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Preface

Drug design and drug discovery have transformed modern medicine, and natural 
products have played a pivotal role in this process. For thousands of years, various 
cultures around the world have recognized and utilized the medicinal properties of 
natural products. Many of the drugs currently used in medicine are derived from 
natural sources, highlighting the importance of natural products in drug discovery.

Natural products offer a rich source of drug candidates, with compounds obtained 
from plants, animals, and microorganisms, demonstrating promising therapeutic 
potential. These bioactive molecules have provided the foundation for the develop-
ment of modern drugs. The drug discovery process involves identifying new drug 
candidates and optimizing them for use as medications. This book Drug Discovery 
and Design Using Natural Products aims to provide a comprehensive overview of 
this field, with a focus on the use of natural products as drug candidates.

The book covers various aspects of drug discovery and development, including 
the techniques used in drug design, such as ‘Drug development projects guided by 
ethnobotany and ethnopharmacology’, ‘Artificial intelligence and discovery of 
microbial natural products’, etc. Varieties of modern day tools have been utilized for 
natural product discovery, and I feel that this book is excellent to cover on such 
aspects. This book is divided into several sections, with each section covering a dif-
ferent aspect of drug discovery and design based on natural products. The introduc-
tory section provides an overview of the history of drug discovery and the role of 
natural products, while subsequent sections cover the isolation, characterization, 
and different classes of natural products used in drug discovery. This book also cov-
ers on the aspect of ‘screening of compounds using molecular modeling approaches’. 
The third section of the book examines the future of drug discovery and design 
based on natural products with the help of in silico tools. The book also explores the 
sources of natural products with potential biological activities.
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This book is a valuable resource for researchers, academics, and students in the 
fields of drug discovery, pharmacology, natural products, and medicinal chemistry, 
offering a comprehensive overview of this exciting and rapidly evolving area of 
research.

M. Pharm (Pharmaceutical Chemistry), Ph.D. in Pharmacy  
Department of Pharmaceutical Sciences and Technology  
Birla Institute of Technology 
Jharkhand, India
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Drug Development Projects Guided 
by Ethnobotany and Ethnopharmacology 
Studies

Sheikh Rezzak Ali, Shuby Kumari, Satyendra K. Prasad, Rupali S. Prasad, 
Saurabh K. Sinha, and Anshul Shakya

Abstract In order to determine the present state of knowledge on ethnobotany, ethno-
pharmacology, and its application to drug development, this work reviews a variety of 
texts and studies in these fields. Traditional medical systems based on plants continue 
to be crucial to healthcare since the majority of the world’s population still relies on 
them as their primary form of treatment. Many significant development medications, 
including aspirin, digitoxin, vinblastine, reserpine, ephedrine, ergometrine, and atro-
pine, have been discovered by following leads from traditional usage. The develop-
ment of novel chemical entities for therapeutic use and potential lead compounds for 
the structural modification of current drugs to produce new and more powerful ones 
both rely heavily on natural products as a starting point. Ethnobotany has been crucial 
in the discovery of novel medicines for many years. In light of ethnopharmacological 
research, the development of modern treatment systems has benefited greatly from the 
discovery of drugs from natural sources. The application of current drug development 
concepts to the selection, authentication, extraction, biological screening, and analogue 
creation of plant-based natural  products gives a thorough overview of the numerous 
methods employed in ethnobotanical and ethnopharmacological research.
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1  Introduction

The process of turning a molecule from a drug candidate to a product that has been 
authorized for sale by the relevant regulatory bodies is known as drug development. 
This occurs through early drug discovery, preclinical studies, clinical trial, regula-
tory review and post market monitoring. The speed of medication development is 
essential for its economic success, since development expenses make up roughly 
two-thirds of all research and development expenses and development time reduces 
the length of the drug‘s patent protection when it enters the market, development 
speed is a key factor in determining sales revenue. Even though the pharmaceutical 
industry is quite aware of the need to reduce the amount of time and money spent on 
development, both these parameters have risen significantly in the last 20 years. 
This is mostly due to external factors, especially the tougher standards employed by 
regulatory authorities to assess the usefulness and safety of new compounds (Rang 
and Hill 2013). Finding new chemical entities (NCEs) with the required properties 
of druggability and medicinal chemistry is the main component of new drug discov-
ery. Both chemical synthesis and isolation from natural products are viable sources 
for these NCEs. According to study of the origins of new drugs from 1981 to 2007, 
majority of the drugs that have been approved since 1994 were based on natural 
products (Katiyar et al. 2012).

People have been utilizing material(s) existing in nature, derived from flora, 
fauna, and mineral sources to improve health and cure of diseases since ancient time 
(Lev and Amar 2000). According to their historic uses, many new medications have 
been derived from natural sources. Since around 80% of the world’s population still 
predominantly relies on traditional medicines for their primary treatment, these 
plant-based traditional medicinal systems continue to play a significant role in 
healthcare. Following leads from traditional applications has led to the discovery of 
several important modern pharmaceuticals, such as aspirin, digitoxin, vinblastine, 
reserpine, ephedrine, ergometrine, atropine, and tubocurarine (Anyinam, 1995). 
Natural products serve as a crucial starting point for the discovery of new chemical 
entities for therapeutic application as well as prospective lead compounds for the 
structural alteration of existing medications to create new and more potent ones. 
Although natural products include a wide range of complicated chemical structures, 
secondary metabolites from plants appear to be more biologically friendly and 
drug-like than drugs made entirely of synthetic materials (Balunas and Kinghorn 
2005). The majority of the common human diseases, such as peptic ulcers, infec-
tious diseases, cancers, as well as diseases of the digestive, cardiovascular, and 
respiratory systems, are treated with or prevented by using natural products and 
related medications (Newman et al. 2003). The use of modern medicine as a method 
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of treating human diseases has surpassed the use of traditional medicine (Yuan et al. 
2016). But, in many nations, even rich nations, the use of medicinal plants for ill-
ness prevention and treatment has increased during the past few decades (Yatoo 
et al. 2017). Indeed, a wide variety of developed nations, including the China, the 
United Kingdom, France, and Germany, currently use a variety of medicinal plant 
extracts as prescription medications (Ji et al. 2017; Ruhsam and Hollingsworth 2018).

2  Ethnobotany

The study of the interaction between humans and plants is known as ethnobotany, 
which combines the “ethno” study of people with the “botany” study of plants 
(Martin 2004). The study of how people and plants interact over time and location 
is known as ethnobotany (Ur et  al. 2016). Dr. John William Hershberger, an 
American botanist, used the term “ethnobotany“for the first time in 1895 and one 
year after he coined the term and proposed “ethnobotany“as a discipline that clari-
fies the cultural significance of the plants’ trunks, which are used for clothes, con-
struction materials, medicine, ornamentation, fences, hunting, fuel, food, agricultural 
equipment, and religious rituals (Ahmad et al. 2006). Because plants play a signifi-
cant role in almost every aspect of human activity, ethnobotany encompasses a wide 
range of academic disciplines, including pharmacognosy, botany, biochemistry, 
agriculture, toxicology, medicine, nutrition, ecology, cognitive studies, comparative 
religion, sociology, anthropology, linguistics, history, and archaeology. Numerous 
scientists may now explore the many uses of plants because of ethnobotany‘s com-
plex nature, which also opens the door to a broad range of approaches and applica-
tions (Alexiades and Sheldon 1996). It should be emphasized that this scientific 
discipline allows for the rebuilding of ethnic traditions, from small human tribes to 
vast civilizations, through the analysis of historical applications for food, wood, 
magic, and religion, as well as for medical and textile purposes (Norton 1981).

The globe and its environment have seen a significant transformation as a result 
of the quick development and advancements in science, technology, and the global 
economy. A growing market for natural products and phytomedicine has diverted 
research and development efforts into the production of new drugs in light of the 
striking advancements in human healthcare on the one hand and the degradation of 
the environment on the other. Many research organizations and businesses in this 
field are now focusing on traditional medicine, particularly the use of plants as a 
source for novel medications. To determine which plants are the best prospects for 
additional screening and chemical analysis, researchers employ ethnobotanical 
knowledge. Along with developing nations in Asia, this development tendency is 
not exclusive to Western nations (Farnsworth 1993). Often, chemical screening of 
new drug development is guided by ethnobotanical knowledge of medicinal plants. 
The first candidates for screening were conventional herbs with established clinical 
efficacy and safety. After that, in conjunction with local herbal medicine users, plant 
materials that had been collected and identified using ethnobotanical data and 
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phytochemical analysis were tested. Pharmaceutics, animal testing, and clinical 
studies are used to validate the identified lead ingredients of herbal remedies 
(Sheng-Ji 2001).

The most well-known classical medications produced from ethnobotanical 
sources include aspirin, vinblastine and vincristine, codeine and papaverine, colchi-
cine, digoxin and digitoxin, tetrahydrocannabinol, and cannabidiol from Filipendula 
ulmaria, Catharanthus roseus, Papaver somniferum, Colchicum autumnale, 
Digitalis purpurea, and Cannabis sativa, respectively (Chadwick and Marsh 2008). 
The effectiveness of the anticancer drug paclitaxel serves as an encouraging exam-
ple of the potential of plant-based components in pharmaceutical development. 
Based on ethnobotanical data from Chinese traditional medicine, oseltamivir was 
successfully created from Illicium verum Hook.f. during the avian flu outbreak. 
Additionally, ethnobotanical records helped isolate and produce the potent antima-
larial medicine artemisinin from the plant Artemisia annua (Tu 2011). Drug discov-
ery in Africa based on ethnobotanical leads has taken two directions: the traditional 
route of identifying single plant species with physiologically active chemicals and 
the standardization and characterization of traditional recipes for development as 
medications. The first method resulted in the identification of several biologically 
active molecules and the medical use of numerous African plants. Examples include 
the physostigmine obtained from Physostigma venenosum is used to treat glaucoma, 
and the recently discovered antiviral agents from Ancistrocladus abbreviatus. The 
second strategy aims to increase the use of blended medications in formulated dos-
age forms, may be more applicable to the needs of the underdeveloped rural regions, 
but it has received little attention (Iwu 2002).

