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Biotechnological Approaches for Medicinal 
and Aromatic Plant-Based Products
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Abstract Medicinal and aromatic plants (MAPs) are the reservoirs of numerous 
life-saving drugs called secondary metabolites including terpenoids, essential oil, 
steroids, saponins, alkaloids, phenolics, etc. These secondary metabolites are the 
group of a variety of chemical compounds produced by the plant cell in different 
metabolic pathways that branch off from primary metabolic pathways. The quality 
and quantity of secondary metabolite in MAP are completely dependent on environ-
mental conditions; moreover, the commercial production of secondary metabolites 
is also dependent on the area of cultivation of MAPs. The systematic secondary 
metabolite production can be enhanced through biotechnological intervention with 
minimal downstream processing. The tissue culture and transgenic technologies 
available in the current era of agriculture science have been advocated as effective 
tools for increasing the synthesis of these metabolites at an industrial scale. This 
chapter focuses on the recent advances made in the production of various secondary 
metabolites by deploying tissue culture and transgenic technologies.
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1  Introduction

Medicinal and aromatic plants (MAPs) are enriched with life-saving preparations, 
and we are using plant-based medicines from an ancient time. As per report of the 
World Health Organization (WHO), 88% of the world countries are projected to use 
herbal medicines in different forms and stated 170 member states are using tradi-
tional medicine. Considering the importance of traditional medicines, WHO 
declared the establishment first-of-its-kind WHO Global Centre for Traditional 
Medicine (GCTM) in India of fifth Ayurveda Day in November 2020. The tradi-
tional herbal-based medicines are known and famous by their different styles like 
traditional Chinese and Korean medicine, Indian Ayurveda, Japanese Kampo, etc. 
(Cha et al. 2007; Kobayashi et al. 2010; Hye-Lim et al. 2012). The latest estimate of 
plant diversity in India stands at 55048 taxa including 21,984 angiosperms (Anon 
2022). About 20,000 plant species are assessed as medicinal plants, but only 800 
species are used for treating diseases phytochemically (Kamboj 2000). In most of 
the developing counties for primary health care, 80% of medicine is herbal based 
because it is locally available and cheap and believed to have no side effects (Gupta 
and Raina 1998) as well as their strong faith in traditional herbal medicine cultures 
(Kamboj 2000). Moreover, in India, herbs are major share of all recognized medi-
cine systems like Ayurveda, Yoga and Naturopathy, Unani, Siddha, and Homeopathy 
(AYUSH). Herbal-based medicine or its industry is potentially expanding world-
wide; the annual turnover is Rs. 2300 crores with reference to Indian herbal-based 
medicinal industry. However, there is a huge gap between the supplier and the 
demand at national and international markets at present scenario. It was recorded 
that 1,34,500 MT of herbal raw drugs including extracts were exports while 1,95,000 
MT were consumed by local herbal industry in India (Chowti et al. 2018).

Meanwhile, forest is the area where maximum amount of MAP raw material col-
lection has been taken place, and about 95% of the plants consumed by the indus-
tries are collected from forests (Chowti et al. 2018). Due to the overexploitation and 
unsustainable collection/harvesting practices turn into an alarming rate on loss of 
biodiversity of such good plant genetic resources and great impact on natural biodi-
versity. Overall, this often influences on supply chain management in this domain. 
Therefore, it is the time to make a strategy more precisely in a sustainable way to 
fulfil the present requirement without affecting the tomorrow ecosystem. An all- 
encompassing solution lies by practicing recommended Good Agricultural Practices 
to each and every MAP starting from the collection and other necessary cultivation 
practices until the final target products reach to the consumers. Expansion of area 
cover under MAPs outside the forest zone is also an option and over the year is also 
increasing. It was estimated that 262,000 hectares was the total cultivation area of 
MAPs in the year 2005–2006, but it has jumped to 633,900 hectares in 2015–2016. 
But we are all aware that land is the main constraint in the cultivation and produc-
tion technology line. Here, modern and advanced technology will definitely work 
and will play a significant role to meet the present and future demands of required 
raw materials as well as identification new bioactive compounds that can be used to 
treat various illnesses.

A. A. Sakure et al.
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2  Secondary Metabolites

Plants produce secondary metabolites (SMs) to increase their competitiveness 
within their respective ecosystems. These secondary metabolites are amalgamation 
of a variety of phytochemicals produced by the cell during the course of metabolism 
in different pathways that branch off from primary metabolic pathways. Albrecht 
Kossel, a Nobel Laureate in Physiology or Medicine in 1910, first proposed the 
concept of secondary metabolite (Jones and Kossel 1953). Thirty years later after 
the discovery of secondary metabolites, Czapek reported these products as deriva-
tives of nitrogen metabolism such as amino acid deamination. With advancement of 
the chromatographic techniques, recovery of these compounds was possible. SMs 
have revealed numerous biological effects consequently providing a scientific base 
for the deployment of herbs as medicine by many ancient communities.

These micromolecules have a wide range of effects on plants and other living 
things. They either indicate perennial growth or deciduous behaviour. They are also 
responsible for flowering, fruit set, and abscission; they act as petal-transporting 
agents, act as agents of symbiosis between plant and microbes, and act as sexual 
hormones (Demain and Fang 2000). They function as attractants or repellents, as 
well as antimicrobials.

The metabolites that are required primarily for growth and development of plant 
and participated directly in metabolic processes are termed as primary metabolites, 
while SMs are derivations of these primary metabolites. Medicinal and aromatic 
plants are rich sources of SMs including terpenoids, essential oil, steroids, saponins, 
alkaloids, glycosides, phenolics and other flavonoids, anthocyanin, lignin and tan-
nin, etc. SMs are broadly classified based on the properties, structure, function, as 
well as biosynthetic pathway in plants. Some of the SMs are very prominently bio-
synthesized in MAPs, and compounds are accumulated in a very specific tissue, 
organ, structure, or part of the plants. However, plant secondary metabolite produc-
tion is limited under the normal plant growth conditions (Yue et  al. 2016), and 
therefore, tress take years to store the desired quantity of such metabolites in con-
ventional methods.

These secondary metabolites are classified into different chemical compounds, 
namely, phenolics, alkaloids, saponins, terpenes, lipids, and carbohydrates (Fig. 1). 
The great resource of all these secondary metabolites is the medicinal and aromatic 
plants. Medicinal herbs and plants have long been recognized as a valuable source 
of therapeutic or curative aids in preventing chronic diseases in humans.

2.1  Phenolics

The majority of plant SMs comprising one or more aromatic rings and one or more 
OH groups are likely phenolics. These are the most prevalent secondary metabolites 
and are found all over the plant world. It can range from simple molecules to highly 
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Fig. 1 Broad classification of secondary metabolites

polymeric compounds like tannins. They significantly add to the colour, taste, and 
flavour in foods and beverages. Selected phenolics, like quercetin, are valued for 
pharmacology for their anti-inflammatory or anti-hepatotoxic properties. Similarly, 
genistein and daidzein have phytoestrogenic properties, and naringenin has insecti-
cidal property (Goławska et al. 2014). Among the phenolics, some are active anti-
oxidants and free radical scavengers known as flavonoids. These phenolics are 
categorized as per their structure and functions. These phenolic compounds are 
playing very essential role in human physiological defence responses such as anti- 
aging, anti-inflammatory, anti-carcinogenic, antioxidant, and anti-proliferative 
activities (Huang et al. 2009).

2.2  Alkaloids

Alkaloids are complicated chemical compounds encompassing a heterocyclic nitro-
gen ring, which have been intensively researched due to their numerous pharmaco-
logical properties. Such compounds are manufactured by a variety of entities, 
including mammals and microbes, but plants produce a particularly diverse range of 
alkaloids. Although alkaloids can be provided as crude extracts, they are frequently 
extracted from plants and used as pure compounds. Because of the intricacy of alka-
loid compounds, chemical synthesis is practically impossible; hence, extraction 
from a basic plant mixture remains the most cost-effective method. Plants, on the 
other hand, synthesize very complex combinations of alkaloids in tiny amounts, 
resulting in the high cost of commercially manufactured alkaloids.

Glucosinolates are the compounds having sulphur and nitrogen and are derived 
from glucose and several amino acids (Geu-Flores et  al. 2009). Glucosinolates 
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exhibit a variety of bioactivities and are found in member of family Cruciferae 
(Brassicaceae). By attracting pollinating insects and deterring predatory herbivores, 
glucosinolates play an important role in the chemical ecology of their host organ-
isms (Ratzka et al. 2002). The restoration of whole metabolic pathways into heter-
ologous plant hosts necessitates the employment of “gene stacking” approaches that 
are both efficient and simple. The engineering of benzylglucosinolate biosynthesis 
into tobacco is a phenomenally successful example. A transient expression method 
was used to re-establish benzylglucosinolate in Nicotiana benthamiana.

2.3  Saponins

Saponins, members of triterpenoid family, are a varied group of naturally derived 
phytoconstituents, which provides defence to pathogenic microorganisms and her-
bivores. This group of phytochemicals can be used for a variety of purposes other 
than medicine, owing to their numerous beneficial properties for mankind. Three 
main enzymes are essential in saponin biosynthetic pathway: Oxidosqualene 
cyclases form the basic skeleton of triterpenoids, cytochrome P450 monooxygen-
ases facilitate oxidations, and uridine diphosphate-dependent glycosyltransferases 
catalyse the glycosylations.

