
David S. Warren · Veronica Dahl ·
Thomas Eiter · Manuel V. Hermenegildo ·
Robert Kowalski · Francesca Rossi (Eds.)

Prolog: The Next
50 Years

St
at

e-
of

-th
e-

Ar
t

Su
rv

ey
LN

AI
 1

39
00

Lecture Notes in Computer Science

Lecture Notes in Artificial Intelligence 13900
Founding Editor
Jörg Siekmann

Series Editors
Randy Goebel, University of Alberta, Edmonton, Canada
Wolfgang Wahlster, DFKI, Berlin, Germany
Zhi-Hua Zhou, Nanjing University, Nanjing, China

The series Lecture Notes in Artificial Intelligence (LNAI) was established in 1988 as a
topical subseries of LNCS devoted to artificial intelligence.

The series publishes state-of-the-art research results at a high level.Aswith theLNCS
mother series, the mission of the series is to serve the international R & D community
by providing an invaluable service, mainly focused on the publication of conference and
workshop proceedings and postproceedings.

David S. Warren · Veronica Dahl · Thomas Eiter ·
Manuel V. Hermenegildo · Robert Kowalski ·
Francesca Rossi
Editors

Prolog: The Next 50 Years

Editors
David S. Warren
Stony Brook University
Stony Brook, NY, USA

Thomas Eiter
TU Wien
Vienna, Austria

Robert Kowalski
Imperial College London
London, UK

Veronica Dahl
Simon Fraser University
Burnaby, BC, Canada

Manuel V. Hermenegildo
Universidad Politecnica de Madrid/IMDEA
Software Institute
Madrid, Spain

Francesca Rossi
IBM Research
Yorktown Heights, NY, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-031-35253-9 ISBN 978-3-031-35254-6 (eBook)
https://doi.org/10.1007/978-3-031-35254-6

LNCS Sublibrary: SL7 – Artificial Intelligence

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-7567-8156
https://orcid.org/0000-0001-6003-6345
https://orcid.org/0000-0002-1341-8583
https://orcid.org/0000-0002-1159-1374
https://orcid.org/0000-0002-7583-323X
https://orcid.org/0000-0001-8898-219X
https://doi.org/10.1007/978-3-031-35254-6

Preface

The Year of Prolog

This book is an outcome of the Year of Prolog1 effort celebrating 50 years of Prolog and
looking to the future. The Year of Prolog was organized by the Association for Logic
Programming and the Prolog Heritage Association.

In the summer of 1972, Alain Colmerauer and his team in Marseille developed
and implemented the first version of the logic programming language Prolog. Together
with both earlier and later collaborations with Robert Kowalski and his colleagues in
Edinburgh, this work laid the practical and theoretical foundations for the Prolog and
logic programming of today. Prolog and its related technologies soon became key tools
of symbolic programming and Artificial Intelligence.

The Year of Prolog celebrated the 50th anniversary of these events and highlighted
the continuing significance of Prolog and logic programming both for symbolic, explain-
able AI, and for computing more generally. It also aimed to inspire a new generation
of students, by introducing them to a more human-friendly, logic-based approach to
computing.

The initiatives of the Year of Prolog included:

– The inaugural edition of the ALP Alain Colmerauer Prolog Heritage Prize (in short:
the Alain Colmerauer Prize) for recent practical accomplishments that highlight the
benefits of Prolog-inspired computing for the future.

– A Prolog Day Symposium,2 celebrated in Paris on November 10, 2022, in which the
inaugural edition of the Alain Colmerauer Prize was awarded. Subsequent editions
of the prize will be awarded at the corresponding year’s International Conference on
Logic Programming, starting with ICLP 2023.

– A survey paper on “Fifty Years of Prolog and Beyond,” which was published in
the 20th anniversary special issue of the ALP journal Theory and Practice of Logic
Programming (TPLP), Vol. 22(6), Cambridge University Press. This paper, comple-
mentary to this book, covers the evolution of Prolog systems, up to the most relevant
ones today, and their future directions.

– A Prolog Education initiative, which will use Prolog to introduce schoolchildren and
young adults to logic, programming, and AI and also map and provide Prolog edu-
cation resources for educators. This is a long-term initiative which will be continued
in future years.

– There were also special sessions and invited talks at several events and conferences,
including ICLP 2022, at FLoC.

– Finally, ICLP 2023 marked the closing of this Year of Prolog celebrations. It included
the award of the 2023 ALP Alain Colmerauer Prize and presentations of this Prolog

1 https://prologyear.logicprogramming.org.
2 https://prologyear.logicprogramming.org/PrologDay.html.

https://prologyear.logicprogramming.org
https://prologyear.logicprogramming.org/PrologDay.html

vi Preface

Book, progress on the education initiative, the online Prolog community, and other
related activities.

1 The Idea of This Book

This volume, part of the Year of Prolog celebrations, represents both the State of the
Art and Visions for the Future of Prolog. The goal for the volume is to be accessible
to a broad audience, being as self-contained as possible and containing a minimum of
technical details. An open call to authors encouraged them to write “position papers”
aimed at a wide audience.

Papers were solicited in an open call, and members of the Prolog Year Scientific
Committee reviewed all the papers. The reviewers were: Veronica Dahl, Thomas Eiter,
Gopal Gupta, Manuel Hermenegildo, Bob Kowalski, Francesca Rossi, Marie-Christine
Rousset, and David S. Warren. This book contains the papers that were selected in this
process.

The editors of the volume, a subset of the Scientific Committee, are: Veronica Dahl,
Thomas Eiter, Manuel Hermenegildo, Bob Kowalski, Francesca Rossi, and David S.
Warren.

The papers included here exhibit a wide variety of views on the role, meaning, goals,
and impact of the Prolog language and its applications. One of Prolog’s strengths is
its great generality and its ability to be used and extended in a wide variety of ways.
Because of the broad collection of different opinions included here, clearly not all the
views are endorsed by all the editors. But a strong attempt has been made to ensure
that everything included correctly represents considered and interesting views from the
Prolog community.

The volume also includes papers from all of the five finalists for the 2022Colmerauer
Prize for applications of Prolog that describe their applications.

2 The Contents of This Book

The papers in this book are grouped by subject matter and organized as described in the
following.

1. Background

This paper introduces the Prolog programming language.

(a) Introduction to Prolog by David S. Warren
This paper provides a gentle introduction to the Prolog programming language

through examples. It is intended to provide background that may be necessary to
understand many of the other papers in this volume.

2. About Prolog, Present and Future

These papers discuss general aspects or views of the Prolog language and its possible
extensions for the future, and how it can generally be used to solve problems.

(a) Types,Modes and SoMuchMore – The PrologWay byManuel V. Hermenegildo,
Jose F. Morales, Pedro Lopez-Garcia and Manuel Carro

Preface vii

The authors present in a tutorial way some ideas from Ciao Prolog that they
believe could be useful for the future evolution of Prolog, including the use of asser-
tions with types, modes, and other properties, and other extensions to the expres-
siveness and functionality of the language. They also argue that the unique char-
acteristics of Prolog facilitated many advances in the area of combining static and
dynamic language features.

(b) Prolog as a Knowledge Representation Language the Nature and Importance
of Prolog by Michael Genesereth

In this paper Michael Genesereth takes the viewpoint that classifying Prolog
primarily as a programming language is a disservice to it, and argues for its use
as an excellent language for knowledge representation, which may be even one of
its main assets. He compares it to First-Order Logic as another popular language
for knowledge representation, and points out the versatility of Prolog for enabling a
multiplicity of uses from a single representation.

(c) Prolog:Past, Present, andFuture byGopalGupta, ElmerSalazar, FarhadShakerin,
Joaquín Arias, Sarat Chandra Varanasi, Kinjal Basu, HuaduoWang, Fang Li, Serdar
Erbatur, Parth Padalkar, Abhiramon Rajasekharan, Yankai Zeng, and Manuel Carro

This paper discusses a variety of additions and extensions to Prolog made over
the years to extend its applicability. It describes a system, s(CASP), which combines
many of these features, and then proposes how it can be used to attack the problem
of general Artificial Intelligence.

(d) Writing Correct Prolog Programs by David S. Warren
Warren presents, by example, a methodology for writing Prolog programs that

proposes the primary use of bottom-up thinking. He argues that this methodology
will more likely result in correct programs due to the fact that most proofs of logical
correctness involve bottom-up thinking.

(e) Demonstrating Multiple Prolog Programming Techniques Through a Single
Operation by Nick Bassiliades, Ilias Sakellariou and Petros Kefalas

Bassiliades, Sakellariou and Kefalas illustrate the power of the full Prolog lan-
guage, by showing alternative implementations of a single list operation, thus demon-
strating a good number of Prolog programming aspects and techniques, and some
related issues such as efficiency or readability of the code.

(f) A Better Logical Semantics for Prolog by David S. Warren and Marc Denecker
This paper proposes that positive Prolog programs can be productively under-

stood as inductively defining predicates. It informally develops a compositional
semantics that gives a precise meaning to components of full programs.

(g) The Janus System: A Bridge to New Prolog Applications by Carl Andersen and
Theresa Swift

This paper presents the Janus system, an integration of Prolog and Python, with
the goal of making Prolog more accessible to large-scale industrial applications.
Janus makes the large number of libraries present in Python available within Prolog.
The paper also discusses the use of the Janus system for several large, real-world
applications.

3. Teaching Prolog

These papers explore various ideas and experiences of teachingProlog programming.

(a) Some Thoughts on How to Teach Prolog by Manuel V. Hermenegildo, Jose F.
Morales and Pedro Lopez-Garcia

viii Preface

The uniqueness of the programming paradigm represented by Prolog is a strong
motivation for teaching the language, but also demands a specific approach for
success. Hermenegildo, Morales, and Lopez-Garcia present a good number of ideas
for teaching Prolog, from how to show the beauty and usefulness of the language to
how to avoid some common pitfalls, misconceptions, and myths.

(b) Simultaneously Teaching Mathematics and Prolog in School Curricula: A
Mutual Benefit by Laurent Cervoni, Julien Brasseur and Jean Rohmer

Thanks to its logical nature, the use of Prolog in mathematical fields that build
on axiomatic systems and decomposition-based problem solving was explored early
on. In this paper the authors argue that Prolog is a useful tool to aid high school
students in developing skills for properly modeling mathematical problems. They
report on case studies in geometry and algebra, and reflect on advantages and the
potential of using Prolog for education in mathematics.

(c) Logic Programming at Elementary School: Why, What and How Should We
Teach Logic Programming to Children? by Laura Andrea Cecchi, Jorge P.
Rodríguez and Veronica Dahl

This paper explores the use of Logic Programming to teach computer science to
elementary school children and help them develop computational thinking skills. A
specific teaching method is described, supported by projects of different complexity
to make this type of knowledge accessible to children in a collaborative learning
environment. The paper also describes a pilot experience in elementary schools in
Argentina.

(d) Prolog Education in Selected High Schools in Bulgaria by Veneta Tabakova-
Komsalova, Stanimir Stoyanov, Asya Stoyanova-Doycheva and Lyubka Doukovska

In this paper the authors present their experience of teachingPrologprogramming
in secondary schools in the Plovdiv region of Bulgaria. They also introduce their
new project, called “Digital Bulgaria in Prolog”, which will use Prolog to model the
cultural and historical heritage of Bulgaria in a national network of STEM centers.

(e) Introducing Prolog in Language-Informed Ways by Veronica Dahl and Laura
Cecchi

This paper argues for leveraging children’s language and grammar skills, and our
knowledge of how children acquire language, to teach them Prolog while helping
them develop their computational and logical-reasoning skills. The paper advances
the concept of “doughnut computing” as amethod to help children learn Prologwhile
understanding issues involved in remedying societal and ecological breakdown such
as global warming.

4. Tools for Teaching Prolog

These two papers discuss technology that has been developed for help in teaching
Prolog.

(a) Teaching Prolog with Active Logic Documents by José Morales, Salvador Abreu,
Daniela Ferreiro and Manuel V. Hermenegildo

Morales, Abreu, Ferreiro and Hermenegildo present their Active Logic Doc-
uments approach and tools, for easily developing Prolog teaching materials with

Preface ix

embedded runnable code and interactive components. In this approach, the materi-
als are self-contained, can be developed with standard tools, and run locally on the
student’s browser, not relying on a server infrastructure or notebook facility. They
argue that this offers advantages in scalability, ease of maintenance, security, etc.

(b) Simply Logical—The First Three Decades by Peter Flach, Kacper Sokol and Jan
Wielemaker

This paper traces the evolution of the Prolog textbook “Simply Logical – Intel-
ligent Reasoning by Example” from print (with a 3.5′′ diskette containing runnable
programs) published in 1994 to the fully interactive online edition based on SWI Pro-
log’s SWISH interface available today. The authors describe the philosophy behind
the original book, along with how contemporary web programming eventually
enabled a versatile authoring toolkit that underlies the book’s interactive edition.

5. Prolog-Based Languages and Systems

These papers describe new languages firmly based on Prolog which show future
directions for logic programming.

(a) Dynamic Logic Programming by Michael Genesereth
Genesereth describes an elegant extension to a subset of Prolog aimed at support-

ing the representation of knowledge about dynamic worlds. The resulting language
allows the definition of operators that update the state of the extensional database
(by moving between worlds which are such extensional database states), as well as
reasoning about the evolution of such worlds.

(b) CombiningLogicProgrammingand ImperativeProgramming inLPSbyRobert
Kowalski, Fariba Sadri, Miguel Calejo and Jacinto Dávila Quintero

The language LPS (Logic Production Systems) combines the logic programming
and imperative programming notions of computing, by using logic programs to
represent an agent’s beliefs, and using reactive rules and constraints to represent
the agent’s goals. An agent program in LPS computes by generating actions, to
satisfy its goals in a model that is defined by its beliefs extended by its actions. The
paper describes a Prolog implementation of LPS, which displays the model that is
computed, either as a timeline or as an animation of the destructively changing state
of computation.

(c) Ergo: A Quest for Declarativity in Logic Programming by Benjamin Grosof,
Michael Kifer, Theresa Swift, Paul Fodor and Janine Bloomfield

This paper describes the Ergo system, a declarative, logic-based, object-oriented
system based on the well-founded semantics that includes defeasible rules, fully
logical updates, and explanations. Applications that represent tax laws and banking
regulations are presented.

6. Prolog Applications: Finalists for the Colmerauer Prize

These next five papers describe the applications that were the finalists for the 2022
Colmerauer Prize. The first one, by Michael Leuschel on ProB, was the winner of the
prize.

(a) ProB: Harnessing the Power of Prolog to Bring FormalModels andMathemat-
ics to Life by Michael Leuschel

x Preface

Leuschel presents the ProB system, an animator, model checker and constraint
solver for high-level formal models, implemented in Prolog, making significant use
of constraints. It has been developed for over 20 years and has been used extensively
in both academic and industrial applications, e.g., by several companies (Siemens,
Alstom, ClearSy, Thales) to validate train system configurations worldwide. ProB
was the winner of the first edition of the Colmerauer Prize.

(b) Pacioli: A PROLOG System for Financial Report Processing by Miguel Calejo
and Charles Hoffman

Pacioli is a logic and rules engine toolkit implemented in Prolog, which vali-
dates financial information reported by public companies to regulators worldwide
using a standard, rich structured, data format, the “Extensible Business Reporting
Language”, or XBRL. At the time of writing, a dozen Pacioli instances, operated by
different entities around the world, have validated thousands of financial reports in
different jurisdictions. The authors argue that the wide range of capabilities needed
for Pacioli would be hard to implement in a mainstream language such as Python or
Javascript.

(c) Logic Model Processing by Pierre Dissaux
This paper describes the application of Prolog toModel Driven Engineering, that

refers to the use of software models to standardize and ease industrial engineering
processes. It includes the description of the methodology, the implementation, the
tools, and theProlog libraries that havebeendevelopedovermanyyears anddeployed
worldwide for industrial usages, with examples of its practical use and itsmost recent
developments.

(d) Symbium: Using Logic Programming to Streamline Citizen-to-Government
Interactions by Tristan Krueger, Abhijeet Mohapatra and Michael Genesereth

This paper describes an interesting, useful real world application, offered by the
US company Symbium, that helps homeowners, architects, and contractors comply
with the regulatory aspects of residential construction. Logic Programming is used
to facilitate and, in some cases, automate regulatory processes involving permits,
inspections, and rebates. Interestingly, uses of this application in interaction with
municipalities have uncovered contradictions and omissions in the law, suggesting
that further applications in this regard might also bear good fruit.

(e) PROLEG: Practical Legal Reasoning System by Ken Satoh
The PROLEG system is possibly the largest legal rule base in the world, having

been used since 2009 to build a rule base of approximately 2500 rules and exceptions
consisting of civil code and supreme court case rules in Japan. In this paper, Ken
Satoh presents the PROLEG system, which is based on Prolog, but which represents
rules and exceptions without negation as failure. He argues that the PROLEG repre-
sentation of rules and exceptions corresponds better than negation as failure to the
way that lawyers reason with such concepts as “burden of proof”.

7. Contributed Prolog Applications

These papers describe some additional, contributed applications developed using the
Prolog language. They illustrate further the range of applications for which Prolog is
well-suited.

(a) Logical English for Law and Education by Robert Kowalski, Jacinto Dávila
Quintero, Galileo Sartor and Miguel Calejo

Preface xi

This paper convincingly argues, supported by a variety of tested applications, for
the benefits of Logical English, an ambiguity-resilient, paraphrase-based variant of
LP with interesting applications in, for example, law and education. It can also serve
as interface to languages such as Prolog, Its expressions are closer to natural language
than Prolog proper, and hence easier to understand, thusmaking Prolog—and logical
reasoning in general—more accessible to younger students in particular.

(b) Exploiting Logic Programming for Runtime Verification: Current and Future
Perspectives by Davide Ancona, Angelo Ferrando and Viviana Mascardi

This paper describes a Prolog application that performs runtime monitoring
and verification. It uses Prolog to allow users to specify complex parameterized
patterns that are matched against system runtime event sequences to flag erroneous
or suspicious activity.

(c) PrologMeets Biology byAlessandroDal Palù, AgostinoDovier, Andrea Formisano
and Enrico Pontelli

This paper describes the use of Prolog and its derivatives to support research and
development in bioinformatics and computational biology. The declarative nature
of Prolog and the combinatorial nature of several applications in computational
biology have allowed significant applications. The paper also includes a description
of potential directions that the Prolog community can continue to pursue in this
domain.

(d) Prolog in Automated Reasoning in Geometry by Vesna Marinkovic
This paper briefly overviews various Prolog systems for solving problems

in geometry. It then concentrates on one Prolog system that solves geometric
construction problems, focussing on constructing triangles given various related
points.

(e) Logic-Based Explainable and Incremental Machine Learning by Gopal Gupta,
Huaduo Wang, Kinjal Basu, Farhad Shakerin, Elmer Salazar, Sarat Chandra
Varanasi, Parth Padalkar, and Sopam Dasgupta

This paper presents several machine learning methods that exploit the knowl-
edge representation advantages of default rules in logic programming. It shows that
these can be competitive with mainstream machine learning methods in terms of
accuracy and execution efficiency, while providing advantages of interpretability,
explainability, incrementality, and data economy.

(f) Reflections on Automation, Learnability and Expressiveness in Logic-Based
Programming Languages by Paul Tarau

This paper addresses the question of what features need to be improved or added
in logic-based languages to compete with current languages that have adopted latest
innovations in usability, robustness, and ease-of-use. The paper illustrates some
of the language constructs it proposes via definite clause grammar-based prompt
generators for today’s generative AI systems.

(g) Prolog for Scientific Explanation by Jean-Christophe Rohner and Håkan Kjeller-
strand

This paper describes how abduction in Prolog can be used to generate scientific
explanations. It shows how abduction and constraints can be used effectively to
produce explanations for scientific theories described by simple rules. Darwin’s
theory of natural selection is used to exemplify the approach.

xii Preface

(h) Machines as Thought Partners: Reflections on 50 Years of Prolog by Gregory
Gelfond, Marcello Balduccini, David Ferrucci, Adi Kalyanpur and Adam Lally

This paper describes the introduction of Prolog as a revolution that enabled us
to think previously impossible thoughts, by leveraging the paradigms of logic pro-
gramming and declarative programming. It then shows examples of this revolution
by discussing the important role of Prolog in the landmark IBM Watson AI system
and its successors, and introducing the readers to a newmember of the Prolog family
of languages—the logic programming language Cogent.

Acknowlegdements. The Year of Prolog celebrations were initiated by the Prolog
Heritage Association, under the leadership of Colette Colmerauer, Guy Alain Narboni,
Jean Rohmer and Célestin Sedogbo, and the Association for Logic Programming, under
the leadership of Thomas Eiter and Manuel Hermenegildo.

The scientific content of the Year, including the preparation of this volume, was
overseen by a Scientific Committee, consisting of Veronica Dahl, Thomas Eiter, Gopal
Gupta, Manuel Hermenegildo, Bob Kowalski, Francesca Rossi, Marie-Christine Rous-
set, and David S. Warren, and was initially chaired by Bob Kowalski, and later by David
S. Warren.

The Scientific Committee was supported by an honorary membership consisting of
Krzysztof Apt, Maurice Bruynooghe, Keith Clark, Jacques Cohen, Stefania Costantini,
Mehmet Dincbas, Hervé Gallaire, Maria Garcia de la Banda, Michael Genesereth, Seif
Haridi, Gerda Janssens, Evelina Lamma, Annie Liu, Paola Mello, Luis Moniz Pereira,
Fernando Pereira, Enrico Pontelli, Philippe Roussel, Fariba Sadri, Taisuke Sato, Torsten
Schaub, Peter Stuckey, Theresa Swift, Peter Szeredi, Paul Tarau, Francesca Toni, Mirek
Truszczyński, Pascal Van Hentenryck, and Jan Wielemaker.

The Jury for the 2022 ALP Alain Colmerauer Prolog Heritage Prize, which selected
the finalists and thewinner, consisted ofGopalGupta, Annie Liu,ManuelHermenegildo,
Francesca Rossi (chair), and Marie-Christine Rousset.

We are grateful to the Springer Computer Science team for their welcome encour-
agement and support to publish this book, and to Randy Goebel as responsible editor
for shepherding the publication in Springer’s LNAI series. We thank the providers of
EasyChair for making the generation of the necessary files easy.

May 2023 David S. Warren
Veronica Dahl
Thomas Eiter

Manuel V. Hermenegildo
Robert Kowalski
Francesca Rossi

Contents

Background

Introduction to Prolog . 3
David S. Warren

About Prolog, Present and Future

Types, Modes and so Much More – The Prolog Way . 23
Manuel V. Hermenegildo, Jose F. Morales, Pedro Lopez-Garcia,
and Manuel Carro

Prolog as a Knowledge Representation Language the Nature
and Importance of Prolog . 38

Michael Genesereth

Prolog: Past, Present, and Future . 48
Gopal Gupta, Elmer Salazar, Farhad Shakerin, Joaquín Arias,
Sarat Chandra Varanasi, Kinjal Basu, Huaduo Wang, Fang Li,
Serdar Erbatur, Parth Padalkar, Abhiramon Rajasekharan,
Yankai Zeng, and Manuel Carro

Writing Correct Prolog Programs . 62
David S. Warren

Demonstrating Multiple Prolog Programming Techniques Through
a Single Operation . 71

Nick Bassiliades, Ilias Sakellariou, and Petros Kefalas

A Better Logical Semantics for Prolog . 82
David S. Warren and Marc Denecker

The Janus System: A Bridge to New Prolog Applications 93
Carl Andersen and Theresa Swift

Teaching Prolog

Some Thoughts on How to Teach Prolog . 107
Manuel V. Hermenegildo, Jose F. Morales, and Pedro Lopez-Garcia

xiv Contents

Simultaneously Teaching Mathematics and Prolog in School Curricula:
A Mutual Benefit . 124

Laurent Cervoni, Julien Brasseur, and Jean Rohmer

Logic Programming at Elementary School: Why, What and How Should
We Teach Logic Programming to Children? . 131

Laura A. Cecchi, Jorge P. Rodríguez, and Verónica Dahl

Prolog Education in Selected Secondary Schools in Bulgaria 144
Veneta Tabakova-Komsalova, Stanimir Stoyanov,
Asya Stoyanova-Doycheva, and Lyubka Doukovska

Introducing Prolog in Language-Informed Ways . 154
Verónica Dahl and Laura A. Cecchi

Tools for Teaching Prolog

Teaching Prolog with Active Logic Documents . 171
Jose F. Morales, Salvador Abreu, Daniela Ferreiro,
and Manuel V. Hermenegildo

Simply Logical – The First Three Decades . 184
Peter Flach, Kacper Sokol, and Jan Wielemaker

Prolog-Based Languages and Systems

Dynamic Logic Programming . 197
Michael Genesereth

Combining Logic Programming and Imperative Programming in LPS 210
Robert Kowalski, Fariba Sadri, Miguel Calejo, and Jacinto Dávila

Ergo: A Quest for Declarativity in Logic Programming . 224
Benjamin Grosof, Michael Kifer, Theresa Swift, Paul Fodor,
and Janine Bloomfield

Prolog Applications: Finalists for the Colmerauer Prize

ProB: Harnessing the Power of Prolog to Bring Formal Models
and Mathematics to Life . 239

Michael Leuschel

Pacioli: A PROLOG System for Financial Report Processing 248
Miguel Calejo and Charles Hoffman

Contents xv

Logic Model Processing . 260
Pierre Dissaux

Symbium: Using Logic Programming to Streamline
Citizen-to-Government Interactions . 271

Tristan Krueger, Abhijeet Mohapatra, and Michael Genesereth

PROLEG: Practical Legal Reasoning System . 277
Ken Satoh

Contributed Prolog Applications

Logical English for Law and Education . 287
Robert Kowalski, Jacinto Dávila, Galileo Sartor, and Miguel Calejo

Exploiting Logic Programming for Runtime Verification: Current
and Future Perspectives . 300

Davide Ancona, Angelo Ferrando, and Viviana Mascardi

Prolog Meets Biology . 318
Alessandro Dal Palù, Agostino Dovier, Andrea Formisano,
and Enrico Pontelli

Prolog in Automated Reasoning in Geometry . 334
Vesna Marinković

Logic-Based Explainable and Incremental Machine Learning 346
Gopal Gupta, Huaduo Wang, Kinjal Basu, Farhad Shakerin,
Elmer Salazar, Sarat Chandra Varanasi, Parth Padalkar,
and Sopam Dasgupta

Reflections on Automation, Learnability and Expressiveness
in Logic-Based Programming Languages . 359

Paul Tarau

Prolog for Scientific Explanation . 372
Jean-Christophe Rohner and Håkan Kjellerstrand

Machines as Thought Partners: Reflections on 50 Years of Prolog 386
Gregory Gelfond, Marcello Balduccini, David Ferrucci, Adi Kalyanpur,
and Adam Lally

Author Index . 393

Background

Introduction to Prolog

David S. Warren(B)

Stony Brook University, Stony Brook, USA

warren@cs.stonybrook.edu

Abstract. This first chapter of the Prolog50 book is brief introduction
to the Prolog programming language. It is intended to provide back-
ground knowledge that will help in the understanding of many of the
papers here. It covers basic Prolog definitions, their procedural interpre-
tation, the idea of predicate modes, bottom-up evaluation of definitions,
negation including stratified and nonstratified definitions, tabled evalu-
ation, Prolog’s use of operators, program meta-interpretation, Definite
Clause Grammars, and constraints. All topics are covered only briefly,
and through the use of simple examples. For each topic there is much
more to be said, some of which will be said in the papers in this volume.

1 What is Prolog?

Prolog is a logical language for making true statements about a world, whose
statements can be interpreted as a program and thus evaluated to conclude an
answer to a question. Functional programs are understood as defining functions
whereas Prolog programs are generally understood as defining relations.

Various family relationships can easily be defined in Prolog. For example,
a grandparent is the parent of a parent. We can define a child of relation
by providing a set of facts giving child-parent pairs, for example, some recent
relationships of the House of Windsor, as follows:

childOf(charles,elizabeth).
childOf(william,charles).
childOf(harry,charles).
childOf(george,william).
childOf(charlotte,william).
childOf(louis,william).
childOf(archie,harry).
childOf(lilibet,harry).

And we can define the grandparent relation, containing person-grandparent
pairs, using the childOf definition by the rule:

hasGrandparent(X,GPofX) :- childOf(X,ParX), childOf(ParX,GPofX).

This rule states that X has grandparent GPofX if X is a child of ParX and ParX is
a child of GPofX. Prolog uses the token :- to mean if, and the comma to mean
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 3–19, 2023.
https://doi.org/10.1007/978-3-031-35254-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_1&domain=pdf
http://orcid.org/0000-0001-7567-8156
https://doi.org/10.1007/978-3-031-35254-6_1

4 D. S. Warren

and. Symbols starting with uppercase letters are variables, which can take on
any value, and those starting with lowercase letters are constants. The atomic
formula before the :- is known as the head of the rule; the sequence of formulas
following that token form the body of the rule. For every assignment of values to
the variables of a rule, if its body is true, then its head is true.

If we consistently substitute constants for variables into a rule, we obtain an
instance of this rule. For example, substituting harry for X, charles for ParX
and elizabeth for GPofX, we get the rule instance:

hasGrandparent(harry,elizabeth) :-
childOf(harry,charles), childOf(charles,elizabeth).

Since our database of childOf facts includes the two facts in the body of the rule,
then we (and Prolog) can conclude that hasGrandparent(harry,elizabeth) is
true, i.e., that harry has a grandparent elizabeth. Similarly we can conclude
that archie has grandparent charles, george has grandparent charles, and a
number of other grandparent pairs.

Prolog accepts such rules and facts and then answers certain queries about
them. For example, given the rules and facts above for hasGrandparent, we can
ask Prolog who are the grandparents of Lilibet:

?- hasGrandparent(lilibet,GP).
GP = charles;
no

Here (after loading the childOf facts and the hasGrandparent rule to Pro-
log’s memory) we have asked at Prolog’s prompt “?-” for the variable GP to
be given values that make the hasGrandparent(lilibet,GP) atomic formula
true. Prolog responds that such a value is charles, to which we respond with a
“;”, requesting another answer. And Prolog responds with “no” meaning that it
failed to find any (more) answers. If a query has no answers at all, its execution is
said to fail and “no” printed. We could ask for all of Elizabeth’s grandchildren
with the query: hasGrandparent(GC,elizabeth).

We can then use hasGrandparrent to define hasGreatGrandparent with the
rule:

hasGreatGrandparent(X,GGPofX) :-
hasGrandparent(X,GPofX), childOf(GPofX,GGPofX).

and then infer hasGreatGrandparent(lilibet,elizabeth), among oth-
ers. And now, with this rule added, we can ask queries involving
hasGreatGrandparent.

We can also use recursive (a.k.a. inductive) rules. For example, we can define
the relation hasAncestor as follows:

hasAncestor(X,AncX) :- childOf(X,AncX).
hasAncestor(X,AncX) :- childOf(X,ParX), hasAncestor(ParX,AncX).

Introduction to Prolog 5

This relation requires two rules for its definition. The first says X has ancestor
AncX if X is a child of AncX. The second says X has ancestor AncX if X is a child of
ParX and ParX has ancestor AncX. I.e., a parent is an ancestor, and an ancestor
of a parent is an ancestor. With this definition, Prolog will infer many ancestors
from our definition of childOf, including hasAncestor(charles,elizabeth)
and hasAncestor(lilibet,elizabeth).

In addition to defining relations over constants, Prolog can define relations
over complex data structures, for example lists. A list is a sequence of terms
(constants or lists)1, and is written within square brackets with its elements
separated by commas. For example, [charles,harry,charlotte] is a list, and
so is [], the empty list. The head of a (nonempty) list is the first element of
the list; the tail of a (nonempty) list is the list that remains when the head
is removed. We can write a pattern [H|T] to match a list, in which case H is
matched to the head of the list and T is matched to the tail. So for example,
matching [H|T] to the list [charles,harry,charlotte] results in variable H
getting the value charles and T getting the value [harry,charlotte]. With
this understanding, we can now write a relation of pairs of elements and lists for
which the element appears in the list, which we call member:

member(E,[E|L]).
member(E,[X|L]) :- member(E,L).

The first clause says that a item E is a member of any list that has E as head.
The second clause says that E is a member of a list, if it’s a member of the tail
of the list.

2 Procedural Interpretation

Now we turn to considering how Prolog actually carries out the necessary infer-
encing to be able to answer queries using a process formally called resolution.

Each clause in a Prolog program can be understood as defining a procedure:
the head of a rule provides the name of the procedure and the body of the rule
provides the procedures to call, in order, to carry out the execution of the head
procedure. For example, the rule:

hasGrandparent(GC,GP) :- childOf{GC,P), childOf(P,GP).

is understood to define a procedure named hasGrandparent. When
hasGrandparent is called, it is evaluated by first calling childOf with the indi-
cated arguments, and then calling it again with different arguments (noting the
calls do share the variable P).

Variables in Prolog are assign-once variables, they either have a value or
not, so once they get a value that value cannot change during procedure exe-
cution. When hasGrandparent is called, the variables GC and GP are bound to
the arguments of the call. Let’s assume GC has a value, say lilibet, and GP

1 We will see later that there may also be record structures.

6 D. S. Warren

does not have a value. I.e., the call to hasGrandparent gives a person and asks
for a grandparent of that person. Then childOf is called passing the indicated
arguments. The variable P will not have a value when the first childOf is called,
but will be assigned a value during the execution of the childOf procedure, say
harry, so when P is passed to the second call to childOf as its first argument, it
will have that value. This call to childOf will bind variable GP, say to charles,
which will be returned as the value of the second parameter to the original
hasGrandparent call. In this way every rule can be understood as defining a
procedure whose execution will take some variables and further bind them (i.e.,
give them values) as it executes the procedures in the body of the rule in order.
Facts, like those for childOf just bind variables in their call and directly return.
Thus, if we assume only one rule per relation, we can think of a call to a relation
definition as being carried out by a machine that carries out that sequence of
procedure invocations and returns.

2.1 Prolog as Multiple Procedural Machines

However, Prolog is a relational, or nondeterministic, language, meaning that a
procedure may return multiple different values. This happens when there are
multiple clauses with the same predicate symbol in their heads, i.e., multiple
ways to compute values are provided for the same procedure. For example, our
childOf predicate symbol has multiple ways to compute it, and member, too.
In this case, we can think of procedure evaluation as being done by multiple
machines, one for each alternative deterministic evaluation. When a call is made
to a procedure with multiple ways to compute it (a choice point), the executing
machine duplicates itself as many times as there are alternative ways and for
each way sends one machine instance off to compute it. So we envision a set of
deterministic machines executing procedures, increasing in number whenever a
choice point is encountered and decreasing in number when a particular machine
encounters failure, i.e., attempts assignment of a different value to a variable
that already has a value, which means the computation cannot be consistently
continued and thus must fail. The machines that survive to return from the initial
call simply stop executing and provide answers to that call. Every deterministic
machine either fails or succeeds to return an answer to the initial call.

An example of a nondeterministic query is hasGrandparent(CG,elizabeth).
To evaluate this query at the point that the subquery childOf(X,elizabeth) is
posed there is only one fact that matches (in this reduced Windsor family) (i.e.,
all but one of the forked machines fail immediately), but when the later subquery
childOf(GC,charles), is posed, there are two facts that match, so at this point
there will two executing machines: one proceeding with GC = william and one
with GC = harry. Both those machines will eventually return giving those two
answers for the grandchildren of Elizabeth.

To execute Prolog programs in a single process, we must simulate this set
of machines in some order. Prolog uses a stack to save and restart machines:
When Prolog encounters a choice point, it pushes machines created to execute
the various alternatives onto a stack (in reverse order so they will be popped in

Introduction to Prolog 7

the order their clauses appear in the program) and then executes the top (first)
one. When a machine fails, the machine on the top of the stack is removed and
executed. In this way, Prolog uses a depth-first, backtracking (to restore the
state to that of the top machine on the stack) strategy.

The metaphor of “deterministic machines” is used here for didactic purposes.
In practice Prolog systems implement this strategy extremely efficiently, using
techniques very similar to traditional procedural languages for forward machine
execution, and essentially constant time backtracking techniques for restoring a
previous state.

Alternative strategies are possible, but this depth-first strategy is generally
the most efficient, and it is the one adopted, at least by default, by Prolog
engines.

2.2 Recursive Programs

Notice that if we pose a query to our hasAncestor definition, the evaluation of
its second rule will involve a recursive call to the procedure hasAncestor. And
similarly, the query:

?- member(3,[1,2,3,4,5]).
yes
?-

causes the member procedure to be called recursively, searching down the list
until the constant 3 is found, at which point Prolog can answer “yes”, the query
is true.

And consider the query:

?- member(X,[1,2,3]).
X = 1;
X = 2;
X = 3;
no
?-

which asks Prolog what values of X are in the list [1,2,3]. For this case three
deterministic machines succeed, each returning one correct answer.

3 Modes

Procedures, as noted, can be called with some arguments having values and
with other arguments being variables without values. Variables that have values
are said to be bound2, and variables that don’t (yet) have values are said to
be unbound or free. In our first example, evaluation for the hasGrandparent
procedure we assumed the first argument to hasGrandparent was bound to
2 Note this is a different meaning for a bound variable than in first-order logic.

8 D. S. Warren

lilibet and the second argument was free. This particular “value pattern”
(or “instantiation pattern”) is known as the mode (+,-). A mode is a sequence
of the symbols such as: +, -, and ?, and indicates the binding pattern of a
sequence of arguments, for example, + meaning bound, - meaning free, and ?
meaning either (or other). In our first hasGrandparent example, finding the
grandparents of Lilibet, the mode for hasGrandparent goal was (+,-), and the
mode for (both calls to) childOf was also (+,-). The modes at success of all three
of those calls was (+,+). In the example to find the grandchildren of Elizabeth,
the corresponding modes were (-,+) for hasGrandparent, then (-,-) for the first
childOf subquery, and (+,+) for the second.

Because variables get values by unification, a generalized matching opera-
tion, many procedures can be called in multiple different modes, as we see for
hasGrandparent and childOf. Indeed the hasGrandparent procedure may also
be called in (+,+) modes, in which case Prolog will check whether the names
provided indeed stand in the grandparent relation. It may be called in (-,-) mode,
in which case Prolog will generate all pairs of names in the grandparent relation.
And as we saw before, member can be called in modes (+,+) to check membership
and in mode (-,+) to generate all members.

It is useful to know the modes of calls (and returns) since many Prolog
predicates can be called effectively only in certain modes. For example, in other
modes the computation may loop infinitely or may generate infinitely many
answers, as would member called in (+,-) mofe, and so calls in such modes to
those procedures should generally be avoided.

Sometimes modes are combined with type information, so that, e.g., mode
(-,+list) for member/2 means that it is called with the second argument bound
to a list.

Modes are used in most Prolog systems as program documentation, and as
an aid for discussing the uses of a predicate, as we do here. There are however
some Prolog systems that can check the modes and other properties declared
for a given predicate and detect if such modes and properties are violated. This
can be done either at compile time (when loading the program) or at run time
(when executing a query).3

4 Bottom-Up Evaluation

The procedural interpretation of Prolog programs presented before is known
as top-down evaluation, since it starts at the top with a query (or goal) and
computes down to the facts. Prolog programs may also be evaluated bottom up,
starting with the facts and generating implied atoms.

For example, consider the hasGrandparent and childOf definitions above.
We can start by seeing that we know that all the facts are true, so we can
initialize our set of atoms we know to contain these facts:

3 See Chapter “Types, modes and so much more – the Prolog way,” in this volume.

Introduction to Prolog 9

childOf(charles,elizabeth). childOf(william,charles).
childOf(harry,charles). childOf(george,william).
childOf(charlotte,william). childOf(louis,william).
childOf(archie,harry). childOf(lilibet,harry).

Next we can look at each rule, here
hasGrandparent(X,GPofX) :- childOf(X,ParX), childOf(ParX,GPofX)
and see what instances of the body of the rule are already in our set of known
atoms. And we add them to our set. So here, we see that since
childOf(william,charles) and childOf(charles,elizabeth) are both in
our known set, and these facts make up an instance of the body of our rule,
then we can add hasGrandparent(william,elizabeth), the rule’s correspond-
ing head instance, to our known set. And there are many more we can add, such
as hasGrandparent(archie,charles) because we already have
childOf(archie,harry) and childOf(harry,charles), and
hasGrandparent(harry,elizabeth) since we have childOf(harry,charles)
and childOf(charles,elizabeth), and so on. For this definition, we need only
two steps to get all the known atoms: one for the known childOf facts, and
then one more for all the known hasGrandparent facts. After two rounds,
we will never get anything new, so we can stop. If we include our rule for
hasGreatGrandparent, then we would have needed three rounds in our exam-
ple. This is because the first two rounds would be identical to above, and then
hasGreatGrandparent facts can be added only at the third round.

This bottom-up computation, starting with facts and then iteratively adding
more facts by using the rule instances, is also known as forward reasoning. For
some rule sets it may take many rounds to infer all facts that can be known;
in fact, there may be infinitely many rounds, and so this computation may not
terminate. Also note that bottom-up computation computes, for example, all
hasGrandparent facts, not just those, say related to being grandparents of Lili-
bet, as top-down evaluation can. On the other hand, for rules that contain only
constants (i.e., no lists), bottom up is guaranteed to terminate, whereas (simple)
top-down is not. So, bottom-up evaluation is more used in database contexts,
where rules contain only constants (and variables, of course.) Such Prolog pro-
grams, those with only constants, are called Datalog programs, and they are
traditionally implemented using bottom-up methods. (But see the discussion of
tabling below.)

We note that, in theory, top-down and bottom-up evaluation of a query pro-
duce the same results, when infinite loops in each are considered appropriately.
In practical computations of a given query, however, they may encounter infi-
nite loops in different ways. So while they are logically equivalent, they are not
computationally equivalent.

5 Negation and Stratification

The example Prolog programs we have seen thus far have had atomic formulas,
or subgoals, in their bodies, which are interpreted as procedure calls. But Prolog
supports negative subgoals, as in:

10 D. S. Warren

bachelor(P) :- male(P), not married(P).

male(walter). married(walter).
male(bill). married(sarah).

The intuitive meaning of this is clear. We define bachelor as a person who is male
and is not married. When the subgoal not married(p), for some constant p, is
encountered in procedural evaluation, the married(p) subgoal is called and if it
succeeds, then the not married(p) subgoal fails, and if it fails the not subgoal
succeeds. And we can see Prolog’s evaluation:

?- bachelor(Person).
Person = bill;
no

which gives the expected answer that bill is a bachelor, but walter, who is
married, is not.

It turns out that, for this treatment of negative subgoals, the mode of the
subgoal is important; it must not have variables in it. In our example the first
subgoal male(P) in the body of the bachelor definition will always bind P to a
value, so married(P) will always be called in mode (+). Notice that if the body
literals in bachelor were reversed, then our query to bachelor(Person) would
invoke the subgoal married(Person) (with Person still a variable), and this
would succeed, since there are two married persons, so not married(Person)
would fail, as would the original query; this is clearly is wrong. The moral is that
the mode of a negative subgoal when called is critical for Prolog’s procedural
interpretation of not to be intuitively correct. If a negative subgoal is called with
a variable, the computation is said to flounder.

5.1 A Subgoal Depending on Its Own Negation

Another interesting issue with negative subgoals in Prolog is shown in the fol-
lowing example of a barber in a (very) small town:

shaves(barber,X) :- person(X), not shaves(X,X).
shaves(butcher,butcher).

person(butcher). person(baker). person(barber).

In this tiny (male populated) town, the barber shaves any person who doesn’t
shave himself. So, he clearly shaves the baker, since the baker doesn’t save him-
self, and clearly doesn’t shave the butcher, since he does shave himself. So, who
shaves the barber? We have the rule instance
shaves(barber,barber) :- not shaves(barber,barber).
Since normally for a single rule the “:-” is informally understood as “if and only
if,” this means shaves(barber,barber) is true if and only if
not shaves(barber,barber) is true. And this is a contradiction. We note that
Russell’s paradox is another example of this phenomenon.

Introduction to Prolog 11

5.2 Stratified Programs

This issue arises when a subgoal depends, in some way, on its own negation. For
example, shaves(barber,barber) depends directly on
not shaves(barber,barber). There have been many suggested approaches for
resolving this issue. We can simply avoid this possibility by allowing only pro-
grams that are “stratified.” A program is stratified if we can assign each predicate
to a stratum (a natural number) where for every rule, (1) each predicate of a
positive body subgoal has stratum the same or lower than the stratum of the
head predicate, and (2) each predicate of a negative body subgoal has a stratum
that is strictly less than the stratum of the head predicate. This ensures that no
subgoal can depend on its own negation. Stratified programs have their expected
meanings.

5.3 Non-stratified Programs

But what about non-stratified programs? After much work and discussion, the
Prolog community has (mostly) come to the conclusion that there are two dis-
tinct, and reasonable, ways to give meanings to non-stratified programs. They go
by the names of the Well-Founded Semantics (WFS) and the Stable Model
Semantics (SMS). We note that both semantics give the same meaning to strat-
ified programs; they differ only in their treatment of non-stratified programs. We
give only a cursory introduction, by example, to these two approaches.

Consider our shaves example above. The WFS uses a 3-valued logic with
truth values of true, false, and undefined. It gives the value true to
shaves(barber,baker), the value false to shaves(barber,butcher) and the
value undefined to shaves(barber,barber). The WFS always associates a
unique (3-vaued) model to a program. The SMS uses multiple 2-valued mod-
els to give meanings to (non-stratified) programs. The shaves program has no
such stable model, so that program is said to be inconsistent in SMS.

Consider another unstratified program, describing how the “Programming
Languages” course is taught in our department:

teach(david,progLang) :- not teach(annie,progLang).
teach(annie,progLang) :- not teach(david,progLang).

So, in our department, David teaches programming languages if Annie doesn’t
teach it; and Annie teaches it if David doesn’t. This program is not strati-
fied since teach(david,progLang) depends on teach(annie,progLang) which
depends on not teach(david,progLang), so there is no stratification. For this
program, the WFS assigns both teach subgoals the undefined truth value. On
the other hand the SMS assigns two different models to this program: in one
teach(david,progLang) is true and teach(annie,progLang) is false; in the
other teach(david,progLang) is false and teach(annie,progLang) is true.
I.e., there are two possible states of affairs, one with David teaching and one
with Annie teaching.

12 D. S. Warren

The computational complexities of these two semantic approaches differ. For
propositional programs (those without any variables or constants), finding the
WFS is at worst quadratic in the size of the program, whereas finding the exis-
tence of a model in the SMS is NP hard, i.e., (most likely) exponential. We note
that SMS has led to Answer Set Programming (ASP), a programming paradigm
like that of constraint solvers and SAT solvers.4

6 Tabling

Tabling is an alternative evaluation strategy for Prolog, based on the idea of
saving calls and results from procedure invocations in a table, and then using
those results for future identical (or subsumed) calls. Implemented correctly, it
is easy to see that with tabling Prolog programs that use only constants and
variables (no lists or other data structures), the so-called Datalog programs, will
always terminate. Such programs have finitely many possible calls and finitely
many possible returns, so if none is done more than once, their processing must
eventually terminate.

This has far-reaching consequences for Prolog programming. Consider for
example, the rules that define transitive closure for an arbitrary directed graph,
edge:

transclose(X,Y) :- edge(X,Y).
transclose(X,Y) :- transclose(X,Z), edge(Z,Y).

Given any definition of an edge predicate representing a directed graph, this
defines its transitive closure, and every call to it will terminate under tabled
evaluation. Notice Prolog will not terminate for any call, since the immediate
call to transclose in the second rule will always lead to an infinite loop.

Notice that we could also write the second transclose rule as right recursive,
with a call to edge first and then a call to transclose. In this case execution
without tabling will terminate if the graph is acyclic, as seen in the earlier
hasAncestor example, which is a special case of transitive closure, in which the
edge relation is childOf, and it necessarily defines an acyclic graph.

To understand how tabling works, consider again the multiple machines view
of procedural Prolog evaluation. For tabling, there is a global table of calls and
results that is accessed by every executing machine. Before a subgoal is called,
the table is consulted to see if it has been called before. If not, then the call is
entered into the table, the machine suspends on the entry to wait for answers,
and a new machine is created to actually call the procedure; each time a machine
returns an answer to a call, that answer is added to the corresponding table entry
(if it’s not already there) and the machine fails. If an executing machine finds its
call already in the table, then the machine forks a new machine to return each

4 See chapter “Ergo: A Quest for Declarativity in Logic Programming” for more on
unstratified programs, and chapter “Prolog: Past, Present, and Future” for more on
ASP and SMS.

Introduction to Prolog 13

answer currently in the table and suspends on that table entry. Whenever a new
answer shows up for an entry, the suspended machine forks off another machine
to continue with that answer. The implementation is complicated by the fact
that full asynchronicity of returning answers to suspended calls is indeed required
because there may be two distinct calls with each one alternately producing a
new answer for the other to consume.

Tabling does, of course, take time, to add entries to a table, and space, to
store it. In many, but not all, cases that time and space is more than recovered by
the savings from redundant computation that is avoided. For this reason, tabling
is generally optional and can be turned on, or off, for any given predicate.

A number of Prolog systems now include the tabling options. Some of them
use tabling to implement the WFS for non-stratified programs. They main-
tain information to distinguish between successful derivations that indicate true
answers and those that indicate undefined answers.

7 Operators

Prolog has a flexible syntax. We’ve mentioned lists, but Prolog actually supports
a more general structured data type, called the term. (A list is just a special
kind of term.) A term is a labeled, ordered, tree. The fundamental type is the
labeled record. A record is written as, e.g., employee(david,2020,programmer)
which indicates a record with label employee and three fields, the first and last
populated by string constants and the second by an integer constant. Records
may be nested. For example, cons(a,cons(b,cons(c,[]))) is a nested record
structure, made up of binary cons records, and the constant symbol []. Another
example is +(1,*(2,3)) where we have two binary records, one a +-record and
one a *-record nested in the first. Such record structures are heavily used in
Prolog programming.

This last record structure can also be seen as representing an arithmetic
expression. In fact, it is used in Prolog (in some contexts) for precisely this. But
this record notation for expressions is not what is normally used in mathematics.
One would rather represent it as 1 + 2 * 3, in what is known as infix notation.
Here the record symbols + and * are infix operator symbols and thus are placed
between their operands. Prolog supports such infix operators for binary record
symbols, as well as prefix and postfix operators for unary record symbols. For
example, - is both an infix operator (normally interpreted as subtraction) and
a prefix operator (normally interpreted as the additive inverse). While the basic
nested record notation, known as canonical form, is unambiguous, infix notation
can be ambiguous. E.g., does 1+2*3 mean +(1,*(2,3)) or *(+(1,2),3))? The
convention we learn early on is that it means the first, but the Prolog parser
must be told that. This is determined by the relative precedence of the operators.

In fact, a Prolog rule itself is actually a record structure. It is clear that sub-
goals can be directly seen as record structures. And the conditional symbol “:-”
and the conjunction symbol “,” of Prolog rules are infix operators (with appro-
priate precedences) so that a rule is read as a set of nested records. For example,
the rule p :- q,r. is in fact a record structure of the form :-(p,‘,’(q,e)).

14 D. S. Warren

Prolog supports user-defined operators, prefix, infix, and postfix, allowing
the programmer to declare them and their precedences. This means that with
proper operator declarations, Prolog syntax can be very flexible. With simple
operator declarations Prolog can be made to process programs that look like
natural language expressions.

For example, with appropriate declarations of like and and as infix opera-
tors, and of a as a prefix operator, all with proper precedences, “john and mary
like bill and a woman” will be read as the record structure:
like(and(john,mary),and(bill,a(woman))).

8 Meta-interpretation

One strength of Prolog is that, as we saw, its programs are expressible as simple
data structures in the language. This allows Prolog to easily manipulate its own
programs.

A subgoal looks exactly the same as a record structure. Prolog has a builtin
predicate, named call, that allows a program to treat a record structure as a
subgoal. Consider the situation in which the Prolog programmer wishes to make
it easier for non-experts to invoke specific complex Prolog queries by simply
entering the query name. The programmer creates a relation that associates a
name with a query. E.g.:

queryName(allGrandparents, hasGrandparent(X,Y)).
queryName(memberTest, member(X,[1,2,3,4])).

Then the programmer can define a relation: query as follows:

query(Name,Res) :- queryName(Name,Res),call(Res).

Then the non-expert can find all grandparents by simply invoking:

?- query(allGrandparents,Res).
Res = hasGrandparent(william,elizabeth);
Res = hasGrandparent(harry,elizabeth);
Res = hasGrandparent(george,charles);
Res = hasGrandparent(charlotte,charles)
yes

Prolog prints out the query with the variables instantiated to child-grandparent
pairs. Since “;” was not entered after the fourth answer, Prolog stops generating
answers (and just prints “yes”).

This simple example shows how Prolog can build a goal as a record structure
during execution and then invoke it. This call facility supports higher-order
programming in Prolog.

Another implication of the easy reflection of Prolog programs as data struc-
tures is that one can write a “meta-interpreter” in Prolog. A meta-interpreter
is a program that takes another program and goal as input and evaluates that

Introduction to Prolog 15

query with respect to the program. For example, we could store the clauses of a
program as facts of a binary predicate we call rule, with the head as the first
argument and the body as the second. For example,

rule(member(X,[X|L]),true).
rule(member(X,[Y|L]),member(X,L)).

is our member program from back in the first section. Now we can define a
predicate, say, interp that takes any subgoal and determine its instances that
follow from the rules defined in rule:

interp(true).
interp((X,Y)) :- interp(X), interp(Y).
interp(X) :- rule(X,B), interp(B).

The first rule (a fact) says that if the query is true we should just succeed. The
second rule says that if we have a query that is a conjunction, we just need to
interpret each conjunct in turn. The unusual double parentheses in the head of
that rule are to indicate that interp takes a single argument, and that argument
is a record structure with two subfields that has the record name of “,” (comma)
and is represented in infix notation (with the comma between the two operands).
The final rule says what to do if the query is a subgoal: see if there is a rule with
the query as its head, and if so, interpret the body of that rule. (Actually, do
this, nondeterministically, for every rule that has a matching head.)

And evaluating interp goals, we see:

?- interp(member(0,[3,2,1])).
no
?- interp(member(X,[3,2,1]).
X = 3;
X = 2;
X = 1;
no

These three clauses are all that are needed to execute many Prolog programs,
e.g., almost all we have seen so far. (What rule should be added to handle
negative subgoals?) This simplicity never ceases to amaze. Compare this with
the complexity of a metainterpreter for Java written in Java, for example.

The importance of this simple metainterpreter is not that it can execute
Prolog programs; we have the Prolog engine itself to do that. The importance is
that we can add arguments to this metainterpreter to carry along debugging or
other analysis information; we can add logging subgoals (built-ins of Prolog) to
provide a trace; we can modify it to perform different kinds of evaluation.

For example, we can write a Prolog meta-interpreter that will only invoke
procedures up to some fixed depth, and thus will always terminate, albeit some-
times incorrectly:

16 D. S. Warren

interp(true,Depth,Max).
interp((X,Y),Depth,Max) :-

interp(X,Depth,Max), interp(Y,Depth,Max).
interp(X,Depth,Max) :-

Depth < Max,
NewDepth is Depth + 1,
rule(X,B),
interp(B,NewDepth,Max).

Here Max is the maximum predicate nesting depth to be searched; Depth is the
current nesting depth. The first subgoal of the final rule is a Prolog builtin,
the infix operator “<”, that compares the two integers, and so only succeeds
if the limit is not reached. The second subgoal, using builtin infix operator
“is”, computes the new depth when a rule is used. So, for example, a query
of interp(member(5,[1,2,3,4,5]),0,3) will fail since finding 5 in the list
requires making more than 4 nested subgoal invocations.

Of course we can extend this interpreter to indicate “depth limit exceeded”
instead of simply failing. Similar techniques can be used to implement other
forms of search through the tree of executing virtual deterministic machines.
For example, breadth-first search, or iterative deepening strategies can be imple-
mented when useful in educational and other contexts.

9 Definite Clause Grammars

The original motivation for creating Prolog was to process natural language.
Thus, Prolog is ideal for representing grammars and processing sequences of
tokens. Prolog even has a special notation for representing grammars, known as
Definite Clause Grammars (DCGs).

Let’s first consider how we might represent a context-free grammar in Prolog.
Consider the example context-free grammar in a BNF-like notation:

sentence --> subject, verb_phrase.

subject --> noun_phrase.

noun_phrase --> det noun ; [john] ; [sarah].

det --> [a] ; [the].

noun --> [woman] ; [man].

verb_phrase --> transitive_verb, noun_phrase ; intransitive_verb.

transitive_verb --> [loves].

intransitive_verb --> [walks].

This is a grammar that represents a small fragment of English. The syntax we’ve
used is similar to BNF, with nonterminals represented by constant symbols,
and terminals represented by the symbol surrounded by square brackets. We’ve
separated symbols in the right-hand-sides of rules by commas, and alternate
right-hand-sides by semicolons. The language of this grammar includes such
sentences as “sarah walks” and “the man loves a woman.”

We can represent this grammar in Prolog by introducing for each non-
terminal a Prolog predicate with two arguments; the first argument is a list

Introduction to Prolog 17

of tokens and the second a tail of the first list that remains after removing a
sequence of tokens generated by the non-terminal. So, for example, the predi-
cate noun phrase should take the list [‘a’,‘man’,‘walks’] and, removing the
noun phrase, “a man”, return the list [‘walks’]. The following Prolog program
represents this grammar:

sentence(S0,S) :- subject(S0,S1), verb_phrase(S1,S).
subject(S0,S) :- noun_phrase(S0,S).
noun_phrase(S0,S) :- det(S0,S1), noun(S1,S) ;

S0 = [john|S] ; S0 = [sarah|S].
det(S0,S) :- S0 = [a |S] ; S0 = [the|S].
noun(S0,S) :- S0 = [woman|S] ; S0 = [man|S].
verb_phrase(S0,S) :- transitive_verb(S0,S1), noun_phrase(S1,S) ;

intransitive_verb(S0,S).
transitive_verb(S0,S) :- S0 = [loves |S].
intransitive_verb(S0,S) :- S0 = [walks |S].

Here we have used the Prolog “or” operator, represented by the semi-colon (;),
which we haven’t seen before. The translation of the context-free grammar to a
Prolog program is clear. Each rule has a clear meaning: if the right-hand-side
non-terminals (and terminals) of a grammar rule generate a sequence of strings,
then their concatenation is a string generated by the left-hand side of the rule.
We can query these predicates to recognize sentences in the grammar.

?- sentence([the,man,loves,sarah],[]).
yes
?- sentence([the,man,loves,walks],[]).
no

as expected. Looking at the execution of this program, we see that Prolog is
carrying out a recursive descent recognition algorithm. We note that if all the
predicates are tabled, then Prolog would carry out a variation of the efficient
Earley recognition algorithm.

We now point out that the syntax for the context-free grammar we used
to introduce it above is actually accepted by Prolog and converted into the
Prolog program we just presented. This is done automatically by the Prolog
reader using a built-in Prolog facility called term expansion which supports very
powerful macro capabilities5. Grammars in this syntax are called Definite Clause
Grammars or DCGs. So, DCG syntax uses the “-->” symbol instead of the “:-”
symbol to separate head and body of rules. It requires terminal symbols of the
grammar to be placed in lists. Then the DCG processing of Prolog translates such
rules to predicate definitions by adding two extra arguments to each nonterminal
symbol, and threading the variables through the body subgoals, including the
terminal lists, as illustrated above.
5 Term expansion and other related facilities such as “attributed variables” have been

used to add many other syntactic and semantic extensions to Prolog, such as func-
tional programming and constraints. We discuss the latter in the following section.

18 D. S. Warren

The Prolog program of this example is a recognizer. We could easily write a
parser by adding an argument to the nonterminal predicate symbols to construct
the parse tree (as a tree of records). The DCG notation includes this by allowing
the nonterminal symbols to have arguments: in which case the string variables
are added to those arguments, at the end. Thus, a nonterminal symbol with n
arguments will translate to a Prolog predicate with n + 2 arguments.

In fact, this same DCG can be used to generate sentences of the language
simply by providing a variable in the query in place of the first list.

This DCG notation makes it extremely easy to write string processing pred-
icates.6

10 Constraints

As we have seen, Prolog has basic arithmetic builtin predicates, such as is for
evaluating expressions, e.g., X is Y + 1. This builtin requires that the expres-
sion has no variables, i.e., in this case that Y must have a value. But it may
be the case that Y doesn’t have a value at the point of evaluation, but will be
given a value by the evaluation of a later subgoal. So, waiting until Y has its
value would allow the builtin is to correctly evaluate to give X a value. For this
situation, many Prologs have a wait operation, which allows the programmer
to specify that a particular subgoal, say X is Y + 1, should be delayed until
certain variables, say Y, are given values, at which point it will be evaluated.
The wait facility allows more flexible evaluation strategies, or what gets done
when, driven by various modes.

But there are cases for which waiting for variables to get values may still not
allow some seemingly reasonable programs to be evaluated. Consider a simple
example of a compound goal: X is Y + 2, Y is X * 3, where neither X nor Y
have values. But we can solve these two simple equations in two unknowns and
determine that X must be −1 and Y must be −3. Many Prolog systems support
such constraint solving.

The general idea is for the Prolog system to accumulate the set of con-
straints imposed by evaluated constraint subgoals, and then to solve those con-
straints, using some solver methodology, to bind variables to values that satisfy
the constraints. In many Prolog implementations the constraints are stored in
the attributes of attributed variables and incrementally solved as soon as enough
of the variables involved are known. This improves efficiency by both detecting
inconsistent constraints early and binding variables to constants as soon as pos-
sible, thus avoiding unnecessary search. For example, if the constraints are linear
constraints over the real numbers, one could use an incremental version of the
method of Gaussian elimination to solve them.

This constraint framework is known as Constraint Logic Programming
(CLP). CLP systems may support constraints over a variety of domains, such as
real numbers (as we’ve seen here), rational numbers, booleans, or finite domains.
6 See chapter “Introducing Prolog in Language-Informed Ways” for more uses of

DCG’s.

Introduction to Prolog 19

Each domain will have a specific solver that solves sets of constraints of some
specified forms. And there may be multiple solvers for some specific domains,
depending on the form of the constraints. There has been significant research into
CLP, and many powerful constraint systems have been developed. For example,
see the chapter “ProB: Harnessing the Power of Prolog to Bring Formal Models
and Mathematics to Life.”

11 Conclusion

We hope that this brief introduction to Prolog has provided some insight into
Prolog’s capabilities. But we have only scratched the surface of what Prolog
can do. Fifty years of research and language extensions have created extremely
powerful systems.7 Perhaps now you can begin to see that Prolog is a logic
language, and how Prolog can be understood as a “declarative language” in
which programmers describe what they want, and not so much how to compute
it; yet also write very efficient recursive algorithms if desired. The rest of this
book will further explore what has been done, and what can be done, with Prolog
programs.

7 See Fifty Years of Prolog and Beyond by Korner, Leuschel, Barbosa, Santos Costa,
Dahl, Hermenegildo, Morales, Wielemaker, Diaz, and Abreu in TPLP 22(6).

About Prolog, Present and Future

Types, Modes and so Much More
– The Prolog Way

Manuel V. Hermenegildo1,2(B), Jose F. Morales1,2, Pedro Lopez-Garcia2,3,
and Manuel Carro1,2

1 Universidad Politécnica de Madrid (UPM), Madrid, Spain
2 IMDEA Software Institute, Madrid, Spain

{manuel.hermenegildo,josef.morales,pedro.lopez}@imdea.org
3 Spanish Council for Scientific Research (CSIC), Madrid, Spain

Abstract. We present in a tutorial way some ideas developed in the
context of the Ciao Prolog system that we believe could be useful for the
future evolution of Prolog. We concentrate primarily on one area: the use
of assertions with types, modes, and other properties, and how the unique
characteristics of Prolog have made early advances possible in the area
of combining static and dynamic language features. However, we also
address briefly some other issues related to extending the expressiveness
and functionality of the language.

Keywords: Prolog, Static Languages · Dynamic Languages · Types,
Modes · Assertions · Verification, Testing · Test Generation · Language
Extensions

1 Combining in Prolog the Best of the Dynamic
and Static Language Approaches

Prolog is a dynamically-typed language and this aspect, combined with the intrin-
sic power of the language, has arguably contributed to its continued relevance and
use in many applications. In fact, the environment in which much software is devel-
oped nowadays, aligns well with the classical arguments for dynamic languages,
and many of the currently most popular languages, such as Python, JavaScript,
Ruby, etc. (with Scheme and Prolog also in this class) are dynamic.

At the same time, detecting errors as early as possible at compile time, and
inferring properties required to optimize and parallelize programs are clearly
important issues in real-world applications, and thus, strong arguments can also
be made for static languages. For example, statically-typed logic and functional
languages (such as, e.g., Mercury [37] or Haskell [17]) impose strong type-related

Partially funded by MICINN projects PID2019-108528RB-C21 ProCode, TED2021-
132464B-I00 PRODIGY, and FJC2021-047102-I, by the Comunidad de Madrid pro-
gram P2018/TCS-4339 BLOQUES-CM, and by the Tezos foundation. The authors
would also like to thank the anonymous reviewers for very useful feedback.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 23–37, 2023.
https://doi.org/10.1007/978-3-031-35254-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_2&domain=pdf
https://doi.org/10.1007/978-3-031-35254-6_2

24 M. V. Hermenegildo et al.

�

Fig. 1. With no entry information, the system warns that it cannot verify that the
call to =</2 will not generate a run-time error.

requirements such as that all types (and, when relevant, modes) have to be
defined explicitly or that all procedures have to be well-typed and well-moded.
An important argument supporting this approach is that types clarify interfaces
and meanings and facilitate programming in the large by making large programs
more maintainable and better documented. Also, the compiler can use the static
information to generate more specialized code, which can be better in several
ways (e.g., performance-wise).

In the design of Ciao Prolog we certainly had the latter arguments in mind,
but we also wanted to retain the usefulness of standard Prolog for highly dynamic
scenarios, programming in the small, prototyping, developing simple scripts, or
simply for experimenting with the solution to a problem. We felt that strong typ-
ing and other related restrictions of statically-typed logic languages can some-
times get in the way in these contexts.

The solution we came up with –the Ciao assertions model– involves the
combination of a rich assertion language, allowing a very general class of (pos-
sibly undecidable) properties, and a novel methodology for dealing with such
assertions [3,13,14,29,30], based on making a best effort to infer and check
assertions statically, using rigorous static analysis tools based on safe approx-
imations, in particular via abstract interpretation [7]. This implies accepting
that complete verification or error detection may not always be possible and
run-time checks may be needed. This approach allows dealing in a uniform way
with a wide variety of properties which includes types [33,41], but also, e.g., rich
modes [24,25], determinacy [19], non-failure [4,9], sharing/aliasing, term linear-
ity, cost [20,26,35], etc., while at the same time allowing assertions to be optional.
The Ciao model and language design also allows for a smooth integration with
testing [21]. Moreover, as (parts of) tests that can be verified at compile time
are eliminated, some tests can be passed without ever running them. Finally, the
model supports naturally assertion-based test case generation. In the following
we illustrate these aspects of the model through examples run on the system.1

1 The examples are runnable in the Ciao playground �; they have been developed with
version 1.22 of the system. Screenshots are from the Ciao Prolog Emacs interface.

https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%5Bqsort%2F2%5D%2C%5Bassertions%2Cnativeprops%2Cmodes%5D).%0A%0A%25%20With%20no%20information%20on%20the%20calls%20to%20qsort%2F2%2C%20the%20%0A%25%20the%20analyzer%20warns%20that%20it%20cannot%20ensure%20that%20%0A%25%20the%20calls%20to%20%3D%3C%2F2%20and%20%3E%2F2%20will%20not%20generate%20a%20%0A%25%20run-time%20error.%0A%0Aqsort(%5B%5D%2C%20%5B%5D).%0Aqsort(%5BFirst%7CRest%5D%2CResult)%20%3A-%0A%20%20%20%20partition(Rest%2CFirst%2CSm%2CLg)%2C%20%0A%20%20%20%20qsort(Sm%2CSmS)%2C%20%0A%20%20%20%20qsort(Lg%2CLgS)%2C%0A%20%20%20%20append(SmS%2C%5BFirst%7CLgS%5D%2CResult).%0A%0Apartition(%5B%5D%2C_%2C%5B%5D%2C%5B%5D).%0Apartition(%5BX%7CY%5D%2CF%2C%5BX%7CY1%5D%2CY2)%20%3A-%20%0A%20%20%20%20X%20%3D%3C%20F%2C%20%0A%20%20%20%20partition(Y%2CF%2CY1%2CY2).%0Apartition(%5BX%7CY%5D%2CF%2CY1%2C%5BX%7CY2%5D)%20%3A-%20%0A%20%20%20%20X%20%3E%20F%2C%0A%20%20%20%20partition(Y%2CF%2CY1%2CY2).%0A%0Aappend(%5B%5D%2CXs%2CXs).%0Aappend(%5BX%7CXs%5D%2CYs%2C%5BX%7CZs%5D)%20%3A-%0A%20%20%20%20append(Xs%2CYs%2CZs).
https://ciao-lang.org/playground

Types, Modes and So Much More - The Prolog Way 25

Fig. 2. Hovering over the clause the system shows a popup saying that it cannot verify
the assertions for =</2 (present in the library!).

�

Fig. 3. Adding information on how the exported predicate should be called the system
can infer that =</2 will be called correctly, and no warnings are flagged.

1.1 The Assertions Model in Action

While there are several ways to use the system, we will show screenshots of one
of the most convenient, which is to have the system running in the background
giving instant feedback as a program is opened or edited –we refer to this as the
“verifly” (“verification on the fly”) mode (see [34] for more details).

A First Example. Consider the classic implementation of quick-sort in Fig. 1.
If no other information is provided, the exported predicate qsort/2 can be called
with arbitrarily instantiated terms as arguments (e.g., with a list of variables).
This implies that the library predicates =</2 and >/2 in partition/4 can

�

Fig. 4. We add more assertions expressing various properties.

https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%5Bqsort%2F2%5D%2C%5Bassertions%2Cnativeprops%2Cmodes%5D).%0A%0A%25%20Adding%20information%20on%20how%20the%20exported%20predicate%20should%20%0A%25%20be%20called%20the%20system%20can%20infer%20that%20%3D%3C%2F2%20and%20%3E%2F2%20will%20be%20%0A%25%20called%20correctly%2C%20and%20no%20warnings%20are%20flagged.%0A%0A%3A-%20pred%20qsort(%2Blist(num)%2C_).%0A%0Aqsort(%5B%5D%2C%20%5B%5D).%0Aqsort(%5BFirst%7CRest%5D%2CResult)%20%3A-%0A%20%20%20%20partition(Rest%2CFirst%2CSm%2CLg)%2C%20%0A%20%20%20%20qsort(Sm%2CSmS)%2C%20%0A%20%20%20%20qsort(Lg%2CLgS)%2C%0A%20%20%20%20append(SmS%2C%5BFirst%7CLgS%5D%2CResult).%0A%0Apartition(%5B%5D%2C_%2C%5B%5D%2C%5B%5D).%0Apartition(%5BX%7CY%5D%2CF%2C%5BX%7CY1%5D%2CY2)%20%3A-%20%0A%20%20%20%20X%20%3D%3C%20F%2C%20%0A%20%20%20%20partition(Y%2CF%2CY1%2CY2).%0Apartition(%5BX%7CY%5D%2CF%2CY1%2C%5BX%7CY2%5D)%20%3A-%20%0A%20%20%20%20X%20%3E%20F%2C%0A%20%20%20%20partition(Y%2CF%2CY1%2CY2).%0A%0Aappend(%5B%5D%2CXs%2CXs).%0Aappend(%5BX%7CXs%5D%2CYs%2C%5BX%7CZs%5D)%20%3A-%0A%20%20%20%20append(Xs%2CYs%2CZs).
https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%5Bqsort%2F2%5D%2C%5Bassertions%2Cnativeprops%2Cregtypes%2Cmodes%5D).%0A%0A%25%20qsort%2F2%20with%20some%20assertions.%0A%25%20The%20system%20verifes%20the%20assertions%20and%20also%20that%20%0A%25%20the%20%3D%3C%2F2%20and%20%3E%2F2%20are%20called%20correctly%20and%20will%20not%20%0A%25%20generate%20any%20run-time%20errors.%20%20%0A%25%20Try%20also%20generating%20the%20documentation%20for%20this%20file!%0A%0A%25%20If%20qsort%2F2%20is%20called%20with%20a%20list%20of%20numbers%2C%20it%20will%0A%25%20return%20a%20list%20of%20numbers%20and%20at%20most%20one%20solution.%0A%3A-%20pred%20qsort(%2Blist(num)%2C-list(num))%20%2B%20semidet.%0A%20%0Aqsort(%5B%5D%2C%20%5B%5D).%0Aqsort(%5BFirst%7CRest%5D%2CResult)%20%3A-%0A%20%20%20%20partition(Rest%2CFirst%2CSm%2CLg)%2C%20%0A%20%20%20%20qsort(Sm%2CSmS)%2C%20%0A%20%20%20%20qsort(Lg%2CLgS)%2C%0A%20%20%20%20append(SmS%2C%5BFirst%7CLgS%5D%2CResult).%0A%0A%25%20partition%2F4%20is%20called%20with%20a%20list%20of%20numbers%20and%20a%0A%25%20number%20it%20returns%20two%20lists%20of%20numbers%2C%20one%20solution%2C%0A%25%20and%20will%20never%20fail.%20%0A%3A-%20pred%20partition(%2Blist(num)%2C%2Bnum%2C-list(num)%2C-list(num))%20%0A%20%20%20%20%20%20%20%20%2B%20det.%0A%0Apartition(%5B%5D%2C_%2C%5B%5D%2C%5B%5D).%0Apartition(%5BX%7CY%5D%2CF%2C%5BX%7CY1%5D%2CY2)%20%3A-%20%0A%20%20%20%20X%20%3D%3C%20F%2C%20%0A%20%20%20%20partition(Y%2CF%2CY1%2CY2).%0Apartition(%5BX%7CY%5D%2CF%2CY1%2C%5BX%7CY2%5D)%20%3A-%20%0A%20%20%20%20X%20%3E%20F%2C%0A%20%20%20%20partition(Y%2CF%2CY1%2CY2).%0A%0A%25%20append%2F3%20is%20called%20with%20two%20lists%20of%20numbers%2C%20will%0A%25%20return%20a%20list%20of%20numbers%2C%20and%20at%20most%20one%20solution.%0A%3A-%20pred%20append(%2Blist(num)%2C%2Blist(num)%2C-list(num))%20%2B%20semidet.%0A%0Aappend(%5B%5D%2CXs%2CXs).%0Aappend(%5BX%7CXs%5D%2CYs%2C%5BX%7CZs%5D)%20%3A-%0A%20%20%20%20append(Xs%2CYs%2CZs).%0A

26 M. V. Hermenegildo et al.

also be called with arbitrary terms and thus run-time errors are possible, since
=</2 and >/2 require their arguments to be bound to arithmetic expressions
when called. Even though there are no assertions in the program itself, the
system is able to warn that it cannot verify that the calls to =</2 and >/2
will not generate a run-time error (note >> symbol and code underlining in
orange). This is the result of a modular global analysis and a comparison of the
information inferred for the program points before the calls to =</2 and >/2
with the assertions that express the calling restrictions for =</2 and >/2. Such
assertions live in the libraries that provide these standard predicates. Further
details can be obtained by hovering over the literal (Fig. 2).

In Fig. 3 we have added an assertion for the exported predicate qsort/2
expressing that it should be called with its first argument bound to a list of
numbers.2 Assuming this “entry” information, the system can verify that all
the calls to =</2 and >/2 are now correct (with their arguments bound to
numbers in this case), and thus no warnings are flagged. Note that in practice
this assertion may not be necessary since this information could be obtained
from the analysis of the caller(s) to this module.

Let us now add more assertions to the program, stating properties that
we want checked, as shown in Fig. 4. The assertion for predicate partition/4
(eighth line of Fig. 4) expresses, using modes,3 that the first argument should be
bound to a list of numbers, and the second to a number, and that, for any termi-
nating call meeting this call pattern: a) if the call succeeds, then the third and
fourth arguments will be bound to lists of numbers; and b) the call is determin-
istic, i.e., it will produce one solution exactly, property det in the + field (as in
Mercury [37]), which is inferred in CiaoPP as the conjunction of two properties:
1) the call does not (finitely) fail (property not_fails as in [4,9]) and 2) the

Fig. 5. All the added assertions get verified by the system.

2 Due to space limitations we present the assertion language through –hopefully
intuitive– examples. More complete descriptions of the assertion language can be
found in [2,12,29].

3 See, e.g., [43] in this same volume for an introduction to modes.

Types, Modes and So Much More - The Prolog Way 27

call will produce one solution at most (property is_det as in [19]). Similarly,
the assertion for qsort/2 expresses the expected calling pattern, and that the
call can have at most one answer, property semidet.

In the assertion model, modes are macros that serve as a shorthand for
assertions, in particular predicate-level assertions. These are in general of the
form:

:- [Status] pred Head [: Pre] [=> Post] [+ Comp].

where Head denotes the predicate that the assertion applies to, and Pre and
Post are conjunctions of state property literals. Pre expresses properties that
hold when Head is called. Post states properties that hold if Head is called in a
state compatible with Pre and the call succeeds. Comp describes properties of
the whole computation such as determinism, non-failure, resource usage, termi-
nation, etc., aso for calls that meet Pre. In particular, the modes for qsort/2 in
Fig. 4 are expanded by the modes package (see module declaration in Fig. 3) to:

:- pred qsort(X,Y) : list(num,X) => list(num,Y) + semidet.

All the assertions in Fig. 4 indeed get verified by the system, which is
shown by underlying the assertions in green (Fig. 5), and again further infor-
mation can be obtained in a popup (Fig. 6).4 Figure 7, shows again qsort/2
but now the assertions are written as machine readable comments enabled by
the doccomments package. Such comments can contain embedded assertions,
which are also verified. Here we use again modes and determinacy. This for-
mat is familiar to Prolog programmers and compatible with any Prolog system
without having to define any operators for the assertion syntax.

In Fig. 8, we have replaced =</2 with </2 in the second clause of
partition/4, and the system warns that this predicate may fail. This is because
the case where X=F is not “covered” by the “tests” of partition/4 [4,9]. Con-
versely, if we replace >/2 with >=/2 in the second clause of the original def-

Fig. 6. The popup shows that calls, computational/global properties, and success pat-
tern for partition/ are verified.

4 Note that while, as mentioned before, the assertions in Fig. 4 use modes they are
represented internally in normal form and the popup message uses syntax close to
this form, where the computational properties and the state properties that must
hold upon success are split into separate (comp and success assertions respectively).

28 M. V. Hermenegildo et al.

�

Fig. 7. Using modes/assertions in doccomments syntax (which are also verified).
�

Fig. 8. If we replace =</2 with </2 the system warns that partition/4 may fail.

inition of partition/4, Fig. 9, the system warns that the predicate may not
be deterministic. This is because the analyzer infers that not all the clauses of
partition/4 are pairwise mutually exclusive (in particular the second and third
clauses are not), and thus, multiple solutions may be obtained [19].

Defining Properties. The reader may be wondering at this point where the
properties that are used in assertions (such as list(num)) come from. As men-
tioned before, such properties are typically written in Prolog and its extensions;
and they can also be built-in and/or defined and imported from system libraries
or in user code. Visibility is controlled by the module system as for any other
predicate. Figure 10 shows some examples of definitions of properties. Two of
them are marked as regular types (regtype directive): color/1, defined as the
set of values {red, green, blue}, and colorlist/1, representing the infinite set
of lists whose elements are of color type. The third property is not a regular
type, but an arbitrary property (prop directive), representing the infinite set of
lists of numeric elements in descending order. Marking predicates as properties
allows them to be used in assertions, but they remain regular predicates, and
can be called as any other, and also used as run-time tests, to generate examples
(test cases), etc. For example:

https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%5Bqsort%2F2%5D%2C%5Bassertions%2Cnativeprops%2Cregtypes%2Cmodes%2Cdoccomments%5D).%0A%0A%25!%20qsort(%2Blist(num)%2C-list(num))%20%2B%20semidet%3A%20%0A%25%20%20Y%20is%20X%20sorted.%0Aqsort(%5B%5D%2C%20%5B%5D).%0Aqsort(%5BFirst%7CRest%5D%2CResult)%20%3A-%0A%20%20%20%20partition(Rest%2CFirst%2CSm%2CLg)%2C%20%0A%20%20%20%20qsort(Sm%2CSmS)%2C%20%0A%20%20%20%20qsort(Lg%2CLgS)%2C%0A%20%20%20%20append(SmS%2C%5BFirst%7CLgS%5D%2CResult).%0A%0A%25!%20partition(%2Blist(num)%2C%2Bnum%2C-list(num)%2C-list(num))%20%2B%20det%3A%20%0A%25%20%20Partitions%20a%20list%20into%20two%20lists%2C%20greater%20and%0A%25%20%20smaller%20than%20the%20pivot%20(second%20argument).%20%0Apartition(%5B%5D%2C_%2C%5B%5D%2C%5B%5D).%0Apartition(%5BX%7CY%5D%2CF%2C%5BX%7CY1%5D%2CY2)%20%3A-%20%0A%20%20%20%20X%20%3D%3C%20F%2C%20%0A%20%20%20%20partition(Y%2CF%2CY1%2CY2).%0Apartition(%5BX%7CY%5D%2CF%2CY1%2C%5BX%7CY2%5D)%20%3A-%20%0A%20%20%20%20X%20%3E%20F%2C%0A%20%20%20%20partition(Y%2CF%2CY1%2CY2).%0A%0A%25!%20append(%2Blist(num)%2C%2Blist(num)%2C-list(num))%20%2B%20semidet%3A%20%0Aappend(%5B%5D%2CXs%2CXs).%0Aappend(%5BX%7CXs%5D%2CYs%2C%5BX%7CZs%5D)%20%3A-%0A%20%20%20%20append(Xs%2CYs%2CZs).%0A
https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%5Bqsort%2F2%5D%2C%5Bassertions%2Cnativeprops%2Cregtypes%2Cmodes%5D).%0A%0A%25%20qsort%2F2%20with%20some%20assertions.%0A%25%20If%20we%20have%20%3C%2F2%20and%20%3E%2F2%20in%20partition%20the%20system%20warns%20%0A%25%20that%20partition%2F4%20is%20not%20guaranteed%20to%20not%20fail.%0A%0A%3A-%20pred%20qsort(%2Blist(num)%2C-list(num))%20%2B%20semidet.%0A%20%0Aqsort(%5B%5D%2C%20%5B%5D).%0Aqsort(%5BFirst%7CRest%5D%2CResult)%20%3A-%0A%20%20%20%20partition(Rest%2CFirst%2CSm%2CLg)%2C%20%0A%20%20%20%20qsort(Sm%2CSmS)%2C%20%0A%20%20%20%20qsort(Lg%2CLgS)%2C%0A%20%20%20%20append(SmS%2C%5BFirst%7CLgS%5D%2CResult).%0A%0A%3A-%20pred%20partition(%2Blist(num)%2C%2Bnum%2C-list(num)%2C-list(num))%20%2B%20det.%0A%0Apartition(%5B%5D%2C_%2C%5B%5D%2C%5B%5D).%0Apartition(%5BX%7CY%5D%2CF%2C%5BX%7CY1%5D%2CY2)%20%3A-%20%0A%20%20%20%20X%20%3C%20F%2C%20%0A%20%20%20%20partition(Y%2CF%2CY1%2CY2).%0Apartition(%5BX%7CY%5D%2CF%2CY1%2C%5BX%7CY2%5D)%20%3A-%20%0A%20%20%20%20X%20%3E%20F%2C%0A%20%20%20%20partition(Y%2CF%2CY1%2CY2).%0A%0A%3A-%20pred%20append(%2Blist(num)%2C%2Blist(num)%2C-list(num))%20%2B%20semidet.%0A%0Aappend(%5B%5D%2CXs%2CXs).%0Aappend(%5BX%7CXs%5D%2CYs%2C%5BX%7CZs%5D)%20%3A-%0A%20%20%20%20append(Xs%2CYs%2CZs).%0A

Types, Modes and So Much More - The Prolog Way 29

�

Fig. 9. If we replace >/2 with >=/2 the system warns that both partition/4 and
qsosrt/2 may not be deterministic.

�

Fig. 10. Defining some properties which can then be used in assertions.

?- colorlist(X).
X = [] ? ;
X = [red] ? ;
X = [red,red] ? ...

or, if we select breadth-first execution (useful here for fair generation):

?- colorlist(X).
X = [] ? ;
X = [red] ? ;
X = [green] ? ;
X = [blue] ? ;
X = [red,red] ? ...

Figure 11 shows the same properties of Fig. 10 but written using functional
notation. The definitions are equivalent, functional syntax being just syntactic
sugar.

�

Fig. 11. The properties of Fig. 10 written in functional notation.

https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%5Bqsort%2F2%5D%2C%5Bassertions%2Cnativeprops%2Cregtypes%2Cmodes%5D).%0A%0A%25%20qsort%2F2%20with%20some%20assertions.%0A%25%20If%20we%20have%20%3D%3C%2F2%20and%20%3E%3D%2F2%20in%20partition%20the%20system%20warns%20%0A%25%20that%20both%20partition%2F4%20and%20qsort%2F2%20may%20not%20be%20deterministic.%0A%0A%3A-%20pred%20qsort(%2Blist(num)%2C-list(num))%20%2B%20semidet.%0A%20%0Aqsort(%5B%5D%2C%20%5B%5D).%0Aqsort(%5BFirst%7CRest%5D%2CResult)%20%3A-%0A%20%20%20%20partition(Rest%2CFirst%2CSm%2CLg)%2C%20%0A%20%20%20%20qsort(Sm%2CSmS)%2C%20%0A%20%20%20%20qsort(Lg%2CLgS)%2C%0A%20%20%20%20append(SmS%2C%5BFirst%7CLgS%5D%2CResult).%0A%0A%3A-%20pred%20partition(%2Blist(num)%2C%2Bnum%2C-list(num)%2C-list(num))%20%2B%20det.%0A%0Apartition(%5B%5D%2C_%2C%5B%5D%2C%5B%5D).%0Apartition(%5BX%7CY%5D%2CF%2C%5BX%7CY1%5D%2CY2)%20%3A-%20%0A%20%20%20%20X%20%3D%3C%20F%2C%20%0A%20%20%20%20partition(Y%2CF%2CY1%2CY2).%0Apartition(%5BX%7CY%5D%2CF%2CY1%2C%5BX%7CY2%5D)%20%3A-%20%0A%20%20%20%20X%20%3E%3D%20F%2C%0A%20%20%20%20partition(Y%2CF%2CY1%2CY2).%0A%0A%3A-%20pred%20append(%2Blist(num)%2C%2Blist(num)%2C-list(num))%20%2B%20semidet.%0A%0Aappend(%5B%5D%2CXs%2CXs).%0Aappend(%5BX%7CXs%5D%2CYs%2C%5BX%7CZs%5D)%20%3A-%0A%20%20%20%20append(Xs%2CYs%2CZs).%0A
https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%5Bcolor%2F1%2Ccolorlist%2F1%2Csorted%2F1%5D%2C%5Bassertions%2Cregtypes%2Cclpq%5D).%0A%0A%25%20Defining%20some%20types%20and%20properties%20which%20can%20then%20be%20used%20%0A%25%20in%20assertions.%0A%0A%3A-%20regtype%20color%2F1.%0Acolor(red).%0Acolor(green).%0Acolor(blue).%0A%0A%3A-%20regtype%20colorlist%2F1.%0Acolorlist(%5B%5D).%0Acolorlist(%5BH%7CT%5D)%20%3A-%20color(H)%2C%20colorlist(T).%0A%0A%3A-%20prop%20sorted%2F1.%0Asorted(%5B%5D).%0Asorted(%5B_%5D).%0Asorted(%5BX%2CY%7CT%5D)%20%3A-%20X%20.%3E.%20Y%2C%20sorted(%5BY%7CT%5D).%0A
https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%5Bcolorlist%2F1%2Csorted%2F1%2Ccolor%2F1%5D%2C%5Bassertions%2Cregtypes%2Cfsyntax%2Cclpq%5D).%0A%0A%25%20Defining%20some%20types%20and%20properties%20(using%20functiomal%20syntax)%0A%25%20which%20can%20then%20be%20used%20in%20assertions.%20%0A%0A%3A-%20regtype%20color%2F1.%0Acolor%20%3A%3D%20red%20%7C%20green%20%7C%20blue.%0A%0A%3A-%20regtype%20colorlist%2F1.%0Acolorlist%20%3A%3D%20%5B%5D%20%7C%20%5B~color%7C~colorlist%5D.%0A%0A%3A-%20prop%20sorted%2F1.%0Asorted%20%3A%3D%20%5B%5D%20%7C%20%5B_%5D.%0Asorted(%5BX%2CY%7CT%5D)%20%3A-%20X%20.%3E.%20Y%2C%20sorted(%5BY%7CT%5D).%0A%0A

30 M. V. Hermenegildo et al.

�

Fig. 12. An error is flagged in the success of p/1.

Fig. 13. Success and inferred properties (sorted/1 and red) are incompatible.

�

Fig. 14. New definition of predicate q/1 (and change in assertion).

Fig. 15. Just a warning: sorted could not be verified (with selected domains).

�

Fig. 16. An example with more complex properties, a cost error is flagged.

https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%5Bp%2F1%2Ccolorlist%2F1%2Csorted%2F1%2Ccolor%2F1%5D%2C%5Bassertions%2Cregtypes%2Cfsyntax%5D).%0A%0A%25%20Defining%20some%20types%20and%20properties%20(using%20functiomal%20syntax)%0A%25%20which%20are%20then%20used%20in%20two%20simple%20assertions.%20The%20system%0A%25%20detects%20that%20property%20sorted%20is%20incompatible%20with%20the%20success%0A%25%20tyoe%20of%20p%2F1.%0A%0A%3A-%20pred%20p(X)%20%3D%3E%20sorted(X).%0Ap(X)%20%3A-%20q(X).%0A%0A%3A-%20pred%20q(X)%20%3D%3E%20color(X).%0Aq(M)%20%3A-%20M%20%3D%20red.%0A%0A%3A-%20regtype%20color%2F1.%0Acolor%20%3A%3D%20red%20%7C%20green%20%7C%20blue.%0A%0A%3A-%20regtype%20colorlist%2F1.%0Acolorlist%20%3A%3D%20%5B%5D%20%7C%20%5B~color%7C~colorlist%5D.%0A%0A%3A-%20prop%20sorted%2F1.%0Asorted%20%3A%3D%20%5B%5D%20%7C%20%5B_%5D.%0Asorted(%5BX%2CY%7CT%5D)%20%3A-%20X%20%3E%20Y%2C%20sorted(%5BY%7CT%5D).%0A%0A
https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%5Bp%2F1%2Ccolorlist%2F1%2Csorted%2F1%2Ccolor%2F1%5D%2C%5Bassertions%2Cregtypes%2Cfsyntax%5D).%0A%0A%25%20Defining%20some%20types%20and%20properties%20(using%20functiomal%20syntax)%0A%25%20which%20are%20then%20used%20in%20two%20simple%20assertions.%20With%20default%20domain%0A%25%20sorted%2F1%20is%20not%20proved%20and%20will%20generate%20a%20run-time%20check%20and%20%0A%25%20optionally%20initiate%20assertion-based%20test%20generation.%0A%0A%3A-%20pred%20p(X)%20%3D%3E%20sorted(X).%0Ap(X)%20%3A-%20q(X).%0A%0A%3A-%20pred%20q(X)%20%3D%3E%20list(X).%0Aq(M)%20%3A-%20M%20%3D%20%5B_%2C_%2C_%5D.%0A%0A%3A-%20regtype%20color%2F1.%0Acolor%20%3A%3D%20red%20%7C%20green%20%7C%20blue.%0A%0A%3A-%20regtype%20colorlist%2F1.%0Acolorlist%20%3A%3D%20%5B%5D%20%7C%20%5B~color%7C~colorlist%5D.%0A%0A%3A-%20prop%20sorted%2F1.%0Asorted%20%3A%3D%20%5B%5D%20%7C%20%5B_%5D.%0Asorted(%5BX%2CY%7CT%5D)%20%3A-%20X%20%3E%20Y%2C%20sorted(%5BY%7CT%5D).%0A
https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%20%5Bnrev%2F2%5D%2C%20%5Bassertions%2Cfsyntax%2Cnativeprops%5D).%0A%0A%25%20Naive%20reverse%20with%20some%20complex%20assertions.%0A%25%20The%20system%20flags%20a%20(cost)%20error%20reminding%20us%20that%20%0A%25%20nrev%2F2%20is%20quadratic%2C%20not%20linear.%20%0A%25%20(Requires%20cost-related%20domains.)%0A%0A%3A-%20pred%20nrev(A%2CB)%20%3A%20(list(num%2CA)%2C%20var(B))%20%3D%3E%20list(B)%20%0A%20%20%20%2B%20(%20det%2C%20terminates%2C%20steps_o(%20length(A)%20)%20).%0A%0Anrev(%20%5B%5D%20)%20%20%20%20%3A%3D%20%5B%5D.%0Anrev(%20%5BH%7CL%5D%20)%20%3A%3D%20~conc(%20~nrev(L)%2C%5BH%5D%20).%0A%0A%0A%3A-%20pred%20conc(A%2CB%2CC)%20%2B%20(%20det%2C%20terminates%2C%20steps_o(length(A))).%0A%0Aconc(%20%5B%5D%2C%20%20%20%20L%20)%20%3A%3D%20L.%0Aconc(%20%5BH%7CL%5D%2C%20K%20)%20%3A%3D%20%5B%20H%20%7C%20~conc(L%2CK)%20%5D.%0A

Types, Modes and So Much More - The Prolog Way 31

Fig. 17. The system reminds us that nrev/2 is of course quadratic, not linear.
�

Fig. 18. With the cost expression fixed all properties are now verified.

In Fig. 12 we add some simple definitions for p/1 and q/1, and a pred asser-
tion for q/1, meaning “in all calls q(X) that succeed, X is instantiated on success
to a term of color type.” This is verified by the system. We have also added
an assertion for p/1 meaning “in all calls p(X) that succeed, X gets instanti-
ated to a term meeting the sorted property.” The system detects that such
assertion is false and shows the reason (Fig. 13): the analyzer (with the eterms
abstract domain [41]) infers that on success X gets bound to red, expressed as the
automatically inferred regular type rt27/1, and the system finds that rt27(X)
and sorted(X) are incompatible (empty intersection of the set of terms they
represent). In Fig. 14, we have changed the definition of q/1 so that there is no
incompatibility, and now the system simply warns (Fig. 15) that it cannot verify
the assertion for p/1. The success type rt27(X) inferred for p/1 (lists of three
arbitrary terms) and sorted(X) are now compatible, and thus no error is flagged.
However, rt27(X) does not imply sorted(X) for all X’s, and thus sorted(X) is
not verified (with the default set of abstract domains). In this case the system
will (optionally) introduce a run-time check so that sorted(X) is tested when
p/1 is called. Furthermore, the system can run unit tests or generate test cases
(in this case arbitrary terms) automatically to exercise such run-time tests.

An example with more complex properties (also using the functional syn-
tax package) is shown in Fig. 16. It includes a user-provided assertion stating
(among other properties) that the cost of nrev/2 in resolution steps, for calls to
nrev(A, B) with A a ground list and B a free variable, should be linear in the

https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%20%5Bnrev%2F2%5D%2C%20%5Bassertions%2Cfsyntax%2Cnativeprops%5D).%0A%0A%25%20Naive%20reverse%20with%20some%20complex%20assertions.%0A%25%20The%20system%20is%20able%20to%20prove%20them%20(cost%20domains%20%0A%25%20required%20for%20cost-related%20properties).%0A%0A%3A-%20pred%20nrev(A%2CB)%20%3A%20(list(num%2CA)%2C%20var(B))%20%3D%3E%20list(B)%20%0A%20%20%20%2B%20(%20det%2C%20terminates%2C%20steps_o(%20exp(length(A)%2C2)%20)%20).%0A%0Anrev(%20%5B%5D%20)%20%20%20%20%3A%3D%20%5B%5D.%0Anrev(%20%5BH%7CL%5D%20)%20%3A%3D%20~conc(%20~nrev(L)%2C%5BH%5D%20).%0A%0A%0A%3A-%20pred%20conc(A%2CB%2CC)%20%2B%20(%20det%2C%20terminates%2C%20steps_o(length(A))).%0A%0Aconc(%20%5B%5D%2C%20%20%20%20L%20)%20%3A%3D%20L.%0Aconc(%20%5BH%7CL%5D%2C%20K%20)%20%3A%3D%20%5B%20H%20%7C%20~conc(L%2CK)%20%5D.%0A

32 M. V. Hermenegildo et al.

�

Fig. 19. If we change the assertion for conc/3 from complexity order (_o) to upper
bound (_ub) then the system flags that length(A) is not a correct upper bound.

�

Fig. 20. With the cost expression fixed all properties are now verified.

length of the (input) argument A (O(length(A)), property steps_o(length(A))
in the + field. The system can infer that this is false and underlines it in red.
The popup, Fig. 17, explains that the stated worst case asymptotic complexity
is incompatible with the quadratic lower bound cost inferred by the analyzer (in
fact: 1

2 length(A)2 + 3
2 length(A) + 1, see the steps_lb property). If we change

the assertion to specify a quadratic upper bound, it is now proven,5 see Fig. 18
which also shows verification of the assertion for predicate conc/3 and deter-
minacy and termination properties. In Fig. 19, we have changed the assertion
for conc/3 from complexity order (_o) to a concrete upper bound (_ub), and
the system detects the error: length(A) is not a correct upper bound because,
as shown in the popup, it is incompatible with the lower bound length(A) +
1 inferred by the analyzer [8,35]. Figure 20 shows that if we change the upper
bound to length(A) + 1, then the assertion is verified.

1.2 Discussion

We argue that this assertion model greatly enhances the power of Prolog for pro-
gramming both in the small and in the large, combining effectively the advan-
tages of the of dynamically- and statically-typed languages. It preserves the
dynamic language features while at the same time providing safety guaran-
tees and the capability of achieving the performance and efficiency of static
systems [6]. The novel combination of assertion language, properties, run-time
checking, testing, etc. generates many new synergies.

We believe that a good part of the power of the approach (and perhaps why
this approach was first proposed in the context of Prolog) arises from character-
istics of the logic programming paradigm and the Prolog language in particular.
5 An upper bound [26,35] is also inferred, equal to the lower bound (Fig. 17).

https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%20%5Bnrev%2F2%5D%2C%20%5Bassertions%2Cfsyntax%2Cnativeprops%5D).%0A%0A%25%20Naive%20reverse%20with%20some%20complex%20assertions.%0A%25%20The%20system%20is%20able%20to%20prove%20them%20but%20flags%20an%20error%20%0A%25%20since%20length(A)%20is%20not%20a%20strict%20upper%20bound%20for%20conc%2F3%3B%20%0A%25%20it%20is%20length(A)%2B1%20(cost%20domains%20required%20for%20the%20%0A%25%20cost-related%20properties).%0A%0A%3A-%20pred%20nrev(A%2CB)%20%3A%20(list(num%2CA)%2C%20var(B))%20%3D%3E%20list(B)%20%0A%20%20%20%2B%20(%20det%2C%20terminates%2C%20steps_o(%20exp(length(A)%2C2)%20)%20).%0A%0Anrev(%20%5B%5D%20)%20%20%20%20%3A%3D%20%5B%5D.%0Anrev(%20%5BH%7CL%5D%20)%20%3A%3D%20~conc(%20~nrev(L)%2C%5BH%5D%20).%0A%0A%0A%3A-%20pred%20conc(A%2CB%2CC)%20%2B%20(%20det%2C%20terminates%2C%20steps_ub(length(A))).%0A%0Aconc(%20%5B%5D%2C%20%20%20%20L%20)%20%3A%3D%20L.%0Aconc(%20%5BH%7CL%5D%2C%20K%20)%20%3A%3D%20%5B%20H%20%7C%20~conc(L%2CK)%20%5D.%0A
https://ciao-lang.org/playground/?code=%3A-%20module(_%2C%20%5Bnrev%2F2%5D%2C%20%5Bassertions%2Cfsyntax%2Cnativeprops%5D).%0A%0A%25%20Naive%20reverse%20with%20some%20complex%20assertions.%0A%25%20The%20system%20is%20able%20to%20prove%20them%20including%20the%20%0A%25%20upper%20bound%20for%20conc%2F3%20(cost%20domains%20required%20for%20the%20%0A%25%20cost-related%20properties).%0A%0A%3A-%20pred%20nrev(A%2CB)%20%3A%20(list(num%2CA)%2C%20var(B))%20%3D%3E%20list(B)%20%0A%20%20%20%2B%20(%20det%2C%20terminates%2C%20steps_ub(%20exp(length(A)%2C2)%20)%20).%0A%0Anrev(%20%5B%5D%20)%20%20%20%20%3A%3D%20%5B%5D.%0Anrev(%20%5BH%7CL%5D%20)%20%3A%3D%20~conc(%20~nrev(L)%2C%5BH%5D%20).%0A%0A%0A%3A-%20pred%20conc(A%2CB%2CC)%20%2B%20(%20det%2C%20terminates%2C%20steps_ub(length(A)%2B1)).%0A%0Aconc(%20%5B%5D%2C%20%20%20%20L%20)%20%3A%3D%20L.%0Aconc(%20%5BH%7CL%5D%2C%20K%20)%20%3A%3D%20%5B%20H%20%7C%20~conc(L%2CK)%20%5D.%0A%0A

Types, Modes and So Much More - The Prolog Way 33

For example, as we have seen, the fact that Prolog allows writing many properties
(including types) in the source language is instrumental in allowing assertions
which cannot be statically verified to be easily used as run-time checks, allowing
users to obtain benefits even if a certain property cannot be verified at compile
time. As another example, the reversibility of properties written in Prolog allows
generating test cases automatically from assertions, without having to invent new
concepts or to implement any new functionality, since “property-based testing”
comes for free in this approach and thus did not need to be invented. Another
contributing factor is that it was in the Prolog community that formal static
analysis techniques, in particular abstract interpretation, flourished first, during
the 80’s and 90’s [10], leading quite naturally to the development in the mid-90’s
of the Ciao model.

The practical relevance of the combination of static and dynamic features
brought about by this approach is illustrated by the many other languages
and frameworks which have been proposed more recently, aiming at bringing
together both worlds, using similar ideas. This includes, e.g., the work on grad-
ual typing [31,36,40] and liquid types [32,42]. Pfenning’s et al.’s early work on
refinement types [28] and practical dependent types [44] was seminal in this con-
text and also uses abstract interpretation or constraint solving, but stays on
the decidable side and is thus not combined with run-time checking or testing.
Another example is the recent work on verifying contracts [18,23,27,39]. Prolog
pioneered and is continuing to push the state of the art in this area. However,
although some Prolog systems have introduced run-time checks or testing, there
is still much work in this area that could become more widely adopted.

2 Making Prolog Even More Extensible, to Support
Multiple Features in a Modular Way

The future evolution of Prolog should arguably seek increasing the power
and expressiveness of the language and its tools to make it even simpler
to solve progressively more complex problems. This means continuing in the
path exemplified by the addition of, e.g., constraints, concurrency/parallelism,
tabling [38], assertions (as discussed previously), or (to name a more recent
addition) s(CASP) [1,11]. As also advocated by Gupta et al. [11], it is also
desirable to have systems that support all these and additional future extensions
within the same implementation.

However, the syntactic and semantic elegance and simplicity of Prolog con-
trasts with (or may perhaps be thanks to) the implementation sophistication of
state-of-the-art Prolog systems, and this can potentially complicate the task of
incorporating new functionality to the language.

Fortunately, many good ideas have progressively allowed making extensions
in less painful ways. For example, attributed variables, pioneered by Holzbaur
and Neumerkel in SICStus [16], made it much easier to add constraint systems
to standard Prologs, and in a largely portable way.

34 M. V. Hermenegildo et al.

Ciao Prolog introduced new mechanisms for language extension, such
as more principled and modular versions of the term expansion facilities,6 special
features in the module system, and the notion of packages, which offer a clean
distinction between compile-time and run-time extensions [5]. This is essential
for global analysis (necessary for the assertion model and optimization), sep-
arate/incremental compilation, and language bootstrapping –in fact, most of
Ciao, including its abstract machine, is defined in Prolog [22]. These ideas have
allowed building the complete system starting from a small kernel in a layered
way into a multiparadigm language, while having all built-ins and extensions
(constraints, different search rules, functions, higher-order, predicate abstrac-
tions, lazyness, concurrency, s(CASP), etc.) as optional features that can be
activated, deactivated, or combined on a per module basis. Even if for efficiency
some such predicates (including for example the cut) may be implemented inter-
nally and supported natively in the virtual machine and compiler, none of them
are considered builtins and their visibility can be controlled, including for exam-
ple choosing to not load any impure ones, or to redefine them. This modular
design allows moving from pure LP, where, e.g., no impure builtins are visible,
to full ISO Prolog by specifying the set of imported modules, and going well
beyond that into a multi-paradigm language, while maintaining full backwards
compatibility with standard Prolog. Being able to travel these paths is also very
useful in an educational context (see, for example, [15] also in this volume).

We believe that future systems should build further on these extensibility-
oriented ideas and that the advocated modularity and separation of concerns
are fundamental to Prolog’s future evolution. Key features here are advanced
module systems and the technology to bridge the gap between the dynamic and
static approaches. They can facilitate adding more declarative features and
more advanced reasoning capabilities to Prolog, while providing guar-
antees and increasing performance. This is specially relevant in a world
where programs can be generated by learning systems and need to be modified
and verified before use, and where they run on multi-core and heterogeneous
computing devices, with complex specialized data representations to make opti-
mal usage of the memory hierarchy. This can greatly benefit from more declara-
tive program specifications (e.g., Prolog programs) and establishing a “dialogue”
between programmers and the compiler (e.g., via the assertion language).

References

1. Arias, J., Carro, M., Salazar, E., Marple, K., Gupta, G.: Constraint answer set
programming without grounding. Theory Pract. Logic Program. 18(3–4), 337–354
(2018). https://doi.org/10.1017/S1471068418000285

2. Bueno, F., Carro, M., Hermenegildo, M.V., Lopez-Garcia, P., Morales, J. (eds.) The
Ciao System. Reference Manual (v1.22). Techncial report, April 2023. https://ciao-
lang.org

6 See again [43] for in introduction to term expansion in Prolog.

https://doi.org/10.1017/S1471068418000285
https://ciao-lang.org
https://ciao-lang.org

Types, Modes and So Much More - The Prolog Way 35

3. Bueno, F., et al.: On the role of semantic approximations in validation and diag-
nosis of constraint logic programs. In: Proceedings of the 3rd International WS on
Automated Debugging-AADEBUG, pp. 155–170. U. Linköping Press, May 1997

4. Bueno, F., López-García, P., Hermenegildo, M.: Multivariant non-failure analy-
sis via standard abstract interpretation. In: Kameyama, Y., Stuckey, P.J. (eds.)
FLOPS 2004. LNCS, vol. 2998, pp. 100–116. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24754-8_9

5. Cabeza, D., Hermenegildo, M.: A new module system for prolog. In: Lloyd, J.,
et al. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 131–148. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44957-4_9

6. Carro, M., Morales, J., Muller, H., Puebla, G., Hermenegildo, M.V.: High-level
languages for small devices: a case study. In: Flautner, K., Kim, T. (eds.) Compil-
ers, Architecture, and Synthesis for Embedded Systems, pp. 271–281. ACM Press
/ Sheridan, October 2006

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: ACM Sym-
posium on Principles of Programming Languages (POPL’77), pp. 238–252. ACM
Press (1977). https://doi.org/10.1145/512950.512973

8. Debray, S.K., Lopez-Garcia, P., Hermenegildo, M.V., Lin, N.W.: Lower bound cost
estimation for logic programs. In: ILPS’97, pp. 291–305. MIT Press (1997)

9. Debray, S., Lopez-Garcia, P., Hermenegildo, M.V.: Non-failure analysis for logic
programs. In: ICLP’97, pp. 48–62. MIT Press (1997)

10. Giacobazzi, R., Ranzato, F.: History of abstract interpretation. IEEE Ann. Hist.
Comput. 44(2), 33–43 (2022). https://doi.org/10.1109/MAHC.2021.3133136

11. Gupta, G., Salazar, E., Arias, J., Basu, K., Varanasi, S., Carro, M.: Prolog: past,
present, and future. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowal-
ski, R., Rossi, F. (eds.) Prolog: The Next 50 Years. LNCS (LNAI), vol. 13900, pp.
48–61. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-35254-6_4

12. Hermenegildo, M.V., et al.: An overview of ciao and its design philosophy. Theory
Pract. Logic Program. 12(1–2), 219–252 (2012)

13. Hermenegildo, M.V., Puebla, G., Bueno, F.: Using global analysis, partial specifica-
tions, and an extensible assertion language for program validation and debugging.
In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.) The Logic
Programming Paradigm: a 25-Year Perspective, pp. 161–192. Springer, Heidelberg
(1999). https://doi.org/10.1007/978-3-642-60085-2_7

14. Hermenegildo, M.V., Puebla, G., Bueno, F., Lopez-Garcia, P.: Integrated pro-
gram debugging, verification, and optimization using abstract interpretation (and
the Ciao system preprocessor). Sci. Comput. Program. 58(1–2), 115–140 (2005).
https://doi.org/10.1016/j.scico.2005.02.006

15. Hermenegildo, M., Morales, J., Lopez-Garcia, P.: Some thoughts on how to teach
prolog. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R.,
Rossi, F. (eds.) Prolog: The Next 50 Years. LNCS (LNAI), vol. 13900, pp. 107–
123. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-35254-6_9

16. Holzbaur, C.: Metastructures vs. attributed variables in the context of extensible
unification. In: Bruynooghe, M., Wirsing, M. (eds.) PLILP 1992. LNCS, vol. 631,
pp. 260–268. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55844-
6_141

17. Hudak, P., et al.: Report on the programming language Haskell. Haskell Spec.
Issue, ACM SIGPLAN Not. 27(5), 1–164 (1992)

18. Logozzo, F., et al.: Clousot. https://msdn.microsoft.com/en-us/devlabs/dd491992.
aspx. Accessed 2018

https://doi.org/10.1007/978-3-540-24754-8_9
https://doi.org/10.1007/978-3-540-24754-8_9
https://doi.org/10.1007/3-540-44957-4_9
https://doi.org/10.1145/512950.512973
https://doi.org/10.1109/MAHC.2021.3133136
https://doi.org/10.1007/978-3-031-35254-6_4
https://doi.org/10.1007/978-3-642-60085-2_7
https://doi.org/10.1016/j.scico.2005.02.006
https://doi.org/10.1007/978-3-031-35254-6_9
https://doi.org/10.1007/3-540-55844-6_141
https://doi.org/10.1007/3-540-55844-6_141
https://msdn.microsoft.com/en-us/devlabs/dd491992.aspx
https://msdn.microsoft.com/en-us/devlabs/dd491992.aspx

36 M. V. Hermenegildo et al.

19. Lopez-Garcia, P., Bueno, F., Hermenegildo, M.V.: Automatic inference of deter-
minacy and mutual exclusion for logic programs using mode and type analyses. N.
Gener. Comput. 28(2), 117–206 (2010)

20. Lopez-Garcia, P., Klemen, M., Liqat, U., Hermenegildo, M.V.: A general framework
for static profiling of parametric resource usage. TPLP (ICLP’16 Spec. Issue) 16(5–
6), 849–865 (2016). https://doi.org/10.1017/S1471068416000442

21. Mera, E., Lopez-García, P., Hermenegildo, M.: Integrating software testing and
run-time checking in an assertion verification framework. In: Hill, P.M., Warren,
D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 281–295. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02846-5_25

22. Morales, J., Carro, M., Hermenegildo, M.V.: Description and optimization of
abstract machines in a dialect of prolog. Theory Pract. Logic Program. 16(1),
1–58 (2016). https://doi.org/10.1017/S1471068414000672

23. MSR: Code contracts. https://research.microsoft.com/en-us/projects/contracts/.
Accessed 2018

24. Muthukumar, K., Hermenegildo, M.: Combined determination of sharing and free-
ness of program variables through abstract interpretation. In: ICLP’91, pp. 49–63.
MIT Press, June 1991

25. Muthukumar, K., Hermenegildo, M.: Compile-time derivation of variable depen-
dency using abstract interpretation. JLP 13(2/3), 315–347 (1992)

26. Navas, J., Mera, E., López-García, P., Hermenegildo, M.V.: User-definable resource
bounds analysis for logic programs. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007.
LNCS, vol. 4670, pp. 348–363. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74610-2_24

27. Nguyen, P.C., Tobin-Hochstadt, S., Van Horn, D.: Soft contract verification. In:
Proceedings of the 19th ACM SIGPLAN International Conference on Functional
Programming. ICFP ’14, pp. 139–152. ACM, New York, NY, USA (2014). https://
doi.org/10.1145/2628136.2628156

28. Pfenning, F.: Dependent types in logic programming. In: Pfenning, F. (ed.) Types
in Logic Programming, pp. 285–311. The MIT Press (1992)

29. Puebla, G., Bueno, F., Hermenegildo, M.: An assertion language for constraint logic
programs. In: Deransart, P., Hermenegildo, M.V., Małuszynski, J. (eds.) Analysis
and Visualization Tools for Constraint Programming. LNCS, vol. 1870, pp. 23–61.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722311_2

30. Puebla, G., Bueno, F., Hermenegildo, M.: Combined static and dynamic assertion-
based debugging of constraint logic programs. In: Bossi, A. (ed.) LOPSTR 1999.
LNCS, vol. 1817, pp. 273–292. Springer, Heidelberg (2000). https://doi.org/10.
1007/10720327_16

31. Rastogi, A., Swamy, N., Fournet, C., Bierman, G., Vekris, P.: Safe & efficient
gradual typing for typescript. In: 42nd POPL, pp. 167–180. ACM, January 2015

32. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Gupta, R., Amaras-
inghe, S.P. (eds.) Proceedings of the ACM SIGPLAN 2008 Conference on Pro-
gramming Language Design and Implementation, Tucson, AZ, USA, 7–13 June
2008, pp. 159–169. ACM (2008). https://doi.org/10.1145/1375581.1375602

33. Saglam, H., Gallagher, J.: Approximating constraint logic programs using polymor-
phic types and regular descriptions. Technical report CSTR-95-17, Department of
Computer Science, U. of Bristol, Bristol BS8 1TR (1995)

34. Sanchez-Ordaz, M., Garcia-Contreras, I., Perez-Carrasco, V., Morales, J.F., Lopez-
Garcia, P., Hermenegildo, M.V.: Verifly: on-the-fly assertion checking via incremen-
tality. Theory Pract. Logic Program. 21(6), 768–784 (2021)

https://doi.org/10.1017/S1471068416000442
https://doi.org/10.1007/978-3-642-02846-5_25
https://doi.org/10.1017/S1471068414000672
https://research.microsoft.com/en-us/projects/contracts/
https://doi.org/10.1007/978-3-540-74610-2_24
https://doi.org/10.1007/978-3-540-74610-2_24
https://doi.org/10.1145/2628136.2628156
https://doi.org/10.1145/2628136.2628156
https://doi.org/10.1007/10722311_2
https://doi.org/10.1007/10720327_16
https://doi.org/10.1007/10720327_16
https://doi.org/10.1145/1375581.1375602

Types, Modes and So Much More - The Prolog Way 37

35. Serrano, A., Lopez-Garcia, P., Hermenegildo, M.V.: Resource usage analysis of
logic programs via abstract interpretation using sized types. TPLP, ICLP’14 Spec.
Issue 14(4–5), 739–754 (2014). https://doi.org/10.1017/S147106841400057X

36. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Scheme and
Functional Programming Workshop, pp. 81–92 (2006)

37. Somogyi, Z., Henderson, F., Conway, T.: The execution algorithm of mercury: an
efficient purely declarative logic programming language. JLP 29(1–3), 17–64 (1996)

38. Swift, T., Warren, D.S.: XSB: extending prolog with tabled logic programming.
Theory Pract. Logic Program. 12(1–2), 157–187 (2012). https://doi.org/10.1017/
S1471068411000500

39. Takikawa, A., et al.: Towards practical gradual typing. In: Boyland, J.T. (ed.)
29th European Conference on Object-Oriented Programming, ECOOP 2015, 5–10
July 2015, Prague, Czech Republic. LIPIcs, vol. 37, pp. 4–27. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2015). https://doi.org/10.4230/LIPIcs.ECOOP.
2015.4

40. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of typed
scheme. In: POPL, pp. 395–406. ACM (2008)

41. Vaucheret, C., Bueno, F.: More precise yet efficient type inference for logic pro-
grams. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp.
102–116. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45789-5_10

42. Vazou, N., Tanter, É., Horn, D.V.: Gradual liquid type inference. Proc. ACM Pro-
gram. Lang. 2(OOPSLA), 132:1–132:25 (2018). https://doi.org/10.1145/3276502

43. Warren, D.S.: Introduction to prolog. In: Warren, D.S., Dahl, V., Eiter, T.,
Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog: The Next 50 Years. LNCS
(LNAI), vol. 13900, pp. 3–19. Springer, Cham (2023). https://doi.org/10.1007/978-
3-031-35254-6_1

44. Xi, H., Pfenning, F.: Dependent types in practical programming. In: Appel, A.W.,
Aiken, A. (eds.) POPL ’99, Proceedings of the 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Antonio, TX, USA,
20–22 January 1999. pp. 214–227. ACM (1999). https://doi.org/10.1145/292540.
292560

https://doi.org/10.1017/S147106841400057X
https://doi.org/10.1017/S1471068411000500
https://doi.org/10.1017/S1471068411000500
https://doi.org/10.4230/LIPIcs.ECOOP.2015.4
https://doi.org/10.4230/LIPIcs.ECOOP.2015.4
https://doi.org/10.1007/3-540-45789-5_10
https://doi.org/10.1145/3276502
https://doi.org/10.1007/978-3-031-35254-6_1
https://doi.org/10.1007/978-3-031-35254-6_1
https://doi.org/10.1145/292540.292560
https://doi.org/10.1145/292540.292560

Prolog as a Knowledge Representation
Language the Nature and Importance

of Prolog

Michael Genesereth(B)

Computer Science Department, Stanford University, Stanford, USA
genesereth@stanford.edu

Abstract. In the Computer Science literature, Prolog is usually char-
acterized as a language for programming computers. That makes sense.
Its inventors described Prolog as a programming language [14]; and its
very name is an abbreviation for PROgrammation en LOGique (PRO-
gramming in LOGic). Unfortunately, characterizing Prolog as primarily
a programming language may be doing it a disservice. As argued in [5,6]
and elsewhere, it is also an excellent knowledge representation language.
In fact, an argument can be made that Prolog’s main value lies not so
much in programming as in knowledge representation.

1 Introduction

In the Computer Science literature, Prolog is usually characterized as a high-level
programming language. However, it also has value as a knowledge representation
language. The main distinction between these two viewpoints lies in the way one
thinks about the semantics of Prolog programs.

The knowledge representation point of view is purely declarative. A Prolog
“program” can be viewed as simply a set of inductive definitions of higher level
relations in terms of lower level relations. There is no specification for how those
definitions are to be used.

The programming point of view is more procedural. Prolog programs are usu-
ally assumed to be processed by a specific algorithm (based on SLD-resolution)
for a specific purpose (computing answers to queries), possibly with procedural
directives to guide the process.