2.1  Ethnobotany and Natural Products

Pharmaceuticals are often developed in the following order: discovery of active lead 
compounds, thorough biological testing, formulation of dosage forms, and multiple 
rounds of clinical research to determine the drug‘s safety, effectiveness, and phar-
macokinetics profile. Clinical studies may reveal potential interactions with food 
and other medicines. Herbal medicines used in traditional medicine have long been 
an important part of the healthcare systems in many nations. Native Indians use a 
number of herbal remedies to effectively treat a range of illnesses. Although some 
of the traditional healers are still successfully using herbs to cure people, the exper-
tise of herbal remedies is slowly fading. Local people in the region commonly uti-
lize these plants to treat a variety of ailments. The communities freely share, care 
for, and sustain the traditional knowledge, skill, and traditions as their common 
property (Patwardhan et  al. 2005; Rego et  al. 2022). Studies into the traditional 
utilization of local flora have shown that, there is a wealth of local knowledge about 
many plant species’ physical and chemical qualities as well as their phenological 
and ecological characteristics, especially in the context of domesticated species.

S. R. Ali et al.
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Despite collaboration between ethnobotanists and pharmacologists has numer-
ous advantages for both parties, there are obstacles which needs to be addressed in 
order to create effective relationships. The disparity in perspective that underpins 
the research goals of the two areas is complicated. While some pharmacologists still 
have bioprospecting as their goal, the field of ethnobotany is typically more inter-
ested in the cultural significance of the relationship between humans and plants than 
in prospecting for plant pharmaceuticals and knowledge about plants. In the past, 
bioprospecting conducted direct ethnobotanical research, but today the focus is on 
comprehending the human study population and examining the significance of the 
link between people and plants across a wide range of cultural contexts. Benefiting 
human study communities and frequently their related ecosystems has emerged as a 
key goal, significantly altering the kinds of hypotheses being investigated in con-
temporary ethnobotanical research as opposed to those conducted in the colonial 
past (Salick et al. 2003; Cunningham 2008). The ideas of sickness and healing are 
often seen differently by pharmacologists and ethnobotanists. When studying 
healthcare systems and medicinal plants, ethnobotanists operate within both a medi-
cal anthropological and an ethnopharmacological research framework, in contrast 
to most pharmacologists who only consider one model of health, which is a bio-
medical approach (Etkin 1993; Hahn 1995).

2.2  Ethnobotanical Approaches and Omic Techniques 
in Conjunction

For determining the most promising plant taxa or genes within those taxa among 
plants with well-known ethnobotanical applications for food and medicine, in addi-
tion to the phylogenetic approach, large data sets acquired using omic techniques 
(metabolomics, proteomics, genomics, transcriptomics) and their analyses using 
bioinformatic tools are helpful. These techniques and the resulting data sets help to 
better understand the evolutionary background of culinary and medicinal plants 
(Hao and Xiao 2015). The usage of metabolomics is expanding as a result of the 
fast-paced development of the primary analytical methods for metabolites such as 
high-performance liquid chromatography (HPLC), gas chromatography, and 
nuclear magnetic resonance. Monitoring the geographical and temporal distribution 
of relevant phytochemicals impacted by plant environmental and developmental 
signals is made possible by metabolomics, which aims to offer overall qualitative 
and quantitative descriptions of metabolites in organisms exposed to various con-
texts (Penuelas and Sardans 2009). It is becoming easier to identify new biosyn-
thetic routes for specialized bioactive metabolites because to the integration of this 
metabolomic technique with genome-based functional characteristic of candidate 
genes from significant ethnobotanical plants. As a result, this integration has signifi-
cantly increased the possibility of discovering and producing pharmaceutical and 
food items. For instance, traditional breeding techniques are being used to increase 
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the production of the antimalarial drug artemisinin, along with new high- yielding 
hybrids to transform A. annua into a strong cropping system and the renewal of the 
artemisinin biosynthetic pathway in a modified microbial host (Hale et al. 2007). 
The finding of several FAD2 phytoconstituents in a nonplant recombinant host sys-
tem following correlation of the transcriptomes and metabolomes of developing 
seeds that accumulate unusual fatty acids is another illustration of the successful 
blending of omic techniques with ethnobotanical approaches (Sumner et al. 2015; 
Lima et al. 2022).

3  Ethnopharmacology

Efron and colleagues originally used the term “ethnopharmacology“in 1967 as the 
title of a book on hallucinogens—“Ethnopharmacological Search for Psychoactive 
Drugs” (Efron et al. 1967; Holmstedt 1967). Ethnopharmacology, defined by Rivier 
and Bruhn (1979), is a multidisciplinary field of study focused on the observation, 
description, and experimental exploration of indigenous substances and their bio-
logical actions (Rivier and Bruhn, 1979). Ethnopharmacology is a scientific 
approach to investigating the biological effects of any human-use product that can, 
in a very broad sense, either be useful or poisonous or have other immediate phar-
macological consequences. Studies outlining the usage of beneficial plants are typi-
cally included in this definition; however, these studies are typically carried out with 
the intention of advancing an experimental investigation of botanical medicines 
(Heinrich et al. 2009). The areas of ethnopharmacology and ethnobotany are closely 
related. Ethnobotany is the study of the multifaceted interactions between cultural 
plant practices, with a particular emphasis on how diverse human societies manage, 
make use of, and perceive plants. On the contrary, ethnopharmacology is the inter-
disciplinary study of biologically active substances and traditionally prescribed 
indigenous medications (Soejarto et al. 2005). In order to explore physiologically 
active substances from plants, minerals, animals, fungi, and microorganisms, ethno-
pharmacology has a bigger range. Without examining any potential causal relation-
ships with the substances or molecules contained, the initial step in these domains 
is to present the usage of extracts in a specific ailment (Sargin 2015).

In emerging nations in Asia, Africa, and South America where there is a legacy 
of indigenous medical knowledge, ethnopharmacology research methodology is 
frequently used. Additionally, ethnopharmacological research have proliferated 
considerably throughout Europe over the past ten years, concentrating particularly 
on the Mediterranean world, which includes Italy, Turkey, and Spain (Pieroni and 
Privitera 2014). People have connected with diverse plants since past civilizations 
in attempt to understand their biological impacts. Information about particular 
plants and how to use them to treat particular ailments has been verbally transmitted 
through various generations. The knowledge about medicinal plants was eventually 
scientifically documented in ethnobotanical field research (Hamburger and 
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Hostettmann 1991). Documentation states that a taxonomist collects and identifies 
the plant material. For botanical documentation, the species must be identified using 
its most recent, taxonomically valid Latin binomial, and voucher specimens must be 
deposited in an internationally accessible herbarium. The plant parts that are known 
to be utilized for medicine, such as the flowers, leaves, stems, barks, seeds, fruits, 
roots, or the entire plant, should be the subject of ethnopharmacological studies 
(Bambhole and Jiddewar 1985). Preclinical research is then conducted on these 
plant sections. After a proper experimental setup has been constructed in experi-
mental animals, plant extracts are applied to animals. In order to identify the most 
efficacious fractions and identify the bioactive molecules in the way of bioactivity- 
guided fractionation and isolation studies, the fractions obtained by the phytochem-
ical separation studies are subjected to the activity evaluation process at each step. 
Since all-natural products start out as combinations of chemically similar substances 
from which the active ingredient is separated and purified using additional extrac-
tion, chromatography, and crystallization techniques. Following purification, exam-
inations on chemical structural characterization and different chemical synthesis are 
conducted to evaluate the structure–activity relation (Khalid et al. 2013; Almeida 
et al. 2022).

3.1  Ethnopharmacology and Drug Development

A botanist, ethnobotanist, ethnopharmacologist, or plant ecologist gathers and iden-
tifies the plant(s) of interest as the first step in the process of developing a medica-
tion from ethnomedicine or ethnopharmacology. Although the ethnopharmacology 
approach is based on pharmacology, chemistry, and botany other fields have also 
significantly contributed. To preserve and record significant cultural heritage before 
it is lost, as well as to look into and assess the agents used, are the goals of ethno-
pharmacology. As a result, it is extremely important in the evaluation of natural 
products, especially herbal medicines from traditional and folkloric sources. 
Ethnopharmacology includes field observations, descriptions of the use and results 
of conventional treatments, identification of plants, and phytochemical and pharma-
cological research (Cordell and Colvard 2005; Patwardhan 2005). Ethnopharmacology 
is much more than a discredited science with antiquated methods. It continues to 
serve as the scientific foundation for the creation of active therapeutics based on folk 
remedies from different ethnic groups. Its ultimate goal is to validate conventional 
remedies through the isolation of active ingredients or various pharmacological dis-
coveries (Mukherjee 2005). In many regions across India, the use of Ayurvedic 
medicines and formulations has long been a crucial component in the treatment of 
various illnesses. Ayurvedic drug leads have produced a large number of drug can-
didates that are now widely used in commercial markets.

Along with many regulatory measures, the Indian government has made consid-
erable efforts to advance the safety, stability, effectiveness, and application of herbal 
medicine. In fact, numerous contemporary medications that are used to treat serious 
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illnesses have been created using Indian medicinal herbs. These include medica-
tions such as psoralen, reserpine withanolide, sennoside, glycyrrhizin, and curcumin 
quinine (Mukherjee et al. 2010; Alves et al. 2023). Additionally, a number of lead 
molecules have been isolated including betulinic acid (an immunomodulatory 
agent), β-Asarone, and mahanimbine (AChE inhibitor, tilianin (a hepatoprotec-
tive)), and their reported pharmacological activities have been confirmed (Mukherjee 
et al. 2009).

Recently, a significant amount of ethnobotanical and ethnopharmacological 
research have been started in an effort to find novel pharmaceuticals. For many 
centuries, ethnobotany and ethnopharmacology have been significant contributor to 
the development of novel medicines. Table 1 lists drugs derived from ethnobotani-
cal and ethnopharmacological studies and their applications.

