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Chapter 16
Mathematical Modelling: A Philosophy 
of Science Perspective

Uwe Schürmann

16.1 � Introduction

The (analytical) separation between mathematics and reality can be found in numer-
ous publications on mathematical modelling. For instance, PISA, the Programme 
for International Student Assessment (OECD, 2009), uses the following diagram in 
its mathematical framework (Fig. 16.1), where mathematics and the real world are 
considered to be separate domains.

Also, the introduction of the 14th study of the International Commission on 
Mathematical Instruction (ICMI) on modelling and applications (Blum et al., 2007) 
shows a modelling cycle distinguishing between mathematics and an extra-
mathematical world. Additionally, this separation is also postulated in various 
contributions to the volumes of the International Community of Teachers of 
Mathematical Modelling and Application (ICTMA).

Figure 16.2 presents a modelling cycle by Blum and Leiß, which is frequently 
cited in German-language literature on mathematical modelling and is used 
(sometimes modified or extended) in various works (cf. Greefrath, 2011; Ludwig & 
Reit, 2013). Borromeo Ferri (2006) offers a carefully elaborated overview of many 
of these modelling cycles. It is clear from this overview that the (analytical) 
separation between mathematics and reality is omnipresent in the reconstruction of 
modelling processes.

In contrast, only a few publications are questioning this separation. For instance, 
Biehler et al. (2015) analyse modelling processes in engineering classes and conclude 
from their analysis that it is rather inadequate to separate mathematics and the “rest of 
the world” as well as to divide modelling processes into certain distinct phases. From 
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Fig. 16.2  Modelling cycle by Blum and Leiß (2006)

Fig. 16.1  Modelling cycle in PISA’s theoretical framework (OECD, 2009, p. 105)

their point of view, mathematical aspects must be considered during the step of sim-
plification (part of the “rest of the world” in most of the modelling cycles), already. 
This theoretical insight is supported by a subsequent empirical investigation by the 
authors. Furthermore, Voigt (2011, p. 868) identifies the analytical separation between 
mathematics and reality as a problem that can only be solved if we take a close look 
at the area between the “rest of the world” and “mathematics”. Consequently, he con-
siders this “intermediate realm” as substantial. Voigt strongly advocates examining 
not the separation but the connection between these two spheres.

This builds the starting point: In the following, the relationship between mathe-
matics and reality will be explored in more detail. In this way, the question is posed 
whether and to what extent the analytical separation of mathematics and reality can 
be justified or whether it should be supplemented or even replaced by an alternative 
interpretation of the relationship between mathematics and reality.

16.1.1 � Orientation

The separation between mathematics and reality, as found in many modelling 
cycles, can be interpreted in at least three different ways.

U. Schürmann



311

	1.	 As an ontological separation according to which mathematics by its very nature 
would have to be distinguished from reality, the real world, or the rest of the world

	2.	 As an analytical separation primarily serving to describe modelling activities 
adequately, i.e. to be able to empirically research them

	3.	 As a separation that makes sense from a constructive point of view and serves to 
support learners while working on modelling tasks

The three interpretations mentioned are neither mutually exclusive nor mutually 
dependent. Nevertheless, the author hypothesises that when mathematics education 
research considers mathematics and reality as two distinct realms promoting a 
constructive point of view becomes more likely. Each of the three interpretations 
mentioned is problematised in the literature against the background of different 
perspectives. For instance, Voigt (2011, p. 869) asks whether in placing the “real 
situation” at the beginning of the modelling process—far from mathematics—the 
ideal of an everyday life orientation is expressed, under which one imagines that 
mathematics develops out of an everyday life untainted by any mathematics. Such 
notions are undermined in various contributions to mathematics education research. 
Niss (1994, p. 371), for example, mentions that mathematics is confronted with a 
“relevance paradox”. On the one hand, mathematics is becoming more and more 
relevant and, at the same time, more and more irrelevant, since mathematics plays a 
pivotal role in the development of technical devices, yet the operation of these 
technical devices no longer requires mathematical literacy. Keitel’s (1989) pair of 
terms de-/mathematisation points in the same direction. However, these terms 
emphasise the social significance of mathematics more strongly and problematise 
the use of supposedly realistic mathematics tasks in the classroom. Keitel introduces 
the pair of terms de-/mathematisation to describe those processes leading to 
mathematics—in terms of mechanisation and automation— increasingly 
determining our living environment (mathematisation). At the same time, 
mathematics increasingly disappears from everyday life (demathematisation) since 
the skills that were previously required are henceforth taken from humans by a 
technical device. Skovsmose and Borba (2004) critically examine the ideological 
effect of mathematics and its teaching within social contexts. They argue that if 
mathematics is considered a perfect system and an infallible tool for solving real 
problems, political control is in favour.

So, the separation between mathematics and reality cannot be understood as a 
fixed boundary, at least not within social contexts. A domain that is part of the “rest 
of the world” can be mathematised very soon. Since students gain experience in 
their mathematised environment way before mathematical concept formation 
processes take place in the classroom, the everyday life orientation of mathematics 
education, as outlined by Voigt with critical intent, should rather be rejected.

