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Preface

Ongoing Advancements in Philosophy of Mathematics Education approaches the 
philosophy of mathematics education in a forward movement, analyzing, reflecting, 
and proposing significant contemporary themes in the field of mathematics educa-
tion. It furthers the proposal of The Philosophy of Mathematics Education Today, 
edited by Paul Ernest, published by Springer, in 2018. The book contains many 
articles presented and discussed at ICME 13, within TSG 53, Philosophy of 
Mathematics Education, which took place in Hamburg, Germany, in 2016. Besides 
those articles, the editor, Paul Ernest, invited other authors to contribute relevant 
work in the field.

This book, Ongoing Advancements in Philosophy of Mathematics Education 
contains work presented and discussed during the ICME 14, which took place in 
2021 in Shanghai, China, within TSG 56, whose main objective was to focus on the 
relationship between the philosophy of mathematics and mathematics education. Its 
goal was to characterize the interaction and dialogue between these areas, including 
what can be highlighted when one uses the methodology of philosophical research 
to question the ontology, epistemology, or ethics of mathematics regarding mathe-
matics education, or conversely when one unveils the philosophical outreach of 
mathematical ideas, concepts, or methodologies, especially in an educational con-
text where mathematical practices may be worked through teaching and learning 
processes.

ICME 14 was a hybrid event, that is, some people participated in person, others 
remotely. The event should have taken place in 2020, with all participants on site. 
However, that became impossible in view of the pandemic that plagued humanity 
between 2019 and 2020. The original date was thus postponed to July 2021. During 
the closing section of the activities of TSG 56, the participants proposed that a book 
be published in order to compile the articles discussed during the activities of 
TSG. As a TGS 56 Team Member, I have taken on the task of organizing such book 
in collaboration with Bronisław Czarnocha, Maurício Rosa, and Małgorzata 
Marciniak. It is important to point out that, as ICME 14 had been scheduled to take 
place in 2020, the Team Members of TSG 56 were different from those who took 
over the organization of ICME 2021. For several reasons, all of the members of that 
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team were unable take on TSG 56 in 2021. I, also for health reasons arising from 
having contracted Coronavirus, also could not continue as chair.

Bronisław Czarnocha graciously accepted the position, and then I acted as co- 
chair to help him with the articles derived from work conducted previously. With 
this new structure, the work of TSG 56 was successfully conducted.

The chapters comprising this volume present studies conducted by the authors 
who participated in the Topic Study Group that focused the theme “Philosophy of 
Mathematics and Mathematics Education,” one of the activities that took place dur-
ing the International Congress of Mathematics Education  – ICME 14, 2021, in 
Shanghai, China. Also, in this volume, there are chapters written by guest authors 
and relevant researchers who study this subject on the international scene.

The theme that gives life to the book is philosophy of mathematics education 
understood as arising from the intertwining between philosophy of mathematics and 
philosophy of education which, through constant analytical and reflective work 
regarding teaching and learning practices in mathematics, is materialized in its own 
discipline, philosophy of mathematics education. This is the field of investigation of 
the chapters in the book.

The book aims to present to teachers and scholars of the philosophy of mathe-
matics and mathematics education current investigations and didactic proposals by 
authors who conduct their activities in different countries.

As editor and co-editors, we have managed all the organization, sent invitations, 
and established schedules for the work necessary so that the book could materialize. 
We collaborated with the authors as follows: each of the co-editors conducted the 
revision of a number of chapters; each of the authors revised one of the chapters; 
Reviews 1 and 2 (R1 and R2) were sent to each respective author, keeping in mind 
that after considering the observations they could accept or reject them. Each one of 
the co-editors then conducted a third review of the chapters and implemented the 
necessary adjustments in cooperation with the authors. The principle that guided the 
inclusion of chapters was the book’s own proposal, previously known by authors. 
Through our reading and analyses, we focused on the philosophical and educational 
discussion present in the texts and respective foundations, as well as the internal 
coherence and logical clarity of the articulations made. We do not take a position on 
the ideas presented and articulated in each chapter, as we understand that their 
maintenance is the responsibility of the respective authors.

The different chapters are organized into four parts, which deal important themes 
concerning the philosophy of mathematical education: Part I – A Broad View of the 
Philosophy of Mathematics Education; Part II  – Philosophy of Mathematics 
Education: Creativity and Educational Perspectives; Part III – Philosophy of Critical 
Mathematics Education, Modelling and Education for Sustainable; Part IV  – 
Philosophy of Mathematics Education in Diverse Perspectives, Cultures, and 
Environments. Those parts are introduced through an exposition of the understand-
ing of the themes treated, written by one of the editors of the book.

Each part is presented below with the sequence of chapters it comprises, the 
respective author(s), and a brief summary through which the ideas considered are 
articulated.
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 Part I – A Broad View of the Philosophy 
of Mathematics Education

 1 Paul Ernest

“The Ontological Problems of Mathematics and Mathematics Education” repre-
sents a movement in the process of understanding the constitution of mathematical 
objects and of the mathematician himself, moving beyond the epistemological 
aspects present in this constitution and focusing on the deontic modality. According 
to this author, contrary to the traditional view that accounts of mathematical objects 
are in epistemic or alethic modality expressing possibility, prediction, and truth, the 
deontic modality of mathematical language indicates an obligation that becomes a 
necessity. The chapter presents a synthesis of the author’s understanding of 
Mathematics Education, of Mathematics, of Education, pointing out the great disci-
plinary fields that are interwoven in the constitution of Mathematics Education and 
presenting its readers with his comprehensions of important and diverse subjects, 
object of specific disciplines, such as Psychology, Linguistics, Sociology. The 
authors he mentions are important in the scenario of Philosophy and Mathematics 
Education.

 2 Michael Otte and Mircea Radu

Otte and Radu, in “Scientific Revolutions: From Popper to Heisenberg,” compare 
several seminal interpretations of Thomas Kuhn’s theory of scientific revolutions 
such as those of Karl Popper (1902-1994) and Werner Heisenberg (1901-1976), 
emphasizing two theses of particular importance for the analysis they present. The 
first states that theories are always underdetermined by the data they are supposed 
to represent, so that theories appear as realities of their own. The authors explore 
how this thesis can be upheld and proved fruitful while avoiding a nominalist inter-
pretation. The second thesis concerns a favorite commonplace in philosophical and 
historical discussions of Renaissance. It states that the key element of the Renaissance 
was recognizing the individual human subject as the central agency of cultural, 
social, and economic progress. While discussing Kuhn’s conception and its recep-
tion, they explore some of the implications of these theses for a better understanding 
of the debates concerning the development of science, mathematics, society, and 
indeed education to this day. In this context, it is explained how aesthetic experience 
emerges as a fundamental ingredient capable of bridging the gap between theory 
and practice, nature and culture, between individual and social generality, and even 
between the two theses proposed above. The discussion developed by them pro-
ceeds in terms of Peircean semiotics.

Preface
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 3 Maria Aparecida Viggiani Bicudo

Bicudo, in “Questions That Are at the Core of a Mathematics Education Project,” 
presents an essay focused on those questions. The author emphasizes that the proj-
ect of mathematics education needs to work by realizing philosophical thinking. 
This chapter outlines a way of understanding the production of mathematics, as 
understood by the western civilization, and its role in the constitution of scientific 
and technological thinking present in the world we live in today; it points out the 
urgency of not succumbing to the loss of meaning of life and of the world, as we are 
immersed in a sea of explanations and predictions issued and supported by the sci-
entific and technological apparatuses; it is evidenced that mathematics education 
can contribute to the accomplishment of this task in a unique manner, which is criti-
cal and urgent for humanity. In this chapter, a list of themes defined as important and 
worthy of study and practice is not pointed out. Rather, the arguments intertwined 
conduct an analytical and reflexive way to exercise and point out understandings 
regarding the characteristics of scientific and technological work, which is sup-
ported by mathematics as understood by the western civilization, defending the 
premise that within the scope of mathematics education it is necessary to compre-
hend such characteristics and integrate them into educational practices with ways 
other cultures work mathematically.

 4 Thomas Hausberger and Frédéric Patras

In chapter “Networking Phenomenology and Didactics: Horizons of Didactical 
Milieus with a Focus on Abstract Algebra,” the authors work with Husserlian hori-
zons intertwined with notions from Brousseau’s Theory of Didactical Situations 
(TDS). They present these as tools to analyze the shifts of attention and intercon-
nectedness of knowledge in learners attending to an abstract structure. Then, they 
go forward in order to encompass a larger spectrum of horizons and methods in a 
pioneering application in the context of university mathematics education, allowing 
for a fine-grain analysis of the work of learners engaged in the elaboration of a 
structuralist mathematical theory around the given structure. At the theoretical level 
of frameworks, they contribute by combining/coordinating notions from TDS with 
the perspective of phenomenology, in the spirit of networking. They believe that 
such a dual framework may be applied in a large variety of contexts and educa-
tional levels.

Preface
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 5 Jonh Mason

“Specifying, Defining, Generalizing and Abstracting Mathematically All Seen as 
Subtly Different Shifts of Attention” by John Mason focusses on mathematical 
abstraction as a process, in relation to specifying, defining, and generalizing. In the 
wake of his earlier investigations concerning symbols (signs), when he suggested in 
1980 that these entities could be experienced initially as abstract in the sense of 
being unconnected to other experiences, but over time could become perfectly con-
fidently manipulable, as they were concrete entities, and later, in 1989, when he 
suggested that abstracting mathematically involves a “delicate” shift, not so much 
in what is attended to, but in how it is attended to, he has led to point out implica-
tions for choices of pedagogical actions to initiate when working with learners. In 
this chapter, he moves on and proposed that the acts of specifying, defining, and 
generalizing also involve delicate shifts of attention, subtly different from each 
other and from abstracting. He argues that through the use of multiple examples, 
readers are invited to refine the distinctions they make in the form of their own 
attention, so as to work more effectively with learner attention.

 6 Steven Watson

“Toward a Systems Theory Approach to Mathematics Education” by Steven Watson 
presents a systems approach to thinking about mathematics education. It is an 
important text where the author aims to introduce mathematics education as a social 
system to contemporary systems theory. As he states, he outlines some features of 
the theory itself and the directions and themes which he takes up in his preliminary 
inquiry into mathematics education. According to him, systems theory facilitates 
the understanding of the social and cognitive dimensions within a theory of society 
and, from this, a theory of mathematics education, as a social system of 
communication.

 7 Gerald A. Goldin

Goldin in chapter “On Mathematical Validity and Its Human Origins” suggests the 
desirability of a fully integrated philosophy of mathematics education that builds on 
several distinct, mutually compatible foundational pillars. These pillars have their 
intellectual bases in different philosophical school of thought. The discussion 
focuses on one aspect of those epistemological foundations – the interplay between 
the human origins and uses of mathematics, and its objective truth and validity. 
Various philosophical trends in education have centralized just one of these aspects, 
often to the extent of denying or dismissing the other. He argues for their 
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compatibility, maintaining that objective mathematical truth and the fact of cultur-
ally situated human mathematical invention should both be guiding teaching and 
learning, with neither diminished in importance. Several meanings given to the 
“why” of mathematics are discussed – logical and empirical reasons that underlie 
mathematical truths and relationships, sociocultural and contextual reasons for 
developing and teaching mathematics, and the in-the-moment experiences that 
afforded students to motivate their study. Some sources of cultural relativism, his-
torical change, and “fallibility” in mathematics are identified, and the value of “mis-
takes” in powerful mathematical problem solving is highlighted. His goal is to argue 
that an intellectually sound philosophy of mathematics education must incorporate 
all of the aforementioned features of mathematics and its practice, dismissing none.

 Part II – Philosophy of Mathematics Education: Creativity 
and Educational Perspectives

 8 Bronisław Czarnocha

“Towards a philosophy of creativity in mathematics education,” by Bronisław 
Czarnocha, addresses a rarely explored area, philosophy of creativity and its rele-
vance to mathematics education. The central question of this chapter – “What can 
the practice of and research in creativity of mathematics education contribute to the 
philosophy of creativity in mathematics education and possibly to the philosophy of 
creativity in general?” – guided the author’s presentation and argumentation. The 
innovative contributions made in the chapter are pertinent to the discussion about 
creativity, how to define it, how to measure it, how to work with it in mathematics 
classes.

 9 William Baker

In the chapter “A Framework for Creative Insights within Internalization of 
Mathematics,” William Baker analyzes cognitive changes during moments of 
insight realized within a math classroom. He makes his argument explicit by point-
ing to previous studies by authors significant to the subject, such as Piaget and 
Vygotsky. He poses that constructivism is arguably the prevailing theory of mathe-
matics educational research; based upon the work of Piaget, it posits that human 
knowledge is built up through an individual’s reflection and abstraction upon their 
solution activity. He continues saying that social constructivists, in contrast, fre-
quently use the work of Vygotsky focused on the internalization of knowledge 
within social discourse. In this chapter, Baker takes up these approaches and inte-
grates them into a framework based upon the work of Koestler to study and analyze 
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cognitive changes during moments of insight realized within a math classroom. Two 
dominant themes underlying his attempt are: first, classroom discourse is the unit of 
analysis for both student development and reflection upon pedagogy, and second, 
Vygotsky’s framework while ideally situated for analysis of classroom instruction 
is lacking in detail of the actual process of internalization.

 10 Mitsuru Matsushima

Mitsuru Matsushima’s chapter “A Reconsideration of Appropriation from a 
Sociocultural Perspective” pursues the following questions: Why does interaction in 
the learning community deepen mathematics learning? How does individual learn-
ing contribute to the learning community through dialogue and deepen mathematics 
learning? He works out with these questions from a sociocultural perspective, con-
sidering them jointly. In this chapter, he offers a reconsideration from a sociocul-
tural perspective, basing his discussion on two appropriation features of previous 
studies, dynamic composition and mutual composition, and an extended sign appro-
priation and use model. He deepens his investigation about the concept of internal-
ization and articulates ideas in order to answer the questions posed by him: “Why 
does dialogue deepen mathematics learning?” and “Will mathematics learning 
deepen without dialogue?”.

 11 Regina D. Möller and Peter Collignon

“Towards a Philosophy of Algorithms as an Element of Mathematics Education” is 
the theme focused by the authors in this chapter. They consider that nowadays the 
concept of algorithms is used in a rather broad range, since many subject matters 
refer to this notion, and they shape it along the respective desired usefulness or 
requirements. They argue that algorithms are one of several fundamental mathemat-
ical ideas, and they structure the content of math classes throughout the school 
years, that is, the primary and the secondary levels. They ponder that their roles and 
their importance for mathematics education have undergone substantial changes 
especially during the last 30 years. They understand that these changes give reason 
to investigate and reflect upon this emerging phenomenon and ask for analyzing the 
contemporary need in actual math classes as a response to everyday life experiences 
related to algorithms often hidden in technical devices. They go further in the line 
of their investigations and in this chapter, from a philosophical point of view, they 
pursue new questions to be considered within the framework of (post-)modernism 
and within a constructivist approach.

Preface



xii

 12 Małgorzata Marciniak

Marciniak in “The times of transitions in the modern education” points toward 
expanded professional development for teacher education, in that she understood 
that living and working during these times of transitions in the modern education 
may be extremely confusing for teachers of all levels since the education they 
received and were taught to provide is not what they are required to perform. As she 
says, this was particularly exposed during the pandemic when thousands of teachers 
worldwide were forced to teach remotely regardless of their digital skills. She con-
siders the questions of the character and shape of this development remains open, 
and so in this work she tries to analyze a few pivoting moments in the history of 
education to follow up on the ideas of Thomas Kuhn as presented in his book The 
Structure of Scientific Revolutions. Here the discussion is applied to the structure of 
the revolutions of education with the pandemic being one of them. The question: 
what will be the long-term influences of the pandemic on the teaching and learning, 
remains open and fully credible answers can be provided only with time. She will 
try to answer this question based on short-term recent experiences and observations. 
Weaving articulations between Kuhn’s thinking about scientific revolutions and 
educational theory is an important point in this chapter.

 13 Yenealem Ayalew

“Some Examples of Mathematical Paradoxes with Implications for the Professional 
Development of Teachers” addresses some clever mathematical paradoxes that 
challenge or trouble traditional interpretations of mathematical results; it uses 
examples as evidence for the underlying argument. For instance, it elaborates the 
sum of one and one with possible results 0,1,2,3,10, or ∞. The discussions were 
made based on an eclectic position of the philosophies of mathematics. A question 
on the possibility of bringing qualitative mathematical relations into classroom con-
text is posed in the middle of the text. Generally, the chapter deals on what creative 
imagination looks like, at the level of mathematics, mathematics teaching, mathe-
matics teacher education, etc. Thus, it appears to be a theoretical exploration of the 
subjectivity of mathematical development and the professional development of 
mathematics educators. A multi-stage collaborative work model is also forwarded.

Preface
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 Part III – Philosophy of Critical Mathematics Education, 
Modelling and Education for Sustainable

 14 Ole Skovsmose

Skovsmose’s chapter, “A Performative Interpretation of Mathematics,” suggests a 
performative interpretation of mathematics, inspired by a performative interpreta-
tion of language. The author states that according to this interpretation, any form of 
mathematics is intrinsically linked to potential or actual actions. His interpretation, 
as he says, is elaborated upon with respect to both advanced mathematics and school 
mathematics. He highlights that any kind of mathematics exercises a symbolic 
power, which brings to the forefront the ethical dimension of a philosophy for math-
ematics. Any kind of action is in need of ethical reflections, and so specifically are 
mathematics-based actions. He points out that ethical reflections concern the pos-
sible impact of mathematics, the different groups of people that might be affected 
by such actions, the possible acting subjects that might be hidden behind the curtain 
of mathematics, the possible intentions behind the action, and the ethical reflections 
themselves. He concludes that, taken together, ethical reflections concern how sym-
bolic acts rooted in mathematics might form our life-worlds.

 15 Nadia Stoyanova Kennedy

The chapter “Reflective Knowing in the Mathematics Classroom: The Potential of 
Philosophical Inquiry for Critical Mathematics Education,” by Nadia Stoyanova 
Kennedy, brings philosophizing to the very activity of teaching and learning math-
ematics. The text explains how to understand the process of philosophizing, which 
includes analytical and reflective thinking about issues concerning the way of pro-
ducing mathematical knowledge, advancing to questions of ethical and epistemo-
logical nature. The author proposes ways for the teacher to work in the classroom 
with her students, keeping the dialogue alive in a collaborative way. The advance 
goes beyond the clear explicitness of the understanding of philosophizing, as it goes 
into the details of how and what can be worked out in the classroom.

 16 Uwe Schürmann

Schürmann, in chapter “Mathematical Modelling: A Philosophy of Science 
Perspective,” questions the separation between mathematics and reality or the “rest 
of the world,” which is often found in mathematics education research on model-
ling, against the background of the syntactic and the semantic view of models and 
theories. He argues that the syntactic view more accurately captures the connection 

Preface



xiv

between mathematics and reality by distinguishing between theoretical and obser-
vational terms of a theory. Moreover, as he points out, the distinction provides a tool 
to analyze students’ utterances more precisely. He links (analytic) philosophy of 
science and mathematics education research on mathematical modelling in the 
classroom. He does so because as this subject matter is not directly related to philo-
sophical findings on models in sciences, it is not directly concerned with questions 
of a philosophical nature. Even so, it always deals with reality and so it carries 
underlying ontological questions.

 17 Hui Chuan Li

In the chapter “Education for Sustainable Development (ESD) in Mathematics 
Education: Reconfiguring and Rethinking the Philosophy of Mathematics for the 
21st Century,” Hui Chuan Li discusses the disparity between the current trends in 
mathematics education and Education for Sustainable Development (ESD) 
approaches. The author argues toward a call for reconfiguring and rethinking the 
philosophy of mathematics for twenty-first-century learning priorities, as he 
detected a stalemate between ESD educational propositions and the growing trend 
in mathematics education toward teaching to the tests, which has become an increas-
ingly common phenomenon in many education systems across the world.

 Part IV – Philosophy of Mathematics Education in Diverse 
Perspectives, Cultures, and Environments

 18 Antonio Miguel, Elizabeth Gomes Souza 
and Carolina Tamayo

“Asé o’u toryba ‘ara îabi’õnduara!”. In this chapter, the authors aim to problematize 
the alleged uniqueness and universality of Western logical-formal mathematics and 
the philosophies that support it with the purpose of deconstructing this belief as a 
problem, and not exactly defending a new philosophy of mathematics or mathemat-
ics education, but a therapeutic-decolonial way of educating and of educating one-
self mathematically through the non-disciplinary problematization of normative 
cultural practices. They argue that any practice aimed at fulfilling normative social 
purposes in a way of life can be seen as a mathematical language game in 
Wittgenstein’s sense. And that, by extension, the mathematical practices, and the 
ways in which they affect the different forms of life in the contemporary world, 
must be the focus of the therapeutic problematization of a mathematics education 
that intends to be decolonial. Six persons participate in this therapeutic debate: 
Oiepé, Mokoi, Mosapyr, Irundyk, Mbó, and Opá kó mbó. Their names correspond, 
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respectively, to the numerals one, two, three, four, five, and ten in the ancient lan-
guage Tupi, today considered one of the two most important linguistic branches of 
the hundreds of different languages currently spoken by indigenous communities in 
Brazil. Other remote interlocutors are invited to participate in the debate.

 19 Maurício Rosa

In the chapter “Mathematics Education and Ubuntu Philosophy: The Analysis of 
Antiracist Mathematics Activity With Digital Technologies,” Maurício Rosa inves-
tigates how mathematics education can encourage/provoke the understanding/con-
stitution of social responsibility of mathematics teachers and students, specifically, 
in relation to social issues such as structural racism that inhabits our reality, includ-
ing educational ones. His research question is: How does one discuss racism in a 
mathematics class with Digital Technologies in a way that mathematical concepts 
support the discussion? This investigation he conducts is guided by his understand-
ing that currently, from the polarization of worldviews, it is important that education 
with mathematics teachers highlights the political and social dimensions of this 
form/a(c)tion, so that mathematics is a reflective resource, language or field of study 
articulated with Digital Technologies (DT) and with questions related to these 
dimensions. Given these considerations and their questioning, he analyzes a math-
ematical activity with Digital Technologies that discusses colorism, and uses the 
African philosophy called Ubuntu as an analytical resource, which does not con-
ceive the existence of a being independent of the other, but of a “being” who thinks, 
acts and lives with others, be-being, that is, a becoming-being that promotes a trans-
formation in reality from its agency with others, with nature, with life. As he points 
out, he found interesting pedagogical possibilities, which under a decolonial per-
spective demarcate equity and social justice arising from a class that takes DT and 
mathematics as a basis.

 20 Min Bahadur Shrestha

“Philosophy, Rigor, and Axiomatics in Mathematics: Imposed or Intimately 
Related?”. In this chapter, Min Bahadur Shrestha shows his movement to examine 
how philosophy, rigor, and axiomatics are related, as he was motivated by the two 
main tendencies of mathematical development in the nineteenth and twentieth cen-
turies, which he understands as having to do with rigor and formalization. He argues 
that rigor and formalization took place on axiomatic basis leading to more abstrac-
tion and that Euclidean type of an axiomatic model became a model of mathematics 
even for constructively developed analysis. He goes on to point out his reasoning, 
arguing that although rigor and axiomatic method differ, and rigor does not need to 
be based on axiomatic method, in practice, that basis has been required for 
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mathematical validity. He observes that among different interpretations made about 
it, some have explained it as a mathematical necessity, while others have attributed 
it to the philosophical underpinnings of formalism and foundationalism. From these 
arguments, he goes on to clearly state his argument by pointing out that, for him, it 
seems that philosophy has distant but decisive impression on the nature of mathe-
matical knowledge, whereas rigor and axiomatic seems to be relatively internal to 
mathematics. However, because such trends have mostly been associated with 
European tradition, he argues, they need to be examined in the light of non- European 
traditions, including Hindu mathematical traditions, which have made significant 
contributions to mathematics without any axiomatic proof or philosophical pre-
sumption of absolute certainty.

 21 Karla Sepúlveda Obreque and Javier Lezama Andalon

In the chapter “Idealism and materialism in mathematics teaching, an analysis from 
the socio epistemological theory,” the authors aim to reflect on the influence of ide-
alism and materialism, as philosophical currents, on the school curriculum and the 
work of teaching mathematics. They take social epistemological theory as the theo-
retical framework to guide their reflection, as well as to analyze the information 
obtained through direct observation and unstructured interviews with Chilean 
teachers.

 22 Thomas E. Ricks

In the chapter “Cognitive and Neurological Evidence of Non-Human Animal 
Mathematics, and Implications for Mathematics Education,” Thomas Rick focuses 
on a challenging issue for the mathematics educator Community. He reviews recent 
scientific evidence legitimizing animal mathematics. He states that, in particular, 
numerous cognitive and neurological studies suggest that animals mathematize like 
humans. Such findings run counter belief held by many in mathematics education 
that mathematics is a uniquely human enterprise. He concludes by suggesting pos-
sible benefits animal-mathematics studies may hold for the work of mathematics 
education.
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 Part V – Concluding

 23 Bronisław Czarnocha and Małgorzata Marciniak

“Living in the Ongoing Moment” is a summarizing chapter. Czarnocha and 
Marciniak, co-editors of this book, wrote it as a moment of reflection on the topics 
brought by the authors in the current, just assembled book and a sudden, yet some-
how expected, appearance of an advanced AI chatbot. Having no answers, they keep 
asking questions hoping that they will serve as an inspiration for more philosophy 
so much needed in mathematics education today.

São Paulo, Brazil Maria Aparecida Viggiani Bicudo   
November 2022
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Introduction

Ongoing Advancements in Philosophy of Mathematics Education approaches the 
philosophy of mathematics education in a forward movement, analyzing, reflecting, 
and proposing significant contemporary themes in the field of mathematics educa-
tion. The four parts that comprise the book share this view of the themes that inter-
pret the investigative procedures and studies, as well as the didactic-pedagogical 
practices conducted in the area. Although the four parts are dedicated to specific 
subjects, the themes treated are intertwined and often displayed as oppositions, 
feeding the dialectic of thought that questions and seeks analyzes which signifi-
cantly support arguments that advance, either through clarification, or proposals for 
new topics to be researched, or educational proposals.

We are a group of four researchers who dedicated ourselves to organizing this 
book, since ICME 14, which took place in 2021 in Shanghai, China. Four different 
people with different views. However, the four remain united by the common goal 
of bringing to the community of mathematics educators the diversity and strength of 
the ways of understanding mathematics and mathematics education, through critical 
and reflective analyses, present in the different papers discussed by TSG 56.

Thus, we believe that it is difficult or even impossible to amalgamate these four 
voices. Therefore, we decided that each of us, in their own way of thinking and 
explaining their understandings, would be responsible for presenting the introduc-
tion to one of the parts with which they were most familiarized, due to their own 
investigations and areas of interest. These presentations materialized as a brief text 
called “Introducing the theme of Part X.” Maria Aparecida Viggiani Bicudo wrote 
the introduction to Part I; Bronisław Czarnocha wrote the introduction to Part II; 
Małgorzata Marciniak wrote the introduction to Part III; and Maurício Rosa the 
introduction to Part IV. The parts are presented below as well as the respective intro-
duction of the themes covered, in order to expose the reader the logic of the organi-
zation of such parts which evidences our way of seeing the content of different 
chapters.
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 Introducing the Theme of Part I

In this first part of the book, we take a comprehensive look at mathematics educa-
tion, resulting from philosophical thinking regarding what is understood by the 
authors of the different chapters in this book, which are proposed for analysis and 
reflection by those who operate such education.

The topic addressed in this part focuses on essays developed by their authors 
based on extensive investigations and debates that have taken place throughout their 
lives, while they immerse themselves in the philosophy of mathematics education. 
Proposals are presented regarding possible ways of understanding mathematics 
education, based on work already published but considered for reflection within the 
horizon of mathematics education. While reading them, I feel they go deep into top-
ics already clarified and reviewed, advancing toward contributing with views that 
are articulated in organic units and involve more complex levels, seen from the 
perspective of a theorization work.

It is a movement that demonstrates the commitment to lead mathematics educa-
tion beyond the aspects concerning themes regarding teaching and learning mathe-
matics, when, for example, learning theories and proposals for ways of teaching are 
brought up, as well as topics related to the history of mathematics, philosophy, 
education, and other significant issues for this area, seeking to penetrate the intrica-
cies of the ontological, epistemological, axiological aspects lying at the core of 
philosophy. The discipline imposed by the rigor of this search contributes to an 
attitude of constantly questioning the sense and meaning of what is said, both in 
one’s authorial productions and those published in this area. Questions are asked, 
such as: What does this text say about education? About mathematics education? 
About mathematics? About teaching? About knowledge? About scientific knowl-
edge and natural knowledge? About ways to critically understand scientific produc-
tion? About ethical and aesthetic aspects that are shown between the lines of texts, 
research, and practices experienced among mathematics teachers and researchers? 
Why teach mathematics to all people, in the manner it is inserted in the school cur-
ricula of the Western world societies in recent centuries? In what direction should 
one go when performing mathematics education, that is, from a teleological point of 
view, what are the purposes assumed as valid, in order to guide the realization of this 
education?

Questions of this kind underlie the texts presented in this Part I and are treated in 
a unique way by different authors. The diversity of views and authors mentioned is 
evident in the chapters presented. Likewise, there is diversity of paths traveled 
toward the theorization pointed out above. This shows the strength of the area that 
is revealed from multiple perspectives. It is important to point out that all authors 
perform a rigorous exercise committed to issues which are central to philosophy, 
whether naming them explicitly or not.

The logic of the sequence of chapters goes from broader questions placed through 
reflections of the author’s own work, moving on to texts that intertwine, in an articu-
lated way, different philosophies of important authors such as Thomas Kuhn, Karl 
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Popper, and Werner Heisenberg, to authors who assume specific philosophical 
views, such as phenomenological and hermeneutic views, understood as critical for 
the movement of philosophically thinking mathematics education; as well as texts 
that focus on actions specific to human knowledge, with emphasis on mathematical 
knowledge, emphasizing abstraction as a process, and explaining actions that per-
form this process, such as specifying, defining, generalizing, abstracting mathemat-
ically; including texts that highlight the importance of analyzing and understanding 
mathematical education from the perspective of a system; and also a text that argues 
that an intellectually sound philosophy of mathematics education must incorporate 
various philosophical trends in education without centralizing just one of their 
aspects while denying or dismissing others.

These chapters challenge readers and invite them to follow the paths of the 
thought exposed, certainly raising other questions, and thinking from the perspec-
tive of their own pursuits and concerns.

 Introducing the Theme of Part II

Part II develops beginnings of the philosophy of creativity in mathematics educa-
tion. It contains three chapters which concern creativity directly and three chapters 
which touch upon it tangentially. All of them contribute to our understanding of this 
fundamental yet elusive phenomenon of creativity. In this short introductory sec-
tion, we explicitly focus on that common thread. At the same time, we discover 
interesting connections between the chapters which suggests new questions to the 
emerging Philosophy of Creativity in Mathematics Education (PCME).

PCME is the emerging subdomain of consideration within our profession, which 
we hope will provide us with hints when, where, and how we can facilitate students’ 
creativity and through its expression let them experience its power both along the 
cognitive and affective dimensions. Creativity and innovation have become the buzz 
words within the professional business circles. Against that background, Bronislaw 
Czarnocha’s chapter “Towards a Philosophy of Creativity in Mathematics 
Education” addresses rarely explored area, philosophy of creativity and its rele-
vance to mathematics education. The central question of this chapter – “What can 
the practice of and research in creativity of mathematics education contribute to the 
philosophy of creativity in mathematics education and possibly to the philosophy of 
creativity in general?”  – guided the author’s presentation and argumentation. 
Through the bisociation that is the theory of Aha! Moment, seen here as the act of 
creation following Koestler (1964), the author arrives at the conclusion that creativ-
ity should be at the basis of mathematics curriculum design. Regina Möller and 
Peter Collignon’s chapter “Towards a Philosophy of Algorithms as an Element of 
Mathematics Education” arrive at a similar assertion but from the point of view of 
the role of algorithms in mathematics education. The authors point to the dramatic 
change in that role occurring within last several decades, both in our profession as 
well as in the world. As an introduction to the subject, the authors provide an 
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interesting historical sketch, which includes the description of the recent changes, 
which employed algorithms is daily life, in particular in electronic calculators and 
computers. The contemporary user however, doesn’t know about the existence of 
the algorithms at all. The main issue in question is about the impact of algorithms 
on math classes and phenomena that were completely unknown until recently. Since 
those new possibilities involve fascinating opportunities and enormous threats at the 
same time, the authors assert that the concept of algorithms should be in the center 
of didactical considerations. And that brings philosophical/didactical question: 
Both proposals, to organize the curriculum with creativity at its base and with the 
algorithm at the center of didactic attention, when implemented together lead us to 
the philosophical question: What is the relationship between creativity and an algo-
rithm, or creativity and a procedure? Following on its heels comes the didactic 
question: How do we organize classroom teaching based on these two, ultimately 
antithetical concepts?

Equally interesting relationship exists between William Baker’s chapter “A 
Framework for Creative Insights Within Internalization of Mathematics” and 
Mitsuru Matsushima’s chapter “A Reconsideration of Appropriation from a 
Sociocultural Perspective” both of which include a similar goal but approach it from 
a different, one could even say, opposite points of view. The goal is to identify cre-
ative process, creativity within sociocultural approach.

Baker supports himself by a recently created concept of integrated bisociative 
frame grounded in Piagetian constructivism and Koestler’s bisociation, and he 
shows the existence of such frames within internalization. That clarifies where and 
how creativity is found within internalization. Bisociative frame is one of the central 
concepts of the creativity theory of Aha! Moment presented in the Czarnocha chap-
ter; it plays the role of the “discoverer” of creativity. Baker’s efforts in the chapter 
are the continuation of Baker (2021), where the coordination of bisociation with 
Piagetian constructive generalization led to the formulation of the integrated biso-
ciative frame – a new tool to identify moments of creative insight within student 
learning. Identification of such integrated bisociative frames within both Piagetian 
and Vygotskian approaches is very important. It suggests that a bisociative creativ-
ity underlies both of the approaches and can serve as their unifying principle. 
Moreover, the discussion of the close relationship between interiorization  – the 
characteristics of Piagetian approaches – and internalization – the characteristic of 
Vygotskian approach – culminates the chapter.

Matsushima’s chapter “A Reconsideration of Appropriation from a Sociocultural 
Perspective” pursues the following questions: Why does interaction in the learning 
community deepen mathematics learning? He addresses two fundamental questions 
within the sociocultural approach: Why does interaction in the learning community 
deepen mathematics learning of its members? How does individual learning con-
tribute to the learning community through dialogue and deepen mathematics 
learning?

The chapter approaches the common goal of identifying creativity through the 
sociocultural vantage point of appropriation. He uses the newly introduced concepts 
of dynamic composition and mutual composition during the process of 
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appropriation between an individual learner and the community of learners to iden-
tify three problems within internalization showing at the same time how these new 
concepts can deal with the described difficulties. And creativity is found possible 
during the appropriation as a deviation from the original concept to be appropriated. 
Such deviations are a manifestation of gaps between the concepts of the learners 
interacting with each other and the concepts of the learning community as seen by 
each learner. That means that bisociative frame is created by two different frames of 
reference of individuals between whom the deviation takes place.

Creative imagination of our profession is the common aspect of Ayalev and 
Marciniak chapters, especially seen at their sociocultural background. While for 
Ayalev it is the principle of the proposed professional development for teachers, for 
Marciniak it is the reality of the rapid transformation from face-to-face to online 
mode. She points out to several published reports from the time of pandemic which 
emphasized the critical role of creative imagination in the rapid transformation for 
which majority of teachers and students were not prepared. The chapter of 
Małgorzata Marciniak “The Times of Transitions in the Modern Education” 
addresses very deep revolutionary changes in education that are taking place at pres-
ent due to the impact of pandemic as well as due to the growth of the role of Internet. 
The author recalls the incredibly high speed with which both teachers/faculty and 
students had to change the mode of teaching and learning from face-to-face to 
online Internet platforms. The process of change included significant difficulties for 
students, parents, and teachers leading ultimately to lowering students’ passing 
rates, yet at the same time, it offered significant creative possibilities. Creativity 
involved in solving presented problems, when integrated with the creative possibili-
ties of Internet, may signal that creativity itself is becoming the central underlying 
feature of contemporary pivotal point in education. The author places that present 
moment as the most recent pivotal point within a sequence of similar pivotal revo-
lutionary changes in education’s history: introduction of compulsory education, 
transformation from religious to secular schooling, and creation of public educa-
tion. She points to the fundamental role of education of females brought by the para-
digm of public education. Yenealem Ayalev’s chapter “Some Examples of 
Mathematical Paradoxes with Implications for the Professional Development of 
Teachers” investigates the relationship between mathematics, teacher, and educa-
tion as the basis for the professional education of teachers. He emphasizes that vital 
component of that relationship is creative imagination. He advocates the socio/cul-
tural approach to creative imagination, and especially in the context of mathemati-
cal paradoxes, whose both posing and solving invokes large dose of creativity. The 
author finds the essence of mathematics as the science of computation and opera-
tion, as the provision of skills to learn and create shared meanings by way of social-
izing the field of mathematics. An excellent example of that multi-meaning which 
can be attributed to one mathematical concept leads the author to the analysis of 
known mathematical paradoxes, which through history have led to many creative 
ideas and discoveries. One of them has been the 5th postulate of Euclid whose many 
possible meanings have led to the creation of non-Euclidean geometries. Another 
one is the collection of different interpretations and solutions to “1 + 1 = ?”, which 
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illuminate the role of interpretation as well as existence of multiple truths in 
mathematics.

 Introducing the Theme of Part III

Young children often ask for the purpose of live, but when discouraged, they stop 
and engage in other activities. Similarly, young researchers frequently inquire about 
the meaning of mathematics and its place in education. But when the answer is not 
found, they tend to shift to other, more rewarding topics. In this part of the book, the 
authors stubbornly search for the answers of revised and reformulated questions 
about the meaning of mathematics, its place in education and reality. Unfortunately, 
mathematics is nowadays taught as the universal and unquestionable truth not 
responding to the needs inquisitive and future oriented minds. Even college students 
of engineering programs frequently express their surprise when they find out that 
their teachers do research in mathematics beyond what is already known.

In modern mathematics, classroom logicism, formalism, and intuitionism are 
already well-established dimensions. In his chapter, Ole Skovsmose finds ways for 
expanding these dimensions and introduces performative interpretation of mathe-
matics as a niche in mathematical ethics. He justifies the needs for adding this new 
dimension to the contemporary mathematics as a crucial factor in creation of the 
life-world. In his works, performative interpretation based on mathematical results 
plays a key role in creating reality. At the same time, Skovsmose points out the new 
roles of mathematical algorithms in political, social, and financial decision making 
on a large scale and emphasizes the urgent needs for ethical discussions about 
such uses.

It is worthwhile to mention that the aspects of ethics in terms of performative 
interpretation go far beyond well-known mathematical literacy (sometimes called 
numeracy) denoted by further authors as mathemacy. Ole gives an example of how 
formalism (language) affects the discussion using mathematical modelling. In his 
view, a choice for a particular model shapes the discussion, for example about cli-
mate change and affects the conclusions. No doubts, the way the data is cleansed, 
analyzed, and used is important for the future shape of our global society. The fact 
that the language influences the content of conversation is well known to bilingual 
people. While it may be intuitively clear that the choice of language shapes spoken 
or written exchange of ideas, this may be less obvious for pure wordless thinking. 
Especially when we would like to see thinking as a process is entirely owned by us. 
But surprisingly so, some, thoughts, including mathematical thoughts are highly 
dependent on the language.

Practical classroom applications of performative interpretation in mathematics 
classroom are described in the chapter written by Nadia Stoyanova-Kennedy. She 
suggests that inquiry joined with collaborative group work may be the best way for 
creating a suitable environment for critical and creative thought. Stoyanova- 
Kennedy points out that the role of math in the society has been unclear. On the one 
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hand, math skills are valued and used in many aspects of human life (banking, deci-
sion making, cryptography, coding, etc.), but on the other hand, students of all ages 
and nationalities fear math and often sincerely dislike it. This leaves math educators 
in a century-lasting dilemma of how to connect mathematics with happy feelings 
and natural interactions of humans with the reality. Here mathemacy comes as a 
rescue as it is designed to build interactions between the mind and the reality. At the 
same time, Stoyanova-Kennedy warns that mathemacy, if engaged only for techni-
cal or mathematical understanding, will not contribute to the growth and develop-
ment of modern society. Thus, she calls for well-framed and properly facilitated 
classroom discussions that aim for building ethical and social awareness of students 
of all ages. Stoyanova-Kennedy gives an example of discussion about mathematical 
modelling which could contain questions of the type: Should a model describe real-
ity with a prefect precision? Why mathematical models are need? Can they describe 
everything? How do we know how much to trust them?

Uwe Schürmann notices that even in courses about mathematical modeling, cal-
culations are heavily overrepresented not leaving any time and attention for such 
fundamental epistemological and ontological questions crucial for the role of mod-
els in creating reality. He points serious shortages in such courses:

• Lack of empirical experience of mathematical modeling, i.e., collecting the data, 
finding the parameters of the models, comparing the results from the models to 
the actual outcomes, and explaining the obvious existence of discrepancies

• Social separation: Who builds the model and for what purpose, how are the 
results used and with what intentions?

• Ontological separation: How does the model contribute to existing view of 
nature, for example, one differential equation tends to appear in many different 
areas and describe unrelated phenomena, pendulum equation describes not only 
vibration but level of sugar and insulin, what does it mean to science? How does 
this discovery contribute to our view of reality?

Education with such separation will not create responsible citizens prepared for 
challenges of the future. Thus, mathematics education urgently needs a revision in 
its paradigms. Hui-Chuan Li brings as an option UNESCO-supported ideas of 
Education for Sustainable Development (ESD) which has three aspects: economic 
growth, social inclusion, environmental protection. He emphasizes that in mathe-
matics curriculum, these aspects may not be actual topics. But they should influence 
the way of implementation of math topics in the class activities. Li gives an example 
of own research topics related to ESD introduced as workshops for his students in 
Scotland. Topics include biodiversity, climate change, and sustainable energy (wind 
turbines and biodiesel) and the workshops contain non-traditional activities such as: 
respectful debates and discussions, reflections, sharing opinions, and points of view 
of the value of mathematics and its limitations. At this point, Li rightfully rises 
another issue for discussion related to testing in math classes. As he points out, 
standardized testing influenced teachers to focus on teaching just for these tests sup-
porting the opinion that the style and content of testing affects the way of teaching. 
Opposite holds as well, i.e., the style of testing should mirror the teaching. Thus, 
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bringing discussions and debates to the curriculum should influence the way of test-
ing. In my own teaching experience, written reflections on mathematical results 
rescued validity of online testing during the pandemic. This experience significantly 
changed my view on tests and testing in math courses.

As a conclusion, STEM education has been drawing increasing attention as it 
became more politically relevant due to its role in technology and decision making 
needed for the future workforce. Mathematics curriculum makes attempts to accom-
modate such needs by introducing problem solving, which, in Li’s opinion, is insuf-
ficient for preparing students to become critical citizens of future reality. Thus, at 
the end of his chapter, Li calls for culturally and ethnically sensitive mathematical 
teaching.

 Introducing the Theme of Part IV

Part IV of this book brings chapters that deal with the philosophy of mathematics 
education in different perspectives, cultures, and environments. This means that the 
chapters that make up this part undertake to discuss, to reflect, to reflect on, for 
example, colonial mathematics problematizing the supposed singularity and univer-
sality of this western logical-formal mathematics and these philosophies that sustain 
it for the purpose of deconstructing the belief of a single and universal mathematics 
as a problem. Therefore, highlighting the ways of doing mathematics of different 
peoples, valuing it, is a movement that arises as a potential restorative of the histori-
cal invisibility of different cultures.

In this perspective, the conception of culture is understood as a whole way of 
life, its common meanings, to designate the arts, learning, the processes of discov-
ery, and the creative effort (Williams, 2015). Also, according to Eagleton (2003), 
based on the etymological meaning of the word that comes from the Latin colere, 
the term culture is used to designate distinct things such as habitation (in the words 
“colony” and “colonist”) and religious worship (“worship”). It is also used to man-
ual labor. The original meaning of word “culture” is “crop” or “agricultural cultiva-
tion” and, thus, what previously designated a particular material activity, takes an 
abstract meaning, which is imposed as the general cultivation of the intellect, in the 
individual sense and also in the collective. Thus, this part of the book highlights the 
ideas of freedom and determinism, activity and resistance, change and identity, 
what is given and what is created (Eagleton, 2003) in the mathematical production 
of different peoples and environments and what can be taught to empower mathe-
matical doing and equity of human beings. Therefore, the philosophy of mathemat-
ics education in various cultural perspectives, for example, seeks the individual and 
collective growth of what has already been cultivated or that will be, either by itself 
or by the group to which one belongs, in a dialectical movement between what is 
said natural and what is said artificial, according to rules agreed by the group itself, 
and between what we do to the world and what the world does to us in an insepa-
rable flow, which presents itself in proper act of educating by mathematics.
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This part of the book assumes possibilities of defense in a decolonial way of 
educating mathematically and educating by mathematics through the non- 
disciplinary problematization of normative cultural practices. The discussion of 
how mathematics education can stimulate/provoke the understanding/constitution 
of the social responsibility of teachers and mathematics students is raised. 
Specifically, in relation to social issues such as structural racism that inhabits our 
reality, including educational, there is a movement that highlights the African phi-
losophy Ubuntu, evidencing ways in which mathematics can sustain the under-
standing of respect for the collective. The chapters promote reflection on decolonial 
ways of educating by mathematics. Thus, some interesting mathematical practices 
are pointed out, which from a decolonial perspective demarcation equity and social 
justice and can be performed in recurrent educational spaces.

Nevertheless, the understanding that Hindu mathematical traditions, for exam-
ple, have made significant contributions to European mathematics even without any 
axiomatic proof (of the way these tests are (im)put by the coloniality of knowledge) 
or philosophical presumption of absolute certainty (likewise), can raise empower-
ment flights to various groups of students from minorities (black) in mathematical 
educational spaces.

In Latin American terms, there is a movement around social epistemology as a 
theory of educational mathematics. This epistemology studies didactic phenomena 
related to mathematical knowledge, assuming the legitimacy of all forms of knowl-
edge, whether popular, technical, or formal, because it considers that they, as a 
whole, constitute human wisdom.

Also, as an innovative perspective, this part of the book presents a discussion on 
recent scientific evidence that legitimizes the mathematics of animals. Cognitive 
and neurological studies are indicated that suggest that animals mathematize like 
humans and this destabilizes the common belief that mathematics is an exclusively 
human enterprise.

However, the disarticulations of universal truths are present in this part of the 
book, because, although the meanings we attribute to a given situation or object are 
individual and subjective, they have their origins and their importance in the culture 
in which they are created. Therefore, in this cultural locus is the guarantee of nego-
tiation and communication of these senses in order to characterize meanings 
(“agreed” or “(im)posed”). What matters, in cognitive terms is that meanings 
become the basis for cultural exchange. In the symbolic systems of culture, there is 
a possible realization of what is understood together and what can be communicated 
in terms of eurocentrical ideas. Thus, this part of the book seeks to debate issues that 
do not fit, at first, into a formal, academic, white, and Eurocentric mathematics. In 
other words, there is no framing of diverse mathematical thoughts in an order of 
hegemonic and European structure, because these different mathematical forms of 
thinking are outside the characteristics of rigor and axiomatic proof, previously con-
ceived in history by the dominant culture. However, the proper mathematical way of 
thinking of the dominant culture is philosophically questioned and other forms are 
discussed in the subsequent chapters of this part of the book. These debates, in turn, 
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open different possibilities from those commonly defended and potentiate knowl-
edge that can often be considered as decolonial ways of thinking.

At the end, concluding the treatise on the different parts of the book, there is 
Chap. 23, understood as a reflection on the topics brought up by the authors. It is an 
essay in which two of the co-editors, Dr. Czarnocha and Dr. Marciniak, carry out a 
review of the book, highlighting its unity understood as based on philosophical 
thinking and the way of proceeding of the Philosophy of Mathematics Education, 
projecting inquiries visualized in the horizon opened by the AI chatbot.

Rio Claro, Brazil Maria Aparecida Viggiani Bicudo
New York, NY, USA Bronisław Czarnocha
Porto Alegre, Rio Grande do Sul, Brazil Maurício Rosa
Long Island, NY, USA Małgorzata Marciniak 
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Chapter 1
The Ontological Problems of Mathematics 
and Mathematics Education

Paul Ernest

1.1  Introduction

Ontology is the branch of philosophy that studies the fundamental nature of reality, 
the first principles of being, identity and changes to being, that is, becoming. In this 
chapter, I want to explore being, existence and identity as they concern mathematics 
and mathematics education. In particular, I want to address the ontological problems 
of mathematics and mathematics education. The ontological problem of mathematics 
is that of accounting for the nature of mathematical objects and their relationships.1 
What are mathematical objects? Of what ‘stuff’ are they made and do they consist?

The ontological problem of mathematics education concerns persons. What is 
the nature and being of persons, including both children and adults? In the context 
of this chapter, I will restrict my attention to human mathematical identities, that 
part of being which pertains to mathematics, namely the mathematical identity of 
mathematicians and the developing mathematical identities of students. What are 
these mathematical identities and how are they constituted? Human beings are 
located in, and constituted through the cultures they inhabit, so my answer will 
encompass how these contribute to mathematical identities, as well.

The twin ontological problems of mathematics and mathematics education con-
cern the chief entities in the two domains. These are mathematical objects first, and 
second, persons, restricted to their mathematical identities. The structural similarity 

1 I use the term nature without presuming essentialism or assuming ‘natural’ states of being. I shall 
answer the question of how the properties and characteristics of mathematical objects and human 
beings as mathematical subjects are inscribed within them as a process of becoming without the 
presuppositions of essentialism.
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does not end with these parallel twin focuses of inquiry. In each of these two 
domains, there are dominant myths that must be critiqued or cut down before their 
respective problems can be addressed adequately. In mathematics, there is the myth 
of Platonism, namely that mathematical objects exist in some eternal, superhuman 
realm. According to this view, mathematical objects were there before we came 
along, and they will still exist after we are all gone.

In mathematics education, there is the rather more hidden problem of individual-
ism. This is the view that persons are all existentially separated creatures whose 
actions, learning and even whose being take place in hermetically sealed and sepa-
rated personal domains.

However, there is also dissimilarity in the treatments I can hope to offer. While I 
can aspire to giving an account of the nature of mathematical objects, I cannot hope 
to treat the nature and being of persons except in a very partial way. As I have 
indicated, I restrict my inquiry to those aspects of human being that pertain to 
learning and doing mathematics, and their personal foundations.

1.2  Mathematical Objects

In this part, in a number of linked sections, I offer an attempt to giving an account 
of the nature of mathematical objects. I start by trying to clear some of the obstructive 
conceptual undergrowth that stands in the way of my account. In the exposition that 
follows on, all the elements that make up the social constructionist account of the 
ontology of mathematical objects are introduced and then summarized in Sect. 1.2.8.

1.2.1  Critique of Platonism

According to Platonism, mathematics comprises an objective, timeless and super-
human realm populated by the objects of mathematics. These objects are pure 
abstractions, and they exist in an unchanging ideal realm quite distinct from the 
empirical world of our day-to-day living. Plato’s doctrine of Platonism locates other 
abstract ideals beyond mathematics such as Justice, Beauty and Truth, in this realm. 
Not surprisingly, the nature, status and location of abstract ideas has been a matter 
of debate at least since the time of Plato. The medievalists divided into the camps of 
nominalists (abstract objects are primarily linguistic names), conceptualists (abstract 
objects are ideas in our minds), and realists (abstract objects are real entities that are 
located in some platonic-like realm). All of these positions have their problems.

Many of the greatest philosophers and mathematicians have subscribed to the 
doctrine of Platonism in the subsequent two plus millennia since Plato’s time. In the 
modern era, the view has been endorsed by many leading thinkers including Frege 
(1884, 1892), Gödel (1964), and Penrose (2004).

P. Ernest
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Although I shall reject it, quite a lot is gained by this view. First of all, mathema-
ticians and philosophers have a strong belief in the absolute certainty of mathemati-
cal truth and in the objective existence of mathematical objects, and a belief in 
Platonism is consonant with this and even validates this view. Platonism posits a 
quasi-mystical realm into which only the select few – initiates into the arcane prac-
tices of mathematics – are permitted to gaze, and within there – to discern mathe-
matical objects and mathematical truth.

Second, this view is a concomitant of, and validates purism, the ideology that 
mathematics is value-free and ethics-free. Human values are excluded by definition, 
for they cannot seep into or taint the hermetically sealed superhuman platonic realm, 
since it exists in another dimension. As I have recounted elsewhere, purism is an 
ideology that was strong in Plato’s time and then again in the nineteenth- and 
twentieth-century mathematics (Ernest, 2021a).

Third, Platonism supplies mathematics with a theory of meaning. According to 
this theory, mathematical signs and terms refer to objects in this ideal realm. 
Likewise, mathematical sentences, claims, and theorems refer to true, or otherwise, 
according to their status, states of affairs and relationships between the constituent 
objects that hold in the Platonic realm.

However, a distinction should be made between Platonism and mathematical 
realism. According to the latter, mathematical objects are real; they are something 
verifiably shared amongst many people. However, they do not necessarily exist in a 
superhuman and supraphysical realm. For example, as I shall argue, they can be 
social objects. However, developing a social theory of mathematical objects is more 
complex than simply positing a Platonic realm, which can be conjured, ready-made 
out of a hat. Explaining and validating a social constructionist theory of mathematical 
objects requires the development of conceptual machinery and to a certain degree, 
a suspension of disbelief, because Platonism has penetrated so deeply into our 
understanding of mathematics and universals.

Platonism is not without its problems. Two major problems concern access and 
causality. How can mathematicians access the Platonic realm? With what faculties 
can they peer into it to discern its objects and truths? No such sixth sense is known 
unless one strays into the realms of the mystic and shaman. And even if one did 
stray there, and could discern mathematical objects and truths directly, what 
justifications could be given to others for the existence of the objects and the validity 
of the truths discerned? To say I saw it with my mind’s eye is not enough. 
Mathematical objects need to be accurately defined to be communicated, and 
mathematical truths need to be convincingly proven in public texts to be acceptable. 
So, their means of validation are just those that one would need even if there were 
no superhuman Platonic realm into which one could peer (Benacerraf, 1973).

In terms of causality, there are problems both ways (Linnebo, 2018). How are 
newly defined concepts and newly proven results inserted into the Platonic realm? 
What is there about our inventions and discoveries that cause them to appear there? 
Plato argued these ‘new’ objects were there all along and we can only discern them 
when we have recreated them for ourselves. This is surely an unsatisfactory ad hoc 
answer. If we can only discern what we have recreated, why not dispense with the 
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mystification and acknowledge we created them, in the first place? In the reverse 
direction, how can the truths of the Platonic realm causally determine outcomes in 
the material world? Why is pure mathematics so unreasonably effective in the real 
world? How and why are mathematical truths so real and so persuasive to children, 
students, and adults prior to demonstrations? I suppose that if mathematical truths 
hold in all possible worlds, then those found in the Platonic realm must hold in the 
material world. But this is not a causal argument implying that mathematical truths 
from the Platonic realm force their applications to hold in the physical world. Once 
again it leaves the Platonic realm superfluous.

Although positing the Platonic realm as the home of mathematical objects and as 
a source for mathematical truths opens a number of serious problems, it remains a 
widespread, legitimate, and irrefutable view. Like many ideologies that posit other 
realms full of celestial beings it remains a matter of choice and belief. I choose to 
use Occam’s razor, the principle of ontological parsimony, that entities should not 
be multiplied beyond necessity. Extending this to the multiplication of ontological 
realms, I regard the expansion of mathematical ontology through the addition of the 
superhuman Platonic realm to be unnecessary. It creates new problems of access 
and causality. It represents a succumbing to the historical vice of Idealism. My 
claim is that socially based mathematical realism can accommodate many of the 
benefits of Platonism without all these extra costs. So, I reject Platonism while 
embracing mathematical realism.

1.2.2  Meaning Theory

Above I acknowledge that Platonism supplies mathematics with a theory of mean-
ing. According to this theory, mathematical signs and terms refer to objects and their 
manifested relationships in the ideal Platonic realm. Most simply, this is a referen-
tial or picture theory of meaning. Ernest (2018a) shows some of the inadequacies of 
this theory, which is also widely criticized elsewhere (e.g. Rorty, 1979). But if one 
is to reject this theory what is to stand in its place? If mathematical signs and words 
are not simply the names of objects in a Platonic realm how else can they signify? 
How can we offer a way to understand their meanings? In my view, Wittgenstein’s 
(1953) theory of meaning, according to which much of the meaning of words and 
other signs is given by their use, offers the best solution.

With regard to meaning, Wittgenstein says that much of meaning is given by use: 
“for a large class of cases  – though not for all  – in which we employ the word 
‘meaning’ it can be defined thus: the meaning of a word is its use in the language” 
(Wittgenstein, 1953, I, sec. 43). He allows for three other sources of meaning – 
custom, rule-following, and physiognomic meaning (Finch, 1995; Cunliffe, 2006). 
Focusing on meaning as use, it is important to hedge this in the way that Wittgenstein 
does. Namely that the use of words or signs is always located within language 
games situated within forms of life. Thus, according to this theory, the meanings of 
words and signs are the roles they play within conversations located in social forms 
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of life. But these are not free-floating conversations, they are conversations centered 
on, and intrinsically a part of, shared activities with a goal or object in mind. In one 
extreme case this might be conversing after dinner with friends with combined aims 
of sharing information (or gossip), consolidating relationships or just for the 
intrinsic joy of relaxing with friends and family. Such discussion, although perhaps 
capturing the popular meaning of the term ‘conversation’, is trivial and fails to 
reflect the central importance of conversation.

Conversations are not just trivial decorations but an integral part of social activi-
ties. The function of conversations is to facilitate important joint and productive 
activities through directions, confirmations, and other means. The meanings of the 
terms and signs employed are their functions within these activities. Joint action 
within a form of life is usually directed and punctuated by discourse. In other words, 
language in conversation is a tool employed to further a joint activity and take it 
towards its goal. Indeed, the language used in productive material activities is as 
often imperative or interrogative as it is declarative. Such as in the kitchen: ‘stir 
this’, ‘is there enough salt in the sauce?’, and ‘this is tonight’s meal’. Where 
conversation is lacking in a joint activity, often custom and rules have been laid 
down conversationally in earlier manifestations of the form of life rendering 
repeated conversations and directions superfluous, so the joint activity can progress 
without verbal instructions or elaboration.

Wittgenstein makes it clear that meanings depend on the language games in 
which they are used, and ‘When language-games change, then there is a change in 
concepts, and with the concepts the meanings of words change’ (Wittgenstein, 
1969, sect. 65).

Two other dimensions of Wittgenstein’s ideas of meaning, custom and rule- 
following, are also important. Cunliffe (2006: p. 65) points out that there are deontic 
dimensions of meaning entangled with the other uses, with widespread imperatives 
imposing or requiring rule-following, the meeting of obligations, lawfulness, and 
respect for customary usage. Language use is far from limited to the alethic mode – 
meaning that it encompasses epistemic, factual, and truth-orientated functions. It 
also commonly employs the imperative mode. This is very important when under-
standing the meaning of mathematical texts, where the imperative mode far out-
weighs the declarative or indicative modes, as an analysis of verb usage in the 
corpus of mathematical texts reveals (Ernest, 1998, 2018a; Rotman, 1993). I shall 
argue that the institutions of mathematics are held up by tacit or explicit rule- 
following and custom, so this dimension of meaning is very significant. Indeed, I 
hope to show that the very objects of mathematics are created and maintained by 
tacit agreements, rule-following, and embedded customs inscribed within the 
objects themselves. For example, to count you must follow a string of rules, but as 
counting skills develop, and numbers come into being as self-subsistent mathematical 
entities, then the rules and norms appear to dissolve or disappear into the perceived 
nature of the numbers themselves. But I get ahead of myself.

1 The Ontological Problems of Mathematics and Mathematics Education



8

1.2.3  What Are the Objects of Mathematics?

Platonism and realism offer answers as to where mathematical objects are to be 
found (Skovsmose & Ravn, 2019). But apart from the fact that they are universals 
and abstractions, these ontologies do not tell us what the objects of mathematics are; 
they do not answer the question of what is the stuff of which they are made?

Unfortunately, traditional ontology is not a lot of help here. It seems to be satis-
fied with a category of being, rather than a deeper inquiry into the very stuff or 
substance of the existents. What is needed is a multi-disciplinary approach that 
combines insights from philosophy of mathematics, mathematics itself, semiotics, 
cognitive science, psychology, sociology, linguistics, and mathematics education 
into the nature of mathematical objects. No one of these disciplines is sufficient of 
itself, as I intend to show, to satisfactorily answer the question: Of what stuff are 
mathematical objects made?

There is another obstacle in the way of a naturalistic account of the ontology of 
mathematical objects, namely, the ideologies of essentialism and presentism (Irvine, 
2020). In this context, essentialism presupposes that mathematical objects are made 
of some fixed stuff, analogous to diamonds or other precious stones, but existing in 
an eternal realm, where they are found to be permanent and unchanging.

The ideology of presentism searches for answers to all questions in a timeless 
present, where there is no change, development, or becoming. In my view, ignoring 
Plato’s admission of ‘becoming’ into ontology, presentism underpins much of 
modern Anglo philosophy. There logical arguments are timelessly valid, and 
concepts presumed fixed and permanent. Where such properties are attributed to 
mathematical concepts and objects, they are presumed completed and there is no 
need to discuss how they came to be and how this shapes what they are. Becoming 
is ignored and disallowed. I think that to fully understand mathematical concepts 
and objects you need to know how they became as they are. Especially, as being 
abstractions, they have been abstracted from lower orders of abstractions or actions. 
Mathematical objects do not have a fixed essence, for they change over time, and 
they have different meanings in different contexts.

Let me illustrate this with arguably the simplest of all mathematical concepts, the 
number one. This first appears in human history and in child development as the first 
word in a spoken count (‘one’, ‘uno’, ‘yek’, ‘tik’) or as the first tally in symbolically 
recorded counting. The number, or rather numeral, ‘one’ is the first ordinal in a 
counting sequence (meaning ‘first’). The early use of this numeral is enactive, with 
the action of pointing or making a mark accompanying its utterance. When the last 
ordinal number in counting out a set becomes defined as its cardinal number, the 
word ‘one’ or sign ‘1’ gains its cardinal meaning as the number one. Counting out 
a triplet with the ordinals 1, 2, 3 ends with 3 which by definition is its cardinality. 
Counting a singleton – ordinal one – results in cardinal one. This marks the arrival 
of the concept of one in its first rudimentary but complete form, the cardinal number 
one. At this stage in its development, number one is understood to be on a par with 
the other natural numbers 2, 3, 4, and so forth.
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It is important to notice that the concept of one is doubly abstracted. First from 
the physical action of counting, from tallying, or from just saying the number names 
out loud prior to counting. Second, once ordinal counting is mastered for small 
values, the cardinal number one is abstracted from the ordinal one, as comes to 
represent the value of a completed count.

In tallying, strokes or marks are used to represent the outcomes of counts (e.g. 
‘///’ representing the count of three. Each stroke is itself a part of a unit action and 
ultimately each of these units ‘one more’ is identified with ‘one’. The tally ‘///’ 
represents one (more) and one more and one more which is a compound way of 
representing three (via the ordinal ‘third’).

In number systems, the numeral ‘1’ resembles a tally stroke. In several number 
systems, such as those of the Ancient Egyptians, Sumerians, and Romans, numerals 
made up of one, two, and three strokes (I, II, III, respectively) are used for the first 
few numbers representing both repeated ones and unit strokes in a tally. Studies of 
proto-language suggest that the early, possibly prehistoric name for one was ‘tik’, 
also meaning digit or finger (Lambek, 1996). Use of fingers for counting evidently 
goes back a long way, and this word for one also stands for a single digit (as finger). 
Indeed, the modern use of the word digit retains this ambiguity, standing both for 
individual numerical signs (1 to 9) as well as for any single finger.

This is just the beginning of the development of the concept of one. The use of 
the sign ‘1’ becomes more elaborate within systems of numeration, calculation, and 
measurement. The numeral ‘1’ represents a unit in an abacus or place value system 
in compound numbers (one ten, one hundred, etc. indicated in decimal place value 
as 10, 100, respectively, with ‘1’ as an atomic component in a molecular sign). 
Subsequently, with the introduction of multiplication, one serves as the multiplicative 
identity element.

As number systems and structures are extended, ‘1’ has different meanings and 
properties, across N, Z, Q, R, C. In Q, the numeral ‘1’ is used both in numerators 
and denominators. In R (and Q), ‘1’ is used in extended place value notation as a 
fraction of denomination ten to a negative power (e.g. 0.001 = 10−3). ‘1’ and other 
numerals are used in algebra, length measures (and indeed all measures), in 
fractions, extended place value notations, vectors, matrices, probability theory 
(representing certainty), Boolean algebra (representing truth). The property of ‘one’ 
as the multiplicative identity in Q, R, and C is generalized throughout algebraic 
structures such as groups, rings, fields (together with the more basic additive 
identity 0).

In each of these different roles, ‘1’ has different uses and meanings, so its mean-
ing can never be said to be fixed, but is always dependent on the context of use, on 
the background theory. Thus, the number one cannot be claimed to be a single fixed 
mathematical object or concept. However, what we can say is that the number one, 
like all Natural numbers, in its first emergence, is an abstraction of an action using 
signs. An instance of a counting action can be physical, such as touching individual 
members a set of objects (already conceptualized as countable units for the pur-
poses of counting, Ernest, 2021b), while uttering the sequence of ordinal names. Or 
it can be conceptual where the units are counted without physical contact or 
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movement. Either way the act of counting is an instance, a token of counting, cor-
responding to an abstracted type, the count. This count has an endpoint, a desig-
nated sign that represents the ordinal position of the last counted unit, which is 
abstracted as the number, the cardinality of the set counted. Thus, the resultant 
number, the cardinality is doubly abstracted from the instance of counting. First, as 
the type or class of the designated count. Second, as the cardinal number abstracted 
from the derived ordinal number.

This simplest of all the numbers, ‘little’ number one, serves to show both how 
complex and multiply meaningful mathematical concepts are, as well as of what 
they are formed. ‘One’ begins as an action associated with a sign, which is then 
abstracted. The process is reified into an object. Virtually all named mathematical 
objects consist of abstracted operations or actions on simpler mathematical objects 
or actions.2 To enable a differentiation of levels into simpler/more complicated, one 
can posit a hierarchy through which the relation of ‘simpler than’ can be defined. 
The lowest level of mathematical actions (level 0) is made up of those that have a 
physical correlate, like counting or drawing a line. The lowest levels of mathematical 
objects (level 1) are abstractions of, or from, mathematical actions of level 0. A 
mathematical action of level n + 1 operates on actions and objects that include at the 
highest level those of level n. Likewise, a mathematical object of level n + 1 abstracts 
actions and objects that include those up to and including level n.

What I have only exemplified in the case of ‘one’ is that there is a sign associated 
with every (named) mathematical action or object. Frequently, there are several 
signs. So, with one there is the spoken verbal name or word (in almost every 
language), a written verbal name (‘one’), and a mathematical sign (‘1’). In various 
arithmetics, there are in fact an infinite number of expressions with the numerical 
value of 1 that could also be called names for 1 (e.g. 22–21, 0 + 1). The signs of 
mathematics are of paramount importance. The signs not only help to create the 
objects of mathematics, but they are also entangled with them. Mathematical actions 
are typically actions on or with mathematical signs.

1.2.4  Mathematical Signs and Their Performativity

In order to fully engage with the role of signs in mathematics, with the semiotics of 
mathematics, it is necessary to understand the performativity of mathematical signs. 
As syntactical objects, mathematical signs are both the objects acted upon and the 
crystallized residue of acts in themselves. In the first instance, all the ‘atoms’, the 
ur-elements of mathematical signing are performed actions. Thus, as we have seen, 
3 represents the product of tallying III which is itself the residual mark of the 
repetitive physical act of counting one, two, three. In this way, counting employs 

2 Various scholars in mathematics education research make this point (Sfard, 1994; Tall, 2013; 
Dubinsky, 1991).
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indexical signing because each stroke or physical tally movement corresponds to a 
counted entity by proximity in space, time, or thought.

Within semantics, the performativity of mathematical signs is ontological. The 
signs create their own meanings; the abstract objects of mathematics that they 
denote. What we have is a ‘a set of repeated acts within a highly rigid regulatory 
frame that congeal over time to produce the appearance of substance, of a natural 
sort of being’ (Butler, 1999, p.  43–44). Although Butler is referring to another 
domain, the process is identical for the construction of mathematical objects. Thus, 
numerals and number words ‘do not refer to numbers, they serve as numbers’ 
(Wiese, 2003, p. 5, original emphasis). This is an important point that contradicts 
any referential theory of meaning, including both the picture theory of meaning and 
Platonism. Numerals, number word terms, and by extension all mathematical signs 
need not indicate or refer beyond themselves to other objects as their meaning, let 
alone to a supraphysical and ideal realm of existence. They themselves serve as their 
own objects of meaning, coupled with the actions that they embody (and their 
inferential antecedents and consequents).3 Mathematical language is thus 
performative, for mathematical terms create, over time, the objects to which they 
refer. As I have argued, counting via abstraction is the basis for the creation of 
numbers, and likewise operations create mathematical functions. In the first instance, 
these are inscribed numerals and enacted operations. Repeated usage reifies and 
solidifies them into abstract mathematical objects.4 Furthermore, their currency of 
use serves as a social warrant for them, verifying their legitimacy and existence.5

Elsewhere I argue that mathematical signs are performative in two ways, which 
I term inner and outer. What I describe above is part of the inner performativity, 
whereby mathematical sign usage creates mathematical objects. The outer 
performativity of mathematics is the way it formats the way we experience and 
interact with the material world (Skovsmose, 2019, 2020; Ernest, 2019). I will not 
discuss this outer performativity further here (but see O’Halloran, 2005 and 
Ernest, 2018b).

3 This has been used as an explicit strategy within mathematics. Henkin (1949) defines the refer-
ence of each sign within the system to be itself, in his classic proof of the completeness of the 
first-order functional calculus.
4 This is supported both within philosophy (for example, Machover, 1983) and empirically by 
research into the psychology of learning mathematics (Ernest, 2006; Tall, 2013).
5 In writing that signs create their own meanings, it is taken for granted and unwritten here that it is 
signs-in-use by persons that perform actions, for it is persons that use signs and create and compre-
hend meanings.
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1.2.5  The Constitutional Role of Social Agreement 
for Mathematical Objects

Social agreements play a decisive role in the constitution of mathematical objects 
and the validation of mathematical knowledge. Such agreements may be tacit and 
are introduced both implicitly and explicitly through mathematical practices and 
everyday games and practices with young children. Before counting can even begin, 
the idea of separate objects or units needs to be introduced into a learner or child’s 
worldview. This is the idea that some of the features of the environment can be 
construed as self-contained objects. Take for example, collections of toys, pebbles, 
or sweets. Each item in the collection can be treated as a separate independent 
object. In addition, steps in climbing a stairway, walking along the ground step by 
step, or other sequences of actions can also be seen in this way as series of discrete 
actions. Such a way of viewing a domain, although concrete and limited in extension 
at first, prepares it to be viewed as countable (Ernest, 2021b).

Once the experienced world is thus construed into repeated units, the founda-
tions of counting can be laid. A further prerequisite to be learned and tacitly agreed 
is a list of word numerals that must be used in a repeatable order. This list must be 
both stable, that is invariant, and as at least as long as the number of items to be 
counted. This is the first of Gelman and Gallistel’s (1978) five counting principles, 
(1) The stable-order principle.

The other principles are as follows.

 2. The one-one principle – this requires the assignment of one, and only one, dis-
tinct counting word to each of the items to be counted.

 3. The cardinal principle – this states that, on condition that the one-one and stable- 
order principles have been followed, the number name allocated to the final 
object in a collection represents the number of items in that collection.

 4. The abstraction principle  – this allows that the preceding principles can be 
applied to any collection of objects, whether tangible or not.

 5. The order-irrelevance principle – this involves the knowledge that the order in 
which items are counted is irrelevant.

These principles are something that a child must learn in their schooling or early 
home life. But although often viewed as knowledge, they are deontic social 
agreements. A quasi-counting activity must conform to them, or it is not socially 
acceptable. Entering a game or any social practice requires conforming to the rules 
and regulations of that activity as a participant. The rules are compulsory. They are 
expressed in the deontic modality that indicates how behaviours must be, to accord 
with the relevant norms.

The five counting principles listed here are part of the social agreements about 
what constitutes counting and ultimately regulates what numbers are. All 
mathematicians will adhere to such agreements, but they are so basic, so deeply 
entrenched, that with familiarity they seem obvious, unnecessary, and not needing 
to be articulated. Rules and agreements like these become subsumed into the 
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perceived essence of counting actions and number objects. Starting as necessary 
features of counting they become seen as features of numbers, intrinsic properties 
of the reified mathematical objects themselves. Only when someone like Cantor 
introduces his theory of transfinite numbers is the one-one principle made explicit, 
jolted back into focus, and considered in the light of the new problematic theoretical 
context, the equipollence of infinite sets. Otherwise, the one-one principle in 
counting is seen as intrinsic and definitional, rather than a norm that is (must be) 
followed.

One of the most valuable and remarkable features of mathematics is how the 
rich, deep, and complex concepts and objects come into being from simpler objects 
and actions. This allows the dizzy heights of abstraction to be scaled and objects to 
be created that exceed by so much what we perceive and experience in the material 
world, such as the concept of infinite sets. However, one cost of such repeated 
objectification and abstraction processes is that the rules and social agreements that 
determine the nature and limits of lower-level objects, concepts, and actions become 
perceived as essential characteristics of the more abstract objects created from them. 
The social agreements that shape and constitute arithmetic, for example, become 
hidden, forgotten, and indeed eventually denied as being the social agreements 
underpinning number. It is not that their observance is breached, but that they are 
seem as so essential that they become regarded as intrinsic to the constitution of the 
objects. Many mathematicians and philosophers state that the natural numbers are 
something given to humankind by nature (Penrose, 2004). The relationships, 
extrinsic constraints, and norms that govern their proper and permissible usages 
become seen as intrinsic properties of the objects in themselves. The social 
agreements that give shape to objects of mathematics become seen as inscribed in 
the essence and very being of the objects. The intellectual struggles of humankind 
over millennia to create counting and numeration systems are no longer seen as 
processes that through their notational inventions, their actions and conceptions, 
created what are now seen as the independent objects, the natural numbers. Even 
their name suggests that these numbers are natural, that is, given by nature, rather 
than the outcomes of processes of social construction based on imposed rules 
and norms.

My claim is that in this way social agreements play a constitutional role in math-
ematical objects. Cole (2009, p.  9) proposes ‘The thesis that mathematical enti-
ties—specifically mathematical domains—are pure constitutive social constructs 
constituted by mathematical practices, i.e. the rationally constrained social activities 
of mathematicians’. In other words, mathematical objects are social constructs, built 
up from the socially enacted and socially warranted actions described above, and 
founded on the social agreements of the community of mathematicians. These 
agreements are expressions of the deontic nature of mathematical practices and are 
manifested in conforming to their rules and norms. Many, if not most, of these 
agreements are tacit, agreements in forms of life, as in mutually aligned mathematical 
practices, not as explicit verbal agreements.
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1.2.6  Signs as Constitutive of Mathematical Objects

I have argued that the signs of mathematics play a constitutive role in the formation 
of mathematical objects. Actions on signs and objects become the next level of 
abstract objects, themselves depicted by signs. However, it should be made clear 
that not all mathematical objects are named by signs. Sometimes abstractions create 
whole classes of mathematical objects. For example, abstracting the set of Natural 
numbers 1, 2, 3, 4, 5, 6, … into a completed whole named ‘N’ does not result in an 
infinite number of names for all the members of N. We have a procedure for naming 
arbitrarily large natural numbers, but we can never name more than the members of 
a finite subset of N. Likewise mathematical abstraction creates many sets and classes 
of mathematical objects which can never all be named. Only a finite number of 
these mathematical objects can be named, even when the set to which they all 
belong is named. Thus abstraction, generalization and, in particular, the idealized 
completion of sets, sequences, and series cannot name all their members when they 
are infinite.6

Quine (1969) argues that the ontological commitment of any theory, mathemati-
cal or scientific, is to the domains of objects over which its variables range. Thus, 
Peano arithmetic, a scientific canonization of the rules of arithmetic, is ontologi-
cally committed to that which the variable n ranges over. This domain is N, the set 
of all Natural numbers, and so Peano’s theory is committed to the existence of all of 
the Natural numbers. Zermelo–Fraenkel set theory is committed to the existence of 
all of the sets its variable x ranges over. This class of sets is very large and contains 
sets of several orders of infinite magnitude. In both of these examples, our ontologi-
cal commitments, the classes of mathematical objects that the theories incorporate 
or bring into being includes many, many objects that cannot ever be all named. In 
both the cases of N and V,7 the universe of sets created by Zermelo–Fraenkel (ZFC) 
set theory, the global mathematical object constructed is a mathematical domain, a 
space containing many mathematical objects. These are themselves mathematical 
objects that encapsulate the endless processes of generating their members, each 
becoming a single entity within the space of mathematics.

1.2.7  The Human Construction of Mathematical Objects

I have argued that mathematical objects are formed through actions on mathemati-
cal objects and signs which are then abstracted and reified into higher level mathe-
matical concepts and objects. Notice that the verbs involved are all active: ‘to 
abstract’, ‘to reify’, ‘to act’, which all represent the action of a subject on an object. 

6 This answers the criticism of Cole (2008) that names cannot be constituent of mathematical 
objects because there are too many objects to be named.
7 V is the von Neumann class of hereditary well-founded sets.
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The subjects in question are irrefutably humans. It is their (our) activities that create 
mathematical objects, for mathematical objects do not create themselves. Their per-
formativity lies in the capacity of mathematical objects to engender actions and 
changes through the humans that use them; they are not possessed of any intrinsic 
or self-subsistent agency. It is humans who perform all these actions, and it is 
humans that abstract from these actions to create new mathematical objects.

Although mathematical objects are real, their reality is part of cultural activity 
and its products. Like all of culture, from money, clothing and cookery to languages, 
movies and ideas, mathematical objects are cultural objects. They are created in 
mathematical activities, which to a large extent can be represented as language 
games that take place within mathematical forms of life (Wittgenstein, 1953). 
Humans acting socially, within mathematical forms of life or mathematical practices, 
over time, are what create, enact, develop, and sustain mathematical processes, 
concepts, and objects. This is why the assumptions of presentism are problematic. 
They deny or disregard the passage of time which is ineliminable in the emergence 
and being of mathematical objects. Thus, for example, Endress (2016, p.  130) 
critiques John Searle’s (1995) account of social construction because ‘his entire 
work fails to answer or even discuss the question of how the status of “something,” 
as well as its “functions,” socially emerge’. This may not be Searle’s focus but his 
analyses do partially indicate how the physical comes to have social function and so 
be socially constructed. However, unless one understands their becoming, the transi-
tions in the formation of any social constructed entity, including mathematical objects, 
with its shift from process to structural object, one cannot fully understand what they 
are. Transitions and shifts occur over time, and these affect the constitution of the 
emergent mathematical objects, so time and becoming cannot be dispensed with.

Time is implicated in mathematics in three ways. First, there is historical time 
over which the mathematics in cultures comes to be and develops. I have considered 
in passing how counting and numeration systems have developed from oral counting, 
tally marks, and then written numerals of increasing complexity and sophistication. 
Second, there is personal time in which a person’s knowledge of mathematics and 
grasp of its objects develops. I will say more about this in the next section, but 
development over time in this domain is undeniable.

Third, there is the foundational analogue of time, the logical development, over 
the course of which, starting with primitive notions, the theoretical framework of a 
mathematical theory develops. This last is not real time, but a strong analogue 
because of the logical before and after relations.8 Concepts, definitions, results, and 
proofs are built up in a logical sequence when the later elements depend logically 
on the former ones.9

8 Lakatos (1976) points out that the ‘logical time’ of justification often subverts the ‘chronological 
time’ of discovery, when the presentation of a completed proof inverts the order in which it was 
created.
9 I reject a possible fourth aspect of time. This is the consideration of mathematics as having uni-
versal validity across time and space, as this contradicts the sequential emergence of mathematics, 
as well as the social constructionist assumptions of this chapter.
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This is similar to Lakoff and Nunez’s (2000) conceptual metaphor that maps 
from an image schema for temporal succession into the more abstract domain of 
logic. They call this the logical consequence is temporal succession metaphor.

Consider how Peano arithmetic begins with two primitive notions, a starting 
number, 0 say (historically Peano started with 1), and the successor function denoted 
by S such that S(n) is the successor of n (Peano used ‘+1’). It also includes a number 
of axioms. These make the following five assertions. Zero is a natural number. 
Every natural number has a successor in the natural numbers. Zero is not the 
successor of any natural number. If the successor of two natural numbers is the 
same, then the two original numbers are the same. Lastly, there is the induction 
axiom.10 If 0 has a certain property, and whenever n has that property, so does n + 1, 
then all of the natural numbers have that property. There are also the three standard 
identity axioms (reflexivity, symmetry, and transitivity) specifying the properties of 
the equality relation (=).

On the basis of these small beginnings, the operations of addition, multiplication, 
and exponentiation can be defined as well as subtraction and division in the limited 
ways they apply to natural numbers. From this modest foundation, number theory 
can now be built up with increasingly complex concepts, functions, and theorems. 
Ontologically, it can be said that the initial axioms bring the natural numbers into 
being, within the formal theory, but as the theory progresses, new objects 
corresponding to the subsequently defined concepts and functions are also brought 
into being.

A realist, either a Platonist or another kind of realist, can respond to these asser-
tions with the answer that Peano arithmetic does not create the natural numbers but 
merely provides an elegant and minimal axiomatization of the properties and 
assumptions underpinning the already existent natural numbers. Over history and in 
personal development, this is true. The historical growth in the formulation of the 
natural numbers and number theory does precede Peano’s axiomatization. 
Foundationally this is not true, the simpler parts of the theory logically precede the 
more complex and dependent later parts. There is an irreversible flow, if not of time, 
of its logical analogue from the simpler to the more complex later parts of the theory.

My argument is that we also need to allow for time in philosophy, and in particu-
lar, in ontology. Both the objects of mathematics and the mathematical identities of 
persons, that I consider in the next section, grow and change their characters over 
time, they are subject to processes of becoming. Ontology needs to permit emer-
gence and change in the entities for which it accounts. A static snapshot of being 
will not suffice to explain of what it is formed.

10 If P is a subset of N, and 0 belongs to P, and if n belonging to P implies S(n) also belongs to P, 
then P=N.
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1.2.8  The Ontology of Mathematical Objects

At this point in the exposition, I have now introduced all the elements that make up 
the social constructionist account of the ontology of mathematical objects.

What constitutes mathematical objects? Mathematical objects are abstract 
objects in shared cultural space (the space of mathematics) constituted by rules and 
agreements established in and by the community of mathematicians, many of which 
are also sustained and upheld in wider society. These rules and agreements include 
the tacit rules and conventions into which mathematicians are socialized as they 
participate in the shared social practices of mathematics. In Wittgensteinian (1953) 
terms, these include agreement in forms of life in which the actions and practices of 
participants are aligned, that is, run in the same direction, often without this direction 
ever being explicitly articulated. Mathematical objects gain their legitimacy through 
usage, for every instance of use confirms their validity, both among mathematicians 
and in wider society. In addition, the patterns of, and connections within, their usage 
also gives them their meanings. Mathematical domains are also objects of 
mathematics, even if they are populated with an infinite number of mathematical 
objects which cannot all be named.

What ‘stuff’ are mathematical objects made from? Mathematical objects are rei-
fications built from abstracted actions on simpler mathematical objects and actions. 
Humans have a capacity for and a tendency towards nominalization. Just as nouns 
are created in the nominalization of verbs describing actions, so too mathematical 
objects are created from the nominalization of mathematical actions. This is a pro-
cess of reification, encapsulation, and transformation in which actions become 
structural objects (Sfard, 1994; Dubinsky, 1991). Furthermore, this process is cumu-
lative with increasing levels of abstraction, as actions on simpler objects become 
more complex objects in themselves.

Where are mathematical objects to be found? Mathematical objects exist in the 
cultural space of mathematics, a shared domain of signs and operations, whose rule- 
governed uses provide their meanings. This domain is primarily added and used by 
mathematicians, but also widely accessed by the public for simple constructs like 
numbers, whose constitution links them to actions in the empirical world.

Why are mathematical objects objective? Mathematical objects are objective 
because at any given time they appear ‘solid’ (inflexible and invariant) founded on 
mathematicians’ agreements and fixed, publicly shared uses in the domain of 
mathematics and beyond. Their uses are rule governed and there is widespread 
agreement without ambiguity as to correct usage. Once created mathematical 
objects ‘detach from their originator’ (Hersh, 1997, p. 16) becoming independent 
and self-subsistent entities within a shared domain, the cultural space of mathematics. 
However, if mathematical practices shift over time, so too may the rules and objects 
of mathematics themselves, reflecting such cultural shifts.

Why are mathematical objects and their relationships viewed as necessary? The 
necessity arises from the deontic nature of the rules of mathematics. Mathematicians’ 
agreements are often tacit, being obligations assumed with participation in 
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mathematical practices, and these determine what ‘must be so’. The rules are 
imperatives, analogous to those that must be followed in order to play chess. To 
engage in mathematical activity, you must use the objects of mathematics in the 
prescribed ways. Mathematics and mathematical entities are non-contingent because 
they necessarily conform to and obey the rules, customs, and conventions of 
mathematics. Furthermore, mathematical results and theorems necessarily follow 
by logic from the axioms and assumptions laid down in mathematical theories.11 
Logic also rests on deontic necessity, for it follows laid down and inflexible tracks 
of reasoning that, it is accepted, ‘must be so’ (Ernest, In preparation).

Why do mathematical rules have the modal status of necessity? Mathematical 
rules and customs make up the institution of mathematics. The institutionalization 
of social processes such as mathematical practices grows out of the habitualization 
and customs, gained through mutual observation with subsequent mutual tacit 
agreement on the ‘way of doing things’ in these practices. Thus, to engage in a 
mathematical practice is to be habituated into the norms, customs, and uses of the 
rules and to follow and apply them unquestioningly as imperatives. Associated with 
institutions such as mathematics are a set of beliefs that ‘everybody knows’ (e.g. 
‘there is a set of natural numbers {1, 2, 3, 4, …}’, 1 + 1 = 2, 50 + 50 = 100, 9 > 8, 
and so on). These beliefs make the institutionalized structure plausible and 
acceptable, thus providing legitimation for the necessity of the institution of 
mathematics (Berger & Luckmann, 1966). Much of the language of mathematical 
texts is imperative, in the deontic modality, as engaging in the practice (‘playing the 
game’) necessitates following the tacit and explicit rules and norms embedded in, 
and constituting the institution of, mathematics (Ernest, In preparation).

1.3  Human Subjects and Mathematical Identities

1.3.1  Being in Terms of Mathematical Identity

In this section, I aim to address and tentatively answer the ontological problem of 
mathematics education mentioned above. This problem concerns persons, for in 
mathematics education, the primary concern is with human beings, both learners 
and teachers. What is the nature of a living, thinking human being? We know it is 
(we are all) a biological animal but are there any special features of a human being 
that pertain to mathematics and its teaching and learning mathematics?

Here, my concern is what I term mathematical identity. By this I mean those 
acquired capacities in the child and adult that enable participation in mathematical 
activities. This could be termed a person’s mathematical power or capability. I do 

11 Note that some of the axioms and assumptions that underpin mathematics can be contingent, as 
they may follow from mathematicians’ choices, albeit constrained choices. The same holds for 
mathematical logic.
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not mean the person’s self-image, social image, or sense of belonging to a group, be 
it as a mathematician, mathematics teacher, or mathematics student. These are the 
sociological senses of the term mathematical identity widely used in mathematics 
education, such as in Owens (2008).

In considering the nature of individual human beings from the perspective of 
their capabilities, one must not overlook the social dimension: social practices, 
social groups, and even social constructions and structures. To think that individual 
persons exhaust all of social being is to fall into the reductionist traps of individualism. 
An active social group is more than a set of individuals. It includes a history of 
interactions with other individuals expressing themselves through actions and 
speech and reactions to involvement in such activities. The impact of the activities 
of the groups will be to change the individuals involved to greater or lesser extent. 
This is the fundamental principle of education, organizing social activities intended 
to help human beings to develop and become something different.

In this section, I want to consider both a fully grown person, an adult, and a 
developing person, a child. By looking at these two aspects of humanity, time has 
already been admitted, because a child develops over time into an adult. I also 
signalled here and above, in the introduction, that in considering the nature of 
human being, there is the problem of the ideology of individualism.

1.3.2  The Ideology of Individualism

The ideology of individualism is a perspective that puts individuals first. Not only is 
it a social theory favouring freedom of action for individuals over collective action, 
social responsibilities, or state control. It also positions the individual as ontologically 
prior to the social. Individualism may be related to the top-down position of the 
modernist metanarrative in which the ‘gaze’ of a reasoning Cartesian subject with 
its legitimating rational discourse is assumed to precede all knowledge and 
philosophy. The rational knower comes first and is a universal intelligence that is 
embodied to a greater or lesser extent in individual humans (Scheman, 1983). 
Modern individualism acknowledges that human beings are embodied, and we are 
more than just knowers for we also have drives. Our primary motivations are to seek 
our own survival and the satisfaction of our own, individual desires. Individualism 
validates this ethical self-centeredness.

According to the individualistic view, humans are entirely separate and indepen-
dently living creatures (Rand, 1961). Although it is conceded that our independence 
is not wholly complete, because we do depend on each other for help in survival, 
nevertheless individualism emphasizes that we are autonomous, self- motivated, 
agentic creatures who have a great deal of freedom in choosing how we act and 
behave. Our capacities for understanding, knowing, thinking, and feeling belong to 
ourselves as individuals and to ourselves alone. Our consciousness is independent, 
unique, and unconnected with that of other people (Soares, 2018).
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Individualism underpins various modern theories such as Piaget’s genetic episte-
mology. According to Piaget, children develop individually following a number of 
inscribed stages in their growing understanding and capacities. There is an inbuilt 
logic to cognitive development, perhaps analogous with how a living organism 
grows, directed by its internal genetic programme. Thus, persons are all existen-
tially separated creatures whose actions, learning, and even whose being take place 
in hermetically sealed personal domains. The social and physical environment may 
help or hinder a person’s development, just like water, nutrients, and being located 
in a sunny place will help a plant to grow. But the endpoint or goal of growth is 
internally encoded and driven.

My criticism of this perspective is that it radically underestimates our ontological 
dependence on other fellow human beings (Lukes, 1968). First of all, we originate 
inside another human’s body, our mother’s, and cannot survive physically without 
close proximity to and regular attention from a primary caregiver including, but not 
limited to, feeding. Beyond physical survival our mental, emotional, and personality 
development requires caring attention for the first decade or two of the years of our 
lives (Lewis et  al., 2000). That attention includes many thousands of hours of 
involvement with others in social activities through which we acquire spoken 
language, or an equivalent, and other aspects of cultural knowledge. The mechanism 
by means of which we make our needs known and receive assurances is conversation, 
understood broadly. This includes the pre-verbal enacted forms of conversation 
involving touching, holding, crying, pre-verbal vocalization, facial expressions, 
gestures, and other embodied actions. It is through such means that we learn the use 
of words and language. We also develop our identities as persons and our emotional 
being by these means. Thus, my objection to individualism is that although as 
primates we are separate animals, as humans we are socially constituted beings. Our 
very formation and becoming human depends essentially on the social experiences 
that shape us. We would lack our special human characteristics of shared languages, 
shared cultures and shared modes of thinking and being, were we hived off from 
each other in the way that individualism supposes. Our identities are socially 
constructed, and we could not be the full human beings that we are if we were not 
socialized and enculturated.

1.3.3  Conversation and the Social Construction of Persons

Ontologically, I want to distinguish between the biological genesis of the human 
animal and the cultural genesis of the human being as a person. Obviously, the 
animal provides the material and biological basis of being human, but my claim is 
that building on that basis, the human being needs to be socially constructed. At the 
heart of social constructionism lies the dialogical pattern of interactions and 
knowledge growth and warranting. The unit of analysis, the fundamental atom upon 
which social constructionism is built, is that of conversation. In its minimal 
manifestation, this occurs between two persons, who are communicating as 
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participants in a jointly shared social activity, in a social context. There is a 
continuum of contexts in which conversations take place from face-to face preverbal 
and verbal interactions all the way to the mediated conversations using letters, 
emails, and other forms of media over extended distances and timespans.12

Conversation and dialogue are widely occurring and utilized notions across phi-
losophy and the social sciences. For the philosopher Mead (1934), conversation is 
central to human being, mind and thinking. Rorty (1979) uses the concept of con-
versation as a basis for his epistemology. Wittgenstein’s (1953) key idea of language 
games situated in forms of life is evidently conversational, and I draw on this heav-
ily. Many other philosophers and theorists could be cited, including Gadamer, 
Habermas, Buber, Bakhtin, Volosinov, Vygotsky, Berger, and Luckmann, and more 
generally, social constructionists.

Central to the social constructionist ontology is the view (shared with Gergen and Harré) 
that the primary human reality is conversation. (Shotter, 1993, pp. 13)

Because of the evidently interpersonal nature of teaching, references to conver-
sation and dialogue are very widespread in the mathematics education literature. 
However, concerning the philosophy and foundations of mathematics, the refer-
ences are more limited. But there is growing attention to conversational, dialogical, 
and dialectical interpretations and philosophies of mathematics (Ernest, 1994, 1998; 
Dutilh Novaes, 2021; Larvor, 2001).

The original form of conversation is evidently interpersonal dialogue, which 
consists of persons exchanging speech, or other constellations of signs generated or 
uttered during the period of contact, based on shared experiences, understandings, 
interests, values, respect, activities, demands, orders, etc. Thus, in Wittgensteinian 
terms, it is comprised of language games situated in human forms of life. ‘One may 
view the individual’s everyday life in terms of the working away of a conversational 
apparatus that ongoingly maintains, modifies and reconstructs his subjective reality’ 
(Berger & Luckmann, 1966 p.152).

Two secondary forms of conversation are derived from this most immediate and 
primary form. First, there is intrapersonal conversation, that is thought as constituted 
and formed by conversation. According to this view, (verbal) thinking is an originally 
internalized conversation with an imagined other (Vygotsky, 1978; Mead, 1934). 
Intrapersonal conversation becomes much more than ‘words in the mind’, and the 
conversational roles of proponent and critic discussed below are internalized, 
becoming part of one’s mental functions (Ernest & Sfard, 2018).

Second, there is cultural conversation, which is an extended variant, consisting 
of the creation and exchange of texts at a distance in embodied material form. I am 
thinking primarily of chains of correspondence be they made up of letters, papers, 
email messages, transmitted diagrams, and so forth, exchanged between persons. 
Such conversations can be extended over years, lifetimes even. It can be argued that 

12 In this chapter I use dialogue and conversation interchangeably. Some authors use ‘dialogue’ to 
mean a democratic and ethically more valuable type of conversation. Here I am using these terms 
descriptively without prescriptive attribution of greater ethical value to one over the other.
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they extend beyond a single person’s lifetime, if new persons join in and maintain 
and extend the conversation. Indeed, human culture made up of the ideas, texts, and 
artefacts made and shared and exchanged by people over millennia has been termed 
the ‘great conversation’ (Hutchins, 1959; Oakshott, 1967).

These three forms of conversation are all social. They are either social in their 
manifestation, in the case of interpersonal and cultural conversations, or social in 
nature and origin, as is the case with intrapersonal conversation. In the latter, 
thinking is a conversation one has with oneself, based on one’s experience of, and 
participation in, interpersonal conversations (Sfard, 2008). In all manifestations, 
stemming from its interpersonal origins, conversation has an underlying dialogical 
form of ebb and flow, comprised of the alternation of voices in one register followed 
by another in the same register or of assertion and counter assertion. Conversations 
result in affirmation and bonding, unless the responses are in the less common forms 
of negation, refutation, rejection, or the silencing of a speaker. Just cooperation in 
the form of keeping the channel open provides feelings of enhancement for the 
speakers. More generally, a fully extended concept of interpersonal conversation 
including non-verbal communication, mimesis and touch encompasses all of human 
interaction and is the basis for all social cohesion, identity formation, and culture.

In addition, I wish to claim that all human knowledge and knowing are conver-
sational, including mathematics. Elsewhere I have described the specific features of 
mathematics that support this analysis, namely that many mathematical concepts 
are at base conversational, as are the processes of discovery and justification of 
mathematical knowledge (Ernest, 1994, 1998). However, a word of caution is 
needed before I further develop conversational theory. Although mathematics is at 
its root conversational, it is also the discipline par excellence which hides its 
dialogical nature under its monological appearance. Research mathematics texts 
expunge all traces of multiple voices, and human authorship is concealed behind a 
rhetoric of objectivity and impersonality. This is why the claim that mathematics is 
conversational might seem so surprising. It is well hidden, and it subverts the 
traditional view of mathematics as disembodied, superhuman, monolithic, certain, 
and eternally true.

1.3.4  The Critical Roles of Proponent and Responder 
in Conversation

Conversation is the basis of all feedback, whether it be in the form of acceptance, 
elaboration, reaction, asking for reasons, correction, and criticism. Such feedback is 
in fact essential for all human knowledge growth and learning. In performing such 
functions, the different conversational roles include the two main forms of proponent 
and critic, which occur in all of the modes (inter, intra, cultural), but originate in the 
interpersonal.
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The role of the proponent lies in initiation, reaching out, putting forward an idea 
or emergent sequence of ideas, a line of thinking, a narrative, a thought experiment, 
or a reasoned argument. The aim is to share feelings, make demands, communicate 
an idea, build understanding, or convince the listener (Peirce, 1931-58; Rotman, 
1993). Elsewhere I have described how this is the mechanism underpinning the 
construction of new mathematical knowledge (Ernest, 1994, 1998).

In contrast, there is the role of responder, including critic, in which an utterance 
or communicative act is responded to in terms of acknowledgement of its 
comprehensibility, acting in response to a request, actively demonstrating a shared 
understanding, providing an elaboration of the content, or in other ways. In the role 
of the critic, the action or utterance may be responded to in terms indicating 
weaknesses in its understandability and meaning, its weaknesses as a proposal, its 
syntactic flaws, how it transgresses shared rules, and so on. Critical responses need 
not be negative, and the role of the responder includes that of friendly listener 
following a line of thinking, narrative, or a thought experiment sympathetically in 
order to understand and appreciate it, and perhaps offer suggestions for its extension 
variation or improvement.

In conversation, ideally the voices or inputs of the proponent and critic alternate 
in a dialectical see-saw or waltz pattern. In its most rational or mature discursive 
mode, the proponent puts forward a thesis. The critic responds with a critical 
antithesis. Third, the proponent, prompted by the critic, modifies the thesis and puts 
forward a synthesis, a correction, or replacement that is the new thesis in the next 
iteration of the cycle. Thus, we have a dialectical process approximating the thesis- 
antithesis- synthesis pattern. In this cycle, the speed of the iterations can vary greatly. 
In a face-to-face conversation about a mathematical problem at a whiteboard, there 
can be many mathematical back-and-forth contributions in the space of an hour. But 
in submitting a mathematics paper to a teacher or journal, it may be that weeks or 
months pass before critical feedback is received.

From the outset, or nearly so, persons will adopt both the positions of proponent 
and critic, sometimes within the same conversation. This can also be the case with 
intrapersonal conversations in which, say, someone thinking about anything, such 
as a mathematical problem, having internalized these roles alternates between 
proponent and self-critic.

These two roles are widely present in teaching (teacher/expositor vs. examiner/
assessor) and learning (listener/engagement with learning tasks vs. responder/
reviser following formative assessment). Indeed, my claim is that these two roles 
reappear throughout all human social interactions in the form of communicator and 
responder, although not all elements of conversation need necessarily fall into these 
two categories.
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1.3.5  The Significance of Conversation in Social Activity

Wittgenstein (1953) interprets human living in terms of his fundamental concepts, 
language games, and forms of life. Language games can be understood as 
conversations, and these are embedded in human forms of life, that is as social 
activities. Every social activity has a purpose, a goal, and language and conversation 
are communicative techniques for working together towards that goal. Examples 
include mothering an infant with the goal of the infant flourishing (holding, feeding, 
responding, etc.), working together in a carpentry workshop with the aim of building 
furniture, working mathematical problems in a classroom with the goal of learning 
mathematics, and so on.13 In all such activities, the goal of the activity comes first, 
and the ways of working, the conversational communications are all about furthering 
the goal. In such activities, both roles of conversation are important. Conversation 
can help to focus attention, bond the participants, and direct activities.14 In this 
context, the role of responder or critic is vital. When a colleague or more expert 
participant demonstrates or suggests a way of working or guides the other utterances 
of the sort ‘like this, not like that’ embody the role of the critic. This can take the 
form of Show, Copy, Guide (correction). The teacher shows an action, the learner 
copies the action, and the teacher guides and corrects the action. By teacher, I mean 
anybody in the role of guiding partner and correcting responder, whether they be a 
parent, peer, schoolteacher, workmate, or trainer; in short, the more knowledgeable 
the other within the learner’s Zone of Proximal Development (Vygotsky, 1978). 
Given that meaning is largely given by use, following Wittgenstein (1953), through 
guiding and correcting use, the more knowledgeable other is shaping the associated 
meanings for the learner.

I want to stress that this process, this mode of interaction, is vital in learning how 
to conduct any practice. This is not only true in concrete production practices, such 
as carpentry, baking, building brick walls, and so on. It is the mechanism by mean 
of which all social rules are communicated. These rules include the correct use of 
spoken language, modes of acceptable behaviour in public, how to treat people, 
animals and things (ethics in practice), mathematical activities, and so on. This 
conversational mechanism is how the rules and agreements that make up social 
institutions are communicated and maintained. Some rules and agreements may 
have explicit linguistic formulations, like laws of the land, or mathematical axioms, 
but by far the majority of socially accepted rules and agreements are implicit and are 
learned through copying others’ performances and the novice’s own corrected usage.

13 This is not to deny that persons working together in a shared practice can have different goals, 
such as reluctant student not fully participating in the classroom practice that the teacher is 
directing.
14 Conversation can also be used to further separate the interlocutors by asserting and reinforcing 
power and status differences, such as a teacher imposing order on an unruly class.
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1.3.6  The Realities We Inhabit

I want to start with the assumption that all humans share some indescribable under-
lying realities. My claims about this shared reality are ontological not epistemologi-
cal, we can never fully know these realities, but we learn how to operate in them. In 
some unchallengeable pre-scientific and pre-philosophical sense, human beings all 
have the experience of living together on the Earth. As a common species, we have 
comparable bodily functions and experiences that make our sense of being who we 
are and of daily life commensurable. In virtually all cases, these shared realities are 
in fact the social activities in which we participate.

Heidegger’s (1962) view is that we all have a given, ‘thrown’ preconceptualized 
experience of being an embodied person living in some sort of society. He celebrates 
authenticity, our ‘being-here-now’ existence (Dasein), an attitude that acknowledges 
our multiple existence in the linked but disparate worlds of our experience: the 
bodily, mundane, discursive, political, professional, institutional, and cultural 
realms. Our experience in these social and worldly forms-of-life is taken for granted. 
It provides the grounds on which all knowing and philosophy begins, although no 
essential knowledge or interpretation of the basal lived reality is either assumed or 
possible. This is a bottom-up perspective that contrasts with the top-down position 
of modernist metanarratives in which a legitimating rational discourse and the 
‘gaze’ of a reasoning Cartesian subject is assumed to precede all knowledge and 
philosophy. The rational knower does not come first, he (and I use the masculine 
deliberately) is not a universal disembodied intelligence, but a construction with 
historically shaped sensibilities. Once again, this illustrates the need to accommodate 
growth, development, emergence, and becoming in ontology.

Virtually all of our capacities are shaped by the social practices in which we 
participate. We could not learn, understand, use, or make mathematics unless we 
were educated, language and sign using social beings with personal histories and 
mathematical learning trajectories. Like every (academic or school) subject, 
mathematical knowledge requires an already present knower, and this must be a 
fleshy, embodied human being with both developmental history (including an 
educational history) and a social presence and location. Obvious as these statements 
are, they have been ruled irrelevant and inadmissible by generations of philosophers 
and mathematicians that subscribe to an absolutist or Platonist philosophies of 
mathematics.

Paramount amongst the realities we inhabit are the social institutions of which 
we are a part. Our understandings, as evidenced by the ways in which we participate, 
are shaped by long histories of conversational exchanges, situated in various social 
practices. These formative conversations have not only inducted us as participating 
entrants to, and members of, the institutional practices and domains. They have also 
shaped our actions so as to be maintainers and onwards developers of the social 
institutions. Social institutions and social realities are kept alive and afloat 
(metaphors for continuing and enduring existence) by the myriad actions of the 
participants in reaffirming the conventions and rules intrinsic to the institutions. 
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These reaffirming actions are directed through conversations with both insiders, that 
is participant members, and outsiders, demarcating the rules, norms, conventions, 
and boundaries that define and constitute the institutions and entry to the associated 
social practices.

1.3.7  Conversation and the Genesis of Thinking

An important part of conversation theory concerns how it is implicated in the gen-
esis of thinking and constitutive of thought. To sketch the genesis of thinking, we 
start with a human baby with its sense impressions of its world of experience, prob-
ably beginning in a rudimentary way during its period of gestation. Some of these 
sense data originate from outside its own body, such as from light (impacting via 
seeing), from sound (via hearing), from touch (via skin pressure nerve arousal). 
Some of these experiences originate from within the baby’s own body, such as 
hunger, bodily discomfort, and what we might see as spontaneous emotions. These 
two sources of experience are deeply interwoven. The distinction is far from abso-
lute since sensory inputs must be interpreted in both cases. I believe that the baby 
notices invariants and starts to impose some order, structure, or pattern on its expe-
riences giving rise to what Vygotsky (1978) calls spontaneous concepts. What such 
concepts are I cannot say precisely but they may not only include regularities in 
sensations but also regularities in responses such as movements, vocalizations, etc. 
Undoubtedly, these concepts vary and grow over time; they are not static and need 
not be constant. The baby is not isolated in this world of experiences, actions, and 
concepts because the baby is involved in preverbal dialogues, comprising recipro-
cal actions and what we might call signalling with others, most notably the mother 
or primary caregiver.

At this stage, it is hard to know what the baby’s thinking is like. Presumably there 
will be ‘inner’ sensations and experiences such as pleasure and discomfort or 
displeasure, recognition of familiar persons, objects and experiences, desires, 
associated emotions and feelings, sensory images recalled from memory. There 
may well be reactions to familiar and non-familiar persons, objects, and experiences, 
accompanied by emotions such as interest, curiosity, desire. The baby will also 
experience negative emotions including anger, anxiety, or fear, in response to such 
experiences as being startled by sudden loud noises. What the flow of ideas and 
experiences brought into consciousness is like I cannot say, but I expect it will be 
led by sensory stimuli, whether external or internal in origin.

Now we move to the next stage, although of course this overlaps with the prever-
bal phase, and ultimately engulfs it, as I shall argue. Other persons, such as the 
mother, will start to use words with the baby, beginning a verbal dialogue, accom-
panying embodied exchanges such as looking, touching, holding, rocking, and so 
on. There are intermediary phases in the development of language such as the baby 
babbling in what we can interpret as pretend speech in the ‘game of talking’. After 
some exposure to adult speech, the baby will start to use words back, mummy, 
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daddy, ball, dog, or whatever. The baby starts to use these words in a regular and 
recognizable way. At this stage, the baby/young child is starting to develop what 
Vygotsky (1962) terms scientific concepts, which would be better termed social or 
cultural concepts. The use and mastery of language takes quite a long time and 
during this time the child develops and uses a growing set of linguistic capabilities. 
Of course, this development is triggered by engagement in a growing range of 
activities with accompanying dialogues in different contexts, with different 
purposes, and with different but overlapping vocabularies.

Somewhat later during childhood, after the acquisition of spoken language, most 
children also start to learn to read and write, and these encounters with written 
language may also feed into the development of their thinking. This includes written 
arithmetic and other parts of mathematics. However, I won’t speculate on the impact 
of reading and writing on thinking beyond its role as an add-on and expansion of 
spoken language.

A second strand of development concerns attention, which is part of human 
agency. A baby turns to look at objects or people that interest it or that move and 
draw their attention. Part of this is following their mother’s or caregiver’s gaze 
(Deák, 2015). Of course, other sensory stimuli also capture its attention, sounds, 
touch, smells, tastes, pain, and so on. As the child develops, its power of self- 
directed attention grows and becomes increasingly volitional. In addition to 
choosing what to attend to in its experiential (perceptual) world, the child can 
choose and initiate its own activities. It can direct its attention to different activities 
including toys, games, video, TV programmes, touch screens, nature, animals, and 
other things. One of the most important things that a child attends to is other humans 
and dialogue. The child attends to many utterances from others and participates in 
dialogues.

So now the stage is set for me to propose what thinking is or at least might be. 
According to Vygotsky (1962), the child’s spontaneous and scientific (that is, 
linguistically acquired) concepts meld or at least start to interact and form one inner 
system of concepts from quite early on. Words and linguistic utterances have been 
experienced in various contexts and the uses they are put to and the activities they 
are a part constitute their initial meanings. Young children will have spoken 
dialogues with themselves in which they may instruct themselves mimicking what 
they have experienced with more capable, older speakers. After a while, these self- 
directed conversations become silent, internalized but perhaps visible through sub- 
vocal lip movements.

On this basis, children’s private thinking consists of an inner dialogue the person 
has with themselves. This is learned from participation in conversations and 
discourse with others. But this inner dialogue is not just made up of words – it is 
supplemented by and may even have elements replaced by visual imagery, memory 
episodes, feelings (emotions, etc.) within the experienced stream of ideas. An 
associational logic is at play so perceived external persons, objects, or events may 
trigger associations that become contents in the inner dialogue. Thus thinking, the 
inner dialogue, may be a string or cluster of meanings, concepts, or reasonings. This 
may be prompted by external stimuli, such as conversations/speech from someone 
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else, experiences or events in the world, or may be internally generated, such as 
when I solve a mathematical problem mentally. The stream of ideas, etc., that I 
experience in thought is multimodal and can involve words and associated concepts, 
imagery both real and imagined, smell and touch impressions, or memories of them, 
etc. We also have some control over this internal dialogue, we can choose to 
remember something, direct our attention to some idea, memory, problem, etc. Of 
course, things also come unbidden to our thought, either because of some deep 
unconscious trigger or an association that draws our attention aside or onwards.

Although our thought originates in interpersonal conversation, in becoming 
intrapersonal conversation, it differs from public speech. For as conversation is 
internalized, it combines with our preverbal thought, sensory perceptions, visual 
images, emotions to become a richer multimodal conversation we have with 
ourselves. All these aspects as well as personal meanings are attached to the words 
and signs we use. Thus, we can think spatially as well as verbally. Vygotsky (1962) 
argues that the contents of our mind are not structured the way our speech is. When 
we engage in social, interpersonal conversations we also communicate multimodally 
using gestures, expressions, tone of voice, objects, and other props, as well as our 
oral linguistic utterances.

Our thinking, this internal stream of ideas and thoughts, is a dialogue in three 
ways. First, learning to speak is by means of participation in dialogue and 
conversation. So languaging is a process driven by public speech, that is words and 
speech. These evoke meaningful concepts and reasoning responses in us  – their 
content and form are irrevocably tied in with their origin, that is spoken dialogue or 
conversation. Vygotsky is often interpreted as saying that speech and dialogue 
become internalized. This is of course a metaphorical rather than a literal description. 
Children learn to imitate phrases. I expect they can also imagine the sounds of these 
utterances subvocally, that is solely in the mind. So, exposure to speech leads to 
something like speech in the mind.

Second, our streams of thought come in segments. How these are demarcated or 
segmented varies, but each segment will have a coherent meaning. Each of these 
thought segments evokes an association or follow on, a response or reply. Thus, we 
follow each thought by its echo or answer, like question and answer, thus exhibiting 
the dialogue form. Just as in a spoken dialogue, we have choices as to how to choose/
make our replies thus steering the conversation. Likewise in our internal dialogue, 
we can choose how to follow on a line of thought. Of course, some people with 
compulsions find it difficult to steer away from a recurrent pattern of thought. 
Indeed, this can happen to any of us if we are stressed by a difficult situation or 
conflicting or difficult demands or an unsatisfactory ending to a previous 
conversation. So, all my general claims must be hedged with caveats because less 
typical events and cases can always occur.

Third, our thinking is dialogical when we are reacting to an artefact – a piece of 
writing, painting, a performance, or even someone talking including a lecture. The 
attended-to part of the artefact is one voice in the conversation and our reactive or 
reflective thoughts constitute the second voice, which we may or may not utter 
in public.
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Our internal dialogue can have a variety of functions. It might involve planning 
some action, a solution to a problem, a plan for making something, the development 
of ideas. This is imagination at work in thought. This may involve all sorts of 
meanings including concepts, word meanings (associations), visual imagery, 
practical sequences of actions. However, such planning or creative imagination 
need not anticipate or take place separately from our activities. For often we can be 
involved in making something, such as me writing these observations, and not know 
beyond a hazy idea, if one has that, where our stream of ideas or words – our internal 
dialogue – is going to lead. Often our next step in the creative process is enacted as 
the moment arises. It is a choice, often what feels like the right choice, possibly the 
necessary choice, but made in the moment.

1.3.8  Extending the Meaning as Use Theory

Following Wittgenstein (1953), I have adopted his operationalization that the mean-
ing of a word is in many cases given by its use. However, this needs disambiguation, 
for ‘use’ has multiple meanings. The particular use which I make when I utter the 
word ‘red’ or ‘addition’, say, at a specific event within a particular form of life is one 
such enactment of meaning. But the system of use or usage has another meaning. 
This includes a systematic grammatical theory of usage that describes past correct 
usages and potentially includes future correct uses or at least the rules that will 
guide them. De Saussure made this point when distinguishing Parole (utterances of 
spoken language) from Langue (the system of language). Specific uses are one thing 
but systematic patterns of use which entail imperatives about future specific uses are 
another.

What one can say is that the spoken utterance meaning of use comes first. Use in 
the systematic, theoretical sense is secondary to specific instances of participation 
in conversations and making or hearing utterances. (Parole precedes Langue.) There 
is a history (we all have histories) of language uses, and we all have a set of memories 
of instances of language uses – our own and others. In addition, these memories will 
include the corrections we have received, observed, or given, via conversations, 
which have shaped our capacities for spoken language. In fact, we may not remember 
many such corrections, but our linguistic know-how will have been shaped by such 
instances of correction and correct usage, from childhood on. Many persons will not 
have explicit or full theories of word use, but have the capacity to make and 
understand meanings from word utterances based on their implicit know-how.

In the present context, the significance is that the meaning of a word as given by 
a specific utterance or instance of use is only partial. In the broader sense, meaning 
as use depends on a whole pattern of usage to give a better indication of meaning. 
This pattern might only be encapsulated in a tacit set of guidelines or intuitions 
whose function is, in effect, to regulate which uses are correct and which are not.

At this point, Robert Brandom’s (2000) inferentialist account of meaning is help-
ful. For Brandom, the meaning of words and sentences is largely given by their use 
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in language, but it is a central aspect of use, namely the nexus of inferential connec-
tions with other words and sentences. For Brandom, the inferentialist meaning of a 
word or sentence S is its connections through reasoning with antecedents (reason-
ings leading to) S and its consequences (reasonings that follow from S). These uses 
are shown through enacted utterances, but meaning reflects past uttered links and is 
always open towards the future. So, the current meaning of a word or sentence, at 
any time, is partial and never final, for further patterns of use will supplement the 
meaning. As Wittgenstein (1978) says, a new proof of a proposition, changes the 
meaning of the proposition. Adding logical antecedents or consequents to a sen-
tence changes its meaning.

1.3.9  Dialogic Space

I have considered how children acquire language and the ability to communicate 
meanings. In addition, I have described how children internalize conversation as a 
basis for their thinking. On this basis, I can now offer an account of the zone in 
which meanings are communicated and shared, termed dialogic space (Wegerif, 
2013; Lambirth, 2015). This is the virtual space in which words, gestures, and signs 
are uttered, perceived, and responded to. Dialogic space or spaces are both public 
and private. A conversation between persons has 'visible' multimodal utterances 
which are public, but also runs through our private spaces of understanding where 
we attend to the dialogue and create or conjure up associations, narratives, imagery, 
emotional responses in our reception of the dialogue. We may engage in an 
intrapersonal dialogue in response.

Figure 1.1 represents some of the basic elements of dialogic space and its partici-
pants. I emphasized the key actions with of italics. As participants, through listening 
we pay attention to what is being said, understanding it in terms of building the 
meaning links to what we know (the network of words and concepts to which we 
have personal access). Through understanding we take personal ownership of the 
meaning links to antecedent and consequent expressions in our network of reasoning 
relations. When we have an expressive impulse, we loosely assemble the idea or 
remark and express it as our chosen supplement to the dialogue that we utter. (Note 
that our remark is not usually created in private and then uttered. It normally comes 
into being as it is uttered.) Every participant in the dialogue does this. Participants 
also own a set of rules about how the dialogue should be conducted in terms of 
participative membership, the appropriate form of contributions, and the conceptual 
content of contributions. This overall process is illustrated in Fig. 1.1.

Thus, in addition to exploring and developing the ideas under discussion (the 
content of the dialogue) participants’ contributions can also be utterances that are 
about regulating or policing the dialogue based on rules that should reflect shared 
values and democratic principles. For example, in a dialogue between friends and 
colleagues, one or more contributors may intervene about imbalances in 
contributions, such as some participant speaking too much or another being 
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DIALOGICAL 
SPACE                      
* Utterances
* Shared 

Rules

Person 3 Person 1

Person 2

Utters Listens

Chosen supplement      Attention 
Ideas Meaning, New links
Expressive impulse ← Ownership

Personal 
corner 1

Personal 
corner 3

Fig. 1.1 Dialogic space with its personal corners

encouraged to contribute and be attended to. There can also be rules-based utterances 
on the content of the dialogue, which may be commenting on, redirecting, or 
curtailing some contribution to steer the direction or thrust of the dialogue in terms 
of the content and concepts discussed. But the most important part is the pattern of 
utterances that extend and develop the subject matter, the joint understanding of a 
topic, the solution of a shared problem, or a creative ensemble made by the group. 
Not mentioned but underpinning the dialogue is participation in a shared activity (a 
form of life) which may be purely conversational or may be making or doing 
something, accompanying the conversation.

1.3.10  Roles and Power Differentials in Conversation

In any dialogue, persons as active agents in that dialogue take on a variety of roles. 
Two of the most important are speaker and listener. Speaking can involve offering 
new links that are responses to the previous utterances. Such responses can build on, 
extend what was previously said. Or they can interrogate and question what was 
said. Listening can be actively following the narrative and making sense of it 
through linking utterances with our own concepts and meaning associations. We can 
follow the flow of a narrative adding our own associations and responses, which we 
may (or may not) utter audibly or publicly. We can listen critically whereby we 
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interrogate, question, or challenge the narrative as we are hearing it. We can make 
these reactions public or keep the thoughts to ourselves. And we should never forget 
that we are embodied, not just passive in listening or active in speaking – we are all 
the while engaged in bodily activities beyond the actions of communicating 
(vocalizing, facial expressions, arm, and bodily movements) for we can also be 
drinking coffee, walking along a road, or even building a model or material artefact 
together in some shared activity in our joint form of life.

In addition, there are power differentials between contributors in most dialogues, 
based on personal force or institutional authorization. Table 1.1 lists some sample 
types of conversation with the relative power of the participants indicated.

Table 1.1 exemplifies the more powerful within institutionalized groups as those, 
not only with knowledge of the rules (for progressing towards the group goal) but, 
most importantly, being institutionally authorized to impose the rules in regulating 
the activity. In informal groups, power is softer and may shift among participants to 
those with better knowledge of the rules, but without institutional authorization, 
they may be challenged and have to try to demonstrate the validity of the rules they 
are suggesting.

Table 1.1 Types of conversation and the relative power of participants

Type of conversation
More powerful participants 
(MPP)

Less powerful participants 
(LPP)

Family – Parenting Parents – more knowledgeable 
and laying down behavioural 
rules

Children

Working in learner’s zone 
of proximal development

More knowledgeable parent, 
teacher, or peer demonstrating 
rules, etc.

Learner

Friends in discussion Power may move around group Power may move around group
Collaborative work on 
school mathematics 
problem

Asserter of mathematical rules or 
moves is MPP at the time

Proposer of next step needing to 
be regulated (LPP at the time)

Collaborative research 
project

Power moves around group Working researchers less 
powerful if there is principal 
researcher

Informal conversation 
between colleagues

Power moves around group unless 
power hierarchy has been 
established

Power moves around group 
unless power hierarchy has been 
established

School maths class Teacher directs teaching and the 
learning activities

Student follows teacher 
instructions and rules for 
participation

School maths examination Examiners Students (examinees)
University seminar Visiting lecturer Audience – but audience can 

take some power in the 
questions slot

Journal editorial board Editor, referees Author
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1.3.11  Mathematical Enculturation

Mathematical enculturation takes place over the course of development from child-
hood to adulthood. Prior to elementary schooling commencing at 5 to 7 years of 
age, the child will typically gain a growing mastery of spoken language and very 
likely engage in simple number and shape games. Typically, these will include 
learning and using the names of simple geometric shapes (square, circle, triangle, 
ball, etc.) and spoken number names (one, two, three, four, five, etc.) as well as the 
correct order of these first few names. There will also very likely be some learning 
of the single digit numerals (1, 2, 3, 4, 5, etc.).

Such activities will continue in kindergarten and early elementary school plus 
the introduction of elementary operations, most notably addition and the addition 
sign ‘+’. Mathematical activity for learners typically shifts from being wholly 
spoken, to spoken and textual, with a shift towards the dominance of text for 
children’s activities. Children very likely will engage in enactive activities (counting 
objects such as buttons), activities presented in iconic forms (working simple tasks 
mostly shown with repeated pictures, such as simple flower pictures), moving on to 
symbolic work with texts using words and mathematical symbols.

Perhaps the most central activity in the mathematics classroom is the imposition 
of mathematics learning tasks on students (Ernest, 2018a). These will be orally or 
textually presented and may be enacted in a variety of media. But over the years of 
schooling, throughout elementary and secondary (high school), these will become 
almost exclusively presented via written texts. A mathematical learning task:

 1. Is an activity that is externally imposed or directed by a person or persons in 
power representing and on behalf of a social institution (e.g. teacher).

 2. Is subject to the judgement of the persons in power as to when and whether it is 
successfully completed.

 3. Is a purposeful and directional activity that requires human actions and work in 
the striving to achieve its goal.

 4. Requires learner acceptance of the imposed goal, explicitly or tacitly, in order 
for the learner to consciously work towards achieving it15.

 5. Requires and consists of working with texts: both reading and writing texts in 
attempting to achieve the task goal.

 6. A mathematical task begins with a mathematical representation (text) and 
requires the application of mathematical rules to transform the representation, in 
a series of steps, to a required end form (e.g. in a calculation, the numerical 
answer).

Power is at work in a mathematical task at two levels. First, at the social level, the 
teacher imposes the task and requires that it be attempted by the learner. Second, 
within the task itself, power is at work through the permitted rules and transformations 

15 Gerofsky (1996) adds that tasks, especially ‘word problems’, also bring with them a set of 
assumptions about what to attend to and what to ignore among the available meanings.
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of the text. In other words, the apprentice mathematician must act as a conduit 
through which the imperatives of mathematics work. They must follow certain 
prescribed actions in the correct sequence. As the tasks become more complex, the 
apprentice mathematician will have some choices as to which rules to apply in 
constructing the sequence of actions or operations towards the solution, but 
otherwise all is imperative driven. Mathematics is a rule-driven game, and the rules 
are a major part of the institution of mathematics.

Later in the process of mathematical enculturation, the institutional rule-based 
nature of mathematics is internalized, and apprentice mathematicians adopt a more 
general concept of mathematical task that includes self-imposed tasks that are not 
externally imposed and not driven by direct power relationships.16 However, in 
research mathematicians’ work, although tasks may not be individually subject to 
power relations, particular self-selected and self-imposed tasks may be undertaken 
within a culture of performativity that requires measurable outputs. So, power 
relations are at play at a level above that of individual tasks. Even where there is no 
external pressure to perform, the accomplishment of a self-imposed task requires 
the internationalization and tacit understanding of the concept of task. Such an 
understanding includes the roles of assessor and critic, based on the experience of 
social power relations. This faculty provides the basis for an individual’s own 
judgement as to when a task is successfully completed. Within institutional rule- 
based mathematics imperatives are at work, the dominant actions (rules) inscribed 
within the texts themselves. The role of the critic is to judge that the institutional 
rules of mathematics are applied appropriately and followed faithfully.

Mathematical learning tasks are important because they introduce the learner to 
the rules of mathematics and its textual imperatives. For this reason, such tasks 
make up the bulk of school activity in the teaching and learning of mathematics. 
During most of their mathematics learning careers, which in Britain continues from 
5 to 16  years and beyond, students mostly work on textually presented tasks. I 
estimate that an average British child works on 10,000 to 200,000 tasks during the 
course of their statutory mathematics education. This estimate is based on the not 
unrealistic assumptions that children each attempt 5 to 50 tasks per day, and that 
they have a mathematics class every day of their school career (estimated as 
200 days per annum).17

A typical school mathematics task concerns the rule-based transformation of 
text. Such tasks consist of a textual starting point, the task statement. These texts can 
be presented multimodally, with the inscribed starting point expressed in written 
language or symbolic form, possibly with illustrative iconic representations or 

16 There are also more open mathematical tasks such as problem solving (choose your own meth-
ods) and investigational work (pose your own questions) in school but these are not frequently 
encountered.
17 Much of the mathematics education literature concerns optimal teaching approaches intended to 
enhance cognitive, affective, critical reasoning or social justice gains (prescriptive). Here my con-
cern is just with teaching as a process that enables students to learn mathematics, without prob-
lematizing the teaching itself, that is, purely descriptive.
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figures. In the classroom, these are typically accompanied by a metatext, spoken 
instructions from the teacher. Learners carry out such set tasks by writing a sequence 
of texts, including figures, literal and symbolic inscriptions, ultimately arriving, 
when successful, at a terminal text which is the required ‘answer’. Sometimes this 
sequence of actions involves the serial inscription of distinct texts. For example, in 
the case of the addition of two fraction numerals with distinct denominators or the 
solution of an equation in linear algebra. Sometimes this involves the elaboration or 
superinscription of a single piece of text, such as the carrying out of 3-digit column 
addition or the construction of a geometric figure. It can also combine both types of 
inscriptions. In each of these cases, there is a common structure. The learner is set a 
task, central to which is an initial text, the specification or starting point of the task. 
The learner is then required to apply a series of transformations to this text and its 
derived products, thus generating a finite sequence of texts terminating, when 
successful, in a final text, the ‘answer’. This answer text represents the goal state of 
the task, which the transformation of signs is intended to attain.18 In some solution 
sequences, new texts will be freshly introduced, such as axioms, lemmas, or 
methods, and therefore are not strictly transformations of the preceding text but play 
an integral part in the overall sequence.

Formally, a successfully completed mathematical task is a sequential transforma-
tion of, say, n texts or signs (‘Si’) written or otherwise inscribed by the learner, with 
each text implicitly derived by n-1 rule based transformations (‘⇨i’).19 This can be 
shown as the sequence:

 S S S Sn
n1 2 3

1
1 2 3� � � � �

  

S1 is a representation of the task as initially inscribed or recorded by the learner. 
This may be the text presented in the original task specification. However, the initial 
given text presenting the task may have been curtailed, or may be represented in 
some other mode than that given, such as a figure, when first inscribed by the learner. 
Sn is a representation of the final text, intended to satisfy the goal requirements as 
interpreted by the learner. The rhetorical requirements and other rules at play within 
the social context and following mathematical imperatives (the mathematical rules) 
determine which sign representations Sk and which steps, ⇨k for k < n, are accept-
able. Indeed, the selection of mathematical rules applied, and the transformed rep-
resentations inscribed by the learner, up to and including the final goal representation 

18 I use the word text broadly to include whatever multimodal representations are required in the 
task including writing, symbolism, diagrams and even 3-D models.
19 Normally learners of school mathematics are not expected to specify the transformations used. 
Rather they are implicitly evidenced in the difference between the antecedent and the subsequent 
text in any adjacent (i.e., transformed) pair of texts in the sequence. In some forms of proof, includ-
ing some versions of Euclidean geometry not generally included in modern school curricula, a 
proof requires a double sequence. The first is a standard deductive proof and the second a parallel 
sequence providing justifications for each step, that is specifications for each deductive rule appli-
cation. Only in cases like this are the transformations specified explicitly.
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(Sn), are the major focus for negotiation and correction between learner and teacher, 
both during production and after the completion of the transformational sequence. 
This focus will be determined according to whether in the given classroom context, 
the learner is required only to display the terminal text (the answer) or a sequence 
of transformed texts representing its derivation, whether calculation, problem solu-
tion, proof, or application of mathematics (Ernest, 2018a).

