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Abstract. Few-shot named entity recognition (NER) aims to leverage
a small number of labeled examples to extract novel-class named entities
from unstructured text. Although existing few-shot NER methods, such
as ESD and DecomposedMetaNER, are effective, they are quite complex
and not efficient, which makes them unsuitable for real-world applica-
tions when the prediction time is a critical factor. In this paper, we pro-
pose a simple span-based prototypical framework that follows the metric-
based meta-learning paradigm and does not require time-consuming fine-
tuning. In addition, the BERT encoding process in our model can be
pre-computed and cached, making the final inference process even faster.
Experiment results show that, compared with the state-of-the-art mod-
els, the proposed framework can achieve comparable effectiveness with
much better efficiency.
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1 Introduction

Named Entity Recognition (NER) is an important natural language understand-
ing task, which aims to extract certain types of named entities (e.g., locations)
from unstructured text. Most neural NER models follow the supervised learning
paradigm and require a large amount of annotated data for training. These mod-
els have impressive performance in extracting existing entity types. However, in
practice, we want a NER model to rapidly adapt to novel entity types so that we
can test the prototype NER systems and get feedback for future improvement.
As a result, few-shot NER [5,7], which can learn to extract novel types of entities
based on a few training examples for each class, has gotten a lot of attention
recently.

The focus of existing few-shot NER research is mainly on optimizing accuracy
over very little training data. However, for real applications, improving accuracy
will not help if the benefits it brings become outweighed by the inconvenience
caused by increasing prediction latency. As it is well known that the more train-
ing data you have, the better performance you get, using few-shot models may
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become less attractive if the time taken to generate predictions is too long. In
such cases, people may just annotate more data and use a traditional supervised
NER instead. For example, in scientific literature mining, researchers often want
to extract entities from thousands of research articles to compose a knowledge
base and mine patterns [13,29]. However, based on our preliminary results, exist-
ing few-shot NER methods can only finish predicting several articles per second,
making the entire waiting time uncomfortably long. In this case, domain experts
may give up using few-shot models as a prototype development tool. Therefore
for practical applications, we need to focus on optimizing not only accuracy but
also prediction latency.

The state-of-the-art few-shot NER methods often utilize pre-trained lan-
guage models (e.g. BERT [4]) to get the prior knowledge of human language
and train their model on existing entities to learn NER specific prior knowledge.
DecomposedMetaNER [17] and CONTaiNER [3], additionally followed the trans-
fer learning paradigm and fine-tuned their models on a few examples of novel
entities for better adaptation. However, this fine-tuning process forces the whole
prediction process to be carried out online since the model’s parameters may
change as the user provides different examples. As a result, the state-of-the-art
few-shot NER models are not very efficient, making them impractical to be used
in applications requiring shorter prediction time.

On the contrary, metric-based meta-learning models can accelerate the pre-
diction process through pre-computing and caching part of the model’s com-
putation result. These models project samples into an embedding space, where
similar and dissimilar samples can be easily discriminated by non-parametric
methods. For example, for each class, prototypical network [20] takes the mean
vector of all embedded same class examples as the prototype representation for
that class. It then classifies each test example to the class of its nearest prototype
based on Euclidean distance. In this case, the similarity part needs to be com-
puted online, but the time-consuming encoding part can be done offline. Clearly,
this approach seems to shed a light towards efficient few-shot NER methods.