The identification of genes involved in saponin production is crucial for the long- 
term production of these chemicals through biotechnological applications (Sawai 
and Saito 2011). Plant saponins are thought to be defence chemicals against harmful 
microorganisms and herbivores (Osbourn 2010; Kuzina et al. 2009). These saponins 
also have a vital beneficial effect on human health. Medicinal plants such as Panax 
and Glycyrrhiza are known to have surplus amount of saponin, ginsenosides, and 
glycyrrhizin, with numerous pharmacological properties (Shibata 2001). As the 
Latin word “sapo”, which means soap, indicates, saponin also has the potential to 
foam when paired with water. Common soapwort (Saponaria spp.) and soap bark 
tree (Quillaja spp.) have been successfully used as soap. The saponins extracted 
from soap bark tree can be used as emulsifiers to prepare cosmetics and food items. 
Furthermore, glycyrrhizin is reported to be 150 times sweet as sugar and can be 
used as natural sweetener in many food preparations.

Saponins are commonly stored in particular cell type and organs. Glycyrrhizin 
and ginsenosides are accumulated in xylems of roots of licorice and ginseng, respec-
tively (Shan et al. 2001). At the cellular level, it has been proven that saponins are 
accumulated most specifically in vacuoles (Mylona et  al. 2008), and hence, it is 
suggested that there is the presence of vacuolar transporter. These transporters are 
also targeted to engineer the accumulation of saponins. Thus far, an ATP-binding 
cassette transporter (NpPDR1) has been reported as a plant terpenoid transporter 
contributing in the secretion of sclareol, a diterpenoid, with antifungal activities, in 
the tobacco plant (Jasiński et al. 2001).
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2.4  Terpenes

Terpenes are aromatic chemicals, responsible for the aroma in flowers, fruits, seeds, 
leaves, and roots in various plant species. This aroma is crucial in the development 
of herb- and fruit-flavoured wines, like vermouth. They help to discriminate the 
scents of various grape types. Wine has yielded approximately 50 monoterpenic 
chemicals (Strauss et al. 1987).

Terpenes are chemically classified as a group due to their unusual carbon struc-
ture. Fundamentally, it is a 5C isoprene unit. Terpenes are also often made up of 2, 
3, 4, and 6 isoprene units, and therefore, they are also known as monoterpenes, 
sesquiterpenes, diterpenes, and triterpenes, respectively. Terpenes may also encom-
pass diverse functional groups. Several important terpenes contain OH groups that 
make it terpene alcohols. Other terpenes are called ketones (Strauss et al. 1987).

3  In Vitro SM Production

Various cell cultures can be followed to produce SMs in vitro (Fig. 2).

3.1  Callus and Cell Suspension Culture

For SM production, the selection of high metabolites generating cell lines is per-
formed through callus tissues of either small aggregate or single-cell origin. 
Suspension cultures are made by placing callus tissue in liquid medium of the same 
composition as callus tissue with continuous shaking. Suspension culture comprises 
more homogenous cells and less differentiated cell population. The production of 
secondary metabolite through suspension culture is easily manageable by feeding 

Fig. 2 Systematic representation of SM production under in vitro conditions
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various chemical factors in the culture (Fischer et al. 1999). In vitro methods of SM 
production relay the best alternative solution and efficient technique for SM produc-
tion in large scale within the short period of time (Kolewe et  al. 2008). In vitro 
production of SM is carried out in two steps such as biomass accumulation and SM 
synthesis (Yue et al. 2016). Based on the optimization and establishment of highly 
relevant scientific output in this arena, various types of explant and growing condi-
tions like callus and suspension cultures are hugely used in SM production (Fig. 2). 
For initiation of the culture, various tissues can be taken such as leaf, shoots, roots, 
calli and cell suspension culture, etc. Callus cultures are commercially viable for the 
production of SMs with medicinal relevance (Ogita 2015). This callus can be used 
to produce multiple clones through micropropagation or for cell suspension culture 
for the production of SMs through batch or continuous fermentation bioreactors.

Callus cultures are significantly contributed in SM production successfully at 
commercial level (Ogita 2015). Multiples clones of plant can be produced from this 
culture and can also be exploited for developing single-cell suspension cultures with 
the aim of producing the target SMs (Xu et al. 2011). Both types of cultures also 
provide the possibility to modify the SM biosynthesis pathways; malonate/acetate 
pathway and the shikimic acid pathways are the key SM biosynthesis pathways in 
plants (Hussain et al. 2012).

Tropane alkaloid group is mostly synthesized in solanaceous genera comprising 
Atropa, Hyoscyamus, Scopolia, Mandragora, and Duboisia. It has been reported 
that tropane alkaloid production could be higher through in vitro techniques. These 
groups of chemical compounds work as parasympathetic antagonists by blocking 
the actions of acetylcholine binding to its receptor, consequently having effects on 
the heart rate, respiration, and central nervous system. Hyoscyamine is a one kind 
of tropane alkaloid used to treat a variety of stomach/intestinal problems, and it was 
found to have greater accumulation in callus culture of Hyoscyamus aureus (Besher 
et al. 2014). The maximum level of atropine (236.9μg/g dry weight) and scopol-
amine (43.1μg/g dry weight) tropane alkaloid was obtained from Atropa belladonna 
leaf callus cultures after the 21 days with the use of elicitor, ornithine, at the rate of 
1 mM (Mohamed et al. 2018). Atropa belladonna is the most known tropane alka-
loid producer, and it was shown that atropine production through callus culture in a 
significant amount (6.94 mg/g dry weight) as the plant synthesizes atropine nor-
mally in leaf (Ogras et al. 2022). α-Tocopherol, in fact, is a type of vitamin E iso-
form and the most effective fat-soluble antioxidant found in a diverse group of 
plants. It serves as a scavenger of lipid peroxyl radicals protecting the polyunsatu-
rated fatty acids in membranes and lipoproteins, thereby serving as an antioxidant 
mainly used for the cure of atherosclerosis. Chemically synthesized alpha- tocopherol 
is less effective on account of its stereoisomer racemic mixture, so always look for 
the plant-based extract.

Plenty amount of α-tocopherol is present in normal cultivated plants like oranges 
and beets (Piironen et  al. 1986), cabbage (Lehmann et  al. 1986), and sunflower 
(Velasco et  al. 2002). However, by practicing in  vitro techniques in sunflower, 
greater amount of α-tocopherol (19.8μg/g FW) can be collected from hypocotyl- 
derived callus culture than the normal hypocotyl (11.4μg/g FW) (Sofia et al. 2010). 
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β-Sitosterol (0.198 mg/g DW) and caffeic acid (4.42 mg/g dw) are the bioactive 
SMs of Sericostoma pauciflorum produced at higher amount from the 6-week-old 
callus (Jain et al. 2012). Significant amount of SMs ajmaline (0.01 mg/g DW) and 
ajmalicine (0.006 mg/g DW) was induced though hairy root culture of Rauvolfia 
micrantha through hypocotyl explants (Sudha et al. 2003). Ajmalicine is the best 
known drug to treat high blood pressure (Wink and Roberts 1998). The treatments 
of elicitors like salicylic acid, methyl jasmonate, chitosan, and heavy metals in cal-
lus cultures enhanced the SM production (DiCosmo and Misawa 1985). Apart from 
the callus cultures, hairy root culture especially for alkaloids (Sevon and Oksman- 
Caldentey 2002) and shooty teratoma (tumour-like) cultures for monoterpene pro-
duction have been well established (Spencer et al. 1993). Therefore, each and every 
culture is unique and has a potential area for SM production in different MAPs. 
Some of the important SMs produced by MAPs through in  vitro techniques are 
summarized in Table 1.

Withania is commonly believed to have powerful aphrodisiac, calming, rejuve-
native, and life-extension properties in Ayurveda. Moreover, it is employed for geri-
atric issues and power-boosting tonic called medhya rasayana, which literally 
translates to “that which enhances wisdom and memory” (Nadkarni 1976; 
Williamson 2002). The plant was historically used to nourish the growth and devel-
opment of human body by boosting the production of essential fluids, muscle fat, 
blood, lymph, semen, and cells in order to support vigour, endurance, and health. 
Due to the similarities between the above potentials and ginseng roots, ashwa-
gandha roots are popular as Indian ginseng (Singh and Kumar 1998).

Tissue culture of Indian haplotype of Withania somnifera was attempted using 
axillary meristems on MS media accompanied with different hormonal combina-
tions along with coconut milk alone or in combination (Roja et al. 1991). Callus was 
successfully initiated on media provided with 2,4-D (2  ppm) and 0.2  mg 
Kin/L. Callus culture was failed to produce withanolides. But the use of shoot tip 
culture for the development of multiple shoots of W. somnifera grown on MS 
medium containing BA (1 ppm) showed accumulation of 0.04% withaferin A and 
0.06% withanolide D (Ray and Jha 2001). Interestingly, the concentration of witha-
nolides was increased substantially on MS liquid medium comprising BA (1 ppm) 
and coconut milk (10%), which favoured a significant rise in biomass (27 times) and 
0.14% of withaferin A from 0.04% (Ray and Jha 2001). Nagella and Murthy (2010) 
investigated the production of withanolide A in W. somnifera cell cultures by opti-
mizing different tissue culture-related parameters. They had observed that the con-
centration of withanolide A was reached at maximum 2.26  mg/g dry weight in 
suspension culture added with 2,4-D (2 ppm) in combination with kinetin (0.5 mg/L) 
followed by 1.82 mg/L with 1 mg/L BA cytokinins.

A. A. Sakure et al.
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Table 1 Secondary metabolite production through in vitro cultures of various medicinal and 
aromatic plants

Sr. 
no.

