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Quorum Sensing and Quorum Sensing 
Inhibitors of Natural Origin

Nourhan G. Naga and Mona I. Shaaban

Abstract Now, infectious bacteria represent the worldwide health threat. Treatment 
with antimicrobial agents becomes ineffective with the time, especially with the 
massive development of antimicrobial resistance. For instance, there should be 
alternatives, and one of the main approaches to control bacterial virulence is quo-
rum sensing (QS). QS is a bacterial communication system that controls the expres-
sion of bacterial virulence factors including secretion of exoenzymes, bacterial 
toxins, biofilm, and bacterial motility. Bacteria secret QS signals that control bacte-
rial quorum and associated virulence factors. These signals are mainly acyl homo-
serine lactones (AHLs) in Gram-negative bacteria, autoinducing peptides in 
Gram-positive bacteria, and AI-2 signals in both. Therefore, QS is a promising tar-
get to control bacterial pathogenicity and enhance bacterial inactivation by the 
immune system. Many quorum sensing inhibitors have been developed that either 
block QS receptors, inhibit the biosynthesis of QS signals, or degrade QS signals. 
Various quorum sensing inhibitions (QSI) have been identified from natural sources 
such as plant extracts, pure compounds, natural enzymes, marine organisms, fungi, 
bacteria, and herbs. Plants are considered as a rich source of QSI inhibitors either, 
edible plants, fruits, spices, essential oils, medicinal plants. Also, several pure 
extracts exhibited QSI activity, such as terpenoids, flavonoids, and phenolic acids. 
This chapter highlights the QSI activities of natural products and how they affect 
QS-regulated virulence. Also, the influence of natural products on the expression of 
QS-regulatory network will be discussed, with focus on their advanced applications 
in the elimination of microbial virulence and suppression of bacterial 
pathogenicity.
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1  Introduction

The number of different microorganisms in the adult human body was evaluated to 
be at least ten times more than the number of human cells (Walter et al. 2011). A 
majority of these microorganisms are commensal and may even play an important 
role in maintaining our health and well-being (Gerritsen et al. 2011). They can live 
inside the human body and silently work, but they can turn on us and become 
“pathogenic” with too many virulence factors and cause diseases if our immune 
systems are weakened. Additionally, pathogenic bacteria in our environment fre-
quently infect us. Our immune system successfully destroys microorganisms in 
most cases; however, at other times, our defenses cannot. Antibiotic use has been 
the only treatment choice for bacterial infections that for almost a century (Davies 
et al. 2006). Firstly, antibiotics were identified as substances produced by microor-
ganisms that inhibit the growth of other microorganisms. With continuous and 
excessive use of antibiotics through the years, antibiotics were abused and overused, 
and this led to a serious consequence: multiple-drug resistance (MDR). The World 
Health Organization (WHO) identified multiple-drug resistance (MDR) as one of 
the top ten global public health challenges facing humanity as they lost their effi-
cacy in the treatment of pathogenic infections (Rather et al. 2017). Therefore, the 
pharmaceutical industries need to develop new approaches to combat bacterial 
pathogens. Many pathogens that affect people, plants, animals, and aquatic life rely 
on bacterial communication between cells (Bruhn et al. 2005). These communica-
tion systems are called “quorum sensing” (QS) which is considered to be the key 
regulator of virulence factors (Williams et al. 2007). Therefore, any disruption of 
QS will prevent the release of virulence factors which consequently affect the 
pathogenicity of microorganisms. This is an innovative and effective strategy to 
control infectious bacterial diseases (Dong et al. 2007; Muzammil et al. 2023).

QS controls the virulence factors by regulating gene expression through autoin-
ducer (AI) production. AIs are small organic signaling molecules that are primarily 
produced during the stationary phase (Czajkowski and Jafra 2009). Once the growth 
reaches a certain threshold level, these molecules act as mirrors that reflect the inoc-
ulum size density and control the expression of associated genes (Elgaml et  al. 
2014). AIs can be categorized into three classes: autoinducing peptides (AIPs), 
autoinducer-1 (AI-1), and autoinducer-2 (AI-2). AI-1 is known as N-acylated 
L-homoserine lactones (AHLs) which are the most prevalent class of QS signaling 
molecules in Gram-negative bacteria (Geske et al. 2008). In Gram-positive bacteria, 
AIPs are the main autoinducers (Sturme et al. 2002). AI-2 is used by both Gram- 
negative and Gram-positive bacteria and is produced in intraspecies, so it is known 
to be a “universal” AI (Lowery et al. 2008; Alves et al. 2023).
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Quorum sensing inhibition (QSI) is achieved by too many pathways; blocking 
bacterial receptors, inhibiting the biosynthesis of QS signal, and degrading of QS 
signal in the extracellular environment. QSI strategy is an innovative and potent 
alternative to antibiotics use and it is thought to be less likely result in the emer-
gence of resistance (Miller and Bassler 2001). However, according to the latest 
studies, it is difficult to predict this consequence, and it is probably influenced by 
too many factors (Cornforth et al. 2014). Designing de novo quorum sensing inhibi-
tors (QSIs) can be opportune to draw inspiration from nature as it has long been 
believed that natural products are a good source of vital antibacterial agents that can 
be utilized to treat a variety of pathogenic diseases (Howes et  al. 2020). In this 
review, we highlight natural QSIs from many different sources and how they affected 
QS-regulated virulence genes expression.

