q

Check for
updates

Simultaneously Teaching Mathematics
and Prolog in School Curricula: A Mutual
Benefit

1(=)

Laurent Cervoni , Julien Brasseur!, and Jean Rohmer?

! Talan Research and Innovation Centre, Paris, France
{laurent.cervoni, julien.brasseur}@talan.com
2 Institut Fredrik Bull, Paris, France

Abstract. Created in the 1970s, Prolog has its roots in mathematical
logic. Its use to model logic problems is natural, but beyond logic, we
suggest that using and learning Prolog for most of the topics in the
high school math curriculum (probability, algebra, analysis or geome-
try) allows for a better assimilation of the course concepts. We argue
that using Prolog is helpful in that it asks to properly model a problem,
which is essential to develop problem-solving skills since it is often the
key for finding a solution. At the same time, high school students dis-
cover a programming language that is easier to learn than imperative
languages since the syntax is close to natural language and the language
specification is more synthetic than traditional imperative languages.

Keywords: Prolog - Teaching - Mathematics - Education

1 Introduction

Based on predicate logic, Prolog is particularly well suited for expressing relation-
ships between objects, checking properties about these relationships, validating
the consistency of logical rules or for its intrinsic database capabilities.

However, the (re)introduction of Prolog into the educational system at the
secondary school level, and its use as a complement to traditional school subjects,
provides a new and enriching form of learning that may prove to facilitate the
acquisition of certain knowledge.

There have been many examples in the past of the use of Prolog in mathe-
matical analysis (derivative), geometry (Géometrix [6]) or chemistry [7,8]. Var-
ious papers [1-4], some going back to the 1980s, have illustrated, through a few
examples, the pedagogical interest of Prolog in the teaching of elementary math-
ematics, or more advanced mathematics (such as the learning of recursion via
fractals [5], or related to graphs [9,10]). Its educational potential in the history
classroom [11] has also been considered.

Supported by Talan Research Center.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 124-130, 2023.
https://doi.org/10.1007/978-3-031-35254-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_10&domain=pdf
https://doi.org/10.1007/978-3-031-35254-6_10

Simultaneously Teaching Mathematics and Prolog 125

This collection of work shows the interest of exploring the usefulness of Prolog
in a pedagogical context. The experiments we have conducted in 2022 with senior
High School students seem to confirm its relevance. In this paper, we gather some
of the case studies which were proposed to the students.

2 Prolog and Mathematics: A Natural Fit

An important step in solving mathematical problems is to correctly describe and
express the problem. That is, being able to identify the givens of the problem
and its assumptions. The intellectual process of breaking down the problem into
simpler sub-problems is often an essential step towards the solution. Then, the
expression of the different components of the problem and its links with the
knowledge acquired in class make it possible for the student to devise a process
to solve the problem.

Many mathematics teachers (especially, but not only) seem to encourage
students to proceed to this “decomposition” of a problem which allows them to
better understand how to solve it.

Transcribing a problem into Prolog is a relevant and efficient way to per-
form the analysis and the elementary decomposition of a problem. Indeed, it
involves identifying all the elements of a problem and putting them into factual
form. Then, the student must identify the givens of the problem and write them
down as rules and facts. (Re)introducing Prolog into mathematics education
thus has the double advantage of giving students the keys to a rigorous method
for approaching problem solving with an initiation to declarative programming.

The experiments we conducted in a French high school, during the year 2022,
with Senior Year students show that it is not necessary to use complex terms
(unification, recursion, resolution, for example) to make students understand
the concepts. In three sessions of 3h, they were able to understand the basic
principles of writing Prolog programs and to prepare a presentation for middle
school students by themselves.

On the other hand, the declarative approach will facilitate the expression of
the problem and the solution in “natural language”, will invite to make clear
sentences, which is an important skill to train. To describe certain problems,
they will have to write or express sentences such as:

1. An empty list has a length of zero
2. The last element of a list containing only one element is the element itself
3. The parents of my ancestors are my ancestors.

More generally, writing in Prolog allow to articulate both natural language,
drawing (of genealogical relationships for example) and writing an imperative
program. Prolog thus allows to “navigate” between abstract and concrete, or
between modelling and experimental verification. In order to do this, it is essen-
tial to take time with the students, and, above all, not to rush into absorbing
the Prolog reference manual.

126 L. Cervoni et al.

3 Some Examples

The intrinsic qualities of Prolog justify its implementation in high schools (not
an intention to apply it artificially out of context). As we will illustrate with
a few examples, its use has the potential to allow students to assimilate the
elements of the course and to manipulate them and exploit them easily during
exercises.

As we shall illustrate, its use has the potential to allow students to assimilate
the elements of the course and to manipulate them easily during the exercises.
When solving problems or doing exercises, Prolog may give students a way to
understand the flow and application of certain theorems. Let us now consider a
few examples.

3.1 Counting Triangles

A classic mathematical puzzle is to count how many triangles there are in a
geometric figure made of line segments.’

First of all, one has to find a suitable formalism to describe the figure, and
another to express the definition of a triangle. This is very easy in Prolog.