In this work, we propose a Simple Span-base Prototypical framework (SSP)
for few-shot NER. SSP follows the metric-based meta-learning paradigm and
does not require fine-tuning. Specifically, our model leverages Layer Normaliza-
tion [1] to transform the span representation, which ensures the representation
of nice geometric properties and is beneficial for the subsequent non-parametric
classification process. We also incorporate the attention mechanism into the
metric-based meta-learning process to dynamically focus on closely related exam-
ples and better handle outliers in the labeled examples. Additionally, we pre-
train SSP on supervised NER tasks before training it on meta-learning tasks
in order to enhance its span representation capability. The simple structure of
our model, combined with pre-computing the BERT representation, makes our
inference speed significantly faster than existing models. The contributions of
our work can be summarized as follows: (1) We conduct a comparative study
to compare the efficiency of existing state-of-the-art (SoTA) methods and find
their prediction efficiency is not satisfying. (2) We propose a lightweight few-
shot NER model, which is as accurate as previous SoOTA models but much more
efficient.
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2 Related Work

Meta-learning has become a popular method for tackling the few-shot learn-
ing problem. Especially, metric-based meta-learning methods have become the
mainstream methods for few-shot image classification [20-22] and have also been
widely adapted to other NLP tasks such as relation extraction [9]. Our model
follows the same nearest class prototype classification idea and generalizes the
mean pooling to attention pooling. Compared with ESD [23], which uses four
types of attention, our model has a much simpler attention module and is equally
effective.

Early few-shot NER methods are typically based on token-level classification
[7,12]. Such token-level models tend to make single-token errors, where one of
the words inside a multi-word entity is misclassified due to the lack of training
examples. StructShot [27], CONTaiNER [3] and L-TapNet+CDT [11] added a
label-agnostic conditional random field (CRF) for modeling label dependency
between tokens. But a lot of valuable similarity information between tokens has
already been lost before CRF because the CRF only takes a single scalar to
represent the label distribution. In practice, the transition matrix needs to be
learned from existing entities, making it prone to the domain-shift problem if the
span length distribution changes greatly. Alternatively, Proto+Reptile [15] used
a neural network to predict the transition probability. Recently, span-based few-
shot NER methods, such as ESD [23], DecomposedMetaNER [17], and SpanNER
[25], have been proposed to explicitly model phrasal representation and ensure
the integrity of the phrase. Our model also uses span embedding to model phrases
directly.

Moreover, prompt-learning [2] and language modeling [16] were also adapted
to solve the few-shot NER problem. However, they needed either a large val-
idation set to choose the template [2] or external lexical annotation to select
label word [16]. Similarly, another work [12] uses noisy-supervised pre-training
for few-shot NER, but an additional large-scale noisy NER dataset is not always
available. So these works does not align well with the meta-learning set up of
our work. So we do not compare our model against these methods and leave the
exploration of using external resources for future work.

3 Task Formulation

NER aims to identify each named entity correctly and classify it into the corre-
sponding categories. We follow the idea of previous meta-learning studies [5,11]
and formalize the few-shot NER problem as solving a list of N-way K-shot NER
tasks.

Each task, namely the episode, mimics a real-world few-shot learning chal-
lenge. The set of all known examples in an episode is denoted as the support
set S, and the set of all unknown examples is denoted as the query set Q. N
denotes the number of entity types in the task, and K denotes the number of
annotated examples for each entity type in the support set. For each task, the
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model encounters a set of novel entities and needs to extract entities in @ only
using the examples in S. Figure 1 shows an example of a 2-way 2-shot task.
This process needs to be repeated multiple times for the model to learn how
to adapt to a new task quickly with a few examples. Therefore, in practice, we
randomly sample the annotated sentences to construct episodes according to
the N-way K-shot constraints. And the testing set comes from a domain that is
different from the training set and has non-intersecting label spaces in order to
truly test the model’s capability of generalizing to unseen types of entities.

v [Joe Biden]peq get elected as the 46t 2-Way (PER,ORG) _
. X o
3 President of [United States]ors in 2020 [Joe Biden]peg [United Stateslors @ o
S
2 5 ERS
@ Aerospace company [SpaceX]ors Was [Elon Musk]ee [SpaceX]one -% S
- founded by [Elon Musk]peg in 2002 K8
L
o Larry Page is best known as one of the co- ) Model(Never trained >
S || founders of Google on PER,ORG before) . 3
P 3
S [ Mark Zuckerberg is the CEO of social ] [Larry Page]eer [Google]ors s
i =
media company Facebook [Mark Zuckerberglees [Facebooklons | €

Fig. 1. A 2-way 2-shot task for Person(PER) and Organization(ORG) entity.

