types inherit this restriction,
which precludes them from fully modelling timeouts – a key program-
ming feature to handle failures. To address this deficiency, we present
(binary) TimeOut Asynchronous Session Types (TOAST) as an exten-
sion to (binary) asynchronous timed session types to permit mixed-
choice. TOAST deploy timing constraints to regulate the use of mixed-
choice so as to preserve communication safety. We provide a new
behavioural semantics for TOAST which guarantees progress in the pres-
ence of mixed-choice. Building upon TOAST, we provide a calculus fea-
turing process timers which is capable of modelling timeouts using a
receive-after pattern, much like Erlang, and informally illustrate the
correspondence with TOAST specifications.

Keywords: Session types · Mixed-choice · Timeouts · π-calculus

1 Introduction

Mixed-choice is an inherent feature of models of communications such as com-
municating finite-state machines (CFSM) [11] where actions are classified as
either send or receive. In this setting, a state of a machine is said to be mixed
if there exist both a sending action and a receiving action from that state.
When considering an asynchronous model of communication, absence of dead-
locks is undecidable in general [17] but can be guaranteed in presence of three
sufficient and decidable conditions: determinism, compatibility, and absence of
mixed-states [15,17]. Intuitively, determinism means that it is not possible, from
a state, to reach two different states with the same kind of action, and compat-
ibility requires that for each send action of one machine, the rest of the system
can eventually perform a complementary receive action.

This work has been partially supported by EPSRC project EP/T014512/1 (STAR-
DUST) and the BehAPI project funded by the EU H2020 RISE under the Marie
Sklodowska-Curie action (No: 778233). We thank Simon Thompson and Maurizio Mur-
gia for their insightful comments on an early version of this work.

c© IFIP International Federation for Information Processing 2023
S.-S. Jongmans and A. Lopes (Eds.): COORDINATION 2023, LNCS 13908, pp. 214–231, 2023.
https://doi.org/10.1007/978-3-031-35361-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35361-1_12&domain=pdf
http://orcid.org/0000-0003-4492-4072
http://orcid.org/0000-0002-7177-9395
http://orcid.org/0000-0001-5806-4822
https://doi.org/10.1007/978-3-031-35361-1_12

Safe Asynchronous Mixed-Choice for Timed Interactions 215

Fig. 1. An Erlang snippet and its mixed-state machine representation

In the desire to ensure deadlock freedom, mixed-choice has been given up,
even though this curtails the descriptive capabilities of CFSM and its derivatives.
Despite the rapid evolution of session types, even to the point of deployment in
Java [19], Python [26,28], Rust [22], F# [27] and Go [13], thus far mixed-choice
has only been introduced into the synchronous binary setting [29]. In fact, the
exclusion of mixed-choice pervades work on asynchronous communication which
guarantee deadlock-freedom, both for communicating timed automata [8,21] and
session types [6,12,18,30]. Determinism and the absence of mixed-states is baked
into the very syntax of session types (the correspondence between session types
and so-called safe CFSM is explained in [15]).

Timed session types [4,9,10], which extend session types with time con-
straints, inherit the same syntactic restrictions of session types, and hence rule
out mixed-states. This is unfortunate since in the timed setting, mixed-states are
a useful abstraction for timeouts. Illustrated in Fig. 1, the mixed-state CFSM
(right) can be realised using a receive-after statement in Erlang (left). In the
Erlang snippet, the process waits to receive either a ‘data’ or ‘done’ message. If
neither are received within 3 s, then a timeout message is issued.

Timeouts are important for handling failure and unexpected delays, for
instance, the SMTP protocol stipulates: “An SMTP client must provide a timeout
mechanism” [20, Section 4.5.3.2]. Mixed-states would allow, for example, states
where a server is waiting to receive a message from the client and, if nothing is
received after a certain amount of time, send a notification that ends the session.
Current variants of timed session types allow deadlines to be expressed but cannot,
because of the absence of mixed-states, characterise (and verify) the behaviour
that should follow a missed deadline, e.g., a restart or retry strategy. In this paper,
we argue that time makes mixed-states more powerful (allowing timeouts to be
expressed), while just adding sufficient synchonisation to ensure that mixed-states
are safe in an asynchronous semantics (cannot produce deadlocks).

Contributions This work makes three orthogonal contributions to the theory of
binary session types, with a focus on improving their descriptive capabilities:

– We introduce TimeOut Asynchronous (binary) Session Types (TOAST) to
support timeouts. Inspired by asynchronous timed binary session types [9],
TOAST shows how timing constraints provide an elegant solution for guar-
anteeing the safety of mixed-choice. Technically, we provide a semantics for

216 J. Pears et al.

TOAST and a well-formedness condition. We show that well-formedness is
sufficient to guarantee progress for TOAST (which may, instead, get stuck in
general).

– We provide a new process calculus whose functionality extends to support pro-
gramming motifs such as the widely used receive-after pattern of Erlang
for expressing timeouts.

– We introduce timers in our process calculus to structure the counterpart of a
timeout (i.e., a process that interacts with one other process displaying a time-
out), as well as time-sensitive conditional statements, where the selection of a
branch may be determined by timers. Time-sensitive conditional statements
provide processes with knowledge that can be used to decide which branch
should be followed e.g., helping understanding whether the counterpart may
have timed out or not.

– We provide an informal discussion on the correspondence between TOAST
and the aforementioned primitives of our new process calculus.

2 Timeout Asynchronous Session Types (TOAST)

This section presents the syntax, semantics and formation rules for Time-
Out Asynchronous Session Types (TOAST), which extend asynchronous binary
timed session types [9] with a well-disciplined (hence safe) form of mixed-choice.

Clocks & Constraints. We start with a few preliminary definitions borrowed
from timed automata [1]. Let X be a finite set of clocks denoted x, y and z.
A (clock) valuation ν is a map ν : X → Rě0. The initial valuation is ν0 where
ν0 “ {x �→ 0 | x P X}. Given a time offset t P Rě0 and a valuation ν, ν`t “ {x �→
ν(x)`t | x P X}. Given λ Ď X and ν, ν [λ �→ 0] “ {if (x P λ) 0 else ν(x) | x P X}.
Observe ν [H �→ 0] “ ν. G(X) denotes the set of clock constraints, where a clock
constraint δ takes the form:

δ ::“ true | x ą t | x “ t | x ´ y ą t | x ´ y “ t | ¬δ | δ1 ∧ δ2 (1)

We write ν |“ δ for a constraint δ that is satisfied by the valuations of clocks
within ν. We write ↓δ (the past of δ) for a constraint δ′ such that ν |“ δ′ if and
only if Dt : ν ` t |“ δ. For example ↓(3 ă x ă 5) “ x ă 5 and ↓(x ą 2) “ true.

2.1 Syntax of TOAST

The syntax of TOAST (or just types) is given in eq. (2). A type S is a choice
{ci.Si}iPI , recursive definition μα.S, call α, or termination type end.

S :: “ {ci.Si}iPI | μα.S | α | end c :: “ � l 〈T 〉 (δ, λ)
T :: “ (δ, S) | Nat | Bool | String | None | . . . � :: “ ! | ?

(2)

Type {ci.Si}iPI models a choice among options i ranging over a non-empty set
I. Each option i is a selection/send action if � “ !, or alternatively a branch-
ing/receive action if � “ ?. An option sends (resp. receives) a label l and a

Safe Asynchronous Mixed-Choice for Timed Interactions 217

message of a specified data type T is delineated by 〈·〉. The send or receive
action of an option is guarded by a time constraint δ. After the action, the
clocks within λ are reset to 0. Data types, ranged over by T , Ti, . . . can be sorts
(e.g., natural, boolean), or higher order types (δ, S) to model session delegation.
Only the message label is exchanged when the data type is None. Labels of the
options in a choice are pairwise distinct. Recursion and terminated types are
standard.

Remarks on the notation. One convention is to model the exchange of payloads
as a separated action with respect to the communication of branching labels. In
this paper we follow [8,31], and model them as unique actions. When irrelevant,
we omit the payload, yielding a notation closer to that of timed automata.

2.2 Semantics of TOAST

We present the semantics of TOAST, building on those given in [9]; any changes
are highlighted. Following [9], we define the semantics using three layers: (1)
configurations, (2) configurations with queues that model asynchronous interac-
tions, and (3) systems that model the parallel composition of configurations with
queues. The semantics are defined over the labels � given below:

� ::“ �m | t | τ m ::“ l 〈T 〉 � ::“ ! | ? (3)

where � is either a communication, time, or silent action, and m is a message.

Configurations. A configuration s is a pair (ν, S). The semantics for configu-
rations are defined by a Labelled Transition System (LTS) over configurations,
the labels in eq. (3), and the rules given in Fig. 2.

Fig. 2. Semantics of Configurations.

Rule [act] deviates from [9] and handles choice types. By this rule, a con-
figuration performs one action with index j P I provided that the constraint δj

is satisfied in the current valuation ν (ν |“ δj). All clocks in λj are reset to 0
in the resulting configuration’s valuation of clocks. Rule [unfold] unfolds recur-
sive types. Rule [tick] describes time passing. A transition s t�m´́ →́ s′ indicates
s t→́ s′′ �m´́→ s′ , where s′′ is some intermediate configuration. We write s t�m´́ →́ if
there exists s′ such that s t�m´́ →́ s′ .

218 J. Pears et al.

Fig. 3. Semantics of Configurations with queues.

Configurations with Queues. A configuration with queues S is a triple
(ν, S, M) where M is a FIFO queue of messages which have been received but
not yet processed. A queue takes the form M ::“ H | m; M thus is either empty,
or has a message at its head. The transition S t�m´́ →́S′ is defined analogously
to s t�m´́ →́ s′ . The semantics of configurations with queues is defined by an LTS
over the labels in Eq. (3) and the rules in Fig. 3.

Rule [snd] is for sending a message. Message reception is handled by two rules:
[que] inserts a message at the back of M, and [rcv] removes a message from the
front of the queue. Rule [time] is for time passing which is formulated in terms
of a future-enabled configuration, given in Definition 1. The second condition in
the premise for rule [time] ensures the latest-enabled action is never missed by
advancing the clocks. The third condition models an urgent semantics, ensuring
messages are processed as they arrive. Urgency is critical for reasoning about
progress.

Definition 1 (Future-enabled Configurations (FE)). For some m, a con-
figuration s (resp. a configuration with queues S) is future-enabled (FE) if
Dt P Rě0 : s t�m´́ →́ (resp. S t�m´́ →́).

Systems. Systems are the parallel composition of two configurations with
queues, written as (ν1, S1, M1)|(ν2, S2, M2) or S1|S2. The semantics of systems
is defined by an LTS over the labels in Eq. (3) and the transition rules in Fig. 4.

Rule [com-1] handles asynchronous communication where S1 sends a message
m via rule [snd], which arrives at the queue of S2 via rule [que]. Rule [com-r] is
symmetric, allowing for S2 to be the sending party, and is omitted. Rule [par-l]
allows S1 to process the message at the head of M1 via [rcv]. Rule [par-r] is
symmetric, allowing S2 to receive messages, and is omitted. By rule [wait] time
passes consistently across systems.

Example 1 (Weak Persistency). In language-based approaches to timed seman-
tics [21], time actions are always possible, even if they bring the model into a

Safe Asynchronous Mixed-Choice for Timed Interactions 219

Fig. 4. Semantics of Systems.

stuck state by preventing available actions. Execution traces are then filtered
a posteriori, removing all ‘bad’ traces (defined on the basis of final states).
In contrast, and to facilitate the reasoning on process behaviour, we adopt a
process-based approach, e.g., [2,9], that only allows for actions that characterise
intended executions of the model. Precisely, we build on the semantics in [2] for
asynchronous timed automata with mixed-choice, where time actions are pos-
sible only if they do not disable: (1) the latest-enabled sending action, and (2)
the latest-enabled receiving action if the queue is not empty. This ensures that
time actions preserve the viability of at least one action (weak-persistency). In
our scenario, constraint (1) is too strict. Consider type S and its dual below:

S “
{

! dataăString ą(x ă 3).S′,
? timeout(x ą 4). end

}
S “

{
? data ăString ą (y ă 3).S′,
! timeout (y ą 4). end

}

According to (1), it would never be possible for S to take the timeout branch since
a time action of t ě 3 would disable the latest-enabled send. This is reasonable
in [2] because, in their general setting, there is no guarantee that a timeout will
indeed be received. Unlike [2], we can rely on duality of S (introduced later in this
section), which guarantees that S will send a timeout message when y ą 4. Our
new rule [time] – condition (persistency) – implements a more general constraint
than (1), requiring that one latest-enabled (send or receive) action is preserved.
Constraint (2) remains to implement urgency and, e.g., prevents S from sending
a timeout if a message is waiting in the queue when y ă 3.

2.3 Duality, Well-formedness, and Progress

In the untimed scenario, the composition of a binary type with its dual char-
acterises a protocol, which specifies the “correct” set of interactions between a
party and its co-party. The dual of a type, formally defined below, is obtained
by swapping the directions (! or ?) of each interaction:

Definition 2 (Dual Types). The dual type S of type S is defined as follows:

μα.S “ μα.S α “ α end “ end ! “ ?{
�ili〈Ti〉(δi, λi).Si

}
iPI

“
{

�ili〈Ti〉(δi, λi).Si

}
iPI

? “ !

220 J. Pears et al.

Unfortunately, when annotating session types with time constraints, one may
obtain protocols that are infeasible, as shown in Example 2. This is a known
problem, which has been addressed by providing additional conditions or con-
straints on timed session types, for example compliance [3], feasibility [10], inter-
action enabling [8], and well-formedness [9].

Building upon [9], well-formedness is given as a set of formation rules for
types. The rules check that in every reachable state (which includes every pos-
sible clock valuation) it is possible to perform the next action immediately or
at some point in the future, unless the state is final. (This is formalized as the
progress property in Definition 4.) By these rules, the type in Example 2 would
not be well-formed. The use of mixed-choice in asynchronous communications
may result in infeasible protocols or, more concretely, systems (or types) that
get stuck, even if they are well-formed in the sense of [9] (discussed in Example
3).

Example 2 (Junk Types). Consider the junk type defined below:

S “ !a (x ą 3, H). {!b (y “ 2, H).end, ?c (2 ă x ă 5, H).end}
Assume all clocks are 0 before a is sent. After a is sent, all clocks hold values

greater than 3. The constraint on sending b is never met, and the one on receiving
c may not be met. Types with unsatisfiable constraints are called junk types [9].
S can be amended to obtain, for example, S′ or S′′ below.

S′ “ !a (x ą 3, {y}). {!b (y “ 2, H).end, ?c (2 ă x ă 5, H).end}
S′′ “ !a (3 ă x ă 5, H). {!b (y “ 2, H).end, ?c (2 ă x ă 5, H).end}

S′ makes both options of the choice satisfiable by resetting clock y, while S′′

makes at least one option (?c) always satisfiable by changing the first constraint.

Example 3 (Unsafe Mixed-choice). A mixed-choice is considered unsafe if
actions of different directions compete to be performed (i.e., they are both viable
at the same point in time). Consider system S1|S2 , where S1 “ (ν0, S1, H),
S2 “ (ν0, S2, H), and types S1 and S2 are dual as defined below:

S1 “
{

? a(x ă 5) .end
! b(x “ 0).S′

1

}
S2 “

{
! a(y ă 5).end
? b(y “ 0).S′

2

}

In the system S1|S2 it is possible for both S1
!b→́S′

1 and S2
!a→́S′

2 to occur at the
same time. In the resulting system (ν0, S′

1, a) | (ν0, end, b) neither message can
be received, and S′

1 may be stuck waiting for interactions from S′
2 indefinitely.

Well-Formedness. In this work we extend well-formedness of [9] so that
progress is guaranteed in the presence of mixed-choice. The formation rules for
types are given in Fig. 5; rules differing from [9] are highlighted. Types are eval-
uated against judgements of the form: A; δ �S where A is an environment
containing recursive variables, and δ is a constraint over all clocks characterising
the times in which state S can be reached.

Safe Asynchronous Mixed-Choice for Timed Interactions 221

Fig. 5. Well-formedness rules for types.

Rule [choice] checks well-formedness of choices with three conditions: the
first and third conditions are from the branching and delegation rules in [9],
respectively; the second condition is new and critical to ensure progress of mixed-
choice. By using the weakest past of all constraints (↓ ∨

iPI δi) only one of the
options within the choice is required to be always viable, for the choice to be
well-formed. The first condition (feasibility) ensures that, for each option in
a choice, there exists an environment γ such that the continuation Si is well-
formed, given the current constraints on clocks δi (updated with resets in λi).
This ensures that in every choice, there is always at least one viable action;
it would, for example, rule out the type in Example 2. The second condition
(mixed-choice) requires all actions that can happen at the same time to have
the same (send/receive) direction. This condition allows for types modelling
timeouts, as in Example 1, and rules out scenarios as the one in Example 3.
The third condition (delegation) checks for well-formedness of each delegated
session with respect to their corresponding initialization constraint δ′. Rule [end]
ensures termination types are always well-formed. Rule [rec] associates, in the
environment, a variable α with an invariant δ. Rule [var] ensures recursive calls
are defined.

Definition 3 (Well-formedness). A type S is well-formed with respect to ν
if there exists δ such that ν |“ δ and H; δ � S. A type S is well-formed if it is
well-formed with respect to ν0.

Well-formedness, together with the urgent receive features of the semantics (rule
[time] in Fig. 3) ensures that the composition of a well-formed type S with its
dual S enjoys progress. A system enjoys progress if its configurations with queues
can continue communicating until reaching the end of the protocol, formally:

Definition 4 (Type Progress). A configuration with queues S is final if
S “ (ν, end, H). A system S1|S2 satisfies progress for all S′

1|S′
2 reachable from

S1|S2, either:

– S′
1 and S′

2 are final, or
– there exists a t P Rě0 such that S′

1 | S′
2

tτ→́ .

Theorem 1 (Progress of Systems). If S is well-formed against ν0 then
(ν0, S, H) | (ν0, S, H) satisfies progress.

222 J. Pears et al.

The main result of this section is that, for a system composed of well-formed
and dual types, any state reached is either final, or allows for further progress.
By ensuring a system will make progress, it follows that such a system is free
from communication mismatches and will not reach deadlock.

The main differences with [9] is not in the formulation of the theory (e.g.,
Definitions 4 and 5, and the statement of Theorem 1 are basically unchanged)
but in the proofs that, now, have to check that the conditions of rule [choice]
are sufficient to ensure progress of asynchronous mixed-choice. Additionally, the
proof of progress in [9] relies on receive urgency. Because of mixed-choice, it is
necessary to reformulate (and relax) urgency in the semantic rule [time] in Fig. 3.
Despite generalising the notion of urgency the desired progress property can still
be attained (see Example 1 for a discussion).

The proof of Theorem 1 proceeds by showing that system compatibility [9] is
preserved by transitions. The formal definition of compatibility is given in Defi-
nition 5.

Definition 5 (Compatible Systems). Let S1 “ (ν1, S1, M1) and S2 “
(ν2, S2, M2). System S1|S2 is compatible (written S1⊥S2) if:

1. M1 “ H ∨ M2 “ H

2. M1 “ M2 “ H “⇒ ν1 “ ν2 ∧ S1 “ S2

3. M1 “ m; M′
1 “⇒ Dν′

1, S
′
1 : (ν1, S1)

?m´́→ (ν′
1, S′

1) ∧ (ν′
1, S′

1, M′
1)⊥S2

4. M2 “ m; M′
2 “⇒ Dν′

2, S
′
2 : (ν2, S2)

?m´́→ (ν′
2, S′

2) ∧ S1⊥ (ν′
2, S′

2, M′
2)

Informally, S1⊥ S2 if: (1) at most one of their queues is non-empty (equivalent
to a half-duplex automaton), (2) if both queues are empty, then S1 and S2 have
dual types and same clock valuations, and (3) and (4) a configuration is always
able to receive any message that arrives in its queue.

3 A Calculus for Processes with Timeouts

We present a new calculus for timed processes which extends existing timed
session calculi [8,9] with: (1) timeouts, and (2) time-sensitive conditional state-
ments. Timeouts are defined on receive actions and may be immediately followed
by sending actions, hence providing an instance of mixed-choice – which is nor-
mally not supported. Time-sensitive conditional statements (i.e., if-then-else
with conditions on program clocks/timers) provide a natural counterpart to the
timeout construct and enhance the expressiveness of the typing system in [9].
By counterpart, we intend a construct to be used by the process communicating
with the one that sets the timeout.

Processes are defined by the grammar below. To better align processes with
TOAST, send and select actions have been streamlined by each message con-
sisting of both a label l and some message value v, which is either data or a

Safe Asynchronous Mixed-Choice for Timed Interactions 223

delegated session; the same holds for receive/branch actions where q is a vari-
able for data or delegated sessions. We assume a set of timer names T, ranged
over by x, y and z.

P,Q ::“ set (x) .P | X〈V;T;R〉
| p � lv.P | 0
| p � {li(qi) : Pi} after e : Q | error
| if δ then : P else : Q | (νpq)P
| delay(δ).P | P | Q
| delay(t).P | qp : h
| def X(V;T;R) “ P in Q h ::“ H | h · lv

(4)

Process Set(x).P creates a timer x, initialises it to 0 and continues as P . If x
already exists it is reset to 0. For simplicity, we assume that the timers set by
each process P and Q in a parallel composition P | Q are pair-wise disjoint.

Process p � lv.P is the select/send process: it selects label l and sends payload
v to endpoint p, and continues as P . Its dual is the branch/receive process
p � {li(vi) : Pi}iPI after e : Q. It receives one of the labels li, instantiates qi

with the received payload, and continues as Pi. (Note that a similar construct
has been used to model timeouts in the Temporal Process Language [7], outside
of session types.) Parameter e is a linear expression over the timers and numeric
constants drawn from Ně0 Y {∞}. The expression e determines the duration of
a timeout, after which Q is executed. Once a process with an after branch is
reached, its expression e is evaluated against the values of the timers, to derive
a timeout value n where n P Ně0 Y {∞}. Setting e “ ∞ models a blocking
receive primitive that waits potentially forever for a message. Setting e “ 0
models a non-blocking receive action. To retain expressiveness from [9] where
non-blocking receive actions would trigger an exception (i.e., modelling deadlines
that must not be missed) we allow Q to be error. For simplicity: (i) we write
p � {li(qi) : Pi}iPI when e “ ∞; (ii) we omit the brackets in the case of a single
option; (iii) for options with no payloads we omit qi. The advantage of using an
expression e to express the value of a timeout, rather than a fixed constant, is
illustrated in Example 4.