It is only needed to give a name to each line, for example by choosing two
distinct points through which it passes: AB, AC, DE, DF, ... (in general it will
pass through more points than the two chosen to name it). Then, we describe
the membership of points to lines:

line_point(ab,a).
line_point(ab,b).
line_point(ef,a).

and so on. Finally, we express the knowledge of what a triangle is:

triangle([A,B,C]):-
line_point (AB,A),
line_point (AB,B),
line_point(BC,B),
line_point (BC,C),
line_point(CA,C),
line_point (CA,A).

One can now experiment with this first try in Prolog on a case study, and
see that it is not totally satisfactory: Prolog will tell us that a point is a triangle
(the three vertices being in coincidence), that a segment line is a triangle (the
three vertices being aligned), and, finally, it will find that with three vertices, we
can name six triangles [A, B, C], [A, C, B], ..., which is not of much relevance, as
these “six” triangles are nothing but one.

! See, for example: https://www.rd.com/article/triangle-puzzle/.

https://www.rd.com/article/triangle-puzzle/

Simultaneously Teaching Mathematics and Prolog 127

These experiments, and the modifications to our Prolog program that they
may require (specifying that the vertices and segments must be distinct, e.g. by
defining a new ad hoc predicate), are an excellent ground to encourage careful,
precise exploration of the relationships between concepts, models, experiences,
real world, and human perception.?

3.2 Polynomials
In early mathematics course, second-degree polynomials are defined as follows:

a second-degree polynomial function P is a function defined on R by:
P(x) = ax® + bz + ¢, where a,b,c € R are real numbers with a # 0.

In Prolog, this polynomial in the x variable can be written as:

quadPolynomial (A*x~2+B*x+C) :- A=\=0, number(A),

number (B) , number(C).
quadPolynomial (A*x~2+B*x) :- A=\=0, number (A), number(B).
quadPolynomial (A*x~2+ C) :- A=\=0, number(A), number(C).

By writing these three clauses, the pupil becomes aware of different, more
or less complete forms of polynomials (the teacher then guides him/her in this).
They may start with only the first rule and find that it is not very precise. They
can then move on to the standard application exercises of the course, where
the aim is to check whether a function is a second degree trinomial or not, for
example:

quadPolynomial (7). FALSE
quadPolynomial (12*x~2+1%x+0) . TRUE

The advantage of using Prolog is that the student can transcribe the course
definition exactly with a minimum of learning. In the same way, if he has to
represent the solution of a second degree polynomial, the course is also written
directly in Prolog. Introducing the concept of the undefined variable “_”, this
can be written as follows:

solvePoly (A*x~2+B*x+C, Discriminant, _, _) :-

Discriminant is B*B - 4*Ax*C,

Discriminant $<$ O.

/* The discriminant is negative, no solutions to display */
solvePoly (A*x~2+B*x+C, Discriminant, X1, X1) :-

Discriminant is B*B - 4*AxC,

Discriminant = O,

A =\=0,

2 More details can be found at: https://fr.slideshare.net/Jean_Rohmer/compter-les-
triangles-en-prolog.

https://fr.slideshare.net/Jean_Rohmer/compter-les-triangles-en-prolog
https://fr.slideshare.net/Jean_Rohmer/compter-les-triangles-en-prolog

128 L. Cervoni et al.

X1 is -(B/(2%A)).

/* The discriminant is zero, X1 is the only solution */
solvePoly (A*x~2+B*x+C, Discriminant, X1, X2) :-

Discriminant is B*B - 4*AxC,

Discriminant > O,

A =\=0,

X1 is (-B-sqrt(Discriminant))/(2#%4),

X2 is (-B+sqrt(Discriminant))/(2*A).

Then, “solvePoly (1*x~2+2*x+1,D,A,B).” will give A=B=-1 and D=0. This abil-
ity to directly represent the course concepts in the form of Prolog facts and
clauses contributes to a reinforcement of the learning of the course basics (the
student appropriates the concepts and retranscribes them after assimilating a
few writing rules, to begin with). Progressively, he also acquires the fundamentals
of logic programming (unification, resolution, etc.).

3.3 Euclidean Geometry

These same principles can be applied to various areas of mathematics. Thus, for
example, a simple geometry exercise allows the students to express the different
stages of the problem but also to describe the elements at their disposal.

We give below an illustration where we “translate” two elementary geometry
theorems into Prolog.

/* a triangle ABC is right-angled at B,

if it is inscribed in a circle of which AC is a diameter */
rightTriangle(B, [A,B,C], Circle) :-

diameter ([A,C], Circle),

inscribed([A,B,C], Circle).

/* AB is perpendicular to EF if there are 2 triangles

ABE and ABF, both right-angled at B */
perpendicular([A,B], [E,F]) :-

rightTriangle(B, [A,B,E], Circlel),

rightTriangle(B, [A,B,F], Circle2).

If, now, a student is asked to verify the following property:

Let A, B, E and F be four points in the plane. Suppose that the segment
[B, E] is a diameter of a circle C1, that [B, F| is the diameter of another
circle Cy and, finally, that the triangles BAE and BAF are inscribed in the
circles C1 and Ca, respectively. Show that the segments [B,A] and [E,F]
are perpendicular.