4 Simple Span-Based Prototypical (SSP) Framework

We propose a simple span-based prototypical (SSP) framework to tackle the few-
shot NER problem. The proposed model consists of four parts: (1) span represen-
tation and normalization, where we model and normalize the span embedding;
(2) metric based meta-learning with attention, where we generate class centers
using an attention mechanism and classify spans accordingly; (3) whole classifica-
tion pre-training, where we pre-train our model on supervised NER tasks before
meta-learning; and (4) post-processing, where we resolve overlapping conflicts in
span predictions.

Span Representation and Normalization. Our method formulates the few-
shot NER as a span classification problem instead of a token classification prob-
lem since token-based models tend to recognize only part of multi-token entities
and produce many false positive predictions. For every possible span (i.e. con-
tinuous piece of text) in the sentence, our model classifies it into either one of
the predefined categories or the special category O (i.e. ordinary spans). For
instance, given the sentence “Aerospace company SpaceX was founded by Elon
Musk in 2002”7, “SpaceX” and “Elon Musk” will be classified as Person and
Organization span while “founded” and “in 2002” will be identified as type O
spans. Spans that are partially overlapped with ground truth, like “Aerospace
company SpaceX”, are not treated as correct spans during evaluation and will
be used to construct the prototype for type O spans.
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We take BERT [4] as our backbone sentence encoder and follow the standard
head-tail concatenation way to compose the span embedding [8,14,18,23]. The
last output layer of BERT is used as the contextual representation for tokens
in the sentence. We take the first subword of the span’s starting and ending
words to form its initial span representation [hstart, hend]. Here h denotes the
BERT encoder’s output for each subword. To incorporate the length information
into the span representation, following the same methodology proposed in the
previous study [8], we add word length embedding WL and subword length
embedding TL to the initial span representation.

After that, the span representation is projected into the desired dimension
with linear transformation and normalized using Layer Normalization (LN)
)

$ = LN (W ([hstart, hena] + WL + TL)) € R? (1)

Here s denotes the output of our span embedding module, D denotes the
span embedding size, and it is set to 768 in our model. Layer Normalization
aims to first zero-center and standardize the embedding, and then re-scale and
re-center the embedding with parameter v and 3 € RP.

S — mean(s)

LN(3) = ( )xy+ 8 (2)

var(s)
An inspection of the trained weights reveals that v ~ 1, 8 &~ 0. Thus, the mean
of each normalized embedding is around 0 and the L2 norm is around VD. The
FEuclidean distance metric that we use to calculate embedding similarity could
then be further deduced to

S1 — 82|35 = [81]3 + [51]3 — 281 - 52 = 2D — 2D cos (81, 82) o cos (S1,52),

3)
which is proportional to a cosine distance with a 2D scale factor. In this way,
we can see that our span normalization method is a special case for the widely
adapted scaled cosine similarity. This also explains why we need to use a higher-
than-usual(for supervised span-based NER, a typical value is 256 [14] or 150
[28]) embedding size as a theoretical analysis shows increasing size help reduce
false positive rate [19] for cosine distance based representation learning. Our
experiment analysis later shows both normalization and embedding size plays
an important role in the model’s good performance.

Metric-Based Meta-Learning with Attention. Given an N-way K-shot task
(S, Q) with entity label space Y, our model first enumerates every possible span
in each sentence of S and Q and encodes them into corresponding span repre-
sentation collection Rg and Rq. Similar to prototypical network [20], our model
predicts the span label ¥, based on the distance between the span representa-
tion Sy, and each class center cx. More specifically, we assign y,, to the label
of class center €y, in which it is nearest to S, based on the squared Euclidean
distance metric.

v = argmin [ — i} (4)

keYUu{O}
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We denote the set of support span representations having label k as Zy =
{Sn : sn € Rg and y, = k}. The original prototypical network computes the
mean pooling of Zj as the class center €k, which can be viewed as a special
case of attention mechanism where the weight is fixed to 1. Like ESD [23] and
HATT [9], we use query-support attention (QSA) to let the class center
representation bias towards similar support span representations and be more

robust to outliers. )
S 2

e .