The extended apprenticeship in completing many thousands of mathematical 
tasks over the years of schooling, where successful, represents an enculturation into 
the social practice of mathematics. For persons going on to use mathematics 
professionally in their careers, or going on to be professional mathematicians, this 
apprenticeship is extended and intensified with introduction to more abstract and 
complex mathematical topics with a greater range of more sophisticated rules, as 
well as more demanding mathematical tasks. This occurs over the years of college 
or university specialization in mathematics. The extensive involvement and 
engagement with mathematical practices and activities or tasks result in a deeper 
engagement with mathematical rules. Some of these rules become automatic and 
are identified with the nature of mathematical objects. Imperatives become inscribed 
in mathematical objects so they cannot be seen as existing without what are deontic 
rules prescribing their possible uses. The journeyman mathematician accesses a 
cultural realm of mathematical objects that have all the appearances of solid real 
objects (within their own realm) whose nature necessitates a limited and prescribed 
range of properties and powers. These are embodiments of the rules that brought the 
objects of mathematics into being and limit their possible uses.

At this stage, the student or apprentice mathematician has developed into a prac-
ticing mathematician, and signs, symbols, and concepts of mathematics correspond 
to full independent mathematical objects embodying the restrictions and rules of 
their possible uses and the community-wide agreements as to their constitutions and 
operability.

During the pursuit of mathematical activities, mathematicians and others engage 
in extended work with texts and symbols in dialogic space. This crystallizes into 
‘math-worlds’ where the objects of mathematics have a speaker-independent 
existence and reality. It is not only these objects whose independent being is 
confirmed and strengthened. It is also persons’ identities as mathematicians that is 
validated by their access to dialogic space and its population of mathematical 
objects. However, this description is deceptive, for it is the submission to 
internalization and absorption of the many rules, norms, and tacit agreements 
through which mathematical activities and objects are constituted, that makes a 
mathematician. Just as these institutions bring forth the objects of mathematics, so 
too they bring forth the special powers and capabilities of the mathematician qua 
mathematician. Namely, a person empowered mathematically through obedience to 
the deontics of mathematics. Of course, a mathematician is not beaten down and 
cowed through this submission. The many thousand-fold experiences of successful 
pursuit of the goals of mathematical tasks have shaped, sharpened, and directed the 
desire of the mathematician to answer the questions, solve the problems, pursue the 
holy grail of proving new theorems. A chess master internalizes the rules of chess 
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and turns them into intuitions of desirable outcomes many moves ahead. Similarly, 
the mathematician’s rule-shaped intuition suggests where actions and processes on 
mathematical objects in dialogic space may lead.

In this account, conversation provides the epistemic and ontic basis of mathemat-
ical knowledge and object existence. It grounds them in physically embodied, 
socially situated acts of human knowing, communication, and agreement. Because 
of the tight rules, norms, and conventions, mathematical conversation has minimal 
of ambiguity compared to every other domain of discourse. Nevertheless, the philo-
sophical bases of mathematics are in the final analysis deontic, resting on the shared 
explicit rules and hidden norms of mathematical practice, as communicated via 
conversation. Conversation includes the roles of proponent and critic, and both of 
these roles are necessary in fruitful conversation, at any level. Their existence is the 
reason why a mathematician stranded alone on a desert island for 20 years proving 
theorems is still engaging in a social practice.

1.4  Conclusion

This concludes my treatment of the ontological problems of mathematics and 
mathematics education. I have argued that mathematical objects are formed out of 
actions on simpler objects, which are abstracted and reified into self-subsistent 
objects. All the actions involved in this process are heavily constrained by the rules 
of mathematics which are entangled with and woven into the objects. The norms 
and constraints that make mathematical objects possible are necessary elements of 
their existence. Because of these definitionally necessary limits, the objects are 
necessary objects. Their necessity is the product of the deontic modality, which in 
describing mathematical objects, indicates how their world ought to or must be 
according to the norms and expectations of mathematical culture. Contrary to the 
traditional view that accounts of mathematical objects are in epistemic or alethic 
modality expressing possibility, prediction, and truth, the deontic modality of 
mathematical language indicates an obligation that becomes a necessity. If mathe-
matical objects exist, and they are present to all mathematicians and students of 
mathematics to a varying degree, then ‘this’ is how they must be. Here, ‘this’ refers 
to the necessary character of mathematical objects as the conventions and rules 
require them to be.

The ontological problem of mathematics education concerns the nature of math-
ematicians and students of mathematics. I have argued that the formation of their 
mathematical identities, which are perhaps only a small part of their overall beings 
as persons, develop through mathematical enculturation. The key element of this 
process is subjection to rules, conventions, orders, instructions that must be obeyed, 
at three levels, during engagement with mathematical activities.

First, there is the social, interpersonal level. In schooling, the teacher sets the 
tasks and their goals. However, they may be hedged, the teacher issues orders to the 
children that requires that they engage in the set mathematical activities or tasks. 
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The teacher also demonstrates and reinforces the rules and solution processes that 
the learners must use to attempt to achieve these goals. There may be a limited 
degree of flexibility as in some tasks the learner can select their preferred method of 
solution from amongst the approved methods or their variations. But overall, this is 
the level made up of the imperatives issued directly by the teacher in social or 
interpersonal space.

The second level of necessity is that inscribed within the texts of the tasks. The 
most common verb forms in mathematics, both in school and research texts, are 
imperatives requiring the reader to complete the activity in prescribed ways (Ernest, 
2018a; Rotman, 1993). Such prescriptions may be tacit, but there is a repertoire of 
agreed rules and methods to be employed. Here, the key characteristic is that the 
imperatives are in the text themselves.

Third, there are the tacit and explicit rules and conventions of mathematics that 
delimit the permitted actions and textual transformations. These are part of the 
culture of mathematics and a key element of what students and practitioners pick up 
and internalize as a residue of the myriad conversational exchanges in the dialogic 
space of mathematics. These make up much of what is termed the knowledge of 
mathematics, that which is learned through mathematics education. It is these rules 
that must be selected from and utilized in the performance of mathematical activities 
and tasks by students of mathematics and mathematicians.

Thus, my two big ontological problems, the nature of mathematical objects and 
the nature of mathematical identities, with their associated powers, converge. It is 
the rules and conventions of mathematical culture that help build up and constitute 
both of these types of entity. The objects of mathematics are abstracted actions 
encapsulating these rules. Mathematical identities are shaped, constituted, and 
constrained through the internalizations of these rules.

This convergence in explanations is why an interdisciplinary approach to these 
problems is necessary. I am tempted to claim that only such a multidisciplinary 
analysis, drawing on philosophy, linguistics, mathematics education, and other 
disciplines, can address both of these two problems together. Furthermore, the 
solutions offered are interdependent and co-constituting. Interacting with 
mathematical objects is an essential dimension in the construction of mathematical 
identities. Coming to, becoming and being a mathematician depends essentially on 
engagement with and using mathematical objects. Conversely, the formation and 
maintenance of mathematical objects depends on human capacities to actively 
maintain cultures through extended conversational interactions, including the 
capacities for abstraction and rule formation. Only through the induction of persons 
into the culture of mathematics are mathematical identities formed and the culture 
of mathematics, which is the location of mathematical objects, maintained and 
extended.
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Chapter 2
Scientific Revolutions: From Popper 
to Heisenberg

Michael Otte and Mircea Radu

2.1  Introduction

Following Charles S.  Peirce we assume that all thinking takes place in signs. 
Thinking is representation, i.e., is semiotic in nature. Each representation is a gen-
eralization. And any generalization is accompanied by a sense of liberation that can 
be as deceptive as it is empowering.

For example, to justify statements like 2 + 2 = 4 or 7 + 5 = 12 (to take Kant’s 
examples), one first argues, as in discourse on ordinary knowledge, that the proposi-
tions express matters of fact reacted by “synthetic construction in pure intuition” 
(Kant). The justification process however does not stop here.  In time addi-
tional reflection work about the matter continues in search of a self-contained unify-
ing theoretical explanation of the isolated facts in case. The arithmetical axioms as 
put forward by people like Hermann Grassmann, Giuseppe Peano, or Richard 
Dedekind are theoretical explanations of this kind. Once this point is reached, the 
quest for the nature of numbers is answered by the formal-axiomatic  approach. 
From an axiomatic viewpoint, however, numbers can be nearly anything. Logicians 
like Frege and Russell saw this consequence of the axiomatic explanation of the 
number concept as a problematic form of reductionism. They attempted to provide 
alternative explanations of the number concept, based on logic and conceptual 
thinking rather than generalization as practiced in terms of formal theories. Paul 
Mouy echoes these issues by proposing a social and cultural genealogy of the 
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necessity concept. In our history, necessity initially manifests itself as blind fate. It 
is initially rooted in

(…) circumstance and leads men to their destruction, which perfidiously drove Oedipus to 
incest and patricide. A primitive idea. Thanks to mathematical proof, this concept passes 
without change of name from the exterior to the interior, from things to spirit, from the 
domain of mysticism to the domain of reason. (…) It becomes what man by force of reason 
compels himself to obey. It constitutes an obligation on the part of the mind, an intellectual 
value. (Mouy, 1971, vol.II, p. 48–57, p. 49)

In a sense, from the perspective of Frege and Russell, axiomatics appears a return to 
the type of formal “exterior” necessity criticized by Mouy. The perpetual quest for 
this type of shift from the “exterior” to the “interior”, which Mouy ultimately links 
to mathematics and to mathematical proof, constitutes the fundamental theme of 
many ongoing debates in mathematics education. Frege and Russell see logic as the 
means of achieving such a shift. Logic and Ethics are understood by them as norma-
tive sciences. According to Peirce, himself a logician, the situation looks different:

(…) it is generally said that the three normative sciences are logic, ethics, and esthetics, 
being the three doctrines that distinguish good and bad; Logic in regard to representations 
of truth, Ethics in regard to efforts of will, and Esthetics in objects considered simply in 
their presentation. Now that third Normative science, (…) is evidently the basic normative 
science upon which as a foundation, the doctrine of ethics must be reared to be surmounted 
in its turn by the doctrine of logic. (Peirce, CP 5.36)

For Hegel, Esthetics has the special meaning that in it the essence of that which 
appears to us is adequately presented. Esthetic perception is most likely to do justice 
to the essence of appearance (Hegel, 1950, Ästhetik, vol.2, p. 606).

In a sense, our chapter is an attempt to clarify the meaning of the latter claim, by 
exploring Thomas Kuhn’s concept of scientific revolution and some of the debates 
triggered by it. This leads us to a reexamination of a series of episodes in the history 
of science and art. We begin by highlighting some aspects of Karl Popper’s under-
standing of the logic of research.

2.2  A Reassuring Fact?

In the  foreword to his well-known book Vermutungen und Widerlegungen 
(Conjectures and Refutations), Karl Popper informs the reader that his book con-
sists of variations on the comforting fact “that we are able to learn from our errors, 
from the mistakes that we have made.” According to Popper, this represents the 
foundation of scientific progress (Popper, 2009, XIII). But how helpful is this state-
ment in explaining the evolution of scientific theories?

Popper’s view of science is based on the following criterion: Only beliefs that are 
susceptible of being falsified count as scientific ones. This criterion, of course, 
opens a fundamental gap between science and mathematics. Consider, for example, 
the hypothesis that we can reach all natural numbers by counting. We can neither 
prove nor falsify this hypothesis, but have to treat it as an axiom. Poppers criterion 
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excludes mathematics as well as philosophy from the realm of the sciences. Is this 
a productive philosophical approach?

At the beginning of the nineteenth century, Goethe, the great poet, indi-
cated that as a separate discipline Philosophy seemed superfluous to him. As Goethe 
recollects in his autobiography: “I maintained a separate philosophy was not neces-
sary, as the whole of it was already contained in religion and poetry” (Goethe, 1998, 
200). If the philosophy of science can be truly reduced to falsificationism and its 
consequences, does this not then mean that all this conception is telling us about 
natural science and mathematics is already contained in these disciplines?

Popper’s falsificationism seems to imply that we all have always been scientists, 
since the days of the Stone Age, and that science, therefore, is a continuous and 
natural affair, indistinguishable from our everyday experiences. On the other hand, 
however, never before has there been such a large gulf between common and spe-
cialized knowledge as it exists today. And never before have such rapid changes in 
the philosophy of science taken place.

Poppers views were frequently used as arguments against Thomas Kuhn’s con-
ception of scientific progress as it is presented in his The Structure of Scientific 
Revolutions. During a conference hosted by the Bedford College in 1965 (both 
Kuhn and Popper attended the conference), Kuhn responded to this criticism by 
pointing out that Popper’s conception cannot actually explain the evolution of sci-
entific theories. Kuhn said:

Compare the situation of the astronomer and the astrologer. If an astronomer’s prediction 
failed (…), he could hope to set the situation right. Perhaps the data were fault (…). Or 
perhaps theory needed adjustment, either by the manipulations of epicycles (…) or by more 
fundamental reforms of astronomical technique. For more than a millennium these were the 
theoretical and mathematical puzzles around which together with their instrumental coun-
terparts the astronomer’s research tradition was constituted. The astrologer, by contrast, had 
no such puzzles. The occurrence of failures could be explained, but particular failures did 
not give rise to research puzzles, for no man, however skilled, could make use of them in a 
constructive attempt to revise the astrological tradition. There were too many possible 
sources of difficulty. (Kuhn, 1970, 9)

Widespread and diverse changes were necessary in order to transform alchemy or 
astrology into natural sciences. Think of the plethora of ill-founded rules, require-
ments, and recipes that accompanied the activity of the alchemist. One had to pay 
attention to the purity of the soul, the position of the stars had to be considered, the 
avoidance of the full moon and of the influence of black cats was necessary, and 
many other things seemed essential in alchemy, especially when one wanted to 
made gold from clay.

Johann Friedrich Böttger (1682–1719), condemned by the Duke of Saxony to 
make gold out of clay, could have avoided all sinful thoughts and all black cats and 
still could not have made gold. Alchemy does not become scientific chemistry by 
such advice as Popper provides. Popper’s strategies and maxims concern the politi-
cal application of science and its role in society, rather than science itself.

Stefan Amsterdamski responds to Popper’s problems by suggesting a functional 
demarcation of the sciences, rather than a descriptive one:
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It seems that one of the functions science performs permanently in human culture consists 
in unifying into a coherent system practical skills and cosmological beliefs, the episteme 
and the techne. It is, of course, hard to pinpoint the place and the exact moment when this 
requirement was accepted for the first time. (Amsterdamski, 1975, 43)

Amsterdamski’s ideas make the situation better and worse too. According to them, 
alchemy is undoubtedly a science like chemistry, in fact it appears as more science- 
like, because the heyday of hermetic emblematic coincided with the decline of clas-
sical alchemy, which was still capable to merge technological skills and practical 
experience with spiritual components (Roob, 2019, 18). On the other hand, it 
becomes clear that the evolution of science is a cultural and socio-historical prob-
lem with unclear boundaries. But in terms of methodology, it was underdeveloped.

One of the most important concepts of Kuhn’s theory is the notion of paradigm- 
change. Kuhn’s definition of the concept of paradigm is rather vague. How far can 
and should the researcher go in restricting his search space, in order to identify or 
replace a doubtful hypothesis?

Any non-trivial problem that we manage to identify and solve is part of a more 
general unsolved problem. The problem-solving process creates its own solution- 
space, and this leads to a sort of co-evolution of the problem and of the methods 
used. This process essentially requires complexity reduction, which, in the end, 
leads to narrowing the thinking process down to constructing, calculating, and mea-
suring, on the one hand, and making uncertain choices between alternative goals 
and objects, on the other hand.

If you look into books of mathematics or theoretical natural sciences, you will 
discover many equations and formulas containing symbols which denote purely 
functional quantities. Quantities that serve the functional interpretation of the equa-
tions. In mathematics, the imaginary numbers, the additional constructions in 
geometry provide simple examples. To put it bluntly, functionality emerges through 
mathematics. Mathematics, therefore, is not a language, but rather an instrument of 
reasoning.

Purely descriptive representations of natural or technical conditions are much 
more difficult to understand or remain incomprehensible altogether. Bare words or 
characters are replaced with new words as  in a dictionary, as if one were sim-
ply explaining John means Johann. Newton’s mathematized science has often been 
criticized as explaining nothing. According to legend, Newton replied: “It tells you 
how the Earth moves.”

The equations and formulas of natural science do something like this too. But the 
difficulty— in comparison with pure mathematics— is that the physical elements 
are supposed to represent something real, something given in experiene. In physics, 
for example, “constants” like  the speed of light, Planck’s constant or the electric 
elementary charge, etc., are such empirical constraints. Quite a number of the sym-
bols are supposed to have real counterparts in the empirical sense, but is this really 
the case? The  Nobel Prize  laureate Richard Feynman is right when saying that 
“nobody understands quantum mechanics” (Feynman, 1965, p. 129). Nineteenth- 
century debates over such questions have led to two very different conceptions of 
what logic actually is: a language or a calculus (Heijenoort, 1967).
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Doesn’t an ordinary declarative sentence simply have the function, logically 
speaking, of attributing a property to an object? And is it not the use of the knife that 
tells us whether the wood we are carving is hard or soft, smooth or fibrous, etc. 
Charles S.  Peirce speaks similarly of the hardness of the diamond (see: Peirce, 
CP. 7340). The basis of the operation of abstraction is that it very often starts from 
one’s own actions and from constructed schemata and representations and not from 
given objects, as is the case with empirical abstraction.

And the use we make of our tools makes us aware of ourselves too. The hands 
must think by themselves. “The analysis of a skillful feat in terms of its constituent 
motions remains always incomplete” (Polanyi, 1961, 460). During the Industrial 
Revolution, the hands became substituted by working mechanisms and machinery. 
A machine to spin without hands. “This was the specification of the Jacquard loom 
in the patent document of John Wyatt (1700–1766) of 1735” (Essinger, 2004, 37).

Conclusion: Everywhere, from quantum theory to everyday experience and to 
technical production, we learn that the actual object of our cognition is not some-
thing purely objective, but that we are always dealing with our own interactions 
with reality such that the epistemic subject and the object become impossible to be 
completely distinguished.

2.3  What About the Object of Cognition

At times the object of our interest appears as mere desire or motive. As pointed out 
above, Böttger wanted to turn clay into gold, without, however, having any clue 
whatsoever as to the practical path that might lead to this goal, ending up with por-
celain. Similarly, the finding that certain bodies increase in weight as they burn was 
known as early as the seventeenth century, but it was not until the eighteenth century 
that Lavoisier made this fact the subject of scientific inquiry and explanation. One 
of the reasons for this delay, as argued by Thomas Kuhn, was that the “gradual 
assimilation of Newton’s gravitational theory led chemists to insist that gain in 
weight must mean gain in quantity of matter” (Kuhn, 1962, 71).

Theories of scientific discovery are normally of two types: those which rely on 
mentalist notions (Popper) and those which employ a conception of social or cul-
tural determination (Kuhn). The analysis and clarification of the conflict between 
Popper and Kuhn, therefore, begins with the insight that all thinking relates to 
something that can be called the motif or intended objective of cognition, something 
that, at the beginning of a process, may be fairly vague and ill defined, yet becoming 
more and more effective and precise in the course of the activity. In order to be able 
to think about something, one must first represent it one way or the other. The world 
is therefore always conceptualized through the angle of some possible representa-
tion and design. In this respect, Max Bense noticed that “the perspective representa-
tion of the world in painting corresponds to the epistemological view of the world 
in philosophy” (Bense, 1949, 79, our translation).
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In art, the subject itself became an object like any other, losing its absolute posi-
tion it had detained in religion and philosophy. Architects from Filippo Brunelleschi 
(1377–1446) to Girard Desargues (1591–1661) and artists like Piero del la Francesca 
(1412–1492), Leonardo da Vinci (1452–1519), and Albrecht Dürer (1471–1528) 
made space an object of something to which they themselves belonged.

The scientific interest that accompanied the artistic activity is inspired by the belief that the 
evidence of the outward shape is also the warrant of its internal truth. The intense system-
atic study of anatomy and geometry culminating in the investigations of Leonardo da Vinci 
shows clearly that the artistic naturalism of those generations did not derive from the inter-
ests and mental habits of merchants and bookkeepers, as is sometimes represented, but was 
rather the expression of a general spiritual desire for order, balance, clarity and truth. 
(Olschki, 1950, 295f)

However, while the painters formulated the problem of perspective as a relation 
between the picture and the reality of an individual observer, Desargues (1591–1661) 
formulated it as a problem of the relation between two such pictures. In this way, he 
led mathematics on the path to projective geometry. In Desargues’ geometry of 
“perspective”, a circle and an ellipse are considered to be the same mathematical 
object, since a circle can become an ellipse when the point of view changes. The 
individual perspective, which became so important for epistemology, did not exist 
in the Middle Ages (Eco, 2002, Chap. 5.2). According to Olschki, during the 
Renaissance, even scientific spirits were attracted “by aesthetic, rather than by 
purely scientific questions.”

The same development toward an individual perspective based on personal inter-
est became also evident in scientific and technical contexts. For example, if you 
want to survey something, a building plot, or maybe the territory of Denmark, then 
you have to ram three stakes into the ground at suitably chosen points, which 
together form a triangle. Everything else can then be located and represented in the 
form of arithmetical coordinates relative to these basic points. An essential feature 
of measurement is the combination between the determination of an object by indi-
vidual specification and the determination of the same object by some conceptual 
means. The latter is only possible relative to objects which must be given directly. 
Students learn this today under the name of analytic geometry.

Agostino Ramelli (1531–1610) was an engineer best known for writing and 
illustrating a splendid book Le diverse et artificiose machine del Capitano Agostino 
Ramelli (publ. 1588), which contains more than 100 extremely elaborated engrav-
ings. The book was considered “a landmark work in the depiction of the inventing 
range of technological imagination” (Rothenberg, 1993, IX) and its production 
must have been so expensive that an officer like Ramelli, who must have looked at 
it as an important means of self-advertisement, certainly could not have financed it 
by himself.

This shows that the link between artistic and scientific skill or genius (e.g., 
Leonardo da Vinci) was stronger in the days of the Renaissance than it is today.

Actually, the belief in the divine origin of beauty and the conviction that truth is embodied 
in the perfection of form have been basic principles of Italian civilization ever since the 
throngs of the faithful were enraptured by a Madonna of Giotto (…) not as in earlier days 
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because of their miraculous power but because of the supernatural charm emanating from 
those beautiful human images of a perfect divine creature. (…) The general feeling that 
truth and beauty are equal attributes of the divinity led those generations to contemplate the 
external world with religious eyes and to express religious emotions in concrete realistic 
forms. (Olschki, 1950, 251)

Leonardo da Vinci even saw the science of perspective together with mechanics as 
the most important ones, the absence of which would make one look like the captain 
of a ship without a compass. In his diaries he writes: “La meccanica è il paradiso 
delle scienzie matematiche, perche si viene al frutto matematico” (Leonardo da 
Vinci, Philosophische Tagebücher). Martin Kemp seems right when he explains that

The ambition to invent a machine or device for the perfect imitation of nature appears to 
have been virtually limited to Renaissance and Post-Renaissance Western Art. (…) I do not 
think it is coincidental that this was also the period in which the technologies of scientific 
and utilitarian devices came to occupy a central place in European man’s striving for intel-
lectual and material progress. Indeed, the whole notion of progress in this phase of Western 
thought is deeply shared by science, technology and naturalistic art. (Kemp, 1990, 167)

2.4  Some Remarks on Semiotics, Logic, and Epistemology

A photograph gives a snapshot of an object or a person. The best example of this 
kind is perhaps a biometric photograph or a radiography. In a painted portrait, one 
looks for something else, namely for a glimpse at the character and essence of a 
living person. Anton van Dyck (1599–1641) revolutionized the genre and became 
one of the greatest and most important portrait painters of all times. The people 
depicted in his paintings engage the viewer in a characteristic way, entering, as it 
were, in a direct communication with the viewer. Generality and movement charac-
teristic for painting are missing from the products of a data-giving apparatus, 
because life demands continuity, and continuity is indefinite and open.

This kind of combination of the individual/singular and the general, which is so 
crucial in aesthetics and philosophy is usually viewed as a disadvantage in technical 
applications, in science or in logic. Leibniz and later Frege and Russell struggled 
with the fact that any descriptive language is unable to fully determine an individual 
object thus forcing us to rely on contextual indexical signs such as names or the 
infamous x of algebra for clarification. As Russell points out:

I met Jones and I met a man would count traditionally as propositions of the same form, but 
in actual fact they are of quite different forms: the first names an actual person, Jones; while 
the second involves a propositional function, and becomes, when made explicit: The func-
tion ‘I met x and x is human’ is sometimes true. (Russell, 1919/1998, 167f)

The arts—painting as well as writing and language—present the specific as a gen-
eral as a continuum. Logic and mathematics, in contrast, depend on the principle of 
logical consistency and because of this they must break this continuity of space or 
time, because continuity is generality and the principle of consistency does not 
apply on continuous realities. For example, when we speak of the Londoner in 
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general, we cannot so easily say: the Londoner is blond or funny or friendly, etc. 
The Londoner can be this and that and all together. The logical principle of the 
excluded middle does not apply in this case. The same situation arises when the 
geometer wants to speak of the general triangle. In 1710, Berkeley had asked the 
readers of Locke’s Essay concerning Human Understanding to try and find out 
whether they could possibly have

an idea that shall correspond with the description here given of the general idea of a trian-
gle, which is neither oblique, nor rectangle, equilateral, equicrural, nor scalenon, but all and 
none of these at once. (Berkeley, 1975, 70)

And Peirce says in his Lectures on Pragmatism of 1903 writes:

The old definition of a general (…) recognizes that the general is essentially predicative. 
(…) In another respect, however, the definition represents a very degenerate sort of general-
ity. None of the scholastic logics fails to explain that sol is a general term; because although 
there happens to be but one sun yet the term sol aptum natum est dici de multis. But (…) 
if sol is apt to be predicated of many, it is apt to be predicated of any multitude however 
great (…) In short, the idea of a general involves the idea of possible variations which no 
multitude of existent things could exhaust. (Peirce CP 5.103)

We therefore possess two forms of the general: predicative generality in language 
and the continuum in space and geometry. Since they depend on the principle of 
logical consistency, logic and mathematics invented a way of avoiding both.

Gotthold Lessing (1729–1781) had interpreted in his treatise Laocoon of 1766, a 
famous sculpture of Hellenistic times, which can be admired in the museums of the 
Vatican. Lessing describes how the artist found the “fertile moment,” in which a 
whole story, that of the priest Laocoon and his sons, is summarized and compressed 
in one moment in a particularly meaningful way. Normally poetry and painting, 
according to Lessing, are different because they make use of entirely different 
means—the first namely, of form and color in space, the second of articulated 
sounds in time. Lessing writes:

Painting and poetry should be like two just and friendly neighbors, (…) Physical beauty 
results from the harmonious action of various parts which can be taken in at a glance. (…) 
The poet, who must necessarily detail in succession the elements of beauty, (…) must feel 
that these elements arranged in a series cannot possibly produce the same effect as in juxta-
position. (…) When a poet personifies abstractions he sufficiently indicates their character 
by their name and employment. These means are wanting to the artist, who must therefore 
give to his personified abstractions certain symbols by which they may be recognized. 
These symbols, because they are something else and mean something else, constitute them 
allegorical figures. (Lessing, 1776/2005, chapter XVIII)

The most important aspect of poetical language is, in fact, the combination of meta-
phor and structuralist innovations. Nowadays, this is frequently referred to as “the 
spatiality of literature.” The notion of spatial form in modern literature was intro-
duced about 1945 by Joseph Frank. Frank argues that modern aesthetic theory has 
evolved not from a set of fixed norms or categories imposed on the work of art or 
literature, but from the relation between the work and the conditions of human per-
ception and activity.
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Frank reports that he carefully studied Lessing’s Laocoon and following Lessing, 
he came to see a poem more as a spatial shape or structure than as an event in time. 
Frank believed that the structure of modern works took on aspects that required 
them to be apprehended spatially instead of according to the natural temporal order 
of language. Smitten and Daghistany write in their presentation of Frank’s work:

The concept of spatial form in literature was introduced by Joseph Frank after having been 
stimulated by the observation that modern poetry – that of Eliot and Pound, for example - 
often breaks or undermines the normal consecutiveness of language forcing the reader to 
perceive the elements of the poem not as unrolling in time, but as juxtaposed in space. This 
undermining is accomplished primarily by the suppression of causal/temporal connectives, 
those words and word groups by which a literary work is tied to external reality and to the 
tradition of mimesis. This suppression of connectives alters the whole character of the liter-
ary work and forces the reader to perceive it in a new unconventional way. (Smitten and 
Daghistany, 1981, 17f)

A frequently presented example of structural poetry is T H. Eliot’s great poem: “The 
Waste Land,” where syntactical sequence is abandoned and replaced by a structure 
depending on the perception of relationships between disconnected word groups. 
Joseph Frank comments:

Aesthetic form in modern poetry, then, is based on a space-logic that demands a complete 
reorientation in the reader’s attitude toward language. Since the primary reference of any 
word-group is to something inside the poem itself, language in modern poetry is really 
reflexive. The meaning-relationship is completed only by the simultaneous perception in 
space of word-groups that have no comprehensible relation to each other when read con-
secutively in time. (Frank, 1991, 14f)

The previous examples should suffice to illustrate the thesis, that artistic expression 
is characterized by the complementarity of time and space, of conceptual expression 
and spatial representation as invoked by Peirce in his praise of Esthetics as the fun-
damental normative science. Can science and mathematics be reduced to consis-
tency or can we find similar aesthetic moments there as well?

2.5  Heisenberg’s Ambivalent Praise of Kuhn: 
Some Implications

Werner Heisenberg (1901–1976), Nobel Prize winner and one of the fathers of 
Quantum Theory did not feel satisfied with Niels Bohr’s presentation of the theory 
in terms of familiar macro-physical language. He therefore renounced using such 
linguistic descriptions and  designed a non-commutative algebraic structure that 
would be better suited to directly express available physical data. In his autobiogra-
phy, Heisenberg describes how his exploratory attempts in mathematization led 
him to the new foundations of quantum mechanics:

It had become clear to me what precisely had to take the place of the Bohr-Sommerfeld 
quantum conditions in an atomic physics working with none but observable magnitudes. 
(…) Then I noticed that there was no guarantee that the new mathematical scheme could be 
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put into operation without contradictions. In particular, it was completely uncertain whether 
the principle of the conservation of energy would still apply, and I knew only too well that 
my scheme stood or fell by that principle. (…) Other than that, however, several calcula-
tions showed that the scheme seemed quite self-consistent. Hence I concentrated on dem-
onstrating that the conservation law held (…). (Heisenberg, 1971, 61)

Many years after Heisenberg’s great contributions to quantum mechanics, Carl von 
Weizsäcker (1912–2007) physicist, philosopher, and Heisenberg’s student recalls 
having once drawn Heisenberg’s attention to Kuhn’s picture of the history of sci-
ence as a succession of paradigm shifts and scientific revolutions. Contrary to 
Weizsäcker’s expectations, Heisenberg was disappointed by Kuhn’s book:

Historically he’s right. But he spoils the punch line. What he calls paradigms are actually 
closed theories. They must follow each other discontinuously because they are simple. The 
real philosophical problem is why can there be simple theories that are true? (...) That is the 
key to the history of science. One has not understood anything about the possibility of sci-
ence as long as one has not understood it. (Weizsäcker, 1992, 799)

Heisenberg rejects Kuhn’s conception of scientific revolutions, even though he 
admits that Kuhn is moving in the right direction, because Kuhn does not go far 
enough. What is then the true merit of Kuhn’s conception?

We will deal with this issue below. In the meantime, it seems worthwhile taking 
a brief look at another example taken from physics and at the problem of the exis-
tence of paradigms in mathematics.

The example we have in mind is provided by the history of classical Newtonian 
mechanics and its generalization by Einstein. Thomas Kuhn indicates that the term 
Mass has different meanings in classical Newtonian Mechanics and in Einstein’s 
Special Theory of Relativity: the Newtonian mass is stable, independent of velocity, 
whereas the Einsteinian one depends on the velocity:
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When we assume that the velocity of light c passes to infinity, we get m = m0 and we 
see a continuity between the old and the new theory. However, this passing to infin-
ity is explicitly forbidden, because the constancy of the velocity of light is essential 
to Einstein’s theory of relativity. The Michelson–Morley experiment showed that 
the velocity of light is constant and independent of the relative position and move-
ment of the source.

In the theory only the concept, that is, the sense or meaning appears, while in 
experiment and technology, the references to the corresponding objects are estab-
lished. When we consider successive formal structures, then the continuity and cor-
respondence is clear. The situation changes when we pass from the syntactical 
approach to semantics. Semiotically speaking, it is the complementarity between 
sense and reference that counts and makes the real difference. Nobel Prize winner, 
Richard Feynman, compares the different formulations of classical mechanics as 
given by Newton, Lagrange, and Hamilton, respectively, showing this fact implicitly:
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Mathematically each of the three different formulations, Newton’s law, the local field 
method and the minimum principle, gives exactly the same consequences. What do we do 
then? You will read in all the books that we cannot decide scientifically on one or the other. 
That is true. (...) But psychologically they are different because they are completely 
unequivalent when you are trying to guess new laws. As long as physics is incomplete, and 
we are trying to understand the other laws, then the different possible formulations may 
give clues about what might happen in other circumstances. (Feynman, 1965, 53)

For a further clarification, it seems helpful to briefly explore the applicability of 
these reflections to a formal science like mathematics and to ask whether there can 
be revolutions in mathematics. In the past, this issue has indeed been the subject to 
heated debates. Michael Crowe, for instance, maintained that “revolutions never 
occur in mathematics” (Crowe, 1975, 165), because in mathematics, the develop-
ment of new theories does not lead to older theories being irrevocably discarded. In 
contrast, Caroline Dunmore argued that revolutions do occur in mathematics,

(…) but are confined entirely to the meta-level component of the mathematical world. (...) 
Consider what a major revolution in thought was entailed in the acceptance of non- 
Euclidean geometry. (…) Although Euclidean geometry itself was retained the belief that it 
was the only kind of geometry there could possibly be was discarded (…). The evolution of 
mathematics is conservative on the object-level, but revolutionary on the meta-level. 
(Dunmore, 1992, 212)

However, this position is not entirely accurate either, because first of all, mathemat-
ics and meta-mathematics became indistinguishable insofar as axioms in the sense 
of Grassmann, Peano or Hilbert are meta-mathematical systems and not systems of 
immediate mathematical truths. Until about 1800, the terms axiom and hypothesis 
were opposites, after which they became synonyms.

Moreover, revolutions in the meta-mathematical domain also result in revolu-
tions in the object domain. Quite simply because everything that satisfies the axioms 
of a formal mathematical theory must be included in its object domain. For exam-
ple, Peano’s axioms do not answer questions, like: “What is the number 1, or 2”? 
Numbers could be anything, like Conway- Numbers, Vectors, or Hackenbusch- 
Games. This formal generality enlarges the usefulness of the mathematical number 
concept, rather than restricting it. A theory becomes a pair consisting of a formal 
axiomatical structure and some intended applications or models.

Let us present an argument linked to the problem of determining the angle-sum 
theorem for triangles as an illustration. Suppose we pass along the periphery of a 
triangle. By how many degrees have we turned after having reached our starting 
position again? Simple answer: 360°, because our input direction coincides with the 
end position. This response, although intuitively convincing, is based on the assump-
tion that it amounts to the very same thing, to turn around on the spot to a full angle 
of 360°, on the one hand, or alternatively, do the same thing by travelling along a 
closed line, the periphery of an arbitrarily large triangle, for example, on the 
other hand.

One case, however, is based on local characteristics of space, the other is not, at 
least not if the triangle may be assumed as arbitrarily large! For arbitrary triangles, 
our conclusion is only valid in the Euclidean plane, but is invalid on the surface of 
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the sphere, for example. Spherical geometry, like the geometries of Lobatchevsky 
and of Riemann are generalizations of Euclidean geometry. The latter is a limit case 
of them when the curvature radius K goes to infinity. Non-Euclidean geometries 
became accepted only after Beltrami had proved their consistency in 1868. The 
ordinary sphere was adopted as a model of a space with positive curvature.

Descartes invented co-ordinate geometry by assigning number pairs to the points 
of plane Euclidean geometry, thus presenting a certain meta-perspective on classical 
geometry. Axiomatic linear algebra provides a meta-perspective on Cartesian clas-
sical analytical geometry.

The strength of algebra and of formal axiomatics lies in the possibility of turning 
even unknown objects  -  objects the existence of which is not guaranteed  in 
advance  -  into objects of investigation and of mathematical operation. And this 
becomes an important moment in the series of events that led to the emergence of 
mathematics as a linguistic tool of the new sciences. Lavoisier, the Newton of chem-
istry, writes at the beginning of his Traité Elémentaire de Chimie:

While engaged in this employment, I perceived, better than I had ever done before, the 
justice of the following maxims of the Abbé de Condillac, in his System of Logic, and some 
other of his works: “Algebra, which is adapted to its purpose in every species of expression, 
in the most simple, most exact, and best manner possible, is at the same time a language and 
an analytical method.” (Lavoisier, 1952, 1)

Therefore, if we understand algebra as a meta-theory of chemistry, then we only 
need to know whether two things of our interest are the same or are different from 
the given perspective. The similarities and differences refer only to what can be 
expressed mathematically, length, width, weight, temperature, etc. Lavoisier 
continues:

Thus, while I thought myself employed only in forming a nomenclature and while I pro-
posed myself nothing more than to improve the chemical language, my work transformed 
itself by degrees (...) into a treatise upon the elements of chemistry. (Lavoisier, 1952, 1)

And this becomes an important moment in the series of events that led to the emer-
gence of mathematics as a tool of the new sciences. The reference to the physical 
weight, the consideration of which Lavoisier led to his theory of combustion, points 
to a general characteristic of research. We usually do not know what is behind the 
things; we do not know their genus from the outset, nor their specificities, or their 
essence. But we have to be able to see whether two structures or two objects are the 
same or are different. Lavoisier writes:

I have been obliged to depart from the usual order of courses (…) which always assume the 
first principles of science as known and begin by treating the elements of matter and by 
explaining the tables of affinities without considering that in so doing they must bring the 
principal phenomena of chemistry into view at the very outset: they make use of terms 
which have not been defined and suppose the science to be understood at the beginning. 
(Lavoisier, 1952, 2)

It’s not just about the new mathematical perspective, but about establishing a whole 
new experimental practice that makes Nature appear in a new light:
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When in the early 1780s Lavoisier and Laplace invented the device that they called a 
machine for measuring heat, but that soon became the calorimeter, they designed it as an 
analogue of that epitome of simple machines, the balance. (…) Despite their collaboration, 
however, Lavoisier and Laplace recognized somewhat different balances in the calorimeter. 
With his primary interest in chemistry, Lavoisier saw a balance of chemical substances. (…) 
Laplace saw a balance of forces. (…) The calorimeter mediated between theories and 
things. It exchanges theoretical entities for concrete realities. (Wise, 2010, 208ff)

2.6  Aesthetics and Scientific Theory Building: Heisenberg 
and Kepler

In addition to the objective generality, something like an individual generality of an 
aesthetic nature appears in modern thinking. Werner Heisenberg, for example, 
believed—like Kepler—that mathematical beauty has a grasp on truth: “If nature 
leads us to mathematical forms of great simplicity and beauty, we cannot help think-
ing that they are ‘true,’ that they reveal a genuine feature of nature.”

In retrospect, he traces this conviction back to his school time where atoms were 
displayed with “hooks and eyes.” This irritated the young Heisenberg, since atoms 
of such complexity could never be basic building blocks of matter. At this point, 
Heisenberg followed Plato believing that “the ultimate root of appearances is there-
fore not matter but mathematical law, symmetry, mathematical form.” (Heisenberg, 
1974, p. 10) This conviction accompanied him throughout his entire life.

On occasion of one of Niels Bohr’s visits at Göttingen, Heisenberg had asked 
him whether he was indeed convinced the classical concepts were sufficient for 
dealing with quantum physics. Bohr had replied, as Heisenberg remembered, that 
classical concepts were adequate also in the sub-atomic domain of Rutherford’s 
model of the atom. Heisenberg rejected this. As an alternative, Heisenberg con-
structed, as said, a non-commutative algebraic structure better suited to match the 
available physical data and certain theoretical principles. Thereby, he made use of a 
new mathematical calculus, namely matrix algebra, something Paul Jordan had 
pointed out to him (de Toledo Piza, 2003, p. 90ff).

In his autobiography, Heisenberg describes how his exploratory attempts in 
mathematization provided him access to the foundations of quantum mechanics:

I noticed that there was no guarantee that the new mathematical scheme could be put into 
operation without contradictions. In particular, it was completely uncertain whether the 
principle of the conservation of energy would still apply, and I knew only too well that my 
scheme stood or fell by that principle. (Heisenberg, 1971, 61)

As soon as he had success in showing that his framework of matrix algebra would 
confirm the energy theorem in all parts, he wrote that

[I] could no longer doubt the mathematical consistency and coherence of the kind of quan-
tum mechanics to which my calculations pointed. (…) [And I] felt almost giddy at the 
thought that I now had to probe this wealth of mathematical structures nature had so gener-
ously spread out before me. (ibid.)
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Heisenberg’s work shows that theories are realities sui generis in distanced relation 
to concrete reality. Theories and works of art are both build on aesthetic integration. 
Sabine Hossenfelder commenting on the (aesthetic) disagreements between 
Heisenberg and Schrödinger writes: “The advent of quantum mechanics wasn’t the 
only beauty fail in physics” (Hossenfelder, 2018, p. 20). Hossenfelder examines the 
mathematical representation of the system of planetary orbits given by Johannes 
Kepler (1571—1630) in terms of the relations between the Platonic solids and 
shows how this led to an example “aesthetically motivated failure.” Of course, one 
can simply say, with Hossenfelder, that Kepler’s model was wrong (Hossenfelder, 
2018, 18). And in fact, Kepler later convinced himself that his first model did not 
apply, and he concluded that the planets move in ellipses, not circles, around the Sun.

However, it seems of some importance to understand that the intention to search 
for the exact form of the planetary orbits, i.e. the search for general laws, and not 
being content with any more or less plausible interpolation of the measurement 
data, was stimulated and guided by aesthetic desire and aesthetic imagination in the 
first place. The measurement data alone never determine the natural laws of which 
they are supposed to be the expression of. John Banville has written a very interest-
ing and ingenious novel about Kepler. Banville explains that after thorough investi-
gations, Kepler finally

(…) made the discovery. He realized that it was not so much in what he had done that 
Copernicus had erred: his sin had been one of omission. The great man, Kepler now under-
stood, had been concerned only to see the nature of things demonstrated, not explained. 
(…) Copernicus had devised a better system which yet (...) was intended only to save the 
phenomena, to set up a model which need not be empirically true, but only plausible 
according to the observations. (Banville, 1981, 25)

Astronomers like Copernicus and Kepler could not undertake laboratory experi-
ments and had experimented with theories instead. They had to imagine different 
models that did not come into conflict with available data in order “to save the phe-
nomena.” From mere formal hypotheses, no true and at the same time necessary 
conclusions can be obtained, an insight that was the key source of inspiration for 
Kant’s epistemology, even if Kant’s explanation turned out to be too rigid. The 
hypotheses themselves must be experienced as true.

Kepler’s decision to view the heliocentric system as a fact of physics rather than 
just as a convenient instrument for calculations and predictions led to strong opposi-
tion not just from the Catholics Church but also by the Protestant movement. The 
link between aesthetic and scientific ideas in Kepler’s work is concentrated in the 
concept of “harmony”:

Firsts and centrally, he means he has reached a new conception of causality, that is, he 
thinks of the underlying mathematical harmony discoverable in the observed facts as the 
cause of the latter, the reason, as he usually puts it, why they are as they are (…) He was 
antecedently convinced that genuine causes must always be in the nature of underlying 
mathematical harmonies. (…) Causality, to repeat, becomes reinterpreted in terms of math-
ematical simplicity and harmony (…) A true hypothesis for Kepler must be a statement in 
the mathematical harmony discoverable in the effects. (Burtt, 2003, 64f)
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In the light of the things outlined above, the fallibility of a theory, therefore, appears 
not simply as a matter of falsifying one set of assertions of the theory or the other 
but rather as a fundamentally determined, among other things, by the esthetic 
choices made while the theories were developed. In our view, an aesthetic choice of 
this kind is not simply a lucky but arbitrary decision on the part of the creator of a 
theory, but rather one that emerges during the process of making sense of available 
data and puzzles. This leaves no room for nominalist language-games, and is – that, 
at least, is our interpretation of Heisenberg’s criticism of Kuhn-, something that 
occurs objectively. This, of course, as said, does not exclude failure, but it allows a 
different understanding of what the falsification of a theory requires.

Galileo Galilei seems to never have adopted Kepler’s discovery of the elliptical 
orbits of the planets. He considered the whole matter from a strictly technical point 
of view and always looked at it from the perspective of classic geometric ideas and 
processes (yet another aesthetic decision!). In his extensive biography of Galileo, 
J. Heilbron writes, among other things: “Nowhere in his later work is there any 
acknowledgment that Kepler motion in an ellipse is a substantial technical improve-
ment over equant motion in an eccentric circle” (Heilbron, 2010, 72).

Cardinal Bellarmino (1542–1621), Grand Inquisitor and Galileo’s principal 
adversary, in 1615 notified Galileo of a forthcoming decree of the Church, con-
demning the Copernican doctrine of heliocentrism and ordered him to abandon it as 
an explanation of the world. He argued that mathematicians always used to speak 
hypothetically or “ex suppositione” only (Bellarmino, Letter to Father Foscarini of 
April 1615). Galileo agreed and disagreed.

In his “Assayer” (Il Saggiatore) of 1623, Galileo compared God’s Word in the 
Bible, which is adapted to the frame and imagination of the people, on the one hand, 
and the Great Book of Nature, on the other hand, which presents the realities of 
Nature in geometrical figures. But it seems unclear, whether he simply wanted to 
say that the Book of Nature cannot be read by everybody or whether he wanted to 
contradict the Bible. Galileo, to his credit, also rejected the idea that mathematicians 
might employ convenient hypotheses, because of technical reasons alone. However, 
when three comets appeared in the sky in 1618, Galileo held on (for technical and 
aesthetic reasons of his own) to the traditional thesis of the circularity of the orbits 
of the stars, ignoring Kepler’s “bold break with this tradition” to classify the appear-
ance of the comets “as atmospheric phenomena in the sense of the ancient Meteora” 
(Blumenberg, 1981, 73, our translation).

2.7  Aesthetic Desire and Experience

We may and indeed must emphasize the importance of the creative and artists of the 
Renaissance because their contributions contained the germs of the Scientific 
Revolution of the modern age.

An aesthetic experience is something extremely personal, something difficult to 
share with others. You cannot make somebody to see or feel something that he/she 
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does not see. It is only indirectly manifest in the products of art and science, just as 
the laws of nature are only, as said before, indirectly given in the morphology and 
functions of a mechanical machine. Aesthetic experience is something that we 
would like to call the individual general. It is a union between general assumptions, 
material marks, and emotions concentrated in one individual artwork. The work of 
art, therefore, represents a reality sui generis (linked to the aesthetic activity that 
shaped it) and at the same time it is a sign that reaches further sometimes enabling 
the emergence of further new and unexpected reactions and developments.

Theory is not reality, the map is not the territory, the menu is not a substitute for 
the meal, and a drawing of the dead Marat in the bathtub consists of nothing but a 
few lines of graphite on white paper, impressive as it may be. When we approach a 
theory or a drawing, we can engage in two types of effort comprehending it. One 
may proceed from the whole toward the identification of its parts, or, conversely, 
from the recognition of a group of presumed parts toward grasping their mutual 
relations in the whole.

And we can further understand a piece of science or of the arts as representative 
for the whole of a certain culture at a certain time in history. Johan Huizinga writes 
at the beginning of his Preface to his monumental The Waning of the Middle-Ages:

The present work deals with the history of the fourteenth and fifteenth centuries regarded as 
a period of termination, as the close of the Middle Ages. Such a view of them presented 
itself to the author of this volume, whilst endeavoring to arrive at a genuine understanding 
of the art of the brothers Van Eyck and their contemporaries, that is to say, to grasp its mean-
ing by seeing it in connection with the entire life of their times (Huizinga, 1999).

Other philosophers and historians have argued in a similar way. Think of Ernst 
Cassirer or Agnes Heller. Cassirer, for example, wrote that the individual

(…) is form only by giving himself his form, and therefore we must not see in this form 
merely a limit, but we must recognize it as a genuine and original force. The general that 
reveals itself to us in the sphere of culture, in language, in art, in religion, in philosophy is 
therefore always individual and universal at the same time. (quoted from Schwemmer, 
1997, 145)

And in Agnes Heller’s book, Der Mensch der Renaissance (Renaissance Man), we 
find the following passage:

It’s a popular truism to say that in the Renaissance Man became the center of interest. (…) 
But this is not the problem, the question rather is, how to interpret the relationship between 
Man (society) and Nature. (…) Nature appears as an object governed by its own laws (…). 
And the knowledge of Nature becomes a continuous task of the human mind. Spirit and 
continuity are equally important here. Spirit means that success in no way depends on ethi-
cal behavior, while continuity separates knowledge from logic. (Heller, 1988, 18f.)

As we have seen, foundation and development of knowledge can only be discussed 
in relation to one another. Which of the three normative sciences named by Peircean  
and mentioned in the beginning of this paper are better suited for giving a more 
adequate account of this evolutionary interdependence, is it Aesthetics, is it Ethics, 
or is it Logic? Since Heller excludes Ethics and Logic regarding the Renaissance 
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and the Scientific Revolution, we are left with Aesthetics as the only remaining guid-
ing thread. This was new!

Traditionally, from Plato and through the Middle Ages, some principle of suffi-
cient reason, occasionally rooted in the belief in God’s wisdom, dominated most 
attempts to explain the world and the human destination within that world. At times, 
even Descartes appears to endorse the principle of sufficient reason. For example, 
he argues for the existence of God in the third Meditation on the basis of the prin-
ciple that there must be at least as much reality in the cause as in the effect.

Car d’où est-se que l’effet peut tirer sa réalité sinon de sa cause? Et de là il suit, non seule-
ment que le néant ne saurait produire aucune chose, mais aussi que ce qui est plus parfait, 
c’est-à-dire que contient en soi plus réalité, ne peut être une suite et une dépendance du 
moins parfait. (Descartes, 1953, 289)

And he justifies this causal principle by claiming that “Nothing comes from 
nothing.”

Most important, however, remain, as said, principles of aesthetic integration and 
individual or exemplary generality. The emergence of individualism has for the first 
time in history led to a theory of excellence and of human genius. No such theory 
was available before the Renaissance. During the Renaissance, this theory of genial-
ity was linked to the ideal of universal accessibility of art and not simply, as in the 
case of Bacon and Galileo, with science as such. In this sense, therefore, art involved 
early on an element of democratic creative education (compare Heller, 423ff). In 
science and in mathematics education, the opposition between conceptual consis-
tency and continuous experience still pose a serious challenge to educational efforts 
to this day.

Although reflections on art and beauty have, of course existed since Plato, it is 
only since about the middle of the eighteenth century in Europe that a distinct dis-
cipline called “aesthetics” develops as a consequence of what had occurred earlier.

Nevertheless, the artist is the paradigmatic personality of the Renaissance. The imagination 
of the genius is the actual creation of this great epoch, even the man of action has an aes-
thetic character in it. But behind the concept of the artist hides that of the creative person in 
general. From now on this concept plays a previously unknown role in the intellectual life 
of the West. (Baeumler, 1923, 2)

And curiously enough, the situation repeated itself during the Romantic Movement, 
in the last decades of the 18th and the first decades of the 19th century, particularly 
in the context of the more abstract empirical sciences of electricity and thermody-
namics and at the same time in the Humboldtian conception of unity of research and 
teaching in Germany. As S. Turner describes the situation:

In Germany, unlike other European nations, the universities have traditionally been the 
major centers for the creation of academic knowledge as well as for its transmission. This 
was especially true in the first two thirds of the nineteenth century (…). The ultimate cause 
of this burgeoning of German scholarship was the new and at that point uniquely German 
conviction that the professor’s responsibility is not only to transmit academic learning but 
also to expand it, through criticism and research. This ideal of the professor’s proper func-
tion can be called the research imperative. (Turner, 1981, 109ff)
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The role of the aesthetic and the importance of the arts lies in the fact that art can 
deal more freely with the fundamental complementarity of meaning and information.

2.8  Conclusions

In his Critique of Pure Reason, Kant had said: “Philosophical cognition regards the 
particular in the general, mathematical the general in the particular, nay, in the 
individual” (Kant, B742).  For Kant, this meant that in mathematics the general 
becames, so to speak, alive in the particular construction.

The latter is also true with respect to the arts. Mathematics has always had some 
affinity with the arts. And we find, in fact, that it was aesthetics—in addition to 
technical utility—that had stimulated the mathematization of the sciences. Pure 
mathematics had always had an aesthetic appeal to people, and it was sometimes 
even regarded as the highest philosophy. A mathematician, says G. Hardy, the most 
important British mathematician up to the Second World War

is like a painter or a poet a maker of patterns (...). The mathematician’s patterns like the 
painters of the poets must be beautiful, the ideas like the colors or the words must fit 
together in a harmonious way. There is no place in the world for ugly mathematics. (Hardy, 
2012, 84)

 Analytic mathematical thinking, such as traditional twentieth-century analytic phi-
losophy, is stuck in a computer-induced impasse which may perhaps grow even 
deeper, than it is today. In teaching contexts algorithmic reductionism presents itself 
as a convenient simplification. The procedures we teach in our schools are sim-
ple and, if not, they can be easily performed by technical devices such as calculators 
and computers. If practiced unilaterally—as this is often the case, due not  least to 
the social systemic constraints upon the educational process —this approach loses 
sight of the aesthetic component of mathematical and indeed scientific practice. 
Analytic mathematics, if it is to work for the student, must be experienced, and 
a “technical” approach is only one side of the equation. Structures must be contem-
plated in action and experienced, they cannot be directly communicated. This, on 
the other hand, cannot be achieved by simply delegating the task to supposedly 
familiar semantic environments either.
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Chapter 3
Questions That Are at the Core 
of a Mathematics Education “Project”

Maria Aparecida Viggiani Bicudo

3.1  Introduction

It is assumed that mathematics, as a science and the way it exists, is at the core of 
the issues concerning mathematics education, as well as those concerning the for-
mation of individuals and citizens. This core is surrounded and expanded by issues 
concerning the complexity of the world in which we live and requires that socio- 
historical- cultural contexts be considered. From this core and its surroundings, arise 
diverse themes of research centered on lines of investigation and in sub-areas of 
mathematics education. To elucidate this statement, I list the following works which 
focus on many of such themes. One that has achieved prominence in recent years is 
coloniality, about which many articles have been written, mainly in Brazil. The 
objective of such works is to highlight the supremacy of knowledge brought about 
by Western mathematics, which has been imposed as a parameter of truth and accu-
racy for the knowledge produced in other cultures. Fernandes (2021) exposes 
thoughts about relations between Mathematics and Western modernity in the con-
figuration of the colonial matrix of power. Tamayo (2017), Tuchapesk da Silva, and 

Project is being understood as “projection,” as Heidegger exposes its meaning in Being and Time 
(1962, p. 185), that is, as an idea launched to the possibilities of happening, that is, of its becoming. 
He says “Dasein is thrown into the kind of Being” which we call “projecting.” Projecting has noth-
ing to do with comporting oneself toward a plan that was conceived and in accordance with which 
Dasein arranges its Being (Heidegger, 1962, p. 185). The objective of bringing this meaning to 
mathematics education, as set out in the title of this chapter, is to affirm that at the core of mathe-
matics education there are issues considered important that are actualized in the very movement of 
becoming in which mathematics education is cast into the mundanity of the world actualizing its 
possibilities.
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Tamayo (2022) have authored work highlighting this idea. Ethnomathematics has 
been seen as a precursor of studies focused on sociocultural issues within mathe-
matics education. Tamayo et  al. (2018) stated that ethnomathematics studies in 
mathematics education

[...] triggered “a shift in the ways of thinking about mathematical knowledge. As a result of 
such movements, initiated by ethnomathematics, which we understand as counter- conduct, 
new branches, and possibilities, for thinking about mathematics education through different 
perspectives blossomed.” (Tamayo et al., 2018, p. 588)

By assuming social justice as a germane value in educational practice, critical 
mathematics has also highlighted the mathematics affected within the context of 
daily practices. Gutestein (2018) explained this view clearly by stating

While I acknowledge the multiple meanings of these terms, for me, they all mean the same: 
to learn and use mathematics to study social reality, as a way to deepen learners’ under-
standing of the roots of injustice and prepare them to change the world, as they see fit, in 
both the present and future. (Gutestein, 2018, p. 133)

Another theme that has been brought to the foreground is that of gender and 
mathematics education. For instance, Souza and Fonseca, assume in their article that

[...] the emergence of the concept of gender in education showing different nuances and 
proposing its incorporation as a category of analysis in the field of mathematics education, 
in which discussions on gender are rarely detected, especially when we analyze scientific 
research in Brazil. Using women scholars in the field of gender studies as references, we 
have reflected on the need to incorporate this concept into the investigation of the processes 
of teaching and learning mathematics, the subjects in pedagogical relations, and the cultural 
mode of conceiving, using, and evaluating mathematical knowledge. Such incorporation 
would imply, however, a disruption in the ways which we have thought about concepts 
related to female, male and mathematics.” (Souza & Fonseca, 2009, p. 29)

This questioning regarding mathematics and reality leads some researchers to 
investigate “The Separation of Mathematics from Reality in Scientific and 
Educational Discourse” (Schürmann, 2018). The article aimed to illustrate that the 
separation between mathematics and reality is an outcome of several shifts in his-
toric mathematical discourse.

This is a broad spectrum of issues. How can this diversity be articulated? How 
can we articulate relevant criticisms of the primacy of European science,1 prevalent 
in Western civilization, in relation to the ways other cultures tackle knowledge and 
the understanding of mathematics, which underpins scientific and technological 

1 “European sciences” is a term that refers to the logic of science that was built in Western civiliza-
tion and that expanded throughout the world, as a support for scientific investigations and their 
applications and as a tool for technology. “The term ‘science’ was used here in a precise sense: that 
which refers to the disciplines, theories, investigations that were configured in western thought in 
two fundamental stages: Greek speculation for Geometry and modern speculation for Mathematics 
and Physics” (Ales Bello, 1986, p.10) (Il termine “scienza” stato usato in una precisa accezione: 
quella che si referisce alle discipline, teorie indagine che sono configurate nel pensiero occidentale 
nelle due tappe fondamentalle: le speculzione greca per la geometria e la speculazione moderna 
per la mathematica e física).
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practices, which have become common both in Western and Easter cultures? 
Notably, there is a certain ambiguity in the way mathematics is treated, according to 
the discourse and the emphasis attributed either to the ways of routinely dealing 
with it, or the scope and positivity of scientific knowledge, present in the areas of 
health, engineering, technology. Depending on the perspective, the so-called 
European science is viewed as important and crucial for progress and the possibility 
of improving life and, at the same time, it is rejected, for bringing too many gener-
alizations which are imposed on particular worldviews, especially those of different 
cultures. How can we account for such distinct perspectives, when working with 
mathematics education in institutions dedicated to the formation of individuals and 
citizens?

Kennedy (2018) had already shown concern regarding the need to create space in 
the curriculum for the inclusion of philosophical thought within mathematics edu-
cation. In “Towards a Wider Perspective: Opening a Philosophical Space in the 
Mathematics Curriculum” she stated that

philosophical inquiry may aid in the opening of a “wider horizon of interpretations” that 
includes a critical dimension. Such an opening represents a potential expansion of students’ 
mathematical experience, and promises to provide bridges for establishing richer, critical, 
and more meaningful connections and interactions between students’ personal experience 
and the broader culture. (Kennedy, 2018, p. 309)

I agree with Kennedy that it is necessary to bring philosophical thought to the 
mathematics education curriculum. To point to possibilities I chose to write this 
chapter, as an essay, albeit short.

The objective of this chapter is not to produce a list of themes defined as impor-
tant and worthy of study and practice. Rather, it is to conduct an analytical and 
reflexive exercise and point out understandings regarding the characteristics of sci-
entific work, which is supported by mathematics, defending the premise that within 
the scope of mathematics education it is necessary to comprehend such characteris-
tics and integrate them into educational practices.

Husserl (1970a, b, c, 2006) conducted an important study regarding the crisis 
engulfing the European community in the 1920s and 1930s. He emphasized the role 
Western science plays in that crisis when it makes absolute and imposes its way of 
dogmatizing the world and its reality, even covering ethical issues. While seeking to 
understand the manner through which this science was produced, he presented an 
enlightening study of pre-categorial and categorial knowledge. They lie at the base 
of Euclidian geometry, which, in turn, laid out the manner mathematics is used, 
assumed by Galileo’s physics, as well as the ramifications of the advancement of 
science and its application to natural and spiritual sciences, due to the success of 
their application and research. He emphasized the logic of such production, which 
encompasses the work with idealities of mathematical objects, with the exactness 
based on such idealities and, as a result, points to the mathematization of nature.

The strength of his thinking brings possibilities for conducting an analytical- 
reflective exercise, bringing his considerations to mathematics education. Significant 
work has been conducted to highlight the articulations of ideas with mathematics 
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education, explained, and understood by that philosopher. Bicudo (1991, 2018, 
2020), Garnica (1992), Hausberger and Patras (2019), Hausberberger (2020), Rosa 
and Pinheiro (2020), Paulo and Ferreira (2020), Batistela (2017), Kluth (2005) are 
some of the many authors who have committed to studying that philosopher’s work 
and who, through exhaustive hermeneutic reading of his texts, opened themselves to 
the understanding of what he expressed. While reflecting their comprehension, 
prominent issues in the field of mathematics education are intertwined with their 
thoughts. They endeavor to highlighting possible articulations both in the scope of 
the philosophy of mathematics education, as well as in the practices which foster 
teaching and learning. Bicudo and Rosa, for instance, sought out to understand the 
Lebenswelt in which we are immersed nowadays, in which science and computer 
technology are present, constituting cybernetic space. They asked: How does one 
get around to teaching and learning mathematics within this reality? Hausberger 
and Patras (2019) dedicated their efforts to understanding the notions of horizon, the 
ways by which hermeneutic studies of texts are conducted, including in mathemat-
ics, articulating their understandings with the didactics of mathematics. Bicudo 
(1991) authored a text on different ways of understanding hermeneutics and advo-
cated the importance of bringing it into the didactic-pedagogical activities con-
ducted by mathematics teachers. Garnica (1992) also dedicated himself to studying 
hermeneutics, investigating how mathematics texts could be hermeneutically read 
during an activity conducted by teachers with students, describing the meanings that 
words opened in the readers’ horizon of interpretation. Kluth (2005) investigated 
the algebraic structure, focusing on the way through which its logical-mathematical 
determinations and language are presented throughout the historicity of the formal-
izations effected within the discipline. Batistela (2017) endeavored to study and 
understand Gödel’s Incompleteness Theorem, advancing into the field of mathemat-
ics teaching within mathematics teachers’ education courses. Since the 1990s, Paulo 
has studied topics relevant to comprehension and perception, articulating them to 
the understanding of the ways through which children and also university students 
constitute and develop knowledge of geometry.

This chapter focused on the studies of Husserl about the specificities of mathe-
matics, Sciences of Nature, and Sciences of Spirit,2 and technology. While high-
lighting them, this author wonders what horizons of philosophical, thus critical and 
reflexive thought, are opened regarding their importance, and what they say about 
the world, despite understanding that they do not dictate, or are not the guardians of 
the truth, much less establish the parameters that should guide human knowledge 
and the ethics of personal and social interrelations.

In this chapter, the goal is to make these ideas explicit. Therefore, the meaning of 
the mathematization of nature, the way to achieve accuracy at the level of categorial 
thinking, the way through which mathematical objects become idealities, enabling 

2 Sciences of Spirit are sometimes called cultural, humanistic, or moral and political (Mora, 2000, 
p. 465). They are also generally treated as Humanities. When understood as Humanities, in the 
Western world, in the modern era, in the present, they can be investigated through the logic of 
modern science, as developed since Galileo.
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advances in the field of mathematics and other sciences that stream toward the lib-
erty of procedures, free from the empirical experience performed in the concrete-
ness of the natural world.

It is assumed that Mathematics education deals with mathematics, thus with the 
logic underlying it. But also deals with issues concerning human sciences. It pro-
motes critical thinking about society and ideological-political issues that populate 
everyday life. It is complex work that requires a vision that encompasses both the 
logic of the production of mathematics itself and its presence in other sciences and 
technology, as philosophical thinking, thus critical and reflective, regarding the 
same sciences and how they+ came to prevail, dictating “truths” about the reality of 
the world. This work must be the goal of mathematics education when mathemati-
cally educating citizens and forming individuals.

The abovementioned goal of mathematics education is a broad endeavor to be 
thought about and assumed by those who care about educating mathematically and 
who seek to accomplish that. This text focuses on a mode of understanding the pro-
duction of mathematical idealities and the mathematization of sciences—natural 
and human—that entail the imposition of a scientific truth above the reality experi-
enced by people in their daily lives. This imposition creates obstacles to the under-
standing of the articulation between scientific theory and reality, as well as opens 
paths for separate cultures, groups, and worldviews.

Due to the importance of Edmund Husserl’s work, the rigor present in his inves-
tigations and the pertinence of the themes he dealt with, which are still current 
today, this text presents the manner through which he understands the production of 
mathematics, sciences of nature and sciences of spirit, and his view on the imposi-
tion of “scientific truth” as dominating in relation to other possibilities for human 
beings to explore and understand the world. At the same time, articulated consider-
ations are presented based on the enlightening arguments regarding mathematics 
education. To do that, the following are addressed: the production of mathematics, 
highlighting the logic present in pre-categorial knowledge; the change of target that 
takes place in the production of geometric knowledge; the extent of this way of 
knowing which is established as structuring of scientific knowledge in the Modern 
Age, to the present day with Galileo, underlying the positivist view of science. The 
treatment of such themes is articulated by contemplating mathematics education: 
the necessary critical-reflexive view.

3.2  The Production of Mathematics

This production results from a historical-cultural movement established and which 
endures in the very manner through which human beings cope with the world3 in 
their daily dealings. However, it is not a mere representation of what is seen, 

3 World is used here in its original meaning.
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understood, and performed in those dealings. Nonetheless, in the process of its con-
stitution, there is a change in the view of the objects given in their physical concrete-
ness and space-time position and dealing with them under a perspective that is 
different from that which prevails in the natural world. Focusing on this change and 
seeking to understand the threads that are intertwined in it is an arduous task that has 
been the objective of many scholars, from different areas, for centuries. To this end, 
a selection is made in order to look at what has been accepted as being the cradle of 
science in Western civilization, ancient Greek culture. I will take the work of 
Edmund Husserl, specially The Crisis of European Sciences (1970a),4 to elucidate 
that movement.

In that work, Husserl produced an interpretative study about the movement that, 
according to his understanding, structures the transformation of pre-categorial 
knowledge, present in day-to- day life in the world, into scientific knowledge, which 
he calls categorial. Pre-categorial knowledge is produced in the world of common 
experience which we navigate in space-time, making predictions and acting accord-
ing to expectations based on them. Categorial is knowledge which is already based 
on the theoretic view of reality. It is law-oriented knowledge. According to Ales 
Bello (1986), those laws can be understood in the 1927 lectures, when Husserl won-
ders about the Gesetzeswissenschaft law. According to such law, he reports as 
follows:

(a) the law that applies to the world surrounding us, according to which the world is homo-
geneous; it represents the generality of all that is “regulated”; therefore, we are talking 
about a regulated “event”, of a regulated “becoming”, of a regulated “causality”;

(b) the “exact” laws that contrast with the first regularity that can be defined as purely 
“typical”. Opposition is justified as accuracy, which consists of presuming the identity of 
singularity in a priori sciences, and can assume two meanings, depending on whether iden-
tity is understood as “ideally-exact” or as “typical” (this is the difference between mathe-
matization and generalization) (Ales Bello, 1986, p. 152).5

4 It is important to state that the crisis of contemporary European sciences is a theme that had 
already concerned Husserl. In 1922, he addressed this theme in an article for Kaizo Magazine 
(Husserl, 2006). Underlaying this concern is his view of philosophy which, in a continuum, from 
the beginning of his studies, shows that it must “[...] ‘teach us to carry out the eternal work of 
humanity’. It must not only enlighten man about actual states of affairs but also to give leadership 
in ethical and religious matters” (De Boer, 1978, p. 497).
5 Nelle lezioni del 1927 (Manoscritto F 1 32) Husserl si domanda in che cosa consista la legge e 
quindi che cosa sia la scienza della legge (Gesetzeswissenschaft). Egli risponde distinguendo: (a) 
la legge che vale nel nostro mondo circostante secondo la quale il mondo si presenta come omo-
geneo; essa rappresenta la generalità di tutto ciò che è “regolato”, per cui si parla di un “acca-
dere” regolato, di un “divenire” regolato, di una “causalità” regolata; (b) le leggi “esatte” che si 
contrappongono alla prima regolarità che può esser definita come puramente “tipica”. La con-
trapposizione si giustifica in quanto l’esattezza, che consiste nel presupporre l’identità della sin-
golarità nelle scienza a priori, può assumere due significati a secondo che l’identità sia intesa 
come “‘esatta-ideale’” o come “tipica” (questa è la differenza fra matematizzazione e 
generalizzazione).
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3.2.1  Logical Aspects of Pre-Categorial Knowledge and What 
They Mean for Mathematics Education

Phenomenologically, Husserl worked to delimit an invariance in relation to the 
natural world, to expose the characteristics of the way of knowing conveyed in it. He 
explained that what is characteristic of the pre-scientific knowledge of nature, pres-
ent in Greek culture, lies in the belief in a undivided-world and in the connections 
established that are perceived as empirically definite, because, in the practicality of 
everyday life they are valid, and because they make sense within the naïvely assumed 
context of vision, and are supported by the uniqueness of the intuitable world. The 
basis of such pre-scientific knowledge lies in its concreteness, given in daily empiri-
cal intuition. “If we take the intuitable world as whole, in the flowing present in 
which it is straightforwardly there for us, it has even as a whole its ‘habit,’ i.e., that 
of continuing habitually as it has up to now” (Husserl, 1970a, p. 31). As a whole, the 
world allows us to presume that, if it has been that way so far, it will continue to be 
so. “In the natural spiritual attitude, a world that exists is before our eyes, a world 
that extends infinitely in space, that is, that was and that will be; this consists of an 
inexhaustible multiplicity of things that sometimes persist in their state, sometimes 
change, that become interlocked with each other, and then break apart, that carry out 
reciprocal actions and, reciprocally are the object of such actions” (Husserl, 2009, 
p. 4–5 author’s translation).6

The knowledge of this world is founded on the certainty that the world is based 
on the understanding of the perceived physicality of things, of the possible explana-
tions about how they are arranged among themselves, in space and time, and on the 
fact that these relationships remain valid in the empiricism of daily experiences. 
This is a natural concept of the world which is imposed onto everyday life. “The 
world understood as the unity of all constitutive experiences of associative forma-
tions, founded on Glauben (intuition) is empirically cognoscible, according to the 
logical principle of induction which encompasses the same breadth of objectifying 
experience” (Ales Bello, 1986, p. 148, author’s translation).7 The invariants pointed 
out in the analyses performed reveal a structure of science examined here in the soil 
in which it takes root, that is, the natural world. This does not import asserting that 
science is absolute, but that in science invariant aspects are found which reveal 
themselves as inherent to its structure. This idea is found in the Introduction to 
Logic and the Theory of Knowledge, when Husserl, in § 2, declares that the idea of 
science presents that which is logical as the essence of science in general. He 

6 Nell’atteggiamento spirituale naturale ci sta davanti agli occhi um mondo che esiste, um mondo 
che si estende infinitamente nello spazio, che è, che è stato e che sarà in futuro; esso consiste di 
uma inesauribile molteplicità di cose che ora persistono nel loro stato ed. ora si modificano, che si 
entrecciano l’um l’altra per poi separarsi, che esercitano azioni reciproche, e che reciprocamente 
le subiscono.
7 Il mondo inteso come l’unità di tutte le esperienze, come formazione costitutiva delle formazioni 
associative fondate sul Glauben, è conoscibile empiricamente secondo il principio logico 
dell’induzione e questo ha la stessa estensione dell’esperienza obiettivante.
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affirms: “[...] it is of course that the character of this which is logical is constitutive 
of science” (Husserl, 2019, p. 29. author’s translation).8

The following invariants are highlighted: pre-categorical knowledge is structured 
by a logic, in which induction, causality, measurement, hypothesis, confirmation of 
the hypothesis are present. Logic is founded on a conviction based on a straight, 
intuitive view of what is immediately perceived in an environment that surrounds us 
and is close to us, coexisting with us. It is maintained by our confrontation between 
being seen and seeing, touching, and being touched. This type of coexistence incor-
porates conductive threads that guide us from perception to perception, so that the 
surrounding space is revealed as real, as well as time in which perceptions flow as 
near and far occurrences, which bring meanings that lead us to infer those that may 
or may not occur. Inference is inherent to the style of the experience of the world, 
which is taken as an a priori that manifests itself in the total course of experience. 
The validity of inference is confirmed in empirical practice, through reasoning 
based on approximations that, in an imaginative variation, can be thought of as: hap-
pened fully as anticipated; almost happened, etc. Certainty, or confidence is estab-
lished when expectation, which takes on the role of hypothesis, that the next event 
will be similar, based on previous events, in similar circumstances, is confirmed. 
The calculation of the event, or its absence, of what is expected is approximate. If it 
occurs as expected, this event fills the void of the wait for the hypothesis to be con-
firmed and, based on that causality, it is shaped. It is established with the successful 
repetition of what happened and what was expected to happen in a certain way. 
“This universal causal style of the intuitively given surrounding world makes pos-
sible hypotheses, inductions, predictions about the unknowns of its present, its past 
and its future. In the life of the prescientific knowing we remain, however, in the 
sphere of the [merely] approximative” (Husserl, 1970a, p. 31).

According to Husserl (1970a, b), the logic introduced as structuring such knowl-
edge is present in the natural world of Greek civilization and is evidenced as the soil 
in which Euclidean thinking flourished. However, it is important to emphasize that 
it is also present in the way we deal with the world in which we live, in our daily 
lives. It is prior knowledge, as Heidegger (1962, p. 182) refers to it in the “Being- 
there as understanding” which brings previous sight, understanding, and interpret-
ing. We conjecture about possibilities, bet on those whose occurrence seems more 
possible, making decisions; we calculate distances, even if approximately; we con-
ceive forms and, through actions that in practical life are successful, based on those 
forms, use them to build utensils.

In daily school life, pre-categorial knowledge supports the actions, interpreta-
tions, and evaluations performed. The educational work carried out in schools is 
based on the intertwining of that knowledge and categorial knowledge, characteris-
tic of science, as conceived and dealt with in western civilization. In the case of 
mathematics teaching, it is imperative to point out this intertwining between the 
activities proposed and developed, with emphasis on the modification of the 

8 “[...] è ovvio allora che il carattere di ciò che è logico è constitutivo per il carattere dela scienza”.
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perspective, that is, the difference in the aspects of the objects with which individu-
als are working and the respective ways of treating them. For instance, in the natural 
world, counting and measuring are carried out in an approximate way. It is possible 
to count stones, group them into small piles, etc. However, numbering stones is an 
action that involves aspects present in the constitution and production of idealities,9 
such as how to work with the essence of numbers, the way of positioning it, denomi-
nating it, etc. Measurements can be performed in an approximate way, through 
steps, size of hands, for instance. Nonetheless, measuring requires a standard, which 
is taken and accepted as accurate. The acceptance of the standard can be based on 
social consensus. However, this criterion does not satisfy those of a broader general-
ity, which transcend a specific social group or culture. What is necessary to establish 
such a criterion? How should exactness be established? The categorial knowledge 
method makes a difference.10

Educational action is responsible for highlighting such differences, clarifying 
instances when a way of dealing with the knowledge of the world and its practices, 
and the decisions resulting from it are acceptable and valid, and others in which 
other tools are needed, for instance, scientific tools.11 The formation of individuals 
and citizens calls for the discussion of the non-supremacy of one knowledge over 
another. Moreover, it requires people to ponder, individually and with peers, in dif-
ferent instances of social organizations in which they operate, about the bases on 
which decisions will be made and taken responsibly.

3.2.2  Logical Aspects of Categorial Knowledge and Its 
Implications to Mathematics Education

Changes occur within categorial knowledge, in comparison with pre-categorial 
logic explained above. In the studies mentioned herein, Husserl conducts analyses 
that show the profound difference between the gnoseological process, which is the 
base of Euclidean Geometry, and the ontological view that underlies the pre- 
predicative science of nature. Euclidean Geometry seeks exactness. Moreover, 
along with this search, there is a process of constituting a method, which will prove 
powerful in advancing scientific and technological thinking.

As an a priori to Euclidean work, that is, the foundation in which it is based and 
generated, is the natural and pre-scientific knowledge of the world. However, it goes 

9 Will be explained in the next section.
10 Will be explained in the next section.
11 This article is focused on pre-categorial and categorial knowledge, as my aim is to deal with the 
characteristics of mathematics and the mathematization of sciences of nature and, by extension, of 
the conception of the world. However, the complexity of life is such that there are situations in 
which religious knowledge, or other ways of tackling reality, are more consistent with the issue to 
be decided. Examples are the ethical question of turning off equipment that keeps organisms alive, 
when there are no longer signs of survival; organ donation; civil disobedience, etc.
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beyond that, it is dissimilar to nature, through the establishment of a working 
method that becomes invariant in the logic of Western science. In The Elements 
(Bicudo, 2009),12 Euclid contemplates the method that sustains the transformation 
of the primitive empiric mathematical knowledge of Egyptians and Babylonians 
into deductive, systematic, and based on definitions and axioms Greek mathemati-
cal sciences. This is a change in the way to produce knowledge, notably founded on 
experience (empiria), for one which is based on statements expressed in a formal-
ized way.

The transformation of the knowledge labeled above as primitive is not the work 
of a single individual, in the case considered herein, Euclid. It takes place in the 
becoming (devir)of the historical-social movement underway in Greek culture 
which, in the III A.C., when Euclid lived, already relied on the philosophy of the 
pre-Socratics, Parmenides, Heraclides, Democritus, and the philosophers who fol-
lowed them chronologically, Sophists, Socrates, Plato, and Aristotle, in whose 
thinking the supremacy of episteme in relation to doxa is emphasized, with empha-
sis on logos, to sustain true knowledge, which is the subject of their investigations. 
Aristotelian syllogistics13 brings a systematization of this logic. It works with pred-
icative judgments, as expressed in predicative language, proceeding to a formaliza-
tion of predicative forms, which support connections of logical reasons, also 
formalized.

Aristotle was the first propose the idea of form which was to determine the fun-
damental meaning of “formal logic” [...] Aristotle was the first, we may say, to 
execute in the apophantic sphere—the sphere of assertive statements (“judgments” 
in the sense expressed by the word in traditional logic) —that “formalization” or 
algebraization [...] (Husserl, 1978, p. 42).

In the demonstrations presented by Euclid, we find the idea of formalization, as 
well as forms of progression between the prepositions, generating demonstrative 
connections. However, the novelty regarding the works of philosophers are the 
space-time figures of the surrounding world with which Euclid worked. There is a 
crucial modification that remains at the structural basis of Western science: these 
figures are not mere representations of the forms of objects as seen in direct experi-
ence with the world, but conceived and dealt with as ideals, that is, as eidetic.14 Such 
space- time figures are idealities, resulting from idealization which is constituted 

12 This reference is from the first translation of The Elements, from Greek to Portuguese. Translation 
made by Irineu Bicudo, a mathematician and Greek scholar. In the “Introduction” which the trans-
lator wrote and is 79 pages long, his erudition and care for the philosophical and historical bases, 
thus evidencing his concern with the important work of “translating” such significant work, both 
from a theoretical and historical point of view, and whose manuscripts have faded away with the 
passage of time.
13 Aristotle, 384 B.C.–Athens, 322 B.C.
14 In Husserlian phenomenology, eidos or essence derives from the noesis-noema movement, that 
is, of bringing, by intentionality, what is perceived in the action of perceiving. The idea is that what 
is perceived, apprehended at the moment of the act. It is with the idea that consciousness operates, 
articulating meanings, given in the experiences of the living-body, and the meanings presents the 
language that conveys understanding and interpretations.
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and produced in the dimension of subjectivity-intersubjectivity, in which the mean-
ings made within the living-body of each individual, and the meanings conveyed by 
the language in the socio-historical-cultural intersubjective sphere are present. 
Thus, they become mathematical objectualities. They display a generic universality, 
not related to a specific figure.

By following Husserl (1970a, b, c), through imaginative variation reasoning, one 
can comprehend how that happens. He exposes his reasoning as follows: space-time 
figures are perceived in the common movement of the world, in which the perfec-
tion of the forms is pursued, moving further to imaginary improvements in an open 
horizon. Such movement leads to the possibility of seeing limit-shapes that are 
shown as convergent poles of improvement. The perfected forms of limit-shapes 
lead to pure-thinking, without the contents perceived in the concreteness of the 
empiricism. Pure thinking, devoid of perceived contents, is now in the domain of 
these figures. “In place of real praxis – that of action or that of considering empirical 
possibilities having to do with actual and really [i.e., physically] possible empirical 
bodies – we now have an ideal praxis of ‘pure thinking’ which remains exclusively 
within the realm of pure limit-shapes” (Husserl, 1970a, p. 26). What is at work here 
is “[...] a method of idealization and construction which historically has long since 
been worked out and can be practiced intersubjectively in a community [...]” 
(Husserl, 1970a, p. 26).

This method of idealization and intersubjective construction creates ideal objec-
tualities that become the soil in which exactness is obtained. With them, it is possi-
ble to determine absolute identities that can be known in a uniquely identical way, 
as well as it is possible to generate a systematic and aprioristic method, of maximum 
scope. This method points to the methodology of exact measurement.

A separation of empirical practicality is established in relation to ideal practice. 
Working in the dimension of ideal practice and with limit-shapes becomes the 
methodical practice of mathematicians. They deal with ideal objectivity and not 
with empirical content. In the ideal dimension, it is possible to obtain exactness, 
which is not achievable in empirical practice. This is because limit-shapes, in their 
ideality, enable the determination of an absolute identity. Through this methodical 
way of proceeding, it is possible to work with that which is absolutely identical and 
methodically univocal. Singular configurations, such as sections of lines, triangles, 
or circles, can be highlighted.

Geometry is structured through in this practice. Given this mode of operation, by 
virtue of its generating method, it is possible to construct other figures, which are 
determined in a unique way. “For in the end the possibility emerges of producing 
constructively and univocally, through an a priori, all-encompassing systematic 
method, all possibly conceivable ideal shapes” (Husserl, 1970a, p. 27). With the 
support of Aristotelian logic, the field for the formalization of geometry is open and 
can be realized. The connection between logic and science is thus established, in 
this specific case, geometry. The connections of inferences are systematized and 
explained at the dimension of the idealities of the geometric bodies and logical laws 
with which geometry operates.
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The novelty of Euclidean geometry, in relation to pre-categorial science, lies in 
exactness, operated by an indirect mathematization. Indirect because it does not 
work with the given object in its empirical concreteness, but with the idea and the 
idealities—perfect objects, as the methodof obtaining exactness enables the produc-
tion of perfection.

Euclidean Geometry’s implications to mathematics educations. It has been a 
strong component of the curricula that prevail in Western civilization schools. Its 
logic underpins the very structure of traditional curricula; from mode of inference 
laws ranging from the simplest to the most complex topics, even imposing prereq-
uisites for content to be addressed. Moreover, the chronological time that prevails in 
this structure is idealized, not considering what is experienced in the movement of 
teaching and learning of the people involved in such actions. With regard to the 
mathematics curriculum, geometry is always present as content to be worked on and 
studies reveal that it supported the teaching of Mathematics. Imenes (1989) explains 
that the teaching of mathematics follows The Elements of Euclid, in terms of the 
content presented in that work, but mainly through the didactic model derived from 
it. He states that “Although it was not written for didactic purposes, for many cen-
turies, that work was used as a reference for the teaching of Euclidean Geometry, as 
a true textbook” (Imenes 1989, p. 193).

Given the intertwining between the geometric figures that “can be visualized” in 
the natural world and the limit-shapes with which Geometry works, within the 
didactic work of school routines, it is easy to naively overlap them, without due 
care, regarding the change of perspective in that view. Formal science, which works 
with idealities, and empirical factual science have been regarded by many mathema-
ticians and mathematics teachers as equivalent. The gap between the work at the 
level of formalized geometry and the work at the level of pre-categorial knowledge 
has been increasingly established with greater vigor. The difficulties in understand-
ing what scientific “truths” say about the world multiply. They grow even larger 
with Galileo and the “transposition” of Euclidian geometry into physics, extending 
toward the sciences of nature and the spirit.

3.2.3  The Loss of Meaning Implicit in the Transposition 
of Geometric Logic into Physics and What it Means 
for Mathematics Education

This transposition occurs within the framework built by Galileo15 and other scholars 
who came after him in the following centuries, assuming his vision, corroborating 
it with that of science which prevails today.

In order to understand what was said regarding the loss of meaning in the title of 
this subitem, it is important to always bring the meanings opened by the word 

15 Galileo Galilei; Pisa, February 15, 1564 — Florence, January 8, 1642.
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meaning in Husserlian phenomenological philosophy. Meaning is made for the sub-
ject at the moment he/she receives, through sense organs (touch, smell, vision, taste, 
hearing, and kinesis), the aspects of the thing shown to them in the dialectics of 
noesis-noema,16 which now reveals itself as a phenomenon. It is effected in the 
articulation between the different sensations performed by the living body, in the 
stream of consciousness, considered in the conception of transcendental17 phenom-
enology. Therefore, the loss of meaning occurs when there is a distancing from such 
experiences and the concept expressed and defined in language. Therefore, it is not 
a social, historical, and cultural transformation of the concept, but a dichotomy 
between what is perceived and lived, and what is expressed either in pre-categorial 
or categorial language.

Therefore, the loss of meaning mentioned in the title of this sub-item refers to the 
distancing between the experience felt by the individual in the empiricality of the 
world in which they live and the ideality of the objects constituted and produced in 
the dimension of subjectivity and intersubjectivity. It is noteworthy that the intuition 
of the individual about what they see and experience occurs in the flow of experi-
ence and in the carnality of the living body18 (Bicudo, 2020). This intuition engen-
ders acts of transcendental consciousness and transcends subjectivity, through 
language-mediated expression, launching itself into the intersubjective sphere, 
intertwined with history and culture, in which the individual is with the other 
 (whoever they may be) as a living body.

With the work of Galileo, this distancing is strengthened, as the theory that is 
under construction moves away from the vision of the natural world, which sustains 
Euclidean work, and begins to work with the idealities made explicit by concepts 
and formulas. There is an epistemological cut and a change in the view of reality. 
With Euclid, reality is what he experiences and where he acts in the natural world, 
also understood from the perspective of the logic of the knowledge thus produced. 
With Galileo and his science that is always under construction; the reality in which 
the thinker-scientist moves is that which springs from theoretical truths. An episte-
mological cut, as, in the first case, with Euclid, meaning is effected within the real-
ization of experience, and the explanations are structured according to a 
non-propositional, exact logic. In the second case, with Galileo, it is necessary to 

16 The structure of intentionality, as exposed in Husserl’s writings, can be analyzed through two 
components: the object as intended, that is, as something to which consciousness is directed, the 
noema, and the conscious act that intends the object, the act of noesis. The noema secures the side 
of the object in the intentional relationship and the noesis highlights the side of the individual, 
intending the ways in which it is given to consciousness.
17 The living-body, as explained by Husserl’s (2002) phenomenological investigation, is shown as 
the center of orientation to the world, the other and the self. It is the core of distinctive and diffuse 
sensations, of the constitution of mental and spiritual life. The living-body, unlike other physical 
bodies, moves by itself, showing autonomy and freedom, to come and go, to direct itself in a tar-
geted manner.
18 Transcendental consciousness is understood as not regional, fluid, moving, originator of mean-
ing; therefore, it is not separated from the body, even though it transcends and goes beyond the 
body, through its characteristic intentionality.
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seek links between conceptual language, the logic that structures the theory that is 
already sustained in the logical system, engendered by Aristotle and the world expe-
rienced, in which experiences are expressed in a common language.

Apparently, this difference between pre-categorial and categorial logic could be 
understood as that between spontaneous and scientific language, which are concepts 
exposed by Vygotsky. However, it is not just about using signs (psychological tools) 
as language, before understanding their function or meaning. That author distin-
guishes between two types of concepts, namely scientific and spontaneous, each 
encompassing different genetic origins and histories. Scientific concepts evolve 
through instruction; spontaneous concepts emerge from everyday experiences 
(Vygotsky, 1986). According to Vygotsky, the development of scientific and spon-
taneous concepts follows different paths. The former moves from abstract to con-
crete whereas the latter moves to a greater abstraction, starting from concreteness. 
However, when Husserl mentions the distancing that initially occurs with Euclid’s 
work and what is established beginning with Galileo’s work, this does not refer 
solely to ways of expressing different concepts, but to the vision of reality assumed 
and the logic that structures the synthesis of ideas that a concept expresses. This is 
the shift from pre-categorial to categorial knowledge.19

Despite the loss of meaning pointed out, from the first half of the sixteenth cen-
tury, science continued on its path of development. It is based on the logic of 
Euclidean Geometry that opens possibilities for all ideal figures, generally imagin-
able, to be constructively and univocally generated, by a systematic aprioristic 
method of maximum extension.

Back to Galileo. The work of Galileo mathematizes the physics then known. 
Thus, there is a great change in the view derived from the way Galileo works with 
physical bodies and their movements in space, as idealities, thus achieving accu-
racy. The work is supported by the logic of Euclidean Geometry by the possibility 
of generating constructively and univocally, through a systematic aprioristic method 
of maximum extension, all ideal figures in general imaginable, as stated above.

The work of Galileo leads to a mathematization of the physics then known. The 
great modification of perspective that occurs comes from Galileo working with 
physical bodies, and their movements in space, as idealities, thus obtaining 

19 I believe that working with language as a mediator between subjective dimensions (psychologi-
cal and all others the living-body encompasses) and intersubjective, thus also referring to social, 
historical, and cultural contexts, evidences two aspects that must be assumed. One concerns the 
view of reality seen as primarily social, in which language is a given, as well as the relationships 
among individuals, and the positions they occupy in the social structure. Presuming that aspect 
takes as given (takes for granted) that language is first; with immediate concreteness. Another 
aspect evidenced is not questioning the constitution and production of language and social organi-
zation. This does not at all mean to affirm that man comes first and creates social structure. It 
means to affirm that, in the movement of life experienced by the individual, in the world where 
there are others, the individual-word-other; intertwiningly, social, historical, and cultural reality 
are constituted and produced. As I see it, Husserlian phenomenology strives to comprehend that 
movement.
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accuracy. To do so, he took Euclidean Geometry and its method as given, that is, as 
being there in the world to be put into operation and expanded.

The change from one paradigm to another is intensified and expanded in its 
strength with the operationalization of accuracy, sustained by measurement. It is 
conducted through the art of measurement.

The art of measuring discovers practically the possibility of picking up as [standard] mea-
sures certain empirical basic shapes, concretely fixed on empirical rigid bodies which are in 
fact generally available; and by means of the relations which obtain (or can be discovered) 
between these and other body-shapes it can determines the latter intersubjectively and in 
practice univocally – at first within narrow spheres (as in the art of surveying land), then in 
new spheres where shape is involved. (Husserl, 1970a)

Galileo had before him Euclidean geometry, contained in a well-articulated the-
ory, according to the laws of Aristotelian logic, which brought within its structure 
the idealizing method and the possibility of new and accurately measurable cre-
ations. This procedure leads to a rupture in the conceptions assumed between men 
of science and commoners. It establishes a separation between those visions, inten-
sified by the interest in the pure application of geometry to physics, without ques-
tioning followed by enlightening understandings of the basis of scientific knowledge 
rooted in the logic of the knowledge of the natural world. According to Husserl 
(1970a), the origin of theory was hidden, and this concealment generated, within the 
scope of modern science in the West, a crisis seen as insufficient understanding of 
the world.

In an imaginative variation, the author explains:

Galileo said to himself: Wherever such a methodology is developed, there we have also 
overcome the relativity of subjective interpretations which is, after all, essential to the 
empirically intuited world. For in this manner, we attain an identical, nonrelative truth of 
which everyone who can understand and use this method can convince himself. Here, then, 
we recognize something that truly is — though only in the form of a constantly increasing 
approximation, beginning with what is empirically given, to the geometrical ideal shape 
which functions as a guiding pole. (Husserl, 1970a)

The intention of getting to know the world in a scientific way engenders the need 
to discover a method to systematically construct, previously, the world and its cau-
salities and confirm this construction in a safe manner. Given the impossibility of 
conducting direct mathematization to fulfill this intention, indirect mathematization 
is performed. It should be emphasized that in the knowledge of the pre-categorial 
world, a universal concrete causality prevails, anticipating that the intuitable world 
can only be intuited as an open world, on an infinitely open horizon.

To be sure, this inductivity was not understood by Galileo as a hypothesis. For him, a phys-
ics was immediately almost as certain as the previous pure and applied mathematics. The 
hypothesis also immediately traced also for him (its own) path of realization (a realization 
whose success necessarily has the sense in our eyes, of a verification of the hypothesis – this 
by no means obvious hypothesis related to [previously] inaccessible factual structure of the 
concrete world). (Husserl, 1970a, p. 39)
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In the scientific knowledge of physics, which is emerging, it is necessary to seek 
far- reaching methods; measure speeds; accurately apprehend universal causality.20 
It is necessary to determine, in a positive way, the knowledge generated based on 
proof of hypotheses. In the quest to account for his task, Galileo used practical 
action, obtaining accurate measurements and determinations. And the meaning of 
the logic of the art of measurement, whose crucial characteristic is to always be in 
motion perfecting the measure, toward accuracy remained hidden. The implicit 
meaning in this logic: improve, repeatedly and continuously21 the method for 
obtaining exactness.

This goal can be achieved through an indirect mathematization of the intuitable 
world with the application of general numerical formulas that, once found, can 
serve for its application, to conduct the factual objectification in particular replace-
able cases.

The formulae obviously express general causal interrelations, “laws of nature,” laws of real 
dependencies in the form of “functional” dependencies of numbers. Thus, their true mean-
ing does not lie in the pure interrelations between numbers (as if they were formulae in the 
purely arithmetical sense); it lies in what Galilean idea of universal physics, which its (as 
we have seen) highly complicated meaning-content, gave as a task of scientific humanity 
and in what the process of its fulfillment through successful physics results in – a process 
of developing particular methods, and mathematical formulae and “theories” shaped by 
them. (Husserl, 1970a, p. 41)

The very meaning underlying this mathematization and which is hidden when 
scientists and the science teachers turn into technicians are not the connections of 
numerical values, mathematical relationships, operations, etc., but the Galilean idea 
of universal physics. The enthusiastic interest of the researcher of nature, that also 
becomes that of the mathematician, is in formulas. The former is aimed at the natu-
ral scientific method, understood as the method of true knowledge. The latter aims 
to work with exact formulas.

What does formulation bring? Implicitly, its logic results in loss of meaning. 
That is why the formulation provides numbers, in general, based on general propo-
sitions that express laws of functional dependencies, moving away from the con-
creteness of the empirical world and freeing thought to advance toward imagined 
possibilities, however not in the dimension of fantasy, but delineated in the context 
of the previously determined prediction. This freedom is expanded with the help of 
algebra, through the symbols that replace figures and their respective ways of oper-
ating with them, always working in a categorial dimension. The effect of this way 
of thinking seems to be beneficial, on one hand, and sinister, on the other. First of 
all, algebraic formulations mean “an immense extension of the possibilities of the 
arithmetic thinking that was handed down in old, primitive forms. It becomes free, 
systematic, a priori thinking, completely liberated from all intuited actuality, about 
numbers, numerical relations, numerical laws” (Husserl, 1970a, p. 44).

20 Husserl shows how such quest led to analytic geometry.
21 In mathematics, the idea of always and continuously takes on the meaning of infinitum. It oper-
ates as a center of convergence.
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It is necessary to clarify that this broadening had already occurred with arithme-
tic, which also brought about freedom from empiricism. There is an intersection 
between arithmetic and algebra which is therefore in the nature of their objects; 
symbols. However, the former deals with symbols which denote numbers, opera-
tions, and relations, such as equality. The latter broadens the symbolic set and the 
notion of operations beyond usual numbers. In the words of Husserl, “the sign for 
+, for instance, is not the sign for arithmetic addition, but a general connection, for 
which law such as ‘a+b=b+a’ are valid” (Husserl, 1962, p. 94, translated by the 
author). This means, for instance, that while in arithmetic the equality ‘2 + 3 = 3 + 
2’ is valid, in algebra, the law given by ‘a+b=b+a’ doesn’t even require that a and b 
be numbers but establishes a link for all objects which are compatible with it. In this 
sense, there is a broadening, a liberation from arithmetic, from all intuitive reality, 
made possible by algebra. However, following the thoughts of Peacock (1830), gen-
eralizing arithmetic is just one of the possible explanations for algebra. From that, 
in its modern conception, one can deduce what Husserl called “supreme algebraic 
thought” (Husserl, 2012, p. 35), which enabled a theoretical leap for mathematics 
and cognitive for human thought, as it deals with “‘something in general’ construct-
ible in pure thought, in pure-formal generality” (Husserl, 2012, p.  35, author’s 
emphasis). Thus, algebra allowed mathematical thought to be freed from all empiri-
cism, from all factuality, expressed objects defined solely through a determined 
axiomatic which “in relation to its matter, (...) remain entirely indetermined” 
(Husserl, 2014, p. 186).

The beneficial aspects brought about by formulation activity show the amplifica-
tion of what has already been determined. However, these same benefits encompass 
an emptying of their meaning, as pure intuitions are transformed into pure numeri-
cal figures, with algebraic configurations, which, as previously explained, make it 
possible to express “supreme algebraic thought” (Husserl, 2012, p. 35).

The beneficial aspects, which can be understood, show the expansions of what is 
already determined. However, these same benefits they also bring an emptying of 
their meaning. Pure intuitions turn into pure numerical figures, with algebraic con-
figurations. In algebraic calculus, the geometric meaning automatically recedes, or 
is abandoned. One calculates and, only in the end, remembers that the numbers 
should mean greatness. One calculates with symbols. “This process of method- 
transformation, carried out instinctively, unreflectively in the praxis of theorizing, 
begins in the Galilean age and leads, in an incessant forward movement, to the high-
est stage of, and at the same time, a surmounting of, ‘arithmetization;’ it leads to a 
completely universal formalization” (Husserl, 1970a, p.  45). Thus, the distance 
between the intuitions that occur in the empiricalness of experiences enjoyed in the 
natural world increases, moreover, there is a rupture caused by the change of point 
of view and by the non-reflection on what is being done and obtained with this 
practice.

The emptying of meaning is accentuated with technization. Within the frame-
work of the mathematical disciplines themselves, for example, with operation with 
letters, by connecting signs (+, x, =, etc.) and according to the connective ordering 
rules of the game. The original reasoning, even if regarding formal truth, is left out 
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of the loop. One operates, obtains correct results, because they are accurate. Thus, 
“purely geometric thinking is also emptied, as well as its application to factual 
nature, to scientific-natural thinking”. It is important to emphasize that the possibil-
ity of getting lost in technization is inherent to the essence of every method. 
Therefore, natural science undergoes a multiple transformation which also encom-
passes the concealment of meaning. The natural world becomes a forgotten founda-
tion of meaning in natural science.

It falls onto mathematics education to focus on the beneficial sides of generaliza-
tion and formalization, as well as the loss of meaning, when working with formulas 
and their importance from the perspective of scientific explanations and, at the same 
time, highlight what worldly reality they hide. It is always work that develops in a 
middle line interweaving scientific practice and philosophical thinking regarding 
the meaning of the world and what science and technology mean in it and enables 
such meaning to be accomplished.

3.3  Mathematization as Methodological and Ontological 
Foundation of Reality: What it Means 
for Mathematics Education

The mathematization initiated with Galileo’s work which prevailed throughout 
Modern Age, with the establishment of Positivism, imposing itself as a way of 
investigating and obtaining accurate knowledge, which is considered “true” knowl-
edge. It advanced into technical and technological practice, throughout the contem-
porary era, with the advent of mathematical logic, analysis and calculus, algebra, 
and its possibilities of application to natural sciences, and gradually to spiritual 
sciences as well. This expansion was possible by replacing the pre-scientific view of 
nature with an idealized one, which could be the stage for hypothetically correct 
investigations, because they are accurate. They support explanations and predic-
tions also calculated by general numerical formulas. These lead to the objectifica-
tion of particular cases, of events that occur at the level of the natural world. This 
results in the application of the general to the particular, that is, from theoretical 
laws to particular cases, consummating the application of theory to practice.

At the heart of this conception is the meaning of the hypothesis, always under-
stood as hypothesis, although confirmed by scientific research. The methodical pro-
cess of establishing, proving, and assuming proof brings in itself the possibility of 
errors which are calculated and assumed within the process. It is a method that 
propagates the idea of continuous improvement, understood as progress. “In the 
total idea of an exact Science, just as in all the individual concepts, propositions, 
and methods which express an ‘exactness’ (i.e., ideality) – and in the total idea of 
physics as well as the idea of pure mathematics – is embedded infinitum, the perma-
nent form of that peculiar inductivity which first brought geometry into the histori-
cal world” (Husserl, 1970a, p.  42). The idea of infinitum encompasses that of 
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increasing refinement that offers a better representation of nature. This view pre-
sumes supremacy and underscores explanations and predictions in the diversity of 
ways that life manifests itself. It fulfills its destiny, that of constant improvement, 
becoming absolute. It adorns reality with robes woven with symbols, masking expe-
rienced reality. It shows a reality seen and understood through the lens of 
mathematical- scientific idealities.

Thus, there is an inversion in terms of the conception of the reality of the natural 
world. This reality is affirmed in the positivity of scientific laws and is no longer 
seen as the soil in which opinion and reason are exercised, explaining a pre- 
categorial and epistemic knowledge about reality. One enters the path opened by 
Galileo’s physics and ends up pontificating the so-called scientific “truths,” which 
become synonymous with what is, that is, with being. The prevailing view is that of 
an infinite world obtained by a rational, coherent, and systematic method. With such 
a view, an infinite horizon opens up for mathematics. It has supported sciences, both 
through the possibility of applying its theories and by serving them as a methodical 
and ontological foundation, consummating an ontology of mathematics, which 
Husserl called the mathematization of nature.

Here, a forcible break is made in the realm of the positivist sciences. Truth is 
dictated by scientific theory, which postulates mundane reality. It goes beyond lived 
reality and the experiences of individuals who, in their sensitivity, perceive nuances 
that are dismissed by scientific theory. This break implies a schizophrenic view, as 
the individual must deny their sensitivity and perception and impose the “scientific” 
truth on themselves. There is a distinct separation between pre-categorial and cate-
gorial knowledge, and what science states about the world does not make sense to 
human beings, taken in their subjective individuality.

Husserl argued that the new sciences—those built from Galileo’s work—
undoubtedly seemed initially successful when they displayed their favorable results 
through the application of their theories. However, he considered that this initial 
impulse gave way to a sense of failure. He claimed that this is the beginning of “a 
long period extending from Hume and Kant to our time, of enthusiastic struggle for 
a clear, reflecting understanding of the true reasons for this centuries world failure” 
(Husserl, 1970a, p. 11). He stated that the sciences dissolve internally but fail to 
understand the meaning of their original foundation when it appears as a branch of 
philosophy. This means that when sciences are separated from philosophy, they stop 
thinking philosophically about its meaning, what it says about the world, humanity, 
and life itself. Thus, a crisis is established in the European community, initially 
latent, then acute, which signals the meaninglessness of its cultural life, viewed in 
terms of its total existence. This is the meaning of the crisis of European sciences, 
explained in several works by that author, mainly in The Crisis of European Sciences 
(1970a). For Husserl, the origin of theory was hidden, and this concealment gener-
ated a crisis understood as the lack of understanding of the world in modern Western 
science.

It is this understanding, that is, the search for meaning that the world brings us, 
that needs to be resumed. It is not a matter of denying logic, practice, and the impor-
tance of “European Science,” but of understanding it, in its genesis and in the 
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dimension of its own practice and the respective reach of its explanations and fore-
casts. To this end, philosophical thinking, characterized by being comprehensive, 
critical, and reflective, becomes necessary. It enables us to go beyond scientific 
discourse that positions itself as absolute to pontificate about life and the world and 
always ask: what do these statements mean to me, to the community in which I 
participate, to society in which I am inserted regarding different issues? It is in the 
play, between philosophical thinking about science and scientific expertise that the 
sovereignty of scientific thinking and practice, installed in our world, comes under 
suspicion, and can be weakened. The imposition of scientific thinking leads indi-
viduals to distance themselves from the world of life experience; moreover, it fos-
ters distrust and rejection of original intuition, replaced by the preciseness and 
certainty of science.

This rupture must be addressed within the realm of mathematics education; 
its goal must be the understanding of the very production of science and what it 
says about the reality of the world. It is necessary to exert philosophical think-
ing regarding what scientific knowledge means and what it brings in terms of 
improvement of living conditions, for individuals, society, and the planet itself. 
This thinking is critical and reflective, it expands to the manner of knowing of 
each person individually, and the community in which they live, enabling the 
comprehension of one’s own feelings and perceptions, the ways of expressing 
them, and those brought about in their daily life in which they interact socially 
with others.

This alternation, from mathematical and scientific statements to pre-catego-
rial ones and vice-versa, opens possibilities for emphasizing diverse ways of 
knowing and talking about the world, both in the realm of other concerns, such 
as, for instance, religious ones, as well as those of cultures and peoples inhabit-
ing other regions. Therefore, horizons of understanding and ways in which the 
meaning of the world can be reestablished are expanded. It is necessary to foster 
credence and acceptance of the original intuition and think about their relativity, 
which can be overcome by confrontation and subsequent social consensus of the 
group. In this game, intuition always means something to the person, under-
stood in its individuality, and needs to be maintained in the dialogue with others, 
that is, in the dimension of the intersubjectivity of life with the group, as long as 
it persists as a clear view, which occurred, for the person, at the moment it hap-
pened. Moving toward the realization of critical-reflective thinking, it is neces-
sary to bring statements based on idealities and the formulas built with them, in 
order to consider what is obtained with this generality and what it means in the 
activities performed with students. The realization of this thinking requires that 
individuals, in their subjective dimension, be focused and attentive to the move-
ment of the articulations that are being made for them, as well as to the language 
that expresses them and supports the communication with other people with 
whom they are interconnected in the dimension of intersubjectivity. In this 
dimension, mathematics education is made in its becoming, that is, in its ways 
of happening.
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3.4  Mathematics Education: Necessary 
Philosophical Thought

This text involves issues to be worked on in mathematics education, outlining a way 
of understanding the production of mathematics and its role in the constitution of 
scientific and technological thinking present in the world we live in today, and the 
urgency of not succumbing to the loss of meaning of life and of the world, as we are 
immersed in a sea of explanations and predictions issued and supported by the sci-
entific and technological apparatuses. It pointed out that mathematics education can 
contribute to the accomplishment of this task in a unique manner, which is critical 
and urgent for humanity. The justifications developed in this chapter and that sup-
port this statement are associated to the possibility of mathematics education work-
ing with mathematics, as critically and reflexively understood, and produced in 
Western civilization. This manner is characteristic of philosophical thinking, which 
does not mean that it is based on works of philosophers and their different visions 
of mathematics and science, but, only, that it performs an exercise of understanding 
what is said, so as not to take it as absolute truth and to always and repeatedly won-
der if what the affirmation tells about the body of knowledge being worked on, as 
well as the life of people, the community that they share, the social organization in 
which they live and worldly reality.

The work of Edmund Husserl, mainly “The Crisis of the European Sciences,” a 
theme so dear to him, was used to elicit a way to understand the movement of pro-
duction and establishment of sciences in the world in which we live. These sciences 
present a universalizing vision of the reality of the word, to the extent that their logic 
and theoretical and methodological framework are assumed both by Western and 
eastern civilizations, particularly as far as technology is concerned.

To explain the aforementioned production, the ways of knowledge that are char-
acteristic of a science present in the natural world were brought forward, named by 
the above-mentioned author as pre-categorial, and the logic underlying them was 
evidenced.22 It was explained that the pre- categorial mode of knowledge is the soil 
in which Euclidean geometry flourished, giving rise to a different mode of knowl-
edge, categorial or scientific. The characteristic of this way of knowing is to work 
with idealities constituted and produced based on a shift of view from the empiri-
cally given in the reality of physical and concrete bodies, to the idea or eidos or 
essence, sustaining the idea in language and in procedures that lead to formalization 
and categorization. The expansion of Euclidean geometry from mathematics to 
physics, with Galileo, was also explained, evidencing the transformations that are 
being implemented and maintained throughout the Modern Age, entering the twen-
tieth and twenty-first centuries. These transformations bring mathematics, its theo-
ries, and possible applications, as well as its logic, now formal and algebraic. An 
ontology that speaks about the world and its reality is established, from the perspec-
tive of Western science.

22 Descriptions and analyses regarding this affirmation are presented in §9 of The Crisis of European 
Sciences (Husserl, 1970a).
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The universalizing trend of this view leads mathematics educators to seek gate-
ways by bringing ways to introduce mathematics in other cultures, criticize accu-
racy, and the respective value judgments that can underlie it, work with approximate 
knowledge, work with concrete materials, and everyday situations.

This chapter argues that, underlying these different attempts, is the question of 
the intertwining of pre-categorial and categorial knowledge, the respective perspec-
tives in which they are produced and, specially, the imposition of the mathematical- 
scientific- technological way of conceiving and dealing with worldly reality. It is 
argued that it is necessary to know about the specificities of mathematics and sci-
ence to conduct work that opens horizons for critical and reflective thinking about 
their importance and what they say about the world, understanding, at the same 
time, that they do not dictate the truth nor are they the guardians of it, much less 
establish the parameters that should guide human knowledge and the ethics of per-
sonal and social interrelations. This chapter underlies the understanding that form-
ing individuals and citizens requires that the knowledge of sciences, as present in 
the logic of the “European sciences,” be the object of teaching and learning in cur-
ricular activities of schools, and that, in doing so, the discussion of the non- 
supremacy of one knowledge over the other must be included in the agenda; 
moreover, that an exercise of philosophical thinking be carried out, leading people 
to ponder, individually and with others with whom they live, in different instances 
of the social organizations in which they work, about the bases on which their deci-
sions will be made and responsibly assumed.

The conduction of such thinking requires that people, in their subjective dimen-
sion, be focused and attentive to the movement of the articulations that are being 
created for them, as well as the language that expresses them and that supports the 
communication with other people interconnected in the dimension of intersubjectiv-
ity. Through this dimension, in the dialogical situation, understood as being both an 
atmosphere for acceptance of others and for revealing arguments and ways of 
understanding, mathematics education develops in its becoming (devir), i.e., in 
ways of happening.

Due to the requirement for extending the text, at the end of each item when I 
focused on what it means to mathematics education there was no dialogue with the 
texts listed in the references indicated regarding the same themes, in the realm of 
mathematics education. Such a dialogue would be fruitful. Nonetheless, it would 
render this chapter too long. Initially, it had 20 pages, as required by the editors of 
this book. In order to comply with reviewers’ requests, it was expanded to 27 pages.
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Chapter 4
Networking Phenomenology and Didactics: 
Horizon of Didactical Milieus with a Focus 
on Abstract Algebra

Thomas Hausberger and Frédéric Patras

4.1  Introduction

In his broad overview of the philosophy of mathematics education as a sub-field of 
mathematics education, Ernest (2018) emphasized the following characterization of 
philosophy as a discipline: “Philosophy is about systematic analysis and the critical 
examination of fundamental problems. It involves the exercise of the mind and 
intellect, including thinking, analysis, enquiry, reasoning and its results: judgements, 
conclusions, beliefs and knowledge.” To wit, philosophy is about knowledge and 
the mind’s access to knowledge and, as a consequence, there are many ways to 
apply philosophical concepts, results, or methods to mathematics education research 
(MER). Among them, we feature first that one should adopt a “critical attitude” to 
claims, theories, methodologies of MER. Second, one should use contributions of 
philosophical domains (ontology and metaphysics, aesthetics, epistemology, ethics, 
etc.) and approaches to enhance theoretical development in MER as one cannot 
disentangle the ambition to offer a secure basis for knowledge from the very analysis 
of what knowledge is, should be, and how it can be acquired, in mathematical 
education theories as elsewhere.

Unfortunately, editorial constraints imposed by the main mathematics education 
journals, notably the standard format of an article, which must include analysis and 
interpretation of data, rarely allow time for discussion of the foundations of the 
theories that are applied and for consideration of potential developments. In other 
words, the vocation of mathematics education to improve teaching and learning 
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would pull the field toward a form of pragmatism that has little tolerance for the 
subtleties of language offered by what some reviewers call ‘philosophical jargon’. 
Such use must show the full force of the results produced or else the same discourse 
cannot be held in a more common vocabulary without significant loss of nuance. 
This creates a strange situation, where the methods used by the science that aims to 
study the process of knowledge acquisition depart from the way science is usually 
built. Indeed, science in general does not progress primarily by experiments and 
data analysis, but by a combination of methods that run from theoretical constructs 
and research programs to actual experimentation. The interplay of practices, not a 
dogmatic and uniform approach, is the key to progress, also in MER. From our 
point of view, MER has a lot to gain from taking more advantage of philosophical 
writings, which we will try to highlight in this chapter by taking up Husserl’s 
theoretical developments on the notion of horizon.

The inclusion of Husserlian horizons in MER has already been proposed by 
Zazkis and Mamolo (2011) as a way to interpret the “knowledge at the mathemati-
cal horizon” (KMH; Ball & Bass, 2009). We will begin by briefly presenting this 
work and show, in the “critical attitude” of Philosophy, how, although relevant in the 
context of teacher training, it moves away from Husserl’s project. It also presents 
limitations when it is a question of carrying out a more advanced analysis of the 
cognitive processes at stake in learning a topic such as Abstract Algebra.

In the following sections of the chapter, we come to the core of our contribution, 
which is mainly theoretical in nature, and present how we have articulated 
phenomenology and mathematics education in order to study the manifestation and 
acquisition of structuralist thinking in groups of university students. We will rather 
say “didactics of mathematics” since the main theory considered in the sequel, 
Brousseau’s (1997) theory of didactical situations (TDS), takes its origin in the 
French tradition of the field (Artigue et al., 2019).

On the methodological level, our work may be described as a form of networking 
of theoretical frameworks (Bikner-Ahsbahs & Prediger, 2010). The same 
phenomenon in mathematics education, namely how students solve a given problem 
in Abstract Algebra, can be analyzed from the perspectives of both Husserlian 
phenomenology and Brousseau’s theory. The networking of didactical theories is a 
research practice allowing the combination of complementary insights. It also leads 
to the linking of theories at different levels and by means of different strategies (by 
comparison, contrast, synthesis, local integration, or more). In our case, the joint 
analysis (first stage: comparing/contrasting) of the data led to the identification of 
common features (second stage: combining/coordinating) between Brousseau’s 
didactic contract and Jauss’ horizon of expectation in Hermeneutics (Hausberger & 
Patras, 2019; Hausberger, 2020).

In a third and more advanced stage of networking, synthetizing and integrating 
locally are relevant concepts whenever theoretical development is aimed at. This 
chapter is a first step in this direction as it aims at a local integration of theoretical 
constructs of phenomenology to supplement TDS. To do so, we will connect the 
notion of milieu in TDS with that of world in Phenomenology and draw further 
connections around the notion of horizon. Although the richness of the notion has 
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not been completely taken advantage of in our previous work, we will not come 
back here to the horizon of expectation but focus mainly on Husserl.

His philosophy is thus contributing to unraveling the hermeneutical and phenom-
enological dimensions of the learner’s interaction with the milieu. Key is the learn-
er’s intentionality. Intentionality, in a phenomenological sense, does not refer here 
merely to intentions (goals such as acquiring understanding or insights, for exam-
ple), but in a subtler way to the structures of conscience underlying the relationships 
between the individual and the world. This idea of intentionality comes from a scho-
lastic notion, which Husserl inherited through Brentano. In medieval philosophy, 
intentio referred to the application of the mind to an object. We owe it to Husserl to 
have made it a foundation of Phenomenology. Intentionality has multiple forms and 
accounts for example for both the gaze we direct on the surrounding things and the 
theoretical gaze we have on mathematical objects. All these dimensions contribute 
to make it a central idea for the use of phenomenology in didactics; hereafter, we 
will focus on intentionality in relation to the structures of consciousness underlying 
the relationships between the learner and the milieu. This philosophical analysis at 
the level of principles will serve as a background to analyze, in a second step, how 
these ideas unfold to grasp key aspects of elaborated theoretical knowledge in 
Abstract Algebra. This is where the key notion of horizon in the sense of Husserl 
comes into play and supplements the more general one of intentionality, as horizon 
structures are indeed structures of intentionality.

Our theoretical elaboration will be illustrated in the last section of the chapter 
through the analysis of excerpts of a dialogue between a pair of advanced students 
(PhD level and beyond) engaged in solving Abstract Algebra tasks. We will unveil a 
large spectrum of horizon types, without attempting to be exhaustive, featuring in 
particular a richness and complexity that depart from the descriptions offered by 
Zazkis and Mamolo’s interpretation of horizons in the teacher education context.

4.2  Horizons in Teacher Education

Zazkis and Mamolo (2011) focus on the “knowledge at the mathematical horizon” 
(KMH; Ball & Bass, 2009), a component of the subject-matter knowledge, in the 
classical sense of Schulman, which designates (primary or secondary) teachers’ 
advanced mathematical knowledge (from university or college) that may prove 
useful in teaching at school. Their interpretation is driven by the metaphor of 
horizon as a place “where the land appears to meet the sky” and the distinction 
between inner and outer horizon, after Husserl. Whereas the inner horizon 
corresponds to “aspects of an object that are not the focus of attention but are also 
intended,” the outer horizon represents the “greater world” in which the object 
exists. Zazkis and Mamolo connected these two types of horizons to the first two 
components of KMH, respectively: the surroundings of the current topic under 
study and “the major disciplinary ideas and structures.” Subsequently, Mamolo and 
Pali (2014) attempt to add in their descriptions, knowledge related to practices and 
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values, in other words to account for the remaining two components of KMH: “key 
mathematical practices” and “core mathematical values and sensibilities.” But they 
didn’t draw further connections with phenomenology. Their goal is to study how 
these horizons may impact teacher’s actions in teaching situations.

As a main case study, Mamolo and Taylor (2018) exemplify connections between 
Abstract Algebra content (a part of the “blue sky”) and secondary school content. 
Although numerous examples are provided, by pointing out to studies in the volume 
contributed to, these examples rely on a similar schema: the object attended to is 
part of the school curriculum and its outer horizon, inside Abstract Algebra, consists 
of the “generalities which are exemplified in the particular object” (Zazkis & 
Mamolo, 2011, p. 10). In Philosophy, this is called a type-token relationship, and it 
certainly doesn’t exhaust the possible types of relationships, as we will see at the 
end of this chapter. To summarize, in this approach, the focus is how Abstract 
Algebra understanding may influence decision-making in teaching situations at 
school. The analysis of intentionality does not aim at relating abstract structures to 
lower-level mathematical objects in mathematical practices. Nor does it aim at 
shedding light on the ways and means a consciousness interacts with abstract 
mathematical objects (and thus achieves learning in Abstract Algebra). In particular, 
horizons of objects belonging to Abstract Algebra (horizons inside the “blue sky”) 
are not considered, whereas they will be central in our work that focuses on higher 
education teaching and learning.

4.3  Modeling Teaching-Learning Phenomena

The Theory of Didactical Situations (TDS; Brousseau, 1997) offers a general model 
and tools for the analysis of any didactical system: the main point is that a learner 
interacts with a milieu shaped by the teacher, according to a didactical contract. 
Learning is then asserted when the adequate adaptation to the milieu may be 
observed in the student.

Precisely, the didactical contract designates the “system of reciprocal obligation” 
that determines “explicitly to some extent, but mainly implicitly – what each partner, 
the teacher and the student, will have the possibility for managing and, in some way 
or another, be responsible to the other person for” (Brousseau, 1997, p. 31). It is 
expected from the milieu to be antagonistic, in the sense that it will provide 
retroactions (to the students’ attempts to solve the problem) and allow the target 
knowledge to emerge due to the “internal logic of the situation.” At this stage of the 
learning process, the milieu is a-didactical, in the sense that students shall experience 
an “absence of [direct] intentional direction” (didactical intention). The new 
knowledge acquires the status of a piece of the mathematical text at the later didactic 
phase of institutionalization by the teacher.

In fact, Brousseau distinguishes different patterns of situations, which are usu-
ally integrated in a sequence: an action pattern, in which students act on a material 
milieu; a formulation pattern, which aims to make explicit the students’ “implicit 
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models of action”; and finally a validation pattern, in which a debate is organized to 
discuss the truth value of the students’ findings. Brousseau refers to cognitive 
psychology when it comes to identifying these implicit models of action and 
understanding their role in the acquisition of knowledge. He mentions the conceptual 
field theory (TCF) program of Vergnaud (1990), and others can be cited (Dubinsky’s 
APOS theory, Tall and Vinner’s theoretical construct of concept-image, etc.). If such 
a study falls within the scope of the interactions between psychology and didactics, 
our aim in this chapter is to show what an interaction between phenomenology and 
didactics can bring to shed light on the psychogenesis of concepts when a learner is 
confronted with an a-didactical milieu.

This is where the notion of horizon comes into play. Before presenting Husserlian 
horizons and their connections to Brousseau’s theory, we need to introduce other 
works that extend TDS on some aspects that may be related to phenomenology. In 
a pioneering paper, Brousseau and Centeno (1991) investigated how teachers handle 
the temporary and transient knowledge of pupils to promote learning. They called 
didactic memory of the teacher the knowledge that teachers may evoke on purpose 
to reactivate and facilitate the transformation of previous knowledge toward the 
target knowledge. Flückinger (2005) combined the perspective of TDS with TCF to 
study how students’ numerical knowledge on division evolved through the 
construction of schemes connected to classes of situations partly organized by the 
teachers and partly emerging as new knowledge in the conceptualization process. 
She called such a feature the didactic memory of students since responsibility for 
memory processes has been partially devolved to students through a specific 
didactical contract: for instance, it is the students’ responsibility to decide which 
objects of knowledge are the most pertinent to handle the assigned problems. We 
argue that the notion of horizon is a tool to capture features of the interaction of the 
students with a-didactical milieus and will give evidence of its relevance to analyze 
the evolution of forms of knowledge from implicit models of action to their 
explicitation (formulation) and then to a path toward a formal proof (validation).

4.4  The Horizon According to Husserl

We assume, then, that the construction of meaning, as we understand it, implies a 
constant interaction between the student and problem-situations, a dialectical 
interaction (because the subject anticipates and directs her actions) in which she 
engages her previous knowings, submits them to revision, modifies them, completes 
them or rejects them to form new conceptions. The main object of didactique is 
precisely to study the conditions that the situations or the problems put to the student 
must fulfill in order to foster the appearance, the working and the rejection of these 
successive conceptions (Brousseau, 1997, p. 83).

In the global project summarized by Brousseau’s quote, two questions will retain 
our attention and govern our approach to Husserl’s ideas in an a-didactical context. 
First, how to describe the modalities of interactions between the student and the 
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milieu? This can be done at two levels: first, a functional, descriptive level based on 
experience or observation. For example, a group of students can start playing a 
game naively to “see how it works” and decide later on a protocol to look for an 
optimal strategy, or look immediately for a strategy, or mix the two approaches in 
various ways that the teacher can observe and partially expect. Achieving such a 
description is important because it can allow the concrete engineering of didactical 
situations. However, the question can be addressed at the higher level of principles: 
why is such a thing as the interaction between a student and a milieu possible? What 
are the available tools to speak of such a thing? How can it be described in a way 
that will allow didactics to explain and theorize the corresponding processes?

The other question, closely connected in our opinion, as we shall see, is how do 
previous knowledge play a role in this interaction? Of course, we know practical 
answers: for example, these knowledges are the tools that will allow her to grasp 
and analyze the problems. But, once again, at the level of principles, the question is 
harder to treat: why is it so, for example, that a student will be led to use induction 
to solve a counting problem and not a direct argument (a bijection with a set of 
known cardinality, for example)? How is such a thing as a path of successive 
guesses, modifications, completions of knowledge possible? Or, more precisely, in 
what space of cognitive actions, theoretical behaviors, does this path live?

Let us consider the milieu from a phenomenological point of view. Recall from 
Brousseau’s Glossary (2010) that “a situation is characterized in an institution by a 
set of relations and reciprocal roles of one or more subjects (pupil, teacher, etc.) 
with a milieu, aimed at transforming that milieu according to a project. The milieu 
consists of objects (physical, cultural, social or human) with which the subject 
interacts in a situation.”

In the phenomenological language, the subject interacts with a world. Most of 
the time, this world is the natural world, the Lebenswelt (the world of life). The key 
role of the Lebenswelt for Phenomenology was emphasized by Husserl in various 
texts, two of the most relevant for us here being the Crisis (The Crisis of European 
Sciences and Transcendental Phenomenology, Husserl, 1954) and his contemporary 
essay on the Origin of Geometry. A key thesis, defended in both texts in different 
forms, is that modern mathematics ultimately refers to a proto foundation in a 
system of original evidences whose origin is to be found in our immediate 
relationship to the world (that is, to the Lebenswelt). Mathematical ideas thus have 
a complex historicity, which is not only the result of their history but also of this 
necessary reference to fundamental intuitions. These ideas are extremely important 
and of considerable significance for didactics, but we will not go down that road 
here: instead, we will emphasize the role of the Lebenswelt in the constitution of the 
horizon of mathematical objects and concepts in the classroom.

Another important observation is that, however important the Lebenswelt, it is 
not the only “world” we can be embedded in or interact with: “I can for example 
also occupy myself with pure numbers and laws of numbers. The world of numbers 
is also there for me; it constitutes precisely the field of objects where the activity of 
the arithmetician takes place. During this activity, she will focus on some numbers 
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or numerical constructions surrounded by an arithmetical horizon, partially 
determined, partially undetermined” (Husserl, 1913, [51], our translation).

A key step when interacting with a world, whatever it is, is to change attitude: the 
same person can behave naturally and interact with her Lebenswelt, her surrounding 
world, or switch to a theoretical attitude and behave as an arithmetician, or a student 
in arithmetics. The corresponding world will then be shaped differently. A milieu in 
the didactical sense can be thought of as a particular kind of world. It exists as a 
milieu precisely because the student (or the teacher) adopts toward it the right 
attitude. For example, scissors, a pen, and a sheet of paper can constitute a milieu 
suited for elementary Euclidean geometry or be simply the tools given to a kid 
to play.

In Phenomenology, a world cannot be disentangled from its horizon. The horizon 
is, roughly stated, the configuration of possibilities, meanings, tools, intentions that 
shape the world/milieu. The horizon is at the same time what makes the dynamical 
and constructive interactions between the subject and the world possible and the 
“place” where they occur. A feature of the a-didactical horizons we will consider is 
that the didactical memory of students is a key ingredient in their constitution and 
structuration. When the young student considers numbers and properties of numbers, 
she may already know that there are operations she can perform: addition, 
subtraction, multiplication. She also maybe knows that there are more complex 
operations like division or exponentiation that she remembers only vaguely, and she 
knows that using them would require some care. Lastly, she maybe has learned 
more advanced ideas, for example the reasoning by induction, but at the moment 
does not connect this knowledge to numbers, although she could remember it at 
some stage of a reasoning. These operations, some clearly determined, some still 
undetermined or under-determined, are one component of the horizon of numbers. 
They are also tools that I can use to reshape the current milieu. For example, I can 
transform the problem of computing (6+7)*2 into the problem of computing 13*2. 
But in the horizon of possible shaping my interactions with (6+7)*2 other paths of 
reasoning would be possible, for example its transformation into (6+7)+(6+7). 
Here, again we can observe constructive interactions between phenomenology and 
didactics. The notion of didactic memory, together with its theorization and 
documentation on classroom experiments, can enrich phenomenology by 
documented examples, where the behavior of students can be analyzed. Conversely, 
phenomenology enriches the didactical theory with its precise tools of analysis, 
especially of the theoretical endeavors and ideas formation in the context of 
interactions between an individual and the world.