Bioactive 
compounds Crops/plants

In vitro 
culture References

Medicinal 
properties

Alkaloids

1 Betacyanins, 
betalains

B. vulgaris L. Hairy root Shin et al. (2002) 
and Thimmaraju 
et al. (2003)

Antioxidant 
capacities, 
anti- 
inflammatory, 
cancer chemo- 
preventive 
activities, 
protection of 
low-density 
lipoproteins 
(LDLs) from 
oxidation

2 Berberine Tinospora 
cordifolia

Callus Mittal and Sharma 
(2017)

Used to treat 
viral infections, 
cancer, diabetes, 
inflammation, 
neurological 
disorders, 
psychiatric 
problems, 
microbial 
infection, 
hypertension, 
and HIV-AIDS

Coscinium 
fenestratum

Callus Khan et al. (2008)

3 Piperine Piper longum Callus Chatterjee et al. 
(2021)

Antioxidant, 
antidiabetes, used 
in breast and oral 
cancer, obesity, 
multiple 
myeloma, 
hypertension, 
Parkinson’s 
disease 
anti- inflammatory 
properties

4 N-methylconiine A. 
globuligemma

Callus Hotti et al. (2017) Antagonist to 
nicotinic 
acetylcholine 
receptor blocking 
of the nervous 
system, 
eventually 
causing death by 
suffocation in 
mammals, 
poisonous to 
humans and 
animals

(continued)
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Table 1 (continued)

Sr. 
no.

Bioactive 
compounds Crops/plants

In vitro 
culture References

Medicinal 
properties

5 Thebaine, 
sanguinarine

Papaver 
bracteatum 
Lindl.

Cell 
suspension

Dastmalchi et al. 
(2019)

Antimicrobial, 
antioxidant, 
anti- 
inflammatory, 
anti-tumour

6 Morphine, 
codeine, 
thebaine

Opium poppy 
(Papaver 
somniferum 
album)

Embryo Kassem and Jacquin 
(2001)

Anaesthesia in 
severe injuries, 
cough 
suppressant

7 Trigonelline Trigonella 
foenum- 
graecum

Cell 
suspension

Radwan and Kokate 
(1980)

Hypoglycaemic, 
hypolipidaemic, 
neuroprotective, 
antimigraine, 
memory 
improvement, 
antibacterial, 
antiviral

8 Galantamine Narcissus 
pseudonarcissus

Callus 
cultures

Aleya et al. (2021) Used to treat 
Alzheimer’s 
disease

Terpenoids

1 Artemisinin Artemisia 
annua L.

Shoot 
culture

Woerdenbag et al. 
(1993)

Antimalarial, 
antibacterial, 
antifungal, 
antileishmanial, 
antioxidant, 
anti- 
inflammatory

Callus 
culture

Baldi and Dixit 
(2008)

2 Withanolides Ashwagandha 
(Withania 
somnifera)

Shoot 
culture

Mir et al. (2014) Anticancer, 
antioxidative, 
immuno- 
modulatory, 
anti-stress, 
cardio- 
protective, 
anti- 
inflammatory, 
aphrodisiac, 
anti-stress, 
cardio- 
protective, and 
neuroprotective

Root 
cultures

Sivanandhan et al. 
(2012)

Withaferin A Cell 
suspension

Ciddi (2006)

3 Ginsenosides Ginseng (Panax 
ginseng)

Adventitious 
root cultures

Paek et al. (2009) Antioxidant, 
anti- 
inflammatory, 
vasodilation, 
anti-allergenic, 
antidiabetes, 
anticancer

Cell 
suspension

Hibino and 
Ushiyama (1999) 
and Thanh and 
Murthy(2014)

(continued)
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Table 1 (continued)

Sr. 
no.

Bioactive 
compounds Crops/plants

In vitro 
culture References

Medicinal 
properties

4 Monoterpenes- 
α- terpineol and 
nerol

Camellia 
sinensis

Cell 
suspension 
cultures

Grover et al. (2012) Antioxidant, 
anticancer, 
anticonvulsant, 
antiulcer, 
antihypertensive, 
anti-nociceptive, 
anti- 
inflammatory

Mentha citrate, 
Mentha piperita

Shoot 
cultures

Hilton et al. (1995)

5 Monoterpenes- 
menthol

Mentha piperita Cell 
suspension 
culture

Chakraborty and 
Chattopadhyay 
(2008)

Anticancer, very 
effective in 
alleviating 
flatulence, 
menstrual pain, 
nausea, 
depression- 
related anxiety

6 Monoterpenes- 
β- myrcene

Ochtodes 
secundiramea

Suspension 
cultures

Jason and Gregory 
(2018)

Analgesic, 
sedative, 
antidiabetes, 
antioxidant, 
anti- 
inflammatory, 
antibacterial, 
anticancer

7 Monoterpenes- 
α- pinene, 
pulegone, 
menthol, 
menthone, and 
limonene

Mentha 
pulegium

Cell 
suspension 
culture

Darvishi et al. (2016) Antibiotic, 
anticoagulant, 
antitumor, 
antimalarial, 
antileishmanial, 
analgesic, 
antihyperalgesic, 
anti-pyretic, 
anti-histaminic

Steroids

1 Digoxin, 
digitoxin

Digitalis lanata Shoot tip 
and single 
node 
cultures

Bekhit (2009) and 
Lee et al. (1999)

Used to treat 
heart failure and 
arrhythmias

2 Ecdysteroids Achyranthes 
bidentata 
Blume

Cell 
suspension

Wang et al. (2013) Lower 
cholesterol and 
blood glucose 
level, effects on 
the central 
nervous system, 
neuromodulatory 
effects on the 
GABAA 
receptor

(continued)
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Table 1 (continued)

Sr. 
no.

Bioactive 
compounds Crops/plants

In vitro 
culture References

Medicinal 
properties

3 Steroidal 
glycosides- 
saponins, 
sapogenins

Yucca plant Root-cell 
cultures

John and Maccarthy 
(1985)

Anti- 
inflammatory, 
antidiabetes, 
antioxidant, 
hepatoprotective 
activity, lower 
cancer risks, 
affect blood 
glucose response

4 Steroidal 
lactones 
withaferin A and 
withanolide A

Withania 
somnifera (L.)

Hairy root 
cultures

Doma et al. (2012) Antioxidant, 
anti- 
inflammatory, 
hormone 
balancing, 
immune 
boosting, 
benefits for 
insomnia and 
joint pain

Quinones

1 Aloe-emodin A. barbadensis 
Mill.

Basal and 
fresh leaf 
calli

Acurero (2009) and 
Lee et al. (2013)

Anticancer, 
antivirus, 
anti- 
inflammatory, 
neuroprotective, 
hepatoprotective 
activities

2 Anthraquinones Polygonum 
multiflorum

Cell 
suspension 
cultures

Thiruvengadam et al. 
(2016)

Laxatives, 
antimicrobial, 
anti- 
inflammatory 
agents, used to 
treat arthritis, 
multiple 
sclerosis, and 
cancer

Rubia tinctorum Cell and 
hairy roots 
cultures

Perassolo et al. 
(2022)

3 Sennosides A 
and B

Senna alata Hairy roots 
cultures

Putalun et al. (2014) Treatment for 
constipation

4 Plumbagin Plumbago 
indica

Root 
cultures

Jaisi and 
Panichayupakaranant 
(2020)

Used to treat 
prostate cancer

5 Shikonin Lithospermum 
erythrorhizon

Callus 
cultures

Mizukami et al. 
(1978)

Antioxidant, 
anti- 
inflammatory, 
antithrombotic, 
antimicrobial, 
and wound- 
healing effects

(continued)
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Table 1 (continued)

Sr. 
no.

Bioactive 
compounds Crops/plants

In vitro 
culture References

Medicinal 
properties

Phenylpropanoids

1 Anthocyanins Cleome rosea Callus 
cultures

Simoes et al. (2009) Antioxidant 
potential, cancer 
chemo- 
preventive 
agents, 
anti- 
inflammation, 
diabetes and 
obesity 
prevention, 
improving 
memory 
capacity

2 Coumarins- 
Psoralen

Coronilla 
scorpioides

Callus 
cultures

Piovan et al. (2014) Used in the 
treatment of 
vitiligo and 
psoriasis

3 Eugenol Ocimum 
sanctum L.

In vitro- 
generated 
plantlets

Sharma et al. (2016) Antibacterial, 
antifungal, 
antioxidant, 
antineoplastic 
activity

4 Flavonoids Sericostoma 
pauciflorum

Callus 
cultures

Jain et al. (2012) Anticancer, 
antioxidant, 
anti- 
inflammatory, 
antiviral 
properties

5 Isoflavonoids Genista 
tinctoria L.

Suspension 
culture

Tumova et al. (2014) 
and Skalicky et al. 
(2018)

Used in the 
treatment of 
osteoporosis, 
hormone-related 
cancer, loss of 
cognitive 
function

6 Lignans Linum species Root 
cultures

Alfieri et al. (2021) Lowered risk of 
heart disease, 
menopausal 
symptoms, 
osteoporosis, 
and breast 
cancer
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14

3.2  Immobilized Culture

Immobilized culture has received much attention for their efficiency in producing 
plant secondary metabolites. In this technique, high-density suspension culture cells 
are confined in an inert matrix such as gel beads of calcium alginate, stainless steel, 
etc. Then these cultures are shaken in cultured flask with aeration in bioreactor. 
However, the production of SMs under large scale is quite expensive (Hall 
et al. 1998).