Everything Starts in Nature
Nature is always the key; it introduces a massive source of drugs. More than half of 
all prescribed drugs are originated from natural sources (Harper 2001; Marris 2006). 
Similarly, many QSIs were isolated from many natural sources such as marine 
organisms, fungi, plants, and herbs due to the natural competition. They exhibited a 
high potency in inhibiting and disrupting the bacterial QS mechanism (Rasmussen 
and Givskov 2006). Here, we provide a list of the most potent naturally occurring 
anti-QS that have been identified from a variety of diverse habitats.

1.1  Plants

Plants harbor a high density of microbial communities. So, they developed many 
defense mechanisms against pathogenic organisms. They display an extensive range 
of therapeutic purposes in conventional medicine. The therapeutically effective 
plant-isolated active ingredients should be safe for human cells. Toxicological stud-
ies on these active substances must be carried out to avoid their toxicity. The aim to 
detect and study the biological processes and mechanisms behind their therapeutic 
effects has increased. Biologically active components of natural resource, espe-
cially those produced from plants, have thus far prompted the creation of brand-new 
medicines for the treatment of a variety of diseases. QS system manipulation by 
plants is thought to be a form of protection against microbial pathogens because 
plants lack an immune system, unlike animals and humans. This forced researchers 
to hypothesize additional defense mechanisms to overcome the pathogenic strains 
infection (Koh et al. 2013). Plant extracts were reported to act as QSI. Plant chemi-
cals often target the bacterial QS system in three different pathways (Fig. 1): by 
degradation of the signaling molecules, blocking the synthesis of AIs, or by target-
ing the receptors of the signals (Koh et al. 2013).
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Fig. 1 Mechanisms of quorum sensing inhibition by plants secondary metabolites through block-
ing the synthesis of AIs (A), targeting the receptors of the signals (B), and degradation of the sig-
naling molecules (C)

1.1.1  Edible Plants

All plant’s diversity approved efficacy against QS signaling systems of pathogenic 
bacteria. For example, some plants used for nutrition exhibited QSI potency as 
Medicago truncatula Gaertn plant extract could inhibit the QS against 
Chromobacterium violaceum CV026, Escherichia coli JM109, Pseudomonas aeru-
ginosa, and Sinorhizobium Meliloti (Gao et  al. 2003). Also, Pisum sativum was 
reported to reduce violacein pigment in C. violaceum and swarming and motility in 
P. aeruginosa PA01 (Fatima et al. 2010). Methanolic extract of Capparis spinosa 
inhibited QS and virulence in E. coli, C. violaceum, S. marcescens, P. mirabilis, and 
P. aeruginosa PA01 (Abraham et al. 2011). Erucin and sulforaphane compounds 
isolated from Brassica oleracea (broccoli) plant inhibited P. aeruginosa PA01 viru-
lence factors (Ganin et al. 2013). Phaseolus vulgaris (bean) and Oryza sativa (rice) 
inhibited the biofilm formation in Sinorhizobium fredii SMH12 and Pantoea anana-
tis AMG501 (Pérez-Montaño et al. 2013). Additionally, myristic acids and panto-
lactone isolated from Allium cepa (onion) inhibited P. aeruginosa virulence factors 
(Abd-Alla and Bashandy 2012).
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1.1.2  Fruits