The practical difference between these viewpoints can be seen by realizing
that the rules in a Prolog program can be effectively used in multiple ways. (1)
The rules can be used to deduce answers to given queries. (In this case, the two
views are effectively equivalent.) (2) The rules can also be used to abduce data
that produces specified query results (constraint satisfaction). (3) The rules can
be used to compare relations for disjointness or overlap or equivalence (contain-
ment testing). (4) View definitions can be “differentiated” to produce rules for
computing updates to materialized views (as suggested by Orman). (5) Defini-
tions can be automatically “inverted” to enable query folding (for purposes of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 38–47, 2023.
https://doi.org/10.1007/978-3-031-35254-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_3&domain=pdf
https://doi.org/10.1007/978-3-031-35254-6_3

Prolog as a Knowledge Representation Language 39

data integration). And so forth. Each of these tasks requires a different “inter-
preter”, but the rules are the same in all cases. (And, incidentally, few of these
tasks can be performed easily with programs written in traditional imperative
programming languages.)

The point is that, by focussing on Prolog as a programming language rather
than a knowledge representation language, we may be doing it a disservice. In
fact, it can be argued that Prolog’s main value lies not so much in programming
as in knowledge representation. In this article, I make this argument in three
stages. First of all, I explain why I think Prolog is superior to other knowledge
representation formalisms, such as First-Order Logic. I then discuss the merits
of having multiple interpreters for Prolog. Finally, I talk about the prospects for
automatically transforming logic programs from natural but potentially expen-
sive form into versions that execute more efficiently for specific interpreters.

2 Simplicity and Completeness

In an early paper [20], John McCarthy extolled the benefits of First Order Logic
(FOL) as a framework for knowledge representation. The language of FOL pro-
vides a variety of useful linguistic features, e.g. logical operators, variables, and
quantifiers. Moreover, being domain-independent, the language of FOL has no
built in assumptions and thus is more general than domain-specific languages.

Unfortunately, FOL has some properties that limit its usefulness. For exam-
ple, in FOL, it is not possible to define the notion of transitive closure in a way
that precludes non-standard models (at least without Herbrand semantics [7]).
Moreover, in defining relations, it is usually necessary to write “negation axioms”
to say when those relations do not hold as well as positive axioms that say when
those relations do hold.

One nice feature of Prolog is that it deals with these limitations in a graceful
way. If one abides by a few restrictions in writing Prolog programs (e.g. safety
and stratified negation) and if one uses minimal model semantics for the language
(i.e. negation as failure), transitive closure can be defined precisely, and negation
axioms become unnecessary.

Some might argue that this feature of Prolog is also a disadvantage. Under the
conditions just mentioned, every Prolog program has a unique minimal model.
This effectively prevents one from encoding incomplete information. In order to
deal with this disadvantage, it might be nice to allow programmers to write rules
with negations or disjunctions or existential heads. And Answer-Set Program-
ming (ASP) [19] provides a way for programmers to blend classical negation
with negation as failure.

On the other hand, in many circumstances it is often desirable to strive
for complete knowledge about the application area of a program. For example,
in writing specifications for runnable programs, it is desirable to know what
is acceptable behavior and what is not acceptable so that a system executing
the program can act with confidence. While it is possible to write complete
theories in FOL, it is not always easy to determine whether or not a given

40 M. Genesereth

theory is complete. By contrast, in Prolog (with safety and stratified negation),
one knows that the theory is complete. And, when one absolutely needs to express
incomplete information, ASP provides a natural extension to Prolog to express
this information.

3 Multiple Interpreters

The main distinction between the view of Prolog as a programming language
and the view of Prolog as a knowledge representation language lies in the way
one thinks about the semantics of Prolog “programs”. The KR point of view is
purely declarative. A Prolog program can be viewed as simply a set of inductive
definitions of higher level relations in terms of lower level relations. There is no
regard for how those definitions are to be used. The programming point of view
is more procedural. Prolog programs are assumed to be processed by a specific
algorithm for a specific purpose (computing answers to queries), possibly with
procedural directives to guide the process [10].

If one’s only interest is getting answers to queries, then the two approaches
are effectively equivalent. The declarative semantics specifies which answers are
correct, and the Prolog interpreter computes those answers.

The practical difference between these viewpoints can be seen by realizing
that the rules in a Prolog “program” can be used in multiple ways to solve
different types of problems. In what follows, we illustrate this point by presenting
three real world problems that can be solved by encoding knowledge in standard
Prolog and applying different interpreters.

3.1 Query Evaluation - Kinship

Query Evaluation is the simplest way in which a Prolog program can be used.
We start with a ruleset and a dataset and apply a query evaluation procedure to
compute answers to queries. The interpreter could be a bottom-up interpreter
or a top-down evaluator (like the standard Prolog interpreter [4]) alone or in
combination with optimization refinements such as conjunct ordering and/or
tabling [26].

Suppose, for example, we have a dataset of kinship information like the one
below. The person named art is a parent of a person bob and another person
bea; bob is the parent of both cal and cam; and bea is the parent of both cat
and coe.

parent(art,bob)
parent(art,bea)
parent(bob,cal)
parent(bob,cam)
parent(bea,cat)
parent(bea,coe)

Prolog as a Knowledge Representation Language 41

The following Prolog rule defines the grandparent relation in terms of parent. A
person x is the grandparent of a person z if x is the parent of a person y and
y is the parent of z.

grandparent(X,Z) :- parent(X,Y) & parent(Y,Z)

Given this dataset and ruleset, we can apply a query evaluation procedure to
compute the corresponding instance of the grandparent relation.

grandparent(art,cal)
grandparent(art,cam)
grandparent(art,cat)
grandparent(art,coe)

Query evaluation is the usual way in which Prolog is used. The answers are
logically entailed by the data and rules, and the standard Prolog interpreter
produces these answers by some form of deduction (typically SLD-resolution
[13]).

3.2 Constraint Satisfaction - Map Coloring

Now, consider the problem of coloring planar maps using only four colors, the
idea being to assign each region a color so that no two adjacent regions are
assigned the same color. A typical map is shown below. In this case, we have six
regions. Some are adjacent to each other, meaning that they cannot be assigned
the same color. Others are not adjacent, meaning that they can be assigned the
same color.

We can represent the basic facts of this problem as a set of ground atoms like the
ones below. We use the unary relation region to enumerate regions. We use hue
to enumerate possible colors of regions. And we use the binary relation next to

42 M. Genesereth

capture contiguity between regions. (Note that the sentences here capture conti-
guity in one direction. One might wish to include the sentences with arguments
reversed to capture contiguity in the other direction as well.)

region(r1) hue(red) next(r1,r2) next(r2,r5)
region(r2) hue(green) next(r1,r3) next(r2,r6)
region(r3) hue(blue) next(r1,r5) next(r3,r4)
region(r4) hue(purple) next(r1,r6) next(r3,r6)
region(r5) next(r2,r3) next(r5,r6)
region(r6) next(r2,r4)

One way to codify the constraints in this problem is to define a relation illegal,
which is true for any assignment that violates those constraints. For example,
the first rule below states that no two adjacent regions can have the same color.
The second rule states that no region can have more than one color. The last
two rules state that every region must have at least one color.

illegal :- next(R1,R2) & color(R1,C) & color(R2,C)
illegal :- color(R,C1) & color(R,C2) & distinct(C1,C2)
illegal :- region(R) & ~hascolor(R)
hascolor(R) :- color(R,C)

Our goal in this problem is to infer a set of ground atomic sentences that charac-
terize the color relation. Given these definitions, it is possible to determine that
the dataset below is one solution to the problem. Of course, this is not the only
solution. It is possible to permute the colors in various ways and still satisfy the
constraints.

color(r1,red)
color(r2,green)
color(r3,blue)
color(r4,red)
color(r5,blue)
color(r6,purple)

The point of this example is that none of these solutions is logically entailed
by the definitions in the problem, and the standard Prolog interpreter will not
produce any answers to questions about the colors of regions (given the rules
as written). However, an interpreter that is capable of abduction (as opposed to
deduction) or constraint satisfaction can produce answers like the one above.

3.3 Containment Testing - Insurance Portfolio Analysis

A common problem in analyzing insurance products is determining whether an
insurance policy or collection of policies provides coverage for a collection of
possible events. [9]

Prolog as a Knowledge Representation Language 43

Consider the example below. Here we see the preferences of an insuree joe.
In particular, he wants a portfolio of policies that covers him for hospitalizations
in Japan or Korea. The binary relation patient here relates a hospitalization
and the patient. The relation hospital relates a hospitalization and a hospital.
And the country relation relates a hospital and a country.

covered(Z) :- patient(Z,joe) & hospital(Z,H) & country(H,japan)
covered(Z) :- patient(Z,joe) & hospital(Z,H) & country(H,korea)

Here we have the definition of the hospitalizations covered by a particular policy
he is considering. The insuree and his relatives are covered anywhere in Asia.

covered(Z) :-
patient(Z,P) & related(P,joe) &
hospital(Z,H) & country(H,C) & continent(C,asia)

We also have some background information. The individuals related to an insuree
include himself, his spouse, and his kids. And the countries of Japan and Korea
are in Asia.

related(I,I)
related(P,I) :- spouse(P,I)
related(P,I) :- parent(I,P)

continent(japan,asia)
continent(korea,asia)

Given this information, it is easy for us to see that the policy covers the pref-
erences of the insuree. Like the preceding examples, we have definitions of view
relations. Unlike the case of query evaluation, we do not have a complete dataset.
And, unlike the case of constraint satisfaction, we are not looking for a complete
dataset. Instead, we are trying to determine whether a policy covers his needs
for every complete dataset. The key to automating this determination is to use
an interpreter capable of containment testing [1,24] to determine whether one
program produces all of the results of another program for any dataset, not just
one particular dataset.

4 Program Transformation

One of the nice benefits of Prolog’s declarative semantics is that it gives us
a natural definition for the equivalence of different programs - two programs
are equivalent if and only if they compute the same results. Of course, we can
define the equivalence of programs with imperative semantics in similar fashion.
However, it is much easier to determine the equivalence of declarative programs
than to determine the equivalence of procedural programs. Moreover, there are
powerful techniques for automatically transforming declarative programs into

44 M. Genesereth

equivalent (but computationally more efficient) form and/or compiling them
into procedural programs. (Yes, equivalence testing for Prolog is undecidable in
general, but it is practical in many special cases.)

As an example, consider the map coloring problem described above. As men-
tioned earlier, the standard Prolog interpreter is not capable of finding solutions.
However, this problem can be solved by transforming the program from its nat-
ural expression as a constraint satisfaction problem into a form suitable for
execution by the standard Prolog interpreter.

The version below was proposed by Pereira and Porto [22] and subsequently
mentioned by McCarthy [21]. Rather than defining on regions, we start by defin-
ing ok as a relation on colors, viz. the pairs of colors that may be next to each
other.

ok(red,green) ok(green,red) ok(blue,red) ok(purple,red)
ok(red,blue) ok(green,blue) ok(blue,green) ok(purple,green)
ok(red,purple) ok(green,purple) ok(blue,purple) ok(purple,blue)

In the case of the map shown above, our goal is to find six hues (one for each
region of the map) such that no two adjacent regions have the same hue. We can
express this goal by writing the query shown below.

goal(C1,C2,C3,C4,C5,C6) :-
ok(C1,C2) & ok(C1,C3) & ok(C1,C5) & ok(C1,C6) &
ok(C2,C3) & ok(C2,C4) & ok(C2,C5) & ok(C2,C6) &
ok(C3,C4) & ok(C3,C6) & ok(C5,C6)

Given this version, we can use the standard Prolog interpreter to produce 6-
tuples of hues that ensure that no two adjacent regions have the same color. Of
course, in problems like this one, we usually want only one solution rather than
all solutions. However, finding even one solution is such cases can be costly.

The good news it is possible to convert the formulation described earlier into
this form; and in many cases this conversion can be done automatically [11].
The benefit of doing things this way is that the programmer can formalize the
problem in its most natural form - as a constraint satisfaction problem - and the
system can then transform into a version that can be executed by the standard
Prolog interpreter.

But, wait, there’s more! Given a program’s declarative semantics, it is possi-
ble to rewrite the program into a form that runs even more rapidly. In our exam-
ple, the program can be improved by reordering the conjuncts in the definition
of goal, based on size heuristics and/or the Kempe transformation described by
McCarthy [21], resulting in the version shown below.

goal(C1,C2,C3,C4,C5,C6) :-
ok(C1,C2) & ok(C1,C3) & ok(C1,C6) &
ok(C2,C3) & ok(C2,C6) & ok(C3,C6) &
ok(C2,C4) & ok(C3,C4) & ok(C1,C5) & ok(C2,C5) &
ok(C5,C6)

Prolog as a Knowledge Representation Language 45

This version looks the same but runs faster due to the better ordering of subgoals.
This is not something that necessarily matters to the programmer; but it does
matter to the interpreter. If this transformation is automated, the programmer
does not need to worry these details.

Similar examples can be found in the formulation of computationally com-
plex problems such as the fibonacci function. The programmer can write the
definitions in their most natural but computationally inefficient form, and the
program can be automatically written in a form that can be executed efficiently,
either by rewriting the fibonacci definition with a single recursion or by using a
tabling interpreter [23].

The computer programming community has long recognized the value of
Interactive Development Environments (IDEs) to help in developing and main-
taining programs. Logical Interactive Development Environments (LIDEs) have
similar value for Logic Programming. These systems can save authors work pro-
viding pre-existing ontologies and databases and knowledge bases. They provide
tools for the verification, analysis, and debugging of legal codes. And they can
provide technology for automatically translating to and from other formal lan-
guages. They can support languages that are more expressive than Logic Pro-
gramming, e.g. FOL and beyond. They can support languages that are more
human-friendly, e.g. controlled English, such as Kowalski’s Logical English [18],
thus making possible pseudo-natural language authoring without the drawbacks
of general natural language.

More importantly, it is possible in many cases for such environments to
transform programs into computationally more efficient versions, allowing the
programmer to encode knowledge in its most natural form while the computer
gets to execute a more efficient version. The cost of these transformations can be
paid once, and the cost can be amortized over multiple uses of the transformed
programs.

5 Conclusion

The facts and rules in the examples described above are all Prolog programs
written using simple declarative semantics; but, in the various examples, the
programs are processed in completely different ways. This multiplicity of uses
illustrates the value of using Prolog to encode the knowledge relevant to appli-
cations rather than thinking of sets of Prolog facts and rules as programs for pro-
cessing that knowledge in one specific way for all applications. Transformations
to enhance efficiency can be applied by an interactive development environment.
The upshot is that the user can code the knowledge in its most natural form and
use the LIDE to find a suitable interpreter or a computationally tractable form
for the program that can be executed by the standard interpreter or a variant
like XSB [23].

46 M. Genesereth

References

1. Carlson, P., Genesereth, M.: Insurance portfolio management as containment test-
ing. In: ICAIL (2023)

2. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational databases. In: Proceeding of the 9th Annual ACM Symposium on the
Theory of Computing, pp. 77–90 (1977)

3. Chen, W., Swift, T., Warren, D.: Efficient top-down computation of queries under
the well-founded semantics. J. Logic Program. 24(3), 161–201 (1995)

4. Clocksin, W.F., Mellish, C.S.: Programming in Prolog, 4th edn. Springer, New
York (1994). https://doi.org/10.1007/978-3-642-97596-7

5. De Cat, B., Bogaerts, B., Bruynooghe, M., Janssens, G., Denecker, M.: Predicate
logic as a modeling language: the IDP system. Declarative Logic Program. 279–323
(2018)

6. Gelfond, M., Leone, N.: Logic programming and knowledge representation. Artif.
Intell. 138(1–2), 1 (2002)

7. Bassiliades, N., Gottlob, G., Sadri, F., Paschke, A., Roman, D. (eds.): RuleML
2015. LNCS, vol. 9202. Springer, Cham (2015). https://doi.org/10.1007/978-3-
319-21542-6

8. Genesereth, M., Chaudhri, V.: Logic programming. Synth. Lect. Artif. Intell. Mach.
Learn. (2020). https://doi.org/10.2200/S00966ED1V01Y201911AIM044

9. Genesereth, M.: Insurance portfolio management. Complaw Corner, Codex: The
Stanford Center for Legal Informatics (2022). https://law.stanford.edu/2022/07/
30/insurance-portfolio-management/

10. Hayes, P.: Computation and deduction. In: Proceedings Second Symposium on
Mathematical Foundations of Computer Science, Czechoslovakian Academy of Sci-
ences, Czechoslovakia, pp. 105–118 (1973)

11. Hinrichs, T.: Extensional reasoning. Ph.D. thesis, Computer Science Department,
Stanford University (2007)

12. Kakas, A.C., Kowalski, R., Toni, F.: The role of abduction in logic programming. In:
Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial
Intelligence and Logic Programming, vol. 5, pp. 235–324. Oxford University Press,
Oxford (1998)

13. Kowalski, R., Kuehner, D.: Linear resolution with selection function. Artif. Intell.
2, 227–60 (1971)

14. Kowalski, R.: Predicate logic as a programming language. In: Proceedings of IFIP
1974, North Holland Publishing Company, Amsterdam, pp. 569–574 (1974)

15. Kowalski, R.: Algorithm = Logic + Control. Commun. ACM 22(7) (1979)
16. Kowalski, R., Sadri, F.: LPS - a logic-based production system framework (2009)
17. Kowalski, R., Sadri, F.: Integrating Logic Programming and Production Systems

in Abductive Logic Programming Agents (2009)
18. Logical English as a Programming Language for the Law. ProLALA 22 (2022)
19. Lifschitz, V.: What is answer set programming? (PDF). In: Proceedings of the 23rd

National Conference on Artificial Intelligence, vol. 3, pp. 1594–1597. AAAI Press,
13 July 2008

20. McCarthy, J.: Programs with common sense. In: Proceedings of the Teddington
Conference on the Mechanization of Thought Processes, pp. 75–91. Her Majesty’s
Stationary Office, London (1959)

21. McCarthy, J.: Coloring maps and the kowalski doctrine. In: Lifschitz, V. (ed.)
Formalizing Common Sense: Papers by John McCarthy, pp. 167–174 (1998)

https://doi.org/10.1007/978-3-642-97596-7
https://doi.org/10.1007/978-3-319-21542-6
https://doi.org/10.1007/978-3-319-21542-6
https://doi.org/10.2200/S00966ED1V01Y201911AIM044
https://law.stanford.edu/2022/07/30/insurance-portfolio-management/
https://law.stanford.edu/2022/07/30/insurance-portfolio-management/

Prolog as a Knowledge Representation Language 47

22. Pereira, L.M., Porto, A.: Selective Backtracking for Logic Programs. Departamento
de Informatica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa,
Lisboa, Portugal (1980)

23. Sagonas, K., Swift, T.: Warren, D.S.: XSB as an efficient deductive database engine.
In: Proceedings of the ACM SIGMOD International Conference on the Manage-
ment of Data (1994)

24. Ullman, J.D.: Information integration using logical views. Theor. Comput. Sci.
239(2), 189–210 (2000). https://doi.org/10.1016/S0304-3975(99)00219-4

25. van Emden, M., Kowalski, R.: The semantics of predicate logic as a programming
language. J. Assoc. Comput. Mach. 23(4), 733–774 (1976)

26. Warren, D.S.: Programming in Tabled Prolog. https://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.49.4635

https://doi.org/10.1016/S0304-3975(99)00219-4
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.4635
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.4635

Prolog: Past, Present, and Future

Gopal Gupta1(B), Elmer Salazar1, Farhad Shakerin1, Joaqúın Arias2,
Sarat Chandra Varanasi1, Kinjal Basu1, Huaduo Wang1, Fang Li1,

Serdar Erbatur1, Parth Padalkar1, Abhiramon Rajasekharan1, Yankai Zeng1,
and Manuel Carro3

1 Department of Computer Science, UT Dallas, Richardson, USA
gupta@utdallas.edu

2 CETINIA, Universidad Rey Juan Carlos, Madrid, Spain
3 Universidad Politecnica de Madrid and IMDEA Software Institute, Madrid, Spain

Abstract. We argue that various extensions proposed for Prolog—
tabling, constraints, parallelism, coroutining, etc.—must be integrated
seamlessly in a single system. We also discuss how goal-directed pred-
icate answer set programming can be incorporated in Prolog, and how
it facilitates development of advanced applications in AI and automated
commonsense reasoning.

1 Introduction

The year 2022 was celebrated as the 50th anniversary of the founding of logic pro-
gramming (LP) and Prolog [16]. Prolog harnesses the power of logic and provides
a new declarative paradigm for computing. Initially, Prolog was based on Horn
clauses with some built-ins added. Over time more features were added to make
the language more powerful as well as efficient. These features include constraints
over various types of domains (reals, booleans, finite domains, etc.), negation-as-
failure, coroutining, tabling, parallelism, etc. Prolog has been applied to many
(innovative) applications. Today, Prolog is a highly sophisticated language [34]
with a large user base. Over the last fifty years, as one would expect, research
in logic programming has flourished in three main areas: making Prolog more
efficient, making Prolog more expressive, and developing applications that make
use of logic programming technology. We will focus on the first two issues, as
any discussion of applications of logic programming will take significantly more
space. However, one of the applications of LP that we will discuss in this paper is
automating commonsense reasoning with the aim of building systems that can
emulate the thought process of an (unerring) human [18,25,37,47]. We believe
that logic programming is indispensable for this purpose. We assume that the
reader is familiar with Prolog, logic programming, and answer set programming.
An excellent, brief exposition is given in the introductory chapter of this book
[51]. More detailed expositions can be found elsewhere [23,39,48].

1.1 Making Prolog More Efficient

Given a call, a Prolog interpreter finds matching clauses and tries them one by
one via backtracking. Once a matching clause is selected, subgoals in the body
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 48–61, 2023.
https://doi.org/10.1007/978-3-031-35254-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_4&domain=pdf
https://doi.org/10.1007/978-3-031-35254-6_4

Prolog: Past, Present, and Future 49

of the clause are executed. The strategy for rule selection and subgoal selection
is called the computation rule [39]. Prolog uses a computation rule that tries
clauses in textual order, while subgoals in a clause are tried left to right. A
considerable amount of research has been undertaken over the past decades to
improve the rule selection process. Executing Prolog programs in or-parallel—
trying multiple matching clauses simultaneously on multiple processors—can be
regarded as a strategy to improve rule-selection. Tabled logic programming can
also be viewed as a rule-selection strategy, where rules are (optionally) selected in
a non-textual order to ensure termination of left-recursive programs, for example.
Research has also been undertaken over the past several decades to improve the
subgoal selection process. Research in goal selection strategies includes constraint
logic programming (where the generate and test strategy is flipped into test
and generate), coroutining, concurrent logic programming, and and-parallelism.
These efforts in improving rule selection and subgoal selection have resulted in
Prolog systems that are highly effective [34].

Unfortunately, various strategies developed to make execution more efficient
are not all available in a single Prolog system where they work seamlessly with
each other. We believe that future research in Prolog must focus on building a
unified system that supports tabling, constraints, coroutining, parallelism, and
concurrency [27]. These enhancements must also work seamlessly with each
other. Many groups have been steadfastly working towards this goal. These
include, among others, efforts by Arias and Carro to integrate constraints in
tabled logic programming [6] and by Rocha and Santos Costa to combine tabling
and or-parallelism [44]. Research has also been conducted on adding concurrency
at the user level to Prolog [3,12,17]. Some of these ideas have been incorporated
in systems such as SWI-Prolog [52] and Ciao-Prolog [31], nevertheless, research
to realize a system where all these advanced features are efficiently and seam-
lessly integrated and available in a single system must continue. Our hope is
that such a logic programming system will be realized in the future.

1.2 Making Prolog More Expressive

We next consider research on making Prolog more expressive. Prolog is a Turing-
complete language, so by greater expressiveness we mean the ability to represent
and solve problems more elegantly, i.e., the logic program developed to solve a
problem is “close” to the problem specification. A large segment of this research
is dedicated to adding negation-as-failure (NAF) to logic programming, though,
considerable research has been done in devising other extensions, e.g., constraint
handling rules [20], functional-logic programming [29], higher order LP [14], coin-
ductive logic programming [46], and adding assertions [30]. Due to lack of space,
we will primarily focus on the incorporation of NAF and coinduction into logic
programming, one of the reasons being that they help in realizing (predicate)
ASP within Prolog, critical for automating commonsense reasoning. [18,37,47].

Stable models semantics [24] led to the paradigm of Answer Set Program-
ming (ASP) [9]. Commonsense reasoning, realized via default reasoning, impos-
ing integrity constraints, and assumption-based reasoning, can be elegantly emu-

50 G. Gupta et al.

lated in ASP [23,42]. However, a problem faced by ASP is the following: how
to execute answer set programs in the presence of predicates? ASP researchers
resorted to allowing only propositional programs. Thus, ASP programs contain-
ing predicates have to be grounded first so that they become propositional and
then a SAT-solver is used to find its (multiple) models. This leads to a number
of restrictions including: (i) programs have to be finitely groundable, (ii) data
structures such as lists are not permitted, (iii) program size blows up exponen-
tially during grounding, (iv) real numbers cannot be faithfully represented. Thus,
while ASP enhances Prolog, it also restricts it due to the choice of implementa-
tion mechanism used. While extremely efficient propositional ASP systems such
as CLINGO [22] have been developed, restriction to propositions-only programs
make them hard to use for knowledge representation applications, in particular,
modeling commonsense reasoning, which is often query-driven or goal-directed.
To overcome this, stable model semantics-based NAF must be incorporated in
Prolog. The discovery of coinductive logic programming [46] led to development
of query-driven implementations of ASP called s(ASP) [40] and s(CASP) [4].
The s(ASP) and s(CASP) systems allow predicates, do not require grounding,
and can be thought of as extending Prolog with stable model semantics-based
negation. Thus, default rules with exceptions, integrity constraints, and cyclical
reasoning through negation can be elegantly supported in this extended Pro-
log, thereby supporting automation of commonsense reasoning. The s(ASP) and
s(CASP) systems rely on many advanced techniques such as constructive nega-
tion, dual rule generation, coinduction, etc., and are scalable.

2 Emulating Human Thinking with Logic Programming

Logic programming was conceived as a language for problem-solving, AI, and
emulating human thinking [37,38]. However, Prolog’s inability to effectively
model incomplete information limited its use for AI and emulating human rea-
soning, which became an impetus for significant subsequent research by various
groups [18,23,25,37]. Negation-as-failure is an important component in these
research efforts and ASP is an important effort in this direction. ASP extends
logic programming with stable model semantics-based NAF [9,23]. ASP allows
reasoning with incomplete information through NAF and defaults. ASP also
supports integrity constraints, and non-inductive semantics in which multiple
models (worlds) are admitted. Thus, ASP is a paradigm that comes close to
supporting commonsense reasoning and emulating the human thought process
[23,28]. It is our position that the path to automating commonsense reasoning in
a practical manner goes through Answer Set Programming realized via Prolog-
like implementations of predicate ASP such as the s(CASP) system [4,40]. By
Prolog-like, we mean that predicates and first order terms are supported, and
execution is query-driven, carried out in a top-down manner. Thus, the power of
ASP, i.e., negation based on stable model semantics, is supported within Prolog.

We strongly believe that the best path to building intelligent systems is
by emulating how intelligent behavior manifests in humans. Humans use their

Prolog: Past, Present, and Future 51

senses (sight, sound, smell, taste, and touch) to acquire information via pat-
tern matching, but to draw conclusions based on this information, humans use
(commonsense) reasoning. Note that:

1. Machine learning technologies are akin to human sensing and pattern match-
ing (humans learn by observing patterns through use of various senses).
Machine learning technologies have greatly advanced in the last few years.

2. Commonsense reasoning relates to human thinking. ASP and systems such
as s(CASP) provide the wherewithal to elegantly automate commonsense
reasoning.

Note that sensing and pattern matching corresponds to Kahneman’s System 1
thinking, and reasoning to Kahneman’s System 2 thinking [33]. Just as it is hard
for a human to explain the information they have acquired through senses (for
example, it will be very hard for someone to explain why they believe that the
sound they heard is the sound of a siren), explaining their own decisions has been
a problem for machine learning systems. Even understanding natural language
involves sensing and pattern matching. Humans hear or read a sentence and are
quickly able to understand the knowledge implicit in that sentence. Note that
commonsense knowledge may also be used in this sensing and pattern matching
process [53]. The knowledge acquired through sensing and pattern matching is
represented in some manner in our mind. Next, to draw further conclusions,
humans perform reasoning over this knowledge that resides in the mind. This
reasoning may also involve using (additional) commonsense knowledge that has
been acquired over a period of time and that also resides in our mind in some
form. For example, once the sound of the siren is heard, its occurrence is rep-
resented in our mind as knowledge. This knowledge may prompt us to find a
safe spot as we know that the siren sound is announcing a tornado in the area
(commonsense knowledge for those who live in the plains of Texas).

We believe that AI systems can be built better by using (i) machine learning
technologies for sensing (seeing, hearing, etc.), and (ii) goal-directed ASP sys-
tems such as s(CASP) for reasoning [28]. This is in contrast to using machine
learning alone. In this framework, machine learning systems or a neurosym-
bolic system [53] will translate a picture, video, sound, text, etc., to knowledge
expressed as predicates. These predicates capture the relevant knowledge in a
manner similar to how humans represent knowledge in their mind. This knowl-
edge gleaned from “senses” and represented as predicates is further augmented
with commonsense knowledge expressed in s(CASP) as default rules, integrity
constraints, etc. In real life, commonsense knowledge is learned and stored in
our mind throughout our life. Next, a question that we may want to answer
against this combined knowledge can be treated as a query, and executed using
the s(CASP) system. This framework can be used to develop, for example, an
autonomous driving system [35] or a goal-oriented interactive conversational
agent that can actually “understand” human dialogs [43,55].

52 G. Gupta et al.

2.1 Deduction, Abduction, and Induction

A significant part of commonsense reasoning can be emulated with defaults,
integrity constraints, and assumption-based reasoning [18,23,37,47]. ASP obvi-
ously supports deduction. Default rules can be viewed as inductive generaliza-
tions, and assumption-based reasoning can be viewed as abduction. Thus, the
three major modes of reasoning—deduction, abduction, and induction [19]—are
naturally supported within ASP. Consider the proposition p, q, and the formula
p ⇒ q.

Deduction: Given premises p and p ⇒ q, we deduce q. Suppose we are given the
premises that Tweety is a bird (bird(tweety)), and the formula ∀Xbird(X) ⇒
flies(X). From these two premises, we can deduce that flies(tweety) holds, i.e.,
Tweety can fly. Obviously, such deductive reasoning is easily expressed in ASP.

Abduction: Given the observation q and the premise p ⇒ q, we abduce p. Sup-
pose we observe Tweety flying (flies(tweety)), and we know that ∀Xbird(X) ⇒
flies(X). From these, we can abduce that bird(tweety) holds, i.e., we assume (or
advance the most likely explanation) that Tweety is a bird. Note that there may
be other explanations, e.g., Tweety may be the name of an airplane. Generally,
the set of abduced literals is fixed in advance. Abductive reasoning in ASP is
elegantly modeled via possible worlds semantics. If we make an assumption p,
i.e., declare p to be abducible, then we can assert via an even loop over negation:

p :- not notp. notp :- not p.

where notp is a dummy proposition. This even loop will result in two possible
worlds: one in which p is true and one in which p is false. It should be noted
that abductive reasoning is, essentially, assumption-based reasoning. Humans
perform assumption-based reasoning all the time [18].

Induction: Given instances of p and corresponding instances of q that may be
related, we may induce p ⇒ q. Thus, given the observations that Tweety is a
bird and Tweety can fly, Sam is a bird and Sam can fly, Polly is a bird and Polly
can fly, and so on, we may induce the formula bird(X) ⇒ flies(X). Induction,
of course, relates to learning associations between data. Induced rules can be
elegantly captured as an answer set program. This is because ASP can be used
to represent defaults with exceptions, which allows us to elegantly represent
inductive generalizations. Consider the following rule:

flies(X):- bird(X), not abnormal bird(X).
abnormal bird(X):- penguin(X).

The above default rule with exception, namely, normally birds fly unless they are
penguins, elegantly captures the rule that a human may form in their mind after
observing birds and their ability to fly. The list of exceptions can grow (ostrich,
wounded bird, baby bird, . . .). Similarly, the list of defaults rules can grow. For
instance, we may have a separate rule for planes being able to fly. Explainable
machine learning tools that induce default theories have been developed [49,50]
that are comparable in accuracy to traditionally popular tools such as XGBoost
[13] and Multilayer Perceptron [1,26].

Prolog: Past, Present, and Future 53

Given that deduction, abduction, and induction fit into the framework of
ASP well, it gives us confidence that ASP can be a good means of representing
commonsense knowledge and reasoning over it.

2.2 Representing Commonsense Knowledge in ASP/s(CASP)

As stated earlier, a large portion of the human thought process can be largely
emulated by supporting (i) default rules with exceptions and preferences, (ii)
integrity constraints, and (iii) multiple possible worlds. As explained earlier,
default rules with exceptions express inductive generalizations, and are used by
humans for making deductions. Similarly, multiple possible worlds help in abduc-
tion, or assumption-based reasoning. Integrity constraints allow us to prune
unfruitful paths in our abductive reasoning process. Unfruitful paths in the
deductive reasoning process are pruned by adding conditions to rule bodies.

Default Reasoning with Exceptions and Preferences: Humans use default
reasoning [23] to jump to conclusions. These conclusions may be revised later
in light of new knowledge. For example, if we are told that Tweety is a bird,
and then asked whether Tweety flies, we will immediately answer, yes, it does.
However, later if we are told that Tweety is a penguin, we will withdraw the
conclusion about Tweety’s flying ability, labeling Tweety as an exception. Thus,
human reasoning is non-monotonic in nature, meaning that conclusions may be
withdrawn as new knowledge becomes available. Humans use this sort of default
reasoning to jump to conclusions all the time, and if they find the assumptions
made to jump to this conclusion to be incorrect, they revise their conclusion.
Multiple default conclusions can be drawn in some situations, and humans will
use additional reasoning to prefer one default over another. Thus, default rules
with exceptions and preferences capture most of the deductive reasoning we
perform. (More details on default reasoning can be found elsewhere [23,37]). It
should be noted that expert knowledge is nothing but a set of default rules about
a specialized topic [23].

Classical logic is unable to model default reasoning and non-monotonicity in
an elegant way. We need a formalism that is non-monotonic and can support
defaults to model commonsense reasoning. ASP is such a formalism. ASP sup-
ports both NAF (not p) as well as strong negation (-p), where p is a proposition
or a predicate. A strongly negated predicate has to be explicitly defined, just
as positive predicates are. Combining these two forms of negations results in
nuanced reasoning closer to how humans reason:

1. p: denotes that p is definitely true.
2. not -p: denotes that p maybe true (i.e., no evidence that p is false).
3. not p ∧ not -p: denotes that p is unknown (i.e., no evidence of either p or

-p being true).
4. not p: denotes that p may be false (no evidence that p is true).
5. -p: denotes that p is definitely false.

54 G. Gupta et al.

The above insight can be used, for example, to model the exceptions to Tweety’s
ability to fly in two possible ways. Consider the rules:

flies(X):- bird(X), not abnormal bird(X). % default
abnormal bird(X):- penguin(X). % exception

which state that if we know nothing about a bird, X, we conclude that it flies.
This is in contrast to the rules:

flies(X):- bird(X), not abnormal bird(X). % default
abnormal bird(X):- not -penguin(X). % exception

which states that a bird can fly only if we can explicitly rule out that it is a
penguin. So in the latter case, if we know nothing about a bird, we will conclude
that it does not fly. Which of the two rules one will use depends on how conser-
vative or aggressive one wants to be in jumping to the (default) conclusion. Note
that exceptions can have exceptions, which in turn can have their own excep-
tions, and so on. For example, animals normally don’t fly, unless they are birds.
Thus, birds are exception to the default of not flying. Birds, in turn, normally
fly, unless they are penguins. Thus, a penguin is an exception to the exception
for not flying. Defaults, exceptions, exceptions to exceptions, and so on, allow
humans to perform reasoning elegantly in an elaboration tolerant manner [11,23].

Integrity Constraints: ASP can also model integrity constraints elegantly. An
integrity constraint is a rule of the form:

false:- p1, p2, . . . , pn.

which states that the conjunction of p1, p2, through pn is false (the keyword
false is often omitted). Integrity constraints elegantly model global invariants
or restrictions that our knowledge must satisfy, e.g., p and -p cannot be true at
the same time, denoted

false:- p, -p.

Humans indeed use integrity constraints in their everyday reasoning: as restric-
tions (two humans cannot occupy the same spot) and invariants (a human must
breath to stay alive). Note that integrity constraints are global constraints, in
that they eliminate possible worlds. Unfruitful paths during deductive reasoning
are eliminated by adding appropriate conditions to the rule-bodies. Note that in
ASP, integrity constraints may also arise due to odd loops over negation (OLON),
i.e., rules of the form:

p(t̄) :- G, not p(t̄).

where p(t̄) is a predicate and G is a conjunction of goals. In absence of an alter-
native proof for p(t̄), the only admissible model for the above rule is p(t̄) =
false, G = false, which amounts to the global constraint that G must be false.

Possible Worlds: Humans can represent multiple possible worlds in parallel in
their minds and reason over each. For example, in the real world, birds do not
talk like humans, while in a cartoon world, birds (cartoon characters) can talk.

Prolog: Past, Present, and Future 55

Humans can maintain the distinction between various worlds in their minds and
reason within each one of them. These multiple worlds may have aspects that are
common (birds can fly in both the real and cartoon worlds) and aspects that are
disjoint (birds can talk only in the cartoon world). Unlike Prolog, ASP/s(CASP)
support multiple possible worlds. (See also the example about Annie and David
teaching programming languages in the introductory paper of this volume [51]).

3 The s(CASP) System

The s(CASP) system [4] supports predicates, constraints over non-ground vari-
ables, uninterpreted functions, and, most importantly, a top-down, query-driven
execution strategy for ASP. These features make it possible to return answers
with non-ground variables (possibly including constraints among them) and com-
pute partial models by returning only the fragment of a stable model that is
necessary to support the answer to a given query. The s(CASP) system sup-
ports constructive negation based on a disequality constraint solver, and unlike
Prolog’s negation as failure and ASP’s default negation, not p(X) can return
bindings for X on success, i.e., bindings for which the call p(X) would have failed.

The s(CASP) system is based on the earlier s(ASP) system [40], and also sup-
ports constraints over reals. The s(CASP) system provides support for full Pro-
log, however, in addition, it also supports coinductive (circular, or assumption-
based) reasoning, constructive negation, dual rules, and support for universally
quantified variables. These are explained briefly next. More details can be found
elsewhere [4,5,40].

Coinductive Reasoning: Coinductive reasoning is crucial for s(CASP).
Answer set programs may contain circular rules, for example:

p:- not q. q:- not p.

If we ask the query ?-p in Prolog with these rules, execution will loop forever.
This is because p calls to not q, which calls q, which calls not p, which then
calls p. If we allow coinductive or circular reasoning [45,46], then the query p
should succeed. Essentially, we are stating that p succeeds if we assume p to
hold. This yields the answer set in which p is true and q false. Note also that at
least one intervening negation is required between a call and its recursive descen-
dent for coinductive success in s(CASP). This prevents positive loops, i.e., loops
with no intervening negation, from succeeding, and allows us to stay faithful to
stable model semantics (in contrast, such positive loops will not terminate under
completion semantics as realized in Prolog). Thus, given the rule:

p :- p.

the query ?- p. will fail in s(CASP), while the query ?- not p. will succeed
[4,40]. More details can be found elsewhere [40,45].
Constraints and OLON rules: Global constraints of the form

false :- p1(t̄1), . . ., pn(t̄n).

56 G. Gupta et al.

are suitably transformed and appended to each top level query to ensure that
each constraint is enforced. Global constraints can also implicitly arise due to
OLON rules. These are analyzed at compile time and the appropriate constraint
generated and appended to a top-level query [4,40].

Constructive Negation: Since s(CASP) allows general predicates that could
be negated, support for constructive negation becomes essential. Consider a pro-
gram consisting of the simple fact:

p(a).

If we pose the query ?-not p(X), it should succeed with answer X �= a. Intu-
itively, X �= a means that X can be any term not unifiable with a. To support
constructive negation, the implementation has to keep track of values that a
variable cannot take. The unification algorithm has to be extended, therefore,
to account for such disequality-constrained values. The s(CASP) system incor-
porates [4,40] constructive negation.

Dual Rules: ASP assumes that programs have been completed [23,39]. To com-
plete a program, the s(CASP) system will add dual rules [2] to the program. The
procedure to add the dual rules is relatively simple and can be found elsewhere
[4]. An additional complication in computing the dual rules is the need to handle
existential variables. Consider the following very simple rule:

p(X):- not q(X,Y).

This rule corresponds to the Horn clause:

∀X(p(X) ⇐ ∃Y not q(X,Y))

Its dual will be:

∀X(not p(X) ⇐ ∀Y q(X,Y))

which, in s(CASP), will be represented as:

not p(X):- forall(Y, q1(X,Y)). q1(X,Y):- q(X,Y).

Universal quantification in the body of the dual rule is needed because, for
example, for the goal not p(a) to succeed, we must prove that q(a, Y) holds
for every possible value of Y. The s(CASP) system handles all these issues and
produces dual rules for arbitrary programs. The execution of the forall, however,
is non-trivial, as often times the foralls are nested.

4 Applications

Several advanced applications that automate commonsense reasoning using ASP
and s(CASP) have been developed. Most prominent is the CHeF system [15]
which emulates the expertise of a cardiologist to automatically generate treat-
ment for congestive heart failure. Our studies show that the CHeF system per-
forms on par with a cardiologist. The s(CASP) system has also been used by

Prolog: Past, Present, and Future 57

others to develop intelligent applications [36,41]. With respect to the framework
above, where we use machine learning for sensing and pattern matching and
s(CASP) for commonsense reasoning, two major strands have been pursued.

Image Understanding: A major task in AI is to understand a picture and
answer questions about it. Current approaches for visual question answering
(VQA) are solely based on machine learning. These approaches train on a col-
lection of images together with the question-answer pairs for each image. Once
the model has been learned, a new image along with a question is given, and the
expectation is that a correct answer will be generated. Given that a generated
answer cannot be justified, or may not be accurate, an alternative approach is
to use machine learning for translating an image into a set of predicates that
capture the objects in the image, their characteristics and spatial relationships.
Commonsense knowledge about the image’s domain can be coded in ASP. Next,
the question to be answered is translated into an ASP query, which is then exe-
cuted using s(CASP) against the knowledge (represented as predicates) captured
from the image augmented with commonsense knowledge of the domain. 100%
accuracy in answering questions is achieved in some of the VQA datasets [7].
The process is similar to how humans answer questions about an image, and can
be leveraged to realize reliable autonomous driving systems [35].

Natural Language Understanding (NLU): A combination of machine learn-
ing and commonsense reasoning can be used for NLU as well. The idea is to
generate predicates from text using large language models such as GPT-3 [10]
via the use of in-context learning or fine-tuning. These predicates represent the
meaning of the sentence, i.e., its deep structure. Commonsense reasoning can
then be performed over these predicates to draw further conclusions, ask for
missing information, and check for consistency of the information in the sen-
tence. We have used this approach for qualitative reasoning, solving simple word
problems in Algebra, and developing conversational agents that can interact
with a human while “understanding” what he/she is saying [43,55]. Essentially,
we emulate how a person understands sentences and carries on a conversation.
Commonsense knowledge is also embedded in the LLM, so just like humans,
commonsense knowledge is used at two levels—in “understanding” text as pred-
icates and subsequent reasoning.

5 Conclusion

Learning/pattern-matching and reasoning are crucial to human intelligence. It is
our belief that effective AI systems can only be obtained by combining machine
learning for sensing/pattern-matching and a Prolog system that encapsulates
ASP, such as s(CASP), for commonsense reasoning. While the applications devel-
oped so far are in narrow domains, it is our position that the path to building
AI applications that perform as well as humans goes through logic program-
ming. Machine learning alone cannot be used for modeling human thinking,
as fundamentally it is a statistical technique. If this was indeed possible, then

58 G. Gupta et al.

we believe that nature would have already produced an intelligent being—as
intelligent as humans, or more—based on pattern matching and operating on
instincts alone. As we move up the evolutionary chain towards more intelli-
gent life-forms culminating in humans, reasoning abilities improve. “Lower” life
forms sometimes do have better sensing capabilities, e.g., dogs can smell bet-
ter, eagles can see better, etc., but a combination of instinct and reasoning puts
humans on top of the evolutionary chain. Therefore, just as humans rely on both
learning/sensing/pattern-recognition and reasoning, an AI system that aims to
achieve human-level performance must follow the same path [21,53]. This is also
evident in large language models such as GPT-3 and ChatGPT [10] that use
pattern matching on a massive scale to generate a human-like response. Due to
the statistical nature of LLMs, we can never be certain that the generated text
is correct, consistent, and useful [8]. Logic is essential for producing a consistent,
correct, and assuredly-useful response.

In conclusion, Prolog is an indispensable part of computing’s and AI’s land-
scape. We believe that it is an essential component in achieving Artificial Gen-
eral Intelligence (AGI) [32,54]—AI’s purported holy grail for some—whether we
agree with that goal or not. Considerable research is still needed to: (i) improve
the s(CASP) system (by incorporating tabling, constraints, coroutining, etc.)
and making it more efficient; (ii) develop machine learning systems that extract
knowledge as predicates from arbitrary text & images; and, (iii) develop methods
to automatically extract commonsense knowledge and represent it in s(CASP).
We hope that these tasks will be completed in the coming years.

Acknowledgements. We are grateful to the anonymous reviewers and to David S.
Warren for insightful comments and suggestions that resulted in significant improve-
ments to the paper. Authors acknowledge partial support from NSF grants IIS 1910131,
IIP 1916206, and US DoD.

References

1. Aggarwal, C.C.: Neural Networks and Deep Learning. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-94463-0

2. Alferes, J.J., Pereira, L.M., Swift, T.: Abduction in well-founded semantics and
generalized stable models via tabled dual programs. TPLP 4(4), 383–428 (2004)

3. Areias, M., Rocha, R.: Multi-dimensional lock-free arrays for multithreaded mode-
directed tabling in prolog. Concurr. Comput. Pract. Exp. 31(5), 1–16 (2019)

4. Arias, J., Carro, M., Salazar, E., Marple, K., Gupta, G.: Constraint answer set
programming without grounding. TPLP 18(3–4), 337–354 (2018)

5. Arias, J., Carro, M., Chen, Z., Gupta, G.: Modeling and reasoning in event calculus
using goal-directed constraint answer set programming. TPLP 22(1), 51–80 (2022)

6. Arias, J., Carro, M.: Description, implementation, and evaluation of a generic
design for tabled CLP. TPLP 19(3), 412–448 (2019)

7. Basu, K., Shakerin, F., Gupta, G.: AQuA: ASP-Based Visual Question Answering.
In: Komendantskaya, E., Liu, Y.A. (eds.) PADL 2020. LNCS, vol. 12007, pp. 57–72.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39197-3 4

https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/978-3-030-39197-3_4

Prolog: Past, Present, and Future 59

8. Borji, A.: A categorical archive of chatgpt failures (2023). Preprint
arXiv:2302.03494

9. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

10. Brown, T., Mann, B., et al.: Language models are few-shot learners. In: Proceedings
NeurIPS, vol. 33, pp. 1877–1901. Curran Associates Inc. (2020)

11. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

12. Carro, M., Hermenegildo, M.V.: Concurrency in prolog using threads and a shared
database. In: De Schreye, D. (ed.), Proceedings ICLP, pp. 320–334. MIT Press
(1999)

13. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD, KDD 2016, pp. 785–794 (2016)

14. Chen, W., Kifer, M., Warren, D.S.: HILOG: a foundation for higher-order logic
programming. J. Log. Program. 15(3), 187–230 (1993)

15. Chen, Z., Marple, K., Salazar, E., Gupta, G., Tamil, L.: A physician advisory
system for chronic heart failure management based on knowledge patterns. Theory
Pract. Log. Program. 16(5–6), 604–618 (2016)

16. Colmerauer, A., Roussel, P.: The birth of prolog. In: History of Programm Lan-
guages Conference (HOPL-II), pp. 37–52. ACM (1993)

17. Costa, V.S., de Castro Dutra, I., Rocha, R.: Threads and or-parallelism unified.
Theory Pract. Log. Program. 10(4–6), 417–432 (2010)

18. Dietz Saldanha, E.A., Hölldobler, S., Pereira, L.M.: Our themes on abduction
in human reasoning: a synopsis. In: Abduction in Cognition and Action: Logical
Reasoning, Scientific Inquiry, and Social Practice, pp. 279–293 (2021)

19. Flach, P.A., Kakas, A.C.: Abductive and Inductive Reasoning: Background. In:
Flach, P.A., Kakas, A.C. (eds.) Abduction and Inductionand Issues, pp. 1–27.
Springer, Cham (2000). https://doi.org/10.1007/978-94-017-0606-3 1

20. Frühwirth, T.W.: Theory and practice of constraint handling rules. J. Log. Pro-
gram. 37(1–3), 95–138 (1998)

21. d’Avila Garcez, A., Lamb, L.C.: Neurosymbolic AI: The 3rd Wave (2020).
arXiv: 2012.05876 [cs.AI]

22. Gebser, M., et al.: Potassco: the potsdam answer set solving collection. AI Com-
mun. 24(2), 107–124 (2011). https://doi.org/10.3233/AIC-2011-0491

23. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design
of Intelligent Agents: An Answer Set Programming Approach. Cambridge Univ.
Press, Cambridge (2014)

24. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP, vol. 88, pp. 1070–1080 (1988)

25. Gunning, D., Chaudhri, V.K., Clark, P., Grosof, B., et al.: Project halo update -
progress toward digital aristotle. AI Mag. 31(3), 33–58 (2010)

26. Gupta, G., et al.: Logic-based explainable and incremental machine learning. In:
Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.)
Prolog: The Next 50 Years. LNCS (LNAI), vol. 13900, pp. 346–358. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-35254-6 28

27. Gupta, G.: Next generation of logic programming systems. Technical report, 2003.
Dept. of Comp. Sci., UT Dallas (2003)

28. Gupta, G., et al.: Automated commonsense reasoning. In: Proceedings of the GDE
2022 (2022). https://utdallas.edu/∼gupta/csr-scasp.pdf

29. Hanus, M.: From logic to functional logic programs. Theory Pract. Log. Program.
22(4), 538–554 (2022)

http://arxiv.org/abs/2302.03494
https://doi.org/10.1007/978-94-017-0606-3_1
http://arxiv.org/abs/2012.05876
https://doi.org/10.3233/AIC-2011-0491
https://doi.org/10.1007/978-3-031-35254-6_28
https://utdallas.edu/~gupta/csr-scasp.pdf

60 G. Gupta et al.

30. Hermenegildo, M.V., Morales, J.F., Lopez-Garcia, P., Carro, M.: Types, modes and
so much more - the prolog way. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo,
M., Kowalski, R., Rossi, F. (eds.) Prolog: The Next 50 Years. LNCS (LNAI),
vol. 13900, pp. 23–37. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
35254-6 2

31. Hermenegildo, M.V., et al.: An overview of ciao and its design philosophy. Theory
Pract. Log. Program. 12(1–2), 219–252 (2012)

32. Hutter, M.: Universal Artificial Intellegence. TTCSAES, Springer, Heidelberg
(2005). https://doi.org/10.1007/b138233

33. Kahneman, D.: Thinking. Fast and Slow. Farrar, Straus and Giroux (2011)
34. Körner, P., et al.: Fifty Years of Prolog and Beyond. Theory and Practice of Logic

Programming, pp. 1–83 (2022)
35. Kothawade, S., Khandelwal, V., Basu, K., Wang, H., Gupta, G.: AUTO-DISCERN:

autonomous driving using common sense reasoning. In: Proceedings of the ICLP
Workshops: GDE 2021, vol. 2970, CEUR Workshop Proceedings. CEUR-WS.org
(2021)

36. Kowalski, R., Davila, J., Sartor, G., Calejo, M.: Logical English for law and educa-
tion. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi,
F. (eds.) Prolog: The Next 50 Years. LNCS (LNAI), vol. 13900, pp. 287–299.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-35254-6 24

37. Kowalski, R.A.: Computational Logic and Human Thinking. Cambridge University
Press, Cambridge (2011)

38. Kowalski, R.A.: Logic for Problem Solving. North Holland (1979)
39. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg

(1987). https://doi.org/10.1007/978-3-642-83189-8
40. Marple, K., et al.: Computing stable models of normal logic programs without

grounding. Preprint arXiv:1709.00501 (2017)
41. Morris, J.: Blawx: user-friendly goal-directed answer set programming for rules

as code. In: Proceedings of the Programming Language and the Law (ProLaLa)
(2023)

42. Mueller, E.T.: Commonsense Reasoning: An Event Calculus Based Approach. Mor-
gan Kaufmann, San Francisco (2014)

43. Rajasekharan, A., Zeng, Y., Padalkar, P., Gupta, G.: Reliable natural language
understanding with large language models and answer set programming (2023).
Preprint arXiv:2302.03780; in Proc. ICLP’23 (Tech. Comm.) (2023, to appear)

44. Rocha, R., Silva, F.M.A., Costa, V.S.: On applying or-parallelism and tabling to
logic programs. Theory Pract. Log. Program. 5(1–2), 161–205 (2005)

45. Salazar, E.: Proof-theoretic Foundations of Normal Logic Programs. Ph.D. thesis,
Department of Computer Science, Univ. of Texas at Dallas (2019)

46. Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-logic programming: extending
logic programming with coinduction. In: Arge, L., Cachin, C., Jurdziński, T., Tar-
lecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 472–483. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73420-8 42

47. Stenning, K., van Lambalgen, M.: Human Reasoning and Cognitive Science. MIT
Press, Boston (2008)

48. Sterling, L., Shapiro, E.: The Art of Prolog. MITPress, Cambridge (1994)
49. Wang, H., Gupta, G.: FOLD-R++: a scalable toolset for automated inductive

learning of default theories from mixed data. In: Hanus, M., Igarashi, A. (eds.)
Functional and Logic Programming. FLOPS 2022. LNCS, vol. 13215, pp. 224–242.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99461-7 13

https://doi.org/10.1007/978-3-031-35254-6_2
https://doi.org/10.1007/978-3-031-35254-6_2
https://doi.org/10.1007/b138233
https://doi.org/10.1007/978-3-031-35254-6_24
https://doi.org/10.1007/978-3-642-83189-8
http://arxiv.org/abs/1709.00501
http://arxiv.org/abs/2302.03780
https://doi.org/10.1007/978-3-540-73420-8_42
https://doi.org/10.1007/978-3-030-99461-7_13

Prolog: Past, Present, and Future 61

50. Wang, H., Shakerin, F., Gupta, G.: FOLD-RM: efficient scalable explainable AI.
TPLP 22(5), 658–677 (2022)

51. Warren, D.S.: Introduction to Prolog. In: Warren, D.S., Dahl, V., Eiter, T.,
Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog: The Next 50 Years. LNCS
(LNAI), vol. 13900, pp. 3–19. Springer, Cham (2023). https://doi.org/10.1007/978-
3-031-35254-6 1

52. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: Swi-prolog. Theory Pract.
Log. Program. 12(1–2), 67–96 (2012)

53. Wikipedia. Neurosymbolic AI. https://en.wikipedia.org/wiki/Neuro-symbolic
AI#. Accessed Feb 2022

54. Wikipedia contributors. Artificial general intelligence - Wikipedia, the
free encyclopedia, 2023. https://en.wikipedia.org/w/index.php?title=Artificial
general intelligence&oldid=1148436187. Accessed 8 Apr 2023

55. Zeng, Y., Rajasekharan, A., et al.: Automated interactive domain-specific conver-
sational agents that understand human dialogs. Preprint arXiv:2302.08941 (2023)

https://doi.org/10.1007/978-3-031-35254-6_1
https://doi.org/10.1007/978-3-031-35254-6_1
https://en.wikipedia.org/wiki/Neuro-symbolic_AI#
https://en.wikipedia.org/wiki/Neuro-symbolic_AI#
https://en.wikipedia.org/w/index.php?title=Artificial_general_intelligence&oldid=1148436187
https://en.wikipedia.org/w/index.php?title=Artificial_general_intelligence&oldid=1148436187
http://arxiv.org/abs/2302.08941

Writing Correct Prolog Programs

David S. Warren(B)

Stony Brook University, Stony Brook, USA

warren@cs.stonybrook.edu

Abstract. This article describes a somewhat new way of thinking about
Prolog programming. It was motivated by a video and presentation by
Leslie Lamport [6] in which he argued for a simple model of computation
in which, to develop a program, one uses conventional mathematical
language with the necessary invariants being front and center. He used
as a motivating example the problem of finding the greatest common
divisor (GCD) of two positive integers. I felt his model of computation
was too simple to be useful for complex programs, but I liked his essential
idea. I thought I’d like to apply it to the computational model(s) of logic
programming, in particular to Prolog. It led to a somewhat different way
of thinking about how to develop Prolog programs that takes advantage
of both bottom-up and top-down thinking. This article explores this
program development strategy using the GCD problem as a motivating
example.

1 Inductive Definitions

Prolog is basically a language of inductive definitions. (See M. Denecker’s work
including [3,8].) We all learn about inductive definitions early in our mathematics
education. The first definition I remember learning was of the factorial function.
Factorial is described informally as a function of natural numbers where n! = n∗
(n − 1) ∗ (n − 2) ∗ ... ∗ 1. Even though this seemed pretty clear to me (at least
for positive integers), I was told that the “...” in this purported definition isn’t
precise enough. A better way to define factorial is needed, and an inductive
definition does the job:

n! = 1 if n=0
n! = n*(n-1)! if n>0

The first clause specifies the value of factorial of 0 directly; the second clause
specifies the values for all natural numbers greater than 0. It’s clear how one can
use this definition to find the value of n! for any n. For example, say we want
the value of 4!. We know 0! = 1 from the first clause; from the second clause, we
know 1! = 1∗0!, and since we’ve established that 0! = 1, then 1! = 1∗1 = 1; again
from the second clause 2! = 2 ∗ 1! = 2 ∗ 1 = 2; again 3! = 3 ∗ 2! = 3 ∗ 2 = 6; and
finally 4! = 4∗ 3! = 4∗ 6 = 24. In the same way we can find the value of factorial
for any natural number by starting with 0 and computing the values of factorial

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 62–70, 2023.
https://doi.org/10.1007/978-3-031-35254-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_5&domain=pdf
http://orcid.org/0000-0001-7567-8156
https://doi.org/10.1007/978-3-031-35254-6_5

Writing Correct Prolog Programs 63

for all numbers up to and including the one of interest. This is ensured by the
fact that all natural numbers can be reached by starting with 0 and adding 1
some (finite) number of times.

Here we have defined a function inductively. We can also (or more generally)
defines sets inductively. To define a set inductively, one first specifies a universe
of elements. Then one explicitly gives some subset of them as members of the
desired set, and provides a set of rules. Each rule says that if certain elements
of the universe are in the desired set, then some other element(s) must be in
the set. This defines a subset of the universe: the smallest set that contains the
explicit elements and is closed under the rules.

As another, perhaps slightly more interesting, example of an inductive defi-
nition, we consider GCD, the Greatest Common Divisor relation. The GCD of
two non-zero natural numbers is the largest natural number that evenly divides
them both. E.g., the GCD of 18 and 24 is 6. We’ll want to define gcd(n,m, d) to
mean that d is the GCD of the non-zero natural numbers n and m. An inductive
definition of this set is:

gcd(n,n,n) for n > 0
gcd(n+m,m,d) if gcd(n,m,d)
gcd(n,n+m,d) if gcd(n,m,d)

The first (base) clause says that the GCD of a number and itself is that number.
The second clause, a rule, says that if d is the GCD of n and m, then it is also
the GCD of n + m and m. And the third is similar. We’ll leave it to the reader
to compute a few of these triples. For example, starting from the single basic
element gcd(1, 1, 1) we see that it generates pairs with GCD of 1, i.e., pairs that
are relatively prime.

There are two nice properties of inductive definitions that use well-defined
and computable conditions:

1. They come with a mechanism to compute their values, as we have seen,
by starting with the base clauses, which give the first (unconditional) set
members; and then continuing to apply the other clauses until we get the
answer we want (or maybe all the answers.) This iterative process can serve
as a computational model for inductive definitions.

2. They provide a ready-made structure for proving properties that hold of all
members of the inductively defined sets: we just need to show that the desired
property holds for the unconditional members defined by the base clauses, and
that if the property holds for the set elements used in the conditions of an
inductive clause and the condition itself holds, then the property holds for
the newly specified member. Intuitively our reasoning for why this is true can
follow exactly the process we used to add members to the set: we see that each
initial member and each added member must have the desired property, so
that all members of the set must have it. The Induction Principle guarantees
that the property holds for every member of the defined set.

As an example of a proof, say we want to prove that if gcd(n,m, d) is in the
set defined inductively above, then d is indeed the greatest common divisor of n

64 D. S. Warren

and m. For the base clause, clearly the greatest common divisor of two identical
numbers is that number itself. For the inductive clauses, if d divides n and m,
then it clearly divides n+m. And if there were a greater divisor of n+m and m,
that greater divisor would have to divide n, contradicting the assumption that
d is the GCD of n and m. And similarly, for the other inductive clause. So. we
have proved the desired property. In fact our (perhaps implicit) recognition of
this property was what led us to write this definition in the first place.

The computational model and the proof method are fundamentally inter-
twined. When we wrote the inductive definition we had in mind the property we
wanted the set to have, and ensured that each rule preserved that property. I.e.,
we had the proof of correctness directly in mind when we wrote the definition.

2 From Inductive Definition to Prolog Program

We now have an inductive definition of the GCD relation, which has been proved
to be correct. But we want a Prolog program for finding GCD. How do we turn
this inductive definition into a correctly running Prolog program?

We take the inductive definition that was written in English using conven-
tional mathematical notation:

gcd(n,n,n) for n > 0
gcd(n+m,m,d)) if gcd(n,m,d)
gcd(n,n+m,d)) if gcd(n,m,d)

and we directly convert it to a Prolog program. We note that there have been
many extensions to the Prolog language, so it makes a difference which dialect
of Prolog we are working with. For our purposes here, we will assume a rela-
tively primitive Prolog, essentially ISO Prolog. But there are Prolog systems that
support functional notation and general numeric constraints. In these Prologs
different transformations, perhaps including none, would be necessary.

ISO Prolog doesn’t support functional notation, so we need to introduce
new variables (identifiers starting with upper-case letters) for the sums in the
atomic formulas. And we can convert the sums to use Prolog’s general arithmetic
construct, is/2:

gcd(N,N,N) :- N > 0.
gcd(NpM,M,D)) :- gcd(N,M,D), NpM is N + M.
gcd(N,NpM,D)) :- gcd(N,M,D), NpM is N + M.

This form now is a Prolog program in that it satisfies Prolog syntax. However, to
determine if it will correctly execute to solve a problem, we have to consider the
queries we will ask. In our case, we want to provide two integers and have Prolog
determine the GCD of those two integers. This mode of the queries we will ask
is denoted by gcd(+,+,-), where + indicates a value is given and - indicates
a value is to be returned by the computation. Here we intend to give the first
two arguments and expect the have the third one returned. And we also need to

Writing Correct Prolog Programs 65

know the mode of each subquery in order to determine if the definition can be
executed by the Prolog processor.

Correct Prolog evaluation depends on subquery modes in two ways: 1) sub-
queries must have only finitely many answers, and 2) Prolog’s predefined predi-
cates (like is/2) often work only for particular modes and so the modes for calls
to those predicates must be acceptable.

We must check that the modes of our Prolog program for GCD are correct.
The first requirement for correct evaluation of a query (or subgoal) is that it
must have only finitely many answers. Since Prolog uses backward-chaining, it
poses a number of subgoals during its computation starting from an initial goal.
We must be sure that every one of those subgoals has only finitely many answers.
Otherwise, Prolog would go into an infinite loop trying to generate all infinitely
many answers to such a subgoal. For example, the goal gcd(27,63,D) has only
finitely many instances in the set defined by the gcd program; actually only one
instance, with D=9. But the goal gcd(N,63,9) has infinitely many instances in
the defined set; including all those with N being a multiple of 9. The lesson here
is that we need to understand the modes of all subgoals generated by a Prolog
computation. The mode of a subgoal describes where variables appear in it, and
this affects whether it matches infinitely many set members or not.

We note that since Prolog calls goals in the body of a rule in a left-to-right
order, the mode of a subgoal is determined by the success of goals to its left in
the rule body, as well as by the mode of this initial call. We assume that the
initial goal that we pose to this program will have the first two fields as numbers
and the third field as a variable. I.e., we’ll be asking to find the GCD of two
positive integers. This mode is expressed as gcd(+,+,-).

We next explore the modes of the subgoals in our Prolog program above.
Under this mode assumption, since any call to gcd will have its first two argu-
ments bound to values, the variable N in the subgoal N > 0 in the first clause
will have a value as required by Prolog so this condition can be checked.

In the second clause NpM and M will be integers (by the mode assumption),
so in the first subgoal, NpM is N + M, NpM and M will have values, but N will be
a variable. That means that the call to gcd(N,M,D) will have mode (-,+,-),
and this subgoal will have infinitely many answers. So, this Prolog program will
not execute correctly. (The third rule suffers from a similar problem.) We need
N to get a value before the call to gcd(N,M,D). N appears in the second subgoal
of that condition, so let’s try evaluating that subgoal first. To this end we move
the is/2 goals earlier and get a new program:

gcd(N,N,N) :- N > 0.
gcd(NpM,M,D)) :- NpM is N + M, gcd(N,M,D).
gcd(N,NpM,D)) :- NpM is N + M, gcd(N,M,D).

Now in the call to is/2, NpM and M will have values (because of the mode
assumption for calls to gcd/3). Prolog, however, requires is to have the mode
of is(?,+). (The “?” indicates either “+” or “-” is allowed.) Since N will not
have a value, the second argument to is/2 will not have a value and this rule will

66 D. S. Warren

result in an error when evaluated with the expected values. But we can change
the is/2 to compute N from MpN and M by writing N is MpN - M. This imposes
the equivalent constraint among N, M and MpN and is correctly modded for Prolog
to evaluate it. Similarly fixing the third clause gives us a program:

gcd(N,N,N) :- N > 0.
gcd(NpM,M,D)) :- N is NpM - M, gcd(N,M,D).
gcd(N,NpM,D)) :- M is NpM - N, gcd(N,M,D).

In the second clause now, the first body subgoal causes N to get a value, so the
second subgoal is called with N and M with values, and thus in the same mode as
the original mode, that is gcd(+,+,-). Similarly for the third clause. Thus all
calls to gcd/3 (and is/2) will be correctly moded.

However, there is still an issue with this program: Prolog computes with
integers, not natural numbers, and so the subtraction operations might gener-
ate negative integers. But we want only positive integers. So we must add this
constraint explicitly as follows:

gcd(N,N,N) :- N > 0.
gcd(NpM,M,D)) :- N is NpM - M, N > 0, gcd(N,M,D).
gcd(N,NpM,D)) :- M is NpM - N, M > 0, gcd(N,M,D).

Only when we generate a new integer do we need to check that it is positive.
And we must do the check after the number variable gets a value to satisfy the
mode requirement of </2; immediately after it gets that value is best. This is
now a good Prolog program for computing the GCD of two integers. You might
recognize this as the Euclidean algorithm for GCD. I.e., the Euclidean algorithm
is the top-down evaluation (i.e., Prolog evaluation) of this inductive definition.
Actually, we can make this algorithm slightly more efficient, and maybe make
it look a bit more like Euclid’s algorithm by noting in the second clause (and
analogously in the third) that N will be greater than 0 only if NpM is greater than
M, so we can make that check before taking the difference, getting:

gcd(N,N,N) :- N > 0.
gcd(NpM,M,D)) :- NpM > M, N is NpM - M, gcd(N,M,D).
gcd(N,NpM,D)) :- NpM > N, M is NpM - N, gcd(N,M,D).

(Renaming the variables in the third clause might make it look even more famil-
iar.) Now we can see that only one of the three clauses can ever satisfy its
comparison condition for a (correctly moded) subgoal, and so the Prolog com-
putation is deterministic.

See Kowalski et al. [5] for another development of Euclid’s algorithm, there
in a more English-like dialect of Prolog.

Let’s recap how we approached Prolog programming. We followed a sequence
of steps, which we will describe in some generality here. They are a generalization
of the steps we just used in our development of the gcd Prolog program.

1. Use inductive clauses to define the relation, a set of tuples, that characterizes
the solution to the problem of interest. Use names for the relations to organize

Writing Correct Prolog Programs 67

and name sets of tuples. Above we used the name gcd as the predicate symbol
to remind us that it is a set of triples that define the Greatest Common Divisor
function. Use whatever mathematical notation is convenient. Similarly, define
and use whatever sets of tuples are useful as subsidiary definitions.

2. Convert this mathematical definition into Prolog clauses, using the necessary
Prolog built-ins.

3. Consider the mode of each subgoal that will be invoked during top-down
evaluation of the clauses. Ensure that the subset of each relation required
to answer each moded subgoal is finite. Ensure that all built-ins are invoked
in modes that they support. Ensure that defined subgoals are all invoked in
desired modes, by ordering the subgoals of rule bodies so their left-to-right
evaluation is well-moded and efficient.

Notice that in developing this program, we did not consciously think about
recursive programming. We thought about an inductive definition. Recursion is
the procedural mechanism used to evaluate inductive definitions top-down. The
procedural mechanism to evaluate inductive definitions bottom-up is iteration.

To understand the correctness of an inductive definition we can think iter-
atively; just iterate the application of the inductive rules, starting from empty
relations. Intuitively, this is easier to understand than recursive programming.
The recursion showed up in the final program because of the form of the rules
of the inductive definition. We know the recursive evaluation will give the cor-
rect answer because top-down evaluation computes the same answer (when it
terminates) as the bottom-up iterative evaluation.

Many others have noted the importance of bottom-up thinking. The deduc-
tive database community (see, e.g., [7]) looks at programs with only constant
variable values, so-called Datalog programs, exclusively bottom up. And teach-
ers of Prolog teach bottom-up evaluation, and sometimes provide bottom-up
evaluators for students to use to understand the programs they write, [4].

3 The Claim

Let’s look at what needs to be done to write a correct program. First we have to
determine what it means for a correct program to be correct. For that we need
to have an idea in our heads of what our program should do, i.e., a property
the program should have, i.e., for a logic program a property that must hold of
every tuple in the defined relation. And we must ensure that it contains every
tuple it should. Then we have to write a program that defines a relation that
has that property.

We could require that this whole process be done formally, i.e., do a formal
verification of our program. In that case, we would specify the correctness prop-
erty, a.k.a. the program specification, in some formal language. Then we would
generate a formal proof that the program we created satisfied that specifica-
tion. This turns out to be rather complicated and messy, and for large practical
programs essentially undoable. Almost no large programs in practice are ever
proved correct in this way. (See [2] for a discussion of relevant issues.)

68 D. S. Warren

In lieu of formal verification we might use informal methods that won’t guar-
antee exact program correctness but might provide some confidence that our
programs do what we want them to do. We argue that the informal program
development strategy that we have described above does just that.

When we develop an inductive definition of a relation that satisfies our intu-
itive correctness criteria (what we want the program to do), we are thinking
of bottom-up generation of a satisfying relation. And the bottom-up generation
must generate correct tuples at every step. And seeing that rules always gen-
erate correct tuples is exactly what a proof of correctness requires. Indeed, the
name given to the predicate is naturally a shorthand for its correctness property.
We named our predicate gcd because of the Greatest Common Divisor property
that we wanted its tuples to have. So, when generating an inductive definition
of a relation, one has directly in mind the property all its tuples must have,
and so writes rules that guarantee that property. This is exactly the thinking
necessary to formulate a proof of correctness. In this way the thinking required
to formulate the program is exactly the thinking require to formulate a proof of
its correctness. Even if the proof is not formally carried out, the intuitive ideas
of how it would be created have already been thought through.

Note, however, that such an inductive proof is not a formal proof of correct-
ness for a Prolog program. That would require formal consideration of modes,
occur-check, termination, and other important details of actual Prolog evalua-
tion. Discussions of formal proofs of total correctness of Prolog programs in the
literature tend to focus on these issues, e.g., [1].

Of course, most Prolog programs are more complicated than a single induc-
tive definition. Most require multiple subsidiary relations to be defined and then
used in more complex definitions. But each such subsidiary relation is also induc-
tively defined and a similar methodology can be used for them. For procedural
programs with while and for constructs, one needs to generate an invariant
for each loop; the corresponding logic program requires a relation, with its own
name and inductive definition, for each loop, thus laying bare the correctness
criteria that may be hidden for iterative programs with loops.

4 Caveats

What is proposed here is an idealized methodology for developing Prolog pro-
grams. Of course, it won’t always work this way. Prolog programmers learn (and
are encouraged) to think about top-down execution and recursion in a procedural
way. Indeed, to develop definitions that evaluate efficiently top-down, it is often
necessary to think in this way. So almost always an experienced Prolog program-
mer will develop a program without ever thinking about how it would evaluate
bottom up. My suggestion is that programmers should initially be taught this
bottom-up-first methodology, and then as they advance and develop their top-
down intuitions, they should always go back and look at the bottom-up meanings
of their programs. As a practicing top-down Prolog programmer, I’ve found it
often enlightening to think of my programs in a bottom-up way. Sometimes effi-
cient top-down programs are infinite, or ridiculously explosive, as bottom-up

Writing Correct Prolog Programs 69

programs. But experience can make them intuitively understandable, and think-
ing that way provides insight. It deepens an understanding of what the program
defines and can sometimes uncover problems with it. It is also worth noting that
bottom-up evaluation is independent of problem decomposition, which is a good
development strategy, independent of any evaluation strategy.

Bottom-up evaluation is generally easier to understand not only because it
is based on iteration instead of recursion as is top-down. Every state reachable
in a bottom-up construction satisfies the desired correctness property. But in
top-down, many reachable states may not satisfy the correctness property; they
may be states only on a failing derivation path. This means that for top-down
one must distinguish between states that satisfy the desired property and those
encountered along a failing path towards a hoped-for justification. It’s more to
keep track of in one’s head. Perhaps another way to say it is that bottom-up
evaluation is intuitively simpler in part because it needs no concept of failure.

5 Conclusion

I would claim that mathematical induction provides the formal foundation of all
algorithmic computation, i.e., computation intended to terminate1. Prolog asks
programmers to give inductive definitions directly. The form of definition is par-
ticularly simple, being straightforward rules for adding members to sets. Since
the programmer creates definitions thinking directly in terms of the mathemati-
cal foundations of computation, there is less of a distance between programming
and proving. This makes for programs more likely to do what the programmer
intends.

References

1. Apt, K.R.: Program verification and Prolog. In: Börger, E. (ed.) Specification and
Validation Methods, pp. 55–95. Oxford University Press, Oxford (1993)

2. DeMillo, R., Lipton, R., Perlis, A.: Social processes and proofs of theorems and
programs. In: Tymoczko, T. (ed.) New Directions in the Philosophy of Mathematics:
An Anghology, pp. 237–277. Birkhauser Boston Inc., Boston (1986)

3. Denecker, M., Warren, D.S.: The logic of logic programming. CoRR,
cs.LO/2304.13430, arXiv:2304.13430 (2023)

4. Hermenegildo, M.V., Morales, J.F.: Some thoughts on teaching (and preaching)
Prolog. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi,
F. (eds.) Prolog - The Next 50 Years. LNCS, vol. 13900, pp. 107–123. Springer, Cham
(2023)

5. Kowalski, R., Quintero, J.D., Sartor, G., Calejo, M.: Logical English for law and
education. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R.,
Rossi, F. (eds.) Prolog - The Next 50 Years. LNCS, vol. 13900, pp. 287–299. Springer,
Cham (2023)

1 Clearly quantum computation has a different foundation. And infinite computations
have their foundations in co-induction.

http://arxiv.org/abs/2304.13430

70 D. S. Warren

6. Lamport, L.: If you’re not writing a program, don’t use a programming
language. In: LPOP 2020, November 2020. https://www.youtube.com/watch?
v=wQiWwQcMKuw

7. Maier, D., Tekle, K.T., Kifer, M., Warren, D.S.: Declarative logic programming.
Chap. Datalog: Concepts, History, and Outlook, pp. 3–100. Association for Com-
puting Machinery and Morgan & Claypool, New York, NY, USA (2018). https://
doi.org/10.1145/3191315.3191317

8. Vennekens, J., Denecker, M., Bruynooghe, M.: FO(ID) as an extension of dl with
rules. Ann. Math. Artif. Intell. 58(1–2), 85–115 (2010)

https://www.youtube.com/watch?v=wQiWwQcMKuw
https://www.youtube.com/watch?v=wQiWwQcMKuw
https://doi.org/10.1145/3191315.3191317
https://doi.org/10.1145/3191315.3191317

Demonstrating Multiple Prolog
Programming Techniques Through

a Single Operation

Nick Bassiliades1(B) , Ilias Sakellariou2 , and Petros Kefalas3

1 School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
nbassili@csd.auth.gr

2 Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
iliass@uom.edu.gr

3 Department of Computer Science, City College, University of York Europe
Campus, Thessaloniki, Greece
kefalas@york.citycollege.eu

Abstract. Without doubt Prolog, as the most prominent member of
the logic programming (LP) approach, presents significant differences
from the mainstream programming paradigms. However, demonstrating
its flexibility to larger audiences can indeed be a challenging task, since
the declarative style of LP lies outside the mainstream programming
languages most are familiar with. In this paper, we demonstrate how
alternative implementations of a single list operation can prove to be a
rather helpful tool for demonstrating a plethora of Prolog programming
aspects and techniques, and some issues associated with these, such as
efficiency, readability and writability of code.

Keywords: Logic Programming techniques · Prolog Flexibility ·
Prolog Efficiency · Prolog Education

1 Introduction and Motivation

Communicating the flexibility of the logic-based approach to problem solving
supported by Prolog, to wider audiences, such as students, programmers and in
general people less familiar with LP, can prove to be a somewhat complicated
task. Thus, the motivation behind this paper is to demonstrate the flexibility of
Prolog in coding a simple operation, commonly found in all programming envi-
ronments supporting lists, by employing a variety of programming techniques.
As educators, we have been teaching Prolog for many years, following a fairly
standard approach of introducing the language constructs and techniques that
differentiate it from other mainstream programming languages. By starting from
pure Prolog syntax, declarative and operational semantics, then moving towards
recursion and lists and concluding with extra-logical features and practical meta-
programming techniques, gave us the opportunity to teach Prolog through a good
number of examples of various complexity.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 71–81, 2023.
https://doi.org/10.1007/978-3-031-35254-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_6&domain=pdf
http://orcid.org/0000-0001-6035-1038
http://orcid.org/0000-0003-3522-6045
http://orcid.org/0000-0002-6846-7374
https://doi.org/10.1007/978-3-031-35254-6_6

72 N. Bassiliades et al.

What was missing was a standard reference to a single operation that could
be implemented in different ways, thus demonstrating the flexibility of the lan-
guage which, however, may raise issues for discussion around declarative versus
procedural approach, readability versus writability of code and simplicity versus
efficiency. We found that list_min predicate could serve this purpose. We fol-
lowed different approaches in our own institutions; either to present this example
throughout the semester as we introduce concepts together with other examples,
or to devote a revision session towards the end of the semester to summarise
the language potential before the final exam. Results were encouraging in both
approaches.

Therefore, we demonstrate how a single list operation, i.e. the minimum of
a list, can prove to be a rather helpful tool to refer to a plethora of Prolog pro-
gramming aspects and techniques. The benefits are numerous: (a) it is a simple
operation, with which students are familiar with and thus presents no barriers
in understanding its specification, (b) it has a surprising number of alterna-
tive implementations, (c) benchmarking of the alternatives is a straightforward
task, allowing discussion of complexity issues that arise. The current paper con-
tributes towards demonstrating Prolog flexibility, especially in audiences just
getting familiar with Prolog, by:

– discussing how a single simple list operation can demonstrate a number of
programming techniques, through alternative implementations,

– presenting how such simple code can expose a number of lower level issues of
some techniques, such as garbage collection and tail recursion optimization.

The paper is not aimed to be a tutorial in Prolog, as this is presented earlier
in this book [14]. It is assumed that the reader has some knowledge of the
language. Additionally, our audience includes educators who would like to adopt
this example throughout their courses on top of all existing material they teach
as a single point of reference suitable for discussing the flexibility of the language.

2 The Challenges of Learning Prolog

Learning Prolog can indeed be a challenging task, usually attributed to the
declarative style of LP, which lies outside the mainstream programming lan-
guages. Indeed, in CS curricula, students are exposed early to concepts such
as while-for loops, destructive assignment variables, types, common functions
with a single return value, etc. in the usual first “Introduction to Programming”
course. This programming paradigm mindset is further deepened, for example
by object oriented programming courses that although they introduce new con-
cepts such as inheritance, still follow the well established procedural vein and
the usually OO focused software engineering courses. The distance between the
paradigms is further enlarged because students are normally instructed to avoid
as much as possible recursion due to inefficiency issues, present in most main-
stream languages that lack optimization support. Consequently, as educators we
must overcome a number of obstacles and in fact “reset” the way students think

Multiple Prolog Programming Techniques Through a Single Operation 73

about programming. Although a number of classic introductory and advanced
books and tutorials exist, such as [1,3,9,10,12], the pedagogical issues faced
in class remain a great challenge [6,11,13], and require novel approaches and
environments [4,8].

Students often ask the question “Why Prolog?” Some are convinced by typical
justifications that refer to foundations of the discipline as well as teaching pro-
gramming principles with a minimum set of constructs. It is expected, however,
that a tighter integration, both in terms of facilities and available examples, with
other programming languages and tools will be sought towards the perception
of students for its applicability. Additionally, the current growth of Knowledge
Graphs [7] and their associated Semantic Web technologies that rely mostly on
logic, raises some extra arguments in favor of learning LP.

For as long as Logic forms the foundations of Computer Science, LP, through
its main representative (Prolog) will remain current. It is no surprise that Prolog
is perhaps one of the few programming language that persists for many years
in Computer Science curricula; while other programming languages come and
go, Prolog remains as a paradigm for declarative thinking (programming) that
can be used to teach a plethora of programming principles and techniques. We
anticipate that this fact will also remain true in the future.

The power of simplicity (syntax and constructs) gives us, educators, the
opportunity to focus on programming principles that span from purely declara-
tive to procedural. In this paper, we attempt to demonstrate a showcase on how
this is feasible through alternative implementations of a single operation that
can be referenced throughout the learning process or used to summarise and
revise the language abilities and flexibility.

3 Logic Programming Techniques

The term “programming technique” has been used in different contexts: we adopt
the definition that a technique is a pattern, applied to a wide range of problems
[2], as for example failure driven loops, generate-and-test and accumulator pairs,
among many others.

A schema is a representation of a technique that allows developers to repre-
sent a general structure solution code to a problem, so that, given the specific
context, the schema may be instantiated to executable code that solves the par-
ticular problem. The schema approach to teaching Prolog was introduced rather
early, as for instance in [5], where also a single example was used. Although we
follow the same approach, our focus is different, since we contend that the single
task used can serve to discuss a wider number of issues, as for example efficiency
and non-recursive techniques.

Probably the most widely used approach for logic programs is recursion. It is
derived through the mathematical concept of induction [15] and assumes that a
problem of a certain size, say N, can be solved if the same problem of a smaller
size, say N-1, is solvable. Although a powerful approach, that provides for sim-
ple solutions of rather complex problems even when considered in a procedural

74 N. Bassiliades et al.

mindset, it is still a skill that most novice programmers lack, or have not been
exposed and exercised to a great extent.

4 One Problem - Many Solutions

The problem in question is to find the minimum element of a list of numbers,
what we refer to as list_min/2 predicate. We will show the recursive approach
first, and then we will explain some more complex non-recursive schemata. In the
following, in order to distinguish easily between the different implementations of
list_min/2, we adopt a numbering in the name of the predicate, i.e. list_minX/2
with X ranging from 1 to 9.

4.1 Recursive Super-Naive Declarative Implementation

The first attempt to a solution, focuses on presenting a rather simple view of
recursion, that reads as follows: “To find the minimum of a list of N elements,
assume that you know the minimum of its N−1 elements and compare with
the Nth”. This leads to a (super-naive) recursive implementation of the min_list
predicate, shown below as predicate (list_min1/2).

list_min1([Min],Min).
list_min1([H|T],H):-

list_min1(T,MinTail),
H =< MinTail.

list_min1([H|T],MinTail):-
list_min1(T,MinTail),
H > MinTail.

This implementation offers the grounds for raising a number of issues: (a) list
decomposition in the head of the clause, (b) an introduction to the structure of
a predicate definition with recursive and terminal cases (rules) and (c) plac-
ing alternative choices in separate rules, as a straightforward rule-of-thumb
instead of OR (;) within the body of the clause that leads to several concerns.
List decomposition on the head of the clause, provides a syntactically simple
list operation, whereas alternative cases in a definition enhance readability and
make the resulting code more extensible.

However, a number of other issues are eminent. Probably the one with “what
is hidden” in the previous implementation is the fact that there is a choice
point in the recursive rule embedded in the predicate; the choice between the
minimum among the head of the list and the minimum of the tail of the list, that
occurs after the recursive call, leads to inefficiency issues and provides a great
chance to discuss the execution tree and placing checks as early as possible.
The response to the obvious reaction for subgoal reorderding in the body
of the rules, leads to a discussion on the non-logical handling of numbers
in classical (non CLP) Prolog implementations, that expects ground variables
in any arithmetic expression. This discussion provides an excellent prompt to
introduce Constraint LP.

Multiple Prolog Programming Techniques Through a Single Operation 75

4.2 Naive Declarative Implementation

The inefficiency issue manifested in the previous implementation, demands a
better recursive definition, that of “the minimum element of a list is the min-
imum among its head and the minimum of its tail”, implemented as predicate
list_min2/2, shown below.

list_min2([Min],Min).
list_min2([H|Tail],Min) :-

list_min2(Tail,MinTail),
min(H,MinTail,Min).

min(X,Y,X) :- X=<Y.
min(X,Y,Y) :- X>Y.

Although, arithmetic checks are delayed and placed “after” the recursive call,
committing to the min value is delayed, i.e. variable Min is instantiated at the
last call, after the arithmetic check. This leads to a linear complexity, albeit some
memory inefficiencies. A puzzling point to novice learners is that comparisons
take actually place backwards, from the last element of the list to the first,
usually referred to as building the solution “on the way up”.

This version offers itself to talk about the if-then-else construct (without
explicit reference to the hidden cut) by rewriting the code for min/2 as follows:

list_min21([Min],Min).
list_min21([H|Tail],Min) :-

list_min21(Tail,MinTail),
(H>MinTail -> Min=MinTail; Min=H).

Although, some may find that the above presents a more readable implemen-
tation, it does contain explicit unification, i.e. the use of the “=” operator, which
can be easily (mis)taken for assignment.

4.3 The “Standard” Algorithmic Implementation

Following the implementation of the “naive” program where numbers are com-
pared in the reverse order, this predicate allows for an explanation of its mem-
ory inefficiency, due to its inability to take advantage of recursion optimiza-
tion techniques. Having been exposed in Compiler and Computer Architecture
courses to the function call mechanisms, one can easily understand that having
to execute code after the recursive call, a lot of information must be kept in the
memory stack (i.e. values of variables at each recursive step), so this implemen-
tation is memory demanding. The latter offers an excellent chance to discuss
tail recursion optimization, and the need to place the recursive call last in
the body of the predicate.

The implementation shown below (predicate list_min3/2), is based on the
“standard” algorithm that is taught in programming courses. Thus, the accu-
mulator pair technique [2,5], is introduced that offers a great opportunity

76 N. Bassiliades et al.

to discuss single assignment variables in the Prolog programming context. The
technique of introducing an auxiliary predicate is common in Prolog. It is
interesting to notice that the auxiliary predicate may have the same functor
name as well since it has different arity.

list_min3([H|T],Min) :-
list_min3_aux(T,H,Min).

list_min3_aux([],Min,Min).
list_min3_aux([H|T],TempMin,Min) :-

min(H,TempMin,NextMin),
list_min3_aux(T,NextMin,Min).

Alternatively, since now the comparison is done before the recursive call,
we could avoid the use of the min/3 predicate and have instead two recur-
sive calls, without causing so much inefficiency this time, as shown in predicate
list_min4/2). However, to maintain efficiency, it is needed to explicitly insert
the cut operator leading to a check-and-commit technique.

list_min4([H|T],Min) :-
list_min4_aux(T,H,Min).

list_min4_aux([],MSF,MSF).
list_min4_aux([H|T],MSF,Min):-

H < MSF, !,
list_min4_aux(T,H,Min).

list_min4_aux([H|T],MSF,Min):-
H >= MSF, !,
list_min4_aux(T,MSF,Min).

Although the cut in the code above is inserted to take advantage of the
tail recursion optimization, since checks are mutually exclusive, the second
check could be eliminated, leading to a reduced number of checks in the code.
Alternatively, as mentioned above, cut can be implicitly replaced by the “more
declarative” if-then-else construct.

4.4 A Reduction Approach

The next implementation is in fact an ad-hoc application of the reduce operator
commonly found in functional languages and recently in many Prolog implemen-
tations (predicate list_min5/2).

list_min5([M],M).
list_min5([H1,H2|T],Min):-

H1 > H2, !,
list_min5([H2|T],Min).

list_min5([H1,H2|T],Min):-

Multiple Prolog Programming Techniques Through a Single Operation 77

H1 =< H2, !,
list_min5([H1|T],Min).

Selecting two elements instead of a single from the list supports an early arith-
metic comparison, leading to an immediate pruning of the non-successful
branch. What is left to be decided is the repeated execution of the operation
for the rest of the elements, achieved by “pushing” the result (i.e. the minimum
between the two) elements to the top of the list for the next recursive call.

Alternatively, an even more compact version of the predicate relies on the
min/3 predicate mentioned previously (predicate list_min6/2).

list_min6([Min],Min).
list_min6([H1,H2|T],Min):-

min(H1,H2,M),
list_min6([M|T],Min).

The introduction of the latter provides the necessary ground to demonstrate
the implementation of the reduce operator using variable call, that can work
on any binary operation (e.g. min, max, etc.). The latter is achieved by simply
adding one more argument to hold the predicate name of the operation and the
term construction subgoal using the univ/2 operator, as shown below:

list_reduce([Value],_,Value).
list_reduce([H1,H2|T],Operation,Value):-

C =.. [Operation,H1,H2,Next],
call(C),
list_reduce([Next|T],Operation,Value).

We usually call this implementation an elegant, declarative “hack”, taking
advantage of the list itself to deliver the temporary result to the end. Although
novice learners find this implementation rather ingenious, they rarely reproduce
it in future programming tasks. This is probably due to the fact that they are not
used to a functional style of programming; rather they prefer the more traditional
“array” style of iterating the list and keeping the temporary result in a separate
variable as an extra argument.

4.5 A Non-recursive Declarative Definition

A verbal description of a complete definition of list_min/2 could be the min-
imum of a list, is a member of the list such that no other member of the same
list exists smaller than it. Interestingly enough this can be directly implemented
in Prolog (predicate list_min7/2).

list_min7(List,Min):-
member(Min,List),
not((member(X,List), X < Min)).

78 N. Bassiliades et al.

This is probably the most declarative version of list_min/2, reported here,
and is in fact an application of the generate-and-test technique. Understand-
ing, however, the operation of the predicate presents significant challenges. First
of all, it demands a good understanding of backtracking and negation, i.e.
the fact that once an element smaller than the current Min is found then the
second subgoal fails, leading to a re-instantiation of the Min to the next element
of the list. The process is repeated until the argument inside the negation in the
second subgoal fails, for all instantiations of X, leading to the solution.

However, this elegant indeed definition suffers from high computational com-
plexity. It does not take long to realize that it has O(N2) complexity whereas all
other previous solutions (except the “super-naive” one) have linear complexity.

4.6 Using Solution Gathering Predicates

Another version (list_min8/2) mainly used for illustrating the operation of the
setof solution gathering predicate, stressing that it is a clever trick, but with
higher-than-needed computational cost.

list_min8(List,Min) :-
setof(X,member(X,List),[Min|_]).

This version exploits the builtin predicate setof and follows the naive algo-
rithmic thinking of sorting a list in ascending order to return its first element.
However, one needs to realize that sorting has a larger average complexity
O(n log n) than finding the minimum O(n), so in general it should be avoided.

4.7 Using Assert/Retract and Failure-Driven Loops: The One
to Avoid

No matter how simple a programming language can be, some of its features may
be used to create the “unthinkable”. The same happens with Prolog’s ability to
alter its program while the program is executed, i.e. asserting and retracting
clauses on the fly. We refer to this version (predicate list_min9) as the “one
to avoid”, since it relies on a “global” variable implemented as a separate
dynamic predicate, to simulate destructive assignment. It offers the opportunity
to present a number of issues regarding assert/retract, as well as the necessity
of side-effects inside a failure-driven loop.

list_min9([H|_T],_Min) :-
assert(temp_min(H)),
fail.

list_min9(List,_Min) :-
member(X,List),
retract(temp_min(TmpMin)),
min(X,TmpMin,NextMin),
assert(temp_min(NextMin)),

Multiple Prolog Programming Techniques Through a Single Operation 79

fail.
list_min9(_List,Min) :-

retract(temp_min(Min)).

We do not present this as a technique that someone should adopt. We just
mention it as an extreme example of how flexible and “dirty” Prolog programming
can get!

5 Evaluation of Efficiency vs. Perception

An interesting aspect of demonstrating the list_min operation in many different
versions is that it leads to commenting on the efficiency of each version using
automatically generated lists of random integers, best and worst case scenarios,
e.g. ordered or reverse ordered lists, and Prolog statistics. Thus, a novice learner
can see how each technique affects the performance.

Having completed all the classes, we requested our students to conduct exper-
iments with all versions of list_min, with lists of various sizes in ascending,
descending and random order. Having gathered the results in terms of cputime
and number of inferences, they were asked to express their opinion which are the
best three versions, by reconciling efficiency, readability and writability of code.

The results obtained by different lists sizes, ranging from 1000 to 100000
elements (1K, 30K, 60K, 100K), present some interesting aspects regarding the
different predicate versions. All experiments were conducted using SWI Prolog.
With respect to efficiency, we have found that the predicates above can be clas-
sified in three groups: The first group contains list_min1, which in fact fails to
report a solution for large lists in descending order; for instance, the execution
time for a list of only 30 elements is 218.6 s. Obviously, results for ascending
lists are comparable with those of other predicates; however, the decision was
to exclude the predicate from further testing since it would not provide any
significant results with respect to random and descending lists.

The fully declarative solution (list_min7, second group), although it per-
forms better, it still follows the generate and test strategy, yielding high execution
times and a large number of inferences to reach a solution for the descending
worst case: starting with 5.3 s for a list of 10K elements up to 548 s approximately
for the list of 100K elements. This is expected, since in the descending case, the
solution generator (member/2) produces the correct solution last, yielding the
highest number of iterations. For the same reason, best results are obtained for
lists in ascending order, followed by those for the random.

The third group contains all other predicates. We avoided reporting execution
times, since, even for 100K lists, the former are less than a quarter of a second,
across all predicates in the group, yielding no interesting (or safe) results for
comparison. Instead we opted to measure number of inferences per list element,
just to give an indication how close in terms of performance versions are. Results
averaged between all tests, for each predicate are presented in Fig. 1. Finally,
list_min8 is not included in the figure, since setof is implemented at a lower
level, so the exact number of inferences is not correctly reported by SWI-Prolog.

80 N. Bassiliades et al.

Fig. 1. Results showing Inferences/List Element on the third group of predicates.

All predicates we tested (most of them recursive) scan the whole list once
no matter the type of list. So, with minor deviations in any of the ascending,
descending, or random order, the number of inferences is more or less the same
(the extra lines from one predicate to the other cause the extra inferences but
play a minor role). Thus, performance is independent of the type of list.

Minor differences among predicates in the figure are attributed to the order
of checks. For instance, in list_min2 arithmetic comparisons occur “backwards”,
whereas in list_min3 occur on the “way down” to the base recursive case, thus
showing slightly different behaviour on the extreme cases (ascending/descending
order). It should be noted that the assert/retract version seems to be unaf-
fected by the order of elements in the list and yields the higher number of
inferences, due to constantly accessing Prolog memory.

Regarding student perception, the definitions of list_min8, list_min2 and
list_min7 were among the first three preferences, gathering 72%, 48% and
40% respectively of the students who preferred them in their top-three choices,
although the last one requires a considerable number of inferences compared to
all the rest. All other versions were roughly equally preferred. It was surprising
that 16% of the students declared as a top-three choice list_min1; it takes an
enormous amount of cputime to complete which makes it practically useless but
it was preferred for its readability. Even more surprising is that 20% included
list_min9 in their best three choices; it is extremely complex and far from
purity but it may match the programming style that learners have been exposed
to in previous courses.

6 Conclusions

We presented the flexibility of Prolog by using a single operation and multiple
programming techniques that result in different implementations. Each version of
the predicate list_min allows space to discuss all interesting features of Prolog.
The code variations gave us the opportunity to discuss declarativeness versus
efficiency issues as well as readability, purity and dirty characteristics of the

Multiple Prolog Programming Techniques Through a Single Operation 81

language. As educators, we make use of those examples in our class of novice
Prolog learners and we showed their perceptions and evaluations.

References

1. Bratko, I.: PROLOG Programming for Artificial Intelligence, 4th edn. Addison-
Wesley Longman Publishing Co., Inc, USA (2012)

2. Brna, P., et al.: Prolog programming techniques. Instr. Sci. 20(2), 111–133 (1991).
https://doi.org/10.1007/BF00120879

3. Clocksin, W.F., Mellish, C.S.: Programming in Prolog, 5 edn.. Springer, Berlin
(2003). https://doi.org/10.1007/978-3-642-55481-0

4. Flach, P., Sokol, K., Wielemaker, J.: Simply logical - the first three decades. In:
Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.)
Prolog: 50 Years of Future, LNAI 13900, pp. 184–193. Springer, Cham (2023)

5. Gegg-Harrison, T.S.: Learning prolog in a schema-based environment. Inst. Sci.
20(2), 173–192 (1991). https://doi.org/10.1007/BF00120881

6. Hermenegildo, M.V., Morales, J.F., Lopez-Garcia, P.: Some thoughts on how to
teach prolog. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski,
R., Rossi, F. (eds.) Prolog: 50 Years of Future, LNAI 13900, pp. 107–123. Springer,
Cham (2023)

7. Hogan, A., Blomqvist, E., Cochez, M., D’amato, C., Melo, G.D., Gutierrez, C.,
Kirrane, S., Gayo, J.E.L., Navigli, R., Neumaier, S., Ngomo, A.C.N., Polleres, A.,
Rashid, S.M., Rula, A., Schmelzeisen, L., Sequeda, J., Staab, S., Zimmermann, A.:
Knowledge graphs. ACM Comput. Surv. 54(4), 1–37 (2022). https://doi.org/10.
1145/3447772

8. Morales, J.F., Abreu, S., Hermenegildo, M.V.: Teaching prolog with active logic
documents. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R.,
Rossi, F. (eds.) Prolog: 50 Years of Future, LNAI 13900, pp. 171–183. Springer,
Cham (2023)

9. O’Keefe, R.A.: The Craft of Prolog. MIT Press, Cambridge (1990)
10. Ross, P.: Advanced Prolog: Techniques and Examples. Addison-Wesley (1989)
11. Sekovanić, V., Lovrenčić, S.: Challenges in teaching logic programming. In:

2022 45th Jubilee International Convention on Information, Communication and
Electronic Technology (MIPRO), pp. 594–598 (2022). https://doi.org/10.23919/
MIPRO55190.2022.9803530

12. Sterling, L., Shapiro, E.: The Art of Prolog (2nd Ed.): Advanced Programming
Techniques. MIT Press, Cambridge (1994)

13. Van Someren, M.W.: What’s wrong? Understanding beginners’ problems with Pro-
log. Instr. Sci. 19(4), 257–282 (1990). https://doi.org/10.1007/BF00116441

14. Warren, D.S.: Introduction to Prolog. In: Warren, D.S., Dahl, V., Eiter, T.,
Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog: 50 Years of Future, LNAI
13900, pp. 3–19. Springer, Cham (2023)

15. Warren, D.S.: Writing correct prolog programs. In: Warren, D.S., Dahl, V., Eiter,
T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog: 50 Years of Future,
LNAI 13900, pp. 62–70. Springer, Cham (2023)

https://doi.org/10.1007/BF00120879
https://doi.org/10.1007/978-3-642-55481-0
https://doi.org/10.1007/BF00120881
https://doi.org/10.1145/3447772
https://doi.org/10.1145/3447772
https://doi.org/10.23919/MIPRO55190.2022.9803530
https://doi.org/10.23919/MIPRO55190.2022.9803530
https://doi.org/10.1007/BF00116441

A Better Logical Semantics for Prolog

David S. Warren1(B) and Marc Denecker2

1 Stony Brook University, New York, UK
warren@cs.stonybrook.edu

2 KU Leuven, Leuven, Belgium

marc.denecker@kuleuven.be

Abstract. This paper describes a semantics for the language of pure
positive Prolog programs that improves on the widely accepted Least
Herbrand Model (LHM) semantics. The LHM semantics gives meaning
only to complete Prolog programs, and not to components of programs.
Yet programmers clearly understand the meaning of a predicate even if
not all predicates used in its definition are defined in the program. For
example, programmers understand the meaning of the two rules defin-
ing transitive closure without having to know the specific graph that it
applies to. A semantics for the Prolog language should also provide such
a meaning. We motivate the meaning of Prolog rules as inductive def-
initions by starting with Clark’s completion, analyzing its limitations,
and then describing how it can be modified to yield a logical theory of
inductive definitions.

1 Introduction

This paper describes a Logic of Definitions, which provides a semantics for the
Prolog programming language [13]. All the ideas here are more fully presented
in [6],1 which is itself an explication of earlier ideas developed by Denecker and
his group in [5]. The primary differences from the presentation in that paper
are that here we restrict our models to be Herbrand models and we use the
Clark completion semantics to motivate this approach to improved Prolog logical
semantics. We eliminate any formalism and focus on the informal motivation and
discussion. There is nothing in this paper that is not in that original paper. The
hope is that this paper may be more accessible to a wider audience of Prolog
programmers, and perhaps provide intuitions that will help in understanding
that paper.

2 The Least Herbrand Model Semantics of Prolog

The initial formulation of the logic of positive Prolog was that clauses were Horn
clauses and Prolog execution was SLD resolution applied to a set of Horn clauses.
1 Also available at: https://people.cs.kuleuven.be/∼marc.denecker/A-PDF/Prolog50.
pdf.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 82–92, 2023.
https://doi.org/10.1007/978-3-031-35254-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_7&domain=pdf
http://orcid.org/0000-0001-7567-8156
https://people.cs.kuleuven.be/~marc.denecker/A-PDF/Prolog50.pdf
https://people.cs.kuleuven.be/~marc.denecker/A-PDF/Prolog50.pdf
https://doi.org/10.1007/978-3-031-35254-6_7

A Better Logical Semantics for Prolog 83

Prolog evaluators answered “yes” to ground queries for which it could find an
SLD proof and “no” when no proof was found. Early Prolog evaluators included
an operation called not, which was described as not provable.2 This shows the
recognition that the failure of a query indicates that it is not provable, and not
that it is logically false. But the “yes” response for true queries suggests that
the “no” response might be for queries that are false, and many programmers
productively interpreted that “no” as logically false. The attempt to make this
interpretation logically correct led to a search for a new logic-based semantics
for positive Prolog that would indeed imply failing queries are logically false.

Seminal papers in this research effort include:

1. In 1977 van Emden and Kowalski [11] provide a definition of the least Her-
brand model (LHM) and its construction, for positive Prolog programs, and
showed that the atoms true in the LHM were exactly the atoms for which
there is an SLD proof.

2. In 1977 Clark [4] defines the completion of a positive Prolog program (by
essentially turning the Horn clause implications into biconditionals) and
shows that a (slightly modified) SLD resolution finitely fails for a (ground)
query if and only if the program completion logically implies that the query
is false.

3. In the mid-eighties, work by Chandra and Harel [3], Apt, Blair, and Walker
[2] and Przymusinski [10] built on earlier work on fixpoint logic [9] and con-
tributed to the definition of the perfect model as the generally accepted mean-
ing for stratified programs. The (unique) perfect model of a positive program
is its Least Herbrand Model. Since according to this semantics, a positive
program has only a single model, an atom false in this model is false in all
models and thus is logically false.

This idea of using a single model to provide the semantics for a Prolog pro-
gram seems to have taken hold when the database community became inter-
ested in using the function-free subset of positive Prolog as a logic of deductive
databases, later called Datalog.

This semantics, known as the LHM semantics, has become widely accepted
by the logic programming community.

A Herbrand structure (see [7]) is a first-order structure for a language in
which every ground term of the language names a distinct object (the unique
names assumption) and all objects are named (the domain closure assumption).
Restricting to Herbrand structures allows programmers to use functions to store
and later retrieve data, as it allows arguments to functions to be recovered from
their applications. For the remainder of this paper we assume that all structures
are Herbrand structures.

For positive Prolog programs (as we consider here), Tarski’s fixpoint theorem
guarantees that any set of Horn clauses, i.e., any Prolog program, has a unique
minimal Herbrand model, its LHM. As shown in [11], it can be constructed in a

2 The form of the not operator in most Prologs is \+, which is intended to approximate
in ASCII the logical proves symbol � with a slash / through it.

84 D. S. Warren and M. Denecker

bottom-up fashion by starting with the empty set, and then iteratively adding
ground atomic formulas that are heads of ground rule instances that have all
body literals in the current set. This continues until nothing more can be added
(perhaps to ω). The resulting set of atomic formulas determines the Herbrand
structure in which the atomic formulas derived in this process are true, and all
others are false. And this structure is a model of the program Horn clauses,
satisfying them all. Under this semantics, every (positive) Prolog program has a
unique model, so a query is true if it is true in all models, i.e., true in the single
LHM, and it is false if it is false in all models, i.e., false in the single LHM.

In [11] it was proved that the atoms true in the LHM of a program are exactly
the atoms that SLD resolution proves true. This means that if SLD succeeds on
a ground query, it is true in the LHM and thus logically true. If SLD fails on a
ground query, it is false in the LHM and thus logically false. Thus a “no” answer
to a Prolog query demonstrates that the query is logically false.

But the claim of this paper is that there are problems with the LHM seman-
tics. Specifically, the LHM gives meanings only to full programs, but not to pro-
gram components. No meanings are given to subcomponents of full programs.
And this clearly violates the intuitions of Prolog programmers. Prolog program-
mers undeniably give meaning to program components.

Consider the example of a teacher of introductory Prolog who gives the class
an assignment to write a predicate defining “sibling” in terms of a base “childOf”
predicate that will work for any definition of “childOf”, and then to exemplify
it with their own nuclear family. One student submits the program:

childOf(tessa,david).
childOf(jonah,david).
sibling(tessa,jonah).
sibling(jonah,tessa).

The teacher marks this wrong, so the student responds by asking what a correct
answer would be. And the teacher replies:

childOf(tessa,david).
childOf(jonah,david).
sibling(X,Y) :- childOf(X,P), childOf(Y,P), X \== Y.

To which the student replies that his program has exactly the same meaning,
i.e. LHM, as the teacher’s program, so it should be accepted as a reasonable
alternative correct answer to the problem. The teacher reminded the student
that she asked for a definition that would work for all childOf relations, as does
the rule above. But, replies the student, the meaning of that rule alone, under
the LHM, is that sibling is the empty relation, since that is the LHM of that
rule alone. Clearly there is a problem.

The problem is that the teacher wants a definition of sibling, that holds for
every value of the childOf relation, not only for the family of the student. But
the LHM semantics has nothing like this to say. It can give meaning only to
complete programs, here when sibling and childOf are both defined. But the

A Better Logical Semantics for Prolog 85

teacher gives a meaning, and wants the student to give that same meaning, to
a component of the program, the component consisting of the single rule for
sibling.

3 Clark Completion

An early proposal to provide a semantics for positive Prolog programs that
accounted for queries being false was made by Keith Clark in [4]. He said that
programs were not made up of individual Prolog clauses, but of Prolog defini-
tions. That is, the set of clauses that have the same predicate symbol in the head
together make up a definition of a relation. And that definition for a predicate
can be constructed from the rules for that predicate by putting them together
into one conditional formula whose head is the predicate with all distinct vari-
ables as arguments, and whose body comes from the disjunction of the bodies of
the rules. We introduce explicit existential quantifiers and equalities to ensure
that this single implication is equivalent to the set of original implications for the
predicate. And now, in this single formula, we change the if into an if-and-only-if,
which is intended to turn it into a definition.

The sibling rule becomes the definition:

sibling(X,Y) ⇐⇒ ∃P (childOf(X,Y) ∧ childOf(Y, P) ∧ X == Y) (1)

The childOf clauses become the definition:

childOf(X,Y) ⇐⇒ (X = tessa∧Y = david)∨ (X = jonah∧Y = david) (2)

Here, in this program, the singleton set of rules defining the childOf rela-
tion expresses the correct definition of the concept of sibling in terms of binary
relation of being a child of. A Herbrand structure, whose language includes the
two predicate symbols: sibling/2 and childOf/2, is a model of that formula if
it makes that formula true. A structure makes it true if for whatever relation it
assigns to childOf, it assigns the right sibling relation to the sibling predicate,
i.e., the sibling relation in the family represented by the relation for childOf.
So this semantics does provide a meaning to individual predicate definitions and
indeed exactly the meaning we (and our poor teacher) want; that the sibling
rule gives the correct definition for any possible family.

Since the Clark completion semantics does the right thing for this definition
and many, many others, why is it not the dominant semantics for Prolog?

4 So What’s Wrong with Clark Completion?

Indeed, there is a fly in the ointment; Clark completion doesn’t always work. It
works beautifully for the examples we have considered so far, but consider the
example of transitive closure:

tc(X,Y) :- edge(X,Y).
tc(X,Y) :- edge(X,Z), tc(Z,Y).

86 D. S. Warren and M. Denecker

which becomes under Clark completion:

tc(X,Y) ⇐⇒ edge(X,Y) ∨ ∃Z(edge(X,Z) ∧ tc(Z, Y)) (3)

But this formula does not define transitive closure as required. Actually, given
an edge relation, this may not define a relation at all. To define the tc relation,
it must be the case that for any particular edge relation, this formula uniquely
determines the set of tuples that tc is true of. But this formula doesn’t do that.

Consider the edge relation:

edge(a,a). edge(b,a).

Consider the two Herbrand structures, described by the set of ground formulas
true in them:

M1 = {edge(a,a), edge(b,a), tc(a,a), tc(b,a)}.
M2 = {edge(a,a), edge(b,a), tc(a,a), tc(b,a), tc(a,b)}.

These are both models of the tc if-and-only-if formula above and they have the
same interpretation for edge. M1 is clearly the transitive closure as intended. So
how can the tc(a,b) fact be true in M2 and it still be a model of (3)? Consider
the instance of (3):

tc(a, b) ⇐⇒ edge(a, b) ∨ ∃Z(edge(a, Z) ∧ tc(Z, b)) (4)

The left-hand is true in M2, but also the right hand is true: take Z=a! Hence
M2 is a model. Therefore, (3) does not (always) define a relation.

For those knowledgeable about FOL this does not come as a surprise. In
fact, there is no first-order (FO) formula that defines transitive closure. This is
a well-known fact (and limitation) of FOL.3

5 “Fixing” Clark’s Completion

Instead of giving up on Clark’s completion and settling for LHM, let’s try to
understand what went wrong and see if we can fix it without throwing out the
baby with the bathwater.

Clark’s name for these equivalences, definitions, suggests that such a collec-
tion of rules are viewed as a formal expression of a (non-formal) definition of the
concept expressed by the head predicate. That accords very well with program-
mers’ intuitions. The problem is however that in general, these equivalences
called “definitions” do not correctly formalize the non-formal definitions that
programmers understand when interpreting the rules. Let’s look more closely at
these equivalence formulas and how they work.

The form of a Clark formula for a predicate p is, schematically:

p(X) ⇐⇒ Ψ(X, p, q)

3 See a footnote in [6] for a proof.

A Better Logical Semantics for Prolog 87

where X is a sequence of variables, Ψ indicates some logical formula that contains
within it: X, occurrences of variables in the left-hand-side of the bi-conditional,
p, occurrences of atomic formulas with predicate p, and q, occurrences of atomic
formulas with predicates other than p. These q predicates are called predicate
parameters in this context.

If we fix the interpretation of the predicates q̄, we see that this equivalence
expresses that p is a fixpoint of the right hand side formula.

In fact, we saw that this was the case for the transitive closure example
just above. The two models M1 and M2 above are indeed the two fixpoints of its
completion definition, when the interpretation of the edge predicate is set to the
2-edged graph {edge(a, a), edge(b, a)}.

So, we see that the problem with Clark’s completion is that the parameterized
operators of some definitional if-and-only-if formulas have multiple fixpoints.

For this example, the fixpoint we want for the definition of transitive closure
is the least fixpoint, the one with the smallest relation, since that is the one that
indeed properly captures the transitive closure of the given graph. (The other,
larger fixpoint M2, has a “phantom” path, e.g., the “path” from a to b.) The
operator defined by a Clark definition is known as the immediate consequence
operator and is always a monotonic operator for any positive Prolog definition.
Every monotonic operator is known to have a least fixpoint. And it is this least
fixpoint that matches our intuition of what we want to define and is thus the
one we want to choose when defining relations.

So, the obvious solution is to use the least fixpoint of these Clark defini-
tions instead of all the fixpoints. But that can’t be expressed in FOL, as we’ve
mentioned. So, instead of using ⇐⇒ , we will extend the logic by introducing a
new symbol � for definitions, which can appear only in a formula generated by
Clark’s completion of a positive program. We next must define when such a �
formula is true in a (Herbrand) model.

Consider a Herbrand structure M that interprets all symbols in the � formula.
(It may include more.) To determine whether this formula is true in M , we need
to compute the least fixpoint for this formula and verify if it is equal to the
interpretation of the defined predicate in M . If it is, then the formula is true in
M ; if not, it is false in M . Now to construct the fixpoint, we begin with an initial
set of ground atoms obtained from the given structure by taking every atom for
any predicate parameter that is true in the structure. Then from this set we
iterate adding atomic formulas for the defined predicate that are immediately
implied by the right-hand-side of the � formula. We iterate until there is no
change (maybe infinitely many times, in which case we take the infinite union of
the intermediate sets). This produces our least fixed point. Indeed this is just the
well-known iteration of the TP operator, but where the values of the parameter
predicates are determined by the relations assigned to them by the Herbrand
structure.

For example, consider the Herbrand structure:

M3 = {edge(a, a), edge(b, a), edge(c, b), tc(a, a), tc(b, a), tc(c, b), tc(c, a), q(d)}

88 D. S. Warren and M. Denecker

We want to know whether the � formula:

tc(X,Y) � edge(X,Y) ∨ ∃Z(edge(X,Z) ∧ tc(Z, Y))

is true in M3. So we compute the least fixpoint, starting with the parameter
predicate facts, those for edge, that are true in the structure:

{edge(a, a), edge(b, a), edge(c, b)}
and iterate to add implied tc facts:

{edge(a, a), edge(b, a), edge(c, b), tc(a, a), tc(b, a), tc(c, b)}
{edge(a, a), edge(b, a), edge(c, b), tc(a, a), tc(b, a), tc(c, b), tc(c, a)}
{edge(a, a), edge(b, a), edge(c, b), tc(a, a), tc(b, a), tc(c, b), tc(c, a)}

The set is unchanged on this last iteration, so we have reached the fixpoint. Now
we check if the four tc facts in the fixpoint are exactly those in the structure
M3. In fact, they are so M3 makes this � formula true and is thus a model of
this formula. Notice that this � formula remains true when we have any other
additional facts for any predicates other than tc and edge. For example, M3 has
q(d) which had no effect on the truth or falsity of the tc � formula.

And we can see, by a similar (actually the same) construction, that:

{edge(a, a), edge(b, a), edge(c, b), tc(a, a), tc(b, a), tc(c, b), tc(c, a), t(a, c)}
is not a model of this formula.

So, our problem is solved: we have a logic of definitions with a Herbrand
model theory that gives the intuitively correct meanings to program components.

The meaning of a large component is the conjunction of the meanings of its
components, just as in Clark’s completion semantics. Note that the structure
M3 is also a model of the � formula obtained from the program component
defining the edge relations:

edge(a,a).
edge(b,a).
edge(c,b).

So M3 is a model of both the edge � formula and the tc � formula, and so is in
the intersection of their respective sets of models.

Thus, the meaning of an entire program is the conjunction of the meanings
of its component definitions; i.e., its models are the intersection of the sets of
models of its components; and thus agrees with the LHM for complete programs.
Notice that a model of a program component may have facts involving predicates
that are not symbols in the component. So a model of a full program may also
have relations for predicates not in the program. However, if we restrict those
models to the language of the program, they will all reduce to the LHM of the
program. So this semantics is consistent with LHM semantics.

Thus, all is well, except for ...

A Better Logical Semantics for Prolog 89

5.1 Mutually Recursive Definitions

The above story works only for definitions that do not involve mutual recursion.
To handle such mutual definitions, we must put the definitions of all mutually
defined relations together into one large definition, which will define all the
mutually defined relations at the same time with one least fixpoint. (If we don’t
do this, non-least fixpoints may sneak back in.)

Therefore our � definitional connective must actually connect multiple defi-
nitions of mutually defined relations. This is because, were we not to put them
together and take a single least fixpoint over all of them, we might again end up
with multiple fixpoints, and no definitions. So, to be correct, we must gather all
the rules for a given set of mutually defined predicates together, and take the
least fixpoint for all of them together. We don’t go into the details of this, but
it is not too difficult to do, only a bit messy. See [6] for details.

6 So What Have We Got?

Readers who have been paying attention will probably have noticed that what
we have done here is essentially to rediscover the notion of inductive definitions
of relations. In fact, our use of � formulas to characterize the least fixpoint of
definitions is similar to the inductive definition logic introduced in [9]. This logic
is the first presentation of fixpoint logic.

Recall the notion of an inductive definition of a set. An inductive definition
consists of a set of inductive rules, each of which consists of a set of objects as the
condition and an object as the consequent. A set S is closed under an inductive
rule if when all the condition objects are in S, then the consequent is also in S.
The set defined by a set of such inductive rules is the smallest set closed under
all the rules. And that smallest set is the least fixpoint.

Note that the set of atoms true in the LHM of a program P is exactly the set
defined by the inductive rules obtained by considering each ground instance of a
Prolog rule in P as an inductive rule whose condition is the set of atoms in that
Prolog rule body, and the consequent is the head atom in that Prolog rule. This
follows directly by noting that the well-known iterated TP construction exactly
constructs the smallest set closed under the inductive rules.

Similarly the least fixpoint of the parameterized operator is exactly the mean-
ing of those rules when they are treated as an inductive rules to define a relation,
in terms of its parameter relations. In fact, going to the trouble of combining
all the bodies of the various rules defining a particular relation, as Clark does,
actually just obscures what started out as a pretty obvious inductive defini-
tion. Others have noticed that Prolog definitions look very much like inductive
definitions. All we are saying here is that they indeed are inductive definitions.