3.3  Organ Culture

Despite intense efforts, the production of SMs from various useful plants, like mor-
phinan from Papaver somniferum, tropanes from numerous solanaceous plants, and 
dimeric indoles from Catharanthus roseus, via callus and cell suspension cultures, 
is not successful. Since the majority of these kinds of chemicals accumulates only 
when appropriate organs are regenerated from cultured cells. The production of this 
substance in cultivated cells needs the separation of phytochemical from morpho-
logical maturation, which has so far proved ineffective. In this circumstance, organ 
cultivation is the preferred option. One main drawback of organ culture is that it 
reduces bioreactor production because the physical form of the shoot or root causes 
different obstacles, such as handling problems during inoculation and shearing of 
organ during culture. When the production of tissue-specific monoterpenoid essen-
tial oil is concerned, its production with callus or suspension culture could not be 
the choice because that essential oil is only synthesized in oil secretory aerial part 
of the plant. At this condition, only shoot tip cultures are considered for the produc-
tion of target compounds (Severin et al. 1993).

3.4  Hairy Root Culture

Agrobacterium rhizogenes is a soil bacterium that causes a variety of dicotyledon-
ous plants to develop hairy root disease. This phenotype is brought about via genetic 
modification, much like how A. tumefaciens developed crown gall disease. This is 
similar to A. tumefaciens, which causes crown gall disease. The roots, produced 
after co-cultivation of explants with A. rhizogenes, are clearly identified by rapid 
and highly branched growth of roots on tissue culture medium devoid of hormones 
(Christey 2001). Plants regenerated from hairy roots frequently display a different 
phenotype marked by wrinkly leaves, condensed internodes, declined apical domi-
nance, decreased fertility, different flowering, and plagiotropic roots. These altera-
tions come from the transmission and activation of T-DNA loci (rol A, B, C, D) 
(Christey 2001). Genetic engineering provides a new option to increase the content 
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of SMs in producing plant species or even producing the metabolite in a heterolo-
gous, readily cultivatable plant host system. Hairy root production can be performed 
in two ways: in  vitro and in  vivo. In vitro hairy root production is the same as 
in  vitro explant co-cultivation process that is used for A. tumefaciens-mediated 
transformation. The main distinction is that explant is developed on hormone- 
devoid medium, which allows the identification of hairy root cultures. The medium 
may be changed with the change of the plant species; however, in maximum cases, 
Murashige and Skoog medium is reported. In vivo approach includes wounding the 
stem or petiole of plants using a needle/toothpick immersed in bacterial solution. As 
moisture is required for the growth of hairy roots, wounding location is frequently 
covered with gauze to avoid the moisture loss as high humidity is a prerequisite in 
the development of hairy root. Plant hairy root culture is a promising alternate way 
to develop chemicals generated in plant roots. A. rhizogenes-mediated transforma-
tion was exploited for induction hairy roots in plants, allowing in vitro production 
of SMs of plant roots (Chen et al. 2018).

A successful attempt was made in the production of scopoletin in the cell suspen-
sion culture Spilanthes acmella Murr. In this investigation, various concentrations 
of casein hydrolysate and L-phenylalanine were integrated in MS supplemented 
with BA 15 (μM) and 2,4-D (5μM). It was reported that the scopoletin production 
was substantially improved in the presence of casein hydrolysate in the nutritional 
medium with increase in cell biomass. The inclusion of casein hydrolysate up to 
75 mg/L promoted scopoletin accumulation, whereas increasing the casein hydroly-
sate level above 75 mg/L inhibited scopoletin production. Moreover, adding phenyl-
alanine in medium was observed to be more effective in S. acmella SM synthesis. 
The largest concentration of scopoletin was reported in cell suspension with 
L-phenylalanine (100μM/L), which was 4.51 times more compared to control 
(Mohammad et al. 2016). Senna alata (L.) Roxb. (family Leguminosae) contains 
anthraquinone glycosides that function as laxatives, such as sennosides A and 
B. Hairy root culture-based overproduction of sennosides A and B was carried out 
using Agrobacterium rhizogenes. 21-day-old seedlings were co-cultivated 
Agrobacterium rhizogenes strain ATCC 15834 by piercing the plant’s stem and 
leaves with a needle that had been dipped in the bacterial suspension. After 2 weeks 
of inoculation, hairy roots were stimulated on wounding site on the plant. The roots 
were grown at 25 °C under a 16-h photoperiod with fluorescent light on hormone- 
free half-strength MS medium (3% w/v sucrose) supplemented with cefotaxime 
(500 g/ml).

The microbe-free hairy roots were transplanted into half-strength MS liquid 
media without hormone after three 14-day passages on medium supplemented with 
antibiotic. The speedy growth of hairy roots displayed a growth curve from day 5 to 
day 20, with the maximum root weight reported on day 5. Sennoside A and B levels 
in hairy roots reduced during day 10 due to hairy root growth. Following lag phase, 
sennoside A and B production amplified from day 15 and touched its peak in the 
stationary phase of hairy roots by day 35 (178 15) and (23 2) g g1 dry wt, respec-
tively (Putalun et al. 2014).
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Menthol production was significantly increased with cell suspension culture in 
Mentha piperita. In this case, the culture was initiated with leaf segments on simple 
MS media. Precursor feeding in combination with γ-cyclodextrin and menthone at 
35μM showed significant increase in menthol production up to 92 and 110 mg/l 
compared to 77 mg/l in control (Chakraborty and Chattopadhyay 2008). The pro-
duction of geraniol was tried in N. benthamiana. A gene named geraniol synthase 
of Valeriana officinalis was transformed into tobacco plant. The transgenic plants 
generated through in vitro had the highest geraniol content (48 g/g fresh weight, 
fw), followed by the transient expression system (27 g/g fw). The transgenics grown 
hydroponically in a greenhouse, cell suspension cultures, and hairy root cultures 
showed 16 g/g fw and 9 g/g fw with hairy root cultures (Vasilev et al. 2014).

Plant genetic engineering is favoured over chemical synthesis, which aids in the 
production of excessive levels of some alkaloids. Isoquinoline alkaloids are among 
the most significant metabolites produced by plant cell culture (Hay et al. 1988). An 
alkaloid called berberine known to have antibacterial properties was extracted from 
Coptis (Ranunculaceae). Berberine synthesis in plant cells has been well studied at 
the enzyme level by Kutchan (1998) and Sato et al. (2001). Geu-Flores discovered 
that an enzyme called gamma-glutamyl peptidase is responsible for the incorpora-
tion of reduced sulphur into glucosinolates via glutathione conjugation. The co- 
expression of this peptidase increased the return of benzylglucosinolate by 5.7 
times, demonstrating the role of primary metabolite resources on natural product 
output (Geu-Flores et al. 2009).

Similarly, Modlrup et al. (2011) examined the formation of benzyl desulfogluco-
sinolate, the final metabolite in the benzylglucosinolate pathway, by mobilizing sul-
phur from primary to secondary metabolism in N. benthamiana expression system 
by co-expressing adenosine 5′-phosphosulfate kinase. The 3′-phosphoadenosine-5′-
phosphosulfate (PAPS) was provided as co-substrate required for the final step of 
benzylglucosinolate biosynthesis. They observed a subsequent increase in benzyl-
glucosinolate yield by 16-fold (Moldrup et al. 2011). Mikkelsen et al. (2012) cre-
ated a flexible platform for Saccharomyces cerevisiae to express many gene 
pathways in a steady manner. This was the first successful generation of glucosino-
lates in a microbial host achieved by introducing the seven-step indolylglucosino-
late pathway from Arabidopsis thaliana to yeast. By replacing supporting 
endogenous yeast activities with enzymes from plants, the synthesis of indolylglu-
cosinolate was significantly improved.

Hughes et al. (2004) studied the efficacy of the hairy root cultures on alkaloid 
accumulation by better tryptophan accessibility. For testing this association, trans-
genic hairy root cultures of periwinkle were developed under the control of 
glucocorticoid- inducible promoter governing the expression of an Arabidopsis 
feedback-resistant alpha subunit of anthranilate synthase. Tryptophan and trypt-
amine yields grew significantly after 6 days of induction, from non-detectable levels 
to 2.5 mg/g dry weight and from 25 to 267μg/g dry weight, respectively. This sug-
gested that in increasing the alkaloid accumulation, tryptophan and tryptamine con-
centrations are playing an important role in significant increment in the levels of 
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most terpenoid indole alkaloids such as lochnericine, which increased to 81% after 
a 3-day induction.

Rutin is a citrus flavonoid glycoside found in buckwheat (Fagopyrum esculentum 
Moench.). It is also called as rutoside, quercetin-3-rutinoside, and sophorin (Kreft 
et al. 1997). Ruta graveolens is a source of rutin. It is a glycoside composed of the 
flavonol glycoside quercetin and the disaccharide rutinose. It has a variety of phar-
macological properties, like cytoprotective, antioxidant, vasoprotective, cardio- 
protective, anticarcinogenic, and neuroprotective properties (Javed et  al. 2012; 
Richetti et al. 2011). Rutin has shown a neuroprotective effect in ischaemia of the 
brain. Rutin administration reduced “ischemic neuronal apoptosis” due to the sup-
pression of p53 transcription and lipid peroxidation, as well as an increase in 
“endogenous antioxidant defence enzymes” (Khan et  al. 2009). It has also been 
shown to have significant effect in sedative activity (Fernández et al. 2006), neural 
crest cell survival (Nones et  al. 2012), anticonvulsant activity (Nieoczym et  al. 
2014), and anti-Alzheimer’s activity (Wang et al. 2012).

