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Abstract. Knowledge graph representation learning (KGRL) aims to project the
entities and relations into a continuous low-dimensional knowledge graph space
to be used for knowledge graph completion and detecting new triples. Using tex-
tual descriptions for entity representation learning has been a key topic. How-
ever, the current work has two major constraints: (1) some entities do not have
any associated descriptions; (2) the associated descriptions are usually phrases,
and they do not contain enough information. This paper presents a novel KGRL
method for learning effective embeddings by generating meaningful descrip-
tive sentences from entities’ connections. The experiments using four public
datasets and a new proposed dataset show that the New Description-Embodied
Knowledge Graph Embedding (NDKGE for short) approach introduced in this
paper outperforms most of the existing work in the task of link prediction. The
code and datasets of this paper can be obtained from GitHub (https://github.com/
MiaoHu-Pro/NDKGE.)

Keywords: Knowledge graph embedding · Entity description · Constructing
new descriptions · Link prediction

1 Introduction

A knowledge graph G = {(h, r, t)|h, t ∈ E, r ∈ R} [4,10] contains a set of nodes
E for entities and a set of edges R for the relations between the entities. A triple
(h, r, t) in a knowledge graph, (h, r, t) ∈ G, where h, t ∈ E and a r ∈ R. Triple
(h, r, t) is usually used to denote a fact where a head entity h has a relation of r with
a tail entity t. For example, as shown in Fig. 1, (‘Tom Cruise’, ‘/film/producer/film’,
‘Mission: Impossible’) is a triple where the head entity is ‘Tom Cruise’, the relation
is ‘film/producer/film’, and the tail entity is ‘Mission: Impossible’. Large scale knowl-
edge graphs, such as FreeBase, have played key roles in supporting intelligent question
answering, recommendation systems, and searches engines. However, most of them
were built collaboratively by humans, where emerging relationships and entities may
not be included. This is so-called incompleteness and sparseness of knowledge graph
[10]. Thus, it is important to enrich knowledge graphs automatically to reduce those
issues.

Knowledge graph representation learning (KGRL), also known as knowledge graph
embedding (KGE), aims to automatically enrich knowledge graphs by representing enti-
ties and their relations into a continuous low-dimensional vector space so that the miss-
ing entities and relations can be inferred using those embeddings [4]. Two key tasks,
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Fig. 1. An example of a sub-graph from the FB15K [4] dataset, where the nodes are enti-
ties, and the directed edges represent relationships between the entities. The head entity ‘Tom
Cruise’ has two relations pointing at the tail entity ‘Mission:Impossible’ while the entity
‘Mission:Impossible’ is the head entity to the tail entity of ‘Tom Cruise’ with a relation of
‘/film/film/produced_by’. Most entities in the FB15K dataset contain a mention to explain the
entity. For example, the entity ‘Tom Cruise’ has a mention of ‘American actor and film
producer’ and the entity ‘Mission:Impossible’ has a mention of ‘1996 film directed
by Brian De Palma’.

link prediction and triple classification, have been proposed by [4] to consolidate a
knowledge graph G, where both tasks are about making sure if a triple (h, r, t) exists in
the knowledge graph, i.e., (h, r, t) ∈ G.

The early work, such as translation-based models [1,4,5,7,23], treats a triple
(h, r, t) as a translation operation from head entity h to tail entity t via a relation r.
Recently, researchers realised the importance of using textual information for learning
effective embeddings [2,9,22]. These approaches use the associated descriptions for
entities, or they extract relevant entity description information from external sources to
help learning knowledge graph embedding. Although these methods have improved the
performance in the link prediction task by using external information for the entities,
they have the following key constraints:

1. the associated descriptions, also called mention are usually a phrase, which does
not have enough meaningful information without enough context. For example, the
mention for ‘Tom Cruise’ is ‘American actor and film producer’ as
show in Fig. 1. This does not provide enough detail to explain who ‘Tom Cruise’
is as it does not have any information regarding what films he had been involved in.

2. the associated description is not always available. For example, in the FB15K
dataset, some entities do not have the associated descriptions;

3. the associated description obtained from external sources may not be accurate and
may introduce noise into the training data.