Another problematising perspective on the relationship between mathematics 
and reality is offered by those historical-philosophical approaches that are usually 
assigned to postmodernism. These approaches explicate the historical contexts from 
which a specific, prevailing image of mathematics has emerged. Deleuze (Deleuze, 
1994; Deleuze & Guattari, 1987), for instance, sees a problematising side of 
mathematics alongside the prevailing axiomatising formalisation of mathematics. 
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By using historical examples— first and foremost the development of calculus by 
Leibniz—he elaborates on the possibility of dynamic mathematics emerging from 
concrete problems (cf. de Freitas, 2013; Smith, 2006). Châtelet (2000) highlights 
the representational side of mathematics by using historical examples to illustrate 
several ways in which mathematics’ innovations and concepts are strongly 
dependent on the mathematical tools and forms of graphic representation used at a 
given time. In doing so, he interprets diagrams as a section of a sequence of physical 
gestures and thus relates the formal side of mathematics to its material and, above 
all, physical basis.

De Freitas and Sinclair (2014) take up this idea when they map out their didactics 
of mathematical concepts. They emphasise the material and ontological side of 
mathematics in addition to the logical and epistemological. Schürmann (2018a) 
points in the same direction as he attempts to show that mathematical models, in 
particular, do not merely serve knowledge, but should also be understood as entities, 
i.e. in addition to their epistemological function, their ontological side needs 
consideration, too. Furthermore, Schürmann (2018b) deals with the origin of 
historical knowledge formations that may have contributed to the separation of 
mathematics and reality. Using Frege’s logicism and Hilbert’s formalist programs 
as paradigms (Frege, 1884, 1892; Hilbert, 1903) against the background of what 
Foucault calls the episteme of modernity (Foucault, 1996) this separation is 
understood as a reaction to the relativisation of mathematical truth claims within the 
nineteenth century.

The literature cited here clarifies that the boundary between mathematics and 
reality is historically conditioned. A further problematisation of the separation of 
mathematics and reality emerges from those empirical studies focusing on individual 
modelling processes. Regarding these studies, students already consider relationships 
between the mathematical content and parts of the real world long before setting up 
a mathematical model. Biehler et  al. (2015) and Meyer and Voigt (2010) give a 
critique of the analytical separation of mathematics and reality based on this 
empirical finding.

16.1.2 � Focus

Since mathematics education research on modelling is largely detached from the 
philosophical discussion on models, which goes on for more than 100 years,1 this 
chapter elucidates the separation of mathematics and reality against the background 
of the philosophy of science on models.

Here, the philosophy of science is understood as a subdomain of philosophy in 
which the validity claims of empirical sciences and mathematics are scrutinised, for 

1 In order to prove this thesis, the author has reviewed the bibliographies of all contributions in the 
ICTMA volumes published so far. It turns out that none of these contributions refer to relevant 
works from the philosophy of science.
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instance, by reconstructing scientific theories. However, the philosophy of science 
concerning the humanities (e.g. hermeneutics) is excluded, even though such an 
approach may be of interest under certain conditions.2

Additionally, the following is mainly about the relationship between mathemat-
ics and reality in the context of theories and models. An epistemological question of 
the perception of reality is not raised here, although it is not intended to deny the 
importance of fundamental epistemological questions for the understanding of 
mathematical modelling.

The approach is to take up considerations from the philosophy of science on the 
relationship between theories, models, and reality and apply them to mathematics 
education research. For this purpose, two central views within analytical philosophy, 
the syntactic and the semantic view, are juxtaposed and related to mathematical 
modelling in the classroom. This selection is not intended to question divergent 
approaches, such as the pragmatic view on models (cf. Gelfert, 2017; Winther, 
2016). The restriction to the two views mentioned above is merely for pragmatic 
reasons. Even these two views can only be outlined here. However, their discussion 
provides valuable information for answering the following questions:

	1.	 Epistemological question: Is the analytical separation between mathematics and 
reality, often found in mathematics education research on modelling, tenable as 
such against the background of analytical philosophy, or does it need to be 
revised or at least relativised?

	2.	 Methodological question: Does the discussion on the syntactic and semantic 
view on models and theories offer new insights into the description of 
mathematical modelling in the classroom? In particular, can methodological 
tools be derived that describe modelling processes more appropriately and 
accurately?

A third, rather constructive question, arising from an assumed separation between 
mathematics and reality, is excluded here. It is not asked whether the separation 
between mathematics and reality supports the learners in the processing of 
modelling tasks.

16.2 � Analysis

Large parts of the philosophy of science’s discussion on models have their origins 
in model theory, a subdomain of mathematical logic. To also grasp scientific models 
and theories, mathematical logic’s angle, formerly focused on formal languages, 
was widened. From now on, natural and scientific languages are considered as well, 
i.e. formal languages are understood as subsets of natural languages.

