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Abstract. This article describes a somewhat new way of thinking about
Prolog programming. It was motivated by a video and presentation by
Leslie Lamport [6] in which he argued for a simple model of computation
in which, to develop a program, one uses conventional mathematical
language with the necessary invariants being front and center. He used
as a motivating example the problem of finding the greatest common
divisor (GCD) of two positive integers. I felt his model of computation
was too simple to be useful for complex programs, but I liked his essential
idea. I thought I’d like to apply it to the computational model(s) of logic
programming, in particular to Prolog. It led to a somewhat different way
of thinking about how to develop Prolog programs that takes advantage
of both bottom-up and top-down thinking. This article explores this
program development strategy using the GCD problem as a motivating
example.

1 Inductive Definitions

Prolog is basically a language of inductive definitions. (See M. Denecker’s work
including [3,8].) We all learn about inductive definitions early in our mathematics
education. The first definition I remember learning was of the factorial function.
Factorial is described informally as a function of natural numbers where n! = n∗
(n − 1) ∗ (n − 2) ∗ ... ∗ 1. Even though this seemed pretty clear to me (at least
for positive integers), I was told that the “...” in this purported definition isn’t
precise enough. A better way to define factorial is needed, and an inductive
definition does the job:

n! = 1 if n=0
n! = n*(n-1)! if n>0

The first clause specifies the value of factorial of 0 directly; the second clause
specifies the values for all natural numbers greater than 0. It’s clear how one can
use this definition to find the value of n! for any n. For example, say we want
the value of 4!. We know 0! = 1 from the first clause; from the second clause, we
know 1! = 1∗0!, and since we’ve established that 0! = 1, then 1! = 1∗1 = 1; again
from the second clause 2! = 2 ∗ 1! = 2 ∗ 1 = 2; again 3! = 3 ∗ 2! = 3 ∗ 2 = 6; and
finally 4! = 4∗ 3! = 4∗ 6 = 24. In the same way we can find the value of factorial
for any natural number by starting with 0 and computing the values of factorial
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for all numbers up to and including the one of interest. This is ensured by the
fact that all natural numbers can be reached by starting with 0 and adding 1
some (finite) number of times.

Here we have defined a function inductively. We can also (or more generally)
defines sets inductively. To define a set inductively, one first specifies a universe
of elements. Then one explicitly gives some subset of them as members of the
desired set, and provides a set of rules. Each rule says that if certain elements
of the universe are in the desired set, then some other element(s) must be in
the set. This defines a subset of the universe: the smallest set that contains the
explicit elements and is closed under the rules.

As another, perhaps slightly more interesting, example of an inductive defi-
nition, we consider GCD, the Greatest Common Divisor relation. The GCD of
two non-zero natural numbers is the largest natural number that evenly divides
them both. E.g., the GCD of 18 and 24 is 6. We’ll want to define gcd(n,m, d) to
mean that d is the GCD of the non-zero natural numbers n and m. An inductive
definition of this set is:

gcd(n,n,n) for n > 0
gcd(n+m,m,d) if gcd(n,m,d)
gcd(n,n+m,d) if gcd(n,m,d)

The first (base) clause says that the GCD of a number and itself is that number.
The second clause, a rule, says that if d is the GCD of n and m, then it is also
the GCD of n + m and m. And the third is similar. We’ll leave it to the reader
to compute a few of these triples. For example, starting from the single basic
element gcd(1, 1, 1) we see that it generates pairs with GCD of 1, i.e., pairs that
are relatively prime.

There are two nice properties of inductive definitions that use well-defined
and computable conditions:

1. They come with a mechanism to compute their values, as we have seen,
by starting with the base clauses, which give the first (unconditional) set
members; and then continuing to apply the other clauses until we get the
answer we want (or maybe all the answers.) This iterative process can serve
as a computational model for inductive definitions.

2. They provide a ready-made structure for proving properties that hold of all
members of the inductively defined sets: we just need to show that the desired
property holds for the unconditional members defined by the base clauses, and
that if the property holds for the set elements used in the conditions of an
inductive clause and the condition itself holds, then the property holds for
the newly specified member. Intuitively our reasoning for why this is true can
follow exactly the process we used to add members to the set: we see that each
initial member and each added member must have the desired property, so
that all members of the set must have it. The Induction Principle guarantees
that the property holds for every member of the defined set.

As an example of a proof, say we want to prove that if gcd(n,m, d) is in the
set defined inductively above, then d is indeed the greatest common divisor of n
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and m. For the base clause, clearly the greatest common divisor of two identical
numbers is that number itself. For the inductive clauses, if d divides n and m,
then it clearly divides n+m. And if there were a greater divisor of n+m and m,
that greater divisor would have to divide n, contradicting the assumption that
d is the GCD of n and m. And similarly, for the other inductive clause. So. we
have proved the desired property. In fact our (perhaps implicit) recognition of
this property was what led us to write this definition in the first place.