To address these problems, this paper proposes a novel description-based KGE app-
roach, known as New Description-Embodied Knowledge Graph Embedding (NDKGE
for short), by creating a new description from their neighbours for each entity. The
difference from all previous methods is: we use entities’ neighbours to construct a
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sentence-level description and then learn meaningful embeddings from the text. This
NDKGE approach does not rely on external sources and it is believed that the generated
description will help the algorithm to learn more meaningful and effective knowledge
graph embeddings. The contributions of this paper include:

1. Sentence-level semantic description for entities generated by aggregating neighbour-
hood information;

2. A new data structure including an ID, name, mention, and a generated description
introduced to represent an entity and a relation;

3. Experiments conducted to show that the sentence-level description is very useful for
learning effective embeddings.

2 Related Work

This section presents key notation and related work in knowledge graph representation
learning. For a triple (h, r, t) ∈ G, h, r, t ∈ R

n is used to denote their embeddings,
respectively.

TransE [4] interprets each relation as a translating operation from a head entity to
a tail entity, i.e., h + r ≈ t. The learning objective is to minimise the loss of the score
function

fr(h, t) = ‖h+ r − t‖ (1)

for all the triples in G, where we take to be the L1-norm. Studies have shown that
the TransE performs well for 1-to-1 relations, but its performance drops significantly
for 1-to-N, N-to-1, and N-to-N relations [28]. TransH [28] tries to solve the issues
in the TransE by projecting h and t to the relationship-specific hyperplane, in order
to allow entities to play different roles in different relationships. The PTransE [14]
believes that multi-step relation paths contain rich inference patterns between entities.
It considers relation paths as translations between entities. The TransE-EMM [17] intro-
duced a neighbourhood mixture model for knowledge base completion by combining
neighbour-based vector representations for entities. Compared with the TransE-EMM,
our method relies on the generated entity descriptions to conduct embedding rather than
computing entity representations directly based on neighbourhood entities and rela-
tions. The RotatE [23] treats the relation r as a rotating operation from h to t. The
HAKE [35] models semantic hierarchies map entities into the polar coordinate system.
It is inspired by the fact that concentric circles in the polar coordinate system can natu-
rally reflect hierarchy. The BoxE [1] encodes relations as axis-aligned hyper-rectangles
(or boxes) and entities as points in the d-dimensional euclidian space. The PairRE [7]
uses two vectors for relation representation. These vectors project the corresponding
head and tail entities to Euclidean space, where the distance between the projected vec-
tors is minimized. The DualE [5] uses dual quaternion to unify translation and rotation
in one model, where the new model can solve symmetry, antisymmetry, inversion, com-
position and multiple relations problems.

RESCAL [18] represents each relation as a full rank matrix and defines the score
function as fr(h, t) = h�Mrt. As full rank matrices are prone to over-fitting, recent
work turns to make additional assumptions on Mr. For example, DistMult [33] assumes
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Mr to be a diagonal matrix, which also utilizes the multi-linear dot product as the
scoring function. However, for general knowledge graphs, these simplified models are
often less expressive and powerful. To better model asymmetric and inverse relations,
DistMult was extended by introducing complex-valued embeddings, followed by the
proposal of ComplEx [26]. The SimplE [11] uses the same diagonal constraint as Dist-
Mult. It models each fact in two forms (a direct and an inverse form). To represent such
forms, It embeds each entity e in separate head and tail vectors eh and et, and each
relation r in individual direct and inverse vectors Vr and V−r, which is fully expressive
and can successfully model asymmetric relations. KGE-CL [32] proposed a simple yet
efficient contrastive learning framework, which can capture the semantic similarity of
the related entities and entity-relation couples in different triples, thus improving the
expressiveness of embeddings.

The CNN-based approaches, such as ConvE [8] and ConvKB [16], improve the
expressive power by increasing the interactions between entities and relations. CapsE
[27] employs a capsule network to model the entries in the triple at the same dimension.

The Graph Convolutional Network-based methods (GCNs) were proposed to do
embedding, such as R-GCN [20], which is the first to show that the GCNs can be
applied to model relational data. This method aims to conduct the central node embed-
ding by aggregating its neighbourhood information [12]. To explicitly and sufficiently
model the Semantic Evidence into knowledge embedding, a new method SE-GNN [13]
was proposed, where the three-level Semantic Evidence (entity level, relation level and
triple-level) are modelled explicitly by the corresponding neighbour pattern and merged
sufficiently by the multi-layer aggregation, which contributes to obtaining more extrap-
olative knowledge representation.