2 Frigg and Salis (2019), for example, compare models with (literary) fiction.
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The syntax of a language L consists of its vocabulary and the rules for forming 
well-defined expressions in L. The semantics of L allows the interpretation of well-
defined expressions by mapping them to another relational structure R. Thus, on the 
one hand, well-defined expressions from L are made comprehensible, and, on the 
other hand, these expressions can be examined within L for their validity. Then, the 
distinction between syntax and semantics initially leads to two opposing (but 
related) views on models and theories, the syntactic and the semantic view. The 
syntactic view on scientific theories was developed primarily by representatives of 
the Vienna Circle. Due to this, this view on theories and models is closely connected 
to logical positivism or logical empiricism,3 which had a huge impact on the 
philosophy of science in the twentieth century until the 1960s (cf. Gelfert, 2017). 
Very likely, the achievements of the natural sciences in conjunction with the rapidly 
developing axiomatic-formal mathematics at the beginning of the twentieth century 
were decisive for the increasing influence of logical positivism.

The semantic view on theories and models has emerged largely in response to the 
syntactic view and its associated obstacles (some of them will be discussed below). 
The main difference between the two may be that the syntactic view attempts to 
describe theory building in an idealised form, while the semantic approach tries to 
outline theory building in terms of scientific practice. Due to the large amount of 
literature, it is necessary to select among the authors referred to in this chapter. 
From the syntactic view, the oeuvre of Rudolf Carnap is considered paradigmatic 
(Carnap, 1939, 1956, 1958, 1969). The analysis of the semantic view is based on the 
works of Patrick Suppes (1957, 1960, 1962, 1967).

16.2.1 � Carnap’s Syntactic View on Models

From Carnap’s (1969, pp. 255 ff., 1958; see also Suppe, 1971) syntactic point of 
view, theories can be reconstructed based on propositions. A theory is formulated in 
a language L that consists of two sub-languages, the theoretical language LT and the 
observational language LO. The descriptive constants of LT are named theoretical 
terms or t-terms. Those of LO are called “observable” (Carnap, 1969, p.  225), 
observational terms or o-terms (Carnap, 1969, p. 255). O-terms denote observable 
objects or processes and the relations between them, e.g. “Zurich”, “cold” and 
“heavy”. T-terms are those that cannot be explicitly defined by o-terms, i.e. they 
cannot be derived from perception. Carnap’s given examples are fundamental terms 
of theoretical physics such as “mass” or “temperature” (Carnap, 1958, p. 237). This 
distinction leads to three different types of propositions:

3 Even though the Vienna Circle’s members did not use the term “logical positivism” for them-
selves, this chapter does not distinguish between logical positivism and logical empiricism. Creath 
(2017) points out that a distinction between the two terms along theoretical assumptions and socio-
logical viewpoints cannot be made meaningfully anyway.
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	1.	 Observational propositions containing o-terms but no t-terms
	2.	 Mixed propositions containing t-terms and o-terms
	3.	 Theoretical propositions containing t-terms but no o-terms

According to this approach, a theory in language L is based on two types of pos-
tulates: the theoretical or t-postulates and the correspondence or c-postulates, also 
called correspondence rules (Carnap, 1969) or protocol theorems (Carnap, 1932). 
T- postulates are pure t-propositions, i.e. they belong to type (3) of the three types of 
propositions listed above. T-postulates comprise all fundamental laws of a theory. 
For instance, these can be the fundamental laws of classical mechanics or the main 
laws of thermodynamics. T-postulates are therefore the axioms of a theory. They are 
taken for granted. All statements s that can be derived purely syntactically from the 
t-postulates also belong to LT. The derivation of such statements is based on syntac-
tic rules, which can contain further rules of formation in addition to mathematical 
rules. LT in itself has no (empirical) meaning. The meaning of t-terms is only given 
indirectly using LO. Carnap assumes that o-terms refer to directly observable or at 
least almost directly observable physical objects or processes and relations between 
them (Carnap, 1969, pp. 225 ff.). In the following, this direct interpretation will be 
called d-interpretation. Thus, the semantics of o-terms is directly given. It is not 
possible to derive empirical statements from theoretical statements, i.e. from propo-
sitions of type (3), it is not possible to conclude propositions of type (1) without 
further ado. Rules are needed, the so-called c-postulates, to connect t-terms with 
o-terms. For instance, Carnap (1969, p. 233) mentions the measurement of electro-
magnetic oscillations of a certain frequency, which is made visible by the display of 
a certain colour. C-postulates thus connect something visible with something invis-
ible. Nevertheless, they do not thereby make the invisible itself visible.

The t-term to be interpreted remains theoretical. This kind of interpretation has 
therefore to be distinguished from the d-interpretation of the o-term. Moreover, the 
interpretation remains incomplete since it is always possible to establish further 
rules to connect t-terms with o-terms. Since the interpretation of t-terms using 
c-postulates is partial, it is called p-interpretation in the following.

To Carnap, it is important not to confuse c-postulates with definitions (Carnap, 
1956, p. 48). The definition of t-terms itself is theoretical and can only be given 
adequately within LT. A t-term is interpreted logically within LT, which is why this 
kind of interpretation is called l-interpretation in the following. It is not possible to 
define a t- term completely by relating it to o-terms via c-postulates. Carnap gives 
us the following explanation: The terms of geometry as defined by Hilbert are 
entirely theoretical. However, if they are used within an empirical theory, their 
empirical use would have to be introduced with the help of c-postulates. However, 
no geometric o-term, such as “ray of light” or “taut string”, corresponds to the 
theoretical properties of the t-term straight line (Carnap, 1969, p. 236).

