
Machines as Thought Partners: Reflections
on 50 Years of Prolog

Gregory Gelfond1(B), Marcello Balduccini1,2, David Ferrucci1, Adi Kalyanpur1,
and Adam Lally1

1 Elemental Cognition Inc., New York, USA
gregg@ec.ai

2 Saint Joseph’s University, Philadelphia, USA

Abstract. In 1972, Kowalski and Colmerauer started a revolution with
the advent of the Prolog programming language. As with LISP, the lan-
guage enabled us to think previously impossible thoughts, and ushered
in both logic programming and the declarative programming paradigm.
Since that time, a number of descendants of Prolog have been brought
into the world, among them constraint logic programming and answer-
set prolog. In this paper, we celebrate the 50th anniversary of the Prolog
language, and give a brief introduction to a new member of the Prolog
family of languages — the logic programming language Cogent.

Keywords: Logic programming · Knowledge Representation ·
Programming Languages · Prolog Anniversary · Cogent

1 Introduction

In his 1972 Turing Award Lecture, Edsger Dijkstra notes that LISP “has assisted
a number of our most gifted fellow humans in thinking previously impossible
thoughts.” Curiously, it was during that same year that Prolog was developed.
We do not know if it was felt at that time just how important the discovery of
the Prolog language was, but it is not surprising that the name of the language,
an acronym for “Programming in Logic”, is a homophone for prologue. Robert
Kowalski’s and Alain Colmerauer’s language was an introduction to a new way
of thinking about programming, one which in some ways is alluded to by an old
joke at the language’s expense:

Prolog is what you get when you create a language and system that has
the intelligence of a six-year-old - it simply says “no” to everything.

The joke hints at just how revolutionary the language was. For the first
time, we now had a language that rather than having a programmer answer
the question of “how”, we had one that enabled us to answer the question of
“what”. In other words, the language freed us from thinking about and describing
the mechanics of an algorithm, and allowed us to focus on describing the goal,
or specification that the algorithm was intended to meet. So, if we come back
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 386–392, 2023.
https://doi.org/10.1007/978-3-031-35254-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_31&domain=pdf
https://doi.org/10.1007/978-3-031-35254-6_31


Machines as Thought Partners: Reflections on 50 Years of Prolog 387

to the notion of a six-year-old child, it turned a programmer into a teacher,
and the computer into a student. This shift, to return to Dijkstra’s quote on
LISP, enabled us to think previously impossible thoughts – and therefore, to ask
previously impossible questions.

Two other aspects of the language’s nature – its connection to both Horn
clauses and context-free grammars shed light on the kinds of heretofore impossi-
ble thoughts we now find ourselves engaged with. SLD and its successor SLDNF
resolution enabled us to both simply encode and render computable part of the
language of thought itself. This in turn shifted our gaze to the question of: “What
kinds of reasoning can be described (i.e., taught) to a machine?” The search for
answers to these questions (and others such as uncovering the nature of negation-
as-failure) gave rise to other languages and their attendant semantics, such as
the well-founded [9] and answer-set semantics [1,2], advancing our understand-
ing of how we ourselves reason and how the kind of reasoning we carry out can
be imparted to a machine. These questions yielded further lines of inquiry into
areas such as commonsense reasoning, natural language understanding, reason-
ing about actions and change, and algorithmics, many of which are part of the
foundation of the artificial intelligence technologies in active development here
at Elemental Cognition1.

Elemental Cognition (EC), a company founded by Dave Ferrucci after his suc-
cess in helming IBM’s Watson Project2 through its landmark success in beating
the best humans at the question-answering game of Jeopardy, is a particular ben-
eficiary of the foundations laid by Kowalski and those who followed him. The
fields of knowledge representation, non-monotonic reasoning, and declarative pro-
gramming can trace part of their ancestry to Kowalski’s work, and provide the
logical foundations of the work done at EC. In particular, our vision of artificial
agents as “thought partners” capable of collaborating with humans, rather than
just acting autonomously, depends on numerous developments in these fields.

EC’s history with logic programming begins in some respects with Ferrucci’s
own background, and the IBM Watson project in particular. There, Prolog played
a role in the project’s natural language pipeline and was instrumental in the
detection and extraction of semantic relations in both questions and natural lan-
guage corpora. Prolog’s simplicity and expressiveness enabled the developers to
readily deal with rule sets consisting of more than 6,000 Prolog clauses, something
which prior efforts involving custom pattern-matching frameworks failed to do.
This work in no small part informed the design of EC’s neuro-symbolic reasoner,
Braid [3]. The expressivity and transparency of a Prolog-like language combined
with the statistical pattern matching power of various machine learning models
enabled a powerful HybridAI solution which had been applied to several “real-
world” applications. This work in part involved the development of a backward
chaining system that can be seen as an extension of Prolog’s SLD resolution
algorithm by features such as statistical/fuzzy unification and probabilistic rules
generated by a machine learning model. This enabled the system to circumvent