‘ zz: >, eSmZi k (
Here - denotes the dot product operation, Z{{ is the 7, member of Zi, ci* is
the type k class center for query span Sp,. Figure 2 summarizes the entire span
representation and meta-learning process.

Google Class center
Support Span
United States SpaceX Query Span
¢ — Attention/Mean

\ [ B > Nearest Center
Joe Biden

Mark Zuckerberg

’ PER

____________ Larry Page Elon Mask

Fig. 2. The span-based prototypical meta-learning framework

The model parameters are updated using gradient descent, and the negative
log-likelihood is minimized over a batch of randomly sampled N-way K-shot

tasks:
Y Y

(8,Q) Bm,ym)€Q ZkeYu{O

~ _~m|2
e‘sm*ckmb

(6)

} e‘gm*sk % ’

Whole Classification Pre-training. Instead of training our span encoder
directly on N-way K-shot episodes, we find pre-training the encoder on the same
training set in a supervised NER manner helps the model learn better span
representation. Compared with training on N-way K-shot tasks, where the model
only optimizes loss on a subset of entity types each time, whole classification pre-
training optimizes for the whole label space.

In classification pre-training, the class center Cy is not generated based on
the support set but becomes a learnable parameter. We also use the standard
dot product instead of squared Euclidean distance as our distance metric. And
the loss function is also computed on the sentence level instead of the task level.
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Post-processing. The raw output of our model cannot be used directly because
there might be overlapping conflicts inside span predictions. For example, two
overlapped spans might be both predicted as Non-O entities, which is not
allowed for flat NER. We use a greedy pruning algorithm, which adapts the
Non-maximum Suppression algorithm for NER scenario [28], to decode a set
of valid span predictions from the raw output. The algorithm sorts all Non-O
span predictions based on their confidence scores and then iterates over them,
keeping the highest-scoring span and suppressing any overlapping span with a
lower score.

5 Experiments

5.1 Experiment Setup

Datasets: Few-NERD [5] is a large-scale few-shot NER dataset with a hier-
archy of 8 coarse-grained entity types (e.g., Person, Organization) and 66
fine-grained entity types (e.g., Person-Politician, Person-Actor, Organization-
Company). There are two different train/valid/test data splitting settings: (1)
Few-NERD Intra: data are split based on the coarse-grained label of entities
(e.g., the train split has all Person entities while the test split has all Organi-
zation entities) (2) Few-NERD Inter: data are split based on the fine-grained
label of entities and the hierarchy relationship is ignored. (e.g. the train split
has all Person-Politician entities while the test split has all Person-Actor, this
is not allowed in Few-NERD Intra because of sharing the same coarse-grained
label “Person”).

As there is no other few-shot NER dataset available, we pick SNIPS as
our second benchmark to evaluate if our methods can be generalized to other
structure prediction tasks. SNIPS is an intent detection and slot-filling dataset
with crowdsourced queries expressing seven kinds of user intents. The slot-
filling task and NER task both need to make structure predictions on text,
but slot-filling is more specific to dialog circumstances. We use the few-shot
slot-filling dataset sampled by Hou [11]. It is constructed using the “leaving-one-
out” cross-validation strategy. Each time one user intent is used for sampling
testing episodes, another intent for validation, and the remaining five intents for
training.