Equipped with this repertoire of concepts, Carnap’s understanding of empirical 
theories can be defined.
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A theory is a proposition. This proposition is the conjunction of the two propositions T and 
C, where T is the conjunction of all t-postulates and C is the conjunction of all c-postulates. 
(Carnap, 1969, p. 266, translation by the author)

To emphasise this connection, Carnap uses the abbreviation TC for theories. 
Now that we have a clear and distinctive definition of what Carnap calls a theory, we 
go on to explicate Carnap’s view on models. Carnap distinguishes descriptive 
models of physics, which are built from real objects like a model ship, from scientific 
models in a contemporary sense. As in mathematics and logic, a model in the natural 
sciences in the twentieth century was understood to be an “abstract, conceptual 
structure”. In this sense, a model is a simplified description of a (physical, economic, 
sociological, or other) structure in which abstract concepts are mathematically 
connected (Carnap, 1969, pp. 174–175).

By highlighting the importance of non-Euclidean geometry for physics, espe-
cially for the development of the theory of relativity, Carnap infers that it is not 
disadvantageous for theories if they cannot be visualised without difficulty. In this 
way, he opposes the idea that models are a sort of visualisation. For Carnap, the 
visualising character of models is only a makeshift or a didactic aid that merely 
brings the benefit of being able to think about theories in vivid pictures (Carnap, 
1939, p. 210). According to Carnap, models only play a significant role in the devel-
opment of empirical theories if they establish a connection between LT and LO. These 
“constructing models” (Carnap, 1959, p. 204) serve the p- interpretation of t-terms 
and, in this sense, are nothing else than c-postulates.

16.2.2 � Suppes’ Semantic View on Models

The objections to the syntactic view are numerous (cf. Achinstein, 1963, 1965; 
Suppe, 1971, 1989, 2000; Suppes, 1967; van Fraassen, 1980; see also Liu, 1997; 
Winther, 2016). Some of these objections are:

	1.	 The formalisation of theories as linguistic entities is inadequate and obscures the 
underlying structures of theories.

	2.	 Theory testing is oversimplified in the syntactic view since it is assumed that 
propositions from LO can be directly linked to phenomena.

	3.	 The pure distinction between o- and t-terms is not tenable if the characterisation 
of o-terms or t-terms is insufficient.

	4.	 P-interpretation remains undefined and all possible ways to define p-interpreta-
tion lead to inconsistencies in the syntactic view.

The semantic view on theories and models can essentially be understood as a 
reaction to the shortcomings of the syntactic view outlined here (Gelfert, 2017; 
Portides, 2017). Thus, the meta-mathematical description of theories through formal 
languages is (largely) rejected in the semantic view. While the syntactic view tries 
to describe scientific theories in logical languages, the semantic approach asks what 
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kind of mathematical models are used in the sciences (Winther, 2016). Mathematical 
tools are available for the direct analysis of such structures. In contrast, a 
reformulation of a theory in a specific formal language tends to be impractical, 
especially for those theories with rather complicated structures (Suppes, 1957, 
pp. 248–249).

Moreover, a direct description of mathematical structures may be independent of 
a particular language. From Suppes’ semantic point of view, a theory is composed 
of a set of set-theoretic structures satisfying the different linguistic formulations of 
a theory. Worth mentioning that besides this conception of the semantic view, at 
least one differing semantic approach—the so-called state-space approach—exists 
(e.g. van Fraassen, 1980), which describes physical systems by vectors. In the 
semantic view, a model of a theory is a structure and should not be confused with 
the linguistic description of that structure. Propositions of a theory, expressed in a 
particular linguistic formulation, are merely interpreted within that structure.

[A] model of a theory may be defined as a possible realization in which all valid sentences 
of the theory are satisfied, and a possible realization of the theory is an entity of the 
appropriate set-theoretical structure. (Suppes, 1962; see also Suppes, 1957, 1960, p. 253)

This emphasises the importance of models for theory building, and along with it 
the importance of nonlinguistic structures overall. Furthermore, Suppes points out 
that theories cannot be related directly to experimental data. Accordingly, the 
d-interpretation of o-terms in experimental settings is dismissed. Rather, this 
connection is only established indirectly via what Suppes calls models of data 
(Suppes, 1962). While models of a theory are possible realisations of a theory, 
models of data are possible realisations of experimental data. By this conception, 
Suppes circumvents objection (2), as listed above. In addition, even if a hierarchy 
between these different types of models is assumed, they are nevertheless connected 
by an isomorphism between the two types of models (for a critique of this connection 
by isomorphism, see Suárez, 2003). Objections (3) and (4) are discussed in more 
detail in the following sections “Theoretical and Empirical Concepts” and 
“Correspondence Rules and Partial Interpretation”.

16.2.3 � Theoretical and Empirical Concepts

The separation between o- and t-terms is challenged from different perspectives. 
Putnam (1962), for instance, indicates the possibility of formulating theories that do 
not contain any t-terms. He quotes Darwin’s theory of evolution as an example. He 
thus questions whether the separation of LO and LT is at all necessary. Consequently, 
theories that manage without t-terms could also not be reconstructed as the 
proposition TC in Carnap’s sense.