Fruits also showed potent QSI activity against QS-regulated virulence genes. For 
example, the methanolic extract of Mangifera indica (mango) reduced the pyocya-
nin, elastase, chitinase, total protease, swarming motility, and exopolysaccharide 
(EPS) production by 89% 76%, 55%, 56%, 74%, and 58%, respectively, in P. aeru-
ginosa PAO1 at 800 μg/mL (Kim et  al. 2019). Vitis sp. (grape), total extracts of 
Rubus idaeus (raspberry), and Vaccinium angustifolium Aiton (blueberry) inhibited 
violacein production in C. violaceum (Kalia 2013). The limonoids in orange seeds 
including deacetyl nomilinic acid glucoside, ichangin, and isolimonic acid inhibited 
the biofilm formation in V. harveyi (Vikram et al. 2010). Similarly, aqueous extracts 
of edible fruits such as Musa paradisiacal (banana), Ananas comosus (pineapple), 
and Manilkara zapota (sapodilla) showed QSI activity against violacein pigment in 
C. violaceum, pyocyanin, biofilm formation, and protease in P. aeruginosa 
PA01(Musthafa et al. 2010). Biofilm formation of Yersinia enterocolitica was inhib-
ited by the peel extract of Punica granatum (pomegranates) (Oh et  al. 2015). 
Psidium guajava (guava) could reduce the biofilm production in P. aeruginosa 
PAO1 and violacein pigment synthesis in C. violaceum (Vasavi et  al. 2014). 
Similarly, it inhibited quorum sensing mediated virulence factors of Staphylococcus 
aureus (Divyakolu et al. 2021).

1.1.3  Spices

Spices exhibited to be a potent source of QSIs. For instance, curcumin, which is 
produced from Curcuma longa inhibited the expression of virulence genes in 
P. aeruginosa PA01 (Rudrappa et al. 2008). Furthermore, curcumin was evaluated 
for its ability to disrupt mature biofilms in uropathogenic strains. It was discovered 
to reduce QS-dependent virulence factors such as extracellular polymeric substance 
formation, alginate production, and swarming motility. Curcumin was found also to 
make P. aeruginosa PA01 more susceptible to common antibiotics (Packiavathy 
et al. 2014). Besides, the effects of cinnamaldehyde and its derivatives were reported 
to be effective QSI in QS-regulated processes, including biofilm formation in 
P. aeruginosa and AI-2-mediated QS in several Vibrio species (Brackman et  al. 
2008). Additionally, it was discovered that extracts from various plant components 
including the leaves, flowers, fruit, and bark of Combretam albiflorum, Laurus nobi-
lis, and Sonchus oleraceus had anti-QS properties (Al-Hussaini and Mahasneh 
2009). Allium sativum (garlic) extract inhibited β-galactosidase in Agrobacterium 
tumefaciens NTL4 and violacein production in C. violaceum (Bodini et al. 2009). 
Moreover, Vanilla planifolia aqueous methanolic extract inhibited violacein pig-
ment in C. violaceum CV026 (Choo et al. 2006).
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1.1.4  Essential Oils

Essential oils showed some anti-QS properties, and the production of violacein in 
C. violaceum CV026 was significantly affected by the QSI properties of the essen-
tial oils extracted from Piper brachypodon Benth, P. caucasanum Bredemeyer, and 
P. bogotense (Olivero V et al. 2011). Similarly, methanol and hexane extracts of 
clove inhibited violacein pigmentation in C. violaceum CV026. Chloroform and 
methanol clove extracts dramatically decreased the amount of bioluminescence in 
E. coli [pSB1075] that is produced when cultivated with N-3-oxododecanoyl-L-
homoserine lactone. While virulence factors of P. aeruginosa PAO1, such as pyo-
cyanin pigment synthesis, were suppressed by the hexane extract (Krishnan et al. 
2012). Eugenol is the key component of clove extract as it exhibited anti-QS proper-
ties and inhibited the virulence factors of P. aeruginosa and E. coli biosensors at 
subinhibitory concentrations (Zhou et al. 2013).

1.1.5  Medicinal Plants

Recent studies revealed that medicinal plants are a very potent source of QSIs. This 
potency is modulated by the secondary metabolites production. These metabolites 
are classified mainly into three main classes; terpenoids, phenolic acids, and flavo-
noids (Bouyahya et al. 2022).