Implementation Details: We use bert-base-cased as our backbone encoder
because some entities, like Music and Movie, would be hard to identify if con-
verted to lowercase. But we also have a variant using bert-base-uncased since our
baselines use uncased BERT. The Few-NERD Inter/Intra training set each has
36/35 fine-grained entity types, which is much bigger than the number of entity
types in sampled 5-way/10-way episodes, meaning only a subset of entity types
is used in each training step. Therefore, we apply the whole class pre-training
for this dataset. In SNIPS, we only use uncased BERT since all its sentences are
in lowercase. We also do not use whole class pre-training for SNIPS since the
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episodes sampled from each domain are already constructed with their entire
label space. We make our codes public at https://github.com/nsndimt/SSP.

Baselines: We compare our model against three state-of-the-art few-shot NER
methods and also re-implement three token-based few-shot NER methods orig-
inally implemented by Few-NERD [5]. In our experiments, we found the three
token-based methods (i.e., ProtoBERT [20], NNShot and StructShot [27])
have shown comparable performance to more complicated methods, especially
after careful re-implementation and hyperparameter tuning. We find that, in
their original implementation, the dropout regularization(with dropout proba-
bility set to 0.5) that is directly applied to the final token embedding signifi-
cantly decreases their performance on Few-NERD. In our re-implementation, we
set the dropout probability to 0. CONTaiNER [3], ESD [23], and Decom-
posedMetalNER [17] are three recently proposed few-shot NER models and
should represent the state-of-the-art methods on Few-NERD dataset. Among
them, CONTaiNER is token-based while the other two are span-based Also,
ESD [23] reach state-of-the-art performance on SNIPS. Additionally, we include
L-TapNet+CDT [11] as the state-of-the-art token-based approach for SNIPS.

5.2 Efficiency Comparison

We conduct experiments to evaluate the efficiency of our model and the three
state-of-art models on Few-NERD. The results are shown in the left plot of
Fig.3 (Note. we cannot measure CONTaiNER’s prediction time in the 10-shot
scenario since it causes Out-of-Memory error on GPU). It is clear the proposed
SSP model is much faster than three state-of-art baselines.

To better understand which system components take more time in each
model, we also break down the prediction time into three categories, i.e., fine-
tuning, encoding, and inference, and report the results in the right part of Fig. 3.

W Fine-tuning [ Encoding Infer
B SSP M ESD [ DecomposedMetaNER [ CONTANER

1,000.00

1000

rence
500.00
500
10000
100 2 s000
50 H
o 10.00
5 I 500
1 I 100
10 2 50 100 ssp €D D
Keshot

Time(miliseconds)
Time(miliseconds)

ecomposedMetaNER  CONTAINER

Fig. 3. Left: Prediction time on a single 10-way K-shot episode; Right: Prediction time
breakdown on a single 10-way 5-shot episode; All tested on a 3090 GPU

The fine-tuning time measures the amount of time CONTaiNER and Decom-
posedMetaNER are fine-tuned on the support set while SSP and ESD do not
have this step. The encoding time consists of both the BERT encoding time and
the span/token representation extraction time. The inference time includes the
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class center/nearest neighbor construction time and distance calculation time.
For ESD and our model, the encoding time can be saved by pre-computing
the representation offline. And only the inference time is needed for deploying
the model. But for CONTaiNER and DecomposedMetaNER, since fine-tuning
would update model parameters, the total prediction time would be the sum
of fine-tuning, encoding, and inference time. As shown in Fig. 3, the fine-tuning
time is the largest source of latency for models that have it. All models have
similar encoding latency because they all use BERT. And our model has the
lowest inference time thanks to its simplified structure. Fine-tuning is slow since
it runs BERT forward and backward process multiple times while encoding only
runs the forward process once. Our model has the lowest inference time since
we avoid adding complicated attention mechanisms (used in ESD [23]) or CRF
Viterbi decoding (used in CONTaiNER [3] and DecomposedMetaNER [17]) to
our model.