What we end up with is a logic with a Herbrand model theory that incor-
porates inductive definitions. Others, for example [1] and [8], have studied the
logic of inductive definitions. For this paper, for Prolog programmers, we have
looked only at Herbrand models. But these structures, and the logic, can be
generalized to Tarskian structures, in which case extra assumptions are required

90 D. S. Warren and M. Denecker

to constrain them to be (isomorphic to) Herbrand structures when necessary for
Prolog programs. This more general logic is the logic described in [6] and forms
the basis of the FO(ID) framework of Denecker, et al. [12].

7 Negation

For 50 years now, the general conviction is that the negation not in Prolog can-
not be classical negation ¬. This belief stems from the fact that Horn theories
do not entail the falsity of atoms. But the definitional view sheds a completely
different light on the issue. Indeed, definitions do semantically entail the falsity
of any defined atomic formula A that is false in the LHM. Therefore, any pro-
gram interpreted as an inductive definition semantically entails the truth of the
classically negated atomic formula ¬A. As such the finite failure inference rule
can be understood to infer the falsity of A, and hence, the truth of the classically
negated ¬A. As such, negation is here classical negation, not negation-by-failure.
It is the meaning of the “:-” symbol that has changed; it is not implication but
indicates an inductive rule. To conclude, the definitional view on logic programs
sheds a different light on the nature of language constructs: negation as failure
is indeed classical negation! It is the rule operator that is non-classical: much
stronger than a material implication, it is a definitional operator of inductive
definitions.

8 Discussion

As a final example of the importance of providing meaning for program compo-
nents, consider Datalog, a sublanguage of Prolog in which there are no complex
data structures, only constants. In Datalog one has a set of stored relations, the
extensional database, and then one writes queries (or views) to ask questions of
the database. Datalog programmers must understand their view definitions and
queries independent of any specific extensional database state. The whole point
of writing a query is to find out something unknown about the current database
state. For example, if we define a view and write a query to it, such as:

rich(Emp) :- employee_sal(Emp,Salary), Salary > 300000.

| ?- rich(david).

we are trying to get information about an unknown extensional relation
employee sal. We want to know if, in that unknown relation, David’s salary
is greater than $300,000. That is why we wrote this query. It doesn’t make sense
to think that the extensional database state, i.e., the contents of the relation
employee sal must be known before we can understand this query, as is done
in the original LHM program semantics. That is exactly backwards: we under-
stand the view and query and use that understanding to find out something
we don’t know about the extensional database. The semantics provided in this
paper explains how this actually works.

A Better Logical Semantics for Prolog 91

Some discussions of Prolog semantics include a concept called the “closed
world assumption,” the intuitive idea being that the only things that are true
are in some sense things that one knows are true; everything else is false. And
then the choice of the least Herbrand model of the LHM theory is said to follow
from this idea. Notice that in our treatment, there is no mention of “closed
world.” The “closure” in our framework (as in Clark’s) is done at the level of
the definition, not the “world.” And that “closure” is part and parcel of an
inductive definition, a notion with a long history in classical mathematics. So,
we might summarize this by saying that for symbols appearing in a program the
idea of a closed world assumption is unnecessary; the closure we need is at the
level of definitions, not the level of the entire theory (or program). Closure at
the program level does not allow for the treatment of program components and
thus for a compositional semantics. And closure at the level of definitions comes
automatically with the idea of inductive definition.

9 Conclusion

We have extended first-order logic by adding a new kind of “formula,” the induc-
tive definition using the new connective �. And we have described how these
inductive definition formulas are true or false in Herbrand models. The only
(but it is a big only) change to Clark’s completion semantics is that we have
changed the idea of definition from first-order definition to inductive definition.
One way to think about it is that this semantics now chooses only the least
fixpoint as a model of the definition, not any fixpoint as Clark’s FO definitions
do.

This has allowed us to construct a semantics for (positive) Prolog that is
compositional, i.e., in which the meaning of a program is a function (here con-
junction) of the meanings of its components. This is not only theoretically ele-
gant, it is fundamentally practical. It correctly reflects and models how people
write and understand large programs, one piece at a time.

References

1. Aczel, P.: An introduction to inductive definitions. In: Barwise, J. (ed.) Handbook
of Mathematical Logic, pp. 739–782. North-Holland Publishing Company (1977)

2. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In:
Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp.
89–148. Morgan Kaufmann (1988)

3. Chandra, A.K., Harel, D.: Horn clauses queries and generalizations. J. Log. Pro-
gram. 2(1), 1–15 (1985)

4. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, Symposium on Logic and Data Bases, Centre d’études et de recherches de
Toulouse, France, 1977, Advances in Data Base Theory, pp. 293–322, New York
(1977). Plemum Press

5. Denecker, M., Ternovska, E.: A logic of nonmonotone inductive definitions. ACM
Trans. Comput. Log. 9(2), 14:1–14:52 (2008)

92 D. S. Warren and M. Denecker

6. Denecker, M., Warren, D.S.: The logic of logic programming. CoRR,
cs.LO/2304.13430, arXiv/2304.13430 (2023)

7. Lloyd, J.W.: Foundations of Logic Programming, 2nd (edn.). Springer, Heidelberg
(1987). https://doi.org/10.1007/978-3-642-96826-6

8. Martin-Löf, P.: Hauptsatz for the intuitionistic theory of iterated inductive defini-
tions. In: Fenstad, J.E. (ed.), Second Scandinavian Logic Symposium, pp. 179–216
(1971)

9. Moschovakis, Y.N.: Elementary Induction on Abstract Structures. North-Holland
Publishing Company, Amsterdam-New York (1974)

10. Przymusinski, T.C.: Perfect model semantics. In: Kowalski, R.A., Bowen, K.A.
(eds.) Logic Programming, Proceedings of the Fifth International Conference and
Symposium, Seattle, Washington, USA, August 15–19, 1988, vol. 2, pp. 1081–1096.
MIT Press (1988)

11. van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a program-
ming language. J. ACM 23(4), 733–742 (1976)

12. Vennekens, J., Denecker, M., Bruynooghe, M.: FO(ID) as an extension of dl with
rules. Ann. Math. Artif. Intell. 58(1–2), 85–115 (2010)

13. Warren, D.S.: Introduction to prolog. In: Warren, D.S., Dahl, V., Eiter, T.,
Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog: 50 Years of Future,
LNAI 13900, pp. 3–19. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
35254-6 1

https://doi.org/10.1007/978-3-642-96826-6
https://doi.org/10.1007/978-3-031-35254-6_1
https://doi.org/10.1007/978-3-031-35254-6_1

The Janus System: A Bridge to New
Prolog Applications

Carl Andersen1(B) and Theresa Swift2

1 Raytheon BBN Technologies, Arlington, USA
carl.andersen@rtx.com

2 Johns Hopkins Applied Physics Laboratory, Laurel, USA
Theresa.Swift@jhuapl.edu

Abstract. Despite its strengths, Prolog is not widely used in commer-
cial settings, in part due to a lack of external packages and to difficulties
integrating Prolog with more popular languages. We describe the Janus
system, which tightly combines XSB Prolog and Python, and how such
a hybrid system helps address these obstacles.

1 Introduction

After 50 years, the state of Prolog exhibits both strengths and weaknesses. Prolog
is widely acknowledged as the leading framework for employing logical reasoning
in general programming. Even its detractors admit that Prolog represents an
important alternative to imperative and functional programming and that many
of its features (e.g., unification, representation of object structure via terms,
query-based computation) are intriguing. Additionally, Prolog is still a living
language, with many actively maintained systems that support extensions to
vanilla Prolog such as constraint-based reasoning, tabling, program analysis,
multi-threading and probabilistic deduction.

Indeed, one sign of Prolog’s health is that, as of this writing, there are
numerous actively-maintained Prologs that are (usually) ISO-compliant includ-
ing SWI [17], SICStus [3], Ciao [8], YAP [12], ECLIPSe [13], GNU Prolog [6],
Picat1 [18], Trealla2, Tau3 and XSB [15]. q Several of these Prologs are the
results of over a decade of effort, and all have differing strengths. For instance,
Picat, SICStus, and Eclipse are excellent for constraint-based reasoning, Ciao is
1 Picat has a non-ISO syntax, but it is based on the B-Prolog engine [19].
2 https://github.com/trealla-prolog/trealla.
3 http://tau-prolog.org.

This research was developed with funding from the Defense Advanced Research
Projects Agency (DARPA) under contract number FA8750-18-C-0001. The views, opin-
ions and/or findings expressed are those of the authors and should not be interpreted
as representing the official views or policies of the Department of Defense or the U.S.
Government. Distribution Statement “A” (Approved for Public Release, Distribution
Unlimited).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 93–104, 2023.
https://doi.org/10.1007/978-3-031-35254-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_8&domain=pdf
https://github.com/trealla-prolog/trealla
http://tau-prolog.org
https://doi.org/10.1007/978-3-031-35254-6_8

94 C. Andersen and T. Swift

particularly strong for program analysis and flexible syntax, YAP is especially
fast for single-threaded SLDNF, SWI offers a fast and stable multi-threaded
engine, and XSB has pioneered a wide array of tabled deduction strategies.

Nonetheless, the authors, who have over 50 years of combined experience in
industry, have seldom seen Prolog adopted for projects except at our instiga-
tion. One immediate reason for this is developer unfamiliarity: in the U.S. few
developers learn Prolog in Computer Science courses, which instead emphasize
popular imperative languages. Many developers are reluctant to confront the
learning curve associated with resolution, backtracking, unification, and build-
ing complex objects from terms and lists.

One avenue for coaxing developers to learn and use logic programming is to
make Prolog more powerful and easier to use. We believe that addressing the
following issues, although they are not exhaustive, will help Prolog become more
widely used in industry. They are listed in what we believe is their increasing
importance.

– Embeddability. When Prolog is used in industry, it is rarely the main imple-
mentation language for projects (Sect. 4.1 describes an exception). Instead,
projects are written in Java, Python, C++, C# or Javascript with Prolog
performing specific functionality. As discussed in Sect. 2, although several of
the Prologs mentioned above can be called by Java, Python or C#, few Pro-
logs interface to all three, or to newer languages like Rust or Julia. Even
when interface frameworks exist, they are often difficult to set up and require
unintuitive commands and data transformations.

– Graphical Interfaces and IDEs. Contemporary Prologs offer few facilities for
development of graphical applications; SWI Prolog’s xpce is an exception.
In particular, adding web front ends is a pain point for most Prolog appli-
cations. A related gap is the dearth of graphical Integrated Development
Environments (IDEs) for Prologs, comparable to those for other languages,
such as PyCharm/IntelliJ or Visual Studio Code.4 Of course, many Prologs
do include sophisticated command line interpreters (CLIs) that enable rapid
code iteration. However, contemporary developers usually prefer graphical
IDEs that show execution in the context of the original code files. While
plugins for Prolog sometimes exist for major graphical IDEs, they are typ-
ically limited in functionality, and rarely offer full graphical debugging, nor
associated capabilities such as value inspection and breakpoints.

– Packages. The combined number of packages available in Prolog (probably
less than 1000) is minuscule compared to those offered by such languages as
Python, JavaScript, or Java (well over 100,000 each). In practice, the lack
of a large package base often makes development in Prolog uneconomical,
preventing its adoption.

Our system, Janus, addresses these issues by integrating Prolog and Python
into a single system, putting Prolog at a Python programmer’s fingertips and

4 Here again, SWI’s xpce-based debugger is an exception.

The Janus System: A Bridge to New Prolog Applications 95

vice-versa. Both languages execute within a singe process: this allows the over-
head of calling one language from another to be extremely low, and supports
Janus’s fast bi-translation of large, complex data structures between languages.5

Janus is automatically configured and available when versions 5.0 or later
of XSB are installed. Alternately, Janus also supports configuring and installing
XSB for Python programmers via the Python package manager pip.6 The Janus
code is compact and has already been ported to lvm Prolog developed by Graph-
Stax, Inc., where it is being used in internal applications.

Although Janus is still new, we show that in several projects, it has directly
addressed the package problem by making the huge ecosystem of Python pack-
ages usable in Prolog code with little effort. These include a government research
project (DARPA AIDA), along with several industrial research projects (cf.
Sect. 4). The application areas include natural language processing, visual query
answering, geospatial reasoning, and handling semantic web data. Janus has
also addressed the embeddability problem by enabling the use of XSB within a
Python-based robotics application (Sect. 4.2). Less progress has yet been made
using Janus in IDEs and graphical interfaces, although it has supported XSB use
in Jupyter notebooks and we believe that Janus provides a natural foundation
for such work.

This paper focuses on the impact of Janus for applications, while a companion
paper [14] covers fully its implementation and performance. Accordingly, our
paper is structured as follows. After presenting related work, we briefly outline
the architecture of Janus in Sect. 3.

2 Related Work

Table 1 provides a summary of foreign language interfaces for various Prologs.
Most of the Prologs mentioned in Sect. 1 are written largely in C and, so offer
bi-directional interfaces with C/C++. Exceptions are Tau Prolog written in
Javascript, and Scryer written in Rust. Many Prologs offer two-way Java inter-
faces, while a few offer interfaces to Python or Javascript, or support for .NET.7
Some of these interfaces have proven quite useful: for example in the U.S. Cus-
toms Automated Targeting System8 Java calls SICStus Prolog millions of times
per day, every day, for name-address standardization [5].

Many interfaces are implemented (e.g. SICStus to .NET, XSB to Java) via
socket connections to a separate process running the other language. This app-
roach is workable for many use cases, but introduces unacceptable latencies for
tightly coupled applications. Also, some interfaces can be non-trivial to set up

5 A separate approach to cobinding Python and Prolog functionality is the natlog
interpreter, written in Python [16].

6 A beta version of the pip interface is available through https://test.pypi.org/project/
python-xsb-installer.

7 SICStus also offers a general-purpose SON-RPC library.
8 www.dhs.gov/sites/default/files/2022-05/privacy-pia-cbp006%28e%29-ats-

may2022.pdf.

https://test.pypi.org/project/python-xsb-installer
https://test.pypi.org/project/python-xsb-installer
www.dhs.gov/sites/default/files/2022-05/privacy-pia-cbp006%28e%29-ats-may2022.pdf
www.dhs.gov/sites/default/files/2022-05/privacy-pia-cbp006%28e%29-ats-may2022.pdf

96 C. Andersen and T. Swift

Table 1. Foreign Language Interfaces between Prologs/ Python and other languages.
Here, ‘f’ = ‘from’, ‘t’ = ‘to’.

C C++ Java Javascript Julia .NET Python Rust

Ciao f/t f/t f/t f/t
Eclipse f/t f/t f/t
GNU f/t f/t
Picat f/t f/t
Scryer f/t
SICStus f/t f/t f/t X
SWI f/t f/t f/t f/t f/t f/t
Tau f/t
Treala t
XSB f/t f/t f/2
YAP f/t f/t f/t
Python f/t f/t f/t f/t f/t X – f/t

(e.g. XSB to C, which requires file wrappers) and to use (e.g. Interprolog, which
uses a complex type syntax). Finally, many of the interfaces are third-party (not
written by the system developers) and so their quality may vary.

Three factors taken together distinguish Janus and its use. First, Janus
tightly combines Prolog and Python into a single process. Second, its auto-
matic bi-translation (Sect. 3) allows large and complex data structures to be
communicated from one language to another without requiring special declara-
tions. As will be discussed in subsequent sections, the result of these two factors
is that Janus is extremely fast. Third, specialized expertise about compilation
and linking is handled by the Janus configuration process, allowing transparent,
on-demand compilation for Prolog and Python modules, and on-demand loading
of Python modules when called by Prolog. These features are fully supported
for Python modules even when they call other languages, such as C.

3 A Brief Review of the Janus API and Performance

This section briefly presents aspects of Janus that have been used in applications.
The Janus API and performance are fully described in [14] and the XSB manual.

Prolog and Python Data Structures. In part because of its dynamic typing,
Prolog’s data structures are remarkably simple: in addition to base datatypes
such as atomic constants, integers and floats, all data structures are logical terms.
The base datatypes of Python are similar to those of Prolog, while its constructed
types are also simple: lists, sets, tuples, and dictionaries.

The simplicity of data structures in each language enables Janus to bi-
translate Prolog and Python data structures in a transparent manner. For

The Janus System: A Bridge to New Prolog Applications 97

instance, Python and Prolog lists have the same syntax, while a Python tuple
such as (a,1,[b,c]) is translated to a Prolog term "(a,1,[b,c]) – i.e., a term
with the same arity but whose functor is the empty string. A Python dictionary
is recursively translated to a pyDict/1 term whose argument is a list of 2-ary
terms, each of which represent a key-value pair. For instance, the dictionary

{"name": "Bob", "languages": ["English", "GERMAN"]}

is translated to the Prolog term

pyDict([’’(name,’Bob’),’’(languages,[’English’,’GERMAN’])])

Prolog Calling Python. The advantage of bi-translation can be seen from the
following Janus library example.

Example 1. The Python wikidataIntegrator package9 provides a wrapper to
access Wikidata via the MediaWiki API. It returns (sometimes copious) infor-
mation about a Wikidata concept (Qnode or Pnode) as a JSON structure or
Python dictionary. Within Janus the XSB goal:

pyfunc(xp_wdi,get_wd_entity(Qnode),Json)

executes several steps. First, Janus automatically loads if needed the Python
xp_wdi andwikidataintegrator modules along with their supporting Python
packages. Once loaded, wikidataintegrator calls the Wikidata REST server,
and creates a large Python dictionary out of the Json returned from the server.
Janus then translates the Python dictionary to a Prolog term that can be
searched in a manner analogous to how Python dictionaries are searched.

Although the xp_wdi package uses a small amount of Python for the interface,
the code is included simply for ease of use. In fact, the wikidataintegrator
package could be used without writing any Python code, although this would
require slightly more sophistication on the Prolog side.

Python Calling Prolog. The bi-translation sketched in Sect. 3 is also used
when Python calls Prolog, where several additional features need to be addressed.

Non-determinism. Calls to a non-deterministic goal G are handled by building
a Python list or set in a manner that resembles list or set comprehension to a
Python programmer.

Logical Variables. Since Python does not support logical variables, Janus calls
are structured as a sequence of ground arguments followed by a sequence of
uninstantiated arguments for return values.

Truth Values of Answers. In systems like XSB or SWI that support the well-
founded semantics, a given answer to a goal G may have the truth value true or
undefined. As a result answers can be returned with their explicit truth values.
9 https://github.com/SuLab/WikidataIntegrator.

https://github.com/SuLab/WikidataIntegrator

98 C. Andersen and T. Swift

Example 2. Janus is initialized from Python by a directive such as import
janus, which in addition to importing Python code for px dynamically loads
and initializes XSB within the Python process. For brevity we show an example
using jns_qdet(), a function specialized to call deterministic goals.

Ans,TV = jns_comp(’basics’,’reverse’,[1,2,3,(’t1’,’t2’),{’a’:{’b’:’c’}}])

which is translated to Prolog to call
?- basics:reverse([1,2,3,’’(t1,t2),pyDict([’’(a,pyDict([(b,c)])]))

Once jns_qdet() returns the Python command print(Ans + ’ / ’ + TV)
prints out the list comprehension

[{’a’: {’b’: ’c’}}, (’t1’, ’t2’), 3, 2, 1] / 1

Since TV is 1, this means that the answer is true in the well-founded semantics.

3.1 Performance

In the implementation of Janus, low-level C-APIs are used both for Python
and XSB, so that a terms on Prolog’s heap are quickly translated to objects
on Python’s heap and vice-versa. The translation is very fast – an element in a
list, set, tuple or dictionary is translated and created in 30–90 ns on a moderate-
speed server. Tests show that translation scales linearly with data structures
containing millions of elements translated and copied in under a second. The
use of bi-translation makes the C code for calls simple and their overhead low.
When only a small amount of data is transferred between systems close to a
million round-trip calls can be made from Prolog to Python. Round-trip calls
from Python to Prolog are more expensive, with around a hundred round-trip
calls possible per second.

4 Applications Using Janus

4.1 DeepContent: Automated Question Answering for DARPA
AIDA

BBN used XSB and Janus extensively in its work on DARPA’s Active Interpre-
tation of Disparate Alternatives (AIDA) project. AIDA focused on two Natural
Language automation tasks: Question Answering and Answer Summarization.
After extracting semantic knowledge graph content from thousands of textual
and video news reports, AIDA performers assembled hypotheses from the graph.
Each hypothesis explained some real-world event of interest by answering stan-
dard (who, where, when, why, and how) questions. Here, the AIDA program
addressed contemporary themes of information conflict by asking performers to
identify conflicting hypotheses. For example, in explaining the 2014 crash of an
airliner over Ukraine, systems often identified two competing hypotheses (among
many) in the data. The first was that Ukrainian separatists mistakenly shot down

The Janus System: A Bridge to New Prolog Applications 99

the airliner using Russian-supplied missiles. The second was that the plane was
destroyed by the Ukrainian Air Force.

The BBN team used Prolog as its primary programming language for Deep-
Content, its data analysis and hypothesis assembly pipeline. Despite the size
of AIDA’s knowledge graphs (hundreds of millions of triples), the graphs were
maintained in XSB, which executed a series of complex analytics scalably and
in comparable runtime (1–2 h) to imperative approaches used by other perform-
ers. A full description of the pipeline is found in [1,2]; we focus here on Janus’
contributions.

Prolog was the choice for AIDA’s semantic search and analytics because of
Prolog’s integration of backtracking search (made efficient by tabling), query-
oriented processing, and imperative (side-effect) functions. Our experience is that
Prolog is far more agile and requires many fewer lines of code than, for example,
a Java+SPARQL approach to writing software processing Semantic Web data.
This is particularly true when an application requires advanced reasoning. For
AIDA, BBN quickly implemented a Prolog meta-interpreter performing fuzzy
query processing that we estimate would have required 5X effort and code lines
in an imperative language.

Janus enabled key capabilities at several points in BBN’s AIDA pipeline.
Janus’ first use was in inter-document co-reference resolution of the many enti-
ties mentioned in AIDA documents. Here, Janus enabled low-latency direct calls
to a variety of Python-based NL packages and interfaces. These included Elas-
ticsearch (for text indexing and geo-queries), fastText, MUSE, BERT, and Faiss
(for text embeddings), and SpaCy (for parse trees), among others.

All these packages have sophisticated capabilities that our team could not
have efficiently replicated in Prolog (or in Python!). Integration of these capa-
bilities significantly boosted the accuracy of our co-reference code. Importantly,
Janus enabled tight integration of these Python calls within larger Prolog-based
query processing routines executing thousands of times per second. In this con-
text, a loose Prolog-Python integration via shell calls or sockets would have
slowed the overall pipeline unacceptably.

Additionally, Janus’ ease of use, requiring only an import and the use of spe-
cialized calls, made it easy to develop in both languages and generally preserved
Prolog’s conciseness and readability. Usually, the time required to integrate some
new Python package was dominated by learning and understanding the package
itself. Developing and testing associated Janus code often took only 1–2 h.10

Later in the pipeline, our team required a simple priority queue support-
ing insertion/deletion of arbitrary keys as part of the meta-reasoner mentioned
earlier. In our experience, one weakness of Prolog is the difficulty of imple-
menting standard data structures requiring indexing and destructive assignment
so that they are scalable and efficient. In this case, we explored a series of
Prolog-based priority queue implementations. SWI’s heaps.pl (implementing a
classic pointer-oriented algorithm) required logarithmic to linear time for arbi-
trary inserts/deletes, causing unacceptable slowdown of the larger application.

10 About a dozen Janus package libraries are included in the XSB distribution.

100 C. Andersen and T. Swift

We then augmented the heaps package with XSB’s trie package, which achieved
efficient indexing required for inserts/deletes, but also introduced unacceptable
copying of the large terms we needed to index. When further Prolog elaborations
failed to achieve acceptable speeds, we very quickly stood up a Janus call to a
Python priority queue package, which performed acceptably. Team members still
disagree about whether a scalable priority queue is possible in Prolog, but the
team is in agreement that using Janus can save time in solving prosaic problems.

In the late stages of AIDA, DARPA added a requirement that users leverage
Wikidata as a background knowledge base, and we describe the Janus library
for this as a case study. Wikidata is an enormous knowledge base (>13B triples
in 2021) that is challenging to load, even on capable servers with terabytes of
RAM. After failing to load Wikidata using more conventional relational database
methods, BBN used Janus to solve the problem. We successfully loaded Wikidata
using rdflib_HDT, an addon to the popular Python-based rdflib11 triple store.
The addon leverages the HDT compression system, which in turn allows query
access to RDF knowledge bases compressed to a 10X factor. The library jns_wd
allowed our Prolog application to efficiently call Wikidata through rdflib_HDT
at a negligible performance penalty.12

The basic jns_wd query is: wd_query(?Arg1,?Arg2,?Arg3,?Lang). This
query allows Prolog to backtrack through Wikidata triples using various argu-
ment instantiation patterns, potentially filtering the Arg3 results using a lan-
guage designator, Lang. Internally, Wikidata uses URLs for non-literals, but
ensuring a query uses the correct URL is tedious and error-prone. Accordingly,
the library performs transformations that enable queries to use short abbrevia-
tions of the URLs (e.g., Q144 for http://www.wikidata.org/entity/Q144).

4.2 RAACE, a BBN Autonomy Project

DeepContent’s architecture was unusual in that XSB not only performed rea-
soning, but orchestrated a variety of Python libraries. Users more familiar with
Python may choose to employ the reverse architecture, in which XSB performs
an inference function within a larger Python-based system. The recent addition
to Janus for supporting Python-to-Prolog calls, made this possible.

BBN used such an architecture in Resource Aware Autonomy for Collabora-
tive Effects (RAACE), a recent internal research project exploring autonomous
agents. Here, Prolog was used to perform Situational Awareness (SA), plan-
ning and plan monitoring functions within a larger agent autonomy architec-
ture written in Python. This architecture builds upon Robot Operating System
(ROS) [11], a widely used autonomy framework supporting both Python and
C++ development and offering many capabilities, including sensing, navigation,
simulation, and testing, among others. Here, the advantages of conforming to
existing Python autonomy code bases mandate that Prolog be a supporting
player.

11 https://rdflib.readthedocs.io/en/stable.
12 WikidataInegrator, mentioned in Sect. 3 augmented the Wikidata-HDT snapshot.

http://www.wikidata.org/entity/Q144
https://rdflib.readthedocs.io/en/stable

The Janus System: A Bridge to New Prolog Applications 101

As with DeepContent, a low-latency Python-Prolog interface is advantageous
for autonomy, in this case because an agent may need to update seen its SA and
plan many times a second. Janus-px achieves the needed latency and enables
a concise codebase as seen in DeepContent. Our XSB Prolog reasoner initially
performs SA by updating its knowledge base with the latest sensor inputs. Here,
Janus’ translation of arbitrary Python data structures into intuitive Prolog terms
enables straightforward use of incoming Python data with little effort. In this
case, we convert incoming Python multi-level dicts (hash tables) to semantic
graphlets referencing an in-house autonomy ontology representing observations,
events, platform capabilities, world objects, and plan constructs.

One important Janus feature that we used here was making round trip calls,
i.e. Python calling Prolog calling Python. This feature allowed our Prolog code
to leverage Python packages with the same benefits seen in DeepContent.

We believe that XSB Prolog is an ideal language for autonomy program-
ming when supplemented with Janus. Prolog’s semantic reasoning model easily
represents and manipulates evolving, declarative sensor data streams and natu-
rally performs sophisticated SA reasoning and organized planning. In addition
to Janus, XSB has attractive autonomy capabilities such as rigorous negation,
tabling, and Hilog-based metareasoning. While many autonomy engines already
use Prolog as a core component [9], the addition of Janus to fill Prolog capability
gaps is likely to greatly increase Prolog use in this area.

4.3 Understanding Visual Information

Visual Query Answering (VQA), i.e., answering questions about image or video
data, is an actively researched topic. Probably the leading approach to this
problem uses scene graphs [10], a type of knowledge graph that represents both
images and objects within each image as nodes; and image and object relations
as edges, Typically, the images themselves are related by spatial or temporal
measures. Objects within an image have relations that may be global, based on
non-intersecting bounding boxes, or local if the bounding boxes intersect. The
problem of Scene Graph Generation (SGG) is also a highly active topic. The
generation of local relations within an image is usually performed by specialized
neural models that analyze the intersections or unions of bounding boxes. Global
relations are often generated by a mixture of neural models and knowledge-driven
relations [4].

Along with neural models, XSB and Python are used in an ongoing commer-
cial proof of concept project that involves both SGG and VQA. A mixture of
Python and Prolog is used in SGG to generate spatial global object relations.
For the VQA, an English query is analyzed by SpaCy using trained models for
entity and relation extraction. The extracted entities and relations together with
information about their textual spans effectively form a small graph, which is
translated by XSB into an executable query. Currently, the query is executed by
XSB, which makes use of Python geospatial and other packages.

Although this project only recently began, the use of Janus has so far allowed
development work in Python and Prolog to be performed largely independently.

102 C. Andersen and T. Swift

Ongoing development work aims to allow SGG and VQA functionality to be
invoked either by Python or Prolog so that development and testing of the
integrated system can be performed by developers in their preferred language.

4.4 A Demonstration of Intelligent Orchestration

A smaller R&D project funded by a large defense contractor used the Ergo sys-
tem (based on XSB) [7] and Python together to 1) interpret simple natural
language statements about changing situations; 2) understand the significance
of the changes to concrete plans to achieve a high-level goal; and 3) use geospa-
tial data to reason about how to achieve the goal in an altered situation. For
this, Ergo used Janus to interpret the output of SpaCy on the natural language
statements and to query Google Maps for directions and other information. Ergo
then devised new concrete plans to achieve the high-level goal.

5 Discussion

The preceding sections show how similarities between Python and Prolog – their
implementation in C, dynamic typing, and the simple recursive nature of their
data structures – support a fast, powerful interface resulting in new applications
and use cases for Prolog. In this section, we revisit the three issues introduced
in Sect. 1 and review the extent to which Janus mitigates each.

Janus has the most impact upon the Packages problem, by enabling easy use
of the vast Python package ecosystem in Prolog. Over a dozen Python packages
for natural language analysis, vector similarity search, geospatial information,
access to Wikidata, and interfaces to semantic web data all proved key to the
Prolog applications described in Sect. 4; libraries for most of these packages are
now included in the XSB distribution and repo. In addition to XSB applica-
tions, the very recent port of Janus to a commercial Prolog is being used for
customer demos. Large package bases are commonly found in languages with
robust frameworks for classes and complex object definition. It is surprising that
the availability of LogTalk across many different Prologs has not, to our knowl-
edge, led to a vibrant Prolog class and package ecosystem.

Mitigation of the Embeddability problem was shown in Sect. 4.2, where Pro-
log is used for specialized reasoning within a larger autonomy application. In
addition, the Python-Prolog interface is planned to support the multi-language
development approach to VQA discussed in Sect. 4.3. However, Janus has not
yet been used to construct an interface from a language such as Rust or Julia.

Janus has had less impact upon the problems of Graphical Interfaces and
IDEs thus far. We have enabled Jupyter notebooks to directly call XSB, a
functionality available in the XSB distribution. However, while XSB calls to
Python graphics libraries like TkInter and plotty are occasionally found in
the projects of Sect. 4, we have not yet developed a major application fronted
by Python graphics or developed Python graphics-centric XSB libraries. We are
hopeful that such libraries will be developed over the next year. We believe these

The Janus System: A Bridge to New Prolog Applications 103

libraries can in turn be leveraged to create a powerful Prolog IDE. The need for a
graphical IDE is particularly pressing for Prolog due to the well-known learning
curve imposed by core Prolog features such as backtracking, unification, and cuts
– not to mention tabling, constraint satisfaction and other advanced features.

In summary, Janus provides a viable solution to the package problem, has
begun to address the embeddability problem, but has so far had less impact on
the problem of graphical interfaces and IDEs. Although work remains to address
these problems, without Janus the applications of Sect. 4 either would have been
less reliant on Prolog or would not have used Prolog at all.

Disincentives for using Prolog in industry—lack of native packages, lack of
IDEs, lack of proficient programmers – hamper all but the most popular lan-
guages. However Prolog’s strengths are unique, and steadily accumulate as new
research results move into Prolog systems year after year. A recent panel at a
logic programming conference had the title “No Logic is an Island.” We believe
that building bridges from Prolog to hugely popular languages like Python will
contribute to Prolog still thriving in its hundredth year.

References

1. Andersen, C., Swift, T., Ki, A., Gerken, M., Carroll, D., Harless, C.: Improved
entity resolution and relaxed query hypothesis generation using SAMSON-2020.
In: 2020 NIST Text Analysis Conference on Streaming Multimedia Knowledge
Base Population (SM-KBP) (2020)

2. Andersen, C., et al.: KB construction and hypothesis generation using SAMSON.
In: 2019 NIST Text Analysis Conference on Streaming Multimedia Knowledge
Base Population (SM-KBP) (2019)

3. Carlsson, M., Mildner, P.: SICStus Prolog - the first 25 years. Theory Pract. Logic
Program. 12(1–2), 35–66 (2012)

4. Chen, V., Varma, P., Krishna, R., Bernstein, M., Re, C., Fei-Fei, L.: Scene graph
prediction with limited labels. In: International Conference on Computer Vision,
pp. 2580–2590 (2019)

5. Cui, B., Swift, T.: Preference logic grammars: fixed-point semantics and application
to data standardization. Artif. Intell. 138, 117–147 (2002)

6. Diaz, D., Abreu, S., Codognet, P.: On the implementation of GNU Prolog. Theory
Pract. Logic Program. 12(1–2), 253–282 (2012)

7. Grosof, B., Kifer, M., Swift, T., Fodor, P., Bloomfield, J.: Ergo: a quest for declar-
ativity in logic programming. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo,
M., Kowalski, R., Rossi, F. (eds.) Prolog: The Next 50 Years. LNCS (LNAI),
vol. 13900, pp. xx–yy. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
35254-6_18

8. Hermenegildo, M.V., et al.: An overview of Ciao and its design philosophy. Theory
Pract. Logic Program. 12(1–2), 219–252 (2012)

9. Ingrand, F., Ghallab, M.: Deliberation for autonomous robots: a survey. Artif.
Intell. 247, 10–44 (2017)

10. Johnson, J., Krishnan, R., Stark, M., Li, L., Shamma, D., Bernstein, M., Fei-Fei,
L.: Image retrieval using scene graphs. In: International Conference on Computer
Vision, pp. 3668–3678 (2015)

https://doi.org/10.1007/978-3-031-35254-6_18
https://doi.org/10.1007/978-3-031-35254-6_18

104 C. Andersen and T. Swift

11. Quigley, M., et al.: Ros: an open-source robot operating system. In: ICRA Work-
shop on Open Source Software (2009)

12. Santos Costa, V., Damas, L., Rocha, R.: The YAP Prolog system. Theory Pract.
Logic Program. 12(1–2), 5–34 (2012)

13. Schimpf, J., Shen, K.: ECLiPSe - from LP to CLP. Theory Pract. Logic Program.
12(1–2), 127–156 (2012)

14. Swift, T., Andersen, C.: The Janus system: multi-paradigm programming in Prolog
and Python. In: Proceedings of the International Conference on Logic Program-
ming. EPTCS (2023)

15. Swift, T., Warren, D.S.: XSB: extending the power of Prolog using tabling. Theory
Pract. Logic Program. 12(1–2), 157–187 (2012)

16. Tarau, P.: Natlog: a lightweight logic programming language with a neuro-symbolic
touch. In: ICLP (2021)

17. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory Pract.
Logic Program. 12(1–2), 67–96 (2012)

18. Zhou, N., Kjellerstrand, H., Fruhman, J.: Constraint Solving and Planning with
Picat. Springer Briefs in Intelligent Systems. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-25883-6

19. Zhou, N.F.: The language features and architecture of B-Prolog. Theory Pract.
Logic Program. 12(1–2), 189–218 (2012)

https://doi.org/10.1007/978-3-319-25883-6
https://doi.org/10.1007/978-3-319-25883-6

Teaching Prolog

Some Thoughts on How to Teach Prolog

Manuel V. Hermenegildo1,2(B), Jose F. Morales1,2, and Pedro Lopez-Garcia2,3

1 Universidad Politécnica de Madrid (UPM), Madrid, Spain
2 IMDEA Software Institute, Madrid, Spain

{manuel.hermenegildo,josef.morales,pedro.lopez}@imdea.org
3 Spanish Council for Scientific Research (CSIC), Madrid, Spain

Abstract. Prolog, and (Constraint) Logic Programming in general, rep-
resent a unique programming paradigm. Prolog has many characteristics
that are not present in other styles of programming, and this is one of
the reasons why it is taught. At the same time, and precisely because
of this uniqueness, teaching Prolog presents some special challenges. In
this paper we present some lessons learned over many years of teaching
Prolog, and (C)LP in general, mostly to CS college students, at several
universities. We address how to show the beauty and usefulness of the
language, and also how to avoid some common pitfalls, misconceptions,
and myths about it. The emphasis of our discussion is on how, rather
than what. Despite some focus on CS college students, we believe that
many of the ideas that we propose also apply to teaching Prolog at any
other education level.

Keywords: Teaching Prolog · Prolog · Prolog Myths · Prolog
Beauty · Prolog Playgrounds · Active Logic Documents · Logic
Programming · Constraint Logic Programming

1 Introduction

(Constraint) Logic Programming, (C)LP, and Prolog in particular, represent a
unique programming paradigm with many characteristics that are not present in
other styles of programming, such as imperative, object-oriented, or functional
programming. Most notably the paradigm is based on logic and includes search
as an intrinsic component, as well as the use of unification, generalizing pattern
matching. This brings about other interesting and also different aspects, such as
for example reversibility of programs or being able to represent knowledge and
reason about it, including formulating specifications and algorithms within the
same formalism. It is thus not only a unique programming paradigm, but also a
modeling and reasoning tool.

Partially funded by MICINN projects PID2019-108528RB-C21 ProCode, TED2021-
132464B-I00 PRODIGY, and FJC2021-047102-I, by the Comunidad de Madrid pro-
gram P2018/TCS-4339 BLOQUES-CM, and by the Tezos foundation. The authors
would also like to thank the anonymous reviewers for very useful feedback on previous
drafts of this paper.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 107–123, 2023.
https://doi.org/10.1007/978-3-031-35254-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_9&domain=pdf
https://doi.org/10.1007/978-3-031-35254-6_9

108 M. V. Hermenegildo et al.

These unique characteristics, coupled with its usefulness in many application
areas, are fundamental reasons why Prolog is taught, certainly in many top
institutions. Quite simply, a CS graduate is not complete without knowledge
of one of the handful of major programming paradigms that we have come up
with in CS to date. However, precisely because it is a quite different paradigm,
teaching Prolog presents some particular challenges. Our first and perhaps most
important consideration about teaching Prolog is that if it is done it definitely
should be done right. Learning a programming paradigm that is quite different
from what students have typically seen before and have already adapted to
cannot be done lightly, in a few days, and certainly not in the same way that
one moves from one imperative programming language to another. Fortunately,
very good material exists (books, slides, web sites, exercises, videos) for the task.
Our objective in this paper is to present a few complementary lessons learned
over many years of teaching Prolog, and (C)LP in general, mostly to CS college
students, at several universities, including T.U. Madrid, U. of New Mexico, and
U.T. Austin.1 In this context, the students have typically already been exposed
to other programming languages, as well as hopefully some concepts of logic and
proofs, at the point in time in which they are exposed to Prolog and (C)LP.
An important objective in this scenario is then to make the material attractive,
intriguing, and challenging to such an audience. We offer some ideas on how to
show the beauty and usefulness of the language, and also to how to avoid some
common pitfalls, misconceptions, and myths about it. Our emphasis is more
on methodological issues, rather than, e.g., on syllabus design, for which there
is comparatively more material available. We also make no attempt to cover
all aspects of how to teach Prolog, which would of course require a book onto
itself, but rather provide a few ideas that we have found useful. Despite some
focus on CS college students, we believe that most of the ideas that we propose
also apply to teaching Prolog at any other education level.2 Finally, while our
discussion centers primarily around Prolog, given the theme of this volume, we
believe many of the considerations and ideas are applicable to the (constraint)
logic programming paradigm in general.

2 Showing the Beauty of the Language and the Paradigm

Perhaps the most important objective when teaching Prolog is to succeed in
showing the great beauty of the (C)LP paradigm in general and of Prolog in
particular. To this end, we believe that it is important to transmit (already
in the first class) the original motivations behind the language. The following
approach has worked well for us in our courses:
1 See https://cliplab.org/logalg for a collection of our teaching materials. We would

like to thank the many contributors to these materials which have influenced this
paper, including Francisco Bueno, Manuel Carro, Isabel García Contreras, Daniel
Cabeza, María José García de la Banda, David H. D. Warren, Ulrich Neumerkel,
Michael Codish, and Michael Covington.

2 See also other papers in this volume, which address the subject of teaching Prolog
to school children [2,3,19].

https://cliplab.org/logalg

Some Thoughts on How to Teach Prolog 109

Fig. 1. A motivational view of (C) LP and Prolog.

1. Prolog, an acronym of Programming and Log ic, represents an answer to the
fundamental question of what is the best way to program computers, in order
to get them to solve problems and do what we need, and in particular of how
logic can help us in this task.

2. There are many standard ways in which logic is used in the context of pro-
gramming, e.g., as a means for defining the semantics of programs, writing
specifications, and proving properties of programs with respect to those spec-
ifications. But here we are concerned with using logic directly as the program-
ming language.

3. Now, time for the real overall vision: if we assume we have an effective deduc-
tion procedure, i.e., a mechanical proof method that, given a description of a
problem written in logic, can provide answers to questions about this prob-
lem (prove theorems about it), then a different view of problem solving and
computing is possible (Fig. 1, top):
(a) First, we program once and for all this automated deduction procedure in

the computer;
(b) then, for each problem we want to solve, we find a suitable representation

for the problem in logic (which would be just the specification of the
problem);

(c) and, to obtain solutions, we simply ask questions and let the deduction
procedure do the rest.

110 M. V. Hermenegildo et al.

Prolog (Fig. 1, bottom) is the realization of this “dream.”3
4. Time now to illustrate all this practically with one or more examples. The

level of complexity of these initial examples depends on the background of
the students. In general, simple examples (such as the classic family relations
or, more broadly, examples with bounded search tree), are good starters.
However, for students with some programming and mathematical background
we have found it motivating to consider the task of specifying precisely what
a simple imperative program should compute, in order to eventually prove its
correctness.

5. E.g., consider a simple imperative program that calculates the squares of
the first five naturals. After looking at the imperative code and how remote
it is from the specification, we will develop gradually the intended seman-
tics (post-condition) from first principles using Peano arithmetic, encoded as
Horn clauses, starting with defining the naturals, then addition, then mul-
tiplication, etc. (Fig. 2).4 We develop each of these predicate definitions by
reasoning about the (infinite) set of (ground) facts that we want to capture
(introducing thus informally the notion of declarative semantics), and work
with the students on generating the definitions by generalization from the
tables of facts, thinking inductively, etc.5 Finally, we show that, by loading
these definitions into an LP system, one can use this specification by itself,
not only to do the task specified (generate the squares of the naturals < 5),
but also to subtract using the definition of addition, or even compute square
roots. I.e., the specification can be explored and debugged! And, since the
logic is executable, one does not need to prove that the imperative program
adheres to the specification, or in fact to write the imperative program at all.

6. This presentation should be motivating, but at the same time it is also a good
moment for expectation management. We discuss (informally) for what logics
we have effective deduction procedures, and the trade-offs between expressive
power and decidability, justifying the choice of first-order logic and SLD-
resolution in classical LP, and giving at least the intuition of what semi-
decidability entails.6

3 A historical note can be useful at this or a later point, saying that this materi-
alization was done by Colmerauer (with colleagues in Marseilles and in collabora-
tion with Kowalski and colleagues in Edinburgh) [4,14], and was made possible by
the appearance of Robinson’s resolution principle [18], Cordell Green’s approach
to resolution-based question answering [7], the efficiency of Kowalski and Kuhnen’s
SLD resolution [12], Kowalski’s combination of the procedural and declarative inter-
pretations of Horn clauses [11], and the practicality brought about by Warren et al.’s
Dec-10 Prolog implementation [17,23].

4 The :- use_package(sr/bfall). directive (an expansion) activates breadth-first
execution, which we find instrumental in this part of the course; see also the discus-
sion in Sect. 3.

5 See also [21], in this same volume, for an ample discussion of how to build programs
inductively.

6 See also the discussion in Sect. 3 on termination, the shape of the tree, search strate-
gies, etc.

Some Thoughts on How to Teach Prolog 111

run �:- use_package(sr/bfall).

natural(0).
natural(s(X)) :- natural(X).

less(0,s(X)) :- natural(X).
less(s(X),s(Y)) :- less(X,Y).

add(0,Y,Y) :- natural(Y).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,Y,0) :- natural(Y).
mult(s(X),Y,Z) :- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) :- natural(X), natural(Y), mult(X,X,Y).

output(X) :- natural(Y), less(Y,s(s(s(s(s(0)))))),
nat_square(Y,X).

Fig. 2. Horn-clause specification (and program) for squares of naturals < 5 (click on
run to load).

7. Having shown this declarative view of logic programs, it is of course impor-
tant to also show the operational semantics, i.e., unification, resolution, etc.
Some members of the LP community have argued that only the declarative
semantics are important,7 but this is clearly not so in our view. Instead,
we believe that it is important to present Kowalski’s declarative/procedural
duality, i.e., that (constraint) logic programs are, at the same time, logical
theories (that thus have a declarative meaning) and procedural programs
that can be debugged, followed step by step, etc. like any other language.
How could we otherwise reason about complexity (or, going further, even
memory consumption, etc.)? To say that these things don’t matter does not
make sense in the world of programming languages. In other words, without
an operational semantics, we do not (also) have a programming language,
but rather just a specification and/or knowledge representation formalism –
the beauty of Prolog is that it is both. And the argument for the procedural
interpretation goes further: natural language also involves procedural forms
of expression. Thus, elimination of the ability to represent procedures also
eliminates the ability to represent some types of knowledge.

8. Finally, it is of course important to relate the declarative and procedural
views, explaining that the declarative meaning of a set of rules is a (possibly
infinite) set of ground facts and that these constitute precisely the set of
ground literals for which, when posed as queries, Prolog (possibly needing a
fair search rule) answers yes.

7 And even some LP languages have been proposed that explicitly did not have an
operational semantics, such as, e.g., the Goedel language.

https://ciao-lang.org/playground/?code=%25%20In%20pure%20LP%2C%20define%20the%20naturals%2C%20arithmetic%20%0A%25%20operations%20on%20them%2C%20and%20output%20the%20squares%0A%25%20of%20the%20naturals%20that%20are%20smaller%20than%20five.%0A%0A%25%20We%20will%20use%20search%20rule%20(sr)%3A%20%0A%25%20%20%20-%20All%20predicates%20run%20breadth-first%20(bfall)%0A%0A%3A-%20use_package(%5Bsr%2Fbfall%5D).%0A%0Anatural(0).%0Anatural(s(X))%20%3A-%20natural(X).%0A%0Aless(0%2Cs(X))%20%3A-%20natural(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20natural(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20natural(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).%0A%0Anat_square(X%2CY)%20%3A-%20natural(X)%2C%20natural(Y)%2C%20mult(X%2CX%2CY).%0A%0Aoutput(X)%20%3A-%20natural(Y)%2C%20less(Y%2Cs(s(s(s(s(0))))))%2C%20nat_square(Y%2CX).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20nat(s(0)).%0A%25%25%20%3F-%20add(s(0)%2Cs(s(0))%2CX).%0A%25%25%20%3F-%20add(s(0)%2CX%2Cs(s(s(0)))).%0A%25%25%20%3F-%20nat(X).%0A%25%25%20%3F-%20add(X%2CY%2Cs(0)).%0A%25%25%20%3F-%20nat_square(s(s(0))%2C%20X).%0A%25%25%20%3F-%20nat_square(X%2Cs(s(s(s(0))))).%0A%25%25%20%3F-%20nat_square(X%2CY).%0A%25%25%20%3F-%20output(X).

112 M. V. Hermenegildo et al.

Once motivation is established, and we can understand programs both declar-
atively and operationally, we can show other unique aspects that contribute to
the elegance and beauty of the language:

1. We can show with examples (and benchmarking them) how in Prolog it is
possible to go from executable specifications to efficient algorithms gradually,
as needed. For example:8

(a) The mathematical definition (i.e., the specification) of the modulo oper-
ation, mod(X,Y,Z) where Z is the remainder from dividing X by Y, i.e.,
∃Qs.t. X = Y ∗ Q + Z ∧ Z < Y , can be expressed directly in Prolog:

run �mod(X,Y,Z) :- less(Z, Y), mult(Y,Q,W), add(W,Z,X).

This version is clearly correct (since it is directly the specification) and
(using breadth-first search) works in multiple directions, always finding
all solutions:

?- op(500,fy,s).
yes
?- mod(X,Y, s 0).
X = s 0,
Y = s s 0 ? ;
X = s 0,
Y = s s s 0 ? ;
X = s s s 0,
Y = s s 0 ? ;
...

but it can be quite inefficient.
(b) At the same time we can write a version such as this one:

run �mod(X,Y,X) :- less(X, Y).
mod(X,Y,Z) :- add(X1,Y,X), mod(X1,Y,Z).

which is much more efficient, and works well with the default depth-first
search rule. One can time some queries or reason about the size of the
proof trees to show this.9

2. It is also important to show the power and beauty of unification, not only as
a generalization of pattern matching, but also as a device of constructing and
accessing (parts of) complex data structures and passing them and returning
them from predicates. This can be illustrated to students by building data
structures piecemeal in the top level, as illustrated in Fig. 3, which shows
graphically the process of building some data structures in memory via uni-
fications, just before performing a call to the p/4 procedure. The idea is to

8 Clicking on the run � links is perfectly safe!.
9 See also [1], in this same volume, for another interesting example which can be used

similarly.

https://ciao-lang.org/playground/?code=%3A-%20use_package(%5Bsr%2Fbfall%5D).%0A%0A%25%20Define%20Modulo%20in%20Peano%20aritmetic%0A%25%20Using%20directly%20the%20defintion%20of%20modulo%0A%0Amod(X%2CY%2CZ)%20%3A-%20less(Z%2C%20Y)%2C%20mult(Y%2C_Q%2CW)%2C%20add(W%2CZ%2CX).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20op(500%2Cfy%2Cs).%0A%25%25%20%3F-%20mod(s%20s%20s%20s%20s%20s%20s%20s%20s%200%2C%20s%20s%20s%20s%200%2C%20Z).%0A%25%25%20%3F-%20mod(X%2CY%2Cs%200).%0A%0Anat(0).%0Anat(s(X))%20%3A-%20nat(X).%0A%0Aless(0%2Cs(X))%20%3A-%20nat(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20nat(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20nat(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).
https://ciao-lang.org/playground/?code=%25%20Define%20Modulo%20in%20Peano%20aritmetic%0A%25%20A%20more%20efficient%20definition%0A%0Amod(X%2CY%2CX)%20%3A-%20less(X%2C%20Y).%0Amod(X%2CY%2CZ)%20%3A-%20add(X1%2CY%2CX)%2C%20mod(X1%2CY%2CZ).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20op(500%2Cfy%2Cs).%0A%25%25%20%3F-%20mod(s%20s%20s%20s%20s%20s%20s%20s%20s%200%2C%20s%20s%20s%20s%200%2C%20Z).%0A%25%25%20%3F-%20mod(X%2CY%2Cs%200).%0A%0Anat(0).%0Anat(s(X))%20%3A-%20nat(X).%0A%0Aless(0%2Cs(X))%20%3A-%20nat(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20nat(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20nat(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).
https://ciao-lang.org/playground

Some Thoughts on How to Teach Prolog 113

Fig. 3. Using unification to build data structures with declarative pointers.

illustrate that logical variables can be seen as “declarative pointers” [9]. I.e., in
the same way a set of Prolog clauses constitute at the same time statements
in logic and a program, the data structures of Prolog can be seen at the same
time as (Herbrand) terms of the logic and as traditional data structures with
(declarative, i.e., single assignment) pointers. We have found that explaining
this duality is also very enlightening.

There are of course many other beautiful and elegant aspects to show (e.g.,
higher-order, meta-interpretation, or types and program properties in general,
all of which in (C)LP once more can be covered within the same language),
but our space here is limited. As a compelling example, in (C)LP, types (and
properties in general) can be defined as (runnable) predicates. E.g., the type
natlist can be defined as:

run �natlist([]).
natlist([H|T]) :- natural(H), natlist(T).

and this predicate can be used to check that an argument is a list of naturals
(dynamic checking) or “run backwards” to generate such lists (property-based
testing for free!). Some of these aspects are covered in other papers in this
volume [10].

3 Dispelling Myths and Avoiding Misconceptions

In addition to showing the beauty of the language, another aspect that we believe
is important to cover during the course is to dispel the many unfounded myths
and misconceptions that still circulate about Prolog and the (C)LP paradigm
in general, and to which students may be exposed. While some of these views
may have been at least partially true of early implementations of Prolog, both
the language and its implementations have come a long way over many years
(actually decades) of evolution, and it is easy to show how the shortcomings
of early Prologs have been addressed in most current systems. The following is
an incomplete list of some of these perceived shortcomings and some suggested
dispelling facts or actions:

Explaining Termination. As mentioned in the previous section, it is certainly
a good idea to start teaching the declarative view, i.e., using the logical reading

https://ciao-lang.org/playground/?code=%25%20A%20type%20definition.%20You%20can%20enumerate%20elements%20of%20the%20type%3A%0A%25%20%3F-%20natlist(L).%20%0A%25%20Property-based%20testing%20for%20free%3B%20try%20and%20without%20the%20bfall%20package!%0A%0A%3A-%20use_package(sr%2Fbfall).%0A%0Anatlist(%5B%5D).%0Anatlist(%5BH%7CT%5D)%20%3A-%20natural(H)%2C%20natlist(T).%0A%0Anatural(0).%0Anatural(s(X))%20%3A-%20natural(X).%0A

114 M. V. Hermenegildo et al.

solution

solution

fail
fail

solution
fail

infinite failure

Fig. 4. Possible cases in the search.

when writing and reading clauses. In this view of the language, if the logic
that we write is correct the system will answer any question. As mentioned
before, here examples with bounded search tree are great starters (e.g., using only
constants or avoiding recursion). However, trouble begins at the very beginning
once structures and recursion are introduced: students soon run into termination
problems. This is true of course of any programming language or proof system.
However, non-terminating executions are likely to discourage beginners if their
origins are not explained well and no remedies provided.

For example, let us define a pair of natural numbers in Peano representation:

run �natural(0).
natural(s(X)) :- natural(X).

pair(X,Y) :- natural(X), natural(Y).

A query such as ?- pair(X,Y),X=s(0). will hang with the standard Prolog
depth-first rule, because the search never progresses beyond X=0, since there are
infinite possible solutions for Y that will be explored first. In contrast, if the
program is executed with a breadth-first strategy (which explores all branches
fairly), it produces the expected solutions quickly.

A solution that has worked well for us is the following:

1. Provide students with a means for selectively switching between search rules,
including in particular at least one that is fair. E.g., being able to run pro-
grams in breadth-first, depth-first, iterative deepening, tabling, etc. This
comes built-in in certain Prologs10 but it is in any case easy to implement in
any Prolog for example via a meta-interpreter.

10 E.g., in Ciao Prolog, in which we have added over time a number of fea-
tures to facilitate teaching Prolog and (C)LP, one can for example use
:- use_package(sr/bfall). to run all predicates breadth-first. Also, many Pro-

logs have tabling nowadays.

https://ciao-lang.org/playground/?code=%25%20You%20can%20try%20leaving%20the%20line%20below%20in%20(breadth-first%20%0A%25%20execution)%20or%20commenting%20it%20out%20(depth-first%20execution).%20%0A%25%20Observe%20termination%20for%20the%20two%20queries.%20%0A%3A-%20use_package(sr%2Fbfall).%0A%0Anatural(0).%0Anatural(s(X))%20%3A-%20natural(X).%0A%0Apair(X%2CY)%20%3A-%20natural(X)%2C%20natural(Y).%0A%0A%25%20Some%20queries%3A%0A%25%20%3F-%20pair(X%2CY)%2C%20X%3Ds(0).%0A%25%20%3F-%20X%3Ds(0)%2C%20pair(X%2CY).

Some Thoughts on How to Teach Prolog 115

solution

fail
fail

solution
fail

infinite failure

solution

solution

solution

fail
fail

solution
fail

infinite failure

Fig. 5. Breadth-first (left) and depth-first (right) exploration.

2. Without giving too many details, start by running all predicates in breadth-
first mode - all examples work great! This will allow students to gather con-
fidence with recursion, search, and the power of a logic-based programming
language (specially if they have already taken an introductory logic course),
by simply thinking logically and/or inductively.

3. After students have been exposed to and written a few examples, we have
found figures such as Figs. 4–5 useful to introduce them in a graphical way
to the basic theoretical results at play, i.e., the soundness and (refutation-
)completeness of the SLD(NF)-resolution proof procedure used by Prolog.
The practical implication to convey is that the search tree has the shape
of Fig. 4, i.e., that all solutions and some failures are at finite depth, but
that there are branches leading to failure that may be infinite and that it is
not always possible to detect this. This summary depiction makes it easy to
explain why breadth-first (or iterative deepening, or any other fair search rule)
is guaranteed to produce all solutions if they exist in finite time (Fig. 5, left),
and why depth-first sometimes may not (Fig. 5, right). Of course, neither one
of them is guaranteed to always finish after producing the positive answers.

4. At the same time, one should discuss the advantages and disadvantages of
these search rules in terms of time, memory, etc. I.e., that the price to pay
for breadth-first execution’s advantages is very large (potentially exponential)
memory and time consumption, while depth-first can be implemented very
efficiently with a stack, with iterative deepening representing an interesting
middle ground. This can be shown very practically by benchmarking actual
examples, motivating the practical choices made for Prolog, which bring in
great efficiency at the (reasonable) price of having to think about goal and
clause order.

5. For example, simply changing the goal order (in this case in the query) to
?- X=s(0),pair(X,Y). modifies the search space and the program can pro-

duce all the answers with the standard Prolog search. This leads naturally to
discussing how one needs to reason about the behavior (cost and termination)

116 M. V. Hermenegildo et al.

of predicates depending on the different modes (see [20]) in which they will
be called.

6. And it can also be pointed out that there exist other techniques like delays
and, specially, tabling, which helps detect some of the infinite failures in finite
time, and avoid repeated answers (even infinite ones), in addition to changing
dynamically the goal order.

7. More generally, while using small examples, sophisticated Prolog implemen-
tations, and modern fast computers can create the misconception that Prolog
provides solutions effortlessly, it should be stressed that, as a Turing complete
language, also Prolog programmers eventually need to care about algorithmic
time and memory complexity of both their programs and the libraries/fea-
tures they utilize, and, at the limit, termination.

8. Thus, this is also a good moment to introduce informally the notion of unde-
cidability and the halting problem and relate them to the graphical depictions
of the search tree. Some students may not be aware that there exist deci-
sion problems that admit no algorithmic solution. One should underline that
this is of course not a particular problem of Prolog, but rather the essence
of computability, and no language or system (Prolog, logic, nor any other
Turing-complete programming language) can provide a magic formula that
guarantees termination.

9. Needless to say it is also important to explain how to control search, via
clause order and literal order, as well as pruning (see cut later). And, if time
permits, it is important to discuss the use of the constraint systems built into
most current Prolog systems (Q, R, fd, . . .), and how they can bring about
many other improvements to search (e.g., generate and test vs. constrain and
generate), arithmetic (see below), etc.

Showing that Prolog Arithmetic can also be Reversible. The oppo-
site of course is true if the discussion is limited to the ISO-Prolog arithmetic
built-ins. However, this is far from the only answer in modern Prolog systems.
The approach that we take is:

1. Present all the initial examples using Peano arithmetic (as shown in the nat/1
example and in Sect. 2): it is beautiful and reversible (if run with a fair search
rule of course). Although obviously inefficient and slow for number crunching,
Peano arithmetic is an excellent tool for the first steps in writing numeric and
recursive programs.

2. Then, the ISO-Prolog arithmetic built-ins can be introduced, explaining that
they were added for practical efficiency, but at the cost of losing some
reversibility. For example, using Y is X+1 instead of Y=s(X) is no longer
always reversible.

3. Then, (arithmetic) constraint domains can be introduced showing that they
can represent the best of all worlds: at the same time beautiful, powerful,
and efficient! For example, in the case of CLP{Q,R} (or CLP(fd)) our simple
increment becomes Y .=.X+1 which is both reversible and efficient. An alter-
native that we have also used is to start from the beginning using constraint-
based arithmetic instead of Peano, but it can be more cumbersome because

Some Thoughts on How to Teach Prolog 117

for the student to fully understand what is really going on one should really
discuss the workings of the constraint solver. In that sense Peano is simpler
because with only unification and Horn clauses all operations are fully defined.
Still, both approaches are fine.

The Occur Check is Available (If Needed). A misconception is that Prolog
must be unsound because there is no occur check.

1. First, it is important to explain why the decision to leave out the occurs
check was made in the first place: in addition to reducing the cost of general
unification, removing the occurs check allows the complexity of the variable-
value unification case to be constant time (instead of linear, since there is no
need to check that the left hand side does not occur in the value), which is
arguably a basic requirement for a practical programming language.

2. It is also important to point out that the lack of occurs check is rarely an issue
in actual applications, and that, furthermore, there is in any case a built-in for
unification with occurs check. In most cases, including e.g., implementation
of theorem provers, one can selectively use the unification with occurs check
built-in only when needed. It can also be useful to provide a package (easy
to implement in most Prologs with a term expansion) that calls unification
with occurs check by default for all unifications. This can also be provided in
some systems via an engine/compiler flag.

3. Furthermore, it should be mentioned that many Prolog systems in fact now
support infinite tree unification (stemming all the way back to Prolog II) as
the default. In this extension to unification (actually, a constraint domain),
infinite terms are actually supported and the unifications that would be the
subject of the occurs check produce such terms. For example, the answer to
?- X = f(X). is simply X = f(X) , and the system does not go into a loop

when performing such unifications or printing such infinite terms.

Prolog Can be Pure (Despite Cut, Assert, etc.)

1. In the same way that we start with a powerful yet not necessary efficient
search rule such as breath-first, it is convenient to restrict the discussion
initially to pure fragments of Prolog without side-effects, cuts, or the dynamic
manipulation of database.

2. In this phase it can be convenient to have a mechanism to enable a pure mode
in the Prolog implementation where impure built-ins simply are not acces-
sible. However, this is not strictly necessary and the objective can also be
achieved by simply not allowing the use of impure built-ins, or, in fact, any
built-ins, initially. Peano arithmetic is again handy here.

3. Later, the ISO-Prolog built-ins can be introduced. Here, it is convenient to
treat each kind of impurity separately:
(a) Cuts: a first consideration is that using if-then-else is often preferable.

Then, regarding cuts, it is important to explain at least the difference
between (green) cuts added as optimizations to discard unnecessary choice

https://ciao-lang.org/playground/?code=%3A-%20module(_%2C_%2C%5Bpure%5D).%0A%0A%25%20A%20pure%20package%20makes%20impure%20built-ins%20unavailable.%20%0A%25%20Thus%2C%20an%20error%20is%20flagged.%0A%0Ap(a).%0A%0Aq(X)%20%3A-%20!%2C%20p(X).%0A

118 M. V. Hermenegildo et al.

points (but which do not alter the declarative semantics) from (red) cuts
that are only meaningful for some calling modes and whose removal would
make the program incorrect. Explain that argument indexing makes many
green cuts unnecessary.

(b) Assert/retract: some programming patterns using dynamic program
manipulation, like explicit memoization or algorithms that explicitly
interleave phases of database modifications with pure deductions, do not
sacrifice declarativeness. The classic Fibonacci program with a double
recursion, implemented with and without memoing, is a good example
here. Assert and retract in modern Prolog systems are module-aware,
which makes it easier to encapsulate their effects. Also, it should be
noted that there are other approaches, such as mutables or condition-
action rules, that offer more structured ways to express state change; see,
e.g., [6,13].

4. It is also useful to develop pure libraries (e.g., implicit states ala DCGs,
monad-like styles), built-ins, or semantics where effects and actions are prop-
erly captured.

5. Finally, it is also important to point out that sometimes impurity is just
necessary, but one should strive to keep it encapsulated as much as possible
as libraries or program expansions.

Negation. Explain negation as failure, possibly from the theoretical point of
view (least-Herbrand-model semantics, see also [20,22]) and through its classical
implementation using Prolog built-ins. And devote time to discussing the limi-
tations, either at a simple level (avoid calling negation on non-ground goals) or
delving more deeply into stratification, etc. A good idea is to suggest to the stu-
dents that they guard themselves from mistakes by defining their own negation
that performs some checks, for example that the negated goal is ground:

run �not(G) :- ground(G), !, \+ G.
not(_) :- throw(error).

In an advanced course one can also go into more complex topics, commenting on
the alternatives that Prolog systems offer nowadays (such as the very interesting
s(CASP) approach [8]) and on ASP.

Prolog is in Many Ways as Other Languages, But Adds Unique, Use-
ful Features.

1. It is interesting to show that Prolog is not a “strange” language, and is in fact
completely “normal” when there is only one definition per procedure which
is called in one mode. But that at the same time it can also have several
definitions for the same procedure, and can thus support natively search,
several modes, running “backwards,” etc.

2. Moreover, Prolog (and specially modern Prolog systems) actually subsume
both functional and imperative programming. At least theoretically, this is
well known since functions can be easily encoded as relations and since muta-
ble variable changes can be declaratively encoded by state-threading or other

https://ciao-lang.org/playground/?code=%25%20---%0A%25%20Calculating%20the%20Nth%20element%20of%20the%20Fibonacci%0A%25%20sequence%20-%200%201%201%202%203%205%208%20...%20%0A%25%20Example%20of%20dynamic%20program%20modification%3A%20Using%20lemmas%0A%25%20(recording%20previous%20solutions%20to%20avoid%20recomputing%20them)%0A%0A%25%20Compare%20the%20performance%20for%20different%20queries%3A%0A%25%20%3F-%20fib(10%2CY).%0A%25%20%3F-%20fib(30%2CY).%0A%25%20%3F-%20fib(31%2CY).%0A%25%20%3F-%20fib(32%2CY).%0A%25%20%3F-%20lfib(30%2CY).%0A%25%20%3F-%20lfib(31%2CY).%0A%25%20%3F-%20lfib(200%2CY).%0A%25%20%3F-%20lfib(1000%2CY).%0A%0Afib(0%2C%200).%20%0Afib(1%2C%201).%20%0Afib(N%2C%20F)%3A-%20%20%0A%20%20%20%20N%20%3E%201%2C%20%20%20%20%20%20%20%20%0A%20%20%20%20N1%20is%20N%20-%201%2C%20%0A%20%20%20%20N2%20is%20N%20-%202%2C%20%0A%20%20%20%20fib(N1%2C%20F1)%2C%20%0A%20%20%20%20fib(N2%2C%20F2)%2C%20%20%0A%20%20%20%20F%20is%20F1%20%2B%20F2.%20%0A%0A%25%20---%0A%0Alfib(N%2C%20F)%3A-%0A%20%20%20%20lemma_fib(N%2C%20F)%2C%0A%20%20%20%20!.%20%0Alfib(N%2C%20F)%3A-%20%0A%20%20%20%20N%20%3E%201%2C%20%20%20%0A%20%20%20%20N1%20is%20N%20-%201%2C%20%20%0A%20%20%20%20N2%20is%20N%20-%202%2C%20%0A%20%20%20%20lfib(N1%2C%20F1)%2C%20%0A%20%20%20%20lfib(N2%2C%20F2)%2C%20%0A%20%20%20%20F%20is%20F1%20%2B%20F2%2C%20%20%20%20%20%0A%20%20%20%20assert(lemma_fib(N%2C%20F)).%20%0A%0A%3A-%20dynamic%20lemma_fib%2F2.%0Alemma_fib(0%2C%200).%20%0Alemma_fib(1%2C%201).%20%0A%0A
https://ciao-lang.org/playground/?code=%25%20Making%20sure%20argument%20is%20ground%20in%20negation%20as%20failure%0A%0Anot(G)%20%3A-%20ground(G)%2C%20!%2C%20%5C%2B%20G.%0Anot(_)%20%3A-%20throw(error).

Some Thoughts on How to Teach Prolog 119

means. (And that this idea is very useful in practice for analysis of other
languages using Horn clauses!)
In practice, translating functional or imperative constructs to Prolog is rela-
tively easy, specially when using special syntactic extensions (such as logical
loops or functional notation). Performance-wise, most Prolog implementa-
tions are optimized enough to execute recursions as efficiently as loops (e.g.,
last-call optimization), use logical mutable variables (equivalent to implicit
arguments), or as a last resort store mutable states via the dynamic database.

3. For students that have some notions of programming language implementa-
tion, it helps to explain that, when running “forward”, Prolog uses a stack
of activation records for local variables, and return addresses (forward con-
tinuations), as every language, that allow knowing where to return when a
procedure returns (succeeds). Then, Prolog also has a stack of backwards con-
tinuations, to know where to go if there is a failure (previous choice point),
and this (coupled with other memory and variable binding management tech-
niques) implements Prolog’s backtracking semantics very efficiently.

4. College students that are already familiar with younger languages (Erlang,
Haskell, or even Rust) often recognize striking similarities in syntax and
semantics with Prolog (e.g., “pattern matching”). Most of them tend to be
amazed by Prolog simplicity and expressive power and recognize that Prolog
is still unique.

Prolog has Many Applications/Uses/. . .

1. Show some of the many examples of great applications that Prolog has. There
are great collections on line, and some new ones have been gathered for the
Prolog 50th anniversary, but in particular there are some really excellent
examples in the volume in which this paper appears. An excellent example is
ProB, winner of the first Colmerauer Prize [15]. See also the excellent related
discussion11 on the advantages of using Prolog.

2. Give the students as homework real, challenging, and interesting projects
where they can experience the power and elegance of the language.

3. Another thing to perhaps point out in this context is that modern applications
are almost never written in a single language and some Prolog implementa-
tions can be easily embedded as part of more complex systems, and this is
done routinely.

Prolog Can also Have “Types” (If Needed). Prolog is in principle a dynam-
ically typed language, and this is not without its advantages –the success of
Python attests to this. Second, as mentioned before, types and many other
properties can indeed be defined very elegantly within the same language of
predicates, and used as both run-time tests and generators. Furthermore, there
are Prolog systems that also check these types and properties statically (again,
see [10] in this volume).

11 https://prob.hhu.de/w/index.php?title=Why_Prolog%3F.

https://prob.hhu.de/w/index.php?title=Why_Prolog%3F

120 M. V. Hermenegildo et al.

And, to end this section on myths and misconceptions, a final mention is due
to the Fifth Generation (FG) project. It is probably unlikely for current
students to be aware of this project, but since the subject of its success or
failure does comes up with some periodicity, e.g., in online forums, it suffices to
say that one hand there were many interesting outcomes of this project (and
there is ample literature on the subject) and on the other the fate of the FG
Project is in any case quite unrelated to Prolog and (C)LP, simply because,
contrary to widespread belief, the FG did not use Prolog or “real LP” anyway!
It used flat committed choice languages,12 which arguably did not contribute to
make the FG as successful as it could have been.

4 Some Thoughts on Systems

Some thoughts regarding the different types of Prolog systems that we fortu-
nately have currently freely available for teaching. This includes:

1. The classical systems with traditional installation, which in general are most
appropriate for more advanced users and intensive use. In the context of
teaching, they have the advantage that the best implementations portray a
serious language which is competitive with the most popular languages in per-
formance, features, environment, libraries, embeddability, small executables,
etc. The drawback is of course that this type of system requires installation,
but that should not be any hurdle for college students (or at least not for
those in CS).

2. At the same time, there are now fortunately also very good Prolog play-
grounds and notebooks that require no installation. Examples are, e.g., the
Ciao Playgrounds and Active Logic Documents, SWISH, τ -Prolog, s(CASP)
playground, etc. These no-installation alternatives can be very attractive for
beginners, young students, or simply casual users, and they are in all cases
very useful for supporting executable examples in manuals and tutorials, as
done here. These systems can be server-based or browser-based, each having
advantages and disadvantages. A good discussion on this topic can be found
in [16] and [5], within this same volume.

3. As far as functionality, ideally the system (or systems) to be used should
allow covering ISO-Prolog and some constraint domains –most current Prolog
systems are capable of this. Other desirable features in our opinion are the
possibility of restricting programs to pure LP (and supporting several search
rules and tabling), modern forms of negation (such as, e.g., ASP/s(CASP)),
functional syntax, extended support for higher-order and libraries, etc. Again,
many current Prolog systems provide at least some of these characteristics.

12 An interesting topic that is however out of our scope here –let’s just say for this
discussion that they used “something similar to Erlang.”

Some Thoughts on How to Teach Prolog 121

5 The Programming Paradigms Course

So far, we have generally assumed that a reasonable number of lectures are avail-
able for teaching the language. However, a particularly challenging case is the
standard “programming paradigms” course, now quite widespread in CS pro-
grams, where each programming paradigm, including often (C)LP and Prolog,
is devoted perhaps two or three weeks. This scenario has some risks, and in
extreme cases could even be counter-productive. A first risk, mentioned before,
is that it is simply not easy, even for experts, to, in just very few classes, teach
Prolog and the (C)LP paradigm well enough that the students really “get it.”
Other potential pitfalls in practice include, for example, that in some cases a
“logic programming” library from a non-LP language (e.g., emulating Prolog in
Scheme) may be used instead of a “real” Prolog system, which will have much
more competitive speed and memory efficiency (plus an advanced programming
environment, being capable of generating efficient executables, etc.). Shortcuts
such as these, coupled with a superficial presentation in a few classes, can run the
risk of leading to misconceptions about the language, its capabilities, applica-
tions, performance, and ultimately, its beauty. All this brings about the obvious
and important question of what to do if the programming paradigms course is
really the only slot available in the curriculum to teach Prolog. This is in our
opinion a topic that deserves more attention from the (C)LP community. While,
as mentioned before, quite good material exists for full-size Prolog courses, this
is arguably less so for the (C)LP part of a programming paradigms course. So, in
parallel with arguing for the presence of specific full courses devoted to (C)LP, it
would be very useful to develop material (slides, notes, a short book, etc.) aimed
specifically at teaching this “programming paradigms slot” well. In addition, we
hope that the reflections in this paper can also help in this challenging context.

6 Conclusions

We have presented some lessons learned from our experience teaching Prolog,
and (C)LP in general, over the years. We have covered some methodological
issues that we feel are important, such as how to show the beauty and usefulness
of the language, and also to how to avoid some common pitfalls, misconceptions,
and myths about it. However, teaching Prolog and (C)LP is an extremely rich
subject and there are of course many other aspects that we have not been able
to address for lack of space. We still hope that at least some of our suggestions
are of use to other instructors that are teaching or plan to teach Prolog. For a
more complete picture, as mentioned before, much of our experience over the
years is materialized in a) the courses that we have developed, for which, as
pointed out before, the material is publicly available13, and b) the many special
features that we have incorporated over time in our own Ciao Prolog system in
order to aid in this important task of teaching logic programming. Again, we
have touched upon some of them, such as being able to choose different search
13 https://cliplab.org/logalg.

https://cliplab.org/logalg

122 M. V. Hermenegildo et al.

rules, the playground, or active logic documents, but there are many others. We
hope that all the ideas present in these materials and systems are helpful and
inspiring to both Prolog instructors and students.

References

1. Bassiliades, N., Sakellariou, I., Kefalas, P.: Demonstrating multiple prolog pro-
gramming techniques through a single operation. In: Warren, D.S., Dahl, V., Eiter,
T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog: The Next 50 Years.
LNCS (LNAI), vol. 13900, pp. 71–81. Springer, Cham (2023). https://doi.org/10.
1007/978-3-031-35254-6_6

2. Cecchi, L.A., Rodríguez, J.P., Dahl, V.: Logic Programming at Elementary School:
why, what and how should we teach Logic Programming to children. In: Warren,
D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog:
The Next 50 Years. LNCS (LNAI), vol. 13900, pp. 131–143. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-35254-6_11

3. Cervoni, L., Brasseur, J., Rohmer, J.: Simultaneously teaching mathematics and
prolog in school curricula: a mutual benefit. In: Warren, D.S., Dahl, V., Eiter, T.,
Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog: The Next 50 Years. LNCS
(LNAI), vol. 13900, pp. 124–130. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-35254-6_10

4. Colmerauer, A.: The birth of prolog. In: Second History of Programming Languages
Conference, pp. 37–52. ACM SIGPLAN Notices (1993)

5. Flach, P., Sokol, K., Wielemaker, J.: Simply logical - the first three decades. In:
Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.)
Prolog: The Next 50 Years. LNCS (LNAI), vol. 13900, pp. 184–193. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-35254-6_15

6. Genesereth, M.: Dynamic logic programming. In: Warren, D.S., Dahl, V., Eiter,
T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog: The Next 50 Years.
LNCS (LNAI), vol. 13900, pp. 197–209. Springer, Cham (2023). https://doi.org/
10.1007/978-3-031-35254-6_16

7. Green, C.C.: Application of Theorem Proving to Problem Solving. In: Walker,
D.E., Norton, L.M. (eds.) Proceedings IJCAI, pp. 219–240. William Kaufmann
(1969)

8. Gupta, G., Salazar, E., Arias, J., Basu, K., Varanasi, S., Carro, M.: Prolog: past,
present, and future. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowal-
ski, R., Rossi, F. (eds.) Prolog: The Next 50 Years. LNCS (LNAI), vol. 13900, pp.
48–61. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-35254-6_4

9. Hermenegildo, M.: Parallelizing irregular and pointer-based computations auto-
matically: perspectives from logic and constraint programming. Parallel Comput.
26(13–14), 1685–1708 (2000)

10. Hermenegildo, M., Morales, J., Lopez-Garcia, P., Carro, M.: Types, modes and so
much more - the prolog way. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo,
M., Kowalski, R., Rossi, F. (eds.) Prolog: The Next 50 Years. LNCS (LNAI),
vol. 13900, pp. 23–37. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
35254-6_2

11. Kowalski, R.A.: Predicate logic as a programming language. In: Proceedings IFIPS,
pp. 569–574 (1974)

https://doi.org/10.1007/978-3-031-35254-6_6
https://doi.org/10.1007/978-3-031-35254-6_6
https://doi.org/10.1007/978-3-031-35254-6_11
https://doi.org/10.1007/978-3-031-35254-6_10
https://doi.org/10.1007/978-3-031-35254-6_10
https://doi.org/10.1007/978-3-031-35254-6_15
https://doi.org/10.1007/978-3-031-35254-6_16
https://doi.org/10.1007/978-3-031-35254-6_16
https://doi.org/10.1007/978-3-031-35254-6_4
https://doi.org/10.1007/978-3-031-35254-6_2
https://doi.org/10.1007/978-3-031-35254-6_2

Some Thoughts on How to Teach Prolog 123

12. Kowalski, R., Kuehner, D.: Linear resolution with selection function. Artif. Intell.
2(3), 227–260 (1971)

13. Kowalski, R., Sadri, F., Calejo, M., Dávila-Quintero, J.: Combining prolog and
imperative computing in LPS. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo,
M., Kowalski, R., Rossi, F. (eds.) Prolog: The Next 50 Years. LNCS (LNAI), vol.
13900, pp. 210–223. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
35254-6_17

14. Kowalski, R.A.: The early years of logic programming. Commun. ACM 31(1), 38–
43 (1988)

15. Leuschel, M.: ProB: harnessing the power of prolog to bring formal models and
mathematics to life. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M.,
Kowalski, R., Rossi, F. (eds.) Prolog: The Next 50 Years. LNCS (LNAI), vol.
13900, pp. 239–247. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
35254-6_19

16. Morales, J., Abreu, S., Hermenegildo, M.: Teaching prolog with active logic doc-
uments. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R.,
Rossi, F. (eds.) Prolog: The Next 50 Years. LNCS (LNAI), vol. 13900, pp. 171–
183. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-35254-6_14

17. Pereira, L., Pereira, F., Warren, D.: User’s Guide to DECsystem-10 Prolog. Dept.
of Artificial Intelligence, Univ. of Edinburgh (1978)

18. Robinson, J.A.: A machine oriented logic based on the resolution principle. J. ACM
12(23), 23–41 (1965)

19. Tabakova-Komsalova, V., Stoyanov, S., Stoyanova-Doycheva, A., Doukovska, L.:
Prolog education in selected high schools in Bulgaria. In: Warren, D.S., Dahl, V.,
Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog: The Next 50
Years. LNCS (LNAI), vol. 13900, pp. 144–153. Springer, Cham (2023). https://
doi.org/10.1007/978-3-031-35254-6_12

20. Warren, D.S.: Introduction to prolog. In: Warren, D.S., Dahl, V., Eiter, T.,
Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog: The Next 50 Years. LNCS
(LNAI), vol. 13900, pp. 3–19. Springer, Cham (2023). https://doi.org/10.1007/978-
3-031-35254-6_1

21. Warren, D.S.: Writing correct prolog programs. In: Warren, D.S., Dahl, V., Eiter,
T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog: The Next 50 Years.
LNCS (LNAI), vol. 13900, pp. 62–70. Springer, Cham (2023). https://doi.org/10.
1007/978-3-031-35254-6_5

22. Warren, D.S., Denecker, M.: A better logical semantics for prolog. In: Warren,
D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog:
The Next 50 Years. LNCS (LNAI), vol. 13900, pp. 82–92. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-35254-6_7

23. Warren, D.: Applied logic-its use and implementation as programming tool, Ph. D.
thesis, University of Edinburgh (1977), also available as SRI Technical Note 290

https://doi.org/10.1007/978-3-031-35254-6_17
https://doi.org/10.1007/978-3-031-35254-6_17
https://doi.org/10.1007/978-3-031-35254-6_19
https://doi.org/10.1007/978-3-031-35254-6_19
https://doi.org/10.1007/978-3-031-35254-6_14
https://doi.org/10.1007/978-3-031-35254-6_12
https://doi.org/10.1007/978-3-031-35254-6_12
https://doi.org/10.1007/978-3-031-35254-6_1
https://doi.org/10.1007/978-3-031-35254-6_1
https://doi.org/10.1007/978-3-031-35254-6_5
https://doi.org/10.1007/978-3-031-35254-6_5
https://doi.org/10.1007/978-3-031-35254-6_7

Simultaneously Teaching Mathematics
and Prolog in School Curricula: A Mutual

Benefit

Laurent Cervoni1(B), Julien Brasseur1, and Jean Rohmer2

1 Talan Research and Innovation Centre, Paris, France
{laurent.cervoni,julien.brasseur}@talan.com

2 Institut Fredrik Bull, Paris, France

Abstract. Created in the 1970s, Prolog has its roots in mathematical
logic. Its use to model logic problems is natural, but beyond logic, we
suggest that using and learning Prolog for most of the topics in the
high school math curriculum (probability, algebra, analysis or geome-
try) allows for a better assimilation of the course concepts. We argue
that using Prolog is helpful in that it asks to properly model a problem,
which is essential to develop problem-solving skills since it is often the
key for finding a solution. At the same time, high school students dis-
cover a programming language that is easier to learn than imperative
languages since the syntax is close to natural language and the language
specification is more synthetic than traditional imperative languages.

Keywords: Prolog · Teaching · Mathematics · Education

1 Introduction

Based on predicate logic, Prolog is particularly well suited for expressing relation-
ships between objects, checking properties about these relationships, validating
the consistency of logical rules or for its intrinsic database capabilities.

However, the (re)introduction of Prolog into the educational system at the
secondary school level, and its use as a complement to traditional school subjects,
provides a new and enriching form of learning that may prove to facilitate the
acquisition of certain knowledge.

There have been many examples in the past of the use of Prolog in mathe-
matical analysis (derivative), geometry (Géometrix [6]) or chemistry [7,8]. Var-
ious papers [1–4], some going back to the 1980s, have illustrated, through a few
examples, the pedagogical interest of Prolog in the teaching of elementary math-
ematics, or more advanced mathematics (such as the learning of recursion via
fractals [5], or related to graphs [9,10]). Its educational potential in the history
classroom [11] has also been considered.

Supported by Talan Research Center.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 124–130, 2023.
https://doi.org/10.1007/978-3-031-35254-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_10&domain=pdf
https://doi.org/10.1007/978-3-031-35254-6_10

Simultaneously Teaching Mathematics and Prolog 125

This collection of work shows the interest of exploring the usefulness of Prolog
in a pedagogical context. The experiments we have conducted in 2022 with senior
High School students seem to confirm its relevance. In this paper, we gather some
of the case studies which were proposed to the students.

2 Prolog and Mathematics: A Natural Fit

An important step in solving mathematical problems is to correctly describe and
express the problem. That is, being able to identify the givens of the problem
and its assumptions. The intellectual process of breaking down the problem into
simpler sub-problems is often an essential step towards the solution. Then, the
expression of the different components of the problem and its links with the
knowledge acquired in class make it possible for the student to devise a process
to solve the problem.

Many mathematics teachers (especially, but not only) seem to encourage
students to proceed to this “decomposition” of a problem which allows them to
better understand how to solve it.

Transcribing a problem into Prolog is a relevant and efficient way to per-
form the analysis and the elementary decomposition of a problem. Indeed, it
involves identifying all the elements of a problem and putting them into factual
form. Then, the student must identify the givens of the problem and write them
down as rules and facts. (Re)introducing Prolog into mathematics education
thus has the double advantage of giving students the keys to a rigorous method
for approaching problem solving with an initiation to declarative programming.

The experiments we conducted in a French high school, during the year 2022,
with Senior Year students show that it is not necessary to use complex terms
(unification, recursion, resolution, for example) to make students understand
the concepts. In three sessions of 3 h, they were able to understand the basic
principles of writing Prolog programs and to prepare a presentation for middle
school students by themselves.

On the other hand, the declarative approach will facilitate the expression of
the problem and the solution in “natural language”, will invite to make clear
sentences, which is an important skill to train. To describe certain problems,
they will have to write or express sentences such as:

1. An empty list has a length of zero
2. The last element of a list containing only one element is the element itself
3. The parents of my ancestors are my ancestors.

More generally, writing in Prolog allow to articulate both natural language,
drawing (of genealogical relationships for example) and writing an imperative
program. Prolog thus allows to “navigate” between abstract and concrete, or
between modelling and experimental verification. In order to do this, it is essen-
tial to take time with the students, and, above all, not to rush into absorbing
the Prolog reference manual.

126 L. Cervoni et al.

3 Some Examples

The intrinsic qualities of Prolog justify its implementation in high schools (not
an intention to apply it artificially out of context). As we will illustrate with
a few examples, its use has the potential to allow students to assimilate the
elements of the course and to manipulate them and exploit them easily during
exercises.

As we shall illustrate, its use has the potential to allow students to assimilate
the elements of the course and to manipulate them easily during the exercises.
When solving problems or doing exercises, Prolog may give students a way to
understand the flow and application of certain theorems. Let us now consider a
few examples.

3.1 Counting Triangles

A classic mathematical puzzle is to count how many triangles there are in a
geometric figure made of line segments.1

First of all, one has to find a suitable formalism to describe the figure, and
another to express the definition of a triangle. This is very easy in Prolog.

It is only needed to give a name to each line, for example by choosing two
distinct points through which it passes: AB, AC, DE, DF , ... (in general it will
pass through more points than the two chosen to name it). Then, we describe
the membership of points to lines:

line_point(ab,a).
line_point(ab,b).
line_point(ef,a).

and so on. Finally, we express the knowledge of what a triangle is:

triangle([A,B,C]):-
line_point(AB,A),
line_point(AB,B),
line_point(BC,B),
line_point(BC,C),
line_point(CA,C),
line_point(CA,A).

One can now experiment with this first try in Prolog on a case study, and
see that it is not totally satisfactory: Prolog will tell us that a point is a triangle
(the three vertices being in coincidence), that a segment line is a triangle (the
three vertices being aligned), and, finally, it will find that with three vertices, we
can name six triangles [A,B,C], [A,C,B], ..., which is not of much relevance, as
these “six” triangles are nothing but one.

1 See, for example: https://www.rd.com/article/triangle-puzzle/.

https://www.rd.com/article/triangle-puzzle/

Simultaneously Teaching Mathematics and Prolog 127

These experiments, and the modifications to our Prolog program that they
may require (specifying that the vertices and segments must be distinct, e.g. by
defining a new ad hoc predicate), are an excellent ground to encourage careful,
precise exploration of the relationships between concepts, models, experiences,
real world, and human perception.2

3.2 Polynomials

In early mathematics course, second-degree polynomials are defined as follows:

a second-degree polynomial function P is a function defined on R by:
P (x) = ax2 + bx + c, where a, b, c ∈ R are real numbers with a �= 0.

In Prolog, this polynomial in the x variable can be written as:

quadPolynomial(A*x^2+B*x+C) :- A=\=0, number(A),
number(B), number(C).

quadPolynomial(A*x^2+B*x) :- A=\=0, number(A), number(B).
quadPolynomial(A*x^2+ C) :- A=\=0, number(A), number(C).

By writing these three clauses, the pupil becomes aware of different, more
or less complete forms of polynomials (the teacher then guides him/her in this).
They may start with only the first rule and find that it is not very precise. They
can then move on to the standard application exercises of the course, where
the aim is to check whether a function is a second degree trinomial or not, for
example:

quadPolynomial(7). FALSE
quadPolynomial(12*x^2+1*x+0). TRUE

The advantage of using Prolog is that the student can transcribe the course
definition exactly with a minimum of learning. In the same way, if he has to
represent the solution of a second degree polynomial, the course is also written
directly in Prolog. Introducing the concept of the undefined variable “_”, this
can be written as follows:

solvePoly(A*x^2+B*x+C, Discriminant, _, _) :-
Discriminant is B*B - 4*A*C,
Discriminant $<$ 0.
/* The discriminant is negative, no solutions to display */

solvePoly(A*x^2+B*x+C, Discriminant, X1, X1) :-
Discriminant is B*B - 4*A*C,
Discriminant = 0,
A =\= 0,

2 More details can be found at: https://fr.slideshare.net/Jean Rohmer/compter-les-
triangles-en-prolog.

https://fr.slideshare.net/Jean_Rohmer/compter-les-triangles-en-prolog
https://fr.slideshare.net/Jean_Rohmer/compter-les-triangles-en-prolog

128 L. Cervoni et al.

X1 is -(B/(2*A)).
/* The discriminant is zero, X1 is the only solution */

solvePoly(A*x^2+B*x+C, Discriminant, X1, X2) :-
Discriminant is B*B - 4*A*C,
Discriminant > 0,
A =\= 0,
X1 is (-B-sqrt(Discriminant))/(2*A),
X2 is (-B+sqrt(Discriminant))/(2*A).

Then, “solvePoly(1*x^2+2*x+1,D,A,B).”, will give A=B=-1 and D=0. This abil-
ity to directly represent the course concepts in the form of Prolog facts and
clauses contributes to a reinforcement of the learning of the course basics (the
student appropriates the concepts and retranscribes them after assimilating a
few writing rules, to begin with). Progressively, he also acquires the fundamentals
of logic programming (unification, resolution, etc.).

3.3 Euclidean Geometry

These same principles can be applied to various areas of mathematics. Thus, for
example, a simple geometry exercise allows the students to express the different
stages of the problem but also to describe the elements at their disposal.

We give below an illustration where we “translate” two elementary geometry
theorems into Prolog.

/* a triangle ABC is right-angled at B,
if it is inscribed in a circle of which AC is a diameter */

rightTriangle(B, [A,B,C], Circle) :-
diameter([A,C], Circle),
inscribed([A,B,C], Circle).

/* AB is perpendicular to EF if there are 2 triangles
ABE and ABF, both right-angled at B */

perpendicular([A,B],[E,F]) :-
rightTriangle(B,[A,B,E], Circle1),
rightTriangle(B,[A,B,F], Circle2).

If, now, a student is asked to verify the following property:

Let A, B, E and F be four points in the plane. Suppose that the segment
[B,E] is a diameter of a circle C1, that [B,F] is the diameter of another
circle C2 and, finally, that the triangles BAE and BAF are inscribed in the
circles C1 and C2, respectively. Show that the segments [B,A] and [E,F]
are perpendicular.

It will suffice, then, to describe the problem to Prolog, by writing that:

diameter([a,e],c1).
diameter([a,f],c2).

Simultaneously Teaching Mathematics and Prolog 129

inscribed([a,b,e],c1).
inscribed([a,b,f],c2).

For example, the student can easily check that [B,A] and [E,F] are perpen-
dicular by asking whether “perpendicular([a,b],[e,f]).” is true, and Prolog
will return “TRUE”.

Although Prolog is not a substitute for learning how to solve a problem,
it is a valuable tool for learning how to understand and structure a problem,
which is the first step towards solving it. Learning to pose a problem correctly
is sometimes enough to trivialise its solution.

Pythagoras, Thales or midpoint theorems can be expressed just as simply
in the form of Prolog clauses and, with the use of the traditional trace when
executing a Prolog program, the student can see the solution of an exercise step
by step.

In a first step, the teacher can show the students how to express theorems
in Prolog, with the learners having to describe the exercises as facts (as in the
example above). Then, in a second step, the students write all the case studies
(theorems or propositions and descriptions of the exercises) themselves.

4 Conclusion

Solving a problem in Prolog means describing it. As we have seen from a few
examples, no matter how you describe the problem, no matter how diverse the
description, Prolog will always return an answer. The main interest of Prolog
for mathematics education is that it learns to understand, express and structure
a problem. This step alone often makes it possible, if not to solve the problem,
at least to identify possible lines of attack opening the way to its resolution. It
seems to us that this step is fundamental in the problem solving process and
that Prolog, by its nature, is adapted to its learning.

The interrelationship between the modelling of theorems or course principles
in Prolog and the progressive learning of the language seems to us to be more
relevant than in traditional imperative languages where an algorithm must first
be imagined. With Prolog’s native solving principle, the student discovers the
mechanisms that allow him to solve an exercise. The trace helps him to better
understand which theorems apply or why some descriptions he may have made
are incorrect or incomplete.

However, by calling the Prolog interpreter, the student will get the informa-
tion that the property can be derived, but not how. The sequence of predicates is
essential, and can be obtained by using the trace which, beyond debugging, also
allows to understand the “reasoning” implemented and its relevance. Moreover,
the solution obtained is relative to the known and described knowledge. A Prolog
answer confirms that the knowledge domain is sufficient to reach a satisfactory
conclusion, whereas a failure does not show that the requested objective cannot
be reached. It does not show that the objective cannot be reached, but rather
that the knowledge expressed (in the form of rules and facts) is sufficient.

130 L. Cervoni et al.

Finally, it is important to note that languages evolve rapidly and are likely to
move from widespread use to more moderate use; therefore, while it is good to
introduce students to a computer language, it should not necessarily be chosen
on the basis of its popularity, but rather its educational potential.

References

1. Ball, D.: PROLOG and mathematics teaching. Educ. Rev. 39(2), 155–161 (1987)
2. Bensky, T.: Teaching and learning mathematics with Prolog. arXiv preprint

arXiv:2108.09893 (2021)
3. Buscaroli, R., Chesani, F., Giuliani, G., Loreti, D., Mello, P.: A Prolog application

for reasoning on maths puzzles with diagrams. J. Exp. Theor. Artif. Intel. 1–21
(2022)

4. Connes, A.: Micro-Prolog et géométrie élémentaire. Bulletin de l’EPI (Enseigne-
ment Public et Informatique) 44, 125–137 (1986)

5. Elenbogen, B. S., O’Kennon, M. R.: Teaching recursion using fractals in Prolog. In
Proceedings of the nineteenth SIGCSE technical symposium on Computer science
education, 263–266 (1988)

6. Géométrix website, http://geometrix.free.fr/site. Accessed 9 Feb 2023
7. Kleywegt, G. J., Luinge, H. J., Schuman, B. J. P.: PROLOG for chemists. Part 1.

Chemom. Intel. Lab. Syst. 4(4), 273–297 (1988)
8. Kleywegt, G. J., Luinge, H. J., Schuman, B. J. P.: PROLOG for chemists. Part 2.

Chemom. Intel. Lab. Syst. 5(2), 117–128 (1989)
9. McGrail, R. W., Nguyen, T. T., Granda, M. S.: Knot Coloring as Verification.

In: 2020 22nd International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC). pp. 24–31. IEEE (2020)

10. Volk, A. C.: Graph Algorithms in PROLOG, CPS 499/592 Emerging Languages,
University of Dayton, Spring (2016)

11. Weissberg, D.: Micro-prolog en classe d’histoire: Montségur au risque de
l’informatique. Bulletin de l’EPI (Enseignement Public et Informatique) 39, 115–
120 (1985)

http://arxiv.org/abs/2108.09893
http://geometrix.free.fr/site

Logic Programming at Elementary
School: Why, What and How Should We
Teach Logic Programming to Children?

Laura A. Cecchi1(B) , Jorge P. Rodŕıguez1 , and Verónica Dahl2

1 Grupo de Investigación en Lenguajes e Inteligencia Artificial Facultad de
Informática, Universidad Nacional del Comahue, Neuquén, Argentina

{lcecchi,j.rodrig}@fi.uncoma.edu.ar
2 Computer Sciences Department, Simon Fraser University,Burnaby, Canada

veronica dahl@sfu.ca

Abstract. In this paper, we argue that Logic Programming(LP) is a
viable and desirable paradigm choice for elementary school children. We
consider we can fruitfully introduce Computer Science and develop Log-
ical and Computational Thinking skills through LP to children.

We analyse the need of educational methodological approaches and
suitable teaching resources to make these ideas sustainable over time.
We introduce some proposals of different complexity for teaching LP
conducted as an initial effort to make this type of knowledge accessible
to elementary school students. The proposal is defined within the frame-
works of project-based learning, collaborative learning and projects for
social good.

We present a description of a pilot experience carried out for children
aged from 8 to 10 years in two public elementary schools in Argentina.

Keywords: Logic Programming Education · Prolog · Computational
Thinking · Logical Thinking · Elementary School · Game-based
approaches

1 Introduction

At present, there is an international consensus on the importance of Computa-
tional Thinking (CT) [30] in developing general-purpose problem solving skills.
Hence, countries have begun to incorporate CT into their curriculum since ele-
mentary school. However, there is no complete agreement regarding the concepts
that should be addressed. In this respect, some works [4,24,27] recognise that the
following concepts should be covered: algorithm design, abstraction, decompo-
sition, generalisation and evaluation. Elementary school curricula include some
or all of these concepts, in different complexity levels selected according to chil-
dren’s ages [3,22].

There is much research explaining how to introduce CT to children through
Imperative Programming, supported by a variety of teaching resources that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 131–143, 2023.
https://doi.org/10.1007/978-3-031-35254-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_11&domain=pdf
http://orcid.org/0000-0001-5236-6715
http://orcid.org/0000-0002-4697-6477
http://orcid.org/0000-0002-1159-1374
https://doi.org/10.1007/978-3-031-35254-6_11

132 L. A. Cecchi et al.

collaborate in this process. The majority of these initiatives use visual pro-
gramming languages, where students build programs using graphical objects
and drag-and-drop interfaces. Examples of these tools are Scratch, Alice and
Open Roberta. Compared to text-based programming, these visual languages
significantly reduce the challenges for students to learn syntax and avoid the
inconvenience of syntax errors.

The Logic Programming paradigm is not represented enough within the
paradigms habitually covered in introductory Computer Science (CS) courses
and developing children’s CT skills.

Similarly, in the literature there is no consensus regarding how to define
logical thinking (LT) [32]. In this article we consider that LT mainly focuses on
the abilities needed to identify entities (e.g. objects, concepts) and relationships
between them, and to understand, incorporate and soundly use the rules of logical
inference relevant to deriving new, implicit ideas in everyday activities, and to
reason about and judiciously choose among different logical formulations of the
same problem.

In this paper, we argue that Logic Programming (LP) is a viable and desir-
able paradigm choice for elementary school children, even for those with no
previous programming knowledge. Some research has been done to introduce
CS and to develop CT skills through LP for high school children [2,29,31,33].
Similarly, we consider we can fruitfully introduce CS and develop CT and LT
skills through LP to children. In addition to this discussion, in this paper we also
address the problem of determining what and how we should teach LP, analysing
teaching activities we consider suitable to face this challenge. For our proposals
we describe some game-based, unplugged and social good projects. Finally, we
describe an experience carried out in Argentina with children from 8 to 10 years
old, detailing what results are being obtained in the pilot project.

2 Computational Thinking and Logic Programming

Computational Thinking has its origin in the constructionist work of Seymour
Papert [23]. Jeannette Wing then introduced the expression in her seminal
essay [30] as follows: “computational thinking involves solving problems, design-
ing systems, and understanding human behaviour, by drawing on the concepts
fundamental to computer science”(p.33). Thus CT highlights the need to develop
the abilities to understand how to solve problems using CS concepts and being
an active participant in a digital society [20].

In [14], an algorithm is represented symbolically by

Algorithm = Logic + Control

The logic component specifies the knowledge to be used in solving problems,
and the control component determines the problem-solving strategies by means
through which that knowledge is used.

Regarding algorithm design, in LP the logic component is specified by facts
and rules, which represent certain knowledge about the problem we want to solve.

Logic Programming at Elementary School 133

LP and particularly the Prolog control component, which is domain independent,
include recursion, backtracking, backward chaining and unification. Hence, we
can distinguish what we want to achieve from how we can fulfill our goals.

Abstraction can generally be characterised as the conceptual process of elim-
inating specificity by ignoring certain features. Logic as a modelling tool and the
emphasis on the essence of the problems are LP key characteristics for students
to achieve abstraction.

Decomposition deals with breaking down a complex problem into smaller,
more manageable components where each component can be managed indepen-
dently. A rule in LP is expressed by A if B1 and . . . and Bn which reduces
problems of form A to subproblems of the form B1 and . . . and Bn. Thus, we
can specify a problem by describing smaller problems that may be more eas-
ily solved. These subproblems can then be understood, solved, developed and
evaluated separately.

CT is associated with pattern recognition and generalisation in solving prob-
lems where repeatable patterns can be observed. In this sense, we wonder if any
of the problems or solutions that we have found in the past can be applied to
solve the new problem. Students can be introduced to different problems, such
as puzzles or scheduling problems, to infer solution patterns.

Finally, we can consider evaluation as the process of ensuring that an algo-
rithmic solution is a good one: that it fits for purpose [5]. Declarative semantics
and proof theory of Horn clauses play a crucial role in understanding logic pro-
grams and in determining whether the goal is achieved.

LT involves the child’s ability to properly utilise these skills as needed [32].
Furthermore, we consider that LT develops other skills as well. It helps us to
distinguish good arguments from bad ones, e.g. through identifying fallacies and
contradictions. In addition, it allows the child to establish connections between
arguments through reasoning, so that they can interpret available evidence and
derive new implicit facts, useful to explain a conclusion. Thus, the way we pro-
gram in LP develops different LT skills, since modelling in LP allows us to focus
on a problem’s essence. Furthermore, logic programs can be built by translating
simple sentences in natural language to a logic subset. Thus, to specify and rep-
resent knowledge, students are introduced to logic and consequently to formal
reasoning. Two interesting approaches presented in [15,19] address how to relate
logic, computation and human thinking through LP in order to best develop some
of the mentioned skills, such as problem solving and communication.

Therefore LP can be viewed as a pedagogical device used for teaching to
program, in a different way from how we do it in Imperative Programming:
a way that promotes computational, logical and creative thinking. These ideas
can be transposed into other disciplines, modelling specific situations and solving
problems in those domains in a natural way.

3 Proposals for Teaching Logic Programming

This analysis provides useful background for anyone wishing to present a pro-
posal for teaching LP and in particular Prolog to elementary school children.

134 L. A. Cecchi et al.

To the best of our knowledge, no proposal to teach LP to a student population
of the age range from 8 to 10 years old has been made in the last 20 years.
In the 1980s,s, educational experiences with LP were carried out with elemen-
tary school students [8,18]. Taking inspiration from these works, we currently
consider it interesting to rescue these ideas, given the importance of this kind
of abstract thinking, through bringing this paradigm closer to children in their
education.

One of the key considerations is to identify the core of LP concepts that
can be learned by children. In this direction, we consider that we must focus
on the declarative aspects of LP and restrict the use of procedural aspects of
LP to a minimum. The first group of concepts to be taught involves ground
knowledge representation and ground querying: constants, ground relationships
with just one argument, ground binary relationships and ground atomic queries.
A second group includes variable, non-ground binary relationships, non ground
atomic queries and non-recursive rules. A third group of concepts covers n-ary
relationships, conjunctive queries and simple recursive rules. In an advanced
level, we can deal with negation as failure, possibly introduced through rules
with exceptions [16,17] or through querying in the negative, as in “Who does
not sing?” [6].

In order to make teaching LP viable, we argue that there is a need for suitable
teaching resources: Prolog visual implementation and web tools. Using block-
based language1,2 avoids teaching and handling Prolog’s textual syntax. A web
environment allows collaborative work, in addition to avoiding the inconvenience
of installing the software. Furthermore, programming tools must meet certain
characteristics [9,10,23,25]: low floor (easy to get started), high ceiling (oppor-
tunities to create increasingly complex projects over time) and wide walls (sup-
porting many different types of projects so people with many different interests
and learning styles can all become engaged). At present, available environments
fulfill some of the requirements, but there is no tool satisfying all of them.

Furthermore, educational methodological approaches should be developed
in order to teach LP and reach children of different ages in various scenarios.
Regarding methodologies, while there will not be a one-size-fits-all solution to
implementing LP education for developing LT and CT skills and for introducing
CS to students, we consider that incorporating elements of interaction through
fun and games is a great starting point, setting up an appropriate approach for
teaching LP to children [11,28]. Moreover, we also consider interesting to work
on project-based learning, which is a form of instruction that has been explored
in different scenarios of elementary education [26].

We present a set of projects of different complexity for teaching LP. Students
participating in these projects do not require prior knowledge in CS. Further-
more, these proposals can be implemented with the usual available resources of
the school, not requiring extra equipment.

1 Blockly for Prolog Homepage https://guppy.eng.kagawa-u.ac.jp/∼kagawa/Member
s/Sano/prolog.html.

2 Blockly Prolog Homepage http://www.programmierkurs-java.de/blocklyprolog/.

https://guppy.eng.kagawa-u.ac.jp/~kagawa/Members/Sano/prolog.html
https://guppy.eng.kagawa-u.ac.jp/~kagawa/Members/Sano/prolog.html
http://www.programmierkurs-java.de/blocklyprolog/

Logic Programming at Elementary School 135

Playing Detective: The proposed game is based on detective fiction story-
telling in which the goal is to solve several robberies that occurred at differ-
ent times and points in the city. The game is structured into stages. At each
stage, students must face different challenges that, when solved, enable them to
advance to the next stage. A set of clues in natural language will be given to the
detectives, showing certain situations that will allow them to circumscribe the
suspicious persons. Students must code the clues in Prolog and finally query the
logic program on who is the thief. We strongly recommend to use a block-based
environment for codifying the clues in a logic program.

Initially, we explain to students that we are in a problematic situation where
the detectives have to identify important data, object and relations to be repre-
sented, and useless data that should be discarded.

Below we present concepts and examples that students are able to recognise,
remember, recall and use well enough for the purposes of the experience. In each
item we present the clue in Spanish and some Prolog code, which can be enlarged
pressing the Load Clue button. The full code in textual Prolog corresponding
with each clue in Spanish can be found in the Appendix A.

– Constant concept and ground relationships with just one argument. Students
receive the Clue 1 in natural language: Hay 7 personas involucradas en el
robo: Juan, Ana, Romualdo, Alicia, José, Rosa and Pedro.
involucrado(juan). involucrado(ana). ... Load Clue 1

– Ground binary relationships. In this case, the following relationships are used
to introduce the concept: to wear, to like and to know (the correspond-
ing words in Spanish are usar, gustar, saber). Some examples are: Ana y
Romualdo usan lentes. A Alicia le gusta pescar. Juan sabe leer.
usa(ana,lentes). usa(romualdo,lentes).

sabe(juan, leer). gusta(alicia, pescar). Load Clues 2 to 6

– Ground atomic queries: ¿Juan usa lentes?¿A Rosa le gusta nadar?
(Clues 4 to 6) ?- usa(juan lentes). %% Does Juan wear a hat?

?- gusta(rosa,nadar). %% Does Rosa like to swim?

– Atomic queries with variable: Clues 4 to 10. ¿Quién sabe soldar? ¿Quién es
el culpable del robo?
?- sabe(Y,soldar). %% Who does know how to weld?

?- culpable(X). %% Who is to blame for the robbery?

– Conjunctive queries: ¿A quién le gusta dibujar y cocinar? (Clues 4 to 6)
?- gusta(Y, dibujar), sabe(Y, cocinar).

%% Who likes to draw and knows how to cook?

– Rules: In this case, the following relationships are used to introduce the con-
cept: a doubtful person, a mysterious person, a suspicious person and a guilty
person. Every class of person is defined in function of the previous one. Ini-
tially, rules have just one predicate in the body. Some examples are: una
persona es dudosa si usa lentes (a person is doubtful if this person wears
glasses); una persona es misteriosa si es dudosa y sabe cocinar (a person is
mysterious if this person is doubtful and they know how to cook).
dudosa(X):- usa(X,lentes). Load Clues 7 to 10

misteriosa(X):- dudosa(X),usa(X,sombrero).

https://ciao-lang.org/playground/#%25%20Prolog%20for%20Kids:%20Playing%20%20Detective%0A%25%20Code%20in%20textual%20%20Prolog%20corresponding%20%20to%20the%20block-based%20Prolog%0A%25%20code%20developed%20by%208%20to%2011%20years%20old%20children%0A%25%20October%202022%20%20%20%0A%0A%25%25%20Clue%201:%20Estela%20pudo%20recoger%20nos%20indican%20que%20en%20el%20lugar%20%0A%25%25%20se%20encontraban%207%20personas%20involucradas%20en%20el%20hecho:%20%0A%25%25%20Juan,%20%20Ana,%20Romualdo,%20Alicia,%20%20Jos%C3%A9,%20Rosa%20y%20Pedro.%20%0A%0Ainvolucrado(juan).%0Ainvolucrado(ana).%0Ainvolucrado(romualdo).%0Ainvolucrado(alicia).%0Ainvolucrado(jose).%0Ainvolucrado(rosa).%0Ainvolucrado(pedro).
https://ciao-lang.org/playground/#%25%20Prolog%20for%20Kids:%20Playing%20%20Detective%0A%25%20Code%20in%20textual%20%20Prolog%20corresponding%20%20to%20the%20block-based%20Prolog%0A%25%20code%20developed%20by%208%20to%2011%20years%20old%20children%0A%25%20Clue%202%20to%206%0A%25%20October%202022%20%20%0A%0A%25%25%20Clue%202:%20Laura%20pudo%20recoger%20nos%20indican%20que%20en%20ese%20%20momento,%20%0A%25%25%20estaban%20en%20el%20sal%C3%B3n%20principal%20tres%20personas%20%20que%20usan%20%0A%25%25%20sombrero%20Juan,%20Ana%20y%20Pedro.%20%0A%0Ausa(juan,sombrero).%0Ausa(ana,sombrero).%0Ausa(pedro,sombrero).%0A%0A%25%25%20Clue%203:Roberto,%20que%20estuvo%20en%20el%20sal%C3%B3n%20nos%20cuenta%20que%20en%20%0A%25%25%20realidad%20ese%20d%C3%ADa%20hab%C3%ADa%20dos%20personas%20m%C3%A1s%20que%20usaban%20%0A%25%25%20sombrero:%20Romualdo%20%20y%20Alicia%0A%0Ausa(romualdo,sombrero).%0Ausa(alicia,sombrero).%0A%0A%25%25%20Clue%204:%20Un%20informante%20an%C3%B3nimo%20mientras%20esperaba%20su%20vuelo%20%0A%25%25%20pudo%20ver%20%20que%20Juan,%20Jos%C3%A9,%20Rosa,%20Ana%20y%20Romualdo%20usaban%20lentes.%20%0A%0Ausa(juan,lentes).%0Ausa(jose,lentes).%0Ausa(rosa,lentes).%0Ausa(ana,lentes).%0Ausa(romualdo,lentes).%0A%0A%0A%25%25%20Clue%205:Cristian%20%20nos%20cuenta%20qu%C3%A9%20gustos%20tiene%20cada%20persona.%20%0A%25%25%20Claro%20%C3%A9l%20lo%20sabe%20por%20la%20revista%20que%20compr%C3%B3%20cada%20cual.%0A%25%25%20A%20Rosa%20le%20gusta%20nadar.%20%20%20A%20Alicia%20le%20gusta%20bailar%20y%20pescar.%0A%25%25%20A%20Juan%20le%20gusta%20ver%20TV%20y%20bailar.%20%20A%20Romualdo%20le%20gusta%20pescar,%20ver%20TV%20y%20bailar.%0A%0Agusta(alicia,bailar).%0Agusta(alicia,pescar).%0Agusta(rosa,nadar).%0Agusta(juan,verTV).%0Agusta(juan,bailar).%0Agusta(romualdo,verTV).%0Agusta(romualdo,bailar).%0Agusta(romualdo,pescar).%0A%0A%0A%25%25%20Clue%206:%20De%20%20los%20formularios%20que%20anot%C3%B3%20Ver%C3%B3nica%20podemos%20conocer%20que%0A%25%25%20Ana%20y%20Juan%20saben%20leer.%20Por%20otra%20parte,%20Ana%20sabe%20soldar%20y%20cantar.%20%0A%25%25%20Tambi%C3%A9n%20sabemos%20que%20Romualdo%20sabe%20cocinar%20y%20Alicia%20sabe%20dibujar.%0A%0Asabe(juan,leer).%0Asabe(ana,leer).%0Asabe(ana,soldar).%0Asabe(ana,cantar).%0Asabe(romualdo,cocinar).%0Asabe(alicia,dibujar).
https://ciao-lang.org/playground/#%25%20Prolog%20for%20Kids:%20Playing%20%20Detective%0A%25%20Code%20in%20textual%20%20Prolog%20corresponding%20%20to%20the%20block-based%20Prolog%0A%25%20code%20developed%20by%208%20to%2011%20years%20old%20children%0A%25%20Clues%207%20to%2010%0A%25%20October%202022%20%20%20%0A%0A%0A%25%25%20Clue%207:%20Julio,%20basado%20en%20su%20enorme%20experiencia,%20nos%20dice%20que%20%0A%25%25%20debemos%20dudar%20de%20algunas%20%20personas.%20Una%20persona%20es%20dudosa%20%0A%25%25%20si%20usa%20lentes.%20Por%20otra%20parte,%20tambi%C3%A9n%20%20nos%20%20informa%20que%20%20%0A%25%25%20una%20%20persona%20%20es%20%20dudosa%20si%20sabe%20dibujar.%0A%0Adudosa(X):-%20usa(X,lentes).%0Adudosa(X):-%20sabe(X,dibujar).%0A%0A%0A%25%25%20Clue%208:%20Emma%20nos%20informa%20que%20resulta%0A%25%25%20misteriosa%20una%20persona%20si%20sabe%20leer%20y%20le%20gusta%20nadar.%20%0A%25%25%20Tambi%C3%A9n%20resulta%20misteriosa%20una%20persona%20si%20dudamos%20de%20ella%20y%20%0A%25%25%20adem%C3%A1s%20esa%20persona%20usa%20sombrero.%0A%0Amisteriosa(X):-%20sabe(X,leer),%20gusta(X,nadar).%0Amisteriosa(X):-%20dudosa(X),usa(X,sombrero).%0A%0A%0A%0A%25%25%20Clue%209:Nahuel,%20nos%20indica%20que%20una%20%20persona%20%20es%20sospechosa%20%0A%25%25%20si%20es%20%20misteriosa%20%20y%20le%20gusta%20pescar.%0A%25%25%20Tambi%C3%A9n%20nos%20%20informa%20que%20una%20%20persona%20es%20sospechosa%20si%20%0A%25%25%20es%20%20misteriosa,%20%20sabe%20soldar%20y%20%20le%20gusta%20nadar.%0A%0Asospechosa(X):-%20misteriosa(X),%20gusta(X,pescar).%0Asospechosa(X):-%20misteriosa(X),%20sabe(X,soldar),%20gusta(X,nadar).%0A%0A%0A%25%25%20Clue%2010:%20Ayel%C3%A9n,%20nos%20indica%20que%20la%20persona%20culpable%20es%20%0A%25%25%20una%20persona%20que%20est%C3%A1%20involucrada,%20%20que%20%20es%20sospechosa%20%20y%20%0A%25%25%20que%20sabe%20cocinar.%20%0A%0Aculpable(X):-%20involucrado(X),sospechosa(X),%20sabe(X,cocinar).%0A%0A%0A%0A%0A%0A%0A%0A%0A%0A%0A%0A

136 L. A. Cecchi et al.

Note that natural language phrases representing conditions are written so that
its translation to a rule (Head, Body) is unambiguous and understandable for
children.

– Recursive rules: we present recursion (Clue 8) through an example inspired
by Kowalski in [13]: A José le gusta todo lo que le gusta a Rosa (José likes
everything Rosa likes).

gusta(jose,X):-gusta(rosa,X).

During the game, students receive four rewards according to what they have
learnt: constants and facts; variables and queries; rules; and finally, recursive
rules. We address the following CT and LT dimensions all over the game: algo-
rithm design, generalisation, abstraction and decomposition in human commu-
nication in order to formalise knowledge; logical deduction when new implicit
conclusions are obtained from the rules useful to explain this conclusion; and
decomposition when facing rule formalisation with and without recursion.

It is interesting to remark that students must build a large knowledge base
with several facts. The goal is to show that even if they can find out the thief
without a computer, they can do it faster with Prolog. This idea is to emphasise
the point of LP.

Moreover, in several stages the clues seem to be repetitive, in order to rein-
force the concept, so that students build a model for the construction of new
facts (generalisation).

As an alternative to the way in which the experience was presented and in
order to promote collaborative learning, student groups could be provided with
pieces of information that, when put all together, form a large knowledge base.

Unplugged Activities Covering Recursion: There exist several off-line
activities suitable for elementary school students to introduce the powerful con-
cept of recursion, such as the travel example (one is travelling trough inter-
mediate stops to reach a final city) or the sorting algorithm [1,12]. Below, we
present a new unplugged activity we designed, which has been tested. Similarly
to most of those existing in the literature, it was designed for easing facilitation
by non-specialist teachers.

We propose a simple game which arose spontaneously from an example to
introduce children to recursion. We asked a group of children who used the same
colour of pen to write their homework, what colour is the pen they use? Since
they all used pens of the same colour, we asked them to express this in terms of
their neighbour’s pen’s colour. The first child should say they use a pen of the
colour of the second child pen’s colour and so on. The key point is that the last
child in the sequence has to realise that if they express the colour based on the
colour of the first child’s pen, then they start all over again. Thus, the need to
identify the case base is motivated naturally.

Logic Programming at Elementary School 137

Language/Physical Enactment Games: Several natural language based
games can support Prolog teaching as they help students drill on other themes,
e.g. grammatical concepts. Vocabulary, for instance, can be enriched by playing
tipoteo, where a team wins by guessing a verb the opponent team has secretly
chosen, from questions it can pose around the verb’s arguments, like: How do
you “tipoty”?, When?, With whom?, Why?. Initial help from ready-made knowl-
edge bases or grammars can evolve into students writing their own, perhaps
from clues they get from previous rounds of playing. Games of physical enact-
ment (e.g. hopscotch-like search space descriptions chalked on the ground, with
students representing constituents cloning themselves through others to pursue
other avenues upon a branch’s failure) can help them embody concepts such as
execution strategies, sentence recognition vs. generation, backtracking, etc.; the
consciousness that children already master recursion can be brought out through
games around embedded relative clauses, and expanded using Russian dolls and
the idea of a “genie” that can be conjured to solve simpler forms of (a recursive)
problem; songs like “the song that never ends” (or deliberately misplacing the
base case for relatives) can illustrate/ warn about looping; and so on.