Putnam then goes on to say that the mere distinction between o- and t-terms is 
not sufficient at all. He points out that terms that do not belong to LO cannot be 
considered t- terms automatically.
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Moreover, it is unclear which criterion separates LT from LO. Carnap assumes that 
from a pragmatic point of view, a clear distinction can usually be made between the 
two (Carnap, 1969, p. 255). It is only decisive whether a term designates a directly 
or at least indirectly observable entity. Otherwise, it is a t-term. According to 
Achinstein (1965), this criterion is not exhaustive. For instance, an electron, usually 
a non-observable term, can be considered observable in certain contexts and under 
certain conditions. He concludes that the term electron cannot be unambiguously 
assigned to either LT or LO. Rather, the conditions for o-terms must be made explicit 
in more detail.

Therefore, Achinstein discusses another criterion that could justify the separa-
tion into o- and t-terms. T-terms could be distinguished from o-terms based on their 
theoretical character (cf. Hanson, 1958). According to this distinction, a term would 
be theory-laden and thus a t-term if it cannot be understood without its theoretical 
background. To Achinstein, even this distinction is not sufficient to divide o- and 
t-terms more clearly. A term can be essential in the context of a certain theory, while 
in another corresponding theory, it is rather independent. Thus, for each term, it 
must be made clear which theory in particular forms the background. Putnam (1962) 
also argues that there are no terms that belong exclusively to LO. For instance, the 
colour red, which is considered an o-term in everyday language, is a t-term (red 
corpuscles) in Newton’s corpuscular theory of light. So, the question is posed how 
to define t-terms more precisely.

Another criticism of the syntactic view deals with the possibility to make a the-
ory-free perception at all. This focuses upon the syntactic view’s assumption that 
o-terms can be interpreted by direct or at least indirect observation of real 
phenomena. Seen from the syntactic perspective, o-terms must be interpreted with 
direct reference to real phenomena, since indirect observation by instruments 
already implies l-interpretation.

To perceive objects without recourse to a theoretical background is questioned 
by other authors. Can there be such a thing as mere observation or does observation 
always require interpretation of sensory impressions? Hanson (1958, pp.  5–13) 
gives us various examples here: two biologists looking at an amoeba may see 
different things because of their different theoretical backgrounds, Tycho Brahe 
who would not recognise the telescope in a cylinder, as Kepler presumably would, 
etc. Hanson goes on by describing optical perceptions. He explains that seeing as a 
mere perception on the retina is always already an interpretation as soon as it enters 
consciousness. This also illustrates that observational concepts cannot be related to 
objects directly.

16.2.4 � Correspondence Rules and Partial Interpretation

According to the syntactic view, o-terms are connected to t-terms by correspon-
dence rules (Carnap’s c-postulates). The assumption is that correspondence rules 
are the p-interpretation of a t-term. However, not all t-terms of a theory have to be 
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partially interpretable. While an o-term must always be directly interpretable, 
t-terms may exist without c-postulate partially interpreting them. Such t-terms are 
only indirectly connected with LO by being connected in LT with other t-terms that 
can be partially interpreted. For instance, the square root of 2 is unobservable. 
Nevertheless, it can be indirectly connected with o-terms via an l-interpretation if it 
is interpreted as the side length of the square with the area 2. For the c-postulates of 
a theory, Carnap (1956) formulates the following rules.

	1.	 The set of c-postulates of a theory must be finite.
	2.	 All c-postulates must be logically compatible with the t-postulates.
	3.	 The c-postulates do not contain terms neither belonging to LT nor to LO.
	4.	 Each c-postulate must contain at least one t-term and o-term.

However, apart from the explanation by examples and these rules for c-postu-
lates, Carnap does not define more clearly what is meant by p-interpretation. This 
lack of clarification is criticised by various authors (cf. Achinstein, 1963, 1965; 
Putnam, 1962). Hence, Putnam discusses three ways to define p-interpretation:

	1.	 [T]o ‘partially interpret’ a theory is to specify a non-empty class of intended 
models. If the specified class has one member, the interpretation is complete; if 
more than one, properly partial.

	2.	 To partially interpret a term P could mean […] to specify a verification-refuta-
tion procedure.

	3.	 Most simply, one might say that to partially interpret a formal language is to 
interpret part of the language (e.g. to provide translations into common language 
for some terms and leave the others mere dummy symbols). (Putnam, 1962)

Definition 1  Putnam objects to the first definition. To define a class of models simi-
lar in structure to the theory in parts, (a) mathematical concepts, theoretical by defi-
nition, are required, and the argument would become circular. Furthermore, he 
points out (b) that models require certain broad-spectrum terms (e.g. physical object 
or physical quantity). Such terms cannot be defined a priori, as Quine (1957) illus-
trates by the meta-concept “science”. Accordingly, it is possible that such terms do 
not acquire their meaning through p-interpretation in a particular model, but within 
a theoretical framework based on the conventions of a research community. 
Consequently, logical positivists like Carnap must reject such concepts as meta-
physical. Ultimately, it refers (c) to the problem that a theory with an empty class of 
models can no longer be called false, but merely meaningless.