5.3 Effectiveness Comparison

Table 1. Performance (F1 percent) on Few-NERD. tmeans we report the result in the
original paper; I means we run testing by use using provided checkpoint; cased and
uncased denotes whether the backbone BERT is cased. Note: all baselines use uncased

Models Intra Inter

1 Shot 5 Shot 1 Shot 5 Shot

5 way 10 way 5 way 10 way 5 way 10 way 5 way 10 way
ProtoBERT 38.03 £0.29 |31.43 £0.37 |53.13 £ 1.03 | 46.07 & 0.69 |58.08 &+ 0.26 |52.00 + 0.59 |65.29 + 0.51 | 60.54 £ 0.55
NNShot 37.89 £ 0.83 | 31.56 &£ 0.39 |50.90 & 0.48 |43.76 £ 0.41 |55.62 £ 0.46 |50.22 £ 0.34 |63.50 = 0.23 |59.70 & 0.21
StructShot 42.25 £ 0.55 |35.25 £ 0.61 |51.13 £ 0.26 |44.98 &+ 0.32 |58.81 & 0.34 |53.62 + 0.46 |64.20 £ 0.26 |60.22 + 0.39
CONTaiNER} 38.48 31.76 53.58 47.10 49.75 44.68 61.74 57.17
ESDt 36.08 £ 1.60 |30.00 £ 0.70 |52.14 £ 1.50 |42.15 & 2.60 |59.29 & 1.25 |52.16 & 0.79 |69.06 = 0.80 | 64.00 £ 0.43
DecomposedMetaNERT | 49.48 + 0.85 | 42.84 + 0.46 | 62.92 + 0.57 | 57.31 £ 0.25 | 64.75 £ 0.35 |58.65 + 0.43 |71.49 + 0.47 |68.11 & 0.05
SSP (uncased) 45.30 £ 0.53 |38.34 £0.34 |63.91 £ 0.18 |57.99 £ 0.23 |64.38 = 0.11 |58.88 £0.18 |73.75 = 0.08 |70.56 = 0.06
SSP (cased) 47.50 £ 0.36 | 39.79 £ 0.19 |66.16 + 0.18|59.66 + 0.14 | 65.98 + 0.20|59.93 + 0.18 | 75.09 + 0.16 | 71.61 + 0.12

Previous experiment results show the SSP model is more efficient. We also
conduct experiments to evaluate its effectiveness. Table1 shows effectiveness
comparison on the Few-NERD data. The SSP model consistently outperforms
all baseline models in the 1-shot and 5-shot setting of Few-NERD Inter and the
5-shot setting of Few-NERD Intra. In the 1-shot setting of Few-NERD Intra, SSP
performs slightly worse than DecomposedMetaNER, but performs slightly better
than DecomposedMetaNER, in the 1-shot setting of Few-NERD Inter. Decom-
posedMetaNER is a two-stage pipeline consisting of separate span detection and
classification model. Therefore, we additionally calculate the span detection F1
score of our cased model(i.e. span type can be wrong, as long as it is not classified
as O). It turns out that our model’s span detection F1 score is 8-10% lower than
DecomposedMetaNER in the 1-shot setting of Few-NERD Intra. This may indi-
cate having separate span detection and classification is a possible improvement
direction for our model.
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Moreover, the three re-implemented token-based baselines can outperform
more complicated SOTA methods in certain settings, highlighting the impor-
tance of properly implementing and tuning the baseline. Our re-implementation
avoids applying dropout regularization directly on the token embedding. More-
over, we find if we apply dropout regularization(even with a drop probability
of 0.1) to the span embedding in our SSP model, the performance also drops
noticeably. This may indicate that the token/span embedding is highly corre-
lated between different dimensions and applying dropout regularization would
break such correlation. We find that implementation decisions are important, and
simple models such as SSP, when implemented in the correct way, can achieve
superior performance than existing complicated models.

Table 2. Performance (F1 percent) of baselines and our methods on SNIPS. fdenotes
the result reported in their paper. We report all seven cross-validation results, each
time testing one user intent: Weather (We), Music (Mu), PlayList (P1), Book (Bo),
Search Screen (Se), Restaurant (Re), and Creative Work (Cr).