The computational model and the proof method are fundamentally inter-
twined. When we wrote the inductive definition we had in mind the property we
wanted the set to have, and ensured that each rule preserved that property. I.e.,
we had the proof of correctness directly in mind when we wrote the definition.

2 From Inductive Definition to Prolog Program

We now have an inductive definition of the GCD relation, which has been proved
to be correct. But we want a Prolog program for finding GCD. How do we turn
this inductive definition into a correctly running Prolog program?

We take the inductive definition that was written in English using conven-
tional mathematical notation:

gcd(n,n,n) for n > 0
gcd(n+m,m,d)) if gcd(n,m,d)
gcd(n,n+m,d)) if gcd(n,m,d)

and we directly convert it to a Prolog program. We note that there have been
many extensions to the Prolog language, so it makes a difference which dialect
of Prolog we are working with. For our purposes here, we will assume a rela-
tively primitive Prolog, essentially ISO Prolog. But there are Prolog systems that
support functional notation and general numeric constraints. In these Prologs
different transformations, perhaps including none, would be necessary.

ISO Prolog doesn’t support functional notation, so we need to introduce
new variables (identifiers starting with upper-case letters) for the sums in the
atomic formulas. And we can convert the sums to use Prolog’s general arithmetic
construct, is/2:

gcd(N,N,N) :- N > 0.
gcd(NpM,M,D)) :- gcd(N,M,D), NpM is N + M.
gcd(N,NpM,D)) :- gcd(N,M,D), NpM is N + M.

This form now is a Prolog program in that it satisfies Prolog syntax. However, to
determine if it will correctly execute to solve a problem, we have to consider the
queries we will ask. In our case, we want to provide two integers and have Prolog
determine the GCD of those two integers. This mode of the queries we will ask
is denoted by gcd(+,+,-), where + indicates a value is given and - indicates
a value is to be returned by the computation. Here we intend to give the first
two arguments and expect the have the third one returned. And we also need to
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know the mode of each subquery in order to determine if the definition can be
executed by the Prolog processor.

Correct Prolog evaluation depends on subquery modes in two ways: 1) sub-
queries must have only finitely many answers, and 2) Prolog’s predefined predi-
cates (like is/2) often work only for particular modes and so the modes for calls
to those predicates must be acceptable.

We must check that the modes of our Prolog program for GCD are correct.
The first requirement for correct evaluation of a query (or subgoal) is that it
must have only finitely many answers. Since Prolog uses backward-chaining, it
poses a number of subgoals during its computation starting from an initial goal.
We must be sure that every one of those subgoals has only finitely many answers.
Otherwise, Prolog would go into an infinite loop trying to generate all infinitely
many answers to such a subgoal. For example, the goal gcd(27,63,D) has only
finitely many instances in the set defined by the gcd program; actually only one
instance, with D=9. But the goal gcd(N,63,9) has infinitely many instances in
the defined set; including all those with N being a multiple of 9. The lesson here
is that we need to understand the modes of all subgoals generated by a Prolog
computation. The mode of a subgoal describes where variables appear in it, and
this affects whether it matches infinitely many set members or not.

We note that since Prolog calls goals in the body of a rule in a left-to-right
order, the mode of a subgoal is determined by the success of goals to its left in
the rule body, as well as by the mode of this initial call. We assume that the
initial goal that we pose to this program will have the first two fields as numbers
and the third field as a variable. I.e., we’ll be asking to find the GCD of two
positive integers. This mode is expressed as gcd(+,+,-).

We next explore the modes of the subgoals in our Prolog program above.
Under this mode assumption, since any call to gcd will have its first two argu-
ments bound to values, the variable N in the subgoal N > 0 in the first clause
will have a value as required by Prolog so this condition can be checked.

In the second clause NpM and M will be integers (by the mode assumption),
so in the first subgoal, NpM is N + M, NpM and M will have values, but N will be
a variable. That means that the call to gcd(N,M,D) will have mode (-,+,-),
and this subgoal will have infinitely many answers. So, this Prolog program will
not execute correctly. (The third rule suffers from a similar problem.) We need
N to get a value before the call to gcd(N,M,D). N appears in the second subgoal
of that condition, so let’s try evaluating that subgoal first. To this end we move
the is/2 goals earlier and get a new program:

gcd(N,N,N) :- N > 0.
gcd(NpM,M,D)) :- NpM is N + M, gcd(N,M,D).
gcd(N,NpM,D)) :- NpM is N + M, gcd(N,M,D).