Social Good Project: Inspired on [7,34] we propose to combine social good,
scientific inquiry and LP. Elementary school teachers choice curricular themes
focusing on our ecological crises (such as climate catastrophe, ozone depletion,
land conversion) and our societal crises (such as inequity, hunger, war), or any
other topic of interest involving how to improve quality of life and/or the envi-
ronment. Students must find out relevant information about the topics (initial
status, desired goal, possible actions and their impact) and represent this knowl-
edge as a (syntactically sugared) logic program. Elementary school teachers and
students could be given pre-programmed open tools (e.g. piece of Prolog code
or grammars) that facilitate open-minded analyses of the topics.

Rules about global impact on human and ecological well-being of the chosen
topic and possible measures to tackle it are expected to be part of the logic
program. Thus, they can experiment with possible solutions around real data
and consequently suggest rationally justified improvements of the current situa-
tion in their neighbourhood, province, and beyond. Teachers can thus motivate
students to deduce implicit facts about the topic from logic programs, focusing
on critical discussion about ecological and societal implications and encouraging
children to become, in time, pro-active and responsible citizens and stakeholders
of technology.

It is expected that this interdisciplinary project will become known when
empowered students interact with their schoolmates, parents and with their
community in general, showing the logic programs they have developed and
promoting the use of Prolog as a valuable tool for programming.

Finally, to make these ideas sustainable over time, teachers must be
instructed in LP and its methodological approaches, showing its advantages
related to computing education (abstraction and logical reasoning among others)

138 L. A. Cecchi et al.

and the utility of LP to facilitate the achievement of educational goals. Thus,
both LP educational packages for teachers and for children would be welcome.

4 Experience

In the context of this proposal’s formulation, an experience based on the game
Playing Detective was designed, implemented and assessed. This experience
focused on fundamental CT and LT concepts such as abstraction, generali-
sation, decomposition and reasoning. Furthermore, the concepts of Constant,
and Ground relationships with just one argument, Binary relationships, Atomic
ground queries, Atomic queries with variables, Conjunctive queries, Rules and
Simple recursive rules were worked on from the logic programming perspective.

The age of the students who were part of the experience ranged from 7 to
9 years old at the beginning of the school year and from 8 to 10 years old at
the end of it. Both students and elementary school teachers had no knowledge
about programming, so Prolog was the students’ first exposure to a programming
language. We worked in two public elementary schools in the city of Neuquén,
Argentina, with 33 students ranging from 9 to 10 years old and 23 students
ranging from 8 to 10 years old, respectively. Out of the 56 participants, 29 were
boys and 27 were girls. Computer Science is not an established discipline in the
schools’ curricula.

For the purposes of this experience, the following actions were carried out:
First, institutional and jurisdictional authorities were informed about the pur-
poses of the experience and they agreed to fulfill the project. Second, elementary
school teachers were trained to teach LP, introducing them to LP basic topics and
to the Prolog block-based environment. Third, university teachers and students
were trained to teach LP using the game “Playing Detective”: 16 facilitators, 14
university students and 2 professors, participated in the experience.

The children were put together into groups from 2 to 4 members. A facili-
tator was assigned for each group to help and encourage the group to solve the
challenges. Each group performed either 7 or 8 clues and all managed to solve
the final challenge in three hours of work with a break in between. Each clue
involves concepts that are related to both LP and the game.

Each LP concept was explored in two or three clues, each challenge was
designed to help children apply the problem solving skill. When the last clue
was solved, a reward was granted to connect experience with formal knowledge
and, in that way, acquire comprehension. It was observed that throughout this
process, the teachers’ guidance dropped from strong to minimal.

The groups received a card from the teacher, in which they found a clue written
in colloquial language. The students’ joint work continued until the group reached
a consensus on how to analyse and decompose the problem to describe relation-
ships, rules and queries. Then, from the results of this task, the group developed
and tested Prolog programs using the block-based environment Blockly Prolog.
Figure 1 shows a group of students solving Clue 4. The complete code in tex-
tual Prolog can be accessed in https://swish.swi-prolog.org/p/PlayDetective.pl or

https://swish.swi-prolog.org/p/PlayDetective.pl

Logic Programming at Elementary School 139

Fig. 1. Group of students solving Clue 4 - Playing Detective

this link to Ciao Prolog Playground. PlayingDetectiveBlocks.xml3 can be loaded
at Blockly Prolog to access to the complete block-based Prolog code.

Regarding recursion teaching, the students initially solved the recursion clue
(Clue 8), expressing the recursion rule without difficulties. Afterwards, we carried
out one of the proposed unplugged activities, in order to strengthen the concept.
After programming the recursive clue, we asked a group of four 9 year olds which
colour is the pen they use and we asked to express this in terms of the neighbour’s
colour pen. They did not face problems expressing it. Every child expressed
their pen’s colour in relation to the same their neighbour’s. Finally, the last one
realised that if they expressed the colour based on the pen colour the first child
was using, they should start all over again. So they said, Uso una lapicera azul
(I use a blue pen), finding out the base case.

During these experiences, the facilitators take records of the degree of auton-
omy, efficiency, and interest for the task. These records show a satisfactory degree
of interest, especially during the early phases of the activity. The autonomy
degree of the students increases as each concept of LP is explored, it decreases
when beginning to explore the next concept, only to grow again shortly after-
wards, and so on. The efficiency degree is acceptable and remains the same
throughout the entire experience, showing only minimal variations.

After the experience, we consulted the elementary schools’ teaching team.
They described the task as a transforming experience, emphasising that the boys

3 https://drive.google.com/file/d/1X0vtYx7PUfJK5DH1pvUDqLdbxviH1MEZ/
view?usp=sharing.

https://ciao-lang.org/playground/#%25%20Prolog%20for%20Kids:%20Playing%20%20Detective%0A%25%20Code%20in%20textual%20%20Prolog%20corresponding%20%20to%20the%20block-based%20Prolog%0A%25%20code%20developed%20by%208%20to%2011%20years%20old%20children%0A%25%20October%202022%20%20%20%0A%0A%25%25%20Clue%201:%20Estela%20pudo%20recoger%20informaci%C3%B3n%20que%20nos%20indica%20que%20en%20el%20lugar%20%0A%25%25%20se%20encontraban%207%20personas%20involucradas%20en%20el%20hecho:%20%0A%25%25%20Juan,%20%20Ana,%20Romualdo,%20Alicia,%20%20Jos%C3%A9,%20Rosa%20y%20Pedro.%20%0A%0Ainvolucrado(juan).%0Ainvolucrado(ana).%0Ainvolucrado(romualdo).%0Ainvolucrado(alicia).%0Ainvolucrado(jose).%0Ainvolucrado(rosa).%0Ainvolucrado(pedro).%0A%0A%25%25%20Clue%202:%20Laura%20pudo%20recoger%20informaci%C3%B3n%20que%20%20nos%20indica%20que%20en%20ese%20%20momento,%20%0A%25%25%20estaban%20en%20el%20sal%C3%B3n%20principal%20tres%20personas%20%20que%20usan%20%0A%25%25%20sombrero%20Juan,%20Ana%20y%20Pedro.%20%0A%0Ausa(juan,sombrero).%0Ausa(ana,sombrero).%0Ausa(pedro,sombrero).%0A%0A%25%25%20Clue%203:Roberto,%20que%20estuvo%20en%20el%20sal%C3%B3n,%20nos%20cuenta%20que%20en%20%0A%25%25%20realidad%20ese%20d%C3%ADa%20hab%C3%ADa%20dos%20personas%20m%C3%A1s%20que%20usaban%20%0A%25%25%20sombrero:%20Romualdo%20%20y%20Alicia%0A%0Ausa(romualdo,sombrero).%0Ausa(alicia,sombrero).%0A%0A%25%25%20Clue%204:%20Un%20informante%20an%C3%B3nimo%20mientras%20esperaba%20su%20vuelo%20%0A%25%25%20pudo%20ver%20%20que%20Juan,%20Jos%C3%A9,%20Rosa,%20Ana%20y%20Romualdo%20usaban%20lentes.%20%0A%0Ausa(juan,lentes).%0Ausa(jose,lentes).%0Ausa(rosa,lentes).%0Ausa(ana,lentes).%0Ausa(romualdo,lentes).%0A%0A%25%25%20Clue%204:%20Queries%0A%25%25%20Probemos%20consultar%20%C2%BFJuan%20usa%20lentes?%0A%25%25%20%C2%BFJuan%20usa%20sombrero?%20%20%C2%BFQui%C3%A9nes%20usan%20%20sombrero?%0A%25%25%20%C2%BFQui%C3%A9nes%20usan%20lentes?%20%C2%BFEs%20verdad,%20que%20Ana%20usa%20sombrero%20y%20lentes?%0A%0A%25%25%20?-%20usa(juan,%20lentes).%0A%25%25%20?-%20usa(juan,%20sombrero).%0A%25%25%20?-%20usa(X,%20sombrero).%0A%25%25%20?-%20usa(X,%20lentes).%0A%25%25%20?-%20usa(ana,%20sombrero),usa(ana,%20lentes).%0A%0A%25%25%20Clue%205:Cristian%20%20nos%20cuenta%20qu%C3%A9%20gustos%20tiene%20cada%20persona.%20%0A%25%25%20Claro%20%C3%A9l%20lo%20sabe%20por%20la%20revista%20que%20compr%C3%B3%20cada%20cual.%0A%25%25%20A%20Rosa%20le%20gusta%20nadar.%20%20%20A%20Alicia%20le%20gusta%20bailar%20y%20pescar.%0A%25%25%20A%20Juan%20le%20gusta%20ver%20TV%20y%20bailar.%20%20A%20Romualdo%20le%20gusta%20pescar,%20ver%20TV%20y%20bailar.%0A%0Agusta(alicia,bailar).%0Agusta(alicia,pescar).%0Agusta(rosa,nadar).%0Agusta(juan,verTV).%0Agusta(juan,bailar).%0Agusta(romualdo,verTV).%0Agusta(romualdo,bailar).%0Agusta(romualdo,pescar).%0A%0A%25%25%20Clue%205:%20Queries%0A%25%25%20Es%20momento%20de%20hacer%20algunas%20consultas,%20tal%20vez%20descubrimos%20algo.%0A%25%25%20%C2%BFA%20Rosa%20le%20gusta%20nadar?%20%C2%BFA%20Juan%20le%20gusta%20bailar?%0A%25%25%20%C2%BFQu%C3%A9%20le%20gusta%20a%20Romualdo?%20%C2%BFA%20qui%C3%A9n%20le%20gusta%20verTV?%0A%25%25%20%C2%BFQui%C3%A9n%20usa%20lentes%20y%20le%20gusta%20bailar?%0A%0A%25%25%20?-%20gusta(rosa,nadar).%0A%25%25%20?-%20gusta(juan,bailar).%0A%25%25%20?-%20gusta(romualdo,Y).%0A%25%25%20?-%20gusta(X,verTV).%0A%25%25%20?-%20usa(X,lentes),%20gusta(X,bailar).%0A%0A%25%25%20Clue%206:%20De%20%20los%20formularios%20que%20anot%C3%B3%20Ver%C3%B3nica%20podemos%20conocer%20que%0A%25%25%20Ana%20y%20Juan%20saben%20leer.%20Por%20otra%20parte,%20Ana%20sabe%20soldar%20y%20cantar.%20%0A%25%25%20Tambi%C3%A9n%20sabemos%20que%20Romualdo%20sabe%20cocinar%20y%20Alicia%20sabe%20dibujar.%0A%0Asabe(juan,leer).%0Asabe(ana,leer).%0Asabe(ana,soldar).%0Asabe(ana,cantar).%0Asabe(romualdo,cocinar).%0Asabe(alicia,dibujar).%0A%0A%25%25%20Clue%206:%20Queries%0A%25%25%20%C2%BFQui%C3%A9n%20sabe%20leer?%20%20%C2%BFQui%C3%A9n%20sabe%20dibujar?%20%C2%BFQu%C3%A9%20sabe%20Ana?%0A%0A%25%25%20?-%20sabe(X,leer).%0A%25%25%20?-%20sabe(X,dibujar).%0A%25%25%20?-%20sabe(ana,Y).%0A%0A%25%25%20Clue%207:%20Julio,%20basado%20en%20su%20enorme%20experiencia,%20nos%20dice%20que%20%0A%25%25%20debemos%20dudar%20de%20algunas%20%20personas.%20Una%20persona%20es%20dudosa%20%0A%25%25%20si%20usa%20lentes.%20Por%20otra%20parte,%20tambi%C3%A9n%20%20nos%20%20informa%20que%20%20%0A%25%25%20una%20%20persona%20%20es%20%20dudosa%20si%20sabe%20dibujar.%0A%0Adudosa(X):-%20usa(X,lentes).%0Adudosa(X):-%20sabe(X,dibujar).%0A%0A%25%25%20Clue%207:%20Query%0A%25%25%20Realicemos%20la%20consulta%20%C2%BFde%20qui%C3%A9n%20dudamos?%0A%25%25%20?-%20dudosa(X).%0A%0A%25%25%20Clue%208:%20Emma,%20nos%20aclara%20que%20a%20Jos%C3%A9%20le%20gusta%20hacer%20algo%20si%20%0A%25%25%20eso%20le%20que%20gusta%20hacer%20a%20Rosa.%20%20Adem%C3%A1s,%20nos%20informa%20que%20resulta%0A%25%25%20misteriosa%20una%20persona%20si%20sabe%20leer%20y%20le%20gusta%20nadar.%20%0A%25%25%20Tambi%C3%A9n%20resulta%20misteriosa%20una%20persona%20si%20dudamos%20de%20ella%20y%20%0A%25%25%20adem%C3%A1s%20esa%20persona%20usa%20sombrero.%0A%0Agusta(jose,X):-gusta(rosa,X).%20%25%25Recursive%20Rule%0A%0Amisteriosa(X):-%20sabe(X,leer),%20gusta(X,nadar).%0Amisteriosa(X):-%20dudosa(X),usa(X,sombrero).%0A%0A%25%25%20Clue%208:%20Queries%0A%25%25%20%C2%BFQu%C3%A9%20le%20gusta%20a%20Jos%C3%A9?%20%C2%BFQui%C3%A9nes%20ser%C3%A1n%20las%20personas%20misteriosas?%20%20%0A%25%25%0A%25%25%20?-%20gusta(jose,X).%0A%25%25%20?-%20misteriosa(X).%0A%0A%25%25%20Clue%209:Nahuel,%20nos%20indica%20que%20una%20%20persona%20%20es%20sospechosa%20%0A%25%25%20si%20es%20%20misteriosa%20%20y%20le%20gusta%20pescar.%0A%25%25%20Tambi%C3%A9n%20nos%20%20informa%20que%20una%20%20persona%20es%20sospechosa%20si%20%0A%25%25%20es%20%20misteriosa,%20%20sabe%20soldar%20y%20%20le%20gusta%20nadar.%0A%0Asospechosa(X):-%20misteriosa(X),%20gusta(X,pescar).%0Asospechosa(X):-%20misteriosa(X),%20sabe(X,soldar),%20gusta(X,nadar).%0A%0A%25%25%20Clue%209:%20Query%20%C2%BFQui%C3%A9nes%20ser%C3%A1n%20las%20personas%20sospechosas?%0A%25%25%20?-%20%20sospechosa(X).%0A%0A%25%25%20Clue%2010:%20Ayel%C3%A9n,%20nos%20indica%20que%20la%20persona%20culpable%20es%20%0A%25%25%20una%20persona%20que%20est%C3%A1%20involucrada,%20%20que%20%20es%20sospechosa%20%20y%20%0A%25%25%20que%20sabe%20cocinar.%20%0A%0Aculpable(X):-%20involucrado(X),sospechosa(X),%20sabe(X,cocinar).%0A%0A%25%25%20Clue%2010:%20Query%20%C2%BFQui%C3%A9n%20es%20%20el%20%20culpable?%0A%25%25%20?-%20culpable(X).%0A%0A%0A%0A%0A%0A%0A%0A%0A%0A
https://drive.google.com/file/d/1X0vtYx7PUfJK5DH1pvUDqLdbxviH1MEZ/view?usp=sharing
http://www.programmierkurs-java.de/blocklyprolog/
https://drive.google.com/file/d/1X0vtYx7PUfJK5DH1pvUDqLdbxviH1MEZ/view?usp=sharing
https://drive.google.com/file/d/1X0vtYx7PUfJK5DH1pvUDqLdbxviH1MEZ/view?usp=sharing

140 L. A. Cecchi et al.

and girls had remained attentive for longer than expected and that this had been
a great achievement of the activity and, at the same time, it was interesting to
observe some aspects of the group dynamics.

The teaching team considered it to be a beginner-friendly initial course to
CS for the children. Soon after, they started talking with a relevant lexicon and,
without feeling the pressure of being scrutinised, enjoyed their detective roles.

5 Conclusion

Logic Programming is a suitable programming paradigm choice for elementary
school children. We consider the development of CT skills as one strategy dimen-
sion, in order to bring LP close to educators during introductory courses for
children. However, in the context of our work we are interested in teaching CS
through LP, since our end goal is to encourage the inclusion of LP in the ele-
mentary school curriculum all over the world.

In this direction, we analysed the need of teaching resources and educational
methodological approaches and we presented different proposals for children. We
carried out a pilot project and our results show that children were able to solve
problems in a natural way with LP, focusing on key concepts of CS including
abstraction, knowledge representation and reasoning. We highlight how early in
the education process we can introduce CS, solving problems through declarative
programming paradigm.

Regarding “Why”, “What” and “How” LP should be taught to children, this
work provides, as a starting point, a framework that set guidelines for elementary
school curriculum design and implementation, showing a new possible way to
engage children in STEM.

Even though the preliminary results are encouraging, further efforts should
be done to set how elementary school teachers can be trained to provide LP
literacy education. An educational agenda that includes introductory courses
for teachers to fill this gap will complete the learning progression and will make
the framework sustainable over time.

It is also necessary to make sustained efforts to develop new technological
environments that allow the consolidation of LP in primary school increasing
and strengthening the initiatives carried out. In this direction, some educational
resources are currently being developed to engage children, create customised
lessons and increase classroom participation, e.g. in [21] the authors present an
interactive web environment based on browser-side Ciao Playground to guide
students in learning to program by way of Prolog.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their very useful feedback on previous drafts of this paper. We are also grateful to all
the participants of Prolog’50’s Education Committee meetings for their fruitful, encour-
aging and inspiring discussions on teaching Prolog to students at all levels. Support
from Veronica Dahl’s NSERC grant 31611021 is also gratefully acknowledged.

Logic Programming at Elementary School 141

A Appendix

Run on or on
1 Prolog for Kids: Playing Detective
2 Code in textual Prolog corresponding to the block -based
3 Prolog code developed by 8 to 11 years old children
4 October 2022
5

6 %% Clue 1: Estela nos indica que en el lugar se encontraban 7 personas
involucradas en el hecho: Juan , Ana , Romualdo , Alicia , Jose , Rosa y
Pedro.

7 involucrado(juan). involucrado(ana). involucrado(romualdo).
8 involucrado(alicia). involucrado(jose). involucrado(rosa).
9 involucrado(pedro).

10

11 %% Clue 2: Laura nos indica que en ese momento , estaban en el salon
principal tres personas que usan sombrero Juan , Ana y Pedro.

12 usa(juan ,sombrero). usa(ana ,sombrero). usa(pedro ,sombrero).
13

14 %% Clue 3: Roberto nos cuenta que ese dia habia dos personas mas que usaban
sombrero: Romualdo y Alicia.

15 usa(romualdo ,sombrero). usa(alicia ,sombrero).
16

17 %% Clue 4: Un informante anonimo mientras esperaba su vuelo pudo ver que
Juan , Jose , Rosa , Ana y Romualdo usaban lentes.

18 usa(juan ,lentes). usa(jose ,lentes). usa(rosa ,lentes).
19 usa(ana ,lentes). usa(romualdo ,lentes).
20

21 %% Clue 5: Cristian nos cuenta que a Rosa le gusta nadar; a Alicia le gusta
bailar y pescar; a Juan le gusta ver TV y bailar; y a Romualdo le gusta

pescar , ver TV y bailar.
22

23 gusta(alicia ,bailar). gusta(alicia ,pescar). gusta(rosa ,nadar).
24 gusta(juan ,verTV). gusta(juan ,bailar). gusta(romualdo ,verTV).
25 gusta(romualdo ,bailar). gusta(romualdo ,pescar).
26

27 %% Clue 6: De los formularios que anoto Veronica podemos conocer que Ana y
Juan saben leer. Por otra parte , Ana sabe soldar y cantar. Tambien

sabemos que Romualdo sabe cocinar y Alicia sabe dibujar.
28 sabe(juan ,leer). sabe(ana ,leer). sabe(ana ,soldar).
29 sabe(ana ,cantar). sabe(romualdo ,cocinar). sabe(alicia ,dibujar).
30

31 %% Clue 7: Julio , basado en su enorme experiencia , nos dice que debemos
dudar de algunas personas. Una persona es dudosa si usa lentes. Por otra
parte , tambien nos informa que una persona es dudosa si sabe

dibujar.
32 dudosa(X):- usa(X,lentes).
33 dudosa(X):- sabe(X,dibujar).
34

35 %% Clue 8: Emma , nos aclara que a Jose le gusta hacer algo si eso le que
gusta hacer a Rosa. Ademas , nos informa que resulta misteriosa una
persona si sabe leer y le gusta nadar. Tambien resulta misteriosa una
persona si dudamos de ella y ademas esa persona usa sombrero.

36 gusta(jose ,X):-gusta(rosa ,X). %%Recursive Rule
37 misteriosa(X):- sabe(X,leer), gusta(X,nadar).
38 misteriosa(X):- dudosa(X),usa(X,sombrero).
39

40 %% Clue 9:Nahuel , nos indica que una persona es sospechosa si es
misteriosa y le gusta pescar.Tambien nos informa que una persona es
sospechosa si es misteriosa , sabe soldar y le gusta nadar.

41 sospechosa(X):- misteriosa(X), gusta(X,pescar).
42 sospechosa(X):- misteriosa(X), sabe(X,soldar), gusta(X,nadar).
43

44 %% Clue 10: Ayelen , nos indica que la persona culpable es una persona que
esta involucrada , que es sospechosa y que sabe cocinar.

45 culpable(X):-involucrado(X),sospechosa(X), sabe(X,cocinar).

142 L. A. Cecchi et al.

References

1. Bell, T.C., Witten, I.H., Fellows, M.: Computer Science Unplugged: off-line activ-
ities and games for all ages. Computer Science Unplugged (2015)

2. Beux, S., et al.: Computational thinking for beginners: a successful experience
using prolog. In: CILC, pp. 31–45 (2015)

3. Bocconi, S., et al.: Reviewing computational thinking in compulsory education.
Tech. rep, Joint Research Centre (Seville site) (2022)

4. Bubnic, B., Kosar, T.: Towards a consensus about computational thinking skills:
identifying agreed relevant dimensions. In: Psychology of Programming Interest
Group (2019)

5. Curzon, P., Dorling, M., Ng, T., Selby, C., Woollard, J.: Developing computational
thinking in the classroom: a framework. Project report, Computing at School (June
(2014)

6. Dahl, V., Cecchi, L.A.: Introducing prolog in language-informed ways. In: Warren,
D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog
- The Next 50 Years. No. 13900 in LNCS, Springer (2023)

7. Dahl, V., Moreno-Navarro, J.J.: Doughnut computing in city planning for achiev-
ing human and planetary rights. In: Ferrández Vicente, J.M., Álvarez-Sánchez,
J.R., de la Paz López, F., Adeli, H. (eds.) Bio-inspired Systems and Applications:
from Robotics to Ambient Intelligence. IWINAC 2022. Lecture Notes in Computer
Science, vol. 13259, pp. 562–572. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-06527-9 56

8. Ennals, R.: Logic as a computer language for children: core materials. Tech. rep,
Imperial College of Science and Technology Department of Computing (1982)

9. Grover, S., Pea, R.: Computational thinking in k-12: a review of the state of the
field. Educ. Res. 42(1), 38–43 (2013)

10. Guzdial, M.: Programming environments for novices. In: Fincher, S., Petre, M.
(eds.) Computer Science Education Research, pp. 137–164. Taylor & Francis (2005)

11. Hallström, J., Elvstrand, H., Hellberg, K.: Gender and technology in free play in
Swedish early childhood education. Int. J. Technol. Des. Educ. 25, 137–149 (2015)

12. Huang, W., Looi, C.K.: A critical review of literature on “unplugged” pedagogies in
K-12 computer science and computational thinking education. Comput. Sci. Educ.
31(1), 83–111 (2021)

13. Kowalski, R.: Logic for problem solving. Edinburgh University, Department of
Computational Logic (1974)

14. Kowalski, R.: Algorithm= logic+ control. Commun. ACM 22(7), 424–436 (1979)
15. Kowalski, R.: Computational logic and human thinking: how to be artificially intel-

ligent. Cambridge University Press (2011)
16. Kowalski, R., Datoo, A.: Logical English meets legal English for swaps and deriva-

tives. Artif. Intell. Law 30(2), 163–197 (2022)
17. Kowalski, R., Dávila, J., Sator, G., Calejo, M.: Logical english for law and educa-

tion. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi,
F. (eds.) Prolog - The Next 50 Years. No. 13900 in LNCS, Springer (2023)

18. Kowalski, R.A.: Logic as a computer language for children. In: ECAI, pp. 2–10
(1982)

19. Levesque, H.: Thinking as computation: a first course. The MIT Press (2012)
20. Lodi, M., Martini, S.: Computational Thinking, Between Papert and Wing. Sci.

Educ. 30(4), 883–908 (2021)

https://doi.org/10.1007/978-3-031-06527-9_56
https://doi.org/10.1007/978-3-031-06527-9_56

Logic Programming at Elementary School 143

21. Morales, J.F., Abreu, S., Hermenegildo, M.V.: Teaching prolog with active logic
documents. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R.,
Rossi, F. (eds.) Prolog - The Next 50 Years. No. 13900 in LNCS, Springer (2023)

22. Ottestad, G., Gudmundsdottir, G.B.: Information and communication technology
policy in primary and secondary education in Europe. Second Handbook of Infor-
mation Technology in Primary and Secondary Education, pp. 1–21 (2018)

23. Papert, S.A.: Mindstorms: children, computers, and powerful ideas. Basic books
(1980)

24. Prottsman, K.: Computational thinking meets student learning: extending the
ISTE standards. International Society for Technology in Education (2022)

25. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Bren-
nan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., et al.: Scratch:
programming for all. Commun. ACM 52(11), 60–67 (2009)

26. Saad, A., Zainudin, S.: A review of project-based learning (pbl) and computational
thinking (ct) in teaching and learning. Learn. Motiv. 78, 101802 (2022)

27. Shute, V.J., Sun, C., Asbell-Clarke, J.: Demystifying computational thinking.
Educ. Res. Rev. 22, 142–158 (2017)

28. Stables, K., et al.: Critical issues to consider when introducing technology education
into the curriculum of young learners, vol. 8(2) (spring 1997) (1997)

29. Tabakova-Komsalova, V., Stoyanov, S., Stoyanova-Doycheva, A., Doukovska, L.:
Prolog education in selected high schools in bulgaria. In: Warren, D.S., Dahl, V.,
Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50
Years. No. 13900 in LNCS, Springer (2023)

30. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)
31. Yuen, T.T., Reyes, M., Zhang, Y.: Introducing computer science to high school

students through logic programming. Theory Pract. Logic Program. 19(2), 204–
228 (2019)

32. Yunus, Y.S.: Features of logical thinking of junior schoolchildren. Middle European
Scientific Bulletin 10 (2021)

33. Zhang, Y., Wang, J., Bolduc, F., Murray, W.G.: LP based integration of computing
and science education in middle schools. In: Proceedings of the ACM Conference
on Global Computing Education, pp. 44–50 (2019)

34. Zhang, Y., Wang, J., Bolduc, F., Murray, W.G., Staffen, W.: A preliminary report
of integrating science and computing teaching using logic programming. Proceed.
AAAI Conf. Artif. Intell. 33(01), 9737–9744 (2019)

Prolog Education in Selected Secondary Schools
in Bulgaria

Veneta Tabakova-Komsalova1,2(B) , Stanimir Stoyanov1,2 ,
Asya Stoyanova-Doycheva1,2 , and Lyubka Doukovska2

1 University of Plovdiv “Paisii Hilendarski”, Plovdiv, Bulgaria
{v.komsalova,stani,astoyanova}@uni-plovdiv.bg

2 Institute of Information and Communication Technologies, Bulgarian Academy of Sciences,
Sofia, Bulgaria

lyubka.doukovska@iict.bas.bg

Abstract. This article presents our activities for introducing the training of Pro-
log programming to the secondary school. The beginning was the development of
an appropriate curriculum. The results of an experiment conducted with a group
of selected students are summarized in this paper. A project is briefly presented,
the purpose of which is to provide an opportunity to share knowledge and experi-
ence about Prolog programming and at the same time help build a community of
interested students. In the conclusion, we have tried to summarize our experience
which would possibly help to introduce Prolog programming in secondary school
in other conditions.

Keywords: Education · Prolog · Logic Programming · Artificial Intelligence

1 Introduction

Recently, more and more efforts have been made worldwide to introduce the study of
artificial intelligence (AI) in secondary schools. European countries strive to take a lead-
ing position in the technological development in the field of AI and take care of the
rapid and comprehensive adoption of AI in their economy. Bulgaria is no exception to
this trend. A strategy for the development of artificial intelligence in Bulgaria until 2030
was published, including artificial intelligence in education and science. In 2019, Bul-
garia’s Ministry of Education and Science prepared a National Program for Innovations
in Secondary Education. The program addresses three types of innovation: innovative
curricula involving new subjects, new teaching methods, and innovative learning spaces
(STEM centres).

Implementing the program, the heads of schools from the region of the city of Plovdiv
contacted our team for the joint development of a curriculum for the introduction of
the discipline “artificial intelligence” in their schools. We have proposed a curriculum
including logical programming based on the Prolog language [1] as one of the main
topics (Fig. 1).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 144–153, 2023.
https://doi.org/10.1007/978-3-031-35254-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_12&domain=pdf
http://orcid.org/0000-0002-0617-9844
http://orcid.org/0000-0002-3854-4260
http://orcid.org/0000-0002-0129-5002
http://orcid.org/0000-0002-0978-5014
https://doi.org/10.1007/978-3-031-35254-6_12

Prolog Education in Selected Secondary Schools in Bulgaria 145

Fig. 1. Programming in Prolog curriculum.

One of the ideas embedded in the program is to emphasize and demonstrate that
the Prolog language is a convenient means of representing and processing knowledge
in various subjects, studied in secondary school. For this reason, the course included
examples from subjects such as history, geography, literature, cultural and historical
heritage, etc. In this sense, one of the main approaches in the conducted experimental
training is the creation of a system of learning tasks related to the students’ knowledge
both in the other school subjects and in their everyday life [2]. The conclusion that can
be drawn from our observations is that students like this type of learning. Moreover,
there is an increase in interest in the subjects covered by the examples.

A total of 115 students participated in the training during the two years. In the course
of the training, we carried out several surveys related to the attitude of the students toward
the training being conducted. Survey results [3] show that over 70% of students believe
that studying AI is useful for their future development and are willing to study it in the
future. Only 8% of the surveyed students answered that this training has no relevance to
their future life. The results show that the students have mastered the learning material
at a very good level. However, a number of difficulties are also observed. According to
the students, the use of the Prolog language is appropriate and motivating.

Our observations show that Prolog programming can be efficiently studied in dif-
ferent forms and with different age groups of students [4]. Our secondary education
legislation allows for the use of different forms of learning. We mainly used one of
the eligible forms of training known as “interest-based activities” which means extra-
curricular activities that take place outside the normal curriculum and are voluntary.
In this way, interest-based education supports the development of students’ key com-
petencies in the fields of mathematics, informatics, natural sciences, and technology.
The experience accumulated so far allows us to say that the interest and motivation of
students are constantly growing and logic and Prolog programming can be successfully
introduced in school education to different degrees, in various forms, and in different
volumes. The approved curriculum and the associated teaching material can be used

146 V. Tabakova-Komsalova et al.

to train students in different professional, profiled, or innovative classes, as well as in
different age groups.

Although we have prepared three books, our experience shows that there is a lack of
well-developed and suitable textbooks for secondary school students. Our plans are to
complete the process of creating textbooks and manuals with additional exercises and
teaching material while expanding the reach of schools in different regions and cities in
Bulgaria.

Interesting results for the introduction of logic programming in school are presented
in various publications. In [5] the introduction of logic programming in elementary
school for students aged 8 to 10 years is demonstrated. An approach for an effective
and natural introduction of Prolog and logical thinking in school is discussed in [6]. In
[7] it is argued that using Prolog requires proper problem modelling, while developing
skills for solving a variety of problems, including mathematical problems. In addition,
students are introduced to a programming language that is easier to learn than imperative
languages because the syntax is close to natural language. The article [8] presents the
key features of Logical English as the syntactic sugar of logic programming languages.
Furthermore, an application of Logical English for teaching logic as a computer language
for children is also demonstrated.

2 The Project “Digital Bulgaria in Prolog”

Based on our two-year experience of introducing artificial intelligence in some secondary
schools, and especially on the good results of the programming approach applied to the
presentation and processing of knowledge from different school subjects, our future
plans are to expand the forms of learning logic programming and more specifically,
Prolog programming. We find the inclusion of STEM centres a suitable opportunity.
Furthermore, the time is very appropriate as the Recovery Plan of Bulgaria provides
significant funding for the establishment of a national network of STEM centres so
the interest of secondary schools in the opportunities offered by the project has been
greatly increased. The creation of STEM canters is aimed at schools with innovative
practices and those with the potential to develop innovations in the field of natural
sciences, digital technologies, engineering thinking, and mathematics. The canters in
the schools with which our team cooperates have the following focus: digital/video
games, mobile applications, media products, digital marketing, graphics and design, etc.
Artificial intelligence is also introduced as an innovation. A regional STEM centre is
under construction, which will operate as a link between school STEM centres. Our
project is an additional opportunity for such kind of interaction and in this way, it will be
deployed in the regional STEM centre. Therefore, we propose a project called “Digital
Bulgaria in Prolog”. Bulgaria is a country with ancient history, remarkable cultural and
historical heritage, folklore, and natural attractions. The idea of the project is to select
interesting artefacts, events, and traditions from our cultural and historical heritage,
folklore, and history and these artefacts are to be modelled in a formal way with the
means of logic programming and specifically with the logic programming language
Prolog.

The implementation of the project includes different types of activities, for example,
it is necessary to develop an appropriate curriculum. The current program, according

Prolog Education in Selected Secondary Schools in Bulgaria 147

to which we started the training, is given in Fig. 1.The establishment of a network of
school centres that will be involved in the implementation of the project has started.
A key factor in the success of the project is the training of the teachers who will be
working with the students – substantial efforts are being made to prepare various forms
of training for them (e.g., in a specialized program in the Teacher Training Department
at the university or on-site at the school itself). At the same time, the preparation of
appropriate teaching materials has begun. Workshops are held periodically to promote
the objectives of the project.

We have chosen “project-oriented training” as a form of teaching for the students
participating in the project. Project-oriented training allows for the implementation of
individual projects or in a team, with students being individually assessed. In this way,
along with the activities listed above, the project work program includes the devel-
opment of a knowledge-based system. The system’s general architecture includes the
components that will be briefly presented. The general architecture of the system that
will be developed within the project consists of two major components – a distributed
knowledge base and a personal tourist guide. The distributed knowledge base consists of
separate thematic modules that store knowledge about the corresponding topics, which
can be, for example, cultural and historical heritage, folklore, history, geography, etc.
The modules will be structured in separate thematic areas, for instance, folklore may
include areas such as national costumes, folk songs and folk singers, and needlework.
Each module can be developed independently of other modules. One such module will
be implemented in each school STEM centre. Thus, a parallel structure of the knowledge
base can be implemented. The system will be implemented in SWI-Prolog [9].

The knowledge base will be implemented mainly by students. Individual groups
of students can specialize in a topic of their choice. To help them, teachers prepare
appropriate templates. Templates are relatively small executable programs or program
segments that can be used as demonstration tools to develop the elements of digital
libraries. Templates can be extended by learners to build knowledge and develop com-
plete applications. They can also be adapted for other domains, but they shouldn’t be
modified or deleted by learners. Teachers can use existing templates to develop new
ones. Each template consists of the following three parts:

• Artefact Description – a brief textual description of the specific artefact presented by
the template.

• Student Assignment – a textual statement of the student assignment related to this
artefact.

• Sample Code fragment – optional; a short sample Prolog code representing factual
information and knowledge about this artefact can be added.

Teachers prepare the templates as comments that students leave at the beginning of
their program code (as shown in Figs. 3 and 4).

The main function of a personal tourist guide is to act as a specific user interface. The
tourist guide will be able to initiate a dialogue with the user (student, tourists) and accept
requests to the system, taking into account the preferences and wishes of the specific
tourist.

148 V. Tabakova-Komsalova et al.

3 An Experiment

The regular education of students from selected schools will start the next academic
year with the curriculum proposed in Fig. 1. We are currently conducting training with
teachers who will be involved in teaching the students. At the same time, we are carrying
out an experiment with a group of students, the purpose of which is to check how
successful our approach is by implementing conditions close to real teaching. In this
section, we would like to demonstrate the results of the experiment with three examples
from different school subjects. The following examples were prepared by secondary
school students who studied imperative programming as a mandatory form of education.

The first example deals with kinship relationships, one of the most exploited intro-
ductory examples in Prolog programming books. Figure 2 shows the solutions of two
students: the first one created a Prolog program by changing the school subject (theKrum
dynasty from the history of Bulgaria), and the second presented the genealogical rela-
tionships between the characters of a large patriarchal family from a famous Bulgarian
novel, studied in the subject of Bulgarian literature.

In Student1’s solution, the template was adapted for the royal dynasty from Bul-
garian history while Student2’s solution adapted the template for family relationships
described in a famous Bulgarian novel. In both cases, the students used one-position
axioms man/1 and woman/1. The first student used additional two-position axioms for
son/2 and daughter/2 by which (s)he defined a predicate for a parent. The second student
introduced the parent relationship as a two-position axiom parent/2. The learners used
a different representation of the constants. Students easily learn to construct rules by
describing kinship relationships such as father/2 and mother/2. In this case, the teacher
set a template without a sample code and the students gave different definitions. They
used variables in the rules to describe generally valid definitions. After that, they moved
on to building more complex logical kinship relationships (grandfather/2, brother/2,
uncle/2, etc.), as described in [10]. In this sense, if the logic we write is correct, Prolog
will answer any question related to the described knowledge base. Our experience shows
that after mastering this basic example, students easily adapt it to similar tasks from other
disciplines (history, geography, biology, chemistry, etc.).

The second example (Fig. 3) demonstrates a game template described in its Artefact
Description section. A student presented an adaptation for the subject of geography in
the form of a game named “Guess the city”.

Various exercises presented as games are used to increase the interest of students.
This example is also interesting because we believe that games are an effective way
to introduce children to computers. This view can also be seen for example in [11]. In
this case, the students have to create a game that tests their knowledge of characteristic
sights of Bulgarian cities. The program in the above example initiates a dialog with
the user. Depending on the answers, it tries to guess the city the player has in mind. If
confirmation of a given hypothesis is found, the program should not continue looking
for another solution. The user dialog uses the control predicate -> /2 from SWI-Prolog
to mark positive and negative answers.

We would like to briefly comment on the solutions given in Fig. 3. We are of the
opinion that the problem of declarative and imperative style is a sensitive issue. Our
experience shows that we should approach it very carefully. On the one hand, students

Prolog Education in Selected Secondary Schools in Bulgaria 149

Fig. 2. Example “Family relationship”

study imperative programming languages as mandatory subjects. Accordingly, teachers
of these subjects are supporters and followers of this style. In our meetings with students
and teachers, the question is always asked: why not Java, C++, C#, or Python? On the
other hand, logic programming in Prolog is taught in elective courses and mainly within
STEM education. In these conditions, we cannot afford to put one style against the
other. Our strategy is to convince and demonstrate that, depending on the problem to
be solved, the appropriate means are chosen. For this example (Fig. 3), we believe that
regardless of the imperative style of the dialogue with the user, the main task is to search
for verification of hypotheses, for which Prolog is a suitable tool. For this purpose, we
offer examples mainly from cultural and historical heritage, history, and geography, and
we think we succeed because students like these examples very much. We will allow
ourselves to indicate an illustrative case. A teacher and some students from one of the
schools decided to create a program for the classification and properties of chemical
elements. After a lot of effort, they managed to write the program in C++. After our
Prolog training, they developed a new program written in Prolog by using much easier

150 V. Tabakova-Komsalova et al.

and much shorter code. This teacher is now our biggest supporter and enjoys teaching
students in Prolog. Our findings confirm those detailed in [12]. A combination of logic
programming and imperative programming is discussed in [13].

Fig. 3. Example “Guess the city”

The third example is from Bulgarian folklore and more specifically, embroideries.
The template is prepared as a logical problem. The task to solve is given in the Artefact
Description part of the template. Figure 4 presents one of the solutions provided by the
students.

The program in Fig. 4 is relatively advanced for beginners. It is a constraint problem
to find a linear arrangement of four coloured shapes that satisfy a set of constraints on
how they can be arranged. The student uses a generate and test strategy. Shape_color/1 is
true for satisfying a condition represented as a list of shape-colour pairs, where the shapes
and colours are given in the shape/1 and color /1 predicates. Five specified constraints
are identified by integers 1–5. The first 6 subgoals in the shape_color/1 definition non-
deterministically generate all possible states, essentially using permutation1/2. The last
subgoal, check_rules/2, checks that the generated state satisfies all 5 constraints. The
constraint is checked by the r/2 clause. Each constraint is checked using select/3 and
append/3 to verify that the positions of the coloured figures in the state list do indeed
satisfy the specified requirement.

The solution to the third example was provided by a student with a very good
mathematical background. Unlike most students, he demonstrates a good understand-
ing and use of list structures and recursion. Also, the solution uses its own predicates
(permutation, select, member, append) instead of the built-in ones.

Prolog Education in Selected Secondary Schools in Bulgaria 151

Fig.4. Example “Bulgarian embroideries”

4 Conclusion

This article presents our activities for introducing the training of Prolog programming
to the secondary school. Our two-year relatively successful experience motivates us to
improve the training approach and look for new educational forms. For this purpose,
we conducted an experiment which is presented in this article. From this experiment,
we have selected three distinctive examples. The first one shows the type of examples
that students do well and enjoy working on. The second one demonstrates a blending of
imperative and declarative programming styles. The third one shows that students with
a good mathematical background can also cope with more difficult tasks for beginners.

One main conclusion we can draw is that it is of utmost importance that computer
science teachers are consistently convinced step by step that the “peaceful coexistence” of
declarative and imperative styles is not only possible but even useful and can bring many

152 V. Tabakova-Komsalova et al.

benefits. We are currently running an extensive teacher training campaign. In teaching,
we try not to contrast the two styles, taking into account that computer science teachers
are usually trained in, support, and actually teach an imperative style of programming.
At the same time, it is worth explaining to students that the two styles are different from
each other. For this reason, an effective approach is a conviction that it is essential to
choose an adequate style depending on the problem to solve. In this context, the selection
of suitable examples is of paramount importance.

We know from experience that students like examples from domains such as cul-
tural heritage, history, geography, and literature. In order to maintain and strengthen this
interest, we started the implementation of a project called “Digital Bulgaria in Prolog”.
This project provides a shared, ever-growing repository of various Prolog writing exam-
ples. In addition to the disciplines typical of STEM canters, examples from Bulgarian
folklore, historical facts, natural landmarks, and others can also be developed under the
umbrella of artificial intelligence. In addition, the project contributes to the fact that
students from different schools can easily share knowledge and experience and feel like
they belong to one community – that of friends of logic programming in Prolog. In this
way, our project will contribute to sharing experiences between students from different
schools.

On the other hand, the project enables teachers towork in a team– usually, the teacher
of informatics collaborates with the teacher of the specific subject (history, geography,
chemistry, physics, and others). Teachers of these disciplines (unlike computer science
teachers) are not tempted by the imperative style. They very quickly adopt the declarative
style.

We hope that these conclusions will be useful for the introduction of Prolog
programming in other countries and under other conditions.

Acknowledgment. The research is supported by the project KP-06-M62/2 “Modeling of knowl-
edge in the field of Bulgarian folklore” funded by theNational Research Fund and by the Bulgarian
Ministry of Education.

References

1. Kowalski, R.: Predicate logic as programming language. In: Proceedings IFIP Congress,
pp. 569–574. North-Holland Publishing Co., Stockholm (1974)

2. Glushkova, T., Stoyanov, S., Tabakova-Komsalova, V., Grancharova-Hristova, M., Krasteva,
I.: An approach to teaching artificial intelligence in School. In: Smyrnova-Trybulska, E.
(ed.) Innovative Educational Technologies, Tools andMethods for E-learning, 12, Katowice–
Cieszyn 2020, pp. 257–267. https://doi.org/10.34916/el.2020.12.22

3. Tabakova-Komsalova, V., Glushkova, T., Krasteva, I., Stoyanov, S.: AI training – approaches,
results, analyses and conclusions. In: Smyrnova-Trybulska, E. (ed.) E-learning in the Time
of COVID-19 , 13, Katowice–Cieszyn 2021, pp. 176–186. https://doi.org/10.34916/el.2021.
13.15

4. Tabakova-Komsalova, V., Glushkova, T., Grancharova-Hristova, M., Krasteva, I.: Learning
tasks in artificial intelligence education. Educ. Technol. 11/2020(1), 15–22, 233–240. ISSN
1314–1791 (PRINT), ISSN 2535–1214 (ONLINE) (2020) https://doi.org/10.26883/2010.
201.2292

https://doi.org/10.34916/el.2020.12.22
https://doi.org/10.34916/el.2021.13.15
https://doi.org/10.26883/2010.201.2292

Prolog Education in Selected Secondary Schools in Bulgaria 153

5. Cecchi, L., Rodrıguez, J., Dahl, V.: Logic programming at Elementary School: why, what and
how should we teach logic programming to children?. In: Warren, D.S., Dahl, V., Eiter, T.,
Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years. No. 13900 in
LNCS, Springer, July 2023

6. Dahl, V., Cecchi, L.: Introducing prolog in language-informed ways. In: Warren, D.S., Dahl,
V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years.
No. 13900 in LNCS. Springer, July 2023

7. Cervoni, L., Brasseur, J., Rohmer, J.: Simultaneously teaching Mathematics and Prolog in
school curricula: a mutual benefit. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M.,
Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years. No. 13900 in LNCS, Springer, July
2023

8. Kowalski, R., Dávila, J., Sartor, J., Calejo, M.: Logical English for Law and Education, In:
Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog -
The Next 50 Years. No. 13900 in LNCS, Springer (July 2023)

9. SWI-Prolog. https://www.swi-prolog.org/
10. Warren, D.S.: Introduction to Prolog. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M.,

Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years. No. 13900 in LNCS, Springer, July
2023

11. Genesereth, M.: Dynamic Logic Programming. In: Warren, D.S., Dahl, V., Eiter, T.,
Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years. No. 13900
in LNCS, Springer, July 2023

12. Hermenegildo, M.V., Morales, J.F., Lopez-Garcia, P.: Some thoughts on how to teach Prolog.
In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog
- The Next 50 Years. No. 13900 in LNCS, Springer, July 2023

13. Kowalski, R., Sadri, F., Calejo, M., Dávila, J.: Combining logic programming and imperative
programming in LPS. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R.,
Rossi, F. (eds.) Prolog - The Next 50 Years. No. 13900 in LNCS, Springer, July 2023

https://www.swi-prolog.org/

Introducing Prolog in Language-Informed
Ways

Verónica Dahl1 and Laura A. Cecchi2(B)

1 Simon Fraser University, Burnaby, Canada
veronica dahl@sfu.ca

2 Grupo de Investigación en Lenguajes e Inteligencia Artificial Facultad de
Informática, Universidad Nacional del Comahue, Neuquén, Argentina

lcecchi@fi.uncoma.edu.ar

Abstract. We argue that using students’ conscious and unconscious lan-
guage and grammar proficiency, plus applying what we know about lan-
guage acquisition, can make Prolog learning much more accessible. This
strategy could increase our potential to extend its influence widely, simul-
taneously helping develop computational, logical and subject-specific con-
cepts and skills. Our position elicits a nontraditional -and in our view,
more pedagogical and efficient- ordering of themes and tools.

Keywords: Prolog and LP Education · Logical thinking ·
Computational Thinking · Applied Linguistics · Regenerative and
Redistributive AI

1 Introduction

In acquiring language, humans unconsciously acquire many of the skills and
notions that are also needed in general for logical thinking and for computa-
tional thinking, and also for understanding, using, and creating Prolog programs
in particular1. For instance, the concept of a list is implicit in the linguistic
competence of even toddlers, owing to their naturally acquired proficiency with
lists of sounds. Of course, this competence rests on their also naturally acquired
understanding of symbols: sequences of sounds in a given order are recognized
as pointing the mind to something other than themselves, just from humans
becoming exposed to language. Typically, children younger than 2 years old
already recognize the meaning of many sentences, even if they reproduce them
in ways only grammatical to their own personal dialect. For instance, they might
omit the determiner “the” when asking for a door to be opened, or pronounce
“opi” rather than “open”.

We argue that using students’ conscious and unconscious language and gram-
mar proficiency, plus applying what we know about language acquisition, can
make Prolog much more accessible, consequently maximizing our potential to
1 In the remainder of this article, we highlight sample notions in bold type as we relate

them to language.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 154–167, 2023.
https://doi.org/10.1007/978-3-031-35254-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_13&domain=pdf
http://orcid.org/0000-0002-1159-1374
http://orcid.org/0000-0001-5236-6715
https://doi.org/10.1007/978-3-031-35254-6_13

Introducing Prolog in Language-Informed Ways 155

extend its influence widely, while simultaneously helping develop computational,
logical and subject-specific concepts and skills. This position elicits a nontradi-
tional (and in our view, more pedagogical and efficient) approach to learning
Prolog: through giving language and grammars a central role.

Grammar-based introductions to Prolog can simultaneously help teach and
drill on linguistic-oriented concepts, making parts of speech fun to learn,
e.g. through consulting made-up funny lexicons in generation and in analysis
mode; and raising consciousness about ambiguity naturally, e.g. around words
that serve more than one function. Grammars can also serve to drill on other
disciplines (e.g., on the languages of DNA [2]), with mutually reinforcing effects
between both fields.

2 Motivation

Human language is, arguably, one of the most complex, intricate and subtle
abstract systems ever invented. Yet natural language skills and notions are
among the first, best learned and most universally and assiduously practised
human skills and notions.

At the same time, much of the (largely unconscious) linguistic competence
of even small children relates directly to concepts also needed to learn Prolog,
logic thinking [28] and computational thinking [35].

This motivates us to explore the reaches of a) taking language anchored
approaches to learn or solidify Prolog concepts as our pedagogical pivot, and
b) counting Prolog grammars among our main tools. We shall substantiate this
position through a series of discussed examples.

Preliminary empirical evidence for our position was provided by several initial
experiences in teaching Prolog to children [6]. This approach was also successful
with university students of humanistic careers taught by Dahl over the years2.

3 Spoken Languages as Pedagogical Pivots

Many Prolog, Logical and Computational-Thinking concepts, including several
often judged “difficult” to teach, are already in the (unconscious) linguistic com-
petence of even small children, ready to be transposed from linguistic realms
into other subjects. Examples are recursion, which can be brought to focus e.g.
through games or programs around embedded structures such as noun phrases
containing others, as in “the mother of the groom”; loops, as in “the song that
never ends”; meta-programming, teachable e.g. in analogy with sentences
about sentences, such as ““Greta loves Gaia” has three words”, or ambiguity,
as in “Only convicted criminals can view short sentences as the only good ones”3.
2 At universities of La Coruña, Nice, Rovira e Virgili, Simon Fraser: a single semester’s

course allowed them to implement NLP programs in Prolog and even motivated
several of them to change career as a result, into Computing Sciences. One of them,
Kimberly Voll, even completed a PhD in CS at SFU.

3 Example inspired by Ursula Le Guin’s book “Steering the Craft”, p. 23.

156 V. Dahl and L. A. Cecchi

We next discuss and exemplify how logic grammars, owing to their close
relationship to language, are particularly well-suited to make those unconscious
concepts more explicit and easily relatable to programming concepts.

3.1 Grammars as a Prelude to Prolog, and More

The success of nature’s methods for language acquisition might inspire us to
first expose students, through simple and age-appropriate grammars, to small
fragments of what they have first acquired when learning to speak: syntax and
lexicon intertwined [9], with a heavy noun bias4. A first, lexico-syntactic Prolog
grammar that exploits this bias follows.

Example 1. A first logic grammar for (super-controlled) English 5.

say --> do , what.

do --> open; close; paint.

what --> door; box; bottle; window.

Students can become familiar with this grammar’s role as sentence recog-
nizer, by typing at the Prolog prompt, e.g.:

say ‘‘open door’’.

or with its role as sentence generator, e.g. by querying Prolog with

say Something.

Such drills will familiarize students with the versatility of Prolog/Prolog gram-
mars, and naturally elicit further concepts such as that of variables, such
as “Something” above; that of constants, exemplified by object words, that
of data structures, exemplified through lists (of words) and through terms
(such as those represented by drawing derivation trees, and later, through terms
constructed to represent meaning); the notion that declarative specifica-
tions have procedural interpretations, through showing that languages can
be described or specified through (sequence-sensitive) rewriting rules and that
querying a grammar makes it directly executable; the notion of a (logic) gram-
mar itself, as describing a language using its words (called terminal symbols),
special words about them serving to group them (called meta-, or non-terminal
symbols), and rewriting rules that do so; the notion of existential variables as
those in queries, which “ask” for desired values for them that satisfy the query;

4 Whether a language has a noun or verb bias appears to be culture and activity
dependent [33], but our same argument applies transposed to any other first-learned
constituents.

5 We freely use syntactic sugar throughout the paper for readability because it is easy
to guarantee through compilation into more cumbersome but “legal” forms, e.g.
by automatically adding square brackets around terminal symbols. Full notational
details are explained in [34], pp. 13–14.

Introducing Prolog in Language-Informed Ways 157

the notion of versatility from changeable input/output argument roles deter-
mining various modes of running a grammar (generation, recognition or later,
analysis or translation); the notion of execution strategy (try several on a
derivation tree); of modularity that propitiates easy adaptations (have stu-
dents change the lexicon into that of some domain of their interest, some second
language they speak, even some nonsense imaginative vocabulary to have fun
with, or have them add more sentence forms, questions, etc.).

Procedural notions can also be taught, when desired, from minimalistic gram-
matical examples, as we discuss next around the example of recursion.

Recursion is often considered difficult to teach, partly because it is usually
taught around mathematical examples, of which not all people are fans. Yet chil-
dren already use and understand recursive examples easily in natural language,
delighting for instance in songs such as “The song that never ends” or “José se
llamaba el padre”. Examples that follow the general form of such songs (i.e.,
those containing a text that repeats indefinitely) are therefore more universally
accessible. One such example follows.

Example 2. A recursive grammar for Sheep Language.
We can view sheep language as having sentences conformed by the sound “b”
followed by any number of “a” sounds:

baaing --> b, as.

as --> a.

as --> a, as.

Teachable moments here, such as finding out why reversing the order of the last
two rules might leave our sheep speechless, could alert students about the need to
judiciously place end-of-recursion rules (and clauses) first, and generally become
aware of the practical implications of left-to-right, top-down orderings in
Prolog as well as in (logic) grammars. Since Prolog’s strategy is already second-
nature to creatures whose language and life events, similarly, follow sequential
temporal orderings, we feel such an awareness could productively be elicited as
soon as the opportunity arises.

How explicitly we present the procedural aspects, how “proper” a terminol-
ogy we introduce, and how much syntactic sugar we make available is, in our
opinion, the teacher’s choice, to be made in function of their audience’s needs
and background. The wonderful thing is that Prolog’s modularity and versatility
allow us, whenever desired, to focus only the declarative parts of a grammar or
program. For instance, students of literature with no computer background need
not scrutinize any of the utilites that handle input/output, and are thus free to
only learn (at first) how to consult it for their various specific purposes.

3.2 From Syntax to Semantics

We have seen how to elicit/drill on many notions and skills that pertain to Pro-
log, using purely syntactic descriptions of small subsets of language, or as they are
also called, controlled languages. Augmented with appropriate arguments in their

158 V. Dahl and L. A. Cecchi

non-terminal symbols, grammars can also morph into producers and con-
sumers of structure, be it semantic or other, related to the target language.

For instance, to obtain the term command(open(door)) as the meaning rep-
resentation for the utterance “open door” (e.g. because we want to command a
robot through natural language, as in [12]), all we have to do is complete the
grammar of Example 1 with semantic structure building arguments6, and call it
in analysis mode (i.e., by specifying a concrete sentence as input and a variable
as output).

Example 3. A syntactico-semantic grammar

say(command(Action(Thing)) --> do(Action), what(Thing).

do(Thing ,Action(Thing)) --> Action = open; close.

what(Thing) --> Thing = door; box; bottle; window.

Grammar rules can now be seen as progressive producers and consumers of
(semantic representation) structure, e.g. command(open(door)) results from the
first rule producing its general structure, with values still unspecified, and from
the rules for “do” and “what” producing those concrete values. This dynamic
understanding of (grammatical) data structures rejoins the view of logical vari-
ables as traditional structures with declarative, i.e. single-assignment pointers,
and of unification as a device for “constructing and accessing (parts of) complex
data structures” stated in [24].

Adding semantic-building arguments will elicit a host of other concepts, such
as that of conditional rules, through covering simple examples such as “Every
bird sings” or “Dogs bark”; that of semantic types, such as bird or dog, or of
implicit vs. explicit constituents, as exemplified in these last two sentences,
where the use of plural makes the quantifier implicit. Negation-as-default can
be motivated through testing e.g. “who doesn’t sing?”, and semantic types
can be motivated from, e.g. “which birds don’t sing?”.

If desired, we can enact a smooth passage from grammars into Prolog by
either discussing Prolog equivalents of already introduced sample grammars (i.e.,
the result of their compilation into Prolog), or by teaching Prolog by exam-
ple. The latter can be done through having students observe and discuss the
behaviour of (already developed) grammars that generate Prolog clauses as
meaning representations of Natural Language (NL) sentences in some appro-
priate (i.e., sufficient for our purposes while still natural) NL subset.

A minimalistic such grammar is shown in https://swish.swi-prolog.org/p/
DBcreation.pl. Its affirmative, elementary sentences (formed around relational
words and proper names) translate to Prolog facts, allowing students to create
simple knowledge bases entirely through language. They can then consult the

6 We abuse notation here again, for readability: variables are not legal, in most Prologs,
as function names. Again we assume a compiler that “legalizes” our more human-
readable notations.

https://swish.swi-prolog.org/p/DBcreation.pl
https://swish.swi-prolog.org/p/DBcreation.pl

Introducing Prolog in Language-Informed Ways 159

resulting information also through NL, for further drilling. Sample output for a
knowledge base creation grammar that admits a larger coverage of English [14]
is shown in SampleOutput.pdf7.

3.3 Semantics Vs. “The Other Syntax”

In themselves, the meaning representations we may assign to language utterances
are no more than what linguists have called “the other syntax”: a different, yet
still syntactic way of expressing the same idea. What gives them meaning is the
underlying logic system we are explicitly or implicitly using to make syntactic
expressions correspond to elements in, and utterances about, the world that our
sentences represent.

Making such logic systems explicit, as our community has been doing for
many decades (ever since [10,16,17]), is what makes NLP results verifiable, hence
accountable. It is therefore important, when processing human language subsets,
to formally define the logical system underlying their syntax and semantics, in
order to have more clarity than a simple “other syntax” would allow us.

A similar clarity is also due, and often lacking, in modern NLP and AI sys-
tems. Some of them are designed to make semantically unsubstantiated guesses
from syntax alone, by optimizing word prediction methods and counting on the
human reader to complete the meaning in their head [3].

Further sources of non-overtly acknowledged human help that contribute to
hide the crying need for semantics have been researched for instance in [22]. The
resulting lack of transparency tends to lend undue credibility to still unreliable
or even unsafe systems, which are being released onto the public prematurely,
with often quite harmful societal effects [5,29].

3.4 Targeted vs General-Purpose Controlled Languages

Statistical AI could benefit from being complemented with semantics. Here LP
could play a major role. There is in fact ongoing such work, e.g. [23] shows
that machine learning methods can advantageously exploit default rules in logic
programming; [32] uses Natlog8 to make text-to-text or text-to-image genera-
tors easy-to-customize, thus readily providing impressive, NL friendly extensions
which are as well amenable to formal definitions of their syntax and semantics.
As LP (or any other effective means) of endowing current AI with meaning
becomes more mainstream, there should be a welcome increase in transparency,
explainability and accountability, as well as a badly needed decrease in current
AI’s exorbitant carbon footprint [1]. Another possible tack is to develop com-
pletely logical alternatives to machine learning which do not resort to statistics;
this is being done for instance in the NLP field of grammar induction [15].

7 https://drive.google.com/file/d/1miCb6A21qZbO2wXKqu-QB4WpaCcoXPS7/vie
w?usp=sharing.

8 Natlog modifies the syntax of Prolog’s clauses to make them closer to NL.

https://drive.google.com/file/d/1miCb6A21qZbO2wXKqu-QB4WpaCcoXPS7/view?usp=sharing
https://drive.google.com/file/d/1miCb6A21qZbO2wXKqu-QB4WpaCcoXPS7/view?usp=sharing
https://drive.google.com/file/d/1miCb6A21qZbO2wXKqu-QB4WpaCcoXPS7/view?usp=sharing

160 V. Dahl and L. A. Cecchi

An interesting and fairly general approach for leading from language into
Prolog is that of Logical English [26], where users express sentences as close
paraphrases of Prolog clauses, to in particular minimize ambiguities, e.g. for
creating legal and educational databases.

It may not always be practical to use NL for generating more involved Pro-
log programs than those defining moderately straightforward knowledge bases,
but interesting subsets of NL will often be useful for consulting more complex
systems implemented in Prolog, such as those in robotics or planning. For such
applications, we favour developing parsers tailored to application-appropriate
NL subsets.

Query languages for Prolog systems are, appropriately, quite varied, since
they are designed so that a query’s evaluation with respect to the underlying
logic system directly produces its answer, even when the logic system involved
is richer than Prolog, e.g. multi-valued.

In [12], for instance, the NL subset we chose for queries mostly comprises
imperative sentences of a certain form, whose intended recipient (a given robot)
is often implicit, and whose “meaning” is evaluated into instructions necessary
to command mini-robots at Sophia Antipolis University, from natural language
commands such as “Go to point P taking care that the temperature remains
between X and Y degrees.”. In [13], instead, we evaluate the meaning of a user’s
query (e.g., “A system that has the optional processor MTS05 and the memory
module SMX08, and whose memory size is different from 12 K words”) through
first mapping it into a first-order-logic meaning representation of it, whose (co-
routined) execution yields descriptions of a computer system satisfying the user’s
query. In another application, e.g. if we want students to learn/drill on first-order
logic, just the first-order logic expression of an input phrase might be considered
to be its meaning.

Such targeted parsers, while giving up generality, can provide natural-
sounding human language interfaces to even sophisticated Prolog systems, with-
out the user having to resort to contrived paraphrases. Moreover, we have
observed that using NL front ends for a variety of sophisticated Prolog appli-
cations can go a long way towards making Prolog engaging and interesting to
learn. Automatic disambiguation capabilities can often be included, as usual,
taking advantage of context specificities9.

3.5 Learning Concepts from Varied Disciplines

We have already shown that, because of their sequence-sensitive nature, gram-
matical notions pertaining to spoken languages are most naturally expressed in
terms of grammar rules, such as as “a sentence is a noun phrase followed by a
verb phrase”.

9 Note, however, that not all NL ambiguities will be resolvable even by humans, e.g. the
ambiguity of “sentence” may remain even when a legal context is assumed (consider
for instance “This judge is famous for their kilometric sentences)”.

Introducing Prolog in Language-Informed Ways 161

But this is also true of many other curricular disciplines’ definitions, cf. for
instance the molecular biology definition “a tandem repeat is a DNA sequence
followed by the same sequence, any number of times”. Specialized controlled
languages can help students learn such concepts both informally (as expressed
in words) and formally (as translated automatically from words into Prolog
grammars or programs), as well as providing opportunities to drill.

Even the simplest of grammars can help children become acquainted not
only with linguistic concepts they understand but have not yet made conscious
or named, but also with a variety of other subject-matter concepts. For instance,
the philosophical concept of “meta” can be introduced by helping children dis-
tinguish words in the object language (such as “works”) vs. in the meta-
language of grammatical constituent names (such as “verb”). Most helpfully,
Prolog’s grammatical notation itself, once introduced, will clearly help them
distinguish object language words explicitly through square brackets.

4 A Case Study: Exploring Possible Solutions
to Quantifiable Problems

Besides centering language competence and using adequate pedagogical order-
ings for introducing logical/computational concepts, we stand to get best results
if we also adapt the examples we use, whenever possible, to what the students
are keenly interested in or affected by.

Among the issues that most stand to affect contemporary children in particu-
lar, and in which children have already shown keen interest by unprecedentedly
organizing worldwide for climate change action, our interlocking societal and
ecological crises stand out.

4.1 Doughnut Computing for Societal and Ecological Remediation

Inspired by Kate Raworth’s “Doughnut Economics” (DE) [30], which provides
visual measures of the distance from where we are to where we want to be with
respect to various societal and earth sciences sustainability indicators, we have
developed a Prolog grammar that can be used to explore societal and ecological
breakdown remediation (see https://swish.swi-prolog.org/p/CO2.pl) .

Doughnut Economics’ ecological indicators measure how dangerously we are
overshooting planetary boundaries. They are taken from Earth Sciences and
include: climate change, ocean acidification, chemical pollution, nitrogen and
phosphorous loading, freshwater withdrawals, land conversion, biodiversity loss,
air pollution and ozone layer depletion. Its societal indicators measure the pro-
portion of people worldwide that fall short of life’s basics. These include food,
health, education, income and work, peace and justice, political voice, social
equity, gender equity, housing, networks, and energy.

DE proposes to use these indicators at every level of societal and ecologi-
cal organization (e.g. cities, provinces, countries) to calculate how to shift our
present economic goal away from perpetual “growth” in a finite planet, into the

https://swish.swi-prolog.org/p/CO2.pl

162 V. Dahl and L. A. Cecchi

explicit goal of meeting the needs of all within planetary limits. Many munici-
palities, such as Portland, Quebec, and Amsterdam, have already adopted this
goal and are trying to implement it.

Our grammar, intended as a computational enabler for DE, presents users
with possible solutions to a (quantifiable) problem in either an ecological or a
social area. Users must enter the quantity (in percentages or in units of measure-
ment) representing the present status and goal status, plus a name and number
for each of the those actions that would contribute, if taken, to solve it, as well
as the quantity. Quantities must, consistently, be stated in percentages or units
of measurement by which the action, if taken, would contribute to the problem’s
solution. For instance, for reducing carbon emissions in Canada from a current
level of 15 tonnes per capita to zero, sample actions (numbered from 1 to 6, and
respectively contributing CO2 decreases of 8, 7, 6, 4, 3 and 1 units of measure-
ment) might be:

action(1,reduce fossil extraction, 8).
action(2,reduce military spending, 7).
action(3,ration air and car travel, 6).
action(4, reduce waste, 4).
action(5, end planned obsolescence, 3).
action(6, limit plastics, 1).

The complete grammar can be accessed and tested here: https://swish.swi-
prolog.org/p/CO2.pl. It is easy to transform it to a Prolog program proper if
preferred, but then we would lose the automatic concatenation of actions that
the grammar does invisibly. We next show (modulo notation) the first four solu-
tions, or “sentences” (out of the 8 possible solutions), that result from running
this grammar for the above sample input data, for an idea of results obtained:
solutions with least number of sufficient actions are printed first. This heuris-
tic could, of course, be changed. It results from having ordered our numbered
actions from most to least impactful. These solutions are: reduce fossil extraction
and military spending; or reduce fossil extraction and ration air and car travel
and reduce waste; or reduce fossil extraction and reduce waste and end planned
obsolescence; or reduce fossil extraction and ration air and car travel and limit
plastics- with respective total gains or 15, 18, 17 and 15.

Initially, students could just play with and discuss the effects of entering as
input different actions for different problems, in any of their social or earth sci-
ences curricular themes. Section 4.2 discusses ideas on how this framework could
be applied to, for instance, equity issues. Later they could start inspecting and
modifying the grammar itself, with endless possibilities, all the way up to devel-
oping, in university, action evaluators for the Doughnut Economics model [30]
that can be useful in their cities, provinces, countries [11], tending to the creation
of a new field of AI: Regenerative, Redistributive.

A possible version for teenagers might introduce constraints so that we can see
the effects of actions in one area of the Doughnut over actions in another area, be it

https://swish.swi-prolog.org/p/CO2.pl
https://swish.swi-prolog.org/p/CO2.pl

Introducing Prolog in Language-Informed Ways 163

social or ecological, and propose remedies to possible bad side effects. For example,
those left unemployed by reducing a high emitting sector could be retrained into
care work or green jobs. Initial prototypes have been explored through extending
the grammar shown in https://swish.swi-prolog.org/p/CO2.pl into including, in
the description of a possible action, also its (quantifiable) side effects on any eco-
logical or social indicator, plus including a calculation of how these side effects
might interact for overall balance. CLP alternatives are being explored as well, in
joint work by V. Dahl and S. Abreu.

4.2 Truth and Logic-Literate Kids, Good Uses of Statistics,
Regenerative and Redistributive AI

Accurate data, on which our Doughnut Computing game obviously relies, is
not always readily available or even collected. Over-reliance on social media
manufactured reality, where disinformation is rampant and often toxic, greatly
compromises our access to trustworthy information. Teachers these days are
therefore keen on helping their students develop narrative and investigative lit-
eracy skills needed to not fall prey to fake news, unverified rumour, hate prompts
and feeds, etc. [18,25]. Statistically-based AI often contributes to our informa-
tion landscape’s toxicity through its tendency to mistake agreement for truth
and form for meaning. But safe uses of statistics, on the other hand, can usefully
complement logically-based AI, allowing us for instance to express data on a
given situation in terms of percentage of occurrences.

Games are also important in teaching, as exemplified in [21]. Regenerative
and redistributive games can be created around Doughnut Computing, prompt-
ing students to research what data is relevant, investigate how it was collected
and in this light gauge the accuracy of the ensuing results. When necessary, they
may be prompted to demand that missing data be collected (at their municipal-
ities, in reliable websites, etc.).

Since almost any problem that is quantifiable e.g. through statistics, can
be amenable to analysis through Doughnut Computing, we can apply it to the
most varied themes. A crucially important example for children in particular
and society as a whole is the widespread practice, puzzling in its specificity to
the human species, of incesting children. While measures of its prevalence vary
widely across regions (from 6 to 62% of girls and from 3 to 31% for boys) and
only represent a lower bound 10, even this lower bound is intolerably high, e.g.
in North America as in France, incest affects around 10% of girls younger than
12 and between 2 and 4% of boys, and seems to have remained constant over
more than half a century [19].

Anthropological studies conclude that incest is a method of inculcation of
domination, since it greatly increases the capacities of domination of some and

10 These numbers do not include the many more cases either never reported, unprovable
or “mild” (with degree of “mildness” assessed from the incestor’s, not the victim’s
perspective, since legal systems and social order throughout the world tend to protect
the (typically male) incestors rather than their victims.

https://swish.swi-prolog.org/p/CO2.pl

164 V. Dahl and L. A. Cecchi

submission of others, through destroying the (typically female) victims’ sense
of agency and self while increasing the incestors’ sense of entitlement to appro-
priating women and children’s bodies already present in other expressions of
global male hegemonic order [19]– an order violently imposed millennia ago
which “continues to influence our beliefs, behaviours, and brains, even threaten-
ing our survival” [20].

Social studies curricula might fruitfully apply Doughnut Computing to
address the roots of such systemic violence in age-appropriate forms. For exam-
ple, Ontario’s Ministry of Education has developed age-adjusted materials for its
personal safety project11, which addresses gendered violence through education.
Possible solutions to such problems could be described for their automatic explo-
ration just like we saw in Sect. 4.1 for CO2. For instance, the inequity issue that
75 % of unpaid care work is imposed on women is a major cause of women’s and
children’s vulnerability to violence. Actions that can be automatically combined
towards the goal of reducing that inequity can be conceived, just as we did for
CO2

12. Simultaneously, psychologically and practical relevant information could
be given to students and parents on actions that could protect students around
the age when they are most likely to become victims of incest (typically, in six
or seven cases out of ten, the victim is a female aged 10 or less, and the aggres-
sor is an older male) [19]. Combinations of possible protective actions might
more clearly be considered with the help of the school’s team of experts. Such
evidence-based initiatives would help the young counteract the misleading effects
of early exposure to stories that “warn” them against “witches”, wicked step-
mothers and wicked old women wanting to kidnap them and eat them, rather
than about the real, life devastating danger they are in fact in.

Help with detecting fallacies is paramount for protection through educa-
tion. While we have no space here for a full analysis of how to complement the
activities we have proposed with e.g. Prolog-based games that can help detect
fallacies, it is clear that logical thinking and hence training in Prolog can play an
important role. Fallacy detectors would be especially useful to deconstruct the
illogical “truths” and “common sense” notions encoded in language [27] which
both result from, and insidiously enforce, societal domination patterns [20]. Even
drills around a simple Prolog dictionary of fallacy forms and/or misnomers (e.g.
around gendered or racialized insults) could powerfully train students into logical
thinking, further strengthening the road to Prolog while giving them reasoning
tools they badly need.

Empowering children with awareness of the usually unspoken ways in which
different types of violence against them are societally normalized could tip the
scale for entire generations, helping us move once and for all from domination-
based into solidarity-based societies. Hopefully we can achieve this on time.

11 https://www.safeatschool.ca/resources/resources-on-equity-and-inclusion/sexism/
tool-kits-and-activities.

12 For instance, redistributing unpaid/paid work; a basic universal income; a basic
equity income; professional daycare, etc.

https://www.safeatschool.ca/resources/resources-on-equity-and-inclusion/sexism/tool-kits-and-activities
https://www.safeatschool.ca/resources/resources-on-equity-and-inclusion/sexism/tool-kits-and-activities

Introducing Prolog in Language-Informed Ways 165

5 Conclusion

We have discussed how Prolog and logical/computational thinking can be intro-
duced most naturally and efficiently by tapping into students’ pre-existing
human language proficiency, if possible around themes that deeply concern or
affect them. Related research which also stresses language in teaching compu-
tational thinking for beginners suggests the optimal timing is before imperative
programming [4] –i.e., as soon as possible. We believe our proposed tack stands
to also help move AI into more than just “ethical” concerns, into a regenerative
and redistributive new phase. But in any case, it can provide a useful umbrella
and/or complement to other interesting Prolog teaching approaches and initia-
tives, some of which are described in this same volume ([6–8,21,24,26,31,32])
or discussed in our closely related Prolog 50 Education initiative13.

Last but not least, a heartfelt appeal to the Prolog community: please join
our efforts!

Acknowledgements. The authors are most grateful to all participants of Prolog’50’s
Education Committee meetings, for their inspiring weekly discussions on how to best
support Prolog teaching internationally and accessibly. We are also grateful to the
anonymous reviewers for their very useful feedback on this paper’s previous drafts, as
well as to Henri Prade, for our interesting discussions on some of its topics. Support
from Veronica Dahl’s NSERC grant 31611021 is also gratefully acknowledged.

References

1. Bannour, N., Ghannay, S., Névéol, A., Ligozat, A.L.: Evaluating the carbon foot-
print of NLP methods: a survey and analysis of existing tools. In: Proceedings
of the Second Workshop on Simple and Efficient Natural Language Processing.
Association for Computational Linguistics, Virtual (Nov 2021)

2. Bavarian, M., Dahl, V.: Constraint-based methods for biological sequence analysis.
J. Univ. Comput. Sci. (2006)

3. Bender, E.M., Koller, A.: Climbing towards NLU: on meaning, form, and under-
standing in the age of data. In: Proceedings ACL, pp. 5185–5198. Association for
Computational Linguistics (2020)

4. Beux, S., et al.: Computational thinking for beginners: a successful experience
using prolog. In: CILC - Italian Conference on Computational Logic, vol. CEUR
1459, pp. 31–45 (2015)

5. Birhane, A.: Algorithmic injustice: a relational ethics approach. Patterns 2(2),
100205 (2021)

6. Cecchi, L.A., Rodŕıguez, J.P., Dahl, V.: Logic programming at elementary school:
why, what and how should we teach logic programming to children? In: Warren,
D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog
- The Next 50 Years. No. 13900 in LNCS, Springer (July 2023)

7. Cervoni, L., Brasseur, J.: Teaching prolog and python: the perfect match for artifi-
cial intelligence. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski,
R., Rossi, F. (eds.) Prolog - The Next 50 Years. No. 13900 in LNCS, Springer (July
2023)

13 https://prologyear.logicprogramming.org/Education.html.

https://prologyear.logicprogramming.org/Education.html

166 V. Dahl and L. A. Cecchi

8. Cervoni, L., Brasseur, J., Rohmer, J.: Simultaneously teaching mathematics and
prolog in school curricula: a mutual benefit. In: Warren, D.S., Dahl, V., Eiter, T.,
Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years. No.
13900 in LNCS, Springer (July 2023)

9. Clark, E.V., Casillas, M.: First language acquisition. In: The Routledge handbook
of linguistics, pp. 311–328. Routledge (2015)

10. Dahl, V.: Un système déductif d’interrogation de banques de données en espagnol.
Ph.D. thesis, Universite Aix-Marseille II (1977)

11. Dahl, V.: Doughnut computing: aiming at human and ecological well-being. In: 6th
International Conference on the History and Philosophy of Computing (HAPOC-6)
(2021)

12. Dahl, V., Fall, A., Thomas, M.C.: Driving robots through natural language. In:
1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent
Systems for the 21st Century, vol. 2, pp. 1904–1908 vol 2 (1995)

13. Dahl, V., Sambuc, R.: Un système de bases de données en logique du premier ordre,
en vue de sa consultation en langue naturelle. Universite Aix-Marseille II, Tech.
rep. (1976)

14. Dahl, V.: From speech to knowledge. In: Information Extraction: Towards Scal-
able, Adaptable Systems, vol. 1974, pp. 49–75. LNAI (Lecture Notes in Artificial
Intelligence (1999)

15. Dahl, V., Bel-Enguix, G., Tirado, V., Miralles, E.: Grammar induction for under-
resourced languages: the case of ch’ol. In: Gallagher, J., Giacobazzi, R., Lopez-
Garcia, P. (eds.) Analysis, Verification and Transformation for Declarative Pro-
gramming and Intelligent Systems. No. 1316 in LNCS, Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-31476-6 6

16. Dahl, V.: Logical design of deductive, natural language consultable data bases.
In: Proceedings V International Conference on Very Large Data Bases, pp. 24–31
(1979)

17. Dahl, V.: Quantification in a three-valued logic for natural language question-
answering systems. In: Proceedings IJCAI’79, pp. 182–187 (1979)

18. Dillon, S., Craig, C.: Storylistening: Narrative Evidence and Public Reasoning.
Routledge, Oxford (2021)

19. Dussy, D.: Le berceau des dominations: Anthropologie de l’inceste, livre 1. Maury
Imprimeur, France (2022)

20. Eisler, R., Fry, D.P.: Nurturing Our Humanity: How Domination and Partnership
Shape Our Brains, Lives, and Future. Oxford University Press, Oxford (2019)

21. Genesereth, M.: Dynamic programming. In: Warren, D.S., Dahl, V., Eiter, T.,
Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years. No.
13900 in LNCS, Springer (July 2023)

22. Gray, M., Siddharth, S.: Ghost Work: How to Stop Silicon Valley from Building a
New Global Underclass. Houghton Mifflin Harcourt (2019)

23. Gupta, G., et al.: Logic-based explainable and incremental machine learning. In:
Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.)
Prolog - The Next 50 Years. No. 13900 in LNCS, Springer (July 2023)

24. Hermenegildo, M.V., Morales, J.F., Garcia, P.L.: Some thoughts on how to teach
Prolog. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R.,
Rossi, F. (eds.) Prolog - The Next 50 Years. No. 13900 in LNCS, Springer (July
2023)

25. Kashmiri, Z., Masram, A.: Elements of research based pedagogical tools for teach-
ing science. Educ. Quest- Int. J. Educ. Appl. Soc. Sci. 11(3), 189–192 (2020)

https://doi.org/10.1007/978-3-031-31476-6_6

Introducing Prolog in Language-Informed Ways 167

26. Kowalski, R., Davila, J., Sator, G., Calejo, M.: Logical english for law and educa-
tion. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi,
F. (eds.) Prolog - The Next 50 Years. No. 13900 in LNCS, Springer (July 2023)

27. Lakoff, R.: The Language War. University of California Press, California (2020)
28. Levesque, H.: Thinking as Computation: A First Course. The MIT Press, Cam-

bridge (2012)
29. McQuillan, D.: Resisting AI. Bristol University Press, Bristol (2022)
30. Raworth, K.: Doughnut Economics: Seven ways to think like a 21st-Century

Economist. Chelsea Green, White River Junction, Vermont March (2017)
31. Tabakova-Komsalova, V., Stoyanov, S., Stoyanova-Doycheva, A., Doukovska, L.:

Prolog education in selected high schools in Bulgaria. In: Warren, D.S., Dahl, V.,
Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50
Years. No. 13900 in LNCS, Springer (July 2023)

32. Tarau, P.: Reflections on automation, learnability and expressiveness in logic-based
programming languages. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M.,
Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years. No. 13900 in LNCS,
Springer (July 2023)

33. Tardif, T., Gelman, S.A., Xu, F.: Putting the “Noun Bias” in context: a comparison
of English and Mandarin. Child Development 70(3), 620–635 (1999)

34. Warren, D.S.: Introduction to Prolog. In: Warren, D.S., Dahl, V., Eiter, T.,
Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years.
No. 13900 in LNCS, Springer (July 2023)

35. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)

Tools for Teaching Prolog

Teaching Prolog with Active Logic
Documents

Jose F. Morales1,2, Salvador Abreu3, Daniela Ferreiro1,2,
and Manuel V. Hermenegildo1,2(B)

1 Universidad Politécnica de Madrid (UPM), Madrid, Spain
2 IMDEA Software Institute, Madrid, Spain

{josef.morales,daniela.ferreiro,manuel.hermenegildo}@imdea.org
3 NOVA LINCS/University of Évora, Evora, Portugal

spa@uevora.pt

Abstract. Teaching materials for programming languages, and Prolog
in particular, classically include textbooks, slides, notes, and exercise
sheets, together with some Prolog programming environment. However,
modern web technology offers many opportunities for embedding inter-
active components within such teaching materials. We report on our
experiences in developing and applying our approach and the correspond-
ing tools to facilitating this task, that we call Active Logic Documents
(ALD). ALD offers both a very easy way to add click-to-run capabili-
ties to any kind of teaching materials, independently of the tool used to
generate them, as well as a tool-set for generating web-based materials
with embedded examples and exercises. Both leverage on (components
of) the Ciao Prolog Playground. Fundamental principles of our approach
are that active parts run locally on the student’s browser, with no need
for a central infrastructure, and that output is generated from a single,
easy to use source that can be developed with any editor. We argue that
this has multiple advantages from the point of view of scalability, low
maintenance cost, security, ease of packaging and distribution, etc. over
other approaches.

Keywords: Active Logic Documents · Prolog Playgrounds · Teaching
Prolog · Prolog · Ciao-Prolog · Logic Programming · Web · Literate
Programming

1 Introduction

Teaching programming languages traditionally relies on an array of dispersed
materials, such as textbooks, class notes, slides, or exercise sheets, as well as

Partially funded by MICINN projects PID2019-108528RB-C21 ProCode, TED2021-
132464B-I00 PRODIGY, and FJC2021-047102-I, by the Comunidad de Madrid pro-
gram P2018/TCS-4339 BLOQUES-CM, by FCT under strategic project UIDB/-
04516/2020 (NOVA LINCS) and by the Tezos foundation. The authors would also
like to thank the anonymous reviewers for very useful feedback on previous drafts of
this paper.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 171–183, 2023.
https://doi.org/10.1007/978-3-031-35254-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_14&domain=pdf
https://doi.org/10.1007/978-3-031-35254-6_14

172 J. F. Morales et al.

some programming environment(s) for students to run programs. Teaching Pro-
log is of course no exception. More recently, web-based technology has been
facilitating the combination or embedding of interactive components into such
teaching materials. This, however, poses a number of challenges, since there are
multiple possible approaches to this end, and new technologies are constantly
appearing that offer different trade-offs and capabilities. In this paper we report
on our experiences in developing and applying two approaches and the corre-
sponding tools in order to facilitate this task, that we collectively call Active
Logic Documents – ALD, and which we believe offer interesting advantages over
other approaches.

Mixing text and code has long been a topic of research and development,
largely stemming from Knuth’s seminal Literate Programming [10] concept.
However, packaging and distribution of hybrid text and code systems has tra-
ditionally been complicated by dependencies on specific working environments,
such as, for instance, the need for a specific operating system or even a specific
version thereof, the availability of specific support software, library dependencies,
etc. Because of this, over the years, several efforts have been made to provide
online learning platforms such as the Khan Academy [13] which also strives to
present teaching materials in a game-like form, and the idea has more recently
materialized in web-based platforms, as exemplified by Jupyter notebooks1. This
modern web technology affords dynamic and multimedia components, which
clearly make teaching materials more palatable. In the Prolog world, SWISH
provides a web-based platform for producing notebook-like sites that has been
used to create online courses and exercises for logic-based programming lan-
guages [15]. Flach et al. [3] offer a very interesting account of their efforts to
create progressively more interactive versions of their book, including combina-
tions with Jupyter notebooks and with SWISH. Independently, Brecklinghaus
et al. [2] implement a Jupyter kernel for SICStus Prolog and SWI-Prolog.

All these systems, however, rely on a server-side platform. Although this
is in principle convenient to the end user, server-centric architectures also have
drawbacks, e.g.: they introduce a dependency on the server; maintaining a server-
side infrastructure can represent a significant burden; the user content built on
such a platform is tied to the availability and reachability of such platform; the
approach may also affect other aspects, such as scalability or privacy; etc.

In contrast, the fundamental principles of our ALD approach are that the
reactive parts of the materials (the Prolog code written by the course developer
or the student and all the related functionality) run locally on the student’s
web browser, with no need for a central infrastructure, and that the output is
generated from a single, easy to use source that can be developed with any editor.
We argue that this approach has multiple advantages from the point of view of
scalability, low maintenance cost, security, independence from unconventional
tools, etc. over other approaches. Our tools, described in the following sections,
are meant to help course developers in at least two basic scenarios:

1 https://jupyter.org/.

https://jupyter.org/

Teaching Prolog with Active Logic Documents 173

Fig. 1. The Ciao Playground

– Some course developers prefer to develop (or have already developed) their
teaching materials with their own tools (such as, e.g., LaTeX, PowerPoint,
Pages, Word, etc.), which have been stable for a long time, and may be
reluctant to port these materials to a bespoke platform. For this case we offer
a “click-to-run” methodology, based on the Ciao Prolog playground, which
we describe in Sect. 2. This provides a very easy way to incorporate click-to-
run capabilities in any kind of teaching materials, independently of the tool
used to generate them or the generated format (pdf, html, etc.), and with no
dependencies on any central server.

– For course developers that are willing to port their materials, we offer a tool
(an extension of the LPdoc documenter) that greatly facilitates generating,
using any conventional editor, web-based materials with embedded examples
and exercises. These will run locally on the student’s browser, again with no
dependencies on any central server. We describe this part of our approach in
Sect. 3.

2 Embedding Runnable Code in Documents
via Browser-Based “Click-to-Run”

A common method for adding interactivity to teaching materials is the “click
to run” approach. Code blocks in such materials become clickable elements that
load the code into a suitable environment for online execution. This functionality
has been traditionally supported by server-side playgrounds or notebooks, where
the code is run on a server and the examples need to be loaded and saved on
that server. In contrast, our approach incorporates two aspects that depart from
these classical methods: the first one is that, as mentioned before, code execution
is performed fully on the browser; the second one is that examples are stored
in the documents2 themselves, with no need to previously upload them or have
them stored in remote servers.

The main component providing such functionality in our approach is the
Ciao Playground3 [4,5] which allows editing and running code locally on the
user’s web browser (See Fig. 1). To this end, the playground uses modern Web
2 By “document” we mean the actual document (in pdf, or XML, etc.) which has been

produced by the course writer and which is being read by the student.
3 https://ciao-lang.org/playground.

https://ciao-lang.org/playground

174 J. F. Morales et al.

technology (WebAssembly and Emscripten, see Sect. 5) to run an off-the-shelf
Prolog engine and top level directly in the browser, able to fully access browser-
side local resources. The main advantage of this general architecture is that it is
easily reproducible and significantly alleviates maintenance effort and cost, as it
essentially eliminates the server-side infrastructure.

In addition to the previously mentioned functionality, the playground pro-
vides an easy way to embed short code snippets (or links to larger source code)
in web links themselves. These links can then be stored within documents and
passed on as Prolog code to the playground, to be locally executed on the stu-
dent’s browser. This approach makes it very easy to include runnable code in
manuals, tutorials, slides, exercises, etc., provided they are in a format that
has support for HTML links, such as pdf files, and also Google Docs, Jupyter
notebooks, Word, PowerPoint, LATEX, Pages, Keynote, Org mode, or web site
generators. Additionally, links can be easily shared by email or instant messaging
applications.

For example, assume that we would like to include in the teaching materials
being developed the classic append program:

1 app([],X,X).
2 app([X|Y],Z,[X|W]) :- app(Y,Z,W).

We will start by opening the playground in our browser (which, as men-
tioned before, will run locally), and pasting the program into the playground
editor pane (as in Fig. 1). After perhaps testing the program to make sure it
has the functionality that we would like to illustrate, we will use the playground

button to generate and copy into the clipboard a link that contains the
program encoded within the link itself. Then we can add this link in any LaTeX,
Word, PowerPoint, HTML, etc. document to produce a clickable area such as
this one4 which, when accessed, starts a new instance of the Playground in the
browser, with the program preloaded. For LaTeX in particular, some macros
are provided with the system as a “prologrun” LaTeX style file that simpli-
fies the task even more. For example, the following simple LaTeX source code
(where https://ciao-lang.org/playground/... represents the link obtained
from the playground):

1 \codelink{https://ciao-lang.org/playground/...}
2 \begin{prologrun}
3 app([],X,X).
4 app([X|Y],Z,[X|W]) :- app(Y,Z,W).
5 \end{prologrun}

is rendered as follows (including the “run” button):
run �1 app([],X,X).

2 app([X|Y],Z,[X|W]) :-
3 app(Y,Z,W).

4 The reader may safely follow this link!

https://ciao-lang.org/playground/?code=app(%5B%5D%2CX%2CX).%0Aapp(%5BX%7CY%5D%2CZ%2C%5BX%7CW%5D)%20%3A-%0A%20%20%20%20%20app(Y%2CZ%2CW).%0A
https://ciao-lang.org/playground/?code=app(%5B%5D%2CX%2CX).%0Aapp(%5BX%7CY%5D%2CZ%2C%5BX%7CW%5D)%20%3A-%20app(Y%2CZ%2CW).%0A

Teaching Prolog with Active Logic Documents 175

The Playground is essentially a fully-fledged Prolog environment which
includes much other functionality such as running tests, generating documen-
tation, verifying program assertions, or specializing code, some of which will
become instrumental in the following steps. In addition, specialized instances of
the Playground can be easily created, an example of which is the s(CASP) play-
ground [5]5. More information on the implementation of the Ciao WebAssembly
back end and the Playground architecture can be found in Sect. 5 and in [5] (and
for the s(CASP) system in [1]).

3 Active Logic Documents

While click-to-run functionality is convenient and highly portable, we have also
developed a more comprehensive tool (as an extension of the LPdoc documenter)
that greatly facilitates the generation of web-based materials with embedded
examples and exercises, using any conventional editor. These full-fledged Active
Logic Documents are web pages with embedded Prolog programs, all sharing a
common environment. The examples run on the pages themselves, in an embed-
ded version of the playground, without the need for a separate playground tab.

Creating Documents with Editable and Runnable Code using LPdoc.
The basis of our approach is LPdoc [7,8], which pioneered automatic program
documentation in the context of Logic Programming and (C)LP.6 Its main
application is the generation of reference manuals directly from the actual code
(including any assertions used to formally describe predicates), as well as from
comments in the .pl source files or dedicated .lpdoc documentation files. How-
ever, LPdoc is often also used to generate other kinds of documents, such as tuto-
rials, and also web sites and other kinds of on-line linked documents. Like many
other tools, such as LATEX, or the Web itself, LPdoc uses a human-oriented doc-
umentation format7 for typesetting and does not impose the use of a particular
WYSIWYG editor.8 In particular, LPdoc supports writing rich-text documents
in markdown syntax, with standard features like the inclusion of verbatim text
and code blocks, syntax highlighting, and more, which allows for the inclusion
of code segments in the midst of fairly flexible structured text, with hyperlinks.
The use of documentation generation systems to write whole reference manuals,
books, and teaching materials has become quite widespread in the past years.

To realize the ADL approach, the key step was to enhance LPdoc with the
possibility of embedding Prolog environments, based on the Ciao Playground,
5 https://ciao-lang.org/playground/scasp.html.
6 Written in Prolog of course!.
7 Editors like MS-Word use non-human oriented document formats: bloated with

metadata, often binary encoded and undocumented, almost impossible to modify
and maintain without the original tools, and really hard to integrate with code-
oriented version control systems.

8 However, note that once the markup language is stable and well defined, it is perfectly
possible to implement rich WYSIWIG front-ends that can save documents in this
format. See for example Lyx, TeXmacs, etc. or rich-editors for Markdown.

https://ciao-lang.org/playground/scasp.html

176 J. F. Morales et al.

which opens up a wide degree of possibilities for interaction. With this step,
documents with embedded editable and runnable examples can be generated
easily using LPdoc. The source that the developer of the course, tutorial, etc.
works with is one or more LPdoc source files, in, e.g., markdown format. LPdoc
processes these files and generates html pages in which the code fragments in
the source are automatically rendered as editable panes that can be run in place
in an embedded playground (as well as loaded into the standalone playground
as before). The generated pages can then be published easily as any other web
pages, e.g., in a course web site, in a personal public_html area, etc. Everything
needed, including the runnable examples, queries, etc., is contained in the pages
themselves. When students visit these pages with their browser, all executions
occur locally in their browser.

Interaction facilities for Self-assessment. Especially in the context of
a self-taught Logic Programming course, the embedded playground approach
allows for very rich interactions. That is, code can be evaluated and edited
directly in the same document. This enables direct support for self-evaluation
and testing mechanisms. For example, code examples allow automated “seman-
tic” evaluation of user input, e.g., by running code tests on the solution provided
by the student. Document-level dependencies between examples, topics, and sec-
tions, allow “gamification” (e.g., evaluating your progress, obtaining points and
trophies, hiding/showing tasks, un-blocking levels, etc.) of the learning activi-
ties, ensuring that the reader can acquire the necessary confidence on basic topics
before going on to more advanced concepts.

Moreover, the Prolog top-level loop which underlies the Playground can inter-
pret terms which result from solutions to goals in more ways than just printing
them out. Similarly to Prolog’s display/1 predicate, some terms may be inter-
preted as giving rise to graphical or other user-interface components.

4 A Simple Example: Coding Factorial

We now illustrate through a concrete, worked-out example, the process of cre-
ating documents with editable and runnable examples using LPdoc. We will
develop an exercise where we present the student with a simple task: given a
factorial program which uses Peano arithmetic, to rewrite it using Prolog’s is/2.
We will show piecemeal how to put together the source for this example. We will
first show the part of the output that we want LPdoc to produce and then the
source that produces that particular output. The full source and output can be
found in Fig. 3 in the appendix, and in the Ciao playground manual [4].9

We start the exercise with a title and recalling the code for factorial using
Peano arithmetic:

9 https://ciao-lang.org/ciao/build/doc/ciao_playground.html/.

https://ciao-lang.org/ciao/build/doc/ciao_playground.html/

Teaching Prolog with Active Logic Documents 177

This first part of the output is generated by the following code:

1 \title Exercise: factorial using ISO-Prolog arithmetic
2
3 Consider again the factorial example, using Peano arithmetic:
4 ‘‘‘ciao_runnable
5 :- module(_, _, [assertions ,library(bf/bfall)]).
6 %! \begin{focus}
7 factorial(0,s(0)).
8 factorial(s(N),F) :-
9 factorial(N,F1),

10 times(s(N),F1,F).
11 %! \end{focus}
12
13 nat_num(0).
14 nat_num(s(X)) :- nat_num(X).
15
16 times(0,Y,0) :- nat_num(Y).
17 times(s(X),Y,Z) :- plus(W,Y,Z), times(X,Y,W).
18
19 plus(0,Y,Y) :- nat_num(Y).
20 plus(s(X),Y,s(Z)) :- plus(X,Y,Z).
21 ‘‘‘

We first note that, in addition to text in markdown format, code between
‘‘‘ciao_runnable and ‘‘‘ produces a panel in the output containing the

code, which is editable and runnable. The code can be in modules and/or in
’user’ files. We also note that it is possible to specify that only some parts of the
code should appear in the output, by placing those parts between begin focus
and end focus directives. This makes it possible to hide boilerplate lines (such
as, e.g., module declarations, imports, auxiliary code, etc.) when they are not
useful for the discussion. In this case we have hidden the auxiliary predicates
that we assume have already been seen by the student in another lesson.

The arrow in the code pane allows loading the code in the playground, but
we can also run the code in place within the document. One way to do this is to
add one or more queries:

178 J. F. Morales et al.

This can be easily achieved with the following markdown with embedded Prolog
code:

1 Some facts to note about this version:
2 - It is fully reversible!
3 ‘‘‘ciao_runnable
4 ?- factorial(X,s(s(s(s(s(s(0))))))).
5 ‘‘‘

In the resulting panel, the query may be edited and pressing on the triangle
executes it in place:

Regarding scoping, there is essentially one Ciao Prolog top level per page: all
programs in the page are loaded into this Ciao Prolog top level and all queries
in the same page are executed in that top level, against all the code (possibly
separate modules) that has been loaded into the top level up to that point. Code
can be (re)loaded anytime by clicking on the green tick mark in the top left of the
pane; this facility could be used, for example, to reset the state of the program.

After perhaps mentioning that the Peano approach is elegant but inefficient,
we could propose an actual exercise, which is to rewrite the code using Prolog’s
is/2 (or constraints!):

Here the pane is again editable and contains the original (Peano) code
adorned with comments, all of which act as hints or instructions on how to
proceed. Of course, this description could also be somewhere else, e.g., in the
surrounding text. Clicking on the yellow face will perform the evaluation, in this
case running some (hidden) unit tests [11], on the code in order to give feedback
to the student. Other evaluation methods (e.g., running a program analysis or a

Teaching Prolog with Active Logic Documents 179

mere syntactic comparison) can also be useful. It is also possible for the student
to give up and ask for the solution, in which case the proposed solution will be
shown and can be executed.
All this functionality can be generated using the following code:

1 Try to encode the factorial program using ‘is/2‘:
2
3 ‘‘‘ciao_runnable
4 :- module(_, _, [assertions]).
5
6 :- test factorial(5, B) => (B = 120) + (not_fails, is_det).
7 :- test factorial(0, 0) + fails.
8 :- test factorial(-1, B) + fails.
9

10 %! \begin{hint}
11 % TASK 1 - Rewrite with Prolog arithmetic
12
13 factorial(0,s(0)). % TODO: Replace s(0) by 1
14 factorial(M,F) :- % TODO: Make sure that M > 0
15 M = s(N), % TODO: Compute N from M using is/2 (note that N is
16 factorial(N,F1), % unbound, so you need to compute N from M!)
17 times(M,F1,F). % TODO: Replace times/3 by a call to is/2 (using *)
18
19 % When you are done, press the triangle ("Run tests") or the arrow
20 % ("Load into playground").
21 %! \end{hint}
22
23 %! \begin{solution}
24 factorial(0,1).
25 factorial(N,F) :-
26 N > 0,
27 N1 is N-1,
28 factorial(N1,F1),
29 F is F1*N.
30 %! \end{solution}
31 ‘‘‘
32
33 Note that wrong goal order can raise an error (e.g., moving the last
34 call to ‘is/2‘ before the call to factorial).

The included unit tests are the ones that will be run to test the student’s code
(a small subset has been included for brevity). The segment within hint directives
behaves similarly to the focus segments but represents a hint or instructions, and
will be replaced by the solution, should it be asked for. The solution, if provided,
is marked with the corresponding directives.

The appendix provides a complete example of a class exercise based on the
code fragments above, showing the full source and the full output. The result-
ing, working Active Logic Document can be found, as mentioned before, as an
example in the Ciao playground manual [4].10

5 The Technical Approach

From a technical point of view the Ciao playground requires devising a means
for running Prolog code directly in the browser.

10 https://ciao-lang.org/ciao/build/doc/ciao_playground.html/.

https://ciao-lang.org/ciao/build/doc/ciao_playground.html/

180 J. F. Morales et al.

Our first attempt at this was the Ciao Prolog JavaScript compiler back-
end [12], that enabled the use of Prolog and, in general, (constraint) logic pro-
gramming to develop not just the server side, but also the client side of web
applications, running fully on the browser. Tau Prolog [14] and the tuProlog play-
ground11 are recent Prolog interpreters written in JavaScript which also make
it easy to run Prolog in a web page, serverless. While these JavaScript-based
approaches are attractive, they also have drawbacks. Compilation to JavaScript
was a good option at the time, since it was a client (i.e., browser)-based solution
and the resulting speed made it useful for many applications. However, perfor-
mance does suffer with respect to native implementations (see [12]). This is even
more pronounced in the case of the Prolog interpreters written in JavaScript
mentioned above. It is precisely this performance impact that has led to the
development of the WebAssembly virtual machine [6]12, which is currently sup-
ported by all major browsers.

WebAssembly and the supporting compilation toolchains, such as
Emscripten [16], enable programs written in languages supported by LLVM to be
compiled to a form which can be executed entirely in the browser, i.e., without
any server-side intervention at runtime, all with very reasonable efficiency. This
is the approach used by the Ciao playground in order to be able to run Prolog
code in the browser. The playground uses the standard Ciao engine, compiled
to WebAssembly using the Emscripten C compiler and the Ciao library for C,
which offers functions for term creation, type conversions, term checks, queries,
and calls. The result is that in the playground Prolog code runs with performance
that is competitive with native Prolog implementations. Additionally, the Ciao
environment is comprised of several independent bundles (collections of modules)
which can be compiled independently and demand-loaded from WebAssembly.
The WebAssembly port of Ciao Prolog thus supports most of the system’s soft-
ware tools, such as LPdoc, CiaoPP (including the testing framework), etc., all
of which are written in Prolog.

6 Conclusions and Outlook

We have described the Active Logic Documents (ALD) approach and toolset,
that we have developed and been applying for embedding interactive Prolog
components within teaching materials. ALD offers on one hand, support for
easily adding click-to-run capabilities to any kind of teaching materials, inde-
pendently of the tool used to generate them, and on the other hand a tool for
generating web-based materials with embedded examples and exercises, based
on the LPdoc documenter and the embedded version of the playground. We have
also justified the fundamental principles of our approach which are that active
parts run locally on the student’s browser, with no need for a central infras-
tructure, and that the whole active document (tutorial, manual, exercise, etc.)
is generated from a single, easy to use source that can be written and modified
11 https://pika-lab.gitlab.io/tuprolog/2p-kt-web.
12 https://webassembly.org/.

https://pika-lab.gitlab.io/tuprolog/2p-kt-web
https://webassembly.org/

Teaching Prolog with Active Logic Documents 181

Fig. 2. Adding gameplay functionality in a course for children. This task is accompa-
nied with introductory text (not shown here) that carefully explains that above(X,Y)
must be read as X is above Y, etc. Rather than introducing infix operators at this
very early stage, the course begins with trivial formalization tasks to get familiar with
syntax and abstraction.

with any editor. We argue that this approach has multiple advantages from the
point of view of scalability, maintenance cost, security, ease of packaging and
distribution, etc.

Our tools evolved as a side-effect of the development of our own materi-
als over the years for teaching logic programming13, embedding runnable code
and exercises in tutorials14, slides15, manuals, etc., and they are currently being
used in other projects, such as for example in the development of a Program-
ming course for young children (around 10 years old) within the Year of Prolog
initiatives. The latter effort has implied the inclusion of additional useful fea-
tures in the toolset, such as a “gameplay” which progressively discloses more
advanced parts of the course while striving to keep the interaction interesting
and challenging (see Fig. 2). The JavaScript interface provided by the tools and
the access to Web technology enable endless possibilities for richer Web-based
interaction (e.g., SVG visualization of facts), media rich interactions, touch/click
inputs, audio, graphics or videos, etc.

13 See also [9] in this same book.
14 E.g., Interactive CiaoPP tutorials https://ciao-lang.org/ciao/build/doc/ciaopp_

tutorials.html/.
15 E.g., Course material in Computational Logic: https://cliplab.org/~logalg.

https://ciao-lang.org/ciao/build/doc/ciaopp_tutorials.html/
https://ciao-lang.org/ciao/build/doc/ciaopp_tutorials.html/
https://cliplab.org/~logalg

182 J. F. Morales et al.

Appendix

Fig. 3. The full source and LPdoc output for the Active Logic Document for the simple
factorial exercise.

References

1. Arias, J., Carro, M., Salazar, E., Marple, K., Gupta, G.: Constraint answer set
programming without grounding. Theory Pract. Logic Program. 18(3–4), 337–354
(2018). https://doi.org/10.1017/S1471068418000285

2. Brecklinghaus, A., Koerner, P.: A Jupyter kernel for Prolog. In: Proceedings 36th
Workshop on (Constraint) Logic Lrogramming (WLP 2022). Lecture Notes in
Informatics (LNI), Gesellschaft für Informatik, Bonn (2022)

3. Flach, P., Sokol, K., Wielemaker, J.: Simply logical - the first three decades. In:
Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.)
Prolog: The Next 50 Years. LNCS (LNAI), vol. 13900, pp. 184–193. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-35254-6_15

https://doi.org/10.1017/S1471068418000285
https://doi.org/10.1007/978-3-031-35254-6_15

Teaching Prolog with Active Logic Documents 183

4. Garcia-Pradales, G., Morales, J., Hermenegildo, M.V.: The Ciao Play-
ground. Tech. rep., Technical University of Madrid (UPM) and IMDEA
Software Institute (2021). http://ciao-lang.org/ciao/build/doc/ciao_playground.
html/ciao_playground_manual.html

5. Garcia-Pradales, G., Morales, J., Hermenegildo, M.V., Arias, J., Carro, M.: An
s(CASP) In-browser playground based on Ciao prolog. In: ICLP2022 Workshop on
Goal-directed Execution of Answer Set Programs (2022)

6. Haas, A., et al.: Bringing the web up to speed with webassembly. In: Cohen, A.,
Vechev, M.T. (eds.) Proceedings of the 38th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2017, Barcelona, Spain,
18–23 June 2017, pp. 185–200. ACM (2017). https://doi.org/10.1145/3062341.
3062363

7. Hermenegildo, M.: A documentation generator for (C)LP systems. In: Lloyd, J.,
et al. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 1345–1361. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44957-4_90

8. Hermenegildo, M.V., Morales, J.: The LPdoc documentation generator. Ref. Man-
ual (v3.0). Tech. rep., UPM (2011). http://ciao-lang.org

9. Hermenegildo, M., Morales, J.: Some thoughts on how to teach Prolog. In: Warren,
D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog:
The Next 50 Years. LNCS (LNAI), vol. 13900, pp. 107–123. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-35254-6_9

10. Knuth, D.: Literate programming. Computer J. 27, 97–111 (1984)
11. Mera, E., Lopez-García, P., Hermenegildo, M.: Integrating software testing and

run-time checking in an assertion verification framework. In: Hill, P.M., Warren,
D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 281–295. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02846-5_25

12. Morales, J.F., Haemmerlé, R., Carro, M., Hermenegildo, M.V.: Lightweight com-
pilation of (C)LP to JavaScript. Theory and Practice of Logic Programming, 28th
International Conference on Logic Programming (ICLP2012) Special Issue 12(4–5),
pp. 755–773 (2012)

13. Morrison, B.B., DiSalvo, B.J.: Khan academy gamifies computer science. In:
Dougherty, J.D., Nagel, K., Decker, A., Eiselt, K. (eds.) The 45th ACM Tech-
nical Symposium on Computer Science Education, SIGCSE 2014, Atlanta, GA,
USA, 5–8 March 2014, pp. 39–44. ACM (2014). https://doi.org/10.1145/2538862.
2538946

14. τProlog – an open source Prolog interpreter in javascript. http://tau-prolog.org
(2021). Accessed 16 May 2023

15. Wielemaker, J., Riguzzi, F., Kowalski, R.A., Lager, T., Sadri, F., Calejo, M.:
Using SWISH to realize interactive web-based tutorials for logic-based languages.
Theory Pract. Log. Program. 19(2), 229–261 (2019). https://doi.org/10.1017/
S1471068418000522

16. Zakai, A.: Emscripten: an LLVM-to-Javascript compiler. In: Proceedings of the
ACM international conference companion on Object oriented programming sys-
tems languages and applications, pp. 301–312. SPLASH 2011, ACM, New York,
NY, USA (2011). https://doi.org/10.1145/2048147.2048224

http://ciao-lang.org/ciao/build/doc/ciao_playground.html/ciao_playground_manual.html
http://ciao-lang.org/ciao/build/doc/ciao_playground.html/ciao_playground_manual.html
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1007/3-540-44957-4_90
http://ciao-lang.org
https://doi.org/10.1007/978-3-031-35254-6_9
https://doi.org/10.1007/978-3-642-02846-5_25
https://doi.org/10.1145/2538862.2538946
https://doi.org/10.1145/2538862.2538946
http://tau-prolog.org
https://doi.org/10.1017/S1471068418000522
https://doi.org/10.1017/S1471068418000522
https://doi.org/10.1145/2048147.2048224

Simply Logical – The First Three Decades

Peter Flach1(B) , Kacper Sokol1 , and Jan Wielemaker2

1 Intelligent Systems Laboratory, University of Bristol, Bristol, UK
{peter.flach,k.sokol}@bristol.ac.uk

2 SWI-Prolog Solutions b.v., Amsterdam, The Netherlands
jan@swi-prolog.org

Abstract. This paper charts the evolution of the Prolog textbook Sim-
ply Logical – Intelligent Reasoning by Example from print with runnable
programmes on a 3.5-inch diskette published in 1994, via various inter-
mediate online versions, to the fully interactive online edition available
today. Our aim is to investigate – from both the writer’s and the reader’s
perspectives – the potential impact of technology on educational mate-
rials. The three authors of this paper present three distinct and com-
plementary points of view, which come together to shape an interactive
online book that offers an immersive learning experience. Peter describes
the philosophy behind the original book and experiences teaching from
it. Jan demonstrates how contemporary web programming has enabled
a fully interactive realisation of the book’s philosophy. Kacper reports
how different technologies can be adopted to build a versatile authoring
toolkit that underpins the interactive online edition of the book. Collat-
ing these distinct yet coherent perspectives allows us to reflect on future
opportunities for interactive Prolog teaching materials arising from the
continuous development of web technologies. The insights we offer should
be of interest to teachers of Prolog as well as those wanting to find out
about the latest educational technologies.

Keywords: Education · Learning · Textbook · Interactive · Prolog ·
SWI-Prolog · SWISH · Artificial Intelligence · Logic Programming

1 The Paperback (Peter Flach)

As a beginning lecturer at Tilburg University in the early 90s of the previ-
ous century I started teaching a module on Artificial Intelligence (AI), then an
emerging specialist topic within the still young discipline of computer science.
Initially using a general AI textbook [10] I started devising practical exercises
and coursework assignments in Prolog, which I had come across a couple of years
before. These grew into a set of lecture notes that eventually became the Simply
Logical – Intelligent Reasoning by Example book [7]. I ended up publishing with
John Wiley after I had a chat with a representative at a conference; they were
very helpful and even suggested the title. I was fortunate in finding Bob Kowal-
ski willing to write a foreword, in which he very graciously wrote that my book
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 184–193, 2023.
https://doi.org/10.1007/978-3-031-35254-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_15&domain=pdf
http://orcid.org/0000-0001-6857-5810
http://orcid.org/0000-0002-9869-5896
http://orcid.org/0000-0001-5574-5673
https://doi.org/10.1007/978-3-031-35254-6_15

Simply Logical – The First Three Decades 185

relieved him of the temptation to write a revised edition of his own book, Logic
for Problem Solving [9].

Rather than trying to cover all of AI, which even then had grown into a
diverse field, I decided to focus on reasoning in various forms: deductive, induc-
tive, reasoning with natural language, reasoning with incomplete information,
etc., which approach is captured by the “intelligent reasoning” part of the book’s
title. The “by example” moniker reflected the didactic philosophy: teaching by
showing, learning by doing. Every AI technique discussed was accompanied by
a Prolog programme implementing it. These programmes served two didactic
purposes. By running them, the student could get a feeling what a particular
technique is all about. But perhaps more importantly, the declarative reading
of each programme was an integral part of the explanation of the technique it
implemented. For the more elaborate programmes, special attention was paid to
their stepwise development, explaining key issues along the way. My hope was
that the reader would mount the accompanying 3.5” diskette into their com-
puter, and try out the Prolog programmes alongside reading the book. While
this was perhaps optimistic back then, the online format available today inte-
grates the “showing” and “doing” sides of the educational coin very well, as will
be demonstrated below.

I still use Simply Logical in my lectures as an introduction to both logic
programming and AI. Treating the subjects side by side allows for some pretty
powerful examples, such as a resolution prover for full clausal logic as a demon-
strator for breadth-first search. Rather than modernising the text I have opted
for modernising the demonstrators and programming assignments. For exam-
ple, the natural-language question-answering programme described in Chapter 7
of the book, which nowadays we would call a chatbot, was developed into an
Amazon Alexa skill. This demonstrates the power of a hybrid system consisting
of speech-to-text and text-to-speech components enabled by deep learning, and a
logical engine in the middle capable of explainable logical reasoning. Other mate-
rial developed over the years includes a Prolog-driven agent that needs to solve
a logical puzzle while moving around in a grid world and a Reveal.js slide deck
that can be used for self-study and trying out Prolog programmes without leav-
ing the browser. The latter is based on SWISH, which Jan introduces in the
following section.

2 Interactive Prolog in the Browser (Jan Wielemaker)

Crucial for realising the fundamental philosophy behind Simply Logical is the
ability to run code interactively in the browser. Modern browser and service
technology allows for several designs:

1. Have Prolog in a sandbox (such as a virtual machine or container) on a server
and provide ways to submit a programme and view its output. An example
of this approach can be found at Coding Ground.

https://book.simply-logical.space/src/text/2_part_ii/5.3.html
https://book.simply-logical.space/src/text/3_part_iii/7.3.html
https://github.com/So-Cool/prolexa
https://github.com/COMS30106/assignment/wiki/Assignment-2
https://revealjs.com/
https://labs.simply-logical.space/
https://www.tutorialspoint.com/execute_prolog_online.php

186 P. Flach et al.

2. Have a web service with dedicated support for Prolog that offers a sandboxed
Prolog execution environment. SWISH1 – SWI-Prolog for SHaring [16] – is
implemented based on this paradigm.

3. Execute Prolog in the browser. Some Prolog systems are written directly in
JavaScript, thus enabling them to be run in the browser, e.g., Tau-Prolog.
Another solution is to compile Prolog to JavaScript [13]. Alternatively,
Web Assembly (WASM) offers a low-level virtual machine for the browser,
which allows running more traditional C-based Prolog implementations; for
example, Emscripten provides a Clang-based compiler suite that targets
WASM, underpinning implementations such as the Ciao Playground and
SWI-Prolog WASM port.

The first category typically provides a batch-style interaction, making it diffi-
cult to adapt for (online and interactive) educational resources; the latter two
approaches are more suitable in this respect.

SWISH, originally developed by Torbjörn Lager, is based on Pengines – an
architecture to access Prolog on a remote server – and consists of a monolithic
multi-threaded SWI-Prolog server. Its user interface is written in JavaScript with
server-side assistance for semantic highlighting, feedback on predicates, template
insertion and other user-focused features. Pengines underlies Prolog execution,
which takes place in a sandboxed environment that consists of a Prolog thread
and a temporary module. Executing a query (1) transfers the code and query
to the server; (2) starts a thread and creates a temporary module; (3) loads
the code into the module; and (4) executes the code. This operationalisation
allows for rich interaction with the client, e.g., “read” from the client, ask for
alternative solutions or trace through the programme in a manner similar to
traditional Prolog tracers. Other noteworthy features of SWISH include:

– The ability to store programmes on the server under Git-style version man-
agement. Programmes can either be private or visible to the public, and may
include each other.

– Availability of render plugins that allow rendering Prolog terms – e.g., as
tables or graphics that represent chess boards, charts and graphs – using
modern web browser technology.

– An R Project interface offering access to R’s algorithms and chart outputs.
– Notebook format allowing for rich interactive pages that provide a sequence

of HTML, Markdown, programme and query cells.

SWISH has proved to be an invaluable resource for the Prolog commu-
nity, including educators. It facilitates (Prolog) learning, code discussion and
exchange as well as shared access to data for data science. After its launch in
2014 the system quickly gained popularity as an alternative to local installations
of Prolog systems used for exercises in Prolog classes at schools worldwide. As of
December 2022, it hosts over 150,000 programmes and nearly 15,000 notebooks,
many of which in several versions. It sustains on average hundreds of concur-
rent users, peaking at over one thousand users, usually towards the end of each
1 https://swish.swi-prolog.org/.

http://tau-prolog.org/
https://emscripten.org/
http://ciao-lang.org/playground
http://dev.swi-prolog.org/wasm/shell
https://www.swi-prolog.org/pldoc/package/pengines
https://www.r-project.org/
https://swish.swi-prolog.org/

Simply Logical – The First Three Decades 187

academic cycle. Notably, teachers started adapting their educational materials
and course workflows to SWISH for more than just a convenient online Prolog
execution environment. Some wrote course material as SWISH notebooks. Oth-
ers use SWISH notebooks for exercises; they organise the content as questions,
background data, example queries and, sometimes, skeleton or partial solutions.
A student then forks the notebook, completes it, saves it and sends the link with
the completed notebook to the teacher.

As interactive in-browser programming exercises were gaining in popularity,
I began to wonder whether we could do something similar to teach Prolog as
a programming language. With Learn Prolog Now! [2] being one of the more
popular online (and later paperback [3]) Prolog books, I experimented with
making it interactive. Learn Prolog Now! is written in LATEX, which is then
converted to an unintelligible HTML code used to publish the online version.
Because of that, I built the interactive version [4] by using a rewriting proxy
server. This is a Prolog programme that:

1. uses SWI-Prolog’s HTML parser and generator to parse the original pages;
2. identifies the code blocks that represent programmes and queries;
3. re-writes the programme fragments into new HTML elements that connect

each programme to relevant queries, allowing these pairs to be transformed
into an embedded SWISH instance; and

4. inject JavaScript into the page to make the page – specifically, the code boxes
– interactive.