4  Process of Ethnobotanical and Ethnopharmacological 
Drug Development

4.1  Plant Selection Guided by 
Ethnopharmacological Knowledge

The strategy is based on the tradition of plant use in ethnomedicine. For instance, 
andrographolide was obtained from the herb Andrographis paniculata that was uti-
lized in ethnomedicine to cure dysentery. Similarly, this method was used to isolate 
several bioactive molecules from Berberis aristata, Papaver somniferum, and 
Picrorhiza kurroa. The potential plants are chosen using this method based on 
observation, description, and sometimes even some experimental evaluation 
(Katiyar et al. 2012). Traditional medicines from nations such as China and India 
have a long history with well-documented records that are based on a codified sys-
tem of medications from botanical sources. Codified systems were built on strong 
intellectual foundations of pharmacology and human physiology, whereas the eth-
nomedicinal practice mostly rely on actual experiences. In contrast to ethnomedical 
traditions, where materials were mostly employed as crude extracts such as decoc-
tion and juices, the notion of pharmaceutical formulations was more established in 
the classical codified system. While the conventional system is heavily institutional-
ized, the ethnomedical practices are often confined and controlled by a small por-
tion of the population. Bacosides, boswellic acid, artemisinin, and reserpine are 
some of the significant examples of natural products discovered by utilizing the 
methodology based on the codified system of medicine. These substances are used 
as memory enhancers, anti-inflammatory, antimalarials, and antihypertensive 
agents, respectively (Katiyar et al. 2012).
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Table 1 Drugs developed from ethnobotanical and ethnopharmacological studies

Drug Source Pharmacological action

Acetyldigoxin Digitalis lanata Cardiotonic
Adoniside Adonis vernalis Cardiotonic
Aescin Aesculus hippocastanum Anti-inflammatory
Aesculetin Fraxinus rhynchophylla Antidysentery
Agrimophol Agrimonia eupatoria Anthelmintic
Ajmalicine, 
serpentine

Rauvolfia serpentina Treatment for circulatory disorders

Allyl isothiocyanate Brassica nigra Rubefacient
Andrographolide Andrographis paniculata Treatment for bacillary dysentery, 

hepatoprotective
Anisodamine Anisodus tanguticus Anticholinergic
Anisodine Anisodus tanguticus Anticholinergic
Arecoline Areca catechu Anthelmintic
Asiaticoside Centella asiatica Vulnerary
Berberine Berberis vulgaris Treatment for bacillary dysentery
Bergenin Ardisia japonica Antitussive
Betulinic acid Betula alba Anticancerous
Bromelain Ananas comosus Anti-inflammatory, proteolytic
Caffeine Camellia sinensis CNS stimulant
(+)-catechin Potentilla fragarioides Hemostatic
Chymopapain Carica papaya Proteolytic, mucolytic
Cocaine Erythroxylum coca Local anesthetic
Codeine Papaver somniferum Analgesic, antitussive
Colchicine Colchicum autumnale Antitumor, antigout
Convallatoxin Convallaria majalis Cardiotonic
Curcumin Curcuma longa Choleretic
Cynarin Cynara scolymus Choleretic
Danthron Cassia species Laxative
Deserpidine Rauvolfia canescens Antihypertensive, tranquilizer
Deslanoside Digitalis lanata Cardiotonic
Digitalin Digitalis purpurea Cardiotonic
Digitoxin Digitalis purpurea Cardiotonic
Digoxin Digitalis purpurea Cardiotonic
Emetine Cephaelis ipecacuanha Amoebicide, emetic
Ephedrine Ephedra sinica Sympathomimetic, antihistamine
Etoposide Podophyllum peltatum Antitumor agent
Gitalin Digitalis purpurea Cardiotonic
Glaucarubin Simarouba glauca Amoebicide
Glycyrrhizin Glycyrrhiza glabra Sweetener, treatment for Addison’s disease
Gossypol Gossypium species Male contraceptive
Hemsleyadin Hemsleya amabilis Treatment for bacillary dysentery
Hydrastine Hydrastis canadensis Hemostatic, astringent

(continued)
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Table 1 (continued)

Drug Source Pharmacological action

Hyoscyamine Hyoscyamus niger Anticholinergic
Irinotecan Camptotheca acuminata Anticancer, antitumor agent
Kainic acid Digenea simplex Acaricide
Kawain Piper methysticum Tranquilizer
Kheltin Ammi visnaga Bronchodilator
Lanatosides A, B, C Digitalis lanata Cardiotonic
Lapachol Tabebuia species Anticancer, antitumor
a-Lobeline Lobelia inflate Smoking deterrent, respiratory stimulant
Monocrotaline Crotalaria sessiliflora Topical antitumor agent
Morphine Papaver somniferum Analgesic
Neoandrographolide Andrographis paniculata Treatment of dysentery
Noscapine Papaver somniferum Antitussive
Ouabain Strophanthus gratus Cardiotonic
Papain Carica papaya Proteolytic, mucolytic
Phyllodulcin Hydrangea macrophylla Sweetener
Physostigmine Cholinesterase inhibitor Cholinesterase inhibitor
Picrotoxin Anamirta cocculus Analeptic
Pilocarpine Pilocarpus jaborandi Parasympathomimetic
Podophyllotoxin Podophyllum peltatum Antitumor, anticancer agent
Protoveratrines A, B Veratrum album Antihypertensives
Pseudoephedrine Ephedra sinica Sympathomimetic
Nor-pseudoephedrine Ephedra sinica Sympathomimetic
Quinine Cinchona ledgeriana Antimalarial, antipyretic
Quisqualic acid Quisqualis indica Anthelmintic
Rescinnamine Rauvolfia serpentina Antihypertensive, tranquilizer
Reserpine Rauvolfia serpentina Antihypertensive, tranquilizer
Rhomitoxin Rhododendron molle Antihypertensive, tranquilizer
Rorifone Rorippa indica Antitussive
Rotenone Lonchocarpus nicou Piscicide, insecticide
Rotundine Stephania sinica Analgesic, sedative, tranquilizer
Salicin Salix alba Analgesic
Santonin Artemisia maritima Acaricide
Scillaren A Urginea maritime Cardiotonic
Scopolamine Datura species Sedative
Sennosides A, B Cassia species Laxative
Silymarin Silybum marianum Antihepatotoxic
Stevioside Stevia rebaudiana Sweetener
Strychnine Strychnos nux-vomica CNS stimulant
Teniposide Podophyllum peltatum Antitumor agent
Tetrahydropalmatine Corydalis ambigua Analgesic, sedative, tranquilizer
Theobromine Theobroma cacao Diuretic, vasodilator

(continued)
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Table 1 (continued)

Drug Source Pharmacological action

Theophylline Theobroma cacao and 
others

Diuretic, bronchodilator

Thymol Thymus vulgaris Antimicrobial
Trichosanthin Thymus vulgaris Abortifacient
Topotecan Camptotheca acuminata Antitumor, anticancer agent
Trichosanthin Trichosanthes kirilowii Abortifacient
Tubocurarine Chondrodendron 

tomentosum
Skeletal muscle relaxant

Valepotriates Valeriana officinalis Sedative
Vasicine Adhatoda vasica Nees Respiratory stimulant
Vincamine Vinca minor Nootropic
Xanthotoxin Ammi majus Antivitiligo
Yohimbine Pausinystalia yohimbe Aphrodisiac
Yuanhuacine Daphne genkwa Abortifacient
Yuanhuadine Daphne genkwa Abortifacient

4.2  Authentication of Plant

Identification of the botanical origin and determination of the scientific name con-
stitute very first part in the authentication of plant species. Macroscopic character-
ization is accomplished by comparing the plant material’s organoleptic qualities 
(taste, color, odor, size, shape, texture, surface properties, and fracture characteris-
tics) with accepted reference material (Smillie and Khan 2010). To distinguish and 
identify highly similar medicinal plants, the microscopic technique is typically 
used. This quick and easy procedure uses a microscope to identify intrinsic struc-
tural characteristics at the tissue and cellular levels. Ordinary light microscopes are 
normally sufficient for this purpose; however, polarization and fluorescence micro-
scopes can also be employed to improve the detection’s reliability (Lau et al. 2004; 
Liang et al. 2006). For the qualitative and quantitative examination of natural prod-
ucts, chromatographic methods such as capillary electrophoresis, high-performance 
liquid chromatography, thin-layer chromatography, and high-performance thin- 
layer chromatography are very helpful. Gas chromatographic technology is used to 
test herbal medications that include volatile principles (Liang et al. 2004; Muzammil 
et al. 2023). Thin-layer chromatography offers a preliminary fingerprinting of the 
natural product, and it is useful since it is straightforward and can analyze several 
samples in a single run. Natural medicine’s volatile components offer the necessary 
fingerprints that may be used to identify plants. Due to its high separation efficiency, 
the need for just a little amount of material, and quick analysis, capillary electropho-
resis is useful (Liang et al. 2004).

DNA barcoding may provide trustworthy information for the authentication and 
quality control of medicinal plants because each plant species’ genetic composition 
is unique and untouched by situations such as environment, age, and others. This 
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approach covers a variety of concerns pertaining to taxonomy and population genet-
ics and is commonly utilized in research and industry for molecular identification, 
the avoidance of illegal wildlife trade and collection, and the assurance of the qual-
ity of food and pharmaceutical products (Raclariu et al. 2018). British Pharmacopoeia 
has unveiled the first universal DNA-based technique of identification. The tech-
nique focused on plant sampling, DNA extraction, barcode region, purification, 
amplification, and sequence reference databases and utilized Ocimum tenuiflorum 
L. as an example (Sgamma et al. 2017).