1 https://ec.ai.
2 https://www.ibm.com/watson.

https://ec.ai
https://www.ibm.com/watson
https://ec.ai
https://www.ibm.com/watson


388 G. Gelfond et al.

the knowledge acquisition bottleneck and potential brittleness of matching/uni-
fication, while retaining the elegance and simplicity of the declarative paradigm
itself. Subsequent work has seen the Braid reasoning system evolve towards the
use of the answer-set semantics and constraint logic programming [7].

All of this enabled a number of high-profile successes, such as our develop-
ment of the PolicyPath3 application which was used during Super Bowl LV in
2021 at the height of the Covid-19 pandemic [4]. The project was built on a
declarative, logic-based representation of the related policies, and part of the rea-
soning mechanisms developed in the course of the project combined techniques
for reasoning about actions and change with various flavors of logic programming
including answer-set programming and constraint logic programming. Other suc-
cesses include our partnership with the OneWorld Alliance4 on the development
of the virtual agent they employ for scheduling round-the-world travel.

In this paper we give an introduction to a new language called Cogent5 under
development at EC, which carries forward the torch that was lit by the introduc-
tion of Prolog.

2 From Prolog to Cogent

As was mentioned previously, the advent of logic programming enabled us to
shift our focus from describing the how of a computation, to the what. In other
words, it enabled us to focus our attention on what Niklaus Wirth termed “the
refinement of specification”. As an example, let’s consider the following example:
a nurse scheduling program written in answer-set prolog (a descendant of Prolog
based on the answer-set semantics of logic programs, and one of the elements at
the core of EC’s internal language known as Cordial).

Listing 1.1. Nurse Scheduling in Answer-Set Prolog
1 % The nurses are Andy , Betty , and Chris.
2 nurse(andy; betty; chris).
3
4 % The days are Monday , Tuesday , and Wednesday.
5 day(monday; tuesday; wednesday).
6
7 % The shifts are first , second , and third.
8 shift (1;2;3).
9

10 % We may choose for a nurse to be assigned to a shift on a day.
11 { assigned(N,S,D) }:- nurse(N), shift(S), day(D).
12
13 % A nurse cannot be assigned to more than one shift on the same day.
14 :- nurse(N), day(D), #count{ S : assigned(N,S,D) } > 1.
15
16 % A shift is ‘‘covered" by a nurse on a day if the nurse is assigned to

the shift on that day.
17 covered(S,N,D):- assigned(N,S,D).
18

3 https://www.billboard.com/pro/super-bowl-halftime-show-covid-safety-
coronavirus/.

4 https://ec.ai/case-travel.
5 https://ec.ai/cogent-features.

https://www.billboard.com/pro/super-bowl-halftime-show-covid-safety-coronavirus/
https://www.oneworld.com
https://www.billboard.com/pro/super-bowl-halftime-show-covid-safety-coronavirus/
https://www.billboard.com/pro/super-bowl-halftime-show-covid-safety-coronavirus/
https://ec.ai/case-travel
https://ec.ai/cogent-features


Machines as Thought Partners: Reflections on 50 Years of Prolog 389

19 % Each shift must be covered by exactly one nurse on each day.
20 :- shift(S), day(D), #count{ N : covered(S,N,D) } != 1.
21
22 % A nurse is ‘‘working on’’ a day if the nurse is assigned to a shift on

that day.
23 working(N,D):- shift(S), assigned(N,S,D).
24
25 % Each nurse must be working on at least two days.
26 :- nurse(N), #count{ D : working(N,D) } < 2.

The important aspect of the program in Listing 1.1 is that none of the state-
ments describe an algorithm for computing a potential solution. Rather, they
encode the specification itself. It’s worth reflecting and appreciating the power of
such a syntactically simple and elegant language. Compare for example this pro-
gram, against the equivalent programs written in an imperative language using
Google’s OR-Tools [8]. The difference is stark, and it raises an important ques-
tion: “Why has the logic programming approach not gained in momentum since
its discovery?”

There are many potential answers to this question. One possibility is that
in addition to the cognitive load incurred by switching from an imperative to a
declarative mindset, there is an additional cognitive load incurred by the close
relationship between logic programming languages and the notations of formal
logic. This dramatically increases the distance a potential user has to mentally
travel in order to get to the current state of the art. Another way to view this, is
that logic programming languages on some level, are still at the level of assembly
language. The declarative paradigm is a higher level paradigm than imperative
programming, but declarative languages by and large are still on too low a level
to be readily adopted. If this is true, then a natural question to ask is: “What
could a high-level, structured, declarative programming language look like?”