Now in the call to is/2, NpM and M will have values (because of the mode
assumption for calls to gcd/3). Prolog, however, requires is to have the mode
of is(?,+). (The “?” indicates either “+” or “-” is allowed.) Since N will not
have a value, the second argument to is/2 will not have a value and this rule will
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result in an error when evaluated with the expected values. But we can change
the is/2 to compute N from MpN and M by writing N is MpN - M. This imposes
the equivalent constraint among N, M and MpN and is correctly modded for Prolog
to evaluate it. Similarly fixing the third clause gives us a program:

gcd(N,N,N) :- N > 0.
gcd(NpM,M,D)) :- N is NpM - M, gcd(N,M,D).
gcd(N,NpM,D)) :- M is NpM - N, gcd(N,M,D).

In the second clause now, the first body subgoal causes N to get a value, so the
second subgoal is called with N and M with values, and thus in the same mode as
the original mode, that is gcd(+,+,-). Similarly for the third clause. Thus all
calls to gcd/3 (and is/2) will be correctly moded.

However, there is still an issue with this program: Prolog computes with
integers, not natural numbers, and so the subtraction operations might gener-
ate negative integers. But we want only positive integers. So we must add this
constraint explicitly as follows:

gcd(N,N,N) :- N > 0.
gcd(NpM,M,D)) :- N is NpM - M, N > 0, gcd(N,M,D).
gcd(N,NpM,D)) :- M is NpM - N, M > 0, gcd(N,M,D).

Only when we generate a new integer do we need to check that it is positive.
And we must do the check after the number variable gets a value to satisfy the
mode requirement of </2; immediately after it gets that value is best. This is
now a good Prolog program for computing the GCD of two integers. You might
recognize this as the Euclidean algorithm for GCD. I.e., the Euclidean algorithm
is the top-down evaluation (i.e., Prolog evaluation) of this inductive definition.
Actually, we can make this algorithm slightly more efficient, and maybe make
it look a bit more like Euclid’s algorithm by noting in the second clause (and
analogously in the third) that N will be greater than 0 only if NpM is greater than
M, so we can make that check before taking the difference, getting:

gcd(N,N,N) :- N > 0.
gcd(NpM,M,D)) :- NpM > M, N is NpM - M, gcd(N,M,D).
gcd(N,NpM,D)) :- NpM > N, M is NpM - N, gcd(N,M,D).

(Renaming the variables in the third clause might make it look even more famil-
iar.) Now we can see that only one of the three clauses can ever satisfy its
comparison condition for a (correctly moded) subgoal, and so the Prolog com-
putation is deterministic.

See Kowalski et al. [5] for another development of Euclid’s algorithm, there
in a more English-like dialect of Prolog.

Let’s recap how we approached Prolog programming. We followed a sequence
of steps, which we will describe in some generality here. They are a generalization
of the steps we just used in our development of the gcd Prolog program.

1. Use inductive clauses to define the relation, a set of tuples, that characterizes
the solution to the problem of interest. Use names for the relations to organize
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and name sets of tuples. Above we used the name gcd as the predicate symbol
to remind us that it is a set of triples that define the Greatest Common Divisor
function. Use whatever mathematical notation is convenient. Similarly, define
and use whatever sets of tuples are useful as subsidiary definitions.

2. Convert this mathematical definition into Prolog clauses, using the necessary
Prolog built-ins.

3. Consider the mode of each subgoal that will be invoked during top-down
evaluation of the clauses. Ensure that the subset of each relation required
to answer each moded subgoal is finite. Ensure that all built-ins are invoked
in modes that they support. Ensure that defined subgoals are all invoked in
desired modes, by ordering the subgoals of rule bodies so their left-to-right
evaluation is well-moded and efficient.

Notice that in developing this program, we did not consciously think about
recursive programming. We thought about an inductive definition. Recursion is
the procedural mechanism used to evaluate inductive definitions top-down. The
procedural mechanism to evaluate inductive definitions bottom-up is iteration.

To understand the correctness of an inductive definition we can think iter-
atively; just iterate the application of the inductive rules, starting from empty
relations. Intuitively, this is easier to understand than recursive programming.
The recursion showed up in the final program because of the form of the rules
of the inductive definition. We know the recursive evaluation will give the cor-
rect answer because top-down evaluation computes the same answer (when it
terminates) as the bottom-up iterative evaluation.

Many others have noted the importance of bottom-up thinking. The deduc-
tive database community (see, e.g., [7]) looks at programs with only constant
variable values, so-called Datalog programs, exclusively bottom up. And teach-
ers of Prolog teach bottom-up evaluation, and sometimes provide bottom-up
evaluators for students to use to understand the programs they write, [4].