4.3  Extraction and Isolation of Natural Compounds

Recent years have seen a large-scale adoption of chromatographic separation tech-
niques combined with physiological activity-guided fractionation and isolation. In 
this method, the fractionation of the plant extract involves a stage process separation 
of the plant extract and is based on bioactivity rather than a class of component of 
interest. Further fractionation and testing are performed based on physicochemical 
parameters and bioactivity. All fractions are initially tested for bioactivity, and only 
those fractions with notable bioactivity are then processed more until they yield the 
pure isolate that is in charge of the desired biological activity. After identifying the 
active isolates, the chemical characterization and structural elucidation are carried 
out (Katiyar et  al. 2012; Nothias et  al. 2018). Using this method, several plant- 
derived natural chemicals have been identified, including the anticancer medicines 
paclitaxel and camptothecin from Taxus brevifolia and Camptotheca acuminate, 
respectively (Kinghorn 1994). Other natural remedies or modified versions of natu-
ral products have included the apomorphine derived from morphine; tiotropium, 
which is used to treat chronic obstructive pulmonary disease; galantamine, obtained 
from Galanthus nivalis; and arteether, derived from artemisinin; these are all natural 
products or modified versions of natural products.

4.4  Structure Elucidation of Isolated Components

The primary method used today to figure out the structural integrity of phytochemi-
cals is spectroscopic analysis. After extracts are first biologically screened, high- 
performance liquid chromatography can quickly separate out the bioactive ones, 
and then nuclear magnetic resonance (NMR) spectroscopic analysis and liquid 
chromatography-mass spectrometric (LC-MS) are used to characterize the chemical 
makeup of the fractions. After LC-MS analysis of the isolates, the previously recog-
nized compounds are first separated from the novel chemicals by comparing the MS 
data with those compounds, which are easily accessible in the web databases. 
Similarly, HPLC may be used to swiftly extract large quantities of pure compounds 
utilizing automated extract injection, followed by the collection of fractions, and 
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their structural elucidation can be achieved by MS and NMR analysis (Harvey 
1999; Lawrence 1999). The emergence of analytical techniques such as mass spec-
trometry and NMR spectroscopy to isolate, purify, and elucidate the structure of 
natural products, as well as the development of effective fractionation methods such 
as counter-current chromatography, have now made it possible for natural product 
screening to fit within the timeframe of high-throughput screening (Wu et al. 2008). 
Crude extracts are also chemically characterized using analytical techniques, pri-
marily utilizing LC-MS/MS and GC-MS/MS methods. This is done in addition to 
characterizing pure isolates. Even with a complicated composition, preliminary 
NMR spectroscopic analysis can be done to investigate the chemical components of 
the crude extract. The functional groups and substances, such as sugars, phenolics, 
steroids, terpenoids, and fatty acid esters, may be identified using the NMR spec-
trum data. It is possible to determine which chemical compounds or classes of 
chemical compounds are present in the extract, which aids in selecting the best 
separation technique for subsequent fractionation, such as reverse or normal phase 
chromatography (Gray et al. 2012).

4.5  Bioscreening of Extracts, Fractions, and Isolates

According to their stated ethnopharmacological and traditional usage, natural mate-
rials are typically examined for their biological activity. For instance, after a very 
excellent “hit” molecule has been attained, the traditional use of a medicinal plant 
for the treatment of diabetic complications may be investigated for its ability to 
lower blood sugar levels, and this traditional use is supported by scientific evidence. 
In vitro screening does not frequently duplicate the activity, though. Since most 
natural products have low yields, they can be biologically screened using a variety 
of bioassay techniques that produce quick, accurate findings. Numerous animals or 
human cell lines and microorganisms are used in these tests. In this regard, a num-
ber of precise and effective instruments have been created (Hamid et al. 2004; Coats 
et al. 2008; Freshney 2010). Animal models are still employed for biological screen-
ing of extract and pure substances from natural sources, despite the fact that this 
approach has limitations such the necessity for a significant number of samples, 
laborious and difficult experimental methods, limited sensitivity, and ethical con-
cern. It is quite difficult to provide bioactive pure compounds in the quantities 
needed for animal testing since the practical yield of these substances is often fairly 
low. On the contrary, potential hits could be judged risky based on toxic side effects 
discovered during cell-based screening, which might have showed favorable safety 
profiles in the animal’s body as a result of liver detoxification (Liska 1998).

The growth of research in the field of life sciences, which has revealed a range of 
pathophysiological processes and mechanisms of pharmacological activities, has 
enabled the development of several cellular and molecular bioassay techniques. 
Many of these bioassays meet the HTS method’s timeframe criterion. The HTS 
approaches could greatly reduce the microgram-required test sample amounts for 
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screening, allowing the assessment of pure chemicals isolated in very small concen-
trations. Furthermore, by making it easy to quickly run bioassays on hundreds of 
samples (Sittampalam et al. 1997; Kell 1999).

4.6  Molecular Modeling and Natural Product Database

The bioactive natural products that are found can be utilized as lead compounds for 
the modification of structural characteristics to create new and more effective ana-
logues by utilizing modern medicinal chemistry approaches, such as molecular 
modeling and combinatorial chemistry. Furthermore, because natural products and 
other compounds comprise a family of structurally related molecules, it is possible 
to collect several homologues from a single source that can reveal information about 
SAR. Molecular modeling and SAR studies are used in the current drug develop-
ment of natural products to create analogues with higher potency, fewer harmful 
side effects, and better pharmacokinetic patterns. These analogues are created from 
isolated novel compounds with acceptable bioactivity. In vitro and in vivo biologi-
cal assays can be used to assess the analogues with the best druggability after they 
have been generated in the lab (Kitchen et al. 2004).

Procedures for molecular modeling demand PDB-formatted, optimized three- 
dimensional (3D) structures of the ligands. The structures of recognized natural 
compounds may be retrieved from natural product databases and other databases 
such as PUBCHEM and ZINC in a variety of acceptable forms (Sorokina and 
Steinbeck 2020). To have the least amount of energy, the shape of the structures 
must be tuned. Energy reduction can be done before docking in independent struc-
ture construction and optimization tools such as Chimera, Chem 3D Ultra, and 
Avogadro or docking software such as AutoDock Vina and Discovery Studio (Chen 
et al. 2020). Using docking software, the 3D structures of natural compounds are 
docked to the target structure and rated by the binding energy. AutoDock, AutoDock 
Vina, FlexX, Discovery Studio, and MDock are common docking tools (Chen et al. 
2020). Through the preparation of various analogues of the hits, the optimization 
process of hits is carried out by observing better affinity toward the target. The hits 
showing the best affinity are then developed, and various drug-like properties, 
including stability, pharmacokinetics, and pharmacodynamic properties, can be 
studied using QSAR software (Sullivan et al. 2014) (Fig. 1).

5  Conclusions

Numerous advancements in pharmaceutical research have been influenced by natu-
ral ingredients. There are numerous instances in history where the natural product 
served as both a therapeutic and a contribution to the discovery of a novel element 
of drug isolation. It is still appealing to screen mixtures of molecules to separate and 
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Fig. 1 The general methods used in the process of ethno-directed drug development

identify the active lead, not only from the plant extracts but also from microorgan-
isms, because it is very time-consuming and expensive to generate huge libraries of 
isolated and structurally defined natural products. For many years, the primary goal 
of the pharma industry’s research and development has been the creation of novel 
medications using components from medicinal herbs. Choosing plants at random or 
using knowledge-based criteria could possibly yield valuable chemicals for the 
pharmaceutical business. Traditional medical knowledge is crucial for people’s 
healthcare in the past, present, and future. Information repositories on traditional 
medicine and ethnobotanical knowledge have contributed to medication develop-
ment in China and many other nations in different ways, and they will do so going 
forward. There is also the incontrovertible fact that, at this time, no single medical 
system, whether it be Western, Eastern, allopathic, or homoeopathic, is perfect and 
comprehensive in its ability to treat all forms of illness and disease. Therefore, it is 
crucial for healthcare professionals everywhere to comprehend and assess the medi-
cal traditions that are used in every nation. Traditional Asian remedies have a sig-
nificant role to play in this regard.

The most effective combinatorial chemists are plants, and they continue to offer 
undiscovered secrets of their therapeutic abilities to protect people from fatal dis-
eases. The knowledge that is currently available about ethnic medicines has 
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generated various leads in both medication and healthcare research as well as served 
as a model for discovery. A significant amount of ethnic data used in healthcare is in 
danger of being lost due to the speed of modern industrialization. Therefore, it is the 
perfect time to create and record traditional knowledge and medicine in order to aid 
in the future development of effective medications for a variety of ailments.
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Natural Biopolymers as Scaffold

Antony V. Samrot, M. Sathiya Sree, D. Rajalakshmi, 
L. Noel Richard Prakash, and P. Prakash

Abstract Earlier, natural compounds and their structural analogs have significantly 
influenced pharmacology, particularly for the treatment of cancer and infectious 
disorders. However, natural products also pose difficulties for the development of 
new drugs, such as technological obstacles to screening, isolation, characterization, 
and optimization, which led to a drop in the pursuit of these substances. In this 
chapter, the therapeutic use of natural products and scaffold based on natural prod-
ucts have been discussed briefly.

Keywords Drugs · Scaffold · Natural products · Molecular target

1  Introduction

Scaffolds for tissue engineering are support systems created to promote cellular 
proliferation and growth after being implanted into a patient (Gomillion and Burg 
2011). These scaffolds should have high biocompatibility which is determined by 
the important aspects such as biomaterial synthesis procedure, the scaffold manu-
facturing process, and the sterilizing conditions, and all have an impact on the mate-
rial chemistry, scaffold structure, and morphology (Nardo et al. 2017).

Various scaffolds are created by employing a variety of biomaterials and the fin-
est biological and material science concepts. Regardless of the tissue type, a variety 
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of elements are important in the scaffold‘s creation. Some of the internal and exter-
nal elements are crucial for the proper operation of a scaffold (Deb et al. 2018). 
Porous scaffolds can be created using naturally occurring biomaterials that have 
been extracted from their original sources. The ECM formed from allografts and 
xenografts is one example of a substance that can exist in its natural condition. 
Other examples include organic polymers such as proteins, polysaccharides, lipids, 
and polynucleotides, as well as inorganic ceramics such as calcium phosphates. 
Since cells may adhere and grow with great viability on natural biomaterials, they 
typically have excellent biocompatibility (Chan and Leong 2008).