Studying the milieu from the phenomenological perspective leads to answers to 
our initial questions. The horizon is a locus where interesting, dynamical, 
transforming interactions with the milieu take place. Prior knowledge are some of 
the components of the milieu, they also contribute to the shaping of the horizon and 
to the action on the milieu. The horizon and the didactic memory are certainly not 
exhausting the analysis of the interactions with the milieu, but our thesis is that they 
are an important constituent that allows us to understand various important didactical 
phenomena.
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4.5  Toward a Typology of Horizons

In cognitive sciences, Jorba (2020) argues that the perceptual intentional horizon in 
Husserl’s phenomenology, besides being a general structure of the experience, 
extends to a viable notion of cognitive horizon that relates to affordances (possibilities 
of action present in experience). She proposes “to characterize a specific structure 
of the cognitive horizon – that which presents possibilities for action – as a cognitive 
affordance. Cognitive affordances present cognitive elements as opportunities for 
mental action (i.e., a problem affording trying to solve it, a thought affording 
calculating, an idea affording reflection)” (p.  847). Following Husserl, she also 
features various types of horizon structures that we will use later to characterize 
several structures showing up in (a)-didactical experiments. We detail their content, 
building on her analysis.

The inner horizon accounts, in the phenomenology of perception, for the various 
ways in which I can have access to an object: “Every experience has its own 
horizon... this implies that every experience refers to the possibility... of obtaining, 
little by little as experience continues, new determinations of the same thing. (...) 
Thus every experience of a particular thing has its internal horizon” (Husserl 1973, 
§8: 32, quoted in Jorba, 2020). In didactics, we propose to use the notion as referring 
to the various access I can have to an object (a notion, a concept...) that are directly 
contained, either in the object itself (for example as direct consequences of its 
definition or as properties of its components), or in a given milieu. Here, “given” 
refers to the components of the milieu that go immediately with the (a-)didactical 
situation. Notice that this is a subtle notion. Whereas the inner horizon of a spatio- 
temporal object or being amounts simply to the various experiences I can make—
for example by turning around a building, visiting it, seeing its roof from an airplane, 
etc.—the inner horizon of a theoretical object such as a mathematical one highly 
depends on the way this object is given. A sphere defined using the classical axioms 
of Euclidean geometry can be identified with an object in the space R3 equipped 
with a positive definite quadratic form, but the (technical, conceptual, methodological) 
horizons that go together with these two definitions are quite different. In other 
terms, this notion of inner horizon also depends on the learner’s background.

Outer horizons refer instead to the possibility of putting an object (notion, con-
cept,…) in relation to other objects or in another context (Jorba, 2020, p. 849ff). In 
our previous example, quadratic forms, metrics, scalar products belong to an outer 
horizon of spheres in naive Euclidean geometry. Phenomenology itself enters the 
scene by providing theoretical tools to analyze how horizons structure the relation-
ships of a consciousness to its objects, whatever they are.

This phenomenology of horizons is further enriched by two families of relations. 
In our didactical context, we propose to call associative outer horizons those 
relations based on relating two objects, two notions in a non-straightforward way 
(once again, what straightforward means will depend on the learner’s background). 
The example of spheres and quadratic forms can be analyzed that way, for example. 
Instead, inferential outer horizons will denote relations acquired through reasoning, 
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provided new elements, notions, ideas, insights result in this process. For example, 
the late nineteenth-century insight that a finite set is a set that cannot be put in 
bijection with a proper subset could be analyzed that way: appealing implicitly to 
the infinite to define finiteness, besides being counter-intuitive, requires upgrading 
the horizon of finite collections through a process that, at least at the very beginning, 
relies more on technicality and reason than intuition.

Turning back to Jorba’s general program, we agree with her analyses relating 
cognitive horizons and cognitive affordances and point out that the didactic approach 
to Jauss’ notion of horizon of expectation in (Hausberger & Patras, 2019) goes in 
the same overall direction. Many features of phenomenological horizons of the 
Lebenswelt actually translate into features meaningful in a didactical context. For 
example: “Every cogito, an external perception or a remembering, and so on, for 
example, carries with itself in a detectable manner an immanent potentiality: the 
one of possible life experiences, linked to the same intentional object, that the self 
can realize […]. In each cogito, we discover horizons” (Husserl, 1950, p. 181). They 
induce potentialities, in the natural behavior, for example the possibility to turn my 
head to the left to discover new components of the countryside, or in arithmetics, the 
possibility to perform first a sum or a product in a given formula, with some priority 
constraints on the operations that contribute to shape the horizon of possible 
arithmetical actions.

An important point that we will start to develop implicitly in this chapter is that 
the notion of horizon is not a vague concept that would allow to speak of certain 
phenomena without giving conceptual and methodological tools to investigate their 
properties and structure: “I can investigate an intentional experience, which means 
that I can penetrate its horizons, interpret them and, that way, unravel potentialities 
of my life and, on another side, clarify, at the objective level, the targeted meaning 
[Ibid].”

Taking again the elementary example of arithmetical operations, the expression 
(2+3+4)*(2+1) can be transformed into (5+4)*(2+1), (2+7)*(2+1), (2+3+4)*3, and 
so on. These potentialities are all open and part of the horizon of the expression. 
They are the beginning of paths that will lead the student (hopefully) to 27. When I 
analyze the structures underlying these potentialities, key ideas of arithmetics will 
show up if I push the analysis to its limit. For example, the equivalence of the first 
two transformations—which is not obvious—points out at the associativity of 
addition, an highly sophisticated notion that, in its modern, structural interpretation, 
appeared relatively late in mathematics (Leibniz, Grassmann, …).

The second question we raised in the beginning of section 4 (how does prior 
knowledge impact the interaction of the student with the milieu?) has started to be 
addressed by noticing that knowledge is a key component of the structure of the 
horizon and by pointing out at the relevance of didactic memory in our context. Let 
us expand briefly on this and make these observations concrete. If I already know 

1 On the phenomenological definition of the horizon and its fundamental properties, see also 
op. cit., p. 82.
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what associativity and distributivity mean, I will be able to devise more complex 
strategies to solve equations and will be much more confident on their validity. 
However, the question relates to a very general feature of intentionality that goes 
beyond the particular case of didactic memory, namely the fact that each life 
experience has an horizon of anteriority (my past experiences and the memory I 
have of them). This horizon of anteriority has several components. Short-term 
memory is important, for example, when solving a problem. The ideas and results I 
just obtained contribute to shape my current understanding of the problem in its 
present state. In the French educational system, this phenomenon is illustrated by a 
marked difference between exercises, usually focusing on a few directly related 
questions, and problems, much longer and where drawing connections between 
arguments in different parts of the problem is essential to its solution. In such 
situations (exercise, problem) where didactical and a-didactical components are 
mixed (depending on the reliance of the solution on already acquired skills), an 
horizon is constructed largely internally to the situation—in the sense that it is 
shaped by previous answers. Long-term memory impacts differently the interactions 
of the student with the milieu. For example, recognizing certain prototypical features 
of a question (for example, to perform a computation involving sums and products) 
will lead her to use the priority rules and distributivity laws for arithmetical 
operations that she had learned some time ago and had remained before one among 
the many and largely indistinct components of the horizon of the problem.

In conclusion, horizon, didactic memory, and their constructive interactions can 
be understood and documented in many ways. We will focus now on a specific 
example in order to illustrate the fertility of our theoretical ideas on concrete 
empirical data.

4.6  Application to Abstract Algebra

The purpose of this section is to study, in the spirit of Husserl, the learning processes 
of advanced students engaged in solving a mathematical problem in Abstract 
Algebra: the theory of banquets. Cognitive processes will be explored using the lens 
of phenomenology with the notion of horizon as the main tool: progresses in solving 
the problem are thus related to changes in the horizon structure which potentially 
result in new cognitive affordances.

Throughout our analysis, the main questions will therefore be: Which is the main 
intentional object (or noema) that consciousness is focusing on in crucial moments 
of the mathematical experience? What is the underlying motivation structuring 
intentionality and, more generally, what is structuring its noetic moment: the way 
mathematical conscience is conscience of… intuition of… grasping of…? How are 
inner and outer horizons of intentional objects structured by the learners’ 
interpretation of the milieu and background knowledge (or didactic memory)? We 
will rely on language and other semiotic representations produced by learners as 
warrants for our claims; moreover, the chronology of reasonings makes it possible 
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to detect partly implicit features of cognitive anticipation of the horizon through the 
evidence of how the horizon unfolds in subsequent cogita.

Let us now present the problem. Mathematical structuralism has had a large 
impact on contemporary mathematical practices (Patras, 2001) but also on modern 
didactics of mathematics. Various members of its founding fathers have indeed been 
strongly influenced by the problems that arose together with the emergence of 
“modern maths” where abstract axiomatic structures serve, especially in algebra, as 
organizing principles in the exposition of mathematical theories and as tools to pose 
and solve mathematical problems. Pre-structuralist theories about numbers, 
polynomials, and other standard mathematical objects appear as a background to 
motivate and apply the abstract unifying and generalizing point of view of structures. 
Structures also give rise to new questions: Which identity principle to adopt (which 
are the natural morphisms between objects of a given type of structure)? How to 
classify objects up to isomorphism? Which structuralist theorems govern the 
decomposition of objects into simpler ones? As a piece of didactic engineering 
(Artigue, 2014), the theory of banquets (Hausberger, 2020; Hausberger, 2023) has 
been designed in order to tackle these kinds of questions in the context of an Abstract 
Algebra course at the transition between undergraduate and graduate studies in pure 
mathematics. The main prerequisite is a course in Group Theory, so that students 
have already encountered similar structuralist questions and results that will be 
thematized in the context of banquets.

A banquet is a set E endowed with a binary relation R which satisfies the follow-
ing axioms: (i) No element of E satisfies xRx; (ii) If xRy and xRz then y = z; (iii) If 
yRx and zRx then y = z; (iv) For all x, there exists at least one y such that xRy.

In part I.1 of the worksheet, students are asked the following questions:
1 a. Coherence: is it a valid (non-contradictory) mathematical theory? In other 

words, does there exist a model?; b. Independence: is any axiom a logical 
consequence of others or are all axioms mutually independent?

In part I.2, they are asked to classify banquets of small cardinalities and link 
banquets of order 4 with their knowledge in Group Theory (in particular with the 
cyclic group of order 4). The abstract/concrete relationship is reversed in part II of 
the worksheet, which begins with the empirical definition of a table of cardinal 
number n as a configuration of n people sitting around a round table. Its aim is to 
prove that any banquet decomposes as a disjoint union of tables (the “structure 
theorem”). We won’t give more details here since excerpts of students’ work that 
will be analyzed are restricted to part I.1 as we prefer to insist on our method, its 
significance, and concrete use than on all the conclusions that can be drawn from 
experiments on the theory of banquets.

The banquet structure possesses a large variety of models since the system of 
axioms may be interpreted in quite different worlds, beginning with the empirical 
interpretation of guests sitting around tables (whence its name): xRy if x is sitting on 
the left (or right) of y. Other domains of interpretation include Set Theory (the 
binary relation is represented by its graph), Functions (xRy ⇔ y = f(x) defines a 
function f according to axioms (ii) and (iv); the other two axioms mean that it is 
injective without fixed points), Permutation Groups (f is a bijection when E is finite, 
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in other words a permutation without fixed points) or even Matrix Theory and Graph 
Theory (see Hausberger, 2021, for a full mathematical analysis). The structure 
theorem of banquets thus corresponds to the well-known theorem of canonical cycle 
decomposition of a permutation, but the analogy remains hidden since the binary 
relation of banquets is different from binary operations that define groups. These 
remarks explain why the theory of banquets is mathematically rich but may not be 
found in any textbook (it is equivalent, in the finite case, to permutation groups). 
Moreover, it is a simpler theory (in the sense of mathematical technicality) than 
Group Theory, and it carries the underlying intuition and mental image of guests 
sitting around tables (a wedding banquet).

4.7  Horizons of the Abstract Structure of Banquets

Question I.1 of the worksheet (coherence; existence of a model; independence of 
axioms) may be regarded as a first situation in the sense of Brousseau, dedicated to 
logical analysis. Its milieu contains the axiomatic definition of the banquet structure, 
the concept of model of a system of axioms and the language of Set Theory.

The intentional object is, in general, the object (of senses, or abstract, theoreti-
cal…) toward which consciousness is directed. In this exercise, the main intentional 
object is the definition of banquet. At any moment during the solution of the exer-
cise, this consciousness and the attention given to the axiom system is embedded 
into various horizons. The important point is that these horizons are not fixed: every 
time consciousness is going to be directed toward a particular feature of the axiom 
system, new horizons will present themselves as surrounding this state of con-
sciousness. On the other hand, taking into account the presence of these horizons 
will help students to progress and understand the axioms in different ways, so that 
consciousness itself will evolve accordingly.

What we claim here is simple, but essential and too often forgotten by authors 
appealing to Phenomenology as a method of philosophical investigation: one can 
describe the process of thinking by investigating such phenomena. Comprehension 
of learning in particular is a topic particularly well-suited to such analyses. Our 
claim is that they help understand the didactical processes and could also be useful 
in didactical engineering by providing tools to analyze what steps students are 
expected to perform to reach a satisfactory construction of knowledge.

In the first part of the exercise, the investigation of the meaning of the definition 
of banquets goes through the logical investigation of the system of axioms 
(coherence and independence) using a semantic approach (construction of models). 
The related work of the two (very advanced) students, called Alice and Bob hereafter, 
took the form of a dialogue that has been registered and transcribed. It is made of a 
sequence of 31 speeches. The integrality of the dialogue can be found in Hausberger 
(2016, annex 4), we use here only some parts to illustrate and support our analysis. 
Numbers indicated below in front of Alice or Bob statements correspond to the 
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position of the statements in the dialogue: (5) will refer to the fifth speech among 
31, and so on, so as to indicate the progression of the argumentation.

Concretely, investigating the meaning of the definition could usually be done in 
three ways:

• Appeal to prior knowledge (their own didactic memory, entangled with the 
teacher’s didactic memory)

• Try to grasp directly the meaning of the axioms (with some training it is indeed 
possible to have a purely formal understanding of algebraic axiomatic systems)

• Explore empirically the axioms’ content

In general, mathematical thinking is a blend of several such processes. Each 
approach goes together with distinct intentional modalities. We will try to account 
for those that appear in the two students’ dialogue. It will appear that several 
successive horizons may be uncovered and disentangled.

 1. First horizon (inner): theoretical memory. As a first attempt, students try to use 
direct knowledge on binary relations (antisymmetry, irreflexivity) to make sense 
of the axioms. They appeal therefore to didactic memory in one of its simpler 
forms that we may call formal or theoretical: going back to the known properties 
of the objects and notions under consideration.

(1) Alice: Classical, we specify the structure through relations, okay.
(2) Bob: Antisymmetry [about axiom (i)].

Our memories shape horizons of possibilities and horizons of understanding. In 
her statement, Alice explicitly acknowledges the idea that a structure can be defined 
through relations and that such a fact belongs to classroom knowledge. In 
Brousseau’s language, this idea has been already institutionalized, it is contained in 
the paramathematical2 concept of structure and is also based on the notion of a 
binary relation taught in Set Theory. Recognition of institutionalized knowledge is 
essential; it provides a ground on which further advances can be made.

 2. Second horizon (outer): natural semantics. Interestingly, this first (inner) horizon 
of the banquet structure soon leaves place to a quite different horizon evoked by 
the name of banquet:

(3) Alice: there’s one guy on the right and one on the left, that’s the idea; there’s nobody 
sitting alone at a table.

This second horizon is thus driven by natural semantics, empirical knowledge, 
and more generally our embedding in a Lebenswelt: the mental image of banquets 
acquired from perceptual experience. The theory is embedded in a wider, extra- 
mathematical, context. Here, didactical engineering is involved since the name of 

2 Paramathematical concepts are “named objects whose characteristics are studied but which have, 
for various reasons, not yet been organized and theorized, such as the notion of function in the 19th 
century, or that of equation in the 16th century, or that of variable in the 20th” (Brousseau, 1997, 
p. 59). The students have not been taught Category Theory, the mathematical framework that aims 
at theorizing the notion of structure, but Alice has been introduced to Model Theory in her studies.
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the theory is a main didactical variable (in the sense of TDS) of the situation. By the 
name « theory of banquets », the instructor has chosen to drive the learners toward 
a certain type of models and intuitions – he enforced the building of a specific outer 
horizon.

We emphasize that “natural semantics” refers here to the fact that students give a 
meaning to the theory of banquets by a “fulfilling of intentions of signification,” in 
the language of Husserl. By referring to daily life situations, the theory becomes 
concrete and can be grasped: an element of the set E is now “a guy at the table.” The 
desire to associate a meaning to the axioms (intention of signification) starts to be 
fulfilled.

 3. Third horizon (outer): associative. The second horizon is subsequently aug-
mented with knowledge from elementary set theory and logic to give rise to a 
third horizon with powerful cognitive affordances to construct models and check 
the validity of statements.

As it is based on relating two horizons—the outer one of natural semantics of 
banquets and the inner one of set theory—the new horizon is associative:

(5) Alice: To show that it’s not contradictory, you can show that there exists a model. I sug-
gest we take one guy. No, one guy doesn’t work, 2 guys sitting next to each other. [...]

(7) Alice: Let’s take E={a,b} and for the relationship the couples (a,b) and (b,a). So it is 
indeed a model. [...]

(9) Alice: Yes, a set with 2 elements, they are sitting opposite each other… obviously, 
there is at most one on the right and one on the left, they are in relation with the one 
opposite.

Here, Alice makes explicitly a move from natural to formal semantics. She uses 
theoretical memory to relate the non-contradiction of axioms with the existence of 
a model but appeals then to the idea of people around a table to build a model. In 
speech (7), Alice and Bob have obtained a first mathematical statement: the axiom 
system has a model and is consistent. Speech (9) interestingly confirms the formal, 
mathematical, sentence by a translation into natural semantics.

 4. Fourth (outer) horizon: inferential. The dialogue proceeds with some easy argu-
ments on independence that will be omitted. Later, as they stumble on a diffi-
culty to deny (ii) while keeping other axioms (that is, when trying to prove the 
independence of axiom (ii) from the others), Alice feels the need to produce 
another interpretation of banquets:

(15) Alice: So this thing, it’s nice… there are some and at most one, so this thing, it’s a 
function. To x we associate the unique y such that xRy. And we have the injectivity a priori.

The relationship with functions is thus the main component of a fourth horizon 
that may be qualified as both outer and inferential since it involves several concepts 
not directly related to the axiomatic system (multivalued functions—Bob mentions 
for example the possibility of two images of an element—injectivity) and results 
(equivalence of injectivity and bijectivity for functional relations between sets of 
same finite cardinal number), and leads to a break-through:
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(26) Alice: Perhaps an infinite set is needed, it is possible.
(27) Bob: I have the impression that this is not possible.
(28) Alice: It’s a bijectivity thing that makes you need an infinite set.

A formal proof of the necessity of infinite cardinality is not produced, but what 
they achieve is enough for the production of the counterexample they were 
looking for.

The experiment we have treated allows us to reach several conclusions. The solu-
tion to an exercise is a dynamical process. Understanding it requires the understand-
ing of how the students’ thoughts evolve and move forth and back from the object 
under investigation to a series of insights, some of which are given with the problem 
(inner horizon: the acquired knowledge directly related in that case to relations and 
axiomatic systems), some others have to be found in relation to outer horizons that 
unravel progressively.

We feature once again that, in spite of a common reference to Husserl’s horizons, 
our approach is much more general than a mere type-token analysis, as it appeared 
for example in Zazkis and Mamolo. Indeed, whereas the latter is restricted to 
understanding the subordination of a given mathematical object or problem to a 
more advanced and general theory, our use of horizons gets into the very dynamic 
process of knowledge-building in the classroom. The semantical aspects involved in 
the idea of banquets are a good illustration of the generality of Husserlian use of 
intentionality and horizons.

4.8  Conclusion and Perspectives

The main contribution of this chapter is the further development of Husserlian hori-
zons, first introduced in a didactical context by Zazkis and Mamolo (2011), as tools 
to analyze the shifts of attention and interconnectedness of knowledge in learners 
attending to an abstract structure. Our extension encompasses a larger spectrum of 
horizons and methods in a pioneering application in the context of university math-
ematics education, allowing for a fine-grain analysis of the work of learners engaged 
in the elaboration of a structuralist mathematical theory around the given structure.

The features of horizons that we managed to identify in relation to the manifesta-
tion of structural sense among a pair of advanced students are but a first step in 
understanding the genesis of structuralist thinking in educational contexts. At the 
theoretical level of frameworks, we contribute by combining/coordinating notions 
from TDS with the perspective of phenomenology, in the spirit of networking. We 
believe that such a dual framework may be applied in a large variety of contexts and 
educational levels. We also point out the coordination with studies in cognitive sci-
ences. These links should be investigated further in subsequent research.
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Chapter 5
Specifying Defining, Generalising 
and Abstracting Mathematically All Seen 
as Subtly Different Shifts of Attention

John Mason

5.1  Introduction

Mathematics is often referred to as ‘abstract’, usually in reference to the use of 
multiple unfamiliar symbols. Although it is true that the objects and concepts of 
mathematics are rarely tangible, using the label abstract overlooks and obscures 
abstracting as a process, as a change of relationship between a person and a set of 
words, and hence a change of relationship with self- constructed ‘virtual objects’. 
My aim here is to examine more closely mathematical abstraction as a process, in 
relation to specifying, defining and generalising.

5.1.1  Background Frames

Mathematics teaching is taken here to mean the initiation of pedagogic and mathe-
matical actions which tailor learner experiences of encountering mathematical 
actions, themes, and the use of their own powers (Gattegno, 1981 p6; Mason, 2002a, 
2008; Mason & Johnston-Wilder, 2004a, b). In order to inform choices of 
pedagogical actions it is necessary that aspects of a teaching situation resonate with 
or trigger relevant actions, and this triggering can be enriched through the use of 
labels for distinctions which enable discernment of those choices. Labels are 
gathered together as frameworks, and it is these frameworks of distinctions which 
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constitute the theoretical foundations of mathematics education (Love & Mason, 
1992, p29–53). As will emerge, this is itself a process of the abstract becoming 
familiar through abstracting. Herewith, some relevant frameworks.

 Brunerian Spirals

Inspired by Jerome Bruner’s articulation of three modes of (re)presentation (enac-
tive, iconic, symbolic) (Bruner, 1966), my colleagues and I at the Open University 
(1982) found it instructive and informative to propose a spiral of developmental 
experience in which, through manipulating objects which are familiar and confi-
dence inspiring, learners get a sense of some possible relationships, and over time 
find themselves articulating those relationships more and more succinctly, until the 
labels/relationships themselves become confidently manipulable, to be used to 
explore yet more relationships (Floyd et  al., 1981; Mason, 2002b; Mason & 
Johnston-Wilder, 2004a, b) (Fig. 5.1).

Whenever confidence ebbs or confusions arise, the sensible thing to do is to 
backtrack to a more confidently manipulable situation in order to reinforce and 
re-substantiate the sense of relationships and to add substance to the articulation. 
The purpose of manipulating, what George Pólya (1962) and Mason, Burton, & 
Stacey (1982/2010) referred to as ‘specialising’, is to develop a sense of possible 
relationships, and perhaps to articulate these as properties that may hold in more 
general situations. When confidence ebbs, moving back down the spiral to a domain 
of greater confidence from which to rebuild ‘a sense of’ relationships and properties 
is a useful way to regain confidence and to re-vivify familiarity.

The purpose of specialising is to gain both confidence with and insight into pos-
sible generalisations which are conjectured, followed by attempts to justify these. 
As Whitehead (1911 p4) put it, “To see what is general in what is particular and 
what is permanent in what is transitory is the aim of scientific thought.” This aligns 
with the ancient Greek meaning of theorem as ‘a seeing’, so that proofs become 
attempts to get other people to ‘see’ what I am seeing. These ‘seeings’ involve 
subtle shifts in how the person attends to the ‘objects’ being attended to (Mason 
1989), as will emerge shortly.

Fig. 5.1 The MGA spiral
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 Example Spaces

There is a strong link between MGA as a developmental sequence, and the notion 
of an accessible example space (Watson & Mason, 2005), which refers to 
mathematical objects, construction tools, and relationships, which underpin or 
constitute appreciating and comprehending. I use ‘appreciating and comprehending’ 
in place of ‘understanding’, which for me is too highly jargonised to be a useful 
construct. An example space, accessed from a particular direction according to 
current  context and  triggers, constitutes the domain of familiar and confidently 
manipulable mathematical objects accessible to the learner in any given situation, 
not simply as a collection, but as a gateway to generality.

 Forms of Attention

Over some 70 years of being inducted into and engaging in mathematical thinking, 
and some 50 years of trying to support and stimulate people in their teaching of 
mathematics, I have become more and more convinced that attention is a core aspect 
of human psyche, playing a key role in the success or failure of classroom 
interactions. Discerning different ways to attend can be used to make sense of many 
classroom phenomena.

The fundamental conjecture is that when teacher and learners are attending to 
different things, their attempts to communicate are at best impoverished. But even 
when attending to the same thing, they may be attending in different ways, and still 
their communication is likely to be at best incomplete.

Until relatively recently, William James was one of the few philosophers to 
address questions about attention. Whereas James (1890) felt that attention was not 
responsible for “discerning, analysing or relating but that the most that can be said 
is that it is a condition of our doing so” (p426–7), I find it useful to think in terms of 
different ways of attending, which include the following readily recognisable forms:

Holding Wholes (gazing); Discerning details; Recognising Relationships;
Perceiving Properties (as being instantiated); Reasoning on the Basis of Agreed 

Properties.

These forms of noticing were derived from juxtaposing personal experience with 
a neo- Pythagorean perspective on qualities of number (Bennett, 1993). Wholes are 
of course associated with unity or oneness; distinctions involve ‘this-not-that’, a 
quality of twoness; relationships involve three elements, two discerned wholes held 
in relationship  and so  mediated by a third; properties involve four elements as 
components of activity; reasoning involves five elements concerned with identity 
and potential (Bennett, 1993; Shantock Systematics Group, 1975).

Readers familiar with van Hiele levels (van Hiele-Geldof, 1957; Usiskin, 1982; 
van Hiele, 1986; Burger & Shauenessy 1986), will recognise a close relationship 
between the ‘levels’ and these five forms of attending, which is interesting because 
the forms of attention were derived independently, from observing my own 
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experience while informed by the systematics of Bennett (1993; Shantock 
Systematics Group, 1975). The significant difference is that whereas van Hiele lev-
els apply to developmental stages of young children and their awareness, these 
forms of attention are states which are far from stable. Indeed transitions or shifts of 
attention can be very rapid indeed and are rarely progressive in the sense of 
proceeding from wholeness through distinctions to relationships and beyond, but 
rather tend to bounce around as new distinctions create new wholes, instantiated 
properties give rise to fresh relationships and new distinctions, and so on. Readers 
will be offered contexts in which to experience this for themselves in what follows.

5.1.2  Attention, Awareness, and Consciousness

A much-repeated adage says that if you want to know about water, don’t ask a fish. 
Put another way, “you are (where) your attention is”; what you are attending to is by 
definition what you are experiencing, what you are aware or conscious of. Experience 
is informed by attention, and attention is what is experienced. William James (1890 
p4202) put it that “My experience is what I agree to attend to.” Only those items 
which I notice shape my mind; without selective interest, experience is an utter 
chaos (his italics), and (p424) “each of us literally chooses, by [their] ways of 
attending to things, what sort of a universe [they] shall appear to themself to inhabit.” 
I use awareness in the sense of Gattegno (1970, 1987) to mean having an action 
become available to be enacted, whether automatically (such as adjusting pulse rate 
or skin pores), subconsciously (such as breathing or reacting to stimuli), or 
consciously (choosing to act). Subtle difference in how that attention is structured 
makes different experiences and different awarenesses available.

William James (op cit p91) claimed that “All attention involves excitement from 
within of the tract concerned in feeling the objects to which attention is given,” 
which aligns with the poetic voice of Mary Oliver (2015) “Attention without feeling, 
I began to learn, is only a report. An openness – an empathy – was necessary if the 
attention was to matter.” I see the different forms of attending as forms of empathy 
with mathematics and mathematical thinking. For an overview of contemporary 
philosophical discussions around attention, awareness, and consciousness, see 
Watzl (2011a, b).

5.2  Method

My approach is fundamentally phenomenological as I am interested in the lived 
experience of thinking mathematically rather than collecting observations of other 
people’s behaviour and trying to infer experience. Consequently, my ‘method’ 
involves offering readers tasks to undertake during which they may catch a taste of 
abstraction and other mathematical actions as a process.
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The psychological phenomena of interest here, attention, and its co-relates 
awareness and consciousness, are not amenable to extra-spective research methods, 
in which indicators of phenomena are chosen and measured under varying 
conditions. My method involves intra-spection (being careful to avoid retrospective 
“I must have …” constructions) mixed with inter-spection, in which colleagues 
offer brief-but-vivid descriptions of experiences, seeking resonance and dissonance 
with colleagues, and building up a collection of shared experiences and descriptive 
labels. In order to maintain validity, these must be tested against the experiences of 
further colleagues, who then continue the same process. This is the essence of the 
Discipline of Noticing (Mason, 2002c).

5.3  Shifts of Attention

Ways in which mathematical actions labelled by specifying, defining, generalising 
and abstracting mutually intersect and interact are elaborated below. At first, forms 
of attending are italicised so as to alert the reader to the possibility of noticing them.

5.4  Generalising and Abstracting

The transition from recognising a relationship in a situation, to perceiving a prop-
erty as being instantiated, is characteristic of the mathematical act of generalising. 
By contrast, but not always a sharp distinction, abstracting mathematically involves 
the act of defining, which means declaring that ‘anything which has these properties 
is considered to be a (label provided)’. In Mason and Czarnocha (2021), we consid-
ered an instance of a student apparently abstracting for themselves, without, of 
course, producing a label. For mathematicians, the label is the short form used to 
refer to the effect of the abstracting process that is assumed to have taken place. 
Such an act releases the possibility of reasoning with properties independently of 
the nature of the objects under consideration. Attention shifts from objects and spe-
cific relationships to properties of objects.

5.5  Generalising But Not Abstracting

There is a wide range of tasks which invite the expressing of generality, often asso-
ciated with counting configurations or predicting terms of a sequence (Recorde, 
1543; Mason et al., 2005; Küchemann, 2021). For example, in a hall with a large 
number of tables that seat six people, how many people can be seated if there are a 
specified number of rows each made up of some specified number of tables placed 
end to end? Placed side by side? (Fig. 5.2)
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Fig. 5.2 Showing chairs at 
a table, and two ways of 
forming rows of tables

Notice that for a very short period of time your attention gazed at the diagrams 
in the figure. Discernment of two distinct diagrams and of components (the 
individual tables) then released a sense of relationship as described previously in 
the text, and latterly in the figure caption.

In these sorts of generalisation tasks, learners are invited to shift their attention 
away from drawing all the tables and then counting, to discerning details amongst 
which they can recognise a relationship between the number of chairs added when 
a new table is adjoined, and expressing this as a property. Although learners 
unfamiliar with using symbols to express generality might experience the effect as 
‘abstract’, that is, as unfamiliar, it is not what mathematicians would call the result 
of abstracting. Notice that the way the task is stated no particular number of desks 
in a row or number of rows is given, in an attempt to direct attention away from 
particular numbers and towards a generality (perceiving a property). It is anticipated 
that those who feel the need to specialise using specific numbers will do so or can 
be reminded to do so if they are stuck. This contrasts with a standard worksheet 
approach in which specific numbers are used, intended as scaffolding to support 
generalising, but actually directing attention towards the particular rather than the 
general.

5.6  Poised Between Generalising and Abstracting

In this section, different ways of attending are highlighted in italics. Consider the 
following task:

Two people are each thinking of their own number.

J. Mason



109

They are about to subtract the smaller of their numbers from the larger, when sud-
denly they are both instructed to add one to their number.

What difference will this make to their subtraction result?

Notice the difference between providing a range of instances of performing this 
action with the associated subtractions, and this version of a task which relegates the 
unimportant detail (the specific numbers) to the background. Attention is directed to 
the effect of the action of adding 1 to both numbers, to recognising relationships. 
The generality implied by not specifying the two starting numbers actually helps 
thinking, by omitting the distraction caused by specifics, and by drawing attention 
towards perceiving properties.

After discussion amongst learners, it is likely to emerge that the two instances of 
‘1’ can be replaced by any number. Performing the same (additive) action on both 
numbers makes no difference. This too is a generalisation, as well as an example of 
the mathematical theme of invariance-in-the-midst-of-change. Different learners 
may require different amounts of time manipulating confidence inspiring objects 
(numbers) before the realisation (literally, making real through recognising and 
getting-a-sense of relationships and perceiving these as instances of properties). 
This is why blocking access to overly familiar objects (specific numbers) can 
sometimes actually assist learners to recognise relationships as instances of 
properties, which is a core shift in developing mathematical thinking.

The teacher may at some point think it worth using a label such as compensation 
for this overall invariance, which in itself is a pedagogical-abstracting move, for it 
is providing a label so that reference can be made to instances in the future, 
supporting and promoting recognising relationships as instances of properties. 
Labels for experiences make scientific advance possible, in line with the earlier 
quote from Whitehead (1911): “To see what is general in what is particular and what 
is permanent in what is transitory is the aim of scientific thought”.

The label also opens up the possibility of other ways to compensate while leav-
ing the result invariant, or perhaps changed in some predictable way. Similarly, my 
drawing attention, through labelling, to the mathematical theme is an abstracting 
move, providing a label for later reference back to this situation.

At another time, various variants can be considered, such as adding different 
numbers or adding something to the larger and subtracting something else from the 
smaller before the final subtraction or even replacing the final subtraction by 
addition. These all focus attention on relationships, and invite thinking in generalities, 
perceiving relationships as potential properties.

Switching to multiplying and dividing the two numbers by the same thing before 
dividing, or even before dividing one by the other extends the domain of 
compensation by making similar shifts of attention. Fruitful discussion and 
realisation can emerge from seeking similarities and differences between the 
properties associated with subtracting and with dividing, and also with adding and 
with multiplying. Justification of conjectures involves reasoning on the basis of 
previously articulated properties.
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5.7  Abstracting as an Action

Breive (2022) reports observing two 5-year-old boys explore the concept of reflec-
tion symmetry using a doll’s pram. In the activity, the two boys first point to specific 
familiar features of the pram which are symmetrically placed, then one of the boys’ 
attention gradually moves to the imagined and finally to grasping a general and 
establishing symmetry as a new point of view. This illustrates the essential role of 
gestures, bodily actions, and rhythm, in conjunction with spoken words, in the two 
boys’ gradual process of encountering a general, challenging the traditional view of 
abstraction as decontextualised higher order thinking. Abstraction, according to 
Brieve, is not a matter of moving from the concrete to the abstract, but rather an 
emergent and context-bound process, arising naturally from activity with confidence- 
inspiring objects.

Here is an example of an abstracting action in a specifically mathematical domain.

5.8  Difference Divisible

Honsberger (1970, p.87) drew attention to the sequence 1, 3, 7, 13, 21, 31, 43, 57, 
73, 91…, appearing in the middle of the following array (Fig. 5.3):

The sequence goes 1, 3, 7, 13, 21, 31, 43, 57, 73, 91, …, n2 – n + 1, …, based on 
the triangular layout which generates the terms. This is generalisation, shifting from 
specific relationships (for example, related to the positions of the square numbers in 
the array) to a way to express each term. There is a shift to articulating a 
comprehension of all terms being generated by a formula, which marks the shift in 
how one is attending.

He noted that this sequence has the property that if you start at the second term 
(3) and count along 3 terms the new term is also divisible by 3, as indeed are the 
terms found by counting along a further 3, and then a further 3. Furthermore, if you 
start at the third term (7) and count along 7, the new term is divisible by 7, as is the 

Fig. 5.3 An array of 
numbers
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term found by counting along a further 7, and so on. What a world of exploration is 
encompassed or signalled by those three little words and so on!

These are specific relationships. By stressing the relationship rather than the spe-
cific numbers, two conjectures emerge from asking whether these relationships 
‘continue’:

For any positive integer n, tn divides tn tn+

For any positive integer n and λ, tn divides tn tn��

The expression of generality has already converted a few specific relationships 
into potential or conjectured general properties. There has been a shift in thinking, 
in both what is being attended to and in how these are being attended to. Note that 
many colleagues with whom I have used this task have struggled to express the 
general properties, largely due to the unfamiliarity of using subscripted terms in 
subscripts!

Shifting from specific relationships to a property of each term, and counting 
along by multiples of that term, is again a generalisation, marked by the shift to a 
sense of all. The urge to check may be great, including the somewhat empty 
relationship when n is 1. In order to check some particular cases, so as to get a sense 
of what the property is claiming, it may be necessary to generate some more terms, 
perhaps by following the evident pattern of the layout or using the formula. If the 
formula is itself confidence inspiring, then there may be a shift to expressing a 
conjecture algebraically, and then verifying the divisibility property. In order to 
justify the claim that the property always holds, it is necessary to find some way to 
express the general term of the sequence, and this involves discerning details, 
recognising relationships and treating them as properties, together with a shift in 
the way you are attending, from concentration on specifics to a sense of ‘all’.

Having checked that the conjectures hold for this particular sequence, abstract-
ing provides a label for any sequence satisfying the same properties.

A sequence of numbers is said to be term-wise divisible if for every positive 
integer n and every positive integer λ, tn divides tn tn�� .

A mathematical habit-of-mind (Cuoco et al., 1996) immediately raises the ques-
tion as to whether there are other sequences with the same property, and indeed 
there are. For example, any geometric progression clearly satisfies the property. To 
think of trying geometric progressions arises from familiarity with, and access to, 
geometric progressions along with arithmetic progressions in one’s accessible 
example space (Watson & Mason, 2005).

Close inspection of the original sequence reveals more: the difference between 
the third and first terms is divisible by 2 as is t4 − t2 and t5 − t3; t5 − t2 is divisible by 
3 as is t6 −  t3 and t7 −  t4; t6 −  t2 is divisible by 4 and so on. Expressing these 
relationships as instances of a property leads to the conjecture that for any positive 
integer d, d is a factor of tn + d − tn. This property is readily verified in general for the 
sequence generated by n2 – n + 1. If, while carrying out the algebra, attention is 
primarily focused on how the reasoning develops rather than simply on the algebraic 
manipulation, the possibility arises that the same reasoning will work for any 
polynomial with integer coefficients. Again this is readily verified (Mason, 1990).
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The mathematical abstracting action is to name this property for ease of future 
reference and to declare it as the defining property of such sequences. Call such 
sequences difference- divisible. The abstracting process brings with it the sense of a 
collection of sequences all of which satisfy the difference-divisibility property, and 
so it is natural to ask about actions on this new set of objects which preserve the 
property. For example, term-wise addition and multiplication, scalar multiplication, 
and composition of difference-divisible sequences remain difference-divisible, as 
do first-differences. Such a plethora of properties (preservation of a property under 
various actions) suggests that characterising all difference-divisible sequences 
might be possible, and so it proves. Characterisation involves finding properties 
which, unlike the global property involving divisibility, apply locally, allowing 
explicit construction.

It turns out that all difference-divisible sequences are generated by polynomials 
of the form for some d and integers ck (Mason, 1990).
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5.9  Reflection

Abstracting is the action of isolating a collection of properties, formulating a label, 
and declaring that any ‘thing’ that satisfies those properties is to be considered an 
instance of that label. Van Oers & Poland (2007 p13–14) describe abstracting 
similarly as a shift to “a point of view from which the concrete can be seen as 
meaningfully related”. Gaining familiarity with a range of examples, developing 
tools for constructing new examples from old, and characterising such examples 
using other properties, is how accessible example spaces become enriched and is the 
stuff of pure mathematics.

5.10  Defining and Specifying

Mathematicians have a habit of using the word define in two completely different 
senses. One form is the familiar formulating of a definition of a concept, such as 
function or circle, as has been illustrated as part of the process of abstracting. The 
other form is actually a specification of a particular. Thus, I might specify the 
function f to be (to denote for the moment; notice the definite article rather than the 
indefinite article) f(x)  =  x2  +  1. To use the word define in this context, although 
common, is misleading for novices, because it is not defining the concept of a 
function, but specifying that for the time being f will denote a particular function.

Notice that comprehending the specification involves discerning and then relat-
ing two things, the letter f and the rule for evaluating it as a function. The 
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consequence is that whenever (locally) the letter f is used, it has the property that 
f(x) = x2 + 1, where x is a placeholder and so can have various things substituted for 
it, including itself. The experience of ‘taking this on board’ seems to me to involve 
a shift in how I am attending to the symbol f, but to be subtly different from the shift 
in attending which accompanies abstraction, since although the specified value can 
be used in any context in which the symbol f appears, it is not abstracting a property, 
but rather denoting it.

5.11  Other Instances of Abstracting in School Mathematics

What follows are some sample situations from school-aged mathematics which 
involve the action of abstracting. I begin with what might be considered the more 
obvious examples and proceed towards the more subtle.

5.12  Names

The act of naming something is an act of abstraction. It provides a label for ‘things 
discerned as having the properties I am currently attending to’. What makes 
mathematical abstracting distinctive is that the properties are made explicit, whereas 
ordinary naming makes assumptions that everyone is attending to the same things 
as necessary properties. Thus, I point to a tractor and say “tractor”, but my young 
son appears to be attending to the end of my finger! What is rather amazing is that 
children acquire grammar and vocabulary, often over-generalising at first, but then 
narrowing down to common usage (Brown, 1973).

5.13  Geometry

5.13.1  Shape Naming

Much of early years spatial thinking is, unfortunately, taken up with the naming of 
shapes, rather than actions which can be performed on shapes and which preserve 
some set of properties.

Furthermore, most of the physical shapes made available to young children are 
special instances of geometrical shapes that deserve more general mathematical 
treatment. So when the word triangle is used largely in the context of a plastic or 
wooden equilateral triangle, children are expected to experience what is really an 
abstracting process of moving from properties to naming and defining. Where the 
adult draws attention to the three vertices and three edges, properties are being iden-
tified, but when the adult is not attending to the regularity, children may not be 
aware of the implicit generality. This aligns with the learning of vocabulary 
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generally, in which new words are used, sometimes with articulation of meaning and 
sometimes not. But mathematically, it is important that the full range of properties 
are brought to attention. For example, Sfard (2007 p597) found that her students 
often distinguished between ‘ordinary’ triangles and extreme triangles, labelling the 
latter as ‘sticks’, rather than ‘seeing them as’ triangles, and this parallels initial 
reluctance to accept a square as an instance of a rectangle. In some contexts, naming 
of sub-categories is taken on board easily, and in other contexts it is often resisted.

The vital but overlooked ingredient of abstracting is the sense of ‘all’ or ‘any’ 
which accompanies it. ‘Anything’, with the stated properties, qualifies. It is perhaps 
largely within mathematics and science that it is necessary to be specifically 
articulate about exactly which properties are required in order to qualify for the 
label, so that reasoning on the basis of properties can take place.

 Perimeter and Area

It is well known (Kouba et al., 1988; Dickson, 1989; Reinke, 2010) that learners 
sometimes confuse perimeter and area when asked to calculate them. Usually 
confusion arises because of the procedures invoked for calculating: it is easy to 
confuse the role of ‘counting squares’ when figures are presented on squared paper 
(sometimes you count inner squares, sometimes you count boundary squares, 
inside, or outside). It is possible that young children have only the haziest notion of 
what is being attended to by either concept. To make area and perimeter objects of 
attention and hence to abstract them mathematically requires recognising 
relationships and perceiving properties that are pretty sophisticated (which may be 
why they don’t show up again until calculus) and probably out of reach for young 
children. Even so, there is an element of abstracting in directing attention to the 
distance around and the area encompassed by a shape drawing on intuitions based 
on specific confidence-inspiring examples. Dealing with area and perimeter 
separately, at different times may add to student confusion; one way to juxtapose 
them is through the following task, based on an idea of Dina Tirosh & Pessia Tsamir 
(Tirosh & Tsamir, 2020).

Figure 5.4 shows a shape in the middle cell. For each of the remaining cells, draw 
a shape which has the properties indicated by the row and column headings, making 
as few changes as possible to the central shape. Bring to articulation what you 
become aware of as principles for tinkering with shapes so as to modify their area 
and perimeter appropriately. These principles could be the starting point for full 
abstraction of area and perimeter.

5.14  Constructions in Triangles

Various constructions in triangles (medians, angle-bisectors, altitudes, perpendicu-
lar- bisectors, cevians, …), and various special cases of polygons (regular, cyclic, 
equi- angular, equi- edged, oppositely-parallel-edges, alternately paralleled, …) are 
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Fig. 5.4 An example of a more-or-less-grid for area and perimeter

labels for properties and so are examples of an abstracting action. Again the critical 
element is the word any or all when stating that any object satisfying the property is 
to be so labelled, for it is these properties, and these properties alone which can be 
used in reasoning concerning, for example, that the three medians, three angle- 
bisectors, three altitudes, and three perpendicular bisectors, are each coincident or 
the conditions in which the three cevians are guaranteed to be coincident.

In geometrical reasoning, it is sometimes the case that deductions are made from 
the property (points on an angle-bisector forming right-triangles with the edges of 
the angle which are congruent), and sometimes the property is known to hold (a 
point equidistant from two adjacent edges must lie on the angle-bisector). The 
fluency and flexibility required in order to reason geometrically depend on the 
abstracting process having been fully appreciated, especially the sense of ‘all’ 
which the abstraction encompasses.

5.15  Pythagoras

Appreciating and comprehending the Pythagorean relationship involves abstracting 
as a consequence of reasoning rather than defining. Given any three positive numbers 
a, b, c for which a2 + b2 = c2, there is a right-angled triangle with edges a, b and c, 
and vice versa, given a right-angled triangle, the relationship holds. The adjective 
Pythagorean applies to number triples and involves a further abstracting process. 
Comprehension is extended when a second ‘any’ is introduced: placing similar 
figures on the edges of a (any) right-angled triangle leads to the areas satisfying the 
Pythagorean relationship.
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5.16  Trig Functions

Each of the trigonometric functions is the result of an abstracting process, but it may 
take time and multiple exposures to appreciate them fully. At first, any right-angled 
triangle containing the specified angle (between 0° and 90°) provides six measures 
of that angle, the sine, the cosine and the tangent, secant, cosecant and cotangent, 
precisely and exclusively because ratios are preserved between similar triangles. It 
is this invariance which provides the all, so that the definition makes sense. Later, 
other definitions are encountered (power series, solutions of differential equations), 
which require reasoning to justify the claim that they too classify or capture 
equivalence and are indeed alternative characterisations.

5.17  Cosine and Sine Rules

These two trigonometric relationships which apply to triangles in Euclidean geom-
etry depend on the presence of all or any, in that they hold for any planar triangle. 
Appreciating the scope of this any is necessary to comprehend the abstracting that 
has taken place.

5.18  Numbers

5.18.1  Types of Numbers

Whole numbers, zero, and the integers, positive, negative, and zero are labelled and 
used as nouns, usually without any reference to properties. It is only when real 
numbers are being placed on a firmer foundation that it is deemed necessary to 
return to integers and to isolate and articulate defining properties. The abstracting is 
somehow deemed to have taken place already. This is the source of some confusion 
for tertiary students for whom ‘facts’ that they have long been familiar with are 
‘proved’ using lists of properties which appear ‘obvious’.

An interesting issue arises with fractions, introduced formally as the basis for 
rational numbers. A fraction is usually defined as a pair consisting of an integer and 
a positive integer.

Consequently, neither 
2

3

π
π

 nor 
2

3−
 are fractions, though of course as real num- 

bers they are equivalent to fractions and hence are representatives of rational num-
bers. Based on learners’ experiences prior to meeting rational numbers, fractions 
might more usefully be defined as pairs of integers with the second being non-zero, 
but even so, formal reasoning is required in order to check relations which underpin 
equivalence of fractions and hence rational numbers are indeed equivalence 
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relations (note the extra abstraction with the label ‘equivalence relation’), and this 
formality can be off putting. The formalities required to check that properties con-
tinue under equivalence require fluency and flexibility with the notions of equiva-
lence and with the arithmetic of fractions.

5.19  Symbolised Numbers: π, 2  and  −1

Interestingly, learners seem to accept the symbol π as standing for some number, 
even if they are misled into believing it to be 22/7, or more mysteriously, some 
terminating decimal such as 3.1415927. Mathematically, there are actually two π’s 
which happen to be the same: the ratio of the semi-circumference of a circle to the 
radius, which is invariant under changes of radius, and the area of a circle divided 
by the square of the radius, which is also invariant under change of radius. Thus, to 
appreciate π involves appreciating two invariants, together with reasoning which 
justifies the claim that the two invariants are actually the same. Of course, a good 
way of developing comprehension of this is to contrast it with other more easily and 
confidently manipulable shapes such as equilateral triangles, squares, and rectangles 
with a specified ratio, because for these shapes the two invariants are different. 
Might there be a collection of shapes which, like the circle, have the ratio of semi- 
perimeter to radius and area to radius squared equal?

Learners seem to have slightly more difficulty dealing with numbers denoted by 
surds, such as √2, perhaps because of the need to shift to properties. Surds challenge 
the certainty-based confidence of whole numbers which are finite in nature and in 
expression, while most real numbers have unknowable decimal digits. The symbol 
√2 denotes a number with two properties: it is positive and its square is 2. That is 
all that is known, and all that can be used. Although √2 ‘knows all of its decimal 
digits,’ it cannot tell us what they all are. We can find out as finitely many as we wish 
to know, but there will always be ignorance of what follows. Of course, the same is 
true of π, though this does not seem to agitate learners in the same way.

In Mason (1980), I asked when a symbol is actually experienced as symbolic, 
drawing attention to the way in which what begins as an unfamiliar sign, such as π 
or √2, gradually over time and with experience, becomes confidence inspiring and 
manipulable. In terms of attention, the sign is no longer simply something at which 
to gaze, but is discerned from other signs, its relationships recognised, its properties 
perceived, and reasoning can take place on the basis of its properties.

Experience with 2 , 3 , 23 , etc. opens the way for the introduction of −1
, whose only property is that its square is −1. Interestingly, it follows (reasoning on 
the basis of properties) that − −1  has the same property. They are distinguished by 
placing them on an Argand diagram.

Dedekind noticed that there is a problem when reasoning with surds and negative 
numbers, because simply using the familiar properties for positive numbers leads to 
contradiction:
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Dedekind raised the question of why it is the case that ab a b=  when a and 
b are non- negative. His answer was to define real numbers using what came to be 
known as Dedekind cuts, which apply to non-negative a and b and leave as 
problematic manipulations of surds of negative numbers. Eventually, this was 
resolved by Riemann using what are now known as Riemann surfaces. Dedekind 
undertook a process of abstraction in order to put decimal numbers on affirm 
foundation.

5.20  GCD and LCM

Finding the greatest common divisor of two specified numbers involves a sequence 
of mathematical actions. Shifting to thinking of the greatest common divisor of two 
as-yet-unspecified numbers requires a subtle shift from recognising relationships 
(divisibility, maximality) to perceiving properties as being instantiated. In order to 
proceed mathematically, this act of generalisation is accompanied by formalisation, 
in order to ascertain the properties that are needed. To reduce the words required, 
the notation a|b is read as, and means that, the integer a divides into the integer b or 
in other words that there exists an integer c such that ac = b. Then the properties of 
the gcd of two positive integers are that

gcd(n, m) | n and gcd(n, m) | m, and for any h for which h|n and h|m, h | gcd(n, m). 
gcd(n, n) = n; gcd(1, n) = 1.

These are acts of generalisation, listing properties. Mathematical abstracting 
means reversing that action, choosing one or more properties as being ‘critical’ and 
creating a definition:

Suppose g|n and g|m, and suppose further that for any h, h|a and h|b implies that h | 
g. Then g is the gcd(a, b).

Mathematically, one then proves that the other properties are consequences of 
the chosen properties.

The interested reader may wish to repeat the movement from recognising rela-
tionships to perceiving properties to abstracting (ready to reason on the basis of 
properties) in the case of the lowest common multiple of two positive integers.

Abstracting involves a declaration. Notice that during the abstracting process, 
the nature of the ground-set (positive integers) was omitted. This enables the 
properties to be perceived as instantiated in other contexts and then the transfer of 
all reasoned consequences of properties to the new context.

For example, consider gp(n, m) defined for any positive integer p as the greatest 
power of p which divides both n and m. The function gp also has the properties of a 
gcd, but only when p is a prime.
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But abstracting is also an on-going process. Together, gcd and lcm satisfy the 
following properties:

gcd(n, m) = gcd (m, n) and lcm(n, m) = lcm(m, n)
gcd(n, n) = n = lcm(n, n)
gcd(n, m)lcm(n, m) = nm
gcd(n, m) | n | lcm(n, m)
gcd(1, n) = 1; lcm(1, n) = n.
for any h for which h|n and h|m, h | gcd(n, m)
for any h for which n|h and m|h, lcm(n, m) | h.

Abstracting means isolating at least some of these properties and declaring that 
any pair of function that satisfies those properties are a gcd/lcm pair.

Choosing a minimal set of properties from which the remainder can be deduced 
is one domain of exploration. It exploits the shift of attention from properties as the 
focus of attention, to properties as tools for reasoning. Being on the lookout for 
other pairs of functions satisfying the same properties enriches the sense of what 
gcd and lcm are about. For example,

Do the functions min(n, m) and max(n, m), defined on the integers, satisfy these 
properties of gcd and lcm, respectively?

Do the functions f(n, m) = product of each of the primes which divide both n and m, 
and g(n, m) = product of the primes which divide at least one of n and m satisfy 
the properties?

Extending functions to three or more variables may involve extra properties. 
Abstracting further by replacing ‘divides’ by some more general relationship, 
perhaps with some specified properties, introduces connections to yet other 
mathematical domains such as lattices and partially ordered sets.

5.21  Euclidean Algorithm

The Euclidean algorithm is the result of an abstracting process, in which, starting 
with a pair of positive numbers, repeated actions of subtracting smaller from larger 
until 0 is achieved, provides an output. Throughout, the current pair of numbers 
preserve the property of having the same greatest common divisor. So labelling the 
process, the action involves abstracting over the domain of pairs of positive integers 
(which can be extended to rationals and to polynomials with integer coefficients). 
Appreciating the ‘all’ is what contributes to comprehending the algorithm itself.
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5.22  Zero and Infinity

5.22.1  Completed and Unfolding Infinities

One of the awkward features of a concept defined in terms of its negation is that it 
is hard to escape a concept image of negation. Infinity is just such a concept. The 
word infinity is usually associated with a process that ‘goes on forever’, and so is by 
its very nature, uncompleted, incomplete, and incompletable. And yet, it is possible 
to take a stance that somehow the process has been completed, perhaps by letting go 
of unfolding-in-time, as in the names of irrationals as mentioned earlier. Different 
stances are taken by different folk (Pajk, 1983; Hamming, 1989; Sierpinska, 1994; 
Mamolo, 2010, 2017).

5.22.2  Empty-Sets and Zero

The introduction of zero to denote an empty place in a positional system of numer-
als seems to have come  to the west from India in the eighth or ninth centuries, 
though it may have been present in Central America as well. But it is an important 
construct at the intersection of cosmologies, psychology, and philosophy: the notion 
of the emergence of matter out of apparently nothing (the void), as in the ‘big 
bang’, aligns with personality seen as layers protecting people from encountering 
their essential emptiness, and in mathematics, the empty set.

I suggest that there is a very delicate shift of mathematical attention 
required (Mason, 1989), in order to move from the sense of something being empty, 
to that emptiness actually being a something, and hence a potential member of 
another set. Thus, {}, which is usually denoted by ∅, involves discerning an 
emptiness, treating it as a something, as a whole (potential object of gazing), 
recognising a relationship between what has been discerned and non-emptiness, 
providing a label, and then perceiving properties. Thus, ∅ leads to {{}} = {∅} and 
so on into the emergence out of the void of something analogous to numbers 
(Halmos, 1960). Properties include for any set A, A ∪   ∅    =   ∅   ∪  A  =  A and 
A ∩  ∅  =  ∅  ∩ A = ∅

Abstracting mathematically is the move from treating ∅ has a thing, to using the 
properties to say that any set E with the property that for all sets A, A ∪ E = E ∪ A = A 
and A ∩ E = E ∩ A = E, is the empty set.

This is actually a theorem to be justified with reasoning: 

Suppose for all sets A, A ∪ E = E ∪ A = A and A ∩ E = E ∩ A = E

Then in particular, these properties must hold when  A = ∅ 

Consequently, ∅ ∪ E = E ∪  ∅  = ∅ and so E = ∅
Alternatively, 

 � ��� � �� �E E E. / /  
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In the face of alternative reasoning, the question arises as to whether both proper-
ties are required or whether each can be deduced from the other. In other words, is 
it possible for a set to satisfy either property but not the other? Mathematical explo-
ration of minimal axioms (defining properties) usually follows.

5.22.3  Wholeness of One

Wholeness, or oneness, seems at first to be entirely natural and unproblematic. Yet 
it involves a choice, a decision to discern difference, perhaps even boundary, in 
order to include while at the same time excluding. As you read, you (mostly) ignore 
the ambient temperature, the sensation of your body as you sit or stand, your 
heartbeat, what you had for breakfast, and so on. What you are attending to has an 
innate sense of wholeness. It is the whole of your attention.

Being able to gaze, to hold a whole without proceeding to make further distinc-
tions and so engage in an analytic or decomposing programme, is remarkably dif-
ficult. The temptation of the human organism to enact any available actions is very 
great. And yet it is through gazing, through attending to form rather than function, 
through holding wholes, that insight comes. It is through gazing that access to cre-
ative energy is gained. For me, this is the point of linkage between mathematical 
thinking and other forms of creative arts, including insight that might be classified as 
spiritual or ‘as coming from somewhere else’. It turns out that many people, amongst 
them Sylvanus Thompson (1917 p106–109) have had similar thoughts.

Contemplation of moments of insight opens up a sense of wholeness, which, 
through being distinguished from multiplicity, and through recognition of what used 
to be known as the middle-aged stance that ‘everything is connected’, engages an on-
going abstracting of ecological-spiritual- mathematical awareness of the unity and 
interconnectedness of everything, while at the same time providing a setting for dis-
cerning detail, recognising other relationships and perceiving properties.

If you have ever had the experience of looking but not seeing, such as looking in 
the fridge for something but not seeing it as being present, you know the effect of a 
limited wholeness and how it blocks out other details and relationships. So the 
analytic mode is capable of contributing to an increasing rich sense of wholeness, as 
long as it does not become its own exclusive world. Perceiving properties and 
reasoning on the basis of properties can serve to enrich one’s sense of wholeness, 
one’s subsequent gazing, but by becoming a wholeness of its own, it can also block 
out that richness.

5.23  Conclusions

Discerning different ways of attending to mathematical constructs enriches possibili-
ties for informing both teaching and learning, not simply by refining analysis of experi-
ence, but by providing a practical vocabulary for directing attention.
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A process of mathematical abstracting takes place throughout mathematics, at all 
ages. It is not confined to the ‘higher mathematics’ of tertiary institutions. Discerning 
abstracting as a shift in how someone is attending, discerning what is stressed and 
what ignored, and emphasising the properties required in order to justify use of a 
label arising from a definition, could inform teacher practice by providing a useful 
way of undertaking and displaying the abstracting.

Distinguishing between generalising and abstracting could go a long way to 
improve communication between teacher and learners, because they involve 
different shifts not only in what is attended to, but how. Generalising involves a shift 
of attention from specific relationships in a particular situation, to focusing simply 
on properties. It seems so natural to those familiar with mathematical thinking but 
can be mysterious for novices. Abstracting involves a further shift in which attention 
is not on the objects in a situation, but the general properties which have been 
isolated and subsumed under some defining label. Again, the expert barely notices 
the shift, while learners may be mystified when it is done quickly and implicitly.

Mathematical definitions come in two types, the naming of an object as some-
thing satisfying a list of properties, and, unhelpfully, temporarily specifying a par-
ticular object within a domain. Pedagogically, it makes sense to distinguish these by 
using specify for the act of specifying. Pedagogic support for shifting the way learn-
ers are attending to the more mathematically productive generalising and abstract-
ing requires increasingly complex appreciation of the for all feature of properties. 
This means enriching the space of accessible examples and associated construction 
tools so that all (or any, each, and even a) encompass a wide range of instances for 
learners. Where characterisation is possible, then all is actually articulated in terms 
of the local properties which are equivalent to the original global properties on 
which the definition of the abstraction is based.

Knowing when something is worth naming, or in other words, when a distinction 
is worth making, is not trivial. Locally, it may ease articulating reasoning for the 
writer, but it may also introduce a hurdle for the reader who has not yet internalised 
the concept being labelled; globally, it may introduce yet more burden on teachers, 
by, for example, introducing distinctions and associated pedagogical actions which 
may overcomplicate teacher attention, leading to frustration.
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Chapter 6
Toward a Systems Theory Approach 
to Mathematics Education

Steven Watson

6.1  Introduction

This chapter presents a systems approach to thinking about mathematics education. 
Little attention has been paid to systems theory in mathematics education, although 
there has been some interest in the forebears of contemporary systems theory. 
Notably, Ernst von Glasersfeld’s (1995) radical constructivism draws on earlier ren-
ditions of systems theory and second-order cybernetics; Davis and Simmt (2003) 
draw on complexity theory and present the mathematics classroom as a complex 
adaptive system, and Proulx and Simmt (2013) relate systems theory to enactivism. 
However, systems theory has itself developed considerably since Bertalanffy (1968) 
proposed a general systems theory of open systems. Here, I will present those devel-
opments and begin to bring the ideas of systems theory to mathematics education. 
While this may appear to have commonality with postmodern theory, and the prob-
lem of the loss of grand narrative, it is resolutely modern, but as a modern critique 
of modernity.

I will draw upon the work of the German sociologist Niklas Luhmann 
(1927–1998) who developed a systems theory of society. Luhmann was a prolific 
author; he is notable for his public intellectual rivalry with the Frankfurt School 
philosopher Jurgen Habermas and his difficult and sometimes impenetrable writing. 
However, he is recognized in many quarters as one of the most significant social 
theorists of the latter half of the twentieth century but is quite often misunderstood 
and misrepresented (see Borch, 2011). Even amongst sociologists of the anglo-
phone world, little attention is given to his work, but his influence in northern 
Europe is considerable and across a range of disciplines. This is often attributed to 
the fact that Luhmann wrote in German, and there has been something of a lag 
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before his work was translated into English. Even translated into English his writing 
style is difficult, and systems theory itself is challenging as it marks a departure 
from the traditions of post-Enlightenment and humanist thinking.

In what follows, I will set out some of the key ideas presented in Luhmann’s 
systems theory and then begin to consider mathematics education from this per-
spective. In the spirit of the title of this book as presenting philosophy of mathemat-
ics education works-in-progress, this marks the beginning of consideration of a 
systems perspective on mathematics education.

It is important to address the question, What issues in mathematics education 
does systems theory address? While this chapter will unfold some propositions as I 
introduce systems theory, the central issue is the possibility of the observation of 
mathematics education as an entity. In other words, scholars and practitioners who 
are active in mathematics education are increasingly asking about the nature of 
mathematics education as a whole. There is an imperative for self-observation. 
Within the field of mathematics education, there has been increasing interest in the 
self-observation of mathematics education, for example, from the perspective of 
history (see, for example, Howson, 1982; Kilpatrick, 2014; Inglis & Foster, 2018) 
and also theoretically (Sriraman & English, 2010). Within the ‘unity’ of mathemat-
ics education, there is also much difference: differences between theory and prac-
tice as well as approaches to practice and approaches to research, with positions 
often presented as polarized and intractable, within the field and in the media 
(Watson, 2020a; Watson & Barnes, 2021). Overall, however, mathematics educa-
tion takes place in a complex world, where knowledge appears to be increasingly 
uncertain and is sometimes contradictory; information proliferates within the media 
and is often conflicting and even ‘fake’. I argue systems theory offers an approach 
to understanding this complexity.

6.2  Systems Theory

Systems, as functional conglomerations of elements, have been conceptualized 
since at least classic antiquity (Bertalanffy, 1972). However, in the last 200 years, 
the idea of a system has taken on a new significance. This development has run in 
parallel with notions of complexity and emergence. Human beings increasingly 
encounter and also become part of complex and fluid social and technological enti-
ties. Deleuze and Guattari described such entities as assemblages (Deleuze & 
Guattari, 1987). Here, I will refer to such emergent and dynamic entities as systems.

Mathematics education, a mathematics education research paradigm, a class-
room (see Davis & Simmt, 2003), a teacher or learner’s cognition can all be thought 
of as systems. All are entities consisting of elements and processes and each can 
distinguish itself from its environments. All subsystems can see themselves as 
within the totality of mathematics education, yet within that totality, that unity, there 
is difference: paradigmatic differences in scholarship and research, differences 
between theory and practice and differences in values, for example.
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Traditionally, and going back to antiquity, the distinction has been made between 
‘whole’ and ‘parts’ in the analysis of the world (Luhmann, 1995). Mathematics 
education in this sense represents an aggregation of, say, policy, policymakers, prac-
tice, teachers and learners, and research and researchers, etc. However, the unity of 
the whole is more than the sum of its parts. In other words, mathematics education, 
in totality, has overall characteristics that cannot be identified within the elements 
that contribute to it. The totality is not simply an aggregation of all its elements. To 
address the limitations of the whole-and-part distinction, systems theory makes a 
distinction between system and environment in order to understand the relationship 
between the unity of a totality, such as mathematics education, and its elements. 
This apparently simple change also results in some profound changes in epistemol-
ogy and ontology.

The distinction between system and environment is not concerned with the func-
tion of the system alone, but with how the system functions in relation to its environ-
ment. It is how that system distinguishes itself from its environment (Luhmann, 
1995). It is the system itself that distinguishes itself from its environment through 
self-reference, but self-reference in relation to its environment. The part/whole 
characterization is replaced by the idea of system differentiation, systems are dif-
ferentiated from their environments and within systems, subsystems differentiate 
themselves, e.g., research and practice. The environment of each subsystem includes 
other subsystems within that system and the environment beyond that system.

The environment of the mathematics classroom includes education policy mak-
ing, knowledge generated through mathematics education research, individual 
learners, the teacher, as well as the mass media and social media. Mathematics 
education is, through policy, practice and scholarship in a constant process of defin-
ing itself in relation to environmental prompts. Its overall purpose, its function, is 
not controversial, in that mathematics education intends to develop the mathemati-
cal knowledge and mathematical capabilities of learners. How it does that is subject 
to internal (and external) debate, contested approaches, organizational and institu-
tional policy and practices, and appeals to knowledge, values, and morality.

A further distinction is made between open and closed systems. A closed system 
is a limiting case where notionally no material or energy crosses the boundary 
between system and environment (Luhmann, 1995). All ‘real’ systems are open, 
they are responsive to the environment that they are distinguished from. Real sys-
tems also have a boundary with their environment, for example, a cell has a mem-
brane yet remains open. This apparent contradiction between openness and closure 
in living systems was addressed by Chilean biologist Humberto Maturana and later 
with Francisco Varela (Maturana & Varela, 1980). They suggested that living sys-
tems were operationally closed and that although cell membranes are permeable 
and therefore open, the cell can be considered to be closed operationally. It responds 
to its environment through its internal biochemical operations, those operations 
recursively create the distinction between system and environment (the membrane). 
They termed this autopoiesis as the self-referential operational closure of a system. 
Self-reference is important since the consequence of autopoiesis is that any 
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experience of the environment is entirely constructed by the system internally. The 
system iteratively responds to a complex and unknowable world.

Maturana and Varela’s work was principally based on living systems, but 
Luhmann wanted to use autopoiesis in the context of consciousness and society (i.e. 
in psychic and social systems). To do this, he generalized Maturana and Varela’s 
theory of autopoiesis by de-temporalizing and de-ontologizing the elements of a 
system. For Maturana and Varela, elements of living systems involve relatively sta-
ble chemical molecules which are replaced from time to time. Luhmann argued that 
(1) the replacement of stable molecules is a momentary event and therefore in de- 
temporalized terms elements are not dependent on temporal references beyond the 
system itself and (2) elements are internally differentiated by the system, they are 
not pre-given and are constituted by the system they are given to. Elements of a 
system do not have an ontology beyond that designated by the system. The move 
then is to a more general theory of autopoiesis.

[I]f we abstract from life and define autopoiesis as a general form of system building using 
self-referential closure, we would have to admit that there are non-living autopoietic sys-
tems, different modes of autopoietic reproduction, and general principles of autopoietic 
organization which materialize as life, but also in other modes of circularity and self- repro-
duction. In other words, if we find non-living autopoietic systems in our world, then and 
only then will we need a truly general theory of autopoiesis which carefully avoids refer-
ences which hold true only for living systems. (Luhmann, 1986, p. 172)

Luhmann translated the idea of self-referential, operationally closed, autopoietic 
systems to society and social systems. He distinguishes between machines, organic 
and neurophysiological systems (cells, nervous systems, immune systems etc.) and 
systems “constituted by the production and processing of meaning” (Luhmann, 
1995, p. 37) i.e. social systems and psychic systems (consciousness) (see Fig. 6.1). 
In this chapter, I will focus on the social and psychic systems constituted on a phe-
nomenological interpretation of the idea of meaning.

Social and psychic systems can only experience their environment through 
meaning (see Luhmann, 1995, p. 102). Similarly physical, chemical, and organic 
use physical forms and processes to experience the environment. This probably 
explains why neurophysiological approaches appear only to have limited explana-
tory power in relation to cognition. The individual cognitive system from the per-
spective of systems theory is a self-referential system constituted on meaning, 
clearly neurophysiology is necessary for consciousness, but consciousness by its 
very definition is abstracted from the physical.

What then distinguishes social and psychic systems from other systems is that 
the medium (the elements of these systems) that constitutes both is meaning, and 

Fig. 6.1 The structure of autopoietic systems. (Adapted from Luhmann, 1995)
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this is central to language and communication. The explanation for this lies with a 
phenomenological rather than the hermeneutic sense of meaning used by Luhmann.

Luhmann defines meaning as the “horizon” of possibilities that is virtually present in every 
one of its actualizations. As the difference between the possible and the actual, meaning 
itself is a category “without difference” (differenzlos), which designates the medium 
through which social systems process world-complexity. (Foreword by Eva Knodt in 
Luhmann, 1995, p. xiii)

Meaning, in Luhmann’s terms, means consciousness and communication are 
constituted on the difference between actual and possible. This concretizes the 
‘actual’ in thought and language while permitting a horizon of possibility. This ulti-
mately is a means through which the complexity of the environment is reduced by 
the operations of consciousness (cognition) and of social systems.

Luhmann, rather controversially, characterizes society as a social system of com-
munication a totality of communication. That is rather than one of human beings 
and/or their actions. This while the consequence of such theorization is not so – sug-
gests to some, denial of agency or humanity even. Luhmann argues that it is only 
through communication that society is created, as we shall see that conscious sys-
tems constitute the environment of the social system of society and vice versa. 
Therefore, action perturbates or stimulates conscious systems which in turn stimu-
late the system of society. Some action is communicative, of course, but many 
actions are not communicative and are external to society (detailed justification for 
this can be found in Luhmann, 1995, 2013a, for example).

In the later phases of developing systems theory, Luhmann was influenced by 
British mathematician George Spencer Brown (Watson, 2020b) and his Laws of 
Form (Spencer Brown, 1969). This represents a further abstraction of autopoiesis, 
although Spencer Brown developed Laws of Form sometime before Maturana and 
Varela. Laws of Form offers a psychological, mathematical, and philosophical 
development of a distinction as ‘the mark’ between system and environment, its 
unity in difference, its paradoxical nature, and self-referentially recursive nature 
(Watson, 2020b).

The most profound consequence is that the foundation of consciousness, the 
psychic system, is the capacity to make a distinction, in the abstract, between one 
thing and another. Complex phenomena emerge from the recursive distinction of 
different patterns of distinction (think here of the generation of fractal patterns of 
repetition and emergence in Mandelbrot sets). There is limited space here to go into 
the recursive basis of complex patterns through the process of re-entry, where a 
simple distinction, the identification of an ‘object’, leads to further distinctions 
within that distinction. The distinction re-enters itself (see Watson, 2020b).

Distinction is also important in understanding the nature of information and 
communication in systems theory. Luhmann follows Gregory Bateson’s (1972) 
characterization of information, as a difference that makes a difference. What marks 
something out as information is its difference from other things. Information is in 
itself a distinction, but is fleeting and momentary, although it can be recorded as an 
event. Luhmann’s theory of communication involves a distinction between 
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information and utterance, in a similar way to recognizing a pattern of sound against 
a background of noise. Language provides the medium of communication (which is 
in itself a form in the medium of meaning). The process of communication involves 
utterance and selection of information, the receiver independently selects informa-
tion from the utterance, this is less than likely to be the same selection that is made 
by the sender. It is a corollary of the general theory of autopoietic systems that com-
munication refers only to previous communication.

Again, in a somewhat unorthodox move, Luhmann puts forward the idea that it 
is not people who communicate, it is communications that communicate (Luhmann, 
1995). Again, this can cause a jolt and shudder on the grounds of denial of human 
agency. However, the fact that humans experience, perceive, make sense and con-
struct meaning, and articulate a selection of that through language, which is itself an 
evolving recursion, indicates the plausibility of society and social systems as an 
autopoietic system of communication.

Systems theory draws on evolutionary theory and has an important role in 
explaining the improbability of system differentiation as a result of variation, selec-
tion, and stabilization (Luhmann, 2013b). The implication of both evolutionary 
theory and systems theory is the proliferation and selection of distinctions, as well 
as the importance of both the inseparability and distinctness of psychic and social 
systems of consciousness and communication and language.

From an evolutionary perspective, social systems and psychic systems have 
developed concurrently, one is inconceivable without the other. They are, in the 
terminology of Luhmann, structurally coupled, a means by which systems regulate 
relations with their environment (Luhmann, 1995). Structure is employed by an 
autopoietic system to ‘simplify’ its relationship with its environment. For example, 
the evolutionary development of muscles and a skeleton is a structural development 
to allow movement in the context of gravitational forces. Another example is the 
way in which the brain is structurally coupled to the environment through the eye 
and ear; this structural coupling reduces what can be seen and what can be heard. 
Structural coupling maintains the boundary between system and environment but 
does not influence the system’s autopoiesis.

Psychic and social systems are uniquely constituted in the medium of phenom-
enological meaning and depend on structural coupling. The structural features of 
spoken and written language reduce environmental complexity and form the basis 
of structural coupling between psychic and social systems.

... language excludes a lot in order to include very little, and that it can become complex 
only for this reason. If we begin with spoken language, we see that noises are excluded 
except for those few highly articulated noises that can function as language. Even small 
variations and slight shifts, or the replacement of one sound by another make communica-
tion impossible and irritate consciousness. [...] And the same is true of writing, only very 
few standardized symbols are suitable for writing, and everything else that can be seen is 
simply out of the question. Structural coupling is a highly selective form that uses relatively 
simple patterns. (Luhmann, 2013a, p. 87)

It is with a limited number of letters, a sophisticated alphabetic phonetic writing 
system, some standardized pitches and acoustic signs that with which we can 
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recreate complexity, and at the same time as reducing environmental complexity. 
The implication of this is that society is only coupled with the physical world via 
consciousness. Luhmann argues “that there is no physical, chemical, or purely bio-
logical effects that influence social communication” (Luhmann, 2013a, p. 87). As 
such, everything passes through the limits of language which forms the basis of 
structural coupling between psychic systems and the social.

With this brief introduction to systems theory, it is possible to examine mathe-
matics education, if only to a preliminary extent.

6.3  What Kind of System Is Mathematics Education?

I will begin by presenting mathematics education as a social system of society, a 
system of communication, specifically a functional system. Coupled to mathemat-
ics education, as well as the consciousness (i.e., psychic systems) of those involved 
in mathematics education, are other functional subsystems of society. These include, 
for example, the political system, the legal system, the economic system, the educa-
tion system, the system of science (as the general system of knowledge production), 
and mass and social media.

6.4  The System of Society and Education

The evolution of society is a concomitant feature of the evolution of consciousness, 
and for human beings, the evolution of language and communication allows the 
possibility of forms of structural coordination that improve the likelihood of sur-
vival of individual ‘consciousnesses’. This is an assumption central to a systems 
theory of societal differentiation (Luhmann, 1995, 2013a, b, c). Coordination takes 
place through the differentiation of society by recursive distinction. Early societal 
differentiation involved family, kinship, and tribes, which Luhmann characterizes as 
segmentary society. This allowed the potential for coordination between families 
who in smaller units were engaged in survival. In parts of the world, tribal structures 
evolved and with the emergence of eminent families, this centre-periphery differen-
tiation gave way to empires and civilizations, through which and with the invention 
of writing, were to give way to stratified differentiation, with the differentiation of 
the nobility from commoner. In Europe, stratification was the predominant mode of 
differentiation through the Middle Ages and continued to be the dominant mode of 
differentiation of society until a functional differentiation of society emerged as 
dominant in Europe from about the eighteenth century (Luhmann, 2013b, c).

Before elaborating on functional differentiation, it is important to provide some 
caveats and conditions with which Luhmann presents the four modes of differentia-
tion: segmentary, centre- periphery, stratified, functional. (1) They are not indica-
tions of society’s epochs; (2) societal differentiation is not limited to these forms; these, 

6 Toward a Systems Theory Approach to Mathematics Education



132

Luhmann argues, are the key types of differentiation in the history of society, (3) 
different types of differentiation can exist at the same time, e.g. families continue to 
exist in contemporary functionally differentiated society, (4) the internal differentia-
tion of society reflects an increasing complexity with which the world can be 
described and experienced, and (5) societal differentiation follows evolutionary 
principles of variation and selection. Also, Luhmann stresses the improbability of 
such structures on the basis of evolution:

Evolution theory shifts the problem [of the “improbability of structural coordination’] to 
time and explains how it is possible that ever more demanding and ever more improbable 
structures develop and function as normal. (Luhmann, 2013b, pp. 251–252)

Functional differentiation developed from stratification with the appearance of 
specialized functions in society and through the division of labour. There are vari-
ous aspects that mark the transformation from stratified society to functionally dif-
ferentiated society from the late Middle Ages and into early modernity. These 
include the growth of international trade, surplus money, and a debt crisis in the 
fifteenth and sixteenth centuries. The economy ‘learned’ to perpetuate itself through 
prices and became independent of the nobility.

What is important is that at some point or other, the recursivity of autopoietic reproduction 
began to take hold and achieved closure, after which only politics counted for politics, only 
art for art, only aptitude and willingness to learn for education, only capital and profit for 
the economy, and the corresponding intrasocietal environments—which included stratifica-
tion—were now seen only as irritating noise, as disturbances or opportunities. (Luhmann, 
2013c, p. 66)

I am not going to expound here on the differentiation of each functional system 
from the Middle Ages, of politics, economy, law, media, religion, art, etc. (for an 
elaboration, see Luhmann, 2013c, pp. 65–86). Although, it is important to consider 
the dynamics of this ‘outdifferentiation’, the process through which functional sys-
tems differentiate from stratified society. Politics emerged from political rivalry in 
stratified societies, which by the mid-seventeenth century, had given way to a 
nascent form of democracy and then to ideas of the sovereign state, as well as the 
emergence of a legal system.

As part and parcel of this movement, education progressively switched from being primar-
ily achieved through mere socialization to becoming more systemically organized and dif-
ferentiated from the rest of society. What emerged then across Europe was a sort of ‘popular 
religious education’ (Luhmann, 2013c, p. 219) whose contents were still aligned with dog-
matic teachings (Luhmann & Schorr, 2000, pp. 74–75) and differentiated according to rank 
and status. The notion that schools and families operate as sites for the systematic, inten-
tional and still very religious education of the population became generalized around the 
sixteenth century in Europe. (Mangez & Vanden Broeck, 2020, p. 679)

Replacing the ‘commoner’ of stratified feudal society was an increasingly eco-
nomic active working class and middle class, which allowed education to escape the 
authority of religion, i.e. the church. Education differentiates from the system of 
religion in the eighteenth century (Luhmann & Schorr, 2000). The impact of the 
differentiation of education is given little attention in educational research. However, 
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Luhmann and Shorr articulate the changes in the organization of society and the 
consequences of the functional differentiation of society.

A young person grows up in his own family without problem and has barely any transition 
when he enters life in the society in the same degree that his radius of action and his circle 
of friends expand. By being forced to attend school, however, he is confronted for the first 
time and suddenly with a society that is no longer negotiated by the family. But the school, 
being a special institution of a function system, is not a representative sample of societal 
life; it socializes for the school, not the society. The fact that the first contact with society 
apart from the family takes on precisely this form - one can think of it as a concentration of 
people of the same age in a relatively big interaction system - rather than another form, must 
have deep-reaching repercussions on the cognitive and motivational resources of societal 
life. And it is clearly impossible to level out this socialization-related imbalance through 
school curricula, social studies, sexual education, etc. (Luhmann & Schorr, 2000, p. 31)

Hannah Arendt made some similar reflections upon education in the United 
States in her 1954 essay, The crisis of education, especially the artificiality of the 
separation of childhood and youth from the adult world (Arendt, 1977). However, I 
agree with Luhmann and Schorr that this macroscopic view of education, its role 
and function in society, and the experience of individuals is given little attention in 
educational studies. What comes to the fore is the investigation of educational pro-
cesses, both cognitive and social, within the system of education and the relation-
ship between politics and education (i.e. policy making). A blind spot occurs as a 
result of seeing ‘education’ as a seamless component of society rather than its dif-
ference in the unity of the communications system of society. Assumptions can be 
made that if education is ‘successful’ in its mission, then it must be of benefit to 
society. This denies the complexity presented by functionally differentiated systems 
of society and points to some considerable questions for the sociology of education 
(and sociology of mathematics education). Too often do these fields become 
entrenched in moral rather than analytic accounts of society. Morality is too contin-
gent to be the basis for any scientific endeavour.

Mathematics education is a subsystem of the social system of education, the 
overarching theme within education is the construct of the educability of the indi-
vidual. In mathematics education, we are concerned with a particular set of knowl-
edge, mathematical knowledge. Before concluding this chapter, it is necessary to 
give some attention to mathematics as a system of communication and which is 
closely connected to the system of science as the functional system of knowledge 
production.

6.5  The System of Mathematics

Through practices and programmes of empirical and theoretical work, science is 
engaged in a process of the production of knowledge – the identification of validity 
and the rejection of invalid claims. This permits a range of possibilities for science 
with a plurality of research approaches, extensive communication, and peer 
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evaluation of the knowledge produced. The differentiation of science from society 
accelerated during the Enlightenment as human reason challenged religiously 
authorized determinations of what knowledge was. Mathematics has further speci-
ficity within a system of society; mathematical knowledge is generated through 
reasoning processes and proof rather than the more general empiricism of science. 
It is useful at this point to think about mathematics as a subsystem of science, but it 
is possible that there is a different systemic relationship with science. It could be 
argued that mathematics is a distinct system of communication that is structurally 
coupled with science. Whatever the relationship, I agree with Mehrtens, one of the 
few systems theorists of mathematics: “‘Mathematics’ means here the social system 
of the discipline with its central function of producing and disseminating knowl-
edge of a specific character” (Mehrtens, 1993, p. 220). Mehrtens argues, based on 
an analysis of mathematics in Germany, that mathematics becomes functionally 
differentiated in the nineteenth century. He presents mathematics as a knowledge-
producing social system like the system of science and that it characterizes itself 
similarly through the specificities of its knowledge with a core of 'pure' mathemat-
ics. Another important feature is the compelling nature of mathematical argument 
(Mehrtens, 1993).

Mathematical knowledge is not simply a “parade of syntactic variations,” a set of “struc-
tural transformations,” or “concatenations of pure form.” [...] Mathematical forms and 
objects come to be seen as sensibilities, collective formations, and world views. The foun-
dations of mathematics are not located in logic or systems of axioms but rather in social life. 
Mathematical forms or objects embody math worlds. They are produced in and by math 
worlds. It is, in the end, math worlds, not individual mathematicians, that manufacture 
mathematics. (cf. Becker, 1982) (Restivo, 1993, p. 250)

Like Mehrtens, Restivo is emphasizing the systemic and communicative nature 
of mathematics as an autopoietic system.

6.6  Toward a System Theory Approach 
to Mathematics Education

This section poses the question, What kind of system is mathematics education? So 
far in what I have presented, mathematics education can be seen as an autopoietic 
social system of communication. Through its own internal operations and pro-
grammes, it responds to its environment and maintains its own operations and lim-
its. While it is mathematics education that defines, in an on-going way, what 
mathematics education is, this is not as autonomous as one might first conclude, the 
self-referentiality is entirely in response to an environment that the system can only 
make sense of through its own operations.

Here, like the argument set out for the system of mathematics, I will treat math-
ematics education as a subsystem of education. As a coda, and before setting out a 
provisional research agenda for systems theory in and of mathematics education, I 
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want to consider the nature of mathematics education as a functional system of 
communication in society.

A social system of communication is constituted on a phenomenological inter-
pretation of meaning – meaning as the difference between actual and possible. This 
permits the actualization of experience but with a horizon of possibility – what is 
does not deny the possibility of it being anything else. The mathematics classroom 
is an important interactive system in the production of meaning, as it is in the class-
room that conscious systems (the individual psychic systems of teacher and student/ 
pupil/ adult learner) encounter and are compelled to engage with mathematical 
knowledge. Psychic systems are in a constant process of making sense of environ-
mental stimuli. The social system of mathematics education in the context of class-
room interactions prompts communication. The process of experiencing, 
meaning-making and communication stimulate each other. However, there are par-
ticular sets of purposes, assumptions, and roles in the mathematics classroom, these 
include the purpose of developing learners’ mathematical knowledge and capabil-
ity, there is the assumption of (mathematical) educability and development, and the 
teacher is tasked with instruction and facilitation and the learner to learn 
(mathematics).

There is the important task of determining what knowledge is within the class-
room context. The curriculum is an articulation of this knowledge. While the math-
ematics curriculum is an expression of the system of mathematics, it is distinct. Its 
development and expression reflect a range of influences from within mathematics 
education but are influenced by the system’s environment. Environmental influ-
ences might include politics, as the process of policy making, the needs of the busi-
nesses and the economic system, as well as science (including educational research 
that I will discuss shortly) and mathematics. Luhmann and Schorr (2000) argue that 
the curriculum is strongly influenced by the contingency formula of educability, in 
other words what kinds of knowledge ‘stick’. Contingency formulae are a means by 
which functional systems like education can deal with environmental complexity, 
they have their historical origins within religion but have continued as functionally 
equivalent into modern functionally differentiated system of education.

An awareness of contingency, which accepts “this or also that” for a given condition is a 
form of generalization and for that reason necessitates a re-specification; because one can-
not live with the notion of the equal possibility of anything and everything. (Luhmann & 
Schorr, 2000, p. 66)

The potential to be educated or educability is a key contingency formula within 
education, it deals with uncertainty by offering a process that can be actualized in 
the current context and allowing a surplus of possibility, albeit with somewhat pre-
scribed possibilities set by historical practices. The mathematics classroom as a 
system of interaction within education has played a key role in defining and re- 
defining what mathematics education is and what it isn’t. Cuban (1993, 2009) has 
illustrated this point from the perspective of the historical analysis of classrooms in 
the United States and points to the continuity and contingency that exists over time. 
He also shows the limitations and frequent failure of attempts at teaching reforms in 
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the light of the continuity of practice. This can be explained also by considering the 
contingency formula of educability and the historical continuity of educational 
practice.

While education became functionally differentiated in the eighteenth century, it 
was not until the twentieth century that there was a developed system of education 
research or mathematics education research. With the increasing number of partici-
pants in state education, the need to develop assessment and evaluate policy 
prompted (mathematics) education to reflect upon itself (see Howson, 2009; 
Kilpatrick, 2014; Inglis & Foster, 2018). Mathematics education, increasingly pro-
fessionally staffed and higher education based, is ‘coupled’ with science through 
the use of theory and methodology. It is connected to but distinct from science, what 
distinguishes and closely integrates mathematics education research with the sys-
tem of mathematics education is the object of research and that is mathematics 
education. While traditions of educational assessment and evaluation have been 
influential on educational research, mathematics education has drawn on psychol-
ogy and mathematics, now there is a plurality of paradigms and perspectives. The 
most significant of these is the distinction between mathematics education research 
that is concerned with cognitive processes and research that is concerned with social 
perspectives. The former follows traditions of psychological research and in par-
ticular experimental approaches, the latter draws on social theory and approaches to 
sociological research in education more generally. The social turn in mathematics 
education (Lerman, 2000) employs a range of qualitative methods with theoretical 
perspectives that might draw on the sociocultural psychology of Vygotsky or in a 
more macroscopic sociology of mathematics education using Marx’s theory of capi-
talist society.

The plurality within the system of mathematics education not only draws across 
the division of educational research and educational practice but also within alterna-
tive traditions and paradigms of research. Certainly, studies of mathematical cogni-
tion and sociocultural studies of mathematics education are distinct, and it seems 
like there is no language that would allow a synthesis between the two. However, 
systems theory offers the possibility of a meta-theory of consciousness and com-
munication that although it may not permit an integration it provides an approach 
for the meta-analysis of these components within a totality of mathematics educa-
tion and within the totality of society. It would seem likely that this is one possible 
way forward and a meta- language of systems addresses a fundamental problem in 
the imperative for society and its systems to be able to observe themselves. As 
William Rasch explains in the introduction of a collection of essays by Luhmann on 
theories of distinction, the challenge facing scholarship in general in late modernity:

… the immanent, partial, and severed world, the posited world gradually achieves auton-
omy and takes center stage. What was once “the whole” or the nature of “all things” that 
could be seized in an instant and for all time as a totality now becomes an immanent field 
of observations, descriptions, and communications, a “totality of facts,” as Wittgenstein 
wrote […] that must contend with the uncomfortable situation that any observation of a fact 
is itself a fact that can be observed. The whole that is modernity is the whole that strains to 
see itself and thus a whole that forever divides itself with every observation into more and 
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more “facts.” The whole we now deal with is a self-referential whole, thus an inescapably 
paradoxical one. Accordingly, we are no longer in the realm of a foundationalist “first” 
philosophy but rather in the realm of a “second-order” philosophy of observations of the 
observations of self and other. (Rasch in the introduction to Luhmann, 2002, p. 3)

While within education research this agenda is being addressed with a focus on, 
for example, school organization and governance (Andersen & Pors, 2021), policy 
and the second- order observation of education (Mangez & Vanden Broeck, 2020), 
inclusion (Qvortrup & Qvortrup, 2018) and curriculum change (Hilt & Riese, 2022), 
the challenges of the plurality of mathematics education for both research and prac-
tice begs a development of this initial systems theory analysis, to understand the 
plurality of mathematics education and, importantly, its relationship to society.

Systems theory may be useful beyond the sociological and the social psychologi-
cal. It is possible that the study of mathematical cognition may benefit from a sys-
tems perspective, especially in relation to the conscious processes of distinction and 
recursion as the basis of the construction of mathematical objects and processes. It 
might be that studies of the learning of early number (see Gilmore et  al., 2018) 
reveal more about the development in the sophistication of distinctions made by 
psychic systems in response to symbols and communication. Experimental studies 
of young children and number seem to suggest the observation of distinctions as 
much as it does as the development of operational processes and symbolic 
representation.

6.7  Concluding Remarks

Here, I have aimed at introducing (the social system of) mathematics education to 
contemporary systems theory by outlining some features of the theory itself and the 
directions and themes which I am taking up in my preliminary inquiry into mathe-
matics education. I began contextualizing this in terms of the paradoxes that con-
temporary society increasingly makes evident, this is captured in the Luhmannian 
notion of the paradox of difference in unity. Society represents a difference in unity 
and so does the system of mathematics education in terms of a systemic treatment. 
Rather than suppress the paradoxical reality, systems theory begins with an unfold-
ing of paradox, accepting that society and cognition stabilizes self-referentially, 
autopoietically, and improbably through evolutionary processes of variation and 
selection and through societal differentiation.

The question arises from this then of what use is this to mathematics education? 
While my purpose here has been to outline a theory of social systems consistent 
with volume’s intent to present works in progress in relation to the philosophy of 
mathematics education, a central issue for mathematics education is the improve-
ment of mathematical capabilities of individuals in order that they can sustain them-
selves and contribute to society. Systems theory is not the first theoretical approach 
that provides a critique of the instrumental and sometimes reductive accounts of 
individual mathematical learning. However, it does not reject the cognitive aspects 
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of learning. It does offer a way of understanding the relationship between the social 
(as communication) and cognitive (individual psychic systems). Again, these dis-
tinctions can be integrated within social psychology, socio-cultural, and Vygotskian 
derivatives such as cultural-historical activity theory or the anthropological theory 
of didactics. What systems theory facilitates is understanding of the social and cog-
nitive dimensions within a theory of society and from this a theory of mathematics 
education as a social system of communication. Reflections upon mathematical 
learning and in relation to human development often take for granted that learning 
processes, pedagogy, curriculum and that represent foundational substrates. Systems 
theory treats these aspects as constructs, and while it does not reject them, it asks 
about the social and contingent basis in which these constructs became enduring 
systems of meaning. In this way, systems theory provides a more precise way of 
dealing with the concepts that we use in studying and reflecting on mathematics 
education.
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Chapter 7
On Mathematical Validity and Its Human 
Origins

Gerald A. Goldin

7.1  Introduction: Essentials for a Philosophy 
of Mathematics Education

For a philosophy of mathematics education to have full integrity, it should address 
several fundamental issues. One of these is the nature of objective mathematical 
truth and validity, in all its complexity. A second one is the human origin of math-
ematics: its development and application, its teaching and learning, in reasons for 
existing – all taking place in environmental, cultural, social, cognitive, and affective 
contexts. Many eminent philosophers have addressed particular aspects of these two 
issues in great depth; a review is well beyond the scope of this chapter. Often one of 
the two is taken as fundamental – explicitly or tacitly – with the consequence of 
overtly denying or dismissing the other entirely.

Here, I maintain that they are not contradictory. This is why I argue for an inte-
grated philosophy incorporating both, rather than a diversity of mutually opposed 
philosophies. Both objective mathematical truth and validity, and the view of math-
ematics as invented and developed by human beings, have philosophically sound 
underpinnings, and both must emerge as central to the teaching and learning of 
mathematics. However, the ways they most commonly enter mathematics education 
now are not necessarily optimal or desirable. This chapter explores some of the 
interplay between them – the senses in which mathematics is socially and culturally 
dependent and the senses in which it is true and universal.

A related issue might be termed the “why” of mathematics. We have several 
important interpretations of the term “why”: What does it mean to understand a 
mathematical concept? Why does a pattern occur, or why does a theorem hold? 
(e.g., Davis, 1992). Why have we formulated various axiom systems of 
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mathematics as we have? Why have we defined various concepts, categories, and 
objects the way that we have? Why have we named them as we have? Why do we 
represent mathematical constructs with the conventional symbol systems that we 
use? What is the wider purpose of a concept? Why should students be required to 
learn various topics? Moreover, and perhaps most importantly, why might a student 
want to engage at all with learning or doing mathematics (Middleton & Jansen, 2011)?

I hope to offer some perspectives on the above issues to which I have come over 
many years, as both a mathematics education researcher and a mathematical physi-
cist. I hold a personal philosophy of mathematics education, reflected in the views I 
espouse here, but it is not an “ism.” Rather, I take a more eclectic perspective, draw-
ing on well-known elements of various fashionable and less-fashionable schools of 
thought in the philosophical, psychological, and mathematics education literature, 
while not adopting the limiting assumptions behind any one of them. Sometimes I 
have found this perspective dismissed categorically by adherents of one or another 
school – often for a priori philosophical reasons – because adherents value certain 
features of mathematics learning very strongly, while devaluing others (Goldin, 
2003, 2008). However, my purpose here is not to propose one new, eclectic philoso-
phy. Rather, I want to strengthen the case that any intellectually sound philosophy 
must base itself on foundational pillars that support the centrality of both objective 
mathematical truth and its psychologically and culturally situated human origins.

Academic philosophizing about mathematics education does not take place in a 
vacuum. The philosophical pendulum in mathematics education has swung repeat-
edly in my lifetime: back and forth, between radical positivism and radical con-
structivism, between behaviorism and radical social constructivism, between 
powerful absolutist and extreme relativist perspectives. Research and evaluation 
studies offering justifications or critiques of educational policy and practice are 
typically situated within one or another fashionable and influential philosophical 
school of thought, characterized as a “theoretical framework.” Some variables and 
constructs are then centralized, while other important ones can be dismissed out-
right and disregarded. In my view, the sociology of the academic world in education 
favors proponents of extreme claims and powerfully dismissive philosophies.

Partly as a consequence, energized by political forces, educational policies and 
practices have veered rather wildly. In the United States, we moved from “old math” 
to “new math” to “back to basics” and have oscillated between “traditional” and 
“reform” curricula and teaching methods. After much advocacy of “alternative 
assessments,” we are presently in an era of mandated standardized testing – and 
declining scores.

Each of the aforementioned philosophical “isms” is based on some unquestion-
ably valuable idea – some essential feature of mathematics, its teaching and learn-
ing, or a related educational research methodology. Many careful and valuable 
studies have been carried out by researchers energized by their belief in one of the 
“isms.” I propose that we build thoughtfully on such research. Nevertheless, we 
must also recognize the damage that occurs when a philosophical system claims 
universality and exclusivity as a founding principle, dismissing concepts that do not 
fit – based not on evidence of their inapplicability, but on a priori argumentation.
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To be specific, behaviorists – with a philosophy rooted ultimately in twentieth- 
century logical positivism and radical empiricism (Ayer, 1946) – rejected discus-
sions of mathematical understanding as “mentalistic,” allowing only the 
meaningfulness of  straightforwardly observable outcomes  – e.g., defined perfor-
mance objectives or test scores (Skinner, 1974; Sund & Picard, 1972). Radical con-
structivists  – with a philosophy rooted ultimately in the seventeenth-century 
idealism of Bishop George Berkeley (Downing, 2021) – dismissed objective truth 
and validity as admissible topics of discussion, declaring the only acceptable focus 
to be the viability of a concept for an individual or (in the case of radical social 
constructivism) for a social group. Thus, correctness in mathematical reasoning and 
the validity of science could all be reduced either to the individual’s “experiential 
reality,” or else to social consensus (Confrey, 2000; von Glasersfeld, 1996).

These philosophical belief systems—behaviorism, radical, and social construc-
tivism—only implicitly addressed the foundations of mathematics per se. They per-
tained most directly to its learning and teaching, especially how we define, assess, 
or evaluate learning processes and outcomes. I have termed them “dismissive epis-
temologies.” Within each, one finds both centrally important ideas and serious phil-
osophical flaws (e.g., Slezak, 2000; Goldin, 2003). I want to advocate here for a far 
more inclusive approach to the philosophy of mathematics education. Its epistemo-
logical foundations belong in empiricism, rationalism, socio-culturalism, pragma-
tism, and ethical philosophy, broadly construed. It should be a philosophy addressing 
human needs through objective mathematical truths and objectively valid applica-
tions. It should also be a philosophy taking full account of the human origins of 
mathematics. It should be able to account for truth and validity through features that 
distinguish mathematics from other, less objective domains of human inquiry.

I think such a philosophy is not only tenable and defensible, but necessary if we 
are to achieve excellent and universally accessible learning in mathematics.

At the outset, let me highlight some limitations of this chapter. Most of the ideas 
presented are well known and have been explored in depth by philosophers, mathema-
ticians, and educators. Consequently, the citations are necessarily far from adequate. 
It is the integration of these ideas into a comprehensive, practical philosophy for 
which I argue. We need a philosophy that can drive our research and our educational 
practices progressively and productively, rather than fostering wild swings of fashion.

In the next section, I discuss sources of validity and truth in mathematics and the 
meaning of these ideas in the human context of their development. In so doing, I 
offer responses to certain frequently raised objections to such constructs. I also sug-
gest some roles they can best play in excellent mathematics teaching. The discus-
sion also delves somewhat more deeply into the notion of fallibility in mathematics 
(e.g., Ernest, 1991).

The third section explores and elaborates on the “why” of mathematics and the 
importance of many interpretations of this “why” in teaching and learning. Here, I 
distinguish misconceptions from alternate (valid) conceptions learners may have, 
and stress the essential role of errors and misconceptions in powerful mathematical 
problem solving. The concluding section of the chapter relates the study of mathe-
matics directly to the meeting of fundamental human needs, suggesting directions 
to modify our educational priorities accordingly.
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7.2  Sources of Objective Truth and Validity in Mathematics

7.2.1  Social Constructivism

Mathematics as we know it was formulated by human beings, in order to meet 
human needs. It is likely that mathematics originated in prehistoric times, through 
its creation for various practical purposes. Counting probably dates to well before 
recorded history. Measures of length, area, volume, and time served numerous goals 
that took different forms in different ancient civilizations. Stories and myths sur-
rounded the sun, the moon, the planets and the stars, whose observed regularities 
formed the basis of human calendars  and beliefs. Various increasingly elaborate 
systems of representation developed differently in different cultures, describing 
numerical and fractional quantities as well as geometrical constructs.

Human beings noticed patterns in the systems they created and asked questions 
about such patterns. Do numbers go on forever? Some groupings of object, described 
by numbers, cannot be arranged in rectangular arrays. Do such “prime” numbers go 
on forever? Assumptions were systematized and reasoning formalized, always by 
human beings, and in different ways by different people in different cultures. The 
questions asked were socially and culturally situated, as they continue to be today. 
Isn’t then mathematics entirely a human, culturally dependent social construct?

Of course, it is, as is the product of every other human activity. To say mathemat-
ics is a human construct merely places it alongside all science, all myth, all religion, 
all beliefs, all language, all literature, all culture, all economics and politics – as 
well as all farms, all factories, all dwellings, all buildings and bridges, all clothing, 
all objects created through arts and crafts, etc.

The statement adds little or no actual information. However, it focuses the mind 
in a certain way. It encourages us to attend closely to important questions that should 
influence or be explicitly addressed in mathematics education, for example:

• How does and can mathematics meet human needs?
• Through what processes do people create and study mathematical ideas?
• Through what historical processes has mathematics developed?
• How and why do different cultures vary in the mathematics they create and use?
• What are the psychological processes behind mathematical learning, problem 

solving, inventiveness, and creativity?
• What culturally dependent aesthetic features encourage appreciation of beauty in 

mathematics?
• How do our policies and practices in mathematics education facilitate or impede 

mathematical engagement and the learning, appreciation, and effective uses of 
mathematics by our students?

• How can we best engage in culturally relevant mathematics teaching?
• How do power, politics, racial and gender discrimination, ethnocentricity, and 

economics shape the development of mathematics as a field, establish hegemony, 
and limit who has access and whose ideas gain notice?

G. A. Goldin



145

These are essential questions. To the extent that the statement, “Mathematics is a 
human social construct” helps us focus on them, it is a helpful foundational pillar 
for our philosophy.

In some philosophical approaches, however, the statement takes the unfortunate 
form, “Mathematics is just [or only] a human social construct.” Here, the not-yet- 
stated implication is that mathematical truth or validity is fundamentally indistin-
guishable from the truth or validity of any other human belief system – science, 
religion, myth, superstition, or individual idiosyncrasy of conception or misconcep-
tion. All are merely sociocultural or psychological constructs, to be kept or dis-
carded according to their social, cultural, or personal viability for the group or 
individual that uses them. An approach that begins by denying the very possibility 
of characteristics such as truth and validity – features that ultimately distinguish 
mathematics from other forms of human activity – should not be the basis for a 
widely accepted philosophy of mathematics education. A detailed critique of radical 
social constructivism is offered by Slezak (2000).

7.2.2  Objective Truth in Mathematics

Platonism, logicism, and formalism (Horsten, 2022) Mathematicians and phi-
losophers have taken various approaches to the nature of mathematical truth. Some 
of these are also tacitly or overtly dismissive. In a Platonist perspective, the objects 
described by mathematics (number, geometrical objects) exist in a separate, time-
less world of ideal forms. Their properties – the truths of mathematics – are eternal 
and independent of human beings, with the possibility of being (partially) known 
through processes of thought. The school of thought known as logicism, associated 
with Gottlob Frege, Bertrand Russell, and Alfred North Whitehead (but with roots 
going back to Euclid), sought to establish the objects and truths of mathematics, 
including sets and numbers, as derived purely through logical deduction from initial 
axioms. In the formalist philosophy advanced by David Hilbert, mathematics con-
sists of symbols and consistent rules for manipulating them – without their holding 
any intrinsic meaning at all. Kurt Gödel succeeded in showing, however, that such 
formalist or logicist systems, if sufficient to include infinite sets, could never be 
proven complete or consistent – except by assuming rules of inference that them-
selves could not be proven complete or consistent (Nagel & Newman, 1958; 
Hofstadter, 1979). Gödel himself appears to have been a Platonist (Goldstein, 2005).

Intuitionism and Lakatosian philosophy In contrast to these approaches, the 
intuitionist school of philosophy, credited to Luitzen Egbertus Jan (L. E. J.) Brouwer, 
begins with mental constructs and the mathematical properties that are evident from 
those constructs; all the rest of mathematics that is meaningful should be obtained 
from these intuitions through constructive processes. Nonconstructive mathemati-
cal principles are thus inadmissible. Lakatos focused on the actual practices of 
mathematicians, who arrive at a consensus about mathematical truths (e.g., the cor-
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rectness of a published proof) through discussion and explanatory discourse, not 
through strict application of a purely symbolic formalism. One sees in intuitionism 
and Lakatosian philosophy some roots of radical constructivist and social construc-
tivist philosophy, respectively, that are specific to mathematics and an influence on 
humanist approaches to its teaching (e.g., Davis & Hersh, 1981).

I maintain that a philosophy of mathematics education does not require exclusive 
commitment to a specific philosophy of mathematics per se. In fact, to the extent 
that Platonism, formalism, logicism, intuitionism, Lakatosian philosophy, or other 
approaches are exclusionary of different perspectives, it is far better to rest the foun-
dations of our philosophy on multiple pillars. When our educational goal is to con-
vey a sense of awesome, timeless beauty, Platonist ideas may help us do so. We can 
then focus on what is universal in mathematics, the constructs that seem to tran-
scend cultures and eras. When our goal is to explore logical deduction, theorems 
and proofs, a logicist perspective provides a deeper understanding of the power of 
mathematics.

When we seek to convey an understanding of non-Euclidean geometry, we may 
point out that in a formalist perspective, we are free to interpret the terms in Euclid’s 
postulates (such as “point,” “straight line,” and “distance”) as we wish; only the 
relationships stated in the postulates matter. Thus, the term “point” might be inter-
preted as a pair of antipodal points on the surface of a sphere; “line” might stand for 
a great circle; and “distance” might refer to the length of a segment of the great 
circle. Then a “straight line” is still the shortest “distance” between two “points” – 
but the parallel postulate no longer holds.

Focusing on mental imagery and constructive processes in the psychology of 
mathematics learning centralizes an intuitionist perspective, and we have already 
discussed the opportunities inherent in a social constructivist perspective. Indeed, 
there is great educational value in attending to all these dimensions of mathematics, 
without taking any one to be its “real” or only foundation. The source of truth that 
becomes relevant depends on what question we want to ask or what issue we want 
to address. The various foundational sources are complementary, not 
contradictory.

There are two main ways to approach the objective character of mathematics: 
through the idea of empirical truth or that of rational or logical truth.

Empirical truth When we create a mathematical system of representation, 
together with its definitions, rules, and procedures, we often do so to describe a class 
of situations and to make inferences and predictions about them. If the mathematics 
we are using is valid, these will be borne out by subsequent information and events; 
otherwise, our predictions will at some point fail. Here, the empirical validity of the 
mathematics depends on at least two aspects: (a) the applicability of the model used 
to describe the situation and (b) the internal consistency and correctness of reason-
ing within the mathematics.

 (a) It is not difficult to find examples of (objectively) correct mathematics applied 
inappropriately to reach (objectively) false conclusions. For example, causation 
is often inferred falsely from correlation. If the conclusions serve (viable) polit-
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ical or social purposes, as is often the case, they may come to be widely 
accepted. Such social consensus does not suffice for their truth and should not 
suffice for us to believe they are true. Nor should we settle for saying they are 
“true for this group” while “untrue for that group” – a stance wholly lacking in 
intellectual integrity. Mathematics education should provide students with the 
power of knowledge – the ability to distinguish valid from invalid mathematical 
applications or models.

 (b) A different failure of empirical validity may occur if a mathematical conclusion 
reached within the mathematical system is itself (objectively) false. An incor-
rect computation may be due to a clerical error or to a more fundamental mis-
conception. This may lead to a recipe that fails, a loan that is disadvantageous 
to the borrower, or furniture that fails to fit in the planned space. The prediction 
fails empirically because the mathematics used to generate it contradicts math-
ematical truth.

The property of being a human construction offers no protection from objective 
empirical truth or falsity—a traffic bridge is a human construct, but whether the 
bridge stands or falls is objective fact.

Rational truth Having created a mathematical system (e.g., a system of counting) 
with accompanying ways of representing it (e.g., spoken and written numbers), we 
can proceed to axiomatize it—to identify the rules governing our creation and our 
reasoning about it. Then truth can be defined entirely in relation to the assumed 
system of axioms and rules of inference. A vector, for example, is no longer simply 
a way to represent something in real life, such as a velocity, by “a directed line seg-
ment” or as “a quantity with both magnitude and direction” —an interpretation 
suggesting human intuitions with potential empirical validation of the mathematics 
of vectors. Instead, a vector becomes “an element of a vector space,” where the vec-
tor space is a set defined in relation to another set, called a scalar field. Both sets are 
endowed with operations that obey certain axioms. Now the “truths” about vectors 
and scalars are the axioms, true by virtue of their assumption, together with theo-
rems provable from those axioms through well-defined, logical reasoning processes. 
To characterize mathematical truth this way – i.e., through logicism – is to place it 
in the domain of what philosophers have termed “analytic” truth (e.g. Ayer, 1946) – 
statements that are true a priori by virtue of meanings or definitions, requiring no 
empirical verification. It appears that the capability of such reasoning, sometimes 
called “logical thinking,” is common to human beings in every culture.

It is virtually non-existent in mathematics (though the situation is spectacularly 
different in science) that different social or cultural groups engaged in mathematics 
come to believe in systems of truths that actually contradict each other.1

1 However, there have been historical periods of disagreement, followed by radical shifts in belief 
among mathematicians, over some metamathematical issues, for example: whether Euclid’s postu-
lates are “self-evident truths,”, whether negative numbers “really exist,”, or whether mathematics 
can be formalized in a complete and consistent way (e.g., Kline, 1980).
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Does this agreement across cultures alone demonstrate that mathematical truth 
and validity are indeed universal and eternal? Of course, in a certain sense it does. 
The convergence of belief, attributable to the objective truth of mathematics, has 
probably encouraged an “absolutist” philosophical stance to thrive across the mil-
lennia. Paradoxically, mathematical consensus seems also to have allowed the more 
recent opposite conception to thrive, that rational truth in mathematics has no objec-
tivity beyond the fact of a powerful social consensus of mathematicians. Of course, 
radical social constructivism fails spectacularly in empirical domains when consen-
sus is absent. In the biological sciences today, in this time of pandemic, substantial 
numbers of powerful people adhere firmly to and promulgate the (objectively false) 
belief that vaccination is ineffective and dangerous – with deaths occurring as a 
consequence of the false belief system. A philosophy of mathematics education that 
has integrity should be wholly compatible with a sound philosophy of science, 
where mathematics finds both important applications and sources of inspiration. 
Denial a priori of the very possibility of rational objectivity, distinguishing mathe-
matics from other forms of human activity, should not be a feature of our mathemat-
ics education philosophy.

7.2.3  Objectivism

Formalists and logicisits attribute mathematical truth to logic alone. From a purely 
formalist point of view, the structures of mathematics and the structures of games 
such as chess or checkers are quite parallel. Once the set of rules is assumed, the 
question of whether with best play chess will always end in a draw has just one true 
answer, now and forever. This does not, of course, contradict the human origin of 
chess  – its rules are quite evidently socially constructed, without any necessity 
whatsoever, and clearly culturally situated.2

Platonists, on the other hand, ascribe to abstract mathematical structures a kind 
of independent, eternal existence in a realm of ideals that we access but partially. In 
this philosophical viewpoint, perfect circles, squares, and regular polyhedra 
(“Platonic solids”) have always existed, apart from human beings—but then, pre-
sumably, so must have far more exotic (and equally beautiful) constructs, such as 
the Sierpinski triangle, the Mandelbrot set, and the quantum plane.

“Absolutist” philosophical systems – embracing the idea that there is only one 
mathematics, that it is eternal and universal, transcending not only all cultures, but 
humanity itself – may encourage us to focus on aspects of mathematics education 

2 Of course, chess is a finite game and thus such a question has a definite answer—though we may 
not know now what the answer is. In contrast, mathematics involves infinite sets, where the work 
of Gödel demonstrates that with a given set of rules of inference, not every proposition can be 
resolved as either true or false. The notion of “truth” extends beyond what is provable with the 
specified rules of inference.
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that are valuable, but different from those suggested by radical constructivism, for 
example:

• How can we develop students’ skills so that they reason validly and solve prob-
lems powerfully and correctly?

• How can we foster students’ processes of abstraction and their understanding of 
abstract structures and proof in mathematics?

• What role should axiomatization, logical reasoning from axioms, and theorem 
proving play to enable students to grasp both the generality and the certainty of 
mathematical results?

• How can we best assess, objectively, when and in what ways students have 
acquired valid conceptual understandings and are proficient in performing cor-
rect computations in arithmetic, algebra, and calculus?

• How can we incorporate powerful and valid applications of abstract mathematics 
most effectively in the curriculum?

• Observing that people in all cultures are capable of logical reasoning, can the 
resulting universality of mathematical truths help to bridge cultural gaps across 
the world?

• How can we educate students to appreciate the beauty to be found in abstract 
mathematics, to find fascination in the mathematical objects in a Platonic world 
of ideal forms?

These are essential questions to ask. Absolutist philosophies are helpful to the 
extent that they remind us of the importance of correctness, valid conceptions, 
and the power that comes with understanding mathematical truth and its sources. 
They lead us to the power of abstraction in mathematics and the idea of a struc-
ture that may apply to or describe a variety of very different concrete situations. 
As mathematics educators, we should want students to understand the concepts 
of structure, isomorphism, homomorphism, etc., as well as the idea that features 
of mathematical structures may be established via theorems proved by logical 
deduction from definitions and axioms. Our goals should include helping stu-
dents acquire some facility with reasoning and proof – with what is often termed 
“logical thinking.”

Mathematicians tend to favor approaching objective truth rationally and 
analytically, through theorems and proofs. To create mathematics, researchers 
may identify a pattern, investigate it, formulate a conjecture, and then try to 
prove it or to demonstrate its falsity through counterexample or by proving its 
negation.

Applied mathematicians, physicists, statisticians, and other scientists may 
approach mathematical truth empirically. To create mathematics, researchers invent 
a mathematical object or method, motivated by a situation, to model the situation. It 
may be that the invented object does not even “exist” (yet) mathematically, but 
using it seems to work. Rules motivated by the situation are applied – and only later 
is the object or method defined precisely, the rules axiomatized, and theorems proven.
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But as we see, formalism and Platonism are also open to some fundamental 
philosophical objections. The limitations of formalism in fully establishing founda-
tions for mathematics have been quite rigorously and beautifully discussed 
(Hofstadter, 1979). In mathematics education, formal theorems and proofs alone 
may convey little or no understanding of the meanings or ideas behind the formal-
ized mathematics. And the reasons outside of pure mathematics behind the choices 
of systems to axiomatize, from plane geometry to the natural numbers and onwards, 
are not addressed.

Alternatively, the Platonist assumption of the independent existence of mathe-
matical truths implicitly accords extra ontological status to all possible systems of 
assumptions and sets of inferencing procedures: not only games like chess and 
poker, number systems, and non-Euclidean and noncommutative geometries, but 
also all not-yet-created games and mathematical categories. All must “exist” as 
ideal forms, independently of their ever having been imagined or invented. While 
this is a fascinating mental image, taking such an assertion as one’s only starting 
point – like starting with the assertion that mathematics is “only” a culturally situ-
ated human construction – focuses attention, but erases distinctions and conveys 
little or no actual information.

Absolutism becomes damaging when it takes an unfortunately narrow and 
authoritarian form. The assertion that there is one universally true mathematics 
is sometimes tacitly assumed to rule out alternate (but valid) conceptions. 
Algorithms that are nonstandard in one culture but standard in another, as well 
as potentially fruitful and valid paths of inquiry that do not follow canonical 
ways of thinking – i.e., alternate conceptions, as opposed to misconceptions – 
can be unfortunately rejected by the teacher who “knows” what mathematics is 
“supposed” to be.

Authoritarian absolutists may also greatly devalue misconceptions, mistakes, 
and blind alleys. An exclusive focus on correctness can lead teachers to dismiss 
or overlook the substantial value to learners that can result from misconceiving 
something or making a mistake during problem-solving activity. Each occur-
rence of an error provides a singular opportunity for students to discuss it, to 
come to understand why the conception fails or why the error occurred – and an 
opportunity to strengthen problem-solving processes that reveal the error and 
enable more profound understanding. It is also an opportunity for the teacher to 
congratulate the student for opening the door to deeper, nonroutine insights for 
everyone.

7.2.4  Fallibilism

Fallibilist philosophy in mathematics education takes mathematics to be socially 
constructed but goes further to argue that mathematical truth itself is forever open to 
question (Ernest, 1991). Indeed, the field of mathematics has not evolved histori-
cally through “progress” alone – the definition of new constructs, the formulation of 
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new axiom systems, the proving of new theorems, and the discovery of new applica-
tions. Substantial changes in mathematical definitions, notations, concept, proofs, 
and consensus perspectives on these have all taken place, to the extent that some 
statements once regarded as true would now be taken as false or ill-defined. 
Fallibilism has value for mathematics education by focusing special attention on 
specific processes of change – those that have modified our notions about what is 
true or certain (e.g., Kline, 1980). It is also suggestive of the necessary, positive role 
that false starts, blind alleys, and misconceptions play in powerful mathematical 
problem solving as they occur and are addressed productively.

In its most extreme form, fallibilism has been interpreted to suggest that mathe-
matical truth per se does not exist – that every mathematical assertion is subject to 
eventual falsification. Thus, not only is authoritarianism rejected – the very basis for 
authority in mathematics is called into question.

It is helpful in teaching mathematics, and in constructing a philosophy of math-
ematics education, to explore the social and historical processes that have led to 
changes in mathematics. In doing so, I think we can identify certain specific, dis-
tinct sources of change that have affected, or that hypothetically would affect, the 
truth of mathematical statements. Knowing these means that we can understand 
their role – and we need not, and should not, dismiss the very notion of objective 
truth and validity in mathematics because of them. Instead we can offer students, at 
appropriate points in their mathematical development, an understanding of how 
change in mathematics has come about.

Changes in the meaning of truth One kind of change has been in our notion of 
what meaning we attribute to mathematical “truth.” Early Greek geometers regarded 
Euclid’s postulates as “self-evident truths.” That is, postulating them was not to 
merely create a label for them as true, but to state as fact an already-existing truth. 
Thus, Euclid’s “parallel postulate” was understood as an “eternal truth of mathemat-
ics,” albeit less self-evident than Euclid’s other postulates.

With the development of non-Euclidean geometries, we came to a different 
understanding – that the truth of axioms and postulates, and the resulting theorems, 
holds only within the system where they are defined. Euclid’s parallel postulate is 
false in Riemannian and Lobachevskian geometries. And the empirical success of 
general relativity suggests that the geometry of our universe is in fact 
non-Euclidean.

Another change of meaning has been due to the work of Gödel already men-
tioned. It was formerly thought that the truth of a mathematical statement could be 
taken as synonymous with its provability from the assumed axioms using well- 
defined processes of inference. But this idea did not hold up  – in a system that 
allows for an infinite set, such as the natural numbers, statements must exist that are 
true but unprovable.

Changes in representational conventions Many “true” statements in mathe-
matics are merely facts about currently agreed-upon systems of representations. 
For example, we agree conventionally that numbers grow larger toward the right 
on the number line and as we move upward on a vertical axis. Such a “truth” is 
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quite obviously arbitrary, though we can suggest psychological and socio-cul-
tural reasons for it. We agree conventionally to perform multiplication and divi-
sion operations before addition and subtraction, so that the “correct” value of an 
expression such as “8 + 12/4” is 11. In teaching, this rule is sometimes called the 
“fundamental order of operations,” though there is nothing “fundamental” about 
it. Here, “truth” changes easily. In a different context, where the convention is to 
perform operations in order from left to right, the “correct” value of the above 
expression would be 5.

The meanings attributed conventionally to mathematical expressions are 
malleable. Before the advent of algebra, and in some contexts now, 3x might 
suggest a 2-digit number with “3” in the “tens” place and an uncertain “units” 
digit, rather than 3 times x. Depending on the context, dy may refer to a constant 
d multiplying a variable y, to an infinitesimal change in the value of y, or to an 
element of a cotangent space. The truth of statements relying on such contexts 
is changeable.

Changes in the meaning of constructs The definitions that come to be accepted 
in mathematics also change over time. Earlier conceptions of continuous curves 
would not have accommodated the possibility of a function f(x) continuous at all 
irrational values of x, but discontinuous at all rational values. In the time of Newton, 
when calculus was being invented, the conception of continuity most widely held 
did not accommodate functions that are everywhere continuous but nowhere dif-
ferentiable. Our concept of continuity now permits such constructs. As meanings 
change and evolve, new “truths” supplant earlier ones.

As concepts in mathematics are generalized, statements earlier regarded as “true” 
are true no longer. The common “misconception” in children that “Multiplication 
always makes numbers larger, never smaller” is true, when “numbers” are inter-
preted solely as natural numbers 1, 2, 3, … (and the reference is to numbers other 
than 1). When “numbers” are generalized to include fractions, and multiplication is 
correspondingly generalized, the statement becomes false. Similar observations 
apply to “misconceptions” such as “You can’t subtract a larger number from a 
smaller one,” and “there is no square root of −1.”

Changes in language As concepts evolve, new constructs are introduced, and as 
new applications of mathematics found, our language changes. New terms are intro-
duced, and old ones change their meanings. New contexts occur, and natural lan-
guage interpretation depends heavily on context. Consequently, “true” statements 
with one set of meanings or in one context may, with different meanings or in other 
contexts, be “untrue.” In this sense, statements in natural language of mathematical 
truths can never be absolute or eternal.

Mathematics education and mathematical communication always occur through 
natural language as well as symbols, and teachers typically evaluate students’ 
understandings based on the perceived correctness of their statements. Here, we 
must all be sensitive to the possibility of our own “fallibility.”
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The hypothetical possibility of consistent human error All of us occasionally 
make mathematical mistakes and oversights. In any given session of mathematical 
thinking by a particular person or group, the probability of error is nonzero. The 
probability that the error remains undetected for a period of time is smaller, but still 
non-zero, as is the probability that it is never detected. Theoretically, then, the prob-
ability must be nonzero that all human beings have consistently made the same 
mathematical error, in computation or in reasoning, in studying a mathematical 
result and in determining its truth. One may enjoy trying to estimate an order of 
magnitude for its value, expressed in negative powers of 10. I think the smallness of 
the estimate leaves us with no practical implications for mathematics education, 
except perhaps for offering students an amusing exploration in probability and the 
meaning of “practical certainty.”

Radical fallibilism as the foundation for a philosophy of mathematics education 
has been critiqued in detail elsewhere (e.g., Rowland et al., 2010).

7.3  The “Why” of Mathematics

In a way, “The Why of Mathematics” could have been the title of this article. 
Ultimately, a philosophy of mathematics education should guide us toward under-
standing this question of “why” in its many different interpretations.

Patterns A teacher may ask her students to explore why a pattern occurs—e.g., Why 
does taking the differences between the successive square numbers 1,4,9,16,25,… 
result in the sequence of successive odd numbers 3,5,7,9,…? One possible answer is 
via an algebraic calculation: n2−(n − 1)2= n2−(n2−2n + 1) = 2n − 1. Such a com-
putation is at the heart of a formal proof – one possible way to answer the question. 
But the resulting understanding, essentially formalist, is limited.

A different kind of answer is provided by discovering a way to partition a con-
crete set of chips arranged in a square (say 5 by 5). One can form a smaller square 
(4 by 4), together with one smaller row and column (each with 4 chips) and 1 chip 
sitting in the corner. So we display the difference between the two squares (twice 4 
plus 1, or 9). This can be compared with the algebraic result (for n = 5, twice 5 
minus 1). Answering the question “why” by connecting multiple representations is 
a path to mathematical truth not suggested by formalism but highlighted in con-
structivism – and it leads to deeper understanding of a “true” reason for the pattern.

Definitions Another teacher may ask his class to explore why something is defined 
mathematically the way it is. For example, why do we define n0 = 1 (for n = 1,2,3,…) 
after we have defined nk as the product n times n times n … (k times). Why should 
multiplying a number by itself 0 times be equal to 1 and not 0? And in the case of a 
negative exponent, why should n-k be defined as the reciprocal 1/nk?

Here, answers to both questions eventually take the form of our wanting to extend 
certain “laws of exponents” so that they will hold not only for positive exponents, 
but for all integer exponents—a great idea! Does n−k “really” equal 1/nk? Obviously, 
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this definition is a socially agreed-upon convention, and in that sense, it is not 
“absolute truth”. But just as obviously, there is an important reason behind the con-
vention, which is characteristic of the development of mathematics and behind its 
power to encompass more objective truths. The understanding of the learner who 
discovers this is enhanced.

Arbitrary conventions Why do we have the arbitrary conventions in mathematics 
that we do? For example, why is “ten” the base of our system of numeration? Why 
then does 12 appear importantly in the English system of measurement? What led 
to the metric system replacing it in many places? Why do both 12 and 60 play such 
important roles in our measurement of time? Answers to such questions are both 
historical and intrinsically mathematical. I have mentioned earlier conventions 
about the order of arithmetic operations and about the directionality of numbers on 
coordinate axes. The “why” behind these also leads to interesting discussions.

Exploring such topics enhances students’ powerful understanding of mathemat-
ics, and our philosophy of mathematics education should encourage every aspect of 
their exploration. Thus, it should be possible to identify and distinguish what is true 
and mathematically relevant (e.g., that 60 is divisible by 2,3,4,5,6 and 12), what is 
historical (e.g., Babylonian mathematics and Ptolemy’s approach to astronomical 
measurement), what may be guided by universal human experience (e.g., that we 
have ten fingers, or that larger quantities form a heap that increases vertically), what 
is cultural (e.g., that we read Western languages from left to right), and what is sim-
ply convenient or arbitrary (e.g., the order of performing arithmetic operations) – 
and to discuss the interplay among all of these.

Applications and models Why do we need numbers, measures of length, area, and 
volume, algebraic equations, geometric constructions and theorems, probability and 
statistics, trigonometry, differential and integral calculus, abstract algebra, etc. at 
all? What led to their construction? The empirical origins of particular mathematical 
topics are often mentioned in passing, but deserve to be explored by students in 
depth. For example, can the idea of a “unit square” be used to define the area of a 
rectangle? A triangle? A circle? How can we do so, in order that area measures ful-
fill the applications we have in mind? At a more advanced level, why do the axioms 
defining a mathematical group include the associative property, but not the com-
mutative property? Consider what axioms allow us to describe the permutations of 
a set or the symmetry transformations of a 2- or 3-dimensional object. Why might 
we want to?

Here, exploration can lead to a deeper understanding of both the mathematics 
and the motivation for the mathematics as representing a situation. If area measure 
should describe how much paint is needed to cover a floor of irregular shape, we 
expect that two triangles forming a rectangle should require twice the paint needed 
for each triangle. If one approximates a circular area of given diameter with trian-
gular wedges, one can discover the area formula A = πr2. It is mathematically true 
in Euclidean geometry, while we have just seen how the very notion of area is 
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socially constructed for many practical purposes. Again, a comprehensive and valu-
able philosophy should encourage both.