Process if δ then : P else : Q is a conditional statement, except that the
condition δ is on timers. Syntactically, the condition is expressed as a time
constraint δ in eq. (1), but instead of clocks, defined on the timers previously
set by that process. Process delay(δ).P models time passing for an unknown
duration described by δ, and is at runtime reduced to process delay(t).P if
|“ δ [t/x]. In delay(δ).P we assume δ is a constraint on a single clock x. The name
of the clock here is immaterial, where x is a syntactic tool used to determine the
duration of a time-consuming (delay) action at run-time. In this sense, assume x
is bound within delay(δ).P . Recursive processes are defined by a process variable
X and parameters V, T and R containing base type values, timers and session
channels, respectively. The end process is 0. The error process is error.

As standard [10,18,30], the process calculus allows parallel processes P |Q
and scoped processes (νpq)P between endpoints p and q. Endpoints communi-
cate over pairs of channels pq and qp, each with their own unbounded FIFO

224 J. Pears et al.

buffers h.1 Within a session, p sends messages over pq and receives messages
from qp (and vica versa for q). We have adopted the simplifying assumption
in [9] that sessions are already instantiated. Therefore, rather than relying on
reduction rules to produce correct session instantiation, we rely on a syntactic
well-formedness assumption. A well-formed process consists of sessions of the
form (νpq)(P, |Q, pq : h, qp : h′), which can be checked syntactically as in [9].

Example 4 (Parametric Timeouts). Consider the process below:

delay(z ă 2).p � {msg : P} after 3 : Q

It expresses a timeout of 3 after a delay with a duration between 0 and 2 time
units (whatever this delay turns out to be). To express a timeout of 3 despite
prior execution of a time-consuming action, we need a way to tune the timeout
with the actual delay of the time-consuming action. A parametric timeout can
model this behaviour:

set(x).delay(z ă 2).p � {msg : P} after 3 ´ z : Q

By setting the timeout as an expression, 3 ´ x, with parameter x reflecting
the passage of time, we allow the process to compensate for the exact delay
occurred.

3.1 Process Reduction

A timer environment θ is a map from a set of timer names T to Rě0 . We define
θ`t “ {x �→ θ(x)`t | x P T} and θ[x �→ 0] to be the map θ[x �→ 0](y) “ if (x “
y) 0 else θ(y).

The semantics of processes are given in Fig. 6, as a reduction relation on pairs
of the form θ, (P). The reduction relation is defined on two kinds of reduction:
instantaneous communication actions ⇀, and time-consuming actions �. We
write →́ to denote a reduction that is either by ⇀ or �.

Rule [Set] creates a new timer x if x is undefined, and otherwise resets x to
0. Rule [IfT] selects a branch P depending on time-sensitive condition δ. The
symmetric rule selects branch Q if the condition is not met, and is omitted. Rules
[Recv] and [Send] are standard [24]. Rule [Det] determines the actual duration t
of the delay δ (which is a constraint on a single clock). Rule [Delay] outsources
time-passing to function Φt(P) (see Definition 6), which returns process P after
the elapsing of t units of time, and updates θ accordingly. Rules [Scope] and
[ParL] are as standard and the only instant reductions, which may update θ,
if any timers are introduced by [Set]. We omit the symmetric rule for [ParL].
The rule for structural congruence [Str] applies to both instantaneous and time-
consuming actions. Structural equivalence of P and Q, denoted P ≡ Q is as
standard with the addition of rule delay(0).P ≡ P following [9,10].
1 Similar to the queues used by configurations in Sect. 2.2.

Safe Asynchronous Mixed-Choice for Timed Interactions 225

Fig. 6. Reduction Rules for Processes

Fig. 7. Definition of Wait(P) and NEQueue(P)

226 J. Pears et al.

Definition 6. The time-passing function Φt(P) is a partial function on process
terms, defined only for the cases below, where we use CI as a short notation for
{li(vi) : Pi}iPI :

Φt (p � CI after e : Q) “
⎧
⎪⎨

⎪⎩

p � CI after e : Q e “ ∞
p � CI after e ´ t : Q e P Rě0 and e ě t

Φt´e (Q) otherwise

Φt (delay(t′).P) “
{
delay(t′ ´ t).P if t′ ě t

Φt´t′ (P) otherwise

Φt (P1 | P2) “ Φt (P1) | Φt (P2) if Wait(Pi) X NEQueue(Pj) “ H, i �“ j P {1, 2}
Φt (0) “ 0 Φt (error) “ error

Φt (pq : h) “ pq : h Φt ((νpq) P) “ (νpq) Φt (P)
Φt (def X(V; T; R) “ P in Q) “ def X(V; T; R) “ P in Φt (Q)

The first case in Definition 6 models the effect of time passing on timeouts. The
second case is for time-consuming processes. The third case distributes time
passing in parallel compositions and ensures that time passes for all parts of the
system equally. The auxiliary functions Wait(P) and NEQueue(P) ensure time
does not pass while a process is waiting to receive a message already in their
queue, similar to rule [time] in Fig. 3 for configuration transitions. Informally,
Wait(P) returns the set of channels on which P is waiting to receive a message,
and NEQueue(P) returns the set of endpoints with a non-empty inbound queue.
Full definitions are given in Fig. 7. The remaining cases allow time to pass.

Example 5. Consider the process below:

P “ (νpq) (p � {li(vi) : Pi}iPI after e : Q | qp : H | Q′)

For a time-consuming action of t to occur on P it is required that Φt

is defined for all parallel components in P . Note that, if qp was not empty,
then time could not pass since NEQueue(P) “ Wait(P) “ {p}. Set t “
n ` 1 so that we can observe the expiring of the timeout. The evaluation of
Φt(p � {li (vi) : Pi}iPI after e : Q) results in the evaluation of Φ1(Q). If Q “ 0
(or similarly error, a delay, or a timeout with n ą 0) and Φt(Q′) is defined then
time passing of t is possible and:

Φt (P) “ (νpq)(0 | qp : H | Φt (Q′))

If Q is a sending process then Φt(Q) would be undefined, and hence Φt(P).

4 Expressiveness

In this section we reflect on the expressiveness of our mixed-choice extension, par-
ticularly in regard to [9], using examples to illustrate differences. Furthermore,
given the increase in expressiveness, we discuss how type-checking becomes more
interesting with the inclusion of receive-after.

Safe Asynchronous Mixed-Choice for Timed Interactions 227

4.1 Missing Deadlines

The process corresponding to ?a (true, H).S is merely p � {a : P}, which waits
to receive a forever. By way of contrast, ?a (x ă 3, H).S, cannot receive when
x ě 3, requiring the process to take the form: p � {a : P} after 3 : Q, where
Q “ error. More generally, if an action is enabled when x ě 3:

{?a (x ă 3, H).S, ?b (3 ă x ă 5, H).S′}

then, amending the previous process, Q “ p � {b : P ′} after 2 : error.

4.2 Ping-Pong Protocol

The example in this section illustrates the usefulness of time-sensitive condi-
tional statements. The ping-pong protocol consists of two participants exchang-
ing messages between themselves on receipt of a message from the other [23].
One interpretation of the protocol is the following:

μα.

⎧⎪⎪⎨
⎪⎪⎩

!ping(x � 3, {x}).
{

?ping(x � 3, {x}).α
?pong(x ą 3, {x}).α

}

!pong(x ą 3, {x}).
{

?ping(x � 3, {x}).α
?pong(x ą 3, {x}).α

}
⎫⎪⎪⎬
⎪⎪⎭

where each participant exchanges the role of sender, either sending ping early,
or pong late. Without time-sensitive conditional statements, the setting in [9]
only allows implementations where the choice between the ‘ping’ and the
‘pong’ branch are hard-coded. In presence of non-deterministic delays (e.g.,
delay(z ă 6)), the hard-coded choice can only be for the latest branch to
‘expire’, and the highlighted fragment of the ping-pong protocol above could
be naively implemented as follows (omitting Q for simplicity):

def X (V;T;R) “ P in P P “ delay(z ă 6). p � pong.Q

The choice of sending ping is always discarded as it may be unsatisfied in
some executions. The calculus in this paper, thanks to the time-awareness deriv-
ing from a program timer y, allows us to potentially honour each branch, as
follows:

def X (V;T;R) “ P in P P “ set(y).delay(z ă 6).if (y ď 3)
then : p � ping.Q
else : p � pong.Q′

228 J. Pears et al.

Fig. 8. Message throttling protocol for m “ 2.

4.3 Mixed-Choice Ping-Pong Protocol

An alternative interpretation of the ping-pong protocol can result in an imple-
mentation with mixed-choice, as shown below:

μα.

⎧⎪⎪⎨
⎪⎪⎩

?ping(x ď 3, {x}).
{

!pong(x ď 3, {x}).α
?timeout(x ą 3, H).end

}

!pong(x ą 3, {x}).
{

?ping(x ď 3, {x}).α
!timeout(x ą 3, H).end

}
⎫⎪⎪⎬
⎪⎪⎭

where pings are responded by pongs and vica versa. Notice that if a timely ping is
not received, a pong is sent instead, which if not responded to by a ping, triggers
a timeout. Similarly, once a ping has been received, a pong must be sent on time
to avoid a timeout. Such a convoluted protocol can be fully implemented:

def X (V;T;R) “ P in P
P “ set(x). p � ping : set(x).if x � 3

then : p � pong .X 〈V′;T′;R′〉
else : p � timeout : 0

after 3 ´ x : p � pong .set(x). p � pong : X 〈V′′;T′′;R′′〉
after 3 ´ x : p � timeout .0

4.4 Message Throttling

A real-world application of the previous example is message throttling. The ratio-
nale behind message throttling is to cull unresponsive processes, which do not
keep up with the message processing tempo set by the system. This avoids a
server from becoming overwhelmed by a flood of incoming messages. In such a
protocol, upon receiving a message, a participant is permitted a grace period
to respond before receiving another. The grace period is specified as a number
of unacknowledged messages, rather than a period of time. Below we present
a fully parametric implementation of this behaviour, where m is the maximum
number of messages that can go unacknowledged before a timeout is issued.

S0 “ μα0.!msg(x � 3, {x}).S1

Si “ μαi.{?ack(x ă 3, {x}).αi´1, !msg(x � 3, {x}).Si`1}
Sm “ {?ack(x ă 3, {x}).αm´1, !tout(x � 3, H).end}

Safe Asynchronous Mixed-Choice for Timed Interactions 229

which has the corresponding processes:

def X0 (V0;T0;R0) “ P0 in p � msg.P1

def Xi (Vi;Ti;Ri) “ Pi in p � ack : Xi´1 〈Vi´1;Ti´1;Ri´1〉
after 3 : p � msg .Pi`1

Pm “ p � ack : Pm´1

after 3 : p � tout.0

The system shown in Fig. 8 illustrates the system for the m “ 2 instance.
Arguably, instead of sending the message tout, it would also be equally valid for
the system to simply reach an error state: Pm “ p �ack : Pm´1 after 3 : error.

5 Concluding Discussion

We have shown how timing constraints provide an intuitive way of integrating
mixed-choice into asynchronous session types. The desire for mixed-choice has
already prompted work in (untimed) synchronous session types [29]. Further
afield, coordination structures have been proposed that overlap with mixed-
choice, for example, fork and join [14], which permit messages within a fork
(and its corresponding join) to be sent or received in any order; reminiscent of
mixed-choice. Affine sessions [23,25] support exception handling by enabling an
end-point to perform a subset of the interactions specified by their type, but
there is no consideration of time, hence timeouts. Before session types gained
traction, timed processes [5] were proposed for realising timeouts, but lacked any
notion of a counterpart for timeouts.

We have integrated the notion of mixed-choice with that of time-constraints.
There are many conceivable ways to realise mixed-choice using programming
primitives. However, our integration with time, embodied in TOAST, offers new
capabilities for modelling timeouts which sit at the heart of protocols and are a
widely-used idiom in programming practice. To provide a bridge to programming
languages, we provide a timed session calculus enriched with a receive-after
pattern and process timers, the latter providing a natural counterpart to the
former. Taken altogether, we have lifted a long-standing restriction on asyn-
chronous session types by allowing for safe mixed-choice, through the judicious
application of timing constraints.

Future work will provide type checking against TOAST for our new processes,
and establish time-safety (a variant of type-safety which ensures punctuality
of interactions via subject reduction) for well-typed processes. Time-safety for
timed session types [9,10] (without mixed-choice) relies on a progress property
called receive-liveness, which is defined on the untimed counterpart of a timed
process. Receive-liveness that can be checked with existing techniques for global
progress [6,16]. A progress property may seem too strong a precondition for
ensuring time-safety. In untimed formulations of session types, type-safety and
subject reduction do not depend on progress. Arguably, when considering time
and punctuality, the distinction between progress and safety is no longer clear-
cut, since deadlocks may cause violation of time constraints.

230 J. Pears et al.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–
235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

2. Bartoletti, M., Bocchi, L., Murgia, M.: Progress-Preserving refinements of CTA.
In: CONCUR. Leibniz International Proceedings in Informatics, vol. 118, pp. 40:1–
40:19. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018). https://doi.org/
10.4230/LIPIcs.CONCUR.2018.40

3. Bartoletti, M., Cimoli, T., Murgia, M.: Timed session types. logical methods in
computer science 13(4) (2017). https://doi.org/10.23638/LMCS-13(4:25)2017

4. Bartoletti, M., Cimoli, T., Pinna, G.M.: A note on two notions of compliance.
EPTCS 166, 86–93 (2014). https://doi.org/10.4204/EPTCS.166.9

5. Berger, M., Yoshida, N.: Timed, distributed, probabilistic, typed processes. In:
Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 158–174. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-76637-7 11

6. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M.,
Yoshida, N.: Global progress in dynamically interleaved multiparty sessions. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–
433. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9 33

7. Bocchi, L., Lange, J., Thompson, S., Voinea, A.L.: A model of actors and grey
failures. In: COORDINATION. Lecture Notes in Computer Science, vol. 13271, pp.
140–158. Springer-Verlag (2022). https://doi.org/10.1007/978-3-031-08143-9 9

8. Bocchi, L., Langue, J., Yoshida, N.: Meeting deadlines together. In: CONCUR.
Leibniz International Proceedings in Informatics, vol. 42, pp. 283–296 (2015).
https://doi.org/10.4230/LIPIcs.CONCUR.2015.283

9. Bocchi, L., Murgia, M., Vasconcelos, V.T., Yoshida, N.: Asynchronous timed ses-
sion types: from duality to time-sensitive processes. In: ESOP. Lecture Notes in
Computer Science, vol. 11423, pp. 583–610. Springer-Verlag (2019). https://doi.
org/10.1007/978-3-030-17184-1 21, https://kar.kent.ac.uk/72337/

10. Bocchi, L., Yang, W., Yoshida, N.: Timed multiparty session types. In: Baldan, P.,
Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 419–434. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-662-44584-6 29

11. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983). https://doi.org/10.1145/322374.322380

12. Carbone, M., Honda, K., Yoshida, N.: Structured interactional exceptions in session
types. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp.
402–417. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-
9 32

13. Castro, D., Hu, R., Jongmans, S.S., Ng, N., Yoshida, N.: Distributed program-
ming using role-parametric session types in go: statically-typed endpoint APIs for
dynamically-instantiated communication structures. In: POPL, vol. 3, pp. 1–30.
ACM (2019). https://doi.org/10.1145/3290342

14. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2 10

15. Deniélou, P.-M., Yoshida, N.: Multiparty compatibility in communicating
automata: characterisation and synthesis of global session types. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp.
174–186. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-
2 18

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.4230/LIPIcs.CONCUR.2018.40
https://doi.org/10.4230/LIPIcs.CONCUR.2018.40
https://doi.org/10.23638/LMCS-13(4:25)2017
https://doi.org/10.4204/EPTCS.166.9
https://doi.org/10.1007/978-3-540-76637-7_11
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-031-08143-9_9
https://doi.org/10.4230/LIPIcs.CONCUR.2015.283
https://doi.org/10.1007/978-3-030-17184-1_21
https://doi.org/10.1007/978-3-030-17184-1_21
https://kar.kent.ac.uk/72337/
https://doi.org/10.1007/978-3-662-44584-6_29
https://doi.org/10.1145/322374.322380
https://doi.org/10.1007/978-3-540-85361-9_32
https://doi.org/10.1007/978-3-540-85361-9_32
https://doi.org/10.1145/3290342
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/978-3-642-39212-2_18

Safe Asynchronous Mixed-Choice for Timed Interactions 231

16. Dezani-Ciancaglini, M., de’Liguoro, U., Yoshida, N.: On progress for structured
communications. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp.
257–275. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78663-
4 18

17. Gouda, M., Manning, E., Yu, Y.: On the progress of communication between two
finite state machines. Inf. Control 63(3), 200–216 (1984). https://doi.org/10.1016/
S0019-9958(84)80014-5

18. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL, pp. 273–284. ACM (2008). https://doi.org/10.1145/1328438.1328472

19. Hu, R., Yoshida, N., Honda, K.: Session-based distributed programming in java. In:
Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 516–541. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-70592-5 22

20. Klensin, J.: SMTP, Request for Comments: 5321 (2008). https://datatracker.ietf.
org/doc/html/rfc5321

21. Krcal, P., Yi, W.: Communicating timed automata: the more synchronous, the
more difficult to verify. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 249–262. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963 24

22. Lagaillardie, N., Neykova, R., Yoshida, N.: Implementing multiparty session types
in rust. In: Bliudze, S., Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol. 12134,
pp. 127–136. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50029-0 8

23. Lagaillardie, N., Neykova, R., Yoshida, N.: Stay safe under panic: affine rust pro-
gramming with multiparty session types. In: ECOOP. Leibniz International Pro-
ceedings in Informatics, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2022).
https://doi.org/10.4230/LIPIcs.ECOOP.2022.4

24. Milner, R.: Communicating and Mobile systems - the Pi-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

25. Mostrous, D., Vasconcelos, V.T.: Affine Sessions. Logical Methods in Computer
Science 14(4) (2018). https://doi.org/10.23638/LMCS-14(4:14)2018

26. Neykova, R.: Session types go dynamic or how to verify your Python conversations.
EPTCS 137 (2013). https://doi.org/10.4204/EPTCS.137.8

27. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: compile-
time API generation of distributed protocols with refinements in F#. In: CC, pp.
128–138. ACM (2018). https://doi.org/10.1145/3178372.3179495

28. Neykova, R., Yoshida, N., Hu, R.: SPY: local verification of global protocols. In:
Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 358–363. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40787-1 25

29. Vasconcelos, V.T., Casal, F., Almeida, B., Mordido, A.: Mixed sessions. In: ESOP
2020. LNCS, vol. 12075, pp. 715–742. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-44914-8 26

30. Yoshida, N., Vasconcelos, V.T.: Language primitives and type discipline for struc-
tured communication-based programming revisited: two systems for higher-order
session communication. Electron. Notes Theor. Comput. Sci. 171(4), 73–93 (2007).
https://doi.org/10.1016/j.entcs.2007.02.056

31. Yoshida, N., Zhou, F., Ferreira, F.: Communicating finite state machines and an
extensible toolchain for multiparty session types. In: Bampis, E., Pagourtzis, A.
(eds.) FCT 2021. LNCS, vol. 12867, pp. 18–35. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-86593-1 2

https://doi.org/10.1007/978-3-540-78663-4_18
https://doi.org/10.1007/978-3-540-78663-4_18
https://doi.org/10.1016/S0019-9958(84)80014-5
https://doi.org/10.1016/S0019-9958(84)80014-5
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1007/978-3-540-70592-5_22
https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc5321
https://doi.org/10.1007/11817963_24
https://doi.org/10.1007/978-3-030-50029-0_8
https://doi.org/10.4230/LIPIcs.ECOOP.2022.4
https://doi.org/10.23638/LMCS-14(4:14)2018
https://doi.org/10.4204/EPTCS.137.8
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1007/978-3-642-40787-1_25
https://doi.org/10.1007/978-3-030-44914-8_26
https://doi.org/10.1007/978-3-030-44914-8_26
https://doi.org/10.1016/j.entcs.2007.02.056
https://doi.org/10.1007/978-3-030-86593-1_2
https://doi.org/10.1007/978-3-030-86593-1_2

A Formal MDE Framework for Inter-DSL
Collaboration

Salim Chehida(B), Akram Idani, Mario Cortes-Cornax, and German Vega

Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
{salim.chehida,akram.idani,mario.cortes-cornax,

german.vega}@univ-grenoble-alpes.fr

Abstract. In order to master the complexity of a system at the design
stage, several models have to be defined and combined together. How-
ever, when heterogeneous and independent DSLs are used to define these
models, there is a need to explicitly compose their semantics. While the
composition of static semantics of DSLs is straightforward, the coor-
dination of their execution semantics is still challenging. This issue is
generally called inter-DSL collaboration. In this paper, we propose a for-
mal Model Driven Engineering (MDE) framework built on the Meeduse
language workbench that we extend with the Business Process Model
and Notation (BPMN). Meeduse allows to instrument DSLs with formal
semantics using the B method. BPMN provides an easy-to-use nota-
tion to define the coordination of execution semantics of these DSLs. A
transformation of BPMN models into Communication Sequential Pro-
cess (CSP) formal language enables the possibility for animation and
verification. Our approach is successfully demonstrated by modeling the
collaboration of two DSLs from a real case study.

Keywords: DSL · BPMN · Model Composition · Models
Collaboration · Formal Methods · B Method · CSP · Animation ·
Verification

1 Introduction

Domain-Specific Languages (DSLs) can be used to model different concerns of
a system such as its architecture, the inherent processes, data flows or security
policies. These dedicated languages permit domain experts to create models in
their speciality. However, models that are built with heterogeneous DSLs must
be combined together in order to favour maintenance, verification, code genera-
tion, etc. Indeed, updating a model usually leads to modifications of the other
related models. Also, triggering an action in one model can induce other actions
in the related models. This situation has been observed in real applications, lead-
ing to the necessity to bridge the gap between DSLs semantics and preventing
inconsistencies all along a model-driven development process [12].

In this paper, we propose a novel approach, supported with a formal frame-
work, that allows engineers to define how DSLs collaborate with each other.

c© IFIP International Federation for Information Processing 2023
S.-S. Jongmans and A. Lopes (Eds.): COORDINATION 2023, LNCS 13908, pp. 232–249, 2023.
https://doi.org/10.1007/978-3-031-35361-1_13

https://eapls.org/pages/artifact_badges/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35361-1_13&domain=pdf
https://doi.org/10.1007/978-3-031-35361-1_13

A Formal MDE Framework for Inter-DSL Collaboration 233

We use Meeduse [10], the only existing language workbench (LWB) today that
enables both formal reasoning (via theorem proving) and the DSL execution
(via animation and model-checking). Meeduse uses the B method [1] for spec-
ifying the semantics of DSLs and ProB model checker [18] for animation and
verification. It has been successfully applied to several realistic case studies [11].