Text-based models take advantage of entity descriptions to help knowledge graph
embedding. The majority of knowledge graphs include a brief entity description, called
mention, for entities. Each mention, usually in a phrase, briefly explains its associated
entity. Jointly (desp) [36] utilized an alternative alignment model that is not depen-
dent on Wikipedia anchors and is based on text descriptions of entities. DKRL [30]
employed two encoder methods, continuous Bag-of-words (CBOW) and convolutional
neural network (CNN), to embed entity description and then to train models based on
TransE. Jointly (LSTM) [31] used three encoder methods for joint knowledge graph
embedding with structural and entity description and set the gating mechanism to inte-
grate representations of structure and text into a unified architecture. ConMask [22]
used the CNN attention mechanism to mark which words in the entity description are
related to the relations and then generate target entity embedding. An et al. [2] proposed
an accurate text-enhanced KG representation framework (AATE_E), which can utilize
accurate textual information extracted from additional text to enhance the knowledge
representations. Shah et al. [21] proposed an open-word detection framework, OWE,
based on any pre-trained embedding model, such as TransE [4]. This framework aims
to establish a mapping between entity descriptions and their pre-trained embeddings.
Hu et al. [9] proposed to model the whole auxiliary text corpus with a graph and present
an end-to-end text-graph enhanced KG embedding.

The above textual-based methods must satisfy a precondition, which is the entity
descriptions, or available relevant texts. In other words, if the entity descriptions or
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related text are missing or can not be obtained, these methods will be unable to perform
knowledge graph embedding. This paper proposes a model, NDKGE, which is a textual-
based model. NDKGE aims to solve the problem of unavailable descriptions and creates
a high-quality description for entities.

3 Constructing New Entity Description for Knowledge Graph
Embedding

This section presents a novel method to create descriptions for entities by aggregat-
ing the entity’s neighbours’ information in order to learn effective representations for
entities and their relations.

3.1 Word-Level and Sentence-Level Semantics

Fig. 2. A sub-graph of the WN18 dataset. The data use the format of (ID, entity name, mention).
For example, the format for entity ‘Germany’ is (08766988, ‘Germany’, ‘a republic in central
Europe’) and the format for entity ‘Rossbach’ is (01292928, ‘Rossbach’, ‘a battle in the Seven
Years’ War (1757)’).

The existing textual-based methods, such as SSP [29], AATE_E [2], and Teger-TransE
[9] use the pre-defined descriptions which are associated with the entities in a knowl-
edge graph. For example, in the WN18 dataset, the format for entity ‘Germany’ is
(08766988, ‘Germany’, ‘a republic in central Europe’) as shown in Fig. 2, where ‘a
republic in central Europe’ is the mention that is associated to ‘Germany’ and 08766988
is its unique ID.

However, not every entity has its associated description and the associated men-
tion can be too brief to provide enough detail about the entity. With brief mentions or
without any associated mentions, the performance could be compromised. As such, this
paper aims to represent entities using more informative descriptions generated from
their neighbours.

In this work, a new entity representation consists of four components (ID, Name,
Mention, and Description), as shown in Fig. 3, where ID, Name, and Mention can be
obtained from those existing knowledge graphs. Here, the Name will refer to either the
actual entity or relation and the Mention is usually a phrase to interpret an entity (when
the Name refers to an entity).
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Fig. 3. The structure for representing entity or relation x. An entity may contain all four compo-
nents but a relation will only contains (ID, Name), where name is the relation name.

The component of Description for each entity x is obtained by generating a set of
sentences D(x), where D(x) = {x has a relation of r with y : ∀(x, r, y) ∈
G}, from which k sentences are randomly picked (k ≤ |D(x)|) and concatenated to
construct a Description for entity x. For example, according to Fig. 2, if entity x is ‘Ger-
many’, then D(x)={‘Germany has a relation of part of with Europe.’,
‘Germany has a relation of member of domain region with

Europe.’, ‘Germany has a relation of has part with Solingen.’}, which
has three sentences. If k = 3, then the component of Description is generated by con-
catenating the three sentences. An entity x is represented with 4 components as shown
in Fig. 3. The embedding for x shall also consider 4 components

x = {x1,x2,x3,x4}, (2)

where xi ∈ R
n for 1 ≤ i ≤ 4, and x1 corresponds to the ID in Fig. 3. For x2, x3

and x4, as their corresponding components x2, x3, x4 in Fig. 3 contain tokens/words,
word embeddings are used to initiate x2, x3 and x4. Let W ⊆ R

n be the set of word
embeddings and suppose xi (2 ≤ i ≤ 4) contains n tokens (xi1 , . . . , xin), then

xi =
1
n

n∑

j=1

xij (3)

where xij ∈ W is the embedding for token xij .
Algorithm 1 shows a function to calculate the embeddings (h, r, t) for a triple