Over the years, numerous scaffolds found in the structures of natural products 
have produced a sizable number of approved medicines and therapeutic candidates 
for a variety of ailments. Natural product scaffolds, or the basic structure from a 
natural product that is used or altered by direct substitution and/or isosteric altera-
tions, are numerous and have led to or are currently being researched as leads to 
medications in numerous pharmacologic fields (Newman and Cragg 2009). Natural 
product scaffold diversity can be a powerful but difficult tool for exploring the larger 
chemical space and finding possible therapeutic leads (Wang et al. 2015). No screen-
ing library of synthetic compounds can compare to the biological activity and struc-
tural variety of natural products. Therefore, in order to create chemical libraries to 
find new therapeutic candidates, these privileged scaffolds act as significant, bio-
logically prevalidated platforms (Davison and Brimble 2019).

In this chapter, various natural product-based scaffold and their applications have 
been discussed briefly.

2  Therapeutic Uses of Natural Products

2.1  Terpenes and Terpenoid

The largest and most diversified collection of naturally occurring substances is com-
prised of terpenes, sometimes referred to as terpenoids (Cox-Georgian et al. 2019). 
Terpenoids are oxygen-containing hydrocarbons, classified as a modified class of 
terpenes with various functional groups and oxidized methyl groups moved or 
removed at various positions, in contrast to terpenes which are described as com-
pounds with simple hydrocarbon structures (Masyita et  al. 2022). Isopentenyl 
Pyrophosphate (IPP) and dimethylallyl pyrophosphate are the precursors of ter-
penes and terpenoids which are produced through the 2C-methyl-d-erythritol-4-
phosphate pathway in the plastid and the mevalonic acid pathway in the cytosol, 
respectively (Oldfield and Lin 2012).

They are mostly present in plants and make up the bulk of essential oils made 
from plants. Terpenoids are essential for a plant’s physiology, reactivity to the envi-
ronment, and growth and development. It performs a significant and wide range of 
roles among the natural products that offer medical benefits to an organism. They 
are typically found in plants such as tea, thyme, cannabis, Spanish sage, and citrus 
fruits such as orange, lemon, and mandarin. These have several medical applica-
tions such as anticancer, antiviral, antimalarial, pro-antibacterial, transdermal 
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Fig. 1 Medical application of terpenoids

absorption, anti-inflammatory cardiovascular disease prevention and treatment, and 
hypoglycemic properties, and out of them, antiplasmodial activity stands out 
because of how similar their mechanism of action is to that of the widely used anti-
malarial medication chloroquine (Cox-Georgian et al. 2019) (Fig. 1).

With their specific structural characteristics and strong antitumor activity, terpe-
noids have caught the attention of many medicinal chemists and have the potential 
to serve as the basis for effective and secure anticancer drug development (Yang 
et al. 2020). Studies have identified paclitaxel, geraniol, and perillyl alcohol as ter-
penoids that exhibit significant antitumor effects (Chen et  al. 2015; Galle et  al. 
2014; Kim et al. 2011; Yang et al. 2020).

Terpenes plays role in lessening of the symptoms of inflammation, by reducing 
the secretion of proinflammatory cytokines such nuclear transcription factor-κB, 
interleukin 1, and tumor necrosis factor-α. Most investigations have found that ter-
penes generally have the effect of decreasing the expression of proinflammatory 
cytokines. For instance, in the RAW 264.7 macrophage cell line, certain terpenes 
such as borneol, α-phellandrene, triterpene glycosides, terpinolene, and D-limonene 
can lower the production of tumor necrosis factor, interleukin-1 (IL-1), and interleu-
kin- 6 (IL-6) (Liang et al. 2010; Prado-Audelo et al. 2021).

2.2  Alkaloids

Alkaloids make for around 20% of all known secondary metabolites found in plants 
(Kaur and Arora 2015). Alkaloids are naturally occurring substances with the main 
sources of plants, particularly specific blooming plants and also produced by 
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animals, bacteria, and fungi typically containing carbon, hydrogen, nitrogen, and 
oxygen (Hussain et al. 2018; Perviz et al. 2016). They are produced in response to 
environmental changes and biotic or abiotic stress, which gives them a variety of 
structural characteristics and important biological functions.

Alkaloids in plants control growth and shield them from predators. Both human 
treatment and natural defense mechanism of an organism depend heavily on alka-
loids. Alkaloids are particularly well known for their therapeutic uses as anesthetics, 
cardioprotectants, and anti-inflammatory drugs. Numerous well-known alkaloids 
are employed in clinical contexts, including nicotine, ephedrine, strychnine, qui-
nine, and morphine (Kurek 2019). Interest in bioactive natural compounds has 
recently increased due to both their potential for drug discovery and a very aggres-
sive development in the study of traditional remedies (Heinrich et al. 2021). They 
are also best therapeutic and management tools for reducing the key symptoms of 
neurodegenerative disorders such Alzheimer’s disease, stroke, schizophrenia, and 
Parkinson’s disease (Hussain et al. 2018).

It has also been demonstrated that alkaloids interact with a variety of biological 
targets and in antiviral activity (Rao and Venkatachalam 2000). The primary antiviral 
activities of many widely used phytochemical substances include antioxidant quali-
ties, scavenging aptitudes, inhibition of DNA and RNA synthesis, and viral replica-
tion suppression, which may be attributed to the synergistic effects of more than one 
mechanism. Even though the cell membrane is not the intended target, several natural 
alkaloids successfully interfere with it and indirectly work by attaching to the viral 
glycoprotein. The amphiphilic nature of alkaloids probably explains why they have 
antiviral properties, especially as an entrance inhibitor that prevents viral attachment 
(Abookleesh et al. 2022). These natural alkaloids can also be used to make brand-
new potent medications such as inflammatory bowel disease (Peng et al. 2019).

2.3  Phenylpropanoid

Plant phenylpropanoids are a large and structurally varied class of metabolites pro-
duced from phenylalanine that are essential in the interaction of plants with other 
living things (Soledade et al. 2010). Plants undergo biosynthesis to convert phenyl-
alanine and tyrosine, which possess an aromatic ring and three carbons, into phen-
ylpropanoids (Kawaguchi et al. 2017).

All plants have the general phenylpropanoid pathway, which is responsible for 
producing a range of secondary metabolites, such as phytoalexins that prevent 
pathogen invasion and precursors for the lignin biosynthesis, production of metabo-
lites involved in mediating plant–microbe interactions as well as numerous flavo-
noids such as flavones and isoflavones. (Stacey 2007). They are widely used and 
serve important roles in plant development by providing as vital elements of cell 
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Fig. 2 Function of phenylpropanoid

walls, defense against UV and high light, act as phytoalexins against herbivores and 
diseases, and enhance floral pigments to mediate interactions with pollinators 
(Fig.  2). Phenylpropanoids also have a variety of biological properties that are 
advantageous to human health (Agar and Cankaya 2020).

Since 2007, natural and manufactured phenylpropanoids have garnered a lot of 
attention because to their potential medical applications as antibacterial agents, UV 
screens, antioxidants, antiviral, anti-inflammatory, anticancer, and wound healing,. 
They are highly used as active natural ingredients in the cosmetic industries and 
perfumery (Korkina 2007).

Naringin, a flavonoid, is a metabolic product of phenylpropanoid pathway pos-
sessing significant therapeutic use. It has been reported that exposure to naringin 
in vivo and in vitro in a variety of test animals and cell lines has activities that may 
be used to treat tumors, hyperthyroidism, hyperlipidemia, asthma, diabetes, and 
osteoclastogenesis. According to the study, naringin may be an effective natural 
medication for treating human metabolic diseases (Sharma et al. 2019). Also, esters 
of phenylpropanoid such as phenylpropanoid sucrose esters are naturally occurring 
substances structurally distinguished by a sucrose core that is linked to one or more 
Ph-CH=CH-CO- moieties via an ester bond isolated from different plants. These 
substances have been widely utilized in traditional medicine, and it has been discov-
ered that they have a variety of biological properties, including glycosidase inhibi-
tory actions antibacterial, antioxidant, antiviral, anti-inflammatory, neuroprotective, 
and anticancer activity (Panda et al. 2011).
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2.4  Evodiamine

Evodiamine, a quinolone alkaloid, is extracted from Fructus evodia and Evodia 
rutaecarpa (Li et al. 2022a, 2022b). It has a variety of biological effects, including 
those on the antinociceptive, release of testosterone, uterotonic effects, antiobesity, 
vasodilatory, thermoregulatory, catecholamine, and anti-inflammatory. They has the 
strongest cytotoxic action against human colon and hepatoblastoma cell lines and 
inhibitory activity on human colon carcinoma cell migration, according to studies 
on the cytotoxicity or inhibitory activity on cancer cell migration screening of alka-
loids (Jiang and Hu 2009). These are also a strong inducer of apoptosis in human 
nonsmall cell lung cancer A549 cells (Zou et al. 2015), and it has been demonstrated 
that evodiamine-induced apoptosis occurs downstream of mitotic arrest and subse-
quent mitotic slippage (Luo et al. 2021).

In mice, evodiamine appears to be the most effective treatment in terms of 
reducing tumor volume and weight, which boosts our faith in the findings and their 
applicability in the real world. This is due to the ability of evodiamine to inhibit 
proliferation, prevent invasion, and trigger apoptosis in animal tests (Yin 
et al. 2021).