However, the tool did not present any feature to deal with DSL collaboration.
Hence, the goal of this work is to extend Meeduse with the capability to define,
execute and verify inter-DSL collaboration. Our approach consists of three main
steps:

1. In the first step, a composition metamodel is created in order to relate the
semantic domains of independent DSLs, assuming that these semantics are
themselves defined by means of metamodels;

2. In the second step, Meeduse is used to transform the various metamodels into
formal B specifications taking benefit of the composition mechanism of the
B method. The resulting specifications are then used to define the execution
semantics of these metamodels via B operations;

3. The third step uses BPMN [20] to define the collaboration between the DSLs.
In this model, tasks refer to B operations providing the execution workflow
of the collaboration. By transforming the BPMN model into CSP (Commu-
nication Sequential Process [22]), we obtain a CSP||B [23] specification that
is used for animating and verifying the so-called DSLs’ collaboration.

To illustrate our approach, we apply it to a smart grid case study provided
by RTE, the energy transmission company in France. The case study involves
two DSLs: the first one focuses on the management of system configurations
assigning to a set of applications various infrastructures. The second is dedicated
to security risk assessment. The composition and the collaboration of these DSLs
allow to manage configurations while dealing with security concerns.

Following the introduction, we describe a motivation scenario in Sect. 2. We
present our model-based approach for inter-DSL collaboration in Sect. 3. Then,
the application of our approach to the RTE case study is discussed in Sect. 4.
Section 5 lists related works and finally, Sect. 6 draws the conclusions and the
perspectives of this paper.

2 Case Study and Motivation

In this work, we consider a real case study inspired from [24]. To promote renew-
able energies, RTE aims to make extensive use of smart grid technologies and
develop efficient systems that respond to meteorological and security factors.
The main challenge is to deal with overcurrent in the transmission lines due to
the excess energy production in the wind farms, which can create a real dan-
ger for people and goods near the transmission lines. For this purpose, a first
DSL, named CM-DSL (Configuration Management DSL), is used for defining
the system configurations to be used for responding to the environment dynam-
ics. A second DSL, named SRA-DSL (Security Risk Assessment DSL), is used
for security modeling and analysis. In the following sections, more details about
the aforementioned DSLs are given.

234 S. Chehida et al.

2.1 Configuration Management DSL (CM-DSL)

The Configuration Management DSL (CM-DSL) describes RTE configurations
by assigning applications to infrastructures. In this work, we present a simpli-
fied part of CM-DSL to illustrate the problem. Figure 1 presents a model, where
three applications are defined: (1) Fast Action uses a simple flow chart logic
and leads to the massive disconnection of wind farms from the grid; (2) Nor-
mal refers to predictive control algorithm in order to seek the optimal use of
all levers (wind farms modulation, batteries and circuit breakers); and finally,
(3) Enhanced Forecasting uses forecasts of the next day generation and weather
(wind and sunlight) for optimisation. The model also considers three infras-
tructures: (1) in Centralized RTE, algorithms can only be run on data-center
resources that communicate directly with the gateways connected to sensors or
actuators for generators or batteries; (2) in Collaborative Fog, the execution is
done in substation calculators that communicate in a peer-to-peer scheme with
the other calculators; and (3) in Hierarchical Fog-Cloud, all calculators are avail-
able to run the applications and both data-center to substation and substation
to substation communications are allowed. Combining applications and archi-
tectures a configuration can be proposed. Figure 1 presents four different ones.
A configuration is also characterized by its response time (QoS in seconds) cal-
culated using an external simulation tool. The status is decided by the software
architect, which can be valid (example of AM1-IM3) or invalid (example of AM3-
IM1) depending on its QoS. In the selected AM1-IM2 configuration (framed in
dotted line), the Fast Action application is to be deployed on Collaborative Fog
infrastructure. Valid configurations can be used in the real operation.

Fig. 1. A Configuration Management (CM) model showing four different configurations

2.2 Security Risk Assessment DSL (SRA-DSL)

The Security Risk Assessment DSL (SRA-DSL) refers to Attack-Defense Tree
[15] for security risk assessment. A tree structure is used for specifying threats,

A Formal MDE Framework for Inter-DSL Collaboration 235

defenses, and the combinations between them. In Fig. 2, threat nodes are rep-
resented by rectangles and defense nodes by parallelograms. The combinations
between the nodes are expressed by logical operators (AND, OR, NOT) depicted
by ellipses. The SRA-DSL model of Fig. 2 specifies the combination between the
8 threats (T1,T2, ...,T8) and the 5 defenses (D1,D2, ...,D5) of the RTE system.
Each defense prevents a set of threats. For instance, closing a specific breach
in the network (D2) can prevent tampering on customer network (T5), denial
of service (T6), and information disclosure (T7). In a SRA-DSL model, it is
possible to select the possible threats (framed in bold as for instance T8) on
a part of the system or in a specific state of the system among the whole set
of system threats. It is also possible to compute the defenses subset (framed in
blue bold as for instance D4 and D5) that can counter all the selected threats.
The SRA-DSL user can also set the defense Cost in seconds, which is the delay
caused by its activation to protect the system (an example cost of D1 is 0.4 s).

Fig. 2. The SRA model

We note that CM-DSL and SRA-DSL are independent and can be used for
other applications or case studies. For example, paper [4] shows how the SRA-
DSL is used for security risk assessment in Internet of Things (IoT) systems.

2.3 Collaboration and Verification Needs

CM-DSL provides the possible configurations that can meet the environmental
dynamics, but it does not consider the configurations’ security. On the other side,
the SRA-DSL is a logic-based DSL that can be used within different security
contexts. In our case study, we use SRA-DSL to identify possible threats of each
configuration and to calculate the required defenses. By doing so, the response
time and the validation state of the configuration can be updated based on the

236 S. Chehida et al.

cost of the defenses. The integration of these two DSLs infers the need to ensure
inter-DSL properties. Below, we provide some examples of properties:

– (P1) The delay caused by configuration defenses should not exceed a percent-
age of the configuration response time (e.g., 30%)

– (P2) At least one defense must be activated to secure a configuration.
– (P3) The response time of a configuration should not exceed a given threshold

(e.g., 2 s).

In this work, we propose a new approach to manage and check the collabo-
ration between two or more DSLs (in this case, illustrated by the CM-DSL and
the SRA-DSL). We aim more precisely to:

– Highlight the links between the DSLs concepts (e.g., configuration and
defenses).

– Specify the collaboration process between the DSLs actions.
– Animate interactively the collaboration process while ensuring the updates

at the DSL models.
– Express and check inter-DSL properties.

In the next section, we describe the Inter-DSL approach that orchestrates
the DSLs’ execution collaboration.

3 Inter-DSL Collaboration: A Model-based Architecture

An overview of our approach is given in Fig. 3, divided into two main blocks:
X and Y. The model-based approach is supported by the Meeduse platform
for rigorous DSLs’ design (block X presented in Sect. 3.1). Meeduse has been
extended for modeling, animation and verification of inter-DSL collaboration
(block Y presented in Sect. 3.2). Figure 3 shows the collaboration between two
DSLs, but the approach can be applied for more.

3.1 Formal Model Driven DSLs

As shown in Fig. 3, we first specify the abstract syntax of each DSL using EMF-
based modeling tool (Ecore, Xtext, Sirius, GMF, etc.). The DSL’s concepts are
represented by a metamodel. The different metaclasses are characterized by a
set of attributes and operations, related by a set of associations (see examples
in Fig. 4). The domain expert uses the DSL to create models (instances) that
conform to the DSL metamodel.

We instrument our DSLs in Meeduse language workbench, which provides
a formal framework to our approach. Meeduse produces a B machine from a
given metamodel and enables the application of B method to define the exe-
cution semantics of the DSLs together with its invariant properties. The static
semantics of the DSL is represented by sets, variables and typing invariants that
define the structural features of the metamodel. The execution semantics of the

A Formal MDE Framework for Inter-DSL Collaboration 237

Fig. 3. Generic architecture for modeling and verification of inter-DSL collaboration

DSL is represented by operations that define the DSL actions and initialization.
Meeduse is also equipped with a tool that allows to animate the execution of a
model (instance of the metamodel) into the DSL B machine, by introducing the
valuation of the B abstract sets and the initialization of B variables.

As mentioned earlier, the Meeduse uses ProB for the animation and verifi-
cation of B specifications. In this step, each DSL can be animated separately
by running its actions represented by B operations. At each animation step, the
animator provides the set of operations that could be executed, which are the
ones that preserve the invariants. In this work, we aim to collaboratively ani-
mate a set of DSLs by triggering actions from different DSLs while respecting
the collaboration process and system properties.

3.2 Formal Model Driven Inter-DSL Collaboration

The inter-DSL collaboration is specified by a so-called “composition metamodel”
and a BPMN collaboration diagram, which will then be transformed into formal
specifications to be used for animation and verification.

Composition. The composition metamodel links the other DSL metamodels. It
is represented by a metaclass named Composition related by composition associ-
ations to the root metaclasses of each DSL to be coordinated. In this metamodel,

238 S. Chehida et al.

we can also add new metaclasses with new attributes, operations (composition
actions) and references to meet inter-DSL collaboration needs. Starting from
this metamodel, we generate the composition B machine that includes the B
specifications obtained from the different DSLs. In the dynamic part of the com-
position B machine, we integrate the B operations defining actions involved in
the collaboration process. We can also introduce properties like those presented
in the Sect. 2.3 as invariants of the composition B machine.

Collaboration Model. We express the collaboration between the DSLs actions
using a process modeling language. For process modeling, there are several lan-
guages and notations, such as the Business Process Model and Notation (BPMN)
and the Unified Modeling Language (UML) Activity Diagram [21]. In this work,
we use BPMN 2.0, which is the standard de-facto for process modeling. BPMN,
supported by the Object Management Group (OMG), is a language that pro-
poses a graphical notation providing the description of processes elements sup-
ported by a metamodel, without specifying a fully defined execution semantics
(in natural language). In our approach, we use the notion of BPMN pool, which
is the graphical representation of a participant in a collaboration, to group oper-
ations of each DSL, including the composition metamodel. We represent an
atomic action specifying one metamodel operation by a BPMN task and we use
expanded subprocesses to represent a grouping of tasks. BPMN sequence flows
are used to represent the sequence of actions in the context of a DSL (inside the
Pool), while message flows are used to represent the inter-pool communication.
Gateways (exclusive or parallel) model the control flow in each DSL.

Formal Process Model. To enable the animation and verification of inter-
DSL collaboration, the graphical BPMN models are mapped to a formal specifi-
cation. Several works propose this transformation to process algebras languages
like CSP or Calculus of Communicating Systems (CCS) [19]. In this paper, we
manually transform the BPMN diagrams into CSP models. Work in progress
intends to automate and validate this transformation by exploiting works like
[8]. The constructor’s mapping is illustrated with our use case in Sect. 4.3. From
this mapping, we aim to take advantage of the ProB tool (integrated into the
Meeduse platform) for the animation and verification. The ProB tool takes as
input the CSP process model and the composition B machine coming from the
DSLs and composition metamodels respectively. The CSP||B specification, as
presented in [3], is used for animating and verifying the inter-DSL collaboration
processes.

4 Application to Smart Grid System

In our approach, the Model-driven engineer specifies the DSLs metamodels and
the BPMN models of their collaboration. Then, the metamodels and BPMN dia-
grams are transformed into B and CSP respectively, while integrating the system

A Formal MDE Framework for Inter-DSL Collaboration 239

properties. Afterwards, the operator can animate the formal specifications while
observing the respect of the properties.

In [5], we describe the different steps of our approach and its application
to our case study. We also provide the different artifacts of this case study. The
modeling part includes the CM-DSL and SRA-DSL metamodels, the metamodel
of their composition, the models that define the instances of the metamodels,
and the BPMN diagram that describes the collaboration between the DSLs. The
formal specification part includes the B machines generated from the DSLs and
their composition as well as the CSP model specified from the BPMN diagram.

4.1 Modeling DSLs and Their Collaboration

Metamodels. Figure 4 shows the metamodels that we propose for our case
study (one per DSL, and a third one for the composition). Part A of Fig. 4 is
the EMF metamodel of CM-DSL. The root class (CM) is composed of a set
of applications and a set of infrastructures. Every application applies a specific
optimisation algorithm that gets the production parameters and information
from sensors to trigger actions such as limiting the production on wind farms or
charging batteries. Infrastructures are based in RTE power stations and data-
centers, connected by a private telecommunication network. A CM model is
also composed of configurations, each one consists of the combination of one
application and one infrastructure and it is characterized by its response time
(QoS) and validation state (isValid). The CM-DSL defines the following opera-
tions : selectConfig selects one configuration from the list of CM configurations,
validateConfig validates the selected configuration, and setQoS introduces or
modifies the QoS of the selected configuration.

In part B of Fig. 4 the SRA-DSL metamodel is shown, which is composed
of metaclasses for specifying the possible threats of the system and the defenses
that can be deployed to protect the system. Each defense is characterised by a
cost (costDef), which is the delay caused by its activation in the RTE platform. A
series of metaclasses are introduced for representing the logical operators (NOT,
OR, AND) combining threats and defenses. The operations of SRA-DSL are :
initSRA selects the subset of possible threats, selectThreat selects a threat from
the set of possible threats, computeDefenses calculates the subset of defenses
that can block the selected threats.

Finally, part C of Fig. 4 shows the composition metamodel. Metaclass COM-
POSITION is composed of the root metaclasses of the previously presented DSLs
(CM-DSL and SRA-DSL). The composition has its own operations that define
its execution semantics. Indeed, we introduce the notion of Secure Configura-
tion that associates a set of defenses to a valid configuration (using operation
affectValidDefenses). Furthermore, operation approveSecureConfig allows one to
validate a Secure Configuration if it ensures risk assessment and quality of service
properties.

Inter-DSL Collaboration. In our proposal, we describe the inter-DSL col-
laboration using a BPMN model (Fig. 5) relying on the operations of the above

240 S. Chehida et al.

Fig. 4. DSL and composition metamodels

metamodels. We use the notion of Pool to separate the execution semantics of
every DSL. The collaboration starts in pool DSLs COMPOSITION, where it
triggers via a message (named ConfigurationRequest) the selection and valida-
tion of a configuration at the CM-DSL level. Note that this corresponds to a
functional validation, not considering yet the security aspects. Afterwards, in
the composition pool, a new secure configuration is created and associated to
the validated configuration. This task is triggered by the reception of message
ValidConfig. The new secure configuration is then sent to the SRA-DSL pool in
order to select possible threats of this configuration and compute the defenses
that can prevent them. When receiving the defenses (message ValidDefenses),
it is possible to approve the secure configuration after checking the global QoS
and the other risk assessment properties.

A Formal MDE Framework for Inter-DSL Collaboration 241

Fig. 5. BPMN collaboration model of SRA-DSL and CM-DSL

4.2 Formalization of Metamodels

While metamodels describe static semantics of DSLs, the BPMN model and the
associated operations represent their execution semantics. We need on the one
hand a tool to define and animate these semantics and on the other hand a way to
guarantee that the security properties are preserved by the underlying behaviour.
To this purpose the Meeduse framework has been extended. The tool applies the
B method to formally define execution semantics of DSLs using B operations,
which allows us to introduce the security properties using B invariants. From
this formal specification the AtelierB prover is applied in order to guarantee the
correctness of the model. In this section, we start by presenting an excerpt of
the resulting B specifications, and then we discuss the CSP model that is built
from our BPMN diagram.

Given a metamodel, Meeduse generates a formal B specification in which
classes are defined using sets. Attributes and associations are defined using func-
tional relations. Not all of our specifications are presented but only an exam-
ple, as we rather focus on the composition metamodel. The header part of the
corresponding specification is given below. This B machine includes machines

242 S. Chehida et al.

CM DSL and SRA DSL issued from our DSLs and where operations select-
Config, validateConfig, setQoS, selectThreat, computeDefenses and initSRA are
defined.

MACHINE DSL Composition
INCLUDES CM DSL, SRA DSL
PROMOTES

selectConfig, validateConfig, setQoS, /* from CM DSL */

selectThreat, computeDefenses, initSRA /* from SRA DSL */

Figure 6 gives the B data structures and their typing invariants that are
produced by Meeduse from the composition metamodel. Specializations of func-
tional relations depend on the character of attributes and associations: sin-
gle/multiple valuated and mandatory/optional. Class SecureConfiguration is
transformed into an abstract set named SECURECONFIGURATION that rep-
resents the set of possible instances of the class. Variable SecureConfiguration
defines the effective instances of this class. We introduced in this machine the
variable theSecConf in order to represent the current secure configuration that
is managed by a given process.

Fig. 6. B data of the composition machine

Regarding the inter-DSL properties P1, P2 and P3 introduced in Sect. 2, they
are formally defined as follows. This invariant means that if a secure configuration
is created (i.e. becomes an existing instance) and validated, then P1, P2 and P3
hold.

A Formal MDE Framework for Inter-DSL Collaboration 243

DEFINITIONS

sumDefCost(sc) ==
∑

def . (def ∈ validDefenses[{sc}] | costDef(def))

approve(sc) ==

sumDefCost(sc) + QoS(validConfig(sc)) ≤ maxQoS(sc)

∧ sumDefCost(sc) ≤ relativeCost(sc) × QoS(validConfig(sc))

∧ validDefenses[{sc}] �= ∅
INVARIANT

theSecConf ∈ SecureConfiguration ∧ isValidSecConf(theSecConf) = TRUE

⇒ approve(theSecConf)

The dynamic parts of the various B machines contain B operations that spec-
ify the execution semantics of our DSLs. We provide for example the specifica-
tion of operation approveSecureConfig that is defined in the DSL Composition
machine:

OPERATIONS

approveSecureConfig =

PRE

theSecConf ∈ SecureConfiguration

∧ isValidSecConf(theSecConf) = FALSE

∧ approve(theSecConf)

THEN

isValidSecConf(theSecConf) := TRUE

END

All our specifications have been proved correct via the AtelierB prover [6].
The latter produces Proof Obligations (POs), which correspond to theorems
that require proof in order to verify the correctness and consistency of a B
machine. AtelierB offers an automatic prover able to prove the majority of POs
automatically, without any user interaction. This makes it easy to quickly verify
large parts of the system specification, and reduces the burden on the user to
manually prove each individual PO. The prover also provides interactive prover
designed for handling and finalizing complex proofs, also for detecting errors in
the specifications.

With AtelierB, we generated 299 POs. Most of them have been proved auto-
matically; only 10 POs have been discharged manually using the interactive
prover. The latter ones required additional information to be completed and
corrected. The proof using AtelierB provides the guarantee that all the invari-
ants of our DSLs are preserved by the formal specifications of their execution
semantics and that the composition is correct with regards to these invariants
and the security properties.

4.3 BPMN Formalization with a CSP Transformation

Having the B specifications, the formalization of the coordination model can
be treated. Our objective is to apply the workflow of the BPMN model to the
B operations issued from the machine DSL Composition. To this purpose, we
extend Meeduse with a transformation from BPMN into CSP, which allows us

244 S. Chehida et al.

to apply the approach of CSP||B [23]. This technique is inspired by the work of
M. Kleine [13] about the usage of CSP as a coordination language. The idea is to
coordinate (non-)atomic actions (in our case these are B operations) of a system
by a CSP-based coordination environment in a noninvasive way, meaning that
actions do not need to be modified to be coordinated. In this sense, the formal
B specifications that define the semantics of our DSLs remain unchanged. We
just layer a CSP model on top of them, to distinguish the coordination concerns
from state related properties.

In CSP, a process represents an independent entity that performs a sequence
of events, which is similar to the notion of pool in BPMN. Communication
between processes is ensured via channels, that may or not transmit data flows.
We use this notion to represent exchanged messages represented in the BPMN
model.

Accordingly, to transform the BPMN collaboration model we first transform
pools leading to independent CSP processes (Fig. 7), and then we produce a main
process (Fig. 8) to synchronize them being guided by the message exchanges
between pools. Note that by convention, processes are named in uppercase and
channels in lowercase. The used CSP constructs are:

Process ::= SKIP /* terminating process */

| ch -> Process /* simple action prefix where ch is a channel */

| Process ; Process /* sequential composition */

| Process [] Process /* external choice */

A channel ch may transmit data d, which is denoted as ch?d for read-
ing data, and ch!d for writing data. Furthermore, a process can be defined
with parameters such as Process(param1,. . .,paramn). Inputs, outputs and pro-
cess parameters are useful in our case since the communication between pools
is done via messages that may contain some data. For example, message
ConfigurationRequest of CM DSL enables process IDENTIFY CONFIGURATION
without any data; on the other hand, message ValidConfig is produced by
validateConfig and received by createSecureConfig, and contains a valid
configuration. This data is represented with parameter conf. In one case it is an
input data and in the other case it is an output data.

The synchronisation of processes CM DSL, SRA DSL and DSLs COMPOSITION
is done in the MAIN process (see Fig. 8). This process applies a parallel compo-
sition with channels’ synchronisation, representing the exchanged messages. For
instance, processes CM DSL and DSLs COMPOSITION are synchronised on chan-
nels ConfigurationRequest and ValidConfig. As their starting point is chan-
nel ConfigurationRequest they are both triggered at the same time. However,
the next step of DSLs COMPOSITION is ValidConfig?conf, which means that
DSLs COMPOSITION is blocked until CM DSL reaches ValidConfig!conf. This
execution conforms to the BPMN model since the coordination starts by asking
CM DSL to provide a valid configuration and next, a secure configuration is
created from this valid configuration.

A Formal MDE Framework for Inter-DSL Collaboration 245

Fig. 7. Transformation of pools into CSP

Fig. 8. Parallel synchronisation of pools

4.4 Discussion

The CSP model and the B specifications that describe the semantics of DSLs
provide a formal framework that is managed by ProB and Meeduse in order
to ensure the animation as well as the verification. First, Meeduse valuates the
formal B specifications from the models of Figs. 1 and 2. The resulting val-
uations are then delivered to ProB, which allows a step-by-step animation of
B operations. The execution of DSLs in Meeduse using ProB is well mastered
today and has been discussed in [10]. However, the shortcoming of this approach
is the absence of guidance during animation, which makes it inconvenient for
DSL collaboration. In order to address this limitation, we suggest to apply the
CSP||B approach. The idea is to marry CSP and B such that the execution of a

246 S. Chehida et al.

B operation corresponds to an event that can be enabled in CSP, which provides
a guidance all along the animation process. Roughly speaking, the B machine
and the CSP process must synchronise on common events, that is, an operation
can only happen in the combined system when it is allowed both by the B and
the CSP. For more details about this technique we refer the reader to [3].