Terpenoids

Terpenoids demonstrated remarkable antibacterial activity through a variety of 
pathways, including QS inhibition. Many terpenoids, including eugenol, carvacrol, 
linalool, D-limonene, and -pinene, have inhibitory effects via various QS mediators. 
For example, eugenol showed significant effects on methicillin-resistant 
Staphylococcus aureus (MRSA) isolated from food handlers (Al-Shabib et  al. 
2017), as well as biofilms of clinical isolates of P. mirabilis, S. marcescens, and 
P. aeruginosa (Packiavathy et al. 2012). Interestingly, an additional study showed 
that eugenol hindered P. aeruginosa from producing its virulence factors such as 
elastase, pyocyanin, and the development of biofilms (Zhou et al. 2013; Al-Shabib 
et al. 2017; Rathinam et al. 2017). Moreover, eugenol had a notable impact against 
(AIs) and significantly reduced the formation of biofilm of P. aeruginosa PAO1 by 
65.6% (Rathinam et al. 2017). Recently, other studies demonstrated that eugenol 
decreases the production of N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo- 
C12-HSL) and C4-HSL N-acyl homoserine lactone signal molecules, pyocyanin, 
and swarming motility in P. aeruginosa by 50% at sub-MIC (Lou et  al. 2019). 
Besides, eugenol reduced the expression of QS-regulated genes by 65%, 61%, and 
65% for lasI, rhlI, and rhlA, respectively, and by 36% for biofilm formation (Lou 
et al. 2019).
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Similar to this, carvacrol displayed a QSI activity against QS and biofilm devel-
opment. Recent research demonstrated that carvacrol inhibited the development of 
biofilms in P. aeruginosa at very low concentrations (0.9–7.9 mM) and reduced the 
synthesis of pyocyanin by 60% (Tapia-Rodriguez et al. 2017). Furthermore, another 
study reported that subinhibitory concentrations (<0.5 mM) of carvacrol inhibited 
biofilm formation in S. aureus 0074, Salmonella enterica subsp., and S. Typhimurium 
DT104 (Burt et al. 2014).

Phytol is a well-known diterpene and was reported as QSI. Specifically, this sub-
stance inhibited the biofilm formation in S. marcescens and P. aeruginosa PAO1 
(Pejin et al. 2015; Srinivasan et al. 2016, 2017). Phytol inhibited prodigiosin, prote-
ase, and biofilm formation by 92%, 68%, and 64%, respectively in S. marcescens at 
a concentration of 10 μg/mL (Srinivasan et al. 2016).

Another terpene that has demonstrated anti-QS action is called sesquiterpene 
lactone. This substance inhibited the activity of QS mediators in C. violaceum and 
P. aeruginosa ATCC 27853 (Amaya et al. 2012; Aliyu et al. 2021). It was reported 
that sesquiterpene lactones belonging to goyazensolide and isogoyazensolide chem-
ical families approved QSI activity and inhibited the production of AHL. Also, olea-
nolic aldehyde coumarate inhibited biofilm formation in P. aeruginosa and all 
lasI/R, rhlI/R regulated genes (Rasamiravaka et al. 2015). Other terpenoids as lin-
alool inhibited the biofilm formation of A. baumannii (Alves et  al. 2016; Wang 
et al. 2018).

Flavonoids

The second classes of secondary metabolites found in medicinal plants are flavo-
noids. Recent studies revealed that this chemical group has an antibacterial impact 
through various mechanisms of action, including inhibition of QS and its main 
traits, like the development of biofilm. Epigallocatechin is one of the flavonoids, it 
showed antibiofilm activity against S. typhimurium (Wu et al. 2018; Hosseinzadeh 
et al. 2020) and disrupted the QS activity of Streptococcus mutans biofilms. It also 
reduced motility and decreased AI-2-regulated virulence factors activity (Castillo 
et al. 2015). Additionally, epigallocatechin inhibited QS and the formation of bio-
film in S. aureus and Burkholderia cepacia (Huber et  al. 2003), Listeria 
Monocytogenes (Nyila et  al. 2012), and Eikenella corrodens (Matsunaga et  al. 
2010). Besides, naringenin inhibited biofilm formation in S. mutans and downregu-
lated mRNA expression of luxS, gtfC, gtfB, comE, and comD (Yue et al. 2018). 
Moreover, this compound inhibited the swarming and motility in C. violaceum 
(Truchado et al. 2012).

Quercetin exerts antagonistic effects on bacterial signaling systems, and has 
been shown to have an important role as QSI (Vikram et al. 2010). For instance, it 
inhibited the biofilm formation of E. coli and V. harvei (Vikram et al. 2010). Also, it 
inhibited the violacein pigment production in C. violaceum and QS-regulated phe-
notypes in P. aeruginosa PAO1 (Al-Yousef et al. 2017). Other flavonoids like narin-
genin showed QSI activity against P. aeruginosa and inhibited elastase and 
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pyocyanin virulence factors (Hernando-Amado et al. 2020). Meanwhile, morin fla-
vonoids inhibited EPS production, biofilm formation, and motility in S. aureus 
(Chemmugil et  al. 2019). In addition, methoxyisoflavone inhibited the violacein 
pigment in C. violaceum and pyocyanin, protease, hemolysin, and biofilm in P. aeru-
ginosa clinical isolates, PAO1, and PA14 (Naga et  al. 2022). On the other side, 
kaempferol inhibited adhesion-related gene expression (Ming et al. 2017). Taxifolin 
flavonoids also showed a significant QSI activity on P. aeruginosa and reduced 
elastase and pyocyanin production (Vandeputte et al. 2011).