Evodiamine also showed strong antiproliferative effects on human lung cancer 
A549 cells. The suppression of cyclin A, cdk2, p-cdc2, and cyclin B1 and the 
increase of p-chk1 and p-chk2 were well linked with the cell cycle arrest. 
Additionally, evodiamine dramatically lowered procaspase-3 and raised the ratio 
of Bax/Bcl-2, indicating that it promoted apoptosis through the intrinsic apoptotic 
mechanism (Hong et al. 2014). It also inhibited ovarian cancer cells from growing 
by inducing intrinsic and extrinsic apoptosis, as well as G2/M arrest. Additionally, 
cell death may be influenced by evodiamine-induced PI3K/Akt, ERK1/2, MAPK, 
and activation of p38 MAPK pathway (Lijuan et  al. 2016). Additionally, breast 
cancer MDA-MB-231 cell migration has been inhibited by evodiamine, and lung 
metastasis has been significantly decreased. Additionally, it activated caspase to 
cause apoptosis in cancer cells. When compared to the control group, xenografted 
mice treated with evodiamine displayed nearly 50% reduction in lung metastasis 
(Koltai 2018).

Evodiamine also plays role in upregulation of CD8+ T cells and downregulating 
the MUC1-C/PD-L1 axis, thus inhibiting nonsmall cell lung cancer (Jiang et  al. 
2020). It has also been showed that evodiamine therapy might stop the cell cycle 
from progressing and suppression of carcinogenesis, and cause caspase-dependent 
cell death in human urothelial cell carcinoma cells. After being exposed to evodi-
amine, human urothelial cell carcinoma cells displayed an inherent caspase- 
dependent apoptosis with or without an extrinsic caspase-dependent apoptosis 
pathway (Shi et al. 2017).
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2.5  Tetracyclines

Tetracyclines are organic compounds produced by actinomycetes during fermenta-
tion. Ben Duggar at Lederle Laboratories initially reported chlortetracycline, which 
is synthesized by Streptomyces aureofaciens and sold as aureomycin, in 1948. That 
same year, it was authorized for clinical usage (Duggar 1948). Soon after, research-
ers at Pfizer, New  York discovered oxytetracycline, which was later given FDA 
approval in 1950 and was sold as Terramycin (Finlay et al. 1950). Over the subse-
quent two decades, more tetracyclines were also naturally occurring substances cre-
ated by streptomycetes (Grossman 2016).

Tetracyclines are broad-spectrum antibiotics that work effectively against both 
Gram-positive and Gram-negative bacteria, as well as uncommon microorganisms 
such rickettsiae, mycoplasmas, and chlamydiae, as well as protozoan parasites 
(Chopra and Roberts 2001). By attaching to the ribosomal complex and blocking 
the interaction of aminoacyl-tRNA with the bacterial ribosome, tetracycline revers-
ibly suppresses bacterial protein production. Tetracyclines are transported through 
membranes via porin channels in gram-negative bacteria and build up in the peri-
plasm. Tetracycline molecules attach reversibly to the prokaryotic 30S ribosomal 
subunit once they have entered the bacterial cell, halting protein synthesis 
(Eliopoulos et al. 2003).

These drugs are widely used in the treatment of infections in both humans and 
animals because to their effective antibacterial capabilities and lack of significant 
unfavorable side effects. Additionally, they are utilized as a preventative measure 
against mefloquine-resistant Plasmodium falciparum malaria (Chopra and 
Roberts 2001).

Tetracycline has found to be a strong affinity for hard tissues and can adhere to 
the surfaces of teeth. With positive clinical and bacteriological outcomes, it is uti-
lized locally in periodontics, and the derivative doxycycline serves as the active 
ingredient in antibiotics (Ørstavik 2010). Early-seropositive rheumatoid arthritis 
has been treated using tetracycline’s action on matrix proteins as well as its immu-
nomodulatory effects, which include upregulating interleukin-10 and regulating 
T-cell and B-cell function (Gaur and Bal 2022).

3  Natural Product-Based Scaffold

3.1  Alkaloid-Based Scaffold

The scaffolds of alkaloid structures in drugs and leads are derived from those found 
in nature. In addition to pyridine and piperidine, scaffolds such as quinolinone, 
quinazoline, and isoquinoline are also available, as well as indoles, indolinones, 
isoindoles, isoxazoles, imidazoles, indazoles, thiazoles, pyrazoles, oxazolidinones, 
oxadiazoles, and benzazepine (Kittakoop et al. 2014). Through a quick, adaptable, 
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three-step modular synthesis using easily and readily available indole derivatives, 
the complicated tetracyclic scaffolds are created with high yields and surplus enan-
tiomers (Rossi-Ashton et al. 2020).

3.2  Phenylpropanoid-Based Scaffold

Plant secondary cell walls include lignin, a complex and amorphous biopolymer, 
made up of phenylpropanoid units such as cumaryl, coniferyl, and sinapyl alcohol 
that are randomly crosslinked. The lignin building components p-hydroxyphenyl, 
guaiacyl, and syringyl are created based on these monolignol units. There are vari-
ous kinds of links that connect these building blocks (Witzler et al. 2018). Due to 
the synergistic interactions between organic lignin and inorganic nanocomposites, 
the resulting lignin-based nanomaterials can be exploited as high-value-added 
materials for prospective applications in several biological domains, particularly in 
drug/gene delivery and tissue engineering. Lignin can bind to nanomaterials or 
other multivalent metal ions due to its active functional groups (phenol, hydroxyl, 
and carboxyl groups), which act as both chelating and reducing agents to the center 
of the metal (Kumar et al. 2021).

Numerous studies have demonstrated the neuroprotective properties of salidro-
side, a phenylpropanoid glycoside produced from Rhodiola rosea L, which may be 
promising for nerve rehabilitation. The findings demonstrated that salidroside sig-
nificantly improved Schwann cells proliferation and functionality. The underlying 
process may be because salidroside modifies neurotrophic factors, which then 
impacts Schwann cells growth. With a 12  mm gap of sciatic nerve damage, 
salidroside- PLGA/Schwann cells produced satisfactory results for nerve regenera-
tion 12 weeks after implantation (Liu et al. 2017).

A guaiacol replaced with an allyl chain, eugenol is a phenylpropene belonging to 
the group of chemical substances known as phenylpropanoids. It is an oily liquid 
that is colorless to pale yellow and is obtained from several essential oils, particu-
larly clove oil (Fadilah et al. 2017). In a study, phenylpropanoids 7 and 5- fluorouracil 
were combined to treat the human cervical cancer (HeLa) cell line with anticancer 
drugs. Compared to the separate treatments, there were a noticeably higher percent-
age of apoptotic cells in the combination. Compared to control, treatment with 
5-fluorouracil and eugenol enhanced the proportion of cells in the G0/G1 and G2/M 
phases. Additionally, there was a rise in cells that were in the sub-G1 phase 
(Hemaiswarya and Doble 2013).

The natural products containing phenylpropanoids demonstrated the strongest 
antiplatelet effectiveness against ADP, arachidonic acid, and the thromboxane A2 
agonist U46619 as well as a good ability to disrupt clot retraction. A strong relation-
ship between antiplatelet potency and phenylpropanoids content (54%–86%) was 
discovered, pointing to the crucial function that this moiety plays in preventing 
blood clot formation (Tognolini et al. 2006).
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Due to their characteristics that damage cell membranes, a variety of phenylpro-
panoids and their derivatives have been shown to have broad-spectrum antibacterial 
activity (Lima et al. 2016; Engels et al. 2012; Hemaiswarya et al. 2011; Khatkar 
et  al. 2015). Additionally, phenylpropanoids have potent antioxidant properties, 
which are principally attributable to their structure’s prolonged side-chain conjuga-
tion, hydroxyl function, and methoxyl group (Jia et al. 2018). Additionally, natural 
phenylpropanoids have been found to exhibit antityrosinase activity. This is because 
they share structural similarities with the natural substrates of tyrosinase, l-tyrosine, 
and l-DOPA (Takahashi and Miyazawa 2010).

In food industry, to lessen undesirable browning of food caused by tyrosinase 
and oxidative spoilage, novel compounds with natural scaffolds such phenylpro-
panoids C6-C3 backbone were created. Compared to kojic acid, the majority of the 
substances showed greater mushroom tyrosinase inhibition. In comparison to the 
reference compounds, kojic acid, and ascorbic acid, compound CE48 has shown 
superior antityrosinase and antioxidant action (Ahlawat et al. 2021).

3.3  Evodiamine-Based Scaffold

A highly effective indolopyrazinoquinazolinone derivative of evodiamine with low 
nanomolar inhibitory activity against the HCT116 cell line was found through sys-
tematic structural optimization and SAR investigations. Additional mechanistic 
investigations showed that it operated by simultaneously inhibiting Top1 and tubu-
lin. It is found to a promising lead molecule for the creation of novel antitumor 
medications, demonstrated remarkable in vivo antitumor efficacy. Additionally, it 
has been demonstrated that scaffold hopping is a successful strategy for increasing 
the druggability of evodiamine (Wang et al. 2019).

The majority of the time, the hit-to-lead and lead-to-candidate processes will 
result in an increase in molecular weight and hydrophobicity. It is more likely that 
an initial structure with a low molecular weight will be optimized to produce drug- 
like candidates (Dong et al. 2010).

The free amine group in evodiamine has a moderate molecular weight and is eas-
ily converted into active derivatives with drug-like characteristics. We could learn 
anything about hit selection from this case after conducting SBVS structure-based 
virtual screening studies. The next SBVS study might incorporate such a structural 
requirement, a scaffold with a free N-H group and a molecular weight of roughly 
350 (Dong et al. 2010).

In the study, the synthesis of anticancer compounds and the synthesis of novel 
evodiamine analogs, bearing a carboxyl group at position 5 of the evodiamine skel-
eton, have been carried. According to research on the antiproliferative activity of 
substances tested on the H460, MCF-7, and HepG2 cell lines, they were not very 
effective. Also, it has been reported that the activity of the discovered evodiamine 
derivatives as prospective topoisomerase I inhibitors based on recent observations 
that had been written about in the literature (Fig. 3). On the other hand, SIRT2 was 
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Fig. 3 Applications of novel evodiamine analogs

effectively inhibited by five of the identified compounds. S enantiomers appear to 
be marginally more advantageous. Three of them exhibit strong preference for sir-
tuins 2 over sirtuins 1 and sirtuins 3.