3 The Claim

Let’s look at what needs to be done to write a correct program. First we have to
determine what it means for a correct program to be correct. For that we need
to have an idea in our heads of what our program should do, i.e., a property
the program should have, i.e., for a logic program a property that must hold of
every tuple in the defined relation. And we must ensure that it contains every
tuple it should. Then we have to write a program that defines a relation that
has that property.

We could require that this whole process be done formally, i.e., do a formal
verification of our program. In that case, we would specify the correctness prop-
erty, a.k.a. the program specification, in some formal language. Then we would
generate a formal proof that the program we created satisfied that specifica-
tion. This turns out to be rather complicated and messy, and for large practical
programs essentially undoable. Almost no large programs in practice are ever
proved correct in this way. (See [2] for a discussion of relevant issues.)
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In lieu of formal verification we might use informal methods that won’t guar-
antee exact program correctness but might provide some confidence that our
programs do what we want them to do. We argue that the informal program
development strategy that we have described above does just that.

When we develop an inductive definition of a relation that satisfies our intu-
itive correctness criteria (what we want the program to do), we are thinking
of bottom-up generation of a satisfying relation. And the bottom-up generation
must generate correct tuples at every step. And seeing that rules always gen-
erate correct tuples is exactly what a proof of correctness requires. Indeed, the
name given to the predicate is naturally a shorthand for its correctness property.
We named our predicate gcd because of the Greatest Common Divisor property
that we wanted its tuples to have. So, when generating an inductive definition
of a relation, one has directly in mind the property all its tuples must have,
and so writes rules that guarantee that property. This is exactly the thinking
necessary to formulate a proof of correctness. In this way the thinking required
to formulate the program is exactly the thinking require to formulate a proof of
its correctness. Even if the proof is not formally carried out, the intuitive ideas
of how it would be created have already been thought through.

Note, however, that such an inductive proof is not a formal proof of correct-
ness for a Prolog program. That would require formal consideration of modes,
occur-check, termination, and other important details of actual Prolog evalua-
tion. Discussions of formal proofs of total correctness of Prolog programs in the
literature tend to focus on these issues, e.g., [1].

Of course, most Prolog programs are more complicated than a single induc-
tive definition. Most require multiple subsidiary relations to be defined and then
used in more complex definitions. But each such subsidiary relation is also induc-
tively defined and a similar methodology can be used for them. For procedural
programs with while and for constructs, one needs to generate an invariant
for each loop; the corresponding logic program requires a relation, with its own
name and inductive definition, for each loop, thus laying bare the correctness
criteria that may be hidden for iterative programs with loops.

4 Caveats

What is proposed here is an idealized methodology for developing Prolog pro-
grams. Of course, it won’t always work this way. Prolog programmers learn (and
are encouraged) to think about top-down execution and recursion in a procedural
way. Indeed, to develop definitions that evaluate efficiently top-down, it is often
necessary to think in this way. So almost always an experienced Prolog program-
mer will develop a program without ever thinking about how it would evaluate
bottom up. My suggestion is that programmers should initially be taught this
bottom-up-first methodology, and then as they advance and develop their top-
down intuitions, they should always go back and look at the bottom-up meanings
of their programs. As a practicing top-down Prolog programmer, I’ve found it
often enlightening to think of my programs in a bottom-up way. Sometimes effi-
cient top-down programs are infinite, or ridiculously explosive, as bottom-up
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programs. But experience can make them intuitively understandable, and think-
ing that way provides insight. It deepens an understanding of what the program
defines and can sometimes uncover problems with it. It is also worth noting that
bottom-up evaluation is independent of problem decomposition, which is a good
development strategy, independent of any evaluation strategy.

Bottom-up evaluation is generally easier to understand not only because it
is based on iteration instead of recursion as is top-down. Every state reachable
in a bottom-up construction satisfies the desired correctness property. But in
top-down, many reachable states may not satisfy the correctness property; they
may be states only on a failing derivation path. This means that for top-down
one must distinguish between states that satisfy the desired property and those
encountered along a failing path towards a hoped-for justification. It’s more to
keep track of in one’s head. Perhaps another way to say it is that bottom-up
evaluation is intuitively simpler in part because it needs no concept of failure.

5 Conclusion

I would claim that mathematical induction provides the formal foundation of all
algorithmic computation, i.e., computation intended to terminate1. Prolog asks
programmers to give inductive definitions directly. The form of definition is par-
ticularly simple, being straightforward rules for adding members to sets. Since
the programmer creates definitions thinking directly in terms of the mathemati-
cal foundations of computation, there is less of a distance between programming
and proving. This makes for programs more likely to do what the programmer
intends.
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