Phenolic Acids

Several natural resources, including medicinal plants release phenolic acids as sec-
ondary metabolites. Numerous studies showed that these phenolic compounds have 
anti-QS properties. In two Pectobacterium species, P. carotovorum and P. aroi-
dearum, salicylic acid has been found to interfere with the QS system, influence QS 
machinery, and changed the expression of bacterial virulence factors (Joshi et al. 
2016). Additionally, it decreased the intensity of the AHL signal and reduced the 
expression of several QS genes. Salicylic acid treatment significantly decreased the 
biofilm formation of P. aeruginosa as well as twitching, swarming, and motility 
(Chow et al. 2011). Similarly, salicylic acid modulated 103 virulence-related gene 
families and decreased AHL production and biofilm formation in A. tumefaciens 
(Yuan et al. 2007). On the other hand, rosmarinic acid (RA) at 750 μg/mL decreased 
elastase, hemolysin, and lipase production in Aeromonas hydrophila and inhibited 
the development of biofilms. The virulence genes ahh1, aerA, lip, and ahyB were 
also downregulated (Rama Devi et al. 2016). Also, RA inhibited the QS-regulated 
virulence factors in P. aeruginosa, it inhibited elastase, pyocyanin, and biofilm for-
mation (Walker et  al. 2004; Corral-Lugo et  al. 2016; Fernández et  al. 2018). 
Cinnamic acid is another phenolic acid with known biofilm and QS inhibitory prop-
erties. It effectively prevented P. aeruginosa from producing the QS-dependent 
virulence factors and biofilm formation at sublethal concentrations without any 
effect on viability (Rajkumari et al. 2018). Additionally, research revealed that cin-
namic acid inhibited the virulence gene expression of P. aroidearum and P. caroto-
vorum (Joshi et al. 2016). Cinnamic acid also decreased the intensity of the AHL 
signal and suppressed the production of QS genes. Similar effects were reported 
when C. violaceum ATCC12472 was exposed to two cinnamic acid derivatives, 
4-dimethylaminocinnamic acid (DCA) and 4-methoxycinnamic acid (MCA) 
(Cheng et al. 2020). DCA and MCA reduced the production of violacein, chitinase, 
and hemolysin in C. violaceum and decreased the levels of N-decanoyl-homoserine 
lactone (C10-HSL).

Researchers reported that chlorogenic acid (CA) significantly reduced P. aerugi-
nosa virulence factors such as biofilm formation, swarming, elastase, protease, pyo-
cyanin, and rhamnolipid (Wang et al. 2019). Also, p-coumaric acid inhibited the 
QS-related virulence genes of P. chlororaphis, C. violaceum 5999, and A. tumefa-
ciens NTL4 (Bodini et al. 2009). In addition, it inhibited violacein pigmentation in 
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C. violaceum (Chen et al. 2020). Another QSI phenolic acid is caffeic acid which 
showed antibiofilm activity in S. aureus in addition to hemolysin inhibition activity 
(Luís et al. 2014). Besides, phenylacetic and ellagic acid were reported to be effi-
cient against the biofilm-forming bacteria B. cepacia (Huber et  al. 2003) and 
P. aeruginosa (Musthafa et al. 2012).

2  Fungal Quorum Sensing Inhibitors

Fungi inhabit a wide range of ecosystems and interact with other organisms, such as 
microorganisms, animals, and plants. They are almost cosmopolitan in nature. 
Additionally, they can live in extreme habitats. Organisms that cohabit in nature as 
partners have evolved tools to fight one another, including chemicals, enzymes, and 
metabolites (Sharma and Jangid 2015; Almeida et al. 2022). In soil, bacteria and 
mycorrhizal fungi work together closely. Fungi have inherent defenses against a 
bacterial population that have formed or evolved as a result of their close associa-
tion. These could be for space, nutrition, or pathogenicity. Furthermore, they are 
known to produce a number of secondary metabolites such as enzymes, chemicals, 
and mycotoxins (Pitt 2000; Frisvad et al. 2008). Even so, there is little information 
available on fungal QSIs. So, finding fungal QSI potency isolated from varied habi-
tats, such as endophytes and marine fungi may help.