3.4  Tetracyclines-Based Scaffold

Tetracycline hydrochloride and Aloe vera both have considerable anti- inflammatory, 
antioxidant, and antibacterial qualities that help with skin tissue engineering. 
According to the release study, tetracycline hydrochloride was released initially in a 
burst and then continued over time. The fibroblasts’ proliferation, adhesion, and 
spreading along the nanofiber orientation were encouraged by the release of tetracy-
cline hydrochloride from the poly-ε-caprolactone/Aloe vera containing curcumin, 
and tetracycline hydrochloride-loaded hybrid nanofibrous scaffold, which also pro-
moted the improved deposition of collagen. A wide range of antibacterial activity 
was present in the poly-ε-caprolactone/Aloe vera containing curcumin, and tetracy-
cline hydrochloride-loaded hybrid nanofibrous scaffold against both Gram-positive 
and Gram-negative bacteria. In compared to poly-ε-caprolactone/Aloe vera and 
tetracycline hydrochloride-loaded hybrid nanofibrous scaffold loaded with cur-
cumin, the tetracycline hydrochloride-laden poly-ε-caprolactone/Aloe vera scaffold 
showed higher biocompatibility, enhanced mechanical property, greater surface 
wettability, and antibacterial activity, and they can be employed for diabetic wound 
healing applications (Ezhilarasu et al. 2019).

For bone tissue engineering, bioglass(®)-based scaffolds that can also act as drug 
delivery systems have been developed. To do this, tetracycline-loaded P(3HB) 
microspheres were created and immobilized on the scaffold surfaces using a modi-
fied slurry dipping method. In simulated bodily fluid, it was discovered to have the 
capacity for prolonged drug delivery. The minimal cytotoxicity of the 
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tetracycline- loaded microspheres created in this study was demonstrated by the 
MTT experiment employing mouse fibroblast cells (Meng et al. 2013).

Dayaghi et al. (2019) have demonstrated that the presence of apatite layers pro-
duced on the surface scaffolds after 7 days was granted to support the bioactivity of 
magnesium-zinc and magnesium-zinc composite scaffolds with varying tetracy-
cline concentrations scaffolds. Tetracycline’s inclusion in the scaffolds‘makeup 
ensures their antibacterial properties because it causes the inhibition zone to expand 
as tetracycline concentration rises. They are now prospective options for scaffolds 
used in bone tissue creation since they have developed biodegradable, bioactive, and 
drug delivery capabilities (Dayaghi et al. 2019).

4  Conclusion

Over the years, numerous “scaffolds“found in the structures of natural products 
have produced a sizable number of approved medications and therapeutic candi-
dates for a variety of ailments. Unexplored molecular frameworks in natural goods 
are available for the creation of novel chemical leads and pharmaceuticals. The 
utilization of natural product-based scaffold offers biocompatible source of drug 
discovery and drug lead and can also be used in the treatment of disease and in tis-
sue engineering.
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Artificial Intelligence and Discovery 
of Microbial Natural Products

Rania Hamdy, Alaa M. Altaie, Eman M. El-Labbad, Naglaa S. Ashmawy, 
Dilber Uzun Ozsahin, Mohamed I. Husseiny, and Sameh S. M. Soliman

Abstract Natural products (NPs) have a variety of potential medicinal applications 
as drug or lead molecules for drug development. NPs are subset of small chemical 
molecules known as secondary metabolites that are produced by living organisms, 
including microorganisms. Artificial intelligence (AI) is the fourth industrial revolu-
tion that significantly reduces the cost and time of drug discovery. Over the past 
10 years, the tremendous advancement in AI and its applications has improved the 
NPs discovery through the extensive analysis of large collected computerized, 
experimental genomics, transcriptomics, and metabolomics data. By using machine 
learning (ML) algorithms, AI can identify patterns and relationships within the data 
that are difficult or impossible to discern through manual analysis. AI can be 
employed in the discovery and elucidation of NPs’ chemical structure, mechanism 
of action, toxicity, and phenotypic activity. AI can also assist in the design of experi-
ments to screen for new microbial metabolites. By using optimization algorithms, 
AI can identify the most promising conditions for screening experiments based on 
a variety of factors, such as the characteristics of the microorganism, the type of 
metabolite being produced, and the growth condition. AI can aid in mining the 
microbial genome for the discovery and development of novel bioactive microbial 
metabolite. AI can assess a train model for virtual screening of NPs’ chemical space 
database for biological active lead and subsequent inspiration of de novo design of 

R. Hamdy 
Research Institute for Medical and Health Sciences, University of Sharjah,  
Sharjah, United Arab Emirates 

Faculty of Pharmacy, Zagazig University, Zagazig, Egypt 

A. M. Altaie 
Research Institute for Medical and Health Sciences, University of Sharjah,  
Sharjah, United Arab Emirates 

Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, 
University of Sharjah, Sharjah, United Arab Emirates 

Department of Clinical Sciences, College of Medicine, University of Sharjah,  
Sharjah, United Arab Emirates 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. N. Cruz (ed.), Drug Discovery and Design Using Natural Products, 
https://doi.org/10.1007/978-3-031-35205-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35205-8_3&domain=pdf
https://doi.org/10.1007/978-3-031-35205-8_3


38

NPs mimetics compounds with improved attributes. Taken together, AI has the 
potential to transform the future of NPs discovery and development.

Keywords Natural products · Artificial intelligence · Microbial metabolites · 
Condition optimization · Chemometrics · Pathways · Deorphanization

1  Introduction

Natural products (NPs) including microbial metabolites are characterized by their 
complex structures and unique chemical features (Newman and Cragg 2012). 
Identification of new molecules within the massive biodiversity of nature requires 
time, human resources, and technical equipment. Most of recently approved phar-
maceutical drugs by the Food and Drug Administration (FDA) are NPs or NPs- 
inspired compounds (Schneider et al. 2022). For instance, the discovery of NPs has 
made a leap forward for the development of NP-inspired chemical entities (Hamoda 
et al. 2021). Despite the incomparable appeal of NPs as a source of inspiration for 
drug discovery, they have shown limitation of supply, partially drawn-out an expen-
sive total synthesis, and their intricate structures (chiral centers, fused ring system, 
rotatable bonds and large molecular weight) (Yao et al. 2017). Therefore, the use of 
AI as a tool in discovery, improvement of the production, and optimization of struc-
ture and activity of NPs has emerged. In this chapter, details about the fundamental 
knowledge, tools, and application of AI in NP drug discovery are described.
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2  Machine Learning (ML) Algorithms in Microbial 
Drug Discovery

Machine learning (ML) algorithms have stumbled their way in NPs research as a 
reliable source of discovery of potential small molecule drugs (Battina 2017). First, 
an in silico generative method is used to generate several potential chemical possi-
bilities. This is guided by topological similarity matching between the candidates 
and NP template, which is followed by the selection of top-ranking structures for 
the synthesis and biochemical validation. Finally, the identification of its biological 
target’s and ADMET (absorption, distribution, metabolism, excretion, and toxicity) 
are carried out (Real et al. 2020) (Fig. 1).

The process of ML includes encoding NPs into molecular representations, 
molecular descriptors, similarity scores, chemical space, retrosynthesis, predicting 
biological roles, deorphanizing, and creating de novo compounds inspired by NPs 
(Zhang et al. 2021) (Fig. 2). Digitization of chemical information encodes the NP 
molecular representation for machine reading. Recently, the most advanced optical 
chemical entity recognition software DECIMER has been generated, to reveal 
chemical structures from published articles (Rajan et al. 2021).

Molecular representation includes international chemical identifier (InChI), sim-
plified input line entry system (SMILES), SMILES arbitrary target specification 
(SMARTS), DeepSMILES, and SELFIEs (Krenn et al. 2022). They are developed 
to store and retrieve molecular information and to identify shared molecular fea-
tures or substructures from databases (Raghunathan and Priyakumar 2022). Neural 
networks were trained with various chemical large datasets to capture the intricate 
connections between input information (topological fingerprint and molecular 

Fig. 1 ML generative 
model for in silico design 
of NP-inspired compounds
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Fig. 2 General overview 
of ML model

descriptors) and decisions (prediction of biological activity). Most neural networks 
handled NP databases are COCONUT and its upgraded version LOTUS (Rutz et al. 
2021) or dataset from the National Cancer Institute (NCI) (Kim and Chung 2022), 
datasets from the European Molecular Biology Laboratory such as ChEMBL (Mayr 
et al. 2018), MEGx NPdata base (Moret et al. 2020), SIDER (Jamal et al. 2017), and 
the NP bioactive fragment database that provided sufficient knowledge for combi-
natorial drug design (Zhang et al. 2021).

ML tools integrate dimensionality reduction techniques to map the NPs chemical 
space and the scanning of organic molecules to forecast their biological roles. 
Mapping the structural similarity of synthetic chemical space for NPs mimic bioac-
tive compounds is firstly achieved by the NPs molecular fingerprint (NC-MFP) (Seo 
et  al. 2020). Other metrics benchmarks, used to scoring the functions, are rapid 
overlay of chemical structures (ROCS) for spatial shape similarity and topological 
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fingerprints (Kearnes and Pande 2016; Hert et al. 2004). Recently, QSAR model 
described the use of three-dimensional (3D) fingerprints to rank and predict biologi-
cal activity (Myint et al. 2012). LEMONS algorism used several techniques to com-
pare NPs’ molecular similarity with NP chemotypes for the potential identification 
of configurable NPs (Skinnider et al. 2017). Successfully, researchers have begun to 
use generative models and neural network topologies for molecular design of bioac-
tive compounds (Friedrich 2019) such as potential kinase inhibitors of the discoidin 
domain receptor 1 (DD1), which were effectively created by deep learning (DL) 
model called Generative Tensorial Reinforcement Learning (GENTRL) 
(Zhavoronkov et al. 2019).