(h, r, t) ∈ G, where the representation of entities (h or t) and relations (r) will be
calculated according to different settings such as ‘mention’ and ‘description’. For
example, h =representation(h,‘description’) and t =representation(t,‘description’)
will use the contextual information in the Description that are generated as shown in
Fig. 3. As a relation does not have a Mention and no Description is generated, r is
obtained using r =representation(r,‘name’). The entities h or t, and relations r denote
x represented by the Eq. (2). After (h, r, t) is obtained, the TransE score function Eq.
(1) is used for optimizing (h, r, t).

3.2 Training

Our model uses the vectors constructed above as input. The embedding of the entities
and relations is obtained after the model training is completed. We use the max-margin
criterion [4] for training, and define the following loss function to optimize the model:
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Algorithm 1: Generating initial embedding vectors for entities or relations x

Data: A knowledge graph G; A set of word embeddings W
Input: Entity or relation x (represented with Eq. (2)), method y for combining

embedding vectors
Result: Embedding vector vx for input x
Function representation(x, y):

Initialize x1 by a random vector or pre-trained embeddings [16];
Calculate x2 using Eq. (3) ;
if y =‘name’ then

x2 = x2;
end
if y =‘mention’ then

x2 = x2 + x3;
end
else if y =‘description’ then

x2 = x2 + x3 + x4;
end
return vx = x1 ⊕ x2 (The ⊕ denotes that two vectors are concatenated.);

Fig. 4. A summary of the issues in Issue Tracker System. For the given issue, HADOOP-11452,
has several attributes, such as Type, Status, and Priority, as shown in (a). On the other hand, the
description (known as Mention in this work) and Issue Links were provided. And these Issue
Links can be represented to a graph as shown in (b). In this paper, the links between issues are
known as relations, and the issues are known as entities.

L =
∑

(h,r,t)∈G

∑

(h′,r,t′)∈G′
max(γ + fr(h, t)

−fr(h′, t′),0)
(4)

where (h′, r, t′) is the negative triple, and γ is a hyper-parameter representing the max-
margin between positive triples scores and negative triples scores. G′ is the negative
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triple set generated by positive triples G with head or tail randomly replaced by another
entity. Most importantly, the head and tail can not be replaced at the same time [4].

G′ = {(h′, r, t) |h′ ∈ E} ∪ {(h, r, t′) |t′ ∈ E} (5)

In the training process, our model needs to learn the parameter set θ = {E,R} where
E = {h, t|∀(h, r, t) ∈ G}, R = {r|∀r ∈ R} stand for the embeddings for entities and
relations.

4 Experiments

4.1 Datasets

In this paper, four commonly used datasets, FB15K [4], WN18 [29], FB15K237 [8],
WN18RR [8], and a new dataset Hadoop16K proposed by this work are used to eval-
uate NDKGE model on link prediction task. FB15K and WN18 are extracted from the
FreeBase1 and WordNet2 respectively. FB15K237 and WN18RR were considered as
challenging datasets, which is a subset of FB15K and WN18 where inverse relations
are removed.

We collect the Hadoop16K from a popular Issue Tracking System3 that is used
to manage and track issues [15]. For an example of a given issue, HADOOP-11452,
as shown in Fig. 4 (a), its details and Issue Links can be obtained. The Issue Links
represent the relationships between this issue and other issues, such as ‘contains’, ‘is
related to’, and ‘is duplicated by’, and we can show that with a graph, as shown in Fig. 4
(b). In practice, we found that a lot of links/relations between issues are missing, and
these missing links should be included immediately to facilitate the orderly progress
and maintenance of software development. Table 1 illustrates the number of entities
and relations about the datasets.

Table 1. Summary of datasets.