Fungi are well-known to produce a variety of quorum sensing molecules (QSMs). 
For example, Candida albicans produces farnesol and tyrosol. Farnesol is also pro-
duced by a majority of dimorphic yeasts with a significant impact on their morpho-
genesis (Shirtliff et al. 2009; Weber et al. 2010). It exhibited antimicrobial activity 
against Fusarium graminearum (Semighini et al. 2006), Paracoccidioides brasil-
iensis (Derengowski et  al. 2009), Staphylococcus epidermidis, S. aureus (Cerca 
et al. 2012), and other bacteria (Pammi et al. 2011). It was reported to act as an 
adjuvant against S. epidermidis when combined with antibiotics (Pammi et  al. 
2011). On the other hand, farnesol produced by C. albicans was reported to inhibit 
biofilm formation, which is regulated by QS (Ramage et al. 2002). It showed effi-
cacy in protecting mice from candidiasis (Hisajima et al. 2008). A comparable study 
on C. parapsilosis and C. tropicalis revealed that farnesol at high concentrations 
reduced the formation of biofilms (Laffey and Butler 2005; Zibafar et al. 2015).

Additionally, many fungal secondary metabolites showed QSI activities. For 
instance, secondary metabolites of Tremella fuciformis; Tremella is a member of the 
Basidiomycota family Tremellaceae, also known as “jelly fungi.” T. fuciformis 
inhibited QS in C. violaceum CVO26 and inhibited the production of violacein pig-
ment. This pigment is regulated by QS and AHL signaling molecules. It was inhib-
ited by different concentrations (0.2%–0.8%) of T. fuciformis extracts without any 
effect on viability and growth (Zhu and Sun 2008). Also, Phellinus Igniarius which 
is classified as a plant pathogen was reported to have anti-QS activity (Zhu et al. 
2012) as well as anticancer, antidiabetic, and antioxidant characteristics (Lung et al. 
2010). Additionally, heterocyclic compounds that synthesize the pigments of 
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Auricularia auricula could bind to the active site of receptor proteins and inhibit the 
AHL-regulated signaling mechanism (Zhu et  al. 2011; Almeida et  al. 2022). 
Similarly, its total extract reduced the biofilm formation of Escherichia coli by 73% 
(Li and Dong 2010).

Mycotoxins were reported to have QSI activity. Penicillic acid mycotoxin which 
is produced by Penicillium radicola and patulin which is produced by P. coprobium 
inhibited QS in P. aeruginosa by targeting the LasR and RhlR proteins (Rasmussen 
et al. 2005b). Additionally, a mouse with P. aeruginosa infection recovered faster 
after receiving patulin treatment, and it was more susceptible to tobramycin antibi-
otic (Rasmussen et al. 2005b). Also, a lot of promises exist for metabolites with 
antibacterial activity in endophytic fungi that inhabit a plant host. So, some endo-
phytic fungi were isolated from Ventilago madraspatana plant (Rajesh and Rai 
2013; Lima et al. 2022).

3  Marine Organisms Are a Potent Source of QSIs

Before the emergence of the first plants on the land about half a billion years ago, 
life existed primarily in the oceans for almost three billion years and it was at this 
point when QS molecules and their inhibitors started to perform their distinct roles. 
Numerous marine bacteria, fungi, algae, and bryozoans have been identified as 
QSIs, in addition to corals and sponges. For example, marine cyanobacteria are one 
of the richest sources of physiologically active and structurally distinct natural com-
pounds. The family of halogenated furanones that were isolated from the marine 
alga Delisea pulchra has attracted a lot of attention and is considered to be one of 
the most effective and widely used natural QSI.

3.1  Algae

In the aquatic environment, beneficial and pathogenic bacteria coexist in close con-
tact with eukaryotes including algae, protozoa, fungi, and plants. Eukaryotes have 
inevitably evolved several defense mechanisms for interacting with bacteria, such 
as creating secondary metabolites like as QSIs (Kjelleberg and Steinberg 2002; 
Rasmussen et al. 2005a; Dudler and Eberl 2006). For example, the red macroalga 
Delisea pulchra was the source of the first identified QSI and it exhibited a strong 
antifouling activity (Givskov et al. 1996). A variety of secondary metabolites like 
halogenated furanones were detected at the algae surface and were approved to be 
the main cause of the QSI activity (Dworjanyn et  al. 1999). They are similar in 
structure to AHL, these halogenated furanones differ in having a furan ring rather 
than a homoserine lactone ring. The crude extract of D. pulchra approved efficacy 
against the human pathogenic bacteria; Proteus mirabilis and inhibited the motility 

N. G. Naga and M. I. Shaaban



405

and swarming activity (Gram et al. 1996). The natural compound that has received 
the greatest attention to date is the halogenated furanones as it exhibited high QSI 
activity in AHL-controlled expression in various Gram-negative bacteria (Rasmussen 
et al. 2000; Hentzer and Givskov 2003) and also inhibited AI-2 signaling molecules 
(Ren et al. 2001). The disruption of AI-2 QS by natural and synthetic brominated 
furanones has been shown to protect Artemia franciscana shrimp from pathogenic 
isolates of the species Vibrio Harveyi, V. campbellii, and V. parahaemolyticus 
(Defoirdt et al. 2006). Furthermore, it was demonstrated that natural furanone inhib-
ited the pathogenic V. harveyi strain from producing the toxin T1 and luminescence, 
both of which are QS-regulated against farmed shrimp (Manefield et  al. 2000). 
Besides, it was shown that the natural furanone attenuated the adverse effects of 
various pathogenic V. harveyi strains in the rotifer Brachionus plicatilis (Tinh et al. 
2007b; Tinh et al. 2007a). These findings demonstrated the ability of furanones to 
function as antivirulence compounds in several microbial marine ecosystems.