While side-stepping the need to manually edit the book source, this automation
is far from perfect. Observing this particular use case of SWISH, nevertheless,
motivated Peter and Kacper to make Simply Logical similarly interactive. They
decided to manually identify the programmes and queries as it was clear that
given the available technology it is impossible to do so programmatically with
acceptable precision.

3 The Online Edition(s) (Kacper Sokol)

The book was first made freely available in 2007, when the copyright reverted
back to Peter, who decided to release its PDF and associated programmes online
through a dedicated web page. In 2015, as a pilot, most of the original book
source – written in a now obsolete version of MS Word – was ported to a col-
lection of messy HTML files replete with superfluous markup; the figures were
extracted as non-standard EMZ files and later converted to the more modern
Scalable Vector Graphics (SVG) format. This provided a canvas for transforming
a static web page into an online, interactive resource using SWI-Prolog’s SWISH
platform.

From then on, the manual process of identifying Prolog code listings and their
associated queries took place, with appropriate HTML code being embedded
by hand to display interactive SWISH code boxes. Each SWISH box initially
renders the programme as text, as in the original book. Opening the box reveals

http://www.let.rug.nl/bos/lpn//index.php
https://lpn.swi-prolog.org/
http://people.cs.bris.ac.uk/~flach/SimplyLogical.html

188 P. Flach et al.

Fig. 1. Interactive SWI-Prolog code box based on SWISH. A code listing (top) can
be turned into an interactive code box (bottom) by pressing the “play” button in its
top-right corner.

a tripartite widow with an editable code listing (pulling in additional code as
required), pre-populated Prolog queries, and an answer pane as shown in Fig. 1.
Two decades after publication of the original book, technology had caught up
sufficiently to support the envisaged didactic philosophy, which was an almost
revelatory experience. The first release had thus seen the light of day.

The script responsible for rendering SWISH code boxes was elaborate enough
to streamline certain tasks. Prolog queries displayed in the text were assigned
unique IDs, which allowed them to be dynamically imported into relevant code
boxes upon launch. Both interactive programmes and static code listings could
also be tagged, providing an opportunity to import code into interactive boxes at
run time. To give the book a fresh look and feel and prepare its presentation for
a range of modern devices – desktop and laptop computers, tablets and mobile
phone screens – the HTML content was adapted to the Bootstrap framework.
The book was split into four HTML files: Part I, Part II, Part III and Appendix,

https://getbootstrap.com/

Simply Logical – The First Three Decades 189

complemented with an index page, with the source hosted on GitHub2. The
second release of the book’s online version was built with Jekyll to generate static
web pages, which were hosted on GitHub Pages under the dedicated https://
book.simply-logical.space/ domain.

However, the main text was now written in HTML, which was still fairly
limiting, especially when it comes to authoring (new or derived) content. With
Markdown being much simpler to write, edit and maintain as well as more
human-readable and covering all of the markup needs, I started porting and
cleaning the source. In the process, the diversity of the book’s building blocks –
text, figures and code listings – sparked an idea for a bespoke content genera-
tion system where the resources are split into prime elements that can be reused
to compose new material. Initially, this novel workflow relied on Jekyll, which
proved to be limiting and prompted me to embark in late 2018 on developing a
bespoke content generation platform. Its prototype, while versatile, required the
source documents to be extensively annotated, making the authoring experience
overly complicated and stalling the project.

When Jupyter Book [6] arrived in early 2020 it rekindled my hope for a
modular version of Simply Logical. The platform allowed composing content
from diverse building blocks and offered nearly all of the required function-
ality, apart from support for SWISH code boxes. While based on the Sphinx
Python documentation generation engine, it nonetheless could be extended with
a custom plugin. This encouraged me to finalise the separation, conversion and
cleaning of the book content, and to begin developing the necessary Jupyter
Book extensions. The result is a highly modular design, where the book is split
into a collection of files based on their type: text, exercise, solution, code and
figure. All of these materials are published on GitHub under the permissive
Creative Commons (BY-NC-SA) licence, which allows easy reuse, incorporating
into bespoke courses, or adapting into alternative educational resources such as
practical training sessions. This release marked the third instalment of the online
edition [8].

From a technical perspective, the latest version is realised through a collection
of bespoke Jupyter Book plugins (that also work with Sphinx) spanning func-
tionality specific to SWI-Prolog [17]. These extensions were later adapted to be
compatible with the cplint [14] and ProbLog [5] probabilistic programming lan-
guages. Specifically, I developed and released sphinx-prolog3, which among other
things allows to embed interactive SWI-Prolog and cplint code boxes based on
their respective SWISH implementations. The sphinx-problog4 extension offers
analogous functionality for ProbLog facilitated by the online execution environ-
ment underpinning the code examples published as part of the ProbLog website.

2 https://github.com/simply-logical/simply-logical/.
3 https://github.com/simply-logical/sphinx-prolog/.
4 https://github.com/simply-logical/sphinx-problog/.

https://jekyllrb.com/
https://book.simply-logical.space/
https://book.simply-logical.space/
https://cplint.ml.unife.it/
https://dtai.cs.kuleuven.be/problog/
https://github.com/simply-logical/simply-logical/
https://github.com/simply-logical/sphinx-prolog/
https://github.com/simply-logical/sphinx-problog/

190 P. Flach et al.

1 ```{swish} swish :0.1

2 ---

3 query -text: ?-linked(a,b,X). ?-linked(a,X,b).

4 query -id: swishq :1.1.1 swishq :1.1.2 swishq :1.1.3

5 inherit -id: swish :4.5.6 swish :4.5.7 swish :4.5.8

6 source -text -start: 4.5.6- start

7 source -text -end: 4.5.6- end

8 hide -examples: true

9 ---

10

11 optional :- content.

12

13 /** <examples >

14 ?-linked(X,a,b).

15 */

16 ```

Listing 1. Example of SWISH code box syntax.

Including a SWISH code box is as simple as writing a specially-formatted
Markdown code block, an example of which is shown in Listing 1. This element
is assigned a unique ID (swish:0.1), and its content can either be provided
verbatim (optional :- content.) or loaded from a file. Through its optional
parameters it is possible to:

– explicitly provide the query (query-text) and/or import it from a tagged
block (query-id);

– inject a programme from another code box through its ID (inherit-id);
– prepend (source-text-start) or append (source-text-end) code from

external Prolog files; and
– if Prolog queries are included directly in the code via a specially-formatted

query block (lines 13–15 in Listing 1), hide them from the users prior to
launching the code box (hide-examples).

To streamline the process of creating new online interactive educational
resources, I published a suite of templates for Prolog5, cplint6 and ProbLog7

content. By forking any of these repositories one can adapt static resources or
build new teaching materials in a matter of minutes.

4 Discussion and Outlook

Developing Jupyter Book plugins and building authoring environments for inter-
active Prolog content set us on a path to further explore alternative technologies
5 https://github.com/simply-logical/prolog-book-template.
6 https://github.com/simply-logical/cplint-book-template.
7 https://github.com/simply-logical/problog-book-template.

https://github.com/simply-logical/prolog-book-template
https://github.com/simply-logical/cplint-book-template
https://github.com/simply-logical/problog-book-template

Simply Logical – The First Three Decades 191

for composing diverse (interactive) training resources. As a proof of principle we
created a prototype of a new publishing workflow in which multiple artefacts
such as online documents, slides and computational notebooks can be generated
from a unified collection of source materials [15]. This contrasts with much of
current practice, where authoring environments are limited to individual pub-
lishing artefacts, for example, LATEX or MS Word documents, and PowerPoint
or Keynote slide decks. While in its early stages of development, Quarto [1] is a
notable departure from this paradigm and a substantially more powerful realisa-
tion of the envisaged workflow. It is a scientific and technical publishing system
that allows to author content as Markdown files or Jupyter Notebooks, and pub-
lish it as articles, reports, presentations, websites, blogs and books in formats
such as HTML, PDF, MS Word or EPUB. Quarto supports scientific features –
e.g., equations, citations and cross-referencing – and inclusion of dynamic con-
tent created with various programming languages.

Regardless of the underlying technology, our ideal scenario is an authoring
environment in which the author can concentrate on producing content without
much (initial) regard for the delivery format. Similar ideas have been around for
a long time – e.g., Luhmann’s Zettelkasten [11] – but were lacking the technology
to support them and make them efficient. While we hope that the next 50 years
of Prolog will see these ideas and opportunities come to full fruition, numerous
challenges need to be overcome. One particular bottleneck is limited interactivity
of the educational resources published on the Internet, which in part is due to the
need for compute resources. Without access to a dedicated machine – however it
is implemented in the physical world – interacting with code examples remains
constrained.

For example, up until recently SWISH used to run on a single server hosted by
the Vrije Universiteit Amsterdam (VU). The single process and single hardware
placed in a single network made the system highly vulnerable. This could be
addressed by migrating the server to a set of federated services; while currently
SWISH runs on two servers in different locations, load balancing is still missing.
The concept of server-side execution, nonetheless, remains problematic because
it concerns a complex, non-standard service that requires significant compute
resources which are in need of continuous maintenance and a sustained stream
of funding. An alternative approach is to move towards Prolog systems running
in the browser of each individual user.

Among other things, the browser-based approach lifts the need for sandbox
containment because this security feature is already provided by the browser.
Currently, SWISH rejects programmes it cannot verify to be safe, which includes
scripts that perform intractable meta-calling. In the future, this could be resolved
by using a process rather than a thread for implementing Pengines, and isolat-
ing this process using an operating system sandbox. Additionally, as it stands,
SWISH is stateless, i.e., executing a query against a programme does not change
the server state, since new queries are executed in a fresh environment. This
implies that we cannot interactively call assert/1 in one query and use the
asserted clauses in the following queries. Instead, we must both assert and use

192 P. Flach et al.

the clauses in the same query. One big advantage of avoiding permanent state,
nonetheless, is making all queries fully reproducible.

As noted in Sect. 2, there are JavaScript-based Prolog systems that explic-
itly target the web browser, in addition to more versatile WASM implemen-
tations. The ideal scenario would be for the Prolog community to come up
with a “standard” embedding interface to enable designing interactive web pages
using multiple Prolog backends. However, the browser control flow is inherently
incompatible with traditional single-threaded Prolog systems since one cannot
wait synchronously for input in a browser (e.g., call read/1). Instead, one must
return control to the browser and when the input becomes available as an event,
only then Prolog may resume. There are two ways to achieve that. One is to run
Prolog in a WebWorker (roughly, a browser task without a window) and make
it communicate with the browser task associated to a normal browser window.
The other is to yield from the Prolog virtual machine and resume Prolog when
the data become available. This leads to at least two interface designs:

– with a WebWorker we get interaction with a Prolog process that is not very
different from Prolog running on a remote server; whereas

– using a pure JavaScript or Prolog with yield allows running Prolog on the
same page and having bi-directional calls between Prolog and JavaScript,
which facilitates managing the browser directly from Prolog.

Running Prolog in the browser rather than remotely on a server solves several
problems. With Prolog being served as a static file, storage and chat services –
which are currently part of SWISH – can be offloaded to existing cloud services.
This creates a reliable distributed infrastructure that can be sustained by several
Prolog implementations. Such diversification is important as due to the use of
many features that are unique to SWI-Prolog, SWISH is practically not portable
to other Prolog implementations.8

All of these observations lead us to conclude that an in-browser solution is
probably the future of Prolog on the web, especially for educational use. The
SWISH design is good for offering a collaborative, interactive coding environ-
ment and (programmatic) access to (large) shared data sets, but its limitations
affect the design and capabilities of tools and resources that rely on it. When
combined with the envisaged authoring suite, both SWISH and in-browser Pro-
log implementations to come (such as the Active Logic Documents described in
Chapter 14 of this volume [12]) will offer immersive and engaging Prolog teaching
as well as learning materials.

Acknowledgements. The development of the sphinx-prolog and sphinx-problog
Jupyter Book plugins was supported by the TAILOR Network – an ICT-48 European
AI Research Excellence Centre funded by EU Horizon 2020 research and innovation
programme, grant agreement number 952215.

8 Note that when Pengines is realised through processes rather than threads, imple-
menting Pengines based on other Prolog systems becomes much easier.

Simply Logical – The First Three Decades 193

References

1. Allaire, J., Teague, C., Scheidegger, C., Xie, Y., Dervieux, C.: Quarto (2022).
https://doi.org/10.5281/zenodo.5960048, https://github.com/quarto-dev/quarto-
cli

2. Blackburn, P., Bos, J., Striegnitz, K.: Learn Prolog Now! http://www.let.rug.nl/
bos/lpn/index.php (2001)

3. Blackburn, P., Bos, J., Striegnitz, K.: Learn Prolog Now! (Texts in Computing,
Vol. 7), College Publications, London (2006)

4. Blackburn, P., Bos, J., Striegnitz, K.: Learn Prolog Now! https://lpn.swi-prolog.
org/ (2014)

5. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and its
application in link discovery. In: IJCAI. vol. 7, pp. 2462–2467. Hyderabad (2007)

6. Executable Books Community: Jupyter Book (2020). https://doi.org/10.5281/
zenodo.4539666, https://github.com/executablebooks/jupyter-book

7. Flach, P.: Simply Logical – Intelligent Reasoning by Example. John Wiley & Sons,
Inc. (1994)

8. Flach, P., Sokol, K.: Simply Logical – Intelligent Reasoning by Example (Fully
Interactive Online Edition). https://book.simply-logical.space/ (2022)

9. Kowalski, R.: Logic for problem solving. Edinburgh University, Department of
Computational Logic (1974)

10. Luger, G., Stubblefield, W.: Artificial Intelligence: Structure and strategies for
complex problem solving. Benjamin/Cummings (1993)

11. Luhmann, N.: Zettelkasten, https://zettelkasten.de/introduction/
12. Morales, J.F., Abreu, S., Ferreiro, D., Hermenegildo, M.V.: Teaching prolog with

active logic documents. In: Warren, D.S., et al. (eds.) Prolog: The Next 50 Years.
LNAI, vol. 13900, pp. 171–183. Springer, Switzerland (2023). https://doi.org/10.
1007/978-3-031-35254-6 14

13. Morales, J.F., Haemmerlé, R., Carro, M., Hermenegildo, M.V.: Lightweight com-
pilation of (C)LP to JavaScript. Theory Pract. Log. Program. 12(4–5), 755–773
(2012). https://doi.org/10.1017/S1471068412000336

14. Riguzzi, F.: Foundations of Probabilistic Logic Programming. River Publishers,
New York (2018)

15. Sokol, K., Flach, P.: You only write thrice: Creating documents, computational
notebooks and presentations from a single source. In: Beyond static papers:
Rethinking how we share scientific understanding in Machine Learning – ICLR
Workshop (2021). https://doi.org/10.48550/arXiv.2107.06639

16. Wielemaker, J., Lager, T., Riguzzi, F.: SWISH: SWI-Prolog for sharing. In: Pro-
ceedings of the International Workshop on User-Oriented Logic Programming
(IULP 2015); 31st International Conference on Logic Programming (ICLP 2015),
pp. 99–113 (2015). https://doi.org/10.48550/arXiv.1511.00915

17. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. The-
ory Pract. Logic Program. 12(1–2), 67–96 (2012). https://doi.org/10.1017/
S1471068411000494

https://doi.org/10.5281/zenodo.5960048
https://github.com/quarto-dev/quarto-cli
https://github.com/quarto-dev/quarto-cli
http://www.let.rug.nl/bos/lpn/index.php
http://www.let.rug.nl/bos/lpn/index.php
https://lpn.swi-prolog.org/
https://lpn.swi-prolog.org/
https://doi.org/10.5281/zenodo.4539666
https://doi.org/10.5281/zenodo.4539666
https://github.com/executablebooks/jupyter-book
https://book.simply-logical.space/
https://zettelkasten.de/introduction/
https://doi.org/10.1007/978-3-031-35254-6_14
https://doi.org/10.1007/978-3-031-35254-6_14
https://doi.org/10.1017/S1471068412000336
https://doi.org/10.48550/arXiv.2107.06639
https://doi.org/10.48550/arXiv.1511.00915
https://doi.org/10.1017/S1471068411000494
https://doi.org/10.1017/S1471068411000494

Prolog-Based Languages and Systems

Dynamic Logic Programming

Michael Genesereth(B)

Computer Science Department, Stanford University, Palo Alto, USA

genesereth@stanford.edu

Abstract. Dynamic Logic Programming (DLP) is an extension to logic
programming designed to support the representation of knowledge about
dynamic worlds. It combines the strengths of safe, stratified, side-effect-
free logic programming in defining relations with the power of simulta-
neous transition rules for defining dynamic operations. Because relation
definitions in DLP are safe and stratified and side-effect-free, dynamic
logic programs are simpler than general Prolog programs and they allow
for efficient implementation. At the same time, defining operations using
simultaneous transition rules adds expressive power without compromis-
ing the conceptual simplicity of logic programming. DLP is the basis for
the logic programming language Epilog (aka Dynamic Prolog) [10].

1 Introduction

In Dynamic Logic Programming, the states of the application environment are
modeled as sets of ground atomic sentences (here called datasets), and definitions
are written in the form of rules that can be applied to these instances. View
definitions define higher level view relations in terms of lower level base relations,
and operation definitions specify how the world state changes in response to
external inputs (such as the actions of agents or the passage of time).

Views are defined by writing Prolog-style rules. For example, the rule below
says that g is true of x and z if there is a y such that p is true of x and y and p
is also true of y and z. (This is the view used in the preceding figure.)

g(X,Y) :- p(X,Y) & p(Y,Z)
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 197–209, 2023.
https://doi.org/10.1007/978-3-031-35254-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_16&domain=pdf
https://doi.org/10.1007/978-3-031-35254-6_16

198 M. Genesereth

Operations are defined using transition rules. For example, the following rule
says that when the action a is performed in any state, for any y such that p
holds of x and y, then p will be false of x and y in the next state and p will be
true of y and x. (This is the operation used in the preceding figure.)

a :: p(X,Y) ==> ~p(X,Y) & p(Y,X)

This paper provides technical detail about the syntax and semantics of
Dynamic Logic Programming. Section 2 describes the concept of datasets; Sect. 3
gives details of view rules; and Sect. 4 covers transition rules and shows how they
are used in formalizing dynamic behavior. Section 5 gives an example of the use
of Dynamic Logic Programming in defining the game of Tic Tac Toe.

2 Datasets

A vocabulary is a collection of object constants, function constants, and relation
constants. Each function constant and relation constant has an associated arity,
i.e. the number of arguments allowed in any expression involving that constant.

A ground functional term is an expression formed from an n-ary function con-
stant and n ground terms. In this paper, we write functional terms in traditional
mathematical notation - the function constant followed by its arguments enclosed
in parentheses and separated by commas. For example, if f is a unary function
constant and a is an object constant, then f(a), f(f(a)), and f(f(f(a))) are
all ground functional terms. A ground term is either an object constant or a
ground functional term.

A ground atom (or factoid) is an expression formed from an n-ary relation
constant and n ground terms. In analogy with functional terms, we write fac-
toids in traditional mathematical notation - the relation constant followed by its
arguments enclosed in parentheses and separated by commas. For example, if r
is a binary relation constant and a and b are object constants, then r(a,b) is a
factoid.

The Herbrand universe for a given vocabulary is the set of all ground terms
that can be formed from the constants in the vocabulary. In the absence of
function constants, the Herbrand universe for a vocabulary is just the set of all
object constants. In the presence of function constants with arity greater than
0, the Herbrand universe is necessarily infinite, as it includes not just object
constants but also functional terms nested arbitrarily deeply.

The Herbrand base for a database is the set of all factoids that can be formed
from the constants in its vocabulary. For example, for a vocabulary with just two
object constants a and b and a single binary relation constant r, the Herbrand
base is {r(a,a), r(a,b), r(b,a), r(b,b)}.

A dataset is any subset of the Herbrand base, i.e. an arbitrary set of the
factoids that can be formed from the vocabulary of the database. The factoids

Dynamic Logic Programming 199

in a dataset representing a state are assumed to be true in that state, and all
other factoids in the Herbrand base are typically assumed to be false.

3 View Definitions

A static logic program is a set of rules that define new relations in terms of
existing relations. Such view definitions take the form of Prolog-like rules with
the constraint that the rules are safe and stratified and side-effect-free.

The vocabulary of a static logic program is a superset of the vocabulary of
any dataset to which it is applied. It includes the object, function, and relation
constants used in the dataset, but it can include additional object, function, and
relation constants as well.

Static logic programs can also include a new type of symbol, called a variable.
Variables allow us to state relationships among objects without naming specific
objects. In what follows, we write variables as strings of alphanumeric characters
beginning with a capital letter, e.g. X, Y, Z, Mass, Speed, and so forth.

Atoms are analogous to dataset factoids except that they can optionally
contain variables as well as object constants. For example, if r is a binary relation
constant, if a is an object constant, and if X and Y are variables, then r(a,X) is
an atom, as is r(a,Y) and r(X,Y) and r(X,X).

A literal is either an atom or a negation of an atom (i.e. an expression stating
that the atom is false). A simple atom is called a positive literal, The negation
of an atom is called a negative literal. In what follows, we write negative literals
using the negation sign ~. For example, if p(a,b) is an atom, then ~p(a,b)
denotes the negation of this atom.

A rule is an expression consisting of a distinguished atom, called the head,
and zero or more literals, together called the body. The literals in the body are
called subgoals. The following expression is an example of a rule. Here, r(X) is
the head, the expression p(X,Y) & q(Y) is the body; and p(X,Y) and ~q(Y) are
subgoals.

r(X) :- p(X,Y) & ~q(Y)

Intuitively, a rule is something like a reverse implication. It is a statement
that the conclusion of the rule is true whenever the conditions are true. For
example, the rule above states that r is true of any object x if there is an object
y such that p is true of x and y and q is not true of y. For example, if we know
that p(a,b) is true and q(b) is false, then, using this rule, we can conclude
that r(a) is true. See the end of this section for a more formal treatment of
semantics.

A logic program is a set of facts and rules of the form just described. Unfor-
tunately, the language of rules, as defined above, allows for logic programs with
some unpleasant properties (ambiguities and potentially infinite answer sets). To

200 M. Genesereth

eliminate these problems, we concentrate exclusively on logic programs where
the rules have two special properties, viz. safety and stratification.

A rule in a logic program is safe if and only if every variable that appears
in the head or in any negative literal in the body also appears in at least one
positive literal in the body. A logic program is safe if and only if every rule in
the program is safe.

The rule shown below is safe. Every variable in the head and every variable
in the negative subgoal appears in a positive subgoal in the body. Note that it
is okay for the body to contain variables that do not appear in the head.

r(X,Y) :- p(X,Y,Z) & ~q(X,Z)

By contrast, the two rules shown below are not safe. The first rule is not safe
because the variable Z appears in the head but does not appear in any positive
subgoal. The second rule is not safe because the variable Z appears in a negative
subgoal but not in any positive subgoal.

s(X,Y,Z) :- p(X,Y)
t(X,Y) :- p(X,Y) & ~q(Y,Z)

(Note that this condition is stronger than necessary. We do not need every
rule to be safe; we just require that the program as a whole is safe. The definition
of this broader notion of safety is a little complicated and the distinction is
unnecessary here, so we skip over this subtlety in the interests of simplicity.)

We say that a set of view definitions is stratified with respect to negation if
and only if its rules can be partitioned into strata in such a way that (1) every
stratum contains at least one rule, (2) the rules defining relations that appear in
positive goals of a rule appear in the same stratum as that rule or in some lower
stratum, and (3) the rules defining relations that appear in negative subgoals of
a rule occur in some lower stratum (not the same stratum).

As an example, assume we have a unary relation p that is true of all of
the objects in some application area, and assume that q is an arbitrary binary
relation. Now, consider the ruleset shown below. The first two rules define r to
be the transitive closure of q. The third rule defines s to be the complement of
the transitive closure.

r(X,Y) :- q(X,Y)
r(X,Z) :- q(X,Y) & r(Y,Z)
s(X,Y) :- p(X) & p(Y) & ~r(X,Y)

This is a complicated ruleset, yet it is easy to see that it is stratified with
respect to negation. The first two rules contain no negations at all, and so we
can group them together in our lowest stratum. The third rule has a negated
subgoal containing a relation defined in our lowest stratum, and so we put it into
a stratum above this one, as shown below. This ruleset satisfies the conditions
of our definition and hence it is stratified with respect to negation.

Dynamic Logic Programming 201

s(X,Y) :- p(X) & p(Y) & ~r(X,Y)

r(X,Y) :- q(X,Y)
r(X,Z) :- q(X,Y) & r(Y,Z)

By comparison, consider the following ruleset. Here, the relation s is defined
in terms of p and the negation of r, and the relation r is defined in terms of p
and the negation of s.

r(X,Y) :- p(X) & p(Y) & q(X,Y)
s(X,Y) :- r(X,Y) & ~s(Y,X)

There is no way of dividing the rules of this ruleset into strata in a way that
satisfies the definition above. Hence, the ruleset is not stratified with respect to
negation.

The problem with unstratified rulesets is that there is a potential ambigu-
ity. As an example, consider the rules above and assume that our dataset also
included the facts p(a), p(b), q(a,b), and q(b,a). From these facts, we can
conclude r(a,b) and r(b,a) are both true. So far, so good. But what can we say
about s? If we take s(a,b) to be true and s(b,a) to be false, then the second
rule is satisfied. If we take s(a,b) to be false and s(b,a) to be true, then the
second rule is again satisfied. The upshot is that there is ambiguity about s. By
concentrating exclusively on logic programs that are stratified with respect to
negation, we avoid such ambiguities.

View definitions in static logic programs are required to be both safe and
stratified with respect to negation. This is a departure from view definitions in
Logic Programming languages like Prolog, which permit rules that are unsafe
and logic programs that are not stratified.

The semantics of view definitions in static logic programs can be formalized
by defining the result of applying a static logic program to a dataset. The result-
ing extension is the set of all facts that can be”deduced” from the dataset on
the basis of the rules in the static logic program.

An instance of an expression (atom, literal, or rule) is one in which all vari-
ables have been consistently replaced by terms from the Herbrand universe.
For example, if we have a language with object constants a and b, then r(a)
:- p(a,a), r(a) :- p(a,b), r(b) :- p(b,a), and r(b) :- p(b,b) are all
instances of r(X) :- p(X,Y). (To be clear here, we use the word instance here
to refer exclusively to ground expressions.)

Given this notion, we can define the result of a single application of a single
rule to a dataset. Given a rule r and a dataset Δ, we define v(r,Δ) to be the
set of all ψ such that (1) ψ is the head of an arbitrary instance of r, (2) every
positive subgoal in the instance is a member of Δ, and (3) no negative subgoal
in the instance is a member of Δ.

202 M. Genesereth

Using this notion, we define the result of repeatedly applying the rules in a
single stratum Σ to a dataset Δ of factoids in the vocabulary of the stratum
below. Consider a sequence of datasets defined recursively as follows. Γ0 = Δ,
and Γn+1 = ∪v(r,Γn) for all r in Σ. Finally, we define the closure of Σ on Δ to
be the union of the datasets in this sequence, i.e. C(Σ,Δ) = ∪Γi.

Finally, we define the extension of a static logic program Ω on dataset Δ as
follows. Our definition relies on a decomposition of Ω into strata Σ1, ... , Σn. Let
Δ0 = Δ, and let Δn+1 = Δn ∪ C(Σn+1,Δn). Since there are only finitely many
rules in a static logic program and every stratum must contain at least one rule,
there are only finitely many sets to consider (though the sets themselves might
be infinite).

It can be shown that there is only one extension for any static logic program
applied to any dataset. Although it is sometimes possible to stratify the rules in
more than one way, this does not cause any problems. So long as a program is
stratified with respect to negation, the definition just given produces the same
extension no matter which stratification one uses.

Note that the extension of any function-free static logic program on a finite
dataset must be finite. Also, the extension of any non-recursive static logic pro-
gram applied to a finite dataset must be finite. In both cases, the extension can
be computed in time that is polynomial in the size of the dataset.

In the case of recursive programs without function constants, the result must
be finite. However, the cost of computing the extension may be exponential in
the size of the data, but the result can be computed in finite time.

For recursive programs with function constants, it is possible that the exten-
sion is infinite. In such cases, the extension is still well-defined; but in practice it
may be necessary to use a different algorithm to compute whether or not a given
atom is in the extension. There are multiple ways this can be done. See Ull-
man’s book on Database Systems and Knowledge Base Systems for a discussion
of some usable approaches.

4 Operation Definitions

The syntax of operation definitions is analogous to the syntax for view defini-
tions. The various types of constants are the same, and the notions of term and
atom and literal are also the same. However, to these, we add a few new items.

To denote operations, we designate some constants as operation constants.
As with function constants and relation constants, each operation constant has
a fixed arity - unary, binary, and so forth.

An action is an application of an operation to specific objects. In what fol-
lows, we denote actions using a syntax similar to that of atomic sentences, viz.
an n-ary operation constant followed by n terms enclosed in parentheses and
separated by commas. For example, if f is a binary operation constant and a
and b object constants, then f(a,b) denotes the action of applying the operation
f to a and b.

Dynamic Logic Programming 203

An operation definition rule (or, more simply, an operation rule) is an expres-
sion of the form shown below. Each rule consists of (1) an action expression, (2)
a double colon, (3) a literal or a conjunction of literals, (4) a double shafted for-
ward arrow, and (5) a literal or an action expression or a conjunction of literals
and action expressions. The action expression to the left of the double colon is
called the head ; the literals to the left of the arrow are called conditions; and
the literals to its right are called effects. The following rule is an example.

click(a) :: p(a,b) & ~q(a) ==> ~p(a,b) & q(a) & click(b)

Intuitively, the meaning of an operation rule is simple. If the conditions of a
rule are true in any state, then executing the action in the head requites that
we execute the effects of the rule.

For example, the rule above states that in any state in which p(a,b) is true
and q(a) is false, then executing click(a) requires that we remove p(a,b) from
our dataset, add q(a), and perform action click(b).

As with rules defining views, operation rules may contain variables to express
information in a compact form. For example, we can write the following rule to
generalize the preceding rule to all objects.

click(X) :: p(X,Y) & ~q(X) ==> ~p(X,Y) & q(X) & click(Y)

As with view rules, safety is a consideration. Safety in this case means that
every variable among the effects of a rule or in negative conditions also appears
in the head of the rule or in the positive conditions.

The operation rules shown above are both safe. However, the rules shown
below are not. The second effect of the first rule contains a variable that does
not appear in the head or in any positive condition. In the second rule, there is
a variable that appears in a negative condition that does not appear in the head
or in any positive condition.

click(X) :: p(X,Y) & ~q(X) ==> ~p(X,Y) & q(Z) & click(Y)
click(X) :: p(X,Y) & ~q(Z) ==> ~p(X,Y) & q(X) & click(Y)

In some operation rules there is no condition, i.e. the effects of the transition
rule take place on all datasets. We can, of course, write such rules by using the
condition true, as in the following example.

click(X) :: true ==> ~p(X) & q(X)

For the sake of simplicity in writing our examples, we sometimes abbreviate
such rules by dropping the conditions and the transition operator and instead
write just the effects of the transition as the body of the operation rule. For
example, we can abbreviate the rule above as shown below.

click(X) :: ~p(X) & q(X)

204 M. Genesereth

An operation definition is a collection of operation rules in which the same
operation appears in the head of every rule. As with view definitions, we are
interested primarily in rulesets that are finite. However, in analyzing operation
definitions, we occasionally talk about the set of all ground instances of the rules,
and in some cases these sets are infinite.

The semantics of operation definitions is more complicated than the seman-
tics of updates due to the possible occurrence of views in the conditions of the
rule and the possible occurrence of operations in its effects. In what follows, we
first define the expansion of an action in the context of a given dataset, and we
then define the result of performing that action on that dataset.

Suppose we are given a set Ω of rules, a set Γ of actions (factoids, negated
factoids, and actions), and a dataset Δ. We say that an instance of a rule in Ω
is active with respect to Γ and Δ if and only if the head of the rule is in Γ and
the conditions of the rule are all true in Δ.

Given this notion, we define the expansion of action γ with respect to rule
set Ω and dataset Δ as follows. Let Γ0 be {γ} and let Γi+1 be the set of all
effects in any instance of any rule in Ω with respect to Γi and Δ. We define our
expansion U(γ,Ω,Δ) as the fixpoint of this series. Equivalently, it is the union
of the sets Γi, for all non-negative integers i.

Next, we define the positive updates A(γ,Ω,Δ) to be the positive base fac-
toids in U(γ,Ω,Δ)). We define the negative updates D(γ,Ω,Δ)) to be the set
of all negative factoids in U(γ,Ω,Δ).

Finally, we define the result of applying an action γ to a dataset Δ as the
result of removing the negative updates from Δ and adding the positive updates,
i.e. the result is (Δ − D(γ,Ω,Δ)) ∪ A(γ,Ω,Δ). (Note that, if a factoid appears
in both the positive and negative update sets, the resulting dataset contains
the disputed factoid. Ideally, actions should not lead to such contradictions;
and, arguably, an interpreter should throw an error in such situations. However,
programmers seem to prefer this resolution; it allows them to write simpler
programs without causing any major problems.)

To illustrate these definitions, consider an application with a dataset repre-
senting a directed acyclic graph. In the sentences below, we use object constants
to designate the nodes of the graph, and we use the edge relation to designate
the arcs of the graph.

edge(a,b)
edge(b,d)
edge(b,e)

The following operation definition defines a binary operation copy that copies
the outgoing arcs in the graph from its first argument to its second argument.

copy(X,Y) :: edge(X,Z) ==> edge(Y,Z)

Dynamic Logic Programming 205

Given this operation definition and the dataset shown above, executing
copy(b,c) adds edge(c,d) and edge(c,e), resulting in the following dataset.

edge(a,b)
edge(b,d)
edge(b,e)
edge(c,d)
edge(c,e)

The following rule defines a unary operation invert that reverses the outgoing
arcs of the node specified as it argument.

invert(X) :: edge(X,Y) ==> ~edge(X,Y) & edge(Y,X)

Executing invert(c) removes the previous outgoing arcs from c and turns
them into incoming arcs, as shown below.

edge(a,b)
edge(b,d)
edge(b,e)
edge(d,c)
edge(e,c)

Finally, the following operation rules define a binary operation that inserts a
new node into the graph (the first argument) with an arc to the second argument
and arcs to all of the nodes that are reachable from the second argument.

insert(X,Y) :: edge(X,Y)
insert(X,Y) :: edge(Y,Z) ==> insert(X,Z)

Now consider the action insert(w,b). The first rule adds edge(w,b) to
the expansion. The second rule adds insert(w,d) and insert(w,e). On the
next round of expansion, the first rule adds edge(w,d) and edge(w,e), and the
second rules adds insert(w,c). On the third round, we get edge(w,c). At this
point, neither rule adds any items to our expansion. Applying the changes to
our dataset, we get the dataset shown below.

edge(a,b)
edge(b,d)
edge(b,e)
edge(d,c)
edge(e,c)
edge(w,b)
edge(w,d)
edge(w,e)
edge(w,c)

Note that it is possible to define insert in other ways. We could, for example,
define a view of edge that relates each node to every node that can be reached

206 M. Genesereth

from the node; and we could then use this view in a non-recursive definition of
insert. However, this would require us to introduce a new view into our vocab-
ulary; and, for many people, this is less clear than the definition shown above.

5 Example - Tic Tac Toe

As an example of a dynamic logic program, consider the task of formalizing the
rules for the game of Tic Tac Toe (also called Noughts and Crosses, Xs and Os).
In what follows, we show how to represent game states as datasets; we show how
to define properties of states using view definitions; and we show how to define
“moves” in the game using operation definitions.

Tic Tac Toe is a game for two players (the X player and the O player) who
take turns placing their marks in a 3× 3 grid. The first player to place three of
his marks in a horizontal, vertical, or diagonal row wins the game. The figure
below shows one state of play in Tic Tac Toe.

X O

X O

In our definition of Tic Tac Toe, states are characterized by the contents of
the cells on the Tic Tac Toe board and control (whose turn it is to play). (It
is true that control can be defined in terms of the contents of cells; but making
control explicit costs little and simplifies the description.) In what follows, we
use the ternary relation constant cell together with a row m and a column n
and a mark w to designate the fact that the cell in row m and column n contains
w where w is either an x or an o or a b (for blank). We use the unary relation
constant control to state that it is that role’s turn to mark a cell. The dataset
shown below uses this vocabulary to characterize the game state show above.

cell(1,1,x)
cell(1,2,o)
cell(1,3,b)
cell(2,1,b)
cell(2,2,x)
cell(2,3,o)
cell(3,1,b)
cell(3,2,b)
cell(3,3,b)
control(x)

Our first step is to define legality of moves. A player may mark a cell if that
cell is blank. Otherwise, it has no legal actions.

legal(M,N) :- cell(M,N,b)

Dynamic Logic Programming 207

Next, we define the physics of the world - how it changes in response to the
performance of legal actions. If a player has control and marks a cell, the cell is
then marked. Also, control switches to the other player.

mark(M,N) :: control(Z) ==> ~cell(M,N,b) & cell(M,N,Z)
mark(M,N) :: control(x) ==> ~control(x) & control(o)
mark(M,N) :: control(o) ==> ~control(o) & control(x)

Finally, to complete our game description, we define some properties of game
states - rows, columns, diagonals, lines - and we must say when the game termi-
nates.

A row of marks means that there are three marks all with the same first
coordinate. The column and diagonal relations are defined analogously.

row(M,Z) :- cell(M,1,Z) & cell(M,2,Z) & cell(M,3,Z)
column(M,Z) :- cell(1,N,Z) & cell(2,N,Z) & cell(3,N,Z)
diagonal(Z) :- cell(1,1,Z) & cell(2,2,Z) & cell(3,3,Z)
diagonal(Z) :- cell(1,3,Z) & cell(2,2,Z) & cell(3,1,Z)

A line is a row of marks of the same type or a column or a diagonal.

line(Z) :- row(M,Z)
line(Z) :- column(M,Z)
line(Z) :- diagonal(Z)

A game is over whenever either player has a line of marks of the appropriate
type or if there are no cells containing blanks. We define the 0-ary relation open
here to mean that there is at least one cell containing a blank.

terminal :- line(x)
terminal :- line(o)
terminal :- ~open
open :- cell(M,N,b)

Our rules specify the states and physics of the game. They do not specify how
to play the game effectively. In order to decide this, a player needs to consider
the effects of his legal moves in order to decide a course of action that will lead
to a line of his marks while considering the possible moves of the other player.

6 Comparison to Other Languages

Over the years, various LP researchers, have developed extensions to deal with
dynamics, e.g. assert and retract in standard Prolog [1], production systems,
active databases, transactions in Transaction Logic [2,7], constraint handling
rules in CHR [8], evolving logic programs in EVOLP [17], and reactive rules in
DALI [5] and LPS [15]. The references give details of these various approaches.
We describe just three below.

208 M. Genesereth

Prolog’s assert and retract provide one way to model dynamics. The key
is a conceptualization of dynamics as destructive change of state - states are
modeled as sets of stored facts, and changes to state are modeled as applications
of assert and retract to these sets of facts. Unfortunately, the semantics of logic
programs involving assert and retract is unsatisfying because of the way the
execution of these actions gets mixed up with query evaluation in the standard
Prolog interpreter. Dynamic logic programming cleans things up by separating
the formalization of dynamics from the definition of relations using Prolog rules.

Production systems are another way of expressing dynamics. The transition
rules used to define operations in DLP are similar, but there are some important
differences. In most production systems, only one rule is applied at a time.
(Many rules may be “triggered”, but typically only one is “fired”.) In dynamic
logic programs, all transition rules are executed simultaneously, and all updates
(both deletions and additions) are applied to the dataset before the rules fire
again. This simplifies the specification of dynamics in many cases, and avoids
many problems endemic to sequential update systems, such as unintended race
conditions and deadlocks.

Finally, Carro and Hermenegildo [3] introduce a notion of “concurrent data
facts” to (Ciao) Prolog [4] which are used primarily for communication among
concurrent threads, but also to represent (possibly timestamped) changes in (or
to) the external world. This, by itself, is still ’mixed up with query evaluation’.
But, by using, e.g., time stamps as an argument in the facts, the reasoning
system can be kept monotonic and sound. More relevantly perhaps, the paper
also mentions that these concurrent facts facilitate the implementation of reac-
tive condition-action rules, i.e. the part that reacts and exerts the changes on the
facts can be encoded within condition-action rules, and these can be implemented
within the Prolog system with these building blocks. The reactivity comes from
the synchronization provided through the concurrent facts, i.e. execution can
wait for concrete facts to be present.

7 Conclusion

In practice, it is common to extend the simple version of Dynamic Logic Pro-
gramming described here to include “built-in” relations (e.g. arithmetic) and
other operators (e.g. aggregates). The syntax and semantics of such extensions
are a little messy. Luckily, they pose no significant theoretical challenges; and,
in the interest of brevity, they are not covered here.

The intent of this article is to provide a concise but reasonably rigorous
account of the syntax and semantics of Dynamic Logic Programming. For moti-
vation and examples of all of these concepts, see the textbook Dynamic Logic
Programming.

Dynamic Logic Programming 209

References

1. Clocksin, W.F., Mellish, C.S.: Programming in Prolog, 4th edn. Springer-Verlag,
New York (1994)

2. Bonner, A.J., Kifer, M.: Transaction logic programming, international conference
on logic programming (ICLP) (1993)

3. Carro, M., Hermenegildo, M.: Concurrency in prolog using threads and a shared
database (1999). International Conference on Logic Programming, pp. 320–334,
MIT Press, Cambridge, MA, USA, November (1999)

4. Cabeza, D., Hermenegildo, M.: Distributed www programming using (Ciao) Prolog
and the pillow library. Theory Pract. Logic Program. 1(3), 251–282 (2001)

5. Costantini, S., Tocchio, A.: The DALI logic programming agent-oriented language.
In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 685–688.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30227-8 57

6. Flesca, S., Greco, S.: Declarative semantics for active rules. Theory Pract. Logic
Program. 1(1), 43–69 (2001)

7. Fodor, P.: Practical reasoning with transaction logic programming for knowledge
base dynamics, PhD Thesis, Stonybrook University (2011)

8. Fruehwirth, T.: Constraint Handling Rules. Cambridge University Press. ISBN
9780521877763 (2009)

9. Genesereth, M., Love, N., Pell, B.: The international game playing competition.
AAAI Magazine (2005)

10. Genesereth, M.: Epilog. http://epilog.stanford.edu
11. Genesereth, M., Chaudhri, V.: Logic Programming. Synthesis Lectures on Artifi-

cial Intelligence and Machine Learning, February (2020). https://doi.org/10.2200/
S00966ED1V01Y201911AIM044

12. Hayes, P.: Computation and deduction. In: Proceedings Second Symposium on
Mathematical Foundations of Computer Science, Czechoslovakian Academy of Sci-
ences, Czechoslovakia, pp. 105–118 (1973)

13. Kifer, M., Liu, A.: Declarative logic programming, ACM Books (2018)
14. Kowalski, R.: Algorithm = Logic + Control. In: Communications of the ACM, vol.

22, No. 7, July (1979)
15. Kowalski, R., Sadri, F.: LPS-A logic-based production system framework (2009)
16. Kowalski, R., Sadri, F.: Integrating logic programming and production systems in

abductive logic programming agents (2009)
17. Slota, M., Leite, J.A.: EVOLP: an implementation. In: Computational Logic in

Multi-Agent Systems, 8th International Workshop, CLIMA VIII, Porto, Portugal,
September 10–11 (2007)

18. Warren, D.S.: Programming in tabled prolog. https://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.49.4635

19. Zhou, N.-F.: The language features and architecture of B-Prolog. Theory Pract.
Logic Program. 12(1–2) (2011). https://doi.org/10.1017/S1471068411000445

https://doi.org/10.1007/978-3-540-30227-8_57
http://epilog.stanford.edu
https://doi.org/10.2200/S00966ED1V01Y201911AIM044
https://doi.org/10.2200/S00966ED1V01Y201911AIM044
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.4635
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.4635
https://doi.org/10.1017/S1471068411000445

Combining Logic Programming and Imperative
Programming in LPS

Robert Kowalski1(B), Fariba Sadri1, Miguel Calejo2, and Jacinto Dávila3

1 Imperial College London, London, UK
rak@doc.ic.ac.uk

2 Logicalcontracts.Com, Lisbon, Portugal
3 Universidad de Los Andes, Mérida, Venezuela

Abstract. Logic programs and imperative programs employ different notions of
computing. Logic programs compute by proving that a goal is a logical conse-
quence of the program, or by showing that the goal is true in a model defined
by the program. Imperative programs compute by starting from an initial state,
executing actions to transition from one state to the next, and terminating (if at
all) in a final state when the goal is solved.

In this paper, we present the language LPS (Logic Production Systems), which
combines the logic programming and imperative programming notions of com-
puting. Programs in LPS compute by using beliefs, represented by logic programs,
to model the changing world, and by executing actions, to change the world, to
satisfy goals, represented by reactive rules and constraints.

Keywords: Logic programming · Imperative programming · LPS · Reactive
rules

1 Introduction

On the one hand, it can be argued that logic programming (LP) is a Turing-complete
model of computation, which is well-suited for all computing tasks. It can also be argued
that the procedural interpretation of LP gives LP the computational capabilities of an
imperative computer language. On the other hand, despite such arguments, conventional
imperative languages dominate computing today.

In this paper, we take the position that, to have wider applicability, LP needs to be
extendedwith the ability of imperative languages, to generate actions to satisfy an agent’s
goals. Without this ability, LP can represent only an agent’s beliefs. The beliefs can be
queried, to determine whether they hold at a given point in time. But without extension,
LP cannot represent persistent goals that need to be satisfied over the course of time. For
truly general-purpose computing, LP needs to be extended to include persistence goals
and a treatment of time that is compatible with destructive change of state.

To support this position, we present the language LPS (Logic Production Systems)
[15–22], which combines the use of LP, to represent an agent’s beliefs, with the use
of reactive rules and constraints, formalised in first-order logic, to represent the agent’s

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 210–223, 2023.
https://doi.org/10.1007/978-3-031-35254-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_17&domain=pdf
https://doi.org/10.1007/978-3-031-35254-6_17

Combining Logic Programming and Imperative Programming in LPS 211

goals. Computation in LPS generates actions, to satisfy goals in a model determined by
the agent’s beliefs.

Production Systems. LPS was inspired in large part by trying to understand the dif-
ference and relationship between rules in LP and condition-action rules (CA rules) in
production systems [27]. We were motivated by the fact that both kinds of rules were
used in the 1980s for implementing expert systems, and that production systems were
also being used as a cognitive model of human thinking.

Moreover, we were provoked by Thagard’s claim in his popular Introduction to
Cognitive Science [34] that “Unlike logic, rule-based systems can also easily represent
strategic information about what to do”. He gives as an example the rule IF you want to
go home for the weekend, and you have the bus fare, THEN you can catch a bus.He does
not observe that the rule incorporates the use of backward reasoning to give a procedural
interpretation to the LP rule you go home for the weekend if you have the bus fare and
you catch a bus. Viewed in this way, his example is not an argument against logic, but
an argument for the procedural interpretation of logic programs.

In contrast, Russell and Norvig in their textbook, Artificial Intelligence: A Modern
Approach, [31] characterise production systems as systems of logic that perform forward
reasoning with rules of the form if conditions then actions, which “are especially useful
for systems that make inferences in response to newly arrived information”. But they do
not take into account that production systems have several features that do not accordwell
with such a logical interpretation. In particular, production systems destructively update
a “working memory” of facts, and they use “conflict resolution” to choose between
mutually incompatible actions.

For example, given a state in which you are both hungry and sleepy, and given the
CA rules:

If you are hungry then eat.

If you are sleepy then sleep.

instead of deriving the logical consequence that you eat and sleep at the same time
(assuming that to be impossible), production systems use conflict resolution to choose
between eating or sleeping. One of the aims of LPS is to give such behaviour a logical
interpretation by associating times with actions, and by allowing, in this case, eating and
sleeping to occur at different times.

Integrity Constraints. In addition to giving CA rules a logical interpretation, LPS also
gives them a logical status as goals, distinct from the logical status of LP rules as beliefs.
Our understanding of this distinction between the logic of LP rules and the logic of CA
rules was influenced by Gallaire and Nicolas’ [28] work on deductive databases in the
late 1970s. They distinguished between two kinds of general laws in deductive databases:
general laws that are used (like logic programs) to derive implicit (or intensional) data
from explicit (or extensional) data, and general laws that are used as integrity constraints
to restrict and maintain database updates.

For example, the assumption that it is not possible to eat and sleep at the same time
could be represented by the integrity constraint:

212 R. Kowalski et al.

not(you are eating and you are sleeping).

where you are eating and you are sleeping are “facts”, which are added to the database
when the actions of eating and sleeping are initiated respectively.

This distinction between two kinds of general laws in databases inspired our work
[32] on integrity checking for deductive databases, combining backward reasoning
using LP rules with forward reasoning using integrity constraints, triggered by database
updates. This combination of forward and backward reasoning is reflected in the
operational semantics of LPS today.

External Events and Actions. However, integrity checking in traditional database
systems only prevents database updates from violating integrity. It does not actively
change the database, to ensure that integrity is maintained. Active databases [37] remedy
this omission by using event-condition-action rules (ECA rules), to perform database-
changing actions triggered by events, when the corresponding conditions hold. But,
although it is natural to write such rules in the seemingly logical form if event and condi-
tion then action, ECA rules, like CA rules, do not have a logical interpretation as logical
implications.

LPS gives CA and ECA rules a logical interpretation, not only by associating times
with events, conditions and actions, but also by generating actions to make goals true.
In this respect, LPS can be viewed as a special case of abductive logic programming
(ALP) [12], which combines logic programs and integrity constraints with candidate
assumptions, which can be used to satisfy the integrity constraints. Whereas in the
philosophy of science abduction is used to generate assumptions to explain external
observations, abduction in LPS generates actions to make goals true.

Change of State. The final step in the logical development of LPS was to decide how
to represent and reason about change of state. It is common in AI to represent such
knowledge by means of frame axioms, such as those in the situation calculus [25] and
event calculus [23], reasoning, for example, that:

if a fact is true in a given state,
then it continues to be true in a later state,
unless it is terminated by an event (either an external event or action)
that occurs between the two states.

But reasoning with frame axioms is not practical for large scale computer applications.
To develop LPS as a practical system, we needed to replace the use of frame axioms by
destructive change of state. But we were committed to do so within a logical framework.

Models Instead of Theories. This last problem, of justifying destructive change of state
within a logical framework, was solved by abandoning the theoremhood view of LP and
replacing it with a model-theoretic view. The theoremhood view regards logic programs
as axioms, and regards computation as proving that an answer to a query is a theorem.
The model theoretic view regards logic programs as defining a unique, intended model,
and regards computation as showing that the model satisfies the query, viewed as a goal.

To employ destructive change of state within a theorem-proving approach, it would
be necessary to destructively change the axioms in the middle of a proof. But this would

Combining Logic Programming and Imperative Programming in LPS 213

also destroy the justification for arguing that the theorem is a logical consequence of
the axioms, because the axioms would not be well-defined. This problem does not arise
with the model-theoretic view, because there is no such restriction on the way in which
a model is defined.

We were influenced and encouraged in this model-generation view of computation
by its use in such LP languages as XSB Prolog [30], Transaction Logic [4] and Answer
Set Programming [24], as well as by the treatment of computation as model-generation
in the modal temporal language MetaTem [2].

2 Logic Programs for Representing Change of State

Computation in LPS follows the imperative paradigm of generating a sequence of states
and events, to make goals true. However, unlike states in imperative programming lan-
guages, which are collections of computer memory locations named by “variables”,
states in LPS are sets of facts (called fluents) that change with time. In this respect, states
in LPS are like relations in a relational database.

LPS, like relational databases andDatalog, distinguishes between extensional fluents,
which are stored explicitly, and intensional fluents, which are defined in terms of exten-
sional fluents and other intensional fluents. These definitions are like view definitions in
relational databases.

Change of state in LPS also follows the imperative paradigm of destructive updates,
maintaining only a single current state. However, whereas imperative programs update
variables by means of assignment statements, LPS updates fluents by means of events,
whose effects are defined by logic programs. Events directly affect only the sta-
tus of extensional fluents. They affect the status of intensional fluents indirectly, as
ramifications of changes to the extensional fluents.

LP clauses in LPS are written in the form conclusion if conditions, where the con-
clusion is a simple atomic formula, and the conditions can be an arbitrary formula of
first-order logic [21]. However, in the current implementation of LPS in SWISH [38],
conditions are restricted to conjunctions of atomic formulas and their negations.

As a simple example, consider the followingLP clauses inLPS syntax,where lightOn
is an extensional fluent, lightOff is an intensional fluent, and switch is an event, which
can be an external event or an internally generated action.

initially lightOn.
observe switch from 1 to 2.
observe switch from 3 to 4.
lightOff if not lightOn.
switch initiates lightOn if lightOff.
switch terminates lightOn if lightOn.

The first clause defines the initial state at time 1, in which the fluent lightOn is true. The
clause is shorthand for the sentence holds(lightOn, 1), written in the syntax of the event
calculus [23].

The second and third clauses define observations of the external event switch, which
occurs instantaneously both in the transition between the state at time 1 and the next

214 R. Kowalski et al.

state at time 2, and between the state at time 3 and the next state at time 4. The clauses
are shorthand for happens(switch, 1, 2) and happens(switch, 3, 4) in a syntax similar to
that of the event calculus.

The fourth clause defines the intensional fluent lightOff in terms of the extensional
fluent lightOn. The clause is shorthand for holds(lightOff, T) if not holds(lightOn, T).

The fifth and sixth clauses are causal laws, which specify, in effect, that a switch
event turns the light on if the light is off and turns the light off if the light is on. The two
clauses are shorthand for:

initiates(switch, lightOn, T + 1) if holds(lightOff , T).

terminates(switch, lightOn, T + 1) if holds(lightOn, T).

Given these clauses, the general command go(Timeline) in the SWISH implemen-
tation displays the history of states and events generated by computation in LPS. Notice
that “times” are actually periods of time during which no change of state takes place.
Events, on the other hand, are instantaneous and take place between time periods.

Fig. 1. An initial history of states and events, displayed as a Gantt chart. https://demo.logicalco
ntracts.com/p/basic-switch.pl

The SWISH implementation of LPS includes other general predicates that dis-
play other views of the computation. For example, the command state_diagram(Graph)
generates the more abstract display in Fig. 2.

https://demo.logicalcontracts.com/p/basic-switch.pl

Combining Logic Programming and Imperative Programming in LPS 215

Fig. 2 A state diagram for the example in Fig.1.

Logically, the history computed by LPS determines a model that satisfies the pro-
gram, by making all the sentences in the program true. It makes extensional fluents true
or false, by using causal laws, to initiate and terminate extensional fluents. It makes
intensional fluents true or false (as ramifications of changes to extensional fluents), by
using intensional fluent definitions.

In Fig. 1, the occurrence of the switch event between times 1 and 2 terminates the truth
of the extensional fluent lightOn, so that it is no longer true at time 2. As a consequence,
according to both negation as failure (NAF) and the classical meaning of negation, not
lightOn becomes true at time 2, and consequently lightOff also becomes true at time 2.

The sentences not lightOn and lightOff remain true at time 3, simply because they are
not made false by the occurrence of any terminating events. Similarly, the fluent lightOn
that becomes true at time 4 remains true indefinitely, unless and until some terminating
switch event occurs.

In general, computation in LPS satisfies an event-calculus-like causal theory:

holds(Fluent, T + 1) if happens(Event, T , T + 1) and initiates(Event, Fluent, T + 1).

holds(Fluent, T + 1) if holds(Fluent, T) and there does not exist Event such that
[
happens(Event, T , T + 1) and terminates(Event, Fluent, T + 1)

]
.

Here the second sentence is a frame axiom, which asserts that a fluent that holds at a
time T continues to hold at the next time T+ 1, unless an event that terminates the fluent
occurs between T and T + 1.

It is important to note that LPS does not reason explicitly with such frame axioms.
Forward reasoning with the frame axiom would entail the computational cost of reason-
ing that, for every fluent that holds at a time T and that is not terminated by an event that
occurs between T and T+ 1, the fluent continues to hold at time T+ 1. Backward reason-
ing is only marginally better. Backward reasoning, to determine whether a fluent holds at
a given time, entails the cost of chaining backwards in time until the time the fluent was
initiated, checking along the way that the fluent was not terminated in between times.
Both kinds of reasoning are intolerably inefficient compared with destructive change of
state.

216 R. Kowalski et al.

Instead, in LPS, when an event occurs, then any fluent initiated by the event is added
to the current state, and any fluent terminated by the event is (destructively) deleted from
the current state. However, although the causal theory is not used to reason explicitly
whether any fluents hold, the causal theory and its frame axiom are emergent properties
that are true in the model generated by the computation. This is like the way in which
the associativity of the append relation is used neither to generate a model of append,
nor to compute instances of append, but it is an emergent property, which is true in the
model generated by the recursive definition of append.

Notice that the logical interpretation of destructive change of state, as generating
extensional fluents in a timestamped model-theoretic structure, provides a logically pure
alternative to the logically impure use of assert and retract in Prolog, which is one of the
ways many Prolog programmers avoid the inefficiencies of the frame axiom in practice.

Unlike models in modal logic, which are collections of possible worlds connected
by accessibility relations, models in LPS are single models in which fluents are stamped
with the times at which they hold, and events are stamped with the times between which
they happen. In this example, the Herbrand model, which consists of all the facts that
are true in the model, is:

{happens(switch, 1, 2), happens(switch, 3, 4), initiates(switch, lightOn, 3),
initiates(switch, lightOn, 4), terminates(switch, lightOn, 2),

terminates(switch, lightOn, 5), terminates(switch, lightOn, 6), ..., holds(lightOn, 1),

holds(lightOff , 2), holds(lightOff , 3), holds(lightOn, 4), holds(lightOn, 5),}

3 Reactive Rules as Goals

In addition to logic programs, which can be regarded as an agent’s beliefs, LPS also
includes reactive rules of the form if antecedent then consequent and constraints of
the form false conditions, which can be understood as an agent’s goals. LPS can also
generate actions to help an agent satisfy its goals.

For example, the reactive rule if lightOff then switch, which is shorthand for:

For all T1 [if holds(lightOff , T1) then

there exists T2 such that
[
happens(switch, T2, T2 + 1) and T1 ≤ T2

]].
represents the goal of switching the light whenever the light is off.

An LPS agent uses its beliefs to determine when the antecedent of a rule becomes
true, and then it performs actions to make the consequent of the rule true. If time is
unbounded, then the model determined by the resulting history of states and events can
be infinite, and the computational process might never end.

The timeline in Fig. 3 displays an initial portion of the infinite model generated when
the reactive rule above is added to the previous example.

Here, instead of the intentional fluent lightOff persisting, as before, from state 2 to
state 3, the reactive rule recognises that lightOff is true at time 2 and generates the goal of
performing a switch action in the future. The switch action can be performed at any time

Combining Logic Programming and Imperative Programming in LPS 217

Fig. 3 https://demo.logicalcontracts.com/p/simple%20switch.pl

after time 2. However, in practice, LPS generates models in which goals are satisfied as
soon as possible. So, in this case, it performs the action immediately, between times 2
to 3.

Whereas, without the reactive rule, the second switch external event turned the light
on, now the same external event turns the light off. So, again, the reactive rule is triggered
and turns the light back on, as soon as possible.

Of course, leaving it to the LPS implementation to make reactive rules true as soon
as possible is a risky business. However, it is possible to specify the time at which the
consequent of the rule is made true explicitly, in this example by using any one of the
following equivalent notations:

if lightOff at T1 then switch from T1 to T2.
if lightOff at T then switch from T to T+1.
if lightOff at T then switch from T.

At the time of writing, we do not have a syntax for representing this temporal relationship
without writing time explicitly.

In general, both the antecedent and consequent of a reactive rule can be a conjunction
of (possibly negated) timeless predicates, such as the inequality relation≤ and (possibly
negated) fluents and events. All variables, including time variables, in the antecedent
are universally quantified with scope the entire rule. All other variables are existentially
quantified with scope the consequent of the rule. All times in the consequent are later
than or at the same time as the latest time in the antecedent.

Goals in LPS can also include constraints of the form false conditions, which restrict
the actions that an agent can perform. In the current implementation, they also restrict
the external events that the agent will accept. For example, adding the constraint false
lightOn, switch, which is shorthand for:

not(holds(lightOn, T) and happens(switch, T, T + 1)).

to the current example, results in the timeline in Fig. 4.

https://demo.logicalcontracts.com/p/simple%20switch.pl

218 R. Kowalski et al.

Fig. 4. https://demo.logicalcontracts.com/p/simple%20switch.pl with the constraint.

4 Logic Programs for Representing Complex Events

The antecedents and consequents of reactive rules can also include complex events
defined by LP clauses of the form complex-event if conditions, where the conditions
have the same syntax as the antecedents and consequents of reactive rules. The start
time of the complex-event is the earliest time in the conditions of the clause, and the end
time of the complex-event is the latest time in the conditions.

For example, the following two LP clauses define a complex event, sos, which is a
simplified distress signal of a light flashing three times in succession. Each flash of light
takes place over two time steps and is separated from the next flash by one time step. At
the time of writing, we do not have a shorthand syntax without time for such clauses:

sos from T1 to T4 if lightOff at T1, flash from T1 to T2,

flash from T2 to T3, flash from T3 to T4.

flash fromT1 to T3 if lightOff at T1,

switch from T1 to T2, switch from T2 + 1 to T3.

LPS can use the definition of the complex sos event both to recognise and to generate
distress signals.Moreover, it can both recognise and generate them at the same time using
a reactive rule such as:

if sos to T then sos from T+2.

Figure 5 displays a scenario in which LPS recognises an initial sos signal and
acknowledges it by generating an sos in response. But then it recognises its own response
as another sos signal, and responds to it as well, ad infinitum.

https://demo.logicalcontracts.com/p/simple%20switch.pl

Combining Logic Programming and Imperative Programming in LPS 219

Fig. 5. Here the command go(Timeline, [composites]) displays the timeline together with
complex (composite) events. https://demo.logicalcontracts.com/p/new%20sos.pl

5 Prolog Programs for Defining Animations

In addition to the timeline visualisations, the SWISH implementation of LPS includes
animations which display one state at time. See for example the program in Fig. 6, in
which dad chases around the house turning off the lights which bob turns on. Notice
that the switch predicate has arguments to indicate the agent of the action, the location
of the switch and the state of the light immediately following the action.

Fig. 6. https://demo.logicalcontracts.com/example/badlight.pl.

The animation is generated using purely declarative Prolog clauses that define the
rendering of fluents as two-dimensional objects, as shown in Fig. 7.

Fig. 7. The Prolog code for visualizing the locations of bob and dad.

https://demo.logicalcontracts.com/p/new%20sos.pl
https://demo.logicalcontracts.com/example/badlight.pl

220 R. Kowalski et al.

6 Related Work

In the Introduction, we focused on the historical development of LPS. But as we devel-
oped LPS, along the way we discovered many related, parallel developments, leading
in a similar direction. For example, David Harel, in his famous paper on Statecharts
[11], argues that there are two kinds of systems: transformational systems and reactive
systems. Transformational systems specify a transformation, function, or input/output
relation, as in LP and functional programming. Reactive systems, “which present the
more difficult cases”, describe dynamic behaviour, which “takes the general form ‘when
event Y occurs in state A, if condition C is true at the time, the system transfers to
state B”. This behaviour is a special case of the way reactive rules are executed in LPS.
Although Harel draws attention to these two kinds of systems, he does not consider how
they might be related and be combined.

Several other authors have also identified similar distinctions between different kinds
of systems or rules, and they have developed more comprehensive systems or logics to
combine them. For example, SBVR (Semantics of Business Vocabulary and Rules) [29]
combines alethic modal operators, representing structural business rules, with deontic
modal operators, representing operative business rules. Input-output logic [3] combines
constitutive norms, representing an agent’s beliefs, with regulative norms, representing
an agent’s goals. FO(ID) [8] combines first-order logic with definitions, similar to the
way in which ALP combines integrity constraints with logic programs. Formally, an
FO(ID) theory is a set of FO axioms and definitions. A model of such a theory is a
(2-valued) structure satisfying all FO axioms and being a well-founded model of all
definitions.

Other authors have also recognized the need to extend LP in similar ways. CHR [9]
extends LP with propagation rules, which behave like production rules. The original
semantics of CHRwas given in terms of linear logic, which justifies destructive updates.
EVOLP [1] extends the syntax of LP rules, so that their conclusions update the rules
of the extended logic program. The semantics is given by the resulting sequence of
logic programs. Like LPS, DALI [6] extends LP by means of reaction rules. However, in
DALI, reaction rules are transformed into ordinary LP rules, and the semantics of aDALI
program is given by a sequence of logic programs, which is similar to the semantics of
EVOLP. Epilog [10] extends LP with operation rules of the form action:: conditions ⇒
effects, which means that if the conditions of the rule are true in a state, then the action is
performed by executing the effects of the rule to generate the next state. The semantics of
Epilog is given by the sequence of state transitions generated by executing all applicable
operation rules in parallel. Ciao includes a facility to timestamp data predicates, which
can be used in combination with concurrency, to implement condition-action rules [5].

The majority of the above systems and languages specify only one state transition
at a time. In contrast, Transaction Logic (TL) [4] extends LP with clauses that define
transactions (or complex events), which use destructive updates to generate sequences
of state transitions. Unlike models in LPS, which include all states in a single model by
associating explicit state (or time) parameters with events and fluents, models in TL are
like possible worlds in the semantics of modal logic, where each state is represented by
a separate Herbrand interpretation. However, unlike modal logics, where truth is defined
relative to a single possible world, truth (of a transaction fact) in TL is defined relative to

Combining Logic Programming and Imperative Programming in LPS 221

a path from one state to another. The TL semantics has been used to give an alternative
semantics for CHR [26]. TL was also one of the inspirations for complex events in LPS.

In addition to related work in computer science, logic and AI, we have been encour-
aged by related work in cognitive psychology, initiated by Stenning and van Lambalgen
[33]. They consider a variety of psychological tasks which seem to show that people do
not reason logically with rules expressed in natural language, and they argue that the
data can be explained by assuming that there are two kinds of rules, and that people
have trouble deciding between them. In the case of the Wason selection task [36], the
most widely cited psychological study of human reasoning, they claim that “by far the
most important determinant of ease of reasoning is whether interpretation of the rule
assigns it descriptive or deontic logical form”. In [13], this distinction between different
interpretations of a rule is reinterpreted as a distinction between LP rules representing
beliefs and first-order logic rules representing goals.

7 Future Prospects

The current implementation of LPS in SWISH is merely a proof of concept. Nonethe-
less, even in its current form, it has proved to be useful for several trial commercial
applications, including one in the area of smart contracts1 and another in the context of
SCADA (Supervisory Control And Data Acquisition).

There is much scope for improving the current implementation, not only to make it
more efficient, but also to improve its decision-making strategy, when there is more than
one way to satisfy a collection of goals.Wewould also like to extend the Logical English
syntax [14] that we have developed for LP to include the whole of LPS. A particular
challenge in this regard is to develop a natural language syntax for temporal relationships
in LPS. See, for example, the English representation of the rock-paper-scissors game in
LPS [7].

References

1. Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M.: Evolving logic programs. In: Flesca, S.,
Greco, S., Ianni, G., Leone, N. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 50–62.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45757-7_5

2. Barringer, H., Fisher, M., Gabbay, D., Owens, R., Reynolds, M.: The imperative future:
principles of executable temporal logic. John Wiley & Sons, Inc. (1996)

3. Boella, G., der Torre, L.V.: Regulative and constitutive norms in the design of normative mul-
tiagent systems. In International Workshop on Computational Logic inMulti-Agent Systems,
pp. 303–319, Springer (2005)

4. Bonner, A., Kifer, M.: Transaction logic programming. In: Warren D.S. (ed.) Logic
Programming: Proc. of the 10th International Conf., pp. 257–279 (1993)

5. Carro, M., Hermenegildo, M.: Concurrency in Prolog Using Threads and a Shared Database.
1999 International Conference on Logic Programming, pp. 320–334, MIT Press, Cambridge
(1999)

1 https://demo.logicalcontracts.com/example/fintechExamples.swinb.

https://doi.org/10.1007/3-540-45757-7_5
https://demo.logicalcontracts.com/example/fintechExamples.swinb

222 R. Kowalski et al.

6. Flesca, S., Greco, S., Ianni, G., Leone, N. (eds.): JELIA 2002. LNCS (LNAI), vol. 2424.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45757-7

7. Davila, J.: Rock-Paper-Scissors (2017). https://demo.logicalcontracts.com/p/rps-gets.pl
8. Denecker, M., Vennekens, J.: Building a knowledge base system for an integration of logic

programming and classical logic. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008.
LNCS, vol. 5366, pp. 71–76. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
89982-2_12

9. Schrijvers, T., Frühwirth, T. (eds.): Constraint Handling Rules. LNCS (LNAI), vol. 5388.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92243-8

10. Genesereth, M.: Dynamic Logic Programming. In: Warren, D., Dahl, V., Eiter, T.,
Hermenegildo, M., Kowalski, R. and Rossi, F. (eds.) Prolog - The Next 50 Years. LNCS,
vol. 13900. Springer (2023)

11. Harel, D.: Statecharts: AVisual Formalism for Complex Systems. Sci. Comput. Programming
8, 231–274 (1987)

12. Kakas, A., Kowalski, R., Toni, F. : The Role of Logic Programming in Abduction. In: Gabbay,
D., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and
Programming 5, pp. 235–324. Oxford University Press (1998)

13. Kowalski, R.: Computational logic and human thinking: how to be artificially intelligent.
Cambridge University Press (2011)

14. Kowalski, R., Dávila, J., Sartor, G., Calejo, M.: Logical english for law and education. In:
Warren, D., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The
Next 50 Years. LNCS, vol. 13900. Springer (2023)

15. Kowalski, R., Sadri, F.: Logic Programming towards multi-agent systems. Ann. Math. Artif.
Intell. 25, 391–419 (1999)

16. Kowalski, R., Sadri, F.: Integrating logic programming and production systems in abductive
logic programming agents. In: Polleres, A., Swift, T. (eds.) RR 2009. LNCS, vol. 5837,
pp. 1–23. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05082-4_1

17. Kowalski, R., Sadri, F.: An agent language with destructive assignment and model-theoretic
semantics. In: Dix, J., Leite, J., Governatori, G., Jamroga, W. (eds.) CLIMA 2010. LNCS
(LNAI), vol. 6245, pp. 200–218. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14977-1_16

18. Kowalski, R., Sadri, F.: Abductive logic programming agents with destructive databases. Ann.
Math. Artif. Intell. 62(1), 129–158 (2011)

19. Kowalski,R., Sadri, F.:ALogic-based framework for reactive systems. In:Bikakis,A.,Giurca,
A. (eds.) RuleML 2012. LNCS, vol. 7438, pp. 1–15. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-32689-9_1

20. Kowalski, R., Sadri, F.: A logical characterization of a reactive system language. In: Bikakis,
A., Fodor, P., Roman, D. (eds.) RuleML 2014. LNCS, vol. 8620, pp. 22–36. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-09870-8_2

21. Kowalski, R., Sadri, F.: Model-theoretic and operational semantics for Reactive Computing.
N. Gener. Comput. 33(1), 33–67 (2015)

22. Kowalski, R., Sadri, F.: Programming in logic without logic programming. Theory Pract.
Logic Program. 16(3), 269–295 (2016)

23. Kowalski, R., Sergot, M.: A Logic-based Calculus of Events. In: NewGeneration Computing,
Vol. 4, No.1, 67--95 (1986). Also in: Inderjeet Mani, J. Pustejovsky, and R. Gaizauskas (eds.)
The Language of Time: A Reader, Oxford University Press (2005)

24. Lifschitz, V. Answer set programming. Springer (2019)
25. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of artificial

intelligence. In: Readings in artificial intelligence, pp. 431–450. Morgan Kaufmann (1981)

https://doi.org/10.1007/3-540-45757-7
https://demo.logicalcontracts.com/p/rps-gets.pl
https://doi.org/10.1007/978-3-540-89982-2_12
https://doi.org/10.1007/978-3-540-92243-8
https://doi.org/10.1007/978-3-642-05082-4_1
https://doi.org/10.1007/978-3-642-14977-1_16
https://doi.org/10.1007/978-3-642-32689-9_1
https://doi.org/10.1007/978-3-319-09870-8_2

Combining Logic Programming and Imperative Programming in LPS 223

26. Meister, M., Djelloul, K., Robin, J.: Unified semantics for Constraint Handling Rules in
transaction logic. In International Conference on Logic Programming and Nonmonotonic
Reasoning, pp. 201–213. Springer (2007)

27. Newell, A., Simon, H.A.: Human problem solving vol. 104, No. 9. Prentice-Hall, Englewood
Cliffs, NJ (1972)

28. Nicolas, J.M., Gallaire, H.: Database: Theory vs. Interpretation. In: Gallaire, H., Minker, J.
(eds.) Logic and Databases, Plenum, New York (1978)

29. OMG. (Object Management Group): Semantics of Business Vocabulary and Rules (SBVR),
OMG Standard, v. 1.0. (2008)

30. Rao, P., Sagonas, K., Swift, T., Warren, D.S., Freire, J.: XSB: a system for efficiently com-
puting well-founded semantics. In: Dix, J., Furbach, U., Nerode, A. (eds.) LPNMR 1997.
LNCS, vol. 1265, pp. 430–440. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
63255-7_33

31. Russell, S.J., Norvig, P.: Artificial intelligence: a modern approach, 2nd edn. Prentice Hall,
Upper Saddle River, NJ (2003)

32. Sadri F., Kowalski R.: ATheorem-ProvingApproach toDatabase Integrity. In:Minker, J. (ed.)
Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann, pp. 313–
362 (1988)

33. Stenning,K., vanLambalgenM.:HumanReasoning andCognitive Science.MITPress (2012)
34. Thagard, P.: Mind: Introduction to Cognitive Science. Second Edition. MIT Press (2005)
35. Warren, D. S., Denecker, M.: A better semantics for prolog. In: Warren, D., Dahl, V., Eiter,

T., Hermenegildo, M., Kowalski, R. and Rossi, F. (eds.) Prolog - The Next 50 Years. LNCS,
vol. 13900. Springer, Heidelberg (2023)

36. Wason, P.C.: Reasoning about a rule. Q. J. Exp. Psychol. 20(3), 273–281 (1968)
37. Widom, J., Ceri, S. (eds.) Active database systems: Triggers and rules for advanced database

processing. Morgan Kaufmann (1995)
38. Wielemaker, J., Riguzzi, F., Kowalski, R.A., Lager, T., Sadri, F., Calejo, M.: Using SWISH

to realise interactive web-based tutorials for logic-based languages. Theory Pract. Logic
Program. 19(2), 229–261 (2019)

https://doi.org/10.1007/3-540-63255-7_33

Ergo: A Quest for Declarativity in Logic
Programming

Benjamin Grosof, Michael Kifer(B), Theresa Swift(B), Paul Fodor,
and Janine Bloomfield

Coherent Knowledge, Mercer Island, USA
{benjamin.grosof,michael.kifer,theresa.swift,paul.fodor,

janine.bloomfield}@coherentknowledge.com
http://coherentknowledge.com

Abstract. Ergo is a higher-level logic programming system developed
by Coherent Knowledge Systems as a successor to Flora-2 [39]. From
the start, Flora-2 and Ergo were designed with the explicit requirement
of declarativity and usability using novel technologies developed over
the years by the authors and their colleagues. Although Ergo programs
are compiled into XSB [29] and they adopt many Prolog features, Ergo
is altogether a different language. For instance, Ergo’s core execution
strategy is not the SLDNF of Prolog, but is instead based on the Well-
Founded Semantics [31] and its core syntax is a combination of HiLog [6]
and F-logic [20]. Ergo supports object-oriented modeling, logical meta-
reasoning, defeasible reasoning, fully semantic update operators as in
Transaction Logic [2,3], explanations, and a variety of other features not
found in Prologs. In this paper, we describe some of these novel features
of Ergo with special emphasis on their relation to Prolog and how they
contribute to the high degree of declarativeness of Ergo.

1 Introduction

Declarativity has been a quest in Logic Programming since its inception. This
quest is shared by the Ergo language, which tries to make the declarative seman-
tics (what a program means) and the operational semantics (how a program
derives its results) as transparent as possible.

Ergo [7], or ErgoAI Reasoner, is part of the recently open-sourced ErgoAI
suite of tools developed by Coherent Knowledge Systems, LLC.1 The other
tools include an IDE and connectors to major programming languages and data
sources. Ergo is the successor of and a replacement for the well-known Flora-2
[19] system, developed at Stony Brook University, NY. Although modern Prologs
have developed far beyond Prolog’s original ISO specification [17], and although

1 http://coherentknowledge.com/.

M. Kifer—Supported in part by NSF grant 1814457.
P. Fodor—Stony Brook University, USA.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 224–236, 2023.
https://doi.org/10.1007/978-3-031-35254-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_18&domain=pdf
http://coherentknowledge.com/
https://doi.org/10.1007/978-3-031-35254-6_18

Ergo: A Quest for Declarativity in Logic Programming 225

Ergo is compiled into XSB, Ergo differs substantially from Prolog. First, while
Ergo supports predicate definitions using a syntax similar to Prolog, it also fully
supports HiLog [6] and the F-logic frame syntax [20] along with rule id’s, Skolem
symbols and much else. Second, like some Prologs, including XSB [29] and SWI
[37], Ergo supports the well-founded semantics (WFS) [31] along with SLDNF-
style resolution. But WFS is the core semantics of Ergo. Furthermore, Ergo sup-
ports defeasible reasoning, explicit negation, and quantifiers. Third, Ergo draws
from deductive databases default support for reactivity and transactionality. We
refer to languages and systems like Ergo and Flora-2 that are based on the well-
founded semantics as WFS-based Logic Programming, (WFSLP) to distinguish
them from Prolog-based systems and from Answer Set Programs (ASP), which is
based on the stable model semantics (SMS)). In order to leverage WFSLP, Ergo
makes heavy use of tabling in ways that are discussed throughout the paper.
Due to space limitations we cannot provide an introduction to tabling, but a
short overview of tabling can be found in the introduction to this volume [36],
while a much more detailed tutorial can be found in [30].

We believe that WFSLP is important for programmers who wish to program
at a high but computationally clear level; that systems such as Ergo serve as
a means to make available Logic Programming research results such as explicit
negation, HiLog, F-Logic; and that successes and failures of WFSLP systems
can inform the community of Prolog developers. Although Ergo is still evolving,
it has been used in commercial and research projects in financial compliance,
legal reasoning, healthcare, and battlefield assessment.

This paper describes some aspects of Ergo that we believe are both significant
and of potential interest to the Prolog community. Sections 3, and 4 describe a
few aspects of Ergo’s approach to declarativity. Section 5 discusses explainability.
Section 6 briefly describes interfaces and applications. The final Sect. 7 discusses
Ergo features that could, versus could not, be adopted by Prolog systems, as
well as summarizes current and future work.

2 Ergo Syntax

HiLog. Ergo has a rich syntax that includes HiLog predicates [6] and F-logic
frames and classes [20]. In forming either type of construct, variables and con-
stants in Ergo are denoted slightly differently than in Prolog. For instance
p(‘John’,goes,Where) is a Prolog term in which the first two arguments are
constants and the third a variable. The same term in Ergo is written as p(John,
goes,?Where). Variables in Ergo thus begin with the ? symbol, while capitalized
strings such as John are constants, rather than variables as in Prolog.

Unlike a Prolog term, which has the form: p(t1, ..., tn) where p is a function
symbol and t1, ..., tn are logical terms, a HiLog term has the form t0(t1, ..., tn)
where t0, ..., tn are also HiLog terms. For example,

closure(?Graph)(?From,?To)

226 B. Grosof et al.

is a well-formed Ergo term. Although HiLog terms are syntactically higher-order,
the term above is translated by Ergo to a first-order term that uses long, syn-
thesized function symbol names that are highly unlikely to be ever needed by
a user and whose uniqueness is enforced. As a result unification and resolution
can be performed on HiLog terms in a manner similar to Prolog-style terms.

F-logic Frames. F-logic frames differ significantly from Prolog and Hilog pred-
icates, and there is not enough space to fully describe frames in this paper. To
get a taste of F-logic frames, consider the frame molecule:

John:person[age->?A>30, child->Bob,
phone->?P \in [’111-222-3456’,’123-456-7890’]]

which has the same meaning as these frame atoms:

John:person, John[child->Bob], John[age->?A], ?A>30,
John[phone->?P], ?P \in [’111-222-3456’,’123-456-7890’]]

These frame facts say that John is a person, whose child is Bob, and whose age is
constrained to be greater than 30, and who has two particular phone numbers.
Frame rules may also make use of monotonic and non-monotonic (property-
overriding) inheritance. An Ergo rule can contain any HiLog term or F-logic
frame as a subgoal. Ergo also has support for user-defined functions and other
extensions, that cannot be discussed here due to space limitation.

3 Ergo and Declarativity

Flora-2 and then Ergo were the result of a long series of efforts by us and other
researchers to develop technologies that could serve as building blocks for truly
declarative LP systems in the resolution-based computational paradigm. This
section and the next briefly discuss some of these building blocks.

The Well-Founded Semantics (WFS) in Ergo. WFS provides clear semantics
for Prolog-style LP, although when implemented in Prolog systems like XSB
and SWI, obtaining this semantics requires tabling declarations. Ergo’s strategy
is different: WFS is supported by default, making the first key step towards
declarativity, since termination and logical semantics are then assured for many
types of programs. For instance, in Ergo transitive closure may be written as:

reachable(?X,?Y):- reachable(?X,?Z),edge(?Z,?Y).
reachable(?X,?Y):- edge(?X,?Y).
edge(1,2). edge(2,3). edge(3,1).

Ergo depends on WFS in a critical way because the rules that arise from the
use of F-logic and HiLog (Sect. 2), and defeasible reasoning (Sect. 4.2), are often
non-stratified.

Ergo: A Quest for Declarativity in Logic Programming 227

Object-oriented modeling and meta-operations. F-logic [20] was developed with
the explicit purpose of bringing object-oriented concepts (classes, complex
objects, inheritance) into LP in a semantically clear and logical way. Hitherto
object orientation was widely considered to be inherently procedural and incom-
patible with LP. HiLog [6], on the other hand, was developed in order to eliminate
much of the need for extra-logical meta predicates in Prolog. Both F-logic and
HiLog raise the level of abstraction in LP and can greatly improve its declara-
tiveness.

Termination in Ergo. Ergo’s default use of tabling for WFS ensures termination
for programs in which all subgoals and answers have a finitely bounded size.
Such a termination class includes all of Datalog and is far larger than the termi-
nation class of Prolog using SLDNF. Moreover, Ergo further expands this class
by allowing use of tabling methods that use types of term abstraction sometimes
called restraint, which we describe by examples.

First, consider the simple Ergo program PFinMod consisting of the single rule:

p(?X) :- p(f(?X))

It is easy to see that PFinMod has a finite (empty) model. However in the
default WFS tabling of Ergo (as well as of Prolog) the query ?- p(?X) will
not terminate since an infinite number of subgoals will be created: p(?X),
p(f(?X)), p(f(f(?X))) and so on. Ergo can address this via subgoal abstrac-
tion [26], in which subgoals are abstracted once they reach a maximum size. In
PFinMod, abstraction with subgoal depth 2 or more would rewrite p(f(f(?X)))
to p(f(?X)) ensuring a finite number of subgoals. In fact, it can be shown than
when subgoal abstraction is added to WFS, any program with a finite model
(i.e., a finite number of true and undefined answers) will terminate. Second,
consider the program PInfMod, whose model is infinite:

p(f(?X)) :- p(?X).
p(a).

Ergo addresses this problem by providing a declaration that abstracts answers in
a manner similar to how subgoals are abstracted above. When using such answer
abstraction at term depth greater than or equal to two, the goal ?- p(?Y) to
PInfMod would produce answers p(a), p(f(a)), both as true answers, along with
p(f(f(X)) with truth value undefined. In this way, an informationally sound
approximation to the goal p(?Y) is provided: all true answers obtained by Ergo
are semantically true and all false subgoals are false, but some true answers and
some false subgoals are considered as undefined. In this manner Ergo supports
a fully semantic kind of bounded rationality termed restraint [13]. In addition,
Ergo supports many other kinds of restraint, such as for: external predicate calls
that do not return; allowing only a maximal number of answers to subgoals of a
certain type; and skipping of rule instances that are in the distant future.

The bounded rationality in Ergo has proven useful, particularly for evaluating
queries to programs created by, e.g., natural language analysis. Moreover, the

228 B. Grosof et al.

computational mechanism behind bounded rationality is also used for debugging:
via a method called tripwires. A user may set a tripwire on, say, the maximal
number of interdependent subgoals in a computation or on the elapsed time a
computation uses. If this number is exceeded, the program will suspend execution
and Ergo will provide a command line to examine the suspended execution.

In sum, the above mentioned features, exploiting WFS, give Ergo a consid-
erable degree of declarative control over the termination of queries.

Transactionality and Reactivity in Ergo. Although Ergo supports changes to code
by Prolog-like asserting and retracting, it also supports transactional changes
based on Transaction Logic [3,24]. This logic was developed in order to provide
a declarative, completely semantic theory of update operations in LP. To see this,
consider the two sequences of goals (Ergo uses\for various reserved keywords):

1. insert{p(a)},\false.
2. t insert{p(a)},\false.

After Sequence 1 is executed, p(a) will have been inserted into Ergo’s store
and will become true. In contrast, p(a) is not true after Sequence 2 in which the
transactional insert, t insert/1, was used. This is because a transactional insert
in Ergo is not “committed” if it is part of a larger goal that fails (and similarly
for transactional deletes). As with relational databases, integrity constraints can
be added, to prevent committing changes that violate an integrity constraint.

Deductions performed by Ergo react to change: by default, changes to the
underlying data are reactive (although Ergo provides a separate passive
mode). In reactive mode, if there is change to a fact or rule φ upon which
Ergo’s tables change, those tables that depend on φ and only on φ will change
as necessary in order to preserve correctness using XSB’s incremental tabling
[28]. Ergo also provides alerts that can notify or perform other actions if the
alert condition is violated. Common uses of alerts include monitoring whether
an atom A and its explicit negation \neg A are both derived, thereby making the
facts inconsistent.

Delay Quantifiers. The delay quantifiers wish/1 and must/1 cause dynamic
reordering of subgoals that do not fulfill argument binding requirements. These
quantifiers check conditions on variables in a subgoal and delay that subgoal if
these conditions fail. For example, evaluation of the subgoal must(ground(?X)
or nonvar(?Y))^?X[foo->?Y] delays evaluation of ?X[foo->?Y] until either ?X
is ground or ?Y is partially instantiated. If the desired instantiation is unachiev-
able, a runtime error results. With the wish/1 quantifier, the subgoal is executed
after the delay anyway, without issuing errors.

4 Negation: Still Not a Simple Matter

Users of other Logic Programming systems based on the well-founded variety of
negation tend to suffer from a number of difficulties that have partly to do with

Ergo: A Quest for Declarativity in Logic Programming 229

insufficiently expressive syntax and partly with implementation decisions that
force the user to face the bare metal of the execution mechanism. By contrast,
in Ergo, explicit use of negation can be avoided by working at higher conceptual
levels. One such level is inheritance with overriding in F-logic [38] and the other
is Defeasible Reasoning. Since the basic idea of inheritance with overriding is
well known, we will briefly explain only the idea of defeasibility here.

4.1 Negation, Quantifiers, and Delay

One major problem with negation in LP is that the lack of explicit quantifiers
makes the precise meaning of well-founded negation obscure to the user. Con-
sider, for instance the following rule in XSB:

answer(M) :- man(M), tnot(play(M,G)), game(G).

Does answer/1 mean “all men who play no games” or “all men who don’t play
some game”? Neither it turns out, and this results in an error because ‘‘tnot’’,
the WFS negation of XSB, takes only ground calls. But if game(G) is moved
leftwards then answer/1 would mean “all men who don’t play some game,” i.e.,

answer(M) :- man(M), ∃G(game(G),tnot(play(M,G))).
In a logic system, why should syntactic reordering make that be the case? And
how do we write “men who play no games”? Maybe like this?

answer(M) :- man(M), tnot((game(G),play(M,G))).

No, this also ends up with an error due to the non-ground G. Instead, one must
use a different operator in XSB:

answer(M) :- man(M), not_exists((game(G),play(M,G))).

It collects all the variables in game(G),play(M,G) and implicitly quantifies them
with ∃ in the scope of tnot. This, however, means that

answer(M) :- not_exists((game(G),play(M,G))), man(M).

would give a different answer, so both not exists and tnot have non-declarative
aspects and their semantics depends on the context where they occur. In con-
trast, Ergo allows explicit quantifiers \exist and \forall, which lets one express
the intent clearly and unambiguously. In addition, in the scope of negation, sub-
goals that have unquantified unbound variables are automatically delayed, so
the semantics does not depend on the order of the subgoals.

4.2 Defeasible Rules

As mentioned earlier, a very promising approach is to hide complex uses of nega-
tion inside high-level concepts that most users understand intuitively because
they use similar reasoning in their daily life. Here we illustrate the idea that

230 B. Grosof et al.

conclusions of some rules may conflict with conclusions of other rules and, if the
former rules have strength (or priority) at least as high as the latter rules then
the former conclusions may “defeat” the latter ones. In other words, inferences
made via some rules may be undone by other inferences. We will illustrate the
idea via an example from the U.S. tax code, simplified for didactic purposes. We
give, next, an informal syntax, partly in italics; then, later, actual Ergo code.
Default rule:

deductible(Expense) :- work related(Expense).
But (exception):

nondeductible(Expense) :- lobbying(Expense).
Nevertheless (exception to exception):

deductible(Expense):-lobbying(Expense),state permitted(Expense).
Constraint: can’t be both deductible and not.

false :- deductible(Expense), nondeductible(Expense).
Facts:

work related(expense123). lobbying(expense123).
state permitted(expense123).

Query: Is expense123 deductible?
?- deductible(expense123).

The above rules imply both deductible(expense123) and
nondeductible(expense123), which is inconsistent with the constraint. The
inconsistency problem could be repaired using negation:

deductible(Exp) :- work_related(Exp), not nondeductible(Exp).
nondeductible(Exp) :- lobbying(Exp), not state_permitted(Exp).

but the number of exceptions, exceptions to exceptions, exceptions to exceptions
to exceptions, etc., in a real situation can be large, making it hard to manage
the complexity of the rules and get them right.

Defeasible reasoning takes a different approach. Rather than piling up nega-
tion upon negation as above, we instead keep the original simple form of the rules
— pretty much pulling their formulation right out of the tax code — but organize
the rules according to a “priority” or “overriding” relationship, which, again, is
pulled out of the same tax code. Typically, this priority relation is acyclic but it
does not have to be. A rule inference can be defeated if inferences made by higher
priority rules contradict the lower priority inference. Defeat may have different
forms, like rebuttal, refutation, and others. What that means exactly is specified
via an argumentation theory and the version of defeasible reasoning implemented
in Ergo is called Logic Programming with Defaults and Argumentation Theories
(LPDA) [33]. Ergo comes with a dozen of different (mostly experimental) argu-
mentation theories, but we are aware of only 3 or 4 actually being employed
by the users. Note that an Ergo program can engage different argumentation
theories in different modules. Here is our tax code in the actual Ergo language:

:- use_argumentation_theory.
@default_rule1 deductible(?Expense) :- work_related(?Expense).
@exceptn1 nondeductible(?Expense) :- lobbying(?Expense).

Ergo: A Quest for Declarativity in Logic Programming 231

@exceptn_to_exceptn1 deductible(?Expense) :-
lobbying(?Expense), state_permitted(?Expense).

\overrides(exceptn1, default_rule1). // rule 2 beats rule 1
\overrides(exceptn_to_exceptn1, exceptn1). // rule 3 beats rule 2
// ?X can’t be both deductible & not
\opposes(deductible(?X), nondeductible(?X)).
work_related(expense123). lobbying(expense123).

Here the first statement tells Ergo to use the default argumentation theory.
The syntax @default rule1 and the like is used to assign tags to rules, and
these tags are then used to define the rule overriding relation. The \opposes
relation specifies facts that contradict each other and thus cannot be true in the
same consistent knowledge base. With the above program, we get that
expense123 is deductible because:

it is derived by default rule1, and
default rule1 is not defeated by exceptn1 because
exceptn1 is defeated by exceptn exceptn1.

These defeated/not-defeated conclusions hold in the default argumentation the-
ory, and all other argumentation theories, in Ergo.

LPDA is not the only theory for defeasible reasoning proposed over the years.
Here is just a small sample of other approaches: [1,4,5,8–11,15,22,23,27,35,40].
LPDA, however, distinguishes itself by its simplicity, flexibility, and declarativity.
It can simulate several other approaches to defeasibility and is available both
in the WFS and SMS versions [33,34], each being a natural extension of the
corresponding semantics in standard LP.

5 Explanations

Explainability of how a system reaches its conclusions and decisions is an impor-
tant capability, especially for AI. It aids the productivity and reliability of sys-
tem development, especially testing and debugging, for developers, domain sub-
ject matter experts, executives who sponsor development and operations, cus-
tomer/IT support, and regulatory/legal compliance. In some high-value applica-
tion arenas, such as defense, finance, and healthcare, explainability is a critical
requirement for trust in the system, across the lifecycle.

For every query answer, Ergo automatically generates and makes available a
full explanation for that particular answer, justified as proof in natural deduc-
tion (a.k.a. intuitionistic) style [16]. The structure of the justification is a set
of chained reasoning steps (each corresponding to an instantiated rule). The
overall collection of steps forms a directed graph, in which literals are nodes.
The (potentially cyclic) digraph is also available as a tree, including in graphical
human-computer interaction (HCI) via an expansible/collapsible tree metaphor
for presentation and navigation. Ergo has a capability for restricted natural lan-
guage processing (NLP), based on templates that map between logical syntax
and natural language sentences. Using this capability, Ergo automatically makes
available explanations in natural language, e.g., English.

232 B. Grosof et al.

Because even non-programmers are already familiar with natural deduction
style proofs (e.g., from high school geometry) and with expansible/collapsible
trees in HCI (e.g., on webpages), Ergo’s explanations can be understood easily.

6 Interfaces and Applications

An important feature of Ergo is its ability to interact with other languages and
systems through interfaces, interoperating in both directions (out from Ergo,
and in to Ergo). Ergo can call external libraries and systems. Conversely, other
languages and systems can call Ergo. As part of all this, Ergo supports interop-
eration with common forms of data.

For example, the Ergo-Python interface allows Python programs to query
Ergo knowledge bases, and lets Ergo call specialized Python libraries, e.g., scikit-
learn and PyTorch for machine learning (ML), spaCy for natural language pro-
cessing (NLP), matplotlib for data science visualization, and the Google Maps
API for geo-spatial. Ergo can interact, including over the Web: through its data
connectors for JSON, DSV, XML, HTML, RDF and OWL; through its SPARQL
interface to query RDF triple stores; and through its RESTful interfaces with
Web services. Other interfaces include to relational databases (e.g., to query
through SQL), MiniZINC-based constraint solving systems, etc.

These Ergo interfaces are important tools for extending the capabilities of
Ergo and for building sophisticated applications, including for tax and financial
regulations, configuration, defense, and healthcare. Below we will briefly discuss
two applications in tax and financial regulations. In many of such applications
the explanation facility of Ergo is particularly useful.

Section 162 of the Internal Revenue Code (IRC) allows taxpayers (e.g., corpo-
rations) to deduct certain “trade or business expenses”. There are many different
types of expenses that may be deductible under Sect. 162, including: rent or lease
payments for business property, salaries, interest, etc.

To be deductible under Sect. 162, an expenditure must be “ordinary and
necessary” for the business, but there are limitations e.g., for contributions to
political campaigns, lobbying, entertainment expenses, and capital expenditures.

Our implementation of Sect. 162 used Ergo to represent and reason about the
different kinds of expenditures and their deductibility, including object-oriented
modeling, defeasible reasoning, and explanations. A simplified example of defea-
sible reasoning used in this application was discussed in Sect. 4.2.

Regulation W is a U.S. Federal Reserve banking regulation, issued in the
aftermath of the 2008 financial crisis. It aims to prevent conflicts of interest
between banks and non-bank affiliates, such as securities firms or insurance
companies, by imposing restrictions on risk-transferring transactions, including
requirements for reserving additional capital and quick reporting. An application
for compliance with Regulation W was developed using Ergo as a highly success-
ful Proof of Concept by the Enterprise Data Management Council (EDMC), a
major financial industry consortium, in conjunction with EDMC’s larger overall
Proof of Concept on its Financial Industry Business Ontology (FIBO), which
was so successful that FIBO became an industry standard.

Ergo: A Quest for Declarativity in Logic Programming 233

The regulation was captured in Ergo via a corpus of defeasible rules that also
mapped between logical syntax and English phrases. Ergo automatically inferred
answers to decision/analytics questions about compliance with Regulation W,
and automatically provided an explanation for every answer. These questions
were asked in English and explanations were presented in English. This showed
that Ergo can be used directly by domain experts to encode, query and obtain
answers with justifications in natural language, in cooperation with knowledge
engineers, instead of the longer traditional process of developing an expert sys-
tem (where the domain expert is repetitively interviewed by the knowledge engi-
neer who constructs and validates the expert system). Ergo was particularly
useful in this application for providing fully detailed explanations of compliance
decisions, that constituted audit trails, and for analyzing relationships between
affiliates. Non-programmer compliance officers were able to understand these
explanations, straightforwardly and with confidence, including to validate rules
and conclusions as correct, incorrect, or missing – i.e., to help debug knowledge.

7 Discussion and Future Work

Ergo and Prolog: A Symbiosis. Prolog has proven to be a remarkably adapt-
able language. Modern Prolog systems incorporate constraint-based reasoning,
probabilistic reasoning, multi-threading, syntactic extensions, external interfaces
and other features. Informal standards have emerged: a given Prolog may follow
SWI’s multi-threading API, Ciao’s API for program analysis, or XSB’s API for
tabling. Ergo has also incorporated many of these features, including constraint-
based reasoning and trie data structures among others.

Although Ergo freely borrows from Prolog, some Ergo features are difficult
for Prolog systems to adopt, including the default use of WFS, HiLog and F-
logic, and its ability to adjoin defeasibility theories. These difficulties may relate
to the different orientations. Prolog is oriented towards programmers who want
a fast system with good procedural control that is reasonably declarative. Ergo
is geared to programmers who may want to represent knowledge using object-
oriented modeling and to enforce the consistency of this knowledge through
mechanisms such as defeasibility, reactivity, and transactionality.

In contrast, other features of Ergo can be incorporated by Prolog systems
relatively easily. Subgoal and answer abstraction are two such features, already
implemented in XSB and SWI, both of which support WFS. Ergo’s transac-
tionality and integrity constraints are another two such features: they mainly
depend on an undo mechanism that is invoked when a goal containing an assert
fails (Ergo supports both transactional and non-transactional versions of update
predicates). Another such feature is Ergo’s ability to dynamically reorder goals
based on the status of variable bindings. Explicit quantification could, perhaps,
be adopted as well. Our experience also shows that a simple bidirectional Ergo-
to-Prolog interface is beneficial to both languages.

234 B. Grosof et al.

Support for Machine Learning. A key area for current and future work is to
combine Ergo more tightly with machine learning (ML) and with natural lan-
guage processing (which is largely based on ML). In one example of current work
for battlefield assessment, Ergo calls SpaCy [21], an NLP suite, to process nat-
ural language statements about a given situation which Ergo assembles into a
coherent whole for decision support. In another, Ergo processes natural language
questions via SpaCy to answer questions about a collection of scene graphs [18]
of visual images. Conversely, there are also important opportunities for ML and
NLP to leverage Ergo. ML training might call Ergo as part of a constraint in
a loss function. Such a setup would make heavy use of XSB’s efficient Python
interface, as well as Ergo’s nearly linear scalability.2 .

Uncertainty. The value of combining Ergo with ML will increase as Ergo incor-
porates uncertainty more fully. A starting point is the integration of XSB’s pack-
ages for uncertainty, PITA [25] and its extension PLOW [14]. These formalisms
handle not only full probabilistic reasoning, which has a high computational
complexity, but also T-Norm (a.k.a. fuzzy) style reasoning whose complexity is
much lower. As a use case of uncertain reasoning, the use of Ergo within loss
functions will often depend on the differentiability of Ergo’s inferences. Alter-
nately, for Ergo to say, resolve ambiguous natural language parses, it must be
able to weigh uncertainties arising out of a neural model. Unfortunately, this is
not always straightforward because neural models often have a topmost softmax
layer, which can artificially reduce the entropy of a result and its alternatives
(cf. e.g., [32]). More discussion on directions for future work appears in [12].

References

1. Baader, F., Hollunder, B.: Priorities on defaults with prerequisites, and their appli-
cation in treating specificity in terminological default logic. J. Autom. Reason.
15(1), 41–68 (1995)

2. Bonner, A., Kifer, M.: Transaction logic programming. In: Int’l Conference on
Logic Programming, pp. 257–282. MIT Press, Budapest, Hungary (June 1993)

3. Bonner, A., Kifer, M.: An overview of transaction logic. Theor. Comput. Sci. 133,
205–265 (1994)

4. Brewka, G., Eiter, T.: Preferred answer sets for extended logic programs. Artif.
Intell. 109, 297–356 (1999)

5. Brewka, G., Eiter, T.: Prioritizing default logic. In: Intellectics and Computational
Logic - Papers in Honour of Wolfgang Bibel, pp. 27–45. Kluwer Academic Pub-
lishers (2000)

6. Chen, W., Kifer, M., Warren, D.S.: HiLog: a foundation for higher-order logic
programming. JLP 15(3), 187–230 (1993)

7. Coherent Knowledge Systems: ErgoAI. A Website (2023). https://github.com/
ErgoAI

8. Delgrande, J., Schaub, T., Tompits, H.: A framework for compiling preferences in
logic programs. Theory Pract. Logic Program. 2, 129–187 (2003)

2 in the size of the ground program; a consequence of being based on the well-founded
semantics, plus the design of Ergo’s expressive extensions (e.g., HiLog).

https://github.com/ErgoAI
https://github.com/ErgoAI

Ergo: A Quest for Declarativity in Logic Programming 235

9. Dung, P., Son, T.: An argument-based approach to reasoning with specificity. Artif.
Intell. 133(1–2), 35–85 (2001). https://doi.org/10.1016/S0004-3702(01)00134-5

10. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Computing preferred answer sets by
meta-interpretation in answer set programming. Theory Pract. Logic Program.
3(4), 463–498 (2003)

11. Gelfond, M., Son, T.C.: Reasoning with prioritized defaults. In: Dix, J., Pereira,
L.M., Przymusinski, T.C. (eds.) LPKR 1997. LNCS, vol. 1471, pp. 164–223.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054795

12. Grosof, B.: Logic programming in AI: some directions. In: Programming with High-
Level Abstractions. Proceedings of the 3rd Workshop on Logic and Practice of
Programming (LPOP), pp. 66–70 (2022)

13. Grosof, B., Swift, T.: Radial Restraint: a semantically clean approach to bounded
rationality for logic programs. In: Proceedings of AAAI (2013)

14. Grosof, B., Swift, T.: PLOW: probabilistic logic over the well-founded semantics.
In: AAAI Spring Symposium on Combining Machine Learning with Knowledge
Engineering (AAAI-MAKE) (2019)

15. Grosof, B.: A courteous compiler from generalized courteous logic programs to ordi-
nary logic programs. Tech. Rep. Supplementary Update Follow-On to RC 21472,
IBM (July 1999)

16. IEP: Natural deduction. In: Feiser, J., Dowden, B. (eds.) Internet Encyclopedia
of Philosophy. IEP (2023), a Peer-Reviewed Academic Resource. https://iep.utm.
edu/natural-deduction

17. ISO working group JTC1/SC22: Prolog international standard ISO-IEC 13211–1.
Tech. Rep., International Standards Organization (1995)

18. Johnson, J., et al.: Image retrieval using scene graphs. In: Conference on Neural
Information Processing Systems, pp. 3668–3678 (2015)

19. Kifer, M.: Knowledge representation & reasoning with Flora-2. The Flora-2 Web
Site (2022). http://flora.sourceforge.net

20. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. J. ACM 42, 741–843 (1995)

21. Montani, M.H.I.: spaCy 2: natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental parsing (2017). https://
spacy.io

22. Nute, D.: Defeasible logic. In: Handbook of logic in artificial intelligence and logic
programming, pp. 353–395. Oxford University Press (1994)

23. Prakken, H.: An argumentation framework in default logic. Ann. Math. Artif.
Intell. 9(1–2), 93–132 (1993)

24. Rezk, M., Kifer, M.: Transaction logic with partially defined actions. J. Data
Semantics 1(2), 99–131 (2012)

25. Riguzzi, F., Swift, T.: The PITA system: Tabling and answer subsumption for rea-
soning under uncertainty. Theory Pract. Logic Program. 11(4–5), 433–449 (2011)

26. Riguzzi, F., Swift, T.: Terminating evaluation of logic programs with finite three-
valued models. ACM Transactions on Computational Logic 15(4) (2014)

27. Sakama, C., Inoue, K.: Prioritized logic programming and its application to com-
monsense reasoning. Artif. Intell. 123(1–2), 185–222 (2000)

28. Swift, T.: Incremental tabling in support of knowledge representation and reason-
ing. Theory Pract. Logic Program. 14(4–5) (2014)

29. Swift, T., Warren, D.: XSB: extending the power of prolog using tabling. Theory
Pract. Logic Program. 12(1–2), 157–187 (2012)

30. Swift, T., Warren, D., et al.: The XSB Programmer’s Manual: Volume, Version 5.0
(2022). http://xsb.sourceforge.net

https://doi.org/10.1016/S0004-3702(01)00134-5
https://doi.org/10.1007/BFb0054795
https://iep.utm.edu/natural-deduction
https://iep.utm.edu/natural-deduction
http://flora.sourceforge.net
https://spacy.io
https://spacy.io
http://xsb.sourceforge.net

236 B. Grosof et al.

31. van Gelder, A., Ross, K., Schlipf, J.: Unfounded sets and well-founded semantics
for general logic programs. J. ACM 38(3), 620–650 (1991)

32. Vickram Rajendran, W.L.: Accurate layerwise interpretable competence estima-
tion. In: Conference on Neural Information Processing Systems (2019)

33. Wan, H., Grosof, B., Kifer, M., Fodor, P., Liang, S.: Logic programming with
defaults and argumentation theories. In: International Conference on Logic Pro-
gramming (July 2009)

34. Wan, H., Kifer, M., Grosof, B.: Defeasibility in answer set programs with defaults
and argumentation rules. Semantic Web J. (2014)

35. Wang, K., Zhou, L., Lin, F.: Alternating fixpoint theory for logic programs with
priority. In: Lloyd, J., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Palamidessi,
C., Pereira, L.M., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861,
pp. 164–178. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44957-
4 11

36. Warren, D.S.: Introduction to prolog. In: Warren, D.S., Dahl, V., Eiter, T.,
Hermenegildo M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years. No.
13900 in LNCS, Springer (July 2023)

37. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-prolog. Theory Pract.
Logic Program. 12(1–2), 67–96 (2012)

38. Yang, G., Kifer, M.: Inheritance in rule-based frame systems: semantics and infer-
ence. J. Data Semantics 2800, 69–97 (2003)

39. Yang, G., Kifer, M., Zhao, C.: Flora-2: A rule-based knowledge representation and
inference infrastructure for the Semantic Web. In: International Conference on
Ontologies, Databases and Applications of Semantics (ODBASE-2003), pp. 671–
688 (2003)

40. Zhang, Y., Wu, C., Bai, Y.: Implementing prioritized logic programming. AI Com-
mun. 14(4), 183–196 (2001)

https://doi.org/10.1007/3-540-44957-4_11
https://doi.org/10.1007/3-540-44957-4_11

Prolog Applications: Finalists
for the Colmerauer Prize

PROB: Harnessing the Power of Prolog
to Bring Formal Models and Mathematics

to Life

Michael Leuschel(B)

Institut für Informatik, Universität Düsseldorf, Universitätsstr. 1,
40225 Düsseldorf, Germany

michael.leuschel@hhu.de

Abstract. ProB is an animator, model checker and constraint solver
for high-level formal models. It has been developed for over 20 years
and has built on the power of Prolog to help users develop safe systems,
by bringing their formal mathematical models to life and uncovering
unexpected behaviour. Almost all of ProB’s features require constraint
solving for an undecidable mathematical language with existential and
universal quantification, higher-order sets, functions and relations and
unbounded variables. ProB has been used by many academics in teach-
ing and research. It has been used at the heart of a considerable number
of academic and industrial tools. In particular, ProB has been used
by several companies to validate the safe configuration of train systems
around the world. In this setting ProB has been certified according to
the European norm EN 50128. The long-term vision is to be able to rou-
tinely use formal mathematical models as runtime artefacts and make a
larger subset of mathematics itself executable.

1 Tools for Formal Methods

Formal methods provide a mathematical approach to software and systems devel-
opment. Before developing software or building a system, one develops a formal
model which is analysed for correctness using a variety of tools:

– provers to prove properties interactively or automatically,
– animators to enable a user to interactively explore the behaviour of a formal

model,
– simulators to automatically analyse a (random) set of behaviours,
– explicit state model checkers to automatically generate the state space of a

formal model and check temporal properties,
– symbolic model checkers to check properties symbolically via constraint-solving,
– test case generators to derive test-cases for an implementation from the model,

or
– code generators to derive an implementation that is correct by construction.

Many formal methods are rooted in logic. As such Prolog is an ideal can-
didate language to develop a formal methods tool. ProB is such a tool with a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 239–247, 2023.
https://doi.org/10.1007/978-3-031-35254-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_19&domain=pdf
http://orcid.org/0000-0002-4595-1518
https://doi.org/10.1007/978-3-031-35254-6_19

240 M. Leuschel

foundation in Prolog. ProB is an animator, model checker and constraint solver
for high-level formal models. On the practical side, it can be used to ensure
the safety of critical systems. On the theoretical side, it strives to bring formal
models and mathematics to life.

2 PROB for State-Based Formal Methods

State-Based Formal Methods and Applications. State-based formal methods con-
tain an explicit representation of the state of a model, and encompass languages
like B [1], Event-B [2], Z [32] and TLA+ [21]. All these languages build on logic
and set theory to enable convenient modelling of many safety critical systems
and algorithms.

Their use is not confined to the academic world; in particular for railway
applications the B method has been used for many industrial applications over
the last twenty-five years [7,23]. The initial industrial use of B was for the driver-
less metro line 14 in Paris [10], whose CBTC (Communication-Based Train Con-
trol) product has since then been adapted by Siemens for many other metro lines
worldwide such as the recent installation for metro line 4 in Paris. Alstom’s U400
CBTC product uses the B-method in a similar fashion. The product is running
on over 100 metro lines and has 25% of the worldwide market share [7].

Example: In B one can express that
two graphs g1, g2 are isomorphic in B
by stipulating the existence of a struc-
ture preserving permutation p as fol-
lows:

∃p . p ∈ 1..n �� 1..n ∧ ∀i.(i ∈
1..n ⇒ p[g1[{i}]] = g2[{p(i)}])

Here, 1..n�� 1..n is the set of all per-
mutations over the set of integers 1..n,
and gk[{x}] stands for the relational
image of gk for {x}, i.e., the set of a all
successor nodes of x in the graph gk.
This predicate is typical of the kind
of predicates that appear in high-level
B specifications. ProB is capable of
solving such predicates for reasonably
sized graphs.

Executable Formal Models. Within
the B-method high-level mod-
els are transformed into exe-
cutable software using a combi-
nation of proof, manual refine-
ment and low-level automatic
code generation. Early valida-
tion of such models used to be
a challenge though and some
researchers used to argue that
high-level models should not be
executable [16].

This was the initial moti-
vation for the development of
ProB [24,25], a tool to make
high-level formal models exe-
cutable, thus enabling early
inspection and validation.

The side bar on the right
shows a small example B predi-
cate and the challenges involved.
In B, such predicates can appear
as invariants over variables, asser-
tions, guards and preconditions

ProB: Harnessing the Power of Prolog to Bring Formal Models 241

of operations, conditions within statements, and many more. As such, animation
or execution of high-level B models is challenging, in particular since for high-
level models operation preconditions and guards can be arbitrarily complex.

This challenge was overcome using the power of Prolog,1 in particular Pro-
log’s co-routining and constraint solving capabilities (see the discussion on con-
straints in [34] in this book). ProB thereby enables users to bring their formal
models to life, making it possible to detect issues very early in the development
process. In particular, ProB enables domain experts—with no education in for-
mal methods—to inspect a B model and provide feedback based on their unique
expertise.

Evolution and Industrial Uses of ProB. Initially ProB supported animation
and explicit state model checking [24]. Over the years, ProB’s underlying Prolog
constraint solver has been improved, enabling further uses like symbolic model
checking [20] or test-case generation. Many other features, like domain specific
visualisation [35] or probabilistic simulation [33] have been added on top of
ProB’s core.

CSPZ

Event-B

Formal
Models &

Mathematics

Animation

Visualisation

Data
Validation

Model Checking and
Constraint-Based

Prolog

B

Fig. 1. High-Level View of Typical Uses of ProB

Over the years, the performance of ProB has continually been improved.
This enabled the use of ProB for data validation, i.e., verifying properties of
large data sets [22]. For this use, ProB has been certified [5] for use in safety-
critical applications according to the European norm EN 50128. In particular,
1 The letters “Pro” in the name ProB also makes allusion to its reliance on Prolog.

242 M. Leuschel

ProB has been used by companies like Siemens, Alstom, ClearSy and Thales,
to validate the safe configuration of train systems all over the world (e.g., Paris
metro line 1, São Paulo, Alger, Barcelona, Mexico, Toronto) [7]. The surveys
[11] and [4] provide some interesting feedback about ProB’s use in the railway
domain.

In another new direction, ProB was used in [15] for the first time to execute
a high-level formal B model in real-time to control trains (cf., Fig. 2). In this
case, a mathematical model was directly used as a runtime artefact, without the
need for code generation, be it manual or automated.

ProB has also been used by many academics in teaching and research.
Notably, it is itself being used within several other tools, ranging from domain
specific modeling tools (Meeduse [17], Coda [6]), university course planning
(Plues [30]), railway validation (SafeCap [18], RDV [26], DTVT [22], Olaf,
ClearSy Data Solver, Dave, Ovado [3]), security analyses (B4MSecure, VTG
[29]), UML modeling (iUML and UML-B [28], UseCasePro), to test case gener-
ation (BTestBox, Cucumber-Event-B [31]).

Fig. 2. A frame of a video of DB https://www.youtube.com/watch?v=FjKnugbmrP4
with ProB running a formal B model in real-time to control two trains and demon-
strate the ETCS (European Train Control System) Hybrid Level 3 concepts [15]. The
visualisation in the lower middle part is generated from ProB. The formal model was
linked to the outside world via ProB2-Java-Api [19].

https://www.youtube.com/watch?v=FjKnugbmrP4

ProB: Harnessing the Power of Prolog to Bring Formal Models 243

3 Implementation

ProB has been developed over around 20 years and was initially developed in
SICStus Prolog [8]. The core of ProB consists of about 400 Prolog files con-
taining over 150,000 lines of code along with a large test suite of almost 7 000 unit
tests and more than 2 000 integration tests. This strict testing regime is impor-
tant for certification. For end users, ProB provides multiple user interfaces:
a command-line interface (probcli) for batch verification and data validation,
a Jupyter kernel [12] for notebook usage, a Java API, and a set of graphical
user interfaces (Tcl/Tk, JavaFX) for interactive animation, visualisation, and
verification. All of these interfaces share the same Prolog core.

Although development began over 20 years ago, ProB is still actively devel-
oped. It is certainly a challenge to keep an academic tool in development for
that amount of time; but the task was eased by the support of many students
and researchers, the robustness of Prolog and the excellent support provided by
SICStus.

ProB has recently [13] been made compatible with SWI-Prolog and we are
working to make it compatible with Logtalk and other Prolog systems like Ciao
Prolog.

Table 1. ProB source code statistics from [13]

Files Code lines Comment lines

Core (Prolog) 165 85 680 15 651

Extensions (Prolog) 237 59 358 10 570

Extensions (C, C++) 84 78 784 1 691

GUI (Tcl/Tk) 23 32 803 2 753

(as of ProB 1.11.1, released 2021-12-29)

4 Challenge

Almost all of ProB’s features, from animation to verification, require constraint
solving at the level of the underlying formal language, i.e., for an undecidable
mathematical language with existential and universal quantification, higher-
order sets, functions and relations and unbounded variables. Moreover, ProB
generally needs not just to find one solution for a predicate, but all solutions,
e.g., when evaluating a set comprehension. Similarly, for model checking it needs
to find all possible transitions to ensure that the complete state space is verified.

Below we illustrate this with a few small examples evaluated using ProB’s
Jupyter notebook interface [12] (which is also useful within teaching; see also
the chapter [27] in this book).

244 M. Leuschel

First, we define the infinite set of primes and compute the intersection with
a finite set of candidate values:

Observe how the intersection is computed explicitly, while the set of all primes
is automatically kept symbolic. In a similar fashion, the variable f is automat-
ically recognised in the next example as a (higher-order) infinite function and
kept symbolic. Again, the set comprehension res of all square roots of 100 is com-
puted explicitly. Also note that f(2) denotes the (also infinite) squaring function
and that all solutions for res are computed, even though no finite bounds were
provided for x.

The core of ProB solves these challenges by using Prolog’s co-routining
feature (i.e., building on the independence of the computation rule of logic pro-
gramming) to build a constraint solver on top of CLP (FD) [9]. In particular,
the kernel of ProB contains various specific solvers, e.g., for booleans, inte-
gers, sets, relations, functions, sequences, which communicate via reification and
co-routines (see [14]).

Below is another example, encoding the famous Send-More-Money puzzle in
B’s mathematical language (i.e., finding distinct digits S,E,N,D,M,O,R,Y so that
the sum SEND+MORE equals MONEY):

The above examples demonstrate that formal languages like B, especially
when using Unicode syntax, are very close to the way we write mathematics in
text books and scientific articles. This makes it possible to copy parts of, e.g.,

ProB: Harnessing the Power of Prolog to Bring Formal Models 245

theoretical computer science books into Jupyter enabling students to bring the
mathematical definitions to life with ProB [12].

5 Conclusion

ProB is an animator, model checker and constraint solver for high-level formal
models. It has been developed over around 20 years and has harnessed the power
of Prolog to help users develop safe systems. ProB takes away tedious choices,
automatically detects subtle bugs, but still leaves users in control to interactively
validate their models. A friendly user experience was always more relevant for
ProB than raw benchmark figures. For example, ProB will catch overflows, deal
with divisions by zero, and keep track of source level information to visualise and
explain errors to end users.

We hope that we can keep on improving ProB and that we have not yet
reached the limit of what Prolog and formal methods have to offer. Indeed, we
want to drive the idea of formal models as runtime artefacts further (see Fig. 2).
The capabilities of the constraint solver of course could still be improved; maybe
we can one day reach a state of a human friendly “executable mathematics”
language which can be used by novice and expert alike. Safety will also play
a crucial role in the future, in particular with the increased use of artificial
intelligence in autonomous systems.

Acknowledgements. The first version of ProB was written by Michael Leuschel
while in Southampton. During that time Michael Butler, Edd Turner and Laksono
Adhianto provided valuable contributions. The first article on ProB was published with
Michael Butler at FM’2003 [24] (its journal version is [25]). In 2005 the development
moved to Düsseldorf and the STUPS group.