We have tested several executions of our coordination model based on our
case study, leading to the creation of several secure configurations with various
threats and defenses. Figure 9 shows the animation of the composition B machine
presented in Sect. 4.2 guided by the CSP model of Figs. 7 and 8, using the ProB
tool. In the History window, an example of execution scenario that creates a new
secure configuration is shown. The Enabled Operations window lists operations
that can be called at this stage and whose execution will satisfy their precon-
dition, and therefore preserve the state invariant. The State Properties window
provides the current value of each state variable of the composition machine. At
the animation step, we can observe the insurance of system properties P1, P2
and P3 introduced in Sect. 2.3 and specified as invariants in the composition B
machine in Sect. 4.2.

Fig. 9. ProB screenshot showing animation and verification of inter-DSL collaboration

Regarding verification, one of the advantages of B is the availability of theo-
rem provers and model-checkers. We did not discuss in details this activity but
note that all our formal specifications have been proved, which guarantees the
correctness of the B models on which we built the coordination process. Indeed,
our approach ensures the correctness and reliability of the resulting RTE system,

A Formal MDE Framework for Inter-DSL Collaboration 247

which can help preventing dangerous situations that can be caused by overcur-
rent in the transmission lines.

5 Related Work

The problem of managing the interactions between models is not new and it has
been addressed in various fields including Artificial Intelligence, Robotics, and
Control Systems. In the context of Model Driven Engineering (MDE), the pro-
posed solutions are categorized into two classes: composition and coordination
approaches [16]. The composition approaches build a model specifying the struc-
tural relationships between model elements. The composition model is specified
using matching operators that define the syntactic similarities between model
elements and merging operators that implement rules to specify how the matched
elements must be composed. The operators are provided by dedicated languages
such as Epsilon [14]. The composition model can also be defined by composing
the syntax of different model languages into a new language syntax expressed
by a metamodel [7]. As part of the composition approaches, F. Jouault et al.
[12] combine megamodeling and model weaving techniques to build an environ-
ment that ensures traceability and navigation between the DSLs models. The
environment represents links between different DSL models, which provides an
intuitive way to understand relationships between them. However, these com-
position approaches consider only the language’s static syntax; they focus on
traceability without taking into account execution semantics.

In coordination approaches, a new model is often built to define how the
models behave and interact with each other. Dedicated languages (e.g. Linda [9])
have been proposed for this purpose. There also exist some coordination frame-
works, such as ModHel’X [2], to automate and support the coordination process.
However, the coordination is encoded using a general-purpose programming lan-
guage (Java), which is not suitable for performing verification and validation. As
part of the GEMOC project2, Larsen et al. [17] propose the B-COoL language
that allows specifying a coordination pattern between DSLs. The language offers
concurrency and communication models representing the control-flow aspects,
including the synchronisation and the causality relationships between execution
functions. This is close to some CSP operators, but the missing piece is the usage
of provers and model-checkers for automatic verification activities. In our work
we apply well-known formal languages (B and CSP) and an established semi-
formal notation (BPMN), which enables the application of widely used tools for
modeling and verification.

Our approach combines the composition and coordination techniques. We
build a composition metamodel that refers to the coordinated DSLs metamod-
els without altering their semantics and behaviors. BPMN diagram is used for
expressing the coordination process between the DSLs. The DSLs metamodels
and the BPMN coordination model are then transformed into a formal specifi-
cation to be used for checking and validating the DSLs models coordination.
2 https://gemoc.org/

https://gemoc.org/

248 S. Chehida et al.

6 Conclusion

This paper presented a tool-supported approach for the formal modeling and ver-
ification of inter-DSL collaboration. The approach extends the Meeduse frame-
work by integrating a composition metamodel and BPMN model to explicitly
specify inter-DSL collaboration. The formal specification generated from the
models and metamodels is then used to verify the DSLs models coordination.
The proposed approach was demonstrated to be effective through its successful
application in a real case study.

Going forwards, the next steps include implementing and validating the
transformation rules from BPMN to CSP, as well as expressing and checking
properties at the workflow level. These developments will further enhance the
automation and reliability of the proposed approach.

Data Availability Statement

The artifact is available in the Software Heritage repository:

swh:1:dir:c38d7336f13f438eab7212227f10fb0dbf0350c1

References

1. Abrial, J.R.: The B-book: assigning programs to meanings. Cambridge University
Press (1996). https://doi.org/10.1017/CBO9780511624162

2. Boulanger, F., Hardebolle, C.: Simulation of multi-formalism models with Mod-
hel’x. In: 2008 1st International Conference on Software Testing, Verification, and
Validation, pp. 318–327 (05 2008). https://doi.org/10.1109/ICST.2008.15

3. Butler, M., Leuschel, M.: Combining CSP and B for specification and prop-
erty verification. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A. (eds.) FM 2005.
LNCS, vol. 3582, pp. 221–236. Springer, Heidelberg (2005). https://doi.org/10.
1007/11526841 16

4. Chehida, S., Baouya, A., Bozga, M., Bensalem, S.: Exploration of impactful coun-
termeasures on IoT attacks. In: 9th Mediterranean Conference on Embedded Com-
puting, MECO 2020, Budva, Montenegro, 8–11 June 2020, pp. 1–4. IEEE (2020).
https://doi.org/10.1109/MECO49872.2020.9134200

5. Chehida, S., Idani, A., Cortes-Cornax, M., Vega, G.: GitHub artifacts. http://
github.com/SalimChehida/Inter-DSL-Collaboration

6. Clearsy: Atelier B. http://www.atelierb.eu/en/
7. Emerson, M., Sztipanovits, J.: Techniques for metamodel composition. In: OOP-

SLA - 6th Workshop on Domain Specific Modeling (2006)
8. Flavio, C., Alberto, P., Barbara, R., Damiano, F.: An ECLIPSE Plug-in for for-

mal verification of BPMN processes. In: 2010 Third International Conference on
Communication Theory, Reliability, and Quality of Service, pp. 144–149 (2010).
https://doi.org/10.1109/CTRQ.2010.32

9. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
mun. ACM 35(2), 97–107 (1992)

https://archive.softwareheritage.org/browse/directory/c38d7336f13f438eab7212227f10fb0dbf0350c1/?origin_url=https://github.com/SalimChehida/Inter-DSL-Collaboration&revision=183cf102c777789047c5d7e0902d8a436557040f&snapshot=208db504ef0bd264e9e29e45b873992a5ef64223
https://doi.org/10.1017/CBO9780511624162
https://doi.org/10.1109/ICST.2008.15
https://doi.org/10.1007/11526841_16
https://doi.org/10.1007/11526841_16
https://doi.org/10.1109/MECO49872.2020.9134200
http://github.com/SalimChehida/Inter-DSL-Collaboration
http://github.com/SalimChehida/Inter-DSL-Collaboration
http://www.atelierb.eu/en/
https://doi.org/10.1109/CTRQ.2010.32

A Formal MDE Framework for Inter-DSL Collaboration 249

10. Idani, A.: Meeduse: a tool to build and run proved DSLs. In: Dongol, B., Troubit-
syna, E. (eds.) IFM 2020. LNCS, vol. 12546, pp. 349–367. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-63461-2 19

11. Idani, A., Ledru, Y., Ait Wakrime, A., Ben Ayed, R., Bon, P.: Towards a tool-
based domain specific approach for railway systems modeling and validation. In:
Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS,
vol. 11495, pp. 23–40. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
18744-6 2

12. Jouault, F., Vanhooff, B., Bruneliere, H., Doux, G., Berbers, Y., Bezivin, J.: Inter-
DSL coordination support by combining megamodeling and model weaving. In:
Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 2011–2018.
SAC 2010, Association for Computing Machinery, New York, NY, USA (2010)

13. Kleine, M.: CSP as a coordination language. In: De Meuter, W., Roman, G.-C.
(eds.) COORDINATION 2011. LNCS, vol. 6721, pp. 65–79. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21464-6 5

14. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Merging models with the epsilon
merging language (EML). In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G.
(eds.) MODELS 2006. LNCS, vol. 4199, pp. 215–229. Springer, Heidelberg (2006).
https://doi.org/10.1007/11880240 16

15. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack–
defense trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS,
vol. 6561, pp. 80–95. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19751-2 6

16. Larsen, M.E.V.: BCOol: the behavioral coordination operator language, Ph. D.
thesis, University of Nice Sophia Antipolis, France (2016)

17. Larsen, M.E.V., DeAntoni, J., Combemale, B., Mallet, F.: A behavioral coordina-
tion operator language (BCOoL). In: Proceedings of the 18th International Confer-
ence on Model Driven Engineering Languages and Systems. MODELS 2015, IEEE
Press (2015)

18. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
Int. J. Softw. Tools Technol. Transfer 10, 185–203 (2008)

19. Milner, R.: A Calculus of Communicating Systems. Springer-Verlag, Berlin, Hei-
delberg (1982). https://doi.org/10.1007/3-540-10235-3

20. OMG: Business Process Model and Notation (BPMN), Version 2.0 (2011). http://
www.omg.org/spec/BPMN/2.0

21. OMG: Unified modeling languageTM (uml R©) (2011). http://www.omg.org/spec/
UML/index.htm

22. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall PTR, USA
(1997)

23. Schneider, S., Treharne, H.: CSP Theorems for Communicating B Machines. Form.
Asp. Comput. 17(4), 390–422 (2005). https://doi.org/10.1007/s00165-005-0076-7

24. Tourchi Moghaddam, M., Rutten, E., Giraud, G.: Hierarchical control for self-
adaptive IoT systems : a constraint programming-based adaptation approach.
In: HICSS 2022 - Hawaii International Conference on System Sciences, pp. 1–10.
Hawaii, United States (2022). http://hal.inria.fr/hal-03461137

https://doi.org/10.1007/978-3-030-63461-2_19
https://doi.org/10.1007/978-3-030-18744-6_2
https://doi.org/10.1007/978-3-030-18744-6_2
https://doi.org/10.1007/978-3-642-21464-6_5
https://doi.org/10.1007/11880240_16
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1007/3-540-10235-3
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/UML/index.htm
http://www.omg.org/spec/UML/index.htm
https://doi.org/10.1007/s00165-005-0076-7
http://hal.inria.fr/hal-03461137

Run-Time Changes

Legal Contracts Amending with Stipula

Cosimo Laneve1(B) , Alessandro Parenti2 , and Giovanni Sartor2

1 Department of Computer Science and Engineering, University of Bologna,
Bologna, Italy

cosimo.laneve@unibo.it
2 Department of Legal Studies, University of Bologna, Bologna, Italy

Abstract. Legal contracts can be amended during their lifetime through
the agreement of the parties or in accordance with the doctrines of force
majeure and hardship. When legal contracts are defined using a program-
ming language, amendments are made through runtime adjustments to
the contract’s behavior and must be expressed by means of appropri-
ate language features. In this paper, we examine the extension of Stipula,
a formal language for legal contracts, with higher-order functionality to
enable the dynamic updating of contract codes. We discuss the seman-
tics of the language when amendments either extend or override the con-
tract’s functionality. Additionally, we study two techniques for constrain-
ing amendments, one using annotations within the contract and another
that allows for runtime agreements between parties.

1 Introduction

In [7] we presented Stipula, a domain specific language that can assist lawyers
in drafting executable legal contracts, through specific software patterns. The
language is based on a small set of programming primitives that have a precise
correspondence with the distinctive elements of legal contracts [6]. By means of
these primitives, it is possible to transfer rights (such as rights of property) from
one party to another and to take advantage of escrows and securities. The bene-
fits of coding legal contracts are evident: it enables the identification of potential
inconsistencies in regulation, reducing the complexity and the ambiguity of legal
texts and automatically executing legal rules.

Stipula has been designed with the principle of having an abstraction level as
close as possible to traditional legal contracts, which are written in natural lan-
guages, thus easing the writing and inspecting of the codes. In this contribution
we pursue on our programme addressing the need of removing or amending the
effects of a contract after it has been agreed upon.

There may be several reasons for modifying a contract. For example, a con-
tract may be declared totally or partially void by an adjudicator because its
content, or the process of its formation, violates the law. More interesting are

Supported by the SERICS project (PE00000014) under the MUR National Recovery
and Resilience Plan funded by the European Union – NextGenerationEU – and by the
H2020 ERC Project CompuLaw (G.A. 833647).

c© IFIP International Federation for Information Processing 2023
S.-S. Jongmans and A. Lopes (Eds.): COORDINATION 2023, LNCS 13908, pp. 253–270, 2023.
https://doi.org/10.1007/978-3-031-35361-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35361-1_14&domain=pdf
http://orcid.org/0000-0002-0052-4061
http://orcid.org/0000-0002-9855-7792
http://orcid.org/0000-0003-2210-0398
https://doi.org/10.1007/978-3-031-35361-1_14

254 C. Laneve et al.

the situations of force majeure and hardship, which occur when unforeseen events
make performance impossible or impracticable (force majeure) or substantially
upset the economic balance of the contract (hardship) [3,11]. While in the first
case the party successfully invoking force majeure may be relieved, at least tem-
porarily, from performance or may terminate the contract, in the second case
the party subject to hardship may be entitled to obtain an adaptation of the
contract to the changed circumstances.

The current Stipula contracts are immutable. Therefore, in order to model
either force majeure or hardship one should anticipate when the contract is
traded all the appropriate amendments for each possible circumstance. While
this is easy for termination clauses (it is enough to include a transition to a final
state), it is clearly impossible for generic amendments [18]. Even an attempt
to do that would raise drafting costs and introduce huge complexities in the
contract, thus nullifying one of the main objectives of Stipula, which is to have
a simple and intelligible code.

To address amendments we propose an extension of Stipula with a higher-
order mechanism. Following [20], we admit that function invocations may carry
codes that patch the previous ones. In Sect. 4 we study the formal semantics of
the resulting language, called higher-order Stipula. In particular, we identify and
discuss two paradigmatic scenarios. A scenario where the modification affects the
whole body of the contract and its code is completely changed and substituted
by a new code. Another scenario is where the amendment only regards some
parts of the contract while leaving the other parts still operative. This situation
adds a further level of semantic complexity in that it requires to deal with the
coexistence of old and new code. We give examples of the use of higher-order
Stipula in Sect. 3 that will spot these issues.

According to the semantics defined in Sect. 4, in higher-order Stipula amend-
ments are unconstrained: a party may modify the contract without the consent
of all the parties involved. This is clearly at odds with the fundamental prin-
ciples of contract law (i.e., consensus ad idem). We then explore two methods
for limiting amendments. In Sect. 5 we discuss a set of static-time constraints on
amendments that the parties agree when the contract is traded. The constraints
allow one to implement a predicate that parses the (run-time) amendments and
verifies their compliance. In Sect. 6 we study a technique that requires the agree-
ment of the parties in correspondence of every amendment.

We end our contribution by discussing the related work in Sect. 7 and deliv-
ering our final remarks in Sect. 8.

2 From Stipula to higher-order Stipula

Higher-order Stipula is an extension of Stipula with higher-order functions. In
this contribution, for simplicity, we extend a lightweight version of the language
in [7] (the full language also has the agreement clause and events); this allows us
to avoid discussions that are out of the scope of this paper. Additionally, since
Stipula is not popular, we first present the lightweight language and then the
extension.

Legal Contracts Amending with Stipula 255

Table 1. Syntax of Stipula (in black only) and higher-order Stipula

F ::= -- | @Q A : f(y)[k] (E){ S } => @Q′ F | @Q A : F� X �{ H } F

P ::= E → x | E → A | E × h � h′ | E × h � A | if (E) { S } else { S }
S ::= -- | P S

E ::= v | V | E opE | uopE

H ::= (remove X)? (add X)? run X

We use disjoint sets of names: contract names, ranged over by C, C’, · · · ;
names referring to digital identities, called parties, ranged over by A, A′, · · · ;
function names ranged over f, g, · · · (in general, function names start with a
small-case letter); asset names, ranged over by h, k, · · · , to be used both as
contract’s assets and function’s asset parameters; non asset names, ranged over
x, y, · · · , to be used both as contact’s fields and function’s non asset parameters.
Assets and generic contract’s fields are syntactically set apart since they have
different semantics, similarly for functions’ parameters. Names of assets, fields
and parameters are generically ranged over by V . Names @Q, @Q′, · · · will range
over contract states. To simplify the syntax, we often use the vector notation x
to denote possibly empty sequences of elements. With an abuse of notation, in
the following sections, x will also represent the set containing the elements in
the sequence.

The code of a Stipula contract is

stipula C { parties A fields x assets h init @Q F }

where C identifies the contract name; A are the parties that can invoke con-
tract’s functions, x and h are the fields and the assets, respectively, and the
initial state is set to @Q. The contract body also includes the sequence F of func-
tions, whose syntax is defined in Table 1 (the terms in black). It is assumed that
there is no clash of names of parties, fields, assets and functions’ parameters. In
the following, the declaration part of a contract, namely the sequence parties
A fields x assets h F will be ranged over by the symbols D, D

′, · · · .
First-order functions highlight who is the caller party A, the state @Q when

the invocation is admitted and the name of the function. The invocation has two
lists of parameters: the formal parameters y in brackets and the asset parameters
k in square brackets. The precondition E constrains the execution of the body;
the body { S } => @Q′ specifies the statement part S and the state @Q′ of the
contract when the function execution terminates.

Statements S include the empty statement -- and different prefixes followed
by a continuation. Prefixes P use the two symbols → and � to differentiate
operations on non-asset names and on assets, respectively. The prefix E → x
updates the field or the parameter x with the value of E; E → A sends the
value of E to the party A; E × h � h′ subtracts the value of E × h from the
asset h and adds it to h′, E × h � A subtracts the value of E × h from the
asset h and transfers it to A. (The semantics in Sect. 4 will enforce that assets
never have negative values.) In the rest of the paper we will always abbreviate

256 C. Laneve et al.

Table 2. The Deposit contract with a higher-order function

stipula Deposit {
parties Client, Farm

fields cost flour

assets flour

init @Standard

@Standard Farm: send()[h]{ h → Client h � flour } => @Standard

@Standard Client: buy(x)[w] (w == x×cost flour �� x <= flour){
(x/flour)×flour � Client w � Farm

} => @Standard

@Standard ~ : Hardship� X, Y, Z �{ remove X add Y run Z }
}

1×h � h′ and 1×h � A (which are very usual, indeed) into h � h′ and h � A,
respectively. It is worth to spot the difference between h → A and h � A: in the
first case, the real number representing the value of h is sent to A, but h still
retain its value; in the second case, the asset h is sent to A and h is emptied.
We also use “ ˜ ” to address all the parties. For instance, if the parties are A
and B, then "hello" → ˜ means "hello" → A "hello" → B (the order is
not relevant, according to the extensional semantics in [7]). Prefixes also include
conditionals if (E) {S } else {S′ } with the standard semantics.

Expressions. E include constant values v, which may be strings, reals,
booleans, and asset values, names V , and both binary and unary operations
(on reals and booleans). In particular, real numbers n are written as nonempty
sequences of digits, possibly followed by “.” and by a sequence of digits (e.g. 13
stands for 13.0). The number may be prefixed by the sign + or -. Reals come
with the standard set of binary arithmetic operations (+, -, ×, /). Boolean con-
stants are false and true; the operations on booleans are conjunction ��,
disjunction ||, and negation !. Constant values of type asset represent fungible
resources (e.g. digital currencies). For simplicity, fungible asset constants are
assumed to be identical to nonnegative real numbers (assets can never assume
negative values). Relational operations (<, >, <=, >=, ==) are available between
any expression.

To illustrate lightweight Stipula, we discuss a simple contract in Table 2 (the
part in black). A Client contracts with a Farm to pay flour at a given cost. The
protocol is the following: Farm sends the flour (function send) and the good is
stored in the flour asset: no delivery to Client is operated till he pays for it.
The prefix h → Client communicates to the Client that a new amount of flour
is available. The function buy takes in input a value x denoting that the Client
wants to buy an amount x of flour, and an asset w representing the money he
wants to spend. The function takes x kg of flour from the deposit (provided
it is in – see the guard), sends the flour to the Client and updates the asset
flour correspondingly – operation (x/flour)×flour � Client –; the money
w is transferred to Farm.

Legal Contracts Amending with Stipula 257

Contract are invoked by specifying the actual identities of parties and the
fields’ values (at the beginning all the assets are empty) – c.f. the semantics in
Sect. 4. We use italic fonts A, B, Farm, Client , · · · , to distinguish parties’ actual
identities from parties formal names A, B, Farm, Client, · · · . These parties’
actual identities correspond to digital identities and the same identity may be
given to different formal names (which are always pairwise different). Indeed, it
may happen that the same party may have two roles in a legal contract. The
contract will begin in the state that is specified in the init clause.

Higher-order Stipula extends the syntax of Stipula in Table 1 with higher-
order functions – the red part. In particular, we use higher-order function names
ranged over F, G, · · · (in general, function names that start with an upper-case
letter). We discuss the declaration @Q A : F�X,Y,Z �{ remove X add Y run Z }
that has a complete set of (amendment) directives H. The parameters of F are
X, Y and Z: X is a sequence of function names (possibly with state and party
names) that will be removed from the contract; Y is a possible empty sequence
of declarations of new parties with their identities, fields and assets as well as of
functions that will amend the contract – it will be instantiated by codes D; Z is
the body of F and will be instantiated by codes {S } => @Q, where @Q may also be
a new state defined in (the code that instantiates) Y . According to the syntax in
Table 1, the remove and add clauses in the directives H are optional, while the
run clause is mandatory. For example, the function Hardship of the Deposit
contract in Table 2 represents a clause included by Client and Farm according
to which a party can ask either for the amendment of the contract or for its
termination. (This may be subordinated to a third party’s decision – a court,
an arbitrator or a mediator – assessing the existence of hardship conditions;
here, for simplicity, we empower Client and Farm to perform these updates). In
Sect. 3 we will study possible amendments of the Deposit contract.

We notice that our syntax has been inspired by the Delta-Oriented Program-
ming paradigm [15]: the directives “remove” and the “add” are taken from that
paradigm. Preliminary investigations show that these directives are already suf-
ficient for specifying hardship clauses. It will be a focus for future works to test
higher-order Stipula with the representation of more complex, context-specific
contracts.

Remark 1. The syntax of (higher-order) Stipula is type-free: types have been
dropped because there are no such annotations in standard legal contracts and
therefore they may be initially obscure to unskilled users, such as legal practi-
tioners. The paper [7] defines and the prototype [8] implements a type inference
system that allows one to derive types of assets, fields and functions’ arguments,
and that can be used in the future to develop a user-friendly programming inter-
face for Stipula.