Models We Mu Pl Bo Se Re Cr Avg

ProtoBERT 78.58 £1.04 67.27£0.32 79.07+£1.18 90.30 £ 1.08 | 82.43+0.52 76.74+£1.31 73.91+£2.67 78.33
NNShot 80.18+0.74 68.93+1.20 74.24+1.64 84.49+1.17 83.244+1.10 79.50+£0.52 73.51+3.61 T7.73
StructShot 83.26+1.63 74.27+0.68 77.94+£0.98 86.26 +1.16 85.89 +0.87 81.924+0.30 72.831+4.13 80.34
L-TapNet+CDTY | 71.64 & 3.62 67.16 £2.97 75.88+1.51 84.38 £2.81 82.58 £2.12 70.05+1.61 73.41+£2.61 75.01
ESD 1 84.50 £ 1.06 66.61 +2.00 79.69+1.35 82.57+1.37 82.22+0.81 80.44+0.80 81.13 + 1.84|79.59
SSP 85.70 + 2.56 | 74.28 £+ 1.85 | 84.15 + 0.48 | 87.23£0.73 88.65 + 0.73 | 82.83 £+ 0.51 | 78.83 +0.60 83.09

Table 2 reports the experiment result on SNIPS. On average, our model can
outperform all our baselines in the 5-shot setting. This demonstrates our model’s
potential to be adapted as a few-shot slot-filling model. This is promising for sci-
entific text mining because the slot-filling method has been successfully adapted
to extract solid oxide fuel cell information [6] and chemical reaction information

[10].

5.4 Additional Analysis

Span vs Token Representations: We conduct a detailed analysis to explore why
span-based methods can outperform token-based ones. ProtoBERT is used to
represent the token-based models. A simple version of our model that does
not use whole class pre-training or Query-Support Attention, and uses uncased
BERT is used to represent the span-based models for a fair comparison. All
comparisons are carried out on the 5-way 5-shot setting of Few-NERD Inter.
First, we break the evaluation metric by different span lengths, as shown
in Fig.4 Left. Compared with the token-based model, the span-based model
has significantly higher precision for single-word entities while having a slight
advantage in both the precision and recall for multi-word entities. We hypothe-
size that the token-based model breaks multi-word entities into small spans more
frequently and therefore causes a lot of false-positive single-word entities.
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Therefore, we dig deeper and concentrate on two groups of entities: single-
word prediction and multi-word ground truth. The analyzing result is demon-
strated in Fig.4 Mid and Right. For single-word prediction, we classified the
error into three cases: (1) “Inside”, denoting it is inside a ground truth entity
that has the same label as the prediction (2) “Misclassified”, denoting it has a
wrong label; (3) “Outside”, denoting it is not part of any ground truth entities.
Clearly, the span-based method makes much fewer Inside errors. For multi-word
ground truth, we classified the error into three cases: (1) “All O”, denoting all the
words inside the ground truth are misclassified as O; (2) “Partial O”, denoting
part of the words are misclassified as O; (3) Other, denoting the rest occasions.
Here, we can see that the token base method makes more “Partial O” errors,
indicating that the token base method breaks a lot of multi-word entities by
misclassifying one of its tokens as O.

Ablation Studies: We also conduct ablation studies to explore the contribution
of different components in our SSP model. Due to the huge number of possible
variants, we split our ablation studies into two parts. We start with a simplified
version and gradually add or modify some components until it is the same as
the SSP model reported in Table 1. Both studies are carried out on Few-NERD
and we report the averaged F1 score in percentage across all eight settings (i.e
5/10way x 1/5 shot x Inter/Intra split).