Over the years many people from the STUPS have contributed to ProB. In alpha-
betical order these persons are: Jens Bendisposto, Carl Friedrich Bolz-Tereick, Joy
Clark, Ivaylo Dobrikov, Jannik Dunkelau, Nadine Elbeshausen, Fabian Fritz, Marc
Fontaine, David Geleßus, Stefan Hallerstede, Dominik Hansen, Christoph Heinzen,
Yumiko Jansing, Michael Jastram, Philipp Körner, Sebastian Krings, Lukas Laden-
berger, Li Luo, Thierry Massart, Daniel Plagge, Antonia Pütz, Kristin Rutenkolk,
Mireille Samia, Joshua Schmidt, David Schneider, Corinna Spermann, Fabian Vu,
Michelle Werth, Dennis Winter.

References

1. Abrial, J.R.: The B-Book. Cambridge University Press (1996). https://doi.org/10.
1017/CBO9780511624162

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

3. Badeau, F., Chappelin, J., Lamare, J.: Generating and verifying configuration data
with OVADO. In: Dutilleul, S.C., Haxthausen, A.E., Lecomte, T. (eds.) Proceed-
ings RSSRail, pp. 143–148. LNCS, vol. 13294, Springer (2022). https://doi.org/10.
1007/978-3-031-05814-1 10

https://doi.org/10.1017/CBO9780511624162
https://doi.org/10.1017/CBO9780511624162
https://doi.org/10.1007/978-3-031-05814-1_10
https://doi.org/10.1007/978-3-031-05814-1_10

246 M. Leuschel

4. ter Beek, M.H., et al.: Adopting formal methods in an industrial setting: the rail-
ways case. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS,
vol. 11800, pp. 762–772. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-30942-8 46

5. Bendisposto, J., Krings, S., Leuschel, M.: Who watches the watchers: Validating the
ProB validation tool. In: Proceedings of the 1st Workshop on Formal-IDE. EPTCS
XYZ, 2014, Electronic Proceedings in Theoretical Computer Science (2014)

6. Butler, M.J., et al.: Modelling and refinement in CODA. In: Derrick, J., Boiten,
E.A., Reeves, S. (eds.) Proceedings Refine@IFM 2013, Turku, Finland, 11th June
2013. EPTCS, vol. 115, pp. 36–51 (2013). https://doi.org/10.4204/EPTCS.115.3

7. Butler, M., Körner, P., Krings, S., Lecomte, T., Leuschel, M., Mejia, L.-F., Voisin,
L.: The first twenty-five years of industrial use of the B-Method. In: ter Beek, M.H.,
Ničković, D. (eds.) FMICS 2020. LNCS, vol. 12327, pp. 189–209. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58298-2 8

8. Carlsson, M., Mildner, P.: SICStus Prolog - the first 25 years. Theory Pract. Log.
Program. 12(1-2), 35–66 (2012). https://doi.org/10.1017/S1471068411000482

9. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint
solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292,
pp. 191–206. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0033845

10. Dollé, D., Essamé, D., Falampin, J.: B dans le transport ferroviaire. L’expérience
de Siemens Transportation Systems. Technique et Science Informatiques 22(1),
11–32 (2003)

11. Ferrari, A., et al.: Survey on formal methods and tools in railways: the ASTRail
approach. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail
2019. LNCS, vol. 11495, pp. 226–241. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-18744-6 15

12. Geleßus, D., Leuschel, M.: ProB and Jupyter for logic, set theory, theoretical com-
puter science and formal methods. In: Raschke, A., Méry, D., Houdek, F. (eds.)
ABZ 2020. LNCS, vol. 12071, pp. 248–254. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-48077-6 19

13. Geleßus, D., Leuschel, M.: Making ProB compatible with SWI-Prolog. The-
ory Pract. Log. Program. 22(5), 755–769 (2022). https://doi.org/10.1017/
S1471068422000230

14. Hallerstede, S., Leuschel, M.: Constraint-based deadlock checking of high-level
specifications. Theory Pract. Log. Program. 11(4–5), 767–782 (2011)

15. Hansen, D., et al.: Validation and real-life demonstration of ETCS hybrid level 3
principles using a formal B model. Int. J. Softw. Tools Technol. Transfer 22(3),
315–332 (2020). https://doi.org/10.1007/s10009-020-00551-6

16. Hayes, I., Jones, C.B.: Specifications are not (necessarily) executable. Softw. Eng.
J. 4(6), 330–338 (1989). https://doi.org/10.1049/sej.1989.0045

17. Idani, A.: Meeduse: a tool to build and run proved DSLs. In: Dongol, B., Troubit-
syna, E. (eds.) IFM 2020. LNCS, vol. 12546, pp. 349–367. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-63461-2 19

18. Iliasov, A., Lopatkin, I., Romanovsky, A.: The SafeCap platform for modelling rail-
way safety and capacity. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.) SAFE-
COMP 2013. LNCS, vol. 8153, pp. 130–137. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40793-2 12

19. Körner, P., Bendisposto, J., Dunkelau, J., Krings, S., Leuschel, M.: Integrating
formal specifications into applications: the ProB Java API. Formal Methods Syst.
Des. 58(1-2), 160–187 (2021). https://doi.org/10.1007/s10703-020-00351-3

https://doi.org/10.1007/978-3-030-30942-8_46
https://doi.org/10.1007/978-3-030-30942-8_46
https://doi.org/10.4204/EPTCS.115.3
https://doi.org/10.1007/978-3-030-58298-2_8
https://doi.org/10.1017/S1471068411000482
https://doi.org/10.1007/BFb0033845
https://doi.org/10.1007/978-3-030-18744-6_15
https://doi.org/10.1007/978-3-030-18744-6_15
https://doi.org/10.1007/978-3-030-48077-6_19
https://doi.org/10.1007/978-3-030-48077-6_19
https://doi.org/10.1017/S1471068422000230
https://doi.org/10.1017/S1471068422000230
https://doi.org/10.1007/s10009-020-00551-6
https://doi.org/10.1049/sej.1989.0045
https://doi.org/10.1007/978-3-030-63461-2_19
https://doi.org/10.1007/978-3-642-40793-2_12
https://doi.org/10.1007/978-3-642-40793-2_12
https://doi.org/10.1007/s10703-020-00351-3

ProB: Harnessing the Power of Prolog to Bring Formal Models 247

20. Krings, S., Leuschel, M.: Proof assisted bounded and unbounded symbolic model
checking of software and system models. Sci. Comput. Program. 158, 41–63 (2018).
https://doi.org/10.1016/j.scico.2017.08.013

21. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002)

22. Lecomte, T., Burdy, L., Leuschel, M.: Formally checking large data sets in the
railways. CoRR abs/1210.6815 (2012), proceedings of DS-Event-B 2012, Kyoto

23. Lecomte, T., Deharbe, D., Prun, E., Mottin, E.: Applying a formal method in
industry: a 25-year trajectory. In: Cavalheiro, S., Fiadeiro, J. (eds.) SBMF 2017.
LNCS, vol. 10623, pp. 70–87. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-70848-5 6

24. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2 46

25. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

26. Leuschel, M., Falampin, J., Fritz, F., Plagge, D.: Automated property verification
for large scale B models with ProB. Formal Asp. Comput. 23(6), 683–709 (2011).
https://doi.org/10.1007/s00165-010-0172-1

27. Morales, J., Abreu, S., Hermenegildo, M.V.: Teaching prolog with active logic
documents. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R.,
Rossi, F. (eds.) Prolog - The Next 50 Years. No. 13900. LNCS. Springer (July
2023)

28. Said, M.Y., Butler, M., Snook, C.: A method of refinement in UML-B. Softw. Syst.
Modeling 14(4), 1557–1580 (2013). https://doi.org/10.1007/s10270-013-0391-z

29. Savary, A., Frappier, M., Leuschel, M., Lanet, J.-L.: Model-based robustness testing
in Event-B using mutation. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015.
LNCS, vol. 9276, pp. 132–147. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-22969-0 10

30. Schneider, D., Leuschel, M., Witt, T.: Model-based problem solving for university
timetable validation and improvement. In: Bjørner, N., de Boer, F. (eds.) FM
2015. LNCS, vol. 9109, pp. 487–495. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-19249-9 30

31. Snook, C., et al.: Behaviour-driven formal model development. In: Sun, J., Sun, M.
(eds.) ICFEM 2018. LNCS, vol. 11232, pp. 21–36. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-02450-5 2

32. Spivey, J.M.: The Z Notation: a reference manual. Prentice-Hall (1992)
33. Vu, F., Leuschel, M., Mashkoor, A.: Validation of formal models by timed proba-

bilistic simulation. In: Raschke, A., Méry, D. (eds.) ABZ 2021. LNCS, vol. 12709,
pp. 81–96. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77543-8 6

34. Warren, D.S.: Introduction to Prolog. In: Warren, D.S., Dahl, V., Eiter, T.,
Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years.
No. 13900. LNCS. Springer (July 2023)

35. Werth, M., Leuschel, M.: VisB: a lightweight tool to visualize formal models with
SVG graphics. In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020. LNCS, vol.
12071, pp. 260–265. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
48077-6 21

https://doi.org/10.1016/j.scico.2017.08.013
https://doi.org/10.1007/978-3-319-70848-5_6
https://doi.org/10.1007/978-3-319-70848-5_6
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/s00165-010-0172-1
https://doi.org/10.1007/s10270-013-0391-z
https://doi.org/10.1007/978-3-319-22969-0_10
https://doi.org/10.1007/978-3-319-22969-0_10
https://doi.org/10.1007/978-3-319-19249-9_30
https://doi.org/10.1007/978-3-319-19249-9_30
https://doi.org/10.1007/978-3-030-02450-5_2
https://doi.org/10.1007/978-3-030-02450-5_2
https://doi.org/10.1007/978-3-030-77543-8_6
https://doi.org/10.1007/978-3-030-48077-6_21
https://doi.org/10.1007/978-3-030-48077-6_21

Pacioli: A PROLOG System for Financial
Report Processing

Miguel Calejo(B) and Charles Hoffman

auditchain.finance, Zug, Switzerland
mc@logicalcontracts.com, Charles.Hoffman@me.com

Abstract. Financial information is reported by public companies to
regulators worldwide using a standard rich structured data format, the
“Extensible Business Reporting Language”, or XBRL An XBRL report
typically comprises two pieces: a file with instance data, made of financial
facts contextualised with dates and hypercube dimensions, plus its back-
ground ontological information: potentially dozens of files with data ele-
ment schema and hypercube definitions, hierarchical presentation direc-
tives, assertions - a tree graph of XML schema and linkbase resources
published on the web.

Pacioli takes all that and converts it into a PROLOG representa-
tion, evaluates XBRL formulas, derives new facts, detects higher level
patterns, executes diverse types of validation rules, and produces a val-
idation report in multiple formats. It works both as a standalone web
application server, and as part of a massive blockchain-coordinated net-
work of validation engines.

Keywords: financial reporting · XBRL · blockchain

1 Introduction

Financial information is reported by public/listed companies to regulators world-
wide using a standard rich structured data format, the “Extensible Business
Reporting Language”, or XBRL [1]. For example, in the United States public
companies submit XBRL-based financial reports to the Securities and Exchange
Commission (SEC). In Europe listed companies submit XBRL-based financial
reports to the European Single Market Authority (ESMA).

XBRL is an open standard, with specifications freely available and freely
licensed. XBRL is supported by a strong software development community that
has created a range of products, both free and commercial, covering the needs of
both end users and developers of XBRL-based reporting solutions and products.
For additional information about XBRL, please refer to the XBRL technical
specifications [2].

An XBRL report typically comprises two pieces:

– Report: A single XML (or alternatively “inline XBRL”, iXBRL [3] file with
instance data: fact values for financial concepts – such as sales or inventory

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 248–259, 2023.
https://doi.org/10.1007/978-3-031-35254-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_20&domain=pdf
https://doi.org/10.1007/978-3-031-35254-6_20

Pacioli: A PROLOG System for Financial Report Processing 249

– contextualized with dates and multiple dimensions – such as sales per ter-
ritory, product, and salesperson; the instance data depends on:

– Report model: Background ontological information, in the form of a “Dis-
coverable Taxonomy Set” – potentially dozens of files with data element
schema and hypercube (dimensions) definitions, hierarchical presentation
directives, assertions - a tree graph of XML schema and linkbase resources
published on the web.

Pacioli1 is a logic and rules engine and toolkit that is purpose built and
understands global standard XBRL-based digital financial report models and
reports. Both API and GUI interfaces are available for Pacioli. Pacioli provides:

– Loading of XBRL reports and their Discoverable Taxonomy Sets into a self-
contained Prolog representation.

– Prolog-based XBRL formula processor, adding auditing and explanation
capabilities.

– Combination of a report model with user alterations of formulas and facts,
as well as additional XBRL linkbases.

– Fact mapping and derivation, thus providing an “ontology mapping” mech-
anism to align diverse facts into the same financial concepts for a report,
making it more easily comparable to others

– Detection of higher-level logical “blocks” of information, beyond XBRL, such
as roll ups, roll forwards, adjustments, disclosures, etc.

– Processing of XBRL and extra-XBRL rules for report validation, includ-
ing type-subtype associations, disclosure mechanics rules, reporting checklist
rules, report model structure rules, and “Fundamental Accounting Concepts”
continuity crosscheck rules; this is described by the Seattle Method [4] of pro-
cessing XBRL-based financial reports;

– All rule outcomes are persisted to the Pacioli model on IPFS2, anchored to
a Merkle-like cryptographic hash of all the above ingredients, thus ensuring
immutability and reproducibility for posterity

– Multiple report rendering interfaces

So for example, given Apple’s 10K for 2021 inline XBRL filing3, Pacioli pro-
duces an analysis4; one information block of which is shown in the pivot table
below:

1 Auditchain, Pacioli Logic and Rules Engine, https://docs.auditchain.finance/audit
chain-protocol/pacioli-logic-and-rules-engine.

2 https://ipfs.io, the “InterPlanetary File System”, a decentralized, redundant, robust
file storage service.

3 https://www.sec.gov/Archives/edgar/data/320193/000032019321000105/aapl-
20210925.htm.

4 Pacioli Technical Analysis report saved to IPFS, https://auditchain.infura-ipfs.io/
ipfs/QmSuMTNG1W98U3xTsJRX2cs1LxKQqGKqM9iq2w1HhsaCZB/.

https://docs.auditchain.finance/auditchain-protocol/pacioli-logic-and-rules-engine
https://docs.auditchain.finance/auditchain-protocol/pacioli-logic-and-rules-engine
https://ipfs.io
https://www.sec.gov/Archives/edgar/data/320193/000032019321000105/aapl-20210925.htm
https://www.sec.gov/Archives/edgar/data/320193/000032019321000105/aapl-20210925.htm
https://auditchain.infura-ipfs.io/ipfs/QmSuMTNG1W98U3xTsJRX2cs1LxKQqGKqM9iq2w1HhsaCZB/
https://auditchain.infura-ipfs.io/ipfs/QmSuMTNG1W98U3xTsJRX2cs1LxKQqGKqM9iq2w1HhsaCZB/

250 M. Calejo and C. Hoffman

The indentation denotes aggregation (summing) of values. If you follow the
link in the previous footnote and navigate to MAIN PAGE/Derivations Graph,
you can see how the facts above were derived from the filed data.

PROLOG lovers can add a suffix to the URL of any Pacioli report and obtain
its “PacioliModel”5 in this case 36k PROLOG facts (reported or derived) for the
Apple report and analysis. Searching in there for the fac:’Revenue’ fact in the
pivot table above, you’ll find that it was not reported by the XBRL filer, but
actually derived (by a simple mapping) from another, reported fact, defined for
a us-gaap [5] concept:
mappedFact(...,

fac:’Revenues’,

’i55e5364a9af5491886caee077afe8d44_D20200927-20210925’,

usd,

null,-6,

365817000000,

’http://accounting.auditchain.finance/2022/fac/Rules_Mapping/...-definition.xml’ +

(’us-gaap’:’RevenueFromContractWithCustomerExcludingAssessedTax’) +

reported

).

The above gory representation boils down to: we know that sales (as defined
in the “Fundamental Accounting Concepts” taxonomy [6]) is USD 365817000000
because that value was reported for US-GAAP taxonomy [7] concept ‘us-gaap’:
‘RevenueFromContractWithCustomerExcludingAssessedTax’.

5 “Model” being used here in the broad sense of representation, NOT of Herbrand
model. For the above example, https://auditchain.infura-ipfs.io/ipfs/QmSuMT
NG1W98U3xTsJRX2cs1LxKQqGKqM9iq2w1HhsaCZB/ReportAndModel.pl.gzip.

https://auditchain.infura-ipfs.io/ipfs/QmSuMTNG1W98U3xTsJRX2cs1LxKQqGKqM9iq2w1HhsaCZB/ReportAndModel.pl.gzip
https://auditchain.infura-ipfs.io/ipfs/QmSuMTNG1W98U3xTsJRX2cs1LxKQqGKqM9iq2w1HhsaCZB/ReportAndModel.pl.gzip

Pacioli: A PROLOG System for Financial Report Processing 251

For more examples, see the Pacioli batch report6 for recent Dow Jones top
30 company filings.

2 System Architecture

Pacioli has been available since early 2021 as a web application at
http://pacioli.auditchain.finance to support debugging, rule development and
training. Advanced users (developers, accountants) interact with SWISH [8]
notebooks7: they submit financial report URLs and obtain report validation
analyses from Pacioli, as self-contained HTML mini sites generated by SWI-
Prolog’s “termerized” HTML templates [9], using Javascript frameworks8 for
browser client-side data rendering. The report analysis output includes machine-
readable (Prolog and JSON) files, all stored on IPFS:

But its main use case is embedded in “Pacioli nodes”, constituting the decen-
tralized Auditchain validator network, anchored over the Polygon blockchain
and monetary currency:

6 https://auditchain.infura-ipfs.io/ipfs/QmaATb3njmXgbbZVuUPuJweukyHNk2Wb
xGVJCSEUgqRt3o/.

7 For exemple https://pacioli.auditchain.finance/tools/PowerUserTool.swinb.
8 Namely https://pivottable.js.org/examples/ and http://tabulator.info, in addition

to SWISH-generated https://graphviz.org graphs.

http://pacioli.auditchain.finance
http://docs.auditchain.finance
https://polygon.technology
https://auditchain.infura-ipfs.io/ipfs/QmaATb3njmXgbbZVuUPuJweukyHNk2WbxGVJCSEUgqRt3o/
https://auditchain.infura-ipfs.io/ipfs/QmaATb3njmXgbbZVuUPuJweukyHNk2WbxGVJCSEUgqRt3o/
https://pacioli.auditchain.finance/tools/PowerUserTool.swinb
https://pivottable.js.org/examples/
http://tabulator.info
https://graphviz.org

252 M. Calejo and C. Hoffman

Pacioli coordination is performed by an Auditchain nodejs agent, and most
users interface via Auditchain’s Web3 app:

The AUDT token acts as currency for user fees, network operation and ruleset
rewards, and the future rule NFTs marketplace: financial report rulesets will be
(in late 2023) wrapped as Non Fungible Tokens; a ruleset may comprise (say)
mapping rules and derivation rules, plus value assertions verifying the result of
some unique financial analysis.

Since late 2021 this network went through alpha and beta programs with a
dozen validators across the planet, with (Polygon) mainnet deployment immi-
nent.

3 Some PROLOG Implementation Aspects

Since April 2020, Pacioli development indulged us on a gourmet feast of PRO-
LOG programming9:

– XBRL to PROLOG conversion is a perfect fit for SWI-Prolog’s XML parser:
at the meta level, XBRL standard “legalese” definitions map to internal Paci-
oli PROLOG clauses; at the object level, XML elements are translated into
Prolog terms, and stored within Prolog facts.

– CSV tabular files are converted to PROLOG terms, to support loading report
SBRM specifications authored in simple Excel sheets; after loading it, Pacioli
can generate the equivalent XBRL report, comprising several XML files... each
rendered by the same DCG mechanism used below for HTML rendering.

– To save development time, we opted to delegate detailed XBRL conformance
tests of the financial report to a reference XBRL (pre)processor10; the pre-
processor is invoked as a PROLOG subprocess.

9 Open sourcing of Pacioli is still under discussion, hence no code URL yet.
10 https://github.com/Arelle/Arelle.

http://accounting.auditchain.finance/sbrm/SBRM.html
https://github.com/Arelle/Arelle

Pacioli: A PROLOG System for Financial Report Processing 253

– Powerful ad-hoc querying over multiple “PacioliModel” files with PROLOG11,
to empower future financial research use cases not yet explored

– XBRL formula evaluation, including variable binding, is done by the straight
execution of a Prolog goal generated from the formula; XBRL search over
report facts12 and multidimensional contexts in a XML document maps
straight into PROLOG backtracking over their relational representation, with
expressions evaluated by a simple PROLOG interpreter

– Simplified syntax for representing XBRL formulae as PROLOG terms, using
custom operators, as opposed to the complex original XML linkbase. See 4.5.

– Block detection via declarative clauses. See 4.2
– Report rendering: “termerised HTML” [9] galore; Pacioli puts this “inverted

Definite Clause Grammar” HTML template engine to use, including embed-
ding of external Javascript objects, namely for pivot and interactive tables.

Although mainstream language such as Python or Javascript would provide some
of the above capabilities, PROLOG is arguably the only covering all.

4 Diving into an Example Report

Rather than use a full report which can be quite large and challenging to explain
in detail, a smaller example report13 is used to illustrate Pacioli’s capabilities.

4.1 Report Verification Summary

The following is a summary of the results of execution of all rules, summarised
by rule kind; green icons denote compliance to all rules:

11 Potentially replacing the XULE expression language by PROLOG: https://pacioli.
auditchain.finance/example/XULE.swinb.

12 XBRL reports and rules translate into PROLOG unit clauses: the formula rule facts
are meta-interpreted.

13 Pacioli Analysis Summary, https://auditchain.infura-ipfs.io/ipfs/QmNUY15G1dhT
XYCpyUyvqYWZ33Nc6mKRUDz7GDgLFonaPs/.

https://xbrl.us/xule/
https://pacioli.auditchain.finance/example/XULE.swinb
https://pacioli.auditchain.finance/example/XULE.swinb
https://auditchain.infura-ipfs.io/ipfs/QmNUY15G1dhTXYCpyUyvqYWZ33Nc6mKRUDz7GDgLFonaPs/
https://auditchain.infura-ipfs.io/ipfs/QmNUY15G1dhTXYCpyUyvqYWZ33Nc6mKRUDz7GDgLFonaPs/

254 M. Calejo and C. Hoffman

4.2 Blocks of Information

To render a financial XBRL report for a human, one needs to consider first the
presentation structure imparted by its author: a big tree of “XBRL presentation
links” with a root for the report itself, then all its XBRL networks as children,
each with a sub-tree of presented XBRL concepts. This hierarchical structure of
XBRL concepts, plus the time dimension, provide a basic scaffold for “hanging”
facts in context.

But within that massive XBRL structure and facts lie smaller “blocks”14

of information, fact chunks comprising something meaningful for an analyst or
accountant, such as a “rollUp” (where one fact aggregates others, say over a
quarter or year). These higher level pieces of information are not part of XBRL,
and are instead detected by Pacioli, using “concept arrangement pattern detec-
tion” meta-rules, determining the blocks list15:

As an example of block detection, take rollUps. This is the main PROLOG
clause detecting them:

14 “Blocks” emerged from professional practice and are informally explained
in Sect. 3.3 of http://accounting.auditchain.finance/framework/LogicalTheoryDes
cribingFinancialReport.pdf.

15 Full list for this report in https://auditchain.infura-ipfs.io/ipfs/QmNUY15G1dhT
XYCpyUyvqYWZ33Nc6mKRUDz7GDgLFonaPs/blocks.html.

http://accounting.auditchain.finance/framework/LogicalTheoryDescribingFinancialReport.pdf
http://accounting.auditchain.finance/framework/LogicalTheoryDescribingFinancialReport.pdf
https://auditchain.infura-ipfs.io/ipfs/QmNUY15G1dhTXYCpyUyvqYWZ33Nc6mKRUDz7GDgLFonaPs/blocks.html
https://auditchain.infura-ipfs.io/ipfs/QmNUY15G1dhTXYCpyUyvqYWZ33Nc6mKRUDz7GDgLFonaPs/blocks.html

Pacioli: A PROLOG System for Financial Report Processing 255

This ain’t pretty because of all the details involved, but basically a PROLOG
goal query is generated and then queried over the report facts:

– A calculation rule is picked (on line 4)
– The Sum (total) of the calculation must be in the presented concepts for the

given Network (line 5) and the “Parcels” (added terms in Portuguese...) too
(line 7)

– After setting up a couple of unbound lists, these are constrained via simple
unification (lines 16–19)

– Then a fact binder goal generator predicate is called (line 20), applying XBRL
fact binding principles

– All solutions are found, and returned one by one on backtracking (line 23–25)

The detected block is identified by path of its root concept in the XBRL
presentation tree, by the rule supporting it, and has associated a set of financial
report SupportingFacts. The last (output) argument returns the internal block
structure, identifying in this case a total and a list of items.

4.3 Rendering of a Block

By considering its intrinsic meaning, a block can be rendered in a manner more
suitable for accountants, with pivoting controls and underlined totals, as shown
below16. Numbers in green violate no rules, and have been validated by at least
one:

4.4 Associations Between Blocks of Information

Blocks have associations between them, which can be visualized in a graph17,
where links are defined by the facts shared by several blocks:
16 Rendering of information block, https://auditchain.infura-ipfs.io/ipfs/QmNUY15G1

dhTXYCpyUyvqYWZ33Nc6mKRUDz7GDgLFonaPs/01ecbc0ceca6b093c221.html
#0fb66fa8527c7cb7ec08.

17 Blocks Graph, https://auditchain.infura-ipfs.io/ipfs/QmNUY15G1dhTXYCpyUyv
qYWZ33Nc6mKRUDz7GDgLFonaPs/blocksGraph.html.

https://auditchain.infura-ipfs.io/ipfs/QmNUY15G1dhTXYCpyUyvqYWZ33Nc6mKRUDz7GDgLFonaPs/01ecbc0ceca6b093c221.html#0fb66fa8527c7cb7ec08
https://auditchain.infura-ipfs.io/ipfs/QmNUY15G1dhTXYCpyUyvqYWZ33Nc6mKRUDz7GDgLFonaPs/01ecbc0ceca6b093c221.html#0fb66fa8527c7cb7ec08
https://auditchain.infura-ipfs.io/ipfs/QmNUY15G1dhTXYCpyUyvqYWZ33Nc6mKRUDz7GDgLFonaPs/01ecbc0ceca6b093c221.html#0fb66fa8527c7cb7ec08
https://auditchain.infura-ipfs.io/ipfs/QmNUY15G1dhTXYCpyUyvqYWZ33Nc6mKRUDz7GDgLFonaPs/blocksGraph.html
https://auditchain.infura-ipfs.io/ipfs/QmNUY15G1dhTXYCpyUyvqYWZ33Nc6mKRUDz7GDgLFonaPs/blocksGraph.html

256 M. Calejo and C. Hoffman

4.5 Rules

Most rules define assertions on facts18, for example:

Pacioli supports different rule kinds:

– The above rules are XBRL “value assertions”, checking some arithmetic rela-
tionship, which must hold true for all facts in the report

– XBRL calculations are conceptually a specific subtype of value assertions,
where a total must be equal to a sum of terms

– Mapping rules are simple pairs, mapping one concept in one XBRL taxonomy
(such as a regulatory standard like US-GAAP) into its equivalent in another
taxonomy (such as a custom taxonomy for analysis, such as “Fundamental
Accounting Concepts”.

– Derivation rules compute one fact from others, and are encoded as XBRL
Formulas; they’re useful to align a financial report that uses its own tax-
onomies, to some other taxonomy framework for comparison with others.

– Disclosure rules, together with reporting checklist rules, identify blocks of
information which must be present (reported) in the financial report; these
typically express regulatory obligations

A major driver for the development of Pacioli was the need to analyze
financial reports from multiple perspectives. The same report can be validated
against different rules and even concept taxonomies: for example, an analyst may
wish to evaluate a company’s performance not in terms of the facts it reported
18 Full value assertions list in https://auditchain.infura-ipfs.io/ipfs/QmNUY15G1dhT

XYCpyUyvqYWZ33Nc6mKRUDz7GDgLFonaPs/valueAssertions.html.

https://www.xbrl.org/specification/formula/rec-2009-06-22/formula-rec-2009-06-22.html
https://auditchain.infura-ipfs.io/ipfs/QmNUY15G1dhTXYCpyUyvqYWZ33Nc6mKRUDz7GDgLFonaPs/valueAssertions.html
https://auditchain.infura-ipfs.io/ipfs/QmNUY15G1dhTXYCpyUyvqYWZ33Nc6mKRUDz7GDgLFonaPs/valueAssertions.html

Pacioli: A PROLOG System for Financial Report Processing 257

directly, but instead with her own rules defined over a custom taxonomy of XBRL
concepts. Hence the need for mapping and derivation rules (effectively solving
financial reporting’s “ontology mapping” problem), while applying specific value
assertions to check the facts.

Following is a fragment for the example report’s “Derivation Graph”, showing
mapping and derivation rules at work:

Nodes represent facts, with a XBRL concept (including its taxonomy prefix)
together with a value. Links denote rule instances. ‘proof’ (the XBRL taxonomy
of the financial report in question) facts are mapped to some ‘fac’ (Fundamental
Accounting Concepts, another XBRL taxonomy) facts, and complemented by
some other derived ‘fac’ facts further to the right.

4.6 Pacioli Rules vs. PROLOG

Each Pacioli rule is represented as a PROLOG term, comprising an expression
with (PROLOG) variables and a list of variable declarations. Here are two exam-
ples:

The second example has simple variable declarations, indicating just their
XBRL concept.

The first example however is more complex, as it also refers an hypercube
defining a dimension for reported vs. corrected values: two of its variables are
for the same concept (Equity), but intended to be bound to different facts,
positioned elsewhere in the hypercube. The full rules list for this example report
can be found here.

https://auditchain.infura-ipfs.io/ipfs/QmPpFcLTyjmFyyHU9C2MD3E4nkZ911iafXYwRazR7GEWVW/rules.html

258 M. Calejo and C. Hoffman

Rules are evaluated by a small interpreter, following the XBRL principles
regarding fact binding: a single variable assignment must use fact values from
the same context dimensions, same date, etc.

5 Significance – Present and Future

In the past, PROLOG application projects usually contained a heavy component
of research: new language implementation techniques, new system tools, or even
theoretical advances.

On the contrary, projects built with mature, mainstream languages focus
on application rather than infra structure development. Thanks to the present
maturity of PROLOG environments (specifically, SWI-Prolog), such is the case
with Pacioli, a project that was driven straight from business requirements,
as reflected in the core team: a senior professional PROLOG developer and a
domain guru – no present academics onboard.

Up to now a dozen Pacioli instances, operated by different entities around
the world, have already validated thousands of financial reports in different juris-
dictions. Arguably, one of the most significant PROLOG applications to date,
both in scale and global social impact.

As for the significance of financial reporting and its independent validation...
recent events seem to indicate, again, how insufficient scrutiny leads to global
financial problems. Cf. discussion on Pacioli analysis of Silicon Valley Bank [10].

Acknowledgement. To Jason Meyers and the Auditchain early investors, for betting
Auditchain on Pacioli; to Jacinto Dávila for help with Pacioli and for his Auditchain
Explorer UI; to Bogdan Fiedur for the blockchain agent and Auditchain smartcon-
tracts; to Christopher Jastrzebski for all the support, and his Auditchain Web3 UI; to
Fuad Begic for the complementary Luca report editor under development; to Andrew
Noble and Dudley Gould for encouragement and suggestions. To Jan Wielemaker and
associates, for a software stack that finally made PROLOG feasible for business applica-
tions. And finally, to Bob Kowalski: for his vision half century ago, and all the personal
support in recent years.

References

1. XBRL International, Introduction to XBRL. https://www.xbrl.org/introduction/
2. XBRL International, XBRL Specifications. https://specifications.xbrl.org/

specifications.html
3. XBRL International, iXBRL, https://www.xbrl.org/the-standard/what/ixbrl/
4. Charles Hoffman, CPA, Seattle Method. https://xbrlsite.com/seattlemethod/

SeattleMethod.pdf
5. US Generally Accepted Accounting Principles. https://www.cfainstitute.org/en/

advocacy/issues/gaap#sort=%40pubbrowsedate%20descending
6. Fundamental Accounting Concepts. https://accounting.auditchain.finance/fac/

Index.html
7. US-GAAP taxonomy. https://accounting.auditchain.finance/reporting-scheme/

us-gaap/documentation/Index.html

https://www.xbrl.org/introduction/
https://specifications.xbrl.org/specifications.html
https://specifications.xbrl.org/specifications.html
https://www.xbrl.org/the-standard/what/ixbrl/
https://xbrlsite.com/seattlemethod/SeattleMethod.pdf
https://xbrlsite.com/seattlemethod/SeattleMethod.pdf
https://www.cfainstitute.org/en/advocacy/issues/gaap#sort=%40pubbrowsedate%20descending
https://www.cfainstitute.org/en/advocacy/issues/gaap#sort=%40pubbrowsedate%20descending
https://accounting.auditchain.finance/fac/Index.html
https://accounting.auditchain.finance/fac/Index.html
https://accounting.auditchain.finance/reporting-scheme/us-gaap/documentation/Index.html
https://accounting.auditchain.finance/reporting-scheme/us-gaap/documentation/Index.html

Pacioli: A PROLOG System for Financial Report Processing 259

8. SWISH: SWI-Prolog for Sharing source repository. https://github.com/SWI-
Prolog/swish

9. Tutorial - Creating Web Applications in SWI-Prolog. https://github.com/
Anniepoo/swiplwebtut/blob/master/web.adoc#termerized-html-syntax

10. Jason Meyers, personal communication, Auditchain’s. https://www.linkedin.com/
feed/update/urn:li:activity:7044740816300351489?updateEntityUrn=urn%3Ali%
3Afs feedUpdate%3A%28V2%2Curn%3Ali%3Aactivity%3A7044740816300351489
%29 LinkedIn page

https://github.com/SWI-Prolog/swish
https://github.com/SWI-Prolog/swish
https://github.com/Anniepoo/swiplwebtut/blob/master/web.adoc#termerized-html-syntax
https://github.com/Anniepoo/swiplwebtut/blob/master/web.adoc#termerized-html-syntax
https://www.linkedin.com/feed/update/urn:li:activity:7044740816300351489?updateEntityUrn=urn%3Ali%3Afs_feedUpdate%3A%28V2%2Curn%3Ali%3Aactivity%3A7044740816300351489%29
https://www.linkedin.com/feed/update/urn:li:activity:7044740816300351489?updateEntityUrn=urn%3Ali%3Afs_feedUpdate%3A%28V2%2Curn%3Ali%3Aactivity%3A7044740816300351489%29
https://www.linkedin.com/feed/update/urn:li:activity:7044740816300351489?updateEntityUrn=urn%3Ali%3Afs_feedUpdate%3A%28V2%2Curn%3Ali%3Aactivity%3A7044740816300351489%29
https://www.linkedin.com/feed/update/urn:li:activity:7044740816300351489?updateEntityUrn=urn%3Ali%3Afs_feedUpdate%3A%28V2%2Curn%3Ali%3Aactivity%3A7044740816300351489%29

Logic Model Processing

Pierre Dissaux(B)

Ellidiss Technologies, 24 Quai de la Douane, 29200 Brest, France
pierre.dissaux@ellidiss.com

Abstract. Model Driven Engineering (MDE) refers to the use of software models
to represent System or Software conceptual, logical, or physical abstractions,
aiming at standardizing and easing industrial engineering processes. MDE is more
and more applied in various domains of application and brings foundations for the
digitalization of the industry. The avionics and Space software industry started the
move several decades ago, which stimulated the emergence of many innovative
technologies to improve the elaboration of these models and their exploitation.
Logic Model Processing (LMP for short) is one of them.

Logic Model Processing is an adaptation of Logic Programming to Model
DrivenEngineering using standard Prolog language. TheLMP framework consists
of a methodology, a set of tools and Prolog libraries. This technology has been
progressively and continuously developed during the last thirty years and produced
many actionable outcomes,mostly under the form of tools that have been deployed
worldwide for industrial usages and a few non-academic publications.

This paper introduces the origin of the LMP solution, provides an overview
of its implementation, and gives a few examples of its practical use and of its most
recent developments.

Keywords: Model Driven Engineering · Logic Model Processing · Prolog

1 Genesis of LMP

The Hierarchical Object-Oriented Design (HOOD) [1] method was elaborated in the
nineties under the sponsorship of the European Space Agency, to master the increasing
complexity of large real-time embedded software,most of themwritten inAda.Although
Model Driven Engineering was not a common term at that time, HOOD was already
providing a strong support for pre-coding architectural and detailed design phases of soft-
ware development life cycles. Indeed, HOOD provides software modelling abstractions
thanks to dedicated graphical and textual notations and a methodology enforcing early
verifications as well as synchronized automatic code and documentation generation.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 260–270, 2023.
https://doi.org/10.1007/978-3-031-35254-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_21&domain=pdf
https://doi.org/10.1007/978-3-031-35254-6_21

Logic Model Processing 261

Practical use of such solutions on real scale industrial projects required the develop-
ment of efficient Computer Aided Software Engineering (CASE) tools providing both
model edition and model processing features. One of the possible solutions that were
studied to implement these model processing features was Prolog [19]. The outcome of
this almost 30-year-old experiment was later called Logic Model Processing.

The first realization of a HOOD model processing feature using Prolog was the
development of a HOOD Rule Checker. This is required to verify that the software
architecture (HOOD Design) is really compliant with the rules defined by the HOOD
standard. An illustrative subset of this feature is explained below.

Fig. 1. Fragment of the HOOD meta-model

Figure 1 shows a fragment of the HOOD meta-model. The main building blocks are
the HOOD Objects that are characterized by their Name, their Kind and the name of
their parent Object in the decomposition hierarchy. With LMP, such an abstraction is
handled by the Prolog fact specification isObject(Name,Kind,Parent)..

Each Object has a Provided Interface containing a list of provided Operations
that are characterized by their own Name and the one of the Object where they
are located. This can be represented by the other Prolog fact specification, isPro-
vided(Name,'OPERAT ION',Object)..

In a similar way, connection lines can also be described by means of Prolog
facts. In particular, the implemented_by links between Operations of a parent Object
and the ones of a child Object are described by facts of the form isImplement-
edBy(Op1,'OPERATION',Parent,Op2,Child,1)..

262 P. Dissaux

Fig. 2. Example of a concrete HOOD model

These fact specifications can thus be used to populate a Prolog fact base for a concrete
HOOD model, such as the one shown in Fig. 2. Objects are represented by boxes and
Operations are listed in their top-left compartment. Implemented_by links can be
identified on the diagram by the three arrows starting from the outer box Operations. A
fragment of the corresponding populated fact base is:

isObject('rocket','ACTIVE','NIL').
isObject('pilot','ACTIVE','rocket').
isProvided('start','OPERATION','rocket').
isProvided('start_engine','OPERATION','pilot').
isImplementedBy('start','OPERATION','rocket',
'start_engine','pilot',1).

Figure 3 provides a typical example of a design rule that is defined by the HOOD
Reference Manual and must be verified to ensure that the model shown in Fig. 2 is
correct.

Fig. 3. Example of a HOOD design rule

This can easily be translated into a Prolog rule where model elements can be directly
referenced using the facts described above.

Logic Model Processing 263

/* HRM 4 rule I6:
Each OPERATION provided by a PARENT shall be
IMPLEMENTED_BY one
OPERATION provided by one of its CHILDren. */

errI6(X,U) :- isProvided(U,'OPERATION',X),
not(isImplementedBy(U,'OPERATION',X,_,_)).

checkI :- isNotTerm(X), errI6(X,U),
write('ERROR : Operation : '), write(U),
write(' provided by not terminal object : '), write(X),
write(' should be implemented by a child object !

(I6)'), nl.
checkI :- printlf('---> rule I6 checked...').

/* utility rules */
isTerm(Y) :- hoodObject(Y,_,_), not(hoodObject(_,_,Y)).
isNotTerm(Y) :- hoodObject(Y,_,_), isParent(Y).
isParent(Y) :- hoodObject(_,_,Y), !.

A similar approach was followed to implement the complete set of HOOD rules,
as well as other advanced model processing features such as an automatic Ada code
generator and various documentation generators. This solution has been included into
the Stood [2] product and distributed to major aerospace industrial companies over
several decades. It is still actively supported and maintained.

2 Overview of LMP

After this first successful application of Logic Programming to implement processing
tools for the HOOD software modeling language, LMP has been continuously improved
and applied to a variety of other languages and processing goals to the present day. Based
on this practical feedback and assuming that any modeling language can be defined by a
meta-model, either strongly formalized or not, theLMPmethodology can be summarized
as follows:

• Each class of the meta-model defines a Prolog fact specification whose parameters
correspond to the attributes of this class. Different strategies may be used to cope
with attributes inherited from super classes.

• An application model (instance of the meta-model) is represented by a populated
Prolog fact base, where fact parameter values correspond to meta-class attribute
values.

• The model processing program is expressed by a set of Prolog rule bases, referring to
other rules or the fact base representing the model. Note that several fact bases from
various origins can be referenced by the same processing rules [14].

264 P. Dissaux

• To execute a LMP program, it is necessary to instantiate the fact base associated
with the current state of the model(s) to be processed, to merge it with the rule base
associated with the processing to be performed and to run a query with a standard
Prolog engine. This step is illustrated by Fig. 4. Note that LMP mainly uses sbprolog
[3] although it may be adapted to any other Prolog environment.

Fig. 4. Logic Model Processing

The input modeling languages that have been addressed are either token-based lan-
guages (i.e., defined by a textual grammar), such as software programming languages
(Ada, C,…) or software architecture description languages (HOOD, AADL [4],…), or
tag-based languages (i.e., defined by an XML structure), such as UML [5], SysML [6]
and Domain Specific Languages (DSL).

The processing goals that have been developed until now, cover a large spectrum of
model verification and exploitation tools in a homogeneous way, whereas different ad-
hoc technologies are usually required with alternate implementations (e.g., Object Con-
straint Language [7], Atlas Transformation Language [8], Query View Transformation
[9], Acceleo [10], …). Typical LMP processing goals are:

• Model explorations or queries.
• Model verifications or rule checkers.
• Model transformations into other models, source code or documentation.

Two options are possible to convert an input model into the corresponding fact base.
If the input model has been serialized and stored into a file, a parser tool is required to
perform a syntactic translation between the original syntax into a list of Prolog facts. On
the other hand, if the model is stored in a data structure within a CASE tool, the best
solution consists in developing a Prolog facts generator.

3 Examples of Application

3.1 HOOD Processing Tools

Stood is a software design tool supporting the HOOD methodology that was presented
in Sect. 1. It intensively uses LMP to implement the design rule checkers, the various
code and documentation generators as well as a few reverse engineering tools. It has

Logic Model Processing 265

been deployed onmany projects, and especially to support the development of embedded
software for the Airbus family of civilian aircraft (A340, A350, A380). Table 1 gives the
list of the LMP applications that have been customized or specifically created by Airbus
to support their software development process [13]. Moreover, as such software requires
proper certification by aviation authorities like DO 178 recommendations [11], some of
these tools have been qualified. The good characteristics of the Prolog language added
to the flexibility of the LMP framework made these realizations possible.

Table 1. LMP applications at Airbus

LMP rule base Tool DO 178 Qualification
(verification tools)

HOOD to Ada Stood No

HOOD to C/Asm Stood No

HOOD Checker Stood Yes

HOOD to Document Stood No

HOOD to Frama-C Stood Yes

Themore generic LMP tools that are included in the off-the-shelf “Stood for HOOD”
distribution have been used by many other industrial programs, such as military heli-
copters, driverlessmetro, railways signaling and a collection of spacecrafts. In particular,
they were used for the development of the control software embedded into the European
Robotic Arm that is docked at the International Space Station.

3.2 AADL Processing Tools

The Architecture Analysis and Design Language (AADL) is a standard of the SAE [4]
for the design of real-time software and its hardware execution platform. It defines a
rich component-based textual and graphical description language with strong semantic
specifications enabling the development of advanced analysis and verification tools.
Several tools have been developed to support AADLmodeling and processing activities.

Among them, “Stood for AADL” is a variant of “Stood for Hood”, still enforc-
ing the HOOD methodology, but including an AADL graphical editor associated with
AADL text export and import features. Another tool called AADL Inspector [12] has
been specifically designed and uses the LMP technology to manage AADL processing
tools, including exploration, verification, and transformation tools [14]. Table 2 gives
a summary of the main LMP programs that have been developed for AADL. The two
tools are commercially supported and distributed worldwide.

Except for the last one, themodel processing features that are listed in Table 2 require
that a set of Prolog rules is prepared at tool design time (offline) and embedded into the
tool package in advance. In these cases, the end user cannot modify the processing rules
at model design time (online). To offer such capabilities, an online Prolog processing
feature has been implemented in AADL Inspector.

266 P. Dissaux

Table 2. LMP applications for AADL

LMP rule bases tool category

AADLinstance builder AADL Inspector model exploration

AADL semantic rules AADL Inspector model verification (static analysis)

AADL ARINC 653 rules AADL Inspector model verification (static analysis)

AADL to Cheddar AADL Inspector model verification (timing analysis)

AADL to Marzhin AADL Inspector model verification (simulation)

AADL to OpenPSA AADL Inspector model verification (safety analysis)

HOOD to AADL Stood model transformation

AADL to HOOD Stood model transformation

UML MARTE to AADL AADL Inspector model transformation

SysML to AADL AADL Inspector model transformation

Capella to AADL AADL Inspector model transformation

FACE to AADL AADL Inspector model transformation

AADL printer AADL Inspector model unparser

LAMP checker AADL Inspector online model processing

The Prolog rules can thus be embedded inside the model to be processed and poten-
tially modified by the designer at any time. This variant of LMP is called LAMP
[15] (Logical AADL Model Processing) and allows for Prolog code to be directly
inserted inside AADL as annexes and processing goals to be executed as Prolog queries.
LAMP comes with a library of reusable Prolog model exploration, verification, and
transformation rules that helps the user to set-up complete assurance case solutions.

4 Related Work

This section presents three related projects mentioning the use of the Prolog language
in the context of Model Driven Engineering. Other related work could be found in the
area of representing and processing ontologies with Prolog. This has not been explored
here.

4.1 D-MILS

TheD-MILS European FP7 project [16], ended in October 2015, was focused on extend-
ing MILS (Multiple Independent Levels of Security) for use with distributed systems.
The similarities with LMP are that a) it addressed multi-domain assurance cases of dis-
tributed real-time architectures using a specific variant of the AADL language (MILS-
AADL) as input and b) one of its processing tools, the Configuration Compiler, was
written in Prolog and used the SWI Prolog constraint logic programming feature.

Logic Model Processing 267

However, D-MILS is much more specific than LMP due to the use of a non-
standard modelling language and requires the set-up of a complex tool chain to operate.
In particular, the Prolog facts representing the input model are not directly derived
from the MILS-AADL description but from the output of another intermediate model
transformation.

4.2 PTL

Prolog based Transformation Language (PTL) [17] addresses the development of model
transformations in a Model Driven Engineering context using the Prolog language. It is
not specific to any application domain but relies on an existing transformation language
(Atlas Transformation Language: ATL) and a particular modeling environment (Eclipse
Modeling Framework: EMF).

Compared to LMP, the scope of PTL appears to be much more restrictive, as it only
targets model transformations and not the other kinds of model processing. Moreover,
it is presented as a hybrid approach which mixes Prolog and ATL languages, whereas
everything is expressed in Prolog with LMP. Finally, the need for PTL to operate within
the Eclipse platform brings another limitation that LMP does not have.

4.3 Multiprocessor Scheduling Analysis

In this article [18], a Prolog based framework is proposed to allow engineers to verify
the consistency between a software application running on a multiprocessor platform
and scheduling analysis feasibility tests. The software and hardware architectures are
represented by Prolog facts, and the inference engine checkswhether these facts conform
to one of the design patterns associated with the feasibility tests.

Although it focuses on the resolution of a very specific problem, the implementation
of the design pattern checking algorithm applied to multicore systems relies on the same
general principles as LMP. Themain differences come from the choice of an input model
and corresponding transformation into Prolog facts, that are both specific to the Cheddar
tool, and the use of a richer Prolog environment.

5 Exploitation and Dissemination

As said before, the LMP technology has been embedded in several commercial off-
the-shelves Computer Aided Software Engineering tools that have been distributed and
supported worldwide for several decades. These tools are namely Stood and AADL
Inspector, both edited and distributed by Ellidiss Technologies. Please refer to Tables 1
and 2 for the list of LMP features that are provided by these two products.

Two kinds of metrics can be used to evaluate the dissemination of the technology.
The first one is the number of end user licenses and support contracts that have been
sold. This number reaches a few hundred units. The second one is the number of free
downloads of evaluation copies of the products from the Ellidiss website [2, 12], which
represents the most important dissemination means of the technology. It is important to
note that although these products are never downloaded without having a good reason

268 P. Dissaux

in mind, there is no way to confirm that the software has been properly installed and
used. Moreover, the same user may have downloaded the products several times or with
different identifiers. On the other hand, a single download may sometimes correspond
to multiple users, like a full college lab class.

For the Stood product, the total number of free downloads during the last 17 years
reaches 2500 units. Its repartition over time is shown on Fig. 5.

Fig. 5. Average number of Stood downloads per month.

AADL Inspector is a more recent product for which the free download metrics are
more precise and include an indication of the user location. Over the period 2011–2022,
more than 900 individual downloads of the product have been tracked. Figure 6 provides
more details about the location and date of these downloads.

Fig. 6. Location and date of AADL Inspector Downloads

In summary, we can conclude that the LMP technology has been disseminated
indirectly to more than 3000 people over the world during the two last decades.

Logic Model Processing 269

6 Conclusion

Taking advantage of the intrinsic good properties of the Prolog language and aug-
mented by a well-defined implementation approach, the benefits of the LMP solution
are multiple:

• Generic solution for various model processing functions.
• Standard Prolog language (ISO/IEC 13211–1).
• Independent: compatible with all meta-modelling formats.
• Interpreted: supports both off-line and online processing (e.g., LAMP).
• Declarative: fits well with multi-steps incremental development processes.
• Modular: multiple separate fact and rule bases.
• Explainable: appropriate for tool qualification.
• Flexible:

– Support of heterogeneous models.
– Support of incomplete models (subsets).
– Support of erroneous models (debugging).

• Industrial return of experience from commercially supported tools.
• Sustainable project, started almost 30 years ago, and still relevant and efficient.

After several decades of continuousdevelopment anddeploymentwithin the industry,
where it is often not directly visible to the end users, the LMP technology is still com-
mercially supported worldwide. Moreover, several new applications are currently under
study to continue to contribute to the improvement of future Model Driven Engineering
tool thanks to the power of the Prolog language.

References

1. HOOD: Hierarchical Object Oriented Design. http://www.esa.int/TEC/Software_engine
ering_and_standardisation/TECKLAUXBQE_0.html

2. Stood. http://www.ellidiss.com/products/stood/
3. Sbprolog. Stony Brook Prolog. https://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/

prolog/impl/prolog/sbprolog/0.html
4. AADL: SAE AS-5506D, Architecture Analysis and Design Language. https://www.sae.org/

standards/content/as5506d/
5. UML: Unified Modeling Language. http://uml.org/
6. SysML: Systems Modeling Language. http://sysml.org/
7. OCL: Object Constraint language. http://www.omg.org/spec/OCL/
8. ATL: Atlas Transformation Language. http://www.eclipse.org/atl/
9. QVT: Query View Transformation. http://www.omg.org/spec/QVT/
10. Acceleo. https://www.eclipse.org/acceleo/
11. DO178. https://www.rtca.org/?s=DO+178
12. AADL Inspector. http://www.ellidiss.com/products/aadl-inspector/
13. Dissaux, P., Farail, P.: Model verification: return of experience. In: ERTS Conference

Proceedings (2014)

http://www.esa.int/TEC/Software_engineering_and_standardisation/TECKLAUXBQE_0.html
http://www.ellidiss.com/products/stood/
https://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/prolog/impl/prolog/sbprolog/0.html
https://www.sae.org/standards/content/as5506d/
http://uml.org/
http://sysml.org/
http://www.omg.org/spec/OCL/
http://www.eclipse.org/atl/
http://www.omg.org/spec/QVT/
https://www.eclipse.org/acceleo/
https://www.rtca.org/?s=DO+178
http://www.ellidiss.com/products/aadl-inspector/

270 P. Dissaux

14. Dissaux, P., Hall, B.: Merging and processing heterogeneous models. In ERTS Conference
Proceedings (2016)

15. Dissaux, P.: LAMP: a new model processing language for AADL. In: ERTS Conference
Proceedings (2020)

16. D-MILS project. http://www.d-mils.org/page/related-links
17. Almendros-Jimenez, J., et al.: PTL: a model transformation language based on logic

programming. J. Logical Algebraic Meth. Program. 85, 332–366 (2016)
18. Rubini, S., et al.: Specification of schedulability assumptions to leverage multiprocessor

Analysis. J. Syst. Archit. 133 (2022)
19. Warren, D.S., et al.: Introduction to Prolog. In:Warren, D.S., Dahl, V., Eiter, T., Hermenegildo,

M., Kowalski, R., Rossi, F. (eds.) Prolog: 50Years of Future, LNAI 13900, pp. 3–19. Springer,
Cham (2023)

http://www.d-mils.org/page/related-links

Symbium: Using Logic Programming
to Streamline Citizen-to-Government

Interactions

Tristan Krueger1, Abhijeet Mohapatra1(B), and Michael Genesereth2

1 Symbium Corp., California, USA
{tristan,abhijeet}@symbium.com

2 Stanford University, California, USA
genesereth@stanford.edu

Abstract. Symbium is a US company launched in 2019. Its primary
offering is a web-based service, called the Citizen’s Dashboard, that helps
homeowners, architects, and contractors comply with the regulatory
aspects of residential construction. A distinguishing feature of the service
is its use of Logic Programming to facilitate and, in some cases, auto-
mate regulatory processes involving permits, inspections, and rebates or
refunds. The Citizen’s Dashboard represents a significant improvement
over traditional, manual approaches to regulatory compliance and has
the potential to save individuals and governments billions of dollars per
year.

Keywords: logic programming · computational law · government
relationship management

1 Introduction

A recent study on replacement of home appliances (e.g., refrigerators, dishwash-
ers, air conditioners etc.) in the United States suggests that billions of hours are
lost each year (7.5 billion hours in 2021) [2,10] due to inefficiency in permit-
ting processes. More than 40% of available rebates or refunds for energy-efficient
appliances go unclaimed, $350M in 2021 [7,17], due to the complexity of regu-
lations and the associated rebate processes. Problems in securing permits and
inspections for appliance replacements frequently cause significant delays in com-
pleting projects (in many cases more than 100 days). And the numbers are much
larger when one looks beyond appliances to other types of home improvement.

Citizen’s Dashboard. Symbium’s solution to this problem is a service called
the Citizen’s Dashboard [9,15] - a web-based service that facilitates interactions
between citizens (e.g., homeowners, architects, and contractors), governmental
agencies (e.g., municipalities, counties, states) and other organizations (e.g., util-
ity providers, insurance providers). The initial focus of the service is residential

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 271–276, 2023.
https://doi.org/10.1007/978-3-031-35254-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_22&domain=pdf
https://symbium.com
https://doi.org/10.1007/978-3-031-35254-6_22

272 T. Krueger et al.

construction, with projects ranging from simple appliance replacements to the
addition of accessory dwelling units (ADUs).

Symbium’s implementation of the Citizen’s Dashboard is organized into three
pillars. (1) It provides its users with comprehensive data about residential prop-
erties and buildings (e.g., zoning, tax assessments, and building permit history).
(2) It allows its users to describe proposed changes and automatically evaluates
those changes for compliance with applicable regulations. (3) It manages trans-
actions with governmental agencies and other organizations (e.g., applying for
building permits, scheduling inspections, and obtaining rebates).

A distinctive feature of the Citizen’s Dashboard is its focus on citizens rather
than governmental agencies. Other companies sell their products and services to
individual government agencies, and, as a result, citizens are forced to use dif-
ferent systems to interact with different agencies. Symbium’s customer is the
citizen. The Citizen’s Dashboard provides integrated interaction with multiple
government agencies, making it easier for citizens to manage the various regula-
tory aspects of construction projects.

2 Role of Logic Programming

Technologically, the key to Symbium’s deployment of the Citizen’s Dashboard is
its use of Logic Programming technology in codifying rules and regulations. This
approach is similar to the one used in [8] to represent the British Nationality
Act as a logic program.

The Symbium team formalizes zoning and building regulations as rules in
Dynamic Prolog (also known as Epilog [4,5]); and the Symbium platform uses
these rules to assess regulatory compliance of proposed projects. In this way, the
system is able to provide instantaneous feedback on project plans, circumventing
the manual evaluation process in common use today.

Symbium’s analysis of laws begins with the encoding of base facts. In the fol-
lowing, facts about a property of interest, e.g., zoning designation of the property,
area of new units, are codified in Epilog.

property(property1)
property.zone(property1,"RH-1(D)")
project(project1)
project.property(project1,property1)
project.new_unit(project1,new_unit1)
project.new_unit.size(project1,new_unit1,800)

The example below is typical of rules encountered in municipal planning
codes. It states that an accessory cottage violates the city’s size restriction if it
is built in the RH-1(D) zoning district and the area of the construction exceeds
900 square feet.

violation(Property,size) :-
project.property(Project,Property) &

Symbium’s Citizen’s Dashboard 273

property.zone(Property,"RH-1(D)") &
project.new_unit.size(Project,Unit,NewUnitSize) &
greater_than(NewUnitSize,900)

Fig. 1. Violation pinpointing in Symbium’s Citizen’s Dashboard

Symbium uses a similar approach to codify the rules involved in applying
for permits, rebates, and tax incentives. Symbium uses both view definitions
and operation definitions to manage the transactions between citizens and gov-
ernmental agencies. The use of Epilog instead of Prolog to model dynamics is
justified as it enables a clear separation of the formalization of dynamics from the
definition of relations [3,4], allowing for a more organized and flexible approach
to modeling complex systems.

The sample rule below describes what happens when the system receives a
notice of code violation for a property from the city. Such a notice restricts new
buildings from being built on the property.

message(Jurisdiction,code_violation(Property)) : :
project.property(Project,Property) &
property.jurisdiction(Property,Jurisdiction) &
project.submittable(Project)
==> ¬project.submittable(Project)

One of the main challenges which Symbium faces in the building and main-
tenance of the Citizen’s Dashboard is the large number of rules which affect
residential construction projects. San Francisco’s zoning code, for instance, has
thousands of regulations and is updated up to six times per month. Further-
more, the regulations applicable to a project may stem from multiple regulatory

274 T. Krueger et al.

bodies, e.g., environmental designations, state law, and national restrictions, and
the interactions between these regulations may increase the combinatorial com-
plexity of a project’s analysis. Symbium uses Logic Programming to solve the
above challenges in three ways.

1. Domain experts with no programming experience are trained to assist in the
writing and editing of logic programs. This onboarding process is aided by
the conciseness and readability of Epilog code.

2. Symbium takes advantage of the composability of rules by dividing large
rulesets into meaningful blocks and combining rules from overlapping sources.

3. The flexibility of Logic Programming allows Symbium to reuse regulations.
Take, for instance, the example relation provide above, which allows users
to ask questions such as “Can I build a 900 sqft cottage on my property?”
A slight variation of this same rule could, instead, empower users to answer
questions such as “What size of cottage can I build on my property?” or, even,
“In what zones can I build a 900 sqft cottage?”

Scaling Logic Programs Across Cities. Although zoning and building reg-
ulations vary from city to city, they share a common ontology, with simi-
lar regulations. Rather than authoring a new logic program for every city,
the Symbium team develops a ruleset which captures the regulations that
broadly apply to every city, with tunable relations to characterize the dif-
ference in regulations from city to city. In the following rule, the relation
jurisdiction.zone.max_size characterizes the maximum cottage size regu-
lations of a city.

project.noncompliant(Project) :-
project.property(Project,Property) &
property.jurisdiction(Property,Jurisdiction) &
property.zone(Property,Zone) &
project.new_unit.size(Project,Unit,NewUnitSize) &
jurisdiction.zone.max_size(Jurisdiction,Zone,MaxSize) &
greater_than(NewUnitSize,MaxSize)

To complete the logic program for a city, the above ruleset is supplemented
with Epilog facts and rules to encode the city-specific zoning and building code
regulations.

jurisdiction.zone.max_size("San Francisco","RH-1(D)",900)
jurisdiction.zone.max_size("Oakland","R1",1200)

The above authoring process enables the Symbium team to efficiently build
and scale logic programs.

3 Citizen’s Dashboard: Coverage and Reception

The Citizen’s Dashboard is currently available in select California cities, and
Symbium is working to make the service available across the state in the coming
year. Subsequently, Symbium plans to expand the service nationwide.

Symbium’s Citizen’s Dashboard 275

This service has received favorable reviews from multiple journalists, with
articles appearing in Forbes [1], Government Technology [9], Builder Online [11],
and so forth. The company is also the recipient of multiple awards. In 2019,
Symbium was named a Hive 50 honoree [6]. In 2020, it won the prestigious
Ivory Prize for Housing Affordability [12]. In 2021, it received the American Bar
Association Women of Legal Tech award [13]. And, in both 2021 and 2022, it
was listed as a GovTech 100 company [16].

In the long term, the company aspires to apply the Citizen’s Dashboard to
other areas of regulatory compliance, such as property taxes, licenses, interstate
commerce, and so forth. The Citizen’s Dashboard is a technology that can facil-
itate many types of interactions between citizens and government agencies, all
part of a Government Relationship Management (GRM) [14].

4 Broader Impact of Logic Programming

Symbium recently deployed a feature of the Citizen’s Dashboard that verifies
whether a specific instance of a home appliance replacement qualifies for a rebate.
This feature not only allows users to access and apply for rebates more easily
but also significantly reduces the time required for verification, from four weeks
to a few seconds. This example illustrates how Symbium’s implementation of
automated legal automated legal reasoning represents a significant improvement
over traditional, manual approaches to managing regulatory compliance, and
it has the potential to save individuals and governments billions of dollars per
year. The key to the success of the Citizen’s Dashboard is the use of Logic
Programming in codifying rules and regulations. Municipal regulations in the
US are updated regularly - in some cases as frequently as 6 times per month.
As such, Logic programming is a reliable approach to codify and maintain these
regulations.

The discipline of codifying rules and regulations as logical statements by
the Symbium team has led to the revelation of open texture issues, e.g., what
is the backyard of a building? and the identification of inconsistencies between
municipal and state codes. These issues were subsequently resolved by the munic-
ipalities in collaboration with the Symbium team. Symbium’s interactions with
municipal and state governments in the US indicate that Logic Programming
has begun to affect the very process of policy making itself.

References

1. Castenson, J.: Platform digitizes painful planning process to provide greater access
to affordable housing. https://www.forbes.com/sites/jennifercastenson/2022/03/
21/platform-digitizes-painful-planning-process-to-provide-greater-access-to-
affordable-housing/?sh=361fcaff171e (2022)

2. City of Oakland: average permit processing turnaround times. https://www.
oaklandca.gov/resources/average-permit-processing-turnaround-times (2021)

3. Genesereth, M.R.: Dynamic logic programming. Tech. rep., Stanford University
(2022). http://logicprogramming.stanford.edu/miscellaneous/dlp.html

https://www.forbes.com/sites/jennifercastenson/2022/03/21/platform-digitizes-painful-planning-process-to-provide-greater-access-to-affordable-housing/?sh=361fcaff171e
https://www.forbes.com/sites/jennifercastenson/2022/03/21/platform-digitizes-painful-planning-process-to-provide-greater-access-to-affordable-housing/?sh=361fcaff171e
https://www.forbes.com/sites/jennifercastenson/2022/03/21/platform-digitizes-painful-planning-process-to-provide-greater-access-to-affordable-housing/?sh=361fcaff171e
https://www.oaklandca.gov/resources/average-permit-processing-turnaround-times
https://www.oaklandca.gov/resources/average-permit-processing-turnaround-times
http://logicprogramming.stanford.edu/miscellaneous/dlp.html

276 T. Krueger et al.

4. Genesereth, M.R.: Dynamic logic programming. In: Warren, D.S., Dahl, V., Eiter,
T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years.
No. 13900 in LNCS, Springer (2023)

5. Genesereth, M.R., Chaudhri, V.: Introduction to logic programming. Synthesis
Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool Pub-
lishers (2020). https://doi.org/10.2200/S00966ED1V01Y201911AIM044

6. McManus, J.: Symbium: the permitter. https://www.builderonline.com/
recognition/symbium_o (Nov 2019)

7. Rewiring-America: High-Efficiency Electric Home Rebate Act (HEEHRA).
https://www.rewiringamerica.org/policy/high-efficiency-electric-home-rebate-act
(2022)

8. Sergot, M.J., Sadri, F., Kowalski, R.A., Kriwaczek, F., Hammond, P., Cory, H.T.:
The british nationality act as a logic program. Commun. ACM 29(5), 370–386
(1986). https://doi.org/10.1145/5689.5920

9. Staff, N.: Symbium creates property info lookup portal for California. https://www.
govtech.com/biz/symbium-creates-property-info-lookup-portal-for-california
(2021)

10. Statista: Household Appliances - United States. https://www.statista.com/
outlook/cmo/household-appliances/united-states (2021)

11. Strong, S.: Tech Innovator Symbium launches new property and Permit Informa-
tion Portal. https://www.builderonline.com/design/technology/tech-innovator-
symbium-launches-new-property-and-permit-information-portal_o (2021)

12. Symbium: Symbium wins the ivory prize for housing affordability. https://
symbium.com/press/symbium-wins-the-ivory-prize-for-housing-affordability
(2020)

13. Symbium: Symbium CEO and co-founder Leila Banijamali honored with ABA
LTRC. https://symbium.com/press/leila-banijamali-nominated-for-2021-women-
of-legal-tech-award (2021)

14. Symbium: Symbium’s vision of Government Relationship Management. https://
symbium.com/blog/symbiums-vision-of-government-relationship-management
(2021)

15. Symbium: How Complaw will revolutionize the public’s experience of property
data for cities and counties. https://symbium.com/blog/how-complaw-will-
revolutionize-the-publics-experience-of-property-data-for-cities-and-counties
(2022)

16. Symbium: Symbium is named a GovTech 100 company for the second consec-
utive year. https://symbium.com/press/symbium-is-named-a-2022-govtech-100-
company-for-the-second-consecutive-year (2022)

17. Todorova, A.: Goodbye, Mail-In Rebates. https://www.wsj.com/articles/
SB115663801471546598 (2006)

https://doi.org/10.2200/S00966ED1V01Y201911AIM044
https://www.builderonline.com/recognition/symbium_o
https://www.builderonline.com/recognition/symbium_o
https://www.rewiringamerica.org/policy/high-efficiency-electric-home-rebate-act
https://doi.org/10.1145/5689.5920
https://www.govtech.com/biz/symbium-creates-property-info-lookup-portal-for-california
https://www.govtech.com/biz/symbium-creates-property-info-lookup-portal-for-california
https://www.statista.com/outlook/cmo/household-appliances/united-states
https://www.statista.com/outlook/cmo/household-appliances/united-states
https://www.builderonline.com/design/technology/tech-innovator-symbium-launches-new-property-and-permit-information-portal_o
https://www.builderonline.com/design/technology/tech-innovator-symbium-launches-new-property-and-permit-information-portal_o
https://symbium.com/press/symbium-wins-the-ivory-prize-for-housing-affordability
https://symbium.com/press/symbium-wins-the-ivory-prize-for-housing-affordability
https://symbium.com/press/leila-banijamali-nominated-for-2021-women-of-legal-tech-award
https://symbium.com/press/leila-banijamali-nominated-for-2021-women-of-legal-tech-award
https://symbium.com/blog/symbiums-vision-of-government-relationship-management
https://symbium.com/blog/symbiums-vision-of-government-relationship-management
https://symbium.com/blog/how-complaw-will-revolutionize-the-publics-experience-of-property-data-for-cities-and-counties
https://symbium.com/blog/how-complaw-will-revolutionize-the-publics-experience-of-property-data-for-cities-and-counties
https://symbium.com/press/symbium-is-named-a-2022-govtech-100-company-for-the-second-consecutive-year
https://symbium.com/press/symbium-is-named-a-2022-govtech-100-company-for-the-second-consecutive-year
https://www.wsj.com/articles/SB115663801471546598
https://www.wsj.com/articles/SB115663801471546598

PROLEG: Practical Legal
Reasoning System

Ken Satoh(B)

National Institute of Informatics, 2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo, Japan
ksatoh@nii.ac.jp

Abstract. This paper introduces a legal knowledge representation lan-
guage, PROLEG. PROLEG rules are general rules in the form of Horn
clauses and special meta-prediate expressing exceptions. Exceptions are
introduced to express negative information in stead of “negation as fail-
ure”. It is because reasoning pattern of general rules and exceptions fits
lawyers’ reasoning and therefore lawyers understand PROLEG easily. We
firstly give the definition of syntax and semantics of PROLEG and show
an application for legal reasoning.

Keywords: PROLEG · Logic Programming · Legal Reasoning

1 Background

After many years of theoretical research on logic programming and nonmotonic
reasoning, I sought practical applications of my theoretical research and I entered
law school in 2006 and learned “Japanese presupposed ultimate fact theory” (we
write “JUF theory” for short in this paper) which was developed in lawyers
training center in Japan at the law school. This theory is to help judges to make
reasonable conclusions even under incomplete information environment due to
lack of evidence. I immediately understood the aim of this theory is exactly same
as nonmonotonic reasoning and am sure that I can implement the reasoning in
JUF theory [10].

My understanding of JUF theory is as follows:
In a litigation, the truth values of some facts which contribute to the judgement
might be unknown due to the sufficient evidence. Then, from the deductive
reasoning, the correct logical condition for the judgment is “unknown” as well.
However, judges are not allowed to give such unknown judgement but have to
give decisive answer. To solve this problem, JUF theory attach a default truth
value to every condition in Japanese Civil Code and let judges use the default
value when the condition is unknown in the litigation. Then all the conditions are
determined by real truth values or default truth values and therefore conclude
the decisive judgement. Actually, an attached default value is closely related
with the burden of proof. Since if the default value is favorable to the plaintiff
(the defendant, respectively), the defendant (the plaintiff, respectively) must
prove the negation of the default value otherwise the defendant (the plaintiff,
respectively) lose the litigation.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 277–283, 2023.
https://doi.org/10.1007/978-3-031-35254-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_23&domain=pdf
https://doi.org/10.1007/978-3-031-35254-6_23

278 K. Satoh

2 PROLEG

We firstly started to write legal rules in PROLOG [10] reflecting burden of proof
in a similar way to the British Nationality Act in PROLOG [13]. However, we
found that lawyers have difficulty to understand negation as failure in PROLOG
so we changed the syntax from negation as failure into a framework of general
rules and exceptions which is a common reasoning pattern among lawyers to
create PROLEG (PROlog based LEGal reasoning support system) [7].

Our main aim is to make lawyers to use legal reasoning system by providing
a minimum legal language sufficient for the reasoning so that lawyers understand
the behavior of the system. Our approach is quite opposite with academic trends
in AI and law in that researchers introduce many subtlty to express detailed
deontic modality. As far as pratical legal system is concerned, however, the legal
systems which usual AI and Law researchers provide is too complicated for
lawyers who do not have a background of logic and thus the lawyers do not use
them.

Although we have not conducted any psychological experiments, we had expe-
riences on PROLEG with law school graduates who write PROLEG solution for
Japanese bar exams for each year from 2009 to 2022 (total more than 60 grad-
uates) in that they can start to make a program in PROLEG after a few weeks
training of programming in PROLEG. I believe that PROLEG is the most famil-
iar legal knowledge representation language for lawyers and has a potential to
be a de fact standard.

Now, we introduce PROLEG. PROLEG system consists of a rulebase and a
fact base.

– A PROLEG rulebase consists of the following expression.
• A rule of the form of Horn clauses (without negation as failure):

H ⇐ B1, ..., Bn.

• An exception is an expression of the form:

exception(H,E).

where H, E are atoms each of which is the head of a rule.
– A PROLEG factbase consists of the truth value of related facts in a case. We

use an expression for a fact P in a case as:

fact(P).

The intuitive meaning of PROLEG rules is that if the conditions of general
rules are satisfied, its conclusion is satisfied in general but if the exception E is
satisfied the conclusion is no longer true. Note that E of exception(H,E) is the
head of a rule so there is a general rule whose head is E. Then we could write
an exception E of exception E′ by representing as exception(E,E′).

The semantics of PROLEG program is defined as follows [7]. We make a
program to be grounded by the constants in the program and name it as P .

PROLEG: Practical Legal Reasoning System 279

Let M be a set of atoms. We define a set of applicable rules w.r.t. M , PM , as
follows:

{R ∈ P |there is no E s.t. exception(head(R), E) and E ∈ M}
This means that if some exception is found for a conclusion H of rule R, we
do not allow such a rule R to participate in a derivation. The semantics of P
(called an extension of P) is given as a set of atoms M s.t. M = min(PM) where
min(T) is the minimum model of T .

It is analogous to answer set definition and actually, PROLOG and PROLEG
is mathematically equivalent in the sense that there is a one-to-one translation
from PROLEG to PROLOG and vice versa. Here, we reproduce the equivalence
translation according to [9].

Suppose that we have a program whose general rules are as follows:
C ⇐ B11, ..., B1n1 .
C ⇐ B21, ..., B2n2 .
...
C ⇐ Bk1, ..., Bknk

.
and excetions are as follows:
exception(C,E1).
...
exception(C,Em).

Then, we can traslate the above PROLEG program into the following pro-
gram:
C : −B11, ..., B1n1 , not E1, ..., not Em.
C: −B21, ..., B2n2 , not E1, ..., not Em.
...
C: −Bk1, ..., Bknk

, not E1, ..., not Em.
Note that rules with the same head has the same negative literals. If we add
some facts in PROLEG and PROLOG, we can show that derived literals are
equivalent.

On the other hand, suppose that we have the following PROLOG program:
C: −B11, ..., B1n1 , not E11, ..., not E1m1 .
C: −B21, ..., B2n2 , not E21, ..., not E2m1 .
...
C: −Bk1, ..., Bknk

, not Ek1, ..., not Ekmk
.

Then, we can translate a PROLOG program into the following PROLEG pro-
gram using additional predicate Ci.
C ⇐ C1. C1 ⇐ B11, ..., B1n1 .
C ⇐ C2. C2 ⇐ B21, ..., B2n2 .
...
C ⇐ Ck. Ck ⇐ Bk1, ..., Bknk

.
exception(C1, E11). · · · exception(C1, E1m1).

280 K. Satoh

exception(C2, E21). · · · exception(C2, E2m2).
...
exception(Ck, Ek1). · · · exception(Ck, Ekmk

).
If we add some facts in PROLEG and PROLOG, we can show that derived
literals except additional predicate Ci’s are equivalent.

It is interesting that even two languages are mathematically equivalent but
understandability of lawyers is different.

Moreover, this way of writing rules explicitly reflects a burden of proof in
litigation. The burden of proof for the conditions of a general rule resides in the
party who wants its conclusion to be satisfied whereas the burden of proof for
exceptions resides in the party who wants to deny the conclusion. Therefore, it is
useful for lawyers in civil litigation to decide which evidence should be collected
to win the case. Here is an example of PROLEG rules in contract law. We omit
detailed arguments in each predicate for the sake of explanation.

right_to_ask_payment(Seller,Buyer,Object,Price)<=
purchase_contract_establishment(Seller,Buyer,Object,Price).

% A seller has a right to force a buyer to make an payment
% over the object if a purchase contract is established.

purchase_contract_establishment(Seller,Buyer,Object,Price)<=
purchase_agreement(Seller,Buyer,Object,Price).

% A purchase contract is established if there is an agreement
% of purchase of the object.

exception(right_to_ask_payment(Seller,Buyer,Object,Price),
payment(Buyer,Seller,Object,Price)).

% There is an exception about sellerÂĄfs right to ask payment
% if buyer made payment.

payment(Buyer,Seller,Object,Price)<=
payment_fact(Buyer,Seller,Object,Price).

% Payment is made if there is a fact of payment.

And here is a case description using PROLEG facts

fact(purchase_agreement(bob,alice,television,1000 euro)).
% Bob sold the television from Alice at the price of 1000 euro.

fact(payment_fact(alice,bob,television,1000 euro)).
% Alice paid 1000 euro to Bob for television.

PROLEG provides an explanation of the reasoning process to a judgement
using a block diagram. We show a block diagram for the above case in Fig. 1.
The explanation of block diagram is as follows:

– Right-handside top-most block expresses a judgement.

PROLEG: Practical Legal Reasoning System 281

– A bottom item of each block expresses the result of evaluation of conclu-
sions/conditions; o: success, x: fail

– A solid line between blocks expresses conclusion-condition relation for a gen-
eral rule.

– A dotted line shows exception of the conclusion of a general rule.

Fig. 1. PROLEG block diagram

3 Current Status of PROLEG and Its Applicability
and Possible Extensions

We have been constructing a large rule base of 2500 rules and exceptions con-
sisting of civil code and supreme court case rules since 2009. As far as we know,
it is the largest legal rule base in the world. We checked the correctness of the
rulebase to solve the multiple-choice part of Japanese bar exams by the law
school graduates from University of Tokyo which is one of the best law school
in Japan for 2009–2022. To manage such a large database, debugging tools are
essentially necessary so we have investigated such legal debugging [1] as well.
Regarding the efficiency of legal reasoning in civil litigation, a judge must pro-
vide a decisive decision so the structure of rule base in PROLEG is a stratified
logic programming to guarantee a binary decision so that efficient implemen-
tation is possible. As a direct application of PROLEG in civil code litigation,
PROLEG can be used to check a missing arguments which should be made by
lawyers and as an educational tool, for law school students to enhance their
understanding on legal reasoning based on burden of proof. We extend PRO-
LEG into an interactive system to arrange issues [11]1. We have been developing
ODR (Online Dispute Reasoning) system more intelligent than E-Bay ODR sys-
tem by enhancing man/machine interface of PROLEG system [6]. We have also
been investigating a combination of natural language processing and PROLEG
so that a lay user can write a case description in natural language and NLP

1 You can see the demo video at
http://research.nii.ac.jp/~ksatoh/PROLEGdemo/IssueArrangmentDemo.mp4.

http://research.nii.ac.jp/~ksatoh/PROLEGdemo/IssueArrangmentDemo.mp4

282 K. Satoh

extracts necessary information for an input to PROLEG so that a lay user can
find out an outcome of his/her problem by PROLEG block diagram [2–4].

There are various directions for extension. Since PROLEG is a framework to
write legal rules in terms of general rules and exceptions so we could formalize
statutory laws in general [9]. We have investigated an application to criminal
law [5], GDPR [12] and an application to Private International Law [8].

4 Conclusion

We have described our activities of logic programming paradigm in legal domain
and explained our legal knowledge representation language PROLEG, which
has a lot of potential for supporting various legal activities. We strongly believe
that PROLEG would be one of the prominent practical application in logic
programming.

Acknowledgements. This research was supported by JSPS KAKENHI Grant Num-
bers, JP17H06103, JP19H05470 and JP22H00543, and JST, AIP Trilateral AI
Research, Grant Number JPMJCR20G4, Japan.

References

1. Fungwacharakorn, W., Tsushima, K., Satoh, K.: On the legal debugging in PRO-
LEG program. In: Advances in Intelligent Systems and Computing, vol. 1357, pp.
25–36 (2021). https://doi.org/10.1007/978-3-030-73113-7_3

2. Navas-Loro, M., Satoh, K., Rodríguez-Doncel, V.: ContractFrames: bridging the
gap between natural language and logics in contract law. In: Kojima, K., Sakamoto,
M., Mineshima, K., Satoh, K. (eds.) JSAI-isAI 2018. LNCS (LNAI), vol. 11717, pp.
101–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31605-1_9

3. Nguyen, H.T., Fungwacharakorn, W., Nishino, F., Satoh, K.: A multi-step approach
in translating natural language into logical formulas. In: Proceedings of the 35th
International Conference on Legal Knowledge and Information Systems (JURIX
2022), pp. 103–112 (2022). https://doi.org/10.3233/FAIA220453

4. Nguyen, H.T., Nishino, F., Fujita, M., Satoh, K.: An interactive natural language
interface for PROLEG. In: Proceedings of the 35th International Conference on
Legal Knowledge and Information Systems (JURIX 2022), pp. 294–297 (2022).
https://doi.org/10.3233/faia220484

5. Nishigai, Y., Satoh, K.: Programming of “Japanese presupposed ultimate fact the-
ory” in criminal law using PROLEG (in Japanese). Inf. Network Law Rev. 19,
81–120 (2021). https://doi.org/10.34374/inlaw.19.0_81

6. Nishioka, S., Satoh, K., Mori, Y.: Consumer dispute resolution system based on
PROLEG. In: Proceedings of the 35th International Conference on Legal Knowl-
edge and Information Systems (JURIX 2022), pp. 298–301 (2022). https://doi.org/
10.3233/FAIA220485

7. Satoh, K., et al.: PROLEG: an implementation of the presupposed ultimate fact
theory of Japanese civil code by PROLOG technology. In: Onada, T., Bekki,
D., McCready, E. (eds.) JSAI-isAI 2010. LNCS (LNAI), vol. 6797, pp. 153–164.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25655-4_14

https://doi.org/10.1007/978-3-030-73113-7_3
https://doi.org/10.1007/978-3-030-31605-1_9
https://doi.org/10.3233/FAIA220453
https://doi.org/10.3233/faia220484
https://doi.org/10.34374/inlaw.19.0_81
https://doi.org/10.3233/FAIA220485
https://doi.org/10.3233/FAIA220485
https://doi.org/10.1007/978-3-642-25655-4_14

PROLEG: Practical Legal Reasoning System 283

8. Satoh, K., Giordano, L., Baldoni, M.: Implementation of choice of jurisdiction
and law in private international law by PROLEG meta-interpreter. In: Baroni, P.,
Benzmüller, C., Wáng, Y.N. (eds.) CLAR 2021. LNCS (LNAI), vol. 13040, pp.
60–75. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89391-0_4

9. Satoh, K., Kogawa, T., Okada, N., Omori, K., Omura, S., Tsuchiya, K.: On general-
ity of PROLEG knowledge representation. In: Proceedings of the 6th International
Workshop on Juris-informatics (JURISIN 2012), pp. 115–128 (2012a)

10. Satoh, K., Kubota, M., Nishigai, Y., Takano, C.: Translating the Japanese presup-
posed ultimate fact theory into logic programming. In: Proceedings of the 22nd
Annual Conference on Legal Knowledge and Information Systems (JURIX 2009),
pp. 162–171 (2009). https://doi.org/10.3233/978-1-60750-082-7-162

11. Satoh, K., Takahashi, K., Kawasaki, T.: Interactive system for arranging issues
based on PROLEG in civil litigation. In: Proceedings of the Eighteenth Interna-
tional Conference on Artificial Intelligence and Law (ICAIL 2021), pp. 273–274
(2021). https://doi.org/10.1145/3462757.3466096

12. Sawasaki, T., Troussel, A., Satoh, K.: A use case on GDPR of Modular-PROLEG
for private international law. In: Proceedings of the 3th International Workshop
on Artificial Intelligence Technologies for Legal Documents (AI4LEGAL 2022), pp.
1–11 (2022)

13. Sergot, M.J., Sadri, F., Kowalski, R.A., Kriwaczek, F., Hammond, P., Cory, H.T.:
The british nationality act as a logic program. Commun. ACM 29(5), 370–386
(1986). https://doi.org/10.1145/5689.5920

https://doi.org/10.1007/978-3-030-89391-0_4
https://doi.org/10.3233/978-1-60750-082-7-162
https://doi.org/10.1145/3462757.3466096
https://doi.org/10.1145/5689.5920

Contributed Prolog Applications

Logical English for Law and Education

Robert Kowalski1(B), Jacinto Dávila2, Galileo Sartor3, and Miguel Calejo4

1 Imperial College London, London, UK
rak@doc.ic.ac.uk

2 Universidad de Los Andes, Merida, Venezuela
3 University of Turin, Turin, Italy

4 Logicalcontracts.Com, Lisbon, Portugal

Abstract. In this paper we present the key features of Logical English as syntactic
sugar for logic programming languages such as pure Prolog, ASP and s(CASP);
and we highlight two application areas, coding legal rules, and teaching logic as
a computer language for children.

Keywords: Logical English · Prolog · Law · Education

1 Introduction

Logical English (LE) [6–11, 15] exploits the unique feature of Prolog-like logic pro-
gramming (LP), that LP is the only programming paradigm based on the use of logic
for human thinking and communication. By exploiting this feature, LE becomes a wide-
spectrum computer language, which can be understood with only a reading knowledge
of English and without any technical training in computing, mathematics or logic.

LE is not only a Turing-complete computer programming language. It has the poten-
tial to represent and reason with a broad range of human knowledge, as shown by its
ability to codify the language of law. In an educational setting, it can be used to intro-
duce both computational and logical thinking across the whole range of subjects taught
in school, bridging STEM and non-STEM subjects alike.

Basic Syntax. LE differs from pure Prolog primarily in the syntax for atomic predicates.
In LE, predicates and their arguments are declared by means of templates, as in:

a person likes *a thing*

where asterisks delimit the argument places of the predicate. In the simplest case, an
argument place can be filled by a constant or a variable. For example:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 287–299, 2023.
https://doi.org/10.1007/978-3-031-35254-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_24&domain=pdf
https://doi.org/10.1007/978-3-031-35254-6_24

288 R. Kowalski et al.

Ordinary English: Alice likes anyone who likes logic.

Logical English: Alice likes a person if the person likes logic.

Prolog: likes(alice, A) :- likes(A, logic).

A variable is a noun phrase ending with a common noun, such as “person” or “thing”
and starting with a determiner such as “a”, “an” or “the”. The indefinite determiner, “a”
or “an”, introduces the first occurrence of a variable in a sentence. The same noun phrase
with the indefinite determiner replaced the definite determiner, “the”, represents all later
occurrences of the same variable in the same sentence. Any other string of words in
the position of an argument place is a constant. Unlike in Prolog, upper and lower case
letters have no significance. Here is another example:

Templates: *a person* is a parent of *a person*,
a person is the mother of *a person*.

Logical English: A person is a parent of an other person
if the person is the mother of the other person.

Prolog: is_a_parent_of(A, B) :- is_the_mother_of(A, B).

These examples illustrate some of the following characteristics of the basic syntax
of LE, which are inherited from LP:

• Sentences in LE have the form of facts or rules. Facts are atomic sentences, whereas
rules are sentences of the form conclusion if conditions, where the conclusion is an
atomic sentence and the conditions are a combination of atomic sentences, typically
connected by and.

• All variables are implicitly universally quantified with their scope being the sen-
tence in which they occur. This means that variables in different sentences have no
relationship with one another, even if they have the same name.

• The basic version of LE is untyped, like Prolog, and variable names are purely
mnemonic. So, the first example sentence above has the same translation into Prolog
as the meaningless sentence Alice likes a hat if the hat likes logic.We are developing
an extended version of LE in which types are represented by common nouns, and the
arguments of predicates are checked for compatibility with types that are declared in
the templates.

• LE is designed so that sentences in LE have a unique translation into pure Prolog. But
LE is also designed to be as unambiguous as possible, when understood by a human
reader. For this purpose, LE deliberately eliminates the use of pronouns, which are a
major source of ambiguity, as in the sentence A person is a parent of an other person
if she is the mother of her.

• The current, basic syntax of LE does not include relative clauses, as in Alice likes
anyone who likes logic. This is another deliberate choice, because relative clauses
are another source of ambiguity. For example, the relative clause which breathe fire

Logical English for Law and Education 289

is ambiguous in the sentence All dragons which breathe fire are scary. The relative
clause can be understood restrictively as meaning that a dragon is scary if the dragon
breathes fire. Or it can be understood non-restrictively, as meaning that, not only are
all dragons scary, but they also breathe fire.

Logically, restrictive relative clauses add extra conditions to a sentence, whereas non-
restrictive relative clauses add extra conclusions to the sentence. There are syntactic
conventions for distinguishing between restrictive and non-restrictive relative clauses
(such as the use of commas), but not everyone uses them correctly and consistently, and
they differ between American and British English.

Fig. 1. An LE program together with alternative scenarios and queries, displayed in a VS Code
editor. The editor provides syntax highlighting, predictive text, and a simple form of static type
checking. https://le.logicalcontracts.com/p/unvaccinated.pl.

https://le.logicalcontracts.com/p/unvaccinated.pl

290 R. Kowalski et al.

2 The SWISH Implementation of LE

The current implementation of LE in SWISH [20] translates LE programs and queries
into Prolog or s(CASP) [15]. The implementation uses Prolog or s(CASP) to answer
queries, and it translates answers and explanations into LE syntax. Figure 1 displays
an example in a VS Code editor. The example illustrates some important additional
features, which are not in the basic syntax of LE.

Negation as Failure for Rules and Exceptions. LE uses negation as failure to cater
for exceptions, as in the negative condition on lines 21 and 22 of Fig. 1. In contrast,
ordinary natural language often omits such explicit negative conditions for exceptions,
and it relies instead on stating separately that the conclusion of a rule does not apply, as
in Proleg [16, 17]. For example, instead of stating that ameeting is excused if the meeting
is a meeting of the cabinet ministers, it may be more natural to state that it is not the case
that a meeting is prohibited if the meeting is a meeting of the cabinet ministers. We are
exploring the possibility of extending LE, to include such a treatment of exceptions for
legal applications.

Metapredicates for Propositional Attitudes. LE inherits the feature of Prolog that
sentences can occur as arguments of meta-predicates. LE uses this to represent deontic
modalities (obligation, prohibition, permission) and other propositional attitudes (noti-
fication, belief, desire, dislike), introduced by the keyword that. For example, in line
24 of Fig. 1 the keyword that introduces the proposition the person pays £100 as an
argument of the meta-predicate A person has an obligation. Similarly, the keyword that
in line 27 introduces the proposition the meeting is prohibited as an argument of the
meta-predicate the person is notified.

The implementation of LE translates the sentence on lines 24–27 into the Prolog
rule:

has_an_obligation_that(A, pays(A, '£_100')) :-
attends(A, B), is prohibited(B), is_notified_that(A, is_prohibited(B)).

It translates the sentence on lines 29–32 into the Prolog rule:

'An_arrest_warrant_is_issued_for'(A) :-
has_an_obligation_that(A, pays(A, B)), not pays(A, B).

Notice that the sentence expresses the deontic character of an obligation by representing
the less-than-ideal consequence of violating the obligation.

Scenarios and Queries. Figure 1 also includes a number of scenarios and queries,
which can be combined and posed to the system, as shown in Fig. 2.

In the combination of query one and scenario one, Novak is obligated to pay £100,
but Boris is not, because, although both have attended a prohibited party (thanks to
Novak), only Novak has been notified of the prohibition.

Logical English for Law and Education 291

In the combination of query one and scenario two, Boris is obligated to pay £100,
but Novak is not, because this time it is Boris, rather than Novak, who is notified of the
prohibition.

In the combination of query two with scenario one, no arrest warrant is issued,
because Novak, the only person obligated to pay £100, pays the required amount.

In the combination of query two with scenario two, Boris is issued an arrest warrant,
because he pays an incorrect amount. An explanation for issuing the arrest warrant to
Boris is displayed in Fig. 3.

Fig. 2. A log of combined queries and scenarios together with their answers.

Fig. 3. An explanation for the answer to query two with scenario two.

292 R. Kowalski et al.

3 Logical English for Legal Applications

We have been using LE to explore the representation of a wide range of legal texts,
helping to identify ambiguities, explore alternative representations of the same text,
and compare the logical consequences of the alternatives. The texts include portions
of loan agreements, accountancy law, Italian citizenship, EU law on criminal rights,
International Swaps and Derivative contracts, and insurance contracts.

The Italian Citizenship Example. We are also developing analogues of LE for other
natural languages, such as Italian and Spanish. Figure 4 shows both an LE and a Logical
Italian (LI) representation of Article 1 of Act No. 91 of 5 February 1992:

E’ cittadino per nascita: a) il figlio di padre o di madre cittadini; b) chi e’
nato nel territorio della Repubblica se entrambi i genitori sono ignoti o
apolidi, ovvero se il figlio non segue la cittadinanza dei genitori secondo
la legge dello Stato al quale questi appartengono.

Both representations in Fig. 4were generatedmanually. In contrastwith themanually
generated LE representation in Fig. 4, google translate gives the following translation
of the original Italian text into English:

Citizen by birth: a) the child of a citizen father or mother; b) who was
born in the territory of the Republic if both parents are unknown or
stateless, or if the child does not follow the citizenship of the parents
according to the law of the state to which these belong.

Both the Italian text and its English translation are ambiguous: In particular, both
the English condition “the child does not follow the citizenship of the parents according
to the law of the state to which these belong” and its Italian counterpart, taken literally,
seem to cover only the case where both parents have the same citizenship. Moreover,
both the Italian “ovvero se” and the corresponding English “or if” seem to relate to a
separate alternative from the alternatives that precede it. These readings of the natural
language texts leave uncovered such deserving cases as the child having one parent who
is stateless or unknown, and another parent who cannot pass on its citizenship to its
child. It seems doubtful that these omissions would have been intended by the law.

The LE and LI representations in Fig. 4 incorporate only one interpretation of Article
1.1. Of course, other interpretations are possible, and they could also be represented in
LE and LI. For comparison, see the similar case of children found abandoned in the UK,
covered by the 1981 British Nationality Act, as formulated both in the original English
and in an earlier, unimplemented variant of LE [7].

Figure 4 illustrates several features of LE that were not demonstrated earlier:

• LE uses indentation, rather than brackets, to represent the relative strength of binding
of the logical connectives and and or.

• Variables can be given symbolic names, such as A and B in this example.

Logical English for Law and Education 293

Fig. 4. LE and LI representations of Article 1 of Act No. 91 of 5 February 1992. https://le.logica
lcontracts.com/p/italian_citizen_new.pl, https://le.logicalcontracts.com/p/cittadinanza_italiana.pl

• Conditions can have the form for all cases in which conditions it is the case that
conclusion, which are translated into forall(conditions, conclusion).

In Fig. 4, the possibility that a parent is unknown is expressed positively (as a kind
of “strong” negation), to reflect the wording of the original legal text. Alternatively, the
same possibility could be expressed using negation as failure, to conclude that a parent
of a person is unknown if there is no information about the parent. In fact, with the
representation in Fig. 4, it is possible to know that a person is born in Italy, but not
to know who the parents are. In such a case, the for-all condition would be satisfied
vacuously, and the person would be an Italian citizen by default.

4 Logical English for Education

By eliminating ambiguity from natural language, LE forces a writer to thinkmore clearly
about the relationship between sentences and their meanings. Thinking about meaning is
unavoidable when writing sentences for translation into computer-executable code. But
it also helps to avoid misunderstandings in communication among humans. Moreover, it
helps to bridge the gap between the sciences and the humanities, by showing that clarity
of language and thought is important in all academic disciplines.

The Italian citizenship example shows in a simple case how the use of symbolic
names, which is associated with STEM disciplines, can be used to improve the clarity of
communication in a non-STEM area. But the logical use of natural language, associated
with LE andwith some non-STEMdisciplines, is also an important skill for use in STEM
subjects, to make technical information more accessible to a wider audience.

The Definition of Subset. Figure 5 shows both an LE and an LS (Logical Spanish)
representation of the definition of subset. Arguably, the definition can be understood by
a reader without any training in mathematics or logic, but with only a reading knowledge

https://le.logicalcontracts.com/p/italian_citizen_new.pl
https://le.logicalcontracts.com/p/cittadinanza_italiana.pl

294 R. Kowalski et al.

of English or Spanish. Figure 6 shows all answers to the LE query which set is a subset
of which other set, first with the scenario named facts, and then with the scenario named
lists.

The subset example illustrates several features that have not been seen earlier:

• Because in the current version of LE variable names are purely mnemonic, the con-
ditions that A and B are sets, on lines 13 and 14, need to be stated explicitly. These
conditions would not be necessary if common nouns were treated as types. We plan
to extend LE to include such types in the near future.

• The notion of set in lines 12–18 is an abstract notion, which is neutral with respect
to how sets are represented concretely. Scenarios one and two employ different con-
crete representations. Scenario sets represents sets by facts that define the belongs to
relation explicitly. Scenario lists represents sets by Prolog-style lists, and the belongs
to relation is defined in terms of the is in relation, which is LE syntax for the Prolog
member predicate. In both scenarios, there are only two sets. In both scenarios, there
is no empty set.

Fig. 5. A definition of the subset relation in LE and LS. https://le.logicalcontracts.com/p/sets%
20with%20lists.pl, https://le.logicalcontracts.com/p/conjunto.pl

Reading versus Writing. It is natural to associate teaching computer science with
teaching students how to write computer programs. But this overlooks the fact that most
people will never need to write computer programs in their adult life. Some people may

https://le.logicalcontracts.com/p/sets%20with%20lists.pl
https://le.logicalcontracts.com/p/conjunto.pl

Logical English for Law and Education 295

Fig. 6. All subsets with sets represented by facts or by lists.

want to readprograms, to convince themselves that the programsmeet their requirements.
Some may want to understand explanations for answers to queries, and they may want
to modify assumptions to obtain better answers. But hardly anyone will need to write
programs themselves from scratch.

Focussing on teaching students how to write computer programs also overlooks the
fact that learning to write well in any language, whether it be a natural language or a
computer language, is much harder than learning to read. In this respect, LE has an
advantage over other computer languages, because it can exploit a much wider range of
examples requiring only a reading knowledge of natural language.

How to be a Happy Dragon. By focusing on reading rather than writing, examples
of programming language constructs that would ordinarily be considered too difficult
to teach at an introductory level can be included from the very beginning. Figure 7
illustrates such an example. Here the first sentence uses recursion, the second uses

Fig. 7. An LE program for introducing young children to logic and computing. https://le.logica
lcontracts.com/p/happy_dragon.pl

https://le.logicalcontracts.com/p/happy_dragon.pl

296 R. Kowalski et al.

negation as failure, and the third uses universal quantification, achieving the same effect
as iteration, while-loops or recursion in conventional programming languages.

Although this style of Englishmay seem artificial, it can bemademore natural, while
remaining unambiguous, by treating common nouns as types. For example, the sentence
on lines 13–16 could be written more naturally and more simply as:

A dragon smokes if an other dragon is a parent of the dragon
and the other dragon smokes.

All the examples we have seen until now can be understood without any knowledge
about how LE is executed. Moreover, that understanding can be enhanced by experi-
menting with different scenarios and queries, and by exploring the logical consequences.
In this example, a student can learn that alice is happy, because her only child, bob, is
healthy; bob is healthy because he does not smoke; and bob does not smoke, because
his parent alice does not smoke. It might be harder to convince a student that bob is a
happy dragon too. But at least it shows that Logic and Computing can be introduced
to children at an early age without having to use examples, such as controlling a robot
or manipulating images on a screen, which can be implemented just as well, or maybe
even better, in an imperative programming language.

The Euclidean Algorithm. As a computer language, LE combines in one language the
features of a programming language, database language, and knowledge representation
and problem-solving language. All the examples we have seen so far are examples of
its use for knowledge representation and problem solving. The representation in Fig. 8
of the Euclidean algorithm for computing the greatest common divisor (gcd) of two
numbers illustrates its use for programming. It uses the built-in Prolog predicates for
subtraction and for testing inequalities.

Notice that a query such aswhich number is the gcd of 1946 and which other number
cannot be answered, because the Prolog predicate for inequality can be used only when
the two numbers are both given as input. On the other hand, the same program can be
used both to test that a given number is the gcd of two other given numbers, as well as to
generate the gcd. This capability would need two separate programs in a conventional
imperative programming language.

On the other hand, the LE representation is not an algorithm. The Euclidean algo-
rithm is the behaviour obtained by using the LE representation to reason top-down (or
backward), as in Prolog. This behaviour can be described imperatively:

To find the gcd D of two given numbers N and M:
If N = M, then D = N.
If N > M, replace N by N-M, find the gcd D’ of N-M and M, then D = D’.
If M > N, replace M by M-N, find the gcd D’ of N and M-N, then D = D’.

One of the advantages of the declarative representation is that it is written in the
same logical style as the natural definition (or specification) of gcd, illustrated in Fig. 9.
Compared with the imperative representation, the LE representation in Fig. 8 makes it

Logical English for Law and Education 297

Fig. 8. The Euclidean algorithm represented in LE. https://le.logicalcontracts.com/p/Euclid.pl

much easier to reason that the Euclidean algorithm correctly computes the gcd. As David
Warren points out [19], this can be done by using mathematical induction, exploiting
the fact that the bottom-up (inductive) interpretation of the program in Fig. 8 computes
the same gcd relation as the top-down (algorithmic) interpretation.

Notice that the specification of gcd, illustrated in Fig. 9, is also executable, although
it is much less efficient than the Euclidean algorithm.

Fig. 9. The definition of gcd. https://le.logicalcontracts.com/p/gcd.pl

5 Related and Future Work

LE can be regarded as a controlled natural language, which is similar in spirit to ACE
[3] and PENG [18], which are also implemented in Prolog. But, whereas LE is syntactic
sugar for pure Prolog, ACE and PENG are syntactic sugar for first-order logic. PENGASP

[4], on the other hand, which is syntactic sugar for ASP, is closer to LE, but also closer
to natural English.

LE inherits the wide spectrum use of LP as a computer language for programming,
program specification, databases and knowledge representation and reasoning. However,

https://le.logicalcontracts.com/p/Euclid.pl
https://le.logicalcontracts.com/p/gcd.pl

298 R. Kowalski et al.

in its current form, it is not entirely general-purpose. It lacks the ability of imperative
languages to represent an agent’s goals and the ability of an agent to satisfy goals by
executing actions in reaction to external events.

To remedy this disability,we developed the languageLPS (Logic Production System)
[12–14] as an extension of LP. In fact, the earliest implementation of LE was for a smart
contract using the rock-paper-scissors game [2] written in LPS. We plan to extend LE to
include the reactive rules and causal laws of LPS. Other proposed extensions include a
more natural representation of rules and exceptions, following the approach of [16, 17],
as well as natural language analogues of object-oriented types and embedded functions
and relations as in Ciao [1, 5].

In the meanwhile, the current version of LE and its natural language cousins, such as
LI and LS, indicate the future potential of logic-based computer languages with a natural
language syntax. In this paper, we have highlighted legal applications and education as
two major areas in which the benefits of such languages can be exploited already today.

References

1. Casas, A., Cabeza, D., Hermenegildo, M.V.: A syntactic approach to combining functional
notation, lazy evaluation, and higher-order in LP systems. In: Hagiya, M., Wadler, P. (eds.)
FLOPS 2006. LNCS, vol. 3945, pp. 146–162. Springer, Heidelberg (2006). https://doi.org/
10.1007/11737414_11

2. Davila, J.: Rock-Paper-Scissors (2017). https://demo.logicalcontracts.com/p/rps-gets.pl
3. Fuchs, N.E., Schwitter, R.: Attempto controlled English (ACE). arXiv preprint cmp-

lg/9603003 (1996)
4. Guy, S.C., Schwitter, R.: The PENGASP system: architecture, language and authoring tool.

Lang. Resourc. Eval. 51, 67–92 (2017)
5. Hermenegildo,M.,Morales, J., Lopez-Garcia P., Carro,M.: Types,modes and somuchmore –

the Prolog way. In: Warren, D., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi,
F. (eds.) Prolog - The Next 50 Years. LNAI, vol. 13900, pp. 23–37. Springer, Cham (2023)

6. Kowalski, R.: English as a logic programming language. N. Gener. Comput. 8(2), 91–93
(1990)

7. Kowalski, R.A.: Legislation as logic programs. In: Comyn, G., Fuchs, N. E., Ratcliffe, M.
J. (eds.) LPSS 1992. LNCS, vol. 636, pp. 203–230. Springer, Heidelberg (1992). https://doi.
org/10.1007/3-540-55930-2_15

8. Kowalski, R.: Logical English. In: Proceedings of Logic and Practice of Programming (LPOP)
(2020)

9. Kowalski, R., Datoo, A.: Logical English meets legal English for swaps and derivatives. Artif.
Intell. Law 30(2), 163–197 (2021). https://doi.org/10.1007/s10506-021-09295-3

10. Kowalski, R., Dávila, J., Calejo, M.: Logical English for legal applications. In: XAIF, Virtual
Workshop on Explainable AI in Finance (2021)

11. Kowalski, R., Dávila, J., Sartor, G., Calejo, M.: Logical English for law. In: Proceedings of
the Workshop on Methodologies for Translating Legal Norms into Formal Representations
(LN2FR), JURIX (2022)

12. Kowalski, R., Sadri, F.: Reactive computing as model generation. N. Gener. Comput. 33(1),
33–67 (2015). https://doi.org/10.1007/s00354-015-0103-z

13. Kowalski, R., Sadri, F.: Programming in logic without logic programming. Theory Pract.
Logic Program. 16(03), 269–295 (2016)

https://doi.org/10.1007/11737414_11
https://demo.logicalcontracts.com/p/rps-gets.pl
https://doi.org/10.1007/3-540-55930-2_15
https://doi.org/10.1007/s10506-021-09295-3
https://doi.org/10.1007/s00354-015-0103-z

Logical English for Law and Education 299

14. Kowalski, R., Sadri, F., Calejo, M., Dávila, J.: Combining logic programming and imperative
programming in LPS. In: Warren, D., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R.,
Rossi, F. (eds.) Prolog - The Next 50 Years. LNAI, vol. 13900, pp. 210–223. Springer, Cham
(2023)

15. Sartor, G., Dávila, J., Billi, M., Contissa, G., Pisano, G., Kowalski, R.: Integration of logical
English and s(CASP). In: 2ndWorkshop onGoal-directed Execution of Answer Set Programs
(GDE’22) (2022)

16. Satoh, K., et al.: PROLEG: an implementation of the presupposed ultimate fact theory of
Japanese civil code by PROLOG technology. In: Onada, T., Bekki, D., McCready, E. (eds.)
JSAI-isAI 2010. LNCS, vol. 6797, pp. 153–164. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-25655-4_14

17. Satoh, K.: PROLEG: practical legal reasoning system. In: Warren, D., Dahl, V., Eiter, T.,
Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years. LNAI, vol.
13900, pp. 277–283. Springer, Cham (2023)

18. Schwitter, R.: English as a formal specification language. In: Proceedings of 13th International
Workshop on Database and Expert Systems Applications, pp. 228–232. IEEE (2002)

19. Warren, D.S.: Writing correct prolog programs. In: Warren, D., Dahl, V., Eiter, T.,
Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years. LNAI, vol.
13900, pp. 62–70. Springer, Cham (2023)

20. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory Pract. Logic
Program. 12(1–2), 67–96 (2012)

https://doi.org/10.1007/978-3-642-25655-4_14

Exploiting Logic Programming
for Runtime Verification: Current

and Future Perspectives

Davide Ancona, Angelo Ferrando, and Viviana Mascardi(B)

University of Genova, Genova 16146, Italy
{davide.ancona,angelo.ferrando,viviana.mascardi}@unige.it

Abstract. In this paper we discuss how Logic Programming can be
exploited for Runtime Verification, an activity where a monitor is in
charge for checking whether an observed event is allowed in the cur-
rent state. If this is the case, the monitor moves to the successive state,
observes another event, and so on, until either a violation is detected, or
the stream of events ends. If the system emitting events is expected to
run forever, so does the monitor.

Being a semi-formal method, Runtime Verification must rely on a
formal specification of the states of the observed system, and on a pre-
cise, formal description of the monitor’s behavior. These requirements,
and the raising need to deal with partial observability of events, make
the adoption of Logic Programming in the Runtime Verification domain
extremely suitable, flexible and powerful.

Keywords: Runtime Verification · Logic Programming · RML

1 Introduction

In order to gently introduce Runtime Verification, let us suppose that a multia-
gent system, namely a software system consisting of many autonomous, ‘intelli-
gent’ interacting entities [80], works well if once the seller agent sends the invoice
for the service agreed upon, the buyer agent sends a proof of the payment to the
seller, and the seller acknowledges the reception. Alice is a seller and Bob is a
buyer. We expect that the messages they exchange meet the pattern

P1 = A
invoice(G)=⇒ B : B

payProof(G)=⇒ A : A
okPay(G)=⇒ B : ε

where ag1
msg=⇒ ag2 means that agent ag1 sends a message with content msg to

agent ag2 – these components could be variable or partially instantiated –, the
symbol : is a prefix operator used to specify sequences of event types, and ε is the
empty sequence of event types. The pattern P1 represents a translation of the
“system working well” rule given in natural language into a simple, but formal
language. Let us now suppose that a piece of software M placed outside the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 300–317, 2023.
https://doi.org/10.1007/978-3-031-35254-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_25&domain=pdf
https://doi.org/10.1007/978-3-031-35254-6_25

Exploiting LP for RV: Current and Future Perspectives 301

multiagent system can observe messages exchanged among agents, and observes
the trace

S1 = < alice
invoice(20KgApples)=⇒ bob, alice

okPay(20KgApples)=⇒ bob >

If M can recognize that the first event in the trace has type A
invoice(G)=⇒ B, and

the second has type A
okPay(G)=⇒ B, M can reason on S1 and on the expected

pattern P1, and it can derive that Alice should have waited for Bob sending the
proof of payment for the apples, before sending an acknowledge to him. Hence,
M can warn either the agents or a (human) controller that a violation of the
commercial transaction rules took place.

This toy example includes all the main building blocks of Runtime Verifica-
tion, RV. RV [63] dynamically checks that event traces like S1 in our example,
generated by single runs of a System Under Scrutiny (SUS, the multiagent sys-
tem consisting of Alice and Bob in our example) are compliant with the formal
specification of its expected correct behavior, P1 in our example. The external
observer M is named monitor: it is in charge for monitoring what is going on,
and for taking actions when needed. The formal specification P1 corresponds to
the expected initial state of the SUS, and can be seen as the initial state of the
monitor. If the first observed event meets the first expected event, the monitor
moves to the successive expected state, that is

P1′ = B
payProof(G)=⇒ A : A

okPay(G)=⇒ B : ε

The monitor behavior is driven by a transition relation involving representations
of states and observed events.

As we recently observed [15] “RV is complementary to other verification
methods: as formal verification, it is based on a specification formalism, but
scales well to real systems and complex properties, by forgoing exhaustiveness as
software testing”.

In order to be usable and useful, a RV system needs (i) a language for express-
ing the expected properties of the SUS that is powerful but easy to write and (ii)
an efficient and formally grounded mechanism to recognize violations of those
properties by the observed traces of events. In our example the mechanism is a
transition relation between states: if no transition is possible, a violation took
place.

We believe that Logic Programming (LP) is the right tool for addressing
both challenges above thanks to its ability to represent properties like P1 in a
compact and understandable way, and to its declarative and operational reading.
In this paper we provide a short summary of our achievements in exploiting LP
for RV (Sect. 2), we analyse the state of the art (Sect. 3) and we draw some
perspectives on “what kinds of applications is Prolog most suited for” (Sect. 4).

2 Trace Expressions and RML

Trace expressions [4,6,9–11,23] – previously named ‘global types’ – are a lan-
guage for specifying patterns like P1. They are based on the notions of event

302 D. Ancona et al.

(for example, Alice sends an invoice for 20 Kg of apples to Bob) and event type
(for example, one seller sends an invoice for some service or good to one buyer:
event types allow specifications to be more general, compact and readable). E
denotes the fixed universe of events subject to monitoring. An event trace over
E is a possibly infinite sequence of events in E, and a Trace Expression over E

denotes a set of event traces over E. Trace expressions are built on top of event
types (chosen from a set ET), each specifying a subset of events in E. A Trace
Expression τ ∈ T represents a set of possibly infinite event traces, and is defined
on top of the following operators:

– ε (empty trace, eps in Prolog notation), denoting the singleton set {ε} con-
taining the empty event trace ε.

– ϑ:τ (prefix, ET:T in Prolog notation), denoting the set of all traces whose first
event e matches the event type ϑ, and the remaining part is a trace of τ . For
example, the P1 trace expression introduced in Sect. 1 contains prefix opera-
tors; the trace S2 = < alice

invoice(20KgApples)=⇒ bob, bob
payProof(20KgApples)=⇒

alice, alice
okPay(20KgApples)=⇒ bob > is compliant with P1 (it is a valid trace

for the P1 specification) because alice
invoice(20KgApples)=⇒ bob matches the first

event type in P1, and hence P1 can rewrite into

P1′ = B
payProof(G)=⇒ A : A

okPay(G)=⇒ B : ε

In a similar way, bob
payProof(20KgApples)=⇒ alice matches the first event type in

P1′, that rewrites in

P1′′ = A
okPay(G)=⇒ B : ε

and so on.

– τ1∨τ2 (union, T1\/T2 in Prolog notation), denoting the union of the traces
of τ1 and τ2. For example,

P2 = A
invoice(G)=⇒ B : B

payProof(G)=⇒ A :

((A okPay(G)=⇒ B : ε) ∨ (A invalidPay(G)=⇒ B : ε))
extends P1 to cope with the case that the proof of payment is invalid: once
A receives it from B, it may either acknowledge the reception, meaning that
the payment was successful, or inform B that the payment was not valid.
S2 and S3 = < alice

invoice(20KgApples)=⇒ bob, bob
payProof(20KgApples)=⇒ alice,

alice
invalidPay(20KgApples)=⇒ bob > are both valid traces for P2. Instead,

S4 = < alice
invalidPay(20KgApples)=⇒ bob > is not. In fact, the first allowed

message in P2 must match A
invoice(G)=⇒ B, and alice

invalidPay(20KgApples)=⇒ bob
does not.

Exploiting LP for RV: Current and Future Perspectives 303

– τ1·τ2 (concatenation, T1*T2 in Prolog notation), denoting the set of all traces
obtained by concatenating the traces of τ1 with those of τ2. For example,
assuming that P3 specifies the correct interactions between a seller and a
wholesaler, P4 = P2 · P3 models the pattern where, after concluding
an interaction with a buyer ruled by P2, the seller can start interacting with
the wholesaler, according to the rules specified by P3.

– τ1|τ2 (shuffle, T1|T2 in Prolog notation), denoting the set obtained by shuf-
fling the traces of τ1 with the traces of τ2. The fact that the seller can converse
at the same time with the buyer and with the wholesaler, freely interleaving
steps of the two conversations, can be modeled by P5 = P2 | P3.

– τ1∧τ2 (intersection T1/\T2 in Prolog notation), denoting the intersection of
the traces of τ1 and τ2. Such an operator is used to express conjunction of
properties, we do not provide examples for it, due to space constraints.

Trace expressions semantics is defined by a δ transition relation that states
when a trace expression can be rewritten into another upon observation of an
event. The semantics is also implemented in Prolog in a natural and elegant way.
Recently, we designed and implemented a Domain Specific Language, RML1 [15]
that allows for the use of trace expressions in an abstract and handy way, and
that is compiled down into Prolog.

The most recent version of the Prolog implementation of the trace expressions
semantics is available in the RML web site, https://github.com/RMLatDIBRIS/
monitor/blob/master/trace expressions semantics.pl. Below we show how a sim-
plified version of this Prolog semantics works.

Given a match predicate that checks if an observed event E matches an event
type ET, the δ transition for the prefix operator can be implemented by

delta(ET:T, E, T) :- match(E, ET).

meaning that if the event E matches event type ET (body of the clause, namely
the part after the :- symbol2), a trace expression ET:T can be rewritten into
the trace expression T (head of the clause, where the first argument ET:T of the
delta predicate represents the trace expression, the second argument E is the
observed event, and the third argument T is the result of applying δ).

The clause

delta(eps,_,_) :- !, fail.

means that no transition is possible from the empty trace expression ε. This
rule prevents the Prolog interpreter from using other available definitions of

1 https://rmlatdibris.github.io/.
2 H :- B should be read as ‘if B holds, then H holds’.

https://github.com/RMLatDIBRIS/monitor/blob/master/trace_expressions_semantics.pl
https://github.com/RMLatDIBRIS/monitor/blob/master/trace_expressions_semantics.pl
https://rmlatdibris.github.io/

304 D. Ancona et al.

delta (the ! ‘cut’ symbol in the body) and then forcing the failure of the
delta(eps, ,) goal (the built-in fail predicate).

Clauses

delta(T1\/T2, E, T1r) :- delta(T1, E, T1r).
delta(T1\/T2, E, T2r) :- delta(T2, E, T2r).

mean that if T1 can be rewritten into T1r upon observing E (body of the first
clause), then also the union T1\/T2 can (head of the first clause). This is true
also in case T2 can be rewritten into T2r, when T1\/T2 can be rewritten into
T2r (second clause). We should note here that if both T1 and T2 can be rewrit-
ten into a new trace expression upon observing E, nondeterminism occurs. The
actual implementation available in the RML repository is deterministic [12], and
forces the monitor to rewrite T1 and disregard the possibility to rewrite T2.

Clauses

delta(T1|T2, E, T1r|T2) :- delta(T1, E, T1r).
delta(T1|T2, E, T1|T2r) :- delta(T2, E, T2r).

deal with shuffle: if T1 can be rewritten into T1r, then T1|T2 can be rewritten in
T1r|T2 where, differently from union, T2 is kept in the rewritten trace expression
(first clause). Other clauses deal with concatenation and intersection3.

In order to exemplify the delta functioning we need to define its transitive
closure closure delta(T, Evs) that takes one trace expression T and the list of
observed events Evs4, and prints some messages for informing the user of what
is going on5:

closure_delta(T, []) :-
write(T), write(’\n no more events to consume’).

closure_delta(T, [Ev|Evs]) :-
delta(T, Ev, T1),
write(T), write(’ accepted ’), write(Ev), write(’ and moved on’),
closure_delta(T1, Evs).

3 The code of this simplified semantics is available from https://github.
com/VivianaMascardi/VivianaMascardi.github.io/blob/main/Software/
traceExprSimplifiedSemantics.pl.

4 In the real RV system, these events are generated by the SUS as a possibly infi-
nite stream; the example provided here aims at simulating how the monitor works,
assuming that events were previously logged and are hence a finite sequence.

5 In the first clause we should distinguish the case where the trace expression may halt
(for example, it is eps), which is fine, from the case where the trace expression expects
more events, which is instead a violation since the trace of events is the empty list
[]. The actual implementation in the RML repository provides a may halt predicate
to properly deal with these cases.

https://github.com/VivianaMascardi/VivianaMascardi.github.io/blob/main/Software/traceExprSimplifiedSemantics.pl
https://github.com/VivianaMascardi/VivianaMascardi.github.io/blob/main/Software/traceExprSimplifiedSemantics.pl
https://github.com/VivianaMascardi/VivianaMascardi.github.io/blob/main/Software/traceExprSimplifiedSemantics.pl

Exploiting LP for RV: Current and Future Perspectives 305

closure_delta(T, [Ev|_Evs]) :-
write(T),write(’ cannot accept ’),write(Ev),write(’ *FAILURE*’).

We provide the following definition for the match predicate, where 20 stands for
20KgApples

match(msg(alice, bob, invoice(20)), msg(A, B, invoice(G))).
match(msg(bob, alice, payProof(20)), msg(B, A, payProof(G))).
match(msg(alice, bob, okPay(20)), msg(A, B, okPay(G))).
match(msg(alice, bob, invalidPay(20)), msg(A, B, invalidPay(G))).