3 Examples of Amendments

Because of the variety of situations, needs and dynamics involved, the contractual
practice is, by nature, a very heterogeneous field. This makes it difficult, if not

258 C. Laneve et al.

impossible, to create general overarching examples starting from particular cases.
Here we discuss three simple examples built on the Deposit contract of Table 2,
with the specific purpose of explaining the technical functioning of the higher-
order to modify Stipula contracts.

The initial example is commonly found in practice, i.e. hardship cases [11],
and builds a simplistic representation of contractual relationship around it.
Because of a war outbreak and a sudden rise in production costs, the Farm
requests to amend the contract: she requires that the payment is performed in
advance with respect to the delivery and that half of the amount is sent imme-
diately to her. Therefore she invokes

Farm : Hardship� ε, D, {"Pay in Advance" →˜ flour � Farm} => @Excp �

where ε indicates that there is no function to remove and D is

assets wallet

@Excp Client: order(x)[w] {
w/cost flour → Farm 0.5×w � Farm w � wallet } => @Excp2

@Excp2 Farm: send(x)[h] (h == (2×wallet)/cost flour){
h � Client wallet � Farm } => @Excp

@Excp ~ : Hardship� X, Y �{ add X run Y }

That is, the code D is specifying a new asset and three new functions. The func-
tion order lets Client pay in advance, sends to Farm the order w/cost flour
and half of the cost 0.5 × w, the other half is stored in the new asset wallet.
Once the flour is ready, it is delivered to the Client (function send) and the
wallet is delivered to Farm. Notice that the third parameter (the one replacing
Z in Table 2) empties the flour asset returning the amount to Farm and lets the
contract transit to the new state @Excp. Overall, the old behaviour is suppressed
in favour of the new one because it is not possible to return to the @Standard
state.

After some time, the parties want to return to the old protocol. However,
a new law imposes a 20% tax on flour sales. To bear the new taxation, the
Farm invokes the hardship clause to increase flour price (also tax payment to
the Government gets implemented). Therefore, in the state @Excp, Farm invokes
Hardship� D

′, B′
� (notice that the Hardship in @Excp has two arguments only

and a different body than the one in @Standard) where

D
′ = parties Government = Govern

@Standard Client: buy(x)[w] (w == x×cost flour �� x <= flour){
(x/flour)×flour � Client 0.2×w � Government w � Farm

} => @Standard

B′ = { "Back to Standard and upgrade flour price" → ~

cost flour + 0.2×cost flour → cost flour } => @Standard

Legal Contracts Amending with Stipula 259

D
′ is extending the parties with a new one (Government whose id is Govern)

and the function buy dispatches the 20% of the cost of every transaction to the
Government. The old protocol is restored because the body in the last line is
making the transition to the Standard state. However, in this case, the new
function @Standard Client:buy is overriding the old one in Table 2, which will
be never accessed again because its guard is the same of the new function. We
observe that, in higher-order Stipula, parties, assets and fields names may be
added by the amendment; we only constrain the new names not to clash with
old ones.

Later on, Farm decides to accept orders only if they are above a
certain quantity lbval. Therefore, in the state @Standard, she invokes
Hardship� buy, D′′, B′′

� where
D

′′ = fields lower bound

@Standard Client: buy(x)[w]

(w == x×cost flour �� x <= flour �� x >= lower bound){
(x/flour)×flour � Client 0.2×w � Government w � Farm

} => @Standard

B′′ = { "No order below lbval anymore" → ~

cost flour + 0.2×cost flour → cost flour

lbval → lower bound } => @Standard

In this case, the directive to execute is remove buy add D
′′ run B′′ that

removes the function buy from D and adds the new one in D
′′. We observe

that the new field lower bound is initialized in B′′. It is also worth to notice
that the invocation Farm:Hardship� ε, D′′, B′′

� would have displayed a different
effect: in this last case, since the buy in Table 2 is still in force, the invocations
of buy with amount lower that lbval would have been dispatched to the old buy
and accepted. This is an issue because the buy in Table 2 does not comply with
the new law about taxes.

4 Semantics

Following the presentation of Sect. 2, we first define the operational semantics
of lightweight Stipula and then we discuss the extension. We use a transition
relation between configurations, i.e. D � @Q , � , Σ

μ−→ D
′ � @Q′ , �′ , Σ′ where

– D, D
′ are the declaration part of a contract (in Stipula, it is always D = D

′,
in higher-order Stipula D and D

′ may be different because of amendments, see
below);

– @Q, @Q′ are states of D or D
′;

– �, �′ called memories, are mappings from names (parties, fields, assets and
function’s parameters) to values. The values of parties are noted with italic
fonts A,A′, · · · . These names cannot be passed as function’s parameters and
cannot be hard-coded into the source contracts, since they do not belong to
expressions; they are initialized when the contract is instantiated or, for new
parties, in the higher-order step;

260 C. Laneve et al.

Table 3. The transition relation of Stipula (in black only) and higher-order Stipula

[Value-Send]

�E�� = v �(A) = A

D � @Q , � , E → A Σ
v→A−→ D � @Q , � , Σ

[Field-Update]

�E�� = v �′ = �[x �→ v]

D � @Q , � , E → x Σ −→ D � @Q , �′ , Σ

[Asset-Send]

�(A) = A 0 ≤ �E�� ≤ 1 �E × h�� = u

�h − u�� = v �′ = �[h �→ v]

D � @Q , � , E × h � A Σ
u�A−→ D � @Q , �′ , Σ

[Asset-Update]

0 ≤ �E�� ≤ 1 �E × h�� = u �h − u�� = v

�h′ + u�� = v′ �′ = �[h �→ v, h′ �→ v′]

D � @Q , � , E × h � h′ Σ −→ D � @Q , �′ , Σ

[Cond-true]

�E�� = true

D � @Q , � , if (E) { S } else { S′ } Σ

−→ D � @Q , � , S Σ

[Cond-false]

�E�� = false

D � @Q , � , if (E) { S } else { S′ } Σ

−→ D � @Q , � , S′ Σ

[State-Change]

D � @Q , � , -- => @Q
′ −→ D � @Q′ , � , --

[Function]

@Q A : f(y)[k] (E){ S } => @Q′ ∈ D[@Q A : f]�,u,v

�(A) = A �′ = �[y �→ u, k �→ v]

D � @Q , � , --
A:f(u)[v]−→ D � @Q , �′ , S => @Q′

[HO-Function]

@Q A: F� X, Y, Z �{ remove X add Y run Z } ∈ D[@Q A : F]�,ε,ε

D
′ = parties A′ = A′ fields z assets k F �(A) = A �′ = �[k �→ 0, A′ �→ A′]

D � @Q , � , --
A:F� P,D′,B �−→ D \ P � D

′ � @Q , �′ , B

– Σ, Σ′ are (possibly empty) residuals of function bodies, i.e. Σ is either --
(idle) or a term S => @Q. We assume that -- S => @Q is equal to S => @Q;

– μ is a label, which is either empty, or a function call A : f(u)[v], or a value
send v → A, or an asset transfer v � A. Labels are used to highlight the
interactions between the contract and the parties.

We also use the evaluation function �E�� that returns the value of E in the
memory �. In particular:

– �v�� = v for values, �V �� = �(V) for names of assets, fields and parameters.
– let uop and op be the semantic operations corresponding to uop and op, then

�uopE�� = uop v, �E opE′
�� = v op v′ with �E�� = v, �E′

�� = v′.

Finally, let the selection operation be

D[@Q A : f]�,u,v ={
@Q A : f(y)[k] (E){S } => @Q′ | @Q A : f(y)[k] (E){S } => @Q′ in D

and �E��[y �→u,k �→v] = true

}

That is, the selection D[@Q A : f]�,u,v returns a set of functions in D such that
the corresponding guard E is true.

Table 3 reports the definition of the transition relation for lightweight Stipula
(the black part); the additional rule for the higher-order functions is discussed
afterwards.

Legal Contracts Amending with Stipula 261

Among standard rules, [Asset-Send] delivers part of an asset h to A. This
part, named u, is removed from the asset, c.f. the memory of the right-hand side
configuration in the conclusion. In a similar way, [Asset Update] moves a part
u of an asset h to an asset h′. For this reason, the final memory becomes �[h �→
v, h′ �→ v′], where v = �(h)−u and v′ = �(h′)+u. Rule [State-Change] says that
a contract changes state upon termination of the statement in the function body.
The relevant rule is [Function] that defines invocations of (first-order) functions:
the label of the transition specifies the party A performing the invocation and the
function name f with the actual parameters. The transition may occur provided
(i) the contract is in the state @Q that admits invocations of f from A, (ii) it is
idle, and (iii) the code D contains a function @Q A : f(y)[k] (E){S } =>@Q′ such
that E is true in the memory � updated with the actual parameters.

A contract stipula C { parties A fields x assets h init @Q F } is
triggered by executing C(A, u) that corresponds to the initial configuration

parties A fields x assets h F � @Q , [A �→ A, x �→ u, h �→ 0] , -- .

That is, parties’ names are instantiated to parties’ identities, fields are ini-
tialized to values u and the initial value of assets is 0.

In higher-order Stipula the declaration part of a configuration has the form
D � D1 � · · · � Dn, where D is the declaration of the initial contract and
D1, · · · , Dn is a sequence of amendments. We recall that amendments Di have
shape

parties A′ = A′ fields z assets k F

that extends the declaration part of a contract by admitting initializations of
parties’ names.

Let D = D0 � · · · � Dn; we let parties(D), assets(D) and fields(D) be the
union of party names, asset names and field names defined in every Di, with
0 ≤ i ≤ n, respectively. The sequence D0 � · · · � Dn is defined provided that,
for every i, j ∈ 0..n, i �= j: parties(Di) ∩ parties(Dj) = ∅ and assets(Di) ∩
assets(Dj) = ∅ and fields(Di) ∩ fields(Dj) = ∅. In the following, with an abuse
of notation, we will use D, D

′, · · · to range over sequences D0 � · · · � Dn.
We then extend the selection operation to declaration parts of higher-order

Stipula configurations (D′ is a single amendment):

(D � D
′)[@Q A : f]�,u,v =

{
D

′[@Q A : f]�,u,v if D
′[@Q A : f]�,u,v �= ∅

D[@Q A : f]�,u,v otherwise

That is, our selection returns the newest set of functions in the list of amendments
whose guard E is true. When the function is higher-order, the selection returns
D[@Q A : F]�,ε,ε (i.e. fields and asset parameters are empty). Finally, let P range
over sequences of items p that are f or F, A : f or A : F, @Q A : f or @Q A : F. We
define D \ P by induction on the length of P:

– D \ ε = D;

262 C. Laneve et al.

– D\p ·P = D
′ \P, where D

′ is obtained from D by erasing (in every declaration
in D)

• every function f, if p = f;
• every function f that is invoked by A, if p = A : f;
• every function f that is invoked by A in a state @Q, if p = @Q A : f;
• similarly for higher-order functions.

Remark 2. The sequence P allows the programmer to be more and more selective
during the remove operation D\P. However, the operation D\P removes function
at every depth in D. We might be less demanding, extending the directives with
a “surface remove” that removes the more recent function only.

Every preliminary definition is in place, we therefore comment rule [HO-

Function] defining higher-order function invocations. This rule addresses higher-
order functions with a complete set of directives – the other type of invocations
are sub-cases of it. Once the function F has been chosen, the actual arguments
P, D

′ and B′ are used as follows: functions in P are removed from the declara-
tion part D, which is then amended with the code D

′ (provided this operation is
well-defined, c.f. the foregoing constraint about names in D

′) and the memory �
is updated with the binding of party names and the initialization of new asset
names to 0. We observe that new fields are not initialized: in case, the initial-
ization must be explicitly performed in the body B (c.f. the third example in
Sect. 3).

To illustrate the semantics, consider the Deposit contract in Table 2 where
Client and Farm have identities Client and Farm, respectively, and cost flour
is assumed to be 2 (euro per kg). Let � = [Client �→ Client , Farm �→
Farm, cost flour �→ 2, flour �→ 0], DDep be the declaration part of the Deposit
contract and let

S = h → Client h � flour
S′ = (x/flour) × flour � Client w � Farm
B = "Pay in Advance" → ˜ flour � Farm

We have the following transitions (in the rightmost column we write the rule
that has been used); memories �1, · · · , �5 are defined afterwards:

DDep � @Standard , � , --
Farm:send()[10]−→ DDep � @Standard , �1 , S => @Standard [Function]

10→Client−→ DDep � @Standard , �1 , h � flour => @Standard [Value-Send]

−→ DDep � @Standard , �2 , -- => @Standard [Asset-Update]

−→ DDep � @Standard , �2 , -- [State-Change]

Client:buy(4)[8]−→ DDep � @Standard , �3 , S′
[Function]

4�Client−→ DDep � @Standard , �4 , w � Farm => @Standard [Asset-Send]

8�Farm−→ DDep � @Standard , �5 , -- => @Standard [Asset-Send]

−→ DDep � @Standard , �5 , -- [State-Change]

Farm:Hardship�--,D,B �−→ DDep � D � @Standard , �5 , B [HO-Function]

Legal Contracts Amending with Stipula 263

where D is the code of Sect. 3 and

�1 = �[h �→ 10] �2 = �1[h �→ 0, flour �→ 10] �3 = �2[x �→ 4, w �→ 8]
�4 = �3[flour �→ 6] �5 = �4[w �→ 0]

Remark 3. (Higher-order) Stipula admits a form of nondeterminism, called inter-
nal in the literature, that is problematic in juridical acts: when a party can invoke
two homonymous functions. In this case the selection operator returns a set that
is not a singleton and, according to [Function] and [HO-Function], the function
that is executed is chosen randomly. This corresponds to those real legal con-
tracts that contain contradictions, which are usually solved by a court. In the
design of Stipula, we privileged the direct formalisation of normative elements as
programming patterns, so to increase transparency and help in disambiguating
contractual clauses. Contradictions and erroneous contracts behaviours can later
be identified by means of static analysis tools developed on top of the formal
semantics of the language.

5 Constraining Amendments

Up-to now higher-order Stipula enables parties to make any kind of amendment,
which is considered too liberal by the current legal doctrines. Beside the limit
represented by the counterparties’ consent to amendings (which will be dealt
with in Sect. 6), parties’ freedom is often bound in legal system’s mandatory
rules (cf. the principle in Art. 1418 of the Italian Civil Code, the Art. 1:103
of PECL – the European Principle of Contract Law – and the Art. 1.4 of the
international Unidroit Principles). For example, the legislator can impose or set
limits to prices for basic commodities, employees’ salary or loan interest rates.
Additionally, parties themselves can decide to set constraints to their amendment
power by declaring them in specific clauses.

In order to implement such possibility, we first discuss restriction that can be
added at static-time. That is, when a contract is stipulated, parties agree on the
type of amendments they might accept in the future. In particular, by means of
a syntactic clause we are going to discuss below, we define a predicate T(·) that
takes amendments and verifies whether they comply or not with the restrictions
in the clause. In this context, the rule [HO-Function] becomes (for readability
sake, we rewrite the premises of [HO-Function]):

[HO-Function-SC]

@Q A: F� X, Y, Z �{ remove X add Y run Z } ∈ D[@Q A : F]�,ε,ε

D
′ = parties A′ = A′ fields z assets k F �(A) = A �′ = �[k �→ 0, A′ �→ A′]

T(remove P add D
′ run B)

D � @Q , � , --
A:F� P,D′,B �−→ D \ P � D

′ � @Q , �′ , B

that enables the transition if T(remove P add D
′ run B) is true. The predicate

T(·) is defined by the following clause

264 C. Laneve et al.

stipula C { parties A fields x assets h init @Q F T }

T ::= constraints [(parties: fixed;)? (fields: z constant;)?
(assets: k not-decrease;)? (reachable states: @Q)?]

where every constraint in T may be missing (when all the constraints are
empty then “constraints []” is omitted and we are back to the basic syn-
tax). The constraint “parties: fixed” specifies that amendments cannot mod-
ify the set of parties. If this constraint was present in the Deposit contract of
Table 2 then the amendment D

′ of Sect. 3 would have been rejected. The con-
straint “fields: z constant” disables updates of fields in z. For example, if
the field rate contains the interest rate of a loan, the parties may initially decide
that the rate can never be changed (loan with fixed rate). In higher-order Stip-
ula this may be simply enforced by “fields: rate constant”. The constraint
“assets: k not-decrease” protects private assets to be drained by unautho-
rised parties. For example, in the code of Table 2, only Client can withdraw
from the asset flour. If this policy must not be changed during the contract
lifetime, it is sufficient to insert the constraint “assets: flour not-decrease”
that disallows amendments draining flour (on the contrary, addition of flour is
always admitted; we remind that asset values sent during invocation are always
nonnegative). Finally, the constraint “reachable states: Q” guarantees that,
whatever contract update is performed, the states in Q can be reached from the
ending state of the amendment. This is because, for example, the corresponding
functionalities cannot be disallowed forever.

Below we discuss the implementation of T(remove P add D run B) that we
are designing for our prototype [8], given a constraint clause in the code of the
contract.

Fixed Parties. This constraint is easy to implement: it is sufficient to verify that,
no term parties: A, with A not empty, belongs to D.

Constant Fields and Not-Decreasing Assets. The technique for assessing the
constraints about fields and assets amounts to parse the amendment and spot
the problematic instructions. In particular, if fields: z constant and y ∈ z
then both D and B must not contain the instruction E → y. Similarly, if assets:
k not-decrease and k′ ∈ k then D and B must not contain the instructions
E × k′ � h and E × k′ � A. The predicate T(·) uses the judgments f;h � G,
where G ranges over D, B, F , and S, which are formally defined by a type system
whose key rules are in Table 4.

The rules [T-Update], [T-Send], and [T-Asset-update] are the basic one for
guaranteing fields: f constant and assets: h not-decrease; the other
rules reduce the analysis to the components of a code. More precisely, according
to [T-Amendment], D, S @Q is correct provided that the body of every function
in D satisfies T(·) – premise f;h � F – and the statement S satisfies T(·) as well
– premise f;h � S.

Legal Contracts Amending with Stipula 265

Table 4. Key rules for verifying constant fields and not-decreasing assets

[T-Update]

g /∈ f

f;h � E → g

[T-Send]

k /∈ h

f;h � E × k � A

[T-Asset-update]

k /∈ h

f;h � E × k � h′

[T-Cond]

f;h � S f;h � S′

f;h � if (E) { S } else { S′ }

[T-Seq]

f;h � P f;h � S

f;h � P S

[T-Function](
f;h � S

)@Q A: f(y)[k] (E){ S }⇒@Q′ in F

f;h � F

[T-Amendment]

D = parties A′ = A′ fields x assets h F

B = { S } => @Q f;h � F f;h � S

f;h � D, B

State Reachability. In general, it is not possible to assess state reachability at
static time because the values of guards of functions may depend on memories
and actual parameters. That is the following technique may return false positives
(while it never returns false negatives: if a state is unreachable then there is no
computation ending in that state). False positives are ruled out only in the
restricted case when the functions in the contract code and in the amendments
are unguarded.

Following [5], we use the predicate is in: @Q A : f @Q′′ is in D holds true if

– D is a single declaration part and there is @Q A : f(y)[k] (E){ S } => @Q′ in D;
– or D = D

′ � D
′′, where D

′′ is a single declaration part, and either @Q A :
f(y)[k] (E){ S } => @Q′ in D

′ or @Q A : f(y)[k] (E){ S } => @Q′ in D
′′.

The predicate @Q A : f @Q′′ is in D is false otherwise. Notice that we are con-
sidering first-order functions only.

The set of reachable states in D from @Q, noted Q@Q, is the least set such that

1. @Q ∈ Q@Q;
2. if @Q′ ∈ Q@Q and @Q′ A : f @Q′′ is in D then @Q′′ ∈ Q@Q.

We notice that Q@Q is always finite and can be easily computed by a standard
fixpoint technique that must be run in correspondence of every higher-order
function invocation. For example, in Sect. 3, the invocation

Farm : Hardship� ε, D, {"Pay in Advance" →˜ flour � Farm} => @Excp �

returns the declaration part DDep � D where @Standard /∈ Q@Excp, while the
second amendment gives a declaration part DDep � D � D

′ where @Standard ∈
Q@Standard.

When reachable states: @Q is a constraint and D is the current decla-
ration part, the predicate T(remove P add D

′ run {S } => @Q′) verifies that @Q ⊆
Q@Q′ when the declaration part is D \ P � D

′.
We conclude by discussing the presence of false positives in T(·) with an

example. Consider the Deposit contract in Table 2 and change the final state of

266 C. Laneve et al.

buy into @End (the Client can buy only one time). Then assume the presence
of the constraint clause constraints [reachable states: @End] and verify
the predicate T(·) for the initial declaration part DDep. It is easy to check that
@End ∈ Q@Standard. However, if cost flour has been initialized with a negative
value (because of an error) then no transition buy will ever be performed because
of its guard that is always false and @End will never be reached. Overcoming
this issue is out of the scope of this paper. A possible technique could use the
definition of Q@Q to synthesize computations and verify the guards by means an
(off-the-shelf) constraint solver technique.

6 Agreement on Amendments

The Unidroit Art. 6.2.3 states that a contract may be supplemented, amended,
or modified only by the mutual agreement of the parties. That is, to deal with
this principle, it is necessary to enforce an agreement protocol between parties
in correspondence of runtime amendments. Actually, the full Stipula language
already retains an agreement clause between parties that corresponds to the so-
called “meeting of the minds”: every one must accept the terms of the contract
and the legal effects of the Stipula contract are triggered by the achievement
of the agreement (see rule [Agree] in [7]; this feature has been omitted in this
contribution because we are addressing is a lightweight version of the language).

Below we propose an extension of higher-order Stipula with an additional
agreement clause that occurs in correspondence of every amendment. To define
the rule, let A accepts H in � be a predicate that takes a directive H and
verifies whether it complies or not with A’s policy in the memory �. It is worth
to notice that the predicate depends on the memory; therefore the policy of
A might change in accordance with the updates. In particular, if � stores a
timestamp (the semantics of full Stipula has a global clock by which the events
are modelled), then accept may change from time to time. In this context, the
rule [HO-Function] becomes (we also rewrite the premises):

[HO-Function-AGREE]

@Q A: F� X, Y, Z �{ remove X add Y run Z } ∈ D[@Q A : F]�,ε,ε

D
′ = parties A′ = A′ fields x assets h F �(A) = A �′ = �[h �→ 0, A′ �→ A′]

(
�(A′′) accepts remove P add D

′ run B in �
)A′′∈parties(D) �� �(A′′) �=A

D � @Q , � , --
A:F� P,D′,B �−→ D \ P � D

′ � @Q , �′ , B

We notice that, according to [HO-Function-AGREE], the acceptance of the
directive is restricted to parties in D: the new parties in D

′ have nothing to
accept. For instance, in the first example of Sect. 3, we have the invocation

Farm : Hardship� ε, D, {"Pay in Advance" →˜ flour � Farm} => @Excp �

Legal Contracts Amending with Stipula 267

(D refers to the declaration part defined in Sect. 3). At this point, for the new
code becoming operational and enter into force, Client must satisfies the predi-
cate

Client accepts add D run {"Pay in Advance" →˜ flour � Farm} => @Excp in �′

assuming that � and �′ are the memories before and after the transition, respec-
tively. (In this case we have omitted the remove directive because it is empty.)