Reasons to learn mathematics Why should students study mathematics at all? 
Why should they have to learn ratio and proportion, descriptive statistics, the qua-
dratic formula, or trigonometric identities? Students are typically offered a variety 
of reasons for the importance of their study. These include areas of application in 
everyday life, the importance of STEM to scientific and technological progress or to 
national goals, course prerequisites for college admission, the many desirable career 
opportunities that mathematics may open for them later in life, and our belief that 
studying mathematics will help them learn to think logically about many other 
things, too. Some of these answers are sustainable for particular topics, while others 
are patently untrue. Efforts to modernize the mathematics curriculum typically 
focus on the immediate practical importance and the long-term utility of the con-
tent – important criteria. For example, statistics and probability greatly exceed trig-
onometry in these respects.

But there are other important criteria too that deserve consideration. Some stu-
dents may want to become mathematicians or physicists, while most will not. Some 
students are mathematically talented and others less so – but mathematical talent is 
not synonymous with mathematical speed. The in-the-moment psychological needs 
and satisfactions of students are often disregarded or misconceived, resulting in 
unresolved frustration and the widespread incidence of “math anxiety” among 
adults. I discuss this further in the next section.

A comprehensive philosophy of mathematics education should provide a foun-
dation for embracing all of these important reasons to study mathematics – remain-
ing open to many diverse sources of motivation, while valuing those that foster 
engagement and learning.

7.4  Mathematics and Fundamental Human Needs: Conation 
and Mathematical Engagement

The term conation refers to the domain of human psychology pertaining to drives, 
needs, desires, “will,” or choice – the “why” of all that we do (e.g., Snow et al., 1996).

Elsewhere, my colleagues and I have considered diverse in-the-moment desires 
that motivate students to engage in mathematical activity or to disengage from it 
(Goldin et al., 2011). The approach that I advocate is to offer students the experi-
ence of fundamental needs being met throughout their mathematics learning, from 
kindergarten through higher education (Goldin, 2020).

There are several ways in which mathematics can authentically fulfill fundamen-
tal needs “in the moment” without relying on applicability to daily life, extrinsic 
rewards, or the promise of achieving distant goals. Here, I suggest five: through 
aesthetic experience, the experience of power, the gaining of insight, the reward of 
social connection, and self-expression through creativity. Each of these addresses a 
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domain of basic human need. Our philosophy of mathematics of education should 
provide a foundation for all of them.

Aesthetics Human beings universally appreciate beauty, and students can experi-
ence mathematics as beautiful  – through patterns in nature that mathematics 
describes, through a feeling of reverence for its truth and universality, through the 
elegance of reasoning in certain proofs, and through the sense of wonder that often 
accompanies understanding  – e.g., in an “Aha! experience (Czarnocha & Baker, 
2021). Our philosophy of mathematics education should include a basis for know-
ing and valuing these sources of aesthetic appreciation  – i.e., a foundation for 
empirical and rational truth, as well as for depth of understanding.

Power Adler (1927) writes of the “will to power” as a basic human drive. As stu-
dents learn, they can experience power in different ways – the power to do things 
they could not do before, to solve new problems, and to understand aspects of the 
world about them in new ways, and the power of their own reasoning to gain insight. 
For such power, mathematical validity is essential, and our philosophy should pro-
vide a foundation for it. But this sense of power does not stem from compliance 
with or submission to authority – it is the opposite. “True” mathematics is not syn-
onymous here with “authority-based” mathematics.

Connection Social connection is likewise a fundamental human need – a sense 
of belonging and contributing, acknowledgment by others, friendship and partner-
ship, status and respect. Mathematics need not and should not be an activity per-
formed only in isolation. The social processes of doing and using 
mathematics – exploration and problem-solving problems with a partner or in a 
group, bouncing around ideas, responding to each other’s thoughts, reaching a 
consensus of understanding – all provide opportunities for “in the moment” ful-
fillment through social interactions. Our philosophy of mathematics education 
should incorporate a foundation for the social process of doing mathematics  – 
mathematics as a human activity, with “human” understood to include the affec-
tive as well as the cognitive.

Insight Children exhibit curiosity from an early age – a fundamental human drive 
to experience and understand the world. A student’s insight can occur dramatically, 
as in the “Aha!” experience, or bit by bit, as one sees more when one climbs higher 
on a scenic path. To provide opportunities for insight, the “why” of mathematics in 
all its interpretations is critical. Our philosophy should provide a foundation for all 
of them.

Self-expression Maslow (1943) places “self-actualization” at the apex of his pyra-
mid of human needs. Self-expression, a form of self-actualization, is most often 
thought of in relation to music, literature, or the arts and crafts. But opportunities for 
acts of creation and invention abound in mathematics. Skilled teachers seek to foster 
creativity in their students, as learners invent their own rules and patterns, make up 
original problems, put forth original conjectures, generate original proofs, and find 
new ways to solve well-known problems. Our philosophy of education can draw on 
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constructivist ideas, highlighting the human invention of mathematics and inviting 
all to participate in its continuing invention and reinvention.

As students seek to fulfill their motivating desires during mathematical activity, 
they typically experience frustration with impasses during problem solving, unease 
when they do not understand, or disappointment when their ideas turn out to be 
“wrong” or when their suggestions are not accepted by others. The skilled teacher 
does not seek to remove negative affect, but to enable students to “see it through” – 
to experience fulfillment of the desire accompanied by elation, satisfaction, a sense 
of accomplishment, and increased self-efficacy.

7.5  Summary and Conclusion

A philosophy of mathematics education should draw on valid, nondismissive, and 
noncontradictory elements in various philosophies of what mathematics is. It should 
not be a theory of just one way to build the foundations of mathematics technically. 
I hope I have made the case that such a philosophy should provide foundational pil-
lars for all that is involved in the complexities of mathematical learning and teach-
ing. None of the “dismissive epistemologies” can do this – not radical behaviorism, 
authoritarian absolutism, strict formalism, logicism, or Platonism, radical construc-
tivism, radical social constructivism, or any other epistemology that excludes 
important features of mathematics a priori: its human origins, its purposes, its con-
texts, or its truth and validity.

Behaviorists maintain that all anyone can observe in mathematics learning and 
teaching is behavior and its productions. Radical constructivists argue that an indi-
vidual has access only to that person’s individual world of experience and can have 
no knowledge beyond that. Radical social constructivists see objectivity as impos-
sible, as all knowledge is constructed socially. Some proponents of such “isms” may 
argue that the features ruled out can be accounted for within their system – but at 
best they are devalued, and in the extreme, one is not even allowed to talk about 
them. Such philosophical approaches should not form the basis for a comprehensive 
philosophy of mathematics education.

What is needed is a far more eclectic approach, based on several philosophical 
pillars – one that accounts for, rather than dismisses, truth and validity in mathe-
matics, and accounts for and explores its culturally situated human origins. I do 
not think we can authentically claim to be mathematics educators while rejecting 
the importance of objective mathematical truth and correctness, or rejecting dis-
cussions of mathematical understanding and mental processes, or disregarding the 
affective domain as inessential, or dismissing the importance of 
ethnomathematics.

But we must recognize that each of the aforementioned “isms” has a valid reason 
for its appeal – an important nugget of real value. Behaviorism reminds us of the 
importance of observable phenomena, empirical inquiry, and more objective mea-
sures of learning. Constructivism focuses attention on the thinking of the individual, 
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particularly on constructive processes that occur during learning. Social construc-
tivism points to the negotiation of meaning, calling attention to classroom cultures 
and culturally relevant teaching, and welcoming the study of diverse cultural prac-
tices and origins of mathematical systems.

A comprehensive philosophy of mathematics education should provide strong 
foundational pillars for all considerations that have to do with the learning, experi-
ence, appreciation, and use of mathematics by students in a variety of cultures. It 
should strengthen teachers in striving to enable all their students to be successful 
and highly motivated learners, making use of manifold tools and techniques. I have 
offered here some reasons as to why such a philosophy is needed and suggested 
some of its important elements.
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Chapter 8
Towards a Philosophy of Creativity 
in Mathematics Education

Bronisław Czarnocha

8.1  Introduction

This chapter discusses the formulation of a philosophy of creativity in mathematics 
education as a subdomain of the philosophy of mathematics education. We have 
observed the recent increase of interest in philosophical issues in our profession 
(Ernest, 2018); however, creativity is not specifically mentioned in this volume. One 
reason is that the general philosophy of creativity seems to be in statu nascendi. 
Paul and Kaufman (2013, p.3) tell us that “philosophy of creativity is still a neolo-
gism in most quarters.”

Two recently published surveys of Philosophy of Creativity by Paul and Kaufman 
(2013) and Gaut and Kieran (2018) guide our discussions. Classical themes such as 
ethics and the value of creativity and creativity in the arts and sciences are explored 
together with creativity in the context of mind, cognitive science, AI, and in nature. 
With respect to aspects of creativity that are relevant to us but are not “covered” by 
the surveys of Paul and Kaufman (2013) and Gaut and Kieran (2018), such as cre-
ativity and learning or measurability of creativity, we direct interested readers to 
supplementary material published outside the philosophical mainstream.

Paul and Kaufman (2013) provide us with a methodological tip on how to start 
the process of formulation of the subdomain. As the researchers note, even though 
creativity has not occupied a central place in philosophy today, there has been a 
surge of interest in creativity within psychology and related domains, including 
research and practice of mathematics education.

At the same time, however, we note that Glaveanu (2014) in his critical reading 
of the Psychology of Creativity observes that although the field is thriving, the 
“discipline is in crisis.” He attributes the crisis to the large number of divergent ideas 
in the field and the relatively little constructive accumulation of ideas. This has 
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resulted in abandoning big ideas in favor of specialized inquiries. As a consequence, 
Glaveanu (2014) asserts that this process ends up effectively excluding everyday 
creative tasks including creativity that takes place in a classroom. In response to the 
crisis in the psychology of creativity, there has been increased interest in Maslow’s 
humanistic psychology, which views creativity through the lens of individual self- 
realization posited at the very top of his pyramid of typology of human needs. 
Maslow’s humanistic approach directs attention to everyday tasks called for by 
Glaveanu (2014): “I learned from her and others like her that a first-rate soup is 
more creative than a second rate painting” Maslow (2018).

Thus, to make the connection between the manifold of ideas being investigated, 
among others, within the thriving domain of Philosophy of Creativity and creativity 
of the classroom, we approach the philosophy of creativity from two directions, 
using Ernest’s (2018) metaphors: bottom-up and top-down. The bottom-up approach 
uses the teaching-research methodology of starting with the practice of creativity in 
our classes (Czarnocha et  al., 2016) and develops that pathway into a research 
approach. The top-down approach, by contrast, relies on the general philosophy of 
creativity included in the two volumes and guides us in exploring appropriate results 
and reflections of researchers and teachers of mathematics concerned with 
mathematical creativity in the classroom.

This chapter aims at answering the following question: What can the practice of 
and research in creativity of mathematics education contribute to the philosophy of 
creativity in mathematics education and possibly to the philosophy of creativity in 
general?

Finally, since Ernest (2018, p.15) suggests that the point of departure for such an 
endeavor should be “the critical examination of its fundamental problems” in 
mathematics education in the context of the systemic analysis of the domain will we 
follow that lead. This chapter is the synthesis and amplification of two recent 
presentations (Czarnocha, 2022a, b).

The last two sections of this chapter provide a summary of the discussion fol-
lowed by Philosophical Conclusions.

8.2  What Is Creativity?

Nearly all teachers of mathematics have encountered situations in our classes when 
we have intuitively recognized a student who has come up with an unusually creative 
response to a problem or asked an insightful question. Without a clear and accepted 
definition of creativity, however, we do not always understand what was creative in 
that student’s remark or how to reinforce its impact on the other students in the class.

To help us answer this question, Paul and Kaufman (2013) offer the following 
definition of creativity: “The term “creative” is used to describe three kinds of 
things: a person, a process or activity, or a product…There is an emerging consensus 
that a product must meet two conditions to be creative. It must be new of course, …, 
it must also be of value.” Boden (2004), based on her involvement with AI, defines 
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creativity as the ability to generate creative ideas (artifacts) – where a creative idea 
is novel, surprising and valuable.

To these definitions, we add another. Moruzzi (2021), who is interested in those 
aspects of natural and artificial creativity that do not depend on external factors but 
only on the inner structure of the creative system, bases her analysis on three creative 
features: problem solving, evaluation, and naivety. Of course, there are many more 
definitions in the field. Mann (2006) has found over 100 different definitions of 
creativity in the profession. Investigations of the approach based on the self- 
awareness of learners as creative individuals have been conducted by Shriki and 
Lavy (2014), while a new approach via the relationship between imagination, cre-
ativity and innovation has been proposed by Karwowski et al. (2017) in the context 
of conjunctional model of creative imagination.

In mathematics education, two approaches to creativity stand out. The first is the 
Gestalt approach adopted by Wallas (2014) and Hadamard (1945); the second origi-
nated with the work of Guilford (1950). There are interesting basic differences 
between the two: whereas the Wallas/Hadamard theory describes the creative 
process, the Guilford/Torrance theory addresses human creative capacities.

The Gestalt approach emphasizes the creative process which has several, more or 
less consecutive stages of preparation and incubation leading to illumination or 
insight as the sudden restructuring of a problem’s situation. Under Poincare’s 
influence, Wallas added the last stage: verification. Sadler-Smith’s (2015) recent 
examination of Wallas’s work suggests a fifth stage of intimation between incubation 
and illumination. Davidson’s (1996) three-process theory helps in identifying 
different types of insight. Selective combination takes place when someone suddenly 
puts together elements of the problem situation in a way that previously was not 
obvious to the individual. Selective encoding occurs when a person suddenly sees 
one or more features that previously have not been obvious (Davidson, 1996). 
Selective comparison occurs when a person suddenly discovers a nonobvious 
relationship between new and old information.

Guilford’s approach introduces the concept of divergent thinking as the central 
feature of creative personality characterized by fluency, that is, by the number of 
relevant ideas; flexibility, the ability to generate qualitatively different ideas; and 
originality and elaboration, the ability to develop ideas (Guilford, 1967). Guilford’s 
approach became the basis for the Torrance Test of Creative Thinking (TTCT) 
(2018), which has had a strong impact on research on creativity from the point of 
view of its product. Leikin and her research group (Leikin et al., 2009) introduced 
these ideas into mathematics education research using the criteria of fluency, 
flexibility, and originality. Fluency refers to the number of solutions to a problem as 
well as the pace of solving produced by an individual. Flexibility refers to the 
number of solutions using different methods, while originality is measured by 
insight-based or unconventionality/conventionality of the solution in relation to the 
full sample of participating students (Leikin, 2009).

Naturally, each approach determines a different pedagogy and different research 
techniques. Mann (2006) and Moruzzi (2021) point to the research difficulties aris-
ing from the multiple definitions of creativity. Our aim is to identify the concerns 
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arising in classroom teaching choices and pedagogies because of these differences. 
Teachers’ intent on facilitating creativity in their classroom will have to choose 
whether to facilitate the development of creative originality through the development 
of fluency and flexibility or through the originality of the structural insight. 
Depending on the goal, the teacher will choose the definition of creativity and gear 
the pedagogy together with the types of problems necessitated by that approach. A 
teacher might question the pedagogical utility of such an arbitrariness. It would 
make sense if each approach described a different aspect of creativity. In such a 
case, research is needed to better understand the relationship between these two 
approaches.

Moreover, it could be argued that different aspects of creativity appear in differ-
ent student populations. For example, in a standard mathematics classroom in an 
urban community college neither definition is useful for facilitating creativity or 
assessing its depth. This is because most first-year students require a great deal of 
mathematics remediation and hence are neither fluent nor flexible in their mathe-
matical thinking. Yet we, their math instructors, know they are creative.

On the other hand, the Gestalt approach, with its four stages, is hard to control 
within the classroom curriculum and does not offer much guidance on how to assess 
the insight of illumination. The comments here lead naturally to the subtlety of the 
relationship between creativity and learning, given that different student populations 
might respond better to different manifestations and different aspects of creativity.

8.3  Creativity and Learning

Surprisingly, our examination of the literature yielded few studies on the relation-
ship between creativity and learning within the general philosophy of creativity, 
indicating that this topic has not yet reached the attention of philosophers. By 
contrast, creativity in the field of psychology has several pathways in that direction, 
the most interesting for us being the work of Kaufman and Beghetto (2009). They 
address common ways of classifying creativity through C-creativity (called also 
H-creativity, which focuses on creativity that has had an impact on society at large) 
and c-creativity (called also P-creativity, which impacts primarily an individual 
thinker but not necessarily the society).

The authors isolate mini-creativity out of c-creativity claiming that creative 
insights of students as they learn new concepts or make a new metaphor is overlooked 
in the world of little-c. This new category of mini-creativity “was designed to 
encompass creativity inherent in the learning process” p (3). The authors give an 
example of a young child’s mini-c creativity, who stated she wants to be a “mushroom 
princess” when she grows up. The child’s insight here was a combination of two 
things she valued: mushrooms (probably because her parent is a mycologist, or 
someone who studies mushrooms) and princesses. In the words of Czarnocha and 
Baker (2021), it is clear that the creative insight of the child took place within the 
bisociative frame (see below) between the two components mentioned. Thus, mini-c 
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represents for the authors creativity present in the learning process. Kaufman and 
Beghetto (2009) also isolate also a Pro-c creativity from representing the 
developmental and effortful progression little-c creativity (that has not yet attained 
Big-C status).

To clarify the relationship between learning and creativity to the needs of math-
ematics education, we will start by posing three basic questions: Is there creativity 
in learning? Is there learning in creativity? Can creativity be taught?

The second question is the easiest to answer in the pure affirmative. By pure 
affirmative, I mean “nothing but…” namely that creativity of Aha! moment in 
mathematics is nothing but learning, in fact, conceptual learning.

Yerushalmy (2009) observes that discussions of creativity and curriculum take 
place independently of each other; quite often, they do not even share the same 
lexicon. In other words, creativity and curriculum (the organization of learning in 
mathematics classroom) are two essentially unconnected matrices of thought. The 
theory of creativity, which we propose in the further reaches of this chapter, looks 
upon such a pair of matrices as a bisociative frame: a frame within which creative 
insights have larger chance to emerge. The creative insights may connect elements 
of both the discourse of creativity and the discussion of learning within the given 
curriculum.

The central question here is how can we connect such two matrices of thought so 
that a student’s creativity develops simultaneously with learning? That question 
might be easier to answer if we focus on the creativity of Aha! moment. According 
to Koestler (1964), this is a spontaneous leap of insight which connects two or more 
unconnected matrices of discourse by unearthing hidden analogies.1

Note that if indeed the Aha! moment insight connects unconnected matrices, it 
participates in the process of a thinking schema construction. In other words, the 
Aha! moment is the act of thought through which understanding expresses itself by 
building a new conceptual connection. Consequently, it is the element of conceptual 
learning, a term Simon et al. (2004) introduced recently. We see that creativity of an 
Aha! moment is closely related to the development of conceptual understanding. 
Now, we need to ask an inverse question, what kind of learning can engender a 
creative Aha! moment? Of course, there is a related question of why we would like 
to engender such a moment of creativity in the classroom, or alternatively what is its 
value in the classroom? The answer to this question is discussed later.

The second and third questions above are connected to each other. If creativity 
can be taught and the object of teaching is learning, then we should be able to find 
a lot of creativity in learning. But we do not. And that is the second point of 
contention between creativity and learning: how to recognize the possibility of 

1 Unconnected matrices of discourse called also unconnected frames of reference are two uncon-
nected ways of thinking which get connected through the Aha! moment. Quite known example of 
such two matrices can be found in Archimedes’ Aha! moment “Eureka” where one matrix of dis-
course was geometry and the other, the discourse connected with taking bath in a bathtub. Both 
matrices being originally unconnected, became connected through the Aha! Moment which cre-
ated the new buoyancy law.
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creativity at a given moment and how to promote it in the classroom so that the 
presence of creative processes is maximized. This idea is one of the unresolved 
issues in our profession despite our increased understanding of the influence of 
problem solving, inquiry, and discovery methods. While these three approaches 
have been introduced into mathematics classrooms for at least two or three last 
decades, the reports of their long-term introduction are still lacking, possibly 
because of the absence of understanding along the interphase of creativity with 
curriculum design. The question asked of teachers at that point is how to recognize 
those areas of the daily mathematics curriculum where a possibility for creative 
insight may emerge and what to do with it once it emerges.

Nevertheless, one of the most difficult obstacles on the creative pathways along 
the curriculum is simply habit: our habitual nature that can turn every new skill we 
learn into an automatic habit. And the more automatic, the better because it can be 
enacted more precisely and without thinking in a critical situation. The problem is 
that we tend to transfer its role beyond the authentically critical situations. In that 
form, the habit becomes the obstacle for the creative act, which is essentially a 
spontaneous one. Davis (2011) asserts that barriers are blocks, internal or external, 
that either inhibit creative thinking and inspiration or else prevent innovative ideas 
from being accepted and implemented.

Most barriers result from learning. They may originate with a person’s family, 
peer group, community, educational environment, or from others in the culture or 
business organizations. We try to imbue our students with the reasoning skills and 
the steps of algorithms, often closing at the same time the space available for the 
creative act.

Habits and their relationship with originality are of utmost importance for 
Koestler (1964):

Matrices vary from fully automatized skills to those with a high degree of plasticity; but 
even the latter are controlled by rules of the game which function below the awareness. 
These silent codes can be regarded as condensation of learning into habit. Habits are 
indispensable core of stability and ordered behaviour; they also tend to become mechanized 
and to reduce man to the status of a conditioned automaton. The creative act, by connecting 
previously unrelated [possibly habitual] dimensions of experience, enables him [or her] to 
attain to a higher level of mental evolution. It is an act of liberation – the defeat of habit by 
originality. (p.96)

That contradiction between habit and originality as expression of spontaneous cre-
ativity needs to be understood very clearly and taken into account if we want to 
focus education on creativity and innovation. To some degree, it is our conviction of 
and attachment to the fundamental role of reason that is possibly one the strongest 
forces which inhibit the occurrence of the creative act by placing reasoning 
necessarily before or during the act of creation. For example, recent changes in the 
typology of thought from the standard Bloom taxonomy to the revised one create 
such an obstacle. The pyramid of the old Bloom taxonomy has a synthesis step 
followed by evaluation as the top stage, whereas the revised Bloom taxonomy has 
evaluation first followed by creativity (instead of synthesis). In other words, 
conscious evaluation comes before the creative process in general, which may 
severely limit the spontaneous aspect of creativity.
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On the other hand, the creativity of an Aha! moment depends to some degree on 
the conscious formation of knowledge before the illumination, in the preparation 
stage. The fundamental question is this: How much conscious preparation through 
curriculum design is necessary to facilitate the insight? Moruzzi (2021) reminds us 
that a creative process is a process of exploration, which does not necessarily 
demand expertise and self-education but rather, can simply evoke everyday 
psychological abilities such as capacity of observation and of making analogies (p.7).

Let us remember that aha! moments come not only in problem solving but in any 
learning that may lead to progress in understanding as opposed to exercising 
understanding by applying it to similar mathematical situations. A case in point is 
recurring concerns about teaching to the test, which through its pressure and failings 
stifle creativity (Lim, 2010).

A similar concern arises during the discussion on the nature of creative insight, 
the Aha! moment. Whereas some researchers see Aha! moments intrinsically 
connected with reasoning, others see the insight as, quite possibly, emptied of 
conscious rational content. A good example of such situation is described in 
(Czarnocha & Baker, 2021; Chap. 13), when a young student grasps the possible 
simplification of the division of fractions with the same denominator yet has no idea 
why it works. It takes several prompts of the researchers to lead her to understanding.

Similarly, Poincare, when describing his famous Aha! moments, tells us he sud-
denly knew it, but the process of verification (explicit conscious understanding 
through mathematical reasoning) took him several hours of work after that and only 
after he returned home. Poincare (1914) asserts,“It never happens that unconscious 
work supplies a ready-made result of a lengthy calculation in which we have only to 
apply the fixed rules…All that we can hope from these inspirations, which are the 
fruits of unconscious work, is to obtain points of departure for such calculations. As 
for calculations themselves, they must be made in the second period of conscious 
work, which follows the inspiration and in which the results of inspiration are 
verified, and the consequences deduced.” (p.62–63).

Wallas (2014, p.50) offers the following thought: Many people would agree that 
any attempt to control the thought process at this point (the moment of illumination 
and its neighborhood in time) will always do more harm than good. We can ask, 
what is that knowledge we get during the illumination stage when we do not yet 
understand explicitly how it works? We just know it does. Poincare uses the French 
word sensibilite, which accordingly to Wallas is extremely ambiguous (p.34). 
Instead, Wallas (p.47) directs our attention to the “‘fringe of consciousness’ which 
surrounds our ‘focal’ consciousness as the Sun’s ‘corona’ surrounds the disk of full 
luminosity” to which he gives a special name of intimation (p.48). Admittedly, 
Wallas’s main goal in introducing the term is to describe the sensation leading up 
to the illumination (which in the hands of S.-Smith (2015) became the new stage in 
the Walla/Hadamard theory of stages). Wallas continues, “This fringe conscious-
ness may last up to the flash instance, may accompany it, and in some cases may 
continue beyond that.” In such a case, intimation can be an excellent point of 
departure for calculations in the verification stage with certain though unclear 
anticipation for its results.
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These considerations bring us to one of the oldest problems in the philosophy of 
creativity, the relationship between creativity and rational thinking. Paul and 
Kaufman (2013) remind us that Plato’s Socrates saw great poets as being divinely 
inspired by the Muses in a state of possession that exhibits kind of madness. 
Aristotle, in contrast, characterized the work of a poet as a rational, goal-oriented 
activity of making (poesis) (p.3).

On the other hand, Nietzsche (1999) saw the tragic poetry of ancient Greece as 
being born out of a rare cooperation between the Dionysian spirit of ecstatic 
intoxication and the Apollonian spirit of sober restrain, which tempers chaos with 
order and form (p.4). In light of our previous discussion, intimation and illumination 
might be that cooperation between the ecstatic intuition and sober reasoning, 
especially if we consider the emotional impact of the Aha! moment that often 
accompanies it (Koestler, 1964; Liljedahl, 2004).

8.4  Summary

In presenting this complex relationship between creativity and learning, we can eas-
ily see where to find learning in creativity. The bigger challenge of how to induce 
creativity from learning is more complicated. The discussion has touched on the 
difficulty of the interphase of creativity and curriculum that led to the habits 
developed through curriculum and in particular the habit of rational thinking as 
obstacles for the successful facilitation of creativity. We are led to the age-old 
question of the relationship between creativity and rationality, the clarification of 
which is necessary, in our opinion, for its smooth composition in the mathematics 
curriculum.

8.5  Creativity and Its Value

Let us remember the original description of creativity by Paul and Kaufman (2013), 
who end their statement by claiming “…it must also be of value.” Boden’s (2004) 
characterization of creativity as the “ability to come up with ideas or artefacts which 
are new, surprising and valuable” reinforces the concept of value, suggesting at the 
same time the question “of value for whom?”

In response, Gaut (2018) introduces several criteria to get to the concept; he 
divides it into instrumental and intrinsic value. Intrinsic value, for Gaut, is to be 
valuable as an end or to be valuable for its own sake. Instrumental value then is the 
value of the means of creativity. For example, the value of creative cooking is to 
produce not only unusual but also good food; or the instrumental value of a scientific 
idea such as quantum mechanical “entangled states” created by Schrodinger is the 
possibility and emergent reality of teleportation immortalized 60 years ago captain 
James Kirk in the science fiction Star Trek through his “Beam me up, Scottie!”
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What is the value of creativity for us in mathematics education? Again, it depends 
for whom? For us as teachers to teach a creative person is very pleasant and 
enlightening. We can establish intellectual contact with the student, experience 
pleasure when a creative student comes up with a new solution or new understanding. 
As teachers, we would like to find the means to help the student flourish to the 
maximum. Here is another site for creativity, that of the teacher who needs to design 
a problem, a hint (or learning environment) that is adequate for the high degree of 
student creativity. For a student in mathematics, this provides a very strong influence 
in several dimensions (Czarnocha & Baker, 2021; Chap. 10). Here we just quote 
simple expressions of happiness with the moment of creativity, “It felt great,” “I was 
so relieved; I could barely contain my happiness,” “That was the best feeling,” “I 
never knew I could feel so good while doing math,” “The joy I felt was like no 
other,” and “It made me feel like I could do anything.”

Simply, creativity feels good. Is it an intrinsic or extrinsic value? Personally, I 
would see creativity as an intrinsic value, remembering that it may produce good 
and bad objects. For example, creativity involved in the understanding the 
mathematical/physical structure of an atom and energetic possibilities contained 
there led to nuclear power plants and the nuclear bombs. Here creativity in 
mathematics and mathematics education encounters ethics. To deal with that 
problem, Gaut (2018) introduces the distinction between something being good, as 
distinct from something being good of its kind. In that sense, nuclear bombs are 
very good as bombs but certainly they are not good, period (p.128). That of course 
suggests that judging the value of creativity by its product is not very useful as the 
manifestation of that value. This realization leads to the concept of conditional 
creativity. Following Kant (1993), we can call things that are valuable only under 
some circumstances as “conditionally valuable”, while those valuable under all 
circumstances  – “unconditionally valuable.” This implies that creativity is 
conditionally valuable since its products may or may not be valuable. Thus, the 
sense of feeling good as a result of a creative act is an unconditional value, while the 
creativity involved in understanding the structure of an atom is conditional because 
it depends on what product is created. The discussion of ethical dimension of 
creativity in mathematics education encounters closely related discussion of Ernest 
(2018), who analyzes more general problem of ethics of mathematics, where he had 
offered “the metaphor that mathematics has two faces, good and bad.” Similarly, we 
have seen that creativity can have two faces and the conditional/unconditional 
creativity criterion introduced by Gaut (2018) distinguishes between those two 
faces. Ernest points out to the role of social image of mathematics as experienced by 
many learners’ image of mathematics and its effect on success or failure in the 
subject. Below we demonstrate the role of creativity of Aha! moment in overcoming 
the sense of failure through acting upon students’ extrinsic motivation.

We see the sense of pride and confidence: In reflecting upon this Aha! moment, 
I feel the sense of pride that I accomplished this mathematical idea all by myself, 
“The Aha! moment is inspiring!” It makes students believe that they solved the 
question through reasoning and deep thought and inspires him or her to seek more 
of these moments to obtain sort of confidence and further knowledge.
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Clearly, creativity as experienced by authors of those two fragments is extrinsic 
as it reveals products of self-belief and self-confidence within the experiencer 
psyche or inner life. Are those products valuable unconditionally or conditionally? 
I think “the sense of pride” in the accomplishment of solving a classroom problem 
is quite unconditional and I would say intrinsic, while the inspiration to seek more 
of these moments, might be extrinsic conditional depending on the circumstances 
within which they will occur and product they will create. According to Ernest 
(2018), Davis (1988) suggested there should be a Hippocratic Oath for mathemati-
cians. Since doing mathematics to large degree depends on creativity, maybe the 
discussion of the Hippocratic Oath should take place in the mathematics classrooms 
together with the emphasis on two faces of creativity.

It is interesting that one creative experience can produce things that are both 
intrinsic and extrinsic, conditionally and unconditionally valuable. In light of the 
difficulty of establishing the value of creativity, Hills and Bird (2018) question the 
presence of “value” in the very definition of creativity. Rather than value, they 
suggest that we focus deeper attention on originality in the definition.

Coming back to the creativity in our classes of mathematics, we educators feel 
and recognize the value of our students’ as well as our, teachers’ creativity. The 
examples above demonstrate the benefits of creativity on our students. However, to 
the author of remedial and undergraduate mathematics course, the most precious 
value of Aha! moment creativity is its influence on the attitudes and beliefs about 
mathematics. DeBellis and Goldin (2006) have introduced the concept of a student 
bonding with mathematics while developing a more “intimate” relationship with 
and knowledge of the subject. Consequently, for our profession, which is constantly 
mired by the difficulties of attitudes while teaching the subject, that value of bonding 
with mathematics through creativity is of highest and in my opinion extrinsic degree.

8.6  Is Creativity Measurable?

Measuring the depth of creative experience has not been addressed by the volumes 
of Philosophy of Creativity discussed here, namely, Paul and Kaufman (2013) and 
Gaut and Kieran (2018). This is a relatively a new theme, which arises as the result 
of dissatisfaction with psychometric approaches, notably the ones promoted by 
Guilford (1967) and others. The new articles appearing in professional journals are 
only partially related to creativity. Piffer (2000) argues that the difficulties in the 
measuring of creativity are due to the absence of clarity concerning its definition.

Piffer (2000) formulates a new framework based on novelty, appropriateness, 
and impact within which creativity is measurable. Basing himself on the new 
definition, the author argues that “Divergent Thinking, Remote Associates or some 
personality scales can be considered neither the only components of the creative 
process/cognition/potential nor ‘creativity tests’.” Finally, he suggests that the 
creativity of a person cannot be accessed directly and can only be assessed through 
self-report questionnaires. Below we discuss how using the progress of understanding 
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as the measure of the change of the depth of knowledge obtained during the Aha! 
moment can give us a direct assessment tool of creativity in mathematics. Elizabeth 
Kaplunov (2016), a recent PhD calls upon students in the UK: Surely between all 
the students in the UK, we can find a new way to harness and assess this brainpower, 
capacity, imagination, resourcefulness, inspiration creativity (whatever you want to 
call it). Let us measure creativity in creative ways!

Moruzzi (2021), on the other hand, tells us that “the question of how to measure 
creativity is arguably under-discussed in the field...creating a serious gap in our 
capacity to delve into the analysis of creativity depths.”

8.7  Why Is It Important to Measure Creativity?

Even the traditional view of creativity as the product of a “genius” or extremely 
talented people in arts and science involves an intuitive assessment of that work. 
When we intuitively detect the impact of it in ourselves, this work, this painting, that 
music affects me deeper than this one, or this solution is more elegant because of its 
creative component compared to that one. Of course, these assessments are 
subjective and vague. Nonetheless, their existence reminds us that measuring cre-
ativity is present within our inner experience. For Moruzzi (2021), it is important to 
find a way “to measure the distance that sets performance of machine learning sys-
tems apart from human creativity, if there is any.” For those of us in mathematics 
education, measuring creativity is as essential as the clarity of its definition, due 
primarily to our need to assess the depth of progress of a student’s creative thoughts 
and actions or depth of knowledge (DoK).

It is important for us to know how to translate a student’s creative discovery into 
general classroom knowledge to be shared even though creativity of a person at a 
given moment might be a fleeing feeling or thought that disappears because of 
external factors. For this reason, it could be very useful to measure creativity with 
the help of tools that do not depend on external-to-creativity factors but on the inner 
structure of creativity itself, which does not undermine creativity or affect it during 
measurement. The need for such an approach increased significantly once our 
profession understood that creativity is not limited to the very gifted and talented 
only but is within the reach of “everyman,” using Boden’s (2004) characterization. 
In mathematics education, research and practice of creative teaching attention to 
that difference is expressed in the division into H-creativity, historical creativity 
which have influenced society, and P-creativity, personal creativity of an individual. 
We also use the similar distinction between C-, and c-creativity.

Moruzzi is using three features of creativity to substantiate the approach: prob-
lem solving, evaluation, and the feature of naivety. The main problem solving qual-
ity taken here into account is the “connection-making” process which “consists in 
drawing links between apparently disconnected pieces of knowledge and in explor-
ing novel paths towards the successful conclusion of the problem-solving process.”

Evaluation feature, what Moruzzi (2021 p.7) sees as the “ability to assess the 
process and to know ‘when to stop’.” This feature is especially important during the 
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trail-and-error solving process when the learner or an investigator adjusts her or his 
thinking, which leads to the solution. That process is of course akin to the divergent 
thinking of Guilford, (1967). Naivety feature “relates to various aspects that in the 
literature have a place among the core traits of creativity, unconscious thought pro-
cessing, challenging domain norms, independence from rigid structures of thought.” 
Moruzzi points out that from the point of view naivety “A creative process is a pro-
cess of exploration, which does not necessarily demand expertise and self-education 
but, rather can simply evoke everyday psychological abilities such as the capacity 
for of observation and of making analogies.” One of the central qualities of naivety 
feature is “lack of previous exposure to the situation at hand.” The lack of previous 
exposure to the situation at hand is one of the central condition in the process of 
facilitation creativity of Aha! moment.

Moruzzi’s proposal is to see creativity of the individual as proportional to the 
“sum” of naivety, novelty and the distance of connections, evaluative ability, and 
efficiency. The proposal emphasizes the analysis of the creative process, in distinc-
tion to widely employed Torrance tests approach, which focuses on the product. We 
have argued that focus on the process is especially useful for regular students for 
whom fluency and flexibility in mathematics are not fully there, but who nonethe-
less display creativity.

8.8  New Theory of Creativity in Mathematics Education

Should creativity be facilitated in mathematics classes? Can it be done in all classes 
or just in some? Can it be done at all?

If the answer to these questions is yes, then as we discussed in Sections I and III, 
this situation requires a definition, theory, and practice of creativity that suitable is 
for the task. Prabhu and Czarnocha (2014) have already proposed the definition of 
the act of creation as formulated by Koestler (1964). To a certain degree, this defini-
tion addresses the topics we raised earlier in our discussion. Before we proceed, 
however, I would like to sketch our motivation for this work. While working at a 
community college in South Bronx, it has become very clear to me that the most 
common approaches to creativity in our profession, which are based fully or partly 
on the Guilford/Torrance approach, do not work well with urban college students.

Most first-year students coming to such colleges require remediation in mathe-
matics. Many, in addition, lack both fluency and flexibility. Yet as we have observed, 
they can be highly creative in the subject. The question thus arose on how to identify 
and describe their mathematical creativity. One favorable circumstance for this proj-
ect has become the relatively recent realization of the distinction between C- and 
c-creativity in the profession (Kaufman and Beghetto 2009; Boden 2004; Hadamard, 
1945). c-creativity is understood as bringing insights that are new and original to the 
thinker but not necessarily to anyone else. That allowed us to understand that any 
knowledge obtained or a solution to a problem done by a student or as Koestler 
would have said “within non-tutored” setting can be a minor creative act. As a result, 
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the investigation of the degree of the progress of understanding created during the 
insight is a proper measure of creativity in mathematics classroom. That turned 
our attention to Aha! moments in our classrooms.

The first investigation of their occurrence in our classroom was done by Prabhu 
(2016), who observed a significant increase in their number as well as the impact 
they made on students in the class led by her new pedagogy.

Consider Chamberlin (2013), who states the following: Missing is information 
on what initiatives are in place to develop and facilitate mathematical creativity in 
underserved and under-identified populations. This type of discussion would be 
informative to the field of gifted education and counter the criticism that field is not 
inclusive. (p. 856)

Moreover, Sriraman’s assertion that “there is almost little, or no literature related 
to the synthetic abilities of “ordinary” individuals” (p. 120) is a strong confirmation 
of the fact that until recently the knowledge about creativity of so-called under-
served and underrepresented student population has been nil. Because Aha!moment 
insights take place among the general population in different circumstances, the 
theory of creativity of Aha! moment can be seen as the theory of “creativity of and 
for all” (Prabhu and Czarnocha, 2014; Czarnocha, 2022b). That is why we are aim-
ing at the definition, theory, and practice of creativity that fits the creativity of 
“everyman,” of rank- and- file as well as of gifted students.

8.8.1  Definition

Bisociation (creativity of Aha! moment/Eureka experience) is the spontaneous leap 
of insight that connects two unconnected frames of reference (matrices of thought) 
by unearthing a hidden analogy (p. 45).

But what is a theory in mathematics education? According to Redford (2008), 
such a theory contains the following:

• A system P of principles delineating the frontier of the universe of discourse.
• A methodology M that includes the data interpretation that is supported by P.
• A set Q of paradigmatic research question.

We will discuss these points heuristically. Those details may be found in 
Czarnocha and Baker (2021; Conclusions). We are now directing our attention to 
the definition of bisociation. We see that it contains several tightly related concepts: 
spontaneity, process of connecting and the two unconnected frames of reference 
that get connected by the insight. The definition also describes the process of 
connecting and the product of connection  – the conceptual bridge between 
unconnected matrices of thought. We abstract here the bisociative frame, which is 
the two unconnected frames of reference within which the Aha! moment takes or 
might take place, as one of the basic principles of the theory.
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The universe of the bisociation theory has a several dimensions in mathematics 
education:

• In its relation with student affect and its relationship with conation (Goldin, 2021).
• In its cognitive dimension, it studies the intrinsic structure of creativity as the 

process of understanding through the development of the schema of thinking 
accomplished during the Aha! moment.

• In its learning dimension, it studies the changes of understanding mathematical 
concepts occasioned by Aha! moments, the relationship between internaliza-
tion and interiorization (Baker, this volume) and the role of creativity in 
abstraction.

• In its networking theories’ dimension, it investigates the process of integration of 
different theories of learning through which bisociation expresses itself in terms 
of the host theory.2 The notion of a bisociative frame turned out to be a powerful 
creativity “detector” within different (constructivists) theories of learning. It 
identifies sites of heightened possibility of creativity within Tzur’s (2021) R*AF 
theory. It also helped formulate dynamics of creativity within different stages of 
Mason’s attention theory (Mason & Czarnocha, 2021), and it coordinated a biso-
ciation process with the reflective abstraction of Piaget’s approach of showing 
that creativity can occur on every level of development of student thinking 
(Baker, 2016). In this volume, Baker (2023) shows where bisociation can be 
found within Vygotsky’s concept of internalization, providing an extremely 
important unifying connection between the Piagetian and Vygotskian approaches 
to learning.

• The connection between different theories of learning analyzed according to net-
working theory indicates that creativity can be identified in each constructive 
research and teaching approach, responding this way to a somewhat scattered 
approach to creativity in learning indicated by Mann (2006) and Moruzzi (2021). 
Moreover, it formulates new research questions on creativity within the terms 
and structures of the host theories.

• Directing our attention on the process of schema construction as the product of 
creativity, we see that the definition suggests a theory of schema development as 
the approach to understand the depth of inside (DoK) reached during an Aha! 
moment. We used the well-known Triad of Piaget and Garcia (1987) as a tool of 
assessment. This tool allows the use of the three stages of the Triad: -intra, -inter, 
and -trans to relatively precisely gauge the degree of progress of understanding 
within the insight (Czarnocha & Baker, 2021, Chap. 4). The information to that 
degree was obtained through students’ written descriptions of mathematical con-
cepts entering into insight followed by student interviews. This approach fulfils 
an important condition stated by Morruzzi of focusing solely on the intrinsic 
qualities of bisociation without in any way disturbing the creative process.

2 We discuss here the relationship between the new bisociation theory of creativity proposed and 
different theories of learning called host theories. This relationship is understood in terms of the 
networking of theories approach formulated by Prediger and Bickner-Ahsbahs (2014). The host 
theory, an example of which is Tzur’s R*AF theory (2004) mentioned in the next paragraph, is the 
theory where bisociative frame can be expressed within concepts of that theory itself.
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8.9  Summary of Arguments

The central question of this chapter is the following: What can the practice of and 
research in creativity of mathematics education contribute to the philosophy of 
creativity in mathematics education and possibly to the philosophy of creativity in 
general?

We began our discussion with a known problem in our field, namely, the multi-
tude of definitions of creativity. We also pointed out how different definitions focus 
on different aspects of creativity and how different student population might be 
more sensitive to a particular definition. That, of course, suggests a research ques-
tion on the relationship between different definitions. From the point of view of the 
standard mathematics classroom, neither definition adequately addresses the facili-
tation of creativity.

We also pointed out that the theme creativity and learning has not yet attracted 
attention from the general philosophy of creativity; however, it does contain within 
itself deep and basic issues. Interestingly enough, whereas we did not have much 
difficulty in identifying learning in the context of creativity, the reverse question of 
identifying creativity in the learning process revealed serious obstacles leading to 
the discussion of automatic habits, particularly the habit of overemphasized 
rationality.

This discussion underscored the need to finding a balance between the standards 
and habits of learning and the requirements of creative learning environment. Closer 
analysis of Poincare’s comments (1914) suggests that Wallas’s intimation discussed 
by Sadler-Smith as the fifth stage of the Gestalt approach might also carry a 
substantial value not only before but also after the insight illumination.

Our discussion of the value of creativity was undertaken within the dichotomy of 
intrinsic and extrinsic value suggested by Gaut (2018). We also incorporated the 
concept of conditional and nonconditional value suggesting the possibility of 
integrating the elements of ethics while facilitating creativity in the classroom.

The pedagogical classroom experience suggests that the main value of creative 
insight is the bonding with mathematics through the positive feelings the insight 
induces. The last theme undertaken in this chapter is that of measuring creativity or 
assessing the depth of the progress of understanding reached during the insight. 
This theme does not yet appear in the general philosophy of creativity; however, 
forcefully including creativity in mathematics classes suggests the need to measure 
it. We bring forward Moruzzi’s thinking (2021) on the subject who points to the 
quality of naivety, which is close to the conditions we create in the classroom to 
facilitate the insight. The discussion of measurement of creativity must consider 
that different measures might be necessary for different student populations.

In the final pages of this chapter, we discuss the details of the Koestler’s (1964) 
definition of bisociation or creativity of the Aha! moment and Eureka experience as 
the basis of the new theory of creativity in mathematics education. We characterize 
the theory with the help of criteria established by Redford (2008) in the context of 
networking theories approach. A main component of the theory is the bisociative 
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frame, which enables a person to establish a close relationship between creativity 
and constructivist and socio-cultural learning theories. That coordination can be a 
significant help in facilitating creativity through different pathways of learning.

8.10  Philosophical Conclusions

What issues and qualities of creativity in mathematics education have been brought 
forth by discussion of related fundamental problems in mathematics education?

Paul and Kaufman inform us that the adjective “creative” is seen as the descrip-
tion of a process, product, and a person – a creator. We summarize the answer to the 
question above by taking these three components of the subject as the initial 
framework underlying at the same time discovered connections between them.

The section “What Is Creativity?” brought forth the many ways through which 
we approach it; however, instead of seeing it as the obstacle for research and 
teaching practice we see it as different “cuts” or different components of creativity, 
each addressing its different aspects. Moreover, each “cut” determines different 
research questions, different pedagogical approaches in the classroom, and different 
measurement techniques, each of them providing useful though often different 
knowledge about creativity. Philosophically that translates into a wide avenue of 
research investigating the inner structure of creativity.

Such investigations could be conducted using recently formulated networking 
theories approach (Bikner-Ahsbahs & Prediger, 2014). We see in here an important 
connection between the ontological question of what is the being called creativity 
with the epistemological question of how do we gain knowledge of it? One new 
concept brought forth by our field, Mathematics Education to Philosophy of 
Creativity, is the question of its measurement. Here we immediately want to assert 
that although the concept of measurement in psychology very easily associates 
itself with positivistic philosophy and psychometric methods, which of course are 
used in the context Guilford/Torrance/Leikin approaches, we also bring here a very 
different approach whose aim is to assess the depth of creative endeavor (Moruzzi, 
2021). We use here Piaget-based techniques of cognitive developmental psychol-
ogy, which allows us to assess the degree of the depth of knowledge gained by the 
creativity of Aha! moment. This method allows us to solve Leikin (2016) knowledge- 
creativity paradox formulated as follows: “Creativity is a necessary condition for 
knowledge construction, whereas knowledge is a necessary condition for creative 
processing” (p.19). Knowledge necessary for creative processing is different from 
knowledge constructed through the act of creation. Knowledge is different in the 
degree of connectedness and therefore in the degree of conceptual maturity of the 
creator. (Czarnocha & Baker, 2021; p.281). In other words, considerations within 
mathematics education are adding a new useful quality to the nature of being called 
creativity, to the ontology of the concept – its depth.

One of the most significant issues brought forth by several later sections of this 
chapter is that the nature of creativity in mathematics is the same for the mature 
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inventor and for a student solving a problem in algebra or geometry. As Hadamard 
(1945) reminds us the difference between them is that of scope, possibly of the 
depth and not of the creative process. Similarly, more detailed considerations of 
Boden (2004) or mathematics education researchers (Shriki, 2010) have brought 
forth the concept of C- and c- creativity or corresponding with it division into 
H-historical and P- personal creativity that allows us to investigate creativity of 
“rank-and-file” students or as Boden (2004) would have had it, the creativity of 
“everyman.”

The questions of how to do it, what definition of creativity to use, or what is 
the relationship between creativity of everyman and that of gifted and talented 
students needs to be explored. The philosophy of creativity in mathematics edu-
cation could and should take the lead in this process by pointing out that creativ-
ity is the quality of us all. However, the philosophy of who is a creator does not 
stop at this juncture. Is creativity a solely human endeavor? The discussion of 
recent and past investigations into animal creativity represented in this volume 
by Thomas Rick’s chapter, extended by Boden (2004) into, on the one hand, 
biological creativity of life and, on the other hand, to the recently formulated 
computer creativity suggests a possibility of a different answer. Either creativity 
is not just a human quality or we have not yet identified that aspect of creativity 
which is uniquely human.

The section “Creativity and Learning” followed by the last two sections on mea-
surability and new theory hide within themselves epistemological aspects of cre-
ativity. How do we know the being called creativity? How do we recognize its 
process? A central issue is that we cannot fully predict when creative process will 
commence or how creative its product might be. Thus, the methods of knowing 
creativity have an irreducible probabilistic base. And yet, we generally know it, at 
least in mathematics classroom, when something, we call creativity takes place. So 
we have a certain intuition of creativity that can express itself in many ways; for 
Poincare it was unconscious aesthetics. And then we choose a certain definition of 
creativity with the help of how we organize our investigations/exploration into its 
being. Having understood circumstances when it sporadically occurs, we can 
reproduce and refine them to increase the probability of its future occurrence. This 
is one way of knowing creativity, by continuously interacting with it through the 
cycles of recognizing it intuitively, by seeing and understanding it, and by increasing 
the probability of its occurrence to investigating the results. Note that the whole 
process of knowing creativity depends essentially upon the choice of the definitions, 
which might be quite different, yet each describing certain of its aspects. 
Consequently, to explore epistemology of creativity in mathematics education we 
have to make a profound shift of attention from creativity per se to different aspects 
of creativity, its different “cuts” irreducibly connected to the psychological pro-
cesses of learning and knowing.

This sense of irreducible connectiveness is reinforced when we reflect upon the 
Koestler’s definition of the act of creation as the spontaneous leap of insight that 
connects unconnected matrices of thought (Koestler, 1964 p.45). We have here psy-
chology of the spontaneous leap of insight and the element of philosophy of being 
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connecting the unconnected matrices of thought. These considerations suggest that 
the unit of analysis here is not within creativity nor psychology but should be situ-
ated at the very act of creation itself which connects both domains.

The presented new theory of creativity in the last section offers an example of the 
approach to creativity in mathematics education, which addresses several raised 
issues. Its central philosophical significance is hidden in the concept of the 
bisociative frame, one of the main concepts of the theory abstracted from the 
definition of the act of creation as the two unconnected matrices of thought that get 
(or might get) connected during the insight. It is our epistemological tool, the 
instrument with the help of which we can identify areas of possible creativity in 
different theories of learning present in mathematics education. The ability of the 
bisociative frame to identify creative possibilities within different approaches to 
learning suggests a general question in front of the philosophy of creativity: should 
not creativity be taken as the foundation of learning in mathematics classrooms?
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Chapter 9
A Framework for Creative Insights Within 
Internalization of Mathematics

William Baker

9.1  Introduction

One explanation for the dominant role of constructivism in mathematics education 
is its clearly defined methodology of research in which the researcher acts as a 
teacher and embodies discovery learning, i.e., provides minimal verbal explanations 
to the student. In constructivist theory, understanding a problem situation begins 
with an attempt to assimilate its information into existing schemes. Acts of accom-
modation, viewed as based upon creative moments of insight, may occur when a 
problem cannot readily be assimilated into an existing scheme. Piaget describes the 
mechanism of accommodation, which he terms reflective abstraction, as occurring 
through reflection upon an existing scheme or solution activity in a problem-solving 
environment. The primary objective of this article is to use the theoretical frame-
work of Koestler (1964) integrated with the work of constructivist theory, based 
upon Piaget, to analyze moments of insight within social discourse, i.e., the inter-
nalization of Vygotsky (1978).

In previous work, the bisociative framework for creativity Koestler (1964) has 
been translated into or integrated with that developed by Piaget and Garcia (1989) 
to analyze acts of accommodation (Baker, 2016). This earlier translation work (the 
integrated frame) was used to analyze individual moments of creative insight lead-
ing to the formation of new schemes. The integrated frame was extended to include 
the foundational type of reflective abstraction known as interiorization (Baker, 
2021a; Czarnocha & Mason, 2021).

The first objective of this article is to review and modify the integrated frame to 
analyze students’ moments of insight, leading to concept development, and accom-
modation, what Koestler refers to as growth in understanding, within social dis-
course. Learners struggling to internalize new content may not rate highly according 
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to the measures of assessment associated with creative and gifted individuals, such 
as flexibility, fluency, proficiency, or in terms of productive-divergent thinking 
(Leikin & Pitta-Pantazi, 2013). That said, for such students, every moment of insight 
may represent an important step. In Vygotsky’s framework, an activity that is ini-
tially viewed as externally directed becomes internal through a process of conscious 
imitation. Thus, the child first imitates or performs an activity with a teacher’s assis-
tance and ultimately acts independently. This framework is ideally situated for ana-
lyzing classroom instruction, especially teacher-led discourse. However, its 
drawback is that the process of internalization is not well understood. “As yet, the 
barest minimum of this process is known” (Vygotsky, 1978, p.57).

A second objective of this article is to clarify the notion of constructivist peda-
gogy to support moments of insight within social discourse. Constructionism clearly 
has a major influence on mathematics pedagogy, yet its implementation has been 
difficult on the institutional level. One problematic issue is that the role of the 
teacher managing discovery learning is unclear, or ill- defined (Baker, 2021b). One 
common explanation is that professional development efforts have not been suffi-
cient to impart the essence of discovery learning. Another factor is that the strong 
focus of constructivist research and pedagogy on individual reflection and abstrac-
tion simply does not resonate with the practice of teaching and learning within 
social discourse. In this line of thought, the strict focus on an individual’s subjective 
understanding is simply not well equipped to provide insight into the teacher’s role 
in a social learning community. Thus, the second objective is to highlight the role of 
the teacher in guiding students to moments of insight within the process of internal-
ization. That is in bringing the spirit of discovery embodied in constructivist meth-
odology into the daily lesson.

9.2  Theoretical Foundations

9.2.1  Matrices Codes, Schemes

Koestler’s (1964) notion of “bisociation” is used to describe moments of insight 
within a diverse range of fields including humor, art, literature, math, and science. 
The term bisociation is used to distinguish between associative routine thought – 
exercise of understanding (assimilation), as opposed to bisociative thought existing 
simultaneously in two previously unrelated frames of reference or progress in 
understanding (accommodation). Koestler develops his theory of creative insight in 
terms of matrices or frames of reference and the code or rules of the game that gov-
ern each matrix.

The matrix is the pattern before you, representing the ensemble of permissible moves. The 
code which governs the matrix can be put into simple mathematical equations…or it can be 
expressed in words. The code is the fixed invariable factor in a skill or habit, the matrix is 
the variable part. The two words do not refer to different entities, they refer to different 
aspects of the same activity. (p.40)
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In the integrated frame, matrices correspond to schemes, which are viewed as 
matrices whose codes can be expressed in a quasi-mathematical language. In con-
structivist learning, schemes represent activity that has been generalized into stable, 
predictable, and repeatable activity (Confrey, 1994a, p.4). Schemes, described in 
detail presently, are important in analyzing the cognitive effects of moments of 
insight in the individual’s learning process. In the integrated frame, the term “code” 
translates into the constructivist notion of an “invariant relationship,” which may be 
understood as the conceptual reasoning that underlies solution activity. Thus, the 
formation of schemes and development of concept are intertwined.

9.2.2  Blocked Non-assimilatory Situation and Discovery 
of Hidden Analogy

For Koestler (1964), creative insight takes place in a blocked situation, in which the 
subject does not initially have an appropriate matrix.

[The situation] still resembles in some respect other situations encountered in the past yet 
contains new features or complexities which make it impossible to solve by the rules of the 
game that were used in those past situations. (p.119)

In constructivist theory, this is referred to as a non-assimilatory situation, in 
which the subject understands the goal in a situation but does not have an appropri-
ate scheme to assimilate the situation and thus complete the goal. Koestler describes 
selective attention on previously unimportant aspects of a situation, alongside disre-
gard for other details as the foundation for moments of creative insight to resolve a 
blocked situation, “selective emphasis on the relevant factors and omission of the 
rest” Koestler (1964, p.72). In creativity theory more generally, selective attention 
can be understood as three processes: selective encoding, in which the subject 
applies consciousness attention to a previously overlooked aspects of the situation; 
selective comparison, in which the subject compares previous knowledge with the 
given situation; or selective combination of existing but previously unrelated aspects 
within the situation (Perking, 2000; Davidson, 2002).

Koestler (1964) refers to the resolution of a blocked situation, as the result of 
selective attention as the discovery of a hidden analogy: “[T]he displacement of 
attention to something not previously noted, which was irrelevant in the old and is 
relevant in the new context; the discovery of hidden analogies…” (p.120). Koestler 
(1964) describes the search through one’s collection of possibly related matrices 
leading to the discovery of a hidden analogy that will remove the block as looking 
for something one does not know:

We have seen that one of the basic mechanisms of the Eureka process is the discovery of a 
hidden analogy…Yet the word ‘search,’ so often used in the context of problem-solving, is 
apt to create confusion because it implies that I knew what I am searching for, whereas in 
fact I do not…[T]he subject looks for a clue, the nature of which he does not know except 
that it should be a ‘clue’…a link to a type of problem familiar to him. Instead of looking 
through a given filter-frame for an object which matches the filter, he must try out one form 

9 A Framework for Creative Insights Within Internalization of Mathematics



186

after another to match the object under his nose, until he finds the frame which it fits, i.e., 
until the problem presents some familiar aspect- which is then perceived as an analogy with 
past experience and allows him to come to grips with it. (pp.653–654)

In creativity research, like problem-solving research, the subject often does not 
have a matrix-scheme to assimilate the situation and thus searches (selective com-
parison) to find a hidden analogy. In constructivist theory, this search leads to a 
situation- activity link, which is the first component of an action scheme. The second 
type of search (selective encoding) occurs after a relevant matrix has been found, 
yet the subject has not learned how to use it to obtain the desired effect: “The prob-
lem in problem solving consists firstly in discovering which routine is appropriate 
to the problem-what type of game is to be played, and secondly, how to play it-i.e., 
which strategy to follow, which members of the flexible matrix are to be brought 
into play according to the lie of the land” (Koestler, 1964, p. 638). In constructivist 
theory, this leads to an activity-effect link.

9.2.3  Bisociation

Koestler (1964) describes the mechanism of creative insight, “bisociation” as the 
result of an idea, event, or concept existing or vibrating on two previous unrelated 
matrices:

[T]he perceiving of a situation or idea L, in two self-consistent but habitually incompatible 
frames of reference M1 and M2. The event L in which the two intersect is made to vibrate 
simultaneously on two different wavelengths, as it were. While this unusual situation lasts, 
L is not merely linked top one associative context, but bisociated with two. (p.35)

The effect of the bisociative vibration of concepts on two previously unrelated 
matrices, during the discovery of a hidden analogy, is the transfer of thought from 
one matrix to another: “The sudden transfer of a mental event with two habitually 
incompatible matrices results in an abrupt transfer of the train of thought from one 
associative context to another” (p.59). Thus, for Koestler (1964), the transfer of 
analogic reasoning during the discovery of a hidden analogy results is the result of 
a bisociative synthesis of existing matrices:

The creative act is not an act of creation in the sense of the Old Testament. It does not create 
something out of nothing; it uncovers, selects, re-shuffles, combines, synthesizes already 
existing facts, ideas facilities, skills. The more familiar the parts, the more striking the new 
whole. (p.120)

9.2.4  Understanding and Discovery

Skemp (1987) suggests that “To understand something is to assimilate it into an 
appropriate schema” (p.29). However, in a blocked or non-assimilatory situation, 
there is potential for growth in understanding. Sierpinska (1994) comments on the 
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relationship between discovery and understanding when she states “While any 
invention assures understanding, the latter does not necessarily imply the former…” 
(p.69). We take the distinction to be that, while understanding thought assimilation 
(exercise in understanding) occurs without discovery, the process of discovery (re- 
discovery) or creative insight always results in what Koestler refers to as growth in 
understanding. Piaget (1977) expresses the view that growth in understanding is 
based upon moments of insight:

To understand is to discover, or reconstruct by rediscovery, and such conditions must be 
complied with if in the future individuals are to be formed who are capable of production 
and creativity and not simply repetition. (p.20)

Here we take Piaget’s use of the phrase “to understand” as referring to accom-
modation of new information through scheme development, i.e., growth in 
understanding.

9.2.5  Integrated Frame: Bisociation-Koestler

In the integrated frame, based upon the work of Koestler (1964), moments of insight 
occur when an individual finds themselves in a blocked situation. Their understand-
ing of the blocked situation, and search to resolve it, is referred to as their search 
matrix or M1. M1 may be a scheme or some part of a scheme that has been applied 
in similar situations but is inadequate to assimilate the situation. This creates a ten-
sion between their M1 understanding of the situation and their motive to resolve it; 
constructivists often refer to this as “perturbation.” The subjects’ search to under-
stand and resolve the situation may, in a moment of insight, lead them to discover a 
relevant M2 matrix previously unrelated to their M1 (discovery of a hidden analogy- 
selective comparison) or it may lead them to uncover a feature of their M1, previ-
ously not considered relevant (selective encoding). The uncovered or hidden features 
of M1 are often properties of the objects being acted upon, that when realized direct 
solution activity. These uncovered features can be understood as a matrix M2 that 
emerges from the M1 matrix.

In the moment of insight, the discovered analogic matrix M2 undergoes bisocia-
tive synthesis with M1; during this process, analogical M2 reasoning transfers to 
M1 directing solution activity.

During selective encoding, the uncovered matrix M2 has its genesis within 
aspects of M1; in this situation, the uncovered concepts exist organically within 
M1and M2 (bisociation). The conceptual relationships established during the biso-
ciation of M1 and M2 represents the birth of what Koestler (1964) would refer to as 
a “pseudo-code,” i.e., the building block for a new matrix- code, that has typically 
not yet been “reified” into a code (p.639). Thus, the end-product of a moment of 
insight is novel activity based upon a newly formed conceptual relationship or 
developing code. Note, such moments of insight take place within problem-solving 
but are not the result of deductive reasoning, as the actual moment of insight is 
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intuitive in nature insight and has been described by Koestler (1964) as being 
induced through, “putting thinking aside” (p.182).

Thus, moments of insight in the integrated frame have three defining character-
istics: the search process, the connection between M1 and M2 that leads to a transfer 
of analogic thought, and finally a novel activity that is directed by the conceptual 
relationship established.

9.2.6  Reflective Abstraction and the Formation 
of the Action Scheme

Koestler’s frame has several weaknesses for analyzing insights leading to the devel-
opment of mathematical structure; the first is that because it is used so broadly, it is 
vague, and a second related issue is the relationships between concepts, matrices, 
and solution activity are not described in depth.

Piaget’s notion of reflective abstraction expresses acts of accommodation as con-
taining two parts. The first part is the projection of an existing relevant scheme into 
a blocked or non-assimilatory situation. The projected scheme, and the subject’s 
sense of why it is lacking in the situation their M1. The projected scheme cannot 
assimilate the situation hence, it requires coordination with new aspects of the prob-
lem, selective attention to these new aspects results in concept formation and/or 
discovery of new scheme (M2) that when coordinated with M1, what Piaget and 
Garcia (1989) refer to as “constructive generalization,” and Koestler as bisociation, 
resolves the situation.

Simon et al. (2004) consider that the two-stage notion of reflective abstraction, as 
presented by Piaget, is simply not well understood and, thus, not useful in guiding 
pedagogy in mathematics educational research. “It is our contention that the mecha-
nism itself is underspecified for guiding the design of instructional interventions 
intended to address challenging learning problems in mathematics” (p.313). These 
authors re-interpret Piaget’s notion of reflective abstraction in terms of Von 
Glasersfeld’s (1995) action-scheme, which contains three parts: a situation, activity, 
and its effect. The action-scheme or scheme can be expressed as two connections or 
relationships, the first is the situation-activity relationship (S-A), and the second is 
the activity-effect relationship . Simon et al. (2004) provide a plausible and readily 
understandable metaphorical descriptions of the search process leading to an A-E 
relationship, built upon the abstraction of invariant relationships:

We offer the following physical metaphor to promote an image of the records of experience 
and how they are used in reflective abstraction. Each record of experience can be thought of 
as being stored in a jar. Inside of each jar is a particular instance of the activity and the effect 
of that activity. Each jar is labeled as to whether the record of experience inside was associ-
ated with a positive result or a negative result. In the first phase of Piaget’s reflective 
abstraction, the projection phase, jars are sorted according to their labels (i.e., learners 
mentally-though not necessarily consciously--compare /sort records based on the results). 
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In the second phase, the reflection phase, the contents of the jars that have been grouped 
together are compared and patterns observed. Thus, within each subset of the records of 
experience (positive versus negative results), the learner’s mental comparison of the records 
allows for recognition of patterns, that is, abstraction of the relationship between activity 
and effect. (p.319)

Thus, in the first, projection phase, the subject attempts solution activity based 
upon a relevant but insufficient scheme M1. In the second reflection phase, the sub-
ject abstracts the invariant relationship or conceptual relationship from his previous 
attempts, i.e., the A-E-dyads. This abstraction is the result of coordination between 
the features of the new situation and properties of the objects being acted upon 
highlighted by the inadequate effects of this solution activity.

The formation of an A-E-dyad within the transition from intuitive, or externally 
directed thought to independent, “interior thought is described in Steffe (1991). His 
work is summarized below and is taken as the blueprint for the constructivist notion 
of “interiorization.” It is meant to understand how human cognition, historically and 
individually, develops new conscious structure from our empirical reasoning ability, 
i.e., our common-sense reasoning based upon our perception of the world.

9.2.7  Interiorization

The term interiorization is often used by constructivists to describe the genesis, or 
birth of a process (interior scheme). While there is general agreement that interior-
ization is the result of reflection upon and abstraction of solution activity, succinct 
descriptions are harder to find. Sfard (1991) credits Piaget for the following charac-
terization of an interiorized process as one that could be “carried out through [men-
tal] representations, and in order to be considered, analyzed and compared, it needs 
no longer be actually performed” (Sfard, 1991, p.18). That is what is meant when 
they say the A-E relationship has been abstracted or made interior. In Czarnocha 
et al. (1999), activity before interiorization is referred to as taking place within an 
action conception, where an action is defined as a transformation that “is a reaction 
to stimuli that the subject perceives to be external” and hence cannot be carried out 
independently (p.98). These authors consider an interiorized scheme to be a “pro-
cess” which is distinguished from an action conception by the conscious control the 
individual has over it. Arnon et al. (2014) suggest that repetition and reflection are 
central to promoting interiorization, “As actions are repeated and reflected upon, the 
individual moves from relying on external cues to having internal control over them. 
This is characterized by the ability to image carrying out the steps without necessar-
ily having to perform each one explicitly and by being able to skip steps as well as 
reverse them” (p.20). These statements provide insight into the nature of an interior-
ized process. However, they do not describe the actual process of interiorization.

Steffe (1991) refers to an internal process as one that proceeds by making a men-
tal reference to physical objects. In this situation, the child can use his intuitive M1 
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scheme to complete count-up activity and has internalized the process, by making 
mental references to physical objects even when they are not present. However, 
when the count-up value increased beyond the child’s spontaneous control (from 3 
to 5), he lacked the cognitive ability to coordinate his mental reference of objects 
with this count-up process, and thus he did not know when to stop counting. 
Applying selective attention to the five objects he needed to count-up, the child 
abstracted a numerical conception for 5 objects (M2). He could coordinate this con-
ception with his count-up process and thus successfully stopped at the correct result. 
This novel activity is said to be an interiorized process because it is directed by the 
subject’s conscious reasoning without the need for mental references to physical 
objects (internal process). Thus, the birth of the interior counting-up process 
occurred simultaneously with his conception of the numerical value 5. In the inte-
grated frame, his internal process of counting-up is his M1; his newly developed 
number conception is his M2, which can be said to emerge from M1 through selec-
tive encoding. This conception underlies his new count-up activity, i.e., the pseudo- 
code for his novel count-up scheme. This process is referred to as interiorization, 
and it presents what is presumably a fair description of the historical development 
of how humankind learned the count-up process.

9.2.8  Participatory and Anticipatory Schemes

Tzur (2007), Simon et al. (2016), and Tzur (2021) refer to a subject’s need for assis-
tance or use of situation-dependent schemes as being a participatory scheme. They 
describe the so-called “next day effect” in which a subject can use a scheme in class 
but cannot act appropriately in the same situation the next day as evidence of par-
ticipatory schemes. With a participatory scheme, the A-E relationship is developing, 
and the S-A relationship requires prompts or external assistance:

The participatory stage is characterized by a provisional, prompt-dependent access to a 
newly forming scheme…at this stage the learner has abstracted a new anticipation, that is, 
an activity-effect [A-E] dyad…this is yet to be linked with a situation/goal part of a new 
scheme. (p.333)

These authors refer to a participatory scheme that has become interiorized, as an 
anticipatory scheme. Hackenberg (2010) characterizes an anticipatory scheme as 
one in which the subject understands the conceptual reasoning for the activity and 
thus can anticipate the results, “anticipation involves the attempt to attain the results 
of prior experience by generating the cause of them” (p.387). She notes that, with 
an anticipatory scheme, because the subject knows the cause, it may be used for 
planning and reflection.
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9.2.9  Moments of Insight and Internalization-Interiorization

Tzur (2021) suggests that moments of insight occur within both participatory and 
anticipatory schemes. Those moments of insight that occur across A-E dyads lead to 
an understanding of the invariant nature of the A-E relationships, what he refers to 
as the “logical necessity,” i.e., the cause or pseudo-code of a newly formed A-E 
dyad. In the work of Hackenberg (2010), the term conceptual reasoning is used to 
signify when the subject understands the cause/logical necessity or invariant nature 
of the A-E relationships. Thus, a conceptual understanding of the cause allows the 
subject to abstract the A-E from the situation, allowing it to be used as input in 
another situation, reversed, and combined or synthesized with other processes. In 
short, understanding the conceptual reason for a previously participatory scheme is 
the hallmark of an “interior” scheme.

In this article, participatory schemes reflect the process of internalization, i.e., 
the subject has a need for assistance from the learning community. Elucidating the 
relationship between internal and interior process is a central research issue. Tzur’s 
(2021) statement highlights the research question of interest: “what is the nature of 
moments of insights within a participatory scheme, i.e., during internalization?” It 
also raises an important pedagogical issue, what markers can a teacher use as evi-
dence of internalization.

9.2.10  Internalization: Vygotsky

Vygotsky (1978) posits that learning, in its early stages, takes place through com-
munication with adults who model meaningful activity:

[w]hen the child imitates the way adults use tools and objects, she masters the very princi-
ple involved in a particular activity…repeated actions pile up, one upon another…the com-
mon traits become clear, and the differences become blurred. (p.22)

The notion of internalization as developed by Vygotsky (1978) represents the 
transition from interpersonal (external and socially directed) activity to intraper-
sonal (activity under one’s internal control), through a process of conscious 
imitation:

We call the internal reconstruction of an exterior operation, internalization…The process of 
internalization consists of a series of transformations: (a) An operation that initially repre-
sents an external activity is reconstructed and begins to occur internally… (b) An interper-
sonal process is transformed into an intrapersonal one. Every function in the child’s cultural 
development appears twice: first, on the social level, and later on the individual level…(c) 
The transformation of interpersonal to intrapersonal one is the result of a long series of 
developmental events.
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Vygotsky illustrates this transformation with a child’s attempt to grasp an object, 
and how a parent gives meaning to this grasping process, and transitions it into 
pointing “The child’s unsuccessful attempt engenders a reaction not from the object 
but from another person…consequently the primary meaning of unsuccessful grasp-
ing movement is established by others” (Vygotsky, 1978, p.56).

Internalization, especially during the transition from arithmetical to algebra 
thought, is brought about through socially mediated instruction as the subject 
reflects upon their intuitive-spontaneous concepts to build organized structures, i.e., 
scientific concepts Vygotsky (1997). The internalization process begins with recall 
and like “interiorization” ends with understanding the cause or logical necessity of 
the activity. “For the young child, to think means to recall; but for the adolescent, to 
recall means to think. Her memory is so ‘logicalized’ that remembering is reduced 
to establishing and finding logical relations; recognizing consists in discovering that 
element which the task indicates has to be found…At the transitional age all ideas 
and concepts, all mental structures, cease to be organized according to family types 
and become organized as abstract concepts” (1978, p.51). Vygotsky (1978) describes 
this transition from spontaneous to abstract concepts as passing through a phase of 
linking similar examples (schemes) together in series, as one develops a sense of 
“family type.” “Children’s concepts relate to a series of examples and are con-
structed in a manner similar to the way we represent family names” (1978, p.50).

9.2.11  Appropriation and Internalization

Vygotsky’s notion of an internal scheme, which is used in this treatise, refers to the 
process of learning within mentor-led discourse, leading to independent activity 
through the subjects’ understanding of the “logical” or conceptual relationships that 
underlie the activity. Both characteristics are used by constructivists as markers for 
interiorization. The need to verify independent activity is embedded in the first 
internalize and then verify-test methodology of most math classrooms.

For constructivists, who study an individual’s solution activity, evidence of the 
conceptual relationships that underlies an interior process or scheme is provided by 
the ability to understand when the scheme/process is relevant in a new situation, to 
reverse the process, and/or to coordinate it with other schemes, e.g., use it as input 
into another scheme. For social constructivists, who focus on social discourse, 
understanding conceptual relationships is evidenced by the ability to communicate 
such knowledge to other members in the learning community. The term appropria-
tion is often used to analyze learning within social discourse; it has its origins in the 
work of the Russian psychologist M.M. Bahktin to understand how children learn 
language.

The word in language is half someone else’s. It becomes “one’s own” only when the speaker 
populates it with his own intention, his own accent, when he appropriates the work, adapt-
ing it to his own semantic and expressive intention. (Bahktin, 1994, p.293)
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This explanation suggests there are two phases to appropriation; the first is grasp-
ing and interpreting another’s communication and the second is making it your own. 
The goal of the first is to assimilate another’s communication at least partially. 
Bahktin describes this phenomenon as being half yours and half someone else’s. 
The goal of the second phase is to transform this partially assimilated understanding 
into one’s own internal structure, adding it to one’s repertoire or toolbox of con-
cepts, words, and activities.

The use of the term appropriation to describe the internalization of an activity 
through communication requires some caveats in the translation from language to 
mathematics. In language learning, the second phase of appropriation is often 
embodied in one’s ability to use a word in a productive manner or perhaps to explain 
what the word means. However, as pointed out in Confrey (p.43, 1994b), the ability 
to explain the definition of a math concept (definition of a function) does not imply 
the “ability to act accordingly.” In Baker (2021b) a similar situation was highlighted, 
in which a subject could explain or interpret the work of another; however, they 
were unable to engage in independent solution activity. Thus, independent activity 
remains a cornerstone for evaluation of internalization and learning in general.

The painful reality for teachers of the ‘next day’ effect, and the difficulty trans-
lating students’ ability to talk or communicate during today’s classroom with the 
ability to act independently on tomorrow’s exam, suggests that a more significant 
analysis of appropriation is needed. Although this is beyond the scope of this work, 
it is important to note that, when looking for markers of appropriation in student 
communication, the quality of the student’s cognition must be a deciding criterion. 
In other words, having a sense of another’s communication (first phase) does not 
mean you have made it your own (second phase). Thus, the ability to memorize a 
definition, does not imply one has any idea how to use it. The ability to interpret 
another’s activity does not necessarily mean you understand why they employed it, 
how it works, or engage in such activity yourself.

In this study, beyond the criteria of independent activity, evidence for the com-
pletion of the second phase of the appropriation process (making it one’s own) is 
taken as the communication of the conceptual relationships that underlie one’s solu-
tion activity, the abstraction of solution activity into family types, and the abstrac-
tion of the objects acted upon, into relevant categories. Sfard (2020) introduces the 
term “commognition” to refer to the quality of the cognition, specifically, the level 
of abstraction, communicated in dialogue. The notion of commognition includes 
three processes, “Saming, Encapsulating, and Reifying.” Saming involves relating 
previously unrelated aspects of a situation. Encapsulation involves understanding 
that what was previously viewed as separate objects are one entity. Reifying involves 
giving an A-E that is at least partially related to a situation, a name, thus indicating 
it has reached a noun status or object level. Appropriation in this context, alongside 
the ability for independent activity, will be taken as evidence of the completion of 
an internalization as well as interiorization.
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9.3  Pedagogy: Constructivism and Vygotsky

There is a lack of certainty about what exactly is “constructivist pedagogy” and 
heated debate about the causes of its failure when applied system-wide in the math-
ematics classroom (Baker, 2021b). That said, constructivist pedagogy is associated 
with instruction founded upon an individual’s reflection on available schemes. In 
particular, the second tenet of constructivism states instruction should not begin 
with unfamiliar definitions or activity beyond student experience. The role of the 
instructor is to guide students with minimal instruction to reflect upon their schemes:

If the pedagogue is a Piagetian constructivist, he/she will refrain from verbal explanations 
because he or she believes the source of understanding is in the individual’s actions of 
physical or mental objects. (Sierpinska, p.39, 1998)

Thus, a central feature of the role of an instructor in constructivist pedagogy can 
be understood as to present helpful problems that assist in reflection upon available 
schemes during solution activity that leads to accommodation. This methodology 
requires the use of well thought-out, innovative examples that are designed to “(a) 
Bring forth learning relevant activity-effect anticipations and (b) Bring forth notic-
ing of intended effects” Tzur (2021, p.329). In constructivist pedagogy, the desired 
effect is to induce interiorization, understood as the foundation for growth in 
process- object duality (Dubinsky, 1991; Czarnocha et al., 1999; Sfard, 1991).

In contrast, Vygotsky’s notion of internalization involves a subject’s understand-
ing of an externally modeled activity, one that may not be an available scheme. 
Ideally, in Vygotsky’s social constructivist methodology, instruction is within the 
upper level of the student’s ZPD, i.e., a bit above, yet relatable to their available 
schemes. In this methodology, higher level activity, notation, and content are to be 
introduced, and the instructor’s role is to assist the student make a connection to 
their existing schemes that will provide meaning to the higher-level activity- 
notation- content (Baker, 2021b).

Berger (2005) argues that the focus of constructivism on transforming activity on 
existing schemes into interior processes does not account for how students learn 
math symbols and terminology within social discourse:

But much of this process−object theory does not resonate with a great deal of what I see in 
my mathematics classroom. For example, it does not help me explain or describe what is 
happening when a learner fumbles around with ‘new’ mathematical signs making what 
appear to be arbitrary connections between these new signs and other apparently unrelated 
signs. Similarly, it does not explain how these incoherent−seeming activities can lead to 
usages of mathematical signs that are both acceptable to professional members of the math-
ematical world and that are personally meaningful to the learner. I suggest that the central 
drawback of these neo−Piagetian theories is that they are rooted in a framework in which 
conceptual understanding is regarded as deriving largely from interiorized actions; the cru-
cial role of language (or signs) and the role of social regulation and the social constitution 
of the body of mathematical knowledge is not integrated into the theoretical framework. 
(pp.154)
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Berger does not appear to completely accept the notion, embedded in construc-
tivist pedagogy, that new notation and schemes should not be presented, until all 
perquisite schemes and notation have been understood. Indeed, as the instructor, she 
expects students to “fumble around” and make “arbitrary connections” as the new 
notation is at the upper level of the student’s ZPD. This raises the question, “what 
type of activity is required to induce a moment of insight leading to concept forma-
tion when the subject does not have a suitable scheme?” If direct definitions are of 
no avail, can the mentor actively guide, present, or explain to the mentee suitable 
examples and to what extent can listening to the explanations of a mentor result in 
concept development for a mentee?

As noted, unlike constructivists, Vygotsky believes that meaning for activity 
comes the development of scientific concepts within instruction. “The scientific 
concepts evolve under the conditions of systematic cooperation between the child 
and the teacher. Developmental and maturation of the child’s higher functions are 
products of this cooperation” (Vygotsky, 1997, p.148). From a pedagogical view-
point, the keyword here is cooperation, and this does not imply direct instruction:

A concept is more than the sum of certain associative bonds formed by memory…it is a 
complex and genuine act of thought that cannot be taught by drilling…Practical experience 
also shows that direct teaching of concepts is impossible and fruitless. A teacher who does 
this usually accomplishes noting but empty verbalism. (Vygotsky, 1997, pp.149–159)

Koestler, whose bisociation theory is the basis for the integrated frame, believed 
that spontaneous acts of creativity occur throughout the learning process, but only 
in untutored learning. “Minor bisociative processes do occur on all levels and are 
the main vehicles of untutored learning” (Koestler, 1964, p.658). Thus, like most 
creativity theory, the focus is on the individual’s search process, and not instruction, 
or assistance in guiding this search process.

Indeed, Koestler devotes an entire section of his book to the “boredom of sci-
ence” in which he argues that formalistic discourse has reduced math and science to 
a boredom of definitions, ruining the spirit of intuitive discovery required to appre-
ciate the beauty of these subjects:

The same inhuman, in fact anti-human-trend pervades the climate in which science is 
taught, the classrooms, and the textbooks. To derive pleasure from the art of discovery, as 
from other acts, the consumer-in the case, the student- must be made to re-live, to some 
extent, the creative process. In other words, he must be induced, with proper aid and guid-
ance, to make some of the fundamental discoveries of science by himself, to experience in 
his own mind some of those flashes of insight which have lightened its path. (Koestler, 
1964, p.265–266)

As a teacher researcher, this work is founded on the belief that students at all 
levels of mathematics must experience moments of insight to relieve the boredom 
of mathematics and to grow in understanding. Following Vygotsky, the focus of this 
study is internalization within social discourse, and the pedagogical issue is to high-
light the role of the teacher in inducing such moments of insight.
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9.4  Research

The goal of this study is to provide supporting evidence that bisociative moments of 
insight occur and are the mechanism for acts of accommodation during internaliza-
tion, i.e., when the subject requires mentor assistance, thus extending Koestler’s 
view that such moments of insight occur primarily in “untutored learning.” To 
accomplish this goal, the primary objective is to review the integrated frame used to 
analyze an individual’s moment of insight leading to acts of accommodation, devel-
oped previously, and then extend this frame to include internalization. The first 
research question is to describe the genesis of concepts during internalization and 
compare this to genesis of concepts embedded in developing schemes within the 
process of interiorization, as presented by Steffe (1991). A second related research 
question is to investigate how matrices or schemes emerge and are grouped together 
into conceptual structures, or toolboxes of schemes, during internalization, essen-
tially what Vygotsky (1978) refers to as a “family type.” In this second research 
question, the constructivist notions that are useful to analyze these moments of 
insight to build up a toolbox during internalization include Piaget’s notion of “con-
structive generalization” and the notion of invariant relationships.

Pedagogically, the research objective is to highlight how teacher-mentors can 
support moments of insight within the internalization process, i.e., social discourse. 
The empirical evidence collected will then be used to briefly reflect upon the role of 
the teacher within the context of constructivist and social constructivist pedagogy.

9.5  Stages of Internalization: Empirical Examples

Vygotsky’s conception of internalization suggests many levels of development the 
child may experience as they internalize mathematical content. In our analysis, we 
consider two overarching categories; one is characterized by passive reception or 
processing of teacher-mentor- directed activity (external), and the other is marked 
by an active effort to provide meaning for such activity. Within the active category 
of internalization, we consider three stages. These stages loosely correspond to 
Berger’s (2004a, b) use of Vygotsky’s three stages of concept development: heap, 
complex, and pseudo-concept/concept.

9.5.1  Interpersonal Learning Social Participatory Stage

For Vygotsky, internalization involves conscious imitation of adult behavior; as 
such it begins with watching and listening to modeled solution activity, which is 
perceived as externally driven. During the social participatory stage, internalization 
begins as the learner (albeit passively) struggles to make sense out of modeled solu-
tion activity, new definitions, or symbols.
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Example 1: The Elephant Aha Moment (Kadej (1999), Czarnocha and Baker 
(2021, pp.95–98)).

The discovery of a hidden analogy to abstract a concept within direct instruc-
tional methodology.

Two children were trying to solve the algebraic equation x + (x + 12) = 76, one 
child-mentor readily understood the task and was attempting to explain it to his 
peer-mentee who did not understand the concept of the variable “x” as representing 
an unknown numerical value. Following the textbook, the mentor-child points out 
that the “x” term can be viewed as a blank square, into which one inputs any numeri-
cal value. This simply confuses the peer-mentee, who is thinking along a concrete 
line of reasoning and, thus, rejects the obvious inconsistency that “x” is a blank 
square. Then, the mentor child describes the blank square as a window while simul-
taneously simplifying the problem as two windows (blank squares) that are equal to 
64, while asking “what is each window?”. However, the mentee child continues to 
engage in concrete reasoning rejecting the comparison of a blank square to a win-
dow as more confusion. Finally, the mentor child attempts an analogy using ele-
phants, asking “two elephants are 64, what is each elephant?”. The mentee child 
ponders and then proclaims one elephant is 32. I understand now!

The mentor reframes the situation to make sure the mentee understands, asking 
“if two elephants are 60, how much is each?”. Immediately the mentee-child pro-
vides the correct response.

9.5.2  Discussion: Example 1

Initially, the mentee-child grasps very little of the variable concept; thus, the M1 
search matrix does not contain any scheme to reflect upon; instead, it consists of a 
nonsensical symbol “x.” The mentor employs a common approach of introducing 
different analogies to guide the mentee towards this concept. Radford (2003) 
describes such a situation as the tension between the individual and the learning 
community leading to “transitional language” that results in the individual giving 
meaning to symbols using “metaphor.” Initially, the subject does not relate to these 
transitional terms – they are simply not part of his toolbox. The discovery of the 
elephant metaphor can be seen as what Matsushima (2020) refers to as dynamic 
composition within appropriation, i.e., it exists in the mind of the mentor first and is 
borrowed by the mentee. The moment of insight occurs when the mentee grasps the 
uncovered previously hidden analogy between taking half of two elephants-M2 and 
the symbol-variable “x”-M1. During this bisociative moment of realization, the con-
cept of an unknown exists in both matrices, and the intuitive M2 matrix gives mean-
ing to the mentee-child’s previously non-existent M1 solution activity. Thus, the 
bisociative connection between elephants and the symbol x results in the internal-
ization of the variable concept, a novel concept, i.e., growth in understanding.

In Steffe’s (1991) example of interiorization, M1 is an intuitive count-up scheme, 
while M2 is the abstraction of the number concept required to end the count-up 
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process. In this case, M1 is a search matrix with no scheme; indeed, the variable “x” 
appears to have little meaning to the subject. The M2 analogy that gives meaning to 
the variable x or M1 is an intuitive scheme the child can grasp. Pedagogically, this 
is a good example of Vygotsky’s educational approach, in which a mentor is ahead 
of a child’s developmental level, yet within their ZPD.

9.5.3  Active Internalization: Interpersonal to Intrapersonal – 
Heap Stage

Vygotsky (1978) notes that for children to think means to recall, and at this stage 
understanding consists of the recall of activities viewed as “isolated instances” with 
little to no logical structure or conceptual understanding. At the early stages of inter-
nalization, the link between situation and activity is essentially founded upon imita-
tion of previous examples; thus, if the teacher mixes up examples or reintroduces 
after a pause, a similar example, students at this level may be confused and resort to 
guessing what activity is appropriate or choose a non-relevant activity based upon a 
superficial understanding of the new situation.

Berger (2004a) suggests that in heap thinking, “the person links ideas or objects 
together as a result of an idiosyncratic association” (p.3). She elaborates on the 
quality of the link at this stage, noting that “objects are linked by chance in the 
child’s perception” (p.5). Berger refers to such links as surface associations, which 
result when the solver reads and interprets problem information in a superficial 
manner. Berger provides examples in which a solver attempts to employ symbols or 
phrases (keywords) in a problem situation without reasoning based upon any real 
understanding. Their selection of symbols and keywords is designed to simplify 
their cognitive load. Hence, the resulting activity is often incorrect.

Solvers at this stage, lacking logical structure, or what Vygotsky refers to as a 
notion of “family type,” frequently attempt to direct their activity through imitation 
of modeled activity. Thus, learning often consists of reviewing, class notes, text-
book examples, or videos of similar exercises to assist in problem solving. At this 
stage, the S-G and A-E relationships are weak based upon superficial associations, 
and the so-called “next-day effect” where solvers perform with some degree of pro-
ficiency in class, but not independently, i.e., the next day.

9.5.4  Example 2: T-INTERVAL

This example is taken from work with students in an online (zoom) math class dur-
ing the pandemic. It represents an example of students cooperating, which was not 
a common event as most students were very passive while participating using online 
platforms.
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Previous class time had been spent on using calculator commands for hypothesis 
testing and confidence intervals. Wendy internalized that a collection-toolbox of 
commands were available using the STAT/TEST menu. She also understood that for 
a normal distribution, one typically used either the Z-Test or the Z-Interval com-
mand in this menu or toolbox of commands. However, this problem required her to 
understand a new concept, T-distribution. Indeed, students were now being asked to 
choose between two types of commands involving either Z or T distributions, fur-
ther complicating the issue that each type could require one of the two categories, 
either internal confidence or testing commands. There was a third involving sample 
proportions, but it will be simpler for the reader if left out of the discussion. Thus, 
she needed to generalize the two commands learned previously into two categories, 
and two types, or family names.

Students traditionally experience a high degree of uncertainty and frustration 
trying to understand which of these commands is appropriate. The mentee student 
(Wendy) is in the process of consciously imitating modeled problem-solving behav-
ior; she knows to use the STATS/TESTS toolbox collection of commands on her 
calculator. However, she is not sure which one to use. At this point, Wendy brings 
the exercise to class and asks what to do! (Interpersonal process). Wendy states that 
it appeared to involve a T command instead of Z command; she was unsure why and 
was not clear about whether it involved a test or interval command, and her voice 
suggested she was overwhelmed.

The instructor, who had modeled the variations of problems require several 
times, realizes that Wendy needs another voice (preferably a peer, not an authority) 
to explain, and asks if any other student can help her. A mentor student (Marisol) 
volunteers to explain. Marisol first, explains that the question asks for an interval, 
and thus you need to use an Interval command under the TESTS options. This 
explanation helps Wendy formulate the concept-categories of interval versus testing 
commands. It also reduces the search to discriminating between the two family 
types, Z- Interval or T-Interval. Wendy listens attentively and appears to understand. 
Second, Marisol points out that there is a hint which explicitly states that, because 
there is a sample standard deviation, the problem requires a T-distribution, and thus, 
she concludes the T-Interval command is appropriate. At this point, Wendy is 
silently processing what Marisol has said, then indicates she now understands, and 
thanks Marisol.

9.5.5  Discussion

Wendy’s initial understanding of the situation (M1) included a sense of what to do, 
based upon her appropriation of previous examples (her hybrid or partial concep-
tion). However, her partial conception was inadequate to support independent activ-
ity. Her statement that it was probably a T-distribution (not sure why) suggests a 
faltering ability to express this appropriated conception. Thus, she needed confirma-
tion to enter confidently into the second phase of appropriation, in part because the 
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need to navigate four variations of commands was overwhelming. Instead, her 
search process, classic to internalization, was to ask for assistance and then try to 
understand what she was told. Kosko (2014) refers to this as active listening. 
Thompson et  al. (2004) suggest that such listening is the foundation of critical 
thinking and involves receiving knowledge, comparing received to previous knowl-
edge leading to comprehension and finally to evaluation.

The mentor, Marisol, guided Wendy’s attention to coordinate the previously 
unclear problem information, with the required commands (M2). First, Marisol 
guided by pointing out there were two overarching categories, testing – find the 
percent or interval problems. Wendy listens intently and spontaneously understands 
the need to discriminate between Test and Interval commands. Although online 
learning makes it difficult to observe the learners affect, it was clear that while lis-
tening to Marisol, Wendy received or appropriated the knowledge imparted by 
Marisol, and as she reframed from further questions and could act independently 
afterword this suggests she comprehended it, i.e., her growth in understanding 
allowed her to direct future solution activity – M2. This suggests that, as in the first 
example, a moment of insight or transfer from Marisol to Wendy occurred during 
active learning, providing another example of “dynamic composition” Matsushima 
(2020). Marisol’s second explanation served to highlight uncovered problem infor-
mation (the hint), which provided a positive evaluation confirmation for Wendy that 
her tentative appropriation knowledge (T-distribution) was correct.

Although, it was not possible to observe her affect (it was an online session, and 
her camera was off) it was clear Wendy’s understanding of Marisol’s comments was 
real and immediate, as she thanked Marisol. Furthermore, it became clear that 
Wendy had developed a new scheme, as she independently completed the related 
homework, and received a 100% on the next exam. Previously she was a B+ student. 
Wendy also demonstrated motivation and did well on the final and included several 
such (Test/Interval) problems with six different related commands required, indicat-
ing she had developed an organized toolbox for these six related commands or A-E- 
dyads under the STAT/TEST menu. Finally, it is worth noting that, in this example, 
the active listening by Wendy was essentially a reflection upon Marisol’s guidance 
through a solution activity Wendy had previously attempted. Thus, although not 
exactly reflection upon her own solution activity, it contained elements of reflective 
abstraction, as well as reflection during active listening-appropriation.

9.5.6  Internalization Complex Stage

The complex stage marks the transformation of the operation into an intrapersonal 
process. This occurs with the development of a “family name” for the activity that 
is a sense of “problem type” obtained not necessarily by an understanding of the 
underlying structure rather through the linking of different but similar examples 
together one at a time. Berger (2004b) describes this stage in terms of developing a 
nucleus built up by relating similar examples and then linking them together 
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initially by superficial but ultimately by their invariant relationships. Thus, it is in 
this stage that moments of insight occur as students bring their conscious awareness 
to their own independent activity comparing A-E-dyads for similar exercises to 
develop an invariant relationship and observe other’s activity that somehow relate to 
their available schemes. Tzur (2021, pp.336) refers to such comparing as awareness 
of “across activity-effect instances.”

Berger (2004b) suggests that the common pedagogical technique of teaching by 
examples often results in students (Complex Stage) incorrectly linking the observed 
activity in superficially similar but cognitively different problem examples. She 
illustrates this, with the example of students who understand that one multiplies the 
rate with the time to find the distance. However they continue with this multiplica-
tion-activity when the problem gives distance, time and asks for the rate, or gives 
distance, the rate and asks for the time. Another case where learning by examples 
yielding incorrect links is provided by Berger (2004b) when students who have 
learned that f(x)  =  |x| is everywhere continuous but not differentiable apply this 
model to conclude the same is true for all absolute value functions even g(x) = |x2|.

9.5.7  Example 3: The Domain Aha Moment (Czarnocha & 
Baker, 2021, p. 99–101)

A student understands the domain of the proto-type example ( f x x� � � ) as being 
the values x ≥ 0. She incorrectly uses this template to conclude that the domain of 
the similar function f x x� � � � 3 is also x ≥ 0. At the direction of the instructor, 
she checks several negative integer values for x, including −3, and the student 
begins to realize something is wrong; when the instructor asks whether x  = −2 
works, the student ponders before declaring. “Those x’s which are smaller than −3 
can’t be used here!”. As noted in Czarnocha and Baker (2021, p.99–101), this marks 
the student’s first realization of a new guiding principle. Thus, this realization is the 
result of selective encoding, in which the new action scheme M2 emerges from 
conscious attention to her available scheme M1. Selective combination- coordination 
is also involved as she coordinates her instructor-led activity with her initial under-
standing of the domain. The instructor, to determine whether an invariant relation-
ship has been established, asks the student for the domain of g x x� � � �1, and 
after pondering for a minute, she provides the correct response.

In this realization, the student’s M1 was her previous understanding of the 
domain of the absolute value function f(x) =  |x|, x ≥ 0; after her work following 
instructor guidance, she realizes that values such as x = −1, −2, −3 are all excep-
tions, i.e., they are part of the domain for f x x� � � � 3; these exceptions to her M1 
rule or code are the basis of a new conception or M2, and as she coordinates these 
values with her previous understanding, she generalizes the code from x ≥  0 to 
x + 3 ≥ 0 (x ≥ −3). Thus, she forms new S-A and A-E relationships evidenced in her 
understanding of the domain of the similar function g x x� � � �1 (x ≥ 0.1). With 
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these moments of realization, she is developing a new code or invariant relationship 
for linear factors under a radical, based upon connections between similar examples 
or family type. This can be seen as an example of a realization leading to an invari-
ant relationship across A-E dyads (Tzur, 2021, pp.336). It can also be understood as 
an example of the commognition Sfard (2020) refers to as “Saming.”

9.5.8  Internalization: Pseudo-Concept Stage

At this stage, the subject shows signs of conceptual reasoning, i.e., activity based 
upon concepts and their relationship to the situation. Thus, they are developing an 
abstracted A-E relationship based upon conceptual reasoning that underlies connec-
tions. In Koestler terminology, we say that a code is being abstracted.

In the preceding example the subject has successfully provided the domain for 
f x x� � � � 3 and g x x� � � �1 based upon the coordination of her initial scheme 
(domain of the radical x function) with her reasoning that the linear expression 
under the radical must be greater than or equal to zero (the invariant relationship). 
Next, the instructor asks for the domain of h x x a� � � �  after pondering she has a 
second realization and provides the correct answer x ≥ a. At this point, the student 
has abstracted the invariant relationship or guiding principle into an algebraic 
expression or code that works for all such problems (linear factors beneath a radi-
cal). Her ability to express the domain using symbolic notation can be viewed as a 
communication of her conceptual reasoning and hence as an example of appropria-
tion, one of the characteristics for the completion of internalization. Thus, this real-
ization involves an abstraction of the invariant relationship across A-E-dyads (Tzur, 
2021, pp.336) or the abstraction of a new code.

9.5.9  Discussion

In this example, the constructivist notion of reflective abstraction begins to merge 
with Vygotsky’s notion of internalization. Thus, reflection upon another’s solution 
activity, i.e., appropriation demonstrated in previous examples is replaced with 
reflection upon one’s own solution activity, albeit activity guided by the instructor, 
i.e., reflective abstraction. Analyzed using the integrated frame, the subject has an 
initial understanding of the situation M1 that directs her activity. However, it is 
based upon a template example, which she does not generalize correctly. Under the 
instructor’s tutelage, she engages in solution activity with different values of x, until 
she experiences an “Uphs effect” or the realization that her initial M1 scheme is 
inappropriate.

In the initial moments of insight, the subject uses her innate ability to compare 
different concrete experiences of substitution to abstract the A-E dyad for x + 3, 
and the A-E-dyad x −1 in this process, M1 was her understanding of the domain 
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of x  and M2 was her understanding of solving linear equations such as x + 3 ≥ 0, 
x−1 ≥ 0. Thus, the instructor-guided solution activity resulted in selective coordina-
tion-combination, or bisociation of her M1 and M2 schemes, that resulted in a new 
albeit local code for each A-E-dyad. This new code is the logical necessity or the 
“reason why,” i.e., the cause that transfers from M2 to M1 for each dyad.

The second moment of insight occurs as she reflects across her newly constructed 
A-E- dyads for radical (x + 3) and radical (x − 1), which now represent her M1, and 
her insight can be viewed as the result of her innate ability for pattern recognition as 
she coordinates the problem, (finding the domain of the radical (x + a) function) 
with these M1.

In this case, the subject recognizes and expresses in symbolic language the 
invariant conceptual relationship that underlies the linking of her A-E-dyads. This 
communication represents an act of appropriation (second phase) or the type of 
commognition Sfard (2020) refers to as “Reifying” as she is communicating her 
understanding of this invariant relationship with an algebraic formula.

9.6  Concluding Remarks

The goal of this article is to highlight moments of insight, as students struggle to 
internalize mathematics in a classroom situation. The primary research objective is 
to extend the integrated frame to internalization, and in so doing to highlight the 
relationship between this process, and the constructivist notion of interiorization.

The first research question is to describe concept development within the inter-
nalization process and compare this to concept development within interiorization. 
In the first example, the child is struggling to appropriate the concept of an unknown 
as expressed by the symbol “x,” i.e., he is struggling to give meaning to a new object 
or sign. His motive is to understand what is being presented, and his M1 understand-
ing is very limited. As the mentee presents different M2 analogies, the subject 
finally realizes (in a flash) the connection between taking half the given weight of 
two unknown (twin) elephants to find the weight of each one. This guided discovery 
of a previously hidden analogies allows meaning to transfer from his intuitive 
scheme of taking half of elephants to the required symbol manipulation of symbol 
“x.” As the concept of an unknown emerges from his spontaneous or intuitive taking 
half scheme, it represents both the genesis of a concept as well as of a scheme. This 
act of appropriating another’s understanding of a symbol, sign, or word name is 
essentially what Sfard (2020) describes as “reifying,” i.e., the giving of a name 
(object level status) to a process. In the process of interiorization as described by 
Steffe (1991), the number concept (five) also emerges from an intuitive scheme and, 
thus, represents both the genesis of a concept and a process (count-up).

During interiorization, the M1 is the intuitive scheme, and the M2 is a concept 
that emerges through reflection upon one’s M1 solution activity; hence interioriza-
tion is a foundational process of reflective abstraction. As this reflection uncovers 

9 A Framework for Creative Insights Within Internalization of Mathematics



204

what was previously known, albeit only intuitively, hence it can be viewed as selec-
tive encoding. In contrast, during internalization, the M1 is essentially not func-
tional, and meaning or growth in structural understanding is obtained during active 
listening. This is an example of reflection during social communication, a process 
Vygotsky (1997) describes as synonymous with reflective consciousness. As the 
search to appropriate meaning of the symbol “x” involved active listening, the 
moment of insight can be understood as the guided realization of a previously hid-
den analogy, i.e., selective comparison without synthesis of schemes.

Internalization as presented by Vygotsky often involves the recall of externally 
modeled activity. Whereas, in the first example, the subject (heap stage) is learning 
a completely new concept embodied within a symbol, and M1 is essentially non- 
functional, in the second example (complex stage), the subject has an M1 scheme, 
based upon recall, and is in the process of building up a toolbox of schemes or a 
collection of schemes within a family type.

In this example, her M1 search matrix includes a vague recall of how to proceed, 
i.e., where to go on the calculator to find the appropriate toolbox of commands. 
However, she lacks the ability to select the relevant problem information, and coor-
dinate it, with her solution activity. The instructor’s methodology was to ask other 
students to explain. The mentor-student did not attempt to explain the concepts 
needed; instead, they focused on recognizing these concepts in the problem situa-
tion and how these concepts connect to and thus direct (novel) solution activity. The 
growth in understanding was to first discriminate between two types (categories) or 
problems, confidence interval and hypothesis testing, and second, between two 
types of tools or schemes (Z versus T distributions). Thus, through active listening, 
the subject learned that there is a new tool to be used in two types of problems, and 
she learned to recognize when this new tool was required. This growth in under-
standing can be understood as the result of a projection of an existing M1 into a 
novel situation, and the resulting coordination (bisociative synthesis) between M1 
and M2 features required to resolve the problem, while leading to a new code. 
Hence, it is like Piaget’s notion of “constructive generalization.” This distinction 
being that it involves active listening as opposed to reflection upon one’s own solu-
tion activity.

In the third example, although directed by the teacher, the subject’s reflection is 
completely upon her own solution activity, not upon communicated knowledge; 
thus, her moments of insight can be analyzed within the integrated frame as reflec-
tive abstraction. As the instructor skillfully directs the student to reflect upon pat-
terns of substitution, she is guided to an “Upps effect” and ultimately the synthesis 
of her M2 conceptual understanding of the (more-than /less-than zero) solution of a 
linear inequality with her initial M1 understanding of the domain of a radical, as 
being greater than or equal to zero. Thus, her moment of insight can be understood 
as “constructive generalization”; in that, she has an existing M1 scheme that is first 
projected into the new situation and then coordinated (bisociative synthesis) with 
features of this situation that were previously overlooked to begin the formation of 
a new concept and code.
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In the constructivist frame, one can also understand her moments of insight as 
interiorization. In this view, her initial M1 scheme was dependent upon the situation 
(participatory schemes). The coordination (bisociative synthesis) of her initial M1 
domain scheme with her M2 linear inequality scheme provides a good example of 
constructive generalization after the instructor recognition of the invariant relation-
ships embedded in the patterns of substitution (discovery of a hidden analogy-M2). 
Her communication of these domains to the instructor represents the second phase 
of appropriation and indicates a new code is developing.

In the fourth example, the subject abstracted the invariant relationship of her 
previous work. Thus, she understands them as reflecting one code, encapsulation 
(Sfard, 2020), which she gives a name in symbolic form, reifying (Sfard, 2020). 
These latter examples highlight aspects of the second research question. In the sec-
ond, active listening, on communication of content analogous to an existing scheme, 
leads to construction of similar “family-type” schemes. In the latter two examples, 
pattern recognition and abstraction of an invariant relationship lead to encapsulation 
and reifying of solution activity (processes) into a code expressed in symbolic form. 
This demonstrates her object level understanding of these processes as different 
schemes that can be organized as one, named entity.

Pedagogically, these examples demonstrate the effectiveness of guiding students 
to “Upps effects” through pattern recognition as opposed to direct instruction. They 
also show that peer-peer dialogue involving direct analogies can be very effective in 
leading to moments of insight.
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Chapter 10
A Reconsideration of Appropriation 
from a Sociocultural Perspective

Mitsuru Matsushima

10.1  Introduction

Why does interaction in the learning community deepen mathematics learning? 
How does individual learning contribute to the learning community through dia-
logue and deepen mathematics learning? These questions can be answered from not 
the viewpoint of dualism, which considers the learning of society and the individual 
separately, but from a sociocultural perspective, which considers these aspects 
jointly. Sfard (2008), who pioneered the unique concept of “commognition” based 
on psychology and philosophy, emphasized that communication represents thinking 
itself, focusing on the connection between individual thinking and community 
learning from a sociocultural approach.

Ernest (1998, 2010) demonstrated the structural deepening of mathematics learn-
ing within an individual from the perspective of social constructivism based on 
sociocultural perspective. Ernest (2010) showed that the key to facilitating mathe-
matics learning was the publication of individual sign use and appropriation. The 
concept of appropriation took shape from Bakhtin’s linguistic philosophy and 
Vygotsky’s psychology, and it plays an important role in the study of learning from 
a sociocultural perspective. Appropriation is defined as a “process that has as its end 
result the individual’s reproduction of historically formed human properties, capaci-
ties, and modes of behavior” (Leontyev, 1981, p. 422). Following the above studies, 
Matsushima (2020, 2021) connected individual thinking with learning communities 
from the perspective of appropriation to present the structure of deepening mathe-
matical learning through dialogue as shown in Fig. 10.1. The two main features of 
appropriation are given below.
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Fig. 10.1 Extended model of sign appropriation and use (Matsushima, 2020, p. 113)

Feature 1 (dynamic composition):

Gradually forming one’s concept by speaking, while borrowing the concept 
of others.

Feature 2 (mutual composition):

The concept of learning community is formed in the process of forming the concept 
of self. (Matsushima, 2021)

As the above two appropriation features indicate, appropriation is dynamically 
composed of the concept of learner and learning community and mutually com-
posed of both by bidirectionally influencing the learner’s concept and learning com-
munity’s concept. In other words, appropriation facilitates the concepts of individual 
learners and learning community to develop interactively (Brown et  al., 1993). 
Conceptual development here refers to the ability to use language appropriately. In 
mathematics learning, being able to use mathematical words and signs appropri-
ately indicates a deep understanding of mathematics.

However, only a few studies have so far examined the concept of appropriation, with the 
concept itself appearing confusing. For example, few bidirectional discussions on appro-
priation can be found in the literature, with many studies examining the concept within each 
individual (e.g., Moschkovich, 2004; Solomon et al., 2021). Furthermore, it is difficult to 
distinguish between appropriation and similar concepts (e.g., Brown et  al., 1993). One 
study points out the problem how to think about the effects of appropriation when the 
learner does not speak to others (Carlsen, 2010).

To solve these research problems, we need to first clarify the features of appro-
priation. Therefore, the purpose of this chapter is to reconsider the concept of appro-
priation and clarify its features.
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10.2  Structure of This Chapter

In this chapter, we first review previous research on appropriation and point out 
three problems with the concept of internalization, which is closely related to the 
concept of appropriation. To show that the appropriation as a concept that over-
comes the three problems of internalization, we first discuss how the learner’s con-
cept may be transformed by appropriation based on Figure 10.1. In the discussion, 
we proceed with the discussion separately for the case where the learner is the 
speaker of the dialogue and the case where the learner is the listener, and solve the 
first two problems of internalization. Then we will cite the discussion of intersub-
jectivity regarding the connections between individual learners and communities 
from knowledge of developmental psychology to overcome the third problem. 
Through these discussions, the concept of appropriation is clarified as a concept to 
overcome the three problems of internalization, and its six characteristics are 
pointed out. Finally, from the standpoint of a sociocultural approach, we will answer 
the following questions: “Why does dialogue deepen mathematics learning?” “Will 
mathematics learning deepen without dialogue?”

10.3  Problems Related to the Concept of Appropriation

As stated in the previous section, the concept of appropriation took shape from 
Bakhtin’s philosophy of language and Vygotsky’s psychology. Bakhtin (1981) 
explains the polyphonic nature of spoken language as follows:

The word in language is half someone else’s. It becomes “one’s own” only when the speaker 
populates it with his own intention, his own accent, when he appropriates the word adapting 
it to his own semantic and expressive intention. (Bakhtin, 1981, p. 293)

This quotation outlines the concept of appropriation. People discuss a concept at 
the beginning using the concept of others and gradually form their concept based on 
it. Note the start point of concept formation here. The first point is borrowing the 
concept from others. Conventions such as concepts, ideas, and values of others are 
shared with the community even before we join the community. Individuals in the 
learning community assimilate conventions individually through appropriation, the 
start point of concept formation. Discussing and acting on these conventions also 
affect the concept formation of others and learning community. This bidirectional 
concept formation chain between individuals and the learning community trans-
forms the conventions of individuals and the learning community. In other words, 
individuals and the learning community continue to form new conventions (Cazden, 
2001; Rogoff, 2003). These features involve both dynamic and mutual composition 
(Matsushima, 2021). However, a new question arises here. How does one borrow 
the concept of others? Furthermore, are there any restrictions on borrowing the con-
cept of others? The two features mentioned above do not answer these questions. 
This study therefore tries to examine whether these two features are valid and 
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answers the above new questions in terms of the two previous studies that clearly 
state the appropriation features.

The first study describes three characteristics of the appropriation process 
(Nunokawa & Kuwayama, 2003) based on a case study as follows:

(a) In the process of appropriation, the student created kinds of hybrids between the old and 
new ideas.

(b) When the new idea was presented by the others, the student attempted to interpret it 
in the framework of the old method he had used up to then.

(c) There were long time-lags even before the student began to incorporate some aspects 
of the new idea into the method he had used up to then. (Nunokawa & Kuwayama, 2003, 
pp. 303–304)

Characteristic (a) is the same as the dynamic composition of an individual’s 
appropriation but refers to the quality of the object to be composed. The object cre-
ated through appropriation is not completely new but based on the previous object. 
New ideas are thus constrained by old ideas. Characteristics (b) and (c) need to be 
recombined from the old framework to formulate the new object to be created in the 
new framework, but this takes time. These points relate to appropriation and resis-
tance (Wertsch, 1998). Appropriation is carried out on the basis of existing indi-
vidual and learning community conventions, but these existing conventions 
historically and culturally constrain appropriation.

The second study examined the appropriation process (Carlsen, 2010) and clari-
fied the following five appropriation processes in mathematics learning:

 1. Be involved in joint activity.
 2. Establish a shared focus of attention with others. Students have to develop some kind of 

working consensus of what to pay attention to in a mathematical task.
 3. Develop shared meanings of words and concepts, i.e., meanings in accordance with the 

mathematics community through participating in joint decision-making processes.
 4. Be involved in the activity of transforming, a process where the students appropriate 

actions and utterances by fellow students in the collaborative problem-solving context 
and use them in ongoing activities.

 5. Attend to the problem of the relationship between sense and meaning by identifying the 
relations between pre-existing established mathematical knowledge in the classroom 
and students’ joint activity in the small group. (Carlsen, 2010, p.99)

Like these five processes, from the standpoint of a sociocultural approach, a 
concept is a way of using signs. The use of signs for mathematics as concepts in 
dialogue with others is appropriated by the acceptance and criticism of the learning 
community. This is a process of collaborative creation based on existing concepts 
and experiences, involving sharing with the learning community. At the same time, 
individual learners themselves try to form a concept. This process is highly consis-
tent with the extended model in Fig. 10.1 and can be considered to have features of 
both dynamic and mutual composition. In particular, note that descriptions that are 
conscious of the two-way concept formation can be found between the learner and 
other learners. Also, note the objectification (e.g., Radford, 2003; Roth & Radford, 
2011) of the learning objects in this paper. Objectification in the learning commu-
nity is “embedded in socio-psycho-semiotic meaning-making processes framed by 
cultural modes of knowing that encourage and legitimize particular forms of sign 
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and tool use” (Radford, 2003, p.44). Objectification is the process and result of 
creating a method for using signs as a concept, with focus on the connection between 
the learning community and individual learners, and it has much in common with 
appropriation. Carlsen (2010) often mentions objectification in his study. A com-
parison of these two concepts shows that appropriation is better to express the 
polyphony of Bakhtin (1981) and objectification is better to overcome dualism by 
emphasizing the connection with the concept of subjectification. However, the sig-
nificance of these concepts will be a subject for future research. Moreover, objecti-
fication focuses on the reflection/refraction of individual learners in the process 
(Roth & Radford, 2011). It shows the importance of reflective thinking and the gap 
in thinking with the learning community when deepening individual thinking based 
on the connection with the learning community. The reflection/refraction viewpoint 
is also very important when deepening the concept of appropriation.

From the previous two research models and a comparison of the two features of the dynamic 
and mutual composition, we see no reason to deny the two features. And additional factor 
found is the historical and cultural restrictions of the appropriation as existing conventions 
interfere with the appropriation. Note that reflective thinking and deviations occur when 
connecting with the thinking of the learning community.

So far, we considered appropriation based on Bakhtin’s philosophy of language. 
Another source of appropriation is Vygotsky (1978), but this source uses the term 
internalization rather than appropriation for the internal reconstruction of external 
operations. Vygotsky’s disciple Leont’ev replaced Piaget’s notion of assimilation 
with appropriation (Leontyev, 1981). In assimilation, a learner takes information 
from the outside world in the framework of the learner’s individual knowledge with-
out change. This transformation from assimilation to appropriation can be due to the 
change in focus from biological ontogeny to a socio-historical perspective. Leont’ev 
(1974) also emphasized on activity and thought that the mediation of artifacts in 
activity would connect learners, objects, and others within the learning community. 
However, some researchers have pointed out that the concept of internalization has 
the following problems:

1: It easily leads to dualism between individual and social. This assumes that internalization 
occurs solely through personal influence (Wertsch, 1998).

2: It is misunderstood to be a concept of passively copying information from the outside 
world to an individual (Cazden, 2001).

3: The mechanism of internalization is not clear (Brown et al., 1993).

In view of these points, Wertsch (1998) classified internalization into two types, 
mastery and appropriation. Internalization as mastery allows the use of cultural 
signs as an intermediary, whereas internalization as appropriation is the process of 
taking something belonging to others and making it your own (Wertsch, 1998). 
However, this appropriation, which is as an elaboration of internalization in Wertsch 
(1998), lacks the viewpoint of mutual composition. As mentioned above, a confu-
sion exists with regard to various other terms on appropriation because of the lim-
ited number of studies. In the next section, we show that appropriation can overcome 
the above- mentioned problems of internalization.
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10.4  Appropriation as a Concept to Overcome the Problems 
of Internalization

In this section, we show that appropriation can overcome the three problems of 
internalization mentioned in the previous section. First, problems 1 and 2 can be 
overcome with the features of the dynamic and mutual composition. The sociocul-
tural approach in psychology defines internalization as the reconstruction of an indi-
vidual’s knowledge through interaction with others (Vygotsky, 1978). This 
internalization was shown as the entire process of reconstructing the knowledge of 
an individual, triggered by interaction with others in the activity. Later, this was 
developed as the reconstruction of knowledge in social processes between individu-
als (Leont’ev, 1974). In both of these processes, the learner’s existing knowledge 
and experience contribute to the reconstruction of new knowledge. To overcome 
problems 1 and 2 of internalization, we need to emphasize that appropriation is an 
active concept with an aspect of bidirectional concept formation between individu-
als and learning communities. Appropriation allows learners of all ages, expertise 
levels, and interests to return to the learning community the ideas and knowledge 
they have dedicated to their desires and the zones of proximal development of the 
learning that they are working on (Brown et  al., 1993), with the individuals and 
learning communities influencing each other. That is, appropriation is a concept 
with dynamic and mutual composition. Therefore, it can be seen as a concept to 
overcome problems 1 and 2 of internalization.

Second, we examine whether appropriation can overcome problem 3 of internal-
ization. Both dynamic and mutual composition only outline the mechanism of 
appropriation. Therefore, we refer to the extended model in Fig. 10.1 and examine 
the mechanism in detail. Consider the subject in Fig. 10.1. The learning community 
can be small groups of two to four people or have the size of a whole class. In a 
learning community of any size, multiple people continue to speak in turn. When 
learner A speaks, A is the only one speaking, with the others listening. Next, learner 
B speaks, representing the learning community responding to A’s utterance. B’s 
utterance represents that of the learning community, but it corresponds to A’s utter-
ance. If we consider a certain utterance as the starting point of a dialogue, we need 
to note that the individual speakers change one after another, but the moment of 
dialogue is an individual-to-individual dialogue. Dialogue in a learning community 
can be considered the accumulation of individual-to-individual dialogue in the 
learning community. Therefore, basically two learners form the structure of the 
social interaction of dialogue in the learning community. However, Fig. 10.1 shows 
the model of three learners as an ellipse. Of the three learners, two are real learners 
and the third is the learning community as a virtual learner. If we consider the learn-
ing community as a virtual learner with some information about the learning target, 
the model in Fig. 10.1 illustrates a three-party dialogue model. Although we need 
not increase the elements of consideration when examining the learner’s concept 
formation, we need to include the learning community as an element of consider-
ation from sociocultural perspective, because, from the standpoint of it, learners 
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need to be included in the history and culture of the learning community, implicitly 
restricting appropriation. Furthermore, the existence of appropriation may become 
clear when the constraints of the learning community are also considered. This is 
because the difference in concepts that learners A and B have appropriated and the 
difference in concepts that the learning community has as seen by learners A and B, 
are clarified. These deviations are unique to the learners because they are con-
strained by the existing conventions and experiences of learners A and B (Newman 
et al., 1989). This difference in concepts of the learning community from the per-
spectives of learners A and B, or the difference in the concept that they appropriate, 
will be useful to interpret the process of deepening mathematics learning and 
develop lesson designs that would be easy for children to make sense.

Next, we consider the specific appropriation process shown in Fig. 10.1. This is 
to show how the process of appropriation differs between the appropriation of the 
speaker and the listener. Here, we use a simplified symbol to clarify the process of 
concept formation. Let A(x) show that learner A is in the state of concept x about the 
learning object and B(α) show that learner B is in the state of concept α about the 
learning object. The state of concept x shared by the learning community from the 
perspective of learner A is shown as CA(x), and the partial transformation of the state 
of learner A’s concept x into state x1 is shown as A(x1). Here, we assume that learner 
A begins to talk about concept x and learner B is just listening.

First, learner A (speaker) publishes his/her sign use with regard to concept x for 
the first time in the public/individual domain. This is publication 1. This utterance 
gives the learning community’s consent 1 or criticism 1  in the public/collective 
domain. Learner A’s first appropriation in response to consent 1 and criticism 1 
occurs in the private/collective domain and the private/individual domain. This is 
appropriation 1. Following appropriation 1, the cycle proceeds to new publication 2. 
Here, we need to note the content of consent 1 or critique 1. If the learning com-
munity agrees to the publication of learner A, learner A’s concept remains A(x) and 
the appropriation dynamic composition does not work. Then, the learning commu-
nity from the viewpoint of learner A becomes CA(x) owing to the appropriation’s 
mutual composition. However, when the use of learner A’s sign is criticized, learner 
A would transform the concept into a partially transformed version x1 or completely 
different version y, that is, A(x1) or A(y). This is a transformation in concept due to 
the appropriation dynamic composition. The concept of learning community from 
the viewpoint of learner A owing to mutual composition is CA(x1) or CA(y). Table 10.1 
shows learner A’s appropriation 1 process as a speaker. The transformation of 
learner A’s concepts in this way indicates the transformation of learner A’s method 
of using signs.

Table 10.1 Learner A’s appropriation 1 process as a speaker

Initial state 
of concept

Consent or criticism from 
the learning community Appropriation 1

Learner A 
concept

Learner A’s concept of 
learning community

A(x) Consent 1 A(x) A(x) CA(x)
Criticism 1 A(x1) or A(y) A(x1) or 

A(y)
CA(x1) or CA(y)
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Next, we consider learner B’s appropriation 1 process as a dialogue listener. Let 
B(α) be the initial state of learner B’s concept as a listener. Publication of A(x) is not 
the same from the perspective of learner B and A because it is subject to historical 
and cultural restrictions based on learner B’s existing conventions and experiences, 
interpreted as a partially transformed x2. This is expressed as AB(x2). This AB(x2) 
indicates the state of learner A’s concept as interpreted by learner B. To analyze 
learner B’s appropriation process as a listener, we need to classify appropriation 
situations. First, we have three cases: the learning community agrees with, partially 
denies, and completely denies AB(x2). At the same time, after obtaining consent, 
partial negation, and complete denial of the learning community with regard to 
CB(x2), learner B needs to agree with his/her own concept α, partially deny it, or 
completely deny it, representing the three cases. Therefore, this will be divided into 
nine cases, that is, 3 × 3. The second is the classification based on the relationship 
between the concept x2 and the concept α. Here, we have four cases: concept x2 and 
concept α are independent, they have partial intersection, concept α contains con-
cept x2, and concept x2 contains concept α. Depending on these combinations, the 
classification results in 9 × 4 = 36 cases. Strict case classification requires more 
detailed case classification, for example, whether the partial negation part is at the 
intersection of the two concepts, to result in 36 or more cases. However, the purpose 
of making this table is to show how appropriation modifies the original concept, 
rather than analyze its detailed processes. The paper therefore discusses appropria-
tion considering only a part, that is, 24 of the basic 36 cases. Table 10.2 shows the 
process analysis of learner B’s appropriation 1 as a listener using the above simpli-
fied symbols and case classification.

The symbols in Table 10.2 are described in a supplementary explanation. In col-
umn No. 1 appropriation 1, “AB(x2), B(α)” indicates that the state of concept of 
learner B includes two kinds of concepts, AB(x2) and B(α). In column No. 2, “AB(x2) 
+ B(α)” indicates that learner B appropriates the concept combining the two con-
cepts of AB(x2) and B(α). Thus, column No. 2 shows that the state of concept of 
learner B transforms into the B(α1), which is an extension of B(α). In column No. 3, 
“AB(x2) ⊃ B(α)” indicates that concept x2 contains concept α. In column No. 6, the 
partially denied part of learner B’s concept α is expressed as concept Bsub(α). The 
concept excluding the partially denied Bsub(α) from B(α) is “B(α) – Bsub(α)”. Learner 
B then appropriates the idea of adding the concept to AB(x2) and shows that the con-
cept of learner B has been transformed into B(α3). In column No. 9 appropriation 1, 
“￢B(α)” indicates the complete denial of concept α.

From Table 10.1, concept A(x) of learner A may be of three types, A(x), A(x1), 
and A(y), through an appropriation. Moreover, from the perspective of learner A, the 
concept of the learning community may be of three types, CA(x), CA(x1), and CA(y), 
through an appropriation.

In Table 10.2, concept B(α) of learner B may become B(α), B(α1), B(α2), B(α3), 
B(α4), B(α5), B(α6), B(α7), B(x2), B(x3), and B(x4) through an appropriation. The con-
cept of the learning community can also be of two types, CB(x2) and CB (x3), from 
the perspective of learner B. Table 10.2 is an extract of a part of learner B’s appro-
priation 1 process. Therefore, at least 11 types of concept transformations and two 
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Table 10.2 Learner B’s appropriation process as a listener (partial excerpt)

No.

State of 
the 
concept 
of AB(x2) 
and (α)

Relationship 
between the 
concepts of 
AB(x2) and 
B(α) Appropriation 1

Learner 
B’s 
concept

Learner B’s 
concept of 
learning 
community

1 AB(x2): 
Agree
B(α): 
Agree

Independence AB(x2), B(α) B(x2), 
B(α)

CB(x2)

2 Have a partial 
intersection

AB(x2) + B(α) B(α1) CB(x2)

3 AB(x2) 
contains B(α)

AB(x2) ⊃ B(α) B(x2) CB(x2)

4 B(α) contains 
AB(x2)

B(α) ⊃ AB(x2) B(α) CB(x2)

5 AB(x2): 
agree
B(α): 
Partial 
negation

Independence AB(x2), B(α) − Bsub(α) B(x2), 
B(α2)

CB(x2)

6 Have a partial 
intersection

AB(x2) + {B(α) − Bsub(α)} B(α3) CB(x2)

7 AB(x2) 
contains B(α)

None None None

8 B(α) contains 
AB(x2)

{B(α) − Bsub(α)} ⊃ AB(x2) B(α4) CB(x2)

9 AB(x2): 
agree
B(α): 
Complete 
denial

Independence AB(x2), ¬ B(α) B(x2) CB(x2)
10 Have a partial 

intersection
None None None

11 AB(x2) 
contains B(α)

None None None

12 B(α) contains 
AB(x2)

None None None

13 AB(x2) 
Partial 
negation
B(α): 
Agree

Independence AB(x2) − ABsub(x2), B(α) B(x3), 
B(α)

CB(x3)

14 Have a partial 
intersection

{AB(x2) − ABsub(x2)} + B(α) B(α5) CB(x3)

15 AB(x2) 
contains B(α)

{AB(x2) − ABsub(x2)} ⊃ B(α) B(x3) CB(x3)

16 B(α) contains 
AB(x2):

B(α) ⊃ {AB(x2) − ABsub(x2)} B(α) CB(x3)

17 AB(x2): 
Partial 
negation
B(α): 
Partial 
negation

Independence AB(x2) − ABsub(x2), B(α) − Bsub(α) B(x3), 
B(α6)

CB(x3)

18 Have a partial 
intersection

{AB(x2) − ABsub(x2)} + {B(α) − Bsub(α)} B(α7) CB(x3)

19 AB(x2) 
contains B(α)

{AB(x2) − ABsub(x2)} ⊃ B(α) B(x3) CB(x3)

20 B(α) contains 
AB(x2)

{B(α) − Bsub(α)} ⊃ {AB(x2) − ABsub(x2)} B(α6) CB(x3)

21 AB(x2): 
Partial 
negation
B(α): 
Complete 
denial

Independence AB(x2) − ABsub(x2), ¬ B(α) B(x3) CB(x3)
22 Have a partial 

intersection
{AB(x2) − ABsub(x2)} − B(α) B(x4) CB(x3)

23 AB(x2) 
contains B(α)

{AB(x2) − ABsub(x2)} − B(α) B(x4) CB(x3)

24 B(α) contains 
AB(x2)

None None None
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types of learning community concepts may occur in an appropriation from the lis-
tener learner’s perspective. What is important here is that the appropriation as both 
speaker and listener changes the concept of both the learner and learning commu-
nity through the appropriation process. The learner and learning community are 
thus connected.

In addition, note the difference between the speaker’s and the listener’s appro-
priation variations. When the learning community agrees on concept x of speaker A, 
the concept of the speaker becomes A(x), the concept of the learning community 
from the speaker A’s perspective becomes CA(x), and the concept of the learning 
community from the listener B’s perspective becomes CB(x2). The three concepts are 
fixed but are not exactly equal. However, if AB(x2) is agreed upon when the concept 
of listener B is α, the concept of listener B may become one of six types, B(x2), B(α), 
B(α1), B(α2), B(α3), and B(α4), and not exactly match A(x), CA(x), and CB(x2). In 
particular, when the listener B’s concept is not B(x2), the variation of difference 
between learner B and others has many possibilities. This difference is present in 
almost all cases, whether or not the speaker’s concept is partially or completely 
denied. Even if the speaker and listener participate in the same dialogue, their 
appropriations may differ. This process is likely to lead to a different concept for the 
listener rather than speaker. Even in case of slight difference between the two con-
cepts due to appropriation, if the listener only listens to the dialogue continues with-
out speaking, the difference in concept with others may widen as the dialogue 
progresses.