To determine in vitro production of rutin, Lee et al. (2007) developed a hairy root 
culture by employing infection of Agrobacterium rhizogenes strain R1000 on leaf 
explants of buckwheat. Ten hairy root clones were created, with growth and rutin 
production rates ranging from 233 to 312 mg dry wt per 30 mL flask and 0.8–1.2 mg/g 
dry wt, respectively. Clone H8 was superior for rutin production (312 mg dry wt per 
30 mL flask and 1.2 mg/g dry wt) and was chosen for further testing. H8 reached its 
maximum growth and rutin concentration after 30  days in MS medium culture. 
Among other tested media, half-strength MS medium was shown to induce the 
maximum growth levels and ultimately for rutin production (1.4 mg/g dry wt) by 
clone H8 (Lee et al. 2007).

An effort was made to generate hairy root from the seedlings of buckwheat 
through A. rhizogenes. Hormone-free half-strength MS medium was found quite 
satisfactory to obtained active elongation and high root branching. Insertion of the 
RolB and Aux1 genes from A. rhizogenes (strain 15834) into buckwheat was also 
confirmed through PCR. Interestingly, in this study, it was identified that the absence 
of VirD gene showed hairy root without bacterial contamination. They had tested 
the transformed hairy root generated line TB7 on six different media combinations 
for evaluating the efficacy of its biomass production. The media finalized with half-
strength MS liquid medium accompanied with 3% sucrose extended for 20 days 
resulted in maximal biomass of 13.5 g/l fresh weight, and the accumulation of rutin 
was achieved to 0.85 mg/g (Huang et al. 2016). Further, hairy root-based suspension 
culture led to a 45-fold and 4.11-fold accumulation of biomass and rutin content 
compared to suspension culture of non-transformed roots. They had also observed 
that the exposure of UV-B stress on hairy roots resulted in an outstanding increase 
of rutin and quercetin accumulation. The reason for maximal accumulation of these 
SMs under UV light was due to the dramatic changed in the expression of FtpAL, 
FtCHI, FtCHS, FtF3H, and FtFLS-1  genes in buckwheat hairy roots (Huang 
et al. 2016).

In Ocimum spp., the increased amounts of ursolic acid and eugenol in O. tenui-
florum hairy root cultures matched well with elicitor concentrations, time of 
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exposure, and culture age (Sharan et  al. 2019). Biswas (2020) demonstrated 
increased rosmarinic acid concentration in non-transformed O. basilicum root cul-
ture employing methyl jasmonate as an elicitor. Further, Kwon et al. (2021) observed 
that rosmarinic acid accumulation was higher in hairy root cultures of green basil 
compared to the purple basil. Elite hairy root lines of O. basilicum have previously 
been created with rosmarinic acid levels that are noticeably greater than non-trans-
formed roots (Srivastava et  al. 2016). Somatic hybridization is also employed to 
create hybrids from distant genera or related species (Grosser 2003). It may be 
beneficial to use somaclonal modifications to improve the essential oil profile of 
Ocimum species. Plant breeding techniques can be used to include these changes if 
they have remained genetically stable for several generations (Krishna et al. 2016).

Terpenoids are among the volatile substances that plants release from their aerial 
parts and play a significant role in interaction with their surroundings. Overexpression 
of TPSs was carried out under constitutively expressing promoters in heterologous 
system such as Arabidopsis (Aharoni et al. 2003, 2006). Transgenic Arabidopsis 
was generated by the expression of two distinct terpene synthases. Transformed 
lines showed the production of linalool and its glycosylated and hydroxylated deriv-
atives in the leaves. In several of the transgenic lines, the sum of the glycosylated 
components was up to 40–60 times more than the sum of the comparable free alco-
hols. Recently, a study was undertaken for the accumulation of terpenoid with 
increased yield of essential oil by overexpression of hydroxymethylglutaryl 
(HMGR) of O. kilimandscharicum in several phenylpropanoid-rich Ocimum species 
(O. basilicum, O. gratissimum, and O. tenuiflorum) (Bansal et al. 2018).

Another study on elicitation of withanolide production in ashwagandha hairy 
root cultures was performed using 150μM jasmonate (MeJ) and salicylic acid (SA) 
as an elicitors at varied concentrations. Hairy root samples were collected after 4 h 
of exposure from 40-day-old plants and showed an increase in the production of 
32.68 g/FW biomass and 58-fold higher withanolide A (132.44 mg/g DW), 46-fold 
withanone (4.35 mg/g DW), and 42-fold withaferin A (70.72 mg/g DW) in leaves of 
ashwagandha. It was also noticed that with an increase in age of plants, the accumu-
lation of withaferin A was observed, but there was a decrease in corresponding 
withanolide A (Sivanandhan et al. 2013).

Doma et al. (2012) addressed the interesting finding on the accumulation of the 
withaferin A in hairy root culture induced by Agrobacterium rhizogenes at different 
concentrations of sucrose. From this study, it was confirmed that sucrose in the 
medium also plays an important role in withanolide accumulation. They had tested 
different concentrations of sucrose from 2%, 3%, 4%, to 6%, but the accumulation 
of withanolides was identified only at 6% sucrose with an amount of 1733μ/g dry 
weight. In fact, the use of triadimefon, a fungicide, in the medium enhanced witha-
ferin A 1626% in hairy roots and 3061% in intact roots, which is not reported earlier 
(Doma et al. 2012).
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4  Factors Affecting SM Production in Tissue Culture

4.1  Media Formulation

Culture media formulation heavily supports on the growth and morphological 
development of plant tissues. For the effective proliferation and development of 
cells in tissue culture medium, it should have an optimum concentration of all com-
ponents in the media formulation comprising macro- and micronutrients, nitrogen 
supplement (amino acids), vitamins, carbon source (sucrose/glucose), and phyto-
hormones, and in some cases, elicitors are also added. Media formulations such as 
Murashige and Skoog (MS) media, Gamborg (B5) media, Linsmaier and Skoog 
(LS) media, Schenk and Hildebrandt (SH) media, White’s media, Nitsch and Nitsch 
(NN) media, Chu (N6) media, and woody plant media (WPM) are commonly used 
in cell culture. Each medium has its different compositions and used in various in 
vitro cultures. In 1962, a modified MS medium was designed in Nicotiana tabacum, 
which comprises high amount of ammonium ions along with nitrate and potassium. 
However, in 1968, for cell and suspension culture of Glycine max, a new medium 
named Gamborg B5 medium was formulated with comparatively lower amount of 
ammonium ions than MS media. Linsmaier and Skoog medium was developed in 
1965 with the aim to optimize organic supplements of the tobacco culture. For the 
callus and suspension cultures of monocotyledonous and dicotyledonous plants, 
Schenk and Hildebrandt medium was originally formulated in the year 1972, and in 
this medium, potassium nitrate was supplemented as the main nitrate source with 
high amount of copper and myo-inositol. In 1962, R. White formulated White media 
for root culture, and it was the first media for root culture. This medium is catego-
rized by containing high concentration of magnesium sulphate with low salt, and 
nitrate content is 19% lower than from MS medium. Another medium that contains 
greater amount of thiamine, biotin, and folic acid that was specially designed for 
in vitro another culture of Nicotiana called as Nitsch and Nitsch media (1969). Chu 
media were formulated for another culture in rice with optimized micronutrients 
and macronutrients in the media. Lioyd and McCrown developed a medium for 
in vitro culture of woody plant species (Kalmia latifolia) in the year 1981 (Rini 
Vijayan and Raghu 2020).

Therefore, several media formulations are developed for successful in vitro cul-
tures of several species, and its formulation has also influenced the harvest of high- 
value bioactive compounds. The highest alkaloid content (6.203 mg/g dry weight) 
was revealed in B5 media suspension culture containing 3% sucrose compared to 
MS media suspension media (6.021  mg/g dry weight) in Catharanthus roseus 
L. (Mishra et al. 2018a, b). However, it was in contrast with the finding of Zenk 
et al. (1977) that displayed that MS media formulation was the best medium for the 
production of alkaloid (serpentine and indole alkaloids) by Catharanthus roseus 
suspension cultures than B5 and white media composition. Full strength of MS 
media showed the promising response for callus induction and podophyllotoxins 
production in Podophyllum peltatum tissue cultures (Kadkade 1982). Similarly, 
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callus culture of Eurycoma longifolia in MS media showed higher production of 
9-methoxycanthin-6-one (Rosli et al. 2009). MS basal medium supplemented with 
2, 4-D (0.5 mg/l) and BA (1.0 mg/l) and 6% sucrose was best for leaf callus culture 
of C. roseus for biomass and alkaloid production (Verma et al. 2012). Total alkaloid 
content was found significantly maximum in MS medium (4.25 g/l dry weight) as 
compared to B5 medium (7.9 g/l dry weight) in Hyoscyamus muticus cell suspen-
sion culture. Moreover, among the different strengths of MS media, full strength 
was revealed the best for nourishing the growth as well as total alkaloid production 
in Hyoscyamus cell culture (Aly et al. 2010). Many researchers described the impor-
tance of types of medium and its composition on growth and SM build-up in callus 
and suspension cultures; among the media, MS and B5 are the two mostly used 
standard media for cell culture of various plant species.