Dataset #Rel #Ent #Train #Valid #Test

FB15K 1345 14951 483142 50000 59071

WN18 18 40943 141442 5000 5000

FB15K237 237 14541 272115 17535 20466

WN18RR 11 40943 86835 3034 3134

Hadoop16K 31 12249 15791 1974 1974

4.2 Parameter Settings

The experiments use different margin γ from {0.5, 1, 3, 5} and the learning rate λ is
set among {0.01, 0.05, 0.5, 1}. Also, we set the dimension of ID embedding x1 in

1 www.freebase.com.
2 https://wordnet.princeton.edu/.
3 https://issues.apache.org/.

www.freebase.com
https://wordnet.princeton.edu/
https://issues.apache.org/
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Algorithm 1 among {20, 50, 100, 200}, and the dimension of textual embedding x2

among {50, 100, 200, 300}. The number k of neighbours for generating descriptions is
|D(x)|. The measure of dissimilarity is L1 distance. At the same time, the experiment
conducts a setting description for using Name, Mention and generated sentence-level
Description.

4.3 Link Prediction

Link prediction aims to complete a triple (h, r, t) with h or t missing. For example, to
predict t given an in-complete triple (h, r, ?) or predict h given (?, r, t). We use two
evaluation metrics in accordance with [4]: (1) the mean rank of correct entities; (2) the
proportion of valid entities in the top 10 for the entity. In addition, we use the evaluation
settings “Filter” [4,28]. Tables 2, 3 show the results of entity prediction.

As illustrated in Table 2, compared with translation-based models such as RotatE
[23], PairRE [7], and DualE [5] that only encode entity/relation ID, our method can
achieve high performances by using not only entity/relation ID but also textual infor-
mation (entity name, mention and description). This indicates that related textual infor-
mation is very helpful for effective knowledge graph embeddings. Also, we observe
that our method is better than other text-based method, such as ConMask [22], and
Teger-TransE [9], this indicates that the newly constructed entity description is reason-
able and better than the original text. For WN18 dataset, our method achieves the best
performance in Mean Rank (MR) and Hits@10 compared with all baselines. It even
also surpasses the latest method such as PairRE [7] and DualE [5] in Hits@10.

Table 3 shows that our model NDKGE significantly outperforms the state-of-the-
art models on the WN18RR. Our NDKGE with the description setting can obtain
0.699 for Hits@10, which is 10% higher than the state-of-the-art RESCAL-CL [32] to
obtain 0.597. Also, our method achieved comparable performance to the benchmark
models on the FB15K237, less than the latest method such as DualE [5], and ComplEx-
CL [32]. The main reason could be that the FB15K237 is significantly density: 1) The
multi-relationships between entities are common: for example, multi-relational facts
(that is, N-to-N relations type) account for more than 70% in the test set [25]; 2)
According to statistics of FB15K237, the average number of neighbours for entities is
18.8, and the maximum number of neighbours for entities is 1325, which is denser than
WN18RR. The latter has the average number of neighbours at 2.1 and the maximum
number of neighbours at 462. As a result, our NDKGE achieves higher performance on
WN18RR than FB15K237.

On Hadoop16K, our method achieves the best performance in MR and Hits@10
compared with other state-of-the-art benchmarks. Compared with FB15K237, the
Hadoop16K has a sparse structure. For example, the statistics of the test set found that
the proportions of N-1, 1-N and N-N relation types were 11.5%, 10.8% and 0%, respec-
tively. At the same time, counting the number of neighbours of entities, we found the
maximum number of neighbours of its entities is 84, and the average number of neigh-
bours is 1.2, much smaller than 1325 and 18.8 in FB15K237.

From all the results on the five datasets we report above, we find that connect-
ing newly created sentence descriptions can obtain good experimental results, which
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Table 2. Results of link prediction on FB15K and WN18.

Datasets FB15K WN18

Metric Mean Rank Hits@10 Mean Rank Hits@10

TransE [4] 119 0.661 280 0.899

TransH [28] 87 0.644 303 0.867

Jointly(desp) [36] 39 0.773 - -

DKRL(CNN) [30] 91 0.674 - -

Jointly(A-LSTM) [31] 73 0.755 123 0.909

SSP(Joint) [29] 82 0.790 156 0.932

AATE_E [2] 76 0.761 123 0.941

ConMask [22] 98 0.620 - -

RotatE [23] 40 0.884 309 0.959

RPJE [19] 40 0.903 - 0.951

Teger-TransE [9] 72 0.763 168 0.947

PairRE [7] 37 0.896 - -

DualE [5] 21 0.896 156 0.962

NDKGE 45 0.842 13 0.976

Table 3. Results of link prediction on FB15K237 and WN18RR.