Whether the learner is a speaker or listener, the appropriation process described 
above transforms the concept of the individual by triggering the publication of the 
concept, and the concept of the learning community also transforms accordingly. 
Thus, appropriation can completely solve internalization problems 1 and 2. The 
appropriation process analyzed so far reveals a certain degree of the process. 
However, it is difficult to say that problem 3 internalization, that is, how to know the 
thoughts and intentions of others, has been clarified. In the next section, we consider 
the process of appropriation based on intersubjectivity and try to solve internaliza-
tion problem 3.

10.5  Relationship Between Appropriation Process 
and Intersubjectivity

How can people know the thoughts and intentions of others? This is an issue at the 
starting point of appropriation also. We consider this from the perspective of inter-
subjectivity. Lerman (1996) argues that intersubjectivity has three aspects: aspects 
that become a subject through social practice, aspects of cognition contextualized in 
practice, and aspects of mathematics as cultural knowledge (Lerman, 1996, 
pp.142–147). Understanding others through intersubjectivity in practice leads to 
self-construction. Historical and cultural restrictions affect the connection and these 
restrictions are applied in mathematics learning. In other words, intersubjectivity 
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refers to the ability to understand the thoughts of others in practice. Intersubjectivity 
in mathematics learning is the starting point of mathematics practice for the learn-
ing community. In the learning community, self and others are not separate but con-
nected in practice (Roth & Radford, 2011).

How is intersubjectivity possible while understanding the thoughts of others? 
Steffe and Thompson (2000) argue that intersubjectivity can be built through dia-
logue and interaction with others. However, Lerman (2000, 2001) shows that inter-
subjectivity occurs in an individual’s mind before the actual interaction takes place 
with others. The timing for intersubjectivity to occur could differ.

Let us examine this difference from the perspective of developmental psychol-
ogy. In developmental psychology, intersubjectivity is defined generally as a “pro-
cess in which mental activity  - including motives and emotions  - is transferred 
between minds” (Legerstee, 2009, p.  3). This concept of intersubjectivity is an 
important factor in the development of the theory of mind and is divided into two 
types, primary intersubjectivity and secondary intersubjectivity, for discussion.

Primary intersubjectivity is the “innate or early-developing sensory-motor 
capacities that bring us into relation with others and allow us to interact with them” 
(Gallagher, 2013, p.60). When a two- or three-month-old baby tries to convey his/
her subjective mood through certain expression, the caregiver, for example, the 
mother, generates expressions that follow the baby’s expressions. Infants have then 
been reported to pay attention to their caregiver’s expressions and imitate them 
(Trevarthen, 1979). The caregiver’s expression is also a specialized form tailored to 
the baby and complements the baby’s expressions (Trevarthen, 1979). This period 
of primary intersubjectivity is the binary relational period when the interaction 
between the baby-other and baby-objects becomes conspicuous (Legerstee, 2005).

Secondary intersubjectivity develops around 9 to 12 months after birth, connect-
ing infants- objects-others and helping them gain new awareness (Trevarthen & 
Hubley, 1978). It is based on primary intersubjectivity. For example, assume that an 
infant is playing with blocks in front of his mother. If he happens to pile up the 
blocks well, his mother will exaggerate the act, and smile for him. His attention will 
then shift from the building blocks to his mother, intuitively noticing his mother’s 
joy and praise, and again shifting his attention to the building blocks in an uplifting 
mood. This shift of infant-objects-mother’s attention and the accompanying intui-
tive understanding of intention can help the infant gradually become aware of the 
triad relationship with self, objects, and others. “In secondary intersubjectivity, 
interaction is shaped by joint attention and the surrounding environment” (Gallagher, 
2013, p.64).

In developmental psychology discussions of intersubjectivity, human beings are 
considered to have the following two abilities: the ability to intuitively see the inten-
tions of others within the binary relationship of baby-caregiver and baby-object 
through innate or early-developing primary intersubjectivity, and the ability to intui-
tively know the intentions of others and be aware of the objects in the interaction of 
the triad relationship with others regarding the objects around the first year of life. 
This discussion of intersubjectivity in developmental psychology clarifies that inter-
subjectivity should not be regarded as consent through children’s dialogue. As 
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intersubjectivity occurs in infants without language speech, it is the ability to intui-
tively notice the intentions of others even when interacting with others without lan-
guage. Thus, intersubjectivity should not be viewed as taken-as-shared (Cobb, 
1999) through interaction in the learning community, including language and rea-
soning (Lerman, 2000). We will next consider the relationship between appropria-
tion and intersubjectivity.

According to the extended model in Fig. 10.1, sign use is conventionalized in the 
public/collective domain and can be appropriated in the private/collective domain. 
Appropriation will be further advanced in the private/individual domain. The con-
ventionalized sign is used in the private/collective domain as a mere imitation with-
out reflection. In other words, it is the stage where the learner intuitively grasps the 
meaning of signs as conventionalized by the learning community and begins to use 
them in the same way. This is the intersubjective understanding of the sign use con-
ventionalized in the learning community. In developmental psychology, intuitive 
awareness without language use is called intersubjectivity, but in normal mathemat-
ical learning, learning progresses through language. Therefore, the intersubjectivity 
of the learner at school can be reconsidered as intuitively becoming aware of the 
meaning of the learning object in the interaction using language. In the private/
individual domain, the meaning captured intersubjectively is reconstructed through 
reflective thinking with connecting learners’ own knowledge and experiences, and 
the method of sign use is reconsidered. Historical and cultural constraints can influ-
ence reflective thinking. The human-specific ability of intersubjectivity allows us to 
understand the intentions of others and deepen the meaning of the individual based 
on them. This is in line with the sociocultural approach principle of prioritizing the 
social aspects of the development of meaning (Vygotsky, 1978).

So far, we discussed appropriation as a concept to overcome internalization 
problem 3. Thus, appropriation was shown to involve two processes: intersubjectiv-
ity and reflective thinking. Correspondingly in Figure 10.1, it can be said that the 
first appropriation from the public/collective domain to the private/collective 
domain is made mainly by intersubjectivity, and the second appropriation to the 
private/individual domain is made mainly by reflective thinking. As the appropria-
tion process has been clarified to some extent, the problem of internalization can be 
overcome. Then, by clarifying the relationship between appropriation and intersub-
jectivity, a connection can be created between individual learners and the learning 
community, as in participatory appropriation (Rogoff, 1995). This connection will 
allow us to continue to create new meanings dynamically and mutually.

10.6  Two Meanings of Deviation in Appropriation

In this section, we focus on the deviation in appropriation and discuss it from the 
perspective of the weaknesses and strengths of appropriation. First, we discuss devi-
ation as a weakness. From the discussion so far, it is clear that the concept of speaker 
and community may easily deviate from the concept of listener in the process of 
appropriation. This can be observed from Tables 10.1 and 10.2 too. These 
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deviations may become even greater as the dialogue progresses and could be a 
major problem.

Here, we refer to the extended model in Fig. 10.1. A learner who does not speak 
but only listens to a dialogue does not pass through the public/individual domain in 
Fig. 10.1. However, appropriation begins after passing through the public/collective 
domain. Thus, learners can appropriate and enrich their own concepts to some 
extent by just listening to the utterances of others. After appropriation begins, the 
focus changes to whether to pass through the private/individual domain before lis-
tening to the next utterance of another person. One can go through the private/indi-
vidual domain to the public/collective domain or to go to the public/collective 
domain without passing through that domain. In Fig. 10.2, the former learner fol-
lows the path of the “dashed line a.” After appropriation begins, this process is as 
follows: reflect on the existing conventions and experiences, advance the appropria-
tion, transform one’s own concept, and listen to the next utterance. Clearly, this 
listener is thinking reflectively while listening to the utterance of others. A listener 
who self- regulates his/her own concept while listening to others’ stories using 
reflective thinking is called an active listener (Kosko, 2014). An active listener ful-
fills the feature of dynamic composition. However, we cannot find a process that 
leads to the learning community from individual thoughts because this learner does 
not disclose his/her thoughts to others. In Fig. 10.2, no arrow connects the private/
individual domain to the public/individual domain. Thus, the learning community 
and learner are connected not in both directions, but in only one direction, that is, 
from the public/collective domain. In this situation, mutual composition does not 
work well. In addition, because learners do not disclose their thoughts, the gap in 
appropriation remains. As the dialogue progresses, the gap is likely to increase. 
Active listeners who only listen to dialogues can deepen their learning; on the other 
hand, if they have differences with speakers, they are unlikely to be able to reduce 
differences. Further, they cannot contribute to concept formation of the learning 
community. This is a problem for learners who are active listeners.

Next, we consider the latter learner. This learner listens to the thoughts of others, 
begins to appropriate them without reflective thinking, listens to the next utterance 
of others, and re- appropriates them without reflective thinking. This is a cycle 
through the “dashed line b” in Fig. 10.2. Such learners often focus solely on prob-
lem solving and the superficial methods of others. For example, they may obtain the 
answer to a problem from another person and feel relieved if the answer is the same, 
or may ask another person how to solve the problem and follow the solution without 
inquiring further. If the answer is different or they have a question about how to 
solve the problem, reflective thinking intervenes to find a reason. In this case, the 
learner becomes a learner as active listener and hence becomes the former learner. 
The learner who does not think reflectively has little effect on the dynamic composi-
tion of the concept. Moreover, because the appropriation here is not bidirectionally 
connected to the learning community, it does not have a mutual composition. In 
other words, appropriation of learners who do not work reflective thinking just by 
listening to the thoughts of others becomes very superficial. This is the problem of 
the latter learner.
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Fig. 10.2 An extended model for the learner as a non-speaking listener

Thus, we highlight the features of appropriation once again. Appropriation is the 
inner working where the thoughts of individuals who are connected from the public/
collective domain to the private/individual domain via the private/collective domain 
work together. Sufficient appropriation requires two functions: intersubjectivity and 
reflective thinking.

So far, we considered two problems with appropriation deviation. However, the 
appropriation should be in the appropriate direction of the aim of learning. How can 
we ensure that our appropriation is proper? The answers to this question are pre-
sented in Tables 10.1 and 10.2. From a comparison of the number of concepts in 
Tables 10.1 and 10.2, Table 10.1 is extremely small. This indicates that if the appro-
priation is repeated for the speaker of the dialogue, the probability of approaching 
the proper use of sign is high. A more proper sign use can be achieved by repeating 
the appropriation only by listening, but the probability of achievement would be low 
because there are many types of concepts that can occur after appropriation. 
Repeating the appropriation as speaker of the dialogue may enhance its appropriate-
ness. If we are asked, “Why does dialogue deepen mathematics learning?,” we can 
answer this from the standpoint of a sociocultural approach: “If you repeat your 
appropriation as a speaker of dialogue, you can use the concept of mathematics 
appropriately because the appropriateness of appropriation increases.” However, if 
we are asked, “Will mathematics learning deepen without dialogue?,” our answer 
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could be, “It’s not that it does not deepen, but it’s less likely that the direction of 
deepening is appropriate than if you were the speaker of the dialogue.” The appro-
priation can be made more proper by becoming the speaker of the dialogue.

Second, we consider the deviation of appropriation as a feature. The appropria-
tion process is referred to as a “quite general process that can account for the emer-
gent creativity of social interactions and the growth of flexible expertise in learners” 
(Newman et al., 1989, p.143). The process of becoming an adaptive proficient can 
be explained by the chain of appropriation and the reduction in its gap by becoming 
the speaker of the dialogue. In this study, we focus on its creativity. Where is cre-
ativity related to the appropriation process? This is its own deviation. Table 10.2 
lists some of the possibilities of a wide variety of deviations. This includes the gap 
between the concepts of the learners interacting with each other and between the 
concepts of the learning community as seen by each learner. The cause of these 
deviations lies in the learners’ historical and cultural constraints. By interacting 
according to these deviations, each learner may misunderstand what he/she is talk-
ing about. Simultaneously, the learner may create a new concept not included in the 
speaker’s concept. In other words, the deviation of appropriation can be the source 
of creativity that leads to new ideas that the speaker did not intend. Fig. 10.2 shows 
the possibility of creating a new concept based on the deviation from the original 
concept. Therefore, deviation in appropriation can be a good feature.

10.7  Reconsideration of Appropriation Features

As mentioned earlier, appropriation is a “process that has as its end result the indi-
vidual’s reproduction of historically formed human properties, capacities, and 
modes of behavior” (Leontyev, 1981, p.422).” In this definition, the word “histori-
cal” is supposed to express the historical and cultural constraints and mutual com-
position. However, the phrase “as its end result” obscures the dynamic composition. 
In addition, in this study, we reconsidered the process of appropriation based on two 
features, dynamic composition and mutual composition, and the extended model in 
Fig. 10.1, which roughly depicts the process of appropriation. The following char-
acteristics have been pointed out in this research so far: the possibility of conceptual 
deviation between the speaker, listener, and learning community; intersubjectivity 
and reflective thinking in appropriation; appropriateness of appropriation; and cre-
ativity of appropriation. Therefore, the features of appropriation are summarized in 
the following six features.

Feature 1 (dynamic composition):Gradually forming one’s concept by speaking, 
while borrowing the concept of others.

Feature 2 (mutual composition):The concept of learning community is formed in 
the process of forming the concept of self.

Feature 3 (constraints and deviations):
Deviations occur in individual concept generation owing to historical and cultural 

restrictions of the learning community.
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Feature 4 (intersubjectivity and reflective thinking):
Appropriation is begun with the awareness of others’ intentions from intersubjectiv-

ity and is transformed one’s concept through own reflective thinking.
Feature 5 (appropriateness):
Becoming a speaker in dialogue enhances the appropriateness of appropriation.
Feature 6 (creativity):Deviation in appropriation creates new ideas.

10.8  Future Research

In this study, we reconsidered the concept of appropriation from a sociocultural 
perspective. We thus clarified the process of appropriation and presented its six 
features. These features will be useful when analyzing the process of appropriation. 
In addition, because many studies in the literature are related to the formation of 
individual concepts, a future research topic could be to compare and consider the 
process of appropriation of the learning community and individual learners. This 
comparative study will allow the formulation of a lesson design that would be easy 
for all children to understand. Objectification and subjectification are concepts of 
similar to appropriation that can be considered. Research on appropriation is an on- 
going process.
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Chapter 11
Towards a Philosophy of Algorithms 
as an Element of Mathematics Education

Regina D. Möller and Peter Collignon

11.1  Different Roles of Algorithms Throughout History

Before we concentrate on the meaning of algorithms in math education and in math 
classes, we outline the history of algorithms within mathematics to give a basis for 
the discussion. Nowadays the concept of algorithms is used in a rather broad range, 
since many subject matters refer to this notion, and they shape it along the respective 
desired usefulness or requirements. In the following, we describe the changes within 
history.

The history of algorithms as part of mathematics started in the very early days, 
as the systematic solving of mathematical problems is part of doing mathematics. 
The various algorithms were of different nature because they had different roles. For 
example, in Ancient Greece, Euclid (300 BC) gave a rule to calculate the greatest 
common divisor of two given natural numbers. Another well-known algorithm is 
the sieve of Eratosthenes, a step-by-step procedure selecting prime numbers from a 
given finite subset of the natural numbers. Both are widely accepted as subject 
matters on the level of elementary math classes throughout Europe and beyond. 
These examples show already the role of algorithms as simplifying tools for 
arithmetic procedures.

Several hundred years later, Al-Khwarizmi (approx. 780–850 AD) presented 
many mathematical applications for traders. Moreover, his oeuvre shows his insight 
in the significance of the digit “zero” (Vogel, 1963), which had an important impact 
on performing algorithms. Some of the mathematical rules were later on translated 
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into Latin with the title “Algorithmi,” containing the artificial word “arithmos” that 
is derived from “number” and the name of the mathematician (cf. Chabert, 1999).

All these algorithms were published for a circle of interested contemporary 
mathematicians, scientists, and philosophers and for future reference. At that time, 
these publications of various algorithms stood for a common approach regarding 
mathematical thinking and communicating.

Later, the published elementary calculations of Adam Ries (1492–1559 AD), 
who wrote a booklet (1574) on basic arithmetic operations (Deschauer, 1992), are 
an outstanding example for the use of algorithms because this publishing had great 
influence on his German-speaking contemporaries. He provided the reader with 
algorithmic procedures with respect to the four basic arithmetic operations (Möller, 
2002), which entails addition, subtraction, multiplication, and division. His 
publication had caused an “educational” enlightenment for the contemporary 
citizenship because the role that algorithms played in his books had a strong 
informative and educational impact at the same time. Knowing algorithms at that 
time helped the citizens to compute independently, and they did not need to hire a 
“Rechenmeister” any more in order to get arithmetic problems solved by paying for 
the solutions (Deschauer, 1992).

Further efforts followed a hundred years later from Leibniz (1646–1716) who 
used a binary code to design a predecessor of what we now call a computer. Ada 
Lovelace (1815–1852) followed him two centuries later as the first woman to write 
a complex version of what we name today a computer code. In the middle of the 
twentieth century, John von Neuman (1903–1957) and Alan Turing (1912–1954) 
built the ground for theoretical computer science. Eventually the development 
during the last 70 years shows a huge field of algorithmic applications.

In the second half of the twentieth century, the technical development of comput-
ers entailed an accelerated development of algorithms. Their distribution occurred 
rather hidden by new technical devices such as mainframe computers, home- and 
personal computers, and, later on, tablets and mobile phones. The use of the algo-
rithms immanent in various tools was often taken for granted.

The role that algorithms have played since the middle of the last century is a 
fundamentally different one compared to the one they played only several decades 
before. Then, the knowledge of algorithmic procedures helped the citizens to 
become independent because they could solve the problems independently. 
Similarly, concepts such as the greatest common divisor and the least common 
multiple were taught and the related algorithms applied. However, the contemporary 
user of applications employs algorithms of which he is often not even aware.

As observed, algorithms play an important role in the development of mathemat-
ics. Naturally, they therefore are an essential subject in math classes. Taking into 
account the significance of fundamental ideas (Führer, 1997) as well as the postulate 
that math classes should develop and foster general education (Heymann, 2013), the 
concept of algorithms should be therefore in the center of didactical 
considerations.
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11.2  The Traditional Role of Algorithms in Math Classes

As clarified in the first section, the algorithms themselves and their significance in 
everyday life as well as in mathematics classes have changed over the centuries. 
During the period of the ancient Greek mathematics, algorithms consisted of 
arithmetic procedures. In the twentieth century, we face a new phenomenon, as 
there is a strong tendency hiding algorithms behind technical devices. In how far do 
these changes influence the impacts of algorithms, especially in mathematics 
classes?

In the last 30 years, the role of algorithms, nowadays understood as a fundamen-
tal idea and their importance for mathematics education, has undergone substantial 
changes. This gives reason for defining an appropriate postulate for actual math 
classes as response to everyday life experiences, influenced or even determined by 
algorithms. From a philosophical point of view, new questions arise that can be 
considered within the framework of (post-) modernism and within a constructivist 
approach since the nature of algorithms suggests this access of reflection.

By analogy with the spiral principle, often applied to teach numbers, it seems 
plausible to structure the school curricula with algorithmic endeavors likewise in a 
spiral way, following Bruner (1976). Modern mathematics lessons are characterized 
by the use of algorithms and their careful reflection, accompanied by various 
devices. This relates to primary and secondary level as well.

Already in elementary school, even the four basic arithmetic operations, per-
formed on paper, are of algorithmic nature. Furthermore, prime numbers are found 
within a finite set that is called the sieve of Eratosthenes. This includes electronic 
devices such as pocket calculators and modern hard- and software in general as well 
as non-electronic instruments such as the abacus and calculi. Additionally, algorith-
mizing mathematical teaching on the primary level is increasingly supported by a 
variety of software. Contemporary examples for the primary level are the 
ActivInspire, ClassFlow (Promethean), and the Learning Suite software (SMART). 
Textbook publishers (Klett, Cornelsen, etc.) provide interactive whiteboard images 
on their websites, offer digital material to accompany the textbooks they publish, 
and in some cases also have learning programs in their range. The Calliope Mini is 
available on the manufacturer’s website with a collection of various applications in 
the classroom. With its Education series, LEGO also has various offers for the use 
of programmable, digital artifacts. Additionally worth mentioning are the products 
Dash, Ozobot, Thymio, Bee-Bot, Makey-Makey, Little-Bits, Cubelets, Matatalab 
Coding Set, mTiny, Scratch, and Snap, all of which were developed with a view to 
possible use in educational contexts and some of which already have suggestions 
for use in mathematics lessons.

In secondary school, linear equations can be solved by a step-by-step-procedure. 
Additionally, students on this level need to sketch curves, and they perform this task 
often in a way that is more or less algorithmic. With the Gaussian algorithm, systems 
of equations are solved. In recent years, students have started using geometric and 
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algebraic software (CAS, DGS, Mathematica), often not being aware of the hidden 
algorithms driving these tools. Essentially, they use the tools like a black box.

The use of devices supporting the teaching and learning of mathematics came a 
long way. Long before the tools were electrified, various instruments suited for the 
realization of certain algorithms mattered. Moreover, one can observe a methodical 
algorithmization of mathematics itself, independent of machines (Krämer, 1988). In 
the following, we aim at a common view on more or less modern electronic devices, 
traditional appliances based on mechanical principles and eventually the 
formalization of algorithmic approaches within mathematics.

11.3  Changes in the Phenomena of Algorithms Resulting 
in Challenges for Math Classes

The role that algorithms play within technical devices is a fundamentally different 
one compared to the one they played before. Nowadays, the user of applications 
uses algorithms of which he is often not even aware.

The content of the curriculum for algorithms in math classes neither gives an 
overview nor does it exemplify typical algorithms used in todays’ IT tools. Looking 
at the entire school time, we therefore question the role the curricula play in regard 
to the fundamental idea of algorithm. Our critique aims at the non-fulfilled task in 
this field since it does not reflect the actual common use in rapidly changing times 
(Ernest, 2016, p. 12).

One could divide the devices into those with and those without electricity. In 
earlier days, the focus of teaching within mathematics classes was influenced by the 
use of devices such as the abacus, slide rules, and logarithmic tables. Generally 
speaking, algorithmic thinking starts in school with the four basic calculations, after 
all in written form. However, these calculations are usually done without naming 
them as algorithms.

The naming of algorithms in school (or math classes) started just some 30 years 
ago in Germany which goes along with the discussion of the fundamental ideas. 
Especially in the last 10 years, tools such as bots and others were introduced in math 
classes with the idea that schoolchildren need to learn algorithmic thinking. With 
the help of these tools, the children are expected to get a first access to algorithms 
and even to simple programming. One assumes that this fosters algorithmic thinking, 
which should start on an elementary level.

Against the background of the temporary German separation, we present in the 
following a very short overview that depends on the different pedagogical and 
philosophical background of the Federal and Democratic German Republic, 
respectively. It is an example for two independent developments and the partly 
insufficient reflection.

Weigand (2003) provides an overview of the role of the pocket calculator in the 
federal states of the former Federal Republic of Germany in comparison to the 
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former German Democratic Republic. On the basis of these considerations, lessons 
for the present and future use of the computer in mathematics education can be 
derived.

In Germany, the slide rule was admitted as an aid on an equal footing with loga-
rithmic tables in 1925. In the Federal Republic of Germany, these tools were 
replaced by a standardized slide rule in 1958 by resolution of the Conference of 
Ministers of Education and Cultural Affairs. They were subsequently also used in 
lower secondary education. The first pocket calculator came onto the market in the 
Federal Republic of Germany in 1972; in 1974, sales figures were at a temporary 
peak. It was approved for use in mathematics classes starting in 1976, usually from 
grade 7. In the German Democratic Republic, the pocket calculator (“SR1”) was 
introduced into the school curriculum in 1985, also usually from grade 7.

As goals, the German Society for Didactics of Mathematics (GDM) demanded 
in a statement in 1978:

• The facilitation of experimental student activities within the framework of learn-
ing by discovering (“Entdeckendes Lernen”) and problem solving

• A concrete numerical starting point for conceptual formations
• The realistic handling of application tasks by means of numbers appropriate 

to reality
• The relief of activities which are not of central importance for the solution of the 

task at hand
• Access to algorithmic thinking
• Problem-adequate practical phases

In retrospect, it can be said that these goals were only partially achieved. A long- 
term careful preparation and a timely and elaborated didactical theory were and are 
missing. Essentially, previous exercise and task formats were now also processed 
with the help of the calculator. Weigand (2003) merely notes a certain increase in 
trigonometric tasks to be treated numerically, accompanied by an increasing 
emphasis on stochastic topics.

In the German Democratic Republic, a report of the Academy of Pedagogical 
Sciences was published in 1979 calling for empirical monitoring of the introduction 
of the pocket calculator. In Fanghänel and Flade (1979), the notion of “arithmetic 
culture” was emphasized in this context, which was directed against a surrender of 
arithmetic skills. It is noticeable that early on the discussion was also devoted to the 
“design” of pocket calculators, for example, regarding the question of whether it 
should abbreviate the arithmetic processes of calculating percentages. What 
remained controversial was the role of calculating aids for weaker students, who on 
the one hand (superficially) benefited from the pocket calculator, but on the other 
hand – partly – had their strengths in relation to “simple” arithmetic.

Both in the Federal Republic and in the German Democratic Republic, the intro-
duction of the pocket calculator was viewed critically by parts of the teaching com-
munity. Motives ranged from concerns about students’ arithmetic skills to a feared 
distortion of the concerns of mathematics education. It has not been sufficiently 
investigated to what extent subjective motives such as individual insecurity already 
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played a role. Roughly speaking, the ideological differences in these two societies 
are reflected by the educational politics. It may be assumed that many teachers were 
aware that a didactically consistent introduction of the calculator would have to 
result in far-reaching changes with regard to the teaching procedures.

In the Federal Republic, such changes have been addressed by Kirsch (1985), 
among others, and he stated that now the interest even turned to computers “even 
before the existence of simple pocket calculators and their – actual or desirable – 
effects on mathematics teaching had been satisfactorily worked out or realized in 
practice.”

11.4  Towards a Philosophical Approach of the Meanings 
of Algorithms

In the following, we start observing several aspects of algorithms that enlighten the 
relationships to neighboring sciences.

11.4.1  Preliminary Philosophical Considerations

On the basis of the current situation, characterized by the wide availability of com-
puting speed and storage space, the algorithms, though hidden, generate an enor-
mous force. This fact leads to dramatic changes in everyday life and modern 
economy (O’Neill, 2016). Furthermore, this process will continue, provided the 
computing speed and the storage space is growing at the current rate.

All these developments lead to social and educational effects and phenomena of 
which we have no previous experiences. These observations call for an investigation 
from a philosophical point of view. With his contribution on philosophy of 
mathematics education, Paul Ernest (2016) provides us with many and rather broad 
questions for further detailed reflections. One of his questions refers to the 
relationship between mathematics and society. This holds, because all devices of 
information technology rely on mathematics in digital processes. Another of his 
essential questions centers on the role of teaching and learning in fostering or 
hindering critical citizenship. He also questions the functions that mathematics 
performs in today’s society, and which of these are intended and visible. In the case 
of modern use of algorithms, transparency is a delicate issue for very different 
reasons; it is due to complexity culminating in hidden data collections or data mining.

Looking at educational aspects, Ernest (2016) poses the question: Does mathe-
matics education have an adequate and suitable philosophy of technology in order 
to accommodate the essential issues raised by information and communication tech-
nology? This is of high relevance because the idea of the algorithm is a fundamental 
one for math classes (Führer, 1997). For more than three decades, the notion has 
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been extended in particular regarding its meaning in daily routines. Meanwhile, 
there is a great discrepancy between algorithms belonging to the curricular mathe-
matical topics versus the algorithms that build the foundation of modern informa-
tion technology, carrying us as far as the simulation of a human brain (e.g., artificial 
intelligence).

Against this background, the question arises in how far mathematics instruction 
should consider these challenges and find new ways to address them, that is, to what 
extent and with which mathematical tools this might be achievable. The answers to 
these questions are of crucial importance because society expects math topics and 
their teaching to contribute to general education throughout the school years 
(Heymann, 2013).

According to Heinrich Winter (1996), who stressed three basic experiences 
(“Grundvorstellungen”), mathematics education should be designed in such a way 
that it enables us to perceive and understand phenomena of the world around us, 
which concern or should concern all of us, from nature, society, and culture, in a 
significant way (first basic experience). There is no doubt that increasing digitization 
produces phenomena that shape our contemporary everyday experiences, and they 
do concern and influence us. These observations lead to the following questions: 
How can mathematics education adequately meet the requirements arising 
therefrom? How can it contribute to encountering the phenomena of digitization 
from an enlightened perspective and with sound judgments?

For decades, the aim of many mathematics educators, especially Heinrich Winter 
and Fischer and Malle (1985), consists in fostering a deep and integrated 
mathematical understanding, in particular on the field of applications. The intentions 
were focused on the interaction of mathematics, the issues of its applications and 
everyday situations.

Engel (1977) pointed out early the necessity of a theoretical reappraisal of the 
concept of algorithm. Shortly after the introduction of pocket calculators into 
German school teaching and at the beginning of an increasing algorithmization of 
mathematics teaching in the context of the emphasis on applications, he put the 
algorithms as a fundamental idea on the same level as the concept of function: At 
the turn of the century (meant here: the turn from the 19th to the 20th century – 
authors’ note), Felix Klein initiated a reform of mathematics education. The reform 
movement adapted the keyword “functional thinking.” The concept of functions 
was to permeate the entire subject matter as a guiding concept. Due to the wide-
spread use of computers and calculators, the time has come for the next reform 
represented by the keyword “algorithmic thinking”. The concept of algorithm 
should serve as a guiding concept for school mathematics. We have to rethink the 
whole school material from the algorithmic point of view (Engel, 1977, p.  5. 
Translation by the authors).

Engel wrote this in the 1970s. It should be remembered that the Meran Reform, 
especially stressing functional thinking (Vollrath, 1989), was not systematically 
incorporated into school teaching in Germany until after the Second World War. 
From some mathematics educators’ perspective, it can even be considered a failure 
(Krüger, 2000).
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11.4.2  Further Philosophical Observations

We need to pay attention to the conditions that caused today’s “explosion of algo-
rithms,” which is what Lyotard (1984) calls the “postmodern perspective.” 
Accordingly, postmodernism calls for a skeptical view. For this purpose, we need to 
take notice of the underlying meta-narratives, on which many different fields have 
an impact. Therefore, analyzing (that means deconstructing) meta-narratives 
requires retracing historical developments and the decisions made on the way. This 
endeavor reveals choices that were taken along the historical genesis within each 
relevant field. Information technology, the technical realization of algorithms, is 
largely driven by the belief that the age of technology would bring nothing but 
progress. This conviction about the ongoing technical progress is closely related to 
the meta-narrative of perpetual economic growth.

What is needed today is a discussion about the role of contemporary mathemat-
ics instruction, especially if mathematics education still holds the claim of being 
part of a broad general education, preparing also for future demands. This is achiev-
able through a social contract facing the new challenges arisen. It has to be clarified 
to what extent school education should be responsible with regard to its pedagogical 
task in general (Skovsmose, 2011).

At the same time, there is a need of including the curricula of other subjects 
involved, such as information technology, social studies, and even, given an 
appropriate opportunity, philosophy and theory of science. The main issue in 
question is not of technical nature, but it is about the impact on math classes and 
phenomena that were completely unknown until recently and that involve fascinating 
opportunities and enormous threats at the same time. In any case, the perception of 
(mathematics) education must reflect the corresponding processes.

The modern teaching of algorithms can be split into two aspects: one, which is 
taught on the elementary level with a close relation to school mathematics and in 
terms of a fundamental idea (Führer, 1997), and the other, where sophisticated 
algorithms built in technical devices create new and complex phenomena. This 
observation needs a reflection, especially a philosophical one, in how far math 
classes should build a fundamental knowledge for these new phenomena under a 
mathematical view.

11.4.3  Algorithms and Their Connections Within Sciences

Considering the two aspects mentioned above in detail, one can identify the rela-
tionships between the notion of algorithms and the field of mathematics itself, the 
curricula for math education and, of course, the modern field of computer science. 
All these relationships can be found in the broader framework of real-life situations, 
whereby the use and the impact of algorithms as well as the related consequences 
have undergone tremendous changes.
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Nowadays, the algorithms behind apps and programs are mostly hidden. 
Everyday examples are cash machines, ticket automats, and recent apps collecting 
data relating to pandemic processes, not to mention social media. Many more 
algorithms can be part of business plans and therefore be looked upon trade secrets. 
Examples are search machines as well as scoring procedures of any kind (O’Neill, 
2016). As mentioned above, there are algorithmic procedures behind modern 
machines and digitized tools that the average person is often not aware of in everyday 
life. Meanwhile, the number of hidden algorithms radically outnumbers those 
known and keeps growing daily (O’Neill, 2016).

With the ongoing digitization, algorithms must not only be looked upon as a part 
of mathematics but also and self-evidently as an important part of computer science. 
They constitute a major role for programming and are therefore a basis of 
contemporary information technology. Figure 11.1 shows these relationships and 
also some further correlations.

From the perspective of general and mathematics education, the concept of algo-
rithms as part of mathematics is consequently a part of mathematics curricula. This 
means it is of importance to clarify what kind of algorithmic knowledge is neces-
sary for general education. In the light of contemporary discussions around digitiza-
tion, the concept of algorithms turns out to be an important factor in modern 
mathematics education. Looking at the curriculum, it is also apparent that algorithmic 
thinking is by far not stressed enough.

Within teacher education, especially on the elementary level, it becomes often 
apparent that the understanding of scientific theory as a particular formation of how 
the world can be looked upon and can be interpreted with a set of particular 
mathematics concepts and can be extended. Students often regard mathematics only 
as a set of rules to be followed. Therefore, the subject of algorithms should keep the 
freedom of search, rather than following a given scheme. According to Freudenthal 
(1983), elementary algorithms could be (re-)invented by students. Here, like in 
other fields of mathematics classes, it is a question of how much, or how early 
within the learning process, such aspects of algorithmic thinking should be a subject. 
Recently, bots and similar devices are programmed by pupils in math classes, even 
on the primary level (Möller et al., 2022).

Fig. 11.1 Algorithms and 
their connections to related 
disciplines, illustrated in 
the form of a simple 
mind map
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11.5  Conclusion and Outlook

Moreover, in teacher education, it is of special didactical interest to explore to what 
extent teacher students recognize and understand algorithms while doing 
mathematics. It is especially important for future teacher to evaluate when algorithms 
can be looked upon as “black boxes” and when they should be explored in detail. 
The development of this kind of educational judgment is an essential part for 
providing general education within math classes. This idea could be put into the 
center of further developments of algorithmic thinking activities. Along with 
Freudenthal’s “Mathematics as a pedagogical task” (Freudenthal, 1973), one should 
also consider the teaching and fostering of algorithmic thinking as a pedagogical task.

The philosophy of mathematics education – and in particular the constructivist 
view – should establish a basis for adjusting mathematics instructions appropriately 
(Roberge & Seyfert, 2017). With their aspiration about the computational 
construction of reality, we observe that a constructivist explanation of these new 
phenomena is in the very nature of things.

This may enable advanced students to adopt an adequate epistemological per-
spective. In this context, the modeling aspect is included as a consequence of the 
constructivist view on the subjects under (mathematical) investigation (cf. Ernest, 
2016). Among other things, this approach facilitates an unconventional access to 
Freudenthal’s method of reinvention (Freudenthal, 1983).
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Chapter 12
The Times of Transitions in the Modern 
Education

Małgorzata Marciniak

12.1  Introduction

As the confusing times roll through, we reflect more and more about what happened 
during the years when the restrictions motivated by pandemic flipped around the 
reality for most of us. As an educator and a journal editor, I am tempted to reflect on 
transformations in mathematics education based on my own observations and on 
professional publications. During the past 2 years, a substantial fraction of article 
submissions centered around challenges of successful conversion from in person to 
remote education. They were frequently recalling an overwhelming drama of the 
first months of the sudden and urgent transitions from in person to remote modality 
of instruction. The energy behind the changes was rushed thus resembling 
revolutions and remaining in opposition to slow-paced transformations motivated 
by professional development.

Revolutionary changes are not exclusive to political or socio-economical human 
history but are frequently observed in nature as giant stellar collisions, mass 
extinctions of species on Earth, or in the growth of natural sciences as presented in 
1962 by Kuhn (2012). Multiple attempts have been made to dispute, modify, or 
generalize the original idea of scientific revolutions. In the light of that concept, 
Ellis and Berry III (2005) discussed the paradigm shifts in mathematics education 
in the USA related to what is meaningful in mathematics and how it should be 
tested. This work sees the entire education, and in particular, mathematics education 
as a science with certain paradigms that can experience slow modifications motivated 
by professional development or revolutionary changes motivated by other factors, 
for example, the pandemic. To give a suitable background to the idea of revolutionary 
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moments in education, in particular mathematics education, I will analyze three 
pivoting situations from history: introduction of compulsory education, secular 
education, and public education available to everybody. The shift of the paradigms 
which took place in the past, currently shape our presence and future. Then I will 
present the current moment and its short-term implications making some mental 
simulations of future possibilities.

12.2  Pandemic Articles and Observations

To give a brief overview of sample pandemic-themed articles, I will use examples 
from the Mathematics Teaching-Research Journal (MTRJ), since I am an editor and 
have insight into the publications. The first pandemic-themed submission arrived as 
early as in spring 2020 and analyzed instructor’s creative processes which bloomed 
due to the change of circumstances. Marciniak (2020) saw the pandemic as another 
opportunity to further develop instructor’s creative thought in the mathematics 
classroom. Another creativity paper was published in the fall 2020 issue of MTRJ 
and discussed from the perspective of the theoretical framework the moments of 
students’ creative insights observed by a mathematics professor Baker et al. (2020) 
during remote classes. Another submission from the same issue of the journal 
discusses advantages and disadvantages of the remote teaching emphasizing aspects 
relevant for students’ success in remote classes (Fuchs & Tsaganea, 2020). Wang 
(2021) analyzes benefits and hindrances of the remote mathematics instruction and 
goes few steps further in her investigations by collecting data throughout few 
semesters. Here the author connects learning outcomes with various aspects of 
remote learning environment, in particular students’ class activities.

Assessment and self-reflections are highlighted by Caspari-Sadeghi et al. (2022) 
as a key to students’ success in online learning of mathematics. Ariyanti and Santoso 
(2020) claim that remote learning of mathematics created lower scores and more 
frustration among high school students in Indonesia. But on the other hand, teachers’ 
digital skills were discovered by Khanal et al. (2021) as the main factor of learning 
outcomes and positive experience in mathematics classes in Nepal. Only one 
submission discussed truly challenging situations experienced by Indonesian 
students and teachers from rural regions. After performing few hundred interviews 
by WhatsApp with math teachers, Tanujaya et al. (2021) suggested blended learning 
instead of purely remote learning due to insufficient digital infrastructure: poor 
Wi-Fi signal and unreliable electronic skills and devices.

The education during pandemic was equally challenging from the perspective of 
parents, pupils, and educators with each group facing their own difficulties and 
finding their own solutions. In academic publications, the educators express their 
progress while the others, parents and pupils remain silent. While speaking with 
parents and grandparents about challenges, I heard of difficulties managing their 
work time with teenagers and kids being crammed in small spaces with limited 
access to technology. During one of committee meetings performed via zoom, I 
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heard a daughter of my colleague complaining that the parent took the computer for 
too long preventing her from playing video games. Apparently, the time for work 
and play of various family members was confused due to overlapping schedules.

The educators had to manage their classes using a different modality, provide 
instructions, assign homework, create quizzes and tests remotely, grade students 
work, and then provide feedback. While some converted their courses with minor 
difficulties, others had really a hard time managing technology entirely new for 
them. The population of teachers split into those who before pandemic knew and 
used technology daily and those who had to learn it within a week.

The students reported fatigue due to a large amount of time spent at the desk and 
looking at computer screen, insufficient learning skills while tempting video games 
and social media being right at their reach. With experience, all three groups learned 
to manage their time, attention, and resources while admittedly looking forward for 
the end of this enforced new reality.

12.3  Kuhn Theory

Looking through the history, one can see that pivoting moments and sudden changes, 
motivated by circumstances or revolutionary mandates, created by the governments 
shaped the education more intensely than the slow growth. This idea stays in an 
alignment with the theory of Thomas Kuhn of the revolutions in sciences, where the 
times of peaceful growth are alternated with times of stormy reorganizations.

In brief, Kuhn’s idea of revolutionary growth of sciences combines slow growth 
within certain range of the paradigms together with sudden, pivoting growth that 
influences and eventually changes the paradigms. Kuhn calls the times of slow, 
regular growth “normal science” and the pivoting moments are for him the 
revolutionary times of the “paradigm shifts.”

This alternating nature of the shape of the growth of science reminds of a self- 
sharpening mind, which gets ready to sharpen after accumulating new experiences 
and then improves itself by reorganizing certain aspects but keeping others. 
Similarly, having limited tools of discovery, early science was limited to questions 
it could ask but once the horizon expanded the toolbox enlarged, and renewed 
science could ask more insightful questions. This renewal is a repetitive event. It 
appears that education, and in particular mathematics education, goes through 
similar processes of alternating transformations that resemble slow growth and 
revolutionary leaps. Slow growth in education is based on discussions and 
conversations leading to reforms. The leaps are based on sudden changes which 
may result is spectacular effects.

The phases of growth of education can be expressed as follows. Pre-paradigmatic 
phase of education took place at the start when no general paradigms are well 
established. During those times, education was very much individual and depending 
on the capacity of the teachers and the students. This phase was experienced before 
education became compulsory. Once education became compulsory, certain 
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standards were set by the educators (government or religious institutions) and 
education reached the stage of stabilization. When applied to science, this phase 
would be called normal science. But when applied to education we could call it 
normalized education. Well-functioning paradigms can remain for some time in 
science and education, but once a form of crisis appears the paradigms must be 
revised. In sciences, crisis usually is a result of deep insight of some scientists who 
announce their revolutionary results. But in case of education crisis may be a result 
of political or socio-economical transformations which appear to be independent of 
the work of teachers and students. However, in fact, they are a result of accumulative 
mindset growth of the entire population, accomplished  thank to education of the 
previous generations. Once the new paradigms are set, the new normalized period 
begins. But just like in sciences, the accomplishments in the light of new paradigms 
may not be comparable with the previous ones due to incommensurability of the 
paradigms. Thinking in terms of science one would not be able to properly compare 
the value of work of astronomers who worked in the heliocentric or in the geocentric 
theories. Similarly, in case of the times of the pandemic, it is difficult to properly 
compare students’ accomplishments before and during the pandemic since the 
styles of teaching and testing were so distinctive.

For the purpose of further discussion, a brief description of certain paradigms 
which function in (mathematics) education is provided below. Some, such as the 
details of the curriculum and the ways of testing, are always timely and generate 
heated discussions.

 1. Structure and funding of education. Shall it be public or private? Who should 
fund schools and furnish teachers’ salaries?

 2. Evaluation and accreditation of schools. Which schools are “good” and how it is 
measured? How can schools improve?

 3. The detailed content of the curriculum: what is taught and how. This paradigm is 
particularly important for mathematics education due to challenging nature of 
successful teaching and learning math which requires effort from both, the 
teachers and the students.

 4. Recruitment and evaluation of students. Who is accepted at the schools and 
remains there. What knowledge and skills are tested and how. The problem of 
accurately testing math skills remains highly disputable due to sensitivity of the 
human mind to external disturbances from the environment and internal 
disturbances created by anxiety.

 5. Selection, training, and evaluation of teachers. How the traits of “good” teachers 
can be encouraged by professional development.

 6. Assessment of the efficiency and established ways of modifying the points 
above. Since every paradigm goes through certain slow transformations, it would 
be valuable to verify whether such paradigm is somehow improving. Mathematics 
teachers frequently receive negative feedback from students and parents who 
express their dissatisfaction related to the difficulties with course material and 
low grades. Up to what extent, if any, should the content of math lessons be 
dictated by students’ low achievements?
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While discussing pivoting moments in the history of education, I will point 
toward that paradigms that were in the center of the revolution.

12.4  Pivoting Moments in History

Touching upon few pivoting moments from the history of education help with 
understanding the importance of challenging times in the process of shaping modern 
education.

12.4.1  Compulsory Education

In a common language, we speak about education being mandatory for all children 
within a certain age range. Professional language calls it compulsory education. It 
has been a relatively recent accomplishment (since 1739) to introduce compulsory 
education for children within certain age range. Three European countries, namely, 
Denmark, Prussia, and Austria implemented it already in the eighteenth century and 
a long list of others joined in the nineteenth century. Still, a number of countries 
worldwide joined in the twentieth century with just few exceptions existing in the 
modern times. One of them is the Vatican City, which is the residence of the pope 
and apparently does not have to worry about educating young citizens. The 
introduction of compulsory education was imposed by the governments partially to 
avoid child labor and partially to prepare future citizens to contribute to the 
developing industries. In many countries, this change overlapped with the early 
growth of industrialism and factories but gaining momentum of its own, motivated 
the growth of thought and technology.

The origins and motivations of the early compulsory education in the first coun-
try that introduced it (Denmark) took place in the medieval ages. Early twelfth- and 
thirteenth century catholic schools already existed in Denmark, but their motivation 
was to prepare the students for theological studies teaching mainly reading and 
writing in Latin and Greek. New needs appeared with the spread of Pietistic 
Lutheranism which required common people to study the Bible and apply biblical 
doctrines for individual piety. Thus, even before introducing compulsory education, 
Denmark already developed and tested in practice the concept of educating common 
people in its 240 Calvary schools. The growth of philanthropy induced by the 
philosophical movement of Enlightenment brought additional funding and allowed 
education for all children. After Denmark, other countries began expanding the 
concept of educating common people to the concept of educating all people.

At that time in history, mathematics in a form of basic arithmetic was often 
taught together with natural sciences. Introducing compulsory education did not 
influence the subject but significantly changed the form and quality of mathematics 
exposition. Learning got converted from being tuned to the needs of an individual to 

12 The Times of Transitions in the Modern Education



244

normalized lecturing for nonhomogeneous groups. This destroyed the fine 
connection between the teacher and the pupil. Moreover, enlarging the distance 
between the teacher and the pupils reduced teacher’s insight into attention and the 
process of learning.

It was and still is a duty of a local community to organize a suitable space for the 
school and pay for the teacher(s) who provide teaching instructions. In all countries, 
before compulsory education was introduced, some education already existed for 
the rich or the select few, who received non-standardized schooling from tutors and 
governesses. It was the poor children for whom the mandatory education really 
made a significant difference. Since compulsory schooling in its early years was 
introduced in countries with rural profiles and most poor people lived in villages, 
the first school calendars were tightly coordinated with the farmers’ almanac of 
planting and harvesting. This way, the summer months were left for harvesting 
while the winter months were left for schooling.

Introduction of compulsory education was certainly a revolutionary change for 
all three groups, the parents, the pupils, and the teachers. The parents suddenly had 
to give their children away to the schooling institutions, exposing educational 
insufficiencies of their own family. Lack of intellectual and material resources 
together with signs of child abuse and neglect became evident to the entire 
community. Imagine overwhelmed and living-in-poverty adults, who did not give 
much attention to their children and did not care for their growth, mainly focusing 
on making daily living were suddenly called to give their children away, hold 
responsible for their behavior, and provide books, clothing, and respect the teachers.

I can only imagine the reaction of free-running children raised mainly outdoors 
and used to heavy farm work who suddenly had to obey strict rules of desk-and- 
chair schooling days, namely, not used to sitting still for an hour, not used to obey a 
stranger, not trained in focusing attention on abstract ideas. And most importantly, 
not seeing how these abstract concepts could possibly be useful in their daily life at 
a farm, while performing the same tasks as their parents. Even such basic skills as 
reading and writing may have been seen as unnecessary and fruitless.

At the same time, the children of the rich had to obey the same rules and partici-
pate in mandatory schooling abandoning the cozy feeling of home schooling. For 
most of them, it may have been quite a shock to realize the depth of the poverty of 
other children living in the near proximity. While mandatory schooling opened up 
the world for the poor, it as well opened up the eyes of the rich children to the 
extreme unevenness of the resources bringing confusing feelings or exaltation 
mixed with empathy.

The tutors of the rich went through quite a challenging moment shifting from 
individual, non-standardized education to group education based on school programs 
and uniform curricula. Lack of freedom was probably not the biggest issue for new 
instructors but lack of experience managing a group of pupils not used to rigid 
discipline. That was probably the motivation of strict discipline rules in the early 
classrooms.

Some criticized compulsory education claiming that this style of group learning 
does not support individual strengths and violates children’s freedom. Others 
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claiming that mandatory education is a form of a political game and control over 
entire populations. But not everybody knows that the concept of compulsory 
education was already presented by Plato in The Republic (c. 424–c. 348 BCE) as 
explained by Allen (1989). In Plato’s mind, the perfected society required their per-
fected citizens go through a process of perfection, which had to be accomplished by 
popular and mandatory education. This concept was remodeled by Marsilio Ficino, 
a Catholic priest and scholar during Renaissance. Similarly, Enlightenment philoso-
pher, Jean-Jacques Rousseau was advocating for mandatory education for all.

At those times, it took over 2000 years for an abstract concept of compulsory 
education to crystallize and become reality.

One of the arguments of the times of the introduction of the compulsory educa-
tion was that students should be able to read the Bible on their own, which, ironi-
cally, motivated as a counteraction, another pivoting moment in the history of 
education, which is a conversion from religious to secular education.

12.4.2  From Religious to Secular Education

This process was much more complicated and very much dependent on the local 
region and culture. Moreover, religious education still exists and is doing very well 
within many groups and cultures, for example in Jewish communities as in Rosenak 
(2011). So, the transformation is not based on disappearance of the religious educa-
tion but on rebalancing the time and efforts from learning religious subjects to learn-
ing in terms separated from religious authorities.

Originally religious education was created by the religious authorities for a vari-
ety of purposes with the main intention of being somehow useful within the reli-
gion-ruled society. Not limited to western world neither enclosed within certain 
historical brackets, religious education may have taught rituals, beliefs, or doctrines. 
Considering the Medieval Age education as an example, students then studied 
reading, writing, and arithmetic together with theology and the art of conversation. 
Due to established nature of arithmetic, the conversion to secular education did not 
affect teaching of mathematics as much as if affected humanities or natural sciences.

In the times, when sciences were limited to few books and writing skills were 
scarce within society, religious education took a significant part in the growth of 
individuals. Actually, when the educated people were gathering around religious 
centers such as orders and churches, it was assumed that the core of their education 
was religious.

Secular education has its roots in broadly understood secularism. To explain the 
motivations of the secular education, it is necessary to have a close look at certain 
aspects of secularism in politics and the so-called separation of church and state. 
Philosophical view of secularism is based on interpreting life as a result of the 
material world and not in terms of spiritual or religious aspects. It emphasizes 
equality before law and neutrality toward all religions but is not necessarily related 
to atheistic or anticlerical views.
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Looking at this philosophical phenomenon chronologically, one needs to men-
tion medieval periods of secularism of Islamic countries dated as early as the tenth 
century. The Western world discovered secularism during Enlightenment period and 
was very much influenced by the thoughts of John Locke (1689) contained in “A 
Letter Concerning Toleration” where he argues that the state should treat all citizens 
equally and should not discriminate based on religious beliefs. The idea calls for 
politicians to make decisions based on natural reasons withdrawing the religious 
motivations. Modern societies have been growing increasingly secular due to 
economic development, social progress, and increasingly secular education. 
Following political transformations, state-managed schools had to align with the 
philosophical trends of secularization creating secular societies.

While secular education is likely to focus on evidence-based science and non- 
religious literature, it may still contain lessons about religion or religions. But the 
main difference between religious and scientific education is the position of 
authority. While religion heavily relies on dogmas, science is based on evidence. 
Certainly, authorities play a key role in interpreting the evidence, in validating 
theories, and in defining new paradigms of science. But at the very moment when 
new evidence arrives, new theories are formulated, the new authorities override the 
previous. This allows science to transform and adapt to new circumstances. The 
growth of science and the scientific revolutions have been accelerating over last few 
centuries, while religions have apparently been not. Hence, separating education 
and religion gave the first one acceleration in the direction of the unknown, while 
the second one retrieved into the cozy space of the well known.

12.4.3  Public Education Available for Everybody

It is the democracy that determined the broad availability of schooling, and it is the 
availability of schooling that motivated the democracy. Thus, the progress of 
availability of education was growing together with the civil rights of women and 
minorities, as elaborated by Rousseau (1992). At the early stages of development of 
education, it was provided mainly to rich white males discriminating everybody 
else. Low income, race or ethnicity, gender, or remote geographic location may be 
reasons for children not receiving education.

The most popular and well-known theme in availability of public education is the 
education of females. Even if education for girls from rich and influential families 
was not questioned, somehow the same favors were not extended to girls from other 
social groups. It was the growth of emancipation during the Enlightenment era 
which brought expanded availability for schooling of girls. At first, these schools 
carried a different curriculum than those for boys, but once females began graduating 
from established institutions and becoming role models for younger generations, 
there was no return to the previous barriers. The changes were slow but consistent 
making education more and more inclusive.
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Change of this paradigm brought even more students to the mathematics class-
room making it even more nonhomogeneous, thus even more challenging for the 
teachers. But at the same time, it opened space for new ideas of contextualization. 
Nowadays, in a form of ethnomathematics, we treasure connections of mathematics 
with folk art, dance, and music.

But making schooling available to everyone did not mean that everybody could 
learn anything whenever they needed or wanted. This became possible just recently 
when internet resources became overloaded with broadly available content. With 
affordable prices of ample data plans and convenient digital devices, the access to 
these vast contents is in hands of everybody.

Now within a reach of a broad scope of users are vast resources for learning and 
studying. Any day and anytime one can find how to perform multiplication of 
matrices, use chopsticks, or make a silver mirror. These resources are free, easily 
searchable, and provide a variety of teaching styles on multiple learning levels for 
students of arbitrary background. Numerous people have their channels to share 
instructions and explanations of a range of academic topics. One can choose a 
teacher of their favorite gender, ethnicity, language, point of view, and other aspects, 
which aspects may not appear relevant to the learning process but somehow make 
learning more appealing.

The quality of these instructions may sometimes be questionable, but the caliber 
of the internet libraries appears quite spectacular. The children of the world have 
never had so many English teachers. As a researcher, who clearly does not know 
everything, I was trained by my students to “google everything” regardless of 
whether I know or do not know much about the topic and always found something 
new in the vast internet resources. The growth of internet resources and their 
availability has been stably expanding over the last 20 years. The interested parties, 
that is, teachers and students seem to be consistently involved in the exchange of 
information via internet resources. The teachers gaining millions of viewers of their 
education channels seem to earn their pride for having a wide public. And the 
students seem to treasure experienced instructors who can get the message across.

Vast availability of digital math lectures of various levels and styles allows stu-
dents to repeatedly listen and read lessons from different teachers. Thus, students 
can find favorite styles of exposition suitable for their type of attention.

The truly dangerous aspect of vast internet resources is broad availability of cer-
tain information and instructions dangerous if fell into irresponsible hands. However, 
what educators find the most concerning is a non-intellectual style of the content of 
social media. At the same time, others claim that relevant information found on 
Facebook or Tik-Tok is otherwise unavailable to them.

12.5  The Current Pivoting Moment

For the sake of completeness of the presentation, I am tempted to briefly describe 
the current pivoting or revolutionary moment in the development of modern 
education. In March 2020, teachers and students worldwide were directed to 
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perform schooling remotely. Preparation for such event was highly uneven among 
teachers and students with some of them having all digital skills, the software, and 
the hardware at hand. While others may lack digital skills on the required level, 
appropriate software, sufficiently fast computers, or Wi-Fi connection of a large 
capacity. Fortunately to the interested parties, certain aspects of the digital education 
were already introduced to the curriculum. Online platforms for homework, quizzes, 
tests, and course materials were already popular in certain locations, including web 
attendance records and grade rosters.

Based on my close proximity, I would claim that mental preparation for such a 
sudden change was entirely lacking among all individuals, maybe excluding those 
who went through intense meditation or military training and were able to adopt to 
the quickly changing reality without internal resistance. Since at same time, the 
entire life of everybody changed, equally students and teachers were struggling with 
multiple aspects of their personal and professional  lives. This made the entire 
experience spectacularly uniform across the globe.

The execution of the traditional curriculum proved to be rather challenging in 
multiple aspects. Teachers reported that they simply could not cover the entire 
material, could not monitor students’ progress during classes due to lack of cameras 
on students’ devices. And the greatest concern was the inability to verify academic 
integrity of students’ assignments. Exams and tests that used to be high-stakes 
concern became a matter of internet search.

As a result of remote learning, students could access class video lessons from 
home and watch them multiple times while remaining in a comfortable environment 
of their homes. From the perspective of challenging mathematics topics, this was a 
great advantage. But strict testing environment could not be executed anymore, 
which caused doubts about the validity of the exams. In mathematics, variability of 
possible solutions to basic textbook question is quite limited, making students 
solutions quite alike, if not indistinguishable. To rescue the rationale of math testing 
in general, test questions required revisions to expose individual differences among 
solutions. This could be done by asking for step-by-step explanations with complete 
English sentences or by adding a question for discussion.

Since the world was waiting for the pandemic to end quickly with a vaccine and 
medications, the teachers and the governments did not assume that the state of 
remote instructions will be permanent. Thus, the actions carried out were considered 
by all interested parties to be provisional and temporary.

What is spectacular about this moment in comparison to other pivoting moments 
in education is that the solutions of the challenges of the pandemic did not follow 
previously established paths of progress. There was no extensive preparation of the 
teachers, no adjustments of the curriculum, no preparation of the hardware, software, 
and no established assessment of the newly developed teaching techniques. During 
the first semester of the remote instructions, teachers were not evaluated since there 
were no suitable directions from the institutions to perform such a task.

Returning to campus after the pandemic felt even more surrealistic than convert-
ing to remote work. Things were supposed to be back to normal, but they were only 
up to certain extent. We, the teachers and the students, were again together in a 
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classroom but with masks. Some students fell ill and with positive COVID test 
results and they were denied access to the college. Accommodating their needs 
required truly hybrid modality of the instruction that could accommodate both, 
students physically in the room and students remotely on zoom. I began 
accommodating students who must (often due to health or quarantine requirements) 
attend the class remotely even if the class is scheduled as “in person.” I began giving 
lectures with a laptop and a projector instead of a classic “markers on a whiteboard” 
lectures. This way students from the classroom could see the writing, hear the 
lecture, have access to my One Note writing. Even if I shared with my student class 
videos from previous semesters, they appreciated live recordings from our class. I 
began a new habit of giving unsupervised daily quizzes since they were available on 
Blackboard and all students could access them, including those students who 
attended remotely. My classes began a truly hybrid modality, when students were 
allowed to attend either in person or remotely. This was due to relaxing the discipline 
during the tests, since we spent three semesters adjusting the test questions, so they 
become somehow difficult to copy.

After speaking with students about their low-test results, I realized that they sim-
ply forgot how to prepare for proctored exams without access to their notes and 
books. We agreed that during the times of transition, it is wise to permit cheat-sheets 
or notes at least during some exams to allow more time for adjustments to new 
testing styles. This supported my intuition that learning itself is very much influenced 
by the style and capacity of testing.

My appreciation of having an immediate insight into the appearance of students’ 
attention significantly increased due to my awareness that remote teaching strips 
entirely that information. During a discussion with students about benefits of 
in-person learning, I learned that they do not take class interactions for granted and 
sincerely participate in class activities.

At the same time, I see the culture of the entire university changing. In the past, 
research meetings were conducted remotely only if the interested parties could not 
meet in person due to distance or illness. Now most seminar meetings with 
colleagues from the same town take place on zoom only because this modality takes 
off the burden of commuting, reserving a room, and we are now all used to it. 
College and departmental meetings mostly have both attendance options, in person 
and remote. Meeting rooms are now equipped with rotating cameras and wide range 
microphones which allow group meetings. Now I wonder whether this trend is 
internationally popular.

12.6  Summary

Compared to previous pivoting moments from the history of education, the recent 
transition to remote learning had one important feature: it happened to all countries 
approximately at the same time and lasted for a similar length, which was not a 
matter of days or weeks but months and years. In 2021, remote education happened 
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rather suddenly and without sufficient preceding discussions of its features. It is true 
that certain aspects of the remote instruction already existed and were on advanced 
experimental stages but for most instructors the “in-person” teaching was the default 
modality. All previous pivoting moments were analyzed and discussed, carefully 
planned, and prepared from the perspective of the students, the teachers, and the 
parents. In all cases, the described pivoting moments in education were somehow 
imposed on the society by the governments. In some cases, they were in one way or 
another, following and motivating the changes of the society.

What significantly distinguishes the remote teaching during the pandemic from 
other pivoting moments is the temporality of the modality of learning but with the 
underlying thought that up to certain extent some aspects can be used when the 
reality returns to normal. The other pivoting moments had a permanent set up with 
the underlying thought that the idea will expand. Thus, while introducing compulsory 
education the ministry assumed that it will eventually apply not only to white boys 
but white girls and later boys and girls of color. Similarly, secularization of education 
in terms of the content and the style of thinking had to progress. With the first stage 
being simply an introduction of secular subjects to the curriculum, the second stage 
being a reduction of the religious subjects, and the third stage removing all religious 
mentions from the books and lecture contents. While speaking with my colleagues, 
we realized that the growth of popular technology and the speed of Wi-Fi networks 
were insufficient just a year or two before the pandemic to accommodate remote 
teaching and learning in such capacity. Thus, the pandemic took place just at the 
right time for the remote teaching to bloom. Similarly, other pivoting moments of 
the history of education happened just at the right time when the society was ready 
to accept and accommodate them. This is what in my understanding characterizes 
the revolutionary leaps in the process of transformation of education. All the tools 
were already existent, and it was the traditional nature of the teachers resisting the 
new ideas of remote instruction. At the very moment, when the threats of the virus 
are declining, the world seems to embrace the new reality of digital learning 
combined with traditional modality of instructions. With numerous names (blended 
learning, hybrid courses, synchronous meetings, asynchronous courses) and 
varieties, one of a kind the education seems to eventually become individualized to 
fit the needs of the individual students.

In my view, education of mathematics will be strongly impacted by the evident 
needs for new and improved way of thinking about valid testing methods. On a level 
of college instruction, mathematics testing could shift away from being entirely 
based on computational skills and convert to project-based evaluation. Since in a 
long term, new testing methods influence the way of teaching, this should as well 
impact the way mathematics is taught.

At this very moment, while returning to the in-person teaching, I am finding the 
digital tools very useful and encouraging. This makes me think that the changes 
imposed during the pandemic on students, teachers, and the entire structure of 
education will find their places in new designs. Are we heading to the era of truly 
hybrid modalities of combined in-person and remote attendances?
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Chapter 13
Some Examples of Mathematical 
Paradoxes with Implications 
for the Professional Development 
of Teachers

Yenealem Ayalew

13.1  Introduction

The writing of this chapter was initiated to bring an alternative framework for a col-
laborative professional development of teachers and possible implications for opti-
mal learning. I wanted to see the concept mathematics teacher education differently. 
The phrase may be re-considered as education of teacher of mathematics [for stu-
dents]. Thus, there are at least three underlying terms “mathematics,” “teacher,” and 
education.” Of course, the idea is that it would be possible by educator or trainer and 
ultimately for students, the end users. An interplay of the three thoughts is this: 
mathematics as the subject, teacher as the agent, and education as the program. 
Implicitly, the thought “mathematics teacher education” encloses two more notions: 
educator and student.

Then, the preparation, professional development, teaching, or empowerment of 
teacher educators would have impact. Which order gives more sound – mathematics- 
teacher- education or education-teacher-mathematics? It can be the basis of the 
discussion and shortly illustrated as follows (Fig. 13.1).

We have seen mathematics teacher education as the education [by a trainer] of 
teacher of mathematics [for students]. The overall mapping is attributed to the 
philosophy of education that assumes “creative imagination” as a vital component 
(Degu, 2020). Again, if we regard “creative imagination” of an educator as the key 
concept, then, the introduction would turn to sensitizing the concept; and thus, 
the approach would be the other way round. In this regard, the following picture 
might illustrate it better (Fig. 13.2).

Y. Ayalew (*) 
Kotebe University of Education, Addis Ababa, Ethiopia

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. A. V. Bicudo et al. (eds.), Ongoing Advancements in Philosophy of Mathematics 
Education, https://doi.org/10.1007/978-3-031-35209-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35209-6_13&domain=pdf
https://doi.org/10.1007/978-3-031-35209-6_13


254

Teacher
Education

Ma
the

ma
tics

Fig. 13.1 Emphasizing on the mathematics-teacher-education so that the ultimate goal of profes-
sional development would be envisioned
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Fig. 13.2 The process of using “Creative Imagination” in teacher’s professional development

Since, the end users of a teacher education program are students in schools, in 
order to benefit them with the best of service, seeking a creative imagination would 
be relevant (Degu, 2020). In this chapter, I advocate a sociocultural approach to 
creative imagination and mathematical paradoxes. Yet, the former would be included 
in the latter concept.

13.2  The Essence of Mathematics

The term mathematics is very common; yet, it may be hard to forward full elucida-
tion. I consider some definitions from known dictionaries. The Oxford English 
Dictionary offline application defines mathematics as “a science (group of related 
sciences) dealing with the logic of quantity, shape, and arrangement.” The Collins 
English Dictionary and Thesaurus defines it as “a group of related sciences, includ-
ing algebra, geometry, and calculus, concerned with the study of number, quantity, 
shape, and space and their interrelationships by using a specialized notation.” The 
Merriam-Webster 6.5 dictionary considers the subject as “the science of numbers 
and their operations, interrelations, combinations, generalizations, and abstractions 
and of space configurations and their structure, measurement, transformations, and 
generalizations.” So, the term number and quantification are being referred com-
monly to represent the concept of Mathematics. In a sense, it may be regarded as a 
science of computation and operation.

On the other hand, mathematics may be taught as provision of skills to learn and 
create shared meanings by way of socializing the field. It is because of the fact 
that it is an integral part of our society in one or another way (König, 2016) as it 
possesses a central importance in our society. It shapes and influences many areas 
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of our daily life. The field has been shaping the world in which we live; the world in 
turn shapes the discipline of mathematics (Greenwald & Thomley, 2012). Therefore, 
Mathematics is a human activity, a social phenomenon, part of human culture, and 
intelligible in a social context (Ernest, 1991). This is because as the societal prob-
lems evolve, new mathematical solutions would be created. Thus, a mathematical 
knowledge is socially and culturally situated (Clarke et al., 2015). In short, it is a 
cultural phenomenon; it is a set of ideas, connections, and relationships that we can 
use to make sense of the world (Boaler, 2016). Then, mathematical expressions can 
be and often are interpreted when applying mathematics in the real world (Baber, 
2011). In such an interpretive paradigm, the basic principle is meaning making; 
interpretations are embedded in and dependent on language.

In this early twenty-first century, applied mathematicians seem to be far from 
exhausting the potential of mathematics to change and advance society (Greenwald 
& Thomley, 2012). So far, many developments in mathematics that raised 
philosophic questions are at times discussed in public (König, 2016) and found 
relevant for the proper schooling. Yet, there could be more mathematical discoveries 
or inventions that would serve for societal developments.

In this chapter, I look at mathematics through the lens of larger societal structures 
such as nations, cultures, and educational systems. In other ways, I tempt to explore 
the societal structures within mathematics, such as notions of proof, certainty, and 
success (Greenwald & Thomley, 2012). In turn, this goes to the issue of subjectivity 
in mathematics education which had been initiated by a number of scholars (Brown, 
2001, 2011; Lerman, 2018; Williams, 1993). The inspiring point is that Brown and 
Lerman mentioned the use of multitude of filters in the didactics of mathematics. In 
this regard, teachers, students, researchers, and the subject mathematics are main 
driving forces in the didactics of mathematics and discourse. It is clear that meanings 
are derived from social interaction and modified through interpretation (Corbin & 
Strauss, 2008). Accordingly, multiple meanings could be created for the same 
object. For instance, scholars’ conceptions of Euclid’s fifth postulate have created 
disagreement among geometers and, as a result, Euclidean, Absolute, Elliptical, and 
Hyperbolic geometries were discovered.

Mathematical meaning is produced in discourse (Brown, 2001). Since, thinking 
mathematically is about interpreting situations (Lesh & Doerr, 2003), a mathematics 
education researcher is likely advocating the interpretive paradigm. However, 
mathematical representations are considered to be mathematically conventional, or 
standard, when they are based on assumptions and conventions shared by wider 
mathematical community. In a sense, it would be difficult to testify the truth-values 
of such assertions. How then do we relate to [the conventional] mathematics (Brown, 
2011)? Of course, it is possible to do so. For instance, in Calculus teaching and 
learning, interpreting and characterizing the behavior and structure of solution 
functions are important goals. The rigorous study of initial-value problems would 
imply the effect of varying parameters on the solution space. The aforementioned 
three mathematical expressions are attempts of mathematization as social process. 
Similarly, mathematization provides another challenge for mathematics education 
as it becomes important to develop a critical position to mathematical rationality as 
well as new approaches to the construction of meaning.
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Therefore, mathematics is about explorations, conjectures, and interpretations 
(Boaler, 2016); hence meaning making (Prediger, 2007) has great potential in 
bringing a perspective. Mathematical expressions can be and often are interpreted 
when applying mathematics in the real world (Baber, 2011). Social studies develop 
hermeneutically; its activity is inherently interpretive (Lerman, 2018). In the 
interpretive paradigm, the basic principle is meaning making; interpretations are 
embedded in and dependent on language.

13.3  Mathematical Paradoxes

Currently, mathematics education research is mostly concerned with two questions 
(Ernest, 2020):

• What is mathematical truth and how do we justify and explain it, and above all, 
how do we come to know it?

• How can we best and most effectively teach and facilitate the learning of 
mathematics?

These questions could be treated based on our understanding of the essence of 
mathematics. There is an argument that assumes mathematical knowledge as a 
humanly constructed (Ernest, 1991). That may enable us to see mathematics as 
multiple realities, relative truths, complexities, and ambiguities (Degu, 2020). 
However, such a freedom may lead to the existence of paradoxes. The paradoxes are 
deductive arguments that end in contradictions (Clark, 2012; Weber, 2021). We may 
think of sorts of a paradox. The most fascinating one is that it reveals a genuine 
problem in our understanding of its subject matter (Clark, 2012; Rayo, 2019), on the 
other hand, a boring paradox that leads nowhere due to a superficial mistake and is 
no more than a nuisance (Rayo, 2019). In this regard, Clark (2012) regarded any 
puzzle which has been called a “paradox,” even if on examination it turns out not to 
be genuinely paradoxical. The most interesting paradoxes of all are those that reveal 
a problem interesting enough to lead to the development of an improved theory.

Euclid’s fifth postulate was originally stated as:

That if a straight line falling on two straight lines makes the interior angles on the same side 
less than two right angles, the two straight lines, if produced indefinitely, meet on that side 
on which are the angles less than two right angles. (Merzbach & Boyer, 2011)

The idea could be illustrated as follows (Fig. 13.3).
The postulate states that if the lines 𝑙1 and 𝑙2 are extended without limit, they 

would meet at point. The postulate would result in a triangle. In other words, without 
loose of generality, three interior angles (of a triangle) would be created (Fig. 13.4).

Yet, the most familiar one is a re-statement and an interpretation of Euclid’s fifth 
postulate by William Playfair’s (1759–1823): “through a given point outside a given 
line, exactly one line may be constructed parallel to the given line” (Katz, 2009). It 
can be illustrated as follows (Fig. 13.5).
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l2

l1

Fig. 13.3 Understanding 
Euclid’s fifth postulate

B

C

A

Fig. 13.4 Euclid’s fifth 
postulate: a triangle

Fig. 13.5 An interpretation of Euclid’s fifth postulate

The leading question is then: how many lines do really pass through a given 
point outside a given line and parallel to the given line be constructed? One? Two? 
Many? Infinite? What does “infinite” itself mean? As I noted earlier, the conceptions 
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of the fifth postulate continued to create disagreement among geometers. That is 
why Euclidean Geometry, Elliptical Geometry, and Hyperbolic geometry were 
discovered. On the other hand, Absolute (Neutral) Geometry takes no position or 
stand on parallelism. Based on such disparities, for instance, the sum of the interior 
angles of a triangle is either 180°, less than 180° or greater than 180°. Since angles 
are quantified in numbers, the sum of numbers is a big deal. Thus, the main essences 
of mathematics, quantification and computation, are being questioned. In this 
regard, more examples are presented in the following sections.

13.4  Taking One Plus One as an Example

It is time for a renewal of the study of the politics of numbers (Mennicken & Salais, 
2022). My intention here is to extend the meaning making for 1 + 1 by digging in to 
views of mathematics.

One Plus One in Group Theory
In the set of integers ℤ with a binary operation the usual addition, 1 + 1 is in ℤ. In 
this regard, 1 + 1 = 2.

Yet, 0 is the identity element and every element is invertible, for instance, 
1 + (−1) = 0. It follows that, 1 + 1 = (1 + 1) + 0 = 1 + 1 + (−1 + 1).

Again, (1 + 1) = (1 + 1) + 0 + 0 + 0 + 0 + ⋯.
Hence, I have 1 + 1 = 1 + 1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + ⋯.
By the associative property of the group,
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1 1 1 1 1 1 1

1
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Thus, 1 + 1 is not necessarily 2; it could be 1. We have 1 + 1 = 1.
However, if the group is (ℤ2, +) whereby ℤ2 = {0,1}; we get 1 + 1 = 0 (𝑚𝑜𝑑𝑢𝑙𝑜 2). 

In short, we may write 1 + 1 = 0.

One Plus One in Number Theory
Most of the time, we use base 10 numeral system. However, a binary (base 2) rep-
resentation using the digits 1 and 0 is essential in computer science. In a sense, 
information is expressed in terms of 00, 01, 10, and 11. Here, I capture 1 + 1 as 
(10)2. In short, 1 + 1 = 10. That is a different perspective. Yet, 𝑚𝑜𝑑𝑢𝑙𝑜 2 and 𝑏𝑎𝑠𝑒 2 
convey the same message; in both cases, 1 + 1 = 0. Thus, 1 + 1 becomes 10.

One Plus One in Logic
Paradoxes in (mathematical) logic have forced logicians to modify existing theories 
to rid themselves of troubling inconsistencies (Farlow, 2014). The trouble may 
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happen when the judgment is subjective in its nature. For instance, the knower 
[paradox] can mention (Clark, 2012):

If K is true it is false, because I know it; so, it is false. But, since I know that, I know it is 
false, which means it is true. So, it is both true and false.

In the example, there are more than two sentences. Since, the conclusion given is 
“true and false,” it is difficult to consider it as a mathematical statement (proposition) 
where by a sentence is either true or false, but not both.

Instead of “true,” we may choose “T” in short form. Similarly, instead of “false,” 
we may take “F” as a short form. Besides, we may associate values 1 and 0, 
respectively, for “true” and “false.” Then, the dichotomy of true/false can be 
expressed as follows in a characteristic function.

 
� �: A x

x A
x A

�� � � � �
�
�

�
�
�

01
1

0
, such that

if

if  

The truth-value table of combination of statements denoted by 𝑝 and 𝑞 can be put 
as follows.

The information in Fig. 13.6 is given by either FF, FT, TF, TT or 00, 01, 10, 11. 
The operation “+” could be assumed by the logical conjunction “and”. In this case,

False and False is False. That is: 0 + 0 = 0
False and True is False; 0 + 1 = 0.
True and False is False;1 + 0 = 0.
True and True is True; 1 + 1 = 1.
Since “true and true” is logically true, we have: 1 + 1 = 1.

One Plus One in Geometry
One of the ancient geometers, Archimedes, had approximate evaluation of the ratio 
of the circumference to diameter for a circle (Merzbach & Boyer, 2011). If we think 
of a circle with minimized radius so that its area is 1 units-square and a hexagon 
each with one units-square, the combined area would be then represented by 1 + 1. 
On the other hand, the union of the areas would be the circular region. Hence, 
1 + 1 = 1.

Fig. 13.6 Different scenarios of “true” and “false” with their corresponding representations 
using 0 and 1
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One Plus One in Sequence and Series
I have considered the geometric series:
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Since 1 + a + a2 + a3 + … for |a| < 1 converges to 
1

1− a
, the geometric series 

becomes 2. 
The limit value of 

1

2

1

2

1

2

1

2

2 3 4

� �
�
�

�
�
� � �

�
�

�
�
� � �

�
�

�
�
� ��as 𝑛 goes on indefinitely is 1 

(Rayo, 2019).
By taking out the common factor, I get:
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The expression in the bracket is equivalent to: 
1
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−
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This leads to the equation: 
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Once again,
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I take the common factor in
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Therefore, computing the limit value of the geometric series, lim
n
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We get two conclusions: 1 + 1 = 2; 1 + 1 = ∞. What an illusion! Many of the 
most fascinating paradoxes involve infinity (Clark, 2012).

One Plus One in Applied Mathematics
In molecular biology, there is a term “Endosymbiosis” as a form of symbiosis in 
which two cells live together in nature, one inside the other (Archibald, 2014). 
Then, Endosymbiosis acts to bring evolutionarily distinct lineages together in a 
manner that can lead to the generation of entirely new organisms. That is, one plus 
one equals one.

So far, we saw how “One Plus One” varies in different scenarios including 
Applied Mathematics, Group Theory, Number Theory, Logic, Geometry, Sequence 
and Series. The results were 0, 1, 2, 3, 10, or ∞. The summary is given below.
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Yet, there might be more alternatives too. The more varied the input, the more 
unexpected the combinations, the more creative the ideas. If new ideas come with 
new combinations of existing ideas, the more connections we can create, the more 
ideas we can generate (Trott, 2015). However, the claim needs to have some 
underpinning reason (Ernest, 2016). So, what makes us to believe in the truth of 
1 + 1 = 2? The above scenarios have shown us the need to acknowledging plurality 
or subjective truths.

13.5  Associated Meanings in Mathematics Education

From the examples of paradoxes reported in this chapter, we can look for some 
implications in mathematics education. How is a meaning given to a mathematical 
conception? Or, what are the criterions to consider it as mathematical idea? The 
answer may be as follows: mathematical relationships are reasoned with subjective 
meanings and arguments. Then, the art would be the selection of a level of 
representation which is appropriate for a given task, both in terms of the information 
available and in terms of the reasoning required (Forbus, 2008). The formulae can 
be generated while lots of opinions are gathered. Generally, such qualitative values 
could be inculcated while mathematics education is associated with the daily life 
students.

The question of meaning with respect to mathematics education, the issue 
becomes more complex (Kilpatrick et al., 2005). On the one hand, we may claim 
that an activity has meaning as part of the curriculum, while students might feel that 
the same activity is totally devoid of meaning. For instance, what is meant by 
infinity? Mathematics education treats the term infinite not as a real number, but as 
the quality of being unlimited in size (Wapner, 2005). That suggests seeking 
abundance in our activities. It also gives place for qualitative value than quantification. 
Then, a change in teaching takes time, imagination, courage, and honest reflection 
on what works and what does not. So, a mathematics teacher or educator is expected 
to see the essence of the subject differently. In turn, that would determine the how 
of teaching and learning processes.

Above all, the key question to be posed is as follows: is it possible to bring quali-
tative mathematical relations in to classroom context? The science of learning and 
teaching mathematics can propose value judgments and normative prescriptions 
that can inform teachers of mathematics on the provision of study processes, and 
teachers will take up, or not, those judgments and prescriptions and interpret and 
apply them as they see fit (Lerman, 2018).

In this twenty-first century, applied mathematicians are far from exhausting the 
potential of mathematics to change and advance society (Greenwald & Thomley, 
2012) Some developments in mathematics raised philosophic questions. There is a 
controversy concerning the certainty of mathematical knowledge and what it means 
(Ernest, 2016). Education is becoming more available, to members of society, in 
more places, and more ways than ever in human history (Naidoo, 2021) Yet, higher 
education is currently designed to meet the needs of old time (Gleason, 2018).
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Fig. 13.7 Multi-level collaboration in the professional development of mathematics teachers

On the other hand, we are expected to plan and work for tomorrow. Yet, the 
future is uncertain; we do not know what will happen to the practice of education. 
Both teachers and students are required to possess critical skills to achieve success 
within the educational environment (Naidoo, 2021). Then, if we have a sense of the 
drivers that will influence society, schooling, and teacher education, we can begin to 
imagine possibilities for teacher education futures (Schuck et al., 2018). I think, the 
main movers and shakers in the education system are teachers and teacher educa-
tors. So, their creative imaginations would have greater impacts on the end users.

13.6  Professional Competencies of Mathematics Teachers

Since the teacher is a key stakeholder in the student’s learning process, his/her capa-
bility shall be of a concern. Then, the teacher training program and competencies of 
teacher educators would be relevant to address. The following areas of standards 
(Ayalew, 2017) were framed for a mathematics teacher educator in Ethiopian 
context.

• Personality and Professional Ethics
• Language and Communication
• School Mathematics Education
• Guidance and Support
• Assessment and Feedback
• Partnership and Collaboration
• Professional Development
• Teacher Education

It was assumed by then that the standards could be used for determining courses 
to educators of mathematics teachers and evaluation of performance. Since the 
mathematics teacher educators are not from the same field of specialization, it is 
difficult to write down the detailed certification criterions. Yet, it is possible to point 
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out the standards with regard to teaching and toward mathematics teacher educa-
tion. In short, what is expected of mathematics teacher educators in this era? How 
could they work and learn together? The underling analysis goes to consider an 
investigation and a formulation of the creative imagination of educators. For 
instance, groups of mathematics teachers may be engaged in lesson studies.

So, managing such a collaboration may demand addressing interdisciplinary per-
spectives some of which are mathematics educator’s point of view, philosophy, the 
science of learning, teacher education, and classroom observation. Accordingly, it 
demands the collaboration and involvement of faculty members. To enable prospec-
tive mathematics teachers to make stronger connections with the profession, an edu-
cator worked collaboratively with a practicing teacher by co-teaching one cohort of 
pre-service teachers studying primary mathematics education (Downton et  al., 
2018). Hence, an ideal collaborative work model could enable us to justify such 
assumptions (Fig. 13.7).

This hierarchy is based on an inspiration from the Ethiopian “traditional” 
(Orthodox Church) education peer-teaching and multi-stage teaching approaches. 
By this hierarchy, I assume that the supervisor (senior researcher in mathematics 
teacher education), research fellows (post-doctoral, doctoral or Master’s degree 
candidates), practicing teachers (in-service mathematics teachers, action researchers, 
or teachers engaged in continuous professional development activities), and students 
are community of practice.

Here, in this era, an imagination is needed to construct activities, build a system, 
and anticipate conversations and actions that will bring learners’ inquiry to 
fulfilment, enabling growth toward desirable skills and understandings. However, 
the selection of participating educators and teachers would be determined by the 
kind recommendation to the supervisor. In order to run such a scheme properly, 
communication and progress reports might to be performed regularly. Students 
would need to be exposed to and be stimulated in learning through technology- 
enabled pedagogy and technology-based tools to enhance the development of 
technology within educational environments. Teachers would also need to be 
proficient in using technology-enabled pedagogy and technology-based tools 
(Naidoo, 2021). They need to be professionally developed in acquiring skills of 
critical thinking, creativity, collaboration, communication, information literacy, 
media literacy, technology literacy, and flexibility. Thus, a multi-level collaborative 
framework would shape personal understandings of those who aspire to become 
mathematics teacher educators.

In this regard, concepts including imaginative leadership, facilitation, construc-
tion, and co-construction of knowledge might be worth to consider. This is because 
mathematics teacher educator’s roles, competencies, and challenges are composite 
functions of practicing teachers’ experience and students’ expectation (Ayalew, 
2017). Thus, senior researchers are expected not study on teachers but to work with 
them (Superfine, 2019). I argue that seeking creative imaginers would be vital to 
push the teaching profession in to a higher level. This view might be linked to 
“Futures Research” which seeks to provide insights that might help to change the 
present and direct the future (Schuck et al., 2018). In other words, the purpose is to 
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systematically explore, create, and test both possible and desirable futures to 
improve decisions. There are numerous futures research methods used to gain 
understandings of possibilities in teacher education (Schuck et al., 2018); some of 
which are horizon scanning, driver analysis, Delphi panels, scenario production, 
and back casting.

13.7  Conclusions

The lines of thoughts communicated in this chapter may be labeled into two: math-
ematical paradox of infinity and social meaning of mathematics. “It is time for a 
renewal of the study of the politics of numbers” (Mennicken & Salais, 2022). In a 
sense, such an insight of multi-varied nature of heading to numbers in different 
situations is the present-day matter. This chapter has elaborated the sum of one and 
one. The discussion relies on an eclectic position of the different philosophies of 
mathematics. For instance, the mathematical statements “1 + 1 = 2” is wrong for 
Fictionalism because there are no such objects. On the other hand, the conclusion 
“1 + 1 > 2” is wrong in Absolutist view. Since a paradox is an argument that appears 
to be valid and impossible for valid reasoning to take us from true premises to a 
false conclusion (Rayo, 2019), it is a sure sign for at least one of the following 
mistakes: our premises are not really true; our conclusion is not really false; or our 
reasoning is not really valid. Therefore, a mathematical truth may not be taken for 
granted in the classroom instruction. Hence, there are multiple truths in mathematics. 
On the other hand, a habit of working together and self-study would afresh the 
existing practice in the teaching and learning process. Besides, there is a need 
of  “transformation” of a community of practice into a community of inquiry 
(Goodchild, 2014); it can be a great concern.
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Chapter 14
A Performative Interpretation 
of Mathematics

Ole Skovsmose

14.1  Introduction

In the way it was traditionally developed, the philosophy of mathematics appears 
two dimensional by concentrating on ontological and epistemological issues. I cer-
tainly consider such issues important, but I want to highlight the need of developing 
a four-dimensional philosophy of mathematics by adding a sociological and an ethi-
cal dimension. Such a philosophy has been presented in Connecting Humans to 
Equations: A Reinterpretation of the Philosophy of Mathematics (Ravn & 
Skovsmose, 2019). However, Ole Ravn and I do not claim that a philosophy of 
mathematics only contains four dimensions. One could, for instance, consider the 
relevance of an aesthetic dimension.

The ontological dimension addresses the nature of mathematical objects by 
focussing on questions like the following: What is a number? What is a point? What 
is a function? The epistemological dimension addresses the nature of mathematical 
knowledge by concentrating on questions like the following: How do we come to 
know about abstract mathematical objects? What is the nature of mathematical 
deduction? Is mathematical knowledge absolute? The sociological dimension 
addresses the social formation of mathematical knowledge by raising questions like 
the following: Are mathematical truths time-dependent? Do metaphysical or reli-
gious convictions have an impact on mathematical theorising? Does technological 
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development form mathematical research approaches?1 The ethical dimension con-
siders the mathematical formation of the social by asking questions like the follow-
ing: What is the impact of bringing mathematics into action? Could such an impact 
be problematic, if not disastrous? How might mathematics, brought into action, 
form our life-worlds?

The notion of life-world was introduced in 1936 by Edmund Husserl (1970) 
when he published the original German version of The Crisis of European Sciences 
and Transcendental Phenomenology. The notion has been further explored by phe-
nomenology and by social theorising inspired by the phenomenological outlook. 
Husserl presents the life-world as an original experienced world, not structured by 
scientific or any other kinds of systematic knowledge. In The Structures of the Life- 
World, Alfred Schutz and Thomas Luckmann (1973) point out that a life-world is to 
be understood as “that province of reality which the wide-awake and normal adult 
simply takes for granted in the attitude of common sense” (p. 3). However, my use 
of the notion of life-world is different from the one inspired by phenomenology. I 
see a life-world as a complexity of socially structured living conditions. It can be 
structured by economic, political, religious, ideological, cultural, and discursive 
factors. For a clarification of my interpretation of life-world, see my book 
Foregrounds: Opaque Stories About Learning (Skovsmose, 2014b).

In this chapter, I suggest a performative interpretation of mathematics, which 
will establish the ethical dimension as being crucial to a philosophy of mathematics. 
In different ways – and by means of different terminologies – I have indicated a 
performative interpretation of mathematics. In Skovsmose (1994), I talk about the 
“formatting power of mathematics”. Later, I talk about “mathematics in action” and 
explore different features of such actions. In Ravn and Skovsmose (2019), we anal-
ysed forms of “mathematics-based fabrications”.2 A performative interpretation 
contrasts a descriptive interpretation of mathematics, which highlights that mathe-
matics is a unique tool for describing natural phenomena: by means of mathematics, 
one can capture the laws of nature. With respect to technological or architectural 
constructions, mathematics has also been considered a crucial descriptive tool. For 
instance, descriptive geometry addresses how to make two-dimensional presenta-
tions of three-dimensional objects and, in this way, how to provide blueprints of any 
kind of construction. According to a descriptive interpretation, mathematics can be 
considered as the language of both science and technology. In contrast, a performa-
tive interpretation of mathematics highlights that, by means of mathematics, one 
performs interventions on reality. Mathematics is not only a means for description, 
but also a means for action. Mathematics brought into action might generate a range 
of diverse implications, which require ethical reflections.

1 An important initial step in beginning to explore the sociological dimension of a philosophy of 
mathematics was taken by Wittgenstein (1978, 1989). More steps were taken by Restivo (1992); 
Restivo et al. (1993); and Ernest (1998).
2 For a careful presentation of metamathematics performativities, see also Yasukawa et al. (2012, 
2016) and Part 4 “Mathematics and Power” in Skovsmose (2014a, pp. 199–280).
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In the following, I start outlining three well-established positions in the philoso-
phy of mathematics, namely, logicism, formalism, and intuitionism. All of these 
positions are fully concentrated on ensuring mathematics is imbued with certainty 
by focussing on ontological and epistemological questions. In order to move beyond 
this two-dimensional thinking, I present a performative interpretation of language, 
which for me serves as an inspiration for suggesting a performative interpretation of 
mathematics. This interpretation I outline with respect to both advanced mathemat-
ics and school mathematics. This brings me to recognise that mathematics brings 
about a pervasive formation of our life-worlds. As a result, the ethical dimension of 
a philosophy of mathematics becomes crucial.

14.2  The Three Magi: Merry Mathematics!

The three classic positions in the philosophy of mathematics – logicism, formalism, 
and intuitionism  – are paradigmatic examples of two-dimensional thinking. 
“Philosophy of mathematical practice” is a recent trend that critically reacts to the 
three classic positions, although it does not move far beyond two-dimensional anal-
yses. Neither logicism, formalism, intuitionism, nor the philosophy of mathematical 
practice has engaged in any performative interpretation of mathematics, and conse-
quently these positions were all oblivious to ethical issues. Against this backdrop, I 
find it relevant to present a performative interpretation of mathematics that will 
bring the philosophy of mathematics out of its self-created ethical vacuum.

The logicist programme was launched in three steps by Gottlob Frege. First, he 
wanted to make sure that mathematical deductions had the genuine logical format, 
and in the Begriffsschrift, first published in German in 1879, Frege (1967) indicated 
how logic itself could be organised as an axiomatic system. The German word 
Begriff means “concept” and Schrift means” writing”, so literally speaking 
Begriffsschrift means “concept writing”. Frege claimed that all valid forms of 
deduction would appear as theorems in this system. Next, in Die Grundlagen der 
Arithmetics, published in German in 1884, Frege (1978) showed how the notion of 
number could be defined by means of logical notions. Finally, in Grundgesetze der 
Arithmetik I-II, Frege (1893, 1903) showed in detail how mathematics could be 
presented as a deductive system based upon a foundation of logic.

By organising logic as an axiomatic system, showing how basic mathematical 
notions could be defined by logical notions, and how mathematical theorems could 
be derived from logical theorems, Frege outlined the whole logicist programme. 
Logicism confronted psychologism, which interprets mathematical knowledge as 
being derived from empirical observations. In A System of Logic, published in 1843, 
John Stuart Mill (1970) formulated the psychologist position, and in The Nature of 
Mathematical Knowledge, Philip Kitcher (1983) revived this position. In Principia 
Mathematica, published in three volumes, Alfred Whitehead and Bertrand Russell 
(1910-1913) reworked all the technical details of the three-step programme pre-
sented by Frege. A difficulty for finalising the logicist programme in a satisfactory 
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way emerged in terms of set-theoretical paradoxes. In Principia Mathematica, such 
paradoxes were prevented by means of a theory of types. This was, however, a 
deviation from the genuine logicist programme, as the theory of types is not a pure 
logical theory, but rather a heuristic device. Principia Mathematica is the most 
ambitious attempt to present mathematics as an ahistorical logical structure, 
assumed in order to ensure mathematics was imbued with eternal certainty.

Like logicism, formalism also tried to infuse mathematical knowledge with cer-
tainty. This concern was provoked by the appearance of paradoxes within what were 
thought to be solid mathematical structures. A point of departure for the formalist 
programme was to recognise problems with respect to the axiomatisation of geom-
etry as presented in Euclid’s Elements. It appeared that Euclid had used more than 
the five explicitly stated axioms for proving the theorems. In addition, he had used 
some intuitive conceptions of the properties of lines, planes, and space. In 
Grundlagen der Geometrie, published in 1899, David Hilbert (1968) presented a 
revised axiomatic system, containing in total twenty axioms. By doing so, he made 
the implicit axioms used by Euclid explicit. In this way, Hilbert wanted to eliminate 
the leftovers of intuition accompanying mathematical deductions. Intuition was 
under suspicion, allowing paradoxes to emerge in mathematical theory building.

In order to eliminate intuition from mathematical theory building in general, and 
not only from geometry, Hilbert launched the metamathematical approach.3 
According to this approach, mathematical theories should be properly axiomatised, 
as Hilbert himself had done with respect to Euclidian geometry. Then, the axioma-
tised theories should be represented as formal systems written in a symbolic lan-
guage of the same type as the one presented in Principia Mathematica. The formal 
representations of mathematical theories should be analysed, in particular with 
respect to consistency and completeness. With respect to consistency, the ambition 
was to demonstrate that it was not possible to prove a theorem T as well as ¬T. With 
respect to completeness, the ambition was to demonstrate that for any possible for-
mula T, it was possible to prove either T or ¬T. By constructing such metamathe-
matical arguments, it was Hilbert’s ambition to vaccinate mathematical theories 
against possible paradoxes.

However, in 1936 Kurt Gödel (1962) showed that Hilbert’s ambition was illusory 
by demonstrating that, in the case where a mathematical theory has a certain degree 
of complexity – so complex that it contains the theory of numbers – then if it was 
consistent, it would be incomplete. In other words, a consistent theory would always 
contain a formula T, where neither T nor ¬T could be proven. Nevertheless, embed-
ded in Hilbert’s metamathematical programme, formalism emerged as a general 
philosophy of mathematics by claiming that the formal representations of mathe-
matical theories are the real mathematical theories. Genuine mathematics is cap-
tured by formal languages, while other forms of expressing mathematics are 
preliminary and only serve as approximations to mathematics.4

3 For a careful presentation for metamathematics, see Kleene (1971).
4 For a concise presentation of a formalist philosophy of mathematics, see Curry (1970)
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By publishing the article “Intuitionism and Formalism” in 1913, L.E J. Brouwer 
launched the intuitionist programme. He was also concerned about the emergence 
of paradoxes within mathematics but suggested quite a different route out of the 
foundational crisis than Hilbert. Brouwer found that the paradoxes had emerged 
because invalid forms of logical deduction had been applied in mathematics. 
Brouwer, however, was not embracing any logicist programmes, as he found that 
the logical system as presented in both the Begriffsschrift and Principia Mathematica 
had incorporated invalid logical principles.

Brouwer did not see the need to eliminate intuition from mathematics but argued 
that a proper format of mathematical intuition had to be established. For instance, 
Brouwer did not consider indirect proof to have general validity. The approach of 
making an indirect proof of a theorem T is to assume non-T and to demonstrate that 
this assumption leads to a contradiction. On this basis, one claims to have proven 
T. However, according to Brouwer this is not a valid mathematical argument, as 
mathematical insight must be based on constructive processes. This means that one 
could be in the situation where neither T nor non-T has been proven. As a conse-
quence, Brouwer claimed that the logical principle p ∨ ¬p is not valid in general 
with respect to mathematics. When any such invalid arguments are eliminated from 
mathematics, the paradoxes will evaporate. In “Intuitionism and Formalism”, 
Brouwer argued that this would be the case by showing how different recognised 
paradoxes would disappear when assuming an intuitionist approach to mathematics.

Brouwer positioned intuition in the centre of mathematical theory building by 
claiming that mathematics emerges through mental constructions. According to 
intuitionism, such constructions constitute the real mathematics. Quite contrary to 
formalism, Brouwer considered formalised systems as being imprecise and at times 
as mischievous representations of genuine mathematics. To think of formalism as 
being the mathematics would be similar to thinking of a sheet music as being the 
music. Brouwer did not associate intuition with any degree of uncertainty. To him, 
a proper use of intuition was the best way of securing certainty in mathematics. 
Already in 1905 in Life, Art, and Mysticism, he emphasised this conviction to the 
claim that “truth is always the same to those who understand” (Brouwer, 1996, 
p. 404). In his Cambridge Lectures on Intuitionism, Brouwer (1996) gave a revised 
presentation of intuitionism. In Intuitionism: An Introduction, Arend Heyting (1971) 
gives a captivating introduction to the whole programme.

Different as they are, logicism, formalism, and intuitionism have all struggled to 
establish mathematics with certainty. The three of them have provided paradigmatic 
illustrations of what a two-dimensional philosophy of mathematics could look like.5 
These Three Kings, the Magi, worshipped mathematics as being a sublime science, 
whose eternal qualities could be grasped by concentrating on the intrinsic properties 
of mathematics.

5 A two-dimension philosophy of mathematics has been elaborated further on, both in terms of 
detailed analyses and in terms of comprehensive presentations. See, for instance, Bernacerraf and 
Putnam (1964), Brown (2008), George and Velleman (2002), Jacquette (2002), Körner (1968), 
Mehlberg (1960), and Shapiro (2000).
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The idolisation of mathematics resonates not only with the idolisation of the 
newborn Jesus, but also the idolisation of science in general that was part of the 
Modern outlook. Only a few philosophers during that period of time, Friedrich 
Nietzsche being one of them, confronted this position. In Die Fröhliche Wissenschaft, 
first published in 1882, he ironised over the modern idolisation of science. The 
expression Fröhliche Weihnachten is the German version of “Merry Christmas”, 
and by talking about “Merry Science”, Nietzsche portrays the worshipping of sci-
ence as ridiculous. Missing Nietzsche’s irony, Die Fröhliche Wissenschaft is trans-
lated into English as The Gay Science (Nietzsche, 1974). Nietzsche cannot associate 
any supernatural qualities with science. It is a human – all too human – affair, to use 
an expression that was the title of another of his books.6

The philosophy of mathematical practice challenged the Three Magi. This trend 
was initiated by Ruben Hersh (1979) when he published the article “Some Proposals 
for Reviving the Philosophy of Mathematics”. He found that the philosophical 
investigations developed by the Three Magi all suffered from philosophical inbreed-
ing. Instead, the philosophy of mathematics should be rooted in what was taking 
place in mathematical research practices. Hersh wanted to establish a philosophy of 
mathematics relevant to mathematicians, rather than to philosophers. The philoso-
phy of mathematical practice developed rapidly after Hersh’s initiation. Important 
steps were presented in New Directions in the Philosophy of Mathematics, edited by 
Thomas Tymoczko (1986), and detailed elaborations of a range of topics are pre-
sented in The Philosophy of Mathematical Practice edited by Paolo Mancosu 
(2008).7

In my summary of philosophical positions, I have not referred to Husserl’s phi-
losophy of mathematics as expressed in Logische Untersuchungen, published in two 
volumes in 1900 and 1901 (see Husserl, 2001). The reason is that this philosophy, 
although having had a huge impact on the formulation of phenomenology, has not 
been part of traditional debate in the philosophy of mathematics. The exclusion of 
Husserl might partly be due to Frege’s accusation that Husserl was assuming a psy-
chologist’s position  – an accusation that troubled Husserl and which he tried to 
show was unjustified.8

It might be that the philosophy of mathematical practice paved the way for the 
sociological dimension by, for instance, considering the impact of computers on 
mathematical research. Still, the philosophy of mathematical practice did not 
address ethical issues. Hersh (1990) published a paper with the title “Mathematics 
and Ethics”. The questions he addressed, however, concern what can briefly be 
referred to as “the professional conducts of mathematicians” and not the broader 
issues concerning the social impact of mathematics. Like the Three Magi, the phi-
losophy of mathematical practice operated in an ethical vacuum. However, in the 

6 See Nietzsche (1986).
7 See also Ferreirós (2016) for discussing the very concept of mathematical practices, and Carter 
(2019) for providing an overview.
8 Expositions of Husserl’s philosophy of mathematics can be found in Centrone (2010), Haddock 
(2006), and Hartimo (2021).
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Handbook of the History and Philosophy of Mathematical Practice edited by 
Bharath Sriraman (2020), one finds one important exception from this claim, namely 
Paul Ernest’s (2020) chapter “The Ethics of Mathematical Practice”.

From now on, we will concentrate on challenging the agenda of the philosophy 
for mathematics as set by the Three Magi. I am going to move beyond a two- 
dimensional philosophy by exploring an ethical dimension.9 An important step in 
doing so is to suggest a performative interpretation of mathematics, and my inspira-
tion for doing so emerged from a performative interpretation of language.

14.3  A Performative Interpretation of Language

A performative interpretation of language contradicts a descriptive interpretation 
that sees language as providing “pictures” of reality. In the Tractatus Logico- 
Philosophicus first published in 1922 in a German-English parallel edition, Ludwig 
Wittgenstein (1992) presented such a picture theory of language. Here, Wittgenstein 
did not talk about language in the plural, but about the language. He had in mind the 
formal language of logic and mathematics as presented by Frege in the Begriffsschrift 
and by Whitehead and Russell in Principia Mathematica. According to Wittgenstein, 
such a language has the capacity to depict reality.

In the Tractatus we find a descriptive interpretation of mathematics, which reso-
nates with both logicism and formalism. We are going to confront this descriptive 
interpretation with a performative interpretation of mathematics. The Tractatus is 
composed around seven principal statements, where Statement 6 states that what 
can be expressed can be expressed in a formal language, while Statement 7 claims 
that one should be silent about the rest. As the Tractatus itself is not written in any 
formal language, the book concludes with a demolition of its own validity.

Wittgenstein himself came to doubt his descriptive interpretation of language, 
and in Philosophical Investigations, published posthumously in 1953, he questioned 
both the supremacy of formal language and the idea that language provides pictures 
of reality. The notion that Wittgenstein (1953) is using for abandoning the descrip-
tive interpretation of language is language game. Through this notion, Wittgenstein 
highlights that one is doing something when using language. One is “gaming”. One 
is performing. In Philosophical Investigations, Wittgenstein does not propose any 
particular priority with respect to the formal language of mathematics. He does not 
talk about the game, but rather about language games in the plural. The formal 

9 For other attempts to move beyond a two-dimensionality of philosophy of mathematics see, for 
instance, Bueno and Linnebo (2009), Hacking (2014), Lakatos (1976), and Linnebo (2017). It is 
important to observe that the philosophy of mathematics education does not operate within any 
two-dimensionality but establishes itself with many dimensions. This is apparent when consider-
ing the publication in the Philosophy of Mathematics Education Journal edited by Paul Ernest. See 
also Ernest (2018a), and Ernest et al. (2016).
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language of mathematics constitutes just some possible language game amongst 
many other possibilities.

Apparently independent of Wittgenstein’s formulations, John Austin also sug-
gested a performative interpretation of language. Certainly, Austin was fully aware 
of what he was up against; thus he translated Frege’s Die Grundlagen der Arithmetik 
into English as The Foundations of Arithmetic. Austin’s whole approach is con-
densed in the title of a collection of some of his articles: How to Do Things With 
Words (Austin, 1962). His point is that the descriptive interpretation of language is 
inadequate. We are doing things by means of words. Austin finds that a statement 
can have a locutionary content, an illocutionary power, and a perlocutionary effect. 
For instance, when making a promise, one is informing another about the content of 
a promise (its locutionary content), but one is doing more than that. One is promis-
ing something. A promise has an illocutionary power by putting the person who 
makes the promise under an obligation. Finally, a promise has a perlocutionary 
effect, which refers to the effect the promise might have. For instance, a person who 
listens to the promise being made might doubt whether the promise will be kept. 
Austin reaches the conclusion that any statement – and not only statements like 
making a promise, making an accusation, and cracking a joke – has locutionary 
contents, an illocutionary power, and a perlocutionary effect. Performativity is not 
something we choose our linguistic expressions to have or not have. Performativity 
is embedded as an integral part of any use of language.

The performative interpretation was elaborated further by John Searle (1969), 
who talked about speech acts. This notion grasps explicitly the idea that one acts by 
speaking. By means of speech act theory, Searle provides a rounding off of the per-
formative interpretation of language within the outlook of analytical philosophy. 
However, this rounding off also opened the way towards much broader performative 
interpretations of language.

Different versions of discourse theory present a much more radical perspective 
on what can be done by means of language.10 This perspective was anticipated by 
Friedrich Nietzsche, when he characterised truth as a “mobile army of metaphors” 
(Nietzsche, 2010, §1). A discourse can also be considered a mobile army of meta-
phors, and it can support all kinds of ideologies. Discourses can be mischievous; 
they can be the carrier of questionable preconceptions; and simultaneously they can 
be powerful. Pierre Bourdieu (1991) talks about symbolic power, which highlights 
that discourses constitute real-life interventions and format what we see and 
how we act.

Slavoy Žižek (2008) talks about symbolic violence, as he finds that language can 
be aggressive. He states the following:

Language simplifies the designating thing, reducing it to a single feature. It dismembers the 
thing, destroying its organic unity, treating its parts and properties as autonomous. (p. 61)

10 For presentations of discourse analysis, see, for instance, Jørgensen and Phillips (2002); and 
Torfing (1999). I have interpreted mathematics as being a discourse (see Chap. 14 in Skovsmose, 
2014a, pp. 199–214), and also ethnomathematics as being discourse (Skovsmose, 2015).
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In this condensed formulation, Žižek brings together several metaphoric expres-
sions of discursive acts.11 Language might be used for designating things. According 
to the classic understanding of language, to “designate” is the principal function of 
language. Žižek’s point, however, is that “designating” is not a simple and  transparent 
process. “Designating” can transform what is then redesignated, as language sim-
plifies the designated thing. In other words, one should not expect language to pro-
vide an accurate picturing of reality: language might distort and misrepresent.

Language might simplify reality by reducing what it is supposed to describe into 
a single feature. As an illustration, one can think of the many labels by means of 
which groups of people are singled out as being “immigrants”, or “blacks”, or 
“criminals”. Such labels might include not only references to different groups of 
people, but also brutal acts of classification, deprivation, and accusation. Žižek also 
highlights that language dismembers the thing, destroying its organic unity. 
Language is a means for making dissections and for cutting things into pieces. As 
an illustration, one can consider how meticulous descriptions of work processes can 
turn into scrupulous suggestions for further automatisation and, consequently, for 
firing people. Such descriptions may strip workers of their human qualities and 
conceptualise them as more or less efficient components of a production machinery.

According to Žižek, language treats parts and properties as autonomous. In 
order to illustrate this metaphor, one can think of language as a means for paying 
attention to something, implying that other things may be ignored. Discourses are 
selective, formal languages as well. The many databases that provide resources for 
big companies’ promotional strategies operate with particular information about, 
say, people’s searches on the Internet, quite apart from whatever else might be rel-
evant to consider with respect to the person. The management of the so-called “big 
data” has turned into a paradigmatic example of how bits and pieces of information 
are processed in non-transparent ways and turned into a basis for decision-making 
with huge impacts.

Precisely what Žižek had in mind when stating that language treats parts and 
properties as autonomous, we cannot know. It might be a pointed remark towards 
the conception of language adopted by analytic philosophy. According to this con-
ception, the world is composed of logical independent facts, and the basic role of 
language is to depict these facts. The idea was advocated by Russell (1905) in the 
paper “On Denoting”, where he tries to show that a formal language has an analyti-
cal power in depicting facts that no natural language can demonstrate. This idea was 
also advocated by Wittgenstein in the Tractatus where the statement §1.1 claims 
“The world is the totality of facts, not of things”, and §2.061 states “Atomic facts are 
independent of one another”. Furthermore, it is Wittgenstein’s conviction that only 
a formal language is able to depict the totality of facts. This whole outlook was 
elaborated in detail by Rudolf Carnap (2003) in Der Logische Aufbau der Welt, first 
published in 1928. Carnap made the draft of the book during the period 1922-1925 

11 In Chap. 15 “Symbolic Power, Robotting, and Surveilling” in Skovsmose (2014a, pp. 215–230), 
I have commented about the same quotation by Žižek. Here I draw on these comments.
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after he, as a member of the Vienna Circle, had studied the Tractatus. Using updated 
terminology, one can claim that the Tractatus presents the world as a collection of 
“big data”, which can be depicted by formal systems. This is a way of treating parts 
and properties as autonomous.

Language might be powerful and violent by remaining silent about something. 
As a consequence, I find it relevant to talk about symbolic silencing, and also to 
consider this as being a powerful symbolic act. As an illustration of what this could 
mean, I can refer to an observation made by Thomas Eisensee and David Strömberg 
(2007). They point out that for every person killed by a volcano, nearly 40,000 
people have to die of hunger to get the same probability of coverage in the USA 
television news. The global hunger problem can be addressed in different ways; 
being silent about it is one possible and cynical way.

By addressing something and by naming it, one might take an important step in 
entering a transformative process. For addressing forms of oppression and atroci-
ties, linguistic articulation is important. Such acts I refer to as symbolic articula-
tions. In the Pedagogy of the Oppressed, the original Portuguese version of which 
was published in 1968, Paulo Freire (2005) states:

Dialogue is the encounter between men, mediated by the world, in order to name the 
world. (p. 88)

[I]t is in speaking their word that people, by naming the world, transform it, dialogue 
imposes itself as the way by which they achieve significance as human beings. (p. 88)

Freire talks about speaking the word and naming the world, which appears to be 
a rather a passive activity. But it is not. To name the world is a political act by means 
of which one may call attention to cases of oppression and social injustice that oth-
erwise might remain hidden behind a curtain of silence. Patterns of oppression can 
be normalised by being ignored. Freire’s concept of naming the world is a paradig-
matic expression of what it could mean to break a symbolic silence by means of a 
symbolic articulation. Such an articulation might have a profound socio-political 
impact, as an initial step in transforming the world. Freire also talks about “reading 
the word” and “reading the world”, which is also a way of expressing a performative 
interpretation of language.12

Symbolic power can be acted out as symbolic violence, symbolic silence, sym-
bolic articulation, and certainly in many other ways as well. In general, I will talk 
about symbolic acts, whatever the kind of language and acts we are dealing with. 
Symbolic acts form world views, decision-making, and actions. I think of a perfor-
mative interpretation of language as a suggestion of what to consider when looking 
at language through philosophical lenses. It is a suggestion to not only pay attention 
to syntactical patterns, grammatical rules, and semantical structures, but also to 
think about what is acted out by means of language. It is a suggestion to consider 
the full impact of symbolic acts and how they might form our life-worlds.

12 See Freire and Macedo (1987). I am not aware of Freire referring explicitly to the performative 
interpretation of language as suggested by Wittgenstein, Austin, and Searle. Freire’s performative 
interpretation of language appears to be inspired by other resources.

O. Skovsmose



279

14.4  Performances Through Advanced Mathematics

The performative interpretation of language invites for a performative interpretation 
of mathematics. Such an interpretation I have investigated in terms of bringing 
mathematics into action (see, for instance, Skovsmose, 2014a, 2015, 2020a, b). In 
his discussion of semiotics, Paul Ernest (2021) has indicated the possibility of for-
mulating a performative interpretation of signs. I find this suggestion extremely 
interesting as this interpretation might bring about a general point of departure for 
both a performative interpretation of language and a performative interpretation of 
mathematics. It might be possible to see mathematics brought into action as a sym-
bolic act, and what has been said about symbolic acts in general – and about sym-
bolic violence, symbolic silencing, and symbolic articulation in particular – might 
make sense with respect to mathematics. I talk about the “performativity of mathe-
matics” as one talk about the “performativity of language”. Naturally, neither math-
ematics nor language do anything by themselves: it is people doing mathematics 
and using the language that drives the performances. But it is convenient to use 
these more compressed formulations.

Mathematics forms an integral part of daily-life economic transactions. The 
apparently simple act of paying with a credit card takes place on top of a huge 
amount of mathematical algorithms put into operation. The code of the card is reg-
istered when we insert the card in the slot machine and press a few numbers. The 
amount to be paid is subtracted from the account associated to the card, and an 
equivalent amount enters the account of the shop. Everything is apparently due to a 
few movements of hands and fingers. However, behind this surface of simplicity a 
complex system of mathematical algorithms is brought into action.13 Such algo-
rithms do not just describe what is taking place; they are not merely picturing any-
thing; the algorithms are in fact performing what is taking place.

In Weapons of Math Destruction, Cathy O’Neil (2016) points out that by speed-
ing out of human control, mathematics-based automatics might be one of the causes 
of the economic collapse that took place in 2008. Mathematical algorithms form an 
integral part of decision-making and risk-taking at the stock market. While previ-
ously decisions about selling and buying were based on human interventions, they 
are now, to a large extent, automatised by means of mathematical algorithms. 
Algorithmic trading has become a common phenomenon, and decision-making and 
risk-taking have turned into advanced mathematical disciplines.14 In this way, the 
whole stock market has turn into a gigantic economic experimental laboratory, 
where nobody can maintain an overview of what is taking place. The mathematisa-
tion of the stock market is not just a simple improvement of already existing 

13 The duality between the apparent simple actions and the mathematical complexity of the under-
lying technology has been expressed in terms of notions of mathematisation and demathematisa-
tion. See Jablonka and Gellert (2007).
14 For a detailed presentation of algorithmic trading, see Johnson (2010). See also Miller (2014) for 
a discussion of mathematics-based risk management.
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procedures; it is a complete mathematics-based reconfiguration of that which is tak-
ing place. Economic crises might be one of the consequences.15

Mathematics formats production processes. In the film Modern Times, Charlie 
Chaplin operates as an integral part of a production machinery, and quite literally in 
one scene in the film, he gets swallowed up by the machinery. This “swallowing up” 
can be taken metaphorically as being an ironic portrayal of modern forms of pro-
duction. However, it can also be interpreted quite literally. Today, in many almost- 
automatised production processes, mathematics-based algorithms keep the 
processes running. This applies to the production of cars, mobile phones, plastic 
boxes, whatever. As part of overall automatisation, workers are assigned particular 
tasks. They are swallowed up by the production machinery by being put into the 
gaps of otherwise automatised processes. Workers get dismembered and reduced to 
components of a production process. The organic unity of the workers’ life-worlds 
gets destroyed through the treatment of its parts and properties as autonomous. As 
also presented in Modern Times, we are dealing with violent processes.16

Cryptography has been applied in all historical periods. The recurring question 
has been: How can we send important information in a form that nobody other than 
the intended receiver can decode? In periods of war, this question becomes urgent. 
Many techniques have been tried out, invisible ink being just one example. During 
the Second World War, a most advanced cryptographic approach was developed by 
the Germans. They had constructed a coding and decoding device, the Enigma 
Machine, that was efficient to handle. The Enigma system was implemented by 
means of a mechanical device with so high a degree of complexity that it appeared 
impossible to break the code. Nevertheless, the code was broken, with direct impli-
cations for the course of the war. Later, mechanical cryptographic procedures were 
substituted by mathematics-based algorithmic procedures. This made it possible to 
encode and decode huge amounts of information and, at the same time, ensure a 
new degree of security. Computer-based cryptography, often referred to as modern 
cryptography, is based on profound number-theoretical insight, for instance, con-
cerning the distribution of prime numbers and the computational complexity of fac-
torising a natural number that appears as a multiplication of two unknown prime 
numbers, say of around 100 digits each. Modern cryptography is crucial to modern 
warfare, but it has many other applications as well. It is crucial with respect to the 
transfer of any kind of information: of money, of personal data, of business informa-
tion, and of research results. The whole approach of modern cryptography is based 
on mathematical algorithms brought into operation.17

The examples to which I have referred up to now concern mathematics, first of 
all, as an integral part of some algorithmic procedures. However, mathematics might 
also exercise a performative power by shaping the ways we perceive and interpret 

15 For a discussion of mathematics and crises, see Skovsmose (2021).
16 For a discussion of high-tech workplace surveillance, see Parenti (2001). For a discussion of the 
move from the assembly line to just-in-time procedures, see Lanigan (2007).
17 For a discussion of modern cryptography, see Skovsmose and Yasukawa (2009).

O. Skovsmose



281

our environment and how we come to act accordingly. Mathematics might, in fact, 
form our world-views. In the past, mathematics was crucial for particularising a 
geocentric view of the universe. It was, however, also a tremendous mathematical 
achievement to present a heliocentric world view. Nicolaus Copernicus demon-
strated how such a view could be formulated mathematically. As a result of this 
view, the orthodoxy of the Catholic Church was challenged. Albert Einstein’s theory 
of relativity is still an example of a mathematical formation of a world-view, a 
world-view with a tremendous impact on war technology. A different kind of 
mathematics- based impact on our conception of nature has been pointed out by 
Richard Barwell (2013), who highlights that with mathematical climate models, we 
provide interpretations of climate change, which might lead to strategies – and also 
to inadequate strategies – for trying to cope with such changes.

Today, mathematics has a direct impact on the formation of our knowledge. It 
need not only be with respect to the construction of broader world-views, but also 
with respect to the composition of bits and pieces of information. Mathematics is an 
integral part of computer-based information processing, and the Google search 
engine can serve an example. We might assume that, when searching on the net, we 
are first of all guided by our own decisions. But we are not. We are simultaneously 
guided by a page-ranking device, which determines what pages we will be pre-
sented with and in what order, when typing a search word. The page ranking is 
operated by means of a conglomerate of mathematical algorithms, which also can 
be modified in order to serve particular business and economic and ideological 
interests and priorities. As with respect to the workers’ life-worlds, the possible 
organic unity of knowledge gets destroyed by the treatment of its parts and proper-
ties as autonomous bits and pieces of information. The operation of the Google 
search engine is just one example of mathematics-based information processing.18 
What news, what sports events, and what commercials that we get exposed to are an 
algorithmic fabrication. In this way, mathematics becomes part of the formation of 
our day-to-day information and consequently of our preoccupations, our interests, 
our attentions, and also of what we remain unaware. Symbolic silence, as well as 
symbolic articulation, has turned into mathematics-based fabrications.

Investigations of mathematical algorithms are crucial for a performative inter-
pretation of mathematics.19 A profound characteristic of a mathematical algorithm 
was formulated by Alan Turing (1937), who provided a step-by-step presentation of 
what a calculating machine could do. The presentation was purely theoretical, and 
not based on any empirical investigations. The Turing machine, as the calculating 
machine soon became named, provides an abstract definition, not only of a mathe-
matical algorithm, but simultaneously of the electronic computer. The Turing 
machine makes it possible to interpret the computer as a complexity of 

18 For a discussion of the Google page ranking, see Langville and Meyer (2012); and Ravn and 
Skovsmose (2019).
19 For an investigation of mathematical algorithms, see Möller and Collignon (2019, 2021).
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mathematical algorithms, and I see any form of computing as a direct expression of 
bringing mathematics into action.

Could a mathematical model create a description of reality without interfering 
with this reality? Could a mathematical model “picture” reality in accordance with 
the picture theory as presented by Wittgenstein? A mathematical model has been 
described as a triple (R, M, f), consisting of a set of empirical objects, R, a set of 
mathematical entities, M, and a function f: R → M, which relates reality and math-
ematics.20 Thus, the function f is ascribed the role of doing the picturing. Such a 
characteristic of a mathematical model does not indicate much performativity 
beyond the very act of “picturing”. However, when a mathematical model is used, 
say, for describing a production process with the purpose of identifying further pos-
sibilities for automatisation, it does many more things than “picturing” an actual 
process. It captures some features of the situation as being important, say the mea-
sured productivity of the individual worker; it relegates some features as being irrel-
evant, say the family situation of the workers; and it stipulates connections between 
different variables, say between the level of payment and the level of productivity. 
The performativity of such a model cannot be expressed only in terms of “picturing” 
but needs to be expressed also in terms of “capturing”, “relegating”, and “stipulat-
ing”. Conceptions like “simplifying”, “dismembering”, and “destroying” also come 
to mind.

One could assume that the situation would be different if a mathematical model 
was meant to “picture” not a social but a natural phenomenon. However, if we con-
sider a mathematical model by means of which possible climate changes are dis-
cussed, one will also find that the model does more than “picturing”. It captures 
some connections as being important, relegates other features to irrelevance, and 
stipulates the nature of certain connections.21 So, even if we start from a picture 
theory of mathematical modelling, we come to acknowledge that the model does 
much more than picturing. A mathematical model operates as a symbolic language 
game among many other possible language games, and each game might provide 
different forms of symbolic acts. A symbolic language game might be extremely 
powerful. It may be useful to some and violent to others.

By means of mathematics, we format the way we deal with economic transac-
tions, production processes, cryptography, world-views, information processing, 
computing, and modelling. We are dealing with powerful performatives of mathe-
matics. Mathematics may operate as a mobile army of metaphors that covers what 
we are asserting and doing with a deceitful glitter of objectivity and neutrality. By 
means of mathematics, symbolic power can contribute to a deep-structuring of our 
life-worlds.

20 See Niss (1989); and Blum and Niss (1991) for such a characteristic of a mathematical model. 
For an overview of the present discussion of mathematical modelling, see Cevikbas et al. (2022).
21 For a brief presentation of different components of a climate model, see, for instance, 
MacKenzie (2007).
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14.5  Performances Through School Mathematics

Any kind of mathematics can be brought into action, including school mathematics. 
When talking about school mathematics, I have in mind elementary mathematics, 
and not only the mathematics that is presented in a school context, but also, for 
instance, in a work context. However, the very expression “elementary mathemat-
ics” might be accompanied by negative connotations, so I prefer instead to talk 
about “school mathematics”. With reference to Freire, Eric Gutstein (2006) talks 
about reading and writing the world with mathematics. This is an expression of a 
performative interpretation of mathematics directly inspired by Freire’s performa-
tive interpretation of language. By means of mathematics, one can articulate a range 
of socio-economic facts and thereby open them up to scrutiny. By means of math-
ematics, one can take the initial steps of writing the world. With this expression, 
Gutstein refers to changing the world towards a more just society. Gutstein presents 
a range of examples of classroom practices where he engages students in reading 
and writing the world with mathematics. In this way, he elaborates in great detail 
upon a performative interpretation of school mathematics, which he combines with 
an activist approach to education.22

In the article “Bringing Critical Mathematics to Work: But Can Numbers 
Mobilise?”, Keiko Yasukawa and Tony Brown (2012) raise a crucial question with 
respect to a performative interpretation of school mathematics: Can numbers mobil-
ise? They answer this question positively by illustrating how mathematics can help 
to provide a critical reading of work conditions. Yasukawa and Brown investigate a 
situation where a group of workers was dissatisfied with their working situation and, 
in particular, with the way in which “the work was constructed by a particular math-
ematical model” (p. 255). The model determined the workers’ salary as based on 
certain measures of their productivity. Yasukawa and Brown analyse how, by articu-
lating this dissatisfaction, it becomes possible to reach an understanding of how the 
model maintained an “inequitable an exploitative situation at the workplace” 
(p. 261).

Yasukawa and Brown distinguish between four different kinds of mathematical 
knowledge related to a work situation. First, they consider the mathematical knowl-
edge that makes it possible for the workers to become qualified for the job. This is 
the mathematics which makes up part of their formal qualification. For a bank assis-
tant, it could be accounting, for a woodworker it could be trigonometry, and for an 
engineer it could be calculus. (It might be questionable to consider calculus as 
school mathematics. However, I see initial courses in calculus as being transitions 
between school mathematics and advanced mathematics.) Second, they consider the 
mathematics that is actually brought into action in the workplace. For a bank assis-
tant, it might be accounting, although it might well be in a quite different manner 
from the accounting that is part of the bank assistant’s formal education. Third, they 
consider the mathematics that is relevant for the worker in order to operate in the 

22 See also Gutstein (2009, 2012); and Gutstein and Peterson (2006).
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labour market. This includes the mathematics relevant for controlling salaries and 
for verifying tax payments. It might also include the mathematics relevant for deal-
ing with everyday issues, such as drawing up a budget, paying in instalments, and 
understanding medical prescriptions. Fourth, they consider the mathematics that is 
relevant for “reading” the politics of the workplace. This is the mathematics that is 
relevant for critically addressing the way the company determines salaries, specifies 
working conditions, and measures levels of productivity. The existence of this 
fourth kind of mathematical knowledge brings Yasukawa and Brown to claim that 
numbers can mobilise. It is this kind of mathematical knowledge that Gutstein has 
in mind when talking about reading and writing the world with mathematics.

One can ask: Can equations mobilise? As part of one of his projects for social 
justice, Gutstein engaged his students in a project concerning mortgages and fore-
closures. The starting point for the project was the difficulties that haunted the 
neighbourhood in Chicago where the project took place. Gutstein (2018) condensed 
the focus of the project in the following way:

Our class was trying to determine whether a family earning the median income in the neigh-
bourhood (around 32,000 US Dollars a year) could afford a home mortgage of 150,000 US 
Dollars, with an interest rate of 6 % a year on a 30 years loan. According to the US 
Department of Housing and Urban Development, paying more that 30% on one’s income 
for housing is considered a “hardship” (p. 131).

Based on this information, the students, around 17-18 years old, calculated that 
a family could pay 808 dollars a month in mortgages without hardship. As the text 
indicates, the family is taking a loan of 150,000 dollars. However, if we assume that 
the family pays what it is able to pay without hardship, it would not be possible for 
them to pay off the loan. The students found that after paying 808 dollars a month 
for 30 years, the total payment would add up to 291,000 dollars. However, the fam-
ily would still owe the bank about 92,000 dollars. This whole observation was sum-
marised in the following equation:

 150 000 291 000 92 000. . .� �  

What are we to think of this equation? It seems that the family has to pay and pay 
and pay, without seeing any end to the payment. Such observations could lead to 
questions like: Who sets the agenda for such economic transactions? Who has 
installed such equations? Are we dealing with an example of economic exploita-
tion? This equation came to mobilise the students.23

The positive answers to the two questions: “Can numbers mobilise?” and “Can 
equations mobilise?” indicate that the performativity of school mathematics might 
include an articulation of socio-political issues.24 By means of mathematics, stu-
dents might come to see new aspects of their life conditions. They might recognise 
that taken-for-granted conditions can be questioned and maybe changed. The 

23 See also Gutstein (2016). For a short presentation of the project, see also Skovsmose (2020a).
24 For other examples of how critical mathematics education might be brought into action, see, for 
instance Andersson and Barwell (2021).
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students’ world-views might be changed, and they might come to act in different 
ways. In this sense, school mathematics might form the students’ life-worlds.

One can, however, imagine quite different performatives from school mathemat-
ics, for instance, the formation of a socio-political silence. Such a silence can be 
related to the school mathematics tradition dominated by the exercise paradigm. 
According to this paradigm, solving exercises establishes the main route for learn-
ing mathematics. The typical mathematical exercise includes information provided 
in numbers, and this information is always considered correct and exact. If an exer-
cise informs the price of apples, it is irrelevant for the students to look up other 
prices at the supermarket. The information given in numbers is always sufficient for 
solving the exercise. There is no need for the students to search for additional infor-
mation for solving an exercise. All the information provided in numbers is also 
necessary for solving the exercise. Finally, an exercise has one – and only one – cor-
rect answer.

Within the school mathematics tradition, exercises can refer to mathematical 
properties (of a triangle, of a function, of an equation), but they can also be contex-
tualised. However, we are dealing with a contextualisation referring to invented 
prices, invented distances, invented travels, and invented salaries. The inventions 
are made by the author of the textbook for the only purpose of formulating an exer-
cise. It is never relevant for the students to critically reconsider the contextualisa-
tion. The school mathematics tradition is accompanied by a deep symbolic silence 
with respect to socio-political issues.

The school mathematics tradition stimulates an “ideology of certainty”. By this 
expression, I refer to the conviction that information presented in numbers can be 
trusted and that calculations based on numbers can be considered objective and 
neutral. During the school years, a student might well be exposed to around 10,000 
exercises. The output of this need not be any deeper understanding of mathematics 
but could rather be a faith in the ideology of certainty. This ideology might be part 
of the performativity of the school mathematics tradition.