4.2  Carbon Source and Its Concentration

In vitro culture requires a carbon source in order to fulfil energy loads due to the 
lack of photosynthesis and that strongly affects the induction and growth of callus 
as well as cell differentiation. Meanwhile, carbohydrates also have a significant role 
in the maintenance of osmotic pressure in the medium (Lipavska and Konradova 
2004). One of the most commonly used carbohydrate energy source in in vitro cul-
ture is sucrose, since it is the form of carbohydrate present in phloem sap of many 
plant species (Fuents et al. 2000). Apart from this, other carbon sources used in in 
vitro cultures are mannitol and sorbitol (George 1993), polyethylene glycol 
(Ramarosandratana et  al. 2001), and glucose, fructose, maltose, and lactose. For 
example, MS media supplemented with glucose as carbon source resulted in higher 
biomass production (8.3 g/l dry cell weight basis) and podophyllotoxin production 
(4.9 mg/l) by cell cultures of Podophyllum hexandrum than sucrose used as carbo-
hydrate source (Chattopadhyay et al. 2002). The accumulation of SM production in 
various plants is being influenced by altering the source of carbohydrates and the 
concentration used in the media, which has long been recognized in plant cell cul-
tures. In Catharanthus roseus, higher accumulation of ajmalicine was induced by 
the media incorporated with glucose as a carbon source (Schlatmann et al. 1995). 
However, sucrose was shown as best carbon source in shikonin production by 
Lithospermum erythrorhizon (Mizukami et al. 1977). Moreover, in Cynara cardun-
culus cell suspension culture, the highest polyphenol content was recorded in media 
containing glucose (1307.6μg/g) followed by corn starch (1131.6μg/g), and in 
sucrose, it was only 911μg/g after 7 days. However, highest polyphenol content was 
reported maximum in fructose (573.3μg/g) after 14 days (Oliviero et al. 2022). Cell 
suspension culture of L. macranthoids grown in B5 medium supplemented with 
sucrose (3%) was established as top media for biomass accumulation and SM pro-
duction (Li et al. 2016). The growth and hyoscyamine accumulation of Hyoscyamus 
muticus developed on media having glucose were significantly reduced than sucrose 
(Oksman-Caldentey and Arroo 2000).
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In the same line, Gertlowski and Petersen (1993) studied the impact of carbon 
sources on growth and rosmarinic acid accumulation in suspension cultures of 
Coleus blumei and revealed that 5% sucrose used in the medium showed maximum 
rosmarinic acid. The authors further highlighted that rosmarinic acid accumulation 
is associated with carbon left in the medium when growth ceases. Therefore, a good 
carbon source is required not only for cellular growth, but it is necessary for the 
production of high-value bioactive compounds.

4.3  Nitrogen Source and Its Concentration

In some of the media like MS, LS, and B5, nitrogen is one of the essential compo-
nents along with the phosphate; these two are the main essential macronutrients 
required for the plant growth and development. The most commonly used as organic 
nitrogen in culture media are amino acid mixtures, L-glutamate, L-aspartate, and 
adenine. Amino acids provide an immediate source of nitrogen in plant cells. Apart 
from this, nitrogen is supplied in the form of ammonium and nitrate in the medium. 
Media containing amino acids and proteins exhibited better SM production. 
Moreover, the amount of nitrogen also impacts the production of the metabolites. A 
study was done in periwinkle cell suspension culture for the enhancement of alka-
loid production through using various levels of nitrogen with phosphate concentra-
tion. It was shown that maximum biomass (19.17 and 2.10 g/l fresh and dry weight, 
respectively) production and total alkaloid content (5.84  mg/g dry weight) were 
observed in elevated phosphate levels with 3710.10 mg/l of total nitrogen concen-
tration in B5 medium compared to 2850  mg/l of total nitrogen of MS medium 
(Mishra et  al. 2019). The maximum fresh biomass accumulation (294.8 g/l) and 
total phenol content (76.61 GAE/g dry weight) were registered in Salvia nemorosa 
cell suspension culture in MS media having nitrogen 90 mM. However, media con-
taining 30 and 60 mM of nitrogen showed the maximum rosmarinic acid (16.41 and 
16.16  mg/g dry weight, respectively). In this experiment, the researcher used 
NH4NO3 and KNO3 as the nitrogen sources in constant proportions. Further, they 
revealed that ammonium and nitrate ratio (NH4

+/NO3
−) also affected the growth and 

accumulation of SMs and found maximum fresh biomass accumulation (296.52 g/l), 
total phenol (87.30 mg GAE/g dry weight), and total rosmarinic acid (18.43 mg/dry 
weight) in 10:50 ratio of NH4

+/NO3
− (Heydari et al. 2020). In the MS medium con-

taining NH4
+/NO3

− ratio of 30:30 mM, elevated quantity of kaempferol epicatechin, 
quercetin-3-O-glucoside, kaempferol-3-O-rutinoside, and total flavonoid content in 
callus cultures of Orostachys cartilaginea was found (Zhang et al. 2017). However, 
quercetin production was found maximum in NH4

+/NO3
− ratio of 20:40 mM. In the 

same line, maximum withanolide contents in regenerated multiple shoots of ashwa-
gandha were found in L-glutamine (20 ppm) added in medium along with an appro-
priate concentration of other media components (Sivanandhan et al. 2012).

Cell suspension culture of Gymnema sylvestre in MS media with greater amount 
of NO3- than NH4+ concentration influenced in better cell growth and gymnemic 
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acid yield. The NH4
+/NO3

− ratio of 7.19/18.80 showed maximum gymnemic acid 
(11.35 mg/g dry weight) and biomass growth (159.72 and 14.95 g/l fresh and dry 
weight, respectively) (Praveen et al. 2011). Likewise, SM production was enhanced 
by modifying NH4

+/NO3
− ratio in some other medicinal plants such as Calendula 

officinalis (Legha et al. 2012), Pueraria tuberosa (Karwasara and Dixit 2012), and 
Bacopa monnieri (Naik et al. 2011).

4.4  Plant Growth Regulators (PGRs)

PGRs play an important role in tissue culture in a variety of actions including cell 
division, cell enlargement, callus induction, and organogenesis. Auxins and cytoki-
nins are two mostly used phytohormones, and the ratio of these two hormones gen-
erally associated with caulogenesis (low auxin: cytokinin) and rhizogenesis (high 
auxin: cytokinin) (Djande et al. 2019; Schaller et al. 2015). Direct or indirect organ-
ogenesis from the explants or callus cells is stimulated by the use of PGRs (Malik 
et al. 2007; Yu et al. 2017). The use of hormones in cell culture also provokes yield-
ing of high-value metabolites. The way of PGR crosstalk varies with plant to plant 
and organs under study (Moubayidin et  al. 2009). To obtain high total phenolic 
content in stem-derived callus of Bidens pilosa required moderate to high cytokinin 
to low auxin ratio in MS media, while total phenolic content was reduced at very 
high cytokinin concentration with BAP at 8 mg/l (Ramabulana et al. 2021). Further, 
it was noticed that combined effects of auxins and cytokinins exhibited positive 
effect on the production of particular metabolites (chlorogenic acid derivatives of 
hydroxycinnamic acids) in B. pilosa cell culture. Li et al. (2016) observed higher 
biomass and chlorogenic acid production through suspension culture of Lonicera 
macrantha in B5 medium containing 6-BA (2  ppm) and 2,4-D (0.5  ppm). MS 
medium provided with 2 × 10−6 M 2,4-D in cell suspension culture of Catharanthus 
roseus exposed low accumulation of indole alkaloids ajmalicine and serpentine. 
This alkaloid content mainly ajmalicine was increased by omitting 2,4-D from the 
medium (Knobloch and Berlin 1980).

An investigation was made on an exogenous application of plant hormones influ-
enced on growth and coumarin content in hairy root cultures of Cichorium intybus 
L. (Bais et al. 2002). With increase in dedifferentiation under exogenous application 
of hormone (NAA and kinetin), there has been lost the ability to synthesize the 
coumarins. Authors further highlighted that media containing 2 ppm of 2,4-D and 
0.5 ppm of kinetin showed less amount of esculin (79.8μg per fresh weight culture) 
and esculetin (51.6μg per fresh weight culture) as compared to the control (316.5 
esculin and 226.5 esculetin μg per fresh weight culture) on 28 days. However, in 
exogenously supplied gibberellic acid (0.5 ppm), enhanced growth and coumarin 
content were found.
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4.5  Culture Conditions and Other Related Factors

Solidified or liquid suspension culture media have substantial influence on growth 
parameters and accumulation of high-value bioactive compound accumulation in 
various medicinal plants. Suspension culture of Garcinia mangostana L. grown in 
MS media treated with methyl jasmonate (MeJA) stimulated the thalsimine (alka-
loid) and phosphatidyl ethanolamine (fatty acid) production, while callus culture 
was found significantly increased in the production of thiacremonone (alkaloid) and 
7-methylthioheptanaldoxime (glucosinolate) (Jamil et  al. 2018). MeJA is used 
widely in cell culture as elicitor for stimulating SM production. In sweet basil 
(Ocimum basilicum), terpenoid accumulation was enhanced by treating the media 
with MeJA (Misra et al. 2014); similarly, in Hypericum perforatum (Wang et al. 
2015a, b) and Centella asiatica (Rao and Usha 2015), alkaloid accumulation was 
enhanced. Besides this, salicylic acid (SA) concentration ranges from 25 to 150μm 
used in culture media showed enhancement of bioactive compound accumulation. 
The maximum phenolic (35.4 mg/g dry weight) and total flavonoid (35.4 mg/g dry 
weight) content occurred at 100μm SA. Therefore, it was clearly shown that the use 
of elicitors like SA, MeJA, and jasmonate triggers the SM production under in vitro 
culture (Zhao et  al. 2005). Casein hydrolysate was found to be added in culture 
medium as organic supplement to enhance the desired SMs such as anthocyanin in 
grapevine (Cetin and Baydar 2014) and sennosides in senna (Chetri et al. 2016).