Definition 2  According to Putnam, the second understanding of p-interpretation 
also proves to be unsustainable. If for every concept or proposition a procedure for 
its confirmation or its refutation is specified, this would lead to curious statements 
against the background of the philosophical position of verificationism as advocated 
by Carnap. According to verificationism, only those (synthetic) statements may be 
true that can be empirically verified. Using the example of the sun and the helium it 
contains, Putnam draws attention to the following problem. Although it is possible 
to prove that the sun contains helium, no procedure can be used to prove that helium 
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exists in every part of the sun. If this confirming or refuting procedure is missing, 
the truth value is indeterminate. In consequence, one would have to claim that the 
sun contains helium, whereas it cannot be said for parts of the sun, whether there is 
helium or not.

Definition 3  The third and last possible definition of p-interpretation, that LT is 
only interpreted in parts, is rejected by Putnam in just one sentence. Such a view 
would lead to certain theoretical terms ultimately having no meaning at all. A part 
of LT would be interpreted into everyday language, for example, and the remaining 
part of the t-terms would merely consist of dummy terms.

16.3 � Modelling in Mathematics Classroom from a Syntactic 
Point of View

In the following, mathematical modelling in the classroom is interpreted against the 
background of Carnap’s syntactic view, while bearing in mind criticism from a 
semantic point of view. For that, the posed epistemological and methodological 
questions are focused. Since Carnap’s syntactic view first and foremost describes an 
ideal of empirical sciences, modifications must be made to transfer this to modelling 
in mathematics education. Axiomatised mathematics cannot be assumed for 
mathematics teaching, but mathematics in LT that students master. Furthermore, it is 
not assumed that an understanding of mathematics in Carnap’s formal sense prevails 
among the students. To describe a modelling process, it is sufficient to reformulate 
students’ usage of terms in Carnap’s sense. In this context, mathematical terms used 
by students in theoretical regards are classified as t-terms. Those that refer to 
observable objects are classified as o- terms.

The problem of theoretical terms is serious. Nevertheless, when it comes to 
mathematical modelling, most of the terms used are mathematical terms and 
therefore of theoretical nature. Thus, mathematical concepts in school also have a 
certain theoretical character if students can l-interpretate them to a certain extent. 
Likewise, students can understand that mathematical concepts are in principle 
unobservable, even if they can be illustrated. However, Achinstein’s (1963, 1965) 
and Putnam’s (1962) objections to the separation of theoretical and empirical terms 
remain considered insofar that the t-terms used in the context of mathematical 
modelling are always t-theoretical. In means of students’ modelling processes, this 
implies that t-terms are dependent on the mathematics available to students.

Even when transferring Carnap’s syntactic view to the description of learners’ 
mathematical modelling, Putnam’s objections (1962, p. 245) to different definitions 
of p- interpretation are still considered. If p-interpretation of mathematical terms is 
considered as building a set of intended models, theoretical terms are required 
indeed. However, this science-theoretical problem concerns the consistency of the 
syntactic view of theory building. This problem may be less important when it 
comes to p-interpretation within modelling processes taking place in the mathematics 
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classroom. In fact, trying to provide an appropriate procedure for confirming or 
refuting each t-term can lead to some odd statements. For modelling problems in the 
classroom, however, this can also be a rather subordinate problem. Mathematics 
lessons usually consider those parts of reality for which such confirmation or 
refutation procedures exist. Furthermore, the third definition of p-interpretation, 
interpreting parts of LT and leaving the remaining terms aside, is rather a duty for 
mathematics teaching than a real objection. Every t-term of mathematics should be 
made semantically accessible to students. Here, the psychological argument is that 
interpretation of mathematical content through its application leads to an improved 
and deeper understanding of such content (cf. Blum, 1996, p. 21–22).

16.3.1 � Epistemological Question

The purpose of this chapter is to prove if the separation between mathematics and 
reality, often found in mathematics education research on modelling, is tenable as 
such against the background of analytical philosophy. By discussing Carnap’s 
syntactic view of theories and models, it becomes clear that this separation needs to 
be revised.

Carnap’s syntactic view captures more precisely the connection between math-
ematics and reality. In contrast to the dichotomous separation between mathematics 
and reality in many modelling cycles, there is at least a twofold gradation from 
mathematics in LT, via empirical-mathematical concepts in LO, to real-world phe-
nomena. In a modelling process, (school) mathematics is to be understood as the 
theoretical (part of a) language with which students can proceed syntactically. 
Reality, or the “rest of the world”, is henceforth divided into an observational lan-
guage, which itself is not yet a reality, and a part that is identified with real-world 
phenomena (Fig. 16.3).

Bearing this picture in mind, the criticism of many so-called modelling tasks in 
mathematics textbooks can be justified by the fact that no real problem is actually 
solved by the students in the context of a modelling process. Most likely, those tasks 
take place only in the sphere of theoretical and observational language. While the 
translation process between these two parts of the language is crucial for making 
sense of pure mathematical concepts, it does not involve any connection to real-
world phenomena. This insight is probably obscured by an overly simplistic 
juxtaposition of reality and mathematics in many modelling cycles.