3.2  Bacteria

According to studies, a variety of bacteria can suppress the QS of other bacteria by 
producing quorum-quenching enzymes (QQEs) such as acylase and lactonase 
enzymes (Kalia 2013). A bacterial flora was isolated from the gut of white shrimp 
Penaeus vannamei. Then, it was cultivated with AHLs as the sole nitrogen and car-
bon source. It was discovered that the enrichment cultures accelerated the growth of 
rotifers in vitro exposed to pathogenic V. harveyi and degraded its signaling mole-
cules in vitro (Tinh et al. 2007b). Similarly, other bacterial QSIs were isolated from 
the gut of Lates calcarifer and Dicentrarchus labrax fish (Van Cam et al. 2009). 
Some bacteria can serve as antagonists by releasing substances that interfere with 
QS signaling systems. For instance, 35 out of 88 actinomycetes stains prevented 
biofilm formation of V. vulnificus, V. harveyi, and V. anguillarum without any effect 
on their growth (You et  al. 2007). Similarly, borrelidin, behenic acid, and 
1H-pyrrole-2-carboxylic acid isolated from Streptomyces coelicoflavus KJ855087 
inhibited QS-regulated virulence factors of P. aeruginosa PAO1(Hassan et al. 2016). 
In a cocultivation study, phenethylamine compounds were produced by Halobacillus 
salinus C42 inhibited V. harveyi bioluminescence. Also, these compounds inhibited 
several QS regulated phenotypes in Gram-negative bacteria, including lumines-
cence in V. harveyi, violacein pigment in C. violaceum CV026, and fluorescence in 
E. coli JB525 reporter strain (Teasdale et al. 2009).

Similarly, 11 bacterial strains that were isolated from Palk Bay sediments inhib-
ited the QS signaling systems in C. violaceum ATCC 12472 and C. violaceum 
CV026 (Nithya et al. 2010). Moreover, the marine isolated bacteria Bacillus pumi-
lus significantly inhibited P. aeruginosa PAO1 virulence factors (Nithya et al. 2010). 
It inhibited LasB elastase by 84%, LasA protease by 76%, caseinase by 70%, pyo-
cyanin by 84%, and pyoverdine, as well as biofilm formation by 87%. Bacillus 
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pumilus S8-07 approved QSI activity against virulence factors of Serratia marces-
cens. It exhibited a highly significant reduction in biofilm formation by 61%, hemo-
lytic activity by 73%, prodigiosin by 90%, and caseinase by 92% (Nithya et al. 2010).

Another example of marine Bacillus sp. strain was isolated from the coastal 
region of Calimere showed a potency as QSI was reported by Musthafa and coau-
thors (2011). Bacillus sp. SS4 inhibited the violacein pigment production in C. vio-
laceum by 86% and reduced the virulence factors of P. aeruginosa PAO1 by 88%, 
68%, 65%, 68%, and 86% for biofilm, LasA protease, total protease, elastase, and 
pyocyanin, respectively.

3.3  Other Marine Organisms as QSIs

Aquatic invertebrates and sponges as well as marine algae and bacteria can produce 
QSIs that may hinder QS systems (Husain and Ahmad 2015). For example, the 
bryozoan Flustra foliacea from the North Sea excretes brominated alkaloids that 
lowered the signal intensity of various QS phenotypes by 20% to 50%. Additionally, 
the metabolites suppressed QS-regulated phenotypes of P. aeruginosa such as pro-
tease production (Peters et al. 2003). Furthermore, the sponge Luffariella variabilis 
exhibited a potent QS inhibition in LuxR-regulated systems. The inhibitory effect of 
this sponge was discovered to be mediated by manoalide, monoacetate, and seco-
manoalide secondary metabolites production (Skindersoe et al. 2008). Expression 
of virulence gene in S. marcescens and the violacein synthesis in C. violaceum were 
used to test the QSI activity of marine sponges which were collected from Palk Bay, 
India. Among 29 tested marine sponges, methanol extract of Clathria atrasan-
guinea, Aphrocallistes bocagei, and Haliclona (Gellius) megastoma inhibited the 
violacein production in C. violaceum ATCC 12472 and CV026. Besides, these 
sponge methanol extracts inhibited the virulence factors of S. marcescens PS1 such 
as biofilm formation, protease, hemolysin, and prodigiosin pigment production 
(Annapoorani et al. 2012).