Symbolic violence might also be a feature of the school mathematics tradition. 
Such violence is exercised when mathematics education assumes a role as gate 
keeper, determining who is going to get access to further education and to the better 
jobs in society. Alexandre Pais highlights that mathematics education takes place in 
a society where capitalist structures and accompanying ideologies permeate what-
ever is taking place. As an illustration of what this might imply, he considers the 
broadly celebrated slogan “mathematics for all”. According to Pais (2012), this slo-
gan covers a cynical irony by concealing the “obscenity of a school system that year 
after year throws thousands of people into the garbage bin of society under the 
official discourse of an inclusionary and democratic school” (p. 58). This obscenity 
is a case of symbolic violence.

How could mathematics education adjust the students so that they could fit into 
the existing patterns of capitalist production and consumption? One element of such 
an adjustment is to establish and maintain a silence about socio-political issues. “I 
have referred to an explicit adjustment to the capital order of things in terms of a 
“prescription readiness”. The notion of prescription readiness has been elaborated 
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upon in Skovsmose (2008), where I investigate the functioning of mathematics edu-
cation with respect to the knowledge market. This readiness includes a disposition 
to adjust to guidelines and information provided in numbers. By working through 
the 10,000 exercises with all information to be taken as given, students get habitu-
ated into a prescription readiness. When entering the labour market, such a readi-
ness makes it easier to fit the workers into any kind of production process, the 
content of which is pre-defined. I find that the formation of the coming workforce is 
still a case of symbolic violence rooted in the school mathematics tradition.

I think of a performative interpretation of mathematics as a suggestion for what 
to consider when looking at mathematics through philosophical lenses. It is a sug-
gestion for not only paying attention to deductive structures, possibilities for reach-
ing certainties, and mathematical correctness, but also to what is acted out by 
means of mathematics. It is a suggestion for considering the full impact of mathe-
matics brought into action. It is a suggestion for considering how symbolic acts 
routed in mathematics might form our life-worlds.

14.6  Ethical Reflections

Performatives can be associated with any kind of mathematics, just as they can be 
associated with any kind of language. The impacts of performatives can be of very 
different natures, and therefore ethics becomes an integral part of a philosophy of 
mathematics. In Skovsmose (2020a), I have pointed out that mathematics research 
and mathematics education at universities and faculties are often conducted in an 
ethical vacuum, as they do not engage in ethical reflections with respect to mathe-
matics.25 In the following, I will pay particular attention to ethical reflections related 
to what I have referred to as “advanced mathematises”.

Reflections with respect to the impact of mathematics. Mathematics-based acts 
may have any kind of impact. They might be insignificant, but they might also be 
powerful. Such symbolic acts can be cynical, expensive, benevolent, interesting, 
risky, disastrous, aggressive, generous, and creative. While the performativity of 
mathematics can be expected, the very nature of this performativity is contested. 
Furthermore, it is relevant to talk about both an actual and a potential impact of 
mathematics in order to highlight that the consequences of bringing mathematics 
into action might not be observed immediately. Advanced number theory was devel-
oped as a purely theoretical discipline long before it became identified as a powerful 
basis for cryptography. Both the potential and the actual impact of mathematics 
need to be critically addressed.

Reflections with respect to different groups of people. Symbolic acts based on 
mathematics can have different qualities, but it is important to be aware that the 

25 For a discussion of mathematics and ethics, see also Ernest (2016, 2018b); and Skovsmose 
(2020b).
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same symbolic act can have very different impacts for different groups of people. 
When brought into action for restructuring working processes, mathematics might 
add efficiency to the processes and ensure a higher profit for the investors. The 
restructuring might create possibilities for reducing the workforce, implying that 
some workers might get fired. It might change the content of the work for those that 
remain at the workplace. It might establish working tasks that can be completed by 
unskilled workers and, in this way, reduce the value and power of the workers.

Reflections with respect to the acting subject. In many cases, the acting subject 
appears to be straightforward to identify. It can be a person, a group of people, an 
institution, a company, a government, a president, a dictator. However, when math-
ematics is brought into action, the situation might be different. In many cases, it 
seems that mathematics tends to hide an action subject. As an example, one can 
consider the collapse in 2008 of the financial market: Who was the acting subject in 
this situation? If we assume O’Neil’s interpretation, this economic crisis was trig-
gered by certain mathematical algorithms accelerating out of control. However, was 
the acting subject the mathematicians creating the algorithms? Was it rather the 
computer specialists that implemented the algorithms? Was it the financial institu-
tions – the banks and hedge fund companies – that directed the whole process? Or 
should one rather think of the acting subject in terms of some overall neo-liberal 
priorities? When reflecting on mathematics-based actions, I find it important to 
address issues concerning the possible, but maybe hidden, acting subjects. This is 
not only relevant when addressing economic issues, but relevant with respect to any 
kind of symbolic acts. Reflections with respect to the possible acting subject makes 
up a crucial part of ethical discussions.

Reflections with respect to possible intentions behind the action. Such intentions 
might be implicit, but they might also be stated explicitly. Still, the explicitly stated 
intentions need not be the real intentions behind an action, which might be less 
noble than those explicitly presented. As an illustration, one can consider a possible 
research project in number theory. Mathematicians might well express themselves 
in mathematical terms referring to the importance of making further theoretical dis-
coveries of mathematical numbers. However, if a group of mathematicians should 
make an application for funding for a number-based theoretical project, they might 
express themselves differently. They might refer to some possible applications of 
number theory and highlight the usefulness with respect to cryptography. The 
research funding agency might pay particular attention to some of the possible 
applications; this could be with respect to possible military applications, maybe 
expressed in terms of the project’s relevance for national security. The multiplicity 
of possible intentions that can be associated with the same mathematical activity is 
a general phenomenon. Whatever kind of mathematical activity one has in mind, 
one should not expect to be able to associate it to a singular set of intentions. It is 
important for ethical reflections to address the multiplicity of possible intentions for 
engaging in a mathematical activity.

Reflections with respect ethical reflections themselves. When discussing whether 
an action is good or bad, it seems consequential to pay attention to the implication 
of the action. This idea can be generalised to the ethical position referred to as 
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utilitarianism, which claims that the ethical value of an action can been judged by 
considering the full impact of the action. This position has also been referred to as 
being a teleological one. This position confronts a deontological one, which claims 
that a priori to any discussion of implications, there exist some principles that need 
to be considered when judging an action. The deontological perspective has deep 
philosophical and also religious roots. The Bible, as well as the Quran, has been 
claimed to contain guidelines, according to which any kind of action needs to be 
judged. The deontological principle has been advocated by many philosophers, 
Immanuel Kant being one of them. Kant, however, did not look into the Bible in 
order to identify ethical principles, but did so through analytical investigations. 
Originally, the teleological perspective in the form of utilitarianism was presented 
by Jeremy Bentham. Being an atheist, Bentham argued that it was not necessary to 
look into the Bible or to consider any other forms of holy demands. To judge whether 
an act was good or bad was a completely human affair that could be adequately 
based on empirical observations.

The reflections that I have presented so far with respect to bringing mathematics 
into action have primarily been of a teleological format. However, this perspective 
might be insufficient if one wants to address not only the actual, but also the poten-
tial, impact of mathematics. Thus, it seems an irrational affair to try to judge a 
mathematics-based action on its impact when we have still not witnessed any such 
impact. But what kind of a priori principle should one consider? By making these 
comments, I want to indicate that there are deep uncertainties associated with ethi-
cal reflections regarding bringing mathematics into action. Still, I consider such 
reflections be necessary.

Ethical reflections concern the potential and actual impact of mathematics. This 
impact might be contested, and it might be ambiguous, by affecting different groups 
of people in radical different ways. Ethical reflections concern how symbolic acts 
rooted in mathematics might influence our ways of interpreting and acting. They 
concern how mathematics forms our life-worlds.

The performative interpretation of mathematics establishes ethics as a crucial 
element of a philosophy of mathematics. Mathematics can be powerful, fallible, and 
mischievous. Contrary to what the Three Magi assumed, mathematics is a human – 
all too human – affair.
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Chapter 15
Reflective Knowing in the Mathematics 
Classroom: The Potential of Philosophical 
Inquiry for Critical Mathematics 
Education

Nadia Stoyanova Kennedy

15.1  Introduction

“Mathemacy” is an essential competence in critical mathematics education that 
goes beyond mathematical knowledge and skills, or even the application of mathe-
matics for solving real-world problems and interpreting outcomes. It requires 
“reflective knowledge,” which demands a capacity to make critical judgments about 
the social consequences of the use of mathematical tools (Skovsmose, 1994). In 
Skovsmose’s words “… mathemacy, as a radical construct, has to be rooted in the 
spirit of critique and the project of possibility that enables people to participate in 
the understanding and the transformation of their society, and therefore, mathemacy 
becomes a precondition for social and cultural emancipation” (1994, p. 27).

Many researchers have expounded on the importance of reflective awareness of 
mathematics as tool and as a sort of grammar for describing and predicting reality 
(e.g., Davis & Hersh, 1986; Geller & Jablonka, 2007). Given its increasing influ-
ence on our highly technological society, the dangers of neglecting to develop such 
an awareness are clear (e.g., Davis & Hersh, 1986; Skovsmose, 1994; D’Ambrosio, 
1999; Ernest, 2018, 2019). However, Skovsmose (1994) points out that reflective 
knowing is not an ingredient of mathematical or technological knowledge, as its 
focus lies outside them. An understanding of the particular way of seeing and under-
standing the world through the lens of mathematics and of the role it plays in society 
is not to be found in mathematics. We need to look “beyond” mathematics for dis-
cursive environments that cultivate reflective knowing and for instruments that can 
be helpful in grasping the role of mathematics in reading and understanding the 
world. In this chapter, I examine more closely the concept of reflective knowing and 
argue that philosophical inquiry in collaborative group settings may be an 
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appropriate vehicle to facilitate critical reflection in the classroom—reflection that 
is focused on understanding mathematics as a tool, on its role in society, and on the 
implications of using mathematical and technological knowledge in addressing 
social problems. I then offer a brief description of what philosophical inquiry is, the 
context in which it is conducted, and a framework for conducting philosophical 
inquiry in the mathematics classroom by engaging school students in encounters 
with contestable questions related to mathematics and its role in society.

15.2  On Reflective Knowing

Skovsmose’s (1994) notion of mathemacy is akin to Paolo Freire’s (2005) notion of 
critical literacy. The latter has a socio-political dimension, in that it presupposes an 
awareness of the complexity of broad ideological forces, of the functions of power, 
and of the universal problem of injustice. Critical literacy relies on dialogue, reflec-
tion, and pointed analysis of controversial and important issues in students’ lives. 
Such dialogues function to expose students to multiple perspectives and engage 
them in a critique of oppressive structures, in the interest of gaining a deeper under-
standing of the social and political forces that drive them. In this sense, critical 
consciousness or “conscientização” (Freire, 2005) is as much about raising aware-
ness as about empowerment, here understood as the ability to act in the world in the 
interest of changing it.

Similarly, Skovsmose’s (2007) vision of mathemacy as a competency is not 
solely functional—that is, about learning mathematics in order to use it in one’s 
personal and professional life. It is also a critical competency, one that engages 
people in critique and allows them to participate in “reading the world” through an 
emancipatory lens, using mathematics to question deeply seated assumptions and 
beliefs, examine implicitly held values, “talk back” to authorities, and imagine 
alternatives. Mathemacy is understood as empowering—a competency that opens 
the door to active participation in a democratic society.

As formulated by Skovsmose (1994), mathemacy includes mathematical, tech-
nological, and reflective knowing. Mathematical knowing “refers to the competen-
cies we normally describe as mathematical skills,” and technological knowing 
“refers to the ability to apply mathematics and formal methods in pursuing techno-
logical aims” (p. 100- 101). The latter relies on mathematization and the interpretive 
act of modeling real-world phenomena in purely mathematical terms. In his view, 
mathematics as a field of knowledge has a “formatting power” that structures all 
aspects of social life in non- transparent ways. He argues that mathematical and 
technological knowledge—the competency to solve mathematical problems and 
model real world phenomena with mathematics—is limited in addressing this power 
apart from a critical approach.

Mathematics does not offer an impartial reading of the world; rather it offers a 
particular worldview and epistemology, which may serve various specific political, 
economic, or other interests. In our postmodern world, economics, politics, culture, 
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subjectivity, and identity are deeply informed by meanings filtered through the con-
ceptual lenses of quantification and mathematics as its most formidable facilitator. 
Mathematical models regularly determine whether people get a job or a loan, 
whether they get into a school, how much they pay for insurance, or how long they 
spend in prison. These models often reflect biases and racial prejudices and can 
perpetrate profound unfairness and bigotry (O’Neil, 2016; Noble, 2018). Other con-
cerns about mathematical models are related to issues of “social availability” of 
mathematical knowledge (Geller & Jablonka, 2007, p. 1). Technology often renders 
mathematical processes and their human and material dimensions invisible, codify-
ing them in “packages” that execute mathematical procedures, which makes the 
processes and results difficult to question. Technology renders mathematical pack-
ages into “black boxes” of implicit underlying mathematical processes that are “fro-
zen” in objects and technological structures and apparatuses (Gellert & Jablonka, 
2007), and not accessible to the general public—a practice that shields them from 
accountability and, as such, susceptible to concealing corrupt practices. Not only do 
the “black boxes” render the human dimension of their use opaque, but they also 
make the embedded interests and values that the models reflect invisible. We are 
increasingly faced with what Keithel et al. (1993) refer to as “implicit mathemat-
ics,” the biases of which are not visible. Such processes help increase gaps between 
“experts” and “non-experts,” between the designers who understand these structures 
and the rest of us who do not, thus reinforcing antidemocratic divisions between an 
“expert” elite and consumers (Skovsmose, 2007), thus precluding democratic 
participation.

Since mathematics and technology are key tools in developing the infrastructure 
of a technological society, their impact is implicated in our approach to every kind 
of social problem—whether environmental crises; gender, racial, and income (in)
equality; public schooling; and social welfare programming—and play a ubiquitous 
role in understanding these phenomena and influencing them (e.g., O’Neil, 2016; 
Noble, 2018; Skovsmose, 2019; Andersson & Barwell, 2021). Moreover, mathe-
matics plays a dual role in that it has both descriptive and prescriptive powers; while 
claiming objective neutrality, it in fact directly stipulates actions and behavior. Not 
only does mathematics have descriptive and prescriptive powers, but it also becomes 
embodied in our thinking and action (Fisher, 2007). As such, it may lead to blind 
acceptance of the products of mathematization and a lack of awareness of how 
mathematics operates and its effects on society and subjectivity. Unless there is a 
recognition of these aspects of the operation of mathematics and its implicit episte-
mology, only narrow views of the discipline will result, and mathematics will be 
forever associated with the myth of objectivity, truth, and a value-free form of judg-
ment. Excavation of the invisible dimensions associated with the uses of mathemat-
ics is necessary, as Skovsmose aptly puts it, because “... mathematical and 
technological knowledge are born ‘shortsighted’” (1994, p. 99). Reflective knowing 
acts to counter the covert effects of mathematics and its hegemonic epistemological 
power. “It has to do,” he argues, “with the evaluation and general discussion of what 
is identified as a technological aim and the social and ethical consequences of pur-
suing that aim with selected tools” (p. 101). It represents the competence required 
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for the ability to “take a justified stand” in discussions that concerns technological 
questions (p. 101).

Indeed, some types of reflective knowing associated with mathematical problem- 
solving and modeling are grounded in mathematical and technological knowledge 
and are referred to by Skovsmose as the “technical evaluation of a model” 
(Skovsmose, 2019, p. 10). These types of reflection concern questions related to 
calculation correctness, appropriate choice of algorithms, and the reliability of the 
solutions and are representative of the meta-reflection typically considered part and 
parcel of good mathematical practice (Skovsmose, 1994, p. 118). However, other 
types of reflective knowing extend beyond the boundaries of mathematics. 
Skovsmose describes these as focused on questions as to whether mathematics 
needs to be used in a particular situation, as well as the broader consequences of its 
uses. These concern a critique of the social consequences of enacted mathematics 
and require a close examination of the assumptions, values, norms, and ethics that 
are implicit in the mathematization process. Inquiry into such questions and con-
cerns qualify as philosophical rather than mathematical and require philosophical 
rather than mathematical judgments. As such, it would seem that promoting reflec-
tive knowing in the mathematics classroom would necessitate, not only that students 
learn to use mathematical methods to explore social, environmental, or economic 
questions but also that they reflect as well on mathematics as a tool and its role and 
uses in society.

Skovsmose argues that a kind of mathematical archeology needs to take place: 
first in uncovering the mathematics, which may be opaque, used in a given situation, 
and second, in drawing attention to and discussing the manifestation of its format-
ting power in that situation. Archeological excavation, as Anthony Giddens (1994) 
points out, involves digging deep and taking all pieces out, then cleaning and estab-
lishing connections between them, which is a critical interpretive task. This process 
would require a different set of lenses than the mathematical. As Stephen Toulmin 
(1961) aptly observes: “We see the world through them [the lenses] to such an 
extent that we forget what it would look like without them: our very commitment to 
them tends to blind us to other possibilities” (p. 101). The only way to gain a differ-
ent perspective and to “unthink” the ideas filtered through these mathematical lenses 
is to remove them for purposes of analysis. As Toulmin observes, “It is impossible 
to focus both on them [the lenses] and through them at the same time” (p. 101). On 
the other hand, the anthropologist and semiotician Gregory Bateson (2002) advo-
cates for bringing different perspectives together. He uses the metaphor of stereo-
scopic vision to promote the idea of combining perspectives in order to achieve an 
“extra depth,” particularly when one of these perspectives offers an outsider’s 
breadth of vision on the other.

In this chapter, I advocate for combining mathematical with philosophical per-
spectives. I consider this approach to be compatible with the goals of critical math-
ematics education in regard to the development of mathemacy and of the habits and 
dispositions that promote and sustain democratic citizenship. Other scholars have 
argued for including philosophy in the teaching of mathematics. Prediger (2005), 
for example, has argued for including reflection in the mathematical classroom in 
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the area of mathematical content and practice, epistemology, and the philosophical 
base of mathematics. Skovsmose (2020) considers the overwhelming emphasis in 
mathematics courses on doing mathematics without reflecting on its possible social 
impacts as a manifestation of “inserting mathematics into an ethical vacuum” and as 
extremely problematic. Ernest (2018) proposes that aspects of philosophy of math-
ematics and especially the ethics of mathematics be included in school and univer-
sity mathematics curricula.

I argue here for the inclusion of the practice of philosophical inquiry in the con-
text of collective and deliberative dialogue in the mathematics classroom and pro-
pose that such an approach offers a pathway whereby students are encouraged to 
become more aware of the complex relationship between mathematics and society, 
more critical in their understanding of mathematics and its products, and better 
equipped for participation in democratic forms of life. I consider this approach to be 
compatible with the goals of critical mathematics education in regard to the devel-
opment of mathemacy and of the habits and dispositions that promote and sustain 
democratic citizenship. Thus, I suggest that philosophical inquiry can act as a vehi-
cle that facilitates reflective knowing in the mathematical domain. In what follows, 
I will explore one practical form of philosophical inquiry in educational settings that 
lends itself particularly well to this project.

15.3  Philosophical Inquiry, Dialogue, and Judgment

For a model for conducting philosophical inquiry, we turn to a program founded in 
the 1970s and internationally known as Philosophy for Children (P4C).1 The pro-
gram uses a pedagogical format known as “community of philosophical inquiry” 
(CPI) (Lipman, 2003), conceptualized as a communal dialogical process that bases 
its practice on philosophical questions and concepts generated by students them-
selves in response to a stimulus in the form of a text or other media. The program 
founders— Matthew Lipman and Ann Sharp (1980)—developed a CPI curriculum 
consisting of philosophically provocative stories written for children and thema-
tized teacher manuals that focus on central, common, and contestable concepts 
found there such as friendship, freedom, justice, beauty, persons, mind, body, 
authority, conflict, truth, and “real” (Lipman, 1981; Lipman et al., 1980). Although 
Lipman and Sharp did not envision philosophical discussions focused on questions 
concerning mathematics or its impact on society, I suggest that the methodology 
(not the curriculum per se) can be used to engage students in critical examination of 
the role of mathematics in society, as well as mathematics in general—in other 
words, to conduct meta-mathematical reflections through dialogical inquiry.

1 For more information about the Philosophy for Children (P4C) program, see the Institute for the 
Advancement of Philosophy for Children (IAPC, https://www.montclair.edu/iapc/); the 
International Council of Philosophical Inquiry with Children (ICPIC, https://www.icpic.org/); 
Philosophy Learning and Teaching Organization (PLATO, https://www.plato-philosophy.org/).
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In a classroom CPI, the philosophical discourse in question is reconstructed as 
more practical and more accessible to students than is traditionally the case. The 
inquiry begins with some kind of problem which gives rise to a more general philo-
sophical question—what is the most reasonable thing to believe or to value or to do 
in this case?—and ends in some kind of satisfactory resolution or fulfillment in the 
nature of a judgment. The latter tends to be a proposition about what should be 
believed or valued or done with regard to the original problem. In P4C methodol-
ogy, inquiry begins with students generating questions based on a reading of an 
excerpt of a curricular novel, followed by determining the group’s interests and 
creating an agenda for discussion.

Philosophical inquiry focuses on “big questions” (Wiggins & McTighe, 2005) or 
common, central, and contestable (CCC) questions (Splitter & Sharp, 1995): they 
are common to all humans in some form, central to our understanding of ourselves 
and of the world, and contestable, as they do not have one simple answer. They are 
also questions that lend themselves best to communal, collaborative deliberation in 
a setting in which participants are engaged in putting forward and evaluating argu-
ments and arriving at reasonable judgments as to those arguments through dialogue. 
Philosophical inquiry so understood relies on the Deweyan proposition that ethical, 
aesthetic, political, and other philosophical dimensions describe facets of most peo-
ple’s ordinary experience rather than some esoteric experiences separated from the 
ordinary (Dewey, 1934; Lipman, 2003). It also takes on Dewey’s notion that inquiry 
should connect to student’s own questions and respond to genuine perplexity and 
doubt (Dewey, 1910/1997).

In the context of the mathematics classroom, philosophical inquiry can serve as 
a vehicle for an inquiry focused on contestable questions that are not discipline- 
specific but act to question the outcomes of the uses of mathematics in society. 
Some examples of questions might be “What part does mathematics play in the way 
we organize our lives?” or questions related to social justice such as the following: 
“What is fair wealth distribution? How should wealth be distributed?” These can be 
qualified as philosophical questions to the extent that they explore political and ethi-
cal dimensions of our experience with mathematics. Such a project draws heavily 
on Dewey’s idea that inquiry should begin with a particular experience—in this case 
an experience that involves a mathematical activity. The mathematical activity 
makes for a shared group event, and the problematization that follows in the discus-
sion can motivate students to inquire further in a search for answers to related, rel-
evant, contestable questions. In other words, the mathematical activity acts to 
structure the inquiry that follows it, or to use Dewey’s term, to “occasion” it.

In my own experience with conducting philosophical inquiry in the context of a 
mathematics classroom, I have used written texts about mathematics or posed math-
ematical tasks the experience of which occasions the generation of students’ philo-
sophical questions (e.g., Kennedy, 2018, 2020). What is seen and felt as problematic 
and perplexing must reflect the experiences of the group of students—not only those 
experiences related to the mathematical activity, but previous personal school and 
out-of- school experiences as well. Above all, the initial goal of inquiry with con-
tested questions related to mathematics is to help students reflect on and challenge 
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deep-seated assumptions, critically explore values and social practices, and discuss 
social alternatives.

The process is teleological—it aims at a product. As Lipman observes, “Inquiry 
is a self-corrective practice in which a subject matter is investigated with the aim of 
discovering or inventing ways of dealing with what is problematic. The products of 
inquiry are judgments.” (Lipman, 2003, p. 184). The ideal immediate goal is for the 
participants to arrive at one or more reasonable philosophical judgments regarding 
the questions or issues that occasioned the dialogue. For example, with regard to 
ethical inquiry, Lipman et al. insist that, “Students must not only be encouraged to 
express their beliefs …. but to discuss and analyze them, considering the reasons for 
and against holding them, until they can arrive at reflective value judgments that are 
more firmly founded and defensible than their original preferences may have been” 
(Lipman et al., 1980, p. 47). The product of the inquiry should be a collective goal, 
guided by the Socratic dictum that we “follow the argument where it leads” rather 
than being solely invested in a one’s own personal argument.

“Inquiry dialogue,” as Douglas Walton (1998) calls it, is truth-directed and aims 
at arriving collectively at a conclusion or judgment on a common, central, and con-
testable issue that is deemed the most reasonable and acceptable by the community 
(Gregory, 2007). For a philosophical judgment to be reasonable, it must be well 
reasoned, well informed, and personally meaningful (Lipman, 2003). Judgments 
are justified in part by their reliance on sound arguments and good evidence. For a 
judgment to be reasonable, it must be informed by multiple and diverse perspectives 
and able to withstand the evaluation and critique of the dialogical community. The 
discourse of CPI assumes the Pragmatist view that good thinking is social and that 
the ability to think well is acquired through participation in a thinking community 
where one is both challenged and assisted in the effort to be clearer, more consis-
tent, and more creative (e.g., Dewey, 1910/1997; Pierce, 1958). In that individual 
thinking is limited and susceptible to error, it is likely to be strengthened by being 
made accountable to a community of peers (Lipman et al., 1980). Because there is 
no authority external to the community of inquiry that can correct limitations or 
shortsightedness, the evolution of participants’ insights and skills is the only means 
of producing and improving the arguments and the judgements in play. The reason-
ableness of the community’s judgment depends on the ongoing reconstruction of 
the participants’ individual and shared understandings, through individual and 
group self- correction.

The teacher has the important role of organizing and facilitating the inquiry. He 
or she introduces a stimulus—a text, a mathematical activity, or a list of questions 
related to a previous activity. She may invite students to pose their own questions 
related to previously collectively experienced mathematical activity or suggest a 
question for discussion and encourage students to offer arguments. In a CPI, teach-
ers invite students to propose, evaluate, and build on each other’s arguments and to 
agree and disagree in a spirit of ongoing, collaborative search for truth. They invite 
students to make certain logical and dialogical moves, which they model in the 
course of the discussion: to ask questions, agree or disagree, give reasons, offer a 
hypothesis or explanation, or make a statement, offer an example or a 
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counterexample, make comparisons, classify/categorize, identify an assumption, 
offer a definition, make a distinction, self-correct, among others (Kennedy, 2013). 
They also facilitate the sequencing of student moves by inviting students to make 
interventions, by encouraging them to connect and respond to what has been said, 
by making or asking for clarifications or restatements, by offering or asking for 
summarization, and by managing turn taking.

The teacher acts to orchestrate the inquiry with the goal of focusing and moving 
the inquiry further through scaffolding the inquiry process with questions, counter-
examples, restatements, and summarizations. In cases in which the community 
might align with only one side of an argument, the facilitator may offer a different 
perspective, another possible argument, or counterexample. For example, she might 
say “And what would you say if someone said…….”, or “What about thinking about 
this issue in a different way, for example….” Teachers act as facilitators of the dia-
logue and, as Lipman puts it, as “ . . . ‘pedagogically strong but philosophically 
self-effacing’ so that they can strengthen the reasoning and judgement of their stu-
dents, thereby getting them to think for themselves, while at the same time the 
teachers try to avoid indoctrinating their pupils with their own personal opinions.” 
(1993, p. 296) Frequently the facilitator may need, in order to keep the discussion 
philosophical and productive, to negotiate between her own inclination and the 
desire of students to discuss questions that range across disciplinary boundaries and 
are not fruitfully addressed by dialogue, for example, questions that already have 
definitive answers, questions that can only be answered by calculation, observation, 
or experiment, and questions that are psychological and concern feelings and 
moods. As participants in a genuine pursuit of meaning regarding questions that 
they have taken up by their own volition, students come to develop personally 
meaningful judgments. Such judgments are of another order from “accepted truth” 
typically passed on to them by the teacher. Instead, they are developed and pursued 
through engaged participation in collective, deliberative, reflective thinking about 
mathematics and its impact on current social structures, and a result of careful eval-
uation of the ideas and assumptions aired by the group in response to an important 
question.

15.4  A Framework for Philosophical Inquiry in Mathematics

In this section, I offer a Framework for Philosophical Inquiry in Mathematics as 
shown in Table 15.1. The Framework is intended for use in engaging students with 
philosophical questions about mathematics, its uses in society, and its relations to 
other disciplines. It adopts and extends Skovsmose’s (2001) notion of “landscapes 
of mathematical investigation” which may refer respectively (1) to mathematical 
concepts per se; (2) to invented (textbook) mathematics situations such as word 
problems, and (3) to real-world situations described mathematically, as in mathe-
matical modeling. In his view, mathematical activities can be guided by any of these 
three references and can be narrowly constructed as exercises or as discussions. I 
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Table 15.1 Framework for philosophical inquiry in mathematics

Philosophical 
inquiry landscape Sample questions Sample goals

1. With reference to 
mathematical 
concepts

What is number? Is infinity a 
number? What can or cannot be 
expressed in numbers?
Is there a connection between 
symmetry and beauty? Is 
symmetry important for plants, 
animals or life in general? If so, 
how?
Where does mathematics come 
from?
Is mathematics the best way to 
understand the world? Is it a 
way to understand ourselves?

Explore questions related to the nature 
of mathematics; the power of 
mathematical knowledge in describing, 
understanding, and predicting 
phenomena; its limitations; its 
formatting power on the society and 
ourselves

2. With reference to 
invented (textbook) 
situations

What are we assuming? Might 
different assumptions change 
our interpretations of the 
situation? What are the most 
reasonable assumptions?

Problematize the “simple” and 
“narrow” frame of the situation, 
investigate assumptions, and consider 
how different assumptions might 
change outcomes

3. With reference to 
real situations 
described 
mathematically

What is a mathematical 
description (model)? What is 
omitted during mathematical 
modeling? Is there anything 
that a model might miss or 
misrepresent?
What are the assumptions 
under which the model 
operates? What criteria have 
been used to judge that your 
mathematical model is 
successful?
What values underlie this 
model?

Problematize mathematical descriptions 
(models) as “accurate” representation of 
a situation and as products of 
mathematical abstraction
Facilitate understanding that different 
criteria may be at play in judging the 
success of such models and that value 
judgments may prioritize one model 
over another

use Skovsmose’s concept of “landscapes of investigation” to conceptualize land-
scapes of philosophical investigation.

In the framework offered below, each of the three landscapes offers a discursive 
space for engaging in communal philosophical inquiry and for encountering the 
sorts of questions mentioned below (Table 15.1).

15.4.1  Inquiry with Reference to Mathematical Concepts

Inquiries related to specific mathematical concepts might encourage a search for 
meanings that have not traditionally been the focus of school mathematics. For 
example, aesthetic inquiry into mathematical notions, like symmetry or fractals, 
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offers the possibility of exploring potential connections between symmetry and 
beauty, patterning and intrinsic order. Other, ontological inquiries may focus on 
interdisciplinary connections—biology for example, in which we explore the math-
ematically expressible relations inherent in the world of plants, animals, or life in 
general.

One could go further and discuss the following questions with ethical implica-
tions: Does mathematical knowledge of the world and the use of a mathematical 
approach to studying the world actually inhibit or distract us from other, equally or, 
in some cases, more powerful forms of knowledge? Is mathematics always a good 
lens to look through when we try to understand the world? Can mathematics be 
helpful in trying to understand ourselves? Is there anything that it might miss?

Mathematics students commonly question its usefulness, which is related, in 
turn, to its evident relation to the lived world that we all inhabit in more or less the 
same spatio- temporal way. Our goal is to encourage questions that go deeper than 
the utilitarian uses of mathematics—questions that stimulate critical inquiry into 
our culturally constructed and transmitted beliefs and assumptions about mathemat-
ics and to heighten awareness of both its power and limitations (Kennedy, 2018). 
Such inquiry can open dialogue about the implications of the uses of mathematics 
in society and about the ways subjectivity and lifeworld are informed by meanings 
filtered through the conceptual lenses of number, measurement, probability, and 
mathematical modeling.

15.4.2  Inquiry with Reference to Invented 
(Textbook) Situations

Textbook word problems typically refer to situations that have been invented for the 
purpose of a mathematical exercise. Usually, such exercises do not invite students to 
bring their own personal experiences and practical understanding to the classroom. 
However, there is much to gain from mathematics problems that are treated as 
ambiguous and open to interpretation. Kennedy (2012) offers examples of tasks that 
were designated for use as straightforward mathematical exercises but were treated 
as “texts” to be interpreted. One task used in a group discussion with middle school 
students reads as follows: A frog finds itself at the bottom of a 30-foot well. Each 
hour, it climbs 3 feet and slips back 2 feet. How many hours would it take the frog to 
get out? Students were asked to work collaboratively on interpreting this problem 
through offering definitions and identifying implicit assumptions. A major benefit 
of this form of inquiry is the by-product of the experience of collective engagement, 
which could be anything from an understanding that a mathematical task could be 
often “read” and interpreted in different ways, to the realization that assumptions 
buried deep in the statement of a problem can make a distinct difference in terms of 
its final solution.
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15.4.3  Inquiry with Reference to Real Situations 
Described Mathematically

Typically, the inquiry landscape that relates to real-life situations is framed by math-
ematical tasks involving real data. Kennedy (2022) describes an activity with mid-
dle school students who were asked to describe their room mathematically. The 
descriptions volunteered by students varied: some made drawings portraying the 
colors and the patterns of their wallpaper, flowers on their desks, etc. Others drew 
rectangles with smaller rectangles inside them, showing the placements of their bed 
and desk; yet others offered a list of measurements of the length, width, and square 
footage of the room. These representations were then used to initiate a comparison 
between them and to discuss the question: What is a mathematical description? 
How is it different from another, say an artist’s or a poet’s descriptions?

Often enough one discussion opens the door to more questions from the group. 
For example, collaborative inquiry into the question, “What is a mathematical 
description?,” has led to new questions such as the following: “Why can’t math 
descriptions have all the information in them? Are math descriptions useful if they 
don’t have all the information in them? How do we know which is the best math 
description? Why do people use math descriptions? Are mathematical descriptions 
always helpful? What can we gain by using them? What can be lost in using them? 
Can a math description be harmful?”

Similarly, when discussing mathematics modeling tasks with high school stu-
dents, we might widen the inquiry to a deliberation on the extent to which such 
models describe the “real world,” which in turn suggests the obvious metaphysical 
question. Such discussions might help students develop a better understanding of 
models as products of mathematical abstraction that necessarily omit or limit part of 
the reality they describe. Often some of the judgments that the model developers 
make are value judgments; therefore, it is crucial to examine how different values 
may prioritize one model over another. Ethical inquiries could be extended to con-
sider the fairness of a model. For example, a purely mathematical model of a given 
set of benefits distributions could prompt inquiry as to whether it is fair to all pos-
sible beneficiaries. What are the assumptions under which the model operates? Are 
there some possible beneficiaries who might have been left out? Kennedy (2020) 
offers an example of an activity using US wealth distribution data, which was intro-
duced to initiate an ethical inquiry based on the question: What constitutes equitable 
(fair) distribution of human goods? The inquiry invoked several contestable con-
cepts such as fairness in matters of wealth, responsibility for others, basic needs, 
living in an ethical manner, and the impact of unequal wealth distribution on soci-
ety—questions that emerged in the course of the inquiry and which ended with a 
number of further questions that could be pursued in the future.

To summarize, the Framework for Philosophical Inquiry offers a format that 
encourages students to engage with contestable questions about the field of mathe-
matics, both in its internal relations and its relation to the world.
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15.5  The Potential Role of Philosophical Inquiry 
in the Classroom

As has been suggested, philosophical inquiry in the classroom can be orchestrated as a 
form of collective, intellectually rigorous and engaging dialogue focused on common, 
central and contestable questions, challenging and critiquing implicit assumptions, and 
dedicated to the reconstruction of concepts (Lipman, 2003), thereby facilitating the 
acquisition of an enriched overarching view of mathematics and its connections to 
other school disciplines. It may aid in opening a “wider horizon of interpretation” that 
includes a critical dimension (Kennedy, 2018). Philosophical dialogue requires an 
“outsider” perspective and thus promises to furnish a more global view of mathemat-
ics, its nature, and its instrumentarium. Such a perspective allows for the examination 
of the epistemological assumptions that influence the role of mathematics in social 
reproduction—most importantly in normalizing instrumental and calculative ways of 
thinking (Ernest, 2018)—and thus in organizing everyday experience. A widened per-
spective includes the examination of mathematics as a cultural product, and philosoph-
ical inquiry promises to facilitate that examination, leading to a widened, deepened, 
more nuanced understanding of the discipline, thereby offering a space for the critical 
examination of its role in society, and the political implications of its uses.

Mathematics as a system and method includes not only the mode of access to the 
products of mathematization but also the mode of studying, using, interpreting, and 
evaluating them; thus, as has been pointed out by many researchers, mathematics also 
acquires prescriptive and symbolic power (Davis & Hersh, 1986; Skovsmose, 1994). 
Unless these aspects of mathematics are brought into the open and discussed, there is 
an obvious danger of our students turning into uncritical consumers of mathematics 
with little or no understanding of the worldview it reinforces and with no critical com-
petence to judge mathematical productions and prescriptions. If participation in a 
democratic society is not restricted to following formal procedures of elections and 
government, but is understood as participating in direct democracy or, in Deweyan 
terms, as “a mode of associated living,” then citizens must be able to critically appraise 
and scrutinize not only the math instrumentarium and its uses but also the implications 
of those uses. The urgency of the need for the inclusion of critical inquiry into the ethi-
cal, social, and political aspects of the uses of mathematics is particularly salient now, 
as we examine how mathematical and technological forms of decision-making may 
be implicated in societal poverty, income inequality, racial injustice, social inequities, 
climate change, world hunger, educational gaps, and to what extent uncritical and 
unethical exploitation of mathematical knowledge may exacerbate these deep-seated 
problems. Inquiry into the ethical questions that pervade an increasingly mathema-
tized world not only promises to raise awareness of the dangers of deceptively “value-
free” mathematics but also promises to open dialogue about the moral responsibility 
of the creators and users of mathematical and technological knowledge.

Yet another inquiry that may have far-reaching implications for the development 
of the critical mathematical subject, and the prospects for the emergence of a truly 
autonomous citizenry, is epistemological. “Personal epistemology,” a term now 
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commonly used to denote personal beliefs about knowledge and knowing (Kuhn 
et  al., 2000), is increasingly recognized as a powerful hidden shaper of student 
expectations and learning practices, and thus as crucial for individual learning and 
development. Epistemological inquiry could also potentially function as “under- 
laborer”—to use Ernest’s term (2018)—that is, to help clear obstacles to learning 
mathematics that stem from false beliefs and misconceptions about its practice that 
make a crucial difference for success or failure in the classroom, in particular, 
received notions about who can do math and is good at it. Ernest’s use of the term 
“under-laborer” is particularly fitting in identifying philosophical dialogue as a 
potential force in the reconstruction of students’ beliefs, attitudes, and images of 
mathematics, which could work as a powerful mechanism in breaking the “failure 
cycles” (negative attitudes — > reduced learning —> mathematical failure) that he 
describes. Since philosophical inquiry is premised on students’ own questions and 
on their active engagement in the rethinking and the reconceptualizing of received 
views, philosophical dialogue typically involves a process of taking apart and put-
ting together, weighing differences, reformulating, and reconceptualizing. Such a 
collaborative engagement in developing students’ personal views promises to pro-
duce deeper engagement with the discipline and world view of mathematics and 
thus to influence future mathematical experiences.

Finally, philosophical inquiry promises to play a key role in the reconstruction of 
beliefs about oneself as a mathematics learner. The discipline has become a forbid-
ding gatekeeper for many economic, educational, and political opportunities for stu-
dents, many of whom have developed self-narratives that act to prevent them from 
identifying themselves as capable math learners. As such, disrupting such self- 
narratives and working proactively to reconstruct negative mathematical identities 
represent an important educational task. Collaborative philosophical inquiry acts to 
challenge these narratives and to facilitate reflection and ongoing reconstruction, and 
thus represents a potent mechanism for nurturing students’ mathematical identities.

In short, philosophical inquiry could potentially play a role in developing an 
expanded and more critical view of mathematics—one that offers more meaningful 
connections and interactions with students’ personal experiences and which opens 
a view of the ethical and political implications of the use of mathematics for society 
which is essential to a healthy democracy. As such, dialogical philosophical inquiry 
represents a potentially transformative classroom practice in engaging, challenging, 
and reconstructing students’ views of mathematics, as well as their beliefs, atti-
tudes, identities, and level of engagement with the discipline.

15.6  Conclusion

In his masterwork Democracy and Education, Dewey (1916) highlighted the role of 
education in fostering a democratic society, which depends on the development of 
individuals as responsible citizens able to make informed and intelligent decisions 
leading to the public good. Although he recognized the importance of education in 
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the development of citizens who are able to think for themselves, his educational 
model is based on scientific as opposed to philosophical inquiry and thought. 
However, contemporary critical mathematics education researchers point out that 
mathematical literacy, if solely understood as acquiring mathematical and techno-
logical (i.e., “scientific”) knowledge, is limited in promoting democratic competen-
cies (e.g., Skovsmose, 1994, 2007; D’Ambrosio, 1999; Ernest, 2018). In respect to 
mathematics education, such literacy should include an analytical dimension that 
facilitates a critique of mathematics in its philosophical and social implications. In 
this chapter, I have examined Skovsmose’s notion of reflective knowing as associ-
ated with critique. I have suggested that philosophical inquiry offers a vehicle for 
conducting such a critique and briefly outlined a methodology for communal and 
collective deliberations in a classroom setting designed to facilitate such an inquiry. 
Finally, I have offered a framework for philosophical inquiry in the mathematics 
classroom, extending Skovsmose’s (2001) notion of “landscapes of mathematical 
investigation” to include the practice of engaging students in philosophical inquiry 
into common, central, and contestable questions related to the field of mathematics, 
both in its internal relations and its relation to the world. In short, conducting philo-
sophical inquiry as a complement to existing mathematical practice in the class-
room promises to provide another, crucial dimension to mathematics education, in 
that it represents a vehicle for questioning and critique and offers a discursive and 
pedagogical space dedicated to developing an enriched and expanded view of math-
ematics, as well as a deeper understanding of its connections to other school disci-
plines, to society, and to self.
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Chapter 16
Mathematical Modelling: A Philosophy 
of Science Perspective

Uwe Schürmann

16.1  Introduction

The (analytical) separation between mathematics and reality can be found in numer-
ous publications on mathematical modelling. For instance, PISA, the Programme 
for International Student Assessment (OECD, 2009), uses the following diagram in 
its mathematical framework (Fig. 16.1), where mathematics and the real world are 
considered to be separate domains.

Also, the introduction of the 14th study of the International Commission on 
Mathematical Instruction (ICMI) on modelling and applications (Blum et al., 2007) 
shows a modelling cycle distinguishing between mathematics and an extra- 
mathematical world. Additionally, this separation is also postulated in various 
contributions to the volumes of the International Community of Teachers of 
Mathematical Modelling and Application (ICTMA).

Figure 16.2 presents a modelling cycle by Blum and Leiß, which is frequently 
cited in German-language literature on mathematical modelling and is used 
(sometimes modified or extended) in various works (cf. Greefrath, 2011; Ludwig & 
Reit, 2013). Borromeo Ferri (2006) offers a carefully elaborated overview of many 
of these modelling cycles. It is clear from this overview that the (analytical) 
separation between mathematics and reality is omnipresent in the reconstruction of 
modelling processes.

In contrast, only a few publications are questioning this separation. For instance, 
Biehler et al. (2015) analyse modelling processes in engineering classes and conclude 
from their analysis that it is rather inadequate to separate mathematics and the “rest of 
the world” as well as to divide modelling processes into certain distinct phases. From 
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Fig. 16.2 Modelling cycle by Blum and Leiß (2006)

Fig. 16.1 Modelling cycle in PISA’s theoretical framework (OECD, 2009, p. 105)

their point of view, mathematical aspects must be considered during the step of sim-
plification (part of the “rest of the world” in most of the modelling cycles), already. 
This theoretical insight is supported by a subsequent empirical investigation by the 
authors. Furthermore, Voigt (2011, p. 868) identifies the analytical separation between 
mathematics and reality as a problem that can only be solved if we take a close look 
at the area between the “rest of the world” and “mathematics”. Consequently, he con-
siders this “intermediate realm” as substantial. Voigt strongly advocates examining 
not the separation but the connection between these two spheres.

This builds the starting point: In the following, the relationship between mathe-
matics and reality will be explored in more detail. In this way, the question is posed 
whether and to what extent the analytical separation of mathematics and reality can 
be justified or whether it should be supplemented or even replaced by an alternative 
interpretation of the relationship between mathematics and reality.

16.1.1  Orientation

The separation between mathematics and reality, as found in many modelling 
cycles, can be interpreted in at least three different ways.
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 1. As an ontological separation according to which mathematics by its very nature 
would have to be distinguished from reality, the real world, or the rest of the world

 2. As an analytical separation primarily serving to describe modelling activities 
adequately, i.e. to be able to empirically research them

 3. As a separation that makes sense from a constructive point of view and serves to 
support learners while working on modelling tasks

The three interpretations mentioned are neither mutually exclusive nor mutually 
dependent. Nevertheless, the author hypothesises that when mathematics education 
research considers mathematics and reality as two distinct realms promoting a 
constructive point of view becomes more likely. Each of the three interpretations 
mentioned is problematised in the literature against the background of different 
perspectives. For instance, Voigt (2011, p. 869) asks whether in placing the “real 
situation” at the beginning of the modelling process—far from mathematics—the 
ideal of an everyday life orientation is expressed, under which one imagines that 
mathematics develops out of an everyday life untainted by any mathematics. Such 
notions are undermined in various contributions to mathematics education research. 
Niss (1994, p. 371), for example, mentions that mathematics is confronted with a 
“relevance paradox”. On the one hand, mathematics is becoming more and more 
relevant and, at the same time, more and more irrelevant, since mathematics plays a 
pivotal role in the development of technical devices, yet the operation of these 
technical devices no longer requires mathematical literacy. Keitel’s (1989) pair of 
terms de-/mathematisation points in the same direction. However, these terms 
emphasise the social significance of mathematics more strongly and problematise 
the use of supposedly realistic mathematics tasks in the classroom. Keitel introduces 
the pair of terms de-/mathematisation to describe those processes leading to 
mathematics—in terms of mechanisation and automation— increasingly 
determining our living environment (mathematisation). At the same time, 
mathematics increasingly disappears from everyday life (demathematisation) since 
the skills that were previously required are henceforth taken from humans by a 
technical device. Skovsmose and Borba (2004) critically examine the ideological 
effect of mathematics and its teaching within social contexts. They argue that if 
mathematics is considered a perfect system and an infallible tool for solving real 
problems, political control is in favour.

So, the separation between mathematics and reality cannot be understood as a 
fixed boundary, at least not within social contexts. A domain that is part of the “rest 
of the world” can be mathematised very soon. Since students gain experience in 
their mathematised environment way before mathematical concept formation 
processes take place in the classroom, the everyday life orientation of mathematics 
education, as outlined by Voigt with critical intent, should rather be rejected.

Another problematising perspective on the relationship between mathematics 
and reality is offered by those historical-philosophical approaches that are usually 
assigned to postmodernism. These approaches explicate the historical contexts from 
which a specific, prevailing image of mathematics has emerged. Deleuze (Deleuze, 
1994; Deleuze & Guattari, 1987), for instance, sees a problematising side of 
mathematics alongside the prevailing axiomatising formalisation of mathematics. 
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By using historical examples— first and foremost the development of calculus by 
Leibniz—he elaborates on the possibility of dynamic mathematics emerging from 
concrete problems (cf. de Freitas, 2013; Smith, 2006). Châtelet (2000) highlights 
the representational side of mathematics by using historical examples to illustrate 
several ways in which mathematics’ innovations and concepts are strongly 
dependent on the mathematical tools and forms of graphic representation used at a 
given time. In doing so, he interprets diagrams as a section of a sequence of physical 
gestures and thus relates the formal side of mathematics to its material and, above 
all, physical basis.

De Freitas and Sinclair (2014) take up this idea when they map out their didactics 
of mathematical concepts. They emphasise the material and ontological side of 
mathematics in addition to the logical and epistemological. Schürmann (2018a) 
points in the same direction as he attempts to show that mathematical models, in 
particular, do not merely serve knowledge, but should also be understood as entities, 
i.e. in addition to their epistemological function, their ontological side needs 
consideration, too. Furthermore, Schürmann (2018b) deals with the origin of 
historical knowledge formations that may have contributed to the separation of 
mathematics and reality. Using Frege’s logicism and Hilbert’s formalist programs 
as paradigms (Frege, 1884, 1892; Hilbert, 1903) against the background of what 
Foucault calls the episteme of modernity (Foucault, 1996) this separation is 
understood as a reaction to the relativisation of mathematical truth claims within the 
nineteenth century.

The literature cited here clarifies that the boundary between mathematics and 
reality is historically conditioned. A further problematisation of the separation of 
mathematics and reality emerges from those empirical studies focusing on individual 
modelling processes. Regarding these studies, students already consider relationships 
between the mathematical content and parts of the real world long before setting up 
a mathematical model. Biehler et  al. (2015) and Meyer and Voigt (2010) give a 
critique of the analytical separation of mathematics and reality based on this 
empirical finding.

16.1.2  Focus

Since mathematics education research on modelling is largely detached from the 
philosophical discussion on models, which goes on for more than 100 years,1 this 
chapter elucidates the separation of mathematics and reality against the background 
of the philosophy of science on models.

Here, the philosophy of science is understood as a subdomain of philosophy in 
which the validity claims of empirical sciences and mathematics are scrutinised, for 

1 In order to prove this thesis, the author has reviewed the bibliographies of all contributions in the 
ICTMA volumes published so far. It turns out that none of these contributions refer to relevant 
works from the philosophy of science.
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instance, by reconstructing scientific theories. However, the philosophy of science 
concerning the humanities (e.g. hermeneutics) is excluded, even though such an 
approach may be of interest under certain conditions.2

Additionally, the following is mainly about the relationship between mathemat-
ics and reality in the context of theories and models. An epistemological question of 
the perception of reality is not raised here, although it is not intended to deny the 
importance of fundamental epistemological questions for the understanding of 
mathematical modelling.

The approach is to take up considerations from the philosophy of science on the 
relationship between theories, models, and reality and apply them to mathematics 
education research. For this purpose, two central views within analytical philosophy, 
the syntactic and the semantic view, are juxtaposed and related to mathematical 
modelling in the classroom. This selection is not intended to question divergent 
approaches, such as the pragmatic view on models (cf. Gelfert, 2017; Winther, 
2016). The restriction to the two views mentioned above is merely for pragmatic 
reasons. Even these two views can only be outlined here. However, their discussion 
provides valuable information for answering the following questions:

 1. Epistemological question: Is the analytical separation between mathematics and 
reality, often found in mathematics education research on modelling, tenable as 
such against the background of analytical philosophy, or does it need to be 
revised or at least relativised?

 2. Methodological question: Does the discussion on the syntactic and semantic 
view on models and theories offer new insights into the description of 
mathematical modelling in the classroom? In particular, can methodological 
tools be derived that describe modelling processes more appropriately and 
accurately?

A third, rather constructive question, arising from an assumed separation between 
mathematics and reality, is excluded here. It is not asked whether the separation 
between mathematics and reality supports the learners in the processing of 
modelling tasks.

16.2  Analysis

Large parts of the philosophy of science’s discussion on models have their origins 
in model theory, a subdomain of mathematical logic. To also grasp scientific models 
and theories, mathematical logic’s angle, formerly focused on formal languages, 
was widened. From now on, natural and scientific languages are considered as well, 
i.e. formal languages are understood as subsets of natural languages.

2 Frigg and Salis (2019), for example, compare models with (literary) fiction.
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The syntax of a language L consists of its vocabulary and the rules for forming 
well-defined expressions in L. The semantics of L allows the interpretation of well-
defined expressions by mapping them to another relational structure R. Thus, on the 
one hand, well-defined expressions from L are made comprehensible, and, on the 
other hand, these expressions can be examined within L for their validity. Then, the 
distinction between syntax and semantics initially leads to two opposing (but 
related) views on models and theories, the syntactic and the semantic view. The 
syntactic view on scientific theories was developed primarily by representatives of 
the Vienna Circle. Due to this, this view on theories and models is closely connected 
to logical positivism or logical empiricism,3 which had a huge impact on the 
philosophy of science in the twentieth century until the 1960s (cf. Gelfert, 2017). 
Very likely, the achievements of the natural sciences in conjunction with the rapidly 
developing axiomatic-formal mathematics at the beginning of the twentieth century 
were decisive for the increasing influence of logical positivism.

The semantic view on theories and models has emerged largely in response to the 
syntactic view and its associated obstacles (some of them will be discussed below). 
The main difference between the two may be that the syntactic view attempts to 
describe theory building in an idealised form, while the semantic approach tries to 
outline theory building in terms of scientific practice. Due to the large amount of 
literature, it is necessary to select among the authors referred to in this chapter. 
From the syntactic view, the oeuvre of Rudolf Carnap is considered paradigmatic 
(Carnap, 1939, 1956, 1958, 1969). The analysis of the semantic view is based on the 
works of Patrick Suppes (1957, 1960, 1962, 1967).

16.2.1  Carnap’s Syntactic View on Models

From Carnap’s (1969, pp. 255 ff., 1958; see also Suppe, 1971) syntactic point of 
view, theories can be reconstructed based on propositions. A theory is formulated in 
a language L that consists of two sub-languages, the theoretical language LT and the 
observational language LO. The descriptive constants of LT are named theoretical 
terms or t-terms. Those of LO are called “observable” (Carnap, 1969, p.  225), 
observational terms or o-terms (Carnap, 1969, p. 255). O-terms denote observable 
objects or processes and the relations between them, e.g. “Zurich”, “cold” and 
“heavy”. T-terms are those that cannot be explicitly defined by o-terms, i.e. they 
cannot be derived from perception. Carnap’s given examples are fundamental terms 
of theoretical physics such as “mass” or “temperature” (Carnap, 1958, p. 237). This 
distinction leads to three different types of propositions:

3 Even though the Vienna Circle’s members did not use the term “logical positivism” for them-
selves, this chapter does not distinguish between logical positivism and logical empiricism. Creath 
(2017) points out that a distinction between the two terms along theoretical assumptions and socio-
logical viewpoints cannot be made meaningfully anyway.
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 1. Observational propositions containing o-terms but no t-terms
 2. Mixed propositions containing t-terms and o-terms
 3. Theoretical propositions containing t-terms but no o-terms

According to this approach, a theory in language L is based on two types of pos-
tulates: the theoretical or t-postulates and the correspondence or c-postulates, also 
called correspondence rules (Carnap, 1969) or protocol theorems (Carnap, 1932). 
T- postulates are pure t-propositions, i.e. they belong to type (3) of the three types of 
propositions listed above. T-postulates comprise all fundamental laws of a theory. 
For instance, these can be the fundamental laws of classical mechanics or the main 
laws of thermodynamics. T-postulates are therefore the axioms of a theory. They are 
taken for granted. All statements s that can be derived purely syntactically from the 
t-postulates also belong to LT. The derivation of such statements is based on syntac-
tic rules, which can contain further rules of formation in addition to mathematical 
rules. LT in itself has no (empirical) meaning. The meaning of t-terms is only given 
indirectly using LO. Carnap assumes that o-terms refer to directly observable or at 
least almost directly observable physical objects or processes and relations between 
them (Carnap, 1969, pp. 225 ff.). In the following, this direct interpretation will be 
called d-interpretation. Thus, the semantics of o-terms is directly given. It is not 
possible to derive empirical statements from theoretical statements, i.e. from propo-
sitions of type (3), it is not possible to conclude propositions of type (1) without 
further ado. Rules are needed, the so-called c-postulates, to connect t-terms with 
o-terms. For instance, Carnap (1969, p. 233) mentions the measurement of electro-
magnetic oscillations of a certain frequency, which is made visible by the display of 
a certain colour. C-postulates thus connect something visible with something invis-
ible. Nevertheless, they do not thereby make the invisible itself visible.

The t-term to be interpreted remains theoretical. This kind of interpretation has 
therefore to be distinguished from the d-interpretation of the o-term. Moreover, the 
interpretation remains incomplete since it is always possible to establish further 
rules to connect t-terms with o-terms. Since the interpretation of t-terms using 
c-postulates is partial, it is called p-interpretation in the following.

To Carnap, it is important not to confuse c-postulates with definitions (Carnap, 
1956, p. 48). The definition of t-terms itself is theoretical and can only be given 
adequately within LT. A t-term is interpreted logically within LT, which is why this 
kind of interpretation is called l-interpretation in the following. It is not possible to 
define a t- term completely by relating it to o-terms via c-postulates. Carnap gives 
us the following explanation: The terms of geometry as defined by Hilbert are 
entirely theoretical. However, if they are used within an empirical theory, their 
empirical use would have to be introduced with the help of c-postulates. However, 
no geometric o-term, such as “ray of light” or “taut string”, corresponds to the 
theoretical properties of the t-term straight line (Carnap, 1969, p. 236).

Equipped with this repertoire of concepts, Carnap’s understanding of empirical 
theories can be defined.
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A theory is a proposition. This proposition is the conjunction of the two propositions T and 
C, where T is the conjunction of all t-postulates and C is the conjunction of all c-postulates. 
(Carnap, 1969, p. 266, translation by the author)

To emphasise this connection, Carnap uses the abbreviation TC for theories. 
Now that we have a clear and distinctive definition of what Carnap calls a theory, we 
go on to explicate Carnap’s view on models. Carnap distinguishes descriptive 
models of physics, which are built from real objects like a model ship, from scientific 
models in a contemporary sense. As in mathematics and logic, a model in the natural 
sciences in the twentieth century was understood to be an “abstract, conceptual 
structure”. In this sense, a model is a simplified description of a (physical, economic, 
sociological, or other) structure in which abstract concepts are mathematically 
connected (Carnap, 1969, pp. 174–175).

By highlighting the importance of non-Euclidean geometry for physics, espe-
cially for the development of the theory of relativity, Carnap infers that it is not 
disadvantageous for theories if they cannot be visualised without difficulty. In this 
way, he opposes the idea that models are a sort of visualisation. For Carnap, the 
visualising character of models is only a makeshift or a didactic aid that merely 
brings the benefit of being able to think about theories in vivid pictures (Carnap, 
1939, p. 210). According to Carnap, models only play a significant role in the devel-
opment of empirical theories if they establish a connection between LT and LO. These 
“constructing models” (Carnap, 1959, p. 204) serve the p- interpretation of t-terms 
and, in this sense, are nothing else than c-postulates.

16.2.2  Suppes’ Semantic View on Models

The objections to the syntactic view are numerous (cf. Achinstein, 1963, 1965; 
Suppe, 1971, 1989, 2000; Suppes, 1967; van Fraassen, 1980; see also Liu, 1997; 
Winther, 2016). Some of these objections are:

 1. The formalisation of theories as linguistic entities is inadequate and obscures the 
underlying structures of theories.

 2. Theory testing is oversimplified in the syntactic view since it is assumed that 
propositions from LO can be directly linked to phenomena.

 3. The pure distinction between o- and t-terms is not tenable if the characterisation 
of o-terms or t-terms is insufficient.

 4. P-interpretation remains undefined and all possible ways to define p-interpreta-
tion lead to inconsistencies in the syntactic view.

The semantic view on theories and models can essentially be understood as a 
reaction to the shortcomings of the syntactic view outlined here (Gelfert, 2017; 
Portides, 2017). Thus, the meta-mathematical description of theories through formal 
languages is (largely) rejected in the semantic view. While the syntactic view tries 
to describe scientific theories in logical languages, the semantic approach asks what 
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kind of mathematical models are used in the sciences (Winther, 2016). Mathematical 
tools are available for the direct analysis of such structures. In contrast, a 
reformulation of a theory in a specific formal language tends to be impractical, 
especially for those theories with rather complicated structures (Suppes, 1957, 
pp. 248–249).

Moreover, a direct description of mathematical structures may be independent of 
a particular language. From Suppes’ semantic point of view, a theory is composed 
of a set of set-theoretic structures satisfying the different linguistic formulations of 
a theory. Worth mentioning that besides this conception of the semantic view, at 
least one differing semantic approach—the so-called state-space approach—exists 
(e.g. van Fraassen, 1980), which describes physical systems by vectors. In the 
semantic view, a model of a theory is a structure and should not be confused with 
the linguistic description of that structure. Propositions of a theory, expressed in a 
particular linguistic formulation, are merely interpreted within that structure.

[A] model of a theory may be defined as a possible realization in which all valid sentences 
of the theory are satisfied, and a possible realization of the theory is an entity of the 
appropriate set-theoretical structure. (Suppes, 1962; see also Suppes, 1957, 1960, p. 253)

This emphasises the importance of models for theory building, and along with it 
the importance of nonlinguistic structures overall. Furthermore, Suppes points out 
that theories cannot be related directly to experimental data. Accordingly, the 
d-interpretation of o-terms in experimental settings is dismissed. Rather, this 
connection is only established indirectly via what Suppes calls models of data 
(Suppes, 1962). While models of a theory are possible realisations of a theory, 
models of data are possible realisations of experimental data. By this conception, 
Suppes circumvents objection (2), as listed above. In addition, even if a hierarchy 
between these different types of models is assumed, they are nevertheless connected 
by an isomorphism between the two types of models (for a critique of this connection 
by isomorphism, see Suárez, 2003). Objections (3) and (4) are discussed in more 
detail in the following sections “Theoretical and Empirical Concepts” and 
“Correspondence Rules and Partial Interpretation”.

16.2.3  Theoretical and Empirical Concepts

The separation between o- and t-terms is challenged from different perspectives. 
Putnam (1962), for instance, indicates the possibility of formulating theories that do 
not contain any t-terms. He quotes Darwin’s theory of evolution as an example. He 
thus questions whether the separation of LO and LT is at all necessary. Consequently, 
theories that manage without t-terms could also not be reconstructed as the 
proposition TC in Carnap’s sense.

Putnam then goes on to say that the mere distinction between o- and t-terms is 
not sufficient at all. He points out that terms that do not belong to LO cannot be 
considered t- terms automatically.
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Moreover, it is unclear which criterion separates LT from LO. Carnap assumes that 
from a pragmatic point of view, a clear distinction can usually be made between the 
two (Carnap, 1969, p. 255). It is only decisive whether a term designates a directly 
or at least indirectly observable entity. Otherwise, it is a t-term. According to 
Achinstein (1965), this criterion is not exhaustive. For instance, an electron, usually 
a non-observable term, can be considered observable in certain contexts and under 
certain conditions. He concludes that the term electron cannot be unambiguously 
assigned to either LT or LO. Rather, the conditions for o-terms must be made explicit 
in more detail.

Therefore, Achinstein discusses another criterion that could justify the separa-
tion into o- and t-terms. T-terms could be distinguished from o-terms based on their 
theoretical character (cf. Hanson, 1958). According to this distinction, a term would 
be theory-laden and thus a t-term if it cannot be understood without its theoretical 
background. To Achinstein, even this distinction is not sufficient to divide o- and 
t-terms more clearly. A term can be essential in the context of a certain theory, while 
in another corresponding theory, it is rather independent. Thus, for each term, it 
must be made clear which theory in particular forms the background. Putnam (1962) 
also argues that there are no terms that belong exclusively to LO. For instance, the 
colour red, which is considered an o-term in everyday language, is a t-term (red 
corpuscles) in Newton’s corpuscular theory of light. So, the question is posed how 
to define t-terms more precisely.

Another criticism of the syntactic view deals with the possibility to make a the-
ory-free perception at all. This focuses upon the syntactic view’s assumption that 
o-terms can be interpreted by direct or at least indirect observation of real 
phenomena. Seen from the syntactic perspective, o-terms must be interpreted with 
direct reference to real phenomena, since indirect observation by instruments 
already implies l-interpretation.

To perceive objects without recourse to a theoretical background is questioned 
by other authors. Can there be such a thing as mere observation or does observation 
always require interpretation of sensory impressions? Hanson (1958, pp.  5–13) 
gives us various examples here: two biologists looking at an amoeba may see 
different things because of their different theoretical backgrounds, Tycho Brahe 
who would not recognise the telescope in a cylinder, as Kepler presumably would, 
etc. Hanson goes on by describing optical perceptions. He explains that seeing as a 
mere perception on the retina is always already an interpretation as soon as it enters 
consciousness. This also illustrates that observational concepts cannot be related to 
objects directly.

16.2.4  Correspondence Rules and Partial Interpretation

According to the syntactic view, o-terms are connected to t-terms by correspon-
dence rules (Carnap’s c-postulates). The assumption is that correspondence rules 
are the p-interpretation of a t-term. However, not all t-terms of a theory have to be 
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partially interpretable. While an o-term must always be directly interpretable, 
t-terms may exist without c-postulate partially interpreting them. Such t-terms are 
only indirectly connected with LO by being connected in LT with other t-terms that 
can be partially interpreted. For instance, the square root of 2 is unobservable. 
Nevertheless, it can be indirectly connected with o-terms via an l-interpretation if it 
is interpreted as the side length of the square with the area 2. For the c-postulates of 
a theory, Carnap (1956) formulates the following rules.

 1. The set of c-postulates of a theory must be finite.
 2. All c-postulates must be logically compatible with the t-postulates.
 3. The c-postulates do not contain terms neither belonging to LT nor to LO.
 4. Each c-postulate must contain at least one t-term and o-term.

However, apart from the explanation by examples and these rules for c-postu-
lates, Carnap does not define more clearly what is meant by p-interpretation. This 
lack of clarification is criticised by various authors (cf. Achinstein, 1963, 1965; 
Putnam, 1962). Hence, Putnam discusses three ways to define p-interpretation:

 1. [T]o ‘partially interpret’ a theory is to specify a non-empty class of intended 
models. If the specified class has one member, the interpretation is complete; if 
more than one, properly partial.

 2. To partially interpret a term P could mean […] to specify a verification-refuta-
tion procedure.

 3. Most simply, one might say that to partially interpret a formal language is to 
interpret part of the language (e.g. to provide translations into common language 
for some terms and leave the others mere dummy symbols). (Putnam, 1962)

Definition 1 Putnam objects to the first definition. To define a class of models simi-
lar in structure to the theory in parts, (a) mathematical concepts, theoretical by defi-
nition, are required, and the argument would become circular. Furthermore, he 
points out (b) that models require certain broad-spectrum terms (e.g. physical object 
or physical quantity). Such terms cannot be defined a priori, as Quine (1957) illus-
trates by the meta-concept “science”. Accordingly, it is possible that such terms do 
not acquire their meaning through p-interpretation in a particular model, but within 
a theoretical framework based on the conventions of a research community. 
Consequently, logical positivists like Carnap must reject such concepts as meta-
physical. Ultimately, it refers (c) to the problem that a theory with an empty class of 
models can no longer be called false, but merely meaningless.

Definition 2 According to Putnam, the second understanding of p-interpretation 
also proves to be unsustainable. If for every concept or proposition a procedure for 
its confirmation or its refutation is specified, this would lead to curious statements 
against the background of the philosophical position of verificationism as advocated 
by Carnap. According to verificationism, only those (synthetic) statements may be 
true that can be empirically verified. Using the example of the sun and the helium it 
contains, Putnam draws attention to the following problem. Although it is possible 
to prove that the sun contains helium, no procedure can be used to prove that helium 
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exists in every part of the sun. If this confirming or refuting procedure is missing, 
the truth value is indeterminate. In consequence, one would have to claim that the 
sun contains helium, whereas it cannot be said for parts of the sun, whether there is 
helium or not.

Definition 3 The third and last possible definition of p-interpretation, that LT is 
only interpreted in parts, is rejected by Putnam in just one sentence. Such a view 
would lead to certain theoretical terms ultimately having no meaning at all. A part 
of LT would be interpreted into everyday language, for example, and the remaining 
part of the t-terms would merely consist of dummy terms.

16.3  Modelling in Mathematics Classroom from a Syntactic 
Point of View

In the following, mathematical modelling in the classroom is interpreted against the 
background of Carnap’s syntactic view, while bearing in mind criticism from a 
semantic point of view. For that, the posed epistemological and methodological 
questions are focused. Since Carnap’s syntactic view first and foremost describes an 
ideal of empirical sciences, modifications must be made to transfer this to modelling 
in mathematics education. Axiomatised mathematics cannot be assumed for 
mathematics teaching, but mathematics in LT that students master. Furthermore, it is 
not assumed that an understanding of mathematics in Carnap’s formal sense prevails 
among the students. To describe a modelling process, it is sufficient to reformulate 
students’ usage of terms in Carnap’s sense. In this context, mathematical terms used 
by students in theoretical regards are classified as t-terms. Those that refer to 
observable objects are classified as o- terms.

The problem of theoretical terms is serious. Nevertheless, when it comes to 
mathematical modelling, most of the terms used are mathematical terms and 
therefore of theoretical nature. Thus, mathematical concepts in school also have a 
certain theoretical character if students can l-interpretate them to a certain extent. 
Likewise, students can understand that mathematical concepts are in principle 
unobservable, even if they can be illustrated. However, Achinstein’s (1963, 1965) 
and Putnam’s (1962) objections to the separation of theoretical and empirical terms 
remain considered insofar that the t-terms used in the context of mathematical 
modelling are always t-theoretical. In means of students’ modelling processes, this 
implies that t-terms are dependent on the mathematics available to students.

Even when transferring Carnap’s syntactic view to the description of learners’ 
mathematical modelling, Putnam’s objections (1962, p. 245) to different definitions 
of p- interpretation are still considered. If p-interpretation of mathematical terms is 
considered as building a set of intended models, theoretical terms are required 
indeed. However, this science-theoretical problem concerns the consistency of the 
syntactic view of theory building. This problem may be less important when it 
comes to p-interpretation within modelling processes taking place in the mathematics 
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classroom. In fact, trying to provide an appropriate procedure for confirming or 
refuting each t-term can lead to some odd statements. For modelling problems in the 
classroom, however, this can also be a rather subordinate problem. Mathematics 
lessons usually consider those parts of reality for which such confirmation or 
refutation procedures exist. Furthermore, the third definition of p-interpretation, 
interpreting parts of LT and leaving the remaining terms aside, is rather a duty for 
mathematics teaching than a real objection. Every t-term of mathematics should be 
made semantically accessible to students. Here, the psychological argument is that 
interpretation of mathematical content through its application leads to an improved 
and deeper understanding of such content (cf. Blum, 1996, p. 21–22).

16.3.1  Epistemological Question

The purpose of this chapter is to prove if the separation between mathematics and 
reality, often found in mathematics education research on modelling, is tenable as 
such against the background of analytical philosophy. By discussing Carnap’s 
syntactic view of theories and models, it becomes clear that this separation needs to 
be revised.

Carnap’s syntactic view captures more precisely the connection between math-
ematics and reality. In contrast to the dichotomous separation between mathematics 
and reality in many modelling cycles, there is at least a twofold gradation from 
mathematics in LT, via empirical-mathematical concepts in LO, to real-world phe-
nomena. In a modelling process, (school) mathematics is to be understood as the 
theoretical (part of a) language with which students can proceed syntactically. 
Reality, or the “rest of the world”, is henceforth divided into an observational lan-
guage, which itself is not yet a reality, and a part that is identified with real-world 
phenomena (Fig. 16.3).

Bearing this picture in mind, the criticism of many so-called modelling tasks in 
mathematics textbooks can be justified by the fact that no real problem is actually 
solved by the students in the context of a modelling process. Most likely, those tasks 
take place only in the sphere of theoretical and observational language. While the 
translation process between these two parts of the language is crucial for making 
sense of pure mathematical concepts, it does not involve any connection to real- 
world phenomena. This insight is probably obscured by an overly simplistic 
juxtaposition of reality and mathematics in many modelling cycles.

Moreover, Carnap’s interpretation of models in science as c-postulates, marking 
the area between theoretical and observational language, and Suppes’ objection that 
models of data, marking the area between observational language and real-world 
phenomena, have to be considered as well. While three models appear in the 
modelling cycle proposed by Blum and Leiß (“situation model” and “real model” in 
the realm of reality, and “mathematical model” in the realm of mathematics, 
Fig. 16.2), we can now capture more accurately the nature of models in mathematical 
modelling processes. Models are translation rules both for the translation between 
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Fig. 16.3 Carnap’s 
syntactic view on theories 
visualised

theoretical and observational language and for the translation between real-world 
phenomena and observational language.

Here, the crucial point is that the connection between the two domains of the 
language at issue is given by assumed rules, not by nature. This finding circumvents 
lots of epistemological obstacles (e.g. questions about the nature of mathematical 
terms and their possible empirical origin do not need to be answered for the syntactic 
view to work). Finally, the competencies described in the modelling cycle can now 
be interpreted against the background of the previous discussion of theories and 
models. Working mathematically (step 4 in the modelling cycle according to Blum 
& Leiß, 2006) can be identified with the l-interpretation, mathematising as a 
transition from the “rest of the world” to “mathematics” (step 3, ibid.) and 
interpreting as a transition into the opposite direction (step 5, ibid.) is associated 
with Carnap’s p-interpretation. The decisive difference is that p-interpretation does 
not indicate the transition from mathematics to reality and vice versa but only a 
transition between two parts of a language. The d- interpretation is pivotal in making 
the transition from LO to real-world phenomena (step 1, ibid.). Here, models of data 
are crucial.

It becomes obvious why, as Meyer and Voigt (2010) note, connections from math-
ematics need to be considered already in the step of simplification. Learners work 
with o-terms in the step of simplification. However, these must be connected, even 
implicitly, with t-terms. They form what Voigt (2011) calls the “intermediate area”.
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16.3.2  Methodological Question

The methodological question of whether the discussion on the syntactic and seman-
tic views on models and theories offers new insights for the description of mathe-
matical modelling in the classroom can now be answered against the background of 
the previous discussion. The goal is to derive methodological tools that describe 
modelling processes more appropriately and accurately compared to standard mod-
elling cycles. To this end, Carnap’s syntactic view and Suppes’ criticism of it are 
considered.

One of the main objections to the syntactic view is that the formalisation of theo-
ries as linguistic entities tends to be inadequate because it obscures the underlying 
structures of theories. While this objection may be crucial for discussion in the 
philosophy of science, the attempt to focus on the underlying (mathematical) struc-
tures tends to be a hindrance when it comes to empirical research in mathematics 
education. Students’ utterances (written, spoken, or expressed by gestures) can be 
directly observed, whereas the underlying mathematical structures can only be 
conjectured. With its distinction between theoretical and observational terms, the 
syntactic view provides a tool for a more detailed analysis of students’ utterances. 
For instance, when a student uses the word “triangle”, it is decisive whether the 
word is used in a theoretical way, for example, in a mathematical theorem, or 
whether it is used in a sentence to describe real-world phenomena. At this point, 
Suppes’ objection to the theoretical-observational distinction must be considered. 
The discussion in the section on “Theoretical and Empirical Concepts” shows very 
briefly that it cannot be said that a concept, by its nature, belongs to either LT or 
LO. Nevertheless, the distinction holds when the theoretical or observational 
character of a term is considered against the background of the theory T in question. 
Stegmüller’s (1970) solution to this problem is that a term can be called T-theoretical 
(or T-observable) in the case that T is the theory under consideration. The theoretical 
character of a term depends on the theory we are talking about. Carnap’s definition 
of a theory (TC is the conjunction of T and C, while T is the conjunction of all 
t-postulates and C is the conjunction of all c-postulates) reminds us that a clear 
description of the theoretical background taught to students is necessary when 
mathematical modelling processes are captured empirically. The question is what 
theoretical tools (i.e. mathematical theorems, procedures, etc.) are on the theoretical 
side and what correspondence rules for translation between LT and LO are accessible 
to students.

In order to take a closer look at students’ modelling processes, it is necessary to 
reconsider Carnaps’ notion of the connection between LT and LO given by 
c-postulates. Although for Carnap, an ideal theory only includes c-postulates, i.e. 
axioms that translate between LT and LO, he points out that it is not essential for this 
connection that correspondence rules have the character of an axiom.

The particular form chosen for the rules C is not essential. They might be formulated as 
rules of inference or as postulates. (Carnap, 1956, p. 47)
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We can thus distinguish between the individual mental models expressed in stu-
dents’ utterances and the more normative models thought in class to make sense of 
pure mathematical concepts and to give students the ability to solve real-world 
problems.

From a normative point of view, it is necessary to describe rather abstract models 
that fit a wide range of situations. This involves the four rules for the formation of 
c- postulates (see section “Correspondence Rules and Partial Interpretation”). Under 
these conditions, the goal is to formulate as many (but still independent) c-postulates 
as possible, so that as many situations as possible that fit a notion of pure mathematics 
are covered by a certain set of c-postulates. Putnam’s main objections to this 
understanding of partial interpretation (specifying a class of intended models) are 
that (a) pure mathematical terms (e.g. set) are needed and the procedure would 
become circular, and that (b) broad-spectrum terms are needed (e.g. physical object, 
physical quantity, etc.) that cannot be defined a priori and whose meaning cannot be 
given by partial interpretation via correspondence rules. While these objections can 
seriously affect the syntactic view when the focus is on the normative description of 
an ideal theory, they tend not to negatively affect the goal of describing students’ 
modelling processes. Rather, these objections remind us that every description of 
individual modelling processes and even the establishment of normative models are 
limited by the framing through inherently broad-spectrum terms and (meta-)
mathematical terms in use.

Bearing in mind, that correspondence rules not necessarily need to be formulated 
in a set of axioms, this offers an opportunity to analyse students’ (implicit) use of 
correspondence rules in modelling processes. As we will see, this provides a 
methodological tool that leads to different results than the analyses that depend on 
standard modelling cycles and their inherent epistemological assumptions. Let us 
take a look at the mathematics task from a textbook for fifth and sixth graders:

The African grey parrot can grow up to 40 cm long; a flamingo of about 200 cm. How many 
times bigger is the flamingo compared to the grey parrot? (Prediger, 2009, p. 6, translation 
by the author)

From a normative point of view, the area of mathematics addressed in this task 
can be narrowed down to the structure of natural numbers in connection with 
multiplication (N, ·). On the observational side, questions can be formulated such as 
“how often does one length fit into another?” or “how many times larger is this 
length compared to another?”. The connection between LT and LO is then given by a 
p-interpretation containing at least two c-rules. Thus, c-rule c1 connects—for 
instance—the number 1 with the observable length of 1 cm, while c-rule c2 connects 
multiplication with a temporal- successive action (e.g. “an empirical length is 
juxtaposed until the length used for comparison is reached”). The model at issue 
here is the description of the structure (N, ·) using the linguistic means from LO, 
given by c1 and c2. If T is the conjunction of all true propositions in LT about the 
structure (N, ·) and C is the conjunction of c1 and c2, the theoretical background of 
the task is given by the conjunction TC. This interpretation of (N, ·) by c1 and c2 
remains partial. In contrast, an l-interpretation of (N, ·) within LT, (e.g. as the addition 
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of equal addends) is complete. Again, it should be mentioned that c1 and c2 do not 
connect mathematics with reality, but theoretical terms of mathematics (t-terms) 
with empirical terms (o-terms). Hence, it is a purely linguistic connection. With this 
revision of the task in mind, we can now analyse individual utterances of students 
confronted with this task. To do this, individual modelling is analysed by 
reconstructing the reasoning within the modelling according to the Toulmin scheme 
(Toulmin, 1996). Thereby, the use of c-rules—whether implicit or explicit—has to 
be taken into account.

Due to the limitation of a book chapter, the focus is on a single case study, the 
student Anton. Anton is interviewed while solving the task (cf. Prediger, 2009). At 
the beginning of the interview, Anton soon says, “The flamingo is 160 cm taller”. 
The genesis of this statement can be reconstructed with the help of the Toulmin 
scheme as follows (Fig. 16.4).

Against the background of common modelling cycles, Anton’s statement must 
be interpreted as an individual construction of whether a situation model, a real 
model, or a mathematical model. However, a rational reconstruction shows that 
none of Anton’s possible considerations can be the mere result of modelling 
processes taking place exclusively in the “rest of the world”. Anton’s statement 
cannot be interpreted without (implicit) translations between LT and LO.

Fig. 16.4 Anton’s 
statement rationally 
reconstructed
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16.4  Conclusion and Outlook

Against the background of the syntactic view on theories and models and its critique 
by the adherents of the semantic view of theory building, mainstream modelling 
cycles and their inherent epistemological assumptions about the relation between 
mathematics and reality have been problematised. The goal of the chapter is to show 
that the description of students’ modelling processes cannot rely on a simple separa-
tion between mathematics and reality. The syntactic view, as offered by Carnap, 
indicates that distinguishing between the theoretical and observational side of a 
language can be helpful in capturing the translation processes of students that take 
place when mental models are used to interpret pure mathematical terms, and vice 
versa, to interpret the empirical part of a language through the means of mathematics.

Based on a single case study, it was shown that the twofold separation between 
LT and LO and the connection via c-rules—in combination with Toulmin’s scheme— 
provides a methodological tool to investigate students’ translations between math-
ematics understood as a theoretical language and everyday language and the 
empirical use of mathematical terms contained therein. In detail, this attempt allows 
us to reconstruct also those more implicit translation steps that are necessary to 
explain subsequent explicit utterances and that would remain hidden against the 
background of mainstream modelling cycles.

To give an outlook: While this brief chapter has paid attention to the multiple 
translations between the theoretical and empirical sides of a language used in mod-
elling processes, the connection of o-terms with real-world phenomena was omitted 
to a large extent. In order to get a comprehensive picture of all the translations tak-
ing place in modelling processes, this connection needs to be described and prob-
lematised in more detail. Follow-up questions arise when not only the epistemological 
and ontological aspects but also constructive aspects of mathematical modelling are 
considered. Here, questions may arise concerning the design of textbook tasks to 
promote students’ modelling skills, the teaching of adequate models for proper con-
nection between pure mathematical terms and everyday language, and whether and 
what meta-knowledge about mathematical modelling should be taught in the class.
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Chapter 17
Education for Sustainable Development 
(ESD) in Mathematics Education: 
Reconfiguring and Rethinking 
the Philosophy of Mathematics 
for the Twenty-First Century

Hui-Chuan Li

17.1  Background

The aspect that emphasises a focus on sustainable development to transform educa-
tion is not new, as formal education, for at least the last 50 years, has been chal-
lenged to engage with a range of economic, social, and environmental concerns. 
The United Nations (UN) calls for the inclusion of sustainable development into all 
areas of teaching and learning can date back to Agenda 21 (UN, 1992). In Agenda 
21, it identified four major imperatives to begin the work of Education for Sustainable 
Development (ESD): (1) improve basic education, (2) reorient existing education to 
address sustainable development, (3) develop public understanding and awareness, 
and (4) training (ibid, 1992).

The term ESD has been used internationally and by UNESCO to refer to the 
incorporation of information on sustainable development into the curriculum, 
information on issues such as climate change, disaster risk reduction, biodiversity, 
poverty reduction, and sustainable consumption. Over the past two decades, formal 
education systems have begun to take ESD into account as part of their responsibil-
ity (Li & Tsai, 2022). For instance, the international ESD agenda has informed cur-
riculum developments in Australia and Scotland. Sustainability as a cross- curricular 
priority was introduced into Australia’s curriculum in 2010. In Scotland, “Learning 
for Sustainability (LfS) [is] cross-cutting themes in Scotland’s CfE [Curriculum for 
Excellence] which provides an overarching philosophical, pedagogical and practi-
cal framework for embedding ESD in the school curriculum” (Bamber et al., 2016, 
p.  5). LfS as a core component of teachers’ professional standards has been 
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embedded at all levels of Scottish Education since 2012 in response to UNESCO’s 
call for action.

The Global Action Programme (GAP) on ESD, which ran from 2015 to 2019, 
deployed a two-fold approach to multiply and to scale up the ESD action:

 1. To reorient education and learning so that everyone has the opportunity to 
acquire the knowledge, skills, values and attitudes that empower them to 
contribute to sustainable development.

 2. To strengthen education and learning in all agendas, programmes and activities 
that promote sustainable development (UNESCO, 2018).

In 2015, all the UN member states have approved the 2030 Agenda for Sustainable 
Development. This Agenda is an ambitious plan that sets out for countries, the UN 
system, and all other actors to stimulate action over the period 2016 to 2030. It 
consists of 17 interconnected Sustainable Development Goals (SDGs), further 
broken down into 169 targets, to be met by 2030 with the intention of achieving 
inclusive, people-centred, and sustainable development with no one left behind. The 
concept of ESD has also brought a new focus to education policy and practice, often 
referred to as adjectival education, for example, development education, global 
citizenship education, peace education, environmental education, and climate 
change education (Evans, 2019).

The overarching goal of ESD is to integrate an awareness of sustainable develop-
ment issues into all aspects of education so that students are empowered to make 
informed decisions in their daily lives. In the 2030 Agenda for sustainable develop-
ment (UN, 2015), it stipulates that by 2030 all learners must:

Acquire knowledge and skills needed to promote sustainable development, including 
among others through education for sustainable development and sustainable lifestyles, 
human rights, gender equality, promotion of a culture of peace and non-violence, global 
citizenship, and appreciation of cultural diversity and of culture’s contribution to sustainable 
development. (p.19)

How can mathematics education help learners of all ages to respond to sustain-
able development challenges, to lead healthy lives, to nurture sustainable liveli-
hoods, and to achieve human fulfilment for all? The answer is not straightforward 
because moving toward a mathematics education that incorporates ESD requires a 
paradigm shift in the philosophy of mathematics in general (Ernest, 2018; 
Skovsmose, 2019) and in the objective of mathematics education in particular 
(Gellert et al., 2018; Lyons et al., 2003). Without a philosophy for incorporating 
ESD into mathematics education, it is not reasonable to expect teachers to appreci-
ate that they—in addition to teaching the subject—also have a responsibility to 
provide students with opportunities to apply newly gained subject matter expertise 
to the wider societal, ecological, equity, and economic issues that they encounter 
outside the classroom.

Therefore, this chapter first will review the current state of ESD in mathematics 
education. Second, it will look at philosophical theories that have been developed to 
explain the meaning of mathematics with respect to what mathematics is and what 
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it means to understand mathematics. Third, it will discuss issues about equity and 
social justice in mathematics education. Fourth, it will talk about interdisciplinary 
learning and STEM education and draw attention to the question of whether the 
existing philosophical views of mathematics can be applied to understand the role 
of mathematics in interdisciplinary learning and/or STEM education. Finally, it will 
call for reconfiguring and rethinking the philosophy of mathematics for the twenty- 
first century, followed by a concluding remark.

17.2  Current State of Education for Sustainable 
Development in Mathematics Education

We live in the dawning of the information age, and we must ask what set of skills 
will be most appropriate for the twenty-first century and beyond. As the complexity 
of daily life increases, the balance shifts in favour of skills such as critical and 
creative thinking. As our social interactions become more diverse, globalised, and 
virtual, the balance shifts increasingly in favour of collaboration and communication. 
Moreover, we live during an emerging climate crisis, one which has led to a growing 
demand for us to attend to the problems of ecological sustainability. ESD, as defined 
by UNESCO, emphasises students’ engagement in discussion, analysis, and the 
application of learning and knowledge through interdisciplinary activities (Laurie 
et  al., 2016). It mandates the use of participatory, interdisciplinary teaching and 
learning methods. The objective is to promote competencies such as critical 
thinking, imagining future scenarios and making decisions in a collaborative way, 
with the aim of empowering learners to take informed decisions and responsible 
actions for environmental integrity, economic viability, and a just society, for present 
and future generations, while respecting cultural diversity (UNESCO, 2012).

While there is general agreement on the benefits of a sustainable mathematic 
education (e.g. Renert, 2011), there is a lack of clarity on what it is or what it looks 
like in the twenty-first century (Gellert, 2011; Li & Tsai, 2022; Petocz & Reid, 
2003). Research has reported that incorporating ESD into mathematics education is 
proving difficult because lessons that involve sustainable development discussion 
and interdisciplinary activities are time-consuming and they can be challenging to 
teach, even for experienced teachers (Li & Tsai, 2022). In addition, the widespread 
interest in ESD has led to different terms and concepts being used to express the 
idea of sustainable development in students’ learning. Researchers across a wide 
range of subjects (including mathematics) understand the concept of ESD in the 
curriculum in a variety of different ways (Petocz & Reid, 2003). The integration of 
ESD into the teaching and learning of mathematics is, however, more controversial—
for example, ESD integration is especially problematic given that the UNESCO 
definition includes objectives whose implementation is the subject of contentious 
political debate, objectives such as the reduction of poverty and the establishment of 
equity and social justice.
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ESD, as defined by UNESCO, is an interdisciplinary approach to learning and 
teaching that develops students’ knowledge in collaborative and novel ways with 
the aim of empowering them to see sustainable development as a way of thinking 
about the world, as a way of guiding their actions and decision-making processes—
as far as ESD is concerned, the development of proficiency in mathematics is not the 
objective. However, in school mathematics, national curriculum assessments play a 
powerful role in providing criterion measures of attainment for both students and 
schools, and results are often used by policymakers for school accountability 
purposes (e.g. Department of Education, 2020). Moreover, enhancing academic 
outcomes by “teaching to the test” in mathematics education has become an 
increasingly common phenomenon in many education systems across the world 
(Tsai & Li, 2017).

Yaro et al. (2020) state that the teachers in their project would discount or down-
play the mathematical tasks for peace and sustainability, as they viewed those tasks 
“as outside the realm of formal school sanctioned activities” (p.227). Indeed, teach-
ers may be concerned by the social justice component of ESD, by the requirement 
to pursue an interdisciplinary approach rather than a teacher-centred approach, by 
the need to gain subject matter expertise in subjects other than mathematics, and by 
the necessity of omitting some existing material from the current mathematics cur-
riculum if time constraints are to be satisfied. The disparity between the formal 
school curriculum and ESD approaches invites me to examine whether a sustainable 
mathematics education is acceptable, or is indeed necessary, and, perhaps, to rethink 
what a vision for mathematics education should be in the twenty-first century.

How might mathematics contribute to our understanding of, and our responses 
to, sustainable development challenges? Earlier, Gellert (2011) calls for “new 
mathematics to improve our perception, control and regulation of the problematic 
situation” (p.20). More recently, Barwell and Hauge (2021) point out that critical 
mathematics education research has paid little attention to questions of environmental 
sustainability and contend:

[F]or mathematics education to adequately address issues like climate change, ideas from 
critical mathematics education need to be supplemented with a theorisation of the nature of 
science and its role in society in the context of complex environmental problems such as the 
threat of climate change. (p.169)

Therefore, as a starting point for thinking about the connection between mathe-
matics and climate change, Barwell and Hauge propose a set of principles for teach-
ing mathematics in the context of climate change based on critical mathematics 
education and on the theory of post-normal science, as shown in Table 17.1.

Li and Tsai (2022) point out that, at present, the integration of ESD into mathe-
matics education is the exception rather than the rule and suggest that one reason for 
this hesitancy is that there are no existing philosophic theories for doing so, as ESD 
integration would require a redefinition of the scope of mathematics. It is thus worth 
revisiting the questions of what mathematics is and what it means to understand 
mathematics.
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Table 17.1 Principles for teaching mathematics in the context of climate change

Forms of authenticity Students should have opportunities to use problems about climate 
change that students find relevant in their lives
Students should have opportunities to work with real data as much as 
possible
Students’ own ideas and values should have a central role
Students should have opportunities to engage in meaningful debate 
relating to climate change

Forms of participation Students should participate in mathematics
Students should actively participate in their classrooms
Students should actively participate in their communities
Students should actively engage with and participate in public debate

Reflecting on and with 
mathematics

Students should have opportunities to reflect on how mathematics is 
useful
Students should have opportunities to reflect on the limits of 
mathematics
Students should consider the role of values in mathematics

Adapted from Barwell and Hauge (2021), p.177

17.3  What Mathematics Is and What It Means 
to Understand Mathematics

What is mathematics? It is hard to answer this question since there are a variety of 
philosophical theories that have been developed to explain the meaning of 
mathematics with respect to what mathematics is—for example, logicism, 
intuitionism, formalism, Platonism, constructivism, and Husserlian phenomenology. 
To logicists, mathematics, or part of it, is essentially logic (Russell, 1902). However, 
intuitionists contend that, rather than logic, mathematics should be defined as a 
mental activity (Snapper, 1979). For formalists, the subject matter of mathematics 
is its symbols, which are neither of logic nor of intuition (Giaquinto, 2002). 
Platonism is based on the idea that mathematics is “conceived of as a pure body of 
knowledge, independent of its environment, and value- free” (Renert, 2011, p.20). 
From the Platonist perspective, mathematics holds the key to certain, indubitable 
knowledge. However, the certainty of Platonism has been questioned by a number 
of mathematicians and philosophers (Ernest, 1991, 2021; Zakaria & Iksan, 2007). 
For example, social constructivists have argued that mathematics is the theory of 
form and structure that arises within language and mathematical applications play 
an integral role in human social life.

Husserlian phenomenologists consider mathematical experience a constitutional 
explanation that analyses the ideal structures involved in our meaningful experience 
of the world. Hartimo (2006) highlights that “to Husserl, investigating the origin of 
the concepts of number and multiplicity means giving a detailed description of the 
related concrete phenomena and the process of abstraction from the concrete 
phenomena” (p.329). Phenomenologists in mathematics education do not attempt to 
start from individual components and posit any further entities but analyse the 
perception for conscious representation of a spatiotemporal world. In Husserl’s The 
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Crisis of the European Sciences and Transcendental Phenomenology published by 
the Cambridge University Press (Moran, 2012), Husserl is concerned over how the 
scientific application of formal mathematics had changed the very conception of 
modernity and argues that the world for us all should be one that allows for mutual 
understanding, for action, and for the development of communicative rationality.

Ernest (2020) asserts that the philosophy of mathematics has largely concerned 
itself with pure mathematics, although, in recent years, it has started to focus on the 
issues associated with applied mathematics. Indeed, some researchers, such as 
Hardy (1967), focus on pure mathematics, an abstract neutral subject that has value 
independent of possible applications. However, others, such as Skovsmose (2019), 
have focused on applied mathematics and the impact that mathematics has on 
human life. Pure mathematics consists of abstract mathematical objects and is 
essentially an art, a creative process, one in which its learners have to envisage what 
putative sequence of steps might lead from a set of premises to a conclusion—
deductive reasoning plays a role equivalent to the artist’s paintbrush. Nevertheless, 
this perspective, influenced by Platonism, considers neither the methods used to 
teach mathematics nor the role of mathematics in modelling physical, environmental, 
and ecological processes (Li & Tsai, 2022). For example, almost everything taught 
in school mathematics—from arithmetic to algebra, to differential calculus—
involves to some extent the use of deductive reasoning, a skill that is useful for 
decision-making in general. However, too often the focus is on memorising the 
steps required to solve a particular class of problems—without an appreciation of 
the modelling of real-world scenarios.

Skovsmose (2019) offers a performative perspective on the philosophy of math-
ematics. Ravn and Skovsmose (2019) have developed the position that mathematics 
is performative in the sense that its adoption and application by human beings can 
inform decision-making, leading to altered political priorities and transformed 
social realities. The mathematical modelling of real-world scenarios encourages a 
careful consideration of what factors are relevant and which ones are more or less 
important—it discourages decision-making driven by emotion and impulsive, 
instinctive patterns of thought. The use of mathematical modelling and measure-
ment is performative, and through its application, mathematics plays an integral role 
in human social life (Ernest, 2020; Jankvist & Niss, 2020; Hagena, 2015; Skovsmose, 
2019). Nevertheless, such an integral role of mathematics in the society has not yet 
been widely accepted. For example, in a TV show, a mathematician was asked: 
“What is the point of your practice?” and “What are your social responsibilities?”. 
The mathematician answered:

The point of mathematics is to pursue mathematical truth. This is truth about the perfect 
world of mathematical objects, which are timeless, perfect and exist in their own realm, 
untouched by material changes and decay. The truth we pursue can be exquisitely beautiful, 
but we are merciless in our rigour and only the most robust proofs can be accepted as 
demonstrating the truth of our results. Our responsibility is to pursue mathematical 
knowledge and beauty beyond all earthly bounds, knowing that we enrich human culture 
inestimably. Although our responsibilities end with the pursuit of mathematics for its own 
sake, it often turns out that the most abstract theories have surprising and very fruitful 
applications in science, technology and in modelling the physical world. But this is a happy 
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accident, discovered only after we have revealed the truth. We pursue truth and beauty, but 
the only good we have to worry about is being good mathematicians. (cited from Ernest, 
2021, p.3)

Ernest (2021) prompted by the mathematician’s interview above and raised ques-
tions as to “Does mathematics only have to concern itself with truth and beauty and 
not with the good of humanity in a broader sense? Has mathematics no social 
responsibilities, no debt to the society that nurtures and funds it? Is ethics irrelevant 
to pure mathematics, as many mathematicians think?” (p.3). Ernest’s questions 
draw my attention to the important question of what social responsibilities 
mathematics should have in the society, which I will discuss in more detail below.

17.4  Equity, Social Justice, and Mathematics Education

Equity and social justice are core components of ESD. However, as Naresh and 
Kasmer (2018) argue, “mathematics in school settings is mostly perceived and 
presented as an elite body of knowledge stripped of its rich social, cultural, and 
historical connections” (p.309). Berry (2018) used an analysis-critical race theory 
as a lens to critically examine policies and reforms in mathematics education in the 
US over the past few decades and concluded:

Economic, technological, and security interests were, and continue to be, drivers of many 
policies and reforms. These policies and reforms situated mathematics education in a 
nationalistic position of being color-blind, in a context where race, racism, conditions, and 
contexts do not matter […]. Despite the evidence that racism and marginalization exist in 
schools and communities, many still adhere to the belief that color-blind policies and 
pedagogical practices will best serve all students. (p.16)

A recent report published in 2018 by the Social Mobility Commission in the UK 
revealed that “the attainment gap [in mathematics] widens as disadvantaged children 
fall further behind” (Social Mobility Commission, 2018, p.6). Research on the links 
between post-16 students’ earnings progression and social and economic 
development has shown consistently that a disproportionately high number of 
disadvantaged students experience poor earnings progression (e.g. Department for 
Education, 2018). This inequality is concerning, especially as it can increase the 
risk of violent conflict (Montacute, 2020; Poverty Analysis Discussion Group, 
2012). The Smith review published in 2017 by the Department of Education in 
England has confirmed that mathematics has a uniquely privileged status in society 
which has a big impact on future earnings:

There is strong demand for mathematical and quantitative skills in the labour market at all 
levels […] Adults with basic numeracy skills earn higher wages and are more likely to be 
employed than those who fail to master basic quantitative skills. Higher levels of 
achievement in mathematics are associated with higher earnings for individuals and higher 
productivity. (Smith, 2017, p.6)
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Questions arise as to “whether mathematics education contributes to social injus-
tices and whether equity in mathematics education is an economic necessity or a 
moral obligation” (Berry, 2018, p.5). Gutiérrez (2013) argues that mathematics and 
mathematics teaching is political, including the curriculum we choose, the activities 
we assign, and the education systems we organise. In line with Gutiérrez (2013), I 
also argue that school mathematics is political. It places people in socially valued 
mathematical rationalities and forms of knowing and consequently decides the idea 
of what mathematics is and how people might relate to it (or not). Mathematics 
becomes an important element of larger processes of selection of people that school-
ing operates in society (Valero, 2018). In addition, policies and reforms in mathe-
matics education have been largely motivated by the desire to compete in a global 
economy, which also reinforces the privileged status of mathematics in society and 
promotes a labour market that would only benefit a select few.

Tsai and Li (2017) note that “curriculum reforms have been one of the most com-
mon approaches adopted by policy makers when trying to promote change and 
improvement in school mathematics programs” (p.1264). This may thus lead to the 
situation in that the mathematics content that was taught, and the methods used to 
teach in schools were closely connected to standardised tests. Partly because of this, 
there would be little/no scope for teachers to introduce concepts/topics that are not 
examined in the standardised tests in school—for example, Schoenfeld and 
Kilpatrick (2013) argue that the likelihood of implementing inquiry-based 
curriculum in the US was small due to the considerations of preparing students for 
particular tests in the different states.

In mathematics education, the concept of increasing equity within mathematics 
education is not new. As called by Gutstein et  al. (2005), “each of us has a 
responsibility to both think about and act on issues of equity” (p.98). Ernest (2021) 
also contends that ethics is widely perceived as irrelevant in mathematics. He 
examines the role and need for ethics in mathematical practice from some ethically 
sensitive areas and problematic categories with respect to mathematics and its 
applications, and then concludes that “we mathematicians have a vital role to play 
in keeping governments and corporations ethical and honest” (ibid, p.34). In recent 
years, the discourses in combating injustices and creating a just society have been 
working to move mathematics education research “from equity as choice to equity 
as an intentional collective professional responsibility” (Aguirre et al., 2017, p.128). 
Aguirre et al. (2017) identify four political acts that illustrate the essential role of 
equity as an explicit responsibility of mathematics education researchers. They are 
as follows: (1) enhance mathematics education research with an equity lens, (2) 
acquire the knowledge necessary to do genuine equity work, (3) challenge the false 
dichotomy between mathematics and equity, and (4) expand the view of what counts 
as “mathematics”.

In ESD, it aims to draw attention to the purpose of the world’s education and 
moves the aim of education from simply a matter of training people for the global 
economy to engage citizens in and for society. As Khan (2014) suggests, “it [ESD] 
supports the acquisition of knowledge to understand our complex world; the 
development of interdisciplinary understanding, critical thinking and action skills to 
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address these challenges with sustainable solutions” (p.11). Thus, ESD calls for an 
interdisciplinary approach and a reorienting of the existing disciplines and 
pedagogies to motivate people to “become proactive contributors to a more just, 
peaceful, tolerant, inclusive, secure and sustainable world” (UNESCO, 2014, p.15). 
Therefore, in the next section, I will look at research on interdisciplinary learning 
and STEM education in mathematics education, and then draw attention to the 
question of whether the existing philosophical views of mathematics can be applied 
to understand the role of mathematics in interdisciplinary learning.

17.5  Interdisciplinary Learning, STEM Education, 
and Mathematics Education

In mathematics education, as Williams et al. (2016) note, interdisciplinary learning 
is “a relatively new field of research in mathematics education, but one that is 
becoming increasingly prominent internationally because of the political agenda 
around Science Technology, Engineering and Mathematics (STEM)” (p.1). Over 
the past few decades, studies have highlighted the benefits of interdisciplinary 
STEM learning for transferring what students learn, for improving problem-solving 
abilities, for developing STEM knowledge in more flexible and novel ways, and for 
promoting a better understanding of STEM ideas in real-life situations (e.g. Hobbs 
et al., 2019; Nakakoji & Wilson, 2018; Saavedra & Opfer, 2012; Williams et al., 
2016). Saavedra and Opfer (2012) state:

Students must apply the skills and knowledge they gain in one discipline to another and 
what they learn in school to other areas of their lives. A common theme is that ordinary 
instruction doesn’t prepare learners well to transfer what they learn, but explicit attention to 
the challenges of transfer can cultivate it. (p.10)

It is also worth mentioning that there is an increasing awareness of out-of-school, 
university-led programme value in enhancing student interest and understanding of 
STEM and its applications (Baran et al. 2019). Jensen and Sjaastad (2013) argue 
that secondary school students who had opportunities to attend out-of-school STEM 
programmes at local universities or further education colleges helped to increase 
their awareness of STEM careers and could picture themselves as scientists. To 
further illustrate the role that universities can play in promoting interdisciplinary 
STEM learning for secondary school students, in the following, I will describe some 
preliminary findings from a pilot study of my own STEM and Sustainability 
(STEMS) project for students (ages 15–18) in Scotland.

In this STEMS project, the contents of all of the workshops were designed by me 
and colleagues at my university, in discussion with the workshop instructors before 
implementing each of the workshops. All the workshops were conducted on 
Saturdays at a university. Students volunteered to attend this project. There were no 
selection criteria in recruiting workshop participants, but priority was given to 
students from disadvantaged backgrounds. The results of the student pre- and 
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post-project questionnaires indicated that there were statistically significant differ-
ences in students’ understanding of sustainability and in their attitudes towards 
STEM subjects after they attended the project, with a higher mean score in the post- 
project questionnaire. Table 17.2 shows the main themes and activities of the work-
shops. Examples of student feedback on each activity are also presented.

Due to the scope of this chapter, I will not describe each of the workshop activi-
ties here, but it is worth discussing some students’ feedback on this workshop activ-
ity: “capture-mark-recapture discussion and card game”. The activity consisted of 
(1) discussing biodiversity and the future of species issues, (2) understanding the 
proportion concept for the capture-mark-recapture method, (3) considering 
statistical assumptions for the capture-mark-recapture method (e.g. why is the result 

Table 17.2 The main themes and activities of the workshops and student feedback

Theme Main activity Examples of student feedback

Theme 1 The volume of life 
on Earth – Biodiversity

Global goal string 
activity
Capture-mark-recapture 
discussion and card 
game
Carbon cycle game

“All goals are connected and everything 
impacts one another”
“It was good to learn about sampling 
techniques and its practical use and its 
pros and cons depending on its use in 
different situations”
“It was a fun and smart way to teach 
the carbon cycle”

Theme 2 A renewable, 
biodegradable 
fuel – Biodiesel

Bioenergy crossword 
game
Controversial 
discussion:
   Jatropha – a solution 

or a false hope?
Using graphs to 
represent and interpret 
biodiesel production

“I enjoyed crossword most as I was 
good as it”
“A good debate. [it’s] interesting and 
encouraged me to think about the topic 
in detail
“Recapped my knowledge of drawing 
graphs – I further developed my 
knowledge of Jatropha and biodiesel”

Theme 3 A clean source of 
renewable energy – wind 
power

SDG 7 affordable and 
clean energy: why it 
matters?
Benefits and drawbacks 
of offshore wind farms
Wind turbines: how 
many blades experiment

“Clean energy is important as we need 
to think about the effects and impact on 
the world because of it”
“Clean source of power, but it can 
‘ruin’ landscapes and affect 
biodiversity”
“It allowed me to problem solving and 
learn about the physics behind the wind 
power generation methods”

Theme 4 Mathematics and 
climate changes – what the 
mathematics is telling us

Climate changes art 
gallery
How high school 
mathematics gives 
insights into climate 
changes
Relay game: what 
students have learned 
from the workshops

“Recalled climate changes knowledge, 
but don’t like drawing”
“I learnt more about mathematical 
concepts and know climate changing is 
happening at a faster rate than 
predicted”
“Revisited past workshops to revise 
knowledge – team building games are 
fun”
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unlikely to be exactly true?), and (4) using the card game to help students know how 
to do the capture-mark-recapture method. Two examples of student feedback on the 
activity that were collected from their post-workshop interviews are presented as 
follows:

I was surprised to know that it [the answer] is unlikely to be exactly true. I thought the 
maths would always give you the correct answer.

The only real…real understanding I had of sustainability before was from a biology lesson 
years ago. This [Capture-Mark-Recapture discussion and card game] really helped me to 
understand it and also engage with it with some practical exercises and ideas which I found 
very interesting and enjoyable.

From the student feedback above, it shows that the practical exercises (e.g. card 
games) and interdisciplinary approaches had really helped them to understand 
sustainability, although they had been taught about it in their biology lesson before. 
The student feedback above also made a reference to “I thought that maths would 
always give you the correct answer”. While it is not surprising that students were 
not aware of the uncertainty of mathematics, the results of the student interviews 
suggested that, partly because little statistics was taught to them or statistical 
knowledge was something that was crammed into their heads in school mathematics, 
they did not understand the concept that underlies the operation when performing 
the capture-mark-recapture method, even those who were able successfully to 
perform the operation. It is also worth mentioning here that, while statistical data is 
presented in the news on a daily basis, error bars around the data points are rarely 
included on the grounds that most people would not understand their significance. 
Similarly, when a change in some quantity—be it a car accident or the COVID case 
rate—is reported, there is no accompanying statement as to whether the change is 
statistically significant on the grounds that most people would not understand the 
concept. It may therefore be difficult for people to come to appreciate that 
measurement without an associated uncertainty is often of little value.

As I have mentioned earlier, in line with other researchers (e.g. Gutiérrez, 2013), 
school mathematics is political. Thus, in typical school mathematics, certain 
branches of mathematics are overrepresented (e.g. algebra) and others 
underrepresented (e.g. approximation, statistics, probability, discrete mathematics, 
and fractal mathematics). Take approximation and discrete mathematics as 
examples; when mathematics is applied to solve real-world problems, it invariably 
involves the use of approximation. In addition, discrete mathematics gives 
approximations for the size of some measurements. Students should come to 
understand that approximations produce inexact results and sometimes unreliable 
results. Arguably, discrete mathematics and approximation should be taught as a 
part of mathematics. Regarding statistical teaching in schools, Batanero et al. (2011) 
argue that “many teachers unconsciously share a variety of difficulties and 
misconceptions with their students with respect to fundamental statistical ideas” 
(p.409) because they do not actually teach much statistics and rarely use statistics to 
analyse data.
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This is cause for concern as, if students in their education were routinely taught 
some basic statistics, then news feeds would be enhanced and students would have 
the capacity to make informed, data-driven decisions—and, more importantly, they 
would develop a readiness to question the validity of data-based assertions 
unaccompanied by a statistical justification. There is little doubt that most topics in 
schools help to teach deductive and inductive reasoning. However, it is arguable that 
the typical school-based mathematics curriculum tends to view students’ learning 
from the narrow sense of the scores achieved, rather than from the standpoint of 
educational development such as transfer of learning. It is therefore not surprising 
that mathematics teaching has often been criticised for being teacher-centred, 
content-oriented, and academic-driven (e.g. Petocz & Reid, 2003) and students 
nowadays are highly dependent and passive and have difficulty in constructing 
meaning and understanding from their learning.

Like school mathematics, I also argue that STEM education is political too. As 
Williams et al. (2016) describe, “in almost all countries now politicians see education 
in terms of preparation of a workforce for a competitive industrial sector, and STEM 
is seen as the route to more value-adding industries, especially in knowledge 
economies” (p.1).

There is general agreement among the majority of the general public that the 
development of mathematical skills plays an essential role in helping the younger 
generations function effectively in today’s technological society and, hence, that the 
acquisition of mathematical skills contributes to economic growth and prosperity—
for example, the deductive reasoning skills developed by solving mathematical 
equations are essential when it comes to writing and debugging computer programs. 
However, several mathematics researchers have raised concerns that this focus on 
using mathematics for problem-solving is too narrow (e.g. Berry, 2018; Ernest, 
2020; Gellert, 2011, Gutstein, 2012, Martin, 2015, Skovsmose, 2019).

Gellert (2011) contends that “thinking of mathematics only as a powerful tool for 
solving economic problems is a truncated conception of mathematics-in-society” 
(p.20). Swanson (2019) points out that “a common theme which emerges from the 
case studies is that of a potential for mathematics to disappear, or to become a mere 
tool, within such [STEM] activities” (p.157). The National Council of Supervisors 
of Mathematics (NCSM) and National Council of Teachers of Mathematics (NCTM) 
in the US have also highlighted that although it is recognised that all the subjects 
within the STEM education are important, it is necessary to affirm “the essential 
role of a strong foundation in mathematics as the centre of any STEM education 
program” (NCSM & NCTM, 2018, p.1).

A question arises as to whether the existing philosophical views of mathematics 
can be applied to understand the role of mathematics in interdisciplinary learning. 
This question remains unanswered. It is thus important for us to think about how 
mathematics interrelates with the other disciplines and contexts involved in the 
context of interdisciplinary learning. In particular, if ESD is to be integrated into 
mathematics education, we need a new philosophy to address questions as to what 
mathematics can help people gain insights into the role that mathematics plays in 
shaping human society and how mathematics can help people take up sustainable 
development challenges.
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17.6  A Call for Reconfiguring and Rethinking the Philosophy 
of Mathematics for the Twenty-First Century

How sustainable is mathematics? It is still unclear—when it comes to classroom 
practice—what ESD in mathematics education should look like in the twenty-first 
century. As argued by Barwell (2018), “there has been little sustained mathematics 
education research” (p.156). My review of ESD-related studies has confirmed these 
findings: I found that the number of studies in ESD relating to mathematics in 
general, and to mathematics education in particular, is few and disproportionate to 
the number of studies that document problems with its implementation—problems 
for which solutions are needed urgently. Over the past few decades, while there has 
been substantial preparatory work when it comes to adapting ESD for disparate 
subjects and education systems (Laurie et al., 2016), there has been limited progress 
when it comes to embedding such work within school curricula (Hunt et al., 2011; 
Summers, 2013). Furthermore, research shows that the quantity and quality of ESD 
provision in teacher education have been “patchy” (Bamber et al., 2016).

In the field of mathematics and mathematics education, it is widely accepted that 
pure mathematics is neutral and value-free; however, the situation becomes more 
nuanced once mathematics is applied to real-world scenarios. Ernest (2020) notes 
that “one of the traditional problems of the philosophy of mathematics is the 
question of how wholly abstract mathematics can have any effect on the world” 
(p.79). As discussed in previous sections, traditionally, mathematics was taught as a 
static body of knowledge and unquestionable truth. However, it has in the last 
century been questioned that there can be no complete provable body of mathematical 
knowledge, no unification of what is provable and what is true (e.g. Gödel’s 
incompleteness theorem). It is difficult to understand how the uncertainty of 
mathematics has surfaced in the philosophy of mathematics education.

In Husserl’s later work, he claims that his idea of life-world can be used as a 
fundamental and novel phenomenon previously invisible to the sciences. Husserl 
insists:

There is a specific and entirely new science of the life-world itself [..] that would, among 
other things, offer a new basis for grounding the natural and human sciences. There never 
has been such an investigation of the lifeworld as subsoil (Untergrund) for all forms of 
theoretical truth […] The life-world demands a different type of investigation that goes 
beyond the usual scientific treatment of the natural or human world. It must be descriptive 
of the life-world in its own terms, bracketing conceptions intruding from the natural and 
cultural sciences, and identifying the ‘types’ (Type) and ‘levels’ (Stufe) that belong to it 
(cited from Moran, 2012, p.223)

In line with Husserl’s idea of the life-world, I also argue that there is clearly a 
need to demand a different type of investigation that goes beyond the existing 
philosophies of mathematics and mathematics education so that it can align more 
closely with twenty-first--century learning priorities.

In the previous section, I have shown that the interdisciplinary ESD approaches 
can assist the sustainable development movement by cultivating in students the 
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skills needed in mathematics as well as across different subjects/disciplines to make 
informed judgments about sustainable development when faced with contradictory 
information, data, and opinions. I believe that the integration of ESD into 
mathematics education has the potential to make a significant contribution to the 
sustainable development movement. To this end, I argue that the philosophy of 
mathematics and mathematics education needs to be reconfigured and re-envisioned 
so as to accommodate social, economic, and environmental dimensions. Topics that 
would help students to acquire relevant knowledge, to practice critical thinking, to 
manage uncertainty, and to act in a measured and responsible manner when faced 
with a pending crisis should also be included in school mathematics, with the aim 
of better preparing students to address the global issues that they will face during 
their lifetimes.

17.7  Concluding Marks

This chapter by no means claims to be a fully comprehensive study of how the phi-
losophy of mathematics and mathematics education should be reconfigured or re- 
envisioned in order to appropriately integrate the relevant aspects of ESD into 
mathematics and mathematics education. However, its discussions may offer 
relevant information on rethinking the existing philosophies to respond to a growing 
demand to integrate ESD into mathematics teaching and learning.

As I have discussed in previous sections—the “teaching to the test” culture in 
mathematics education, the dominant philosophy of pure mathematics and the 
issues in mathematics education regarding equity, social justice and interdisciplinary 
learning—all of which have shown that the incorporation of ESD, as defined by 
UNESCO, into mathematics education is far from simple. Arguably, if we are to 
meet the current sustainable development challenges, we must broaden the focus 
and find a new philosophy of mathematics to incorporate ESD into mathematics 
education.

Over the past two decades, research has only started to address the fundamental 
questions facing the incorporation of ESD into mathematics teaching and learning. 
The work is still in progress, and there is certainly still much work to be done. This 
chapter may only be one amongst several attempts to achieve this goal. More 
research will, no doubt, contribute further to the understanding of this highly 
complex and demanding aspect of mathematics education and to the routine teaching 
of ESD within mathematics classrooms. Of course, more research is also needed to 
focus on the critical thinking and problem-solving skills involved in mathematical 
modelling and measurement, on how mathematics is applied within other disciplines, 
and on how mathematics provides a lingua franca that supports effective, ethical 
communication between disparate communities across the world.
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Chapter 18
Asé O’u Toryba ‘Ara Îabi’õnduara!

Antonio Miguel, Elizabeth Gomes Souza, and Carolina Tamayo Osorio

18.1  Introduction

In this chapter, we carry out a therapeutic-grammatical investigation of the philo-
sophical problem related to the belief in the supposed uniqueness and universality 
of Western logical-formal mathematics and the main philosophical arguments that 
support it, with the purpose of deconstructing it based on a decolonial counter-
argument. This counter-argument does not claim to constitute a new philosophy of 
mathematics that can support a new perspective of the philosophy of mathematics 
education, it does give visibility, in general terms, to a therapeutic- decolonial way 
of educating and of educating oneself mathematically in school, through the non- 
disciplinary problematization of algorithmic cultural practices historically invented 
as adequate responses to normative social problems emerging in different forms of 
life. In this sense, such algorithmic-normative practices can be seen as mathematical 
language games,1 in Wittgenstein’s sense.

1 Wittgenstein (2017, § 7) coined the expression “language games” to refer to the totality of lan-
guage and the activities intertwined with it, proposing to redirect the words from their metaphysi-
cal use to their everyday use. The expression language-game seeks to highlight, with the word 
“game,” the importance of language praxis, that is, it seeks to highlight language as a theatrical and 
performative practice, and, with this, the multiplicity of activities in which the language is inserted. 
Wittgenstein’s deconstructionist, nondogmatic, and non-essentialist therapeutic philosophizing 
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This decolonial counter-argument highlights the claim that such practices and 
the ways in which they affect different forms of life in the contemporary world 
should be the focus of therapeutic problematizations of a school mathematics 
education that intends to be decolonial. In line with Miguel and Tamayo (2020, 
p. 5), we are seeing and wanting to explore here a decolonial aspect in the therapeutic 
attitude,

not only because this attitude is being practiced here by us to deconstruct discourses and 
practices that contemporary decolonial discourse sees as colonizers, but also because we 
are seeing its decolonizing aspect as the purpose that guides our way of practicing it.

Methodologically referenced by the works of the Austrian philosopher Ludwig 
Wittgenstein, the therapeutic-grammatical investigation that we present here is 
characterized through a neither this/nor that, because it cannot be seen either as a 
philosophical investigation guided by a general and prescriptive scientific method – 
empirical-verificationist or theoretical-logical-fundamentalist – nor as proceeding 
in an irrational and anarchic way, since it does not allow itself to be guided either by 
a previously defined method, nor by a universal method that could be later described 
and detached to be applied in other problems. “There is not a single philosophical 
method, though there are indeed methods, different therapies, as it were” 
(Wittgenstein, 2009, § 133).

Each therapeutic investigation – even when it uses sources or data directly col-
lected in field research, which is not the case here – invents its own ethical- aesthetic 
style of philosophizing and does not use such sources or data to attest or support a 
supposed final thesis on the investigated problem to be defended by the researcher- 
therapist. In fact, the ethical-aesthetic style of Wittgenstein’s philosophizing makes 
the reader co-responsible for the developments generated by reading his work. It is 
Wittgenstein himself who expresses this desire, in the following way, in the preface 
to Philosophical Investigations: “I should not like my writing to spare other people 
the trouble of thinking. But if possible, to stimulate someone to thoughts of his 
own” (Wittgenstein, 2009, Preface, p. 4e).

Another important point to be highlighted here is that a therapeutic-grammatical 
investigation of a philosophical problem has nothing to do with an investigation of 
a psychological nature, since it operates on the “grammars” – that is, on the set of 

does not allow itself to be categorically defined even one of the key terms of his philosophizing, 
namely, the expression “language games.” However, instead of a categorical definition, Wittgenstein 
provides an ostensive definition, that is, numerous examples of language games, as in passage 23 
of the Philosophical Investigations: “[…] The word “language- game” is used here to emphasize 
the fact that the speaking of language is part of an activity, or of a form of life. Consider the variety 
of language-games in the following examples, and in others: Giving orders, and acting on them; 
Describing an object by its appearance, or by its measurements; Constructing an object from a 
description (a drawing); Reporting an event; Speculating about the event; Forming and testing a 
hypothesis; Presenting the results of an experiment in tables and diagrams; Making up a story; and 
reading one; Acting in a play; Singing rounds; Guessing riddles; Cracking a joke; telling one; 
Solving a problem in applied arithmetic; Translating from one language into another; Requesting; 
thanking; cursing; greeting; praying […].”
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guiding rules – of the different language games made public (the different “public 
philosophies,” in Paul Ernest’s sense) in the field of scientific-academic activities.

It is therefore necessary to warn readers about the analogies that could be wrongly 
established between therapeutic-grammatical investigations and psychotherapies, 
whatever their theoretical affiliations, as well as between them and the maieutic 
Socratic method in the way it was didactically and cognitively practiced in Plato’s 
dialogues, guided by the purpose of “convincing” Socrates’ interlocutors – or rather, 
to impose them – about the essential and irrefutable truth of a certain point of view 
(thesis) related to the problem in focus.

Even though the written presentation of our therapeutic investigation in the form 
of a dialogical-argumentative text can maintain “family resemblances” (Wittgenstein, 
2009, § 67) with the philosophical-empirical-fallibilist investigation practiced in the 
dialogical-dialectical text of Proofs and Refutations by Imre Lakatos, there is a 
subtle and radical difference between both that needs to be highlighted here. The 
repeated application of the confident rational method of “prove and refute” triggered 
by Lakatos, guided by his paradoxical purpose of “proving” the skeptical thesis that 
a mathematical proof never proves what it purports to prove, is in manifest inverse 
contrast with our “confident conviction.”

In a “methodologically skeptical” therapeutic investigation  – by refusing to 
define a method, whether rational or irrational, that can guide it – there is not exactly 
a thesis to be proved, defended, verified, or refuted, but only a problem to be better 
understood, clarified or, as the case may be, to be dissolved as a problem, through 
the decolonial counter-argument, case by case.

The Wittgensteinian therapeutic-grammatical perspective begins from the con-
ception that “philosophy must not interfere in any way with the actual use of lan-
guage, so it can in the end only describe it. For it cannot justify it either. It leaves 
everything as it is” (Wittgenstein, 2017, § 124):

Wittgenstein’s writing styles are aphoristic, non-conceptual, polyphonic, and questioning. 
This writing profile leads his different readers to different assertions, in a self-responsible 
process of understanding his writings. […] A style of philosophizing that deconstructs 
images, concepts, conceptions elaborated from a fixed, dogmatic, representational, and 
external spectrum to the practice or phenomenon studied. The aphoristic and dialogical way 
of conducting this deconstruction calls to look how the practices occur. “Don’t think, but 
look”. (Wittgenstein, 2017, § 66), see how the language works? (Souza et al., 2022, p. 278)

By extension, a therapeutic investigation is not driven by the dogmatic purpose 
of convincing readers of the reasonableness or truth of a point of view over the 
others that are manifested in the debate, nor is there a privileged interlocutor who 
had this kind of power.

Finally, therapeutic research, such as the one we carry out here, does not claim 
for itself a status of empirical-verificationist or theoretical-logical-fundamentalist 
scientificity. This is because, on the one hand, we do not believe that the theoretical 
discourses produced in the field of philosophical investigation  – for example, 
philosophies of mathematics, philosophies of education, and philosophies of 
mathematics education  – are endowed with the pretentious imperialist power of 
grounding, to validate or rectify the effective ways of practicing mathematics and 
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mathematics education in different fields of human activity, including the field of 
school education.

On the other hand, we think that the greater or lesser social and political rele-
vance, credibility, acceptability, effects, and affects of philosophical discourses 
reside in their performative powers to modify habits, customs, beliefs, ideologies, 
and behaviors, both on a personal and social-institutional level.

Hence, the choice we made to present our philosophical investigation through a 
therapeutic-dialogical-problematizing writing endowed, in our view, with 
performative power in relation to standard conventional presentations, seen as 
“scientifically correct or acceptable” by the scientific-editorial field of the 
contemporary academic world. “Hence our choice for what is in front of our vision, 
without worrying about what is supposedly hidden. These voices always tell us – 
“Look! – Look!” (De Jesus, 2015, p. 52).

We choose six persons will participate in this debate: Oiepé, Mokoi, Mosapyr, 
Irundyk, Mbó, and Opá kó mbó. Their names correspond, respectively, to the 
numerals one, two, three, four, five, and ten in the ancient Tupi language, today 
considered one of the two most important linguistic branches of the hundreds of 
different languages currently spoken by indigenous communities in Brazil. Other 
remote interlocutors are invited to participate in the debate, or they enter the room 
uninvited. They are identified by acronyms formed by the first letters of their names 
and surnames.

Although several public and published points of view related to the problem we 
investigated have been presented, defended, or refuted by the different face-to-face 
or remote interlocutors participating in the debate, none of these points of view – 
among others, those of Hogben, Aleksandrov, Lakatos, Perminov, and Raju or even 
those of Wittgenstein himself – could be attributed to us as researcher-therapists or 
authors of this collective text, which does not mean that each of us, as individual 
researchers, did not make different decolonial choices to conduct our research, 
teaching and teacher formation activities.

The purpose of a therapeutic-grammatical investigation is the rejection of every 
form of dogmatism. Therefore, this is not a text that dogmatically defends a formal-
ist, fallibilist, ethnomathematics, decolonial or any other point of view in relation to 
the investigated problem, even though the indigenous interlocutors who discuss this 
problem are undoubtedly committed to an anthropophagic-decolonial critique 
regarding the belief in the uniqueness and universality of western logical-formal 
mathematics and the main philosophical arguments that support it.

It does not, however, prevent them from disagreeing with each other, whether in 
relation to various aspects of this criticism or in relation to aspects of a possible 
therapeutic-decolonial proposal to educate and to educate oneself mathematically, 
at school, through the nondisciplinary problematization of normative cultural 
practices. In fact, in our therapeutic-dialogical-problematizing text, we try to take 
care as much as possible not to mischaracterize the principles that characterize a 
therapeutic-grammatical investigation.
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18.2  Therapeutic Debate

Irundyk – I think there is a common belief that has guided Western school mathe-
matics education, namely, to assume as true and, therefore, as potentially applicable 
only those propositions that have been logically-deductively proved. It is, therefore, 
the value and power attached to logical proof that imparts to the proposition the 
status of truth, so that such a belief produces its own picture of the truth of a propo-
sition as always being relative to the deductive system to which it belongs, without 
coming into conflict with the others.

Mbó – It’s true! It is this belief that has been the engine of the entire history of 
colonizing Western mathematics education…

Mokoi – If the East is, in fact, an invention of the West, as argued by Said (2003), 
I think that such a belief could also be extended to the global school mathematics 
education, which is nothing but the axiomatized set of lies logico-deductively 
proved propositions that European colonizers told us about. This history, therefore, 
does not represent us, it only represents them.

Mosapyr – For my part, I think that such a belief is neither Eastern nor Western, 
but only colonial. It should no longer be imposed on us by school mathematics 
education. After all, as Lakatosian fallibilism has said, a mathematical proof 
never proves.

IL (Lakatos, 2015, p. 152) – It has not yet been sufficiently realised that present 
mathematical and scientific education is a hotbed of authoritarianism and is the 
worst enemy of independent and critical thought. While in mathematics this 
authoritarianism follows the deductivist pattern, in science it operates through the 
inductivist pattern.

Oiepé – I agree! For Lakatos, a proof can always be refutable through the presen-
tation of local counterexamples – that is, those that refute one or more of its pas-
sages – or global ones, that is, those that refute the proposition itself. And even if a 
proof can be rectified, it will be, ad infinitum, open to logical criticism and refutation.

Opá kó mbó – Lakatos’ fallibilism is nothing but an extension of Popperian fal-
libilism as a philosophy of science into the domain of the philosophy of mathemat-
ics. It is curious to note, however, that if Popperian fallibilism is widespread in 
scientific communities, Lakatosian fallibilism has never even shaken the mathemat-
ical community’s confidence in the infallible performative power of a deductive 
proof. It seems, then, that no form of philosophical skepticism, even in the West, has 
merely unsettled the solidity of mathematics, usually considered universal, unique, 
and true.