When we call the goal

T = msg(A, B, invoice(G)) :
msg(B, A, payProof(G)):
((msg(A, B, okPay(G)) : eps) \/
(msg(A, B, invalidPay(G)) : eps)),

Evs = [msg(alice, bob, invoice(20)),
msg(bob, alice, payProof(20)),
msg(alice, bob, invalidPay(20))],

closure_delta(T, Evs).

where T corresponds to P2 and Evs corresponds to S3 we obtain the following
output where, for readability, we use the same logical variables A, B, G used in
the goal above; the actual output of the Prolog interpreter shows different, newly
generated ones:

msg(A,B,invoice(G)):
msg(B,A,payProof(G)):
(msg(A,B,okPay(G)):eps)\/
(msg(A,B,invalidPay(G)):eps)

consumed msg(alice,bob,invoice(20)) and moved on

msg(B,A,payProof(G)):
(msg(A,B,okPay(G)):eps)\/

(msg(A,B,invalidPay(G)):eps)
consumed msg(bob,alice,payProof(20)) and moved on

(msg(A,B,okPay(G)):eps)\/
(msg(A,B,invalidPay(G)):eps)
consumed msg(alice,bob,invalidPay(20)) and moved on

eps
no more events to consume

On the other hand, if Evs = [msg(alice, bob, invalidPay(20))] in the goal
above, corresponding to S4, the output is

306 D. Ancona et al.

msg(A,B,invoice(G)):
msg(B,A,payProof(G)):
(msg(A,B,okPay(G)):eps)\/

(msg(A,B,invalidPay(G)):eps)
cannot accept msg(alice,bob,invalidPay(20)) *FAILURE*

because the trace expression P2 does not expect alice
invalidPay(20KgApples)=⇒ bob

as first exchanged message.
The actual code in the RML repository is much more complex: indeed, trace

expressions can support both parameters and recursion, and can model – in a
finite way – infinite traces of events. For example

P6 = A
ping(X)=⇒ B : B

pong(X)=⇒ A : P6

specifies an infinite trace of ping and pong messages, with the same content,
exchanged by two agents A and B, while

P7 = A
ping(X)=⇒ B : B

pong(X)=⇒ A : (P7 ∨ ε)

specifies all the traces that start with ping pong, and are followed by zero or
more – including infinite – repetitions of ping pong. The Prolog representations
are

P6 = msg(A, B, ping(X)):msg(A, B, pong(X)):P6
and

P7 = msg(A, B, ping(X)):msg(A, B, pong(X)):(P7\/eps)
respectively. 6.

Our work on trace expressions started in 2012 and continued up to now
without interruptions. Our most recent achievements involve the challenging
problem of partial observability of events in the SUS, that we tackled both in a
centralized [14] and in a decentralized multiagent setting [13].

Although in this section we took a multiagent system as running example,
RV – and RML in particular – can be exploited to monitor any kind of system,
from robotics to Internet of Things.

6 In the code available from the RML repository, we re-implemented substitution to
manage the scope of a logical variable: hence, we can distinguish between the term
P6 where we want A, B, X to be unified with the same values forever, and P6’ where
we want them to remain the same in two consecutive ping pong events, but possibly
change in the next round. In the RML language we exploit the let keyword and curly
brackets to define the variable scope, as discussed in https://rmlatdibris.github.io/
rml.html, ‘Parametric specifications’. The Prolog representation of trace expressions
features the implementation of let. Given that terms can be cyclic, we used the
coinduction library of SWI Prolog [75], to recognize when two cyclic terms are
the same and manage them properly while applying substitutions, avoiding non-
termination.

https://rmlatdibris.github.io/rml.html
https://rmlatdibris.github.io/rml.html

Exploiting LP for RV: Current and Future Perspectives 307

3 State of the Art

To get an updated picture of the use of LP for RV, on February 2023 we ana-
lyzed the literature on RV and LP by issuing queries on Google Scholar7. The
main inclusion criterion was being in the first 22 answers to one of the fol-
lowing four queries on Google Scholar: “runtime verification” and “logic pro-
gramming”, “runtime verification” and “prolog”, “runtime monitoring” and
“logic programming”, “runtime monitoring” and “prolog”. We then carefully
filtered the results that did not meet the exclusion criteria “being PhD or
Master theses, books or unpublished pre-prints”. After removing duplicates we
retained the following 62 papers: 1985 [60], 2001 [16], 2005 [76], 2006 [84],
2008 [1,77,78], 2009 [18,29,32,50,53–55,65], 2010 [27], 2011 [3], 2012 [19,24,44],
2013 [49], 2014 [5,22,23,28,30,68], 2015 [7,35,45,67,79], 2016 [8,10,26,37,52,72],
2017 [36,38,51,64] [44,70], 2018 [25,40,42,47,48,61] 2019 [41,46,62,73,81], 2020
[39,82], 2021 [15,71], 2022 [13,14], 2023 [83].

Fig. 1. Distribution of papers over years (left) and co-authors of at least two papers
(right).

The distribution of papers over years is shown in Fig. 1 (left), while Fig. 1
(right) shows the authors that co-authored three or two papers among the
retrieved ones, excluding papers we were involved in. The words that occur
more often in the titles (resp. abstracts) are represented in Fig. 2 (resp. Fig. 3).

Besides RML and Trace Expressions, another work where computational logic
is used to monitor traces at runtime is EAGLE [17]. The work by Barringer

7 https://scholar.google.com/.

https://scholar.google.com/

308 D. Ancona et al.

Fig. 2. Most frequent words in titles. Fig. 3. Most frequent words in
abstracts.

et al. was not returned by the search on Google Scholar but it is mentioned
by Havelund in [45], that we analyzed in depth. EAGLE is logic defined and
implemented by Barringer et al., it offers a succinct set of primitives supporting
recursive parameterized equations, with a minimal/maximal fix-point semantics
together with three temporal operators: next-time, previous-time, and concate-
nation. Prolog is definitely more powerful and expressive, but EAGLE received
a lot of attention, as it represents one of the first implemented logics for RV.

In [45], Havelund describes a rule-based RV system implemented in the
SCALA programming language8. Although not using Prolog, his conclusions
hold for Prolog-based RV as well: “Rule-based systems seem natural for RV
and monitoring. From a specification notation point of view, rule-based systems
appear quite suitable for expressing the kind of properties the RV community
normally writes.”

Below we provide a critical analysis of two among those papers whose authors
are more active in the field according to Fig. 1. Their common feature is dis-
cussing how LP has been, or could be, exploited to cope with the problem of
partial information in the context of RV: the paper by Chesani et al. [27] deals
with the need of generating hypotheses, whereas the paper by Alberti et al. [3]
formalize the problem of whether it is possible to safely reduce the number of
necessary observations of the SUS.

Chesani et al. [27] presented the fundamentals of a reactive and logic-based
version of the Event Calculus [59] named REC for monitoring declarative proper-
ties, while maintaining a solid formal background. Monitoring calls for the ability
of carrying out ‘open’ reasoning, i.e., of reasoning upon the partial and incom-
plete information acquired during the execution, extending the inferred results
as new events occur. REC achieves the goal by taking advantage of the SCIFF
proof procedure [2], an extension of Fung and Kowalski’s IFF proof-procedure
for abductive LP [43]. In a paper building on top of [27], Bragaglia et al. [21]
studied a Prolog-based axiomatization of REC and discussed different runtime
monitoring application fields including Business Process Management, clinical
guidelines, and multiagent systems.

8 https://www.scala-lang.org/.

https://www.scala-lang.org/

Exploiting LP for RV: Current and Future Perspectives 309

Alberti et al. [3] showed that speeding up RV by considering traces with
partial information by reducing the number of observations is possible for the
case where the observation space can be modeled as a set of (not necessarily
consecutive) natural numbers. They also show that it is possible to draw conclu-
sions about the complete execution trace by observing partial traces when the
property to be checked is expressed in Linear Temporal Logics [69], widely used
in model checking and RV. Although they have no running Prolog-based imple-
mentation of their runtime monitoring tool, Alberti et al. claim that detection
of complex events (composed of atomic ones) can benefit from LP techniques,
and that tools and techniques developed in the field of LP can be used to guide
event detection at a higher level thereby further saving observation effort.

4 Conclusions and Future Perspectives

A logic program is a set of Horn clauses, namely logical implications meeting
some constraints on the form of their heads, or consequences, and their bod-
ies, or premises. It has both an operational reading, since Horn clauses can
be executed by an interpreter to demonstrate that some goal can be achieved,
and a declarative one, when they are seen as a formal specification. When the
behaviour of a system that moves from one state to another upon some event
taking place can be described by rules in the form of Horn clauses, then the
logic program implementing such clauses becomes, at the very same time, a tool
for executing the system transition mechanism, and a formal description of the
system’s operational semantics. In other words, the implementation of the tran-
sition mechanism is coherent with the semantics by design, being expressed in
the same LP piece of code.

In this paper we discussed how LP can be exploited for RV. Being a semi-
formal method, RV must rely on a formal specification of the states of the system
observed by the monitor, and on a precise, formal description of the monitor’s
behavior. Because of these requirements, we found the adoption of LP in the RV
domain extremely suitable and powerful.

When observed events are not complete, the RV activity becomes even more
challenging. RV in presence of incomplete information requires reactivity, to
react to events that have been fully observed and timely emit a verdict on their
compliance to the system’s specification. It also requires rationality, to reason
about events that have been observed only in a partial way or not at all (noisy
communication, events sampling due to hardware or software requirements). In
these situations, the monitor must make guess on what these events might have
been, and if the system’s execution is still safe.

LP is well known to integrate reactivity and rationality in an elegant, handy
way [20,31,33,34,58]. This is another reason why LP is well suited to implement
RV tools, especially under partial observability, and our experience suggests that
features like coinduction, meta-reasoning, all-solutions predicates are necessary
for development of sophisticated RV engines.

Based on our more than ten years experience in using LP for RV, we believe
that RV might become a killer application for LP. The only issue that might

310 D. Ancona et al.

affect our forecast is efficiency of logic-based approaches, and a comparison of
the efficiency of RML and state of the art RV tools is on its way to explore this
possible obstacle. Nevertheless, as stated in the recent paper Fifty Years of Pro-
log and Beyond [56], “Prolog is a surprisingly efficient language”! The authors
provide convincing evidences for this claim, including availability of last call opti-
mization, efficient indexing and matching, and fine-tuned memory management
with efficient backtracking. As far as our research is concerned, grounding RML
and trace expression specifications by exploiting contextual knowledge on the
SUS might provide an additional efficiency speed-up, making LP competitive
with any other approach.

Developing examples in challenging scenarios would represent a further test
of our approach and would make it more understandable also outside the Prolog
community. To this aim we will take inspiration by the work by Dal Palù, Dovier,
Formisano, and Pontelli for scenarios where the SUS is a model of a biological
domain [66], and by the works by Kowalski, Dávila, Sartor and Calejo [57] and
Satoh [74] for RV of legal systems.

References

1. Alberti, M., et al.: Expressing and verifying business contracts with abductive logic
programming. Int. J. Electron. Commer. 12(4), 9–38 (2008). https://doi.org/10.
2753/JEC1086-4415120401

2. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Veri-
fiable agent interaction in abductive logic programming: the SCIFF framework.
ACM Trans. Comput. Log. 9(4), 29:1–29:43 (2008). https://doi.org/10.1145/
1380572.1380578

3. Alberti, M., Dell’Acqua, P., Pereira, L.M.: Observation strategies for event detec-
tion with incidence on runtime verification: theory, algorithms, experimentation.
Ann. Math. Artif. Intell. 62(3–4), 161–186 (2011). https://doi.org/10.1007/s10472-
011-9259-5

4. Ancona, D., et al.: Behavioral types in programming languages. Found. Trends
Programm. Lang. 3(2–3), 95–230 (2016)

5. Ancona, D., Briola, D., El Fallah Seghrouchni, A., Mascardi, V., Taillibert, P.:
Exploiting Prolog for projecting agent interaction protocols. In: Giordano, L.,
Gliozzi, V., Pozzato, G.L. (eds.) Proceedings of the 29th Italian Conference on
Computational Logic, Torino, Italy, June 16–18, 2014. CEUR Workshop Proceed-
ings, vol. 1195, pp. 30–45. CEUR-WS.org (2014). http://ceur-ws.org/Vol-1195/
long2.pdf

6. Ancona, D., Briola, D., Ferrando, A., Mascardi, V.: Global protocols as first class
entities for self-adaptive agents. In: Weiss, G., Yolum, P., Bordini, R.H., Elkind,
E. (eds.) Proceedings of the 2015 International Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2015, Istanbul, Turkey, May 4–8, 2015, pp. 1019–
1029. ACM (2015). http://dl.acm.org/citation.cfm?id=2773282

7. Ancona, D., Briola, D., Ferrando, A., Mascardi, V.: Runtime verification of fail-
uncontrolled and ambient intelligence systems: a uniform approach. Intelligenza
Artificiale 9(2), 131–148 (2015). https://doi.org/10.3233/IA-150084

https://doi.org/10.2753/JEC1086-4415120401
https://doi.org/10.2753/JEC1086-4415120401
https://doi.org/10.1145/1380572.1380578
https://doi.org/10.1145/1380572.1380578
https://doi.org/10.1007/s10472-011-9259-5
https://doi.org/10.1007/s10472-011-9259-5
http://ceur-ws.org/Vol-1195/long2.pdf
http://ceur-ws.org/Vol-1195/long2.pdf
http://dl.acm.org/citation.cfm?id=2773282
https://doi.org/10.3233/IA-150084

Exploiting LP for RV: Current and Future Perspectives 311

8. Ancona, D., Briola, D., Ferrando, A., Mascardi, V.: MAS-DRiVe: a practical app-
roach to decentralized runtime verification of agent interaction protocols. In: San-
toro, C., Messina, F., Benedetti, M.D. (eds.) Proceedings of the 17th Workshop
“From Objects to Agents” co-located with 18th European Agent Systems Summer
School (EASSS 2016), Catania, Italy, July 29–30, 2016. CEUR Workshop Proceed-
ings, vol. 1664, pp. 35–43. CEUR-WS.org (2016). http://ceur-ws.org/Vol-1664/w7.
pdf

9. Ancona, D., Drossopoulou, S., Mascardi, V.: Automatic generation of self-
monitoring mass from multiparty global session types in jason. In: Baldoni, M.,
Dennis, L., Mascardi, V., Vasconcelos, W. (eds.) DALT 2012. LNCS (LNAI), vol.
7784, pp. 76–95. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
37890-4 5

10. Ancona, D., Ferrando, A., Mascardi, V.: Comparing trace expressions and linear
temporal logic for runtime verification. In: Ábrahám, E., Bonsangue, M., Johnsen,
E.B. (eds.) Theory and Practice of Formal Methods. LNCS, vol. 9660, pp. 47–64.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30734-3 6

11. Ancona, D., Ferrando, A., Mascardi, V.: Parametric runtime verification of multia-
gent systems. In: Larson, K., Winikoff, M., Das, S., Durfee, E.H. (eds.) Proceedings
of the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS
2017, São Paulo, Brazil, May 8–12, 2017, pp. 1457–1459. ACM (2017). http://dl.
acm.org/citation.cfm?id=3091328

12. Ancona, D., Ferrando, A., Mascardi, V.: Can determinism and compositional-
ity coexist in RML? In: Dardha, O., Rot, J. (eds.) Proceedings Combined 27th
International Workshop on Expressiveness in Concurrency and 17th Workshop on
Structural Operational Semantics, EXPRESS/SOS 2020, and 17th Workshop on
Structural Operational SemanticsOnline, 31 August 2020. EPTCS, vol. 322, pp.
13–32 (2020). https://doi.org/10.4204/EPTCS.322.4

13. Ancona, D., Ferrando, A., Mascardi, V.: Exploiting probabilistic trace expres-
sions for decentralized runtime verification with gaps. In: Calegari, R., Ciatto, G.,
Omicini, A. (eds.) Proceedings of the 37th Italian Conference on Computational
Logic, Bologna, Italy, June 29–July 1, 2022. CEUR Workshop Proceedings, vol.
3204, pp. 154–170. CEUR-WS.org (2022). http://ceur-ws.org/Vol-3204/paper 17.
pdf

14. Ancona, D., Ferrando, A., Mascardi, V.: Mind the gap! Runtime verification of
partially observable MASs with probabilistic trace expressions. In: Baumeister,
D., Rothe, J. (eds.) EUMAS 2022. LNCS, vol. 13442, pp. 22–40. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-20614-6 2

15. Ancona, D., Franceschini, L., Ferrando, A., Mascardi, V.: RML: theory and practice
of a domain specific language for runtime verification. Sci. Comput. Program. 205,
102610 (2021). https://doi.org/10.1016/j.scico.2021.102610

16. Barnett, M., Schulte, W.: Spying on components: a runtime verification tech-
nique. In: Workshop on Specification and Verification of Component-Based Sys-
tems (2001)

17. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 5

18. Bodden, E., Chen, F., Rosu, G.: Dependent advice: a general approach to optimiz-
ing history-based aspects. In: Sullivan, K.J., Moreira, A., Schwanninger, C., Gray,
J. (eds.) Proceedings of the 8th International Conference on Aspect-Oriented Soft-

http://ceur-ws.org/Vol-1664/w7.pdf
http://ceur-ws.org/Vol-1664/w7.pdf
https://doi.org/10.1007/978-3-642-37890-4_5
https://doi.org/10.1007/978-3-642-37890-4_5
https://doi.org/10.1007/978-3-319-30734-3_6
http://dl.acm.org/citation.cfm?id=3091328
http://dl.acm.org/citation.cfm?id=3091328
https://doi.org/10.4204/EPTCS.322.4
http://ceur-ws.org/Vol-3204/paper_17.pdf
http://ceur-ws.org/Vol-3204/paper_17.pdf
https://doi.org/10.1007/978-3-031-20614-6_2
https://doi.org/10.1016/j.scico.2021.102610
https://doi.org/10.1007/978-3-540-24622-0_5

312 D. Ancona et al.

ware Development, AOSD 2009, Charlottesville, Virginia, USA, March 2–6, 2009,
pp. 3–14. ACM (2009). https://doi.org/10.1145/1509239.1509243

19. Bodden, E., Hendren, L.J.: The Clara framework for hybrid typestate analysis. Int.
J. Softw. Tools Technol. Transf. 14(3), 307–326 (2012). https://doi.org/10.1007/
s10009-010-0183-5

20. Bozzano, M., Delzanno, G., Martelli, M., Mascardi, V., Zini, F.: Logic programming
and multi-agent systems: a synergic combination for applications and semantics.
In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.) The Logic
Programming Paradigm - A 25-Year Perspective. Artificial Intelligence, pp. 5–32.
Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-60085-2 1

21. Bragaglia, S., Chesani, F., Mello, P., Montali, M., Torroni, P.: Reactive event calcu-
lus for monitoring global computing applications. In: Artikis, A., Craven, R., Kesim
Çiçekli, N., Sadighi, B., Stathis, K. (eds.) Logic Programs, Norms and Action.
LNCS (LNAI), vol. 7360, pp. 123–146. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29414-3 8

22. Briola, D., Mascardi, V., Ancona, D.: Distributed runtime verification of JADE and
Jason multiagent systems with Prolog. In: Giordano, L., Gliozzi, V., Pozzato, G.L.
(eds.) Proceedings of the 29th Italian Conference on Computational Logic, Torino,
Italy, June 16–18, 2014. CEUR Workshop Proceedings, vol. 1195, pp. 319–323.
CEUR-WS.org (2014). http://ceur-ws.org/Vol-1195/short3.pdf

23. Briola, D., Mascardi, V., Ancona, D.: Distributed runtime verification of JADE
multiagent systems. In: Camacho, D., Braubach, L., Venticinque, S., Badica, C.
(eds.) Intelligent Distributed Computing VIII. SCI, vol. 570, pp. 81–91. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-10422-5 10

24. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A., Shastry, B.: Towards
taming privilege-escalation attacks on android. In: 19th Annual Network and Dis-
tributed System Security Symposium, NDSS 2012, San Diego, California, USA,
February 5–8, 2012. The Internet Society (2012). https://www.ndss-symposium.
org/ndss2012/towards-taming-privilege-escalation-attacks-android

25. Búr, M., Szilágyi, G., Vörös, A., Varró, D.: Distributed graph queries for runtime
monitoring of cyber-physical systems. In: Russo, A., Schürr, A. (eds.) FASE 2018.
LNCS, vol. 10802, pp. 111–128. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89363-1 7

26. Chesani, F., Masellis, R.D., Francescomarino, C.D., Ghidini, C., Mello, P., Mon-
tali, M., Tessaris, S.: Abducing workflow traces: a general framework to manage
incompleteness in business processes. In: Kaminka, G.A., Fox, M., Bouquet, P.,
Hüllermeier, E., Dignum, V., Dignum, F., van Harmelen, F. (eds.) ECAI 2016 -
22nd European Conference on Artificial Intelligence, 29 August-2 September 2016,
The Hague, The Netherlands - Including Prestigious Applications of Artificial Intel-
ligence (PAIS 2016). Frontiers in Artificial Intelligence and Applications, vol. 285,
pp. 1734–1735. IOS Press (2016). https://doi.org/10.3233/978-1-61499-672-9-1734

27. Chesani, F., Mello, P., Montali, M., Torroni, P.: A logic-based, reactive calculus of
events. Fundam. Informaticae 105(1-2), 135–161 (2010). https://doi.org/10.3233/
FI-2010-361

28. Chowdhury, O., Jia, L., Garg, D., Datta, A.: Temporal mode-checking for runtime
monitoring of privacy policies. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 131–149. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08867-9 9

29. Costantini, S., Dell’Acqua, P., Pereira, L.M., Tsintza, P.: Runtime verification of
agent properties. In: Abreu, S., Seipel, D. (eds.) Proceedings of INAP 2009 18thIn-

https://doi.org/10.1145/1509239.1509243
https://doi.org/10.1007/s10009-010-0183-5
https://doi.org/10.1007/s10009-010-0183-5
https://doi.org/10.1007/978-3-642-60085-2_1
https://doi.org/10.1007/978-3-642-29414-3_8
https://doi.org/10.1007/978-3-642-29414-3_8
http://ceur-ws.org/Vol-1195/short3.pdf
https://doi.org/10.1007/978-3-319-10422-5_10
https://www.ndss-symposium.org/ndss2012/towards-taming-privilege-escalation-attacks-android
https://www.ndss-symposium.org/ndss2012/towards-taming-privilege-escalation-attacks-android
https://doi.org/10.1007/978-3-319-89363-1_7
https://doi.org/10.1007/978-3-319-89363-1_7
https://doi.org/10.3233/978-1-61499-672-9-1734
https://doi.org/10.3233/FI-2010-361
https://doi.org/10.3233/FI-2010-361
https://doi.org/10.1007/978-3-319-08867-9_9
https://doi.org/10.1007/978-3-319-08867-9_9

Exploiting LP for RV: Current and Future Perspectives 313

ternational Conference on Applications of Declarative Programming and Knowl-
edge Management, pp. 257–271 (2009)

30. Costantini, S., Gasperis, G.D.: Runtime self-checking via temporal (meta-)axioms
for assurance of logical agent systems. In: Giordano, L., Gliozzi, V., Pozzato, G.L.
(eds.) Proceedings of the 29th Italian Conference on Computational Logic, Torino,
Italy, June 16–18, 2014. CEUR Workshop Proceedings, vol. 1195, pp. 241–255.
CEUR-WS.org (2014). http://ceur-ws.org/Vol-1195/long16.pdf

31. Costantini, S., Tocchio, A.: A logic programming language for multi-agent systems.
In: Flesca, S., Greco, S., Ianni, G., Leone, N. (eds.) JELIA 2002. LNCS (LNAI),
vol. 2424, pp. 1–13. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45757-7 1

32. Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Software self-reconfiguration: a BDI-based
approach. In: Sierra, C., Castelfranchi, C., Decker, K.S., Sichman, J.S. (eds.) 8th
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2009), Budapest, Hungary, May 10–15, 2009, vol. 2, pp. 1159–1160.
IFAAMAS (2009). https://dl.acm.org/citation.cfm?id=1558189

33. Dell’Acqua, P., Engberg, M., Pereira, L.M.: An architecture for a rational reactive
agent. In: Pires, F.M., Abreu, S. (eds.) EPIA 2003. LNCS (LNAI), vol. 2902, pp.
379–393. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24580-
3 44

34. Dell’Acqua, P., Sadri, F., Toni, F.: Combining introspection and communication
with rationality and reactivity in agents. In: Dix, J., del Cerro, L.F., Furbach,
U. (eds.) JELIA 1998. LNCS (LNAI), vol. 1489, pp. 17–32. Springer, Heidelberg
(1998). https://doi.org/10.1007/3-540-49545-2 2

35. Du, X., Liu, Y., Tiu, A.: Trace-length independent runtime monitoring of quanti-
tative policies in LTL. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol.
9109, pp. 231–247. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19249-9 15

36. Estivill-Castro, V., Hexel, R.: Deterministic high-level executable models allowing
efficient runtime verification. In: Pires, L.F., Hammoudi, S., Selic, B. (eds.) MOD-
ELSWARD 2017. CCIS, vol. 880, pp. 119–144. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-94764-8 6

37. Ferrando, A.: Automatic partitions extraction to distribute the runtime verifica-
tion of a global specification. In: Mascardi, V., Torre, I. (eds.) Proceedings of the
Doctoral Consortium of AI*IA 2016 co-located with the 15th International Con-
ference of the Italian Association for Artificial Intelligence (AI*IA 2016), Genova,
Italy, November 29, 2016. CEUR Workshop Proceedings, vol. 1769, pp. 40–45.
CEUR-WS.org (2016). http://ceur-ws.org/Vol-1769/paper07.pdf

38. Ferrando, A.: RIVERtools: an IDE for RuntIme VERification of MASs, and
beyond. In: Mascardi, V. (ed.) Proceedings of the Demonstrations Track of PRIMA
2017 co-located with the 20th International Conference on Principles and Practice
of Multi-Agent Systems (PRIMA 2017). CEUR Workshop Proceedings, vol. 2056,
pp. 13–26. CEUR-WS.org (2017)

39. Ferrando, A., Cardoso, R.C., Fisher, M., Ancona, D., Franceschini, L., Mascardi,
V.: ROSMonitoring: a runtime verification framework for ROS. In: Mohammad, A.,
Dong, X., Russo, M. (eds.) TAROS 2020. LNCS (LNAI), vol. 12228, pp. 387–399.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63486-5 40

40. Ferrando, A., Dennis, L.A., Ancona, D., Fisher, M., Mascardi, V.: Verifying and
validating autonomous systems: towards an integrated approach. In: Colombo, C.,
Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 263–281. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03769-7 15

http://ceur-ws.org/Vol-1195/long16.pdf
https://doi.org/10.1007/3-540-45757-7_1
https://doi.org/10.1007/3-540-45757-7_1
https://dl.acm.org/citation.cfm?id=1558189
https://doi.org/10.1007/978-3-540-24580-3_44
https://doi.org/10.1007/978-3-540-24580-3_44
https://doi.org/10.1007/3-540-49545-2_2
https://doi.org/10.1007/978-3-319-19249-9_15
https://doi.org/10.1007/978-3-319-19249-9_15
https://doi.org/10.1007/978-3-319-94764-8_6
https://doi.org/10.1007/978-3-319-94764-8_6
http://ceur-ws.org/Vol-1769/paper07.pdf
https://doi.org/10.1007/978-3-030-63486-5_40
https://doi.org/10.1007/978-3-030-03769-7_15

314 D. Ancona et al.

41. Franceschini, L.: RML: runtime monitoring language: a system-agnostic DSL for
runtime verification. In: Marr, S., Cazzola, W. (eds.) Conference Companion of the
3rd International Conference on Art, Science, and Engineering of Programming,
Genova, Italy, April 1–4, 2019. pp. 28:1–28:3. ACM (2019). https://doi.org/10.
1145/3328433.3328462

42. Fredlund, L.Å., Mariño, J., Pérez, S., Tamarit, S.: Runtime verification in erlang
by using contracts. In: Silva, J. (ed.) WFLP 2018. LNCS, vol. 11285, pp. 56–73.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16202-3 4

43. Fung, T.H., Kowalski, R.A.: The Iff proof procedure for abductive logic program-
ming. J. Log. Program. 33(2), 151–165 (1997). https://doi.org/10.1016/S0743-
1066(97)00026-5

44. Hamlen, K.W., Jones, M.M., Sridhar, M.: Aspect-oriented runtime monitor cer-
tification. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp.
126–140. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-
5 10

45. Havelund, K.: Rule-based runtime verification revisited. Int. J. Softw. Tools Tech-
nol. Transfer 17(2), 143–170 (2014). https://doi.org/10.1007/s10009-014-0309-2

46. Havelund, K., Reger, G., Roşu, G.: Runtime verification past experiences and
future projections. In: Steffen, B., Woeginger, G. (eds.) Computing and Software
Science. LNCS, vol. 10000, pp. 532–562. Springer, Cham (2019). https://doi.org/
10.1007/978-3-319-91908-9 25

47. Havelund, K., Roşu, G.: Runtime verification - 17 years later. In: Colombo, C.,
Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 3–17. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03769-7 1

48. Howar, F., Giannakopoulou, D., Mues, M., Navas, J.A.: Generating component
interfaces by integrating static and symbolic analysis, learning, and runtime mon-
itoring. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11245, pp.
120–136. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03421-4 9

49. Hu, R., Neykova, R., Yoshida, N., Demangeon, R., Honda, K.: Practical interrupt-
ible conversations. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp.
130–148. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40787-
1 8

50. Huang, T., Wu, G., Wei, J.: Runtime monitoring composite web services through
stateful aspect extension. J. Comput. Sci. Technol. 24(2), 294–308 (2009). https://
doi.org/10.1007/s11390-009-9225-4

51. Inçki, K., Ari, I., Sözer, H.: Runtime verification of IoT systems using complex
event processing. In: Fortino, G., et al. (eds.) 14th IEEE International Conference
on Networking, Sensing and Control, ICNSC 2017, Calabria, Italy, May 16–18,
2017, pp. 625–630. IEEE (2017). https://doi.org/10.1109/ICNSC.2017.8000163,
https://doi.org/10.1109/ICNSC.2017.8000163

52. Indiono, C., Mangler, J., Fdhila, W., Rinderle-Ma, S.: Rule-based runtime mon-
itoring of instance-spanning constraints in process-aware information systems.
In: Debruyne, C., Panetto, H., Meersman, R., Dillon, T., Kühn, O’Sullivan, D.,
Ardagna, C.A. (eds.) OTM 2016. LNCS, vol. 10033, pp. 381–399. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-48472-3 22

53. Kallel, S., Charfi, A., Dinkelaker, T., Mezini, M., Jmaiel, M.: Specifying and mon-
itoring temporal properties in web services compositions. In: Eshuis, R., Grefen,
P.W.P.J., Papadopoulos, G.A. (eds.) Seventh IEEE European Conference on Web
Services (ECOWS 2009), 9–11 November 2009, Eindhoven, The Netherlands, pp.
148–157. IEEE Computer Society (2009). https://doi.org/10.1109/ECOWS.2009.
15

https://doi.org/10.1145/3328433.3328462
https://doi.org/10.1145/3328433.3328462
https://doi.org/10.1007/978-3-030-16202-3_4
https://doi.org/10.1016/S0743-1066(97)00026-5
https://doi.org/10.1016/S0743-1066(97)00026-5
https://doi.org/10.1007/978-3-642-28756-5_10
https://doi.org/10.1007/978-3-642-28756-5_10
https://doi.org/10.1007/s10009-014-0309-2
https://doi.org/10.1007/978-3-319-91908-9_25
https://doi.org/10.1007/978-3-319-91908-9_25
https://doi.org/10.1007/978-3-030-03769-7_1
https://doi.org/10.1007/978-3-030-03421-4_9
https://doi.org/10.1007/978-3-642-40787-1_8
https://doi.org/10.1007/978-3-642-40787-1_8
https://doi.org/10.1007/s11390-009-9225-4
https://doi.org/10.1007/s11390-009-9225-4
https://doi.org/10.1109/ICNSC.2017.8000163
https://doi.org/10.1109/ICNSC.2017.8000163
https://doi.org/10.1007/978-3-319-48472-3_22
https://doi.org/10.1109/ECOWS.2009.15
https://doi.org/10.1109/ECOWS.2009.15

Exploiting LP for RV: Current and Future Perspectives 315

54. Kallel, S., Charfi, A., Mezini, M., Jmaiel, M., Sewe, A.: A holistic approach for
access control policies: from formal specification to aspect-based enforcement. Int.
J. Inf. Comput. Secur. 3(3/4), 337–354 (2009). https://doi.org/10.1504/IJICS.
2009.031044

55. Klose, K., Ostermann, K.: A classification framework for pointcut languages in run-
time monitoring. In: Oriol, M., Meyer, B. (eds.) TOOLS EUROPE 2009. LNBIP,
vol. 33, pp. 289–307. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02571-6 17

56. Körner, P., et al.: Fifty years of Prolog and beyond. Theory Pract. Log. Program.
22(6), 776–858 (2022). https://doi.org/10.1017/S1471068422000102

57. Kowalski, R., Quintero, J.D., Sartor, G., Calejo, M.: Logical English for law and
education. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski,
R., Rossi, F. (eds.) Prolog - The Next 50 Years. LNCS, vol. 13900, pp. 287–299.
Springer, Cham (2023)

58. Kowalski, R., Sadri, F.: Towards a unified agent architecture that combines ratio-
nality with reactivity. In: Pedreschi, D., Zaniolo, C. (eds.) LID 1996. LNCS,
vol. 1154, pp. 135–149. Springer, Heidelberg (1996). https://doi.org/10.1007/
BFb0031739

59. Kowalski, R.A., Sergot, M.J.: A logic-based calculus of events. In: Mani, I., Puste-
jovsky, J., Gaizauskas, R.J. (eds.) The Language of Time - A Reader, pp. 217–240.
Oxford University Press (2005)

60. LeDoux, C.H., Jr., D.S.P.: Saving traces for Ada debugging. In: Barnes, J.G.P.,
Fisher, G.A. (eds.) Proceedings of the 1985 Annual ACM SIGAda International
Conference on Ada, SIGAda 1985, Paris, France, May 14–16, 1985, pp. 97–108.
Cambridge University Press (1985). https://doi.org/10.1145/324426.324385

61. Leotta, M., Ancona, D., Franceschini, L., Olianas, D., Ribaudo, M., Ricca, F.:
Towards a runtime verification approach for internet of things systems. In: Pau-
tasso, C., Sánchez-Figueroa, F., Systä, K., Murillo Rodŕıguez, J.M. (eds.) ICWE
2018. LNCS, vol. 11153, pp. 83–96. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03056-8 8

62. Leotta, M., et al.: Comparing testing and runtime verification of IoT systems:
A preliminary evaluation based on a case study. In: Damiani, E., Spanoudakis,
G., Maciaszek, L.A. (eds.) Proceedings of the 14th International Conference on
Evaluation of Novel Approaches to Software Engineering, ENASE 2019, Heraklion,
Crete, Greece, May 4–5, 2019, pp. 434–441. SciTePress (2019). https://doi.org/10.
5220/0007745604340441

63. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Programm. 78(5), 293–303 (2009). https://doi.org/10.1016/j.jlap.2008.08.
004. https://www.sciencedirect.com/science/article/pii/S1567832608000775, the
1st Workshop on Formal Languages and Analysis of Contract-Oriented Software
(FLACOS’07)

64. Majma, N., Babamir, S.M., Monadjemi, A.: Runtime Verification of Pacemaker
Functionality Using Hierarchical Fuzzy Colored Petri-nets. J. Med. Syst. 41(2),
1–21 (2016). https://doi.org/10.1007/s10916-016-0664-5

65. Malakuti, S., Bockisch, C., Aksit, M.: Applying the composition filter model for
runtime verification of multiple-language software. In: ISSRE 2009, 20th Interna-
tional Symposium on Software Reliability Engineering, Mysuru, Karnataka, India,
16–19 November 2009, pp. 31–40. IEEE Computer Society (2009). https://doi.org/
10.1109/ISSRE.2009.12

https://doi.org/10.1504/IJICS.2009.031044
https://doi.org/10.1504/IJICS.2009.031044
https://doi.org/10.1007/978-3-642-02571-6_17
https://doi.org/10.1007/978-3-642-02571-6_17
https://doi.org/10.1017/S1471068422000102
https://doi.org/10.1007/BFb0031739
https://doi.org/10.1007/BFb0031739
https://doi.org/10.1145/324426.324385
https://doi.org/10.1007/978-3-030-03056-8_8
https://doi.org/10.1007/978-3-030-03056-8_8
https://doi.org/10.5220/0007745604340441
https://doi.org/10.5220/0007745604340441
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlap.2008.08.004
https://www.sciencedirect.com/science/article/pii/S1567832608000775
https://doi.org/10.1007/s10916-016-0664-5
https://doi.org/10.1109/ISSRE.2009.12
https://doi.org/10.1109/ISSRE.2009.12

316 D. Ancona et al.

66. Palù, A.D., Dovier, A., Formisano, A., Pontelli, E.: Prolog meets biology. In: War-
ren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.)
Prolog - The Next 50 Years. LNCS, vol. 13900, pp. 318–333. Springer, Cham (2023)

67. Perotti, A., Boella, G., Garcez, A.A.: Runtime verification through forward chain-
ing. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 185–200.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23820-3 12

68. Perotti, A., d’Avila Garcez, A.S., Boella, G.: Neural networks for runtime verifi-
cation. In: 2014 International Joint Conference on Neural Networks, IJCNN 2014,
Beijing, China, July 6–11, 2014, pp. 2637–2644. IEEE (2014). https://doi.org/10.
1109/IJCNN.2014.6889961

69. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977, pp. 46–57. IEEE Computer Society (1977)

70. Rabiser, R., Guinea, S., Vierhauser, M., Baresi, L., Grünbacher, P.: A comparison
framework for runtime monitoring approaches. J. Syst. Softw. 125, 309–321 (2017).
https://doi.org/10.1016/j.jss.2016.12.034

71. Ricca, F., Mascardi, V., Verri, A.: Test’n’Mo: a collaborative platform for human
testers and intelligent monitoring agents. In: Ahrendt, W., Ancona, D., Fran-
calanza, A. (eds.) VORTEX 2021: Proceedings of the 5th ACM International
Workshop on Verification and mOnitoring at Runtime EXecution, Virtual Event,
Denmark, 12 July 2021, pp. 17–21. ACM (2021). https://doi.org/10.1145/3464974.
3468446

72. Rosà, A., Zheng, Y., Sun, H., Javed, O., Binder, W.: Adaptable runtime monitoring
for the Java virtual machine. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS,
vol. 9953, pp. 531–546. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47169-3 42

73. Sánchez, C., et al.: A survey of challenges for runtime verification from advanced
application domains (beyond software). Formal Methods Syst. Des. (2), 1–57
(2019). https://doi.org/10.1007/s10703-019-00337-w

74. Satoh, K.: PROLEG: Practical legal reasoning system. In: Warren, D.S., Dahl, V.,
Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50
Years. LNCS, vol. 13900, pp. 277-283. Springer, Cham (2023))

75. Simon, L., Mallya, A., Bansal, A., Gupta, G.: Coinductive logic programming.
In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 330–345.
Springer, Heidelberg (2006). https://doi.org/10.1007/11799573 25

76. Stolz, V., Huch, F.: Runtime verification of concurrent Haskell programs. Electron.
Notes Theor. Comput. Sci. 113, 201–216 (2005). https://doi.org/10.1016/j.entcs.
2004.01.026

77. Tsigkritis, T., Spanoudakis, G.: Diagnosing runtime violations of security &
dependability properties. In: Proceedings of the Twentieth International Confer-
ence on Software Engineering & Knowledge Engineering (SEKE’2008), San Fran-
cisco, CA, USA, July 1–3, 2008, pp. 661–666. Knowledge Systems Institute Grad-
uate School (2008)

78. Tsigkritis, T., Spanoudakis, G.: A temporal abductive diagnostic process for run-
time properties violations. In: Roth-Berghofer, T., Schulz, S., Leake, D.B., Bahls,
D. (eds.) Explanation-aware Computing, Papers from the 2008 ECAI Workshop,
Patras, Greece, July 21–22, 2008. University of Patras, pp. 49–60 (2008)

79. Wenger, M., Zoitl, A., Blech, J.O.: Behavioral type-based monitoring for IEC
61499. In: 20th IEEE Conference on Emerging Technologies & Factory Automation,
ETFA 2015, Luxembourg, September 8–11, 2015, pp. 1–8. IEEE (2015). https://
doi.org/10.1109/ETFA.2015.7301447

https://doi.org/10.1007/978-3-319-23820-3_12
https://doi.org/10.1109/IJCNN.2014.6889961
https://doi.org/10.1109/IJCNN.2014.6889961
https://doi.org/10.1016/j.jss.2016.12.034
https://doi.org/10.1145/3464974.3468446
https://doi.org/10.1145/3464974.3468446
https://doi.org/10.1007/978-3-319-47169-3_42
https://doi.org/10.1007/978-3-319-47169-3_42
https://doi.org/10.1007/s10703-019-00337-w
https://doi.org/10.1007/11799573_25
https://doi.org/10.1016/j.entcs.2004.01.026
https://doi.org/10.1016/j.entcs.2004.01.026
https://doi.org/10.1109/ETFA.2015.7301447
https://doi.org/10.1109/ETFA.2015.7301447

Exploiting LP for RV: Current and Future Perspectives 317

80. Wooldridge, M.J., Jennings, N.R.: Intelligent agents: theory and practice. Knowl.
Eng. Rev. 10(2), 115–152 (1995). https://doi.org/10.1017/S0269888900008122

81. Yu, B., Liu, J., Lei, M., Yu, Y., Chen, H.: Parallel runtime verification approach for
alternate execution of multiple threads. In: Miao, H., Tian, C., Liu, S., Duan, Z.
(eds.) SOFL+MSVL 2019. LNCS, vol. 12028, pp. 99–109. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-41418-4 8

82. Yu, B., Lu, X., Chen, H., Lei, M., Wang, X.: Runtime verification of ethereum
smart contracts based on MSVL. In: Xue, J., Nagoya, F., Liu, S., Duan, Z.
(eds.) SOFL+MSVL 2020. LNCS, vol. 12723, pp. 142–153. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77474-5 10

83. Yu, B., Tian, C., Lu, X., Zhang, N., Duan, Z.: A distributed network-based runtime
verification of full regular temporal properties. IEEE Trans. Parallel Distributed
Syst. 34(1), 76–91 (2023). https://doi.org/10.1109/TPDS.2022.3215854

84. Zhao, Y., Oberthür, S., Kardos, M., Rammig, F.: Model-based runtime verifica-
tion framework for self-optimizing systems. Electron. Notes Theor. Comput. Sci.
144(4), 125–145 (2006). https://doi.org/10.1016/j.entcs.2006.02.008

https://doi.org/10.1017/S0269888900008122
https://doi.org/10.1007/978-3-030-41418-4_8
https://doi.org/10.1007/978-3-030-77474-5_10
https://doi.org/10.1109/TPDS.2022.3215854
https://doi.org/10.1016/j.entcs.2006.02.008

Prolog Meets Biology

Alessandro Dal Palù1, Agostino Dovier2(B), Andrea Formisano2, and Enrico Pontelli3

1 University of Parma, Parma, Italy
alessandro.dalpalu@unipr.it

2 University of Udine, 33100 Udine, Italy
{agostino.dovier,andrea.formisano}@uniud.it

3 New Mexico State University, Las Cruces, NM, USA
epontell@nmsu.edu

Abstract. This paper provides an overview of the use of Prolog and its deriva-
tives to sustain research and development in the fields of bioinformatics and com-
putational biology. A number of applications in this domain have been enabled
by the declarative nature of Prolog and the combinatorial nature of the underly-
ing problems. The paper provides a summary of some relevant applications as
well as potential directions that the Prolog community can continue to pursue
in this important domain. The presentation is organized in two parts: “small,”
which explores studies in biological components and systems, and “large,” that
discusses the use of Prolog to handle biomedical knowledge and data. A con-
crete encoding example is presented and the effective implementation in Prolog
of a widely used approximated search technique, large neighborhood search, is
presented.

1 Introduction

Since their infancy, Logic Programming (LP) and Prolog have shown their suitability
to address problems from the domain of modern Biology and the broader realms of
medicine and life sciences. This was already evident in the first edition of the ICLP
conference in 1982 [43]; R.A. Overbeek offered a tutorial on LP and molecular anal-
ysis during JICSLP 1992 [61]. The use of Prolog-style technologies in the domain of
Biology has progressively increased over the years, especially thanks to the introduc-
tion of extensions like Constraint Logic Programming (CLP), which supports a more
effective use of mathematical constraints to guide the search process, and Inductive
Logic Programming (ILP), which supports learning of rules that represent biological
systems from observations. The literature that explores the use of LP technologies to
guide computational biology tasks is extensive. For a survey of contributions to compu-
tational biology using the framework of Answer Set Programming (ASP), we refer the
interested reader to [17,23]. In the survey [17], in particular, bioinformatics problems
are clustered in three main areas: Genomics studies (e.g., Haplotype inference, Phylo-
genetic inference), Structural studies (e.g., problems associated with Protein structure
prediction), and Systems studies (e.g., reasoning about biological networks).

In this complementary paper, we present a review of applications of Prolog in the
realm of computational biology and bioinformatics. We use the term Prolog as an
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 318–333, 2023.
https://doi.org/10.1007/978-3-031-35254-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_26&domain=pdf
https://doi.org/10.1007/978-3-031-35254-6_26

Prolog Meets Biology 319

umbrella that covers both the actual Prolog language as well as related frameworks,
like CLP, ILP, and Datalog (see also [81]). After a brief review of some of the older
contributions (up to 1995) in Sect. 2, the presentation is structured, in broad strokes,
along two major lines. Section 3 explores the use of Prolog to investigate biologi-
cal components and systems, such as molecular analysis or structure prediction, thus
dealing with “small” parts of nature. Section 4 explores the use of Prolog to handle
biomedical knowledge and data, thus dealing with “large” amount of data. This paper
also reflects the experience gained by organizing thirteen editions (2005–2018) of the
Workshop on Constraint-based methods in Bioinformatics, co-located with the Inter-
national Conference on Logic Programming and the International Conference on Con-
straint Programming (http://clp.dimi.uniud.it/wcb). We consider the various proposals
presented in such workshops using local search for dealing with optimization problems
with extensive search spaces; Sect. 5 explores how approximated local search with large
neighborhoods can be implemented in Prolog. Some conclusions and future perspec-
tives are presented in Sect. 6.

2 Early Days

Dating back to 1982, in the first edition of ICLP, Jouvert et al. presented a medical deci-
sion system, called SPHINX, that makes use of knowledge representation of medical
facts to implement first-order logical deductions [43]. This initial work was followed by
a number of Prolog-based applications devoted to the investigation of different aspects
of Biology. One of the first examples of the use of Prolog as a modeling and query lan-
guage for protein structure data can be found in [76], as an alternative to the relational
database exploited in a protein modeling facility developed at the U. K. Scientific Cen-
tre. In 1986, Rawlings et al. modelled the super secondary structure of proteins using
Prolog facts, in order to enable Prolog query-answering processes to identify admissi-
ble arrangements of secondary structure components (i.e., its local sub-structures such
as α-helices and β-strands) [65]. The problem of determining protein secondary struc-
ture from its primary sequence is addressed by Muggleton et al. [56] using Golem,
an ILP system capable of producing Prolog rules that describe topological relations
among residues. A Prolog-based representation and the inference of topological prop-
erties of proteins (e.g., bonds, secondary structures, spatial positions and angles) are
described in various works of Saldanha et al; among them, we mention the GENPRO
system [68], that generates Prolog rules from protein structure datasets. The approach
has been improved in [69,70], where LP is used to describe the secondary structure of
amylin using a combination of knowledge sources. In the proposal of Barton et al. [5],
Prolog is used to implement a database of protein data and various functionalities to
process and analyze information on secondary structure of proteins, including an inter-
face to TOPOL [64], a system, implemented in Prolog, that enables reasoning about
protein topology. An elaborated technique, called analogy by abstraction and imple-
mented in Prolog, is proposed in [39] to predict the 3D structure of an unknown pro-
tein by heuristically transforming a known protein structure. The same authors propose
a Prolog implementation of a technique called inductive prediction by analogy [40],
applied to the function prediction of proteins’ structure from aminoacid sequences.

http://clp.dimi.uniud.it/wcb

320 A. Dal Palù et al.

Kemp et al. [46] implemented in Prolog and C a database called P/FDM, used to store
protein data and to enable fast prototyping of Prolog applications. In particular, the
problem of identification of hydrophobic micro-domains is considered and solved in
Prolog thanks to its suitability in handling lists and tree structures. The advantage of
exploiting Prolog in P/FDM is also shown in [33,47] by considering the problem of
protein structure analysis for the specific case of antibodies.

In the context of the Human Genome Project, various applications of deductive
databases and Prolog have been developed. The Prolog expert system ISCN Expert [13]
is designed to allow declarative representation of human chromosomal data and to
mechanize reasoning tasks about chromosomal abnormalities. The parallel capabili-
ties of Prolog have been exploited to determine pseudo-knots of DNA sequences [49].
Wong in 1993 used Prolog to model the Probed Partial Digestion of DNA, with the
goal of finding genomic maps compatible with experimental data [82]. The DNA-
ChartParser system uses the Prolog unification mechanism to implement parting of
DNA sequences; in particular, [48] dealt with the specific case of E. coli promoters.
One of the first uses of Prolog as a high-level language for representing and querying
biochemical data is proposed by Kazic in 1994, to circumvent impedance mismatch of
other hybrid systems existing at the time of publication [45]. The same ideas are applied
to create a declarative system to model and reason about metabolism of E. coli [44].
Several other applications in the early Nineties focused on logic-based representations
of genomic information and rules to describe their relationships have appeared in the
literature [30,37,77]. The BIOLOG system [50] is a Prolog implementation to automate
the analysis of nucleic acid sequences. BIOLOG features include access to databases,
querying, sequence alignment and rearrangement, search for homologies, etc. Yoshida
et al. developed Lucy [83], a system that takes advantage of Prolog representation, set
operations, and recursion, to organize genomic knowledge and enable querying and
reasoning on molecular biological data.

3 Going Small: Dealing with Nature Building Blocks

Almost twenty years before the breakthroughs provided by Deep Learning [2], Prolog
has been used to solve the protein tertiary structure prediction problem—i.e., predicting
the 3D shape of a protein given its primary structure. Even strong approximations of
the problem (with simplified lattice and energy models) are NP-complete [14]. How-
ever, an approach combining a Prolog modeling of the problem with learning tools to
predict selected fragments of the protein (e.g, helices and sheets) and exploiting a statis-
tical energy function to treat the different aminoacids, is able to fold proteins of length
greater than 100 in reasonable time [15]. An idea not very different from what current
deep learning tools do is used in [16] where, given as input the collection of possi-
ble 4-tuples of consecutive aminoacids, a Prolog program reconstructs minimal-energy
shapes of the protein by merging consecutive partially overlapping tuples.

A Prolog expert system is part of the FIGENIX platform [32], designed to automate
the pipeline of structural and functional annotation, in particular to detect genes and
their location in a biological sequence and predicting the proteins that they encode. The
3D genome reconstruction problem is addressed in [51] by combining Prolog and a

Prolog Meets Biology 321

solver for mixed integer programming. The system GenePath [84] supports the analysis
of genetic data, using user pre-defined patterns, to infer potential genetic networks regu-
lating biological processes, in particular the relations connecting mutations and changes
in system’s behavior. The core of GenePath is implemented in Prolog.

Logic programming has been used in [3] to implement a toolkit aimed at identify-
ing constrained portion of genes by integrating phylogenetic information and multiple
sequence alignments. The approach described in [4] solves the problem of identify-
ing orthologs (that is, genes across different genomes with the same function), groups
of orthologous genes in close proximity, and gene duplication, by means of a Prolog
application. Such system implements features such as access to gene-databases, text
processing of gene-data, gene alignment, homolog-pair detection, ortholog gene-groups
identification, etc.

The reconstruction of metabolic networks in presence of incomplete information
is the goal of the system described in [28]. The Prolog implementation combines a
declarative representation of data and algorithms for genome sequence analysis, also
exploiting metabolic and phylogenetic information, and handling incompleteness and
defaults. The reconstruction process can proceed autonomously or in interaction with
the user. A declarative approach to the automation of genome analysis is done with the
MAGPIE system which relies on SICStus Prolog, a full description of the system can
be found in [27]. BioSim [38] is a simulation environment developed in CLP for quali-
tative reasoning on biological regulatory processes. The detection of causality relations
in metabolic networks is the goal of [6] which present a system developed on top of
the SICStus Prolog interpreter. In [74] SWI-Prolog is used in combination with R to
determine and analyze signaling pathways and to identify markers of drug sensitivity
and resistance in a case study concerning breast cancer cells. Problog is used in [29]
to automate a model of gene regulatory networks combining declarative representation
and probabilistic/statistical inference. The proposed approach to modeling pathways
is validated by learning regulatory networks from time-series gene expression data on
Saccharomyces cerevisiae.

Extensions of Prolog capable of dealing with probabilistic inference under distribu-
tion semantics have been used for biological applications. The framework, combining
logic and probability, enables the identification of genes and other motifs, as proposed
in [12,54] using the PRISM system [71]. The interpretation of gene networks in [18] is
implemented in Problog [26]. The ILP system Progol [55] has been used for learning
biological properties [57] and detecting constraint protein structure [78,79]. The system
Cplint [66] is used in [75] to analyze evolution of cancer data.

In Systems Biology, logic programming has been used to analyze and simulate bio-
logical networks. For instance, the Biochamm system [8], supports the analysis and sim-
ulation of Boolean, kinetic, and stochastic models of biochemical systems (see, e.g., its
use in [19]). In [25] CLP is used to infer ranges of parameter values from observations
and to perform qualitative simulations in molecular networks.

A Glimpse of a Prolog Encoding. We would like to briefly introduce here a sim-
plification of the protein structure prediction problem and show the expressive power
of Prolog (with constraints) for its encoding. A protein is a sequence of aminoacids.
For the scope of this section we consider aminoacids as basic components (we do not

322 A. Dal Palù et al.

analyze their internal structure; the interested reader is referred, e.g., to [9]). The linear
distance between two consecutive aminoacids is assumed to be constant (3.8Å), while
the angles between sequences of two and three aminoacids can change and, thus, even
with discrete approximations, the protein might take a number of spatial forms, called
foldings, of huge size. Two different aminoacids cannot overlap in a folding. There are
20 different kinds of aminoacids; however they can be clustered in two families: h (for
hydrophobic) and p (for polar or hydrophilic). h aminoacids tends to stay internally
in a folding and to attract each other. In this presentation we use a very simple lattice
spatial model where analyzing the possible foldings: the 2D Cartesian plane where the
unit is taken as the linear distance between consecutive aminoacids. Angles admitted
are −90◦, 0◦,+90◦. Two aminoacids are in “contact” if their distance is the lattice unit.
The problem is that of predicting the folding (one of them) that maximizes the number
of contacts between non consecutive hydrophobic (h) aminoacids.

Fig. 1. Some foldings of the “protein” hhphphhhh (h/p are represented as •/◦, respectively).
Contacts are emphasized using the symbol ≡

Let us see how this problem can be encoded in Prolog. The input is a list Protein
= [a1, . . . , an] of constant terms h and p. The output is a list of 2D positions Folding
= [X1, Y1, . . . , Xn, Yn] and a variable Energy that will store the number of h-h con-
tacts. The length n of the protein is computed from the input list, and the list of 2n vari-
ables for the folding is generated and the interval 0..2n is assigned as domain to them.
In order to break symmetries, the first two aminoacids are set in (n, n) and (n + 1, n),
respectively. Using the classical constraint & generate programming style of CLP, con-
straints between the variables, modeling the problem, are added and then the built-in
predicate labeling that searches for the solutions, with the option of looking for
solution(s) maximizing the number of h-h contacts, is called.

1 pf(Protein,Folding,Energy) :-
2 length(Protein,N), M is 2*N, length(Folding,M),
3 Folding ins 0..M, N1 is N + 1,
4 Folding = [N,N,N1,N|_],
5 next_constraints(Folding),
6 avoid_self_loops(Folding),
7 contacts(Protein,Folding,Energy),
8 labeling([max(Energy)],Folding).

Prolog Meets Biology 323

Let us focus on the constraints. We need to constrain consecutive (next) aminoacids
to be put at distance 1 in the grid. This is made by the following predicate that imple-
ments a for-loop (#= is the equality predicate symbol for numerical terms in CLP)

1 next_constraints([_,_]) .
2 next_constraints([X1,Y1,X2,Y2|C]) :-
3 next(X1,Y1,X2,Y2),
4 next_constraints([X2,Y2|C]).
5 next(X1,Y1,X2,Y2):-
6 abs(X1-X2)+ abs(Y1-Y2) #= 1.

To guarantee non overlapping of aminoacids in foldings, we have to impose that
different pairs [Xi, Yi] and [Xj , Yj] denote different points. This can be forced by saying
Xi �= Xj ∨ Yi �= Yj . Disjunctions should be avoided in constraint modeling since they
introduce an explicit source of non-determinism. Since we know the maximum value
for the variables, we can express alternatively the property by saying that MXi + Yi �=
MXj+Yj where M is a sufficiently big number (M = 100 in the following encoding).
Then the built-in global constraint all_different forcing the difference of all those
terms is exploited.

1 avoid_self_loops(Folding) :-
2 positions_to_integers(Folding, IntList),
3 all_different(IntList).
4 positions_to_integers([],[]).
5 positions_to_integers([X,Y|R], [I|S]):-
6 I #= X*100+Y,
7 positions_to_integers(R,S).

Finally, we need to express the “energy function” where we count the contacts
between pairs of h aminoacids that are at distance 1 in the lattice. The following predi-
cates are the recursive implementation of two nested for-loops. For each pair A,B with
A = 1, . . . , n − 2 and B = A + 2, . . . , n the pairs (XA,Y A) and (XB,Y B) are
considered by the predicate energy: if the aminoacids A and B are both h and their
distance is unitary, then the Boolean flag ContactEn is set to 1 else, it is set to 0.

1 contacts([_],_,0).
2 contacts([A,B|Protein],[XA,YA,XB,YB|Folding],E) :-
3 energy_contrib_of_A(A,XA,YA,Protein,Folding,E1),
4 contacts([B|Protein],[XB,YB|Folding],E2),
5 E #= E1 + E2.
6 energy_contrib_of_A(_,_,_,_,[],[],0).
7 energy_contrib_of_A(A,XA,YA,[B|Prot],[XB,YB|Folding],E):-
8 energy(A,XA,YA,B,XB,YB,C),
9 energy_contrib_of_A(A,XA,YA,Prot,Folding,E1),

10 E #= E1 + C.
11 energy(h,XA,YA,h,XB,YB,ContactEn) :-
12 ContactEn in 0..1,
13 abs(XA - XB)+abs(YA - YB) #= 1 #<==> ContactEn #= 1.
14 energy(_,_,_,p,_,_,0).
15 energy(p,_,_,_,_,_,0).

324 A. Dal Palù et al.

Let us observe that in the arguments of labeling we have imposed to maxi-
mize the energy. The presented code runs in SWI Prolog, provided the directive :-
use_module(library(clpfd)) that loads the library of the constraint solver for
finite domains is added. The solution for the instance in Fig. 1 is found in 0.3s on a com-
mon desktop (CPU Intel i7 1.8GHz, Memory 16GB, Windows 10). With minor changes
(basically in the syntax of labeling) it runs in B-Prolog and SICStus Prolog.

4 Going Large: Dealing with Biological Databases

Prolog has played a key role in facilitating the development of informatics infrastruc-
tures for the management and manipulation of biological data. The rapid growth of
computational tools to perform specific steps in biological analyses has raised chal-
lenges in the creation of workflows which effectively interoperate such tools to achieve
a desired objective. Early work in this direction focused on the challenges derived from
the lack of a data format standardization in specific domains of computational biology.

Prolog’s definite clause grammars (DCGs) and the ability, with proper care, to
derive “reversible” computations, allowed the simple and declarative development of
data formats translators. Additionally, the ability to embed computation along with
parsing in the DCGs enabled Prolog to handle aspects of data format analysis that are
beyond the capabilities of other tools—e.g., dealing with the context-dependent nature
of data formats like Nexus [52]. An example of this is represented by the data format
translators in phylogenetic inference described in [34], which use a denotational seman-
tics approach to handle complex data formats. Other examples of use of DCGs can be
found in [67], which describes a grammar for syntactic recognition of regulatory regions
in chromosomes, and in the GenLang system [20], where grammars are applied to the
gene structure prediction problem. Prolog is used in [73] to access and query various
biological databases and to process retrieved data. The system integrates SWI-Prolog
and Java and runs on parallel hardware to efficiently process large amounts of data.

Prolog has provided an effective approach to automate the development of biomed-
ical workflows, as demonstrated for example in the BSIS system [62], which incorpo-
rates formal descriptions of biomedical web services and automatically combines them
into executable workflows to meet formally specified analysis objectives. Similar stud-
ies on the use of Prolog to implement analysis pipelines have been proposed in [1,7].
BSIS makes use of a graphical domain-specific language for the description of partially
specified phylogenetic analysis workflows and uses a Prolog planner to complete the
workflow and map it to an executable sequence of web service calls. This line of work
was expanded with the development of the EvoInfo working group, tasked with the
creation of standards for informatics applications in the field of phylogenetic inference.

Various proposals to exploit Prolog in processing phylogenetic data appeared in
the literature. We mention here some of the most interesting systems. [59] shows how
Datalog can be effectively used to manage the specific tree-shaped structure of data
in a phylogenetic database management system, and to process complex phylogenetic
queries. PhyloGena [36] is a system for automated phylogenetic processing. The knowl-
edge base of the system is written in Prolog and TUProlog is used as inference engine.

Prolog Meets Biology 325

PhyloPattern [31] is a Prolog library, interoperable with Java, implementing function-
alities for pattern processing (e.g., representation, recognition, querying) on phyloge-
netic tree-shaped structured data. PhyloBase [41,42] defines a data model for phylo-
genetic databases and an expressive query language for phylogenetic database, called
PhyQL, whose queries are translated into Datalog and executed by a Prolog engine.
This stream of works resulted in the creation of a formal ontology for phylogenetic
inference (CDAO [63]) and a web services standard (PhyloWS [24]). The primary tools
developed to manipulate repositories of CDAO instances have been realized using Pro-
log, taking advantage of its database capabilities and the ability to encode ontology’s
relationships as logical rules, leading to the CDAOStore system [10,11]. CDAOStore
also provides the first implementation of the PhyloWS standard, using Prolog to pro-
vide manipulation of phylogenetic datasets. These foundations led to a larger effort
to promote accessibility and reuse of phylogenetic datasets, captured in the Phylotas-
tic project [60], which continues to include several components coded in Prolog and in
ASP. The Biological Logic Programming toolkit (Blipkit [58]) is another attempt to data
integration and defines a number of Prolog modules implementing various functionali-
ties to process gene sequences, RNA structures, evolutionary relationships, phenotypes,
biological interactions, etc.

5 Approximate Search in Prolog

In real-life optimization problems, and in biology in particular, the size of the search tree
makes any complete search technique practically unfeasible. Therefore a widespread
approach is the one of using approximate search techniques, globally referred to as
local search, as witnessed by several contributions in the series of workshops WCB (c.f.
Sect. 1). These techniques return a “good” solution, the best one found in a given time-
out. In this section we show how to implement a very effective technique, Large Neigh-
borhood Search (LNS) [72], in Prolog. This was exploited by some Prolog approaches
to biology problems (such as [16]) but it can be used for any optimization problem
encoded in Prolog.

LNS is a form of local search, where an admissible solution enables the exploration
of a “large” neighborhood in the search space. The neighborhood depends on moves,
that generalize the traditional local search move: here a large number of variables is
allowed to change subject to constraints. The basic LNS routine is the following:

1. Generate an initial solution
2. Randomly select a subset of the variables of the problem that will be subject to

changes, and maintain previous unifications to the other variables.
3. Look for a new solution that improves the cost function. Go back to step 2.

A timeout mechanism is typically adopted to terminate the cycle between steps 2 and 3.
For example, the procedure is terminated if either a general time-out occurs or if k suc-
cessive iterations are performed without any improvement in the quality of the solution.
In these cases, the best solution found is returned. It is possible to occasionally allow-
ing a worsening move—this is important to enable the procedure to abandon a local

326 A. Dal Palù et al.

minimum. This approach is based on programs terminating by timeout, by storing pre-
viously found solutions and so on. Since logical variables of Prolog are not suitable for
accepting a revised assignment, extra-logical programming Prolog capabilities should
be exploited. Specifically, a combination of backtracking, assertions and reassignment
procedures are enforced, by using extra-logical features of Prolog to record intermediate
solutions in the Prolog database (using the assert/retract predicates). The loss
of declarativity is balanced by enhanced performance in the implementation of LNS.

The main predicate lns is defined in three rules. In the first one it launch the
main computation after having modeled the problem (in this case by constraining the
variables—the reader might consider as an example the simplified protein folding prob-
lem as encoded in Sect. 3). It always fail, and the results is given by one of the next
rules. Let as assume the our problem has always strictly positive Cost, and that we
want to minimize this value. After cleaning the facts asserted by previous executions,
we assert the initial (out of range) value 0 to two facts, that will store the best solution
found so far and the last one. Then, a call of predicate local with a time_out is
made. When the call of the first rule fails (it always fail), the second and, possibly, the
third rule will return the best solution.

1 lns(+Input, +Time) :-
2 constrain(Input,Solution,Cost),
3 retractall(best(_,_)), assert(best(_,0)),
4 retractall(last_sol(_,_)), assert(last_sol(null,0)),
5 time_out(local(Input,Solution,Cost), Time,_), fail.
6 lns(_,_) :- best(_,0),
7 write(’Insufficient time for the first solution’), nl.
8 lns(_,_) :- best(Solution,Cost), Cost > 0,
9 print_results(Solution,Cost).

Let us focus on the rule implementing local search steps. The predicate local
looks for another solution and loops on that, since another_sol always ends with
failure. The call with negation does not instantiate the variables (that are however con-
strained between them by the lns definition) and thus a new fresh call is made.

1 local(Input, Solution, Cost):-
2 \+ another_sol(Input, Solution, Cost),
3 local(Input, Solution, Cost).

Let us focus on the predicate another_sol computing the successive solution.
The last solution found is retrieved. If it is “null” this means that we have not yet found
the first solution and we look for it. If a previous solution exists, we are exactly in the
point where we implement LNS. The call to a random generator assigns a random inte-
ger, in [1..10], to the variable Prob (line 5). Lines 6 and 7 decide the “new” constraint
for the variable Cost. If Prob = 1 (line 6, event with probability 10%) we look for
new solutions better than 5

6 of the last solution found. Thus, we are accepting worsen-
ing solutions. This is useful for escaping local minima. If Prob > 1 (line 7, event with
probability 90%) we look for improving solutions w.r.t. the last solution found.

Prolog Meets Biology 327

1 another_sol(Input, Solution, Cost) :-
2 last_sol(LastSol, LastCost),
3 (LastSol = null -> labeling(Solution); %%% First sol
4 LastSol \= null -> %%% Core of the LNS
5 random(1,11,Prob), %%% Prob in {1,...,10}
6 (Prob = 1 -> Cost #> 5*LastCost//6;
7 Prob > 1 -> Cost #< LastCost),
8 large_move(LastSol,Solution),
9 time_out(labeling(Solution), 120000, Flag)),

10 (Flag == success -> true;
11 Flag == time_out -> write(’Warning’’), nl, fail)),
12 !,
13 retract(last_sol(_,_)),
14 assert(last_sol(Solution,Cost)),
15 best(_,Val),
16 (Val>Energy ->
17 retract(best(_,_)), assert(best(Solution,Cost));
18 true),
19 fail.

The predicate large_move (called in line 8) decides randomly which values of
the variables of the last solution are maintained in the search and which variables are
left unassigned. It is defined simply by a recursion on a list and by a call to random
for each variable. If the random value is below a certain threshold k (e.g., 10% as in
the example), then the variable is left unbounded and it will be assigned during the
new search, otherwise the value from the last solution is assigned to the corresponding
variable in the solution list. For instance:

LastSol = [2, 34, 6, 18, 21, 35, 31, 41, 56, 12, 3, 4, 3, 6, 7, 90]
Solution = [2, X2, X3, 18, 21, 35, X7, X8, 56, 12, 3, X12, X13, 6, 7, 90]

Then a new search (with timeout) is invoked (line 9).
The execution of the call of line 9 might end computing a new solution (success)

or due a timeout (two minutes in the example). If the timeout is reached (line 11) a
message is printed, a failure is forced and a new call to another_solwill be made by
local. If the warning is printed many times during the computation, the programmer
might consider to change the threshold k.

If a new solution is found (line 10), it is stored (lines 13–14) and, if it is the case,
the best solution found so far is updated (lines 16–18).

The rule ends with a forced failure (line 19) that forces local to repeat the call to
another_sol for a new attempt. Let us remark that the failure erases any temporary
assignments to the variables. The cut (!) in line 12 is introduced to avoid the computa-
tion of another solution with the same random choices, forcing backtracking to a higher
level for the successive new attempt.

SLD and backtracking search or constraint based search implemented by
labeling explore the search tree in depth-first search. If the search tree is large and
we have a fixed amount of available time, then the search will be limited to a small

328 A. Dal Palù et al.

portion in the left part of the tree. LNS allows us to visit distant subtrees of the search
tree. When, by chance, a promising area is found, large moves in that area allow us to
improve the computed solution (see e.g., [80]).

6 Conclusions

Prolog has clearly demonstrated over the years its strengths as an ideal paradigm to
address a diversity of challenges in bioinformatics. This paper touches on several suc-
cessful examples of uses of Prolog frameworks in these domains. This line of research
is also important as it has led to techniques which have been generalized to other
domains—e.g., [16] explored a Prolog implementation of LNS, which has been later
applied to totally different contexts (e.g., [53]). The most recent literature in this area
has been primarily focused on the use of ASP for modeling a variety of inference
problems—surveys can be found in [17,22]. This avails of the clear mathematical prop-
erties of ASP to guarantee provable properties of the encodings. Other techniques that
have been used and that are close to logic programming are integer linear programming,
local search, pseudo Boolean and SAT.

Prolog maintains an important edge for future uses in computational biology, thanks
to its ability to interact with numerical constraint solvers for solving complex combi-
natorial problems arising in biology and with machine learning in inductive logic pro-
gramming. In particular, a big data analysis based on logic programming might result
in a predicted model. This model contains a lot of information that can be analyzed,
verified using formal tools developed in the years for logic programming, facilitated by
the declarative semantics.

Although for string/substring problems arising in DNA analysis the lack of direct
access to vectors is a drawback for pure Prolog, the availability of interfaces with differ-
ent languages of modern Prolog releases allows the programmers to exploit Prolog as a
reasoning for complex distributed and parallel systems (see e.g. [21]). Thus, we share
the feeling of Gupta et al. [35] that Prolog and its dialects will maintain their key-role
for automated reasoning in the following 50 years.

Acknowledgements. We thank the anonymous reviewers that allowed us to greatly improve the
focus and the presentation of the paper. This research is partially supported by INdAM-GNCS
projects CUP E55F22000270001 and CUP E53C22001930001, by Interdepartmental Project on
AI (Strategic Plan UniUD-22-25), and by NSF grants 2151254 and 1914635.

References

1. Angelopoulos, N., Giamas, G.: Prolog Bioinformatic Pipelines: A Case Study in Gene Dys-
regulation. In: Workshop on Constraint-Based Methods in Bioinformatics (WCB14). Lyon,
France (2014)

2. Baek, M., Baker, D.: Deep learning and protein structure modeling. Nat. Methods 19, 13–14
(2022)

3. Bansal, A.K.: Establishing a framework for comparative analysis of genome sequences. In:
Proceedings of the International IEEE Symposium on Intelligence in Neural and Biological
Systems, pp. 84–91 (1995)

Prolog Meets Biology 329

4. Bansal, A.K., Bork, P.: Applying logic programming to derive novel functional information
of genomes. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, pp. 275–289. Springer, Hei-
delberg (1998). https://doi.org/10.1007/3-540-49201-1_19

5. Barton, G.J., Rawlings, C.J.: A Prolog approach to analysing protein structure. Tetrahedron
Comput. Methodol. 3(6 PART C), 739–756 (1990)

6. Bodei, C., Bracciali, A., Chiarugi, D.: On deducing causality in metabolic networks. BMC
Bioinform. 9(S-4) (2008)

7. Burger, A., Davidson, D., Baldock, R.: Formalization of mouse embryo anatomy. Bioinfor-
matics 20, 259–267 (2004)

8. Calzone, L., Fages, F., Soliman, S.: Biocham: an environment for modeling biological sys-
tems and formalizing experimental knowledge. Bioinformatics 22(14), 1805–1807 (2006)

9. Campeotto, F., Dal Palù, A., Dovier, A., Fioretto, F., Pontelli, E.: A constraint solver for
flexible protein model. J. Artif. Intell. Res. (JAIR) 48, 953–1000 (2013)

10. Chisham, B., Pontelli, E., Son, T., Wright, B.: CDAOStore: a phylogenetic repository using
logic programming and web services. In: International Conference on Logic Programming,
pp. 209–219 (2011)

11. Chisham, B., Wright, B., Le, T., Son, T., Pontelli, E.: CDAO-Store: Ontology-driven Data
Integration for Phylogenetic Analysis. BMC Bioinform. 12, 98 (2011)

12. Christiansen, H., Have, C.T., Lassen, O.T., Petit, M.: Inference with constrained hidden
markov models in PRISM. Theory Pract. Logic Program. 10(4–6), 449–464 (2010)

13. Cooper, G., Friedman, J.M.: Interpreting chromosomal abnormalities using Prolog. Comput.
Biomed. Res. 23(2), 153–164 (1990)

14. Crescenzi, P., Goldman, D., Papadimitrou, C., Piccolboni, A., Yannakakis, M.: On the com-
plexity of protein folding. In: Proceedings of STOC, pp. 597–603 (1998)

15. Dal Palù, A., Dovier, A., Fogolari, F.: Constraint logic programming approach to protein
structure prediction. BMC Bioinform. 5, 186 (2004)

16. Dal Palù, A., Dovier, A., Fogolari, F., Pontelli, E.: CLP-based protein fragment assembly.
Theory Pract. Logic Program. 10(4–6), 709–724 (2010)

17. Dal Palù, A., Dovier, A., Formisano, A., Pontelli, E.: Exploring life: answer set programming
in bioinformatics. In: Kifer, M., Liu, Y.A. (eds.) Declarative Logic Programming: Theory,
Systems, and Applications, pp. 359–412. ACM / Morgan & Claypool (2018)

18. De Maeyer, D., Renkens, J., Cloots, L., De Raedt, L., Marchal, K.: PheNetic: network-based
interpretation of unstructured gene lists in E. coli. Mol. BioSyst. 9, 1594–1603 (2013)

19. Degrand, É., Fages, F., Soliman, S.: Graphical conditions for rate independence in chemical
reaction networks. In: Abate, A., Petrov, T., Wolf, V. (eds.) CMSB 2020. LNCS, vol. 12314,
pp. 61–78. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60327-4_4

20. Dong, S., Searls, D.B.: Gene structure prediction by linguistic methods. Genomics 23(3),
540–551 (1994)

21. Dovier, A., Formisano, A., Gupta, G., Hermenegildo, M.V., Pontelli, E., Rocha, R.: Parallel
logic programming: a sequel. Theory Pract. Log. Program. 22(6), 905–973 (2022)

22. Erdem, E.: Applications of answer set programming in phylogenetic systematics. In: Bal-
duccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Non-
monotonic Reasoning. LNCS (LNAI), vol. 6565, pp. 415–431. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20832-4_26

23. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI Mag. 37(3),
53–68 (2016)

24. EvoInfo Working Group: PhyloWS: Phyloinformatics Web Services API. https://evoinfo.
nescent.org/PhyloWS (2009)

25. Fanchon, E., Corblin, F., Trilling, L., Hermant, B., Gulino, D.: Modeling the molecular net-
work controlling adhesion between human endothelial cells: inference and simulation using

https://doi.org/10.1007/3-540-49201-1_19
https://doi.org/10.1007/978-3-030-60327-4_4
https://doi.org/10.1007/978-3-642-20832-4_26
https://evoinfo.nescent.org/PhyloWS
https://evoinfo.nescent.org/PhyloWS

330 A. Dal Palù et al.

constraint logic programming. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS, vol.
3082, pp. 104–118. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-25974-
9_9

26. Fierens, D., et al.: Inference and learning in probabilistic logic programs using weighted
boolean formulas. Theory Pract. Logic Program. 15(3), 358–401 (2015)

27. Gaasterland, T., Sensen, C.W.: Fully automated genome analysis that reflects user needs and
preferences. A detailed introduction to the MAGPIE system architecture. Biochimie 78(5),
302–310 (1996)

28. Gaasterland, T., Selkov, E.: Reconstruction of metabolic networks using incomplete infor-
mation. In: Rawlings, C.J., Clark, D.A., Altman, R.B., Hunter, L., Lengauer, T., Wodak, S.J.
(eds.) Proceedings of the Third International Conference on Intelligent Systems for Molecu-
lar Biology, Cambridge, United Kingdom, 16–19 July 1995, pp. 127–135. AAAI (1995)

29. Gonçalves, A., Ong, I.M., Lewis, J.A., Santos Costa, V.: A Problog model for analyzing
gene regulatory networks. In: Riguzzi, F., Zelezný, F. (eds.) Late Breaking Papers of the
22nd International Conference on Inductive Logic Programming, Dubrovnik, Croatia, 17–19
September 2012. CEUR Workshop Proceedings, vol. 975, pp. 38–43. CEUR-WS.org (2012)

30. Goodman, N., Rozen, S., Stein, L.: Requirements for a deductive query language in the map-
base genome-mapping database. In: Ramakrishnan, R. (ed.) Proceedings of the Workshop
on Programming with Logic Databases. In Conjunction with ILPS, Vancouver, BC, Canada,
October 30, 1993. Technical Report, vol. 1183, pp. 18–32. University of Wisconsin (1993)

31. Gouret, P., Thompson, J.D., Pontarotti, P.: PhyloPattern: regular expressions to identify com-
plex patterns in phylogenetic trees. BMC Bioinformatics 10, 298 (2009)

32. Gouret, P., Vitiello, V., Balandraud, N., Gilles, A., Pontarotti, P., Danchin, E.G.J.: FIGENIX:
intelligent automation of genomic annotation: expertise integration in a new software plat-
form. BMC Bioinform. 6, 198 (2005)

33. Gray, P.M.D., Paton, N.W., Kemp, G.J.L., Fothergill, J.E.: An object-oriented database for
protein structure analysis. Protein Eng. Des. Sel. 3(4), 235–243 (1990)

34. Gupta, G., et al.: Semantics-based filtering: logic programming’s Killer app. In: Krishna-
murthi, S., Ramakrishnan, C.R. (eds.) PADL 2002. LNCS, vol. 2257, pp. 82–100. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45587-6_7

35. Gupta, G., et al.: Prolog: past, present, and future. In: Warren, D.S., Dahl, V., Eiter, T.,
Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog: 50 Years of Future, LNAI 13900,
pp. 48–61. Springer, Cham (2023)

36. Hanekamp, K., Bohnebeck, U., Beszteri, B., Valentin, K.: PhyloGena - a user-friendly system
for automated phylogenetic annotation of unknown sequences. Bioinformatics 23(7), 793–
801 (2007)

37. Hearne, C., Cui, Z., Parsons, S., Hajnal, S., et al.: Prototyping a genetics deductive database.
In: ISMB. vol. 2, pp. 170–178 (1994)

38. Heidtke, K.R., Schulze-Kremer, S.: BioSim: a new qualitative simulation environment for
molecular biology. In: Glasgow, J.I., Littlejohn, T.G., Major, F., Lathrop, R.H., Sankoff, D.,
Sensen, C.W. (eds.) Proceedings of the 6th International Conference on Intelligent Systems
for Molecular Biology (ISMB-98), Montréal, Québec, Canada, 28 June - 1 July, 1998. pp.
85–94. AAAI (1998)

39. Ishikawa, T., Terano, T.: Using analogical reasoning to predict a protein structure. Genome
Inform. 4, 339–346 (1993)

40. Ishikawa, T., Terano, T.: How to predict it: inductive prediction by analogy using taxonomic
information. In: Proceedings of the Third International Conference on Multistrategy Learn-
ing, pp. 285–293. AAAI Press (1996)

41. Jamil, H.M.: A visual interface for querying heterogeneous phylogenetic databases. IEEE
ACM Trans. Comput. Biol. Bioinform. 14(1), 131–144 (2017)

https://doi.org/10.1007/978-3-540-25974-9_9
https://doi.org/10.1007/978-3-540-25974-9_9
https://doi.org/10.1007/3-540-45587-6_7

Prolog Meets Biology 331

42. Jamil, H.M.: Optimizing phylogenetic queries for performance. IEEE ACM Trans. Comput.
Biol. Bioinform. 15(5), 1692–1705 (2018)

43. Joubert, M., Fieschi, M., Fieschi, D., Roux, M.: Medical decision aid: Logic bases of the
system SPHINX. In: Caneghem, M.V. (ed.) Proceedings of the First International Logic
Programming Conference, Faculté des Science de Luminy, ADDP-GIA, Marseille, France,
September, 14–17, 1982, pp. 210–214. ADDP-GIA (1982)

44. Kazic, T.: Representation, reasoning and the intermediary metabolism of Escherichia coli.
In: Proceedings of the Annual Hawaii International Conference on System Sciences, vol. 1,
pp. 853–862 (1993)

45. Kazic, T.: Representation of biochemistry for modeling organisms. In: Kumosinski, T.F.,
Liebman, M.N. (eds.) Molecular Modeling, pp. 486–494. American Chemical Society,
Washington, DC (1994)

46. Kemp, G.J.L., Gray, P.M.D.: Finding hydrophobic microdomains using an object-oriented
database. Comput. Appl. Biosci. 6(4), 357–363 (1990)

47. Kemp, G.J.L., Jiao, Z., Gray, P.M.D., Fothergill, J.E.: Combining computation with database
access in biomolecular computing. In: Litwin, W., Risch, T. (eds.) ADB 1994. LNCS, vol.
819, pp. 317–335. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58183-9_57

48. Leung, S., Mellish, C., Robertson, D.: Basic Gene Grammars and DNA-ChartParser for lan-
guage processing of Escherichia coli promoter DNA sequences. Bioinform. 17(3), 226–236
(2001)

49. Lusk, E.L., Overbeek, R.A., Mudambi, S., Szeredi, P.: Applications of the aurora parallel
Prolog system to computational molecular biology. In: Workshop on Concurrent and Parallel
Implementations (sessions A and B), held at IJCSLP’92, Washington, DC, USA, November
1992 (1992)

50. Lyall, A., Hammond, P., Brough, D., Glover, D.: BIOLOG - a DNA sequence analysis system
in Prolog. Nucleic Acids Res. 12(1), 633–642 (1984)

51. MacKay, K., Carlsson, M., Kusalik, A.: GeneRHi-C: 3D GENomE reconstruction from Hi-
C data. In: Proceedings of the 10th International Conference on Computational Systems-
Biology and Bioinformatics, CSBIO 2019. ACM (2019)

52. Maddison, D., Swofford, D., Maddison, W.: NEXUS: an extensible file format for systematic
information. Syst. Biol. 46(4), 590–621 (1997)

53. Meneghetti, A.: Exploiting fashion features for floor storage systems in the shoe industry.
Int. J. Eng. Bus. Manage. 5, SPL.ISSUE (2013)

54. Mørk, S., Holmes, I.: Evaluating bacterial gene-finding hmm structures as probabilistic logic
programs. Bioinformatics 28(5), 636–642 (2012)

55. Muggleton, S.: Inverse entailment and Progol. N. Gener. Comput. 13(3–4), 245–286 (1995)
56. Muggleton, S., King, R.D., Sternberg, M.J.E.: Using logic for protein structure prediction.

In: Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences,
vol. 1, pp. 685–696 (1992)

57. Muggleton, S., Srinivasan, A., King, R.D., Sternberg, M.J.E.: Biochemical knowledge dis-
covery using inductive logic programming. In: Arikawa, S., Motoda, H. (eds.) DS 1998.
LNCS (LNAI), vol. 1532, pp. 326–341. Springer, Heidelberg (1998). https://doi.org/10.1007/
3-540-49292-5_29

58. Mungall, C.: Experiences using logic programming in bioinformatics. Lect. Notes Comput.
Sci. 5649, 1–21 (2009)

59. Nakhleh, L., Miranker, D.P., Barbançon, F., Piel, W.H., Donoghue, M.J.: Requirements of
phylogenetic databases. In: 3rd IEEE International Symposium on BioInformatics and Bio-
Engineering (BIBE) 2003, 10–12 March 2003, Bethesda, MD, USA, pp. 141–148. IEEE
Computer Society (2003)

https://doi.org/10.1007/3-540-58183-9_57
https://doi.org/10.1007/3-540-49292-5_29
https://doi.org/10.1007/3-540-49292-5_29

332 A. Dal Palù et al.

60. Nguyen, T.H., Pontelli, E., Son, T.C.: Phylotastic: an experiment in creating, manipulating,
and evolving phylogenetic biology workflows using logic programming. Theory Pract. Logic
Program. 18(3–4), 656–672 (2018)

61. Overbeek, R.A.: Logic programming and genetic sequence analysis: a tutorial. In: Apt, K.R.
(ed.) Logic Programming, Proceedings of the Joint International Conference and Symposium
on Logic Programming, JICSLP 1992, Washington, DC, USA, November 1992, pp. 32–34.
MIT Press (1992)

62. Pan, Y., Pontelli, E., Son, T.: BSIS: an experiment in automating bioinformatics tasks through
intelligent workflow construction. In: Chen, H., Wang, Y., Cheung, K.H. (eds.) Semantic
e-Science, pp. 189–238. Springer, Cham (2010). https://doi.org/10.1007/978-1-4419-5908-
9_6

63. Prosdocimi, F., Chisham, B., Pontelli, E., Thompson, J., Stoltzfus, A.: Initial Implementation
of a Comparative Data Analysis Ontology. Evol. Bioinforma. 5, 47–66 (2009)

64. Rawlings, C.J., Taylor, W.R., Nyakairu, J., Fox, J., Sternberg, M.J.E.: Reasoning about pro-
tein topology using the logic programming language Prolog. J. Mol. Graph. 3(4), 151–157
(1985)

65. Rawlings, C.J., Taylor, W.R., Taylor, W.R., Nyakairu, J., Fox, J., Sternberg, M.J.E.: Using
prolog to represent and reason about protein structure. In: Shapiro, E. (ed.) ICLP 1986.
LNCS, vol. 225, pp. 536–543. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-
16492-8_101

66. Riguzzi, F., Cota, G., Bellodi, E., Zese, R.: Causal inference in cplint. Int. J. Approx. Reason.
91, 216–232 (2017)

67. Rosenblueth, D.A., Thieffry, D., Huerta, A.M., Salgado, H., Collado-Vides, J.: Syntactic
recognition of regulatory regions in Escherichia coli. Comput. Appl. Biosci. 12(5), 415–422
(1996)

68. Saldanha, J., Eccles, J.R.: GENPRO: automatic generation of Prolog clause files for
knowledge-based systems in the biomedical sciences. Comput. Methods Programs Biomed.
28(3), 207–214 (1989)

69. Saldanha, J., Eccles, J.R.: The application of SSADM to modelling the logical structure of
proteins. Bioinformatics 7(4), 515–524 (1991)

70. Saldanha, J., Mahadevan, D.: Molecular model-building of amylin and α-calcitonin gene-
related polypeptide hormones using a combination of knowledge sources. Protein Eng. Des.
Sel. 4(5), 539–544 (1991)

71. Sato, T.: A statistical learning method for logic programs with distribution semantics. In:
Proceedings of the 12th International Conference on Logic Programming (ICLP 95), pp.
715–729 (1995)

72. Shaw, P.: Using constraint programming and local search methods to solve vehicle rout-
ing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 417–431.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2_30

73. Shu, W., Lan, J.: Design a pathway/genome expert system using a Prolog machine incorpo-
rated with a parallel hardware searcher. In: Proceedings of the Asia Pacific Association of
Medical Informatics, APAMI, pp. 9–14 (2006)

74. Stebbing, J., et al.: Characterization of the tyrosine kinase-regulated proteome in breast can-
cer by combined use of RNA interference (rnai) and stable isotope labeling with amino
acids in cell culture (silac) quantitative proteomics. Mol. Cell. Proteomics 14(9), 2479–2492
(2015)

75. Tarzariol, A., Zanazzo, E., Dovier, A., Policriti, A.: Towards a logic programming tool for
cancer data analysis. Fundam. Informaticae 176(3–4), 299–319 (2020)

76. Todd, S., Morffew, A., Burridge, J.: Application of relational database and graphics to the
molecular sciences. In: Longstaff, J. (ed.) Proceedings of the Third British National Confer-

https://doi.org/10.1007/978-1-4419-5908-9_6
https://doi.org/10.1007/978-1-4419-5908-9_6
https://doi.org/10.1007/3-540-16492-8_101
https://doi.org/10.1007/3-540-16492-8_101
https://doi.org/10.1007/3-540-49481-2_30

Prolog Meets Biology 333

ence on Databases (BNCOD) 3, Leeds, UK, July 11–13, 1984, pp. 1–13. Cambridge Univer-
sity Press (1984)

77. Tsur, S., Olken, F., Naor, D.: Deductive databases for genomic mapping (extended abstract).
In: Chomicki, J. (ed.) Proceedings of the Workshop on Deductive Databases held in con-
junction with the North American Conference on Logic Programming, Austin, Texas, USA,
November 1, 1990. Technical Report, vol. TR-CS-90-14. Kansas State University (1990)

78. Turcotte, M., Muggleton, S., Sternberg, M.J.E.: Use of inductive logic programming to learn
principles of protein structure. Electron. Trans. Artif. Intell. 4(B), 119–124 (2000)

79. Turcotte, M., Muggleton, S., Sternberg, M.J.E.: Generating protein three-dimensional fold
signatures using inductive logic programming. Comput. Chem. 26(1), 57–64 (2002)

80. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press, Cambridge
(2005)

81. Warren, D.S.: Introduction to Prolog. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M.,
Kowalski, R., Rossi, F. (eds.) Prolog: 50 Years of Future, LNAI 13900, pp. 3–19. Springer,
Cham (2023)

82. Wong, W.K.C.: Logic programming and deductive databases for genomic computations: A
comparison between Prolog and LDL. In: Proceedings of the Annual Hawaii International
Conference on System Sciences. vol. 1, pp. 834–843. IEEE Computer Society (1993)

83. Yoshida, K., et al.: Toward a human genome encyclopedia. In: Proceedings of the Interna-
tional Conference on Fifth Generation Computer Systems. FGCS 1992, June 1–5, Tokyo,
Japan, pp. 307–320. IOS Press (1992)

84. Zupan, B., et al.: GenePath: a system for automated construction of genetic networks from
mutant data. Bioinform. 19(3), 383–389 (2003)

Prolog in Automated Reasoning
in Geometry

Vesna Marinković(B)

Faculty of Mathematics, University of Belgrade, Belgrade, Serbia
vesnap@matf.bg.ac.rs

Abstract. In this paper a brief overview of tools for automated rea-
soning in geometry developed in Prolog is given. We argue that Prolog
is as a good choice for automated reasoning applications and this argu-
ment is justified by the example of the tool ArgoTriCS for automated
solving of geometry construction problems, developed by the author of
the paper. We point out features which made Prolog suitable for devel-
opment of the tool ArgoTriCS, and illustrate the important aspects of
the tool: specification of the underlying knowledge base and the search
procedure. The system ArgoTriCS can solve many different triangle con-
struction problems and output formal specification of construction in
GCLC language, as well as construction in JSON format which enables
generation of dynamic illustrations.

1 Introduction

Over the past several decades, the field of automated reasoning and automated
theorem proving has experienced substantial growth, and today many difficult
theorems can be proved automatically, without human guidance. Many chal-
lenges, however, still remain across the various domains to which it is frequently
applied. One such domain is geometry, where automated reasoning is mostly
aimed at proving theorems and solving construction problems. There, it finds its
applications in mathematical education, both for enriching the teaching process
as well as helping students acquiring knowledge on their own, but also in, for
example, robot kinematics and computer vision [4].

There are three different approaches to automated theorem proving in geom-
etry: the algebraic approach, based on translating geometry statements into a
set of algebraic equations and proving corresponding statements using algebraic
techniques [2,22]; the synthetic approach, which tries to automate traditional
geometry proofs [5,9]; and the semi-synthetic approach, which involves calcu-
lations over some geometric quantities [6]. Algebraic methods are known to be
very efficient, but the proofs obtained do not reflect the geometrical nature of
the problem being solved and are therefore unsuitable for educational purposes.
Synthetic methods, on the other hand, may produce geometry-style, human-
readable proofs, even proofs that are similar to proofs made by humans, but

This research is supported by the Serbian Ministry of Education, Science and Tech-
nological Development through the University of Belgrade, Faculty of Mathematics
(Grant No. 451-03-47/2023-01/s200104).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 334–345, 2023.
https://doi.org/10.1007/978-3-031-35254-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_27&domain=pdf
http://orcid.org/0000-0003-0526-899X
https://doi.org/10.1007/978-3-031-35254-6_27

Prolog in Automated Reasoning in Geometry 335

are, in general, not very efficient. By using semi-synthetic methods, one does
get somewhat readable proofs, but since the proofs are formulated in terms of
arithmetic expressions, they are not similar to the ones made by humans.

The goal of this paper is to give a short overview of geometry tools developed
in Prolog, with an emphasis on the system ArgoTriCS for automated solving of
construction problems, developed by the author.

2 Prolog Tools for Automated Reasoning in Geometry

Ever since its beginnings in the 1970s, Prolog has proved to be convenient for
automated reasoning applications for several reasons: it enables rapid system
prototyping, which gives the user an opportunity for testing different compo-
nents of the system in early phases of development; its inference machinery is
based on the refinement of the resolution method, known to be well-suited for
automation; and it has built-in pattern matching based on unification, facilitat-
ing easy drawing of conclusions. In addition, it features rule-based programming,
which enables writing code in a form that is more declarative than procedural,
and supports automatic backtracking execution, which allows for systematic test-
ing of alternatives. It is, also, suitable for modeling mathematical problems, as
well as their structuring in order to solve them more easily [3].

Although automated reasoning in geometry has been actively developing over
the past decades and there exists a community actively engaged in automated
deduction in geometry1, there are still not many systems for reasoning in geom-
etry on the whole. The existing ones can be broadly divided into two groups, one
focused on theorem proving, and the other on solving construction problems. In
the following, we will briefly describe geometry tools developed in Prolog.

Theorem Provers. GEOM [7] is a Prolog program that can solve problems from
high-school plane geometry. A problem statement in GEOM contains the hypoth-
esis and the goal of the conjecture being proved, but also optionally a specifi-
cation of a diagram (in the form of Cartesian coordinates of points appearing
in the problem) that illustrates the problem being solved. Providing such a dia-
gram can guide the proving process as well as help it detect counterexamples for
pruning unprovable goals. Note that any diagram provided represents just one
model, that is, one particular case for which the theorem being proved holds.

QED-Tutrix [8] is an intelligent geometry tutor that helps students prove
geometry statements. Its inference engine is implemented in Prolog. The key
element of its engine is a graph constructed in a forward-chaining man-
ner [20], developed in Prolog, which contains all possible proofs of the problem
being solved.

Geometry theorems can also be proved by theorem provers for first-order logic
or its fragments. Coherent logic [1] is a fragment of first-order logic that repre-
sents a framework suitable for generation of readable proofs. The first automated
1 There is a conference dedicated to automated deduction in geometry, held every two

years: https://adg2023.matf.bg.ac.rs/.

https://adg2023.matf.bg.ac.rs/

336 V. Marinković

theorem prover based on coherent logic, Euclid [11], was developed in Prolog and
its inference system relied on a forward-chaining mechanism. Euclid was able to
prove many theorems of lesser difficulty from geometry textbooks.

Geometry Construction Solvers. Progé [18] is a framework implemented in Pro-
log in which different types of geometry construction problems can be solved
automatically. The geometry universe to which the construction problem belongs
is specified by the user. In Progé, functional symbols are used to express basic
constructions, while relational symbols are used for formulation of constraints
that describe the figures. This way, geometric knowledge is described as a set of
corresponding axioms.

ArgoTriCS [14,16] is a system for automated solving of triangle construction
problems, and is discussed in more detail in the next section.

3 ArgoTriCS – Automated Triangle Construction Solver

System Description. ArgoTriCS is a system for automated solving of geometry
construction problems, primarily used for constructing a triangle given locations
of three of its important points listed below and illustrated in Fig. 1 [14]:

– vertices A, B, and C;
– midpoints Ma, Mb, Mc of sides opposite to vertices A, B, and C, respectively;
– feet Ha, Hb, Hc of altitudes from vertices A, B, and C, respectively;
– feet Ta, Tb, Tc of internal angle bisectors at vertices A, B, and C, respectively;
– circumcenter O, centroid G, orthocenter H, and incenter I of a triangle.

These points were considered by Wernick, who listed all 139 non-trivial, sig-
nificantly different associated problems [21].

A B

C

Ma
Mb

Mc

O

G

Hc

Hb
Ha

H

Tc

Tb Ta

I

Fig. 1. Important points of a triangle considered by Wernick.

Example 1. Consider the problem to construct triangle ABC, given the locations
of its vertex A, the midpoint Mc of its side AB, and the midpoint Mb of its side
AC. Since the vertex A is already given, the problem is to construct the other two
vertices, B and C. One solution to this problem is straightforward: the vertex
B is constructed as a point symmetric to A wrt Mc and, similarly, the vertex C
as a point symmetric to A wrt Mb (Fig. 2).

Prolog in Automated Reasoning in Geometry 337

A

MbMc

CB

Fig. 2. Construction of triangle ABC given locations of vertex A, and midpoints Mb

and Mc of sides AC and AB.

The ArgoTriCS system relies on a geometry knowledge base, identified by a
thorough manual analysis of solutions available in the literature, and on a spe-
cific, guided search procedure. The system works on fixed set of points, lines, and
circles and these are the ones identified as relevant for solving some construction
problem. For instance, a line a through points B and C is considered relevant,
as it is used for solving many construction problems, however, a line through
points Ta and Hc is not considered relevant, since it was not used in solution
to any problem. The ArgoTriCS system distinguishes three different pieces of
knowledge: definitions, lemmas, and primitive constructions.

Definitions are statements by which objects are uniquely identified, while
lemmas are additional statements that hold for some set of objects. For instance,
the statement that the centroid G of a triangle is an intersection point of its
two medians is given as the definition of the point G, while the statement that
the centroid of a triangle divides each median in the ratio 2 : 1 is given as
a lemma (Fig. 3). The system supports both instantiated and non-instantiated
(i.e. general) definitions and lemmas. For example, as there exist exactly one
orthocenter H, one centroid G, and one circumcenter O in any triangle, Euler’s
theorem, stating that

−−→
HG :

−−→
HO = 2 : 3, is given as an instantiated lemma, as

it holds only for these points. On the other hand, the lemma stating that the
center of a circle belongs to the bisector of an arbitrary chord of that circle is
applicable to any chord of any circle and is, therefore, general.

Primitive constructions are rules that specify which new objects can be con-
structed from the already constructed ones: for instance, one can construct a
line through any two known points; or one can construct a point symmetric to
a known point X with respect to another known point Y .

The points considered by ArgoTriCS do not have fixed coordinates; their
positions are instead constrained by definitions and lemmas they are involved
in (however, in the associated illustrations in Cartesian plane, all points do get
concrete coordinates). While solving a construction problem, one is faced with
a huge search space: in each construction step, many different primitive con-
structions can be applied, possibly in different ways. For instance, in Example 1,
instead of constructing a point symmetric to A wrt Mb, one can construct a
point symmetric to Mb wrt A or a point symmetric to Mc wrt A, or a line
through points Mb and Mc, or a circle centered at A passing through Mb, or a

338 V. Marinković

A

B CMa

MbG

2

1

ma

mb

Fig. 3. Centroid of a triangle with its basic properties.

circle over diameter AMc, or many other objects that are not needed for solving
this construction problem (Fig. 4). To achieve a higher level of control over the
objects constructed, before the search for a construction begins, general defi-
nitions are instantiated by relevant objects and added to the knowledge base.
Objects identified as relevant are the ones appearing in some definition or a
lemma. Similarly, general lemmas are instantiated by objects that satisfy their
hypotheses and their conclusions are added to the knowledge base. However,
primitive constructions are kept in non-instantiated form and get instantiated
only during the search for the construction (see Example 2, page 8).

A

B C

Mc Mb

X
Y

Fig. 4. One can apply many different primitive constructions to the set of known points
A, Mb, and Mc, some of them in different ways.

The construction starts from the points given, with the goal of construct-
ing the vertices A, B, and C of a triangle. The search procedure is systematic
and iterative: primitive constructions are ordered in a certain way2 and in each
2 Primitive constructions are ordered so that the ones used more frequently are listed

before the ones used rarely. Primitive constructions that are used more often are
identified by preliminary experimentation with different possible arrangements on a
large corpus of problems and by calculating aggregated statistics on the number of
times each one was used.

Prolog in Automated Reasoning in Geometry 339

step ArgoTriCS tries to apply some primitive construction to the objects already
constructed or given by the problem specification. If it succeeds, the search for
the next applicable primitive construction starts again from the first primitive
construction in a waterfall manner. A primitive construction is applicable if we
can find an instantiation such that all objects from its hypotheses are already
constructed, while the objects from its conclusion are not. Each successful appli-
cation of a primitive construction produces a new object, which is added to the
set of constructed objects maintained during the search. If all three vertices of
the triangle are constructed, the search terminates successfully. If at least one
vertex of the triangle is not yet constructed and no primitive constructions is
applicable, the search terminates unsuccessfully, meaning that this construction
problem cannot be solved using identified geometry knowledge. In order to make
the search procedure more efficient, additional techniques are employed, such as
limiting the objects being constructed to only those appearing in a definition or
a lemma involving an object not yet constructed.

Implementation. ArgoTriCS was developed in Prolog3 and totals around 3500
lines of code, including the specification of the identified knowledge base. Pro-
log was chosen because of several conveniences, such as straightforward for-
mulation and parsing of definitions, lemmas, and primitive constructions. For
instance, the midpoint of an arbitrary segment XY is described by the Prolog
term midpoint([X,Y]), while the midpoint Ma of the side BC of the triangle is
given by midpoint([b,c]). Observe the use of variables X and Y in the former
and the use of concrete points b and c in the latter.

Objects are defined using a Prolog predicate def, which takes three argu-
ments: the object being defined, the list of properties by which it is defined, and
its unique label. For instance, the midpoint Ma of a segment BC is defined as a
point for which the signed ratio of segments

−−−→
BMa/

−−→
BC is equal to 1/2:

def(midpoint([b,c]), [sratio(b,midpoint([b,c]),b,c,1,2)], ‘D21’).

where sratio is a relational symbol with six arguments denoting that the signed
ratio of the first four (points) is equal to the ratio of the last two (integers). As
another example, the median ma of a triangle ABC at the vertex A, described by
the Prolog term median(a,[b,c]), is defined as a line incident to the vertex A
and the midpoint Ma of the side BC (see Fig. 3):

def(median(a,[b,c]), [inc(a,median(a,[b,c])),
inc(midpoint([b,c],median(a,[b,c])))], ‘D17’).

where inc is a relational symbol representing incidence of point to a line.
Instantiated lemmas are given using the predicate lemma with two arguments:

the statement of a lemma and its label. For instance, the lemma stating that the
centroid G of a triangle divides the median ma in 2 : 3 ratio (see Fig. 3) is given
by the following rule:

3 For our implementation we used SWI-Prolog.

340 V. Marinković

lemma(sratio(a,centroid([a,b],c),a,midpoint([b,c]),2,3), ‘L55’).

A predicate for describing primitive constructions is more complex and has
seven arguments: the first one is the list of objects given, the second is the list of
numbers used by construction4, the third is the list of objects being constructed,
the fourth is the list of the properties that must be satisfied, the fifth specifies
the list of non-degeneracy conditions for objects to exist, the sixth the list of
determination conditions under which the objects constructed uniquely exist,
while the last one is its label. For instance, the construction of a circle C with
center O through point A, if points A and O are known, is written like this:

cons([obj(point,A), obj(point,O)], [], [obj(circle,C)],
[center(O,C), inc_circ(A,C)], [not(eq_point(A,O))], [], ‘W06’).

where inc_circ is a relational symbol representing incidence of a point to a circle
and center is a relational symbol stating that a point is a center of a circle.

A simplified version of the Prolog procedure for updating the set of known
objects consists of searching for an applicable primitive construction (meaning
that all objects from its premises are already constructed, all properties are
satisfied by definitions or lemmas, but the object to be constructed is not yet
constructed), checking if the object being constructed could be relevant for a
construction, extending the set of known objects with newly constructed objects,
and adding one more construction step to the construction trace. The inferences
performed are limited to ones constructing an object potentially relevant to a
construction. Updating the set of known objects terminates once we construct
all of the objects sought or when there is no applicable construction.

update_known(Known,Unknown,Trace,Trace) :- sublist(Known,Unknown), !.
update_known(Known_old,Unknown,InputTrace,OutputTrace) :-

cons(Obj_known,Vals,Obj_constr,Props,NDG,DET,RuleId),
instantiate(Known_old,Obj_known),
all_defs_or_lemmas(Props,[],Props1),
relevant_not_constructed_some(Obj_constr,Props,Known_old),
not_in_list(Obj_constr,Known_old),
append(Known_old,Obj_constr,Known_new),
update_known(Known_new,Unknown,

[(Obj_known,Vals,Obj_constr,Props1,RuleId)|InputTrace],OutputTrace), !.
update_known(_,_,_,_,) :- !, write(‘Construction can not be found’), nl.

Advantages of Using Prolog. By using Prolog, we obtain for free the unification
and variable instantiation needed for the instantiation of general definitions and
lemmas and for the application of primitive construction. Maintaining the partial
construction, the set of constructed objects and the knowledge base, is also simple
to achieve. Namely, since the number of performed construction steps and the
number of constructed objects may vary, partial construction and the set of
constructed objects are represented as Prolog lists.

4 As seen for the signed ratio symbol, some symbols require numbers as arguments.

Prolog in Automated Reasoning in Geometry 341

Search tasks, such as the one appearing in the solving of construction prob-
lems, are well-handled using Prolog’s built-in query-driven search engine. Pro-
log’s automatic backtracking mechanism enables systematic testing of applicabil-
ity of different primitive constructions to different, already constructed objects.
This also makes it easy to obtain all of the solutions to a construction problem.

Output and Evaluation. ArgoTriCS was applied on problems from Wernick’s
corpus [21], both in the Euclidean and the hyperbolic setting, where it solved
66 out of 74 significantly different solvable problems in the Euclidean case [19],
and 39 problems in the hyperbolic setting5.

The times required to solve the construction problems vary: for most prob-
lems from Wernick’s corpus it amounted to a couple of milliseconds, but for
some problems it took more than an hour. Although only a limited number of
objects (potentially relevant for construction) is considered and different tech-
niques that enable early pruning are employed, the search space still remains
huge and sometimes the system is not able to give a result in reasonable time.

Found construction traces can be exported to natural language, to a formal
description of the construction in the GCLC language [10], and in JSON format
that can be used by the ArgoDG library to generate dynamic illustrations [17].

Example 2. Let us consider a construction problem where the task is to construct
�ABC given two vertices A and B and its orthocenter H.

A

B

H

Ca

bha

hb

Fig. 5. Construction of �ABC given vertices A and B and orthocenter H, in the
Euclidean (left) and the hyperbolic (right) setting.

One of the primitive constructions supported in the system is the construction
of a line through two known points:

cons([obj(point,P), obj(point,Q)], [], [obj(line,L)],
[inc(P,L), inc(Q,L)], [], [not(eq_point(P,Q))], ‘W02’).

5 In the case of hyperbolic geometry, there is still no study on how many problems
from Wernick’s corpus are solvable using a ruler and a compass.

342 V. Marinković

Since there are three known points at the beginning: A, B, and H, three combi-
nations of points are tested for applicability: a line through points A and B, a
line through points A and H, and a line through points B and H. Since all three
lines considered (line c containing the side AB of a triangle, altitude ha from
vertex A and altitude hb from vertex B) are the important objects of a triangle,
this primitive construction is applicable to all mentioned combinations of points
and lines c, ha and hb are constructed, respectively. Once we have constructed
a line, the primitive construction that constructs a line through a known point
perpendicular to some known line is tested for applicability on all possible com-
binations of known points (A,B,H) and known lines (c, ha, hb). However, some
lines of this type are not relevant for triangle construction problems, like the
line through point H perpendicular to line ha. The lines constructed are: the
line b as a perpendicular to line hb through point A, the line a as a perpendic-
ular to line ha through point B, and the line hc as a perpendicular to line c
through point H. At this point, the primitive construction that constructs an
intersection point of two lines is tested for applicability and the third vertex C
is constructed as an intersection point of lines a and b. At this point the search
for a construction terminates, as all three vertices of the triangle are known.

The construction trace automatically generated by ArgoTriCS consists of the
steps performed: for each construction step, seven elements are maintained: the
list of objects used for performing that step, the list of objects being constructed,
the properties that those objects satisfy, the list of non-degeneracy conditions,
the list of determination conditions, the label of the primitive construction per-
formed in the step and the list of definitions and lemmas used in the step. If the
search for construction succeeds, the obtained construction-trace is simplified by
keeping only the steps needed for performing the construction. The simplified
construction-trace of this construction problem is the following:

[
([A,H],[h_a],[inc(A,h_a),inc(H,h_a)],[],[not(eq_point(A,H))],W02,[D8,D3]),
([B,H],[h_b],[inc(B,h_b),inc(H,h_b)],[],[not(eq_point(B,H))],W02,[D9,D3]),
([A,h_b],[b],[perp(h_b,b),inc(A,b)],[],[],W10,[D9,GD01]),
([B,h_a],[a],[perp(h_a,a),inc(B,a)],[],[],W10,[D8,GD01]),
([a,b],[C],[inc(C,a),inc(C,b)],[not(parall(a,b))],

[not(eq_line(a,b))],W03,[D8,GD01])
]

The above construction trace can be exported to different formats; e.g. con-
struction in natural language, automatically generated by ArgoTriCS, is the
following:

1. Construct the line ha through the points A and H;
2. Construct the line hb through the points B and H;
3. Construct the perpendicular b to the line hb through the point A;
4. Construct the perpendicular a to the line ha through the point B;
5. Construct the intersection point C of the lines a and b.

Figure 5, automatically generated by ArgoTriCS, illustrates the construction
in the Euclidean and hyperbolic settings.

Prolog in Automated Reasoning in Geometry 343

The generated construction can be proved correct by proving that if the
objects are constructed in this way, then they satisfy the problem specification.
In case of the construction considered in Example 2, one should prove that if the
triangle ABC is constructed this way, then the initially given point H is indeed
its orthocenter. This can be achieved by using OpenGeoProver [12] and provers
available within GCLC. Automatically generated compendiums of solutions to
problems from Wernick’s corpus in Euclidean geometry and hyperbolic geometry
are available online [13,15].

Fig. 6. Dynamic step-by-step illustration of construction of �ABC given two vertices
A and B and orthocenter H in hyperbolic setting.

Figure 6 illustrates a dynamic visualisation of the previous construction
obtained using ArgoDG library in hyperbolic geometry. The positions of the
three given points A, B, and H can be changed and, accordingly, the positions
of all other points changes. The construction is performed step-by-step, which
makes it suitable for educational purposes.

344 V. Marinković

Currently, ArgoTriCS is being extended with the next-step-guidance feature,
which would recommend to the user the next construction step or the objects
he/she needs to construct first in order to construct the object required or an
important lemma possibly useful for the construction. For instance, if one gets
stuck while solving the problem considered in Example 2, the system could
suggest to them to construct the altitudes of the triangle first, and then the
triangle sides; alternatively, the system could provide the user with lemmas that
altitudes are perpendicular to triangle sides.

4 Conclusion

In this paper we gave a brief overview of various geometry tools developed in Pro-
log and described in more details the system ArgoTriCS for automated solving
of construction problems. The system ArgoTriCS could have been implemented
in another programming language, but due to many conveniences, such as rapid
prototyping and easy maintainability, for us Prolog was an obvious choice.

Despite some beliefs that the golden age of Prolog passed, it still finds var-
ious areas of applications. We believe that because of already listed favourable
properties of Prolog that makes it suitable for automated reasoning applications,
it will keep its place in the years to come.

References

1. Bezem, M., Coquand, T.: Automating coherent logic. In: Sutcliffe, G., Voronkov,
A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 246–260. Springer, Heidelberg
(2005). https://doi.org/10.1007/11591191_18

2. Buchberger, B.: An algorithm for finding the basis elements of the residue class
ring of a zero dimensional polynomial ideal. J. Symb. Comput. 41(3), 475–511
(2006)

3. Cervoni, L., Brasseur, J., Rohmer, J.: Simultaneously teaching Mathematics and
Prolog in School Curricula: a mutual benefit. In: Warren, D.S., Dahl, V., Eiter, T.,
Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years. No.
13900. LNCS, Springer (July 2023)

4. Chou, S.C., Gao, X.S.: Automated reasoning in geometry. Handbook of Automated
Reasoning 5(1) (2001)

5. Chou, S.C., Gao, X.S., J.Z., Z.: Automated production of traditional proofs for
constructive geometry theorems. In: Proceedings of the Eighth Annual IEEE Sym-
posium on Logic in Computer Science LICS, pp. 48–56 (1993)

6. Chou, S.C., Gao, X.S., Zhang, J.Z.: Automated generation of readable proofs with
geometric invariants, ii. theorem proving with full-angles. J. Automated Reasoning
17 (1996)

7. Coelho, H., Pereira, L.M.: Automated reasoning in geometry theorem proving with
prolog. J. Autom. Reason. 2, 329–390 (1986)

8. Font, L., Cyr, S., Richard, P., Gagnon, M.: Automating the generation of high
school geometry proofs using prolog in an educational context. In: Electronic Pro-
ceedings in Theoretical Computer Science, vol. 313, pp. 1–16 (2020)

https://doi.org/10.1007/11591191_18

Prolog in Automated Reasoning in Geometry 345

9. Gelernter, H.: Realization of a geometry-theorem proving machine. Computers &
thought, pp. 134–152 (1995)

10. Janičić, P.: Geometry constructions language. J. Autom. Reason. 44(1–2), 3–24
(2010)

11. Janičić, P., Kordić, S.: Euclid - the geometry theorem prover. FILOMAT 9(3),
723–732 (1995)

12. Marić, F., Petrović, I., Petrović, D., Janičić, P.: Formalization and implementation
of algebraic methods in geometry. In: Proceedings First Workshop on CTP Com-
ponents for Educational Software. Electronic Proceedings in Theoretical Computer
Science, vol. 79, pp. 63–81 (2012)

13. Marinković, V.: Online compendium of problems from Wernick’s and Con-
nelly’s corpora in Euclidean setting (2015). http://www.matf.bg.ac.rs/~vesnap/
animations/compendiums.html

14. Marinković, V.: ArgoTriCS - automated triangle construction solver. J. Exp. The-
oretical Artif. Intell. 29(2), 247–271 (2017)

15. Marinković, V.: Online compendium of problems from Wernick’s corpus
in hyperbolic setting. http://poincare.matf.bg.ac.rs/~vesnap/animations_hyp/
compendium_wernick_hyperbolic.html (2021)

16. Marinković, V., Janičić, P.: Towards understanding triangle construction problems.
In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M.,
Sorge, V. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 127–142. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31374-5_9

17. Marinković, V., Šukilović, T., Marić, F.: On automating triangle constructions
in absolute and hyperbolic geometry. In: EPTCS 352, Proceedings of the 13th
International Conference on Automated Deduction in Geometry, p. 14–26 (2021)

18. Schreck, P.: Constructions à la règle et au compas. Ph.D. thesis, University of
Strasbourg (1993)

19. Schreck, P., Mathis, P., Marinković, V., Janičić, P.: Wernick’s list: a final update.
Forum Geometricorum 16, 69–80 (2016)

20. Warren, D.S.: Introduction to Prolog. In: Warren, D.S., Dahl, V., Eiter, T.,
Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years.
No. 13900. LNCS, Springer (July 2023)

21. Wernick, W.: Triangle constructions with three located points. Math. Mag. 55(4),
227–230 (1982)

22. Wu, W.T.: On the decision problem and the mechanization of theorem-proving in
elementary geometry. Sci. Sinica 21(2), 159–172 (1978)

http://www.matf.bg.ac.rs/~vesnap/animations/compendiums.html
http://www.matf.bg.ac.rs/~vesnap/animations/compendiums.html
http://poincare.matf.bg.ac.rs/~vesnap/animations_hyp/compendium_wernick_hyperbolic.html
http://poincare.matf.bg.ac.rs/~vesnap/animations_hyp/compendium_wernick_hyperbolic.html
https://doi.org/10.1007/978-3-642-31374-5_9

Logic-Based Explainable and Incremental
Machine Learning

Gopal Gupta(B), Huaduo Wang, Kinjal Basu, Farhad Shakerin, Elmer Salazar,
Sarat Chandra Varanasi, Parth Padalkar, and Sopam Dasgupta

Department of Computer Science, The University of Texas at Dallas,
Richardson, USA

gupta@utdallas.edu

Abstract. Mainstream machine learning methods lack interpretability,
explainability, incrementality, and data-economy . We propose using logic
programming to rectify these problems. We discuss the FOLD family
of rule-based machine learning algorithms that learn models from rela-
tional datasets as a set of default rules. These models are competitive
with state-of-the-art machine learning systems in terms of accuracy and
execution efficiency. We also motivate how logic programming can be
useful for theory revision and explanation based learning .

1 Introduction

Dramatic success of machine learning has led to a plethora of artificial intel-
ligence (AI) applications. The effectiveness of these machine learning systems,
however, is limited in several ways:

1. Lack of Interpretability: The models learned by machine learning sys-
tems are opaque, i.e., they are not comprehensible by humans. This is mainly
because these statistical machine learning methods produce models that are
complex algebraic solutions to optimization problems such as risk minimiza-
tion or likelihood maximization.

2. Lack of Explainability: These models are unable to produce a justification
for a prediction they compute for a new data sample.

3. Lack of Incrementality: These methods are unable to incrementally update
a learned model as new data is encountered.

4. Lack of Data Economy: These methods need large amounts of data to
compute a model. Humans, in contrast, are able to learn from a small number
of examples.

In this position paper we show that these problems are greatly alleviated if we
develop machine learning methods that learn default theories coded in logic pro-
gramming. The whole field of inductive logic programming (ILP) has been devel-
oped in which Horn clauses are learned from background knowledge, positive,
and negative examples [7]. Rules with negated goals in the body are also learned
in ILP as nonmonotonic logic programs and default rules [10,26]. Representing a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 346–358, 2023.
https://doi.org/10.1007/978-3-031-35254-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_28&domain=pdf
https://doi.org/10.1007/978-3-031-35254-6_28

Logic-Based Explainable and Incremental Machine Learning 347

model as default rules brings significant advantages wrt interpretability, explain-
ability, incremental learning, and data economy. We present LP-based machine
learning algorithms that are interpretable and explainable, as well as LP-based
reinforcement learning for incremental learning, and LP-based explanation based
learning for solving data economy issues.