5  Transgenic-Based Molecular Farming

Many medicinal and aromatic plants have the SMs with anticancer activity like 
paclitaxel, vinblastine, vincristine, and camptothecin and play a very significant role 
in prophylaxis and therapy (George et al. 2017). These phytochemicals are not dan-
gerous and less hazardous than synthetic counterparts (Seca and Pinto 2018).

5.1  Sterols

Talking about the sterol, sitosterol and stigmasterol are the promising molecules in 
the process of drug development for cancer therapy by activating intracellular sig-
nalling pathways in several cancers. These molecules reported to act on the Akt/
mTOR and JAK/STAT signalling pathways in ovarian and gastric cancers (Bakrim 
et al. 2022). In addition, stigmasterol has anti-diabetic properties because it lowers 
fasting glucose, serum insulin levels, and oral glucose tolerance. Additional in vivo 
research found that this chemical has antiparasitic properties against parasites such 
as Trypanosoma congolense.
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Similarly, other anti-carcinogenic compounds biosynthesized in Withania som-
nifera from precursor squalene called withanolides (WTDs) and withaferin A were 
successfully enhanced by 1.5-fold (WFA; 330 ± 0.87μg dry weight) by expressing 
Arabidopsis thaliana Squalene synthase gene (AtSQS1) in Withania somnifera 
(Yousefian et al. 2018).

5.2  Flavonoids and Phenols

A study was undertaken to improve the accumulation of SMs in transgenic 
Arabidopsis through overexpression of GlPS1 gene. In ancient Chinese medicine, 
dried root of Glehnia littoralis was commonly used to treat lung conditions and cur-
rently was also used to fight against the coronavirus disease that caused pneumonia 
in 2019. G. littoralis GlPS1 gene is the candidate gene for the synthesis of furano-
coumarin. Expression of this gene leads to the accumulation of 30 differential 
metabolites in Arabidopsis. Of these, twelve coumarin compounds were found sig-
nificantly up-regulated and six were newly synthesized, which was absent in control 
or non-transformed plant. Among these furanocoumarins, three compounds, namely, 
psoralen, imperatorin, and isoimperatorin, were accumulated when transgenic plant 
was given a salt stress. From this finding, it is also suggested that the adequate stress 
has significantly increased the economic benefits for enhancing G. littoralis quality 
(Ren et al. 2023).

Besides phenol, flavonoids are the most common types of plant polyphenols, 
which has a big impact on nutrition and human health. The sulphated forms of fla-
vonoids are more advantageous than their parent compounds in that they are more 
soluble, stable, and bioavailable. Among the flavonoids, naringenin showed a broad 
range of biological effects on human health including a reduction in the biomarkers 
of lipid peroxidation and protein carbonylation, stimulation of carbohydrate metab-
olism, augmentation of antioxidant defences, scavenging of reactive oxygen spe-
cies, modulation of immune system activity, and also exerting anti-atherogenic and 
anti-inflammatory effects (Wang et al. 2015a, b). Additionally, it has been shown to 
have a strong capacity to control signalling pathways involved in fatty acid metabo-
lism, favouring fatty acid oxidation while hindering lipid build-up in the liver and 
preventing fatty liver (Zobeiri et al. 2018). The richest source of naringenin is Citrus 
species, tomatoes and figs. An attempt was made to synthesis the sulphated nar-
ingenin in E. coli by expressing a Sulfotransferase (ST) gene from Arabidopsis 
(At2g03770). The mutant strain of E. coli was developed using clustered regu-
larly interspaced short palindromic repeats (CRISPR) technique. The synthetic 
sgRNA produced to repress the cysH, a gene encoding 3′-phosphoadenosine-5′-
phosphosulfate (PAPS) ST that is mandatory for sulphur metabolism without affect-
ing cell growth, resulted in a rise in intracellular PAPS accumulation of over 
3.28-fold. The repressed function of cysH gene leads to the increased naringenin 
7-sulfate production by 2.83 times than the wild-type control E. coli (Chu et al. 2018).
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De novo production of naringenin was attempted in Saccharomyces cerevisiae 
because of meager production efficacy from plants and Escherichia coli; 
Saccharomyces cerevisiae found a suitable heterologous system for the production 
of this metabolite simply from glucose. Five genes, namely, phenylalanine ammo-
nia lyase (PAL), trans-cinnamate 4-monooxygenase (C4H), 4-coumaric acid-CoA 
ligase (4CL3), chalcone synthase (CHS3), and chalcone isomerase (CHI1), were 
utilized to produce naringenin in the transformed yeast cell. Increasing the copy 
number of the chalcone synthase gene resulted in a 40 times rise in extracellular 
naringenin (circa 200μM) in glucose-grown shake-flask cultures. The transformed 
cell was grown in a 2 L batch bioreactor at pH 5.0 with 20 g/l of glucose (Koopman 
et al. 2012).

For increasing the production of SMs through gene modulation, overexpression 
of transcription factor (TF) has also been practised. The TF of MYB family proteins 
was reported to play an important role in the phenylpropanoid pathway that regu-
lates synthesis of anthocyanin. The expression of the TF MYB12 in growing seed-
lings of A.s thaliana resulted in an upsurge in total flavonoid (Yang et al. 2012). 
Similarly, three TFs, viz., ORCA1, ORCA2, and ORCA3, involved in the expression 
of terpenoid indole alkaloid (TIA) biosynthesis have been reported in periwinkle. 
The overexpression of ORCA2 or ORCA3 in C. roseus cell suspension/hairy roots 
increased metabolite synthesis of ajmalicine, serpentine, tryptamine, and catharan-
thine (Sun and Peebles 2017).

5.3  Lupeol: A Pentacyclic Triterpenoid

Other interesting molecules like lupeol, quercetin, epigallocatechin-3-gallate 
(EGCG), bergenin, and thymoquinone reported to shrink the serum uric acid levels 
by stimulating diuresis and altering the stone formation metabolism (Lima et al. 
2007). They have numerous potential medicinal properties like anticancer and anti- 
inflammatory activity (Qiao et al. 2019). An attempt has been made to synthesize 
the lupeol in yeast by deploying genes from different organisms. Squalene is the 
precursor of synthesis of lupeol, which has also been employed as an antioxidant 
and as a possible biofuel. Lupeol naturally occurs at relatively low quantities in 
plant tissues in many circumstances, severely limiting its industrial applicability.

For these reasons, creating lupeol production in microorganisms is a more 
appealing option than extracting it from plants. Qiao et al. (2019) made an effort to 
produce lupeol in E. coli and Saccharomyces cerevisiae cells by employing the 
codon-optimized 3 lupeol pathway genes from different organisms specifically 
Squalene synthase from Thermosynechococcus elongatus (tSQS), Squalene epoxi-
dase from Rattus norvegicus (rSE) and Lupeol synthase from Olea europaea 
(OeLUP) in E. coli. They also evaluated the lupeol pathway in two different yeast 
strains, namely, WAT11 and EPY300, and found that the engineered strains dis-
played the best lupeol-producing ability with the maximum lupeol titre of 200.1 
mg/l at 30 °C.
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5.4  Rutin

A study was conducted to optimize the callus cultures in transgenic tobacco line 
through expression of a flavonol-specific TF, viz., AtMYB12. Transgenic callus 
showed increased expression of genes involved in the biosynthetic process, result-
ing in higher build-up of flavonols, especially rutin. At every developmental stage of 
callus, the rutin content of transgenic callus was many orders of magnitude higher 
compared to the wild one (Pandey et al. 2012).

5.5  Curcumin

It was used to cure rheumatism, body aches, skin diseases, intestinal worms, diar-
rhoea, intermittent fevers, hepatic disorders, biliousness, urinary discharges, dys-
pepsia, inflammations, constipation, leukoderma, amenorrhea, and colic in ancient 
times on the Indian subcontinent. Curcumin has the extraordinary potential to treat 
a numerous varieties of inflammatory diseases including cardiovascular diseases, 
cancer, diabetes, Alzheimer’s disease, arthritis, psoriasis, etc., through intonation of 
many molecular targets (Pari et al. 2008).

The first successful attempt was made through metabolic engineering by rerout-
ing phenylpropanoid pathway for the synthesis of curcumin and its glucoside syn-
thesis in Atropa belladonna. Genes, namely, Diketide-CoA synthase-DCS, Curcumin 
synthase-CURS3, and Glucosyltransferase (CaUGT2) genes, resulted in the over-
production of curcumin and its glucoside in transformed hairy root culture. 
Co-expression of DCS/CURS3 and CaUGT2 gene resulted in higher production of 
32.63  ±  2.27μg/g DW curcumin monoglucoside and 67.89  ±  2.56μg/g DW cur-
cumin, whereas co-expression of only DCS/CURS3 gene leads to the production of 
maximum 180.62 ± 4.7μg/g DW curcumin yield alone (Singh et al. 2021).