The first part focuses on studying the effect of span representation size and
different representation normalization techniques as mentioned in Sect. 4. We do
not use attention or pre-training in our model and we use uncased BERT in order
to control the number of variables and also make SSP comparable to other span-
based methods. We introduce the following variants of SSP, each with a different
normalization strategy: (1) No-Norm, which removes the Layer Normalization
layer; (2) L2-Norm, in which we not only remove Layer Normalization but also
replaces the Euclidean distance with cosine distance T'cosine(Sy, - €x); Here T
is a temperature parameter and T° = 40; (3) LayerNorm?*, which is a variation
of LayerNorm by removing the re-scaling and re-centering part. The results of
these three variations together with the original SSP, when the span embedding
dimension is 768, are reported at the top part in the left plot of Fig. 5. The results

B Span Precision [l Span Recall B Span [ Token B Span [ Token
Token Precision [l Token Recall 40000 80.00%
0.8
30000 60.00%
0.7
20000 40.00%
0.6
| I I 10000 20.00%
0.5 0 0.00%
1 2 3 4 Correct Inside Misclassified Outside Correct AllO  PartialO  Others
Entity Length Single-word prediction Multi-word ground truth

Fig. 4. Left: Evaluation metric breakdown by entity length; Mid: Single-word predic-
tion breakdown Right: Multi-word ground truth breakdown
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Fig. 5. Left: Ablations on Layer Normalization and representation dimension; Right:
Ablations on different model components, where C denotes cased BERT, A denotes
Query Support attention, and P denotes Whole class pre-training. The last two con-
figurations is the same as SSP (cased/uncased) reported in Table 1

of SSP with the original LN but with different span embedding dimensions (i.e.,
100, 192, 384, 1538) are shown at the lower part in the same plot.

The plot shows that having Layer Normalization on span representation
greatly improves our model’s performance over No-Norm. And the LayerNorm*
result confirms our observation on trained v and [, indicating that the affine
projection which is applied after the re-scaling and re-centering operation makes
little difference. Moreover, the L2-Norm result proves that just re-scaling is not
enough, and re-centering also plays an important role here. Moreover, we can
see that the span representation capacity (aka the embedding dimensions) also
makes a huge difference. The bigger the span representation, the better the few-
shot learning performance. This discovery is also in line with other studies in
metric-learning [24]. We choose to fix the dimension to 768 for all other experi-
ments since this is also the hidden size of bert-base and should make our model
comparable to other token-based models(including DecomposedMetaNER which
use the average of in-span token embedding as span representation).

In the second part of ablation studies, we start with the “Dim 768 + Layer-
Norm” configuration in the first part and gradually add or change some model
components, including (1) C - Cased BERT encoder which replaces the uncased
BERT (Sect.5.1); (2) A - Query support Attention which replaces the mean
pooling in the class center construction process (Sect.4); (3) P - Whole class
pre-training which pre-trains the model before mete-learning (Sect. 4). With the
addition of A and P, our model variant is identical to the “SSP(uncased)” con-
figuration reported in Table 1. When we further added the C component, our
model is equivalent to “SSP(cased)”. The right plot in Fig.5 summarizes the
result of our second part ablation study, which shows that all of the component
modifications are necessary as they are complementary to each other.

6 Conclusion and Future Work

In this work, we present a simple span-based prototypical framework (SSP)
for few-shot NER. Compared with the token-based models, SSP makes fewer
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single-token errors and can better extract multi-word entities. We discovered that
techniques such as layer normalization, query-support attention, and whole-class
pre-training are beneficial for boosting model performance. Additionally, experi-
mental results indicate that certain implementation details, such as dropout and
span representation size, require careful consideration and tuning. Experiments
on Few-NERD and SNIPS datasets show that SSP is significantly faster than
existing state-of-the-art methods with comparable effectiveness.

Our work sheds a light on how to make few-shot NER suitable for domain
applications, where there exists a large corpus to be analyzed within a limited
amount of prediction time (e.g. scientific text mining [10,13,26,29]). Also, the
problem we find can help construct future few-shot NER benchmarks to consider
more real word influence factors. Additionally, our model can be combined with
active learning to help accelerate annotation. Two potential use cases include
(1) prioritizing the annotation of difficult examples and (2) saving search time
by filtering rare entities out of a big corpus.
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