At EC, we believe that one potential answer to this question is structured
natural language, in particular our own version of this known as Cogent. Similar
work in this area exists, namely Kowalski’s own work on logical English [5,6],
but with Cogent we are able to leverage our expertise in both natural language
understanding and knowledge representation to build a more flexible, and user
friendly representation language. In particular, let’s revisit the program from
Listing 1.1, only this time in Cogent instead of ASP:

Listing 1.2. Nurse Scheduling in Cogent
1 The nurses are ‘‘Andy ’’, ‘‘Betty ’’, and ‘‘Chris ’’.
2
3 The days are ‘‘Monday ’’, ‘‘Tuesday ’’, and ‘‘Wednesday ’’.
4
5 The shifts are ‘‘first ’’, ‘‘second ’’, and ‘‘third ’’.
6
7 A nurse may be ‘‘assigned to’’ a shift ‘‘on’’ a day.
8
9 A shift may be ‘‘covered by’’ a nurse ‘‘on’’ a day.

10
11 A nurse may be ‘‘working on’’ a day.
12
13 We may choose for a nurse to be assigned to a shift on a day.
14
15 A nurse cannot be assigned to more than one shift on the same day.
16

https://developers.google.com/optimization/scheduling/employee_scheduling#java_9


390 G. Gelfond et al.

17 A shift is covered by a nurse on a day if the nurse is assigned to the
shift on that day.

18
19 Each shift must be covered by exactly one nurse on each day.
20
21 A nurse is working on a day if the nurse is assigned to a shift on that

day.
22
23 Each nurse must be working on at least two days.

The reader will notice that with the exception of lines 7, 9, and 11, the text
of the program is the same as comments from the ASP encoding in Listing 1.1.
Given this program, our reasoning engine is capable of finding solutions just as
efficiently as the ASP encoding, yet the Cogent program is more accessible to
a reader. Not only that, but the fact that the language is a structured form of
natural language helps bridge the gap in terms of familiarity to aspiring users.
The notion of accessibility to a reader, however is of special importance, since at
EC, one of our motivating goals is to help develop explainable AI. One important
aspect of this is to render the axioms of a domain that an AI system represents
both inspectable and clear to as many users as possible. This kind of transparency
enables deeper human and AI partnerships which furthers our vision of artificial
agents as “thought partners” capable of collaborating with humans.

Cogent has features that overlap with those found in contemporary logic
programming languages, such as non-deterministic choice, aggregates, recursive
definitions, costs, preferences, a declarative semantics for negation, and contradic-
tion diagnosis. In addition however, it features numerous advanced term building
features that facilitate the construction of clear, concise natural language expres-
sions. Consider the solution to the N-Queens problem given in Listing 1.3

Listing 1.3. N-Queens in Cogent
1 # Declarations
2
3 There is exactly one ‘‘board size ’’, which is a number.
4
5 ‘‘Queen ’’ is a type.
6 The ‘‘Row ’’ of a queen can be any integer from 1 to the board size.
7 The ‘‘Column ’’ of a queen can be any integer from 1 to the board size.
8
9 A queen may be ‘‘attacking ’’ another queen.

10
11 # Rules of the Domain
12
13 A queen cannot be attacking another queen.
14
15 A queen is attacking another queen if the first queen ’s row is equal to

the second queen ’s row.
16
17 A queen is attacking another queen if the first queen ’s column is equal

to the second queen ’s column.
18
19 A queen is attacking another queen if
20 A - B = C - D
21 where
22 A is the row of the first queen , and
23 B is the row of the second queen , and
24 C is the column of the first queen , and
25 D is the column of the second queen.
26



Machines as Thought Partners: Reflections on 50 Years of Prolog 391

27 A queen is attacking another queen if
28 A - B = D - C
29 where
30 A is the row of the first queen , and
31 B is the row of the second queen , and
32 C is the column of the first queen , and
33 D is the column of the second queen.

Listing 1.3 demonstrates several term building features of Cogent, as well as
a natural encoding of the constraints of the domain. In addition, the language
utilizes EC’s Braid reasoning engine, making it capable of scaling to advanced
production applications, such as the Round-the-World travel application devel-
oped for the OneWorld Alliance. While dramatically more complex in scope than
the toy examples presented above, the encoding of various rules in Cogent (such
as those shown in Listing 1.4) remains not only manageable, but clearly conveys
their intention to a reader:

Listing 1.4. Round-the-World Rule Sampling
1 At most 4 international transfers can be located in any country.
2
3 At least one selected flight leg must be arriving in each continent group

.
4
5 A visit is immediately preceding another visit if
6 a selected route is going from the first visit to the second visit.
7
8 At most one selected leg can be arriving in Asia unless
9 the Asia intercontinental arrival exception is in effect.