7 Related Works

Higher-order have been widely used in programming languages to pass functions
as arguments to other functions, thus allowing to easily model closures and
currying (cf. Haskell, JavaScript, and lambdas in C++ and Java). As regards
languages for legal contracts, up-to our knowledge, no-one addresses amendments
of contracts. In particular, the literature reports a number of languages and
frameworks that aim at transforming legal semantic rules into code, e.g. [9,
10,13,14]. These languages are actually specification languages, that provide
attributes and clauses that naturally encode rights, obligations, prohibitions,
which are not easily mapped to high-level programming languages, such as Java.
Stipula, with its distinctive primitives and legal design patterns, aims to be
intermediate between a specification language and a high-level programming
language. That is, Stipula and its higher-order extension can be considered a legal
calculus in the terminology of [2], similar to Orlando [1] that has been designed
for modeling conveyances in property law and Catala [17] for modeling statutes
and regulations clauses in the fiscal domain.

Recently, there has been increasing interest in smart contract languages
because they allow to define programs that can manage and transfer assets.
These programs run on distributed networks whose nodes store a common state
(that also includes the programs themselves) in the form of a blockchain. Due
to the immutability of information stored on a blockchain, several projects have
proposed legal frameworks that target smart contracts on Ethereum [4], such as
OpenLaw [22] and Lexon [16]. Amending the code of these frameworks is equiv-
alent to upgrading Ethereum smart contracts, which is not straightforward, as
once a smart contract is deployed on a blockchain, it is immutable. However,
since upgrading may be necessary to fix vulnerabilities or to change smart con-
tract business logic, designers have proposed a number of patterns for safely
modifying a contract still preserving the immutability of the blockchain [12].
These pattern rely either (i) on decoupling the data storage from the business
logic of a contract or (ii) on the usage of proxies. In case (i), the contract has
been defined in such a way that the business logic is accessed by an address
stored in the contract (this is similar to our requirement that a contract has
an hardship function). This means that updating the business logic amounts to
rewrite a new logic, store it in the blockchain at a (new) address x and use x to
update the address stored in the contract. In case (ii), the users interact with

268 C. Laneve et al.

a proxy contract rather than the original contract, whose data and functionali-
ties are accessed by means of addresses stored in the proxy. Therefore, updating
(both the state and the business logic of) the contract amounts to change the
addresses stored in the proxy. Proxies are also used for implementing contract
versioning: the address of the contract is actually that of a package and ad-hoc
policies may direct the invocation to one version or another. When several ver-
sions do coexist (cf. diamond patterns [19]) and a protocol may dispatch an
invocation to one version or another, we get a smart contract concept similar to
our operation D � D

′.
Clearly, the foregoing solutions allow neither a control on whom is going

to modify the contract nor an agreement between the parties. In fact, higher-
order Stipula turns out to be at a higher level of abstraction than addresses or
proxies, thus allowing reasonings about amendments that integrate well with the
other features of the language. Said otherwise, higher-order Stipula seems more
appropriate and more faithful in representing the structure of a legal contract
and the procedure for amending it.

In designing higher-order Stipula we have been inspired by operations of Delta-
Oriented Programming [15] that has been conceived for implementing software
product lines. In this paradigm, deltas are codes that are attached to products
and can be combined to obtain complex products starting from a core feature.
Compliance and other correctness properties can be verified at static time. On
the contrary, in higher-order Stipula amendments are not known when the con-
tract is stipulated and every analysis must be postponed at runtime.

8 Conclusions

This paper discusses the amendments of legal contracts in Stipula by resorting to
higher-order. Our solution handles both amendments where the contract code
is completely modified and substituted as well as those where the new code
has to coexist with the old one. The latter case, though, may require particular
attention, especially to the conditions laid out in the new functions. A wrongly
formulated condition could affect the order of codes priorities. This, in turn,
could result in an unwanted function overriding or, vice-versa, in the persistence
uptime of a function that had to be overridden.

We believe that the higher-order extension is crucial for the effective appli-
cability of legal contracts in real-world scenarios. Specifically, it can be used (in
the full Stipula language which also includes events) to handle new events by
passing a function to be executed when an event occurs. This enables more flex-
ible and modular event handling that can account for unforeseen circumstances
at the time the contract was initiated. We are already experimenting the higher-
order extension of the Stipula prototype (that is available on-line at [8]). The
higher-order extension admits functions that input codes; these codes are com-
piled on-the-fly and added to the contract (the compilation also includes a type
inference analysis, see [7]). In correspondence of every invocation, a selection
function retrieves the right function code as specified by rule [HO-Function].

Legal Contracts Amending with Stipula 269

Future works on the matter shall deal with analyzing a set of more complex
use-cases and to implement the policies discussed in Sects. 5 and 6. It is worth to
remark that our prototype, taking inspiration from visual interfaces as in [21], is
integrated with a user-friendly and easy-to-use programming interface. We hope
that this additional feature will allow us to collect comments and reports of the
proposal by non-expert users.

Acknowledgements. We are grateful to Silvia Crafa for the many insightful discus-
sions about Stipula and Adele Veschetti for prototyping both Stipula and higher-order
Stipula. We also thank the anonymous Coordination referees for the detailed sugges-
tions that considerably improved the paper.

References

1. Basu, S., Foster, N., Grimmelmann, J.: Property conveyances as a program-
ming language. In: Proceedings of 2019 ACM SIGPLAN International Sympo-
sium on New Ideas, New Paradigms, and Reflections on Programming and Soft-
ware, Onward! 2019, pp. 128–142. Association for Computing Machinery, New York
(2019)

2. Basu, S., Mohan, A., Grimmelmann, J., Foster, N.: Legal calculi. Technical report,
ProLaLa 2022 ProLaLa Programming Languages and the Law (2022). https://
popl22.sigplan.org/details/prolala-2022-papers/6/Legal-Calculi

3. Bortolotti, F.: Force Majeure and Hardship Clauses - Introductory note and com-
mentary. Technical report, International Chamber of Commerce (2020)

4. Vitalik Buterin. Ethereum white paper (2013). https://github.com/ethereum/
wiki/wiki/White-Paper

5. Crafa, S., Laneve, C.: Liquidity analysis in resource-aware programming. In: Proc.
18th Int. Conference, FACS 2022, vol. 13712. LNCS, pp. 205–221. Springer (2022)

6. Crafa, S., Laneve, C., Sartor, G.: Stipula: a domain specific language for legal
contracts. Presented at the Int. Workshop Programming Languages and the Law,
January 16, 2022

7. Crafa, S., Laneve, C., Sartor, G., Veschetti, A.: Pacta sunt servanda: legal contracts
in Stipula. Science of Computer Programming, 225, January 2023

8. Crafa, S., Laneve, C., Veschetti, A.: The Higher-order Stipula Prototype, July
2022. Available on github: https://github.com/stipula-language

9. de Kruijff, J.T., Hans Weigand, H.: An introduction to commitment based smart
contracts using reactionruleml. In: Proc. 12th Int. Workshop on Value Modeling
and Business Ontologies (VMBO), vol. 2239, pp. 149–157. CEUR-WS.org (2018)

10. de Kruijff, J.T., Hans Weigand, H.: Introducing commitruleml for smart contracts.
In: Proc. 13th Int. Workshop on Value Modeling and Business Ontologies (VMBO),
vol. 2383. CEUR-WS.org (2019)

11. Fontaine, M., De Ly, F.: Drafting International Contracts. BRILL (2006)
12. Ethereum Foundation. Upgrading smart contracts (2023). https://ethereum.org/

en/developers/docs/smart-contracts/upgrading
13. Frantz, C.K., Nowostawski, M.: From institutions to code: Towards automated gen-

eration of smart contracts. In: 2016 IEEE 1st International Workshops on Foun-
dations and Applications of Self* Systems (FAS*W), pp. 210–215 (2016)

https://popl22.sigplan.org/details/prolala-2022-papers/6/Legal-Calculi
https://popl22.sigplan.org/details/prolala-2022-papers/6/Legal-Calculi
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/stipula-language
https://ethereum.org/en/developers/docs/smart-contracts/upgrading
https://ethereum.org/en/developers/docs/smart-contracts/upgrading

270 C. Laneve et al.

14. He, X., Qin, B., Zhu, Y., Chen, X., Liu, Y.: Spesc: a specification language for
smart contracts. In: 2018 IEEE 42nd Annual Computer Software and Applications
Conference (COMPSAC), vol. 01, pp. 132–137 (2018)

15. Lopez-Herrejon, R.E., Batory, D., Cook, W.: Evaluating support for features
in advanced modularization technologies. In: Black, A.P. (ed.) ECOOP 2005.
LNCS, vol. 3586, pp. 169–194. Springer, Heidelberg (2005). https://doi.org/10.
1007/11531142 8

16. Lexon Foundation. Lexon Home Page (2019). http://www.lexon.tech
17. Merigoux, D., Chataing, N., Protzenko, J.: Catala: a programming language for

the law. In: Proceedings of ACM Program. Lang., 5(ICFP), Aug 2021
18. Mik, E.: Smart contracts terminology, technical limitations and real world com-

plexity. Law Innov. Technol. 9, 269–300 (2017)
19. Mudge, N.: How diamond upgrades work (2022). https://dev.to/mudgen/how-

diamond-upgrades-work-417j
20. Sangiorgi, D.: From p-calculus to higher-order p-calculus — and back. In: Gaudel,

M.-C., Jouannaud, J.-P. (eds.) CAAP 1993. LNCS, vol. 668, pp. 151–166. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-56610-4 62

21. Weingaertner, T., Rao, R., Ettlin, J., Suter, P., Dublanc, P.: Smart contracts using
blockly: Representing a purchase agreement using a graphical programming lan-
guage. In: 2018 Crypto Valley Conference on Blockchain Technology (CVCBT),
pp. 55–64 (2018)

22. Wright, A., Roon, D., ConsenSys AG.: OpenLaw Web Site (2019). https://www.
openlaw.io

https://doi.org/10.1007/11531142_8
https://doi.org/10.1007/11531142_8
http://www.lexon.tech
https://dev.to/mudgen/how-diamond-upgrades-work-417j
https://dev.to/mudgen/how-diamond-upgrades-work-417j
https://doi.org/10.1007/3-540-56610-4_62
https://www.openlaw.io
https://www.openlaw.io

Toward Run-time Coordination
of Reconfiguration Requests in Cloud

Computing Systems

Salman Farhat1(B) , Simon Bliudze1(B) , Laurence Duchien2(B) ,
and Olga Kouchnarenko3(B)

1 Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, 59000 Lille, France
{Salman.Farhat,Simon.Bliudze}@inria.fr

2 Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, 59000 Lille, France
Laurence.Duchien@inria.fr

3 Université de Franche-Comté, CNRS, Institut FEMTO-ST, 25000 Besançon, France
Olga.Kouchnarenko@femto-st.fr

Abstract. Cloud applications and cyber-physical systems are becom-
ing increasingly complex, requiring frequent reconfiguration to adapt
to changing needs and requirements. Existing approaches compute new
valid configurations either at design time, at runtime, or both. How-
ever, these approaches can lead to significant computational or validation
overheads for each reconfiguration step. We propose a component-based
approach that avoids computational and validation overheads using a
representation of the set of valid configurations as a variability model.
More precisely, our approach leverages feature models to automatically
generate, in a component-based formalism called JavaBIP, run-time vari-
ability models that respect the feature model constraints. Produced run-
time variability models enable control over application reconfiguration
by executing reconfiguration requests in such a manner as to ensure the
(partial) validity of all reachable configurations. We evaluate our app-
roach on a simple web application deployed on the Heroku cloud plat-
form. Experimental results show that the overheads induced by generated
run-time models on systems involving up to 300 features are negligible,
demonstrating the practical interest of our approach.

Keywords: Concurrent Component-based Systems · Variability
Models · Self-Configuration · Dynamic Reconfiguration

1 Introduction

Systems are increasingly required to be able to function continuously under tough
circumstances, such as partial failures of subsystems, or changing user needs,

S. Bliudze was partially supported by ANR Investissments d’avenir (grant number
ANR-16-IDEX-0004 ULNE)
O. Kouchnarenko was supported by the EIPHI Graduate School (grant number ANR-
17-EURE-0002). This work was partially carried out while she was on a research leave
at Inria Lille.
c© IFIP International Federation for Information Processing 2023
S.-S. Jongmans and A. Lopes (Eds.): COORDINATION 2023, LNCS 13908, pp. 271–291, 2023.
https://doi.org/10.1007/978-3-031-35361-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35361-1_15&domain=pdf
http://orcid.org/0000-0002-4121-3139
http://orcid.org/0000-0002-7900-5271
http://orcid.org/0000-0002-4517-5862
http://orcid.org/0000-0003-1482-9015
https://doi.org/10.1007/978-3-031-35361-1_15

272 S. Farhat et al.

Fig. 1. Stages of the FeCo4Reco process.

while running without interruption and often unsupervised. Thus, after an ini-
tial configuration, reconfigurations are needed to keep the application compliant
with the new needs and underlying platform constraints at run-time [22,30].
Reconfigurations may modify the system architecture, and also the coordina-
tion between sub-parts of the system, notably w.r.t. failure events, components
requests, or new requirements needed to be fulfilled.

Let us consider cloud applications, i.e., large concurrent software systems that
are further constrained by the cloud platforms they run on [22]. In this context,
a system’s configuration is the set of resources that host an application, as well
as the set of rules that define the system’s sub-parts coordination and depen-
dencies. The initial configuration aims to meet startup system needs and is not
meant to last. Thus, in response to changing user requirements, systems must be
reconfigured accordingly while ensuring that platform constraints are respected.
Modeling and managing the variability and reconfigurations is an active soft-
ware architecture research domain [9,16,30]. Feature modeling (FM) [19,27] is a
widely used approach to capture commonalities and variability across software
systems that are part of a system family or a product line. Note that the prob-
lem of finding an assignment with only required constraints and XOR-groups is
NP-hard [20]. Component-based systems (CBS), e.g., [13] for CBS supporting
hierarchical architecture, allow building complex systems by composing compo-
nents, which encapsulate data and code. In addition, some component models,
e.g. Aeolus, Madeus, Concerto [12], JavaBIP [7], are executable, and allow run-
time monitoring and control. We call them component-based run-time models.

Whatever the approach to developing complex systems that are able to
adapt to changing needs and demands–e.g., component-/agent-based systems,
autonomous computing, emergent bio-inspired systems, etc.–analyzing and plan-
ning reconfigurations requires handling some metrics based on models [23,32],
and rules/policies [11,22]. While using these approaches, computing either all
valid configurations at design time, an appropriate one at run-time, or both,
induces computation and/or validation overheads for each reconfiguration opera-
tion. This paper presents an approach to leverage variability models for acquiring
a compact representation of a set of valid configurations of a system. It aims to
automatically generate a formal executable model to safely perform reconfigura-
tions in a scalable manner. To this end, we take advantage of feature models and
component-based run-time models for enforcing safe-by-construction behaviour

Run-time Coordination of Reconfiguration Requests 273

of concurrent component-based systems through the automatic derivation of
executable models from requirements and safety constraints. Our framework,
joining forces of features and components for safe reconfigurations (FeCo4Reco
for short) with a lightweight effort, allows applying reconfigurations in a safe
manner, with no overhead of either computing or validating the new configura-
tion while having an executable model.

The FeCo4Reco process, shown in Fig 1, consists of three stages: 1) domain
constraints are specified as a feature model, 2) the feature model is automati-
cally transformed into a run-time Component-based Variability Model (CBVM) to
make it run alongside the system, 3) the generated model is used by the deployers
to set up initial configurations of the system, and to automatically monitor recon-
figuration requests from the environment and safely execute them at run-time.

Outline and Contributions. Section 2 presents the Heroku cloud running
example used throughout the paper, and it also lists the research ques-
tions. Section 3 provides an overview of the underpinnings: feature models and
component-based models. Motivated by driving the reconfiguration process with-
out the need of pre-computing the possible configurations at design time, our
first contribution is a component-based run-time variability model leveraging
feature models and their underlying constraints.

Model transformation rules in Sect. 4, which are general enough for both
feature models and component-based models, constitute the second contribu-
tion leading to a component-based variability model automatically generated
with FeCo4Reco. Its main advantage consists of a compact encoding of all valid
or partial-valid configurations, with partial-valid meaning that it can be trans-
formed into a valid configuration by adding features. Being run-time, this model
encodes reconfiguration operations while ensuring the safety property, saying
that only partial-valid configurations can be reached as a result of any recon-
figurations. Main properties related to reconfigurations are described in Sect. 5.
Section 6 describes the implementation, and reports on experimental results on a
non-trivial cloud example, with a discussion on the validity of the approach. They
constitute the third practical contribution showing the interest of our approach
in practice. Finally, Sect. 7 is dedicated to related work, and Sect. 8 concludes
with future work directions.

Proofs of all the theoretical results and additional details of the experimental
setup are available in the companion report [15].

2 Motivating Example

This section describes the Heroku cloud [25] to motivate our approach and to
illustrate its application. Heroku offers a range of API-controlled services, includ-
ing dyno types, add-ons, buildpack, and regions, which provide developers with
the means to create complex applications consisting of interacting pieces. For
example, a typical web application may have a web component that is responsi-
ble for handling web traffic. It may also have a queue (typically represented by

274 S. Farhat et al.

Fig. 2. Part of the Heroku cloud feature model.

an add-on on Heroku), and one or more workers that are responsible for taking
some elements off of the queue and for processing them. Heroku permits build-
ing such architectures by allowing the user to configure the application using the
process type, region, buildpack, and add-ons.

– Process type: All Heroku applications are launched and scaled using the con-
tainer model on the Heroku platform. The Heroku containers, called Dynos,
are virtualized Linux containers to run programs in isolation.

– Region: Applications on Heroku may be deployed in various geographic
regions.

– Buildpack: Buildpacks convert the deployed code to an executable slug on a
Dyno.

– Add-ons: Add-ons are additional services that can be attached to a Heroku
application to provide extra functionalities such as data storage, monitoring,
analytics, and data processing.

Figure 2 presents the Heroku cloud with services and constraints between
these services. In addition to the mandatory components, optional functional-
ities, such as Heroku add-ons, are available. To help the developer, they are
maintained by either a third-party provider or by Heroku. Add-ons are installed
onto applications by using the Heroku service API interface. Furthermore, other
constraints must be taken into account. For example, in Heroku, they express
regional availability of services, inter-service dependencies, as well as architec-
tural constraints. As a result, developers are expected to be Heroku experts in
order to manage and control applications in a safe way while taking into account
all the constraints on the context, in which the application is hosted.

Research Question – The main challenge is to allow the reconfiguration of soft-
ware systems in a safe manner while avoiding additional overhead at run-time,
the paper aims to address the following research question (RQ):

RQ How to enforce domain constraints during dynamic reconfiguration at low
cost?

Run-time Coordination of Reconfiguration Requests 275

3 Background

3.1 Feature Models

Introduced for product lines, feature models are used for representing the com-
monality and variability of features and of relationships among them [6]. A fea-
ture f could be a software artefact such as a part of code, a component, or
a requirement. In Fig. 2 for the he Heroku cloud, features, graphically repre-
sented by rectangles, are organized in a tree-like hierarchy with multiple levels
of increasing detail. To express the variability of the system, feature models pro-
vide 1) a decomposition in sub-features, where a sub-feature may be mandatory
(black circle), or optional (unfilled circle), 2) XOR-group or an OR-group. In a
XOR-group, exactly one feature is selected, while in an OR-group, one or more
features are selected, whenever the parent feature is selected. In addition, the
combination of the optional and mandatory features is seen as an AND-group.

In the main hierarchy, cross-tree constraints can be used to describe depen-
dencies between arbitrary features, e.g.selecting a feature requires the selection
of another one, or that two features mutually exclude each other.

More precisely, let F be a set of features, and Node the set of the nodes of
a tree-like structure defined by the grammar of axiom Node:

Node ::= OR
(
Node1, . . . ,Nodek

) | XOR
(
Node1, . . . ,Nodek

)

| AND
(
[mand]Node1, . . . , [mand]Nodek

) | leaf

We denote by π ⊆ Node × Node the parent relation, i.e.a node n is a child of
n′ iff π(n) = n′. Let μ ⊆ Node × Node be the reflexive and transitive closure of
π−1, i.e. μ(n) is the set of all descendants of n ∈ Node, including itself.

Definition 1. A feature model FM over a set of features F is a tuple
(root, φ, ρ, χ), where root ∈ Node, φ : μ(root) → F is an injective function
associating features to nodes, and ρ, χ ⊆ F × F are the requires and excludes
relations, respectively, with χ being symmetric.1

Given a feature f ∈ F that appears in the FM, we denote by nf the node
corresponding to f , i.e.such that μ(nf) = f . Abusing notation, we also write
π(f) = f ′ iff π(nf) = nf ′ . Given an AND-node n, for each child mandatory
node n′ of n, i.e.such that n = AND(. . . ,mand n′, . . .), we write mand(n′).

Example 1. Figure 2 shows a simplified example of the Heroku cloud fea-
ture model. Process_type, Region, and Buildback are mandatory features,
whereas Add_ons are optional. The Process_type feature can be realized by
using only one of the three alternative Dyno sub-features Free, Hobby, and
Production_tier. On the contrary, Messaging_and_queuing can be imple-
mented using any combination of the sub-features Algolia_real_time_search,
..., ACK_Foundry. In addition, ACK_Foundry and eu are mutually exclusive, and
both Guru301 and Pusher_channels require us.
1 In Fig. 2, we write f1 ⇒ f2 iff ρ(f1, f2) and f1 ⇒ ¬f2 (equivalently f2 ⇒ ¬f1) iff

χ(f1, f2).

276 S. Farhat et al.

Definition 2. Given a feature model (root, φ, ρ, χ) over F , its dependency
graph is a directed graph G = (F,E), where F is the set of features, and
E ⊆ F × F is the set of edges representing the parent, mandatory and requires
relations:

E =
{
(f1, f2) |π(f1) = f2

} ∪ {
(f1, f2) |π(f2) = f1 ∧ mand(f2)

} ∪ ρ .