IL (Lakatos, 2015, p. 4–5) – For more than two thousand years there has been an 
argument between dogmatists and sceptics. The dogmatists hold that – by the power 
of our human intellect and/or senses – we can attain truth and know that we have 
attained it. The sceptics on the other hand either hold that we cannot attain the truth 
at all (unless with the help of mystical experience), or that we cannot know if we can 
attain it or that we have attained it. In this great debate, in which arguments are time 
and again brought up to date, mathematics has been the proud fortress of dogmatism. 
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Whenever the mathematical dogmatism of the day got into a ‘crisis’, a new version 
once again provided genuine rigour and ultimate foundations, thereby restoring the 
image of authoritative, infallible, irrefutable mathematics, ‘the only Science that it 
has pleased God hitherto to bestow on mankind’.

Mokoi – I think this happens because Lakatosian fallibilism is really a fragile 
skeptical philosophy, actually incapable to destabilize logic formal mathematics.

VP (Perminov, 1988, pp. 500–508) – Reliability of mathematical proofs can be 
called in question on the basis of different arguments. […] The principal argument 
by Lakatos, which is at the same time a proper empiricist argument, consists in 
stating that a mathematical proof is never liberated from the meaningful context 
and, consequently, from implicit assumptions. But the presence of implicit 
assumptions within the proof may result in its refutation by counterexamples of 
local or global nature. […] This argument is by all means true. But the principal 
problem is whether we can completely get rid of such implicit assumptions giving 
rise to counterexamples without total formalization of theory. Lakatos’ response is 
definitely negative. We feel that he answers the question this way because he 
identifies all types of intuition with empirical intuition, and for this reason any 
meaningfulness is to him dangerous and undermines the validity of reasoning. In 
this case, any proof is not fully justified and any attempt to make it such leads to 
regression to infinity. Actually, the meaningfulness in mathematics differs essentially 
from that in natural sciences. At a certain level of evolution, mathematical proof is 
purified of all assumptions except those apodictically reliable ones. But this kind of 
meaningfulness cannot give rise to counterexamples. […] Another argument by 
Lakatos against the rigor of proof, which may be called methodological, procceds 
from the distinction between rigor of the proof and that of the proof analysis. 
Lakatos was convinced that by increasing the rigor of the proof analysis we always 
call in question what had been previously accepted as indubitable, we narrow down 
the ultimate justification layer and therefore reduce to the level of the unrigorous 
what had earlier seemed rigorous and final. […] But the possibility of conceptualizing 
the intuitive does not mean that we can correct or reject its content. Carrying out the 
logical analysis of arithmetic we do not reject the praxiologically accepted 
elementary truths. […] In mathematics there exists the area of ultimately valid, the 
area of apodictic truths that cannot be limited or corrected by logical analysis. […] 
Logical formalization of the theory is adequate only when it does not distort its 
present content. […] Lakatos’ idea of the relative character of the justification layer 
[…] proceeds from the erroneous concept of the intuitive as unavoidably invalid and 
subject to logical corrections. The ultimate justification layer in mathematics is only 
related to categorical and praxeological intuition and in the long run to fundamental 
categorical distinctions; it cannot be changed by means of external (logical or 
epistemological) criticism and in a sense remains unchanged through the entire 
history of mathematics. […] In his criticism of the infallibility of mathematics 
Lakatos resorts to another argument, namely, to the fact of historical changeability 
of the criteria of rigor. If the latter evolve, then the assertion of the ultimate rigor of 
a proof seems to lose sense. This argument is […] based on the false premise that 
takes for granted that new criteria of rigor are able to eliminate mathematical results 
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obtained before their acceptance. But this is not supported by the history of 
mathematics. This reasoning does not take into account in a due way the logical 
criteria are secondary as compared to the contents of mathematics and that they are 
introduced only under the condition of preserving the content achieved that is 
ultimately based on the praxeological and categorical concepts.

Mbó – I am inclined to disagree with Perminov’s critique. It is based on the pos-
tulation of the so-called “apodictic” or “irrefutable” truths – such as “logical intu-
itions” and “praxeological intuitions”. These would compose an alleged “last 
instance of justification” of the proof.

Opá kó mbó – I think it would be necessary to clarify what Perminov would be 
understanding by “logical” and “praxeological” intuitions, claimed to be 
unrectifiable, as opposed to “empirical” and “conceptual intuitions”, open to 
criticism and logical analysis and correction.

Mbó – I’ll try to explain. For Perminov, “intuition” is any plausible reasoning or 
inference that can be true or false. They are based on implicit assumptions, 
sometimes legitimate and sometimes illegitimate, that are always amenable to 
rectification. In such cases, we should make them explicit, so that illegitimate 
implicit assumptions on which they are eventually based may come to light and be 
corrected.

Oiepé  – Could you give us examples of intuitive inference amenable to 
rectifications?

Mbó – Empirical intuitive inferences, which are based on implicit assumptions 
associated with empirical inductive generalizations, are rectifiable. The Hungarian 
mathematician Farkas Bolyai proved, in 1832, that every polygon can be decomposed 
into polygonal parts that, arranged in a certain way, reproduce another polygon that 
occupies the same area as the first. Based on empirical-inductive reasoning, we 
could think that we could extend this theorem from two-dimensional space to three- 
dimensional space, assuming that it would also remain valid for polyhedra. But this 
turns out to be false, as the German mathematician Max Dehn has proved. The 
so-called “conceptual” intuitions are also rectifiable, that is, those that resort to 
methods of direct visualization of non-obvious propositions already proven within 
a logical-axiomatic theory, to assess their plausibility. An example would be the 
construction of Euclidean models by Henri Poincaré and Félix Klein to visualize 
non-obvious propositions of Lobachevsky’s geometry. Such models are only 
accepted if they are compatible with the assumptions and propositions of the other 
system they represent.

Oiepé – And what would be the apodictic or unrectifiable intuitive inferences?
Mbó – These are the so-called “logical”, “categorical” and “praxeological” intui-

tive inferences. The “logics” are those that are based on assumptions that make it 
possible to logically reconcile two or more facts that are not necessarily compatible. 
They decree, so to speak, compatibility. This is the case, for example, of propositions 
such as: “the product of two negative numbers is a positive number”; “the square 
root of 2 is equal to two raised to the fractional exponent ½”. These propositions are 
inferences “decreed true” so that they do not contradict other praxiologically 
accepted arithmetical propositions, such as the commutative and associative 
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properties of addition and multiplication of natural numbers and the distributive 
property of multiplication in relation to the addition and subtraction of natural 
numbers. On the other hand, the “categorical” intuitions, which are also unrectifiable, 
are those that express the desire shared by the community of mathematicians to 
preserve, in their proofs, the “empirical- perceptual obviousness” of certain evidence 
referring to spatial relationships between figures accessible to vision, such as, for 
example: “two distinct straight lines intersect at most at one point”.

Mokoi  – But in Riemannian geometry, two straight lines always intersect at 
two points.

Mbó – That’s right… But for categorical intuitions to be preserved, mathemati-
cians invent Euclidean geometric models or resort to existing models – a spherical 
surface, for example – in which non-obvious propositions of non-Euclidean geom-
etries can be visualized in a Euclidean way.

Oiepé – Another example of a categorical intuitive proposition is that present in 
the proof of Proposition 1, from Book 1 of The Elements. To construct the equilateral 
triangle, Euclid implicitly assumes, based on an “empirical-perceptual obviousness”, 
that the two circles with centers at each end of the side of the triangle should 
intersect. When Hilbert set out to rectify the logical flaws in the proofs provided by 
Euclid, he had to make this legitimate categorical intuitive assumption explicit, 
elevating it to the status of an axiom of his formalized Euclidean geometry.

Opá kó mbó – The conclusion I am reaching is that “ultimately”, all these intu-
itions referred to by Perminov could be reduced to praxeological intuitions, the only 
ones about which we have not yet been clarified. And if this “intuition” of mine is 
correct, then why, for him, would only some of them be unrectifiable and not all of 
them? And, if they are all, where would the need to logically prove what has already 
passed through the sieve of the praxeologically irrefutable come from?

Irundyk – I think your questioning touches on the “Achilles’ heel” of formalist 
mathematicians, logicists, intuitionists, conventionalists, etc. Or rather, it touches 
on “Hilbert’s heel”, or Cauchy’s, or Dedekind’s, or Whitehead’s, or Russell’s, … 
And let’s stop right here, because this list is going forever, it tends to infinity. It is 
going to Cantor’s paradise, from where all of them are supposed to have left and to 
where all of them would like to return to dwell for all eternity.

Mbó – That’s right… What Perminov calls “intuitive praxeological propositions” 
are precisely the guiding rules of the ways of informally practicing mathematics by 
different peoples and civilizations throughout history. What we would call, for 
example, cultural practices and which he, referring to Kant, prefers to call 
“intuitions”. But if, as Opá kó mbó said, they are all reducible to praxeological 
intuitions, either they would all be open to logical and epistemological analysis and 
rectification, or none would be.

IL (Lakatos, 2015, p. 5, our italics) – Our modest aim is to elaborate the point 
that informal, quasi-empirical mathematics does not grow through a monotonous 
increase of the number of indubitably established theorems but through the incessant 
improvement of guesses by speculation and criticism, by the logic of proofs and 
refutations. Since, however, metamathematics is a paradigm of informal, 
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quasi- empirical mathematics just now in rapid growth, the essay, by implication, 
will also challenge modern mathematical dogmatism.

YP (Perminov, 1988, pp. 500–508, our italics) – Nobody seems to defend the 
possibility of such a revision [of the praxiologically accepted mathematical contents 
or propositions that formalism formalizes] and nevertheless, in general philosophical 
speculations concerning mathematics we are quite willing to agree that “nothing is 
absolute” and, therefore, assume the principal possibility of this revision. Such a 
divergence between the practical attitude and the general philosophical outlook in 
contemporary mathematics is accounted for by a number of circumstances and in 
the first place by the non-critical transfer of the generally scientific methodological 
propositions into the sphere of mathematics. Mathematical theory, in contrast to 
empirical science, represents a specific artificial world with strictly defined elements 
and a finite number of their properties. Within this artificial world we can establish 
final relations subject to verifying by means of finite procedures. […] Thus, we have 
all grounds to assert that the overwhelming part of mathematical results at work are 
actually ultimately justified in the sense that their proofs are fully guaranteed against 
refutation in the future, and this is true not only of specially verified formalized 
mathematics but also of common meaningful mathematics whose proofs are 
acknowledged to be sufficiently convincing.

Oiepé – I think that Perminov just echoes the formalist belief in the relevance of 
theory and the conception of truth as consistency within a deductive system. In such 
a world, a proposition can only be true if it is logically proved, after its due 
conceptualization and insertion into a formal deductive system. Therefore, in the 
so- called “scientific” mathematics, there can be no absolute truth of any isolated 
proposition, because the truth of a proposition is always relative to the truths of 
other propositions postulationally accepted as true, as well as relative to the rules of 
inference prevailing in formal classical logic, the only ones accepted as true. 
Perminov and the formal mathematicians think that they can escape the criticisms 
of the Lakatosian fallibilists through the procedure of total formalization of 
mathematical theories called “naive” or “intuitive”. Thus, according to them, only 
adequate formalization of geometry (as, for example, Hilbert’s), or Arithmetic (as, 
for example, Peano’s or Russell-Whitehead’s) could demonstrate unequivocally and 
infallibly the truths of geometric or arithmetic propositions.

Irundyk  – Let me conclude that the criticism that Perminov refers to the 
Lakatosian fallibilism’s desire for logical revision of mathematical propositions 
also applies to the logical desire expressed by Perminov, that it would be the 
existence and rigor of logical proof that would ensure the truth of such propositions 
and the trust we place in them.

Mosapyr – Totally agree! Even if Perminov defends that philosophical discourse 
does not have the performative power to modify the effective ways of practicing 
mathematics in the different fields of human activity, even if he does not explicitly 
claim any philosophical perspective guiding his criticism. I think that all 
philosophical perspectives that see practices as the last instance of justification of 
mathematical knowledge – and, among them, above all, the historical-dialectical 
materialist perspectives  – paradoxically tend to consider ‘mathematics’ only the 
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justificationist narratives or meta-narratives – rhetorical or formal-symbolic – about 
these practices. Everything happens as if cultural practices could only acquire a 
status of scientificity after having been enclosed by such narratives or metanarratives.

LH (Hogben, 1971, p. 3) – If we mean by science the written record of man’s 
understanding of nature, its story begins five thousand years ago. Western science is 
thus a fabric to which threads of many colours have contributed before Britain, 
North America and Northern Europe were literate. Egypt and Mesopotamia, the 
Phoenician colonies and the Greek-speaking world of Mediterranean antiquity, the 
civilizations of China, India and the Moslem world supplied warp and woof in turn 
before Christendom began to make its own contribution.

LH (Hogben, 1973, Forward) – The first volume in this series, Beginnings and 
Blunders, traced the story of the skills our ancestors acquired, and the skills they left 
in their wake, before science began. This book starts with the need for a calendar to 
regulate the seasonal order of seed-sowing and flock-tending. For the construction 
of such a calendar men of the New Stone Age doubtless drew on the knowledge 
gained throughout many millennia from the scanning of the night skies by men who 
were still nomads and from the observation of the sun’s seasonal changes when 
village life began. The art of keeping a written record of the lapse of time took shape 
about 5000 years ago and was the achievement of the priestly guardians of the 
calendar in the temple sites of Egypt and Iraq. An incidental, but not itself useful, 
by-product of this phase of infant science was the art offorecasting correctly the 
occurrence of eclipses.

Mosapyr  – Note that, although Hogben recognizes the performance of astro-
nomical practices by still nomadic human beings, he does not see such practices as 
scientific, given that he would only tend to attribute such a status to them when they 
acquire a linguistic or symbolic character.

Irundyk – I think that this way of legitimizing a practice as scientific is typically 
colonizing, because it ends up, by extension, exclusively empowering the different 
linguistic communities specialized in producing disciplinary narratives and 
metanarratives about practices that are effectively carried out in different fields of 
human activity.

Mosapyr – Furthermore, the way in which Hogben sees and characterizes sci-
ence as a discourse aimed at understanding “nature”, complements and explains the 
misunderstandings and ideological strategies triggered by the colonizing discourses 
of science and mathematics to empower themselves and differentiate themselves 
from other types of cultural practices.

Irundyk – Your clarification suggests that this way of characterizing science, at 
the same time that it institutes and produces an abstract, unitary and universal image 
of “nature”, also comes to see it as an intelligible systemic totality, internally 
structured and teleologically preorganized phenomena that could be explained by 
different linguistic communities that turned to investigate and decipher this supposed 
universal modus operandis of nature. If, in the domain of the natural sciences, since 
Newton’s Principia, the different scientific theories – these great and pretentious 
metanarratives of the modus operandis of nature – have taken up and continued the 
cosmogonies of the pre-Socratic Greek philosophers, in the domain of mathematics, 
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this means that since Russell and Whitehead’s Principia, the supposedly universal 
mathematical metanarrative of pure mathematicians or contemporary theorists does 
nothing more than to continue the Pythagorean-Platonic “cosmotheogony”.2

Mosapyr – I tend to conclude that if Hogben, Lakatos and Perminov, in different 
ways, try to remove a supposed universal mathematics from its logical-formal cage 
to see it imbricated in human practices and activities, this is only to re-imprison it in 
rhetorical or symbolic-formal (meta)narratives cages.

Irundyk – I think, however, that none of these narratives, even when they wish to, 
are capable of radically breaking with the alleged universality and uniqueness of the 
axiomatic-formal metanarrative of Western mathematics.

Mosapyr  – In addition to these colonizing critiques of the equally colonizing 
philosophy of mathematical fallibilism that we are discussing here, I think that 
Lakatos – and even less so Perminov – do not recognize the existence of mathematics 
other than Western logico-formal mathematics, but only defending the invariant 
method of proofs and disproofs to explain the way mathematics is invented and 
developed. Thus, even if Lakatos was indeed intent on challenging mathematical 
formalism, he paradoxically does nothing more than to recognize it as the unique 
and exclusive logic of the discovery and development of “informal and quasi- 
empirical mathematics”, since, for him, unlike the absolute power of mere internalist 
criticism, other external factors – economic, technological, political, ideological, 
religious, legal, environmental, warlike, ethical, aesthetic, class struggles, etc.  – 
would not play any relevant role in this development.

RCK (Raju, 2011a, p. 274–279, our italics) – Does formalism, then, provide a 
universal metaphysics? Now, it is an elementary matter of commonsense that 
metaphysics can never be universal. However, the case of 2 + 2 = 4 is often naively 
cited as “proof” of the universality of mathematics. This is naïve because the 
practical notion of 2 which derives as an abstraction from the empirical observation 
of 2 dogs, 2 stones etc. has nothing whatsoever to do with formal mathematics. […] 
The circuits on a computer chip routinely implement an arithmetic in which 
1 + 1 = 0 (exclusive disjunction), or 1 + 1 = 1 (inclusive disjunction). Thus, formally, 
it is necessary to specify that the symbols 2, +, and 4 relate to Peano’s postulates. 
Trying to specify this brings in the metaphysics of infinity—a real computer (with 
finite memory, not a Turing machine) can never implement Peano arithmetic, 
because the notion of a natural number cannot be finitely specified. Thus, formalism 
does not provide a universal metaphysics. However, the philosophy of mathematics 
as metaphysics, combined with the myth of mathematics as universal truth, helped 
to promote a particular brand of metaphysics as universal. This is problematic 

2 In this passage, Irundyk is using the word “cosmotheogony” to refer to any metaphysical narrative 
that, analogously to the Pythagorean and Platonic cosmogonies, explains and justifies the emer-
gence, organization and functioning of nature – or, in this case, the functioning and justification of 
linguistic-symbolic systems of a logical-deductive character – based on diffuse forces and super-
natural divine entities, or else, on linguistic-argumentative concepts that are supposed to be non-
factual, immaterial and timeless.
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because while formal mathematics is no longer explicitly religious, like mathesis,3 
its metaphysics remains religiously biased. On post-Crusade Christian rational 
theology, it was thought that God is bound by logic (cannot create an illogical 
world) but is free to create empirical facts of his choice. Hence, Western theologians 
came to believe that logic (which binds God) is “stronger” than empirical facts 
(which do not bind God). […] The metaphysics of formal math is aligned to post- 
Crusade Western theology which regarded metaphysics as more reliable than 
physics. In sharp contrast, all Indian systems of philosophy, without any exception, 
accept the empirical (pratyaksa) as the first means of proof (pramana) while the 
“Lokayata” reject inference/deduction as unreliable. So, Indian philosophy 
considered empirical proof as more reliable than logical inference. Thus, the 
contrary idea of metaphysical proof as “stronger” than empirical proof would lead 
at one stroke to the rejection of all Indian systems of philosophy. This illustrates 
how the metaphysics of formal math is not universal but is biased against other 
systems of philosophy. Now, deductive inference is based on logic, but which logic? 
Deductive proof lacks certainty unless we can answer this question with certainty. 
Russell thought, like Kant, that logic is unique and comes from Aristotle. However, 
one could take instead Buddhist or Jain logic, or quantum logic, or the logic of 
natural language, none of which is 2-valued. The theorems that can be inferred from 
a given set of postulates will naturally vary with the logic used: for example, all 
proofs by contradiction would fail with Buddhist logic. One would no longer be 
able to prove the existence of a Lebesgue non-measurable set, for example. This 
conclusively establishes that the metaphysics of formal math is religiously biased, 
for the theorems of formal mathematics vary with religious beliefs. Furthermore, the 
metaphysics of formal math has no other basis apart from Western culture: it can 
hardly be supported on the empirical grounds it rejects as inferior! The religious 
bias also applies to the postulates. In principle, a formal theory could begin with any 
postulates. However, in practice, those postulates are decided by authoritative 
mathematicians in the West, as in Hilbert’s synthetic geometry. The calculus, as 
taught to millions of school students today, is based on the notion of limits and the 
continuum. As noted by Naquib al-Attas, the idea of an infinitely divisible continuum 
is contrary to the beliefs of Islamic thinkers like al-Ghazali and al-Ashari who 
believed in atomism. (In fact, the calculus originated in India with similar atomistic 
beliefs: that the subdivisions of a circle must stop when they reach atomic 
proportions.) This does not affect any practical application: all practical application 

3 According to Raju, “mathematics” is an originally Greek word that was invented by the early 
Pythagoreans to mean a “techne of mathesis,” that is, a “technique of learning.” It was later used 
by the Platonic Socrates, in the famous dialogue “Menon,” to name and characterize his maieutic 
method of learning, which consisted in making the student recall knowledge that he had suppos-
edly learned in previous lives, through a skillful rhetorical-verbal argumentation by his teacher- 
interlocutor. As we can see, the maieutic method was based on the Platonic theory of reminiscence, 
which believed in the idea of the reincarnation of the soul from the movement of renewal of 
the cosmos.
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of calculus today can be done using computers which use floating point numbers 
which are “atomistic”, being finite.

Neglecting small numbers is not necessarily erroneous, since it is not very differ-
ent from neglecting infinitesimals in a non-Archimedean field, and can be similarly 
formalised, since the (formal) notion of infinitesimal is not God-given but is a mat-
ter of definition; but students are never told this. They are told that any real calcula-
tion done on a computer is forever erroneous, and the only right way to do arithmetic 
is by using the metaphysics of infinity built into Peano’s postulates or the postulates 
of set theory. Likewise, they are taught that the only right way to do calculus is to 
use limits. Thus, school students get indoctrinated with the Western theological 
biases about infinity built into the notions of formal real numbers and limits, which 
notions are of nil practical value for science and engineering which require real 
calculation. In contrast to this close linkage of mathematics to theology in the West, 
most school math (arithmetic, algebra, trigonometry, calculus) actually originated 
in the non-West for practical purposes. From “Arabic numerals” (arithmetic algo-
rithms) to trigonometry and calculus, this math was imported by the West for the 
practical advantages it offered (to commerce, astronomy, and navigation). This 
practically-oriented non-Western mathematics (actually ganita, or hisab), had noth-
ing to do with religious beliefs such as mathesis. However, because of its different 
epistemology it posed difficulties for the theologically-laced notion of mathematics 
in the West. For example, from the sulba sutra to Aryabhata to the Yuktibhasa, 
Indian mathematics freely used empirical means of proof. Obviously, an empirical 
proof will not in any way diminish the practical value of mathematics. However, 
trying to force-fit this practical, non-Western math into Western religiously- biased 
ideas about math as metaphysical made the simplest math enormously 
complicated.

JF (Ferreirós, 2009, p. 380–381) – Raju thus proposes to deviate from classical 
logic, taking into account the empirical, in search of ‘the logic of the empirical 
world’. Although we cannot enter into the question in any detail, let me sketch an 
argument that Raju does not seem to consider. As usually understood, logic is not 
concerned with the world, but with assertions about the world — or more generally, 
with representations of phenomena. Logic is not a reflection on ontological matters, 
but on language and representations. And when it comes to representing, it seems 
most natural to consider just two options: a representation can be either adequate (to 
some degree of accuracy) or inadequate, tertium exclusum. This way of grounding 
bivalent logic, by the way, has little to do with culturally charged conceptions of 
God or religion or the mind. (That, however, is not to say that there have been no 
historical connections between Western mathematics and religion; but in my view 
the topic should be pursued along a line different from Raju’s insistence on the 
alleged theological basis of Western notions of logic and proof). The author asserts 
that abolishing the separation between mathematics and empirical science ‘is fatal 
to the present-day (Western) notion of mathematics’. This suggests that he is not 
well acquainted with relevant philosophical literature, such as Quine or Putnam, or 
relevant historical figures like Riemann, Poincare, Weyl, or even Hilbert. The 
assertion is linked with his insistence throughout on considering formalism and a 
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formal notion of proof as the quintessence of modern mathematics, but this view, 
perhaps natural in a computer scientist, is highly dubious and ignores too many 
other aspects of the discipline. […] On the basis of his twofold criticism of the ideal 
of proof (based on its theological underpinnings and its reliance on bivalent logic), 
Raju concludes that mathematics is best conceived as calculation, not proof. […] 
Since in Raju’s view the choice of logic must depend on empirical considerations, 
and logic in turn determines inference and proof, he finds reason to believe that the 
Western separation of proof from the empirical is fundamentally wrong. Hence his 
preference for the traditional Indian notion of pramana, and also his insistence 
throughout this work that ‘deduction will forever remain more fallible than 
induction’. In this reviewer’s opinion, the argument remains far from convincing.

Opá kó mbó – I think that José Ferreirós’ criticism of C. K. Raju does not hold 
up. When Raju proposes to deviate from classical binary logic, taking into account 
the empirical, in search of the “logic of the empirical world”, so as not to separate 
mathematics from the empirical sciences, and JF opposes him with the argument 
that bivalent classical logic – and therefore the logic of the essentialist principles of 
identity, tertium exclusum and non-contradiction – is not concerned with the world, 
but with statements about the world – that is, with language, representations and 
propositions – he does nothing more than commit himself to a representationalist 
picture of language and a linguistic picture of logic, pictures that Wittgenstein 
himself, already in the Tractatus, was willing to abandon and which, in fact, he 
abandoned in his later works.

Mosapyr – I tend to agree with you, but I think that in speaking of “logic of the 
empirical world”, Raju seems to approach Lakatos’ thesis of the existence of a 
guiding logic for the informal practice of mathematics. As far as Lakatos is 
concerned, it is neither a deductivist nor an inductivist logic, but rather a fallibilist 
logic of proofs and refutations which is triggered to deconstruct confidence in the 
deductive proof. Raju also discredits both deduction and induction, although 
deduction, especially one based on binary logic, seems to him more fallible than 
induction. He even presents a potent argument that shows us where and why 
classical binary logic fails: “It is a well known principle of two-valued logic (which 
is used in the current method of mathematical proof) that any desired conclusion, 
whatsoever, may be derived from contradictory assumptions, which is why 
theologians use them so often” (Raju, 2021, p. 18).

Mokoi – To me, Raju is saying that if the first proposition of the truth table of the 
conditional operator of classical logic is a contradiction, that is, p ∧ (¬p), whatever 
the truth value (V or F) of the second proposition is, the conditional will always be 
true. This means that if you start from a contradiction in your premises, you will be 
able to conclude anything. See, then, what he means by this is that you can logically 
prove any fake news!!! And that you can use classical logic not only as a (theo)logic, 
but also as a (ideo)logic!

Mosapyr  – With this, I understand that Raju’s decolonial critique of Western 
mathematics goes beyond a properly logical or socio-anthropological-cultural 
critique. And even though this political-decolonial critique is made for defending 
mathematical multiculturalism, Raju, unlike ethnomathematicians, does not see the 
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practice of Western mathematics as another ethnomathematics, among others. I tend 
to agree with him on this point, because the axiomatic-formal metanarrative of 
Western mathematics can never support the different ways in which mathematics is 
actually invented and practiced in different fields of human activity.

Mokoi – This means that it would no longer be necessary to strive for any other 
logic to support these different effective ways of inventing and practicing 
mathematics. In my view, there is not even “a logic of the empirical world” and, 
even less, different logics that support different mathematical practices, because a 
mathematical practice does not need and cannot be founded. Thus, if on the one 
hand, Perminov and Ferreirós believe that a logical-deductive proof in fact proves a 
proposition that one wishes to prove, Lakatos and Raju believe that the proof proves 
nothing. For Lakatos logical proof does not prove because it is always open to 
criticism or refutation by counterexamples, whereas for Raju logical proof does not 
prove because any proposition one wishes to prove can be inferred from contradictory 
assumptions.

LW (Wittgenstein apud Waismann, 1979, p. 33) – In mathematics there are not, 
first, propositions that have sense by themselves and, second, a method to determine 
the truth or falsity of propositions; there is only a method, and what is called a 
proposition is only an abbreviated name for the method.

Mosapyr – In fact, Pythagoras’ proposition, for example, is nothing more than an 
algorithm, a technique, an “abbreviated method” to calculate the area of a square 
built on the hypotenuse of a right triangle as a function of the areas of the squares 
built on the legs. And if, as Wittgenstein says, the proposition is just an abbreviation 
of a method, that is, of a way of doing something, then there can be no difference 
between the method and an alleged “proof” of the method’s effectiveness. Therefore, 
the alleged “proof” does not prove, because a mathematical proposition is simply an 
algorithm, a way of doing something that does not need to be proved or justified.

Opá kó mbó – I agree with you that there is no “logic of the empirical world” nor 
different logics that underlie different mathematical practices. But I disagree when 
you say that a mathematical proposition does not need to be grounded because it is 
a cultural practice, a method, a way of doing it. I think that such a practice does not 
need to be logically grounded; however, it needs to be somehow validated to have 
been seen and elected as a “good practice”, that is, in Raju’s terms, as a “practice 
that works”. Raju talks about “empirical proofs” of validating a mathematical 
practice, and I wonder what he means by that.

AA (Aleksandrov et al., 1999, p. 61–62) – The concepts of arithmetic correspond 
to the quantitative relations of collections of objects. These concepts arose by way 
of abstraction, as a result of the analysis and generalization of an immense amount 
of practical experience. […] The conclusions of arithmetic are so convincing and 
unalterable, because they reflect experience accumulated in the course of 
unimaginably many generations and have in this way fixed themselves firmly in the 
mind of man and in language.

Mosapyr – If, for Raju, “empirical proof” means the same as “empirical-induc-
tive proof” – since he seems to believe that ordinary induction based on generalized 
empirical abstractions of facts validated by reiterated experience is less fallible than 
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non-factual logical deduction  – I think that he would not only be dissolving 
differences between mathematics and natural sciences, but also committing himself 
to an untenable and repeatedly questioned empirical-inductivist philosophy of 
science or, at best, to a Popperian empirical-fallibilist philosophy. This would 
expose him, therefore, to all the criticisms that these philosophies have received 
throughout history, notably the one to which Frege (1960) submitted the inductivist 
empiricism with which John Stuart Mill (2009) tried to “found” arithmetic.

LW (Wittgenstein apud Waismann, 1979, p. 33) – Most people think that com-
plete induction is merely a way of reaching a certain proposition; that the method of 
induction is supplemented by a particular inference saying, therefore, that this 
proposition applies to all numbers. Here I ask the question, What about this 
‘therefore’? There is no ‘therefore’ here! Complete induction is the proposition to 
be proved, it is the whole thing, not just the path taken by the proof. This method is 
not a vehicle for getting anywhere.

Mosapyr – On the other hand, it may be that by “empirical proof” Raju means 
“visual proofs” or static “perceptual proofs” or, more broadly, dynamic “mechanical 
proofs”, analogous to those that peoples of antiquity produced to record graphically 
(in clay tablets; on the walls of temples and tombs; in leather, fabric, or papyrus; 
etc.), certain practices, techniques, or algorithms that have been repeatedly 
successful in different fields of human activity (agriculture, astronomy, navigation, 
construction, commerce, etc.). Such types of proofs, which I prefer to call 
“praxeological proofs”, came, over time, to be verbally described through oral or 
written alphabetic languages and to receive additional support from local logical- 
rhetorical- verbal arguments, that is, without that they were embedded in any 
axiomatic-deductive system (proofs of Heron of Alexandria, Pappus of Alexandria, 
etc.) that logically connected them with each other.

Opá kó mbó – If this is the case, then I would tend to give credit to Raju, but on 
condition that a methodological-statutory difference is made between “empirical- 
inductive proof” and “praxeological proof”. And when I speak of “praxeological 
proofs” it is to distinguish them from either “empirical-inductive proofs” or 
“probabilistic proofs” defended by historical-dialectical materialist philosophies 
committed to classical or asymptotic conceptions of truth – seen, respectively, as a 
reliable reflection or as an asymptotic approximation of empirical-natural or social 
facts through verbal language  – either of “conventionalist proofs” committed to 
conceptions of truth as a consensus of expert communities, or even of “pragmatic 
proofs” committed to the conception of truth as accommodation of empirical- 
natural or social facts to human or socio-community purposes. The problem I see, 
for example, with Richard Rorty’s postmodern pragmatism is that it continues to 
speak with the voice of the European imperialist colonizer who, arrogantly 
distinguishing and distancing himself from the natural beings and forms of life that 
we, human beings, constitute with them, presupposes being able to continue wishing 
to arbitrarily and unilaterally impose on them as many “true” discourses as there are 
human purposes. Thus, if Rorty no longer sees language as a “mirror of nature” 
(Rorty, 1981), he continues to see nature as an unproblematic multiplicity of mirrors 
of language: RR – (Rorty, 1998, our italics) – For us pragmatists, there can and must 
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be thousands of ways to describe things and people – as many purposes as we have 
relating to things and people. But this plurality is not problematic, it does not raise 
philosophical problems, nor does it fragment knowledge. […] Reality is one, but 
descriptions of it are countless […], because human beings have and must have 
different goals.

Mosapyr – So, I speak of “praxeological proofs” to refer to cultural practices that 
reveal themselves as capable of providing satisfactory or adequate technologic 
solutions to problems that arise in different fields of human activity. I think that such 
proofs do not submit cultural practices to any regimes of truth, not because we could 
impose  – supposedly à la Rorty  – our purposes and desires on the natural and 
technological beings that participate in them, allowing or preventing the 
contemplation of our desires and purposes, but because I see such proofs as the last 
instances of justification of themselves and, therefore, not needing and not being 
able to be grounded. If a cultural practice has been invented and repeatedly practiced, 
it is because it is already an adequate response to a given difficulty and, for that 
reason, it functions as an unequivocal know-how, as a technique or algorithm, as a 
norm that, if followed strictly speaking, it must lead to the intended purpose. In this 
sense, any attempt to ground – logically, philosophically – a practice, or to suppose 
it fallible and rectifiable, shown itself as meaningless.

LW (Wittgenstein, 2017, PI-217, our italics) – “How am I able to follow a rule?” 
If this is not a question about causes, then it is about the justification for my acting 
in this way in complying with the rule. Once I have exhausted the justifications, I 
have reached bedrock, and my spade is turned. Then I am inclined to say: “This is 
simply what I do”. (Remember that we sometimes demand explanations for the sake 
not of their content, but of their form. Our requirement is an architectural one; the 
explanation a kind of sham corbel that supports nothing).

Mosapyr – There is no single “logic of the empirical world”, no single “dialectic 
of nature”. Nor there is a “logic of praxis”, as if human praxis were one and there 
was a single logic that guides the relationships between human beings and other 
natural and technological beings. We could, if we wished, speak of logics of 
practices, to clarify that each cultural practice is guided by rules of an idiosyncratic 
praxeological logic. But where would such rules come from, if not from agreements 
among forms of life manifested in the dialectical interactions between humans and 
other natural beings involved in the language games that constitute such practices, 
so that the purposes of each game are achieved? A praxeological logic is not a 
linguistic-propositional logic, but a logic of “this is how I act”, of “this is how I 
should act”, if I want to achieve such purpose. LW (Wittgenstein, 2017, PI-130, our 
italics) – Our clear and simple language-games are not preliminary studies for a 
future regimentation of language as it were, first approximations, ignoring friction 
and air resistance. Rather, the language games stand there as objects of comparison 
which, through similarities and dissimilarities, are meant to throw light on features 
of our language.

LW (Wittgenstein, 2017, PI-131, our italics) – For we can avoid unfairness or 
vacuity in our assertions only by presenting the model as what it is, as an object of 
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comparison as a sort of yardstick; not as a preconception to which reality must 
correspond. (The dogmatism into which we fall so easily in doing philosophy).

LW (Wittgenstein, 2017, PI-107, our italics) – We have got on to slippery ice 
where there is no friction, and so, in a certain sense, the conditions are ideal; but 
also, just because of that, we are unable to walk. We want to walk: so we need 
friction. Back to the rough ground!

LW (Wittgenstein, 2017, PI-126, our italics) – Philosophy just puts everything 
before us, and neither explains nor deduces anything. – Since everything lies open 
to view, there is nothing to explain. For whatever may be hidden is of no interest to 
us. The name “philosophy” might also be given to what is possible before all new 
discoveries and inventions.

Irundyk  – Are you trying to say that ‘praxiological proof’ is ‘technological 
proof’? And that Raju, instead of trying to dissolve mathematics in the empirical 
sciences, empiricizing it, should, on the contrary, dissolve the empirical sciences in 
mathematics, normalizing them?

Mosapyr – What I mean is that the distinctions between knowing and knowing 
how, between pure and applied sciences, between empirical and normative sciences, 
between science and technology, are false. Knowledge is only knowledge if it is 
know- how in a normative language game that is played in a form of life, be it ‘real’ 
or ‘virtual’, and not in a possible fictional form of life. And there is no know-how 
that is not guided by a technique, algorithm or invented norm.

Oiepé – Following your line of reasoning, Mosapyr, Raju’s claim that practicing 
a decolonizing mathematics education would consist in orienting it towards a new 
philosophy of mathematics – empirical-inductivist, empirical-fallibilist, pragmatic 
or dialectical historical-materialist  – would be wrong, since you argue that a 
praxeological image of mathematics should not strictly be seen as a new philosophy. 
Wouldn’t it, however, be a new philosophy of technology?

Mosapyr – At least it would not be a dogmatic philosophical orientation of math-
ematics or mathematics education. We could say that it is a non-dogmatic therapeu-
tic philosophical orientation, since dogmatism does not combine with 
decolonialism.

Oiepé – Here, I wonder if what LW calls dogmatism is not the same as what Raju 
calls theologization. And if it seems to me legitimate to make such an identification, 
I could also say that what LW points out as the legitimate limit of philosophizing, 
so that we do not fall into dogmatism, would be exactly what Raju denounces as the 
removal or placement in parentheses of the “empirical world” on the part of 
scholastic, theological or logical-formal mathematics practiced by Western 
mathematicians. For, as LW says, when our ordinary language decides to go on 
holidays, it stops working on the hard and rocky soil of the praxeological “civil 
world”, and our discourse tends to commit the greatest metaphysical blunders and 
follies, it loses its common sense, turning itself into a biased, partial, ideological, 
and theological nonsense.

Mbó – Our discourse tends to become fake news, as I prefer to say.
Oiepé – If it is indeed true that Western mathematics is a huge fake news, then, 

for Wittgenstein, fake news would be just a false step in philosophizing.

A. Miguel et al.



369

Mokoi – The conclusion I reach is the same as that of Raju: that the theological 
narrative of formal mathematics is not just a false step in philosophizing, but a false 
step in ideologizing… a colonizing ideology.

LW (Wittgenstein, 1976, p. 13–14) – I am proposing to talk about the foundations 
of mathematics. An important problem arises from the subject itself: How can I – or 
anyone who is not a mathematician – talk about this? What right has a philosopher 
to talk about mathematics? One might say: From what I have learned at school – my 
knowledge of elementary mathematics – I know something about what can be done 
in the higher branches of the subject. […] People who have talked about the 
foundations of mathematics have constantly been tempted to make prophecies- 
going ahead of what has already been done. As if they had a telescope with which 
they can’t possibly reach the moon, but can see what is ahead of the mathematician 
who is flying there. That is not what I am going to do at all. In fact, I am going to 
avoid it at all costs; it will be most important not to interfere with the mathematicians. 
I must not make a calculation and say, “That’s the result; not what Turing says it is”. 
[…] One might think that I am going to give you, not new calculations but a new 
interpretation of these calculations. But I am not going to do that either. I am going 
to talk about the interpretation of mathematical symbols, but I will not give a new 
interpretation. Mathematicians tend to think that interpretations of mathematical 
symbols are a lot of jaw-some kind of gas which surrounds the real process, the 
essential mathematical kernel. A philosopher provides gas, or decoration-like 
squiggles on the wall of a room. I may occasionally produce new interpretations, 
not in order to suggest they are right, but in order to show that the old interpretation 
and the new are equally arbitrary. I will only invent a new interpretation to put side 
by side with an old one and say, “Here, choose, take your pick”. I will only make 
gas to expel old gas.4 Opá kó mbó – Well… based on this speech by LW, I will then 
make my arbitrary decolonial choice: I will produce no more chatter about the 
foundations of mathematics.

And even less about mathematics. Because I came to the conclusion that neither 
mathematics nor mathematics education do not really need a philosophy…

Mokoi – I think differently! It is precisely in order not to take the false step that 
we need not a new philosophy… and, even less, an old dogmatic, theological, 
ideological, logical philosophy that proves to be yet another new way of chatting, 
but rather a new way of philosophizing… a therapeutic philosophizing, similar to 
that practiced by LW himself!

Mbó – But isn’t philosophizing doing philosophy? In philosophizing, LW makes 
and practices a philosophy…

Mosapyr – For me, what is at stake is whether we need foundations, after all. 
This necessity can be seen as a false problem in philosophy. But we can, yes, 
practice a non- dogmatic, non-theological, non-ideological, non-logical philosophy. 
A philosophy without foundations, a new way of philosophizing…

4 The way in which LW sought to challenge the fundamentalist view of mathematics in his intro-
ductory speech to the set of classes on the foundations of mathematics taught by him in Cambridge, 
from 1929 to 1944.
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LW (Wittgenstein, 2017, PI-109) – Philosophy is a struggle against the bewitch-
ment of our understanding by the resources of our language.

LW (Wittgenstein, 2017, PI-119) – The results of philosophy are the discovery of 
some piece of plain nonsense and the bumps that the understanding has got by 
running up against the limits of language. They a these bumps a make us see the 
value of that discovery.

LW (Wittgenstein, PI-124) – Philosophy must not interfere in any way with the 
actual use of language, so it can in the end only describe it. For it cannot justify it 
either. It leaves everything as it is. It also leaves mathematics as it is, and no 
mathematical discovery can advance it. A “leading problem of mathematical logic” 
is for us a problem of mathematics like any other.

Mbó – I think, then, that what is at stake here is to think about other ways of see-
ing and practicing philosophy, different from those that seek foundations and 
essences… Ways that do not tempt us to move away from the rough ground of life, 
from forms of life.

LW (Wittgenstein, 2017, PI-309) – What is your aim in philosophy? To show the 
fly the way out of the fly-bottle.

Mokoi – But LW does not show the fly how to get out of the bottle by teaching 
him one way or another, an old or new philosophy, but by pointing out the ways to 
avoid, signaling him how to philosophize deconstructively, in a non-dogmatic way, 
repeatedly diving into the river of doubt… and not being easily carried away by the 
current of the river…

LW (Wittgenstein, 2011, p.  8)  – I must plunge into the water of doubt again 
and again.

Oiepé – But isn’t it Raju himself who insists that we should educate and educate 
ourselves mathematically  – in a critical and decolonizing way  – by making 
mathematics oriented towards a new philosophy? When he says that mathematics 
education should not be separated from science education, what new philosophy 
would that be? A new scientism? A new computational pragmatism?

RCK (Raju, 2011b, p. 282–283, our italics) – This theological Western view of 
math was globalised by the political force of colonialism. It was stabilised by 
Macaulay’s well known intervention with the education system, and the continued 
support for it is readily understood on Huntington’s doctrine of soft-power. And this 
way of teaching math continues to be uncritically followed to this day even after 
independence. This is the first attempt to try to re-examine and critically re-evaluate 
the Western philosophy of math and suggest an alternative to European 
ethnomathematics. The new philosophy proposed by this author has now been 
renamed “zeroism”, to emphasize that it is being used for its practical value, and 
does not depend upon (the interpretation of) any Buddhist texts about sunyavada. A 
key idea is that of mathematics as an adjunct physical theory. Another key idea is 
that, like infinitesimals, small numbers may be neglected, as in a computer 
calculation, but on the new grounds that ideal representations are erroneous, for 
they can never be achieved in reality (which is continuously changing). (Exactly 
what constitutes a discardable “small” number, or a “practical infinitesimal”, is 
decided by the context, as with formal infinitesimals or order-counting.) This is the 
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antithesis of the Western view that mathematics being “ideal” must be “perfect”, 
and that only metaphysical postulates for manipulating infinity (as in set theory), 
laid down by authoritative Western mathematicians, are reliable, and all else is 
erroneous.

LW (Wittgenstein, 2017, PI-218) – Whence the idea that the beginning of a series 
is a visible section of rails invisibly laid to infinity? Well, we might imagine rails 
instead of a rule. And infinitely long rails correspond to the unlimited application 
of a rule.

CKR (Raju, 2021, p. 44–45) – Though colonial education supposedly came for the 
sake of science most people entirely overlook the actual consequences. The fact is that 
after nearly 2 centuries of colonial education the net result is (a) widespread mathe-
matical illiteracy and (b) belief in all sorts of superstitions and myths about mathemat-
ics. A typical such belief is that mathematics is universal and cannot be decolonized 
[…]. This total mathematical illiteracy among the colonially educated is combined 
with two deep-seated superstitions: (a) the superstition (most manifest in Wikipedia) 
that the West and only the West is trustworthy, and (b) the belief that any change from 
blindly imitating the West can only be for the worse. (“Doomsday awaits the unbeliev-
ers”). The colonized hence resist change. For example, a stock argument of the igno-
rant against change, and in favour of current math, is that “it works”. But what exactly 
works? The ignorant don’t understand how rocket trajectories, for example, are calcu-
lated. They conflate normal and formal math, the way rationalists conflate normal 
reason (reason plus facts) with formal or church reason (reason minus facts, faith-
based reason). What works (and works better) is NOT the formal mathematics of 
proof but the normal mathematics of calculation (much of it imported by Europe from 
India for its practical value, starting from elementary arithmetic algorithms). […] A 
simple rule of the thumb is that anything which can be done on a computer (such as 
calculation of rocket trajectories) is normal mathematics, and most practical applica-
tions of math today involve computers. The bigger problem is this: from this position 
of the darkest ignorance wrapped in the deepest superstition, even discussing an alter-
native to Western ethnomathematics is taboo for the colonized.

LW5 – David Hilbert said that “no one will expel us from the paradise created by 
Cantor”. I must tell you that I would not dream of expelling someone from this 
paradise. I would do something quite different. I would try to show him that it is not 

5 The dialogue between the specters of LW and Alan Turing (AT) that followed is a partial recon-
stitution of excerpts from the lectures on philosophy of mathematics given by LW in 1939, at the 
University of Cambridge. Such reconstitution is based on Monk (1991, p.  401–428) and on 
(Wittgenstein, 1998). According to Monk, the purpose of these classes was the deconstruction of 
the idolatry of science, since LW considered it the most salient symptom of the decadence of 
Western culture. Turing had also given, at the same institution, a course entitled “Fundamentals of 
Mathematics,” which was nothing more than an introduction to mathematical logic and the tech-
nique of proving theorems of a rigorously axiomatic system. The more general context of the 
conversation between AT and LW that we selected here was the possibility of reinterpreting math-
ematics in the light of Cantor’s work, which was seen by LW as a quagmire of philosophical confu-
sion. The problem around which the conversation revolves is the role of contradiction in the 
calculations of logical-formal mathematics and in human activities.
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a paradise – so that he would then leave on his own initiative. I would say, “You are 
welcome; but look around.”

LW – The mathematical problems of what have been called the foundations of 
mathematics have, for us, as much foundation as a painted stone supports a painted 
tower. LW – The mathematician discovers nothing. A mathematical proof does not 
establish the truth of a conclusion; it only fixes the meaning of certain signs. The 
“inexorability” of mathematics, therefore, does not consist in the certain knowledge 
of mathematical truths, but in the fact that mathematical propositions are 
grammatical. For example, to deny that “two plus two equals four” is not to disagree 
with a widely held opinion on a matter of fact; is to reveal ignorance of the meaning 
of the terms involved. Do you understand me, Turing?

AT – I understand, but I don’t agree that it’s just a matter of giving new meanings 
to words.

LW – You don’t object to anything I say. You agree with every word. But it dis-
agrees with the idea you believe underlies it.

AT – You cannot be confident about applying your calculus until you know that 
there is no hidden contradiction in it.

LW – There seems to me to be an enormous mistake there. For your calculus 
gives certain results, and you want the bridge not to break down. I’d say things can 
go wrong in only two ways: either the bridge breaks down or you have made a 
mistake in your calculation – for example you multiplied wrongly. But you seem to 
think there may be a third thing wrong: the calculus is wrong.

AT – No. What I object to is the bridge falling down.
LW – But how do you know that it will fall down? Isn’t that a question of phys-

ics? It may be that if one throws dice in order to calculate the bridge it will never 
fall down.

AT – If one takes Frege’s symbolism and gives someone the technique of multi-
plying in it, then by using a Russell paradox he could get a wrong multiplication.

LW – This would come to doing something which we would not call multiplying. 
You give him a rule for multiplying and when he gets to a certain point he can go in 
either of two ways, one of which leads him all wrong.

AT – You seem to be saying, that if one uses a little common sense, one will not 
get into trouble.

LW – That is NOT what I mean at all. My point is rather that a contradiction can-
not lead one astray because it leads nowhere at all. One cannot calculate wrongly 
with a contradiction, because one simply cannot use it to calculate. One can do 
nothing with contradictions, except waste time puzzling over them.

Mbó – I came to the conclusion that there is no fundamental divergence between 
Raju and LW, regarding the way of seeing and evaluating Western logical-formalized 
mathematics, said to be unique and universal: an infinite chatter… an infinite ‘meta- 
chatter’, empty, unproductive, useless, contradictory, ideological and colonizing 
coated with a surface layer of so-called “pure”, “rigorous”, “scientific”, “impartial” 
and “neutral” varnish. The difference between the two is consists in that Raju tends 
to approximate, or even to see as indistinct, scientific and mathematical practices, 
whereas Wittgenstein seems to make a subtle and not radical distinction 
between them.
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Mosapyr – And in your view, what would that distinction be?
Mbó – For LW, scientific and mathematical practices seem to interact with natu-

ral beings, making them participate in language games aimed at fulfilling different 
purposes. In scientific language games, human participants, to achieve different 
reproducible social purposes, seek to interact dialectically with natural beings 
involved in the game, searching for patterns and regularities in the ways they behave 
in these interactions. In turn, in mathematical language games, human beings invent 
and impose patterns of regularity on other beings involved in the game, so that nor-
mative social purposes are unequivocally achieved. For both Raju and LW, mathe-
matics actually invented and practiced in different fields of human activity cannot 
be seen as a transposition or application of fundamentalist logico- formal mathemat-
ics. Even because, when we participate in language games guided by normative 
purposes, in any context of human activity, the rules that guide our actions are not 
rules of formal logic, based on the principle of identity, the principle of the excluded-
third and the principle of non-contradiction. They are rules or empirical statements 
that we invent or follow, so that the intended purposes, in each situation, are 
unequivocally achieved. We cannot, therefore, confuse the different normative 
grammars of each mathematical language game with the normative grammar of 
classical logic that guides the language games of western logico-formal mathemat-
ics. Hence, normativity is not synonymous with logico-formal coherence. A bridge 
may or may not fall, not because the algorithms or calculations used in its construc-
tion respected or transgressed the principles of classical logic, but because they 
were or were not followed correctly or for other unforeseen reasons. Between the 
well-founded or ill-founded foundations of bridges and architectural buildings and 
the supposed logical-formal foundations of Western mathematics there is an impass-
able abyss, but one that would not even need to be bridged. You can be an excellent 
demonstrator of theorems, but not even know how to build a toy bridge… Conversely, 
you can be an exceptional architect who designs and builds bridges and aqueducts – 
as Eupalinos did, in the sixth century BC – and not knowing how to demonstrate a 
theorem of the most elementary or verbally and rigorously enunciate the definition 
of angle. I think, then, that the central misunderstanding that runs through our entire 
discussion concerns the role that classical binary logic, and therefore contradiction, 
plays in the effective ways of inventing and practicing mathematics in different 
fields of human activity.

LW (Wittgenstein, PI-125, our italics) – It is not the business of philosophy to 
resolve a contradiction by means of a mathematical or logico-mathematical 
discovery, but to render surveyable the state of mathematics that troubles us a the 
state of affairs before the contradiction is resolved. (And in doing this one is not 
sidestepping a difficulty). Here the fundamental fact is that we lay down rules, a 
technique, for playing a game, and that then, when we follow the rules, things don’t 
turn out as we had assumed. So that we are, as it were, entangled in our own rules. 
This entanglement in our rules is what we want to understand: that is, to survey. It 
throws light on our concept of meaning something. For in those cases, things turn 
out otherwise than we had meant, foreseen. That is just what we say when, for 
example, a contradiction appears: “That’s not the way I meant it”. The civil status 
of a contradiction, or its status in civic life that is the philosophical problem.
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Mosapyr – I think what LW is trying to say is the same as Raju: that we should 
throw away the pure, ideal, intelligible, metaphysical and ‘teleotheological’ lad-
der that gives us access to the logical world of ‘frictionless ice’ and face, without 
fear, the problems and challenges posed by the “civil world” of forms of life, the 
“civil world” of human activities, the praxeological “civil world”, which Raju, 
unfortunately, does not seem to distinguish from the “empirical world”.

Oiepé – What would LW mean by the expression “civil world”? He also uses 
it in another passage of his work, this time in connection with mathematics:

LW (RFM-IV-2, 1998, our italics) – I want to say: it is essential to mathemat-
ics that be made civil uses of its signs as well. It is the use outside mathematics 
and, so, the meanings of signs, that makes the sign-games into mathematics.

Mosapyr  – I think what LW meant by this is that a mathematical language 
game is not characterized by the types of objects or beings that participate in it, 
but by what we can do algorithmically – that is, mechanically – with them in a 
normative game of language. And, in this sense, knitting a blouse can be seen as 
a mathematical language game, even though the objects that participate in it, that 
is, threads, needles, etc., have nothing to do with objects or concepts of Western 
logical-formal mathematics. And what can legitimately characterize it as a math-
ematician is the existence of a knitting algorithm that, if followed to the letter, 
allows us to make a blouse, according to the previously planned model.

Oiepé – I see that this new image of mathematics allows for an unlimited and 
unusual expansion of what both Lakatos and Perminov understood by “informal 
mathematics”, as well as what Raju calls “normal mathematics” (“mathematics 
plus facts”), as opposed to “formal mathematics”, that is, to mathematics 
abstracted or independent of the facts of the empirical world. I understand that 
LW extends mathematical language practices or games to the entire “civil world”, 
which I identify with the world of fields of human activity, that is, with forms 
of life.

Irundyk – I conclude from our therapeutic conversation about the possibilities 
of deconstructing the supposed uniqueness and universality of Western logical-
formal mathematics and the philosophies that support it that an indiscipline ther-
apeutic- decolonial way of educating and educating oneself mathematically, of 
researching in mathematics education and of forming educators need neither a 
philosophy of mathematics nor a philosophy of mathematics education.

Mbó – I disagree! We need both an anti-colonizing philosophy of mathematics 
and an anti-colonizing philosophy of education!

Mokoi – Don’t you think, Mbó, that we would need to discuss the implications 
that an anti-colonial way of philosophizing would bring to the classroom?

TM (Macaulay, 1835) – I have travelled across the length and breadth of India 
and I have not seen one person who is a beggar, who is a thief, such wealth I have 
seen in this country, such high moral values, people of such high caliber, that I do 
not think we would ever conquer this country, unless we break the very back bone 
of this nation, which is her spiritual and cultural heritage, and therefore, I pro-
pose that we replace her old and ancient education system, her culture, for if the 
Indians think that all that is foreign and English is good and greater than their 
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own, they will lose their self esteem, their native culture and they will become 
what we want them, a truly dominated nation. […] Higher studies … [need a] 
language not vernacular… What then shall that language be? One-half of the 
committee maintain that it should be the English. The other half strongly recom-
mend the Arabic and Sanscrit… I have no knowledge of either Sanscrit or Arabic; 
but I have done what I could to form a correct estimate of their value. I have read 
translations of the most celebrated Arabic and Sanscrit works… I am quite ready 
to take the oriental learning at the valuation of the orientalists themselves. I have 
never found one among them who could deny that a single shelf of a good 
European library was worth the whole native literature of India and Arabia.

CKR (Raju, 2011b, p. 21–22) – In India, Western soft power and the colonial 
education project began with Macaulay in 1835. The BJP6 election manifesto for 
the previous election stated that Macaulay admired Indian civilization, but 
wanted to “break [its] very backbone”, by introducing English education. The 
BJP manifesto stated “India’s prosperity, its talents and the state of its high moral 
society can be best understood by what Thomas Babington Macaulay stated in 
his speech of February 02, 1835, in the British Parliament. Such falsehoods do 
not help fight academic imperialism: a true understanding of the causes is needed 
to cure the malaise. Macaulay, a racist to the core, and an admirer of other racists 
like Locke and Hume (both of whom he cites in his infamous Minute of 1835), 
had nothing nice to say about Indian civilization or the then- prevailing system of 
Sanskrit and Arabic education in India.

Mbó – Help me Lord!7: Christian-theological mathematics that exponentially 
raised to Christian-theological mathematics education resulted in the only text-
book of our Western mathematics education: the Bible, that is, “Euclid”! Down 
with Bishop Sardinha!8

OA9 – Down with all the importers of canned counsciousness. The palpable 
existence of life. And the pre-logical mentality for Mr. Lévy-Bruhl to study. We 

6 BJP (Bharatiya Janata Party) is one of the two main political parties that have ruled the Republic 
of India since 2014. It is a right-wing nationalist party that from 2020 has become the largest politi-
cal party in the country in terms of representation in national parliament and state legislatures
7 The interjection originally used in Portuguese is “Cruz credo” (“Cross Creed”). Originating in 
Catholic- Christian culture, it literally means “I believe in the cross.” It is used to express fear, 
disgust, or repugnance at something. (https://www.significados.com.br/cruz-credo/).
8 This is Pero Fernandes Sardinha (1496–1556), a Portuguese theologian who was provider and 
vicar general in India and the first bishop of Brazil. The ship in which he was returning to Brazil 
on July 16, 1556 sank in the Coruripe River, in the State of Alagoas. The crew were captured by 
the Caeté Indians who literally killed and ate them.
9 Excerpts from the Cannibalist Manifesto (ANDRADE, 1928) by the Brazilian writer Oswald de 
Andrade. Ironically decolonial, the manifesto was a reaction of Brazilian modernist artists to cul-
tural colonization, at the same time that European modernist artists began to criticize the cultural 
values and standards of Western civilization. It was published in 1928, after the Dada Manifestos 
by the German writer Hugo Ball and the Romanian poet Tristan Tzara and the Surrealist Manifesto 
by the French writer André Breton.
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want the Carib10 Revolution. Greater than the French Revolution. The unification 
of all productive revolts for the progress of humanity. Without us, Europe 
wouldn’t even have its meager declaration of thr rights of man. […] We never 
permitted the birth of logic among us. […] Down with the truth of missionary 
peoples, defined by the sagacity of a cannibal, the Viscount of Cairu11: – It’s a lie 
told again and again. But those who cames here weren’t crusaders.12 They were 
fugitives from a civilization we are eating, because we are strong and vindictive 
like the Jabuti.13

Irundyk – These important clarifications helped to reinforce my point of view 
that a decolonizing school mathematics education does not need an anti-coloniz-
ing philosophy neither of mathematics nor of mathematics education, but only a 
therapeutic- cannibalist philosophizing that clarifies and problematizes the 
effects and affections – environmental, political, legal, technological, ideologi-
cal, ethnic, ethical, aesthetic, etc. – of carrying out mathematical practices – that 
is, of language games aimed at fulfilling normative purposes – on the different 
forms of life in the contemporary world.

Mosapyr – This speech reverberates Oswald de Andrade’s cannibalist cry – con-
tained in his way of deconstructing the false binary opposition “tupi or not tupi, that 
is the question”14 imposed by Shakespearean Hamlet on the colonized peoples of 
Abya Yala lands15  – and the therapeutic cry16 that LW launches against Frazer’s 

10 Caraíba designates both one of the first indigenous communities with which the Portuguese 
came into contact in Brazil, and a linguistic family to which several Brazilian tribes belonged.
11 José da Silva Lisboa, nineteenth-century Brazilian liberal economist who supported the expul-
sion of the Jesuits from Brazil by the Marquis of Pombal.
12 Portuguese coin made of gold or silver.
13 Reptile that inhabits Brazilian forests; in some indigenous cultures, represents perseverance and 
strength.
14 Third sentence of the Cannibalist Manifesto (ANDRADE, 1928). The next sentence is: “Against 
all catechesis!”.
15 Term used by the Guna indigenous people – who inhabit the territories of Panama and Colombia – 
to refer to the continent where they lived since before the arrival of Columbus and other Europeans. 
“Abya Yala” comes from the words “Abe” (blood) and “Yala” (space, territory), etymologically 
meaning “land in full maturity” or “land of vital blood.” The term is also used as an appeal and 
support for the autonomy and epistemic decolonization of indigenous populations, following the 
example of the Guna Revolution of 1925. Even after the clarification of the historiographical con-
troversy surrounding the attribution of the name America to the lands of Abya Yala, it was the 
female version of the name “Américo” that ended up naming the new continent, as Martin 
Waldseemüller attests, in whose hands a letter from Bartolomeu Marchionni had fallen, telling the 
following fake news that ended up deciding the name of the new continent: “Currently, the parts of 
the Earth called Europe, Asia and Africa have already been fully explored and another part was 
discovered by Amerigo Vespuccio, as can be seen in the accompanying maps. And as Europe and 
Asia are named after women, I see no reason why we cannot call this part Amerige, that is, the land 
of Amerigo, or America, in honor of the sage who discovered it.” (https://pt.wikipedia.org/wiki/
Abya_Yala); (https://pt.wikipedia.org/wiki/Americo_Vespucci); (https://pt.wikipedia.org/wiki/
Bartolomeu_Marchionni)
16 Irundyk speaks with the conviction that the whole of LW’s work – which has as its emblematic 
decolonial mark the therapeutic-grammatical critique he directs to the monumental work entitled 
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colonizing scientistic dogmatism. This therapeutic-cannibalist philosophizing is 
not a form of problematization that could be seen as ideologically or doctrinally 
oriented, nor supposedly neutral, pluralist or multicultural, but a problematization 
committed to a vital political-praxeological pan-ethics oriented towards the 
extinction of inequalities and discrimination and for the promotion of a dignified, 
democratic and sustainable life for all lives and forms of life on the planet.

Mokoi – I agree and add that from the algorithmic-praxeological perspective of 
our decolonial critique of Western logical-formal mathematics, mathematics in the 
plural are no longer seen as any kind of linguistic or logical-symbolic-formal 
narratives or meta- narratives and are seen as a multiplicity of algorithmic, 
autonomous, complete, independent and non-competing cultural practices that 
prove capable of solving a set of normative social problems that require such 
practices to function as a standard of rectification, not of themselves, but of the 
iteration of themselves. That is why such practices are not open to rectification.

Opá kó mbó – Following this line of reasoning, I could say, for example, that 
counting practices vary not only depending on the objects to be counted, but also on 
the guiding purposes of counting, on the available mediating elements, etc.: practices 
of counting fish are obviously distinct from practices of counting the amount of 
lightning that falls in a given geographic region, in a given time interval. Counting 
practices for the same object may also vary depending on the forms of life in which 
they are carried out: fish counting practices vary among different indigenous 
communities and may differ from those practiced by fishing industries, environmental 
groups, etc. All these practices also differ from those invented by the community of 
professional mathematicians to count finite or infinite abstract number sets, random 
events, etc. I remembered a speech by Olo Wintiyape, an indigenous Guna from 
Colombia:

OW – (Olo Wintiyape apud Tamayo, 2017, p. 93) – We don’t have a generic stan-
dard for establishing correspondence relationships, as in Western mathematics, but 
we establish correspondence relationships just like you do. However, these relation-
ships cannot be independent of the quality of the object because, in the Guna 

The Golden Bough, from the Scottish anthropologist James George Frazer (1966) – can be seen not 
exactly as a philosophy or a new philosophy, but as a (self)therapeutic philosophizing about a set 
of philosophical problems, among them, the basic problem of language (Miguel & Tamayo, 2020). 
The core of LW’s (2011) critique falls on the scientistic assumption that guides Frazer’s Whig 
historiographical-anthropological narrative, which leads him to construct a false image of Nemi’s 
practice of succession of the priesthood, which is produced through an illegitimate mechanism of 
‘scientification’ that transforms a dogmatic- religious practice of a symbolic-ritualist nature into a 
scientific hypothesis open to empirical verification or refutation […] LW’s objection to the 
Frazerian desire to scientifically explain a dogmatic-religious practice is from the the same nature 
as his objection to Frazer’s inverse desire to dogmatically explain a scientific hypothesis for which 
it is possible to accumulate a set of empirical evidence that reinforces or refutes it (Miguel et al., 
2020, p. 518). The colonizing character of Frazer’s work can be equated with that of the British 
historian Thomas Macaulay, from which Frazer borrows the epigraph and literary style for 
his work.
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cosmovision, classification is vital to know the world. This means that, even with 
this similarity, there are, above all, differences that prevent us from saying that our 
counting practices can be seen as numerical systems, just as the West understands 
this concept that even I would not be able to explain what it really means.

CT (Tamayo, 2017, p. 243) – Such usage follows the rules of the grammar of 
their culture and not the grammar of the counting practice of school mathematics. 
Words that describe counting practices are related to the qualities of the objects 
involved in counting. According to Dule grammar, a description of the quality of 
countable objects is a way of knowing the world. The act of telling is seen as 
cosmogonic, that is, as a base of historical, botanical, theological, agricultural and 
artistic knowledge. On the other hand, the practice of waga counting, as it is used in 
school, refers to the action of counting the number of elements in a set of objects. In 
other words, in several academic mathematics texts we will find that counting is 
carried out by successively corresponding to an object in a collection, a number of 
the natural succession.

Mokoi – What Tamayo describes also points us to the implications for human and 
non-human lives generated by this way of conceiving mathematics. We are 
experiencing the extinction of all forms of life around us, especially indigenous, 
riverside, quilombola, black and Amazonian life forms with all their cosmovisions. 
And these ways of philosophizing that I think are echoed in the transgressive legacy 
of LW come to postpone the end of the world, as Ailton Krenak (2020), a Brazilian 
indigenous of the Krenak people says.

Opá kó mbó – An identity that is neither absolute nor relative, neither local nor 
universal, neither true nor false, neither rational nor irrational, neither logical nor 
ideological, of a mathematics – that is, what characterizes, singularizes, defines, and 
differs from all other mathematics  – it is not determining, decisively or 
unconditionally from the order of the historical, the spatiotemporal, the territorial, 
the geopolitical, the contextual, the communitarian, or from the ethno-community 
identity, but actually from the order of the algorithmic-praxeological, from the 
iterable in different temporalities, spatialities and contextualities, that is, from the 
order of technical reproducibility and the desire for unequivocal and unambiguous 
control of the actions and interactions of the participants of an algorithmic-normative 
language game. In fact, it is always good to remember that a mathematical practice 
is unequivocal, but not univocal, because it is always possible to achieve the same 
normative purpose through different algorithms.

Oiepé – By the way, it’s always good to remember that Joy is the casting out 
nines!, as Oswald de Andrade told us in his 1928 Cannibal Manifest (Andrade, 1928).

Mbó – It is always good to remember that, since a calculation endowed with the 
power to verify the correctness of the application of another calculation is assumed, 
the “casting out nines rule” is nothing but a “fake news” that nothing proofs… Joy 
is the proof of itself!

Irundyk – It is true! But it is also true that the joy of some is almost always the 
sadness of the majority. Therefore, it can always be cannibalically evaluated and 
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rectified on a case-by-case basis. That’s why we are cannibals! ASÉ O’U TORYBA 
‘ARA ÎABI’ÕNDUARA!17
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Chapter 19
Mathematics Education and Ubuntu 
Philosophy: The Analysis of Antiracist 
Mathematical Activity with Digital 
Technologies

Maurício Rosa

19.1  Introduction

We begin by presenting what we understand by “mathematics education,” because 
this act of educating is concerned with “[…] the developing and the nurturing for 
development, including in this process the ways of intervening, so that nutrition is 
satisfied and strengthens a direction, which is that of development” (Bicudo, 2003a, 
p.33, my translation1). In other words, we must develop ourselves to evolve as 
human beings, and, therefore, we understand that, initially, we need to recognize 
everyone as different/diverse and assume this difference/diversity without catego-
rizing people into what arbitrarily may be considered as “normal” or even not. 
According to Davis (2013, p.1):

We live in a world of norms. Each of us endeavors to be normal or else deliberately tries to 
avoid that state. We consider what the average person does, thinks, earns, or consumes. We 
rank our intelligence, our cholesterol level, our weight, height, sex drive, bodily dimensions 
along some conceptual line from subnormal to above average. We consume a minimum 
daily balance of vitamins and nutrients based on what an average human should consume. 
Our children are ranked in school and tested to determine where they fit into a normal curve 
of learning, of intelligence. Doctors measure and weigh them to see if they are above or 
below average on the height and weight curves. There is probably no area of contemporary 
life in which some idea of a norm, mean, or average has not been calculated. To understand 
the disabled body, one must return to the concept of the norm, the normal body. So much of 
writing about disability has focused on the disabled person as the object of study, just as the 
study of race has focused on the person of color. But as with recent scholarship on race, 

1 “[…] o desenvolver e o nutrir para o desenvolvimento, incluindo nesse processo os modos de 
intervir para que a nutrição se dê a contento e fortaleça uma direção, que é a do 
desenvolvimento.”
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which has turned its attention to whiteness and intersectionality, I would like to focus not so 
much on the construction of disability as on the construction of normalcy. I do this because 
the “problem” is not the person with disabilities; the problem is the way that normalcy is 
constructed to create the “problem” of the disabled person.

Moreover, this very “problem” is not with people with disabilities only, nor with 
black people, neither whomsoever. The problem actually relies on how we create or 
“calculate” the sense of normality. That is, as Frankenstein (1983) asks us, Which 
perspective do we build or “calculate” normality from? What interests with? Who 
does possibly care about this normality? Who is interested in this “calculation”? So, 
it is through mathematical calculation that we establish normality, but the reference 
to affirm what is and what is not normal is under a white, Eurocentric, male- 
heterosexual, and “without disabilities” standards. For example, the idea of estab-
lishing a mask of beauty through the golden ratio seems to forget the different, 
ignoring the massive amount of people, who would not fit in, as well as what it may 
mean to each of them not to fit in. We need to think about how to bring mathematics 
to help thinking about these issues of values, ethics, and meanings of standards.

Our focus is on educating through mathematics, on progressing as a person/
people, and on understanding this mental, habitual, ideological, unconscious, or 
extremely conscious calculation. By “progressing,” we assume the dynamic process 
as a human being/as human beings, not materially as within the capitalistic perspec-
tive. Therefore, progressing needs to be understood as a common good, a social 
good, promoting freedom for all. Freedom to think, act, and learn is a political act: 
such act can be intentionally practiced in mathematics classes, once we all need to 
progress mathematically, that is, learn to measure and, above all, progress through 
mathematics. That is, we should learn to measure the common good, the social 
good, promoting a variety of materializations of freedom(s) for all without making 
anyone feel out of place.

In other words, as professionals acting in the mathematics education field, we 
need to educate mathematically aiming at what really matters to educate through 
mathematics (Rosa, 2008, 2018). Thus, “mathematics,” capitalized, disciplinary, 
powerful, unique, and finished (Rosa & Bicudo, 2018) needs to be transgressed and 
transformed into a “strange mathematics.” We need to update our perception in 
order to highlight a new perception of their concept of mathematics, the one which 
makes sense, that is, discussing the mathematics (with lowercase letters (Rosa & 
Bicudo, 2018), which allow us to understand differences among people, under-
standing the value of the other that happens to emerge in a resistance space to preju-
dice, discrimination, homophobia, transphobia, and racism. According to Louro 
(2021, p.91, my translation2):

2 “A resistência não será mais procurada apenas naqueles espaços explicitamente articulados como 
políticos. Por certo não se negará a importância de espaços ou movimentos que, declaradamente, 
se colocam no contraponto da imposição de normas heterossexuais, [brancas e androcêntricas] mas 
se passará a observar também outras práticas e gestos (ensaiados de outros tantos pontos) como 
capazes de se constituir em políticas de resistência.”

M. Rosa



383

Resistance [the attempt to prevent racism, for instance] will no longer be sought only in 
those spaces explicitly articulated as political. Certainly, the importance of spaces or move-
ments that, avowedly, are placed in the counterpoint of the imposition of heterosexual, 
[white and androcentric] norms will not be denied, but other practices and gestures 
(rehearsed from as many points) will also be observed as capable of constitute resistance 
policies.

The rehearsing can take place in education spaces with teachers who teach math-
ematics or who will teach mathematics in the future (initial education), in order to 
start philosophically “queering” the curriculum, the pedagogies, the very taught 
“mathematics,” and the so called “one that must be taught” from nowadays. Such a 
rehearsing for resistance can reach and alter educational spaces through the insub-
ordination of practices based, for example, on epistemological reflections about 
what mathematics is being taught, how it has been taught, and through what 
approach.

The point hereby is constituting a disposition for the non-conformation with cer-
tain given terms and for the refusal to adjust oneself to social impositions com-
monly taken as “natural.” It is important to ask, for example, how can education 
with mathematics teachers promote reflections that support the fight against com-
pulsory heterosexuality, misogyny, ageism, prejudice against people with disabili-
ties, and, as the focus of this chapter, racism from the teachers? How can these 
reflections reach educational spaces, in order to produce an antiracist mathematics 
education? How to create activities, environments, and resources that come to dis-
rupt, transgress, and provoke political and social reflections like this one? Reflections 
that will “ubuntu” mathematics? How to think of and foster a mathematics, that is 
for everyone, of everyone, with everyone, that is not done individually, that needs 
the other, and that needs an “us”? A mathematics that provides the understanding of 
the difference of skin color, race, and ethnicity, as just one more difference and that 
values it as one of the ways of being, in order to understand that there is no human 
group falling out of this these differences among their integrants.

What are those differences for? Do they really matter?
Therefore, our initial “estrangement” (or questioning confrontation) takes place 

as we perceive the need for a more fruitful dialogue about politics and society in the 
initial and continuing education with teachers of mathematics, because it seems to 
us that there is a habitus (Bourdieu, 1991a, b) of mathematics classes regarding 
about what should be taught, what in fact should be mathematics or what should be 
named mathematics and what it means in society. This habitus (Bourdieu, 1991a, b) 
presents to us a way of understanding mathematics fundamentally as a mechanical 
structure of calculations and exercises, of closed problems resolution, and of a 
method of applying formulas and having nothing to do with any social-political 
matters regarding sex, gender, and sexuality, as well as with disability and age, and, 
for matters of this chapter, with race issues. There is, in my view, a focus centered 
on mathematical contents historically constituted and evidenced as essential in a 
mathematics class, leaving aside the understanding of “why” were these “contents” 
picked? Where do they conduce us? Why were they constituted in the present way? 
Who did bring them to the classroom? And finally, and most relevant, How do I 
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transform my mathematics class? How can I make mathematics itself strange? 
These considerations are what assign intentionality to this research, as they are 
investigated, theorized, destabilized, and possibly transgressed.

The experience with digital technologies (TD) was one of the possible paths we 
chose to take. It reveals different crossroads in providing huge diversity and possi-
bilities for thinking, reflection, and criticism. From this perspective, in Rosa (2008, 
p.52, my translation3) it is already possible to glimpse the perspective that:

[…] the cybernetic world enhances the vision of modern physics of unconnected time/
space, represented by Castells (2005) as a space of flows, in addition to highlighting the 
idea of multiple identities translated into online identities. This makes me think about the 
changes in conceptions of time, space, identity that have been taking place and that are now 
more evident with the information age, in which the Internet is a prominent actor.

In other words, Rosa (2008) and Rosa and Lerman (2011) highlight the role of 
DT as potentiators of identity performance, because they investigated how the con-
struction of online identities is shown, through the RPG (role-playing game) online 
to the teaching and learning of definite integral (mathematical concept of differen-
tial and integral calculus), for example. In their research, they consider the perform-
ing practice with the Online RPG as “the playful process in this online mathematics 
education situation [, which] calls for understanding mathematical knowledge in 
interaction with the setting, as a social construction” (Rosa & Lerman, 2011, p.83). 
In this way, the construction of identities shows itself in transformation, immersion, 
and agency (Rosa, 2008) since these actions emerged from the identity perfor-
mances unveiled in the digital environment.

In Rosa (2008), it is possible to posit that the performance, the creation, and the 
construction of identities both in the RPG and in the world also take place through 
the construction of bodies. The construction of bodies in the world is reinforced by 
Dumas (2019, p. 2, my translation4) when referring to the conceptual construction 
of the “black body,” because, according to the author:

The colonizers’ resolution of this issue was based, in a way, on a definition of the body 
inventing a race, not everyone’s, but the people to be enslaved. For this, the list of criteria 
already applied in Greece, for example, was not used. But the criterion based exclusively on 
the particularity of the African people: their territorial origin and the body defined by skin 
color, to the black phenotype.

3 “[…] mundo cibernético potencializa a visão da física moderna de tempo/espaço não desvincula-
dos, representado por Castells (2005) como espaço de fluxos, além de evidenciar a ideia de identi-
dades múltiplas traduzidas em identidades online. Isso me faz pensar nas mudanças de concepções 
de tempo, espaço, identidade que vêm acontecendo e que agora são mais evidenciadas com a era 
da informática, na qual a Internet é ator proeminente.”
4 “A resolução dessa questão por parte dos colonizadores foi pautada, de certa forma, numa 
definição de corpo inventando uma raça, não a de todos, mas a do povo a ser escravizado. Para isso 
não foi usado o elenco de critérios já aplicados na Grécia, por exemplo. Mas, o critério baseado 
exclusivamente na particularidade do povo africano: a sua origem territorial e o corpo definido pela 
cor da pele, ao fenótipo negro.”

M. Rosa
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In this way, the fabrication of bodies does not go beyond the playfulness of a 
game but permeates the intention of a group, its desires, and interests. According to 
Louro (2021, p. 80, my translation5):

The bodies considered “normal” and “common” are also produced through a 
series of artifacts, accessories, gestures, and attitudes that society arbitrarily estab-
lished as adequate and legitimate. We all use artifices and signs to present ourselves, 
to say who we are and who others are.

However, who is interested in defining what is normal? How to define this nor-
mality? What are bodies that matter? This last question was inspired by Butler 
(2019) whose book has the title “Bodies that Matter: on the discursive limits of sex.”

Identities are also shaped by bodies, which are conditioned by artifacts, acces-
sories, gestures, and attitudes, which can remarkably transgress spaces and strongly 
evidence freedom, that is, the meaning of politics itself (Arendt, 2002). In this bias, 
in terms of education and mathematics education linked to re-signifying bodies, we 
believe that DT can also become artifices and signs of the constitution of these bod-
ies, present ourselves, and carry out identity performances, in order to learn from 
these performances, respecting differences, understanding them. Increasingly, this 
learning happens with DT, which are already mobile and ubiquitous (Rosa & 
Caldeira, 2018). Also, DT are considered to enhance the constitution of knowledge 
(Rosa, 2018), mainly because they present a multimodal language, which favors the 
feasibility and possibility of thinking of and perceiving themselves as transgressors, 
as enabling different imaginary, constructed, and invented realities.

In addition, we understand that mathematics education can highlight necessary 
dimensions for humanitarian development, both the political and social dimensions. 
This can be evidenced in this act of education, that is, the act of development which 
mathematics is taken as a reflective resource, language, and/or field of study articu-
lated with digital technologies (DT).

Thus, we show in this chapter how mathematics education can encourage/pro-
voke the understanding/constitution of the social responsibility of students in the 
face of social issues, such as structural racism, which consistently permeates the 
majority of our realities, including the educational reality. In this way, we analyze 
an antiracist mathematical activity with digital technologies that discusses the diver-
sity of skin colors as something that belongs to each one and everybody at the same 
time, as a structure that connects us. Regarding this, we use the African philosophy 
Ubuntu, which does not conceive the existence of a being independent of the other, 
but of a “being” that thinks, acts, and lives with others, be-ing-becoming, that is, a 
be-ing-becoming that promotes a transformation in reality from its agency with oth-
ers, with nature, with life. For some people, the central idea of this philosophy may 
seem to be ignoring human individuality, focusing efforts on the social, and 
disregarding subjectivity. But that’s not what happens, the Ubuntu philosophy 

5 “Os corpos considerados “normais” e “comuns” são, também, produzidos através de uma série de 
artefatos, acessórios, gestos e atitudes que uma sociedade arbitrariamente estabeleceu como ade-
quados e legítimos. Todos nós nos valemos de artifícios e de signos para nos apresentarmos, para 
dizer quem somos e dizer quem são os outros.”
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makes it clear that subjectivity is important and that each one assumes their respon-
sibility and performs their actions according to their desires and conceptions, a self- 
centered conception. However, it is different from the individualism we know. It 
goes beyond the individual/collective duality because the Ubuntu philosophy sig-
nals that there is an interconnection among human existences, assuming the integ-
rity of these existences as a premise.

Thus, in the first section, we highlight the hegemonic historicity of white bodies 
in society, in mathematics, and in the ways of doing mathematics, discussing this 
white hegemony and situating our issue in terms of structural racism. Then, we 
moved on to digital technologies, focusing mainly on possibilities of educational 
and mathematical educational discussion about racism and its interconnections. 
Moreover, we present and apply the Ubuntu philosophy as a theoretical contribution 
to support our analysis. We first highlight the intersections of this philosophy with 
educational possibilities, and we show how mathematics education can help to 
understand the conceptions of this philosophy. In view of this, we present hereby 
one definition for the so-called antiracist mathematical activities with DT, which 
consists of:

Mathematical-Activities-with-Digital-Technologies [that] can be developed considering 
cultural aspects of a given context. These activities consider Digital Technologies (DT) 
participants in the cognitive process, that is, DT are not mere auxiliaries, they are not con-
sidered tools that expedite or motivating source of the educational process, exclusively. 
They condition the production of mathematical knowledge. (Rosa & Mussato, 2015, p.23, 
my translation6)

That is, according to Rosa (2020) more than tools, DTs are taken as resources, 
processes, and environments of a destining of revealing, as a revelation of what can 
be created, imagined, and discovered. In addition, these mathematical activities 
with DT assume an adjective which is the word “antiracist,” precisely because we 
consider the political field to which they are linked, because this is understood as the 
social space where the struggle takes place through speech and action, that is:

Knowledge of the social world and, more precisely, the categories which make it possible, 
are the stake par excellence of the political struggle, a struggle which is inseparably theo-
retical and practical, over the power of preserving or transforming the social world by pre-
serving or transforming the categories of perception of that world. (Bourdieu, 1991a, 
b, p.236)

Thus, we theoretically analyze the proposal of an antiracist mathematical activity 
with DT, to answer our research question “how to discuss racism in a mathematics 
class with Digital Technologies in a way that mathematical concepts support the 
discussion?” Therefore, we thought that an antiracist mathematical activity with DT 
provokes discussions about skin color and think through mathematics about socially 

6 “Atividades-Matemáticas-com-Tecnologias-Digitais [que] podem ser desenvolvidas conside-
rando aspectos culturais de um determinado contexto. Essas atividades consideram as Tecnologias 
Digitais (TD) partícipes do processo cognitivo, ou seja, as TD não são meras auxiliares, não são 
consideradas ferramentas que agilizam ou fonte motivadora do processo educacional, exclusiva-
mente. Elas condicionam a produção do conhecimento matemático.”

M. Rosa
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constructed ideas like racism. We understand that the analysis of this mathematical 
activity based on Ubuntu philosophy can provide important reflections for mathe-
matics teachers and researchers in mathematics education regarding the role of 
mathematics in the world and, mainly, the role of mathematics in favor of an antira-
cist movement. It is worth taking into consideration that mathematics is not neutral, 
just as our positioning is not neutral. According to Shapiro (2021), Desmond Tutu, 
Archbishop Emeritus, who received the Nobel Peace Prize in 1984 stated “If you 
are neutral in situations of injustice, you have chosen the side of the oppressor.” 
Although you think you have been neutral, you have definitely picked a side for 
your on and that was the oppressor’s side. This may also happen, if we take neutral-
ity for not taking position between two parts of a contradiction or taking both sides, 
in order to set a balance and try to avoid the contradiction by promoting a triangle 
between us and the two parts, because this would be more comfortable to us than 
making a decision. From this perspective, we understand that when neutrality per se 
seeks balance and equality of conditions and is part of a field of equality of condi-
tions, the act of not choosing, not taking a position, or taking both sides can be 
considered neutral. But when this “neutrality” is in a disproportionate field, where 
there is a supremacy of power, the act of calling oneself neutral is only a way of 
hiding the position already taken, that is, on the side of the oppressor. We must then 
reflect on our role as mathematics educators and on our social responsibility and 
political hexis and make ourselves aware of historical power struggles (Bourdieu, 
1991a, b), specifically related to skin color-bound issues. Recovering the speech of 
those who be oppressed in these disputes is necessary and using mathematics to 
understand this.

19.2  The Temporality/Spatiality Marked by 
a White Mathematics

When we talk about temporality/spatiality, we are closely linked to the idea of his-
toricity, which according to Bicudo (2003b, p.75, my translation7) is:

[…] the feature of being historical – it is founded on the way of being of the pre-sence 
(dasein), understood as the human being who always is in the world temporally. […] The 
sense of pre-sence (dasein) attributed to this being, who we humanly are, is articulated by 
the understanding of what happens, of what happens in the over there, which is spatiality 
and temporality constituted in the ways in which one lives the space and the time.

In other words, encompassed by the presence of the human being in the world, 
we turn to the ways of being in the world, and among these, we highlight one 

7 “[…] caráter de ser histórico – está fundada no modo de ser da pre-sença, entendida como o ser 
humano que sempre é no mundo temporalmente. […] O sentido de pre-sença atribuído a este ser 
que humanamente somos é articulado pela compreensão do que ocorre, do que se dá no aí que é 
espacialidade e temporalidade constituídas nos modos de ele viver o espaço e o tempo.”
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specific way: the way called whiteness, which has been said to carry with it, among 
other things, the mathematical “truth,” the right, the correct, what is “normal” to 
understand, and the “correct” lens through which we read and write the world. 
Sometimes, the historically constituted whiteness is not perceived, or assumed, 
many times it is even denied. Nonetheless:

This lack of attention to whiteness leaves it invisible and neutral in documenting mathemat-
ics as a racialized space. Racial ideologies, however, shape the expectations, interactions, 
and kinds of mathematics that students experience. (Battey & Leyva, 2016, p. 49)

This means that the “mathematics” worked in the school, which is “white”(i.e., a 
“white mathematics,” because it is presented as coming from the theoretical formu-
lation of white peoples, of European origin), reinforces the symbolic power 
(Bourdieu, 1991a, b) attributed to white men, when it reveals that the origin of theo-
rems, the construction of mathematics as a field and as a human achievement is 
fundamentally a consequence of the work of these white men.

There is no emphasis lying on any African peoples or African mathematics at all, 
despite very imposing works, such as the architecture of pyramids, for instance. 
This non-emphasis silently attributes greater power and valorization to European 
achievements and covers the real intention of the subjugating act, as if the subjuga-
tion was a spontaneous process, which “naturally” can be considered as unimport-
ant, not interesting, something that took place unnoticedly, and that has no value or 
awareness, that is, a “neutral” act.

Confirming this, Powell (2002, p. 4) reveals:

[…] the mathematics presented in extant mathematical papyri from ancient Egypt most 
probably has preserved the mathematical ideas of an African elite. Nevertheless, main-
stream, Eurocentric historians of mathematics have largely discounted these ideas. […] the 
importance of Africa’s contribution to mathematics and the central role of that contribution 
to the mathematics studied in schools have not received the attention and understanding that 
befit them. As an example, documentary evidence of insightful and critical algebraic ideas 
developed in ancient Egypt exists, but little of this information has been made available to 
students studying mathematics, at any level.

What is recognized is that the enormous contributions of non-European develop-
ment of mathematics have not been credited as deserved. The Arabic numeral sys-
tem, historically written as the Hindu-Arabic numeral system, was carried into 
Europe by Muslims/Arabs. It is notable and it is recognized that algebra and trigo-
nometry (which were studied by Arabs) were fundamentally developed by Hindu 
mathematicians and astronomers. But the empowerment of the skin color of these 
mathematicians is not valued as it should be in math classes. The fact that the math-
ematics curriculum neglects black and brown peoples’ achievements leads us to 
infer that mathematics is perceived by all students (blacks, whites, etc.), subjec-
tively, as a legitimate act and cognitive product exclusively done by white.

Furthermore, “mathematics” is, in many cases, empirically identified as a “dif-
ficult subject,” “made for a few ones” and “intended to be understood only by the 
intelligent ones.” This increases the symbolic power and the discrepancies it pro-
vokes even more (Bourdieu, 1991a, b), fostering ideological believes about 
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mathematics itself and about the intrinsic logic of subtracting any black culture 
from deserved evaluative positions.

Corroborating this, Kivel (2011, p.282) states:

Our curricula also omit the history of white colonialism as colonialism, and they don’t 
address racism and other forms of exploitation. People of color are marginally represented 
as token individuals who achieved great things despite adversity rather than as members of 
communities of resistance. The enormous contributions people of color have made to our 
society are simply not mentioned. For example, Arab contributions to mathematics, astron-
omy, geology, mineralogy, botany, and natural history are seldom attributed to them. The 
Arabic numbering system, which replaced the cumbersome and limited Roman numeral 
system— along with trigonometry and algebra, which serve as cornerstones of modern 
mathematics— were all contributions from Muslim societies. As a result, young people of 
color do not see themselves at the center of history and culture. They do not see themselves 
as active participants in creating this society.

The fact that young people of color very currently do not consider themselves as 
an agent of the historical and cultural process, due to the non-presentation of infor-
mation about black culture in school and other places like media, mainly due to the 
absence of this information from the common vocabulary, allows us to affirm that 
not feeling part is intrinsic to the idea of structural racism. Structural racism is con-
sidered by Almeida (2021) as a sort of racism transcending the scope of individual 
action, which does not require the intention of manifestation and allows legal 
responsibility not to materialize, although ethical and political responsibility is not 
excluded. Thus, racialized subjects are conceived as members of the social system 
surrounded by structural racism, so that the dimension of power stands out in terms 
of identifying one group over the other. Notwithstanding, we consider that struc-
tural racism manifests itself through a habitus that, according to Bourdieu  
(1991b, p.54):

[…] produces individual and collective practices - more history - in accordance with the 
schemes generated by history. It ensures the active presence of past experiences, which, 
deposited in each organism in the form of schemes of perception, thought and action, tend 
to guarantee the ‘correctness’ of practices and their constancy over time, more reliably than 
all formal rules and explicit norms.

Rephrasing this idea, once we assume habitus exists and is responsible for pro-
ducing and/or reproducing the practices of an individual and their group or groups, 
everyone in these groups would be sharing the same premises and values on which 
they produce and/or reproduce these practices and their ways of being. In this sense, 
the intention or non-intention to practice or not to practice a racist action is directly 
linked not only to the agent’s subjective world but also to the racial structure of his 
temporality/spatiality, and what results from the practice of an agent will be the 
product of the complex operation that considers in advance the values of the groups 
in which the agents belong (Lima, 2019).

Nevertheless, racism is hereby understood as a systematic social-ideological 
apparatus that discriminates, having race as a parameter, and its manifestation takes 
place through practices (conscious or unconscious) that result in disadvantages or 
privileges to each of the antagonistic groups, likewise to the individuals within these 
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groups, who often happen to be stigmatized or flattered on the cause of the race, in 
which they are classified (Almeida, 2021). Thus, according to Kivel (2011, p. 19):

Racism is based on the concept of whiteness - a powerful fiction enforced by power and 
violence. Whiteness is a constantly shifting boundary separating those who are entitled to 
have certain privileges from those whose exploitation and vulnerability to violence is justi-
fied by their not being white.

The race, a modern phenomenon in the mid-sixteenth century, gains meaning in 
the mercantile expansion, which later transforms the European into the “universal 
man” and which, under the contribution of the Enlightenment, materializes the con-
ditions of comparison and classification of the most different human groups, under 
criteria mostly conditioned to physical and cultural characteristics. Whiteness 
becomes one of the criteria for distinguishing what is civilized from savage, which 
would later be called civilized or primitive (Almeida, 2021).

In addition, the ideological perspective of some philosophers reinforces some-
how this approach, for example, the considerations made by the philosopher Hegel 
about Africans, who are described as “without history, bestial, and wrapped in 
ferocity and superstition.” References to “bestiality” and “ferocity” demonstrate the 
trend to depose humanity from black people quite common at the colonial time, by 
associating them (including their physical characteristics) and their cultures with 
animals or even insects. The science made in the universities then assigned a very 
reliable tonic to racism and, therefore, to its process of dehumanization that pre-
ceded discriminatory practices or genocides then and until this day (Almeida, 2021, 
p.28–29).

The embargo on dehumanization starts from the religious domain, and there was 
a definition of the body based on the idea that the soul would be essential in the 
legitimation and qualification of being a human. Thus, religion, in connivance with 
the political sphere of the time, invents the criteria that define which group would be 
the holder of superiority. The invention of the black body or the animalized, objecti-
fied body contributes to legitimizing an economic project that assumed the human 
workforce. The religious doctrine only corroborated this idea, supporting it with the 
production of legitimation arguments (Dumas, 2019). Nevertheless, the sciences 
also served to support the explanation of dehumanization, according to the classifi-
cation process by race, that is, white skin and tropical climate, according to biology 
and geography, would favor the emergence of so-called immoral behaviors, of vio-
lent and lascivious nature, as well as the identification of low intelligence. So, the 
closer to nature, the more primitive and the less civilized (Almeida, 2021).

When examining the racist internal structure of mathematics education, it is nec-
essary to discover how we can educate through mathematics, using mathematics to 
understand what racism is, how it was disseminated, for what reasons, and with 
what interests and to be socially responsible as a proposal and as a way of being, 
thinking, and existing that does not exclude, oppress, and dehumanize anyone. 
Perhaps, the prevailing force of what we currently live with digital technologies 
(DT) can be a fruitful path. If we consider the role of DT in cases such as George 
Floyd (BBC NEWS, 2020), for example, we assume that there are possibilities for 
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change and articulation through communication. That is, although the world is in a 
process of continuous technological advancement, it still struggles with issues of 
citizenship, a subjective condition for those who, as a member of a State, should be 
assured of constant enjoyment of a defined right set, able to allow him to participate 
in political life. However, there is still evidence of the absence of social and political 
conditions for this, particularly in cases arising from discrimination/prejudice, as 
was the case of the American George Floyd, who was murdered in a typically racist 
act. In this sense, Floyd’s case mobilized the world in terms of protests against rac-
ism, precisely potentiated by the existence of the internet and all the technological 
apparatus that sustains it. For those reasons, we consider that highlighting the pos-
sibilities that are supported by the DT, in relation to social responsibility in terms of 
mathematics education, is one of the paths we wish to follow.

19.3  Digital Technologies and Racism: What Does 
Mathematics Education Have to Do with It?

Digital technologies have long been studied in the field of education and, in particu-
lar, mathematics education, bringing the potential of the educational experience 
with these resources. According to Rosa (2020, p. 3):

The evolution of the digital domain, in the form of the computer network, has been appro-
priated by educators, and from this, the research about the possibilities of digital technolo-
gies (DT) brings to Education in Brazil and worldwide (de Oliveira, 2002; Kenski, 2003; 
Laurillard, 2008; Mansur, 2001; Underwood, 2009, among others) and has been conducted 
for decades. Specifically, in mathematics education, many studies point to the prominent 
potentialities of DT, inserting cyberspace in this context (Bairral, 2002, 2004; Bicudo & 
Rosa, 2015; Borba, 2004; Borba & Villarreal, 2005; Burton, 2009; Chronaki & Christiansen, 
2005; Simmons, Jones Jr, & Silver, 2004; Zullato, 2007). Cyberspace can enhance the con-
struction of online worlds and identities (Rosa, 2008; Rosa & Lerman, 2011; Rosa & 
Maltempi, 2006), as well as enabling the creation of a differentiated time/space for com-
munication, interaction (Bicudo, 2018; Castells, 2003, 2005; Lévy, 2000) and, conse-
quently, education (Hoyos, 2012; Tallent-Runnels et al., 2006).

Thus, these studies represent a wide range of research, which explore, in the field 
of mathematics education, issues concerning mathematics, the teaching, and learn-
ing of mathematics, as well as the training of mathematics teachers, in face-to-face 
and online modality. These studies in educational terms can open up possibilities for 
discussing racism, but they do not effectively do so. In this sense, we want to draw 
attention to the large gap that exists regarding research on the potential of DT as 
resources that can corroborate the understanding of social responsibility in the face 
of racism and also in mathematics classes. For example, society worldwide has 
faced a pandemic (Covid-19), and, in the meantime, we believe the pandemic 
brought to light the need for education as a foundation for raising awareness of the 
social responsibility of each one about the “whole” and the indispensability of a 
political stance, which is consistent with the common good. Assuming such 
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responsibility as a math educator may allow one to understand in advance that 
“Trying to solve math problems in an over-dwelled hovel in a slum is very different 
than doing so in a spacious, luxurious apartment with a veranda” (Borba, 2021, our 
translation). From this perspective, we assume the term “responsibility” as described 
in the Abbagnano dictionary of philosophy (2007, p.855, my translation8), that is, 
“Possibility of predicting the effects of one’s own behavior and of correcting it 
based on such prediction” and, respectively, its adjective, that is, the term “social” 
as “That which belongs to society or has in view its structures or conditions” 
(Abbagnano, 2007, p.912, my translation9). Thus, the possibility of predicting the 
effects of their behavior in relation to society, in this case, in relation to racism, in 
view of their structures or conditions, and correcting them is what we seek in edu-
cational terms, specifically, mathematical educational ones.

However, the need for social responsibility does not arise with the pandemic but 
is only emphasized by it. Part of society has been questioning itself for some time 
in relation to this understanding/constitution of social responsibility, even before the 
pandemic. However, now some questions stand out: what is the responsibility of 
mathematics education regarding the education of a group of students, belonging to 
a postcolonial society based on the process of (im)position of some bodies on hav-
ing access or success in important spaces (depending on whether they are white or 
black bodies)? What responsibility do we have/assume in mathematics education in 
relation to structural racism (also evidenced during the pandemic)?

From this perspective, as already stated, we assume mathematics education as 
the act of educating (oneself) mathematically or educating (oneself) through math-
ematics (Rosa, 2008), which neither suppresses nor displaces the subjects involved 
in this act/process. Educators, teachers, students, and others involved in this act/
process make mathematics education, act in relation to mathematics education, and 
become mathematics education. Thus, they need to question themselves about the 
social responsibility of mathematics education, that is, their own social 
responsibility.

In this sense, everyone (me, you, the teacher, the researcher in mathematics edu-
cation, whoever reads this chapter, etc) is part of this. We, as mathematics teachers, 
need to perceive this responsibility as the primacy of knowledge and articulate edu-
cational possibilities that contribute to this understanding/constitution of social 
responsibility in the mathematics classroom, taking mathematics as a contribution 
and digital technologies as a means of enhancing this understanding/constitution.

The DT participation in this process is not limited to the use of them like auxil-
iary objects merely (which would be the appliance of a resource only for fulfilling 
instructions, a request or habits, with few or noncritical reflection on what is being 
done), but is understood like the experience with DT that is translated as perception, 
feeling, reflection, thinking, etc. On the contrary, the participation of DT becomes 

8 “Possibilidade de prever os efeitos do próprio comportamento e de corrigi-lo com base em tal 
previsão.”
9 “Que pertence à sociedade ou tem em vista suas estruturas ou condições. Neste sentido, fala-se 
em ‘ação S.’, ‘movimento S.’, ‘questão S.’. etc.”.

M. Rosa



393

an articulating act under an intentionality which conceives the technological 
resource as a participant in the constitution of knowledge. This means that we con-
stitute knowledge with the world, with the digital technologies that are in the world, 
and not about the world, alone, so that these technologies simply help us to think 
about something (Rosa, 2008, 2018). In this case, for example, we moved from the 
evaluation of the Internet as a mere apparatus, as a communication technology, to 
the understanding of digitality as a technique, technology, and process of modern 
life; in other words, we understand the internet as a participant in a digitally medi-
ated society. That is, we understand the internet as a capital, within a capitalist 
regime that seeks profit, but, more than that, it also becomes a symbolic capital and 
needs to be critically understood as able to potentialize stigmas or privileges, as well 
as interests and objectives of those who rule any hegemony in question, depending 
on its conduction (e.g., skin color). This focus places the internet at the heart of 
society’s digital transformations and also links it directly to the domain of the soci-
ology of race, ethnicity, and racism. We say this because there is network capital 
that shapes a global racial hierarchy varying according to spatial geographies and 
the privatization of public and economic life. Internet technologies are central to the 
political economy of race and racism, as these technologies nowadays are at the 
base of politics and the concept of the capital (as we currently experience capital-
ism). Although we realize that digital transformation marks race and racism, trans-
formation movements often leveraged colorblind racism, be whited racial projects, 
white racial frames, and implicit prejudice, that is, among other factors, the implicit 
aesthetic promoted many kinds of “white business” (business conducted under the 
will, desire, and perspective of white men). On the contrary, it would suffice to say 
that each one is important and none is perfect, once there are many prejudicing acts 
that happen with the internet, although there are many “important people” that use 
it for good things too. Indeed, the study of race and racism in the digital society 
must theorize network scale, obfuscation logics, and predatory inclusion mecha-
nisms (McMillan Cottom, 2020). Or even, it should focus its efforts on raising 
awareness of diversity and valuing it.

For us, then, it is important focusing on diversity. So, in this chapter, our move-
ment of understanding/constitution of social responsibility in mathematics educa-
tion with digital technologies is in line with what Rosa (2022) proposes in his 
research. The author investigated how the process of understanding/constituting the 
social responsibility of mathematics teachers in cybereducation has shown itself 
through the analysis of cinematographic products. The perspective is linked to the 
structural racism that inhabits our reality, including the educational aspects. In this 
sense, based on the concept of cybereducation with mathematics teachers (defined 
as education seen under different dimensions and which assumes the work with DT 
from the perspective of being with, thinking with, and knowing how to do with DT), 
Rosa (2022) analyzed a participant of the subject/extension course “Macro/Micro 
Exclusions/Inclusions in Mathematics Education with Digital Technologies” held 
in 2021 in ERE mode (emergency remote education) at the Federal University of 
Rio Grande do Sul, Brazil. Specifically, analyzing one teacher from a group, Rosa 
(2022) understands that DT, in this case, cinematographic products, enhanced the 
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understanding/constitution of the social responsibility of a mathematics teacher. 
The teacher was being-with-the-movie, consequently, with the people represented 
on the movie when watched and analyzed a specific film about racism. The teacher 
lived the experiences of the characters’ lives, and, in this way, the understanding of 
the “ubuntu” philosophy happened, without dichotomizing, in the sense of not con-
ceiving the existence of a being independent of the other but of a “being” that thinks, 
feels, and experiences with others and with the world. This bridge projected among 
mathematics education, digital technologies, and structural racism places us in the 
understanding/constitution of social responsibility, which appropriates the experi-
ence with DT in order to sustain itself in the ways of being, thinking, and knowing 
how to do it. It is also situated in opposition to racism through a mathematical foun-
dation and through the support of technological resources. So that allows us to go 
further, seeking mathematics that can favor this very understanding/constitution. 
Before it, we need to discuss one of the theories that are linked to the way in which 
we can overcome racism is the African philosophy of Ubuntu.

19.4  Ubuntu Philosophy and Mathematics Education: 
Possible Interconnections

We envision a conception of the world, that is, a philosophy that, in our view, breaks 
with the Eurocentric and colonial idea of individuality as a primer thing and neces-
sary to win in life and meritocracy as well. We bring up the Ubuntu philosophy, 
which becomes an ethical and pedagogical stance that evokes the idea of “being,” in 
order to launch itself into existence even before materializing it, however, already 
launching itself into this materiality: there is a movement directed to people (each 
one with their individuality in direction to others) and the relationships between 
them. Each one becomes a be-ing-becoming (Ramose, 2002) marked by uncertainty 
once they are anchored in the search for understanding the cosmos in a constant 
struggle for harmony. This cosmic harmony encompasses politics, religion, and law, 
and those spheres are, by their turn, based on experience and the concept of this very 
harmony.

According to Noguera (2012, p.147, my translation10):

Undoubtedly, the idea of ubuntu became widely known through free software for comput-
ers, characterized mainly by the proposal of offering an operating system that could easily 
be used by anyone. This essay is not about that; but, of |Ubuntu as a way of life: a possibility 
to exist together with other people in a non-egoistic way, an antiracist and polycentric com-
munity existence.

10 “Sem dúvida, a ideia de ubuntu ficou amplamente conhecida através do software livre para com-
putadores, caracterizado principalmente pela proposta de oferecer um sistema operacional que 
possa ser utilizado facilmente por qualquer pessoa. Este ensaio não trata disso; mas, de ubuntu 
como uma maneira de viver, uma possibilidade de existir junto com outras pessoas de forma não 
egoísta, uma existência comunitária antirracista e policêntrica.”

M. Rosa
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In the same way, our research, even encompassing digital technologies, does not 
deal specifically with free software with that name, but the philosophy that portrays 
a way of living, a possibility of existing, be-ing-becoming without racism, seeking 
to get rid of any forms of discrimination, prejudice and/or selfishness, as well as 
perspectives based on a single way of being, of showing oneself, in unique and 
absolute terms. This is the perception of mathematics education that we believe 
teachers need to assume, discuss, and enact in their classes and perhaps make their 
students understand and apprehend it. In our view, it is also linked to the abdication 
of an exclusive “mathematics,” a single “mathematics,” finished, disciplinary, as 
well as a single way of seeing the world and others (a Eurocentric view, which takes 
as an adequate subject: “[ …] a being of civilization, [male-]heterosexual, Christian, 
a being of mind and reason” (Lugones, 2014, p. 936)). So, the classroom should be 
filled with many kinds of mathematics.

Racism, for example, treats its origins through a Eurocentric vision that has his-
torically signified any indigenous inhabitant out of Europe as nonhuman or less than 
a human. This construct contained one of the first epistemic acts of violence, for 
those peoples were and often still are perceived as beings absent from culture, living 
as beings closer to animals (Moraes & Biteti, 2019). Currently, it is notable that:

[…] racism is always structural, that is, it is an element that integrates the economic and 
political organization of society […] it provides meaning, logic and technology for the 
reproduction of forms of inequality and violence that shape the contemporary social life. 
(Almeida, 2021, p.20–21, author’s emphasis, my translation11)

On the other hand, reflecting on the Ubuntu philosophy becomes the action of 
assimilating the place of the decentralized “being” in the global context and seeking 
to abandon the legacies of a dominant discourse, understanding/constituting a 
knowledge that understands that people are not alone on the planet, much less that 
there are privileged societies in cognitive terms, due to coloniality. What constitutes 
Ubuntu philosophy is otherness, and thus is what:

[…] it constitutes my relationship with the other, in which the place of man is decentralized, 
removing him from the central place, demarcating his relationships with other beings. Thus, 
Ubuntu would not be a humanist ethics focused on man, but a way of being/with the other, 
with nature, with life. (Moraes & Biteti, 2019, p.138. my translation12)

Also, it is necessary to understand that:

Ubuntu is a be-ing-becoming, a come-to-be-ing-becoming, which promotes a transforma-
tion in reality from its agency with others. In its structure, ubuntu is made in time,  promoting 

11 “[…] o racismo é sempre estrutural, ou seja, de que ele é um elemento que integra a organização 
econômica e política da sociedade […] fornece o sentido, a lógica e a tecnologia para a reprodução 
das formas de desigualdade e violência que moldam a vida social contemporânea.”
12 […] constitui minha relação com o outro, na qual se descentraliza o lugar do homem, o retirando 
do lugar central, demarcando suas relações com outros seres. Assim, o ubuntu não seria uma ética 
humanista concentrada no homem, mas um modo de ser/com o outro, com a natureza, com a vida 
(Moraes & Biteti, 2019, p.138).
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maintenance and transformations as measure of the do-doing, acting in constant continuity 
in its being in the world. (Moraes & Biteti, 2019, p.138, my translation13)

We hope that there will be a chance for a new mathematics class developed by 
teachers who recognize the other as themselves and who encourage this same rec-
ognition on the part of their students, in order to experience mathematics as a way 
of showing it, educating mathematically oneself and, mainly, educating oneself 
through mathematics (Rosa, 2008) in the face of situations of racism, for example, 
and in favor of recognizing and respecting diversity.

Mathematically, it is important to have as a premise what Ngomane (2019, p.66).
says:

As human beings, we share our planet with 8 million different species, but we ourselves are 
pretty unique. With around 200 countries in the world – official number vary – and roughly 
6,500 different spoken languages (and with an infinite number of cultural differences), what 
we all have in common is this: diversity.

Furthermore, according to Jojo (2018, p.256) “Ubuntu as a philosophy, is a way 
of thinking about what it means to be human, and how humans, are connected to 
each other or should behave toward others.” Even though we are different people, 
we have a responsibility to each other, with well-being, and if you are not well, I am 
not well either. I am not without you, I am not without us. The idea of empathy 
materializes, not only as putting oneself in someone else’s shoes but considering the 
other intrinsically linked to one’s own being. According to Gade (2012, p. 257):

Reality in Ubuntu is informed by the power derived from embracing people’s cultural phi-
losophy (Bopape, 1990). It is an aspect of the African people’s culture. Batswana, Bapedi, 
Basotho refers to this culture as ‘botho’, while the Nguni’s (Xhosa’s, Zulu’s, Ndebele’s; and 
Swazi groups refer to it as ‘Ubuntu’. For my convenience in this paper, I’ll use Ubuntu. It 
embraces concepts like: "Umntu ngumtu ngabantu" which is literally translated as: ‘a per-
son is a person through other people’. This implies that it is through the support from other 
people that a person is able to achieve his/ her goals. This reality is therefore based on col-
laboration, togetherness, and working collectively, through which the best results can be 
achieved. When this philosophy is well explored and understood by a mathematics teacher, 
it culminates in the latter putting maximized effort to ensure that the classroom environ-
ment welcomes students’ errors and questions while it also promotes engagement with 
problems posed and boosts their reputation under general.

The adoption of the Ubuntu philosophy can permeate the mathematics class, if 
this class is understood/constituted through premises, such as social responsibility, 
respect for diversity, and the belonging of being in the world with others. So, Jojo 
(2018), for example, studied fifteen 8th grade math teachers from South Africa in 
order to understand how their classroom environments and practices were trans-
formed through Ubuntu, in relation to teaching geometry. The study reveals that 
teachers have transformed their approach to different math topics to explore 

13 “O ubuntu é um ser-sendo, um vir-a-ser sendo, que promove uma transformação na realidade a 
partir de seu agenciamento com outrem. Em sua estrutura, o ubuntu se faz no tempo, promovendo 
manutenções e transformações na medida em que faz-fazendo, agindo em constante continuidade 
no seu estar no mundo.”

M. Rosa
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diversity in their classrooms and bring each student inclusively to understand the 
meaning of interpreting geometric terms with their application through sharing and 
modified valuing by each student’s contribution. It is important to highlight here 
that the mathematical concepts to be developed, in this case, geometric, depart from 
the “universal mathematics,” European, white, and historically (only) Greek. This is 
not bad, on the contrary, if I am not without us, Africans are not without Europeans, 
and the Europeans shouldn’t be without Africans. In this way, they do not abdicate 
the knowledge produced historically, even if the official history does not actually 
portray the movements of temporality/spatiality that took place. The annihilation of 
knowledge or non-appropriation of it is not defended for us; it is defended by the 
recognition of the constitution of black, yellow, red, Latin, and indigenous knowl-
edge, in order to conceive equity and nondiscrimination, non-exclusion, non- 
subordination, and non-coloniality (or better, decoloniality). Jojo (2018) argues 
about the different types of representations of the human activity of doing mathe-
matics and states that these exist in our surroundings and should be explored for a 
meaningful understanding of geometry.

In turn, Osibodu (2020) investigated whether and how young people in sub- 
Saharan Africa use mathematics in understanding social issues related to the African 
continent. With five young people from sub-Saharan Africa, over a semester, the 
author of this research developed her study. She took as a theoretical reference the 
decolonial theory from an African perspective, which, according to the author, 
encompasses decolonial perspective structures, such as the Ubuntu philosophy that 
decenters power. Osibodu’s study (2020) did not focus on learning new mathemat-
ics; rather, it sought to investigate what knowledge young people draw on in their 
exploration of social issues. As a result, the research highlights the focus on sub- 
Saharan youth’s need to reread and rewrite their African world with and without 
mathematics. To encompass these results, young people were invested in rewriting 
narratives about the African continent, raising African indigenous knowledge. The 
act of rewriting has led to epistemic freedom and cognitive justice – an essential 
component of social justice – that corrects the loss of indigenous African knowl-
edge. Despite this, there was still tension in recognizing and accepting indigenous 
African forms of knowledge, along with the belief that mathematics taught at their 
school was quite neutral.

The traces of coloniality were manifested in Osibodu’s survey (2020), and one of 
the phrases expressed by one of the participants was “wherever you see a right 
angle, it means a white man has been there” (p. 56), or, that is, this participant’s 
mathematical perception of his space made him affirm this and understand the 
mathematics produced by his own people, because all houses, for example, were 
built for his people in circular forms. In this case, for us, it is a clear example of what 
we call ethnomathematics. According to D’Ambrosio (2001) apud Powell (2002, 
p. 3-4):

Ethnomathematics encompasses in this reflection on decolonialization and in the search for 
real possibilities of access for the subaltern, for the marginalized e for the excluded. The 
most promising strategy for education, in societies that are in transition from subordination 
to autonomy, is to reestablish the dignity of its individuals, recognizing and respecting their 
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roots. To recognize and respect the roots of an individual does not mean to ignore and reject 
the roots of the other, but, in a process of synthesis, to reinforce one’s own roots. (p. 42, 
author’s translation)

Thus, our reflection recognizes different mathematical production ways. We do 
not want to substitute the Eurocentric mathematics for others. Notwithstanding, we 
aim to produce reflections about ethnomathematics and to relate the way of under-
standing the correlations between possible mathematics and the concept of Ubuntu, 
because, as Jojo (2018) declares:

Ubuntu is a unifying concept within South African people culture and thus deserves promi-
nence in the curriculum in all respects. When teachers demonstrate the understanding of the 
historical development of mathematics in various social and cultural contexts both in urban 
and rural settings, students will not feel threatened and will exercise their both their minds 
and confidence in the classroom. Through Ubuntu, the teachers worked as collective 
humans with their students, restored their self-worth, and their ways of thinking from hege-
monic structures, and facilitated their ability to articulate what they do and think about in 
order to provide a foundation for their productive individual participation in the classroom. 
I will also borrow from the Bapedi’ expression that talks to cooperation and solidarity attri-
butes of Ubuntu when they say, "Tau tsa hloka seboka di fenywa ke nare e hlotsa". Literally 
explained this means that even a limping buffalo can beat lions without unity. Figuratively, 
this implies that unity is strength or simple tasks may remain impossible unless there is 
cooperation. In mathematics classrooms an environment of social organization, coopera-
tion, communication; sharing of ideas; and solidarity where students are free to express 
themselves without fear of belittling is necessary to improve their performance and bring 
them into better understanding of the different concepts. In that environment their critical 
thinking skills are enabled, and they learn to ask the ‘why’ and ‘how come’ questions. 
(p.259–260)

With that, we started to discuss an antiracist mathematical activity with DT, 
which under our interpretation brings significant aspects of the Ubuntu philosophy 
weaving the ways of be-ing-becoming with the other, with the we, and with the 
mathematical reasoning. This weaving leads us to consider that the student may 
perceive diversity and assimilate the humanization of this diversity.

19.5  An Antiracist Mathematical Activity with DT

The antiracist mathematical activity with DT that we present in this chapter was 
inspired by the photographic exhibition Humanae carried out by Angélica Dass. 
According to the exhibition website, Dass (2022) reveals that:

Humanæ is a photographic work in progress by artist Angélica Dass, an unusually direct 
reflection on the color of the skin, attempting to document humanity’s true colors rather 
than the untrue labels “white”, “red”, “black” and “yellow” associated with race. It’s a 
project in constant evolution seeking to demonstrate that what defines the human being is 
its inescapably uniqueness and, therefore, its diversity. The background for each portrait is 
tinted with a color tone identical to a sample of 11 x 11 pixels taken from the nose of the 
subject and matched with the industrial pallet Pantone®, which, in its neutrality, calls into 
question the contradictions and stereotypes related to the race issue. More than just faces 
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and colors in the project there are almost 4,000 volunteers, with portraits made in 20 differ-
ent countries and 36 different cities around the world, thanks to the support of cultural 
institutions, political subjects, governmental organizations and non-governmental organiza-
tions. The direct and personal dialogue with the public and the absolute spontaneity of 
participation are fundamental values of the project and connote it with a strong vein of 
activism. The project does not select participants and there is no date set for its completion. 
From someone included in the Forbes list, to refugees who crossed the Mediterranean Sea 
by boat, or students both in Switzerland and the favelas in Rio de Janeiro. At the UNESCO 
Headquarters, or at a shelter. All kinds of beliefs, gender identities or physical impairments, 
a newborn or terminally ill, all together build Humanae. All of us, without labels.

Through the Humanae project, we observed the possibilities that the diversity 
discussed in the project itself could list and favor the understanding/constitution of 
social responsibility in the face of racism, precisely, understanding the constitution 
of the skin color of each individual without labels and, at the same time, mathemati-
cally common to all.

In this perspective, we investigated a color recognition application (from now on 
“app”), and among those found in the gallery of applications for Android and IOS 
systems, we chose the app called “Identificação de Cor” (color identification) once 
it proved to be user-available with an easy handling interface. In Fig. 19.1, we can 
see the app’s interface:

Initially, we have the key “Bloquear Anúncios” (block ads), then “Abrir Ficheiro” 
(open file), “Identificação em tempo real” (real-time identification), “Lista de cores” 
(color list), and “Criador de cor” (color creator). Our objective with this app (or 
other ones that work in the same way) is to be able to proceed like Angélica Dass in 

Fig. 19.1 “Identicação de 
cor” app interface
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her photographic work Humanae and, through that, bring mathematics as a basis for 
understanding colors. In other words, with this app, we want to be able to photo-
graph skin tones, using photos of different people’s nose tips (in our case, students’ 
noses), in order to obtain the digital color recognized by the technological resource. 
The app operates by targeting a single pixel right in the middle of the photo and 
revealing instantaneously values between 0 and 255 of the basic hues (red, green, 
and blue) composed of the color that was recognized.

Our antiracist mathematical activity with DT:

First moment, exposition debate the activity can begin with the presentation of 
Dass’ work, generating a debate about the exhibition and mentioning that there is a 
clear question of percentages (mathematics) present in the color of each one’s skin.

Second moment, invitation the teacher performs an invitation to do the same that 
Dass did but in the classroom. This is “would the class agree to divide into a group 
and carry out this color identification?” Attention: regarding the students who are 
not willing to participate, the teacher can asking them the reason of participation 
refuse. Then, whether the teacher’s awareness-raising argument is not convincing, 
or the student’s justification is plausible, the teacher must accommodate these stu-
dents in the groups as a technical reporter, that is, these students will not stop inves-
tigating and thinking together, although they will only not participate in the 
photography phase.

Third moment, app’s download regarding the students participating in the pho-
tography phase, it is necessary to form groups, check if at least one student has a 
smartphone, and request them to download the “Identificação de Cor” app (or 
another app that works in the same way).

Fourth moment, formation of the groups with the app installed, the activity 
begins with the formation of groups. A random formation of the groups is recom-
mended, so that racially mixed groups emerge. The group size and selection method 
depend on the teacher’s perception and the size of the class, and it would be relevant 
to note how many girls, boys, blacks, whites, and different stereotypes existing in 
the classroom are compounding each group.

Fifth moment, confirmation of participation and ethical clarifications the 
teacher explains the activity and asks if anyone feels uncomfortable taking a photo 
of the tip of their noses and the teacher precisely clarifies that not the image of the 
person’s face will ever be collected. The focus of the activity will be exclusively on 
the color of the nose, of the nose tip.

Sixth moment, request for the activity report and explanation of how to do this 
report it is necessary to explain to the group that there will be a report on the 
research to be delivered and to reveal procedures to do that ((1) creation of pseud-
onyms; (2) inserting the photos taken by cellphones; (3) using the app to measure 
the quantitative of red, green, and blue from each identified color; (4) showing the 
calculation of percentages of red, green, and blue from each identified color; (5) 
discussing the questions presented by the teacher (a, b, c…l)). It is important that 
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the teacher reads all activities (until the 13th moment) and uses the app before tak-
ing it to the classroom.

Seventh moment, creation of pseudonyms all participants/students will create 
pseudonyms to appear in the report, that is, each color will be identified by a pseud-
onym and not by the name of the subject involved.

Eighth moment, explanation of the reason for the choice of pseudonym also, it 
would be important to discuss why each pseudonym was chosen. As a plus, it would 
be interesting if the pseudonyms they chose were currently names of popular peo-
ple, who took a stand against racism at some point in history.

Ninth moment, production of pictures the students take a photo of the tip of the 
nose of their classmates and capture the cell phone screen, so that the image com-
poses the report. This photo must be taken using the “Identificação de Cor” app in 
the “Identificação Em tempo real” mode, as shown in Fig. 19.2.

Before capturing the smartphone screen, each student needs to click on 
“Identificar” (identify), so that the screen capture already brings the identified col-
ors, namely: “Cor atual” (current color), “Cor semelhante com nome” (similar color 
with name) and Palette RAL. Figure 19.3 provides an example of personal color 
identification.

Fig. 19.2 “Identificação 
em tempo real” (real-time 
identification)
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Fig. 19.3 “Cor atual” 
(actual color), “Cor 
semelhante com nome” 
(similar color with name) 
and Palette RAL

Tenth moment, internet research about the RGB color system the teacher asks 
the group to search about the RGB color system on the internet.

Eleventh moment, reflection on different color systems in order to guide the 
search, confront the group with these questions: what does each letter (R, G, and B) 
mean? What are the other systems? What are the differences between the systems? 
What is the number of levels in the RGB system? The answers are shown in 
the report.

Twelfth moment, reproduce the color identified the teacher asks the students 
that they reproduce the color identified by the app (identification resource), in the 
color creator resource, in order to learn to numerically configure a color using the 
RGB system. So, the teacher conducts the group report through the individual anal-
ysis of the participants. Initially, get the “Cor atual” (current color) of each partici-
pant and reproduce the color in the mode “Criador de cor” (color creator) of the app. 
As it is shown in Fig. 19.4, we can reproduce generated color in the app:

Thirteenth moment, reflection on the process through questions from the gen-
eration of photos and color recognition of all the participants of the groups, ques-
tions need to be launched. We remind the teacher that the questions presented here 
are just suggestions, each teacher is free to change them and add others, in a way 
that satisfies their reality. However, we call attention to the fact that mathematical 
discussion is a way of understanding diversity and equity, from the Ubuntu perspec-
tive. Tutu (2004) notes:
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Fig. 19.4 “Criador de cor” 
(color creator)

I am human because I belong. I participate, I share”. A person with Ubuntu is open and 
available to others, affirming of others, does not feel threatened that others are able and 
good, for he or she belongs in a greater whole and is diminished when others are humiliated 
or diminished, when others are tortured or oppressed, or treated as if they were less than 
who they are. (p. 31)

By allowing the students to understand that there is a hint of red and/or green 
and/or blue in everyone’s skin color, it will be possible to realize that the chromatic 
spectrum found in a rainbow represents much more than the pettiness of our imposed 
binarity of black and white. Thus, it is important to question and discuss 
mathematically:

 (a) How much red does each photo have in its pigmentation? What is the percent-
age of red in relation to the total (100%) of the three colors?

 (b) How much green does each photo have in its pigmentation? What is the per-
centage of green in relation to the total (100%) of the three colors?

 (c) How much blue does each photo have in its pigmentation? What is the percent-
age of blue in relation to the total (100%) of the three colors?

 (d) What do these percentages represent? What can we conclude individually?
 (e) If we compare the participants of the group, what can we say about the percent-

age of red? What can we say about the percentage of green? What about the 
percentage of blue?

 (f) What can we say in terms common to all participants in the group?
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 (g) Could any identified color exist without the three elements (RGB)? What does 
this explain to us?

 (h) Did any participant in the group have their RGB value identified as (0,0,0)? 
Likewise, did any participant in the group have their RGB value identified as 
(255,255,255)? What percentage of participants met these criteria? What do 
you have to say about that percentage?

 (i) Also, have you noticed that the colors displayed on the screen are not exact, and 
they depend on the brightness and contrast settings and may vary from one 
screen to another in relation to the camera and device? What does this reveal in 
relation to any color study?

 (j) Can we say that someone is currently white or black?
 (k) Does having more or less red in skin color pigmentation change what a person 

is? Likewise green or blue?
 (l) Why are there people who suffer and are still killed today because of their skin 

color? What do you think about this? What mathematical explanations would 
you give about skin color that would help to understand what people may be 
like in terms of skin color? What actions would you like to take regard-
ing racism?

This would be an activity in which the discussion of percentage, proportion, 
and interval would be intertwined with the discussion of diversity and under-
standing/constitution of social responsibility in relation to racism. Then, we 
move on to our considerations, which already carry out the analysis of the activ-
ity in the face of the Ubuntu philosophy and the perspective of social 
responsibility.

19.6  Antiracist Mathematical Educational Movements: 
Be-ing-Becoming Antiracist

“How to discuss racism in a mathematics class with digital technologies in a way 
that mathematical concepts support the discussion?” was the research question 
announced in this chapter. To seek to answer it, we drew a line of discussion about 
the historicity of a “white mathematics,” which is taken as “neutral,” sometimes 
under neutrality attributed to it as if it were an “entity” without any relation to 
humanity. Also, on the other hand, the “white mathematics” is evidenced under a 
single bias, that is, that of univocal production and undervalue judgment, with a 
great symbolic power, on the part of an exclusively white group. In the meantime, 
we discussed the structural racism that encompasses this way of thinking about 
mathematics itself. These “mathematics” were mostly consolidated by white men 
and by the intelligent people in the core of Enlightenment Europe, as if African 
mathematical production did not ever exist and as if black people were not intelli-
gent, dehumanizing them, although it was already known back then that some math-
ematics contents had been hijacked from African ancient people (Powell, 2002).
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In contrast to this structural racist movement, internal to the scientific field and 
which extends to the field of common sense, through a habitus concerning the domi-
nant group, we are seeking to understand/constitute social responsibility in the face 
of racism, discussing it in an educational space of mathematics with digital tech-
nologies. We seek not only to value mathematics but also to value the philosophy 
that emerges from other places, Ubuntu, which manifests itself in a convergent way 
with the issues raised by decoloniality and ethnomathematics. Thus, we also appre-
hend “white mathematics” because it has its value and because we want dialogue. 
We understand the role of “we” as a key piece, as a tree trunk that sustains the fruit-
ful possibility of philosophy itself, and we advance with the potential for the articu-
lation of digital technologies for the debate of racism, for example.

In this way, we created an antiracist mathematical activity with DT as a way of 
discussing racism in a math class with digital technologies. In other words, the 
activity lists the exploration of percentages as a means of thinking about skin color 
when in the 13th moment, which aims at the reflection, the questions “a,” “b,” “c,” 
and “d” request the calculation of the percentage of red, green, and blue that each 
individual has in the color identified in the tip of your nose, as a means of conclud-
ing that they all have red, green, and blue in their own color (questions “e” and “f”). 
This conclusion permeates the digital transformation with the “Identificação de 
Cor” app and marks race and racism with different issues in terms of reflective 
intent. There is a movement of transformation of colorblind racism, because it is 
desired to highlight the difference as a focus in this activity, but not with white racial 
frames and implicit prejudice, that is, among other factors, the implicit aesthetics 
that would promote white power. But as a source of understanding that everybody’s 
skin color is composed of red, green, and blue, however, each complexion has its 
individual nuances, and it has nothing of value over one another. Thus, there can be 
no perfection or supremacy, for all of us matter equally.