Datasets WN18RR FB15K237 Hadoop16K

Metric Mean Rank Hits@10 Mean Rank Hits@10 Mean Rank Hits@10

TransE [4] 3526 0.477 234 0.480 401 0.738

TransH [28] 6356 0.350 334 0.395 559 0.823

DistMult [33] 7000 0.504 512 0.446 530 0.586

ComplEx [26] 7882 0.530 546 0.450 555 0.793

R-GCN [20] 6700 0.207 600 0.300 - -

ConvE [8] 4464 0.531 245 0.497 - -

ConvKB [16] 3433 0.524 309 0.421 282 0.855

QuatE [34] 3472 0.564 176 0.495 - -

RotatE [23] 3340 0.571 177 0.533 385 0.859

TuckER [3] - 0.526 - 0.544 - -

HAKE [35] - 0.582 - 0.545 - -

GC-OTE [24] - 0.583 - 0.550 - -

ATTH [6] - 0.573 - 0.540 - -

BoxE [1] 3117 0.523 163 0.538 481 0.851

PairRE [7] - - 160 0.544 379 0.850

DualE [5] 2270 0.492 91 0.559 1144 0.854

SE-GNN [13] 3211 0.572 157 0.549 - -

RESCAL-CL [32] - 0.597 - 0.554 - 0.812

ComplEx-CL [32] - 0.595 - 0.564 - 0.882

NDKGE 166 0.699 187 0.547 219 0.900
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Table 4. Ablation study for WN18, FB15K, WN18RR, and FB15K237.

Datasets WN18 FB15K WN18RR FB15K237

Metric MR Hits@10 MR Hits@10 MR Hits@10 MR Hits@10

NDKGE(name) 158 0.848 330 0.558 1530 0.486 273 0.449

NDKGE(mention) 40 0.948 76 0.725 307 0.621 263 0.516

NDKGE(description) 13 0.976 45 0.842 166 0.699 187 0.547

Table 5. Ablation study for Hadoop16K.

Datasets Hadoop16K

Metric MR Hits@1

NDKGE(name) 289 0.744

NDKGE(mention) 275 0.766

NDKGE(description) 219 0.778

means that the sentence-level description can provide the model with richer semantic
information and help to learn more effective knowledge embeddings for application
tasks.

4.4 Ablation Study

Algorithm 1 shows a function to calculate the embeddings (h, r, t) for a triple (h, r, t) ∈
G, where we conduct ablation study on five datasets using three different settings:
name, mention, and description. Table 4 shows the result of ablation study on WN18,
FB15K, WN18RR and FB15K237. For WN18, The MR is reduced from 158 to 13
and Hits@10 rises from 0.848 to 0.976 when using the name and description set-
tings, respectively. For FB15K, in Hits@10, using the description setting to obtain
0.842 is 28.4% higher than using name setting to obtain 0.558, and 11.7% higher
than using mention setting to obtain 0.725. The MR is reduced from 1530 to 166,
Hits@10 increases from 0.486 to 0.699 in WN18RR and Hits@10 achieves 0.699 using
description setting and 21.3% higher than using name setting to obtain 0.486, and
7.8% higher than using the mention setting to obtain 62.1. For FB15K237, Hits@10
increases from 0.449 to 0.547 by using name and description settings, respectively.

Table 5 shows the ablation study result on Hadoop16K. Statistics show that about
45% of entities have only one link, so getting higher Hits@1 makes more sense in indus-
trial practice. We report the results of MR and Hits@1 under the three settings, name,
mention, and description. With the addition of the newly created description, MR
decreases from 289 to 219, and Hits@1 rises from 0.744 to 0.778. The ablation study
on five datasets shows that the link prediction performance increases with newly created
sentence-level descriptions, which means adding new descriptions to help knowledge
graph embedding is meaningful in practice.
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5 Conclusion and Future Work

This paper introduces the NDKGE approach, which uses neighbour information to
create a description for an entity. The method helps to address the issue in the exist-
ing text-based methods where some entities may not have their associated mentions
or the related text description can not be obtained from external sources. We con-
duct the link prediction task on five datasets, FB15K, FB15K237, WN18, WN18RR,
and Hadoop16K. The experimental results show that the knowledge graph embeddings
with the generated descriptions can outperform the existing work when each entity has
fewer relations with other entities, such as in the WN18RR and Hadoop16K. This paper
only focused on using the score function from TransE, which already shows promising
results. We will consider the other score functions in our future work. Future work will
also focus on extending the generated description for detecting unknown entities that
are introduced from out-of-the KG.
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