Moreover, Carnap’s interpretation of models in science as c-postulates, marking 
the area between theoretical and observational language, and Suppes’ objection that 
models of data, marking the area between observational language and real-world 
phenomena, have to be considered as well. While three models appear in the 
modelling cycle proposed by Blum and Leiß (“situation model” and “real model” in 
the realm of reality, and “mathematical model” in the realm of mathematics, 
Fig. 16.2), we can now capture more accurately the nature of models in mathematical 
modelling processes. Models are translation rules both for the translation between 
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Fig. 16.3  Carnap’s 
syntactic view on theories 
visualised

theoretical and observational language and for the translation between real-world 
phenomena and observational language.

Here, the crucial point is that the connection between the two domains of the 
language at issue is given by assumed rules, not by nature. This finding circumvents 
lots of epistemological obstacles (e.g. questions about the nature of mathematical 
terms and their possible empirical origin do not need to be answered for the syntactic 
view to work). Finally, the competencies described in the modelling cycle can now 
be interpreted against the background of the previous discussion of theories and 
models. Working mathematically (step 4 in the modelling cycle according to Blum 
& Leiß, 2006) can be identified with the l-interpretation, mathematising as a 
transition from the “rest of the world” to “mathematics” (step 3, ibid.) and 
interpreting as a transition into the opposite direction (step 5, ibid.) is associated 
with Carnap’s p-interpretation. The decisive difference is that p-interpretation does 
not indicate the transition from mathematics to reality and vice versa but only a 
transition between two parts of a language. The d- interpretation is pivotal in making 
the transition from LO to real-world phenomena (step 1, ibid.). Here, models of data 
are crucial.

It becomes obvious why, as Meyer and Voigt (2010) note, connections from math-
ematics need to be considered already in the step of simplification. Learners work 
with o-terms in the step of simplification. However, these must be connected, even 
implicitly, with t-terms. They form what Voigt (2011) calls the “intermediate area”.
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16.3.2 � Methodological Question

The methodological question of whether the discussion on the syntactic and seman-
tic views on models and theories offers new insights for the description of mathe-
matical modelling in the classroom can now be answered against the background of 
the previous discussion. The goal is to derive methodological tools that describe 
modelling processes more appropriately and accurately compared to standard mod-
elling cycles. To this end, Carnap’s syntactic view and Suppes’ criticism of it are 
considered.

One of the main objections to the syntactic view is that the formalisation of theo-
ries as linguistic entities tends to be inadequate because it obscures the underlying 
structures of theories. While this objection may be crucial for discussion in the 
philosophy of science, the attempt to focus on the underlying (mathematical) struc-
tures tends to be a hindrance when it comes to empirical research in mathematics 
education. Students’ utterances (written, spoken, or expressed by gestures) can be 
directly observed, whereas the underlying mathematical structures can only be 
conjectured. With its distinction between theoretical and observational terms, the 
syntactic view provides a tool for a more detailed analysis of students’ utterances. 
For instance, when a student uses the word “triangle”, it is decisive whether the 
word is used in a theoretical way, for example, in a mathematical theorem, or 
whether it is used in a sentence to describe real-world phenomena. At this point, 
Suppes’ objection to the theoretical-observational distinction must be considered. 
The discussion in the section on “Theoretical and Empirical Concepts” shows very 
briefly that it cannot be said that a concept, by its nature, belongs to either LT or 
LO. Nevertheless, the distinction holds when the theoretical or observational 
character of a term is considered against the background of the theory T in question. 
Stegmüller’s (1970) solution to this problem is that a term can be called T-theoretical 
(or T-observable) in the case that T is the theory under consideration. The theoretical 
character of a term depends on the theory we are talking about. Carnap’s definition 
of a theory (TC is the conjunction of T and C, while T is the conjunction of all 
t-postulates and C is the conjunction of all c-postulates) reminds us that a clear 
description of the theoretical background taught to students is necessary when 
mathematical modelling processes are captured empirically. The question is what 
theoretical tools (i.e. mathematical theorems, procedures, etc.) are on the theoretical 
side and what correspondence rules for translation between LT and LO are accessible 
to students.

In order to take a closer look at students’ modelling processes, it is necessary to 
reconsider Carnaps’ notion of the connection between LT and LO given by 
c-postulates. Although for Carnap, an ideal theory only includes c-postulates, i.e. 
axioms that translate between LT and LO, he points out that it is not essential for this 
connection that correspondence rules have the character of an axiom.

The particular form chosen for the rules C is not essential. They might be formulated as 
rules of inference or as postulates. (Carnap, 1956, p. 47)
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We can thus distinguish between the individual mental models expressed in stu-
dents’ utterances and the more normative models thought in class to make sense of 
pure mathematical concepts and to give students the ability to solve real-world 
problems.

From a normative point of view, it is necessary to describe rather abstract models 
that fit a wide range of situations. This involves the four rules for the formation of 
c- postulates (see section “Correspondence Rules and Partial Interpretation”). Under 
these conditions, the goal is to formulate as many (but still independent) c-postulates 
as possible, so that as many situations as possible that fit a notion of pure mathematics 
are covered by a certain set of c-postulates. Putnam’s main objections to this 
understanding of partial interpretation (specifying a class of intended models) are 
that (a) pure mathematical terms (e.g. set) are needed and the procedure would 
become circular, and that (b) broad-spectrum terms are needed (e.g. physical object, 
physical quantity, etc.) that cannot be defined a priori and whose meaning cannot be 
given by partial interpretation via correspondence rules. While these objections can 
seriously affect the syntactic view when the focus is on the normative description of 
an ideal theory, they tend not to negatively affect the goal of describing students’ 
modelling processes. Rather, these objections remind us that every description of 
individual modelling processes and even the establishment of normative models are 
limited by the framing through inherently broad-spectrum terms and (meta-)
mathematical terms in use.