4  Natural Enzymatic Degradation of QSMs

Another major class of natural QSIs is enzymes. All organisms; mammals, plants, 
fungi, archaea, and bacteria have all been reported to participate in the production 
of QQEs. So, enzymatic degradation has arguably received the most attention to 
date (Romero et al. 2015). Many species of bacteria with enzymatic QSI activity 
have been identified so far (Table 1). The widespread enzymatic QSI activity among 
bacteria shows that disrupting bacterial communication is essential to giving bacte-
rial populations a strategic advantage over the competition. There are now three 
primary groups of AHL QQEs based on the modification process. The first is the 
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Table 1 Quorum quenching enzymes produced by bacterial strains

Organism Activity Enzyme Reference

Agrobacterium tumefaciens Lactonase AttM Zhang et al. (2002)
Lactonase AiiB Carlier et al. (2003)

Anabaena sp. Acylase AiiC Romero et al. (2008)
Arthrobacter nitroguajacolicus PQS Hod Pustelny et al. (2009)
Anabaena sp. Acylase AiiC Romero et al. (2008)
Bacillus megaterium Oxidoreductase CYP102A1 Chowdhary et al. (2007)
Bacillus sp. Lactonase AiiA Dong et al. (2001)
Brucella melitensis Acylase AibP Terwagne et al. (2013)
Chryseobacterium sp. Lactonase AidC Wang et al. (2012)
Geobacillus kaustophilus Lactonase GKL Chow et al. (2010)
Kluyvera citrophila Acylase KcPGA Mukherji et al. (2014)
Klebsiella pneumoniae Lactonase AhlK Park et al. (2003)
Mesorhizobium loti Lactonase MLR6805 Funami et al. (2005)
Microbacterium testaceum Lactonase AiiM Wang et al. (2010)
Mycobacterium avium Lactonase MCP Chow et al. (2009)
Ochrobactrum sp. Acylase AiiO Czajkowski et al. (2011)

Lactonase AidH Mei et al. (2010)
Pseudoalteromonas byunsanensis Lactonase QsdH Huang et al. (2012)
Rhodococcus erythropolis Lactonase QsdA Uroz et al. (2008)
Rhizobium sp. Lactonase DlhR Krysciak et al. (2011)

Lactonase QsdR1
Solibacillus silvestris Lactonase AhlS Morohoshi et al. (2012)
Sulfolobus solfataricus Lactonase SsoPox Merone et al. (2005)

lactonase enzyme, which breaks down the ester linkage in the homoserine lactone 
ring of metalloproteins AHL (Dong et  al. 2000, 2001) (Fig.  2). These enzymes 
break down all signals regardless of acyl side chain substitutions and size, making 
them the ones with the widest diversity of AHL specificity. The second category is 
the acylase enzyme which breaks down the AHL amide linkage, releasing the cor-
responding homoserine lactone ring and free fatty acid (Lin et al. 2003). Acylases 
exhibit more substrate selectivity than lactonases, which could be a result of their 
ability to detect the signal’s acyl chain. The oxidoreductases are the third class of 
known AHL QQEs; unlike acylase and lactonase activities, they oxidize or reduce 
the acyl chain of the AHLs instead of destroying them. The signals are not degraded 
by these reactions, but the alterations change the specificity and this consequently 
affects signal and receptor interaction.

Fungi are well known for producing extracellular enzymes such as cellulases, 
proteases, amylases, and others that can be used to degrade bacterial biofilms. For 
example, some enzymes extracted from Trichoderma viride, Aspergillus niger, and 
Penicillium species approved their efficacy as QSIs and degraded the biofilm of 
P. aeruginosa (Gautam et al. 2013).
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Fig. 2 Mechanisms of action of lactonase enzyme; A, oxidoreductase enzyme; B, and acylase 
enzymes; C

5  Conclusions

This review shows how we might draw inspiration from nature to focus on bacterial 
communication networks in the battle against diseases. Many other molecular enti-
ties that can interfere with bacterial virulence have been found in recent research, 
and many more are expected to be found in the near future. Anti-QS is crucial for 
combating infections because it does not put selection pressure on the population 
and is unlikely to lead to a resistance issue. For a better understanding of the pro-
cesses involved, in vivo investigations in relevant animal models are required. It is 
crucial to thoroughly examine the organism’s pathogenicity mechanisms, including 
their relationship to QS.
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