It will suffice, then, to describe the problem to Prolog, by writing that:

diameter([a,e],cl).
diameter([a,f],c2).

Simultaneously Teaching Mathematics and Prolog 129

inscribed([a,b,e],cl).
inscribed([a,b,f],c2).

For example, the student can easily check that [B, A] and [E, F] are perpen-
dicular by asking whether “perpendicular([a,b], [e,f]).” is true, and Prolog
will return “TRUE”.

Although Prolog is not a substitute for learning how to solve a problem,
it is a valuable tool for learning how to understand and structure a problem,
which is the first step towards solving it. Learning to pose a problem correctly
is sometimes enough to trivialise its solution.

Pythagoras, Thales or midpoint theorems can be expressed just as simply
in the form of Prolog clauses and, with the use of the traditional trace when
executing a Prolog program, the student can see the solution of an exercise step
by step.

In a first step, the teacher can show the students how to express theorems
in Prolog, with the learners having to describe the exercises as facts (as in the
example above). Then, in a second step, the students write all the case studies
(theorems or propositions and descriptions of the exercises) themselves.

4 Conclusion

Solving a problem in Prolog means describing it. As we have seen from a few
examples, no matter how you describe the problem, no matter how diverse the
description, Prolog will always return an answer. The main interest of Prolog
for mathematics education is that it learns to understand, express and structure
a problem. This step alone often makes it possible, if not to solve the problem,
at least to identify possible lines of attack opening the way to its resolution. It
seems to us that this step is fundamental in the problem solving process and
that Prolog, by its nature, is adapted to its learning.

The interrelationship between the modelling of theorems or course principles
in Prolog and the progressive learning of the language seems to us to be more
relevant than in traditional imperative languages where an algorithm must first
be imagined. With Prolog’s native solving principle, the student discovers the
mechanisms that allow him to solve an exercise. The trace helps him to better
understand which theorems apply or why some descriptions he may have made
are incorrect or incomplete.

However, by calling the Prolog interpreter, the student will get the informa-
tion that the property can be derived, but not how. The sequence of predicates is
essential, and can be obtained by using the trace which, beyond debugging, also
allows to understand the “reasoning” implemented and its relevance. Moreover,
the solution obtained is relative to the known and described knowledge. A Prolog
answer confirms that the knowledge domain is sufficient to reach a satisfactory
conclusion, whereas a failure does not show that the requested objective cannot
be reached. It does not show that the objective cannot be reached, but rather
that the knowledge expressed (in the form of rules and facts) is sufficient.

130 L. Cervoni et al.

Finally, it is important to note that languages evolve rapidly and are likely to
move from widespread use to more moderate use; therefore, while it is good to
introduce students to a computer language, it should not necessarily be chosen
on the basis of its popularity, but rather its educational potential.

References

1. Ball, D.: PROLOG and mathematics teaching. Educ. Rev. 39(2), 155-161 (1987)

2. Bensky, T.: Teaching and learning mathematics with Prolog. arXiv preprint
arXiv:2108.09893 (2021)

3. Buscaroli, R., Chesani, F., Giuliani, G., Loreti, D., Mello, P.: A Prolog application
for reasoning on maths puzzles with diagrams. J. Exp. Theor. Artif. Intel. 1-21
(2022)

4. Connes, A.: Micro-Prolog et géométrie élémentaire. Bulletin de V'EPI (Enseigne-
ment Public et Informatique) 44, 125-137 (1986)

5. Elenbogen, B. S., O’Kennon, M. R.: Teaching recursion using fractals in Prolog. In
Proceedings of the nineteenth SIGCSE technical symposium on Computer science
education, 263—-266 (1988)

6. Géométrix website, http://geometrix.free.fr/site. Accessed 9 Feb 2023

7. Kleywegt, G. J., Luinge, H. J., Schuman, B. J. P.. PROLOG for chemists. Part 1.
Chemom. Intel. Lab. Syst. 4(4), 273-297 (1988)

8. Kleywegt, G. J., Luinge, H. J., Schuman, B. J. P.: PROLOG for chemists. Part 2.
Chemom. Intel. Lab. Syst. 5(2), 117-128 (1989)

9. McGrail, R. W., Nguyen, T. T., Granda, M. S.: Knot Coloring as Verification.
In: 2020 22nd International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC). pp. 24-31. IEEE (2020)

10. Volk, A. C.: Graph Algorithms in PROLOG, CPS 499/592 Emerging Languages,
University of Dayton, Spring (2016)

11. Weissberg, D.: Micro-prolog en classe d’histoire: Montségur au risque de
Pinformatique. Bulletin de 'EPI (Enseignement Public et Informatique) 39, 115—
120 (1985)

http://arxiv.org/abs/2108.09893
http://geometrix.free.fr/site

	Simultaneously Teaching Mathematics and Prolog in School Curricula: A Mutual Benefit
	1 Introduction
	2 Prolog and Mathematics: A Natural Fit
	3 Some Examples
	3.1 Counting Triangles
	3.2 Polynomials
	3.3 Euclidean Geometry

	4 Conclusion
	References