10
11 At most two selected legs can be arriving in Asia if
12 the Asia intercontinental arrival exception is in effect.
13
14 The Asia intercontinental arrival exception is in effect if
15 a selected leg is traveling from Southwest Pacific to Asia , and
16 another selected leg is traveling from Asia to Europe.

In addition to bridging the linguistic gap by being a controlled form of natural
language, Cogent is coupled with a powerful AI authoring assistant to help bridge
the gap even further, making for a system that we believe is greater than the
sum of its parts. It is our belief at EC that Cogent provides a revolution in the
arena of declarative programming, and programming at large by elevating the
notion of high-level language to a new level.

3 Conclusion

In 1972, Kowalski and Colmerauer started a revolution with the advent of the Pro-
log programming language. The ability to think “previously impossible thoughts”,
led the community to ask previously unthinkable question, sparking revolutions
in natural language understanding, knowledge representation, commonsense rea-
soning, and other diverse areas. For a time, these fields grew in isolation from
each other, and now are coming together rapidly and in profound ways. With
the development of Cogent, an ultimate grandchild of Prolog in some sense, we
at Elemental Cognition hope to carry forward the tradition and enable a new



392 G. Gelfond et al.

class of impossible thoughts to be given voice. The community owes a debt to
Kowalski, Colmerauer and the Prolog Language, and the great unexplored sea
they revealed to us. Happy Birthday.

References

1. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, Kenneth (eds.) Proceedings of International Logic Program-
ming Conference and Symposium, pp. 1070–1080. MIT Press (1988). http://www.
cs.utexas.edu/users/ai-lab?gel88

2. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. N. Gener. Comput. 9, 365–385 (1991)

3. Kalyanpur, A., Breloff, T., Ferrucci, D.A.: Braid: weaving symbolic and neural
knowledge into coherent logical explanations. Proceed. AAAI Conf. Artif. Intelli.
36(10), 10867–10874 (2022). https://doi.org/10.1609/aaai.v36i10.21333. https://
ojs.aaai.org/index.php/AAAI/article/view/21333

4. Kaufman, G.: How the NFL Pulled Off a Safe Super Bowl LV Halftime Show in
the Middle of a Pandemic (2 2021). https://www.billboard.com/pro/super-bowl-
halftime-show-covid-safety-coronavirus/, non paywalled version. https://www.
bioreference.com/how-the-nfl-pulled-off-a-safe-super-bowl-lv-halftime-show-in-
the-middle-of-a-pandemic/

5. Kowalski, R., Dávila Quintero, J., Calejo, M.: Logical English for legal applications
(11 2021)

6. Kowalski, R., Dávila Quintero, J., Sartor Galileo Calejo, M.: Logical English for law
and education. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski,
R., Rossi, F. (eds.) Prolog - The Next 50 Years. No. 13900 in LNCS, Springer (2023)

7. Marriott, K., Stuckey, P.J., Wallace, M.: Handbook of constraint programming, chap.
12. Constraint Logic Programming, pp. 409–452. Foundations of Artificial Intelli-
gence, Elsevier (2006)

8. Perron, L., Furnon, V.: OR-Tools. https://developers.google.com/optimization/
9. Schlipf, J.S., Ross, K.A., Van Gelder, A.: The well-founded semantics for general

logic programs. J. Assoc. Comput. Mach. 38(3), 620–650 (1991)

http://www.cs.utexas.edu/users/ai-lab?gel88
http://www.cs.utexas.edu/users/ai-lab?gel88
https://doi.org/10.1609/aaai.v36i10.21333
https://ojs.aaai.org/index.php/AAAI/article/view/21333
https://ojs.aaai.org/index.php/AAAI/article/view/21333
https://www.billboard.com/pro/super-bowl-halftime-show-covid-safety-coronavirus/
https://www.billboard.com/pro/super-bowl-halftime-show-covid-safety-coronavirus/
https://www.bioreference.com/how-the-nfl-pulled-off-a-safe-super-bowl-lv-halftime-show-in-the-middle-of-a-pandemic/
https://www.bioreference.com/how-the-nfl-pulled-off-a-safe-super-bowl-lv-halftime-show-in-the-middle-of-a-pandemic/
https://www.bioreference.com/how-the-nfl-pulled-off-a-safe-super-bowl-lv-halftime-show-in-the-middle-of-a-pandemic/
https://developers.google.com/optimization/

	Machines as Thought Partners: Reflections on 50 Years of Prolog
	1 Introduction
	2 From Prolog to Cogent
	3 Conclusion
	References