The FM semantics is the set of its valid configurations [28].
The following definition allows for incremental design and development of

real-world systems by considering consistent and well-formed configurations,
even if they are not complete.

Definition 3. Let FM = (root, φ, ρ, χ) be a feature model over a set of features
F and let (F,E) be its dependency graph. A configuration is a set of features
Φ ⊆ F . We say that Φ is

1. free from internal conflict, if for any f1, f2 ∈ Φ, holds (f1, f2) �∈ χ.
2. saturated, if, for any f ∈ Φ, holds E(f) ⊆ Φ, i.e., the dependencies for each

feature in the configuration are also included in the configuration.
3. valid, if it is saturated, free from internal conflict, and respects structural

constraints of XOR and OR nodes: exactly one (XOR) or at least one (OR)
child feature selected, respectively (saturation implies the respect of AND-node
constraints);

4. partial-valid, if there exists a valid configuration Φ′ ⊇ Φ and it is free from
internal conflict. A partial-valid configuration may not be saturated, meaning
that some of the dependencies of its features are not included in the configu-
ration.

Saturated partial valid configurations are more restrictive than partially valid
ones, as they require all the dependencies of the selected features to be included
as well. This means that when building complex systems incrementally, we can
ensure that each intermediate step includes the desired features with their nec-
essary dependencies, resulting in consistent and well-formed configurations.

Assumption 1. We assume that all considered feature models are such that any
configuration free from internal conflict is partial-valid.

3.2 JavaBIP Component-Based Approach

A component is a software object, that encapsulates certain behaviours of a
software element. The concept of component is broad and may be used for
component-based software systems, microservices, service-oriented applications,
and so on. For the coordination of concurrent components, we make use of Jav-
aBIP [7], which is an open-source Java implementation of the BIP (Behaviour-
Interaction-Priority) framework [4]. Given a set of components and a set of their

Run-time Coordination of Reconfiguration Requests 277

Fig. 3. The generation of the component-based variability model involves a three-step
transformation process, where Steps 1, 2, and 3 correspond to Subsects. 4.1, 4.2, and
4.3, respectively.

ports, the component behaviour is defined by a finite state machine (FSM) with
transitions labelled by ports. JavaBIP allows two types of ports: enforceable
and spontaneous. Enforceable ports represent actions controlled by the JavaBIP
engine. They can be synchronised, i.e.executed together atomically. Spontaneous
ports represent notifications that components receive about events that hap-
pen in their environment. They cannot be synchronised with other ports. An
interaction is a set of ports—either one or several enforceable ports, or exactly
one spontaneous port. In order to define allowed interactions, JavaBIP provides
requires and accepts macros associated with enforceable ports and representing
causal and acceptance constraints, respectively. This allows JavaBIP to provide
a coordination layer that is powerful enough to model naturally and composi-
tionally the constraints expressed in the feature model. Detailed presentation
of these macros is provided in [7]. Intuitively, the requires macro specifies ports
required for synchronization with the given port. For example, requires(C1.p)
= {C2.q, C3.r, C4.s}2 means that port p of component C1 must be synchro-
nized with at least one of the three ports: q, r, or s of components C2, C3 and C4,
respectively. The accepts macro lists all ports that are allowed to synchronize
with the given port, thus allowing optional ports. For example, accepts(C1.p)
= {C2.q, C3.r, C4.s, C5.t} means that in addition to the ports listed by the
requires macro, the port t of component C5 is also allowed to synchronize with
p despite not being required by it. Graphically, allowed interactions are defined
by connectors. The behaviour specification of each component along with the
set of requires and accepts macros are provided to the JavaBIP engine. The
engine orchestrates the overall execution of the whole component-based system
by deciding which component transitions must be executed at each cycle. The

2 We use a notation that is slightly different from that in [7] without change of meaning.

278 S. Farhat et al.

operational semantics of a JavaBIP model is defined by a labelled transition
system (LTS) L = (Q,Σ,→), where:

– Q is the cartesian product of the sets of component states,
– Σ is the set of allowed interactions (including singleton spontaneous ports),
– → ⊆ Q × Σ × Q is the maximal set of transitions such that the projection of

each (q, e, q′) ∈ → onto any component B is either (qB , ∅, qB), for some state
qB of B, or a transition (qB , {p}, q′

B) with qB , q′
B and p being two states and

a port of B.

A configuration q′ is reachable from a configuration q if there exists a
sequence of interactions e1, e2, . . . , en ∈ Σ such that (q, e1, q1), (q1, e2, q2), . . . ,
(qn−1, en, q′) ∈ →.

Example 2. Building on Example 1, Fig. 5 on page 11 illustrates a JavaBIP
model with five components. Graphically, enforceable and spontaneous tran-
sitions are shown by solid black and dashed green lines, respectively. Ports
are shown as grey boxes on the sides of the components, and five connec-
tors linking the ports define the possible interactions. Port activatef of the
Algolia_read_time_search component can only be fired together with port
selectedf of the Messaging_and_queuing component. As there is no transition
from init state of label selected_f of the component Messaging_and_queuing,
this prevents the Algolia_read_time_search component from entering the
final state when the Algolia_read_time_search component is in S_f state.
In this example, connector C1 is binary, while C5 defines an interaction involving
five ports.

4 Design and Transformation

This section describes a set of design rules for automatically generating a run-
time component-based variability model using a feature model as input. Figure 3
presents the steps for the transformation of the encoding process. The process
of encoding the feature model into a component-based variability model is done
recursively. The process starts with the root node of the feature model and
generates the components and their behavior. Subsequently, the generation of
the coordination layer is performed based on the feature model constraints.

4.1 From Features to Components

Let us start by establishing a mapping between features and components. Given
a feature, cf. Sect. 3, it is turned into a component. Let f∈ F and nf ∈ Node, s.t.
f(nf) =f. To associate components with the nodes of the tree-like structure of
root root whose nodes correspond to features, we define a function κ : Node →
2Comp by:

Run-time Coordination of Reconfiguration Requests 279

κ(nf) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

enc(nf), if nf = leaf
k⋃

i=1

κ(Nodei) ∪ enc(nf), if nf = OR(Node1, ..., Nodek)∨
nf = XOR(Node1, ..., Nodek)∨
nf = AND([opt]Node1, ..., [opt]Nodek)

(1)

Defined by induction on the node type, κ(root) returns the set of components
to be generated for the root node and all its descendent nodes. Then for a feature
f on the nf leaf node, enc(nf) encoding is called to generate a component of
name f. For a compound feature, its encoding is called, and κ is recursively
invoked on all the sub-nodes until the leafs are met.

4.2 Component Behaviour Generation

Fig. 4. Feature component FSM.

Once the set κ(root) of components are deter-
mined, their behaviour is defined by finite
state machines (FSMs), that are automat-
ically generated. Each FSM has finite sets
S, T ⊆ S × S of resp. states and transitions,
with specific initial and final states in S. The
corresponding FSM for a component f is gen-
erated, as illustrated in Fig. 4:

enc(nf) = FSM in Fig. 4 (2)

States. In the FSM associated with compo-
nent f , the states generated are: initial state
init, where no feature is requested, and no
feature is activated; intermediate states S_f
and SR_f, to resp. start f or start reset f ,
while dealing with requests to activate f or
deactivate f ; and final a state, where fea-
ture f is activated.
Transitions. The FSM transitions are associ-
ated with either API functions, which require
a component to perform actions (enforceable transitions), or event notifications,
which allow reacting to external events from the environment (spontaneous tran-
sitions). Transitions correspond to the method invocations.

Example 3. Figure 4 illustrates a FSM for feature f , with four states in blue
and transitions among them. Transitions represented by dashed green arrows
are spontaneous. For example, a spontaneous transition is performed to go to
the intermediate state S_f when there is a reconfiguration request to activate f .

4.3 Coordination Layer Generation

Once the individual behaviour of the generated components is defined, a coor-
dination layer between components has to be fixed. Coordination is applied

280 S. Farhat et al.

through interactions, which are sets of ports that define allowed synchroniza-
tions between components. These interactions are represented by connectors
which are the structural representations of the interactions between the ports
of the components. To construct this coordination layer, the dependency graph
GFM is built by Definition 2, and then it is used to compute strongly connected
components (SCCs) to capture the set of features that are mutually dependent.

The macros for activating feature f are created based on the strongly con-
nected component of f , denoted by SCC f , the set of features that f depends on,
via E(f), both extracted from GFM , and the set of features that are mutually
exclusive with f , via χ(f). The activation macros of feature f are in Eq. 3 to 6.

Equation 3 states that firing port activate_f requires firing three groups
of ports at the same time: 1) activate ports of features in SCC f except
f , 2) selected ports of features that f depends on outside SCC f , and 3)
not_selected ports of features that f excludes.

requires
(
enc(nf).activatef

) def
=

{
enc(nf′).activatef′

∣
∣ f

′ ∈ SCCf \ {f}}

∪ {
enc(nf′).selectedf′

∣
∣ f

′ ∈ E(f) \ SCCf

} ∪ {
enc(nf′).not_selectedf′

∣
∣ f

′ ∈ χ(f)
}

.
(3)

Equation 4 states that the required ports of port activate_f are also the
accepted ones:

accepts
(
enc(nf).activatef

) def
=

{
enc(nf′).activatef′

∣
∣ f

′ ∈ SCCf \ {f}} ∪
{

enc(nf′).selectedf′
∣
∣ f

′ ∈ E(f) \ SCCf

} ∪ {
enc(nf′).not_selectedf′

∣
∣ f

′ ∈ χ(f)
}

.
(4)

Similarly, for every feature f ′ ∈ E(f),

requires
(
enc(nf′).selectedf′

) def
= ∅

accepts
(
enc(nf′).selectedf′

) def
=

{
enc(nf′′).activatef′′

∣
∣ f

′′ ∈ SCCf

} ∪
{

enc(nf′′).selectedf′′
∣
∣ f

′′ ∈ E(f) \ {SCCf , f
′}} ∪ {

enc(nf′′).not_selectedf′′
∣
∣ f

′′ ∈ χ(f)
}

.

(5)

For every feature f ′ ∈ χ(f),

requires
(
enc(nf′).not_selectedf′

) def
= ∅

accepts
(
enc(nf′).not_selectedf′

) def
=

{
enc(nf′′).activatef′′

∣
∣ f

′′ ∈ SCCf

} ∪
{

enc(nf′′).selectedf′′
∣
∣ f

′′ ∈ E(f) \ SCCf

} ∪ {
enc(nf′′).not_selectedf′′

∣
∣ f

′′ ∈ χ(f) \ {f
′}}

.

(6)

Given the construction of the macros for activation, the corresponding deac-
tivation connectors can be derived by reversing the activation process. In other
words, the process of deactivating a feature f is symmetrical to the activation
process, where the reverse operation of activation is deactivation, and selected
becomes not_selected of E−1(f) set extracted from the transpose graph G−1

FM .
Notice that exclude constraints are not considered because they only affect the
activation of features, not their deactivation.

Run-time Coordination of Reconfiguration Requests 281

requires
(
enc(nf).deactivatef

) def= {enc(nf ′).deactivatef ′ | f ′ ∈ SCCf \ {f}}
∪{

enc(nf ′).not_selectedf ′ | f ′ ∈ E−1(f) \ SCCf

}
.

accepts
(
enc(nf).deactivatef

) def= {enc(nf ′).deactivatef ′ | f ′ ∈ SCCf \ {f}}
∪{

enc(nf ′).not_selectedf ′ | f ′ ∈ E−1(f) \ SCCf

}
.

(7)
For every feature f ′ ∈ E−1(f),

requires
(
enc(nf ′).not_selectedf ′

) def= ∅
accepts

(
enc(nf ′).not_selectedf ′

) def= {enc(nf ′′).deactivatef ′′ | f ′′ ∈ SCCf }
∪{

enc(nf ′′).not_selectedf ′′ | f ′′ ∈ E−1(f) \ {SCCf , f
′}}

.
(8)

Example 4. Based on the feature model presented in Fig. 5, the coordina-
tion layer macros were generated. To illustrate this step, let us consider
Algolia_real_time_ search feature, which forms a singleton strongly con-
nected component (SCC) in the dependency graph G generated from the
feature model presented in Fig. 5. The SCC has only one dependency:
Messaging_and_queuing is the parent of Algolia_real_time_ search fea-
ture. Moreover, Algolia_real_time_search is not mutually exclusive with any
other features in the model. Using this information, the macro for the activa-
tion of Algolia_real_time_search feature is created as discussed in Sect. 4.3,
which is represented graphically by Connector C1. This connector synchronises
activate_f port of Algolia_real_time_search component with selected_f
port of its parent Messaging_and_queuing component. Intuitively, this ensures
that the configuration with Algolia_real_time_search can be reached only
when its dependencies are satisfied.

Similarly, consider the deactivation of Messaging_and_queuing feature,
which forms a singleton strongly connected component (SCC) in the G−1, and
it has four dependencies with its sub-features. Using this information, the macro
for the deactivation of Messaging_and_queuing feature is created as discussed
in Sect. 4.3 which is represented graphically by Connector C5. Connector C5
synchronizes port deactivate_f of component Messaging_and_queuing with
all ports not_selected_f of its sub-features. Intuitively, this ensures that the
parent can be deactivated only when all its sub-features are in the inactive states.

After having performed all the steps, the encoding process presented in Fig. 3
terminates. Indeed, at every step, the designed rules deal with the finite sets of
features, constraints, nodes, components, and connectors. It is easy to estab-
lish that the FM semantics in terms of feature configurations [28] is preserved
from the FM to the run-time CBVM by applying the encoding process, as the
dependency graph issued from the feature model is used.

Since the CBVM is a JavaBIP model, it inherits the operational semantics of
JavaBIP [7]. Notice that all interactions among enforceable ports correspond to
either the activation of features (Eqs. (3–6)) or their deactivation (Eqs. (7) and

282 S. Farhat et al.

C1 C2 C3

C5

Transformation

Algolia_real_time_search

s
n

a
d

ACK_Foundry

s
n

a
d

Guru301

s
n

a
d

Pucher_channels

s
n

a
d

Messaging_and_queueing

s
n

a
d

C4

Fig. 5. Part of the generated CBVM for the Heroku cloud FM: The behaviour of all
the components is the same as shown in Fig. 4. For the sake of clarity, we shorten the
names of the ports to the first letter.

(8)). Requesting individual feature activation or deactivation is done through
notifications on spontaneous ports.

Proposition 1. Given a run-time CBVM, for each interaction e allowed by
Eqs. (3–8), exactly one of the sets {f ∈ F | enc(nf).activatef ∈ e} and {f ∈ F |
enc(nf).deactivatef ∈ e} is not empty. Furthermore, that set is an SCC of the
dependency graph.

In other words, given a run-time CBVM, each interaction is either a feature
activation or deactivation, which involves a strongly connected component in
the dependency graph.

Proof. Follows trivially from Eqs. (3–8).

5 CBVM to Deal with Reconfigurations

By construction, the operational semantics of the run-time CBVM is represented
by an LTS, whose states are implicitly described configurations with selected fea-
tures, and whose transitions are labelled by interactions. Performing interactions
leads to a configuration change, i.e.reconfigurations, and this section describes
their properties.

Run-time Coordination of Reconfiguration Requests 283

Proposition 2. Any configuration reachable in the run-time CBVM is a satu-
rated partial-valid configuration.

Lemma 1. Let Φ ⊆ F be a saturated partial-valid configuration. Let C be an
SCC of the dependency graph. Then either C ⊆ Φ or C ⊆ F \ Φ.

Proposition 3. Let Φ ⊂ Φ′ be two saturated partial-valid configurations.
Assume Φ is the current configuration of the run-time CBVM. Then the opera-
tion of requesting the activation of all features in Φ′ \ Φ is confluent and termi-
nates in the configuration Φ′.

Corollary 1. For any reachable configuration in the run-time CBVM, there
exists a reachable valid configuration.

Corollary 2. Any saturated partial-valid configuration is reachable in the run-
time CBVM.

Lemma 2. Any synchronized activation of a set of features can be reversed by
the corresponding synchronized deactivation of the same features.

Lemma 3. Let Φ and Φ′ be two saturated partial-valid configurations. Then
Φ ∩ Φ′ is a saturated partial-valid configuration.

Proposition 4. Let Φ and Φ′ be two saturated partial-valid configurations.
Assume Φ is the current configuration in the run-time CBVM. Then the config-
uration Φ′ can be reached by deactivating all and only those features in Φ \ Φ′,
then activating all and only those features in Φ′ \ Φ.

Given a software architecture represented by a feature model, reconfigura-
tions are operations applied to the architecture in response to either user require-
ments or external events in the system environment. The generated model is used
to handle reconfiguration requests concurrently by controlling the application
API through the methods associated with component transitions, as depicted in
Fig. 6. The run-time CBVM provides the capability to perform reconfigurations
without the need to compute a path. The coordination layer, which is built based
on the dependency graph of the feature model by Definition 2, ensures that the
activation or deactivation of a feature occurs in the correct order and only if it is
feasible to execute. Additionally, if the interaction of activation or deactivation
of a feature is not possible from the current configuration, it will not be executed
thus it will be on hold until it can be executed.

Example 5. Building on Example 1, let us consider the scenario where we
need to move the system from configuration α1 = {Heroku_Application,
Process_type, Dyno, Free, Region, us, Add_ons, Messaging_and_queuing,
Guru301} to α2 = {Heroku_Application, Process_type, Dyno, Free, Region,
eu} by changing the region from us to eu and deactivating the Guru301 service.

There are six possible reconfiguration paths, as shown in Table 1, that can be
taken to move the system from configuration α1 to α2. The run-time CBVM can

284 S. Farhat et al.

Table 1. Possible paths for performing reconfigurations.

Path Interaction 1 Interaction 2 Interaction 3 Validity

Path 1 Activate eu Deactivate us Deactivate Guru301 Invalid
Path 2 Activate eu Deactivate Guru301 Deactivate us Invalid
Path 3 Deactivate us Deactivate Guru301 Activate eu Invalid
Path 4 Deactivate us Activate eu Deactivate Guru301 Invalid
Path 5 Deactivate Guru301 Activate eu Deactivate us Invalid
Path 6 Deactivate Guru301 Deactivate us Activate eu Valid
Paths 1, 2 & 5 are invalid because the mutually exclusive us and eu regions are both
activated at some point. Paths 3 & 4 are invalid because Guru301 requires us but us
is deactivated first.

receive the reconfiguration request in any order, however, not all reconfigura-
tion paths are valid, as certain interactions can only occur in specific states. For
instance, the only interaction possible from configuration α1 is the deactivation
of Guru301 feature, as none of the other features depend on it. Once Guru301
feature is deactivated, the us region can be deactivated since it requires synchro-
nization with the ”not_selected” port of Guru301 component, which is already
deactivated. Therefore, the interaction for deactivating the us region can be exe-
cuted only from a state where Guru301 is not active. Finally, the activation of the
eu feature can only be executed from the state where the us region is not active
since the eu feature is mutually exclusive with other regions, and its activation
should be synchronized with the “not_selected” ports of other regions. Hence,
the interaction for activating eu can be executed only from a state where the us
region is not active.

Therefore, the only safe order of interactions is to first deactivate Guru301,
then deactivate us, and finally activate eu. Any other order can take the system
through a not-saturated partial valid intermediate configuration.

To conclude, notice that the run-time CBVM is only generated once without
computing the set of valid configurations. Furthermore, it drives the reconfigu-
ration process in a “lazy” manner, by postponing feature (de)activation until it
can be safely executed. In particular, this means that we do not have to compute
the reconfiguration plan.

6 FeCo4Reco Implementation and Experiments

On the Implementation. Our model transformation process has been imple-
mented using the ATLAS Transformation Language (ATL) [18]. ATL is a
domain-specific language for specifying model-to-model transformations. Start-
ing from a source model that conforms to a source meta-model, it allows the
developer to produce a target model that conforms to a target meta-model [26].
In our approach, the generated model specification conforms to the JavaBIP
meta-model [24]. The generated XML file is parsed using the DOM library in

Run-time Coordination of Reconfiguration Requests 285

Fig. 6. Integration of the JavaBIP Run-time CBVM with a Cloud Computing System.

Fig. 7. Model overhead (average values for the generated FMs).

Java to generate the JavaBIP specification and the glue coordination. The reader
can find our implementation on the Zenodo platform [1].

Figure 6 shows the FeCo4Reco architecture that enables stages 3 and 4
(Sect. 1). The run-time CBVM consists of BIP Specs and the coordination glue.
Each BIP Spec is run by a dedicated Executor (forming a JavaBIP module),
which implements the FSM semantics and notifies the JavaBIP Engine about
the enabled enforceable transitions. The engine uses the coordination glue to
decide which components should take which transitions and notifies them accord-
ingly. Component transitions that represent actual reconfiguration actions issue
the corresponding HTTP requests through the feature APIs. Finally, reconfig-
uration requests are injected into the system in the form of spontaneous event
notifications (cf. Sect. 3.2). This can be done by different means depending on
the requirements of the Cloud computing system. For the purposes of this paper,
we have designed a dashboard application with two buttons (Activate and Deac-
tivate) for each feature.

286 S. Farhat et al.

On the Overhead Measures. Given the number of features (100, 200, and
300) we have tested our approach on twenty randomly generated feature models
for each value of this parameter. We have measured the overhead of the generated
run-time CBVM over the system.

More precisely, we measured the overhead required to move the system from
configuration α1 to configuration α2 using the generated CBVM, where α1 is
the current configuration, while α2 is picked up at random. The CBVM over-
head is shown in Fig. 7, both in terms of time (in milliseconds) and memory (in
megabytes). Both time and memory overheads are clearly negligible for modern
platforms and applications.

On Safe Reconfiguration. To illustrate that the reconfigurations are per-
formed safely we deployed a simple web application onto the Heroku cloud with
the run-time CBVM generated from the Heroku cloud FM (Fig. 2). The CBVM is
running on a local server using Tomcat 9. It intercepts (re)-configuration requests
via APIs using HTTP request methods. The CBVM acts on the received requests
to control migrating the system along a valid path to the desired configuration.
A simple configuration for the web application is dyno-free (free container),
region (eu), and build-pack (Java JVM). Consider two reconfiguration scenarios
in relation to Example 1:

1. Adding add-on Guru301 service to the application hosted in the us region
2. Adding add-on Guru301 service to the application hosted in the eu region

Scenario 1: In this case, the Guru301 service is successfully added to the web
application. Indeed, the web application is hosted in the us region. Thus, the
CBVM transition for activating Guru301 is triggered synchronously with the
selection of the us region.