Default rules are an excellent way of capturing the logic underlying a rela-
tional dataset. Defaults are used by humans in their day-to-day reasoning [9,27].
Most datasets are generated from human-driven activity (e.g., loan approval by
bank officials) and our experiments indicate that the rules underlying the model
learned from these datasets can be represented quite faithfully and succinctly
with default rules. Default rules are used by humans to learn a concept in an
elaboration tolerant manner, as they allow humans to constantly adjust the
decision boundary. We have developed machine learning algorithms that learn
default rules (the model) from relational data containing categorical (i.e., dis-
crete) and numerical values that are competitive with state-of-the-art machine
learning techniques. These algorithms are interpretable and explainable.

Once a set of default rules has been learned from data, it is possible that these
rules may be wrong (possibly because we over-generalized or under-generalized).
When human beings learn from examples (by formulating a rule of thumb in
their mind), then when they encounter an example that goes against the learned
rule, they revise the rule in light of this new example. For example, suppose
we learn the rule that if object X is a fruit, then it goes into the refrigerator.
Later, we learn from experience or someone may tell us that pineapples must
not go into the refrigerator. In that case, we will revise the rule, changing it to:
if X is a fruit, it goes into the refrigerator, except for pineapples. This is a form
of incremental or reinforcement learning [1]. We will refer it to as logic-based
reinforcement learning. Logic-based reinforcement learning can be regarded as
theory revision. Logic-based reinforcement learning is elegantly modeled in logic
programming using default theories as well.

Traditional machine learning methods need large amounts of data to learn.
In contrast, humans can learn from a small number of examples. The problem
of learning from a small number of examples has been explored under the topic
of explanation-based learning (EBL) [16]. Explanation-based learning can be
further developed and applied to practical applications within the framework of
logic programming through the use of default theories.

Finally, knowledge expressed as a logic program can be incorporated in the
neural learning process. Thus, logic programming can play an important role in
neuro-symbolic learning [17,18,33]. However, we won’t discuss this topic due to
lack of space. Logic programming can make a significant difference in this area.

Note that we only give a brief overview of logic-based reinforcement learning
and explanation-based learning. These techniques are really important for the
field of machine learning, and logic programming can provide excellent solutions.
Our hope is that the logic programming community will invest more effort in
further developing them.

348 G. Gupta et al.

2 Default Rules

Default Logic [20] is a non-monotonic logic to formalize commonsense reasoning.
A default D is an expression of the form

A : MB

Γ

which states that the conclusion Γ can be inferred if pre-requisite A holds and B
is justified. MB stands for “it is consistent to believe B”. If we restrict ourselves
to logic programming, then normal logic programs can encode a default theory
quite elegantly [12]. A default of the form:

α1 ∧ α2 ∧ · · · ∧ αn : M¬β1,M¬β2 . . .M¬βm

γ

can be formalized as the normal logic programming rule:

γ :- α1, α2, . . . , αn, not β1, not β2, . . . , not βm.

where α’s and β’s are positive predicates and not represents negation-as-failure.
We call such rules default rules. Thus, the default

bird(X) : M¬penguin(X)
fly(X)

will be represented as the following default rule in normal logic programming:
fly(X) :- bird(X), not penguin(X).

We call bird(X), the condition that allows us to jump to the default conclusion
that X can fly, the default part of the rule, and not penguin(X) the exception
part of the rule.

3 Default Rules as Machine Learning Models

Default rules allow knowledge to be modeled in an elaboration tolerant manner
[12, baral]. Default rules are an excellent vehicle for representing inductive gen-
eralizations. Humans indeed represent inductive generalizations as default rules
[9,27]. Arguably, the sophistication of the human thought process is in large part
due to the copious use of default rules [12].

Consider the example about birds above. We observe that bird 1 can fly, bird
2 can fly, bird 3 can fly, and so on. From this we can generalize and learn the
default rule that “birds fly.” But then we notice that a few of the birds that are
penguins, do not fly. So we add an exception to our rule: “birds fly, unless they
are penguins”. What we are doing is really adjusting our decision boundary, as
illustrated in Fig. 1(i) and Fig. 1(ii) (black dots represents normal birds, red dots
represent penguins). In logic programming, we can make the exception part of
the rule explicit, and code it as:

fly(X) :- bird(X), not abnormal bird(X).
abnormal bird(X) :- penguin(X).

Logic-Based Explainable and Incremental Machine Learning 349

Fig. 1. Decision Boundary Refinement

Suppose, we later discover that there is a subclass of penguins (called super-
penguins [10]) that can fly. In such a case, we have learned an exception to an
exception (See Fig. 1(iii); green dot represents a super-penguin). This will be
coded in logic programming as:

fly(X) :- bird(X), not abnormal bird(X).
abnormal bird(X) :- penguin(X), not abnormal penguin(X).
abnormal penguin(X) :- superpenguin(X).

Thus, default rules with exceptions, exceptions to exceptions, exceptions to
exceptions to exceptions, and so on, allow us to dynamically refine our decision
boundary as our knowledge of a concept evolves. This is the insight that the
FOLD family of algorithms uses to learn a model underlying a dataset. Figure 1
illustrates the idea.

3.1 FOLD Family of Machine Learning Algorithms

We have developed the FOLD family of algorithms that output a model repre-
sented as default rules. Our inspiration is the FOIL algorithm of Quinlan [19].
The FOLD algorithm is a top-down rule-learning algorithm [25]. It starts with
the candidate rule

p(X,L) :- true.
where p(X,L) is the target predicate to learn, and states that record X has the
label L (for example, for the Titanic survival dataset, the target predicate will be
status(Passenger Id, S), where S is either survived or perished). It then
extends the body with a selected literal (predicate) from among the features so
as to cover maximum number of positive examples and avoid covering maximum
number of negative examples. The process of selecting a literal to add to the body
of the rule relies on heuristics. Traditionally, the Information Gain (IG) heuristic
has been used [19,25]. The IG heuristic was pioneered in the FOIL algorithm
[19] for learning logic programs and adapted by us for the FOLD algorithm
[25] to learn default theories. The FOLD algorithm learns a default theory, so
in the next step of learning, it swaps the remaining uncovered positive and
negative examples, and recursively applies the literal selection step to learn the

350 G. Gupta et al.

exception to the default. Literal selection with swapping of uncovered positive
and negative examples continues until reasonable accuracy is obtained. Thus,
given the following information, represented as predicates:

bird(tweety). bird(woody).
cat(kitty). penguin(polly).
bird(polly).

and given positive examples:

E+: fly(tweety). fly(woody).

and negative examples

E-: fly(polly). fly(kitty).

FOLD will learn the default theory:
fly(X) :- bird(X), not abnormal(X).
abnormal(X) :- penguin(X).

The FOLD algorithm inspired a family of algorithms for learning stratified nor-
mal logic programs: LIME-FOLD [23], SHAP-FOLD [24], FOLD-R [22], FOLD-
R++ [28], FOLD-RM [31], FOLD-SE [29] and FOLD-TR [30]. Various algo-
rithms in this family differ in the heuristic used for literal selection as well
as how efficiently the heuristic is computed. Given a labeled training dataset,
these learning algorithms learn a default theory that serves as a model. The
default theory is represented as a stratified normal logic program, and hence is
interpretable. Given a new data record, the model will predict the outcome by
executing the logic program. The proof tree generated during execution serves
as an explanation for the decision reached by the model.

For the FOLD algorithm family, the dataset can have numerical and categori-
cal features, however, the classification label should be categorical. LIME-FOLD
is based on using the LIME method [21] for determining the level of contri-
bution of each feature to a prediction [23]. SHAP-FOLD uses Shapley values
[15] instead. FOLD-R and FOLD-R++ are binary classifiers that use informa-
tion gain [19] as the heuristic, where FOLD-R++ uses prefix sums to speed up
the computation. FOLD-RM is a multi-class classifier version of FOLD-R++.
FOLD-SE is based on a new heuristic called Gini Impurity [14]. This new heuris-
tic leads to a significant reduction in the number of learned default rules and
literals. FOLD-SE provides scalable interpretabilty, in that the number of default
rules learned does not increase with the size of the dataset. The number of rules
learned may be as small as 2 for a highly accurate model given datasets of sizes
as large as 150,000. FOLD-TR [30] uses the FOLD algorithm to learn to rank.

3.2 Examples and Performance

We next give an example. The Titanic survival prediction is a classical classi-
fication challenge, which contains 891 passengers as training examples and 418

Logic-Based Explainable and Incremental Machine Learning 351

passengers as testing examples. The default rule-set learned by our FOLD algo-
rithm is shown below. It captures the underlying logic of the model, namely, that
female infant passengers, aged less than 5 in 3rd class who paid fare less than
or equal to 10.463 units, perished. Male passengers perished unless they paid a
fare in the range 26.25 to 26.387 units inclusive or they were younger than 12
with 2 or fewer relatives and were not without parents.

status(X,perished) :- class(X,’3’), not sex(X,’male’),
age(X,N1), N1=<5.0, fare(X,N4), N4=<10.463.

status(X,perished) :- sex(X,’male’), not ab1(X), not ab3(X).
ab1(X) :- fare(X,N4), N4>26.25, N4=<26.387.
ab2(X) :- number_of_parents_children(X,N3), N3=<0.0,

age(X,N1),N1=<11.0.
ab3(X) :- age(X,N1),N1=<12.0, number_of_siblings_spouses(X,N2),

N2=<2.0, not ab2(X).
status(X,survived) :- not status(X,perished).

The rules represent a default theory with (nested) exceptions (ab1, ab2,
ab3). If a person did not perish, they survived. The model’s accuracy is 0.98,
precision is 1.0, recall is 0.96, and F1-score is 0.98 [1]. These rules are inter-
pretable by a human.

The learned program can be executed in a Prolog system or an answer set
programming system such as s(CASP) [2]. The s(CASP) system can also gener-
ate a proof tree that serves as an explanation for a prediction made for a given
input. The FOLD-SE system itself also generates an explanation. Explainability
is important for understanding the prediction made by a machine learned model.
The FOLD family of algorithms are comparable in accuracy to state-of-the-art
machine learning systems such as XGBoost [5] and Multi-Layer Perceptrons
(MLPs) [1]. XGBoost is a very popular machine learning method based on gra-
dient boosting, while MLPs are neural networks. The FOLD family of algorithms
is an order of magnitude faster than XGBoost and MLPs, and, in addition, is
explainable. The FOLD family algorithms perform minimal pre-processing of
the dataset (no need for one-hot encoding [1], for example). Table 1 shows the
performance of FOLD-SE compared to the most prominent rule-based machine
learning algorithm called RIPPER [6] on selected datasets (a more extensive
comparison can be found elsewhere [29]).

We can see that FOLD-SE outperforms RIPPER on the number of rules
generated and execution time. The number of rules may go down from approxi-
mately 180 to between 2 and 3 (for rain in Australia dataset, for example). The
results reported are an average over 10 runs, so the number of rules reported in
the table can be fractional. The scalability of FOLD-SE with respect to inter-
pretability, namely, the number of rules generated is small regardless of the size of
the dataset, shows the power of representing inductive generalizations as default
rules.

352 G. Gupta et al.

Table 1. Comparison of RIPPER and FOLD-SE on selected Datasets

Data Set RIPPER FOLD-SE

Name Rows Cols Acc F1 T(ms) Rules Preds Acc F1 T(ms) Rules Preds

acute 120 7 0.93 0.92 95 2.0 4.0 1.0 1.0 1 2.0 3.0

heart 270 14 0.76 0.77 317 5.4 12.9 0.74 0.77 13 4.0 9.1

breast-w 699 10 0.93 0.90 319 14.4 19.9 0.94 0.92 9 3.5 6.3

eeg 14980 15 0.55 0.36 12,996 43.4 134.7 0.67 0.68 1,227 5.1 12.1

cr. card 30000 24 0.76 0.84 49,940 36.5 150.7 0.82 0.89 3,513 2.0 3.0

adult 32561 15 0.71 0.77 63,480 41.4 168.4 0.84 0.90 1,746 2.0 5.0

rain in aus 145460 24 0.63 0.70 3118,025 180.1 776.4 0.82 0.89 10,243 2.5 6.1

Table 2 compares the performance of FOLD-SE with state-of-the-art machine
learning tools XGBoost and Multilayer Perceptrons (MLPs) on training time
(in milliseconds). Note that Accuracy and F1-score that are standard metrics
[1] are reported. Table dimension is also given (Rows x Columns). The best
performer is highlighted in bold. FOLD-SE is comparable in accuracy to widely
used machine learning systems such as XGBoost and MLPs, yet it is an order
of magnitude faster and is explainable. Thus, the default rule representation
of machine learning models is quite effective. Note that the FOLD algorithms
have been extensively compared with other ILP methods that learn answer set
programs elsewhere [24,28,29,31]. We do not repeat the comparison here due
to lack of space. FOLD-SE outperforms Decision Trees [1] in terms of brevity
of explanation. For example, for the adult dataset, the tree generated in the
Decision Tree method has 4000+ nodes, around half of which are leaf nodes. This
translates into 2,000 odd decision rules. Also, the average depth of leaf nodes is
24.7. Therefore, there would be around 50,000 predicates in the decision rule-set.
The FOLD-SE algorithm, in contrast, only generates 2 rules with 5 predicates,
while achieving greater accuracy.

Table 2. Comparison of XGBoost, MLP, and FOLD-SE

Data Set XGBoost MLP FOLD-SE

Name Rows Cols Acc F1 T(ms) Acc F1 T(ms) Acc F1 T(ms)

acute 120 7 1.0 1.0 122 0.99 0.99 22 1.0 1.0 1

heart 270 14 0.82 0.83 247 0.76 0.78 95 0.74 0.77 13

breast-w 699 10 0.95 0.96 186 0.97 0.98 48 0.94 0.92 9

eeg 14980 15 0.64 0.71 46,472 0.69 0.71 9,001 0.67 0.68 1,227

credit card 30000 24 NA NA NA NA NA NA 0.82 0.89 3,513

adult 32561 15 0.87 0.92 424,686 0.81 0.87 300,380 0.84 0.90 1,746

rain in aus 145460 24 0.84 0.90 385,456 0.81 0.88 243,990 0.82 0.89 10,243

Logic-Based Explainable and Incremental Machine Learning 353

Default rules can also be used to make convolutional neural networks (CNNs)
explainable as done in the NeSyFOLD system [18], for example (CNNs are neural
networks designed for learning from image data).

4 Logic-Based Incremental Learning

The FOLD family of algorithms permits us to learn explainable theories from
positive and negative examples. Once a theory is learned, we may encounter
further instances (examples) and we may attempt to explain them using this
learned theory. If we succeed, our beliefs get stronger, however, if we fail, we
update our beliefs to accommodate the new example. For instance, let’s say a
child drops a glass object on the floor. The object shatters. After a few such
mishaps, the child quickly learns the rule “a glass object dropped on the floor
will shatter” and will be careful afterwards when holding glass objects. However,
later, the child drops another glass object, but the object falls on a soft surface
(e.g., carpeted surface), and does not break. The child then updates the prior
belief to “a glass object dropped on the floor will shatter, unless the floor is
carpeted”.

This action/reward-based learning technique of humans closely relates to
Reinforcement Learning (RL) [1] in the realm of Machine Learning. In RL, while
exploring an environment, an agent gets positive/negative rewards based on its
actions. From these rewards, the agent may learn—and subsequently revise—a
policy to take better actions in its operating environment. The policy can be rep-
resented symbolically as a default rule-set, and continuously refined. To achieve
this we need a theory revision framework that can be applied to default rules.
We have developed such an incremental learning framework [4] that we summa-
rize next. This work is distinct from our work on FOLD family of algorithms
described earlier. Note that incremental learning is performed by revising the
existing theory through the use of the s(CASP) goal-directed answer set pro-
gramming (ASP) system [2]. With the s(CASP) system, we can obtain a proof
tree for any reasoning task performed. This tree can be analyzed and used to
update the rules. We illustrate our incremental learning framework through an
example.

Consider a house that has sensors installed to protect it from fires and floods.
To protect from fire, a fire sensor is installed that will automatically turn on
water sprinklers installed in the house if fire is detected. Likewise, a water leak
detection sensor in the house will automatically turn off water supply, if water
is detected on the floor/carpet and no one is present in the house. The following
logic program models these rules:

fireDetected :- fire.
turnSprinklerOn :- fireDetected.
sprinklerOn :- turnSprinklerOn.
water :- sprinklerOn.

sprinklerOff :- waterSupplyOff.

354 G. Gupta et al.

waterSupplyOff :- turnWaterSupplyOff.
turnWaterSupplyOff :- houseEmpty, waterLeakDetected.
waterLeakDetected :- water.

houseFloods :- water, not waterSupplyOff.
houseBurns :- fireDetected, SprinklerOff.
houseSafe :- not houseFloods, not houseBurns.

The
program is self-explanatory, and models fluents (sprinklerOn, sprinklerOff,
waterLeakDetected, fireDetected, fire, water, houseEmpty) and actua-
tors (turnWaterSupplyOff, turnSprinklerOn). The fluents fire, water, and
houseEmpty correspond to sensors. For simplicity, time is not considered. Note
that ‘fire’ means fire broke out in the house and ‘water’ means that a water leak
occurred in the house.

Given the theory above, if we add the fact fire. to it, we will find that the
property houseBurns defined above will succeed. This is because the occurrence
of fire eventually leads to sprinklers being turned on, which causes water to spill
on the floor, which, in turn, causes the flood protection system to turn on, and
turn off the water supply. We want houseBurns to fail. To ensure that it fails,
we have to recognize that the water supply should be turned off due to a water
leak in an empty house unless the house is on fire:

turnWaterSupplyOff :- houseEmpty, waterLeakDetected,
not fireDetected.

Therefore, a simple patch to the theory shown above will ensure that houseBurns
fails in all situations. By adding not fireDetected we are subtracting knowledge
preventing houseBurns from succeeding.

Note that to solve the theory revision problem we should be able to ana-
lyze the resulting search tree both when a query succeeds or when it fails. The
s(CASP) system provides access to the search tree through the justification tree
it produces [3]. For a failed query, we obtain the (successful) search tree of
the negated query, and analyze its corresponding justification tree. There has
been a significant amount of work done on theory revision (or knowledge refine-
ment) in the context of logic [11]. Most of this work assumes that the theory
is expressed using Horn clauses. Adding negation-as-failure through answer set
programming (along with the ability to obtain proof-trees for queries through
s(CASP)) allows for a more powerful theory revision framework [4]. This work
is a first step towards building more powerful theory revision frameworks based
on using logic programming, specifically, goal-directed answer set programming.

5 Explanation-Based Learning

Machine learning algorithms require large amounts of data to learn a model. Ide-
ally, a small amount of data should be sufficient for learning, including learning
or generalizing from just one example. In order to do so, however, background

Logic-Based Explainable and Incremental Machine Learning 355

(commonsense) knowledge is essential. This aspect is important in machine learn-
ing and has been explored under the topic of explanation-based learning (EBL).
Logic programming can play an important role in EBL. EBL has been exten-
sively investigated in the past [8,32].

EBL essentially uses prior knowledge to“explain” each training example. An
explanation identifies properties that are relevant to a target concept. EBL trades
a large number of examples needed in traditional machine learning with back-
ground knowledge (called domain theory) for the target concept. The domain
theory should be correct (no negative examples entailed), complete (all positive
examples are covered), and tractable (each positive example can be explained).
It must be noted that EBL has been viewed as a variation of partial evalua-
tion [13]. Traditionally, EBL takes as input a set of training examples, a domain
theory expressed using Horn clauses, and operationality criteria that restrict
the hypothesis space to a fixed set of predicates, e.g., those needed to directly
describe the examples. The goal is to find an efficient definition of the target con-
cept, consistent with both the domain theory and the training examples. Let’s
consider a very simple example about stacking one object on another. Suppose
we have the following specific example involving two objects obj1 and obj2.

safeToStack(obj1,obj2). on(obj1,obj2). owner(obj1,molly).
type(obj2,endtable). type(obj1,box). owner(obj2, john).
fragile(obj2). color(obj1,red). color(obj2, blue).
material(obj1,cardboard). material(obj2, wood).
volume(obj1, 2). density(obj1, 0.1).

and the domain theory explaining why it is safe to stack obj1 on obj2

safeToStack(obj1,obj2) :- lighter(obj1,obj2).
lighter(obj1,obj2) :- weight(obj1, W1), weight(obj2,W2), W1 < W2.
weight(X, W) :- volume(X, V), density(X,D), W =:= V*D.
weight(X,5) :- type(X, endtable).

The operational predicates are type, volume, density, on, <, >, =:=. Par-
tially evaluating the predicate call safeToStack(obj1,obj2) against the domain
theory while keeping only the operational predicates and generalizing will allow
us to learn the general rule:

safeToStack(X,Y) :- volume(X,V), density(X,D), WX =:= V*D,
type(Y, endtable), WX < 5.

Essentially, we have learned a rule that tells us when two objects can be safely
stacked, defined in terms of properties of the two objects. While this may appear
as simple partial evaluation, more intelligent reasoning can be incorporated by
bringing in additional background knowledge. For example, we know that an
end-table is similar to a center-table with respect to the stacking property, and
so we may further generalize our rule to work for more types of tables. We could
generalize it even further to any heavy table-like structure with a flat top, and
so on.

356 G. Gupta et al.

EBL can be made more powerful and flexible by representing the domain
theory in ASP. For example, constraints can be stated to block simplifica-
tion along certain evaluation paths during partial evaluation. More general
generalizations—represented as default rules—can be made that also account for
exceptions. In the example above, while generalizing, we may want to rule out
tables that have small-sized surface top, as there is a danger of tipping over upon
stacking. We may also want to avoid stacking on tables made of fragile material
(another exception). Of course, more knowledge about a table’s dimensions, the
material it is made of, etc., will have to be added to achieve this. Generalizing
to ASP, however, would require developing a partial evaluator for answer set
programming under some operational semantics. The s(CASP) system provides
one such operational semantics.

6 Conclusion

Default rules are an elegant way to represent knowledge underlying machine
learning models. We have developed very efficient machine learning algo-
rithms (e.g., FOLD-SE described above) that are competitive with state-of-
the-art methods. Likewise, knowledge represented as default rules can be incre-
mentally updated—via theory revision—as well as generalized/specialized—via
explanation-based learning. It is our position that logic-based approaches—
centered on representing knowledge as default theories—can lead to the design
of machine learning systems that can be competitive with state-of-the-art tradi-
tional machine learning systems, while providing advantages of interpretability,
explainability, incrementality, and data economy.

Acknowledgements. We are grateful to anonymous reviewers and to Bob Kowalski
for insightful comments that helped in significantly improving this paper. Authors
acknowledge partial support from NSF grants IIS 1910131, IIP 1916206, and US DoD.

References

1. Aggarwal, C.C.: Neural Networks and Deep Learning - A Textbook. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94463-0

2. Arias, J., et al.: Constraint answer set programming without grounding. TPLP
18(3–4), 337–354 (2018)

3. Arias, J., et al.: Justifications for goal-directed constraint answer set programming.
In: Proceedings 36th International Conference on Logic Programming (Technical
Communications), vol. 325. EPTCS, pp. 59–72 (2020)

4. Basu, K., et al.: Symbolic reinforcement learning framework with incremental learn-
ing of rule-based policy. In: Proceedings of ICLP GDE’22 Workshop, vol. 3193.
CEUR Workshop Proceedings. CEUR-WS.org (2022)

5. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD. KDD ’16, San Francisco, California, USA, pp. 785–794
(2016). ISBN 978-1-4503-4232-2

https://doi.org/10.1007/978-3-319-94463-0

Logic-Based Explainable and Incremental Machine Learning 357

6. Cohen, W.W.: Fast effective rule induction. In: Proceedings of ICML, San Fran-
cisco, CA, USA, pp. 115–123 (1995)

7. Cropper, A., Dumancic, S.: Inductive logic programming at 30: a new introduction.
arXiv:2008.07912 (2020)

8. DeJong, G., Mooney, R.J.: Explanation-based learning: an alternative view. Mach.
Learn. 1(2), 145–176 (1986)

9. Dietz Saldanha, E.A., Hölldobler, S., Pereira, L.M.: Our themes on abduction
in human reasoning: a synopsis. In: Abduction in Cognition and Action: Logical
Reasoning, Scientific Inquiry, and Social Practice, pp. 279–293 (2021)

10. Dimopoulos, Y., Kakas, A.: Learning non-monotonic logic programs: learning
exceptions. In: Lavrac, N., Wrobel, S. (eds.) ECML 1995. LNCS, vol. 912, pp.
122–137. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59286-5 53

11. Richards, B.L., Mooney, R.J.: Automated refinement of first-order horn-clause
domain theories. Mach. Learn. 19(2), 95–131 (1995)

12. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: the Answer-Set Programming Approach. Cambridge University
Press, Cambridge (2014)

13. van Harmelen, F., Bundy, A.: Explanation-based generalisation = partial evalua-
tion. Artif. Intell. 36(3), 401–412 (1988)

14. Laber, E., Molinaro, M., Pereira, F.M.: Binary partitions with approximate mini-
mum impurity. In: by Dy, J., Krause, A. (eds.) Proceedings of ICML, vol. 80, pp.
2854–2862. Proceedings of Machine Learning Research. PMLR (2018)

15. Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions.
In: Advances in Neural Information Processing Systems, pp. 4765–4774 (2017)

16. Minton, S., et al.: Explanation-based learning: a problem solving perspective. Artif.
Intell. 40(1–3), 63–118 (1989)

17. Mitchener, L., et al.: Detect, understand, act: a neuro-symbolic hierarchical rein-
forcement learning framework. Mach. Learn. 111(4), 1523–1549 (2022)

18. Padalkar, P., Wang, H., Gupta, G.: NeSyFOLD: a system for generating logic-based
explanations from convolutional neural networks. arXiv:2301.12667 (2023)

19. Quinlan, J.R.: Learning logical definitions from relations. Mach. Learn. 5, 239–266
(1990)

20. Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1–2), 81–132 (1980)
21. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the

predictions of any classifier. In: Proceedings of KDD, pp. 1135–1144. ACM (2016)
22. Shakerin, F.: Logic programming-based approaches in explainable AI and natural

language processing. Ph.D. thesis, Department of Computer Science, The Univer-
sity of Texas at Dallas (2020)

23. Shakerin, F., Gupta, G.: Induction of non-monotonic logic programs to explain
boosted tree models using LIME. In: Proceeding of AAAI, pp. 3052–3059. AAAI
Press (2019)

24. Shakerin, F., Gupta, G.: Induction of non-monotonic rules from statistical learning
models using high-utility itemset mining. arXiv:1905.11226 (2019)

25. Shakerin, F., Salazar, E., Gupta, G.: A new algorithm to automate inductive learn-
ing of default theories. TPLP 17(5–6), 1010–1026 (2017)

26. Srinivasan, A., Muggleton, S.H., Bain, M.: Distinguishing exceptions from noise in
non-monotonic learning. In: Proceedings of International Workshop on Inductive
Logic Programming (1992)

27. Stenning, K., van Lambalgen, M.: Human Reasoning and Cognitive Science. MIT
Press, Cambridge (2008)

http://arxiv.org/abs/2008.07912
https://doi.org/10.1007/3-540-59286-5_53
http://arxiv.org/abs/2301.12667
http://arxiv.org/abs/1905.11226

358 G. Gupta et al.

28. Wang, H., Gupta, G.: FOLD-R++: a scalable toolset for automated inductive
learning of default theories from mixed data. In: Hanus, M., Igarashi, A. (eds.)
FLOPS 2022. LNCS, vol. 13215, pp. 224–242. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-99461-7 13, isbn: 978-3-030-99460-0

29. Wang, H., Gupta, G.: FOLD-SE: scalable explainable AI (2022)
30. Wang, H., Gupta, G.: FOLD-TR: a scalable and efficient inductive learning algo-

rithm for learning to rank (2022). arXiv: 2206.07295
31. Wang, H., Shakerin, F., Gupta, G.: FOLD-RM: efficient scalable explainable AI.

TPLP 22(5), 658–677 (2022)
32. Wusteman, J.: Explanation-based learning: a survey. Artif. Intell. Rev. 6(3), 243–

262 (1992)
33. Yang, Z., Ishay, A., Lee, J.: NeurASP: embracing neural networks into answer set

programming. In: Bessiere, C. (ed.) IJCAI 2020, pp. 1755–1762 (2020)

https://doi.org/10.1007/978-3-030-99461-7_13
https://doi.org/10.1007/978-3-030-99461-7_13
http://arxiv.org/abs/2206.07295

Reflections on Automation, Learnability
and Expressiveness in Logic-Based

Programming Languages

Paul Tarau(B)

University of North Texas, Denton, USA
paul.tarau@unt.edu

Abstract. This position paper sketches an analysis of the essential fea-
tures that logic-based programming languages will need to embrace to
compete in a quickly evolving field where learnability and expressiveness
of language constructs, seen as aspects of a learner’s user experience,
have become dominant decision factors for choosing a programming lan-
guage or paradigm.

Our analysis centers on the main driving force in the evolution of pro-
gramming languages: automation of coding tasks, a recurring promise
of declarative languages, instrumental for developing software artifacts
competitively.

In this context we will focus on taking advantage of the close cor-
respondence between logic-based language constructs and their natural
language equivalents, the adoption of language constructs enhancing the
expressiveness and learnability of logic-based programming languages
and their synergistic uses in interacting declaratively with deep learning
frameworks.

Keywords: logic-based programming language constructs ·
automation · expressiveness and learnability · coroutining with logic
engines · definite clause grammars as prompt generators · embedding
of logic programming and in deep learning ecosystems

1 Introduction

Driven by the importance of automation and simplification of coding tasks in a
logic programming context, the question we plan to answer is:

What features need to be improved or invented to ensure a lasting ability of
logic-based programming languages to compete with languages that have
adopted the latest innovations in usability, robustness and easy adoption
by newcomers?

Our short answer is that we need to focus on closeness to natural language, learn-
ability, flexible execution mechanisms and highly expressive language constructs.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 359–371, 2023.
https://doi.org/10.1007/978-3-031-35254-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_29&domain=pdf
https://doi.org/10.1007/978-3-031-35254-6_29

360 P. Tarau

We will elaborate in the next sections on why these features matter, with
hints on what language constructs are needed for implementing them.

As an application, we will show the effectiveness of some of our proposed
language constructs via definite clause-grammar based prompt generators for
today’s text-to-text and text-to-image deep learning systems.

2 The Challenges

2.1 It Is Just Automation (Again)

Automation, seen as a replacement of repetitive tasks, has been a persis-
tent theme from which essential computational processes including compilation,
partial-evaluation and meta-interpretation have emerged.

Besides competition from today’s functional programming languages and
proof assistants, all with strong declarative claims, logic-based languages face
even stiffer competition from the more radical approach to automation coming
from deep learning.

To state it simply, this manifests as replacement of rule-based, symbolic
encoding of intelligent behaviors via machine learning, including unsupervised
learning among which transformers [11] trained on large language models have
achieved outstanding performance in fields ranging from natural language pro-
cessing to computational chemistry and image processing. For instance, results
in natural language processing with prompt-driven generative models like GPT3
[2] or text-to-image generators like DALL.E [7] or Stable Diffusion [12] have out-
classed similarly directed symbolic efforts. In fact, it is quite hard to claim that a
conventional programming language (including a logic-based one) is as declara-
tive as entering a short prompt sentence describing a picture and getting it back
in a few seconds.

We will argue in the next sections that it makes sense for logic-based pro-
gramming languages to embrace rather than fight these emerging trends.

2.2 The Shifting of the Declarative Umbrella

Logic-based programming languages have shared with their functional counter-
parts and a few data-base management tools the claim of being “declarative”
in the very general sense that the code seen as a specification of what needs
to be done has clear enough information for the implementation to be able to
“automatically” figure out how it can be done.

However it is becoming clearer every day that ownership of the declarative
umbrella is slowly transitioning to deep neural networks-based machine learn-
ing tools that, to state it simply, replace human coding with models directly
extracted from labeled and more and more often from raw, unlabeled data. This
suggests the usefulness of closely embedding a logic-based language in this fast
evolving ecosystem.

Reflections on Automation, Learnability and Expressiveness 361

2.3 The Importance of Learnability

Learnability is not a crisply definable concept, but it becomes intuitively
clear especially as someone gets fluent in several programming languages and
paradigms.

Learnability is experienced positively or negatively when teaching or learning
a new programming language and also when adopting it as an ideal software
development stage for a given project. Good barometers for learnability are the
learning curves of newcomers (including children in their early teens), the hurdles
they experience and the projects they can achieve in a relatively short period of
time. Another one is how well one can pick up the language inductively, simply
by looking at coding examples.

When thinking about what background can be assumed in the case of new-
comers, irrespectively of age, natural language pops up as a common denomina-
tor.

As logic notation originates in natural language there are conspicuous map-
pings between verbs and predicates and nominal groups as their arguments.
Spatial and temporal event streams, in particular visual programming, anima-
tions and games relate to logic in more intricate ways and at a more advanced
level of mastering a logic-based language.

That hints toward learning methods and language constructs easily mapped
syntactically and semantically to natural language equivalents.

2.4 The Importance of Expressiveness

As part of their evolution, programming languages learn from each other. Expres-
siveness enhancements are contagious. More precisely, language constructs that
encapsulate formally clear data objects and their typical usage patterns propa-
gate, often crossing heavily defended programming paradigm border walls.

As Python has been an early adopter of such expressiveness enhancers, it
makes sense to consider for adoption some of its language features that one is
likely to be impressed even at a first contact, as some of the following:

– ease of defining finite functions (dictionaries, mutable and immutable
sequences and sets), all exposed as first class citizens

– aggregation operations (list, set, dictionary comprehensions) exposed with a
lightweight and flexible syntax

– coroutining (via the yield statement or async annotations) exposed with a
simple and natural syntax

– nested parenthesizing and heavy punctuation avoided or reduced via inden-
tation

Prolog shares some of those but it is usually via separate libraries or seman-
tically more intricate definitions (e.g., setof with care about how variables are
quantified as an implementation of set comprehensions). We will explore in the
next sections some language constructs covering features where logic-based lan-
guages are left behind.

362 P. Tarau

3 A Random Walk in the Space of Solutions

We will next have a glimpse at a “gradient descent” in the space of possible
solutions to these challenges with hints about suggested language design and
language construct improvements that apply specifically to Prolog and Prolog-
like languages and to lesser extent, also to their ASP or Datalog cousins.

3.1 The Testbed: Natlog, a Lightweight Prolog-Dialect Embedded
in Python

Our Python-based Natlog system has been originally introduced in [10], to which
we refer to for syntax, semantics and low level implementation details. It is
currently evolving as a fresh implementation1, and it will be used as a testbed
for the key ideas of this paper.

Prolog’s Semantics, but with a Lighter Syntax. While fixing semantics
as the usual SLD-resolution, we can keep the syntax and the pragmatics of a
logic-based language as close as possible to natural language2.

We have sketched an attempt to that in the Natlog system’s syntax, that we
will adopt here. As a hint of its syntactic simplifications, here is a short extract
from the usual family program in Natlog syntax:

sibling of X S: parent of X P, parent of S P, distinct S X.

grand parent of X GP: parent of X P, parent of P GP.

ancestor of X A : parent of X P, parent or ancestor P A.

parent or ancestor P P.

parent or ancestor P A : ancestor of P A.

3.2 A Quick Tour of a Few Low-Hanging Expressiveness Lifters

Expressiveness is the relevant distinguishing factor between Turing-complete lan-
guages. It can be seen as a pillar of code development automation as clear and
compact notation entails that more is delegated to the machine.

A Finite Function API. Finite functions (tuples, lists, dictionaries, sets) are
instrumental in getting things done with focus on the problem to solve rather
than its representation in the language.

In Natlog they are directly borrowed from Python and in systems like SWI-
Prolog dictionaries are a built-in datatype. They can be easily emulated in Prolog
but often with a different complexity than if natively implemented.
1 at https://github.com/ptarau/natlog, ready to install with “pip3 install natlog”.
2 but not closer, as unnecessary verbosity can hinder expressiveness.

https://github.com/ptarau/natlog

Reflections on Automation, Learnability and Expressiveness 363

In an immutable form as well as enabled with backtrackable and non-
backtrackable updates, finite functions implemented as dynamic arrays and hash-
maps can offer a less procedural and more expressive alternative to reliance on
Prolog’s assert and retract family of built-ins.

Built-Ins as Functions or Generators. Reversible code like in Prolog’s clas-
sic append/3 examples or the use of DCGs in both parsing and generation are
nice and unique language features derived from the underlying SLD-resolution
semantics, but trying to lend reversibility and more generally multi-mode uses
to built-ins is often a source of perplexity. Keeping built-ins uniform and pre-
dictable, while not giving up on flexibility, can be achieved by restricting them
to a few clearly specified uses:

– functions with no meaningful return like print, denoted in Natlog by prefix-
ing their Python calls with “#”.

– functions of N inputs returning a single output as the last argument of the
corresponding predicate with N+1 arguments, denoted in Natlog by prefixing
their calls with a backquote symbol “‘”. Note that this syntax, more generally,
also covers Python’s callables and in particular class objects acting as instance
constructors.

– generators with N inputs yielding a series of output values on backtracking
by binding the N +1-th argument of the corresponding predicate, denoted in
Natlog by prefixing their call with two backquotes “ ‘‘”.

This simplification (as implemented in Natlog) would also make type checking
easier and enable type inference to propagate from the built-ins to predicates
sharing their arguments as a convenient mechanism to implement gradual typing.

4 A Step on “The Road Not Taken”: First Class Logic
Engines

While constraint solvers and related coroutining primitives are present in most
widely used logic-based languages, first class logic engines, seen as on-demand
reflection of the full execution mechanism, as implemented in BinProlog [9], have
been adopted only in SWI Prolog relative recently3. Interestingly, similar con-
structs have been present as far as in [4], where they were efficiently implemented
at abstract machine level.

One can think about First Class Logic Engines as a way to ensure the full
meta-level reflection of the execution algorithm. As a result, they enable on-
demand computations in an engine rather than the usual eager execution mech-
anism of Prolog.

We will spend more time on them as we see them as “the path not taken” that
can bring significant expressiveness benefits to logic-based languages, similarly

3 https://www.swi-prolog.org/pldoc/man?section=engines.

https://www.swi-prolog.org/pldoc/man?section=engines

364 P. Tarau

to the way Python’s yield primitive supports creation of user-defined generators
and other compositional asynchronous programming constructs. To obtain the
full reflection of Natlog’s multiple-answer generation mechanism, we will make
fresh instances of the interpreter first-class objects.

4.1 A First-Class Logic Engines API

A logic engine is a Natlog language processor reflected through an API that
allows its computations to be controlled interactively from another logic engine.

This is very much the same thing as a programmer controlling Prolog’s inter-
active toplevel loop: launch a new goal, ask for a new answer, interpret it, react
to it. The exception is that it is not the programmer, but it is the program that
does it! We will next summarize the execution mechanism of Natlog’s first class
logic engines.

The predicate “eng AnswerPattern Goal Engine” creates a new instance
of the Natlog interpreter, uniquely identified by Engine that shares its code with
the currently running program. It is initialized with Goal as a starting point.
AnswerPattern ensures that answers returned by the engine will be instances of
the pattern.

The predicate “ask Engine AnswerInstance” tries to harvest the answer
computed from Goal, as an instance of AnswerPattern. If an answer is found,
it is returned as (the AnswerInstance), otherwise the atom no is returned. It
is used to retrieve successive answers generated by an engine, on demand. It is
also responsible for actually triggering computations in the engine.

One can see this as transforming Natlog’s backtracking over all answers into
a deterministic stream of lazily generated answers.

Finally, the predicate “stop Engine” stops the Engine, reclaiming the
resources it has used and ensures that no is returned for all future queries to the
engine.

Natlog’s yield operation: a key coroutining primitive Besides these predicates
exposing a logic engine as a first class object, the annotation “^Term” extends
our coroutining mechanism by allowing answers to be yielded from arbitrary
places in the computation. It is implemented simply by using Python’s yield
operation. As implemented in Python, engines can be seen as a special case of
generators that yield one answer at a time, on demand.

4.2 Things that We Can Do with First Class Logic Engines

We will sketch here a few expressiveness improvements First Class Logic Engines
can bring to a logic-based programming language,

Source-Level Emulation of Some Key Built-Ins with Engines. We can
emulate at source level some key Prolog built-ins in terms of engine operations,
shown here with Natlog’s simplified syntax.

Reflections on Automation, Learnability and Expressiveness 365

if_ C Y N : eng C C E, ask E R, stop E, pick_ R C Y N.

pick_ (the C) C Y _N : call Y.

pick_ no _C _Y N : call N.

not_ G : if_ G (fail) (true).

once_ G : if_ G (true) (fail).

findall_ X G Xs : eng X G E, ask E Y, collect_all_ E Y Xs.

collect_all_ _ no ().

collect_all_ E (the X) (X Xs) : ask E Y, collect_all_ E Y Xs.

An Infinite Fibonacci Stream with Yield. Like in a non-strict functional
language, one can create an infinite recursive loop from which values are yielded
as the computation advances:

fibo N Xs : eng X (slide_fibo 1 1) E, take N E Xs.

slide_fibo X Y : with X + Y as Z, ^X, slide_fibo Y Z.

Note that the infinite loop’s results, when seen from the outside, show up as
a stream of answers as if produced on backtracking. With help of the library
predicate take, we extract the first 5 (seen as a Python dictionary with name
“X” of the variable as a key and the nested tuple representation of Natlog’s list
as a value), as follows:

?- fibo 5 Xs?

ANSWER: {'Xs': (1, (1, (2, (3, (5, ())))))}

5 Borrowing Some Magic: Logic Grammars as Prompt
Generators

With magic wands on a lease from text-to-text generators like GPT3 [2] and text-
to-image generators like DALL-E [7] or Stable Diffusion [12] we can introduce
Definite Clause Grammars (DCGs) as prompt generators for such systems.

As examples of the natural synergy between declarative constructs of a logic-
based language and the declarative features of today’s deep learning systems,
we will next overview Natlog applications for text-to-text and text-to-image
generation. We refer to the Natlog code4 and its Python companion5 for full
implementation details.

4 see https://github.com/ptarau/natlog/blob/main/apps/natgpt/chat.nat.
5 see https://github.com/ptarau/natlog/blob/main/apps/natgpt/chat.py.

https://github.com/ptarau/natlog/blob/main/apps/natgpt/chat.nat
https://github.com/ptarau/natlog/blob/main/apps/natgpt/chat.py

366 P. Tarau

5.1 Prompt Engineering by Extending GPT3’s Text Completion

GPT3 is basically a text completion engine, which, when given an initial segment
of a sentence or paragraph as a prompt, it will complete it, often with highly
coherent and informative results.

Thus, to get from GPT3 the intended output (e.g., answer to a question,
elations extracted from a sentence, building analogies, etc.) one needs to rewrite
the original input into a prompt that fits GPT3’s text completion model.

We will use here Natlog’s syntactically lighter Definite Clause Grammars,
with one or more terminal symbols prefixed by “@” and “=>” replacing Prolog’s
“-->”. A prompt generator with ability to be specialized for several “kinds” of
prompts is described by the DCG rule:

prompt Kind QuestText => prefix Kind, sent QuestText, suffix Kind.

The predicate sent takes a question sentence originating from a user’s input and
maps it into a DCG non-terminal transforming cons-list Ws1 into cons-list Ws2:

sent QuestText Ws1 Ws2 :

`split QuestText List, to_cons_list List Ws, append Ws Ws2 Ws1.

The predicate query takes the DCG-generated prompt derived from user ques-
tion Q and converts it back to a string passed to GPT’3 completion API by a
call to the function complete, implemented in Python, with its answer returned
in variable A.

query Kind Q A:

prompt Kind Q Ps (), to_list Ps List, `join List P, `complete P A.

Next we will describe specializations to question/answering, relation extraction
and analogy invention. An easy way to transform a question answering task into
a completion task is to emulate a hypothetical conversation:

prefix question => @ 'If' you would ask me.

suffix question => @ 'I' would say that.

Extraction of subject-verb-object phrases can be mapped to completion tasks as
in:

prefix relation => @ 'If' you would ask me what are the subject

and the verb and the object in .

suffix relation =>

@ 'I' would say subject is.

For analogy invention we will need to create a custom trigger as follows:

trigger X Y Z =>

@ given that X relates to Y by analogy

'I' would briefly say that Z relates to.

analogy X Y Z A:

trigger X Y Z Ps (), to_list Ps List, `join List P, `complete P A.

Reflections on Automation, Learnability and Expressiveness 367

We will next show interaction examples for all these use cases.
First, question answering:

?- query question 'why is logic programming declarative' R?

ANSWER: {'R': 'logic programming is declarative because it expresses the

logic of a problem without describing its control flow. This means that

the programmer does not need to specify the order in which the operations

should be performed, as the logic programming language will determine

the most efficient way to solve the problem.'}

Next, relation extraction. Note that after some preprocessing, the extracted
triplets can be used as building blocks for knowledge graphs.

?- query relation 'the quick brown fox jumps over the lazy dog' R?

ANSWER: {'R':'"quick brown fox",verb is "jumps" and object is "lazy dog"'}

Finally, some examples of analogical reasoning that show GPT3 finding the
missing component and explaining its reasoning.

?- analogy car wheel bird A?

ANSWER: {'A': 'wing by analogy. This is because both car and wheel

are used for transportation, while bird and wing are used for flight.'}

?- analogy car driver airplane A?

ANSWER: {'A': 'pilot by analogy. The pilot is responsible for the safe

operation of the airplane, just as the driver is responsible for the

safe operation of the car.'}

5.2 Text-to-Image with DALL.E

To declaratively specify the content of an image to DALL.E [7] or Stable Diffu-
sion [12], Natlog’s Definite Clause Grammars work as easy to customize prompt
generators for such systems.

As the same OpenAI API (with a slightly different Python call) can be used
for text-to-image generation (followed by displaying the generate picture in the
user’s default browser), the interaction with Python is expressed succinctly by
the predicate paint that receives as Prompt the description of the intended
picture from the user.

paint Prompt: `paint Prompt URL, #print URL, #browse URL.

The query to visualize in the user’s browser such a DCG-generated prompts
is:

?- paint '<text description of intended image>'.

with an example of output shown in Fig. 1

368 P. Tarau

Fig. 1. paint ‘photo of a cat playing on the shiny moon with a trumpet’.

The Natlog DCG, in generation mode, will iterate over possible styles and
content elements of a desired painting as in the following example:

image => style, subject, verb, object.

style => @photorealistic rendering.

style => @a dreamy 'Marc' 'Chagall' style picture.

style => @an action video game graphics style image.

subject => @of, adjective, noun.

noun => @robot.

adjective => @shiny.

verb => @walking.

object => location, @with, instrument.

location => @on planet 'Mars'.

instrument => @high hills and a blue purse.

instrument => @a sombrero hat.

This generates text ready to be passed via the OpenAI Python APIs to
DALL.E:

?- image Words (), `to_tuple Words Ws, #writeln Ws, nl, fail.

photorealistic rendering of shiny robot walking on planet Mars

with high hills and a blue purse

photorealistic rendering of shiny robot walking on planet Mars

with a sombrero hat

.....

Besides the expected dependence on the style component (photorealistic vs.
Chagall-style), as an illustration of GPT3’s stereotyping bias, female and
respectively male features would be derived from the generated robot pictures

Reflections on Automation, Learnability and Expressiveness 369

depending on the purse vs. sombrero hat picked by the DCG, as can be seen
in the generated images6.

6 Related Work

An introduction to Natlog, its initial proof-of-concept implementation and its
content-driven indexing mechanism are covered in [10], but the language con-
structs and application discussed in this paper are all part of a fresh, “from
scratch” implementation. The semantics of Natlog is the same as Prolog’s SLD
resolution, and a user familiar with Prolog’s syntax and problem solving style
[13] will easily adapt to Natlog’s syntactic and semantic simplifications. Inter-
operation with Python has been also used in Janus [1] connecting Python and
XSB-Prolog via their foreign language interfaces and systems like DeepProblog
[5], in the latter as a facilitator for neuro-symbolic computations. Natlog’s focus
on keeping the logic component purely declarative is shared with [3] and its
closeness to natural language and is shared with [8]. However, similarly to [1]
and by contrast to [8] that implements changes via fluents, we rely simply on
Python’s imperative constructs to represent state changes and more complex
interaction with outside computational resources like LLMs.

OpenAI’s own GPT 3.5-based ChatGPT7 automates the mapping of more
queries (e.g., questions, code generation, dialog sessions, etc.) using an exten-
sive Reinforcement Learning With Human Advice process [6]. By contrast, our
DCG-supported approach relies exclusively on the pure GPT3 text-completion
API on top of which we engineer task-specific prompts.

7 Conclusion and Future Work

We have informally overviewed automation, learnability and expressiveness chal-
lenges faced by logic-based programming languages in the context of today’s
competitive landscape of alternatives from other programming paradigms as well
as from neural net-based machine learning frameworks. We have also sketched
solutions to the challenges, with some emphasis on coroutining methods and
neuro-symbolic interoperation mechanisms. We have illustrated the surprising
synergies that emerge when joining declarative logic programming constructs
and declarative prompt-driven interactions with Large Language Models based
deep learning systems.

Future work, using Natlog as an orchestrator for more complex, multi-agent
LLM interactions, where logic reasoning steps are interleaved with goal-driven
one-shot LLM queries. We foresee applications to improved multi-step reasoning,
bias reduction, fact checking and hallucination detection in LLMs.

6 at https://github.com/ptarau/natlog/tree/main/apps/natgpt/pics.
7 https://chat.openai.com/chat.

https://github.com/ptarau/natlog/tree/main/apps/natgpt/pics
https://chat.openai.com/chat

370 P. Tarau

Acknowledgments. These reflections have been inspired by the live and deep-
probing Prolog’50 discussions lead by Bob Kowalski and Veronica Dahl with focus on
logical thinking and logic-based programming as well as on approaches to make logic-
based programming accessible to newcomers, including use cases for a first-contact
introduction to computing. I am thankful to the participants of these meetings for
sharing their thoughts on both the last 50 years and the next 50 years of logic program-
ming. Finally, many thanks go to the reviewers of the paper for their careful reading
and constructive suggestions that helped clarify and substantiate key concepts covered
in the paper.

References

1. Andersen, C., Swift, T.: The Janus System: a bridge to new prolog applications.
In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F.
(eds.) Prolog - The Next 50 Years. No. 13900 in LNCS, Springer (July 2023)

2. Brown, T., et al.: Language models are few-shot learners. In: Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Informa-
tion Processing Systems. vol. 33, pp. 1877–1901. Curran Associates, Inc. (2020).
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f6
4a-Paper.pdf

3. Genesereth, M.: Prolog as a knowledge representation language the nature and
importance of prolog. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M.,
Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years. No. 13900 in LNCS,
Springer (July 2023)

4. Hermenegildo, M.V.: An abstract machine for restricted AND-parallel execution
of logic programs. In: Shapiro, E. (ed.) ICLP 1986. LNCS, vol. 225, pp. 25–39.
Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-16492-8 62

5. Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., De Raedt, L.: Deep-
problog: neural probabilistic logic programming. In: Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in
Neural Information Processing Systems 31, pp. 3749–3759. Curran Associates, Inc.
(2018). http://papers.nips.cc/paper/7632-deepproblog-neural-probabilistic-logic-
programming.pdf

6. Ouyang, L., et al.: Training language models to follow instructions with human
feedback (2022). https://doi.org/10.48550/ARXIV.2203.02155, https://arxiv.org/
abs/2203.02155

7. Ramesh, A., et al.: Zero-shot text-to-image generation (2021). https://doi.org/10.
48550/ARXIV.2102.12092, https://arxiv.org/abs/2102.12092

8. Kowalski, R., Fariba Sadri, M.C., Davila, J.: Combining Logic Programming
and Imperative Programming in LPS. In: Warren, D.S., Dahl, V., Eiter, T.,
Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years.
No. 13900 in LNCS, Springer (July 2023)

9. Tarau, P.: The BinProlog Experience: architecture and implementation choices
for continuation passing prolog and first-class logic engines. Theory Pract. Logic
Program. 12(1–2), 97–126 (2012). https://doi.org/10.1007/978-3-642-60085-2 2

10. Tarau, P.: Natlog: a Lightweight logic programming language with a neuro-
symbolic touch. In: Formisano, A., et al. (eds.) Proceedings 37th International
Conference on Logic Programming (Technical Communications), 20–27th Septem-
ber 2021 (2021)

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1007/3-540-16492-8_62
http://papers.nips.cc/paper/7632-deepproblog-neural-probabilistic-logic-programming.pdf
http://papers.nips.cc/paper/7632-deepproblog-neural-probabilistic-logic-programming.pdf
https://doi.org/10.48550/ARXIV.2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://doi.org/10.48550/ARXIV.2102.12092
https://doi.org/10.48550/ARXIV.2102.12092
https://arxiv.org/abs/2102.12092
https://doi.org/10.1007/978-3-642-60085-2_2

Reflections on Automation, Learnability and Expressiveness 371

11. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances
in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017).
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845
aa-Paper.pdf

12. Vision, C.M., at LMU Munich, L.R.G.: Stable Diffusion (2018–2022). https://
github.com/CompVis/stable-diffusion

13. Warren, D.S.: Introduction to prolog. In: Warren, D.S., Dahl, V., Eiter, T.,
Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years.
No. 13900 in LNCS, Springer (July 2023)

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://github.com/CompVis/stable-diffusion
https://github.com/CompVis/stable-diffusion

Prolog for Scientific Explanation

Jean-Christophe Rohner1(B) and Håkan Kjellerstrand2

1 Department of Psychology, Lund University, Lund, Sweden
jean-christophe.rohner@psy.lu.se

2 Independent researcher, Malmö, Sweden
hkjellerstrand@acm.org

Abstract. Scientific explanations play an important role in most aca-
demic disciplines because they give us a fundamental understanding of
why things happen or do not happen. In this paper we argue that Prolog
has certain properties that make the language ideal for generating scien-
tific explanations. We illustrate these properties in relation to a scientific
theory.

Keywords: Abduction · Scientific explanation

1 Introduction

“Explanation” can mean many different things. Here, however, we focus on sci-
entific explanation of the abductive kind. The term “abduction” was originally
coined by Charles Sanders Peirce who contrasted this mode of reasoning with
deduction and induction. Informally, abduction involves finding a hypothesis,
among candidates, that can explain a certain observation [17]. An extensive
body of research has developed the theoretical foundations of abduction in logic
programs, and to date, there are a number of algorithms that perform this kind
of inference (for an overview see [16,26]). More recently, abduction has also been
implemented in probabilistic logic programs, enabling inference with uncertain
information, e.g. [3,4,9,43].

Scientific explanation, in the traditional sense, employs the same kind of
deductive argument as in abductive logic programming, but it involves addi-
tional and important qualifications. Simplifying a bit, and barring some tricky
philosophical issues, scientific explanation can be characterized as follows, e.g.
[1,5,53]:

Definition - Scientific Explanation. Given the tuple (L, C, A, O) where

– L is a set of definite clauses that describe general causal laws which approxi-
mately mirror states of affairs (often probabilistically)

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 372–385, 2023.
https://doi.org/10.1007/978-3-031-35254-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_30&domain=pdf
http://orcid.org/0000-0002-5875-9824
http://orcid.org/0000-0003-1804-7117
https://doi.org/10.1007/978-3-031-35254-6_30

Prolog for Scientific Explanation 373

– C is a set of atoms that describe initial conditions which are necessary for
the occurrence of an effect (in a causal relation)

– A is a set of atoms that define potential candidate explanations (they are
abducible by having different possible groundings)

– O is an atom that describes an observation

Finding an explanation of O is finding a set of atoms Δ ⊆ A, such that
L ∪ C ∪ Δ |= O and C ∪ Δ � O. That is, laws L, initial conditions C, and
abduced facts Δ (subsets of A) entail the observation O, and the laws are a
necessary part of the explanation. We consider an explanation of O a proof tree
that encompasses all the steps in the derivation of O from L, C and Δ. Note that
this definition omits certain characteristics typically found in abductive logic
programming frameworks such as s(CASP), e.g. specific syntax for abducible
predicates and the notion of integrity constraints (details can be found in [2,16,
26]; more information about s(CASP) can also be found in [21] in this volume).

A simple example illustrates these ideas. Ignaz Semmelweis was a physician
working in a maternity clinic in Vienna. He noted that the incidence of childbed
fever was higher in a ward where the staff also performed autopsies. After consid-
ering different alternatives, he proposed that the explanation was that the staff
in this clinic transmitted “cadaverous particles” to the patients. His observations
eventually led to the insight that the use of disinfectants prevents disease [29].
A Prolog program and proof tree for this example is shown in Fig. 1 (we use
SWI-Prolog [52]). The include directive loads Theory Toolbox 2 [41], which is
a system that defines a set of meta-interpreters for generating proof trees, and
CLP(R), which is a system for constraint logic programming with real values [23]
(more information about meta-interpreters can be found in [50] in this volume;
the advantages of CLP(R) are discussed in Sect. 4.2.).

There is a single causal law L in the predicate disease/2, which says that
the probability that person 1 has a disease (X1) depends on the probability
that person 2 carries a particle (X2), the probability that person 2 and person
1 have contact (X3), and the probability that the particle is a pathogen (X4).
The expression {X1 = X2 * X3 * X4} is a CLP(R) equation representing that
disease depends on a conjunction of the causal factors in the body of the clause
(assuming independence between events).

The query q then defines the other components of the problem. O represents
the observation that a certain patient has a disease with probability 0.8. C1 and
C2 represent the initial conditions that a doctor and the patient had contact
with probability 0.9 and that the particle is a pathogen with probability 0.9.
A defines the set of potential candidate explanations (abducibles): All possible
probabilities that the doctor carried the particle (the last argument in the atom
is an anonymous variable so it can take on any value). Finally prove/3 and
showProof/2 call the meta-interpreter in Theory Toolbox 2 to generate and show
any proof trees that entail the observation O. Running the query produces the
proof tree to the right in the figure, i.e. the explanation. Here the probability of
carrying disease is now known, Δ = carry(doctor, cadaverousParticle, 0.988),
which is a subset of A = carry(doctor, cadaverousParticle,_). Together with

374 J.-C. Rohner and H. Kjellerstrand

the law L in the disease/2 predicate and the initial conditions in C, Δ entails
the observation O.

Fig. 1. A Hello World Example - Disease Prevention.

Note that a meta-interpreter plays an important role for generating explana-
tions such as the one shown in the figure. In the example we used prove/3 from
Theory Toolbox 2. But it would also have been possible to use another system
to generate proof trees; s(CASP), for example, has this functionality [2].

Abductive scientific explanation differs from another important kind of scien-
tific explanation: Induction. The goal of induction is to find rules (laws if you will)
that describe general relations between classes of objects based on relations that
exist between singular objects. For example finding mortal(X) ← human(X)
after observing mortal(peter), human(peter), mortal(mary), human(mary),
and so on. In abductive explanation, instead, a law is the starting point, and
the goal is to explain an observation. For example, using the general relation
mortal(X) ← human(X) to explain mortal(peter). There is a large body of
machine learning research on inductive logic programming, see [10,34,46]. Such
algorithms have been successfully applied in organic chemistry [47], molecular
biology [33], robotics [28], medicine [7], and anthropology [11].

2 Related Work

The general idea to use abductive logic programming for scientific explanation
has been raised by others, e.g. [1,15,18]. Already in the 80’s, David Poole and his
colleagues saw the similarities between this technical solution and the scientific
problem when they were developing the Theorist system [36].

There are a number of practical use cases where abduction from logic pro-
grams has been leveraged for scientific explanation, mostly in biology. The Robot
Scientist [27] is an autonomous system that conducts genetic research. It gener-
ates hypotheses, runs experiments, evaluates data to falsify inconsistent hypothe-
ses, and then repeats this cycle. Abductive inference is used to automatically

Prolog for Scientific Explanation 375

formulate hypotheses for testing (with a version of Progol [35]). The Gene Path
system [54] abduces constraints in genetic networks and explains its answers
on the basis of expert knowledge and experimental data. It could be used by a
geneticist when planning experiments and reasoning about their outcomes. Sim-
ilarly, the ARNI system [31] employs abduction from a logical representation of
molecular interactions to explain how genes are affected in a causal network. In
a related discipline, medicine, [8] show how abductive logic programming can be
used to aid physicians to prescribe correct treatments for potential heart failure.
More information about Prolog applications in biology can be found in [13] in
this volume.

Proof trees play an essential role in our view of scientific explanation, since
we suggest that they are explanations. There are a number of technical solutions
that produce this kind of output. The s(CASP) system [2], which is available as
a SWI Prolog module and on the web with SWISH [51], generates justification
trees from answer set programs. The output can even contain natural language.
The SLDNF Draw system [19] produces high quality proof trees via LATEX
output. SLDNF Draw is also available as a SWI Prolog module and on the web
at the CPLINT [39] site. The possibility to obtain proof trees additionally exists
in TAU Prolog [48], which is an open-source Prolog interpreter in Javascript.

3 A Theory Example

To facilitate the coming discussion of the advantages of Prolog for scientific
explanation we present an example of an actual scientific theory. The program
shown in Fig. 2 captures the essential parts of Charles Darwin’s theory of natural
selection [14,45] (theories such as this one could be hand crafted or found with
inductive logic programming). The set of laws L are encoded in two clauses.

The first clause describes under what conditions children inherit their par-
ents’ traits. To keep things general, parent-child generations are represented
numerically1, where Child = Parent + 1. The clause then says that the proba-
bility that a child has a certain trait (X1) depends on the following probabilities:
That their parent reproduces (X2), that their parent has the trait (X3), and that
the trait is heritable (X4). Conjunction is represented by a product (assuming
independence).

The second clause describes conditions for reproducing. The probability that
an individual reproduces (X1) depends on the following probabilities: That they
inhabit a certain habitat (X2), that they have a certain trait (X3), and that the
trait is adaptive in that habitat (X4). As in the first clause, the product represents
conjunction (again assuming independence). Note that the example only provides
one explanation for why individuals have certain traits (inheritance), and only
one explanation for why individuals reproduce (adaptation). But, of course, there

1 Another way of encoding this would be to have a standard Prolog database where
all parent-child relations are enumerated, e.g. parent(a, b), parent(b, c) and
so on.

376 J.-C. Rohner and H. Kjellerstrand

are other potential explanations, such as acquiring traits by imitating others,
being in love, and so on. If necessary, such clauses could be added to the theory.

Fig. 2. A Theory About Natural Selection

4 Advantages of Prolog for Scientific Explanation

There is a long tradition in philosophy of science of giving logic a central role
in the scientific process (even if this is questioned by some philosophers, see
for example [22] for a discussion). Some prototypical examples are Hempel’s
deductive nomological model and Popper’s falsificationism [37,53]. We believe
that logical description and logical inference are, and should be, important parts
of science [42]; not least because the theoretical foundations and the technical
tools of logic have developed considerably in recent years, e.g. [1]. It is a big deal,
for example, that deduction, induction, and abduction all have a solid formal
basis as well as usable technical tools in Prolog, e.g. [26,34,40]. Below we present
a set of advantages of Prolog that we believe are important in relation to scientific
explanation (additional advantages, with respect to knowledge representation,
are discussed in [20] in this volume).

4.1 Multiple Asymmetric Many-One Relations

An important advantage of Prolog is that it naturally represents multiple
asymmetric many-one relations. The asymmetry of Prolog clauses is such that
head ← body means that body entails head and that head does not entail body.
According to the definition, an explanation of O consists of a proof tree that
shows the derivation of O from laws L, initial conditions C and abduced facts
Δ (subsets of abducibles A). So by having proof trees that involve laws of the
form L = O ← C1, C2, ..., Cn, A1, A2, ..., Am we single out the explanandum (O,
the thing that we want to explain). In the theory program in Fig. 2 parent traits

Prolog for Scientific Explanation 377

and parent reproduction explain offspring traits (and not the other way around),
because offspring traits is the thing that is being entailed. Compare this to a
purely mathematical formalization which, given the description of explanation,
can’t differentiate between explanandum and explanans (that which explains
the explanandum). In O = C1 ∗ C2 ∗ ... ∗ Cn ∗ A1 ∗ A2 ∗ ... ∗ Am, for example,
the value of any one of O,C1, C2, Cn, A1, A2, ..., Am is entailed by the remaining
values. With this syntax, there is no way of saying that offspring traits is the
explanandum and that parent traits and parent reproduction are the explanans.

Another strength of Prolog, besides asymmetry, is that it naturally repre-
sents multiple many-one relations. An important insight from the debate on
causality, which is essential in scientific explanation, is that things often have
multiple causes. John Mackie’s take on causality [30], for example, is that any
given effect can occur because of several clusters of factors, where multiple fac-
tors within a single cluster are jointly necessary and sufficient for the effect to
occur, while no individual cluster is, in itself, necessary for the effect to occur. In
the natural selection program, for example, one cluster of factors that explains
offspring traits consists of parent traits and parent reproduction; within this clus-
ter these factors are necessary and sufficient. But it is possible to come up with
other clusters of factors that can explain why individuals have certain traits,
e.g. imitating friends that have these traits. Mackie’s pattern nicely matches
the structure of a Prolog program, where different clauses with the same head
correspond to different clusters of factors, and where the literals in the body of
each clause correspond to factors within a cluster. So if O is something that we
want to causally explain and the Cs and As are conditions that can make O
happen, we could have the three clauses O ← C1, C2, A1 and O ← C3, A2 and
O ← C4, C5, A3.

Before ending this section, we want to make an important remark: Being
able to represent this pattern is merely a semantic tool. Establishing cause-
effect hinges on empirically showing that the probability of O increases when
the probability of the Cs and As increase (everything else being equal) and that
the Cs and As precede O [44].

4.2 Relations Between Qualitative and Quantitative Objects
and Sets of Objects

Because causal laws play a key role in scientific explanation, it is essential to
have a formal language that is expressive enough to fully capture the meaning
of the components of such laws. A strength of Prolog is that it is straightfor-
ward to represent properties and relations that involve singular objects and sets
of objects, where objects can be either quantitative or qualitative. Theory rep-
resentations usually consist of a mix of verbal and mathematical (statistical)
information. In the natural selection theory in Fig. 2, for example, traits and
habitats are sets of qualitative objects, whereas individuals and probabilities are
sets of quantitative objects. In other applications, Prolog has been used to build
exact and general representations of atoms, their bonds and charges [47], kinship
relations in groups [11], or relations between physical objects, lights and shadows

378 J.-C. Rohner and H. Kjellerstrand

[12]. Encoding properties and relations that involve qualitative objects is harder
in a scheme that only allows large vectors of numbers.

There are specific advantages with using probability equations in a theory
(like in the natural selection example). The first advantage is that we can use
strong negation (see for example [49]) and distinguish between situations in
which a theory entails that O is false, in the sense that O is not the case,
and situations in which a theory does not entail O, in the sense that O cannot
be deduced from the theory. Consider the second clause in Fig. 2 and suppose
we had inhabits(adam, h1, 1), hasTrait(adam, t1, 1) and adaptiveIn(t1,
h1, 0) as initial conditions C. With this information the program would entail
reproduces(adam, 0); i.e. it is not the case that Adam reproduces. With the
same information, however, the query ?-reproduces(eve, X) would yield false
(meaning that it is false that the program entails this goal, since the system
doesn’t know anything about Eve). Being able to describe why things do not
happen (in addition to why they do happen) is an important part of scientific
explanation. Adding probability equations to a theory complements negation as
failure, p is false in the sense that the theory does not entail p, with strong
negation, p is false in the sense that the theory entails that p is not the case.

A second advantage, which is specific to CLP(R) and other constraint-based
systems (and missing in is/2), is that it is possible to get unique solutions to
equations that have multiple unknowns (more information about the advantages
of constraint logic programming can be found for example in [24]). In relation
to explanation, this means that we can use scientific laws to explain why a phe-
nomenon occurs (or does not occur), even when the probabilities of certain ini-
tial conditions are unknown. Consider the second clause in the natural selection
example and suppose we had inhabits(adam, h1, _), hasTrait(adam, t1, _)
and adaptiveIn(t1, h1, 0). Even if the probabilities of the first two facts are
unknown, we get reproduces(adam, 0), because a product that involves zero is
always zero. More examples of this technique can be found in the repository for
Theory Toolbox 2 [41].

4.3 Homoiconicity

Prolog is a homoiconic language, which means that Prolog programs can perform
computations on Prolog programs, including programs that represent scientific
theories. There are at least two advantages of homoiconicity with respect to
scientific explanation.

The first advantage is that we can write meta-interpreters that yield detailed
proof trees for all the steps that lead from laws L, initial conditions C, and
abduced facts Δ, to observations O. Because we have suggested that scientific
explanations consist of proof trees, this is essential. Let’s consider an example
observation that we wish to explain. Evidently, most humans are equipped with
some form of hair (in addition to several other traits). How can the natural selec-
tion theory in Fig. 2 explain this observation? Intuitively it seems that having
hair should be a heritable trait that is adaptive. Is this the case? Fig. 3 shows
a query q1 with prove/3. The observation O that we want to explain is that

Prolog for Scientific Explanation 379

Fig. 3. An Explanation From the Natural Selection Theory

an individual in generation 3 has hair; hence the probability for this is 1 (gen-
eration 3 is arbitrary). In the query the initial conditions C are that anybody
inhabits a human ecological niche and that any trait is heritable (an anonymous
variable unifies with anything). The abducible predicates in the list A describe
some things that are relevant to this particular example: Things happen with
probability 0 or 1, there are some traits, and a trait might or not be adaptive
in the ecological niche. The right part of Fig. 3 shows a proof tree for this goal,
which constitutes an explanation according to the theory.

First, note that the probability of each involved causal factor is high (each one
is 1). This makes sense given that having a trait was conditional on a conjunction
of factors. An interesting and, perhaps, unexpected aspect of this explanation is
that the adaptive value of having hair is not involved in explaining why people
have hair. Having hair is conditional on reproductive potential, and reproductive
potential - in this case - is instead supported by another trait (being endother-
mic). Incidentally, the explanation in Fig. 3 actually shows that having hair is a
so called vestigial trait: A trait that is inherited but that does not have any adap-
tive value. The query q1 also generates additional proofs; among others, one in

380 J.-C. Rohner and H. Kjellerstrand

which the adaptive value of having hair is involved in deducing the observation.
The reason for this incoherence will become apparent next.

The second advantage of homoiconicity is that we can write Prolog programs
that perform rational theory evaluation, i.e. appraising theories using other cri-
teria than empirical fit. For example, examining if a theory is free of internal
contradictions or examining how general it is [37]. In a general Prolog system,
such as Theory Toolbox 2 [41], it is fairly straightforward to write predicates
that perform such analyses. Let’s consider a final query example on the natural
selection theory in Fig. 2 that checks if the theory makes conflicting predictions.
In the query in Fig. 4 we use the predicate incoherence/7 (from Theory Toolbox
2). This predicate checks if a theory entails different probabilities for a certain
goal and, if so, shows explanations for the conflicting answers. As shown in Fig. 4,
there is an incoherence, and the explanation is that reproductive potential in the
individual in generation 1 can either occur because they have hair or because
they are endothermic. In the former case the probability of having hair for the
individual in generation 2 is 0; in the latter case the probability is 1. This means
that the theory has to be amended somehow. In what way is another matter.

4.4 Transparency

A final advantage of Prolog, and other symbolic approaches to AI, is that knowl-
edge representations in this format are often transparent and, potentially, under-
standable by humans, e.g. [6]. Clearly, this is an important desideratum for
scientific theories, which should be open to introspection and public scrutiny.
Scientific theories are often used to make decisions with real life implications,
e.g. in medicine, so transparent explanations become even more important. In
general, understanding why an argument is an explanation is an important step
towards explainable AI, e.g. [25]. Hopefully, Prolog can play an important role
in the progress towards achieving this long-term goal.

5 Future Directions and Challenges

It is interesting to speculate about what the future holds for Prolog when it
comes to scientific explanation. When thinking about this, it seems that the
importance of induction often comes up. Because scientific theories are supposed
to reflect states of affairs, they should be based on empirical data. So, if we
want to be able to enjoy the benefits of Prolog for theory representation, and
therefore explanation, high quality algorithms for inducing programs from data
are essential.

To date, there are several available systems for inductive logic programming,
some of which have achieved important milestones like predicate invention, find-
ing recursive programs, and finding probabilistic programs (for overviews see
[10,38]). Certain features of such systems are probably important for wider adop-
tion in the scientific community (outside machine learning). The ability to handle
noise, the ability to induce numerical relations, good documentation, and easy

Prolog for Scientific Explanation 381

Fig. 4. An Example of Rational Theory Evaluation

installation come to mind. And a dream scenario would be if these features can
be combined with predicate invention and recursion.

Another important area for development, towards the goal of using Prolog
for scientific explanation, is the integration of inductive logic programming with
other machine learning schemes, like deep neural networks. Being able to jointly
use neural networks, for encoding unstructured data (e.g. from natural language
texts) and inductive logic programming, for learning more complex relations
from structured data, leveraging background knowledge, seems very powerful.
Especially considering that a large amount of information, besides empirical
data, already exists in the form of scientific papers. There is already progress
when it comes to integrating neural networks and symbolic learning approaches
e.g. [32]. At the same time, we do not think that the importance of neural
networks should be overstated; at least not in the context of inducing scientific
theories. The primary advantage of neural networks is their ability to deal with

382 J.-C. Rohner and H. Kjellerstrand

unstructured information. But data collection in actual research is usually not
ad hoc; instead, it is planned in advance, so it is possible to design studies to
generate structured data (directly suitable for inductive logic programming).

6 Conclusions

We have discussed the advantages of Prolog for scientific abductive explanation,
suggesting that such explanations are proof trees for the derivation of an obser-
vation from a causal theory and initial conditions. Prolog can capture asym-
metric many-one relations, represent complex relational concepts that involve
qualitative as well as quantitative objects, flexibly reason with both known and
unknown information (e.g. probabilities), generate explanations in the form of
proof trees and perform rational theory evaluation. And beyond this, Prolog also
supports induction and deduction. All in all, our general impression is that all
the technical components needed for using Prolog as a great scientific tool are
in place. Maybe the keys to wider adoption in the scientific community are easy
access, good documentation, and user support. Prolog-on-the-web systems like
SWISH and CPLINT, are important steps in this direction.

Acknowledgements. We wish to thank Bob Kowalski, Stassa Patsantzis and three
anonymous reviewers.

References

1. Aliseda-Llera, A.: Logics in scientific discovery. Found. Sci. 9, 339–363 (2004).
https://doi.org/10.1023/B:FODA.0000042847.62285.81

2. Arias, J., Carro, M., Chen, Z., Gupta, G.: Justifications for goal-directed constraint
answer set programming. Electron. Proce. Theor. Comput. Sci. 325, 59–72 (2020).
https://doi.org/10.4204/EPTCS.325.12

3. Azzolini, D., Bellodi, E., Ferilli, S., Riguzzi, F., Zese, R.: Abduction with probabilis-
tic logic programming under the distribution semantics. Int. J. Approx. Reason.
142, 41–63 (2022). https://doi.org/10.1016/j.ijar.2021.11.003

4. Bellodi, E., Gavanelli, M., Zese, R., Lamma, E., Riguzzi, F.: Nonground abductive
logic programming with probabilistic integrity constraints. Theory Pract. Logic
Program. 21(5), 557–574 (2021). https://doi.org/10.1017/S1471068421000417

5. Bunnin, N., Yu, J.: E. In: The Blackwell Dictionary of Western Philosophy, chap.
5, pp. 197–245. Wiley, Hoboken (2004). https://doi.org/10.1002/9780470996379

6. Caroprese, L., Vocaturo, E., Zumpano, E.: Argumentation approaches for explain-
able AI in medical informatics. Intell. Syst. Appl. 16, 200109 (2022). https://doi.
org/10.1016/j.iswa.2022.200109

7. Carrault, G., Cordier, M.O., Quiniou, R., Wang, F.: Temporal abstraction
and inductive logic programming for arrhythmia recognition from electrocardio-
grams. Artif. Intell. Med. 28(3), 231–263 (2003). https://doi.org/10.1016/s0933-
3657(03)00066-6

8. Chen, Z., Salazar, E., Marple, K., Gupta, G., Tamil, L., Cheeran, D., Das, S., Amin,
A.: Improving adherence to heart failure management guidelines via abductive
reasoning. Theory Pract. Logic Program. 17(5–6), 764–779 (2017). https://doi.
org/10.1017/S1471068417000308

https://doi.org/10.1023/B:FODA.0000042847.62285.81
https://doi.org/10.4204/EPTCS.325.12
https://doi.org/10.1016/j.ijar.2021.11.003
https://doi.org/10.1017/S1471068421000417
https://doi.org/10.1002/9780470996379
https://doi.org/10.1016/j.iswa.2022.200109
https://doi.org/10.1016/j.iswa.2022.200109
https://doi.org/10.1016/s0933-3657(03)00066-6
https://doi.org/10.1016/s0933-3657(03)00066-6
https://doi.org/10.1017/S1471068417000308
https://doi.org/10.1017/S1471068417000308

Prolog for Scientific Explanation 383

9. Christiansen, H.: Implementing probabilistic abductive logic programming with
constraint handling rules. In: Schrijvers, T., Frühwirth, T. (eds.) Constraint Han-
dling Rules. LNCS (LNAI), vol. 5388, pp. 85–118. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-92243-8_5

10. Cropper, A., Dumančić, S.: Inductive logic programming at 30: a new introduction.
J. Artif. Intell. Res. 74, 765–850 (2022). https://doi.org/10.1613/jair.1.13507

11. Cunningham, S.J.: Machine learning applications in anthropology: automated dis-
covery over kinship structures. Comput. Humanit. 30(6), 401–406 (1996). https://
doi.org/10.1007/BF00057936

12. Dai, W.-Z., Muggleton, S., Wen, J., Tamaddoni-Nezhad, A., Zhou, Z.-H.: Logi-
cal vision: one-shot meta-interpretive learning from real images. In: Lachiche, N.,
Vrain, C. (eds.) ILP 2017. LNCS (LNAI), vol. 10759, pp. 46–62. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78090-0_4

13. Dal Palú, A., Dovier, A., Formisano, A., Pontelli, E.: Prolog meets biology. In:
Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.)
Prolog - The Next 50 Years. LNAI, vol. 13900, pp. 318–333. Springer, Cham (2023)

14. Darwin, C.: On the Origin of Species, 1859. Routledge , London (2004). https://
doi.org/10.9783/9780812200515

15. Delrieux, C.: Abductive inference in defeasible reasoning: a model for research
programms. J. Appl. Log. 2(4), 409–437 (2004). https://doi.org/10.1016/j.jal.2004.
07.003

16. Denecker, M., Kakas, A.: Abduction in logic programming. In: Kakas, A.C., Sadri,
F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI),
vol. 2407, pp. 402–436. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45628-7_16

17. Douven, I.: Abduction. In: Zalta, E. (ed.) The Stanford Encyclopedia of Philosophy.
Metaphysics Research Lab, Stanford University (2021)

18. Flach, P., Kakas, A., Ray, O.: Abduction, induction, and the logic of scientific
knowledge development. In: Workshop on Abduction and Induction in AI and
Scientific Modelling, p. 21 (2006)

19. Gavanelli, M.: SLDNF-draw: visualization of prolog operational semantics in latex.
Intelligenza Artificiale 11, 81–92 (2017). https://doi.org/10.3233/IA-170108

20. Genesereth, M.: Prolog as a knowledge representation language. In: Warren, D.S.,
Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The
Next 50 Years. LNAI, vol. 13900, pp. 38–47. Springer, Cham (2023)

21. Gupta, G., Salazar, E., Arias, J., Basu, K., Chandra Varanasi, S.: Prolog: past,
present, and future. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowal-
ski, R., Rossi, F. (eds.) Prolog - The Next 50 Years. LNAI, vol. 13900, pp. 48–61.
Springer, Cham (2023)

22. Hepburn, B., Andersen, H.: Scientific method. In: Zalta, E. (ed.) The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University (2021)

23. Holzbaur, C.: Ofai clp (q, r) manual, edition 1.3.3. Austrian research institute for
artificial intelligence. Report, TR-95-09 (1995)

24. Jaffar, J., Maher, M.J.: Constraint logic programming: a survey. J. Logic Pro-
gram. 19-20, 503–581 (1994). https://doi.org/10.1016/0743-1066(94)90033-7, spe-
cial Issue: Ten Years of Logic Programming

25. Jobin, A., Ienca, M., Vayena, E.: The global landscape of AI ethics guidelines. Nat.
Mach. Intell. 1(9), 389–399 (2019). https://doi.org/10.1038/s42256-019-0088-2

26. Kakas, A., Kowalski, R., Toni, F.: Abductive logic programming. J. Log. Comput.
2, 719–770 (1992). https://doi.org/10.1093/logcom/2.6.719

https://doi.org/10.1007/978-3-540-92243-8_5
https://doi.org/10.1613/jair.1.13507
https://doi.org/10.1007/BF00057936
https://doi.org/10.1007/BF00057936
https://doi.org/10.1007/978-3-319-78090-0_4
https://doi.org/10.9783/9780812200515
https://doi.org/10.9783/9780812200515
https://doi.org/10.1016/j.jal.2004.07.003
https://doi.org/10.1016/j.jal.2004.07.003
https://doi.org/10.1007/3-540-45628-7_16
https://doi.org/10.1007/3-540-45628-7_16
https://doi.org/10.3233/IA-170108
https://doi.org/10.1016/0743-1066(94)90033-7
https://doi.org/10.1038/s42256-019-0088-2
https://doi.org/10.1093/logcom/2.6.719

384 J.-C. Rohner and H. Kjellerstrand

27. King, R.D., et al.: Functional genomic hypothesis generation and experimentation
by a robot scientist. Nature 427(6971), 247–52 (2004). https://doi.org/10.1038/
nature02236

28. Klingspor, V., Morik, K.J., Rieger, A.D.: Learning concepts from sensor data of
a mobile robot. Mach. Learn. 23(2–3), 305–332 (1996). https://doi.org/10.1007/
BF00117448

29. Lane, H.J., Blum, N., Fee, E.: Oliver Wendell Holmes (1809–1894) and Ignaz
Philipp Semmelweis (1818–1865): preventing the transmission of puerperal fever.
Am. J. Publ. Health 100(6), 1008–1009 (2010)

30. Mackie, J.L.: The Cement of the Universe: A Study of Causation. Clarendon Press
(1974). https://doi.org/10.1093/0198246420.001.0001

31. Maimari, N., Broda, K., Kakas, A., Krams, R., Russo, A.: Symbolic Representation
and Inference of Regulatory Network Structures, pp. 1–48. Wiley, Hoboken (2014).
https://doi.org/10.1002/9781119005223.ch1

32. Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., De Raedt, L.: Deep-
problog: neural probabilistic logic programming. In: Advances in Neural Infor-
mation Processing Systems, vol. 31 (2018). https://doi.org/10.1016/j.artint.2021.
103504

33. Muggleton, S., King, R.D., Stenberg, M.J.E.: Protein secondary structure pre-
diction using logic-based machine learning. Protein Eng. Des. Sel. 5(7), 647–657
(1992). https://doi.org/10.1093/protein/5.7.647

34. Muggleton, S.: Inductive logic programming. N. Gener. Comput. 8(4), 295–318
(1991)

35. Muggleton, S.: Inverse entailment and Progol. N. Gener. Comput. 13(3), 245–286
(1995). https://doi.org/10.1007/BF03037089

36. Poole, D., Goebel, R., Aleliunas, R.: Theorist: a logical reasoning system for
defaults and diagnosis. In: Cercone, N., McCalla, G. (eds.) The Knowledge Fron-
tier: Essays in the Representation of Knowledge, pp. 331–352. Springer, New York
(1987). https://doi.org/10.1007/978-1-4612-4792-0_13

37. Popper, K.R.: The logic of scientific discovery. Hutchinson, London (1972). https://
doi.org/10.4324/9780203994627

38. Riguzzi, F.: Foundations of Probabilistic Logic Programming: Languages, Seman-
tics, Inference and Learning. CRC Press, Boca Raton (2018)

39. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R., Cota, G.: Probabilistic logic pro-
gramming on the web. Software: Pract. Exp. 46(10), 1381–1396 (2016). https://
doi.org/10.1002/spe.2386

40. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
12(1), 23–41 (1965). https://doi.org/10.1145/321250.321253

41. Rohner, J.C.: Theory Toolbox 2 (2023). https://github.com/
JeanChristopheRohner/theory-toolbox-2

42. Rohner, J.C., Kjellerstrand, H.: Using logic programming for theory representation
and scientific inference. New Ideas Psychol. 61, 100838 (2021). https://doi.org/10.
1016/j.newideapsych.2020.100838

43. Rotella, F., Ferilli, S.: Probabilistic abductive logic programming using possible
worlds. In: CEUR Workshop Proceedings, vol. 1068, pp. 131–145 (2013)

44. Shadish, W.R., Cook, T.D., Campbell, D.T.: Experimental and Quasi-
Experimental Designs for Generalized Causal Inference. Houghton, Mifflin and
Company (2002)

45. Shaffner, S., Sabeti, P.: Evolutionary adaptation in the human lineage. Nat. Educ.
1(14) (2008)

https://doi.org/10.1038/nature02236
https://doi.org/10.1038/nature02236
https://doi.org/10.1007/BF00117448
https://doi.org/10.1007/BF00117448
https://doi.org/10.1093/0198246420.001.0001
https://doi.org/10.1002/9781119005223.ch1
https://doi.org/10.1016/j.artint.2021.103504
https://doi.org/10.1016/j.artint.2021.103504
https://doi.org/10.1093/protein/5.7.647
https://doi.org/10.1007/BF03037089
https://doi.org/10.1007/978-1-4612-4792-0_13
https://doi.org/10.4324/9780203994627
https://doi.org/10.4324/9780203994627
https://doi.org/10.1002/spe.2386
https://doi.org/10.1002/spe.2386
https://doi.org/10.1145/321250.321253
https://github.com/JeanChristopheRohner/theory-toolbox-2
https://github.com/JeanChristopheRohner/theory-toolbox-2
https://doi.org/10.1016/j.newideapsych.2020.100838
https://doi.org/10.1016/j.newideapsych.2020.100838

Prolog for Scientific Explanation 385

46. Sozou, P.D., Lane, P.C.R., Addis, M., Gobet, F.: Computational scientific dis-
covery. In: Magnani, L., Bertolotti, T. (eds.) Springer Handbook of Model-Based
Science. SH, pp. 719–734. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-30526-4_33

47. Srinivasana, A., Muggleton, S.H., Sternberg, M.J.E., King, R.D.: Theories for
mutagenicity: a study in first-order and feature-based induction. Artif. Intell. 85(1),
277–299 (1996). https://doi.org/10.1016/0004-3702(95)00122-0

48. Valverde, R.: Tau Prolog (2022). http://tau-prolog.org/documentation
49. Wagner, G.: Web rules need two kinds of negation. In: Bry, F., Henze, N.,

Małuszyński, J. (eds.) PPSWR 2003. LNCS, vol. 2901, pp. 33–50. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-24572-8_3

50. Warren, D.S.: Introduction to prolog. In: Warren, D.S., Dahl, V., Eiter, T.,
Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years.
LNCS, vol. 13900, pp. 3–19. Springer, Cham (2023)

51. Wielemaker, J., Lager, T., Riguzzi, F.: SWISH: SWI-prolog for sharing. In: Ell-
mauthaler, S., Schulz, C. (eds.) Proceedings of the International Workshop on
User-Oriented Logic Programming (IULP 2015), pp. 99–113 (2015)

52. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-prolog. The-
ory Pract. Logic Program. 12(1–2), 67–96 (2012). https://doi.org/10.1017/
S1471068411000494

53. Woodward, J., Ross, L.: Scientific explanation. In: Zalta, E. (ed.) The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University (2021)

54. Zupan, B., et al.: Discovery of genetic networks through abduction and qualita-
tive simulation. In: Džeroski, S., Todorovski, L. (eds.) Computational Discovery of
Scientific Knowledge. LNCS (LNAI), vol. 4660, pp. 228–247. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73920-3_11

https://doi.org/10.1007/978-3-319-30526-4_33
https://doi.org/10.1007/978-3-319-30526-4_33
https://doi.org/10.1016/0004-3702(95)00122-0
http://tau-prolog.org/documentation
https://doi.org/10.1007/978-3-540-24572-8_3
https://doi.org/10.1017/S1471068411000494
https://doi.org/10.1017/S1471068411000494
https://doi.org/10.1007/978-3-540-73920-3_11

Machines as Thought Partners: Reflections
on 50 Years of Prolog

Gregory Gelfond1(B), Marcello Balduccini1,2, David Ferrucci1, Adi Kalyanpur1,
and Adam Lally1

1 Elemental Cognition Inc., New York, USA
gregg@ec.ai

2 Saint Joseph’s University, Philadelphia, USA

Abstract. In 1972, Kowalski and Colmerauer started a revolution with
the advent of the Prolog programming language. As with LISP, the lan-
guage enabled us to think previously impossible thoughts, and ushered
in both logic programming and the declarative programming paradigm.
Since that time, a number of descendants of Prolog have been brought
into the world, among them constraint logic programming and answer-
set prolog. In this paper, we celebrate the 50th anniversary of the Prolog
language, and give a brief introduction to a new member of the Prolog
family of languages — the logic programming language Cogent.

Keywords: Logic programming · Knowledge Representation ·
Programming Languages · Prolog Anniversary · Cogent

1 Introduction

In his 1972 Turing Award Lecture, Edsger Dijkstra notes that LISP “has assisted
a number of our most gifted fellow humans in thinking previously impossible
thoughts.” Curiously, it was during that same year that Prolog was developed.
We do not know if it was felt at that time just how important the discovery of
the Prolog language was, but it is not surprising that the name of the language,
an acronym for “Programming in Logic”, is a homophone for prologue. Robert
Kowalski’s and Alain Colmerauer’s language was an introduction to a new way
of thinking about programming, one which in some ways is alluded to by an old
joke at the language’s expense:

Prolog is what you get when you create a language and system that has
the intelligence of a six-year-old - it simply says “no” to everything.

The joke hints at just how revolutionary the language was. For the first
time, we now had a language that rather than having a programmer answer
the question of “how”, we had one that enabled us to answer the question of
“what”. In other words, the language freed us from thinking about and describing
the mechanics of an algorithm, and allowed us to focus on describing the goal,
or specification that the algorithm was intended to meet. So, if we come back
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 386–392, 2023.
https://doi.org/10.1007/978-3-031-35254-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35254-6_31&domain=pdf
https://doi.org/10.1007/978-3-031-35254-6_31

Machines as Thought Partners: Reflections on 50 Years of Prolog 387

to the notion of a six-year-old child, it turned a programmer into a teacher,
and the computer into a student. This shift, to return to Dijkstra’s quote on
LISP, enabled us to think previously impossible thoughts – and therefore, to ask
previously impossible questions.

Two other aspects of the language’s nature – its connection to both Horn
clauses and context-free grammars shed light on the kinds of heretofore impossi-
ble thoughts we now find ourselves engaged with. SLD and its successor SLDNF
resolution enabled us to both simply encode and render computable part of the
language of thought itself. This in turn shifted our gaze to the question of: “What
kinds of reasoning can be described (i.e., taught) to a machine?” The search for
answers to these questions (and others such as uncovering the nature of negation-
as-failure) gave rise to other languages and their attendant semantics, such as
the well-founded [9] and answer-set semantics [1,2], advancing our understand-
ing of how we ourselves reason and how the kind of reasoning we carry out can
be imparted to a machine. These questions yielded further lines of inquiry into
areas such as commonsense reasoning, natural language understanding, reason-
ing about actions and change, and algorithmics, many of which are part of the
foundation of the artificial intelligence technologies in active development here
at Elemental Cognition1.

Elemental Cognition (EC), a company founded by Dave Ferrucci after his suc-
cess in helming IBM’s Watson Project2 through its landmark success in beating
the best humans at the question-answering game of Jeopardy, is a particular ben-
eficiary of the foundations laid by Kowalski and those who followed him. The
fields of knowledge representation, non-monotonic reasoning, and declarative pro-
gramming can trace part of their ancestry to Kowalski’s work, and provide the
logical foundations of the work done at EC. In particular, our vision of artificial
agents as “thought partners” capable of collaborating with humans, rather than
just acting autonomously, depends on numerous developments in these fields.

EC’s history with logic programming begins in some respects with Ferrucci’s
own background, and the IBM Watson project in particular. There, Prolog played
a role in the project’s natural language pipeline and was instrumental in the
detection and extraction of semantic relations in both questions and natural lan-
guage corpora. Prolog’s simplicity and expressiveness enabled the developers to
readily deal with rule sets consisting of more than 6,000 Prolog clauses, something
which prior efforts involving custom pattern-matching frameworks failed to do.
This work in no small part informed the design of EC’s neuro-symbolic reasoner,
Braid [3]. The expressivity and transparency of a Prolog-like language combined
with the statistical pattern matching power of various machine learning models
enabled a powerful HybridAI solution which had been applied to several “real-
world” applications. This work in part involved the development of a backward
chaining system that can be seen as an extension of Prolog’s SLD resolution
algorithm by features such as statistical/fuzzy unification and probabilistic rules
generated by a machine learning model. This enabled the system to circumvent

1 https://ec.ai.
2 https://www.ibm.com/watson.

https://ec.ai
https://www.ibm.com/watson
https://ec.ai
https://www.ibm.com/watson

388 G. Gelfond et al.

the knowledge acquisition bottleneck and potential brittleness of matching/uni-
fication, while retaining the elegance and simplicity of the declarative paradigm
itself. Subsequent work has seen the Braid reasoning system evolve towards the
use of the answer-set semantics and constraint logic programming [7].

All of this enabled a number of high-profile successes, such as our develop-
ment of the PolicyPath3 application which was used during Super Bowl LV in
2021 at the height of the Covid-19 pandemic [4]. The project was built on a
declarative, logic-based representation of the related policies, and part of the rea-
soning mechanisms developed in the course of the project combined techniques
for reasoning about actions and change with various flavors of logic programming
including answer-set programming and constraint logic programming. Other suc-
cesses include our partnership with the OneWorld Alliance4 on the development
of the virtual agent they employ for scheduling round-the-world travel.

In this paper we give an introduction to a new language called Cogent5 under
development at EC, which carries forward the torch that was lit by the introduc-
tion of Prolog.

2 From Prolog to Cogent

As was mentioned previously, the advent of logic programming enabled us to
shift our focus from describing the how of a computation, to the what. In other
words, it enabled us to focus our attention on what Niklaus Wirth termed “the
refinement of specification”. As an example, let’s consider the following example:
a nurse scheduling program written in answer-set prolog (a descendant of Prolog
based on the answer-set semantics of logic programs, and one of the elements at
the core of EC’s internal language known as Cordial).

Listing 1.1. Nurse Scheduling in Answer-Set Prolog
1 % The nurses are Andy , Betty , and Chris.
2 nurse(andy; betty; chris).
3
4 % The days are Monday , Tuesday , and Wednesday.
5 day(monday; tuesday; wednesday).
6
7 % The shifts are first , second , and third.
8 shift (1;2;3).
9

10 % We may choose for a nurse to be assigned to a shift on a day.
11 { assigned(N,S,D) }:- nurse(N), shift(S), day(D).
12
13 % A nurse cannot be assigned to more than one shift on the same day.
14 :- nurse(N), day(D), #count{ S : assigned(N,S,D) } > 1.
15
16 % A shift is ‘‘covered" by a nurse on a day if the nurse is assigned to

the shift on that day.
17 covered(S,N,D):- assigned(N,S,D).
18

3 https://www.billboard.com/pro/super-bowl-halftime-show-covid-safety-
coronavirus/.

4 https://ec.ai/case-travel.
5 https://ec.ai/cogent-features.

https://www.billboard.com/pro/super-bowl-halftime-show-covid-safety-coronavirus/
https://www.oneworld.com
https://www.billboard.com/pro/super-bowl-halftime-show-covid-safety-coronavirus/
https://www.billboard.com/pro/super-bowl-halftime-show-covid-safety-coronavirus/
https://ec.ai/case-travel
https://ec.ai/cogent-features

Machines as Thought Partners: Reflections on 50 Years of Prolog 389

19 % Each shift must be covered by exactly one nurse on each day.
20 :- shift(S), day(D), #count{ N : covered(S,N,D) } != 1.
21
22 % A nurse is ‘‘working on’’ a day if the nurse is assigned to a shift on

that day.
23 working(N,D):- shift(S), assigned(N,S,D).
24
25 % Each nurse must be working on at least two days.
26 :- nurse(N), #count{ D : working(N,D) } < 2.

The important aspect of the program in Listing 1.1 is that none of the state-
ments describe an algorithm for computing a potential solution. Rather, they
encode the specification itself. It’s worth reflecting and appreciating the power of
such a syntactically simple and elegant language. Compare for example this pro-
gram, against the equivalent programs written in an imperative language using
Google’s OR-Tools [8]. The difference is stark, and it raises an important ques-
tion: “Why has the logic programming approach not gained in momentum since
its discovery?”

There are many potential answers to this question. One possibility is that
in addition to the cognitive load incurred by switching from an imperative to a
declarative mindset, there is an additional cognitive load incurred by the close
relationship between logic programming languages and the notations of formal
logic. This dramatically increases the distance a potential user has to mentally
travel in order to get to the current state of the art. Another way to view this, is
that logic programming languages on some level, are still at the level of assembly
language. The declarative paradigm is a higher level paradigm than imperative
programming, but declarative languages by and large are still on too low a level
to be readily adopted. If this is true, then a natural question to ask is: “What
could a high-level, structured, declarative programming language look like?”

At EC, we believe that one potential answer to this question is structured
natural language, in particular our own version of this known as Cogent. Similar
work in this area exists, namely Kowalski’s own work on logical English [5,6],
but with Cogent we are able to leverage our expertise in both natural language
understanding and knowledge representation to build a more flexible, and user
friendly representation language. In particular, let’s revisit the program from
Listing 1.1, only this time in Cogent instead of ASP:

Listing 1.2. Nurse Scheduling in Cogent
1 The nurses are ‘‘Andy ’’, ‘‘Betty ’’, and ‘‘Chris ’’.
2
3 The days are ‘‘Monday ’’, ‘‘Tuesday ’’, and ‘‘Wednesday ’’.
4
5 The shifts are ‘‘first ’’, ‘‘second ’’, and ‘‘third ’’.
6
7 A nurse may be ‘‘assigned to’’ a shift ‘‘on’’ a day.
8
9 A shift may be ‘‘covered by’’ a nurse ‘‘on’’ a day.

10
11 A nurse may be ‘‘working on’’ a day.
12
13 We may choose for a nurse to be assigned to a shift on a day.
14
15 A nurse cannot be assigned to more than one shift on the same day.
16

https://developers.google.com/optimization/scheduling/employee_scheduling#java_9

390 G. Gelfond et al.

17 A shift is covered by a nurse on a day if the nurse is assigned to the
shift on that day.

18
19 Each shift must be covered by exactly one nurse on each day.
20
21 A nurse is working on a day if the nurse is assigned to a shift on that

day.
22
23 Each nurse must be working on at least two days.

The reader will notice that with the exception of lines 7, 9, and 11, the text
of the program is the same as comments from the ASP encoding in Listing 1.1.
Given this program, our reasoning engine is capable of finding solutions just as
efficiently as the ASP encoding, yet the Cogent program is more accessible to
a reader. Not only that, but the fact that the language is a structured form of
natural language helps bridge the gap in terms of familiarity to aspiring users.
The notion of accessibility to a reader, however is of special importance, since at
EC, one of our motivating goals is to help develop explainable AI. One important
aspect of this is to render the axioms of a domain that an AI system represents
both inspectable and clear to as many users as possible. This kind of transparency
enables deeper human and AI partnerships which furthers our vision of artificial
agents as “thought partners” capable of collaborating with humans.

Cogent has features that overlap with those found in contemporary logic
programming languages, such as non-deterministic choice, aggregates, recursive
definitions, costs, preferences, a declarative semantics for negation, and contradic-
tion diagnosis. In addition however, it features numerous advanced term building
features that facilitate the construction of clear, concise natural language expres-
sions. Consider the solution to the N-Queens problem given in Listing 1.3

Listing 1.3. N-Queens in Cogent
1 # Declarations
2
3 There is exactly one ‘‘board size ’’, which is a number.
4
5 ‘‘Queen ’’ is a type.
6 The ‘‘Row ’’ of a queen can be any integer from 1 to the board size.
7 The ‘‘Column ’’ of a queen can be any integer from 1 to the board size.
8
9 A queen may be ‘‘attacking ’’ another queen.

10
11 # Rules of the Domain
12
13 A queen cannot be attacking another queen.
14
15 A queen is attacking another queen if the first queen ’s row is equal to

the second queen ’s row.
16
17 A queen is attacking another queen if the first queen ’s column is equal

to the second queen ’s column.
18
19 A queen is attacking another queen if
20 A - B = C - D
21 where
22 A is the row of the first queen , and
23 B is the row of the second queen , and
24 C is the column of the first queen , and
25 D is the column of the second queen.
26

Machines as Thought Partners: Reflections on 50 Years of Prolog 391

27 A queen is attacking another queen if
28 A - B = D - C
29 where
30 A is the row of the first queen , and
31 B is the row of the second queen , and
32 C is the column of the first queen , and
33 D is the column of the second queen.

Listing 1.3 demonstrates several term building features of Cogent, as well as
a natural encoding of the constraints of the domain. In addition, the language
utilizes EC’s Braid reasoning engine, making it capable of scaling to advanced
production applications, such as the Round-the-World travel application devel-
oped for the OneWorld Alliance. While dramatically more complex in scope than
the toy examples presented above, the encoding of various rules in Cogent (such
as those shown in Listing 1.4) remains not only manageable, but clearly conveys
their intention to a reader:

Listing 1.4. Round-the-World Rule Sampling
1 At most 4 international transfers can be located in any country.
2
3 At least one selected flight leg must be arriving in each continent group

.
4
5 A visit is immediately preceding another visit if
6 a selected route is going from the first visit to the second visit.
7
8 At most one selected leg can be arriving in Asia unless
9 the Asia intercontinental arrival exception is in effect.

10
11 At most two selected legs can be arriving in Asia if
12 the Asia intercontinental arrival exception is in effect.
13
14 The Asia intercontinental arrival exception is in effect if
15 a selected leg is traveling from Southwest Pacific to Asia , and
16 another selected leg is traveling from Asia to Europe.

In addition to bridging the linguistic gap by being a controlled form of natural
language, Cogent is coupled with a powerful AI authoring assistant to help bridge
the gap even further, making for a system that we believe is greater than the
sum of its parts. It is our belief at EC that Cogent provides a revolution in the
arena of declarative programming, and programming at large by elevating the
notion of high-level language to a new level.

3 Conclusion

In 1972, Kowalski and Colmerauer started a revolution with the advent of the Pro-
log programming language. The ability to think “previously impossible thoughts”,
led the community to ask previously unthinkable question, sparking revolutions
in natural language understanding, knowledge representation, commonsense rea-
soning, and other diverse areas. For a time, these fields grew in isolation from
each other, and now are coming together rapidly and in profound ways. With
the development of Cogent, an ultimate grandchild of Prolog in some sense, we
at Elemental Cognition hope to carry forward the tradition and enable a new

392 G. Gelfond et al.

class of impossible thoughts to be given voice. The community owes a debt to
Kowalski, Colmerauer and the Prolog Language, and the great unexplored sea
they revealed to us. Happy Birthday.

References

1. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, Kenneth (eds.) Proceedings of International Logic Program-
ming Conference and Symposium, pp. 1070–1080. MIT Press (1988). http://www.
cs.utexas.edu/users/ai-lab?gel88

2. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. N. Gener. Comput. 9, 365–385 (1991)

3. Kalyanpur, A., Breloff, T., Ferrucci, D.A.: Braid: weaving symbolic and neural
knowledge into coherent logical explanations. Proceed. AAAI Conf. Artif. Intelli.
36(10), 10867–10874 (2022). https://doi.org/10.1609/aaai.v36i10.21333. https://
ojs.aaai.org/index.php/AAAI/article/view/21333

4. Kaufman, G.: How the NFL Pulled Off a Safe Super Bowl LV Halftime Show in
the Middle of a Pandemic (2 2021). https://www.billboard.com/pro/super-bowl-
halftime-show-covid-safety-coronavirus/, non paywalled version. https://www.
bioreference.com/how-the-nfl-pulled-off-a-safe-super-bowl-lv-halftime-show-in-
the-middle-of-a-pandemic/

5. Kowalski, R., Dávila Quintero, J., Calejo, M.: Logical English for legal applications
(11 2021)

6. Kowalski, R., Dávila Quintero, J., Sartor Galileo Calejo, M.: Logical English for law
and education. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski,
R., Rossi, F. (eds.) Prolog - The Next 50 Years. No. 13900 in LNCS, Springer (2023)

7. Marriott, K., Stuckey, P.J., Wallace, M.: Handbook of constraint programming, chap.
12. Constraint Logic Programming, pp. 409–452. Foundations of Artificial Intelli-
gence, Elsevier (2006)

8. Perron, L., Furnon, V.: OR-Tools. https://developers.google.com/optimization/
9. Schlipf, J.S., Ross, K.A., Van Gelder, A.: The well-founded semantics for general

logic programs. J. Assoc. Comput. Mach. 38(3), 620–650 (1991)

http://www.cs.utexas.edu/users/ai-lab?gel88
http://www.cs.utexas.edu/users/ai-lab?gel88
https://doi.org/10.1609/aaai.v36i10.21333
https://ojs.aaai.org/index.php/AAAI/article/view/21333
https://ojs.aaai.org/index.php/AAAI/article/view/21333
https://www.billboard.com/pro/super-bowl-halftime-show-covid-safety-coronavirus/
https://www.billboard.com/pro/super-bowl-halftime-show-covid-safety-coronavirus/
https://www.bioreference.com/how-the-nfl-pulled-off-a-safe-super-bowl-lv-halftime-show-in-the-middle-of-a-pandemic/
https://www.bioreference.com/how-the-nfl-pulled-off-a-safe-super-bowl-lv-halftime-show-in-the-middle-of-a-pandemic/
https://www.bioreference.com/how-the-nfl-pulled-off-a-safe-super-bowl-lv-halftime-show-in-the-middle-of-a-pandemic/
https://developers.google.com/optimization/

Author Index

A
Abreu, Salvador 171
Ancona, Davide 300
Andersen, Carl 93
Arias, Joaquín 48

B
Balduccini, Marcello 386
Bassiliades, Nick 71
Basu, Kinjal 48, 346
Bloomfield, Janine 224
Brasseur, Julien 124

C
Calejo, Miguel 210, 248, 287
Carro, Manuel 23, 48
Cecchi, Laura A. 131, 154
Cervoni, Laurent 124

D
Dahl, Verónica 131, 154
Dal Palù, Alessandro 318
Dasgupta, Sopam 346
Dávila, Jacinto 210, 287
Denecker, Marc 82
Dissaux, Pierre 260
Doukovska, Lyubka 144
Dovier, Agostino 318

E
Erbatur, Serdar 48

F
Ferrando, Angelo 300
Ferreiro, Daniela 171
Ferrucci, David 386
Flach, Peter 184

Fodor, Paul 224
Formisano, Andrea 318

G
Gelfond, Gregory 386
Genesereth, Michael 38, 197, 271
Grosof, Benjamin 224
Gupta, Gopal 48, 346

H
Hermenegildo, Manuel V. 23, 107, 171
Hoffman, Charles 248

K
Kalyanpur, Adi 386
Kefalas, Petros 71
Kifer, Michael 224
Kjellerstrand, Håkan 372
Kowalski, Robert 210, 287
Krueger, Tristan 271

L
Lally, Adam 386
Leuschel, Michael 239
Li, Fang 48
Lopez-Garcia, Pedro 23, 107

M
Marinković, Vesna 334
Mascardi, Viviana 300
Mohapatra, Abhijeet 271
Morales, Jose F. 23, 107, 171

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
D. S. Warren et al. (Eds.): Prolog: The Next 50 Years, LNAI 13900, pp. 393–394, 2023.
https://doi.org/10.1007/978-3-031-35254-6

https://doi.org/10.1007/978-3-031-35254-6

394 Author Index

P
Padalkar, Parth 48, 346
Pontelli, Enrico 318

R
Rajasekharan, Abhiramon 48
Rodríguez, Jorge P. 131
Rohmer, Jean 124
Rohner, Jean-Christophe 372

S
Sadri, Fariba 210
Sakellariou, Ilias 71
Salazar, Elmer 48, 346
Sartor, Galileo 287
Satoh, Ken 277
Shakerin, Farhad 48, 346
Sokol, Kacper 184

Stoyanov, Stanimir 144
Stoyanova-Doycheva, Asya 144
Swift, Theresa 93, 224

T
Tabakova-Komsalova, Veneta 144
Tarau, Paul 359

V
Varanasi, Sarat Chandra 48, 346

W
Wang, Huaduo 48, 346
Warren, David S. 3, 62, 82
Wielemaker, Jan 184

Z
Zeng, Yankai 48

	 Preface
	 Contents
	Background
	Introduction to Prolog
	1 What is Prolog?
	2 Procedural Interpretation
	2.1 Prolog as Multiple Procedural Machines
	2.2 Recursive Programs

	3 Modes
	4 Bottom-Up Evaluation
	5 Negation and Stratification
	5.1 A Subgoal Depending on Its Own Negation
	5.2 Stratified Programs
	5.3 Non-stratified Programs

	6 Tabling
	7 Operators
	8 Meta-interpretation
	9 Definite Clause Grammars
	10 Constraints
	11 Conclusion

	About Prolog, Present and Future
	Types, Modes and so Much More – The Prolog Way
	1 Combining in Prolog the Best of the Dynamic and Static Language Approaches
	1.1 The Assertions Model in Action
	1.2 Discussion

	2 Making Prolog Even More Extensible, to Support Multiple Features in a Modular Way
	References

	Prolog as a Knowledge Representation Language the Nature and Importance of Prolog
	1 Introduction
	2 Simplicity and Completeness
	3 Multiple Interpreters
	3.1 Query Evaluation - Kinship
	3.2 Constraint Satisfaction - Map Coloring
	3.3 Containment Testing - Insurance Portfolio Analysis

	4 Program Transformation
	5 Conclusion
	References

	Prolog: Past, Present, and Future
	1 Introduction
	1.1 Making Prolog More Efficient
	1.2 Making Prolog More Expressive

	2 Emulating Human Thinking with Logic Programming
	2.1 Deduction, Abduction, and Induction
	2.2 Representing Commonsense Knowledge in ASP/s(CASP)

	3 The s(CASP) System
	4 Applications
	5 Conclusion
	References

	Writing Correct Prolog Programs
	1 Inductive Definitions
	2 From Inductive Definition to Prolog Program
	3 The Claim
	4 Caveats
	5 Conclusion
	References

	Demonstrating Multiple Prolog Programming Techniques Through a Single Operation
	1 Introduction and Motivation
	2 The Challenges of Learning Prolog
	3 Logic Programming Techniques
	4 One Problem - Many Solutions
	4.1 Recursive Super-Naive Declarative Implementation
	4.2 Naive Declarative Implementation
	4.3 The ``Standard'' Algorithmic Implementation
	4.4 A Reduction Approach
	4.5 A Non-recursive Declarative Definition
	4.6 Using Solution Gathering Predicates
	4.7 Using Assert/Retract and Failure-Driven Loops: The One to Avoid

	5 Evaluation of Efficiency vs. Perception
	6 Conclusions
	References

	A Better Logical Semantics for Prolog
	1 Introduction
	2 The Least Herbrand Model Semantics of Prolog
	3 Clark Completion
	4 So What's Wrong with Clark Completion?
	5 ``Fixing'' Clark's Completion
	5.1 Mutually Recursive Definitions

	6 So What Have We Got?
	7 Negation
	8 Discussion
	9 Conclusion
	References

	The Janus System: A Bridge to New Prolog Applications
	1 Introduction
	2 Related Work
	3 A Brief Review of the Janus API and Performance
	3.1 Performance

	4 Applications Using Janus
	4.1 DeepContent: Automated Question Answering for DARPA AIDA
	4.2 RAACE, a BBN Autonomy Project
	4.3 Understanding Visual Information
	4.4 A Demonstration of Intelligent Orchestration

	5 Discussion
	References

	Teaching Prolog
	Some Thoughts on How to Teach Prolog
	1 Introduction
	2 Showing the Beauty of the Language and the Paradigm
	3 Dispelling Myths and Avoiding Misconceptions
	4 Some Thoughts on Systems
	5 The Programming Paradigms Course
	6 Conclusions
	References

	Simultaneously Teaching Mathematics and Prolog in School Curricula: A Mutual Benefit
	1 Introduction
	2 Prolog and Mathematics: A Natural Fit
	3 Some Examples
	3.1 Counting Triangles
	3.2 Polynomials
	3.3 Euclidean Geometry

	4 Conclusion
	References

	Logic Programming at Elementary School: Why, What and How Should We Teach Logic Programming to Children?
	1 Introduction
	2 Computational Thinking and Logic Programming
	3 Proposals for Teaching Logic Programming
	4 Experience
	5 Conclusion
	A Appendix
	References

	Prolog Education in Selected Secondary Schools in Bulgaria
	1 Introduction
	2 The Project “Digital Bulgaria in Prolog”
	3 An Experiment
	4 Conclusion
	References

	Introducing Prolog in Language-Informed Ways
	1 Introduction
	2 Motivation
	3 Spoken Languages as Pedagogical Pivots
	3.1 Grammars as a Prelude to Prolog, and More
	3.2 From Syntax to Semantics
	3.3 Semantics Vs. ``The Other Syntax''
	3.4 Targeted vs General-Purpose Controlled Languages
	3.5 Learning Concepts from Varied Disciplines

	4 A Case Study: Exploring Possible Solutions to Quantifiable Problems
	4.1 Doughnut Computing for Societal and Ecological Remediation
	4.2 Truth and Logic-Literate Kids, Good Uses of Statistics, Regenerative and Redistributive AI

	5 Conclusion
	References

	Tools for Teaching Prolog
	Teaching Prolog with Active Logic Documents
	1 Introduction
	2 Embedding Runnable Code in Documents via Browser-Based ``Click-to-Run''
	3 Active Logic Documents
	4 A Simple Example: Coding Factorial
	5 The Technical Approach
	6 Conclusions and Outlook
	References

	Simply Logical – The First Three Decades
	1 The Paperback (Peter Flach)
	2 Interactive Prolog in the Browser (Jan Wielemaker)
	3 The Online Edition(s) (Kacper Sokol)
	4 Discussion and Outlook
	References

	Prolog-Based Languages and Systems
	Dynamic Logic Programming
	1 Introduction
	2 Datasets
	3 View Definitions
	4 Operation Definitions
	5 Example - Tic Tac Toe
	6 Comparison to Other Languages
	7 Conclusion
	References

	Combining Logic Programming and Imperative Programming in LPS
	1 Introduction
	2 Logic Programs for Representing Change of State
	3 Reactive Rules as Goals
	4 Logic Programs for Representing Complex Events
	5 Prolog Programs for Defining Animations
	6 Related Work
	7 Future Prospects
	References

	Ergo: A Quest for Declarativity in Logic Programming
	1 Introduction
	2 Ergo Syntax
	3 Ergo and Declarativity
	4 Negation: Still Not a Simple Matter
	4.1 Negation, Quantifiers, and Delay
	4.2 Defeasible Rules

	5 Explanations
	6 Interfaces and Applications
	7 Discussion and Future Work
	References

	Prolog Applications: Finalists for the Colmerauer Prize
	ProB: Harnessing the Power of Prolog to Bring Formal Models and Mathematics to Life
	1 Tools for Formal Methods
	2 ProB for State-Based Formal Methods
	3 Implementation
	4 Challenge
	5 Conclusion
	References

	Pacioli: A PROLOG System for Financial Report Processing
	1 Introduction
	2 System Architecture
	3 Some PROLOG Implementation Aspects
	4 Diving into an Example Report
	4.1 Report Verification Summary
	4.2 Blocks of Information
	4.3 Rendering of a Block
	4.4 Associations Between Blocks of Information
	4.5 Rules
	4.6 Pacioli Rules vs. PROLOG

	5 Significance – Present and Future
	References

	Logic Model Processing
	1 Genesis of LMP
	2 Overview of LMP
	3 Examples of Application
	3.1 HOOD Processing Tools
	3.2 AADL Processing Tools

	4 Related Work
	4.1 D-MILS
	4.2 PTL
	4.3 Multiprocessor Scheduling Analysis

	5 Exploitation and Dissemination
	6 Conclusion
	References

	Symbium: Using Logic Programming to Streamline Citizen-to-Government Interactions
	1 Introduction
	2 Role of Logic Programming
	3 Citizen's Dashboard: Coverage and Reception
	4 Broader Impact of Logic Programming
	References

	PROLEG: Practical Legal Reasoning System
	1 Background
	2 PROLEG
	3 Current Status of PROLEG and Its Applicability and Possible Extensions
	4 Conclusion
	References

	Contributed Prolog Applications
	Logical English for Law and Education
	1 Introduction
	2 The SWISH Implementation of LE
	3 Logical English for Legal Applications
	4 Logical English for Education
	5 Related and Future Work
	References

	Exploiting Logic Programming for Runtime Verification: Current and Future Perspectives
	1 Introduction
	2 Trace Expressions and RML
	3 State of the Art
	4 Conclusions and Future Perspectives
	References

	Prolog Meets Biology
	1 Introduction
	2 Early Days
	3 Going Small: Dealing with Nature Building Blocks
	4 Going Large: Dealing with Biological Databases
	5 Approximate Search in Prolog
	6 Conclusions
	References

	Prolog in Automated Reasoning in Geometry
	1 Introduction
	2 Prolog Tools for Automated Reasoning in Geometry
	3 ArgoTriCS – Automated Triangle Construction Solver
	4 Conclusion
	References

	Logic-Based Explainable and Incremental Machine Learning
	1 Introduction
	2 Default Rules
	3 Default Rules as Machine Learning Models
	3.1 FOLD Family of Machine Learning Algorithms
	3.2 Examples and Performance

	4 Logic-Based Incremental Learning
	5 Explanation-Based Learning
	6 Conclusion
	References

	Reflections on Automation, Learnability and Expressiveness in Logic-Based Programming Languages
	1 Introduction
	2 The Challenges
	2.1 It Is Just Automation (Again)
	2.2 The Shifting of the Declarative Umbrella
	2.3 The Importance of Learnability
	2.4 The Importance of Expressiveness

	3 A Random Walk in the Space of Solutions
	3.1 The Testbed: Natlog, a Lightweight Prolog-Dialect Embedded in Python
	3.2 A Quick Tour of a Few Low-Hanging Expressiveness Lifters

	4 A Step on ``The Road Not Taken'': First Class Logic Engines
	4.1 A First-Class Logic Engines API
	4.2 Things that We Can Do with First Class Logic Engines

	5 Borrowing Some Magic: Logic Grammars as Prompt Generators
	5.1 Prompt Engineering by Extending GPT3's Text Completion
	5.2 Text-to-Image with DALL.E

	6 Related Work
	7 Conclusion and Future Work
	References

	Prolog for Scientific Explanation
	1 Introduction
	2 Related Work
	3 A Theory Example
	4 Advantages of Prolog for Scientific Explanation
	4.1 Multiple Asymmetric Many-One Relations
	4.2 Relations Between Qualitative and Quantitative Objects and Sets of Objects
	4.3 Homoiconicity
	4.4 Transparency

	5 Future Directions and Challenges
	6 Conclusions
	References

	Machines as Thought Partners: Reflections on 50 Years of Prolog
	1 Introduction
	2 From Prolog to Cogent
	3 Conclusion
	References

	Author Index