However, the percentages of the same colors in the activity cause race and racism to be 
questioned in the digital society, which allows one to understand the logics of obfuscation 
and to be aware of the possible mechanisms of predatory inclusion. (McMillan Cottom, 2020)

In terms of the Ubuntu philosophy, the antiracist mathematical activity with DT 
allows the understanding of the colors of the group, class, community, population, 
and world as a way for each one to live, a possibility of existing together with other 
people in a non-egoistic way, as we all have red, green and blue, and in an antiracist 
and polycentric community existence (Noguera, 2012), because red or green or blue 
are not just present on one person. They are on everyone’s skin: we are altogether 
red and/or green and/or blue! This understanding is dealt with in the activity (ques-
tions “f” and “g”) and it goes further, since it highlights that racism is always struc-
tural, that is, it already brings the possibility of who will try to value possible 
“whites,” that is, the white color that would have the maximum levels of red, green, 
and blue or devalue the black color that would not have red, green, and blue pig-
ment, raising questions about this (questions “h” and “j”). Questions that predict 
structural racism can emerge in the classroom itself, because it is an element that 
integrates the economic and political organization of society and it provides the 
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meaning, logic, and technology for the reproduction of forms of inequality and 
violence that shape contemporary social life (Almeida, 2021, p.20–21). However, it 
is up to the teacher to be able to raise other questions if the idea of valuing white, as 
formed by maximum values of red, green, and blue (255, 255, 255) on the scale, and 
the devaluation of black, as formed by minimum values of the scale (0,0,0), hap-
pens. Questions must be linked to the validity of arguments. That is, if you value a 
white complexion, where can it currently be found? Who would be this truly white 
person? Would red 255, green 255, and blue 255 finally be matched? Do these white 
people really exist? (question “j”). Questions like these would serve to show each 
one, once again, that even if one wants to attribute “power,” “value” to the white 
color because it assumes the maximum values in the RGB scale, in fact the real 
write and black doesn’t appear in human beings. Which photo presented or presents 
these colors? In other words, the power relationship (attributed to one color and not 
to another) does not come from mathematics. This, on the contrary, shows that 
numerical differences do not express value or power, they simply express that the 
colors are different assuming percentages of colors (red, green, and blue) similar to 
all, once all have red, green, and blue in their pigmentation.

In addition, the participation of DT in this process is not limited to the use for the 
use, but it also becomes an articulating act under an intention that conceives the 
technological resource, that is, the app “color identification” as a participant in the 
constitution of knowledge. This means that we acquire knowledge about the diver-
sity of colors with the app; only with it we determine how much red, green, and blue 
there is in a color, to later calculate the respective percentages and proportionality 
of each one in the final composition. We constitute knowledge with the digital tech-
nologies that are in the world and not about the world alone, so that these technolo-
gies help us to think about something else (Rosa, 2008, 2018). In this case, the 
antiracist mathematical activity with DT even supplied questioning and varied use 
of the technology itself (question “i”), that is, critical thinking about the digital 
aspect also needs to be highlighted.

However, issues involving the idea of equity make up the very awareness of 
social responsibility for those who suffer without having a real and just reason 
(questions “k” and”l”). In this perspective, Rosa (2022) sustains that DT enhance 
the understanding/constitution of the social responsibility of mathematics students 
who are involved when they being-with-the-App presenting his understood about 
the “Ubuntu” philosophy, without dichotomizing it. In this way, the author doesn’t 
conceive the existence of a being independent of the other, but of a “being” that 
thinks, acts and lives with others.

Finally, we understand that there is a way to discuss racism in a mathematics 
class with digital technologies, for example, with the “Identificação de Cor” app or 
another similar, so that mathematical concepts such as percentage and proportional-
ity of base colors that make up people’s colors support the discussion. That is, is 
there a difference? Is there a reason for the other to be discriminated against? Why 
are there people who suffer and are still killed these days because of their skin 
color? What do you think about this? What mathematical explanations would you 
give about skin color in order to help elucidate what people are like in terms of skin 
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color? What actions would you like to take regarding racism (question “l”)? With 
this, we understand that it is high time to ask ourselves about it and take these ques-
tions to mathematics classes.
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Chapter 20
Philosophy, Rigor, and Axiomatics 
in Mathematics: Imposed or Intimately 
Related?

Min Bahadur Shrestha

20.1  Introduction

Ever since mathematics began being developed, mathematicians have seemed to be 
relatively unconcerned with philosophy, as reflected in a Socratic dialogue (Rényi, 
2006) in which ancient Greek philosopher Socrates mentions that the leading 
mathematicians of Athens do not understand what their subject is about. Plato, 
being devoted to philosophy in general and to the philosophy of mathematics in 
particular, was motivated by Socrates.

Plato’s contribution of Platonic thought about mathematics, or Platonism, has 
descended through the centuries as the basis of the philosophy of mathematics. The 
Greek concept of the deductive–axiomatic model that culminated in Euclid’s 
Elements was a paradigm of mathematical certainty until only recently. In Elements, 
Euclid developed a magnificent axiomatic and logical system that served as the sole 
model for establishing mathematical certainty until the end of the nineteenth century 
(Ernest, 1991: 1). Perhaps the most evident modern feature of Elements is the 
axiomatic method, which stands at the core of modern mathematics (Mueller, 1969). 
Along with axiomatics, rigor has been a major requirement in formal mathematics. 
Although the term rigor is usually associated with advanced mathematics, even in 
that domain it seems to be largely accepted without much discussion. Moreover, it 
seems to me that the concept of rigor is applied less prominently than the concept of 
axiomatics.

Against that background, in this chapter I examine the terms rigor and 
axiomatic(s) in detail. The extent to which rigor and axiomatization should be 
achieved seems to depend mostly on how mathematics is viewed. By extension, 
how mathematics is viewed is a relatively philosophical question. In that light, this 
chapter seeks to examine the philosophical reflection on rigor and axiomatics in 
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mathematics. To that end, I first review the concepts of rigor and the axiomatic 
method in mathematics. Although both concepts have largely been associated with 
Western mathematical traditions as their integral components, Hindu mathematical 
traditions, despite lacking formal axiomatic proof, have also contributed significantly 
to the development of mathematics. Thus, rigor and reasoning in the Hindu 
development of mathematics also warrant examination to understand the status of 
the axiomatic method in mathematics and its relationship with philosophy.

To that purpose, the chapter is organized into four subsections—“Rigor in 
Mathematical Argumentation,” “The Axiomatic Method,” “Rigor and Reasoning in 
Traditional Hindu Mathematics,” and “Philosophical Reflection,” in that order— 
followed by a summary and conclusion. When appropriate, pedagogical concerns 
are also addressed to clarify the discussion from an educational point of view.

20.2  Rigor in Mathematical Argumentation

While searching for the precise meaning of rigor as used in mathematical argumen-
tation, I came across an article written by Philip Kitcher (1981) that addresses the 
concept of rigor in a rather conventional way. Kitcher (1981, 1) states that “central 
to the idea of rigorous reasoning is that it should contain no gaps, that it should 
proceed by means of elementary steps.” He argues that the argument in reasoning is 
rigorous when and only when the sequence of statements leads to the conclusion 
and every statement is either a premise or a statement obtainable from previous 
statements by means of elementary logical inference. In mathematical proofs, as a 
kind of argument required to convince readers of the truth of mathematics, the rigor 
in reasoning is aimed at establishing correct, consistent results. More recently, a 
wider basis of proof has been taken into consideration that includes not only a cog-
nitive basis but also cultural and psychological bases (Joseph, 1994: 194). 
Nevertheless, writers of standard textbooks on mathematics seem to be primarily 
interested in the conventional mode, which has an exclusively cognitive basis.

To illustrate how formal deductive proof employs rigor in mathematical deriva-
tion, the following example demonstrates how to prove that 1 + 1 = 2. In doing so, 
the example reveals how rigorous proof is based on assumptions of axioms and/or 
postulates, along with definitions, as well as logical rules of inference (Ernest, 1991: 
4–6). What is immediately noticeable is that proof is needed to establish a set of 
rules in advance of stating definitions, axioms, and rules of logical inference. After 
that, the proof can be developed in 10 steps (Ernest, 1991: 5). The example raises 
the question of what rigor indicates and what advantages tediously providing such 
proof for the fundamental facts of arithmetic affords. From a pedagogical perspec-
tive, my experiences of teaching pre-service students seeking master’s of education 
degrees in mathematics have revealed the problem of convincing many students to 
recognize the value of and commit to providing such seemingly ridiculous rigor. As 
I see it, such rigor implies the development of consecutive steps without any lapses 
of reasoning in the formation of the argument. Alternatively, the sequence of the 
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steps in the argument should be capable of connecting statements to form the integ-
rity of the proof. However, the concept of rigor, like many other concepts, is a rela-
tive one and may depend on many factors. Although Paul Ernest (1991: 5) has 
developed 10 steps to show that 1 + 1 = 2, Reuben Hersh (1999: 254) has used only 
three steps to prove that 2 + 2 = 4, and that discrepancy indicates that rigor in proof 
also depends on the situation under consideration and other factors. Even so, the 
traditional view on ideal mathematical knowledge can explain why such rigor is 
needed; it maintains that by constructing rigorous proofs of known truths, mathema-
ticians at all levels can improve their knowledge of those truths either by coming to 
know them a priori as certain or at least by making their knowledge more certain 
than it was before (Kitcher, 1981).

Kitcher refers to that type of mathematical thinking as “deductivism,” which 
consists of two claims. On the one hand, it holds that all mathematical knowledge 
can be obtained by deduction from first principles and that such an approach is the 
optimal route to gaining mathematical knowledge because it is less vulnerable to 
empirical knowledge. Kitcher adds that though mathematicians can use deductive 
and/or axiomatic proof in mathematics, such proof lacks an epistemological basis, 
which deductivist theses attribute to first principles. A lack of an epistemological 
basis means that neither first principles nor their bases can be discerned as being 
true, and it is clear that so many such constraints are imposed in mathematics in 
developing deductive proofs. Interestingly enough, mathematical proofs have been 
useful in computer programming and formatting the power of mathematics in 
packages (Skovsmose, 2010). Although deductivists’ way of producing mathematics 
is generally not how mathematicians produce mathematics, the deductivist approach 
is nevertheless a natural way to unravel the network of interconnections between 
various facts and to exhibit the essential logical skeleton of the structure of 
mathematics (Courant & Robbins, 1941/1996: 216).

The discovery of non-Euclidean geometry based on the logical consequences of 
Euclid’s fifth postulate laid a strong foundation for the development of deductive–
axiomatic rigor in mathematics. Although the development of non-Euclidean 
geometry has been an ingenious reconstruction in mathematics, one that has 
broadened horizons in the field as well as in the philosophy of mathematics, it has 
been limited to the field of geometry as the twin brother of Euclidean geometry. The 
most important aspect of rigor in that context implies the strict logical consequences 
of Euclid’s fifth postulate and its two alternative postulates as being the postulates 
of non-Euclidean geometries. Moreover, whereas Euclid’s Elements defines basic 
geometric objects, including points and lines, David Hilbert’s work does not. Hilbert 
does not define line; on the contrary, he axiomatizes it by writing “Two distinct 
points determine a line.” Hilbert’s efficiency, as a modern geometer, lies in 
recognizing that a line, as such a simple geometric figure, cannot be defined 
satisfactorily, but it can be axiomatized.

Rigor in mathematics seems to have become understood differently depending 
on the course of the development of different areas of mathematics. In the past 
200 years, the development of analysis, as a constructive method in mathematics 
independent from deductivism, has been made rigorous by identifying and defining 
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many concepts and thereby allowing more refined development. By contrast, in the 
name of generalization and formalization, constructively developed analysis has 
been situated within deductive structures as a means to formalize it and lend it rigor. 
Such a representation of mathematics has indeed become more robust and rigorous 
with the work of Nicolas Bourbaki, the collective pseudonym of some young 
formalist mathematicians in France most active in the mid-twentieth century; 
however, it also seems to have become detached from the position from which it 
was developed and from the purpose for which it was first used. For example, on the 
topic of rigor in mathematics, E. T. Bell (1934) made the following remark in his 
article:

No mathematical purist can dispute that the place of rigor in mathematics is in mathematics, 
for this assertion is tautological, and therefore, according to Wittgenstein, it must be of the 
same stuff that pure mathematical truths are made (p. 600).

The statement clearly reveals that, for mathematical purists, the rigor of mathe-
matics is inherent in mathematics and is made of the same core elements as mathe-
matical truths. By extension, Bell seems unsatisfied with the development of rigor 
in mathematics textbooks for graduate students:

The present plight of mathematical learning––instruction and research––in 
regard to the whole question of rigor is strangely reminiscent of Robert Browning’s 
beautiful but somewhat dumb little heroine Pippa in the dramatic poem Pippa 
Passes (p. 600).

Thus, though as beautiful as a heroine in the field of poetry, rigor is not as beauti-
ful in mathematics education. Similar to Bell, many scholars and mathematics edu-
cators, especially in the twentieth century, have shown concern with the difficulties 
of teaching and learning mathematics due to the excessive emphasis on formalism, 
which draws upon the axiomatic method as well as rigor. In response, Hans 
Freudenthal, in his contributions to make mathematics more educational, particu-
larly in Mathematics as an Educational Task (1973), critically examined the use of 
mathematics for educational purposes. Meanwhile, intuitionists Richard Courant 
and Herbert Robbins, in their epoch-defining book What Is Mathematics? 
(1941/1996), sought to emphasize the intuitive and constructive nature of 
mathematics. Nevertheless, Jerome Bruner, a US learning theorist and well-known 
scholar, expressed anxiety over the frustrating situation in mathematics education 
bought about by an insistence on formalism. In his preface to Zoltan P. Dienes’s 
book An Experimental Study of Mathematical Learning (1964), Bruner remarks:

I comment on the difference between Dr. Dienes and some of the others of us who have 
tried our hand at revising mathematical teaching. Perhaps it can be summed up by saying 
that Dr. Dienes is much more distrustful of “formalism” than some of the rest of us.

Such situation reveals that the more formal, rigorous development of mathemat-
ics has long been regarded as a hindrance to the development of mathematics educa-
tion. Many students seem to have difficulties understanding the essence of rigor in 
mathematical arguments involved in proofs. It seems that rigor becomes especially 
confusing in proofs of common truths—for example, showing that 1 + 1 = 2. Nearly 
all students in my classes have been confused, if not perplexed, while trying to 
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develop an understanding of that proof, and, even after being aided with prompts 
and hints, few have shown an understanding of its justification (Shrestha, 2019). In 
fact, Kitcher (1981) has even suggested testing the hypothesis that demanding 
rigorous proofs of known truths is just simply confusing.

It has recently been suggested that proofs in mathematics, to be convincing argu-
ments, need not only a cognitive basis but also cultural and psychological bases 
(Joseph, 1994: 194). Social constructivism, as the philosophy of mathematics 
(Ernest, 1991: 98), has particularly supported such novel interpretations of the 
genesis of mathematical knowledge. Beyond that, Imre Lakatos’s Proof and 
Refutation (1976), a common source for explaining the genesis of mathematical 
knowledge, shows how mathematics has developed into well-arranged forms 
marked by formalism and rigor. Through such lenses, answers to the questions 
“What is rigor?” and “How much rigor is needed in mathematics?” are not already 
fixed or given but the products of a dynamic discourse determined by the society in 
which mathematicians seek to show the purpose of the validity of mathematical 
knowledge. Because an axiomatic basis has played a starring role in the development 
of formal, rigorous mathematics, my next consideration is the axiomatic foundation 
of mathematics.

20.3  The Axiomatic Method

Robert and Glenn James’s Mathematics Dictionary (1988) defines axioms in the 
context of mathematical systems as the basic propositions from which all other 
propositions can be derived. Axioms are independent, primitive statements in the 
sense that it is impossible to deduce one axiom from another. Euclid’s fifth postulate 
is a well-known example of an axiom, one that took mathematicians and geometers 
roughly two millennia to determine whether it was indeed a postulate or could be 
proved as a theorem. Only in the nineteenth century did they conclude that the fifth 
postulate was in fact a postulate independent of the other four and could not be 
proven using the others. Added to that, they discovered that, unlike the fifth postulate, 
the other postulates could be stated in ways leading to other systems of geometries 
(e.g., hyperbolic and elliptical). Thus, the fifth postulate is an outstanding 
demonstration of the independent role of axioms and postulates in mathematical 
structure.

Because the conclusion of a proof of a theorem is a logical implication of the 
truth of the axioms, such models of deriving truth are termed axiomatic models, and 
both Euclid’s Elements and representative modern works such as Hilbert’s 
Grundlagen der Geometrie showcase statements postulated as starting points and 
everything else derived from them (Mueller, 1969). Ever since the development of 
mathematical theory, much has been written on the axiomatic method (Wilder, 
1967). Perhaps most prominently, Bourbaki’s version of 1953, as quoted by 
Weintraub (1998) in his article, reflects that the axiomatic point of view in 
mathematics appears as a storehouse of abstract forms of the mathematical structures 
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which happens without our knowledge that certain aspects of empirical reality fit 
themselves into these forms as if through a kind of preadaptation.

The views of Bourbaki clearly maintain that the axiomatic basis of mathematical 
structures represents certain aspects of empirical reality. Such an interpretation 
essentially derives from a Platonic view of mathematics: that mathematical truths 
are the propagation of preexisting reality. Here is the version of Hilbert, a master of 
axiomatic mathematics in relation to the role of the axiomatic method in scientific 
thought and mathematics:

I believe: anything at all that can be the object of scientific thought becomes dependent on 
the axiomatic method, and thereby indirectly on mathematics, as soon as it is ripe for the 
formation of a theory. By pushing ahead to ever deeper layers of axioms ... we also win 
ever-deeper insights into the essence of scientific thought itself, and we become ever more 
conscious of the unity of our knowledge. In the sign of the axiomatic method, mathematics 
is summoned to a leading role in science (Weintraub, 1998: 1844).

Thus, according to Hilbert, the axiomatic method is not merely a means to estab-
lish scientific reasoning but also to gain profound insights into scientific thought in 
the form of axiomatic thinking.

Axiomatic method has also been used in social science, especially, in economics, 
in the assumption that the relationship between rigor and truth require an association 
of rigor with axiomatic development of economic theories since axiomatization was 
seen as the path to new scientific discovery (Weintraub, 1998:1845). The general 
form of the axiomatic method as used in sociology applies to a set of propositions 
summarizing current knowledge in a given field and for generating additional 
knowledge deductively (Coster & Leik, 1964). In that light, the axiomatic method 
can be viewed as a means to deduce deeper knowledge in Hilbert’s sense of the 
word. Wilder (1967) stresses the role of the axiomatic method in introducing 
increased abstraction. Wilder points out that Greek mathematics performed the role 
of providing foundation as well as consistency. But, Ian Mueller (1969) argues that 
the axiomatic method used in Euclid’s Elements differs from Hilbert’s modern 
axiomatics even though both begin by postulating statements and deriving everything 
else from those postulates. Whereas modern mathematics, including Hilbert 
geometry, has the formal–hypothetical character of modern axiomatics, ancient 
Greek mathematics was not a hypothetical science in the same sense. For the 
Greeks, mathematical assertions were true and of interest only because they were 
true, which explains why Euclidean axioms and common notions are taken as self- 
evident truths. Wilder’s position on the nature of ancient Greek mathematical 
assertions somewhat differs. He argues what Euclid and later mathematicians 
described was not a physical reality but a mental model of what their perception of 
physical reality had suggested. Thus, it did confront logical difficulties because the 
mathematical model and the logic used were derived from reality (Wilder, 
1967: 124).

Wilder divides the axiomatic method into three types according to the degree of 
formalization. In the first, called the “Euclidean” type, the primitive terms are not 
treated as undefined, and the model is described only in the sense of a mental model: 
a model of the perception of the physical model. The second type of axiomatic 
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method, the “naïve axiomatic” type, is the one in which we are careful to list 
primitive terms (such as, definition, axiom/postulate) needed to develop arguments, 
but we list neither logical nor set- theoretic rules by which we shall abide (say, for 
example, when introducing Group in modern algebra text, definitions and postulates 
are stated, and then theorems are proved without listing logical rules).

The second type of method is taken as the principal tool for modern research in 
all branches of mathematics, especially algebra, topology, and analysis. Wilder 
(1967: 126) continues: “The third type of axiomatics in which the logical apparatus 
not only enters the discussion, but is explicitly formalized, has provided one of the 
major tools in the foundational research.” Summarizing his views on the types of 
axiomatic methods, Wilder concludes that modern mathematics, despite its 
abstraction, increasingly resembles applied science and thus interprets the three 
types of methods as being at work in science in one form or another.

However, Abraham Seidenberg (1975), a historian of mathematics, takes another 
view. He argues that though we have all been told since childhood that Euclid 
developed the axiomatic method and that conclusion seems amiss when Elements is 
viewed with modern hindsight (p. 263). Referring to Seidenberg’s (1975) article, 
Yehuda Rav (2008: 138), in his own article, mentions that Euclid’s Book I is not an 
axiomatic basis for the theorems but a theory of geometric construction for they 
serve to control the straightedge and compass construction. Unlike Wilder, Rav 
claims that it is fairly common for mathematicians to derive theorems from axioms 
by using valid rules of logic. However, he adds, problems arise from taking the view 
that ….. lacks actual evidence from the day-to-day proof of mathematicians, most 
of whom are not logicians and could hardly name any rule or axiom of logic, much 
less relate them to their proofing practices. Nevertheless, despite contrasting views 
that whether or not mathematics was already organized on the basis of explicit 
axioms, there is no question that deductive proof from some accepted principles was 
required at least from Plato’s time (Rav, 2008: 136).

In the past two centuries, the increasing emphasis seems to have been placed on 
the axiomatic and rigorous development of mathematics. Against that excessive 
emphasis on rigor, axiomatics, and formalism in mathematics, new views have 
emerged that take into account the historical and cultural development of 
mathematics. In that line of thinking, the development of non-European mathematical 
traditions, including Hindu mathematics, has been found to be important because 
they, especially the Hindu tradition, address rigor in the absence of the axiomatic 
method. To address that trend, the next section examines rigor and reasoning in that 
tradition before the chapter commits to any philosophical reflections, namely, as a 
means to examine the relationships between philosophy, rigor, and axiomatics in 
non-European mathematical traditions.
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20.4  Rigor and Reasoning in Traditional Hindu Mathematics

Recent literature has yielded more comprehensive interpretations of mathematics 
and philosophy. Among the most important interpretations is that mathematics is an 
intellectual cultural product whose various routes of development can be critically 
examined from social and cultural perspectives. Such sociocultural interpretations 
have shed new light on mathematics, particularly on the contributions of non- 
European traditions to its overall development. As a result, mathematics in non- 
European civilizations, including Hindu mathematics, also known as “Indian 
mathematics,” has especially received sustained attention. In the history of 
mathematics, the lack of axiomatic–deductive proofs has been a common charge 
against Hindu mathematics, which has consequently been downgraded in the ranks 
of mathematical traditions. Carl Boyer (1968: 238), in A History of Mathematics, 
furnishes evidence of that trend:

Although in Hindu trigonometry there is evidence of Greek influence, the Indians seem to 
have had no occasion to borrow Greek geometry, concerned as they were with simple 
mensurational in some form as well as axiomatic– deductive method of proof rules.

To show the treatment of Hindu mathematics by numerous Western writers of the 
history of mathematics, Joseph (1994) has pointed out that many commonly 
available books on the field’s history either declare or imply that whatever the 
achievements of Hindu mathematics, they have never had any notion of proof.

Indian historians of Hindu mathematics have remarked that the greatest charge 
against Indian geometry in particular and mathematics in general is indeed the lack 
of deductive–axiomatic proof that was so beloved to the ancient Greeks (Amma, 
1999: 3). However, Amma adds that some commentaries and independent work 
have preserved proofs and derivations of complicated mathematical series showing 
that early Indian mathematicians were also not satisfied unless they could prove and 
derive results. On that topic, Amma mentions an important difference between 
Greek proof and its Hindu counterpart, that whereas the former is built upon a few 
self-evident axioms, the latter aims at convincing students about the validity of the-
orems by way of visual demonstration. A more recent critical interpretation of 
Indian mathematical traditions, one especially examining the Gaṇita-Yukti-Bhāṣā 
(Ramasubramanium et al., 2008: 267), holds the following:

Many of the results and algorithms discovered by the Indian mathematics have been discov-
ered in some detail. But little attention has been paid to the methodology and foundations 
of Indian mathematics. There is hardly any discussion of the processes by which Indian 
mathematicians arrive and justify their results and procedures. And, almost no attention is 
paid to the philosophical foundations of Indian mathematics, and the Indian understanding 
of the nature of mathematical objects, and validation of mathematical results and procedures.

Regarding the history of mathematics on the Indian subcontinent, much attention 
has also been given to extremely large numbers and significant developments in 
algebra and trigonometry. Ernest (2009: 200) speculates that attention to large 
numbers with decimal fractions, possibly made possible by virtue of an advanced 
decimal place value system, might have aided in conceptualizing a large number of 
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series expansions in Kerala between the fourteenth and sixteenth centuries, as well 
as contributed much of the basis for calculus, which is traditionally attributed to 
mathematicians in seventeenth- and eighteenth-century Europe. Nevertheless, the 
lack of deductive–axiomatic proof in Hindu mathematical traditions has been 
viewed as a great lapse. The disparity in interpretations raises the question of 
whether the development of Indian mathematics indeed addressed valid, rigorous 
mathematical proofs, as well as the question of whether mathematics can be rigorous 
without an axiomatic foundation.

To begin to answer those questions, I first review the reasoning involved in upa-
patti, in the Hindu mathematical tradition. Although the tradition lacks formal proof 
in the sense of Greek-based Western mathematics, it has upapattis as a means of 
convincing argumentation to show students the validity of theorems through visual 
demonstration as an acceptable form of proof in geometry (Amma, 1999: 3). Joseph 
(1994: 197) mentions that roughly 2000 years ago, a great deal of attention in Indian 
mathematics was paid to providing upapattis, some of which have recently been 
noted by European scholars of Indian mathematics. In the following subsections, I 
examine some of the notable features of the status of proof, rigor, and reasoning in 
Indian mathematics in relation to upapattis.

Nature of upapattis A upapatti is a means of establishing the validity of mathe-
matical truths and removing doubts about such validity. Indian mathematicians 
agree that results in mathematics cannot be accepted to be valid unless they are 
supported by a upapatti or yukti, a Sanskrit term used to denote some scheme of 
demonstration (Ramasubramanium et  al., 2008: 288) that, even today, refers to 
some method or technique to show how results hold true and/or how a problem can 
be solved. In geometry, Upapatti seems to be a construction able to reveal how 
results come to be true or a series of steps involved in algorithms with justification 
(e.g., the Euclidean algorithm for finding the greatest common divisor, called 
kuttaka in Hindu mathematics).

As mentioned by Amma (1999: 3), proof in Indian mathematics aims at convinc-
ing students of the validity of theorems with a visual demonstration of geometry, 
mostly viewed as a construction to show how results hold true. In fact, most students 
seem to rely on the scheme of construction to understand how results come to be 
true and/or how facts hold true. Even mathematicians are said to do so to convince 
themselves first, while systematic proof or demonstration is required only at a later 
stage. That is, many basic properties (e.g., axioms, definitions, and rules of infer-
ence) are taken for granted while working and only explicitly formulated for publi-
cation. If those properties are omitted, however, then the core structure of 
mathematical derivation contains the scheme to show how facts come to be true. In 
a sense, it is hardly different from what medieval Hindu mathematicians and 
astronomers did.

Upapattis in geometry are not a Euclidean type of proof or demonstration but can 
be somewhat compared with constructions in Euclidean geometry (e.g., construction 
of a triangle with a straight edge and compass) with justification. The problem, 
albeit not in the form of a theorem, is given with a brief scheme of how to make the 
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construction. For example, “To draw a square equal to the difference of two squares” 
(Amma, 1999: 45), it states:

Wishing to deduct a square from a square one should cut off a segment by the side of the 
square to be removed. One of the lateral side of the segment is drawn diagonally across to 
touch the other lateral side. The portion of the side beyond this point should be cut off. 
(English translation based on the Apastamba Sulvasutra)

In demonstrations of geometry (e.g., to convert a rectangle into a square), the 
construction of schemes involves terms such as “to cut off a part,” “juxtaposed,” and 
“fill in” in ways similar to making paper cuttings and fillings. As such, it does not 
show any abstract concept of demonstration such as that in Greek geometry. Because 
geometry seems to have a relatively calculative nature concentrating on metric 
notions of length and area and using algebraic notion, geometric algebra could be a 
major contribution to early Indian mathematics, as mentioned by Seidenberg 
(1975: 289):

Becker accepts, though hesitatingly, an early date for the Indian geometry (the 8th century 
B.C.). Since the sulvasutra have the theorem of Pythagoras, Becker looks to old- Babylonia 
for the source of Indian geometry. … The Sulvasutras convert a rectangle (say, a by b) in a 
typical geometro–algebraic way; the old Babylonian would simply multiply a by b and take 
the square root. The Indian priest constructs the side of the required square; the old 
Babylonian computes it. So, the geometric algebra of the Indians could not very well have 
come from the old Babylonians. And it could not have very well come from the Greeks, at 
least not in 8th century B.C. And if the Greeks got its geometric algebra from the Indians, 
then the history of Greek mathematics has to be rewritten.

That excerpt captures the nature of Hindu mathematics and its style of reasoning. 
Upapattis, as the means of the demonstration and justification of mathematical 
truth, use both geometrical and algebraic approaches in deriving, for example, the 
Pythagorean theorem, as done by the great twelfth-century Hindu mathematician 
Vaskaracharya (Joseph, 1994). The combined geometrical–arithmetical approach 
can also be observed in the development of infinite series expansion, including the 
series for the expansion of π (π  =  4–4/3  +  4/5–4/7  +  …) by mathematicians in 
southern India in the fifteenth century (Amma, 1999: 166), regarded as one of the 
more sophisticated developments of mathematical reasoning based on similar 
triangles and the summation of series. It is also a prime example of the extension of 
mathematics to infinite processes.

Nrsimha Daivajńa (1507) explains that the phala (“objective”) of a upapatti is 
pánditya (“scholarship”) and the removal of doubt that can lead one to reject 
misinterpretations made by others due to bhranti (“confusion”), among other causes 
(as cited by Ramasubramanium et al., 2008). Such an interpretation of upapattis 
seems to have two major functions: to develop advanced intellectual integrity and to 
be free from any error or lack of clarity. In a sense, it relates to the process of ensur-
ing rigor, for it needs to be checked against errors in mathematical practice. The 
purpose of that mathematical development is to make mathematics valid. On that 
note, establishing the validity of mathematical knowledge by consensus among 
mathematicians and astronomers seems to have long been unique in Hindu mathe-
matical traditions. Indeed, large gatherings of scholars, especially in the Jain 
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community, were often held to (dis)confirm the validity of whatever subject was 
being discussed.

Increased attention to numbers and algorithms More attention to numbers, 
algorithms, and calculation has been a common characteristic in the development of 
Hindu mathematics, presumably made possible by the development of a place value 
numeration system as a fundamental basis for the development of mathematics in 
general. Ernest (2009) highlights the importance of Indian emphasis on numbers 
and calculation for the possible development of infinite series expansions by Kerala 
mathematicians between the fourteenth and sixth centuries. However, as mentioned, 
Hindu mathematics has commonly been criticized for lacking proof for valid 
mathematical results despite the field’s having developed numerous algorithms for 
facilitating calculation. Indeed, Hindu mathematics places greater emphasis on 
numbers and algorithms than methodology and foundations for reasoning. To 
understand the nature of the Hindu mathematical tradition regarding proof, rigor, 
and reasoning, it may be helpful to consider the underlying perspective.

Clarifying the nature and validation of mathematical knowledge, Gaṇita-Yukti- 
Bhāṣā (Ramasubramanium et al., 2008) mentions that the classical Indian under-
standing of the nature and validation of such knowledge seems to be rooted in the 
larger epistemological perspective developed by the Nyaya school of Indian logic. 
The distinguishing features of Nyaya logic important to the present discussion 
include the logic of cognitions (jnana), not propositions as in the Greek system, and 
the lack of any concept of pure formal validity distinguished from material truth. 
The text adds that Nyaya logic does not distinguish necessary from contingent 
truths (i.e., analytic and synthetic truths) or accord the logic (tarka) of proof by 
contradiction, as used in the development of Greek mathematics. Although the 
method of proof by contradiction is used occasionally, no upapattis support the 
existence of any mathematical object merely on the basis of logic alone 
(Ramasubramanium et al., 2008: 289). Instead, such objects seem to be partly based 
on the nature of mathematical knowledge, as considered in the next subsection.

The nature of mathematical knowledge Because the development of Hindu 
mathematics did not subscribe to any concept of absolute certainty but to an elevated 
intellectual level of mathematics free from confusion achieved by sharing in 
assemblies of mathematicians, it seems that rigor in mathematical proofs or upapattis 
developed in a way somewhat similar to Lakatos’s understanding of the genesis and 
justification of mathematical knowledge. In modern terms, such knowledge may 
thus be regarded as a quasi-empiricist type of knowledge. In any case, it differs 
entirely from the Greeks’ notion of indubitable and infallible mathematical 
knowledge. In the Hindu mathematical tradition, the term for mathematics (Ganita) 
literally means “the science of calculation,” and the field ranks supreme among all 
of the secular sciences (Datta and Singh, 1935: 7) in reference to Vedanga Jyotisa 
(1200 B.C.E.): “As the crests on the heads of the peacocks, as the gems on the hoods 
of snakes, so is the Ganita as the top of the sciences known as the Vedangas.”
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Even though mathematical knowledge is given a supreme position among all 
secular sciences in the Hindu tradition, it has no concept of absoluteness, which 
may be one reason why the Hindu mathematical tradition did not subscribe to the 
concept of absolute truth as in Greek tradition. In turn, the tradition had no need to 
subscribe to the notion of perfect rigor in mathematical derivation based on self- 
evident truths and the rules of logical inference as done by the Greeks. That 
difference in the nature of mathematical knowledge seems to be a primary reason 
for the difference in rigor and reasoning between Hindu and Greek mathematics.

20.5  Philosophical Reflection

The philosophy of mathematics generally does not treat specific mathematical ques-
tions but instead attempts to present thoughts, produced through reflection, on what 
mathematics is and what mathematicians do and to contemplate the present state of 
affairs in mathematics. It is not mathematics; on the contrary, it is about mathemat-
ics, as mentioned by Rényi (2006) in “A Socratic Dialogue on Mathematics.” It 
might be one of the reasons why Hersh, in the preface of his book What Is 
Mathematics Really? (1999), states that Richard Courant and Herbert Robbins in 
their book, What Is Mathematics? Courant and Robbins (1941/1996), do not answer 
the question raised by their book’s title, a book nevertheless praised by Albert 
Einstein and Herman Weyl as a work approaching perfection and an astonishing 
examination of the extent of what mathematics is. Although What Is Mathematics? 
has been exceptionally useful for understanding many fundamental concepts of 
mathematics, it does not explicitly deal with the question of what mathematics is, 
because that question is basically one of philosophy. The task of the philosophy of 
mathematics is to “reflect on” and “account for” the nature of mathematics (Ernest, 
1991: 3), as Ernest (1998) examines in detail. In this section, my focus is to examine 
philosophical reflections on axiomatic models and the concept of rigor that form the 
basis of formal mathematics.

The twentieth-century development of the three schools of logicism, formalism, 
and constructivism (incorporating intuitionism) was primarily guided by the pur-
pose of establishing a firm foundation for mathematics with absolute certainty. By 
extension, Ernest (1998: 53) characterizes philosophers of mathematics as 
philosophically inclined professional mathematicians, who, with their foundationalist 
programs, focus on the philosophy of mathematical concerns and problems. 
However, the philosophers of mathematics that developed those schools could not 
establish a foundation of absolute truth in mathematics despite numerous attempts, 
because Kurt Gödel’s incompleteness theorem checkmated the foundationalists’ 
programs, especially the Hilbert program (Hersh, 1999: 138). If philosophers other 
than mathematicians were involved in the development of the philosophy of 
mathematics, then the case could have been different. Arguably, the interest and 
intention of well-known mathematicians involved in the establishment of the 
foundation of the philosophy of mathematics created a new perspective on the 
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relationship between mathematics and philosophy. The maverick philosopher Hersh 
(1999: 151) quotes Hilbert’s motive for engaging in the philosophy of mathematics:

I wanted certainty in the kind of ways in which people want religious faith. I thought that 
certainty is more likely to be found in mathematics than elsewhere.

… Having constructed an elephant upon which the mathematical world would rest, I 
found the elephant tottering, and proceeded to construct a tortoise to keep the elephant from 
falling.

That quotation reveals that the motive behind Hilbert’s formalistic philosophy 
was to discover the means of achieving certainty in mathematics. However, that 
motivation indicates an intention of imposition, not one of internal necessity.

In a sense, the axiomatic method seems to be intimately related to mathematics 
as hereditary stresses as demanded for its own sake. In another sense, the method is 
not genuinely inherent in mathematics. In studying the evolution of mathematical 
concepts, Wilder (1967) distinguishes two types of influences: cultural influences, 
which he referred to as “hereditary,” and environmental influences, meaning that the 
development of most early mathematics, including arithmetic and geometry in their 
primitive forms, was due to environmental aspects. By contrast, the axiomatic 
development of mathematics, such as captured in Euclid’s Elements, was chiefly 
due to hereditary stresses. In that case, the hereditary aspect indicates that the 
arrangement of mathematical concepts in the form of structures (e.g., in Euclid’s 
Elements) was mostly forced by an internal need to cope with paradoxes (e.g., 
Zeno’s paradoxes) and problems, including the problem of the incommensurability 
of the sides and diagonals of rectangles and squares. Wilder (1967: 115) writes, 
“Most historians seem to agree that crises, attendant upon the attempts to cope with 
paradoxes such as those of Zeno, compelled the formulation of a basic set of 
principles upon which to erect the geometrical edifice.” The axiomatic method is, 
without a doubt, the single most important contribution of ancient Greece to 
mathematics, which tends to deal with abstractions and which recognizes that proof 
by deductive reasoning offers a foundation for mathematical reasoning 
(Kleiner, 1991).

Both Wilder and Kleiner attribute the development of the axiomatic method to 
the necessity of mathematics. Mueller, by contrast, critically counters Zoltan 
Szabo’s position that the shift from empirical to pure mathematics was closely 
connected with the idealistic, anti-empirical character of Eleatic and Platonic 
philosophy. He insists that a Euclidean derivation is a thought experiment of a 
certain kind, an experiment intended to show either that a certain operation can be 
performed or that a certain kind of object has a certain property, and hence Euclidean 
derivations are quite different from Hilbertian ones, which are usually said to 
involve no use of spatial intuition. He mentions that the evolution of the axiomatic 
method is explicable solely in terms of the desire for clarity and order in geometry 
while the philosophical conceptions of mathematics, such as those of Plato and 
Aristotle, were more probably the result of philosophically colored reflection on 
mathematical practice than causes of that practice. Referring to Kline (2008), 
Yehuda Rav (2008) mentions that it is generally accepted that the organization of 
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mathematical knowledge on a deductive basis has roots in the teaching of Plato. He 
further refers to Kline (2008) to mention that Euclid who organizes the Elements in 
the third century B.C.E lived in Alexandria and it is quite certain that he was trained 
as a student in Plato’s academy.

Another historian of mathematics, Seidenberg, seems to be one of the harshest 
critics of the axiomatic development of Euclidean geometry. In his 1975 article 
“Did Euclid’s Elements, Book I, Develop Geometry Axiomatically?”, Seidenberg 
states that we have all been told in childhood that Euclid developed the axiomatic 
method, but that conclusion seems amiss after viewing Elements with modern 
hindsight. According to Seidenberg, the first three postulates—“To draw a straight 
line from any one point to any point,” “To produce a finite straight line continuously 
in a straight line,” and “To describe a circle with any center and distance”—are bona 
fide axioms in the sense that they serve to control the straight edge and compass; 
however, they are not axioms for the development of geometry and indeed reveal 
nothing about space. Referring to Seidenberg’s article, Yehuda  Rav (2008: 137) 
quotes the same paragraph and summarizes it by asking, “Could it be that, by 
insisting on the axiomatic method, we are viewing The Elements from a false 
perspective.” On the contrary, another historian of mathematics, T.  L. Health, 
admired the genius of Euclid and concluded that the fifth postulate was a postulate, 
not a theorem to be proven, which took 20 centuries of attempts to finally realize (as 
cited by Seidenberg, 1975: 271).

The above examples are representative of not only contrasting views on the 
development of the axiomatic method in the pioneering work of Euclid’s Elements 
but also of the necessity of the axiomatic method as the working basis of mathemat-
ics. Yehuda Rav (2008:30) argues as to where the axioms do come and where the 
axioms do not come in, and, where it seems to be indispensable and where subsid-
iary. He says unlike the indispensable place of axioms in foundational studies and 
mathematical logic in general, when looked at other branches of mathematics, it is 
striking what subsidiary role, if any, is played by axioms other than in geometry or 
in the introduction of structural axioms that define the subject matter of the theory 
(such as in group theory). In analyzing the situation, he writes, from its starts 
analysis stands out as an example of non-axiomatic edifice, but Dedekind’s essay on 
continuity and irrational numbers was intended as an axiomatic basis of analysis. He 
claims that analysis has never been axiomatized as a deductive theory as it devel-
oped. The rigorization and axiomatization of calculus were made mostly in 19th and 
20th century with arithmetization and giving precise definitions of the key concepts 
(such as, function, limit, continuity, derivative, and integral) and developing rigor-
ous proofs.

What seems to me is that the axioms and definitions are also needed in mathe-
matical development for they characterize/specify the abstract mathematical entities 
(for the mathematical system) which is a kind of creation/construction in mathemat-
ics. Otherwise, how could one characterize mathematical notion like groups, real 
numbers, and complex numbers? It is important to note that intuitively appealing set 
of counting numbers were needed to be axiomatized as Peano’s postulates only in 
the nineteenth century to lay foundation for arithmetic. Such situations might also 
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indicate that the axiomatic basis of mathematics became necessary at some point in 
its development sooner or later depending on the nature and development of the 
subject considered. Peano’s postulates characterized the notion of counting num-
bers, provided the basis for systematically going forward to any counting numbers, 
and gave a basis for mathematical induction. The other thing to be noted is that the 
perceptive philosophers, like Plato and Aristotle, might have perceived the necessity 
of deductive reasoning to go forward from some basic assumptions which have been 
found most dependable in mathematics. Not only the modern foundationist philoso-
phers (like Frege, Russell, Hilbert, and Godel) but also logicians and mathemati-
cians have also felt the necessity of an axiomatic model in mathematics. Although 
it is said that working mathematicians rarely work on the basis of an axiomatic 
model in most areas of mathematical construction, most mathematicians seem to 
have strong faith in it. In many cases, a working mathematician may create mathe-
matics constructively, and then in order to justify and communicate it to the circle 
of mathematicians, he/she may need to seek a convincing basis which in turn draws 
on an axiomatic basis as the valid reference. This is why both the mathematician 
and the philosopher may have some common concerns on the rigor and axiomatic 
basis of mathematics.

Traditionally, rigor in reasoning is based on axiomatics, as demonstrated in 
Kitcher’s (1981) definition, because central to the idea of rigorous reasoning is that 
it should contain no gaps and that it should proceed by means of elementary steps. 
In the development of the mentioned three schools, especially formalism and 
logicism, the rigorous development of mathematical thinking has been the primary 
function of the philosophy of mathematics and has been intimately related to the 
fulfillment of the philosophical purpose of achieving the absolute certainty of 
mathematical knowledge. But, rigor is not only dependent on axiomatics; however, 
as illustrated by Kitcher (1981), Isaac Newton and Gottfried Wilhelm Leibniz (the 
founders of calculus) felt problems in his interpretation of a derivative. Kitcher 
shows how Newton faced problems in interpreting the derivative in a rigorous way. 
In that case, rigor might have been considered differently in geometry and calculus. 
The arithmetical interpretation of the notion of integration independent from 
geometrical intuition might be regarded as rigorous in analysis insofar as it further 
clarifies and generalizes the concept in the domain of real numbers. The development 
of calculus in the nineteenth century made many concepts clear by formulating 
concepts through definitions, and intuitive concepts explicitly formulated that 
helped to conceptualize them precisely resulted in the further conceptualization of 
the subject. Such cases might represent rigor in non-axiomatic settings. If we 
consider rigor in light of its precise meaning as in calculus and analysis, then it 
might seem to be more internal to mathematics and independent from philosophy.

Much of the literature indicates that the development of the Greek axiomatic 
method was closely connected with the dialectical method in Greek philosophy. 
Referring to Aristotle’s Posterior Analytics, Mueller quotes the Greek philosopher’s 
view insisting that the assumptions of science be not merely true but also primary, 
immediate, and more known causes of the conclusion drawn from them. Such views 
indicate the influence of philosophy on the axiomatic method and on the development 
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of rigor in modern mathematics. Such is especially the case of the Eurocentric 
mathematical tradition being the custodian to ancient Greek thinking. Since the 
Eurocentric mathematics curriculum has been globalized in the name of valid math-
ematics, thus in practice, it has been the only mathematics that we think about and 
perform. That circumstance explains the necessity of examining the nature of the 
mathematical development of non-European culture, which is found to differ in 
nature from Western mathematics. In that context, the development of Hindu math-
ematics seems to be an important one for shedding light on the nature of mathemati-
cal knowledge.

Hindu mathematics, despite being rich and contributing significantly to the 
development of mathematics in general, lacks formal axiomatic proof in 
mathematics, as mentioned. As such, various questions arise: If so, does not the 
development of Hindu mathematics contain valid and rigorous proof? And what 
then is the philosophical basis behind them? The Hindu mathematical proof of the 
upapatti, a means of convincing argumentation for students to grasp the validity of 
theorems via visual demonstration as an acceptable form of proof in geometry 
(Amma, 1999: 3), is compatible with recent views on thinking and teaching 
mathematics, in which proofs are recognized as convincing arguments in constructive 
ways. With upapattis as a means of establishing the validity of mathematical truths 
and removing doubt, Indian mathematicians agree that results in mathematics 
cannot be accepted to be valid unless they are supported by upapattis as mentioned 
in Ganitayuktibhasa (Ramasubramanium et  al., 2008: 288). On that 
topic, Ramasubramanium et al., refers to Nrsimha Daivajńa’s (1507) assertion that 
the phala (“objective”) of a upapatti is pánditya (“scholarship”) and the removal of 
doubt that can lead one to reject misinterpretations made by others due to bhranti 
(“confusion”), among other causes. Thus, rigor is achieved through an elevation of 
intellect accompanied by the removal of any confusion or error, while validity is 
achieved by consensus among mathematicians.

Such a view on mathematical thinking seems to be somewhat similar to the 
quasi-empiricist view on mathematics stating that mathematics is a dialogue 
between people tackling mathematical problems (Lakatos, 1976). The quasi- 
empirical nature of Indian mathematics, at least to some extent, makes it analogous 
to the natural sciences. In the chapter “The Genre of Indian Mathematics,” Khim 
Plofker (2009) mentions, via an Indian source, that Indian mathematics mostly 
served as the handmaid of astronomy, while credit for divorcing mathematics from 
astronomy is particularly due to Bakhshali manuscript and mathematicians 
Mahāvīra, from the ninth century, and Sridhara, from the ninth and tenth centuries. 
As a result, Hindu mathematics developed in the service of religion. The religio-
astronomical orientation of Hindu mathematics differed from that of the develop-
ment of Western mathematics, which seems to have been motivated by a combination 
of mathematics and theology beginning with Pythagoras and, from there, character-
ized religious philosophy in ancient Greece, in Europe in the Middle Ages, and the 
West in modern times through Immanuel Kant (Russell, 1957). According to Russell 
(1957:37), there has been an intimate blending of religion and reasoning, of moral 
aspiration and logical admiration for what is timeless, all of which comes from 
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Pythagoras and distinguishes the intellectualized theology of Europe from the more 
straightforward mysticism of Asia. Russell characterizes the nature of Western 
intellectual thinking as that which gave rise to the timeless truth of mathematics. 
That view on the development of Western mathematics indicates both a philosophi-
cal and mathematical basis for the development of the axiomatic method and rigor 
based on it, as well as differs from the relatively naive basis of the Hindu mathemat-
ical tradition.

20.6  Summary and Conclusion

Rigor in reasoning and the axiomatic basis of proof seem to be central to a mathe-
matical proof in general. Whereas rigor is primarily guided by an intention to 
achieve the flawless derivation of mathematical truths, the axiomatic model of proof 
seems to have resulted from ancient Greeks’ intellectual and cultural tradition 
motivated particularly by the philosophical thinking of Plato and Aristotle. The 
dynamic between them can be examined along at least two lines of thinking. On the 
one hand is the thinking of Mueller (1969), which insists that the evolution of the 
axiomatic method is explicable solely in terms of the desire for clarity and order in 
geometry and that the philosophical conceptions of mathematics, including those of 
Plato and Aristotle, were more probably the result of philosophically colored 
reflection on mathematical practice than on the causes of that practice. On the other 
hand is Wilder’s (1967) thinking that the development of the Greek axiomatic 
method was closely connected with the development of the dialectical method in 
Greek philosophy, which is also Szabo’s (1969) view. Wilder (1967: 115) writes 
“Most historians seem to agree that crises, attendant upon the attempts to cope with 
paradoxes such as those of Zeno, compelled the formulation of a basic set of 
principles upon which to erect the geometrical edifice.” He pointed out that the role 
of the axiomatic method in Greek mathematics seems to have been a twofold 
objective, the provision of foundation which at the same time met the current charge 
of inconsistency, where the later one may have been the motivating factor (p.117). 
However, formal axiomatic thinking in mathematics from the twentieth century was 
guided by the purpose of establishing consistent mathematical truths, which, in 
effect, demanded rigor based on axiomatic and formal logic. In turn, the twentieth- 
century foundationalists such as Hilbert and Russell (with Whitehead) put forth 
great effort in different ways to lay a firm foundation for the absolute certainty of 
mathematical knowledge and protect it from contradictions and antinomies that 
arose at the turn of the century (Ernest, 1991: 8). But the humanist/maverick 
philosopher Reuben Hersh mentions that such attempts have been checkmated by 
Godel incompleteness theorems. Maverick and social constructivist thinkers have 
explained the mathematical rigorous development as a cultural function.

Social constructivists view the precise development of formal reasoning in math-
ematics as indicating a higher level of cultural growth. To explain its cause, Sal 
Restive (1994: 216) writes that the greater the level of cultural growth, the greater 
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the distance between the material ground and its symbolic representation, and the 
more that the boundaries separating mathematics worlds from each other and from 
social worlds thicken and become increasingly impenetrable. Such an interpretation 
explains why pure mathematics seems to be isolated from the social world. A similar 
reason might apply to its relationship with philosophy, because the philosophy of 
mathematics is also an outcome of cultural growth that addresses mathematics from 
a different perspective. Because philosophy is not mathematics but about 
mathematics as seen from a distant position (Rényi, 2006), philosophy takes a 
distant view of mathematics, one that seems to be remote but is in fact powerful and 
provides the grounds for the existence and justification of mathematical truths by 
characterizing the nature of mathematical knowledge. Nevertheless, in the case of 
twentieth-century foundationalist philosophers such as Frege, Hilbert, and Russell, 
philosophy plays a different role. Indeed, well-known mathematicians such as 
Hilbert sought ground on which to establish mathematics as being absolutely true. 
To that purpose, he purposively imposed his theory of meta-mathematics to make 
that foundation rigorous. Being a mathematician–philosopher, he also attempted to 
rescue philosophy by providing that firm foundation and gave rigorous treatment to 
Euclidean geometry, a prime example of a modern axiomatic model. Thus, his 
meta-mathematics can be viewed as an imposition for the purpose of creating 
absolute rigor in proof. In that and other ways, philosophy has been related to rigor 
and the axiomatic method.

By contrast, the remarkable development of Hindu mathematics (Almeida & 
Joseph, 2009), one without axiomatic rigor or any well-formed philosophical 
presumptions, tells a different story of the development of mathematics. Even 
though Hindu mathematics lacks proofs based on axiomatics, it developed reasoning 
for the clarification and validation of mathematical truths in upapattis, a form of 
convincing argumentation. Hindu mathematics was also developed in the service of 
religion and bears a religio-astronomical orientation (Amma, 1999: 4). Even so, the 
religio-astronomical orientation of Hindu mathematics differs from the orientation 
of the development of Western mathematics, which seems to have been motivated 
by a combination of mathematics and theology beginning with Pythagoras. 
According to Russell (1957: 37), the intimate combination of religion and reason-
ing, of moral aspiration and logical admiration for what is timeless, comes from 
Pythagoras and distinguishes the intellectualized theology of Europe from the more 
straightforward mysticism of Asia. Thus, the development of timeless truth in math-
ematics has been based on axiomatics and logical rigor, largely motivated by the 
desire for absolute truth in mathematics. The axiomatic method is taken to be the 
single greatest contribution of ancient Greek thinking and thus remains dominant in 
mathematics. By the same token, not having been motivated by such thinking, even 
with the active contact of India and Greeks in centuries past, is viewed as being one 
of the great lapses of Indian scholarship (Amma, 1999: 4).

Due to the lack of any deductive or axiomatic structure in mathematical results, 
Hindu mathematics may have missed opportunities to face logical problems such as 
mathematics in Greece faced during its development. After all, the method of proof 
by contradiction is used rarely and only to show the nonexistence of certain entities. 
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From a sociocultural perspective, that development should not be viewed as a lapse, 
but as a different route toward mathematics that did not require using the Greek 
style of deductive–axiomatic thinking. Because Hindu methods were pedagogically 
oriented to convince students of the validity of mathematics, many well-known 
scholars composed commentaries in addition to their original contributions, which 
also became of pedagogical use. The oral transmission of knowledge in gurukul 
education also preserved those methods. Although those methods may seem to 
represent naive mathematical thinking, one not bothered with the problem of 
absolute certainty and geared toward the solution of problems without any presumed 
conception of ideal mathematics, they might also direct us toward thinking in 
alternative ways. At the very least, they convey that an emphasis on rigor and 
axiomatics is not the basic universal character of mathematical thinking or teaching.

In light of the above discussion, it seems that the axiomatic method and the con-
cept of rigor based on it are not inherently contingent in mathematics but instead 
motivated by a particular intellectual–cultural development. Even so, rigor as the 
flawless, clear, precise, and organized elevation of intellectual thinking in 
mathematics seems to be more innate to mathematics in the sense that both proof 
and upapatti share the common purpose of justification and the elevation of intellect 
(budhi-vridhi). Despite differences in the nature of their development, they seem to 
share the common basis of mathematical objectivity, as also seen in the development 
of Egyptian geometry, which was guided by the purpose to measure land, and the 
development of Hindu geometry, guided by the religious purpose of making altars 
and fireplaces. Such objectivity in mathematics might be a common motivation 
among mathematicians, and the logical axiomatic method used in mathematics is 
the rule for organizing and preserving the certainty that mathematicians value.

Indeed, most mathematicians seem to believe in some kind of certainty in their 
mathematical discoveries: that certain sudden “A-ha!” or “Eureka!” moment during 
their mathematical thinking (Byers, 2007: 329). However, maverick philosophers 
Hersh and Steiner (2011: 54) interpret that feeling of certainty as an aesthetic 
pleasure—a satisfaction with deep, clear thinking—and as simply the emotional 
roller coaster of discovery. Nevertheless, belief in the certainty of mathematical 
knowledge seems to be common among users of mathematics, including teachers 
and students, most likely, I think, due to the usefulness and dependability of 
mathematics (Shrestha, 2019). Certainty also seems to be the common motivation 
of most mathematicians and philosophers, though they differ in their vocations. 
Ancient Hindu thinkers ranked Ganita as being supreme knowledge above all other 
knowledge but did not subscribe to the notion of absoluteness. The axiomatic 
method, as a special attribute of the ancient Greeks’ intellectual development and its 
pursuit of absolute truth, seems to have a unique philosophical orientation in 
addition to a mathematical basis. However, exceeding emphasis on axiomatics and 
rigor based on it, including that endorsed by Hilbert and Russell (with Whitehead), 
seems to be exceedingly intentional and can be viewed as an intended imposition 
(motivated by the desire to meet the crisis in the foundation caused by the set- 
theoretic foundation), even if all mathematical constructions in a sense are 
intentional to some extent.
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Chapter 21
Idealism and Materialism in Mathematics 
Teaching: An Analysis 
from the Socio- epistemological Theory

Karla Sepúlveda Obreque and Javier Lezama Andalon

21.1  Introduction

Teaching of mathematics is a part of social sciences. However, mathematical knowl-
edge itself does not have a clear connotation or at least a single acceptance by the 
entire population. Philosophy of mathematics has tried to find ontological and epis-
temological answers to the problem of mathematics and its nature. The discernment 
of its origin and nature have generated different philosophical positions throughout 
history. Sometimes these positions have not only been different but also contrary to 
each other. For Zalamea (2021), the efforts of the philosophy of mathematics have 
focused on answering issues related to its being and nature, but it is still pending to 
deal with historical and phenomenological issues related to this knowledge.

These ways of thinking and understanding knowledge, reality, and mathematical 
knowledge, in particular, are present and expressed in the classroom during the 
activity of teaching mathematics. Its manifestations are not always perceptible and 
can become unconscious in teachers and students. Sometimes they are deliberate 
choices made by teachers according to their ways of thinking or understanding 
reality.

Two philosophical currents that understand mathematical knowledge in a differ-
ent and contrary way are idealism and materialism. Both are present in the teaching 
of mathematics in the classroom. The aim of this chapter is to reflect on their expres-
sions in the classroom and their implications. The reflection we present is based on 
an approach of the socio-epistemological theory.
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Idealism as a philosophical current is commonly related to the philosophy of 
Plato, who proposes that the authentic reality is in the world of ideas, and not in the 
reality sensible to our senses. This idea corresponds to a priori conceptions of 
knowledge. For Plato, ideas are the true reality, because unlike the sensible and 
changing world captured by our senses, ideas are eternal and immutable. From this 
perspective, the senses give us knowledge of the particular, but the universal is only 
attainable through reason. For its part, German idealism, with representatives such 
as Fichte, Schelling, or Hegel, rejects the notion of noumenon, nothing exists 
beyond known reality. For Echegoyen (1997) German idealism enhances the active 
role of the cognizing subject and affirms that all aspects of known reality are a 
consequence of its activity. For his part, Zalamea (2021) explains that epistemological 
idealism does not need to rely on real correlates, because its truth values are ideas.

In opposition to idealism, materialism as a philosophical current grants reality a 
material character, which is governed by the laws of motion of matter. For Reyes 
(2020), in materialism, consciousness has a secondary character. For philosophical 
materialism, matter is not created by the materialization of an “absolute idea” or of 
a “universal spirit,” it exists eternally and develops by the laws that govern 
movement. Philosophical thought, matter, nature, and being are an objective reality 
that exists outside our consciousness and is independent of it. Thus, thought is a 
product of matter and is elaborated by our brain. In other words, knowledge is a 
posteriori.

Social epistemology as a theory of educational mathematics deals with the study 
of didactic phenomena linked to mathematical knowledge, assuming the legitimacy 
of all forms of knowledge, whether popular, technical, or cultured, since it considers 
that they, as a whole, constitute human wisdom (Cantoral et al., 2014). The socio- 
epistemological research program differs from classical programs because it is 
concerned with explaining the social construction of mathematical knowledge and 
institutional diffusion. Considering that mathematical knowledge is the result of a 
process of social construction in situated contexts gives social epistemology a 
character of a materialistic theory.

Socio-epistemological theory is concerned with the study of man doing mathe-
matics in specific contexts. With this, it makes up for the lack of attention that the 
philosophy of mathematics has paid to the historical contexts and situations that 
give rise to mathematical knowledge.

Socio-epistemological studies are characterized by problematizing knowledge, 
historicizing it, and dialectizing it. This theory takes elements from mathematics 
and social sciences. From mathematics, it considers its cultural dimension, and 
from the social sciences, it considers the acceptance of the construction of shared 
meanings. A preliminary statement of the socio-epistemological research program 
is that mathematics is a human creation situated in particular socio-historical 
contexts.

For some, reality and knowledge have been understood as matters in general. For 
example, for idealism concepts such as immutability and universality are 
endorsements of absolute general truths. Sometimes it has been thought that these 
general matters are governed by general laws, such as the invariable laws of nature. 
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Newton and Linnaeus thought that nature and organic beings were general and 
immutable matters, but today we know that this is not the case. Nature and all 
organisms not only mutate, but their changes are the product of their own stories. 
That is, the current state of all things and reality are a particular historical result.

In Smith (1982) and Ricardo (2001), reality and knowledge are understood as the 
product of the individual action of man on his environment to obtain subsistence 
conditions. This way of thinking was called Robinsonades by the nineteenth-century 
materialists.

Marx (2007) explain that in the Robinsonades of the eighteenth century, pre-
sented a subject isolated from society who manages to subsist alone in nature, 
becoming the starting point of history. This idea that conceives the possibility of an 
individual without a social bond is qualified by materialists as something unrealiz-
able. To refute the idea of an individual devoid of a social bond, Marx (2007) com-
pares it to the possibility of the emergence of language without individuals.

According to materialist positions, the existence of a human being without social 
fabric isn’t possible. The current social density makes impossible the existence of 
the individual outside of society. The social reality and the set of historical elements 
of a particular moment are those who imprint the determining characteristics on the 
production processes and the products involved in these processes. The products as 
products and at the same time inputs for new productions are influenced by their 
historical context of production. The same happens with the production of 
mathematical knowledge, as a social, historical, and territorially situated production.

In this way, knowledge understood as a human product arises from a production 
process where the man who produces it is also transformed, going from a producer 
of knowledge to a product of his own production process. In sum, man is no longer 
the starting point of history, but a product of history. In short, man and knowledge 
exist and are the product of their social-historical reality in particular. This way of 
understanding knowledge happens for the production of mathematical knowledge 
and situates it as a historical product.

The socio-epistemological theory does not consider mathematical knowledge “in 
general,” because from the historical understanding of the production processes, 
mathematical knowledge is understood as a “particular situated” product. Socio- 
epistemology conceives man as a gregarious being, part of a historically determined 
social group, which is why it conceives of knowledge as a particular historical 
product. Socio- epistemological studies understand and address mathematical 
knowledge in four dimensions: epistemological, didactic, social, and cognitive.

A principle of socio-epistemology that accounts for this way of thinking is the 
principle of epistemic relativity. This principle validates various ways of knowing 
and meaning in mathematics. Other socio-epistemological principles that show the 
materialistic nature of the theory are contextualized rationality, progressive 
resignification, and the normative principle of social practice. Regarding the value 
of mathematical knowledge, for Cantoral (2013) it consists in the use that people 
can make of it. Production and use value form an indivisible unit in the very 
production of mathematical knowledge.
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The socio-epistemological theory seeks to explain the social construction of 
mathematical knowledge, considering it as an epistemological alternative that 
incorporates the social component. Understanding the social not only as the idea of 
interaction between people of a social group, but from socio-epistemology it is 
described as the set of regulations that regulate the behavior of groups. In the 
interview with OEI, Cantoral (2019) explains that these groups can be the inhabitants 
of a geographic region or the students of a course in a primary school. This chapter 
will analyze the presence of idealistic and materialistic positions in the teaching of 
school mathematics from a socio- epistemological perspective.

21.2  Mathematical Knowledge: A Vision from Idealism 
and Materialism

Idealism and materialism as philosophical currents, like the rest of philosophy, seek 
the ultimate meaning of the consciousness of the world and of all forms of existence. 
In the case of mathematical knowledge, these currents of thought problematize the 
duality “universality or particularity.” Zalamea (2021) explains that there is a tension 
between the uniqueness or multiplicity of the objects and methods of mathematics, 
as well as of mathematical thought in general. He adds that resolving this binary 
situation is not simple, since it requires a complex analysis of reality in an 
integrated manner.

Reflecting on the dualities in mathematical knowledge, on the existence of the 
plural or the singular, the objective or the subjective of this knowledge, the universal 
or the particular of mathematics, is not something new. For centuries philosophers 
have been dealing with these questions and have disagreed among themselves. For 
example, Engels (1960) mentions that for Dühring philosophy is about the 
development of the highest form of consciousness of the world and of life and 
includes in a broad sense the principles of all knowledge and all will. If ideas are 
accepted as they are, it is necessary to be able to answer what those principles are 
and what their origin is. Those could come from the mind and thought or from the 
physical world. Solving issues like this occupy philosophy and at the same time 
divide it.

The different ways of understanding reality are related to the way in which we 
understand the origin and nature of knowledge. For his part, Zalamea (2021) states 
that it is not convenient to unilaterally choose one current of thought or another. 
According to him, in mathematics there is a mixture between realism and idealism 
that does not allow us to have ontologies or a priori epistemologies without first 
observing all mathematical knowledge in detail. Regarding whether mathematics 
comes from the world of a priori ideas or from the physical world, Celluci (2013) 
states that there is evidence from cognitive science that as a result of biological 
evolution we have “core knowledge systems” that are phylogenetically ancient, 
innate, and universal. These systems capture the primary information of the positive 

K. Sepúlveda Obreque and J. Lezama Andalon



433

integer system and the Euclidean plane geometry system. He calls these “natural 
systems.” He adds that there is also an artificial mathematics, which is constructed 
by humans and is not the result of their biological evolution. It is rather the result of 
the need to develop models, maps, or symbol systems. From the socio-epistemological 
theory, the concept of “social practice” refers to the activity of the human being in 
the environment in which it develops. Cantoral (2013) explains that social practices 
generate mathematical knowledge. Some social practices that are identified in 
different human groups are count, measure, compare, approximate, predict, equate, 
infer, visualize, and anticipate.

Mathematical knowledge, however, it’s conceived, is a philosophical matter par 
excellence. When studying mathematical knowledge in philosophical study, we find 
that the main difference between the different principles of philosophy lies in the 
origin attributed to them. For idealists, the construction of the world and reality 
come from thought, mental constructions, and invariant categories that precede man 
and his history. For materialists this is not so, for them knowledge and mathematical 
knowledge in particular, does not come from thought detached from the external 
world. They come from human action on the external world, so the principles that 
govern it are not the starting point of knowledge, but the historical result of man’s 
productive work. In this way, mathematical knowledge is not a way of thinking that 
is applied to nature and history but is a product that is obtained from them.

In a critique of idealism from a materialist, Marx’s position uses the concept of 
ideology or false consciousness of reality to refer to what he describes as an inverted 
understanding of reality. He criticizes those who try to explain from the development 
of ideas, issues of nature, or the human person. This understanding of things would 
be inverted because it is based on unjustified basic ideas or assumptions on which 
its validity depends. In the formal constructions of mathematical knowledge, there 
are also basic discursive determinations called axioms which are established as a 
starting point.

The axioms correspond to truths that are accepted without proving them, and 
they are not provable from mathematics itself. These postulates are the product of 
our language and are established as truths that obey our intention to validate them. 
The axioms provide the discursive base with which mathematicians can advance in 
the establishment of theorems and discover the logical consequences of the 
conventions initiated from the terms of a theory. Arboleda (2002) discusses the 
difficulty of using the axiomatic- deductive method in mathematics research and 
teaching. He explains that it is possible to use the axiomatic method to base 
mathematics on a reduced number of simple principles, but emphasizes the 
importance of verifying in teaching and researching the agreement between the 
logical definition of an object and its experimental representation; by this he refers 
to the function called “deaxiomatization” proposed by Frechet. For his part, Celluci 
(2013) analyzes the inconsistency of the axiomatic method which he describes as 
the deduction of a group of basic axioms, which must be assumed to be consistent 
in order to justify a statement. In this way, Celluci validates the analytical method, 
because for this method the hypotheses used in the solution of a mathematical 
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problem do not have to belong to the same field of the problem, which broadens its 
resolution possibilities by integrating mathematics to other areas of reality.

In these types of issues lie the differences between idealists and materialists 
about mathematical knowledge. For some, this arises from logical inferences based 
on elementary a priori assumptions, and for others, mathematical knowledge is the 
result of a historical process of material intervention in nature that establishes 
transitory truths a posteriori.

In the philosophy of mathematics, platonic ideas dominate where mathematical 
objects exist governed by their own relationships with each other, those that occur 
independently of us and the physical world. For Platonism, mathematical meanings 
are explained in relation to their truth conditions that are justified or denied in 
mathematics itself. The opposite of this is to justify the meaning of a mathematical 
object considering the conditions that allow obtaining proofs of truth. Idealism as a 
philosophical current from its beginnings with Plato to the German idealism of the 
eighteenth century shares the idea that the knowledge of phenomena should tend to 
the ideal, should be, considering that the state of perfection of things is found in 
Metaphysical space. Idealism as a philosophical current from its beginnings with 
Plato to the German idealism of the eighteenth century shares the idea that the 
knowledge of phenomena should tend to the ideal, to the “must be,” considering that 
the state of perfection of things is found in metaphysical space. Engels (1961) in his 
Dialectics of Nature criticizes metaphysical mathematicians and mentions them as 
a mixture of remnants of old philosophies that boast of unshakable results using 
imaginary magnitudes. For example, holding that a=a as a principle of identity is 
only true in ideal terms, because no organism or object is equal to itself in nature, 
except at the same instant. An indisputable truth of material reality is that everything 
is constantly changing. Therefore, a correct mathematical philosophy should deal 
with the dialectical relationship of identity and difference in order to explain the 
state of things.

The general laws that are possible to establish from the verification of ideal 
objects are not really general in all time or all space. Its validity is limited to the 
space of ideas. For example, the concept of infinity corresponds to an ideal object. 
The set of Natural numbers (N) contains infinite elements. In reality there is no 
infinity, the universe is not infinite, for some it is expanding, and for others it is 
oscillating; therefore, there can be no straight lines or parallel lines or any infinite 
length in nature.

If these different ways of understanding mathematical knowledge are considered 
as opposing philosophical positions, it is worth asking which of them is correct. 
Answering that question requires a deep and complex analysis that cannot be taken 
lightly. To elucidate which current is true, it is necessary to establish what is meant 
by truth and to carefully review the historical development of each of them and the 
multiple elements that affect them, at least.

In relation to whether mathematical knowledge corresponds to ideal notions or 
to historically situated constructions from material reality, in Aboites and Aboites 
(2008), we find some questions that may help us to answer this dilemma:
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If Bohr’s theory of the atom talks about nuclei and electrons, are those nuclei and electrons 
real and do they exist as the theory predicts? Or, is Bohr’s theory of the atom just a useful 
tool for calculating the optical spectra of light atoms like hydrogen and helium, regardless 
of whether what the theory says about electrons spinning around nuclei exists in reality or 
not? Does the number Pi exist independently of whether there are human minds to conceive 
it, what is the relationship between logic and mathematics, are they the same thing, is 
mathematical knowledge just a game of chance, and are they the same thing? Are they the 
same? Is mathematical knowledge just a game based on symbols and rules? Do Gödel’s 
incompleteness theorems affect what we can or cannot say about the world? Is the logic of 
our thinking unique? Is mathematics essential to science, or can science be done without 
mathematics? Is mathematics part of a web of knowledge or is it independent of the world? 
(Aboites & Aboites, 2008, p.11)

In this chapter it is not intended to establish the character of truth of each one of 
them; however, from socio-epistemology we are interested in investigating if they 
are present in the teaching of school mathematics.

21.3  Philosophical Expressions of the School Curriculum

The school curriculum is a construct of a philosophical nature. This expression of 
the school itself contains ontological, epistemological, teleological, and axiological 
implications. With all this, the school determines the type of human being that it 
intends to produce from its anthropogenic function. With the curriculum, the school 
validates a type of knowledge as official, establishes the goals of the social subject, 
and attempts to institute official social values. In this way, students are trained from 
the school duty expressed through ethical assumptions of the curriculum that 
determine the socially standardized moral subject.

Our interest is to analyze epistemologically the expression of idealism and mate-
rialism in the teaching of mathematical knowledge. In consideration of the socio- 
epistemological character of our analysis, it is necessary to consider the didactic, 
social, and cognitive dimensions. For this, we will analyze some elements of the 
Chilean school curriculum.

The subject that deals with teaching mathematical knowledge in the Chilean 
school is called mathematics. The singular of the name is an epistemic evidence that 
shows that in the Chilean school only one mathematics is accepted as official and is 
taught. The first learning objectives of this subject indicate that children must count, 
read, compare, and order numbers in a field less than 100. The implicit character 
given to the idea of number accounts for abstract, independent, or metaphysical 
objects. In the consideration of the number as a mathematical object, a monocultural 
position is appreciated that does not include other forms of counting other than the 
use of the natural numbers N.

The natural numbers N included in the curriculum are a set that is established 
logically from the Peano Axioms. This axiomatic does not deal with defining the 
number, the same thing happens in the curriculum in the first courses. Students read, 
order, and compare numbers without knowing the definition of numbers. They 
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incorporate the concept of number with pictorial and concrete supports, sensing its 
possible meaning, without receiving a formal definition. The complexity of this lies 
in the difficulty of knowing and understanding abstract ideas if you do not have a 
clear definition of them.

The axiomatic of the natural numbers N contains the notion of infinity in the third 
axiom. By defining that every natural number has a successor that is also a natural 
number, it is established that it is a set with infinite elements. The notion of infinity 
is an abstraction that does not exist in nature, just as numbers do not exist. Its 
understanding requires the creation of mental structures associated with abstract 
ideas about ideal objects not possible to verify in the physical world. The students 
of the first school levels do not have the necessary evolutionary development to 
understand this type of ideas. Trying to make them understand them demands a 
great didactic effort from teachers who must use concrete representations to ensure 
that children have an understanding of the natural numbers N. In this sense, knowing 
and understanding mathematical objects proposed from idealism present great 
difficulties of understanding for school children of the initial courses.

The idea of infinity present in school mathematics is unaware of the natural 
world and physical laws as we know them. The laws that govern the phenomena of 
nature are mainly geocentric, and the development of science has made it possible 
to establish general laws that cover places outside the earth, but not the entire 
universe, so the idea of eternal or infinite laws is not possible. The infinite from 
mathematics is an abstraction, a creation of thought that exists in the world of ideas. 
This abstraction can be understood as an eternal repetition, an enormous magnitude, 
or the permanent development of something and brings with it the idea of movement. 
Perhaps the only way to explain the notion of infinity in relation to material reality 
is with the eternal state of movement and change. Didactic work with children will 
be more successful if they manage to relate what they need to learn with their 
context and their material reality.

The idea of numbers has been typical of various cultures and human groups 
throughout history. There are Roman, Egyptian, Mayan, and Mapuche numbers, to 
name a few. Each culture has created them with the intention of counting or 
quantifying, their differences lie in formal matters such as their writing, their base 
system, or their relationship with axiological or religious matters of the human 
groups that created them. For example, zero has been the object of study for having 
different meanings in the different numbering systems. For Aczel (2016) zero is 
“the greatest intellectual achievement of the human mind” (p. 201).

In Villamil and Riscanevo (2020), we find that in Egypt zero was used as a refer-
ence value in construction plans to refer to the base level. They add that in Chinese 
civilization zero was interpreted as the absence of elements. In Mesoamerica, the 
Mayans also used the zero and represented it with a snail shell. For Duque (2013) 
this symbol was associated with the cycle of the mollusk that was coming to an end. 
The Mayans also symbolized zero with a corn seed that represented the beginning 
and end of the cycle of a seed before changing levels and becoming a flower, which 
was understood as a spiritual level. Zero as we know it in the current decimal system 
is related to nothing. Villamil and Riscanevo (2020) quote Betti (2017) saying that 
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the symbol for zero was created by Ptolemy who used the first letter omicron with 
which the word ουδεν begins, which refers to nothing. These diverse meanings 
about zero account for socially and historically situated constructions, related to the 
material environments and cultural meanings of different human groups. In these 
constructions we observe the presence of axiological elements that are the result of 
a material way of life.

For students at the school stage, understanding the idea of the absence of ele-
ments in a set and its symbolism or the absence of value in some position of a num-
ber in the decimal system, are complex abstract ideas. These ideas may attempt to 
be represented concretely, but they do not exist in the physical world as they are 
described as mathematical objects. If, in addition, the mathematical notions 
presented to students are axiologically neutral, a new difficulty is added, because 
the material world in which they live and the things that surround them are related 
to values, which are a historical result of life in society.

The school curriculum contains a large number of idealistic elements and a pri-
ori conceptions of mathematical objects. Understanding mathematical construc-
tions as abstract and independent objects is a mono-epistemic expression that does 
not consider their social value and can cause cognitive difficulties in students. In the 
review of the school mathematics curriculum, we find that there is no evidence of a 
materialist position in it. On the contrary, the learning objectives of the different 
school levels contain various mathematical objects, all of which do not exist in the 
material or social reality of the student body. Despite the didactic guidelines that 
suggest contextualizing the teaching, the learning objectives propose the under-
standing of the mathematical objects themselves. To facilitate knowing and under-
standing the mathematical concepts of the school curriculum, a didactic work is 
required that relates them to the social and material reality of the students so that 
they make sense to them. The socio-epistemological theory as an epistemic alterna-
tive incorporates the social component, dealing with the mathematical knowledge 
put into play and promoting the significance of mathematical objects based on the 
use made of them. This materialist epistemological current recognizes different 
rationalities, validates different ways of knowing, and gives meaning to the teaching 
of mathematics, accepting the progressive redefinition of knowledge.

21.4  A Look at Classroom Work

The importance of analyzing the presence of philosophical expressions in the work 
of teachers lies in the anthropogenic implications of school education. Teachers 
with their speech legitimize another way of understanding knowledge and reality, 
and that influences students. Cantoral et  al. (2015) point out that the school 
mathematical discourse shared by teachers validates the introduction of mathematical 
knowledge in the educational system and legitimizes a new system of reason.

In Sepúlveda’s doctoral research (2021), classes of a group of teachers from 
southern Chile were observed. Then they reflected with them on mathematical 
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knowledge. From this experience we can say that teachers, in general, are not aware 
of the epistemology they have about mathematical knowledge. Nor aware of the 
philosophical content of the statements he or she makes to students about 
mathematical knowledge.

In order to try to understand whether there is a presence of one or another philo-
sophical current in the teaching of mathematics, we observed how teachers develop 
the school curriculum with students. We placed ourselves in the first school years 
and in the teaching of numbers and basic operations. For example, we looked at the 
way teachers taught counting. They ask children to read the numbers printed on 
sheets stuck on the walls of the classroom. In this activity the children start counting 
from zero. This work carried out by the students is related to the memory process. 
The absence of concrete material to count prevents children from intuiting that it is 
not possible to use zero to count something. The ability to count is the individual 
assignment of labels in sequence to the elements of a set, where the last label repre-
sents the cardinal (Caballero, 2006, p. 27). According to this, it cannot be counted 
when there are no elements to label. Counting using zero would be counting nothing 
and that is not possible in the physical world. The implications of zero and the con-
cept of nothing, in students who are still in the evolutionary stage of concrete opera-
tions, are theoretically impossible.

In this, a lack of reflection by teachers between mathematical objects and their 
relationship with the physical world is observed. For example, Dummett (1986) 
mentions that when we know that there are 5 men and 7 women in a room, we say 
that there are 12 people. To know the total number of people in the room, counting 
was not used, addition was used. Something similar is found in Quidel and Sepúlveda 
(2016) who comment that when a Mapuche person was asked how he counted the 
sheep he had, he indicated that because of their color. If there were the amounts 
corresponding to each color, then there were 30 of his sheep. In this case, what the 
Mapuche person does to count is to add. This gives us evidence of the relative value 
of knowledge and allows us to understand that formal knowledge and knowledge 
put to use are not the same.

In the teaching of addition and subtraction, zero is also a number that can be dif-
ficult to understand. When working with concrete elements, you cannot add zero 
objects, however, in addition as a mathematical object, there is adding zero 
(a  +  0  =  a). Zero is the neutral element of addition. In the case of subtraction, 
mathematically zero can be subtracted, however, in a material context if I do not 
take anything away, I am not subtracting. In this a difference is observed between 
the understanding of numbers as ideal objects a priori and numbers as objects in use 
a posteriori. In this type of situation, philosophical assumptions present in teaching 
and the constant idealism-materialism tension are revealed.

In relation to how teachers teach basic operations, something similar happens in 
relation to the epistemic tensions mentioned above. To teach addition, teachers tell 
children that adding is increase and subtracting is taking away. This is true when 
dealing with a collection of concrete elements. Teachers explain multiplication as 
repeated addition and division as condensed subtraction. Indeed, this is fulfilled in 
the set of Natural numbers (N). But, for multiplication or division cases such as 
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0.6 × 0.3̅ ó 0.87, the above does not hold. The teaching of addition or basic operations 
as a priori ideal mathematical objects have certain properties that are not possible to 
find or demonstrate in a material reality. For example, in school rationality, 
mathematical objects, adding is equal to subtracting, a +   − b = a − b, in other 
words, in the addition/subtraction relationship, it is always an addition. Similarly, 
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b
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 or the power x x2 42= . Mathematically, every number 
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. In this way you can continue establishing relationships of 

opposites between numbers.
The logical relationships between mathematical objects occur at the level of 

ideas, they are not always reproducible or possible to represent in relation to the 
physical world or the material conditions of existence. However, mathematics does 
deal with the abstraction of numerical characteristics from physical properties. 
Engels (1961) points out that the concept of variable magnitude introduced by 
Descartes causes a turning point that introduces movement and dialectics to 
mathematics.

Another issue observed in math classes is that teachers present the number as 
something eminently quantitative. Indeed, the number is a quantitative entity, but 
numbers are distinguished by their qualitative characteristics. In this way 4 is equal 
to 4, but at the same time, it can be 4 times 1, it can also be 2 times 2, and the square 
root of 16. That is, a 4 can be the cardinality of a set, the result of an addition, the 
power of a number, or the root of another number. In addition, 1 is the basic number 
of any numbering system, and for 1 it is true that 1 1 12 1, , −  is always equal to 1. The 
same thing happens with any power raised to 0, a0 = 1. With this, the numerical 
value that can be something objective becomes subjective, and its ontology begins 
to depend on the context, even if this context is ideal.

In order to perform operations with fractions, 11-year-old students know the 
prime numbers. These numbers correspond to a nominal qualitative category. They 
differ by their characteristics from the rest of the numbers, just like even numbers or 
multiples of 3 do, to cite an example. To refer to the use of the qualitative in 
mathematics, Engels (1961) mentions how the terms infinitely small or infinitely 
large are used, introducing qualitative differences even as qualitative antitheses of 
an insurmountable type. That is, the terms refer to immeasurably different quantities, 
where the number is not enough to determine the difference and mathematics must 
use qualitative arguments to establish the truth of the magnitude.

Understanding mathematical knowledge and school mathematics in particular 
can be a work of deep reflection. In the doctoral research of Sepúlveda (2021), it is 
mentioned that in order to know the epistemology that teachers have about 
mathematical knowledge, they were asked how they understand mathematical 
knowledge, its origin and its nature.

All the teachers stated that they had never thought about these issues; however, 
they tried to respond from their intuition. Here are some of the teachers’ statements:
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P1 I think that mathematics is one, independent of the context in which it works, 
because its properties and representations are universal.

P2 It is an exact science; its nature is the scientific logic that explains the universe.
P3 Their origin is independent, they exist by themselves, they should only be discov-

ered and understood by humans.
P4 It is in everything that surrounds us, man has discovered it when there is a need.
P5 They exist in everything, and man has been discovering them.
P6 Its origin must be discovered and deciphered by man.
P7 There is one mathematics, and it is universal.
P8 There is a mathematics that is universal, its language is unique.
P9 As a science there is one, which studies different topics, but has a universal 

language.

Teachers in general do not reflect on the mathematical knowledge they teach, this 
is due to a lack of time to do so, to management teams that do not favor reflection in 
schools, or to professional training processes focused on doing and not on reflecting 
on what it does. When these teachers respond spontaneously, they declare 
mathematical knowledge as one, that is, they do not recognize other mathematics 
outside of official mathematics. This shows a mono-epistemic position of knowledge. 
They also declare that mathematics is a universal knowledge, thereby ignoring the 
situated character of mathematics as a contextualized human production. They add 
that they exist by themselves and must be discovered. This is an acceptance of 
apriorism as a philosophical option. The result of observing a group of teachers 
during their teaching work showed an important presence of idealistic assumptions 
in their work and statements. Being unaware of their epistemic ideas, it could be 
thought that they are a product of the teaching tradition and the general acceptance 
of mathematical knowledge as ideal objects independent of the physical world.

Despite the historical tension between idealism and materialism, the observed 
discourses tend to privilege a vision of mathematics as a body of universal and 
immutable objects. To advance in the recognition of human activity in the 
construction of mathematical knowledge and in the acceptance of its social value, it 
is necessary to move towards relative epistemological positions. Not doing so and 
continuing to depreciate the mathematical forms of many is also a form of symbolic 
violence towards the other that must end (Sepúlveda & Lezama, 2021, p. 18).

21.5  Final Considerations

Idealism and materialism are two philosophical currents that understand reality in 
the opposite way. In the teaching of school mathematics, a classical position of 
understanding knowledge in ideal terms prevails. The absence of a reflection of this 
fact by the teachers, both in their initial training and in the institutional and personal 
processes of professionalization, makes an idealistic presentation of mathematics 
persist in the school mathematical discourse, a fact that makes it difficult to construct 
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meanings. of both mathematical objects and their operational processes. There are 
efforts by teachers to give context to mathematical objects in order to make them 
meaningful for students; however, the didactic work needs to continue advancing in 
considering the mathematical knowledge put into use in real material contexts.

Mathematics has played a leading role in the historical processes of humanity 
and despite the fact that part of it corresponds to ideal or abstract assumptions, it 
clearly responds to the needs of the development of natural sciences and the 
technological advance necessary for human subsistence. We consider that the 
understanding of mathematics as an ideal knowledge may respond to a hereditary 
factor of culture that has been passed down through generations and that it is 
necessary to review so that mathematical knowledge reaches a wide level of 
democratization and thus achieves in society its status of popular and technical use 
as well as wise.
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Chapter 22
Cognitive and Neurological Evidence 
of Nonhuman Animal Mathematics 
and Implications for Mathematics 
Education

Thomas E. Ricks

22.1  Introduction

The belief that “only humans do mathematics” permeates the field of mathematics 
education (Ricks, 2021; Scheiner & Pinto, 2019). This human-centric perspective is 
manifest throughout the literature by such phrases as mathematics is a human 
activity (Freudenthal, 1973, 2002), a human construct (Abbott, 2013), a human con-
struction (Longo, 2003), a human discipline (Fey, 1994), a human endeavor 
(Dehaene, 2011), a human enterprise (Noddings, 1985), a human invention 
(Bridgman, 1927), a human potential (Simon, 2007), and a human social activity 
(Tymoczko, 1980). Many authors directly state their own personal beliefs about the 
issue; for example, Dörfler (2007) asserted it is a “trivial fact mathematics is a 
human activity. Under all circumstances mathematics is done and produced by 
human beings” (p 105). Other authors imply similar beliefs by summarizing the 
human-centric positions of others, especially Freudenthal (Boaler, 2008; Cobb 
et  al., 2008; Freudenthal, 1973) Thinking of mathematics as human activity has 
improved mathematical pedagogy because emphasizing the humanness of the 
mathematical process refocuses the pedagogy of the subject on the way students 
make sense of mathematics (Steffe, 1990). But is the mathematics education maxim 
that mathematics is a uniquely human creation and activity scientifically accurate? 
If not, how might animal mathematics matter for mathematics education?

Much recent scientific research suggests that many nonhuman animals (hence-
forth, just animals) mathematize as part of their natural behavior (Nieder, 2021). I 
organize this chapter—a meta-analysis of literature on the subject—around two 
types of recent scientific evidence for animal mathematics emerging from the field 
of animal and/or comparative research: cognitive and neurological studies 
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evidencing legitimate animal mathematizing. Cognitive animal research investi-
gates the psychological underpinnings of animal cognition by developing hypothe-
ses about the way animal minds think, by observing animal behavior, and making 
inferences about the unobservable animal thought processes necessary to produce 
such behavior. Neurological animal research investigates the biophysical 
underpinnings of animal cognition to describe the way animal brains function, by 
developing schematics of neurological structure based on observable brain 
signatures. Together, these two lines of scientific evidence reinforce each other and 
demonstrate at least some forms of animal mathematics exist. I conclude the chapter 
by considering some implications animal mathematics research may have for the 
field of mathematics education.

22.2  Cognitive Research on Animal Mathematics

Recent cognitive research on a wide range of animals provides substantial evidence 
of animal mathematical capacity. These non-neurological animal cognition studies 
investigate animal mathematics through careful scientific experiments that observe 
mathematical behavior as animals complete research tasks. These studies are peer- 
reviewed, appear in reputable scholarly publications on animal and/or comparative 
cognition, and control for conflating experimental variables to avoid the possibility 
of anthropomorphizing animal behavior. I describe two principal areas of observable 
mathematical behavior mentioned consistently in animal cognitive research: 
numerical discrimination and basic mathematical competence.

22.2.1  Numerical Discrimination

Many animals demonstrate the cognitive capacity to numerically discriminate dur-
ing experimental trials that control for potentially confounding non-numerical vari-
ables like size, density, or luminance. The great apes (Hanus & Call, 2007; Tomonaga 
& Matsuzawa, 2002) and other nonhuman primates (hereafter, just primates) like 
monkeys (Gazes et al., 2018) all demonstrate the capacity to numerically discrimi-
nate, as well as other mammals (Chacha et al., 2020), birds (Tornick et al., 2015), 
fish (Seguin & Gerlai, 2017), cuttlefish (Yang & Chiao, 2016), frogs (Stancher 
et  al., 2015), salamanders (Uller et  al., 2003), lizards (Miletto Petrazzini et  al., 
2018), and insects (Howard, 2018). Two distinct cognitive systems are believed to 
play a role in animal numerical discrimination: subitizing and the approximate mag-
nitude system.

Subitizing Many animals demonstrate subitizing (also subitising, exact number 
system (ENS), object file system (OFS), or object tracking system (OTS) (Nieder, 
2020a))—the rapid, highly accurate, cognitive capacity to numerate small groups of 
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objects—a special form of numerical discrimination also present in humans from 
birth (Brannon & Terrace, 1998). The typical (including human) subitizing range is 
four or less elements (Dehaene, 2011), but some species naturally subitize past the 
normal subitizing range, including pigeons (up to five), budgerigars and jackdaws 
(up to six), and ravens, Amazon and African grey parrots, magpies, and squirrels (up 
to seven) (Al Aïn et al., 2009; Davis & Pérusse, 1988; Hassenstein, 1974; Hassmann, 
1952; Howard, 2018; Nieder, 2005). This uncanny natural ability for numerosity 
was first investigated (in humans) by Jevons (1871) and later coined subitizing 
(Latin for sudden) by Kaufman et al. (1949). Dehaene (2011) popularized the term 
for mathematics educators with his The Number Sense book (de Freitas & Sinclair, 
2016) that detailed subitizing capacities in human infants and a few common animal 
species, like rats and pigeons. Howard et  al. (2018) calls subitizing a “counting 
mechanism with low quantities” (p 11). Subitizing appears to be widespread in the 
animal kingdom; De Cruz (2006) claims that every animal species tested so far for 
this capacity has demonstrated it.

Subitizing is legitimate mathematics because it allows animals to discriminate 
specific numerosities that convey “the cardinality of [a] set” of perceived items 
(Nieder & Dehaene, 2009, p 186). Subitizing offers a concrete description of animal 
numerical capacity and is supported by a hundred years of intensive scientific 
research (Clements et al., 2019; Jevons, 1871). And lest we dismiss subitizing as 
non-mathematical, attempts by humans to mimic this simple counting capacity in 
computer vision have required sophisticated human mathematical algorithms—
including convoluted neural networks (Zhang et al., 2015)—and is an active area of 
ongoing mathematical research (Pezzelle, 2018).

Approximate Magnitude System The ability of animals to discriminate numeros-
ity is not limited to the subitizing range. Much research confirms (Dehaene, 1992; 
Gallistel & Gelman, 1992; Nieder, 2020a) that many animals possess an approxi-
mate magnitude system (AMS), a capacity to represent any quantity (with no upper 
limit!) as a rough estimation—also referred to as the analog magnitude system, 
analog format, or the approximate number system (ANS) (Cantlon, 2012). Whatever 
its name, the nature of this capacity differs from the exact number system (ENS) of 
subitizing; the AMS always entails fuzzy estimation (akin to probability distribu-
tions) instead of recognizing discrete quantity. Like subitizing, the AMS is another 
example of an underlying, phylogenetically-embedded, biologically-determined, 
numerical capacity shared by both animals and humans (Nieder, 2013).

If metaphorically represented on a number line, the AMS perceives an observed 
(objective) countable quantity as a logarithmically symmetric continuous possibility 
(subjective) centering on the objective quantity and tapering off to overlap and 
conflate with nearby surrounding numerical possibilities. The larger the objective 
quantity observed, the greater the potential spread of the probable possibility, and 
the more likely the observer is to confuse the objective quantity with similar 
quantities, something called the numerical size effect (Nieder, 2020a). If an animal 
compares two quantities, the accuracy of differentiating their difference (or 
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recognizing their similarity) decreases as the quantities converge numerically. For 
example, Stancher et al. (2015) describe how frogs struggle to differentiate between 
areas of food having four versus three items but regularly choose six food-item 
areas over three food-item areas. This capacity to increasingly differentiate between 
numerosities as the difference between the numerosities increases is known as the 
numerical distance effect (Nieder, 2020a). Numerous studies document this 
similarity of animals and humans to represent discrete, potentially countable 
quantities as nebulous, indistinct judgments of numerosity (Cantlon, 2012; Dehaene, 
1992; Gallistel & Gelman, 1992).

Surprisingly, the capacity to discriminate numerosity is also documented in some 
rather tinier-than-amphibians-and-reptiles creatures. For example, much research 
on the lowly honeybee demonstrates their ability to discriminate numerosities 
within the normal subitizing range as they navigate and track the number of land-
marks while foraging (Chittka & Geiger, 1995; see also Bortot et al., 2019; Howard 
et al., 2018; Howard et al., 2020). Howard et al. (2018) documents that with train-
ing, honeybees outperformed capacities previously reported in the literature, includ-
ing “differentiating a correct choice consistent with rule learning compared to an 
incorrect choice consistent with associative mechanisms” (pp  212–213), 
“discriminat[ing] challenging ratios of number[s]” (p 213), “learn[ing] numerical 
rules” (p  213), applying numerical rules “to value zero numerosity” (p  213), 
“perform[ing] simple arithmetic” (p  213), and “associat[ing] a symbol [with] a 
specific quantity” (p 213).

Although research publications documenting animal numerosity capacity are 
obviously more prolific for species that are easier to study in laboratory settings, 
like rats, mice, small fish, domesticated chicks, and honeybees (Howard, 2018), 
these studies help demonstrate that numerical discrimination is widespread in the 
animal kingdom, and at least some forms of mathematical cognition do not require 
large, human-like brains.

22.2.2  Basic Mathematical Competence

Once cognitively aware of numerosities through subitizing or the AMS, many ani-
mals then utilize those numerosities to demonstrate basic mathematical competence 
(Nieder, 2013). In this way, animals continue to mathematize in the original 
Freudenthal (2002) usage that mathematics is applying common sense to quantita-
tively act upon perceived realities. For example, Nieder (2013) reports:

Beyond [AMS’s] discrete quantities, nonhuman primates can also grasp continuous-spatial 
quantities, such as length [and] relations between quantities resulting in proportions… 
[M]onkeys perform primitive arithmetic operations such as processing numerosities 
according to quantitative rules… it is well accepted that numerical competence is… found 
in animals. (p 2–3)

Additionally, studies on two hundred wild, semi-free rhesus monkeys document 
the ability of these primates to discriminate normal subitizing-range (four or less) 
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numerosities without training as evidenced by their reliable ability—after watching 
researchers slowly deposit food items one by one within two containers—to choose 
the container with the greater number of food items (Hauser et  al., 2000). 
Chimpanzees, however, can discriminate up to 10 items when choosing the larger of 
two food containers that have also been filled one by one (Beran, 2001; Beran & 
Beran, 2004). The numerical and problem-solving capacity of the chimpanzee has 
been known for many decades (Boysen, 1988, 1992; Boysen & Berntson, 1989; 
Boysen et al., 1993; Dooley & Gill, 1977; Ferster, 1964; Matsuzawa, 1985; Muncer, 
1983; Rumbaugh et al., 1987; Woodruff & Premack, 1981).

Clearly, humans do much mathematics that animals cannot do, primarily because 
humans have a refined ability for symbolization (Nieder, 2020b). But animals not 
doing all of human mathematics should not prevent the realization of the mathematics 
that they can do. Describing what mathematical capacities different  animals 
manifest and how they relate to developing human mathematical capacities is in its 
infancy. Keeping track of which animals do what mathematics presents challenges, 
especially as no descriptive theory of mathematical sophistication is universally 
accepted. Many different ways of organizing animal mathematical capacity and 
linking it to what humans can do—at which age-level or developmental level—have 
been proposed. Howard (2018, p 12–13, 195, 197, modified and adapted for prose) 
elegantly summarized animal cognition research on numerical mathematical 
competence by creating an intermeshed matrix of eight numerical concepts: zero 
numerosity, quantical cognition, subitizing, approximate (or analogue) magnitude 
system, arithmetic, numerical cognition, numerical competence, and true counting) 
with 23 unique numerical tasks (the italicized text that follows will be explained 
later in the chapter): (1) sensory representation of zero; (2) categorical understanding 
of “nothing”; (3) quantitative understanding of zero numerosity; (4) symbolic and 
mathematical use of zero; (5) use of nonnumerical cues correlated with number; (6) 
quantity discrimination of numerosities below five elements; (7) subitizing; (8) 
quantity discrimination which obeys Weber’s Law; (9) discriminate numbers above 
four; (10) [serially] counting above four; (11) spontaneous arithmetic-like reasoning; 
(12) symbolic representation of numbers in arithmetic; (13) symbol and number 
matching; (14) exact number use; (15) arithmetic problems; (16) nominal number 
use; (17) ordinality [ranking of sets]; (18) cardinality [valuation of sets]; (19) novel 
representation of number; (20) transfer to novel numbers; (21) procedural translation 
of numbers; (22) modality transfer of numbers; and (23) symbolic representation 
and quantitative valuing of symbols. Animal research studies have documented that 
various animals have accomplished at one time or another 21 of the 23 unique 
numerical tasks. No evidence exists yet for animal symbolic and mathematical use 
of zero, or nominal number use; only humans have demonstrated these capacities. 
Considering that it took thousands of years for humans to develop modern 
mathematical competencies of zero, it should not be surprising that human use of 
zero is not yet documented in animal behavior. Further, nominal number use—an 
integral part of the symbol-laden, modern human culture—has not been seen in 
animal behavior either.
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Intriguingly, honeybees demonstrate mathematical capacity in all eight numeri-
cal concept categories, and of the 23 unique numerical tasks, research confirms 
honeybees can manifest at least 14 of them (italicized in the list above, Howard, 
2018, p 197; see p 173 for preliminary evidence of ordinality of sets, which might 
make 15 total). If we add one more task completion—the lowly sensory representa-
tion of zero—which I assume bees fulfill, considering their competence with zero 
numerosity (no one has yet studied sensory representation of zero in honeybees)—
honeybees manifest mathematical capacity in over two-thirds of the categories. 
Imagine! All that, done by the little, humble honeybee, with a tiny brain over 80,000 
times smaller than the human brain (roughly one million neurons compared with 
humans’ 86 billion neurons) (Azevedo et al., 2009; Menzel & Giurfa, 2001). For 
such a tiny brain, the bee brain manifests significant mathematical power; humans 
have yet to develop comparable mathematics to match the honeybee’s zero mathe-
matical competence through machine learning. Researchers (Schmicker & 
Schmicker, 2018) have built a three-layered neural network to mimic the findings 
about “the quantitative value of an empty set” (Howard, 2018, p 212) that honeybees 
manifest through standard animal cognition training; the neural network was 
“trained using the same stimuli and protocol” (Howard, 2018, p 212) that the bee 
experiments used. Howard et al. (2018) admits: “We still have a lot to learn from 
biologically evolved processing systems, such as the honeybee brain, as while 
bees… took less than 100 trials to learn the task, the simple neural network took 
about 4 million trials to learn the same task” (p 212, emphasis added). And experts 
in the field of honeybee cognition believe with proper experimental setups and fur-
ther research, honeybees may accomplish several more of the remaining unique 
numerical tasks, although their short lifetime limits training opportunities (Howard, 
2018). This high ratio (roughly two-thirds) of numerical mathematical task- completion 
found in honeybees but not other species may be as much a function of the ease of using 
honeybees for animal cognition research as a measure of their mathematical compe-
tence; other animals may demonstrate similar or greater mathematical capacity once 
research is conducted on those more difficult-to-study species.

As the field of animal cognition continues to mature, more and more mathematical 
capacities are being discovered in more and more species. The abilities to subitize and 
approximate numerosity have obvious evolutionary (e.g., natural selection) advantages: 
“Numerical competence... is of adaptive value. It enhances an animal’s ability to sur-
vive by exploiting food sources, hunting prey, avoiding predation, navigating, and per-
sisting in social interactions” (Nieder, 2020a, p  605). For the animal cognition 
researcher, the question is no longer if animals mathematize, but how (Nieder, 2013).

22.3  Neurological Research on Animal Mathematics

Neurological research on animal brains (conducted while animals manifest mathe-
matical-like behavior) strengthens the argument that animals are indeed doing legit-
imate mathematics by documenting “the neuronal mechanisms of numerical 
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competence” (Nieder & Dehaene, 2009, p  186). Two branches of neurological 
evidence support the legitimacy of animal mathematics: “number neurons” and the 
similarity between human and animal brain activation while mathematizing.

22.3.1  Number Neurons

Many researchers have documented so-called number neurons (Dehaene, 2002, 
2011; Nieder, 2013; Piazza & Dehaene, 2004) in various animal species’ brains 
while performing mathematical tasks. Number neurons are specific neurons in 
special regions of animals’ brains that spike electrically when the animal receives 
numerical stimuli in visual or auditory form (e.g., dots on a screen, sequential 
tones), or mentally numerates body motions, like limb motions (Nieder et al., 2002; 
Sawamura et al., 2002). First identified in domestic cat brains (Thompson et al., 
1970), number neurons have also been documented in crow (Ditz & Nieder, 2015), 
rhesus monkey (Nieder, 2013), and Japanese macaque monkey brains (Sawamura 
et al., 2002). To find the number neurons, researchers surgically insert super-thin 
wires into specific math-related brain regions and slowly adjust the depth of the 
wire until a number neuron (tuned to the desired numerosity researchers wish to 
study) is identified. These specialized nerve cells are “tuned to the number of 
[sensory] items [experienced] show[ing] maximum [signal] activity to one of the 
presented quantities—a neuron’s preferred numerosity—and a progressive drop off 
as the quantity [becomes] more remote from the preferred number” (Nieder & 
Dehaene, 2009, pp 188–189).

Researchers found, for example, in a monkey’s prefrontal cortex (Nieder & 
Merten, 2007), a neuron tuned to the quantity of 20 (as well as one tuned to the 
quantity of 6, another to 4, and one for 2); the fact that specific neurons in a monkey’s 
brain differentiate a visual spread of 20 dots from other presentations of dots is 
admittedly quite impressive. Some number neurons encode for perceived numerosity 
(input modality, like viewing dots on a screen or hearing a sequence of tones) and 
others for psychophysical movement (output modality, such as keeping track of 
body movements) (Nieder & Miller, 2004; Sawamura et al., 2002). In certain regions 
of the brains of monkeys, number neurons cluster in high percentages; Viswanathan 
and Nieder (2013) found in the ventral intraparietal area (VIP) of the intraparietal 
sulcus (IPS)  that 10% of sampled neurons evidenced exclusively numerosity- 
selective spiking. In one study, (Nieder et al. 2006), three separate types of number 
neurons were found: (1) a type only encoding numerical information perceived 
simultaneously (spatial: as in a spread of dots on a screen), (2) a type only encoding 
numerical information perceived sequentially (temporal: as in food items placed in 
a bowl one by one, a series of auditory tones, or a sequence of flashing lights), and 
(3) a third type of number neuron that integrated the numerosities encoded by the 
first two types of neurons, for storage in memory.

The colloquial term “number neurons” can be a bit misleading, because these 
neurons encode more than just numerosity. Tudusciuc and Nieder (2007) discovered 
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that roughly one-fifth of neurons in the monkey IPS spiked for numerosity and/or 
continuous quantity. Findings by other researchers demonstrate number neurons 
can encode for nonnumerical parameters such as size, luminance, angle, position, 
and density (Cohen Kadosh & Henik, 2006; Pinel et al., 2004; Zago et al., 2008). 
Bongard and Nieder (2010) found that individual monkey prefrontal cortex number 
neurons “can flexibly represent highly abstract mathematical rules” (p 2279), such 
as greater than/less than concepts, helping monkeys at the macroscale to consciously 
“understand relations between numerosities and how to apply them successfully in 
a goal-directed manner” (p 2279). Some researchers have found interlinked number 
neurons (Diester & Nieder, 2008) that mutually inhibit or mutually reinforce each 
other’s numerate spike potential. Brains are vast interconnected structures of 
neurons, so no real surprise to find interconnected neurons; what is surprising is that 
the interactions form a type of intricate back-and-forth neuronal dialogue instead of 
just signals cascading from one nerve cell to the next. Both neurons “talk” to each 
other simultaneously to influence each other during the entire numeration-spiking 
process. Diester and Nieder (2008) posit this process enables more refined tuning by 
number neurons to their preferred numerosity. These interlinked number neurons 
evidence mathematical communication at the smallest inter-cellular level.

In 2013, Viswanathan and Nieder controlled for the possibility that neurons were 
manifesting trained animal conditioning (instead of numerosity) by designing a 
clever experiment testing monkeys’ sense of color with colored dots; while running 
these color experiments (that varied the numerosity of the same-colored dots), the 
number neurons of each monkey were also being recorded electronically. Even 
though these monkeys had not been trained to discriminate numerosity, and could 
not differentiate numerosity behaviorally (the monkeys were tested later for their 
numerical capacity with the same dot patterns—this time in black—and showed 
scores no better than random chance), the number neurons in monkeys’ brains 
encoded the number of dots appearing on the colored screens. This series of 
experiments confirm that monkey number neurons intuitively recognize numerosity, 
even though the animal has not received numerical training by researchers.

Recent studies have investigated “number neurons” in humans. In 2004, nonin-
vasive functional magnetic resonance imaging (fMRI) studies on human brain blood 
flow patterns by Piazza et al. (2004) suggested the existence of similar tuning curves 
for numerosity in human brains to those operating in animals. In 2009, Jacob’s and 
Nieder’s work hinted human number neurons exist from evidence gathered through 
electrocorticography readings of masses of spiking neurons; groups of neurons 
were behaving similarly to the way number neurons would. In 2013, Shum et al. 
described the surgical implantation of 157 electrodes on the underside of the brains 
of seven epilepsy patients, a rare example of human intracranial electroencephalog-
raphy. They reported “identifying the precise anatomical location of neurons with a 
preferential response to visual numerals… embedded within a larger pool of neu-
rons that respond nonpreferentially to visual symbols that have lines, angles, and 
curves” (Shum et al., 2013, p 6712). Then in 2018, Kutter et al. reported finding 
individual number neurons in human neurosurgical patients, specifically “585 sin-
gle neurons in... nine human subjects performing... calculation tasks” (p 754). They 
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summarize their findings thus: “Using single-cell recordings in subjects performing 
a calculation task, we have shown that single neurons in... humans are tuned to 
numerical values in nonsymbolic dot displays. The data about nonsymbolic number 
coding from humans can now be compared to those of nonhuman primates” (Kutter 
et al., 2018, p 758).

22.3.2  Similar Brain Signatures

In addition to the existence of number neurons in humans, animal brain-imaging 
signatures are similar to those of humans while performing similar mathematical 
tasks. Numerous studies document that the very same regions activate in both 
primates’ and humans’ brains when research subjects (primate or human) perform 
a similar mathematical activity (Arsalidou & Taylor, 2011; Nieder, 2021; Tudusciuc 
& Nieder, 2007). Such comparisons are possible because human and primate brains 
share similar brain structure (Azevedo et al., 2009). Neurological research suggests 
two similar areas in primate and human brains activate when performing 
mathematical activity: the intraparietal sulcus (IPS) and the prefrontal cortex (PFC) 
(Amalric & Dehaene, 2019; Arsalidou & Taylor, 2011; Dehaene, 2011; Eger, 2016; 
Hyde et al., 2010; Nieder, 2012, 2013, 2016; Nieder & Dehaene, 2009; Nieder et al. 
2006; Piazza et al., 2007; Shum et al., 2013). In humans, these regions are known 
for a variety of mathematical competencies, such as algebraic thinking (Maruyama 
et al., 2012; Monti et al., 2012).

Because these two regions play different roles in processing numerosity, the IPS 
and PFC manifest unique neuroimaging signatures when both primate and human 
subjects perform mathematical tasks. For example, the IPS processes more 
nonsymbolic numerosity while the PFC is connected with more symbolic number 
processing; additionally, the IPS processes the nonsymbolic numerosity before the 
PFC, suggesting that the PFC gets its numerosity information directly from the IPS 
(Nieder & Dehaene, 2009). This neuroimaging evidence suggests that humans, even 
with our powerful and unique symbolic mathematical capabilities not manifest by 
any animal, still utilize portions of our brains prior to symbolization similar to the 
way animals mathematize; humans are thus subconsciously doing mathematics like 
animals—all the time—despite the seemingly non-animal-ness of our conscious, 
symbol-heavy mathematics. Kutter et  al. (2018) posit: “Our human-specific 
symbolic number skills… spring from nonsymbolic set size representations…. 
suggest[ing] number neurons as neuronal basis of human number representations 
that ultimately give rise to number theory and mathematics” (p 753).

In summary, animals not only produce mathematical behavior like humans, 
implying similar cognitive mathematizing (Cantlon, 2012; Nieder, 2020a), but the 
way animals’ brains function while producing such behavior is also similar to how 
human brains do the very same mathematics (Autio et al., 2021), strengthening the 
argument that animals indeed do at least some forms of mathematizing.
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22.4  Discussion: Animal Mathematics Matters 
for Mathematics Education

Clearly, animals cannot match human mathematical capacity in many areas, espe-
cially the sophisticated, symbol-heavy, precision-based mathematics so prevalent in 
modern technological societies. Why would animal mathematics, therefore, matter 
for the field of mathematics education? Most obviously, cognitive and neurological 
animal mathematics studies legitimize the existence of animal mathematics and 
challenge the common mathematics education belief that only humans mathema-
tize. Thus, the first reason animal mathematics matters for mathematics education is 
that continued antagonism by mathematics education against the acceptance of animal 
mathematics is increasingly anachronistic and scientifically inaccurate. It is time for 
mathematics education to familiarize itself with the burgeoning literature supporting 
animal mathematics. Secondly, animal mathematics studies deepen and enrich our 
understanding about the philosophy of human mathematics and related human mathe-
matics education. Animal mathematics studies raise intriguing questions about the 
nature of mathematics, where it comes from, and how it is so unreasonably effective 
(Wigner, 1960). Such research on animal mathematics supports previous researchers’ 
beliefs—e.g., Piaget—on the potential biological roots of mathematical development 
(Brannon, 2014; Duda, 2017; Piaget, 1971).

But perhaps the most important reason studies about animal mathematics matter 
for mathematics education is these studies reveal the similarity between human and 
animal mathematics. Together, the comparative cognition and neurological research 
evidence suggest that humans share with animals basic, underlying mathematical 
capacities continuously operating in the cognitive/neurological background, even 
when humans do more sophisticated, human-unique mathematics. Neonates, 
nonverbal infants, children, adults—even professional mathematicians—manifest 
animal-like mathematics while performing human mathematics (Nieder & Dehaene, 
2009). Thus, animal mathematics matters for mathematics education not so much 
because animals sometimes mathematize like humans, but because humans always 
mathematize like animals.

For example, the presence of the numerical distance effect by “human number 
neurons… supports the hypothesis that high-level human numerical abilities are 
rooted in biologically determined mechanisms” (Kutter et al., 2018, p 759). This 
evidence suggests that human symbolic mathematics is an outgrowth of 
evolutionarily ancient mathematics that we share with animals, being “deeply 
rooted in our neuronal heritage as primates and vertebrates” (Nieder, 2020a, p 28).

All humans—regardless of the type, sophistication, or level of mathematizing, 
and regardless of the age, developmental status, or training (including the 
professional mathematicians!)—appear to mathematize with foundational, animal- 
like numerosity processing at the autonomous neuronal level, because human 
“symbolic number cognition [is] grounded in neuronal circuits devoted to deriving 
precise numerical values from approximate numerosity representations” (Kutter 
et  al., 2018, p  759). The fact that humans share with animals a distinct 
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“math- responsive network” (Amalric & Dehaene, 2019) activated during both 
sophisticated, human-only mathematical thinking as well as the more mundane—
and that neuroimaging differentiates these human brain regions from human seman-
tic networks (Nieder & Dehaene, 2009)—suggest that human mathematics consists 
of more than just the symbolic processing that only humans possess.

Human mathematical thinking is fundamentally rooted in biological core sys-
tems shared with animals that always activate during any type of human mathema-
tizing (Dehaene et  al., 2006; Xu & Spelke, 2000). These shared forms of 
mathematical thinking—so different from the symbol-heavy, precision-based mod-
ern mathematics so emphasized in contemporary mathematics classrooms—are 
always percolating in the encephalic background. They form consistent, powerful 
ways of mathematizing about our world that need more attention in mathematics 
education pedagogy and scholarship. Our curricular over-emphasis on symbols, 
terms, procedures, and precision already disenfranchises students, especially those 
manifesting neurodiversity (de Freitas & Sinclair, 2016); we should make room in 
our curriculum and research for more understanding of the animal-like mathematics 
that all humans manifest whenever they mathematize. Animal mathematics accep-
tance by mathematics educators has the potential to influence many theories of and 
in mathematics education (Bikner-Ahsbahs & Vohns, 2019). In particular, animal 
mathematics research illuminates similar underlying neuronal circuitry responsible 
for human mathematical thinking. Further, animal mathematics research is already 
improving understanding of various mathematical disabilities such as dyscalculia 
(Anobile et al., 2018; Ansari, 2008; Butterworth, 2005; Butterworth et al., 2011; 
Castaldi et al., 2018; Kucian et al., 2011; Mazzocco et al., 2011; Piazza et al., 2010; 
Rubinsten & Sury, 2011) and opens avenues for productive translational research 
(Bisazza & Santacà, 2022) to improve student learning outcomes (Iuculano & 
Cohen Kadosh, 2014; Piazza et al., 2013).

22.5  Conclusion

This chapter has challenged the common, contemporary mathematics education 
belief that only humans create and do mathematics by highlighting emerging 
cognitive and neurological evidence that animal mathematics exists and is similar to 
at least some forms of human mathematics. Further, comparative cognitive and 
neurological research suggest that all humans manifest animal-like mathematics 
even when doing human-only mathematics. Accepting animal mathematics by the 
mathematics education community will augment the work of mathematics education 
by illuminating better the foundational cognitive and neurological manner in which 
humans create and do mathematics.
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Chapter 23
Living in the Ongoing Moment

Bronisław Czarnocha and Małgorzata Marciniak

The time of preparation of this manuscript was marked by the appearance of an 
advanced artificial intelligence (AI) product, in the form of ChatGPT. This new, 
unusual, yet somehow expected feature, has confronted all of us, humans and in 
particular the educators with its power and possible impact upon mathematics class-
rooms. From the point of view of the philosophy of mathematics education, AI 
inspires more questions and directions for research investigations, possibly making 
a topic for another book. Thus, this summary chapter is written in a very particular 
way creating more questions within the themes provided by the authors.

Looking back at the process of the creation of the book, we see that it was very 
fortunate that AI became vastly available after the main chapters have been written 
because they represent the state of our philosophizing before AI has appeared. So 
now when the manuscript has been completed and all chapters are assembled, we, 
the editors, can look back at our work and reflect on the concept of the current book 
taking into account the new AI component. This brings a host of new questions, all 
of them centered on how the philosophy of mathematics education can guide us to 
the doorstep of the new scientific and cultural revolution that AI is clearly announc-
ing. Marciniak (Chap. 12) discusses the paradigm shifts in the history of mathemat-
ics education, and it seems to be clear that fundamental paradigm shifts are upon us. 
At present, the parameters and scopes of those changes are very difficult to assess 
as we do not know yet either the possibilities or limits of AI’s impact on humans. In 
the further parts of the summary chapter, we will approach the question of the 
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philosophy of mathematics education and AI by articulating explicit and implicit 
theme concerns of the chapters’ authors.

But wait. Who are the authors? Who are the mathematics education philoso-
phers? What inspires them and what are the methods of their works? Are they young 
or old in age or philosophical experience, do they work in academia, do they write 
about class practice or analyze statistical data? What are they trying to accomplish 
with their writing? Bicudo (Chap. 3) emphasizes the realization of philosophical 
thinking. Thus, we ask, what even is this philosophy of mathematics education? 
What topics should be discussed? Watson (Chap. 6) skillfully locates mathematics 
education in a contemporary system theory, while Czarnocha (Chap. 8) suggested 
that philosophy of the domain starts from examination of its fundamental problems. 
Thus, a new fundamental problem has appeared during the time of writing the book: 
what issues does mathematics education need to consider in the light of the skills of 
ChatGPT and other advanced chatbots, which are with no doubt coming in the near 
future (as in the new Bing searching engine).

The book displays a plethora of themes in philosophy of mathematics education 
and a cornucopia of ideas bringing together authors from multiple cultures, nation-
alities, and countries across five continents. As expected, these authors think in 
many directions in their own, unique ways, about a variety of topics, carrying their 
ideas across through as many pages as they need. Some authors zoom out spreading 
their work across many topics, while others zoom in and focus on one, well-defined 
theme. Others reflect on the past, present, and future, while some simply find one 
time frame and one place to address the needs of mathematics education that are 
important to them. Thus, we hear. We listen to their voices when they strive to 
answer the question that has been nurturing teachers for centuries. Why is mathe-
matics, this queen of sciences, somehow not so likable to the students? Why does 
she cause such a stress and anxiety among students? What can the teachers do to 
ease the presence of the queen and make her more accessible and more approach-
able to future generations?

One of the most frequent complaints of students about mathematics is that it is 
disconnected from reality. However, it is physics, the source of many mathematical 
ideas and ultimately the king of sciences, that brings these connections forward. 
Will AI be able to bridge the gap between theory and reality and thus make mathe-
matics, the queen of sciences, not only likable but a fully fledged member of the 
human community? Ernest (Chap. 1) is asking a relevant question of the ontology 
of our subject that is philosophy of mathematics education: “The ontological prob-
lem of mathematics education concerns persons. What is the nature and being of 
persons, including both children and adults, or precisely the mathematical identity 
of mathematicians and the developing mathematical identities of students? What are 
these mathematical identities and how are they constituted?” What is the mathemat-
ical identity of the ChatGPT or its more advanced versions? How can the mathemat-
ical identity of a chatbot contribute to the development and formation of the 
mathematical identity of a human student? That question becomes a bit more acute 
taking into account John Mason’s (Chap. 5) focus on the process of abstraction as a 
component of mathematical identity. Abstracting is here seen as a change of a 
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relationship between the person and the set of words, and hence a change of the 
relationship with self-constructed “virtual objects.” Can AI creatures undertake 
such a change of mathematical identity through abstracting? More precisely, can AI 
creatures abstract? If we look at abstraction categorically as a forgetting functor, AI 
should have no problem with it. We wonder what could be the AI creature’s relation-
ship or its change with the AI-constructed “virtual” mathematical object. Would 
there be a relationship?

Goldin (Chap. 7) raises the ante asking for the self-integrity of philosophy of 
mathematics education; in particular he examines the question of mathematical 
validity and objectivity on one hand and its sociocultural origins, on the other. While 
the relationship between the two has been the place of strong disagreements, Goldin 
searches for the integrated approach where both principles, seemingly contradic-
tory, are shown the possibility to coexist. How would AI creatures relate to such a 
situation, generating a compromising approach to the two seemingly incompatible 
principles, or objectivity and cultural subjectivity? Creation of such a compromise 
requires bisociative thinking that arises simultaneously out of two unconnected 
matrices of thought, a concept explored by Czarnocha in (Chap. 8). This is a cre-
ative process, and if AI creatures can do such constructions, it would mean they are 
indeed creative. Are they? Would they? Creativity is held as the uniquely human 
capacity, on the very border between humans and automation. Can AI creatures 
have experience – if such a term makes sense here? Or if creativity is the feature 
differentiating humans from AI, should education withdraw from its traditional test-
ing approaches and focus on facilitating creativity? Similar questions are brought 
forward by the concept of internalization of mathematics via the process of learning 
as studied by Baker (Chap. 9). Maybe instead of teaching more content, we may 
focus on teaching more intensely even if it leads to writing poems about the 
Pythagorean Theorem. This remains within the curriculum inquiry of what to teach 
and how to measure progress. The sociocultural grounds of mathematics and math-
ematics education raised by Goldin and pursued by authors such as Miguel et al. 
(Chap. 18), Maurício Rosa (Chap. 19), and Obreque and Andalon (Chap. 21) bring 
new questions and concerns related to the AI industry. Given that AI creatures are 
made by us humans, we face the challenge of how to avoid imparting to it our own 
sociocultural biases. Who and how verifies whether AI may be biased against peo-
ple of color or indigenous students? Similarly, we can ask whether it may be biased 
against females or LGBTQ. Who trains AI’s non-bias toward all possible groups of 
people? Is the ethics of AI, even within a small scope of education, a subject of 
training? Or a subject of firm rules imprinted into the system as unchangeable? Who 
and based on what principles makes decisions about such setup? More than that, if 
asked, would AI display ethical judgments and what would be the value of such 
display? Taking into account the Ubuntu philosophy of life as essentially commu-
nal, and rejecting individualistic features, how to embrace AI’s development glob-
ally? How could AI accommodate a vast sociocultural milieu remaining ethical 
towards all subjects? Finally, pursuing the ideas of Obreque and Andalon, the ques-
tion arises whether AI creatures operate on an idealistic basis having their ideas 
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implanted a priori by humans or it is a materialistic creature that derives its knowl-
edge from the motion of matter within its circuitry.

Implications of futuristically advanced and broadly available AI are quite unpre-
dictable, although the Commander Data of the Second-Generation Star Trek series, 
the human android explores the horizon of these implications. This is a worthy 
question since interactions with AI are inevitably going to change future humans. 
While thinking today about future education, we would like to take that change into 
consideration, even if this task seems quite challenging, if even possible. We already 
are aware of the influence of technology on young people and are aware of some 
who spend their childhood playing video games. However, they still realize the 
value of human interactions and miss them during remote instruction. Are such 
human-AI interactions working for the progress of the human mind? Shall we limit 
such interactions for the sake of the mental and social health of students? According 
to Matsushima (Chap. 10) dialogues among humans improve mathematics learning. 
Would a similar feature take place for interactions between humans and AI? Fearing 
that interactions with AI may disturb someone’s view of reality, one can ask: what 
even is reality? Can mathematical modeling be used to model the reality that is com-
ing? In his work (Chap. 16) Schürmann discusses classroom-level mathematical 
modeling and its philosophical aspects mainly in the light of the relationship 
between the model and the actual observations. But now, the multifold of realities 
that contain the real world and the mathematical world are being expanded by the 
reality of IA. Can AI model itself if asked about it, or in other words, what are pos-
sible states of self-awareness of the AI creatures? What would be the validity of 
such AI-made models in the view of syntactics? Commander Data of Star Trek was 
fully aware of his being as the complex interplay of many algorithms connected 
with the complete absence of feelings, of human feelings, and that fact was of some 
concern to him as he could not bridge it. On the other hand, as we know from the 
works of Chamberlin, Liljedahl, and Savic (2022), affect plays a fundamental role 
in the process of learning mathematics, in the development of mathematical inti-
macy, and in bonding with mathematics. What would be the role of AI here?

Nevertheless, if reality can be influenced by education, then rethinking education 
is mandatory for the sake of future generations. And educational paradigms should 
be defined anew. In this new education, what would be the place for Education for 
Sustainable Development (ESD) as discussed by Hui Chuan Li (Chap. 17)? 
Considering the fast pace of the ongoing changes, one could even doubt whether 
ESD can be set up before its value expires. May the goal of matching education with 
the needs of society or an individual be an ever-moving target? With the most dis-
putable topics related to the values of performative skills, Ole Skovsmose (Chap. 
14) introduces the concept of performative mathematics opening a variety of discus-
sions. What new features of performative analysis will AI bring? Will AI be able to 
perform mathematics the same way we do? In all aspects? Or maybe studying the 
struggle of AI will allow a better understanding of the difficulties of students’ per-
formance. Or having handy and always available AI to perform for us, shall we 
withdraw from seeing value in performative skills? But can AI perform the entire 
spectrum of (mathematical) thinking available to humans? For example, can AI 
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perform inquiry? Produce mathematical knowledge in the way presented by 
Stoyanova-Kennedy (Chap. 15)? Can AI pose meaningful problems and reason 
about solution methods? We asked ChatGPT to design a few problems related to 
graphing certain functions, and the results were unimpressive; thus, we began to 
wonder whether AI will ever be able to draw meaningful conclusions. Understand 
(mathematical) jokes? Could AI understand mathematical paradoxes valued so 
much by Yenealem Ayalev (Chap. 13)? Will AI ever understand infinity? What strat-
egy should be applied in education then? Should teaching mathematics include 
more paradoxes as an attempt to differentiate human learning from artificial learn-
ing? Or this would be a missed attempt and possibly, philosophizing will remain the 
only human activity not mastered by AI? Discussion of the limitations of AI brings 
a fundamental question of whether AI can ever become sentient and develop any 
form of self-awareness. Can AI ever be aware of their states of mind? Can AI be 
aware of its own subtle leaps of awareness the same way humans are, as presented 
by Hausberger and Patras (Chap. 4)?

Maybe when discussing teaching mathematics, one should follow the idea of 
separating mathematical formalism and intuition. Min Bahadur Shresta (Chap. 20) 
draws our attention to the fact that formal mathematics is a relatively recent (nine-
teenth and twentieth centuries) discovery emphasizing the fact that for centuries, 
humans have been performing mathematics without formalism and axiomatization. 
It is quite clear that while AI can master logical aspects of mathematics, it is likely 
that humans can master intuitive mathematics much better than AI. Should mathe-
matics education then reduce logical math and emphasize intuitive math? Being not 
burdened anymore by the necessity of carrying all algebraic manipulations flaw-
lessly, shall we expect that students will joyfully engage in abstract mathematical 
thinking? Somehow, based on our current experience as college teachers, we do not 
see it coming anytime soon since the current attitude skews more toward avoidance 
than engagement into abstracting. But maybe it is just an intermediate stage between 
old and new education. However, intuitive performance carries a serious challenge 
for education as it is difficult to measure its progress. And measuring progress is a 
valid factor of education for society. How should the progress of students’ learning 
be evaluated then? Can AI help with the matter of valid assessment? Interestingly, 
humans are not the only species performing mathematics intuitively. Thomas 
E. Ricks (Chap. 22) describes animals performing mathematics, but they do not 
worry about the quality of their performance and certainly not the grades. Potentially, 
animal brains developing mathematical thinking can give hints on how little chil-
dren can develop mathematical thinking in an organic, natural way. If animals can 
mathematize, then is it possible that AI could mathematize on its own? On the more 
practical side, could AI in the future act as a skillful interpreter between animal 
languages and human languages so we can, in particular, understand the develop-
ment of mathematization in animals?

In this big excitement about AI, we still need to remember that it is just an algo-
rithm, a finite sequence of rigorous instructions performed by a machine. The nature 
of human thinking is not exactly of this type, since we do not always carry the same 
rigor and the finiteness of the instructions is uncertain. Following suggestions by 
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Regina D. Möller and Peter Collignon (Chap. 11), should future education signifi-
cantly increase the teaching of algorithms? To what extent? Shall students learn the 
peaceful history of programming instead of the violent history of human wars and 
uprisings? And learn programming languages instead of human languages? 
Programming languages may be quite useful but are applications at the center of the 
education we want to design?

One of the central issues in our initial discussion of the relationship between 
mathematics education and artificial intelligence is creativity. The previous discus-
sion of feelings, intuition, and algorithms lead to the role of AI creatures in mathe-
matical creativity, within the emerging domain of philosophy of creativity. Will 
interaction with AI enhance human mathematical creativity or will limit our creative 
endeavors? That depends a bit on the degree to which the AI creatures themselves 
are creative and how they can facilitate human creativity. At present, Margaret 
Boden (2004) assures us that AI can go as far as “to seem being creative” without 
yet any indication as to whether “it is creative.” How does this matter for mathemat-
ics education? There certainly is a difference in the quality of interactions between 
interacting with the entity that seems to be creative and the one that is creative. It 
seems that imitation of creativity only permits receiving the results of the process 
and prevents co-creation, which is the most joyful aspect of true creativity.

All these topics touched by the authors may be disputed in the light of theories 
of scientific revolutions as performed just like by Otte and Radu (Chap. 2), from 
Popper to Heisenberg. Hopefully AI will have something to suggest in relation to 
future transformations of sciences and education.

While feeling very present in this ongoing moment and philosophizing about the 
future, using previously acquired knowledge, we find space to observe one more 
leap of mind. Following it, we emerge in an imaginary world of a Polish futurist 
Stanislaw Lem. His book Fables for Robots (1964) contains stories written by and 
for AI. We find this futuristic literature very soothing as it fits exactly between clair-
voyance and philosophy of the future influences of AI on human reality.
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