Scenario 2: In this case, the Guru301 service is not added to the web applica-
tion. Upon receiving the request, the run-time CBVM postponed the activation
of Guru301 service until the application region becomes us.

This experiment illustrates that, as expected, the run-time CBVM enforces
safe reconfiguration of the cloud application.

7 Related Work

The last two decades have seen various forms of systems evolution. In computer
science, it is often related to system architectures, where dynamic reconfiguration
and self-adaptation remain very active research axes for self-adaptive systems [2,
30]. Model-based approaches and service-oriented techniques make use of models
together with different artefacts, such as rules, policies, objectives, to model
and to deal with system evolution, as e.g., in the framework of self-adaptive
systems [30,31].

Run-time Coordination of Reconfiguration Requests 287

Model-based approaches to reconfiguration use system models to analyze
information and calculate a reconfiguration plan/self-adaptation plan to keep
the system compliant with the user expectation and context constraints. Follow-
ing [21], the approaches in [22] either compute the set of all possible configura-
tions in advance at design time or a new valid configuration at run-time. As indi-
cated in Sect. 1, this induces computational or validation overheads, whenever a
reconfiguration is needed. Indeed, when all valid configurations are precomputed
at design time, they must be stored explicitly, e.g. for determining the appro-
priate choice at run-time. This is problematic, since the set of configurations
is exponential in the number of features, or in the size of logic formulae, but
particularly so for distributed systems, where a copy of the list of features or
subformulae has to be stored at every node. Alternatively, at run-time, the new
configuration must be computed and validated thus inducing a computational
overhead. In [10] the authors advocate the re-use of variability and commonali-
ties at run-time for autonomic computing. In FAMA [5] the engine, Autonomic
Reconfigurator, uses the associated resolution to query the run-time models
about necessary architectural modifications defined by conditions at design time,
in order to generate a reconfiguration plan. Our proposals further leverage vari-
ability models to exploit both features and components within component-based
run-time variability models.

Component-based approaches allow describing system architectures made up
of components that define the life-cycle of the system parts. Connectors control
the relationships between the components and establish interactions between
them. Typically, Madeus and Concerto [12] define component-based models
focusing on modelling and coordinating the life-cycle of interacting parts of
a system. Concerto provides ports that represent the ability of a component
to provide services to other components (e.g. service, piece of data) during its
life cycle. Unlike Madeus, Concerto is equipped with a reconfiguration language
that allows the system administrator to modify the architecture by executing
reconfiguration scripts (controlling the system by inserting new reconfiguration
actions).

The recent survey [2] analyses approaches, methodologies, or design patterns
for managing runtime variability through software reconfigurations in Dynamic
SPL for self-adaptive systems. The authors note that many existing approaches
compensate between memory and time, as, e.g., [26,29].

Our approach exploits the advantages of both features and components to
generate run-time component-based variability models that ensure, by construc-
tion, safety properties through reconfigurations. In [29], FM has been extended
with relative cardinalities and then used for checking temporal logic formulae,
in order to support the dynamic evolution of microservices applications. Start-
ing from an extended FM, instead of generating a whole transition system to
check the reconfiguration path against propositional and temporal constraints,
in the present paper, we generate a run-time CBVM for handling reconfiguration
safely. However, dealing with liveness temporal properties remains a future work
direction.

288 S. Farhat et al.

The novelty of our approach lies in the generation of a correct-by-construction
runtime CBVM that enforces domain constraints for dynamic reconfiguration
while leveraging SPL tools to capture domain variability. Unlike many works
using SPL techniques and tools, our approach goes beyond employing static
variability models at run-time, e.g. [14], and avoids the overhead of computing
or validating new target configurations explicitly. Furthermore, our approach dif-
fers from other by-construction reconfiguration techniques, such as [29], which
require computing the global LTS to derive the reconfiguration paths. Instead,
we encode the feature model constraints into a JavaBIP run-time CBVM. In
turn, the JavaBIP engine relies on Binary Decision Diagrams (BDDs) [3] to effi-
ciently encode the various operational and coordination constraints of the system
and to compute the possible interactions from the current CBVM state [7,17]. In
particular, permanent constraints, which encode information about the behavior,
glue, and data wires of the components, are encoded only once at the initializa-
tion of the JavaBIP system. The only constraints that are recomputed at each
cycle are the temporary ones that encode the current states of the components.
This allows us to strike the right balance between, on one hand, precomputing
the global reconfiguration LTS—which involves a very long computation at the
initialisation phase and potentially requires a huge amount of memory to store
the result—and, on the other hand, verifying all the constraints at run-time—
which eliminates the initialisation phase and the memory overhead at the cost
of a run time overhead orders of magnitude larger than that observed with our
approach.

8 Conclusion and Future Work

This paper describes an automated approach for enforcing by construction
the safe reconfiguration behaviour of software products through the automatic
derivation of executable, run-time component-based variability models (CBVMs)
from feature models. The run-time CBVMs, control the application behaviour
by handling reconfiguration requests and executing them so as to ensure the
saturated partial validity of all reachable configurations without having to com-
pute, nor validate them at run-time. Our approach ensures the preservation of
feature model semantics and constraint consistency in the generated models as
established in Sect. 5. Additionally, the feasibility and effectiveness of our app-
roach are demonstrated through an evaluation of the overhead induced by the
run-time CBVM on applications containing up to 300 features. The experimental
results show the interest of our approach for handling reconfiguration requests
with low overhead over the application. Furthermore, the successful integration
of our approach into a real-world case scenario with the Heroku cloud demon-
strates the feasibility of our approach for practical applications. Therefore, our
approach provides a solution to the research question formulated in Sect. 2.

The key threat to the validity of our work lies in Assumption 1. We expect
that assumption to hold for a large proportion of realistic feature models. Effi-
ciently verifying or enforcing that assumption in the general case is hard [20].

Run-time Coordination of Reconfiguration Requests 289

However, we can put in place additional heuristics based on the propagation of
exclusion constraints to further increase the proportion of feature models that
satisfy the assumption.

As a future work direction, we will explore stronger heuristics to enforce
Assumption 1. Furthermore, we intend to generalise our approach to constraints
among features formulated in terms of arbitrary Boolean formulas. As shown
in [8], that will require extending JavaBIP with priority models. To streamline
the user experience and minimise the necessity to wait for user input, we also
plan to extend the feature model with default values. Additionally, we aim to
incorporate temporal constraints over features, e.g.excluding the possibility of
downgrading the database plan [29] and plan to investigate the analytical treat-
ment of the space complexity of the BDDs used in our approach.

References

1. Toward run-time coordination of reconfiguration requests in cloud computing sys-
tems. Zenodo (2023). https://doi.org/10.5281/zenodo.7703952

2. Aguayo, O., Sepúlveda, S.: Variability management in dynamic software prod-
uct lines for self-adaptive systems-a systematic mapping. Appl. Sci. 12(20), 10240
(2022). https://doi.org/10.48550/arXiv.2205.08487

3. Akers, S.: Binary decision diagrams. IEEE Trans. Comput. C-27(6), 509–516
(1978). https://doi.org/10.1109/TC.1978.1675141

4. Basu, A., et al.: Rigorous component-based system design using the BIP frame-
work. IEEE Softw. 28(3), 41–48 (2011)

5. Benavides, D., Trinidad, P., Ruiz-Cortés, A., Segura, S.: FaMa. In: Capilla,
R., Bosch, J., Kang, KC. (eds.) Systems and Software Variability Manage-
ment. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
36583-6_11

6. Berger, T., et al.: A survey of variability modeling in industrial practice. In: Pro-
ceedings of the 7th International Workshop on Variability Modelling of Software-
intensive Systems, pp. 1–8 (2013)

7. Bliudze, S., Mavridou, A., Szymanek, R., Zolotukhina, A.: Exogenous coordination
of concurrent software components with JavaBIP. Softw.: Pract. Exper. 47(11),
1801–1836 (2017)

8. Bliudze, S., Sifakis, J.: Synthesizing glue operators from glue constraints for the
construction of component-based systems. In: Apel, S., Jackson, E. (eds.) SC 2011.
LNCS, vol. 6708, pp. 51–67. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-22045-6_4

9. Butting, A., Heim, R., Kautz, O., Ringert, J.O., Rumpe, B., Wortmann, A.: A
classification of dynamic reconfiguration in component and connector architecture
description languages. In: 4th International Workshop ModComp, vol. 1 (2017)

10. Capilla, R., Bosch, J., Trinidad, P., Ruiz-Cortés, A., Hinchey, M.: An overview
of dynamic software product line architectures and techniques: observations from
research and industry. J. Syst. Softw. 91, 3–23 (2014)

11. Cetina, C., Fons, J., Pelechano, V.: Applying software product lines to build auto-
nomic pervasive systems. In: 2008 12th International SPL Conference, pp. 117–126.
IEEE (2008)

https://doi.org/10.5281/zenodo.7703952
https://doi.org/10.48550/arXiv.2205.08487
https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.1007/978-3-642-36583-6_11
https://doi.org/10.1007/978-3-642-36583-6_11
https://doi.org/10.1007/978-3-642-22045-6_4
https://doi.org/10.1007/978-3-642-22045-6_4

290 S. Farhat et al.

12. Chardet, M., Coullon, H., Robillard, S.: Toward safe and efficient reconfiguration
with concerto. Sci. Comput. Program. 203, 102582 (2021)

13. Crnkovic, I., Chaudron, M., Sentilles, S., Vulgarakis, A.: A classification framework
for component models. Software Engineering Research and Practice in Sweden, p.
3 (2007)

14. Entekhabi, S., Karataş, A.S., Oğuztüzün, H.: Dynamic constraint satisfaction algo-
rithm for online feature model reconfiguration. In: International Conference on
Control Engineering and Information Technology (CEIT), pp. 1–7 (2018). https://
doi.org/10.1109/CEIT.2018.8751750

15. Farhat, S., Bliudze, S., Duchien, L., Kouchnarenko, O.: Run-time coordination of
reconfiguration requests in cloud computing systems. Research Report 9504, Inria
(2023). https://inria.hal.science/hal-04085278

16. Gomaa, H., Hussein, M.: Software reconfiguration patterns for dynamic evolu-
tion of software architectures. In: Proceedings 4th Working IEEE/IFIP Conference
WICSA 2004, pp. 79–88 (2004)

17. Jaber, M., Basu, A., Bliudze, S.: Symbolic implementation of connectors in BIP. In:
Bonchi, F., Grohmann, D., Spoletini, P., Tuosto, E. (eds.) Proceedings 2nd Inter-
action and Concurrency Experience: Structured Interactions, ICE 2009, Bologna,
Italy, 31st August 2009. EPTCS, vol. 12, pp. 41–55 (2009). https://doi.org/10.
4204/EPTCS.12.3

18. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool.
Sci. Comput. Program. 72(1–2), 31–39 (2008)

19. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Carnegie-Mellon Univ Pittsburgh, PA,
Software Engineering Inst, Tech. rep. (1990)

20. Kautz, O.: The complexities of the satisfiability checking problems of feature dia-
gram sublanguages. Software and Systems Modeling, pp. 1–17 (2022)

21. Kephart, J.O.: Research challenges of autonomic computing. In: Roman, G., Gris-
wold, W.G., Nuseibeh, B. (eds.) 27th International Conference ICSE, pp. 15–22.
ACM (2005)

22. Krupitzer, C., Roth, F.M., VanSyckel, S., Schiele, G., Becker, C.: A survey on
engineering approaches for self-adaptive systems. Pervasive Mob. Comput. 17, 184–
206 (2015)

23. Lascu, T.A., Mauro, J., Zavattaro, G.: A planning tool supporting the deployment
of cloud applications. In: 2013 IEEE 25th International Conference on Tools with
Artificial Intelligence, pp. 213–220. IEEE (2013)

24. Mavridou, A., Sifakis, J., Sztipanovits, J.: DesignBIP: A design studio for modeling
and generating systems with BIP. arXiv preprint arXiv:1805.09919 (2018)

25. Middleton, N., Schneeman, R.: Heroku: up and running: effortless application
deployment and scaling. “O’Reilly Media, Inc.” (2013)

26. Quinton, C., Romero, D., Duchien, L.: Saloon: a platform for selecting and config-
uring cloud environments. Softw.: Pract. Exper. 46(1), 55–78 (2016)

27. Schaefer, I., et al.: Software diversity: state of the art and perspectives (2012)
28. Schobbens, P., Heymans, P., Trigaux, J.: Feature diagrams: a survey and a formal

semantics. In: 14th IEEE International Conference RE2006, pp. 136–145. IEEE
Computer Society (2006)

29. Sousa, G., Rudametkin, W., Duchien, L.: Extending dynamic software product
lines with temporal constraints. In: 2017 IEEE/ACM 12th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS),
pp. 129–139. IEEE (2017)

https://doi.org/10.1109/CEIT.2018.8751750
https://doi.org/10.1109/CEIT.2018.8751750
https://inria.hal.science/hal-04085278
https://doi.org/10.4204/EPTCS.12.3
https://doi.org/10.4204/EPTCS.12.3
http://arxiv.org/abs/1805.09919

Run-time Coordination of Reconfiguration Requests 291

30. Weyns, D.: Software engineering of self-adaptive systems. In: Handbook of Software
Engineering, pp. 399–443. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-00262-6_11

31. Yang, Z., Li, Z., Jin, Z., Chen, Y.: A systematic literature review of requirements
modeling and analysis for self-adaptive systems. In: Salinesi, C., van de Weerd, I.
(eds.) REFSQ 2014. LNCS, vol. 8396, pp. 55–71. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-05843-6_5

32. Zhang, J., Cheng, B.H.: Model-based development of dynamically adaptive soft-
ware. In: Proceedings of the 28th International Conference on Software Engineer-
ing, pp. 371–380 (2006)

https://doi.org/10.1007/978-3-030-00262-6_11
https://doi.org/10.1007/978-3-030-00262-6_11
https://doi.org/10.1007/978-3-319-05843-6_5
https://doi.org/10.1007/978-3-319-05843-6_5

Author Index

A
Aguzzi, Gianluca 31, 52
Audrito, Giorgio 71

B
Bliudze, Simon 271
Bocchi, Laura 214

C
Casadei, Roberto 31, 71
Castiglioni, Valentina 115
Cavallari, Filippo 52
Chehida, Salim 232
Cogumbreiro, Tiago 93
Cortes-Cornax, Mario 232
Cruz-Filipe, Luís 144

D
Damiani, Ferruccio 71
de Ferro, Carlos Mão 93
Desgeorges, Loïc 135
Domini, Davide 52
Duchien, Laurence 271

E
Edixhoven, Luc 163

F
Farhat, Salman 271

G
Germerie Guizouarn, Loïc 135
Giallorenzo, Saverio 172
Graversen, Eva 144

I
Idani, Akram 232

K
King, Andy 214
Kouchnarenko, Olga 271

L
Laneve, Cosimo 253
Loreti, Michele 115

M
Martins, Francisco 93
Mezzina, Claudio Antares 195
Montesi, Fabrizio 144, 172

P
Parenti, Alessandro 253
Pears, Jonah 214
Peressotti, Marco 144, 172
Pfenning, Frank 3
Proença, José 163
Pruiksma, Klaas 3

R
Rademacher, Florian 172

S
Sartor, Giovanni 253

T
Tiezzi, Francesco 195
Tini, Simone 115
Torta, Gianluca 71

U
Unwerawattana, Narongrit 172

V
Vega, German 232
Viroli, Mirko 31, 52, 71

Y
Yoshida, Nobuko 195

© IFIP International Federation for Information Processing 2023
S.-S. Jongmans and A. Lopes (Eds.): COORDINATION 2023, LNCS 13908, p. 293, 2023.
https://doi.org/10.1007/978-3-031-35361-1

https://doi.org/10.1007/978-3-031-35361-1

	 Foreword
	 Preface
	 Organization
	 Contents
	Keynote
	Relating Message Passing and Shared Memory, Proof-Theoretically
	1 Introduction
	2 Proof Reduction as Communication
	3 Asynchronous Communication
	4 A Language for Asynchronous Communication
	4.1 The Dynamics of Process Configurations
	4.2 Positive Connectives
	4.3 Refactoring the Rules of Computation
	4.4 Process Definitions
	4.5 Some Examples
	4.6 Negative Connectives
	4.7 Identity as Forwarding

	5 Preservation and Progress
	6 Linear Futures
	6.1 Statics and Dynamics of Futures
	6.2 Shared Memory Examples

	7 From Linear to Nonlinear Futures
	8 Backporting Persistence to Message Passing
	8.1 Examples
	8.2 Metatheory

	9 Conclusion
	References

	Collective Adaptive Systems and Aggregate Computing
	MacroSwarm: A Field-Based Compositional Framework for Swarm Programming
	1 Introduction
	2 Context and Motivation
	3 Background: Aggregate Computing
	4 MacroSwarm
	5 Evaluation
	5.1 Case Study: Find and Rescue
	5.2 Discussion

	6 Related Work
	7 Conclusion and Future Work
	References

	ScaRLib: A Framework for Cooperative Many Agent Deep Reinforcement Learning in Scala
	1 Introduction
	2 Background
	2.1 Reinforcement Learning
	2.2 Multi Agent Reinforcement Learning
	2.3 Alchemist
	2.4 ScaFi

	3 ScaRLib
	3.1 Core Abstraction
	3.2 ScaFi-Alchemist Integration:
	3.3 DSL for Learning Configurations
	3.4 Tool Usage

	4 Experiments
	4.1 Scenario Description
	4.2 Results

	5 Related Work
	6 Conclusion and Future Work
	References

	Programming Distributed Collective Processes for Dynamic Ensembles and Collective Tasks
	1 Introduction
	2 Context, Related Work, and Motivation
	3 Background: The eXchange Calculus
	3.1 System Model
	3.2 XC Key Data Type: Neighbouring Values

	4 Distributed Collective Processes in XC
	4.1 Modelling on Event Structures
	4.2 Formalisation

	5 Discussion and Proof-of-Concept
	5.1 The DCP Abstraction
	5.2 Features of the Abstraction and Programming Model
	5.3 Examples
	5.4 Proof-of-Concept Implementation

	6 Conclusion
	References

	Cyber-Physical Systems
	Shelley: A Framework for Model Checking Call Ordering on Hierarchical Systems*-12pt
	1 Introduction
	2 Overview
	2.1 Restricting the Behavior and Usage of Systems
	2.2 Encapsulation Complicates Verification

	3 The Shelley Language
	4 The Shelley Framework
	4.1 System Declaration
	4.2 Behavior Generation
	4.3 Valid Behavior Checking
	4.4 Model Generation and Claim Checking

	5 Evaluation
	5.1 Verifying Aquamote® with Shelley
	5.2 Performance Impact of Behavior Checking

	6 Related Work
	7 Conclusion
	References

	Stark: A Software Tool for the Analysis of Robustness in the unKnown Environment
	1 Introduction
	2 The Model
	2.1 Case Study: Unmanned Ground Vehicles

	3 The Robustness Temporal Logic
	4 The Stark Tool
	5 The Tool in Action
	6 Concluding Remarks
	References

	Verification and Testing
	RSC to the ReSCu: Automated Verification of Systems of Communicating Automata
	1 Introduction
	2 Communicating Automata
	3 ReSCu
	4 Results
	5 Conclusion
	References

	.28em plus .1em minus .1emReasoning About Choreographic Programs
	1 Introduction
	2 Language
	2.1 Syntax
	2.2 Semantics

	3 A Hoare Calculus for Choreographies
	3.1 State Logic
	3.2 Hoare Logic

	4 Completeness of the Hoare Calculus
	4.1 Weakest Liberal Preconditions
	4.2 Completeness
	4.3 Decidability

	5 Related Work
	6 Conclusions
	References

	Caos: A Reusable Scala Web Animator of Operational Semantics*-12pt
	1 Introduction
	2 Use-Case: A While-Language for Teaching
	3 Use-Case: Analysing Choreographies in Research
	4 Caos framework
	5 Conclusions and Lessons Learned
	References

	JoT: A Jolie Framework for Testing Microservices
	1 Introduction
	2 Methodology and Structure of Tests
	2.1 Building a Test in JoT
	2.2 Writing a Complete Test
	2.3 Executing JoT Tests

	3 Validation
	3.1 Tested Interaction Scenarios
	3.2 JoT Test of Scenario 1
	3.3 JoT Test of Scenario 2

	4 Related Work, Discussion, and Conclusion
	References

	Languages and Processes
	Rollback Recovery in Session-Based Programming
	1 Introduction
	2 A Reversible Video on Demand Service Example
	3 The cherry-pi Calculus
	4 Rollback Safety
	5 Properties of cherry-pi
	6 Conclusion and Related Work
	References

	Safe Asynchronous Mixed-Choice for Timed Interactions
	1 Introduction
	2 Timeout Asynchronous Session Types (TOAST)
	2.1 Syntax of TOAST
	2.2 Semantics of TOAST
	2.3 Duality, Well-formedness, and Progress

	3 A Calculus for Processes with Timeouts
	3.1 Process Reduction

	4 Expressiveness
	4.1 Missing Deadlines
	4.2 Ping-Pong Protocol
	4.3 Mixed-Choice Ping-Pong Protocol
	4.4 Message Throttling

	5 Concluding Discussion
	References

	A Formal MDE Framework for Inter-DSL Collaboration
	1 Introduction
	2 Case Study and Motivation
	2.1 Configuration Management DSL (CM-DSL)
	2.2 Security Risk Assessment DSL (SRA-DSL)
	2.3 Collaboration and Verification Needs

	3 Inter-DSL Collaboration: A Model-based Architecture
	3.1 Formal Model Driven DSLs
	3.2 Formal Model Driven Inter-DSL Collaboration

	4 Application to Smart Grid System
	4.1 Modeling DSLs and Their Collaboration
	4.2 Formalization of Metamodels
	4.3 BPMN Formalization with a CSP Transformation
	4.4 Discussion

	5 Related Work
	6 Conclusion
	References

	Run-Time Changes
	Legal Contracts Amending with Stipula
	1 Introduction
	2 From Stipula to higher-order Stipula
	3 Examples of Amendments
	4 Semantics
	5 Constraining Amendments
	6 Agreement on Amendments
	7 Related Works
	8 Conclusions
	References

	Toward Run-time Coordination of Reconfiguration Requests in Cloud Computing Systems
	1 Introduction
	2 Motivating Example
	3 Background
	3.1 Feature Models
	3.2 JavaBIP Component-Based Approach

	4 Design and Transformation
	4.1 From Features to Components
	4.2 Component Behaviour Generation
	4.3 Coordination Layer Generation

	5 CBVM to Deal with Reconfigurations
	6 FeCo4Reco Implementation and Experiments
	7 Related Work
	8 Conclusion and Future Work
	References

	Author Index