Bearing in mind, that correspondence rules not necessarily need to be formulated 
in a set of axioms, this offers an opportunity to analyse students’ (implicit) use of 
correspondence rules in modelling processes. As we will see, this provides a 
methodological tool that leads to different results than the analyses that depend on 
standard modelling cycles and their inherent epistemological assumptions. Let us 
take a look at the mathematics task from a textbook for fifth and sixth graders:

The African grey parrot can grow up to 40 cm long; a flamingo of about 200 cm. How many 
times bigger is the flamingo compared to the grey parrot? (Prediger, 2009, p. 6, translation 
by the author)

From a normative point of view, the area of mathematics addressed in this task 
can be narrowed down to the structure of natural numbers in connection with 
multiplication (N, ·). On the observational side, questions can be formulated such as 
“how often does one length fit into another?” or “how many times larger is this 
length compared to another?”. The connection between LT and LO is then given by a 
p-interpretation containing at least two c-rules. Thus, c-rule c1 connects—for 
instance—the number 1 with the observable length of 1 cm, while c-rule c2 connects 
multiplication with a temporal- successive action (e.g. “an empirical length is 
juxtaposed until the length used for comparison is reached”). The model at issue 
here is the description of the structure (N, ·) using the linguistic means from LO, 
given by c1 and c2. If T is the conjunction of all true propositions in LT about the 
structure (N, ·) and C is the conjunction of c1 and c2, the theoretical background of 
the task is given by the conjunction TC. This interpretation of (N, ·) by c1 and c2 
remains partial. In contrast, an l-interpretation of (N, ·) within LT, (e.g. as the addition 
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of equal addends) is complete. Again, it should be mentioned that c1 and c2 do not 
connect mathematics with reality, but theoretical terms of mathematics (t-terms) 
with empirical terms (o-terms). Hence, it is a purely linguistic connection. With this 
revision of the task in mind, we can now analyse individual utterances of students 
confronted with this task. To do this, individual modelling is analysed by 
reconstructing the reasoning within the modelling according to the Toulmin scheme 
(Toulmin, 1996). Thereby, the use of c-rules—whether implicit or explicit—has to 
be taken into account.

Due to the limitation of a book chapter, the focus is on a single case study, the 
student Anton. Anton is interviewed while solving the task (cf. Prediger, 2009). At 
the beginning of the interview, Anton soon says, “The flamingo is 160 cm taller”. 
The genesis of this statement can be reconstructed with the help of the Toulmin 
scheme as follows (Fig. 16.4).

Against the background of common modelling cycles, Anton’s statement must 
be interpreted as an individual construction of whether a situation model, a real 
model, or a mathematical model. However, a rational reconstruction shows that 
none of Anton’s possible considerations can be the mere result of modelling 
processes taking place exclusively in the “rest of the world”. Anton’s statement 
cannot be interpreted without (implicit) translations between LT and LO.

Fig. 16.4  Anton’s 
statement rationally 
reconstructed

16  Mathematical Modelling: A Philosophy of Science Perspective



326

16.4 � Conclusion and Outlook

Against the background of the syntactic view on theories and models and its critique 
by the adherents of the semantic view of theory building, mainstream modelling 
cycles and their inherent epistemological assumptions about the relation between 
mathematics and reality have been problematised. The goal of the chapter is to show 
that the description of students’ modelling processes cannot rely on a simple separa-
tion between mathematics and reality. The syntactic view, as offered by Carnap, 
indicates that distinguishing between the theoretical and observational side of a 
language can be helpful in capturing the translation processes of students that take 
place when mental models are used to interpret pure mathematical terms, and vice 
versa, to interpret the empirical part of a language through the means of mathematics.

Based on a single case study, it was shown that the twofold separation between 
LT and LO and the connection via c-rules—in combination with Toulmin’s scheme— 
provides a methodological tool to investigate students’ translations between math-
ematics understood as a theoretical language and everyday language and the 
empirical use of mathematical terms contained therein. In detail, this attempt allows 
us to reconstruct also those more implicit translation steps that are necessary to 
explain subsequent explicit utterances and that would remain hidden against the 
background of mainstream modelling cycles.

To give an outlook: While this brief chapter has paid attention to the multiple 
translations between the theoretical and empirical sides of a language used in mod-
elling processes, the connection of o-terms with real-world phenomena was omitted 
to a large extent. In order to get a comprehensive picture of all the translations tak-
ing place in modelling processes, this connection needs to be described and prob-
lematised in more detail. Follow-up questions arise when not only the epistemological 
and ontological aspects but also constructive aspects of mathematical modelling are 
considered. Here, questions may arise concerning the design of textbook tasks to 
promote students’ modelling skills, the teaching of adequate models for proper con-
nection between pure mathematical terms and everyday language, and whether and 
what meta-knowledge about mathematical modelling should be taught in the class.
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