5.6  Alkaloids

Putrescine N-methyltransferase (PMT) was expressed in transgenic plants of Atropa 
belladonna and Nicotiana sylvestris and (S)-scoulerine 9-O-methyltransferase 
(SMT) in cultured cells of Coptis japonica and Eschscholzia californica. The over-
expression of PMT enhanced nicotine content in N. sylvestris, but inhibition of 
endogenous PMT activity reduced nicotine content and caused aberrant morpholo-
gies. The buildup of benzylisoquinoline alkaloids in E. californica was generated by 
ectopic expression of SMT (Sato et al. 2001).
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5.7  Paclitaxel

The compound name paclitaxel from Taxus bark was reported as an anticancer drug 
discovered in 1971. It is reported to have an effect on microtubules. This drug stimu-
lates microtubule assembly from tubulin dimers and stabilizes microtubules by pre-
venting depolymerization. Hence, it prevents metaphase-anaphase transitions, 
inhibits mitosis, and induces apoptosis in a variety of cancer cells (Stage et al. 2018). 
Currently it is approved for the treatment of various cancers including lung, breast, 
etc. Harvesting of the paclitaxel from the bark of Taxus spp. is not a viable option 
because the compound levels are extremely low, yew is also a slow-growing species, 
and extraction is a very destructive process. One treatment requires 2.5–3 g of pacli-
taxel, which necessitates the use of eight mature yew trees. Chemical synthesis is 
also not commercially viable. Therefore, various unconventional biotechnological 
techniques were employed for its production, such as heterologous expression sys-
tems and plant cell culture. Biosynthesis of Taxol in yew plants involves 19 steps 
beginning with the synthesis of geranylgeranyl diphosphate (GGPP) via the conden-
sation of isoprenyl diphosphate and dimethylallyl diphosphate. For Taxol synthesis, 
many different strategies have been employed to increase the paclitaxel production 
either by overexpression of 10-deacetylbaccatin III-10-O- acetyltransferase (DBAT) 
and Taxadiene synthase (TXS) genes in transgenic Taxus mairei (Ho et al. 2005) or 
in cell culture in T. umbraculifera var. hicksii (Rehder) Spjut (Sykłowska et  al. 
2015). Other studies have found that enhancement of paclitaxel biosynthesis can be 
obtained by overexpression of another gene named 9-cis- epoxycarotenoid dioxygen-
ase in transgenic cell lines of T. chinensis. In addition, genetic transformation of 
N. benthamiana with a Taxadiene synthase (TS) gene driven by 35S promoter was 
found to assist de novo production of taxadiene in N. benthamiana and produced 
11–27μg taxadiene/g of dry weight; in addition, subsequent elicitor treatment of 
methyl jasmonate increased the taxadiene accumulation by 1.4 times (Hasan et al. 
2014). Similarly, in vitro transformation of T.x media hairy roots and subsequent 
elicitation permitted the production of paclitaxel; the vector was A. tumefaciens car-
rying the RiA4 plasmid and the binary vector pCAMBIA- TXS-His harbouring the 
TXS gene of Taxus baccata L. driven by 35S promoter.

5.8  Vinblastine

Catharanthus roseus (L.) G. Don. is a medicinal plant of excellent pharmaceutical 
interest due to its ability to biosynthesize more than 130 bioactive molecules known 
as terpenoid indole alkaloids (TIAs), which include the anti-proliferative drug mol-
ecules vinblastine and vincristine, together with the pharmacologic molecules ajma-
licine and serpentine (Verma et al. 2017). An experiment was performed to direct 
the metabolic flux of TIA pathway towards the production of dimeric alkaloids vin-
blastine and vincristine by overexpression of Tryptophan decarboxylase and 

Biotechnological Approaches for Medicinal and Aromatic Plant-Based Products



28

Strictosidine synthase in callus and leaf tissues. They did a comparison between the 
stable and transient methods of transformation for the determination of vinblastine 
and vincristine content in Catharanthus roseus. Callus transformation showed max-
imum of 0.027% and 0.053% dry wt vindoline and catharanthine production, 
respectively, whereas the transiently transformed leaves showed 0.30% dry wt vin-
doline, 0.10% dry wt catharanthine, and 0.0027% dry wt vinblastine contents 
(Sharma et al. 2018).

5.9  Camptothecin

Camptothecin (CPT) is a monoterpene alkaloid and was first isolated from stem 
wood of Camptotheca acuminata that inhibits topoisomerase I (Top 1), a nuclear 
enzyme that is involved in DNA repair, recombination, transcription, and replica-
tion (Martino et al. 2017). CPT was also isolated from Nothapodytes foetida (Wight) 
Sleumer’s bark. The lack of sufficient natural sources for acquiring CPT is a signifi-
cant barrier. As a result of overharvesting, habitat loss, excessive trading, and unfa-
vourable environmental variables, the natural supply of CPT has become extinct or 
highly limited (Swamy et al. 2021). Hao et al. (2021) did the time-course expression 
studies of metabolite analysis to find new transcriptional regulators of camptothecin 
production in Ophiorrhiza pumila. Here, it is demonstrated that camptothecin pro-
duction increased over the course of cultivation and that there is a strong correlation 
between camptothecin accumulation and the expression pattern of the gene 
OpWRKY2, which codes for the WRKY transcription factor. Overexpression of 
OpWRKY2 transcription factor leads to the increase in camptothecin production by 
more than threefold. Likewise, lower camptothecin levels in the plant were associ-
ated with OpWRKY2 silencing. Additional in-depth molecular characterization 
using yeast one-hybrid, dual-luciferase, and electrophoretic mobility shift assays 
revealed that OpWRKY2 directly binds and activates the OpTDC gene, which is 
involved in the main camptothecin pathway. From the findings of this study, it has 
been concluded that the OpWRKY2 function is a direct positive regulator of camp-
tothecin production. Ni et al. (2011) investigated the physiological role of ORCA3 
gene in transformed Camptotheca acuminate using Agrobacterium-mediated gene 
transfer technology. HPLC analysis revealed that overexpression of ORCA3  in 
transgenic hairy root lines can significantly increase camptothecin production by 
1.5-fold compared to the control (1.12 mg/g dw).

5.10  Reticuline

A study was undertaken to produce reticuline at the cost of morphine, oripavine, 
codeine, and thebaine in transgenic Papaver somniferum (opium poppy). To increase 
reticuline alkaloid production, hairpin-based RNAi silencing of all members of 
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multigene Codeinone reductase (COR) family was carried out (Allen et al. 2004). 
Gene silencing of COR genes showed the accumulation of methylated derivatives of 
reticuline at a great level. The astonishing increase of (S)-reticuline advocates a 
presence of feedback mechanism to prevent the intermediate synthesis from general 
benzylisoquinoline, which is participated in the morphine-specific branch. This the 
first report of gene silencing where metabolic engineering causes the high yield of 
the nonnarcotic alkaloid reticuline (Allen et al. 2004).

5.11  Artemisinin

Another important secondary metabolite, namely, artemisinin, identified in 
Artemisia annua has proven its role in the treatment of malaria. The production of 
this compound in Artemisia annua is significantly increased by overexpression of 
two jasmonic acid-responsive transcription factor AP2/ERF proteins (AaERF1 and 
AaERF2) (Yu et al. 2012). It was well illustrated that jasmonic acid rapidly induces 
the expression of AaMYC2 transcription factor, which then binds to the G-box-like 
motifs of CYP71AV1 and DBR2 gene promoter region, which are the key regulator 
genes of the artemisinin biosynthetic pathway (Qian et al. 2016).

5.12  Stevioside

Novel attempt was made for the production of sweet-tasting steviol glycosides 
(SGs) in Stevia rebaudiana leaves, which is consumed as natural sweeteners. SGs 
have been widely studied for their exceptional sweetness over the last few decades. 
SGs may become a basic, low-calorie, and strong sweetener in the burgeoning natu-
ral food industry, as well as a natural anti-diabetic therapy, a highly competitive 
alternative to commercially accessible synthetic medications, in the near future. 
Many countries have already begun commercial Stevia plant farming, as well as SGl 
extraction and purifying methods from plant material. As a result, the nutritional 
and pharmacological benefits of these secondary metabolites have become more 
evident. Metabolic engineering was employed to enhance the production of SGs in 
Stevia rebaudiana. Two enzymes, namely, Stevia 1-deoxy-D-xylulose-5-phosphate 
synthase 1 (SrDXS1) and Kaurenoic acid hydroxylase (SrKAH), are required for the 
SG biosynthesis. Two independent events were generated by overexpressing 
SrDXS1 and SrKAH genes. The total SG content in SrDXS1 and SrKAH overex-
pressing transgenic lines was increased by up to 42–54% and 67–88%, respectively, 
as compared to control plants, indicating a favourable correlation with SrDXS1 and 
SrKAH expression levels. Furthermore, their overexpression had little effect on the 
transgenic Stevia plants’ growth and development (Zheng et al. 2019).

Biotechnological Approaches for Medicinal and Aromatic Plant-Based Products



30

5.13  Shikonin

An effort in the 1970s and 1980s were sparked by the industrial synthesis of shiko-
nin by cell cultures of Lithospermum erythrorhizon by Mitsui Chemicals. This was 
the first large-scale production of a secondary metabolite by dedifferentiated plant 
cells. The phytohormone ethylene (ET) was identified as an important signalling 
molecule in the manufacture of shikonin and its derivatives. Shikonin and its deriva-
tives have also been utilized as medicines for antibacterial, anti-inflammatory, and 
anti-tumour effects in addition to their use as colours. Moreover, they have demon-
strated the capacity to treat burns, haemorrhoids, and wounds through the growth of 
granulation tissue (Kamei et al. 2002; Ordoudi et al. 2011). Structure- and activity- 
related relationship of shikonin and alkannin was studied in depth from A. tinctoria 
root extract. It was shown that alkannin and shikonin, both oligomeric and mono-
meric, have strong radical scavenging capacity (Assimopoulou and 
Papageorgiou 2005).
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