2.1  ML in Microbial Drug Discovery

The creation of predictive models using ML approaches is a powerful tool for vir-
tual screening campaigns for the discovery of novel antibiotics (Diéguez-Santana 
and González-Díaz 2023). ML technology could leverage whole genome sequenc-
ing datasets to identify novel diagnostics agent (Smith et al. 2020), microbial resis-
tance mechanisms (Chen et al. 2019), ultimately assisting in the identification of 
molecular targets, and the development of novel antibacterial drugs (Wang et al. 
2022a). This is, in addition to its role to improve the efficacy of potential antibiotics, 
and to evaluate their pharmacokinetics and toxicity properties (Vamathevan et al. 
2019). ML techniques have demonstrated tremendous promise for the accurate pre-
diction of quorum-sensing peptides (QSPs) that successfully capture the sequence 
determinants to represent the feature descriptors of QSPs, hence improving predic-
tive performance (Wei et al. 2020). QSPred-FL is a powerful bioinformatics tool 
used for the detection of putative QSPs in massive amounts of proteomic data by 
wrapping this feature representation learning technique and speed up the investiga-
tion of their functional processes (Wei et al. 2020). Dias and colleagues highlighted 
the growth of ML models in the innovative identification of antibiotics against 
methicillin-resistant bacteria (Dias et al. 2018). Furthermore, predicting the pheno-
typic properties of bacterial isolates from their genomic sequences has numerous 
potential impacts (Aun et al. 2018).

3  Genome Mining in Relation to Microbial Drug Discovery

Genome mining using AI has made it possible to find cryptic biosynthetic gene 
clusters (BGCs) in the microbial genomes and hence the experimental discovery of 
new bioactive NPs (Kim et al. 2021). Genes encoding enzymes involved in NPs 
biosynthesis can be readily identified in sequenced genomes by the use of computa-
tional sequence comparison tools of microbial DNA sequence databases (Zerikly 
and Challis 2009). Recent developments in genome sequencing have uncovered the 
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genetic and metabolic underpinnings of microbial NPs (Wambo 2022). Microbes 
have become biofactories to produce extracellular metabolites, peptides, and pro-
teins through recombinant DNA technology, in addition to discovery of novel 
chemical entities (Pham et al. 2019). These secondary specialized metabolites are 
produced by enzymatic complexes such as polyketide synthases (PKSs), nonribo-
somal peptide synthases (NRPSs), or ribosomal synthesized and posttranslationally 
modified peptides (RiPPs) (Velásquez and Van der Donk 2011). Novel BGCs and 
predicted chemical structures have been examined by ML algorithms and pattern- 
recognition techniques (Gore 2020). Recurrent neural networks (RNN) were 
employed by deep learning (DL) algorithm Deep BGC’s to discover novel BGC 
classes; afterward, Random Forest (RF) classifiers were applied to forecast the bio-
logical activities of those classes (Hannigan et al. 2019). Later on, an emerged com-
binatorial approach PRediction Informatics for Secondary Metabolomes (PRISM) 
trained and predicted NPs from bacterial BGCs such as Lincosamides, β-lactams, 
alkaloids, and aminoglycosides (Skinnider et al. 2015). Therefore, metabolite engi-
neering by directly hacking the BGC biofactories such as streptomyces can provide 
innovative intricate NPs in easily sustainable manner (Aware and Jadhav 2022).

4  Computer-Assisted Prediction of Conditional Production 
of Microbial Natural Products

Computer-assisted prediction of conditional production of microbial products refers 
to the application of various computational tools such as ML algorithms, statistical 
modeling, and bioinformatics tools to forecast the production of microbial products 
in a controlled environment (Fig. 3). These computational tools are applied to esti-
mate conditions such as temperature, pH, light, and nutrient media. These condi-
tions affect the growth and metabolic activity of a microbe to optimize the production 
of desired microbial products. This can help to improve the efficiency and yield of 
microbial fermentation processes used in the production of various products such as 
biofuels, pharmaceuticals, and industrial enzymes.

4.1  ML Algorithms and Conditional Production 
of Microbial Products

Various ML algorithms are used to predict the optimum condition for microbial 
production. These include Artificial Neural Networks (ANN), Support Vector 
Machines (SVM), Random Forest, k-Nearest Neighbors (k-NN), and Gradient 
Boosting (Dutta et al. 2022). The criteria of algorithm selection depend on the data 
characteristics, the complexity of the system, and the research question. Table 1 
provides a brief overview of some of the commonly used ML algorithms in the 
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Fig. 3 The framework of computer-assisted prediction of conditional production of microbial 
natural products

prediction of microbial products, but other algorithms may also be considered 
depending on the specific application and dataset (Oyetunde et al. 2018).

4.1.1  Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN) are a type of ML algorithm that models a com-
plex relationship between inputs and outputs, making them well-suited for predict-
ing microbial products. ANN was applied in the novel utilization of deoiled cake 
from Guizotia abyssinica (niger) for the cost-effective production of the potential 
anticancer drug L-asparaginase. ANN model estimated the influential process 
parameters, namely, autoclaving time, moisture, temperature, and pH, leading to a 
1.36-fold improvement in enzyme activity (Sharma and Mishra 2022). Another 
application was reported to investigate the effect of incubation time and aspartic 
acid concentration on the predicted biomass concentration, Bacillus sporulation, 
and antifungal activity of compound AFA produced by Bacillus amyloliquefaciens 
CCMI-1 (Teresa Caldeira et al. 2011). Rafigh et al. applied response surface meth-
odology (RSM) and ANN to optimize the culture medium and modeling of curdlan 
production from Paenibacillus polymyxa (Rafigh et al. 2014). Curdlan is a polysac-
charide that is used in a variety of medical and industrial applications, including 
wound healing and as a thickening agent in food production. RSM and ANN were 
used to model cultural conditions of curdlan production; the maximum yield of 
curdlan production was predicted to be 6.68 and 6.85 g/L. ANN model was more 
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Table 1 Overview of common ML algorithms and their application in conditional production of 
microbial products

Algorithm Description Application Reference

Artificial 
neural 
networks 
(ANN)

A type of ML 
algorithm modeled 
after the structure and 
function of the human 
brain.

Model complex relationships between 
inputs and outputs, making them well-
suited for predicting microbial products.

Sharma and 
Mishra 
(2022)
Teresa 
Caldeira 
et al. (2011)
Rafigh et al. 
(2014)

Support 
vector 
machines 
(SVM)

A type of supervised 
learning algorithm 
that can be used for 
both classification 
and regression.

Particularly useful for predicting microbial 
products when there are many features or 
when the relationship between inputs and 
outputs is nonlinear.

Kumar et al. 
(2015)
Packiam 
et al. (2022)

Random 
Forest

An ensemble learning 
method for 
classification and 
regression.

Random Forest is designed as an ensemble 
of decision trees that are constructed 
during the training phase. Each decision 
tree uses a subset of the data and features 
to make predictions. The output of the 
random Forest algorithm is either the mode 
of the classes (in classification) or the 
average prediction of the individual trees 
(in regression).

Packiam 
et al. (2022)

k-nearest 
neighbors 
(k-NN)

A nonparametric 
method is used for 
classification and 
regression.

A simple algorithm that stores all available 
cases and classifies new cases based on a 
similarity measure (e.g., distance 
functions).

Patel et al. 
(2021)

Gradient 
boosting

Boosting algorithm 
that builds a model in 
a forward stage-wise 
fashion

Allows for the optimization of arbitrary 
differentiable loss functions.

Grafskaia 
et al. (2022)

accurate compared to RSM, and the predicted production of curdlan was similar to 
the commercial curdlan production with an average molecular weight of 170 kDa as 
determined by gel permeation chromatography (Rafigh et al. 2014).

ANN and genetic algorithm (GA) were applied recently to optimize the produc-
tion of carboxymethylcelluloses (CMCase) by Trichoderma stromaticum AM7 
using peach-palm waste as a substrate in solid-state fermentation (SSF) (Singhal 
et al. 2022). The optimal influence of nitrogen source concentration, time, and tem-
perature on cellulase production was determined using ANN-GA with 98% predic-
tion efficiency of endoglucanase activity. The optimized parameters led to a 
three-fold increase in CMCase activity compared to initial fermentation, and the 
treatment of waste with T. stromaticum AM7 endoglucanase showed positive effects 
on fiber degradation and sugar release. This study highlights the potential use of 
ANN-GA and agro-industrial waste for cellulase production. Cellulase has the 
potential use in treating celiac disease, constipation, promoting insulin production, 
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and wound healing; however, most of these applications are still in the research 
phase, and further studies are needed to confirm their effectiveness, and safety.

4.1.2  Support Vector Machines (SVMs)

Support Vector Machines (SVMs) are a type of supervised learning algorithm that 
can be used for both classification and regression. They are particularly useful for 
predicting microbial products when there are many features or when the relation-
ship between inputs and outputs is nonlinear. Kumar et al. developed an SVM-based 
two-level method to predict the β-lactamases protein responsible for bacterial resis-
tance against β-lactam antibiotics. This method differentiated between β-lactamases 
and non-β-lactamases (Kumar et al. 2015). A web server, PredLactamase, was also 
developed to make the method available to the scientific community. This predictive 
tool might aid in both basic research and drug development.

4.1.3  Random Forest

Random Forest is an ensemble learning method for classification and regression. 
Random Forest is designed as an ensemble of decision trees that are constructed 
during the training phase. Each decision tree uses a subset of data and features to 
make predictions. The output of the Random Forest algorithm is either the mode of 
the classes (in classification) or the average prediction of the individual trees (in 
regression). Packiam et al. combine ML approaches with fermentation process con-
ditions and amino acid sequence to predict the optimal protein yields and corre-
sponding fermentation conditions for the expression of recombinant proteins in 
E. coli (Packiam et al. 2022). Two sets of XGBoost classifiers were used in the first 
stage to classify the expression levels of the target protein, and a second-stage 
framework, consisting of three regression models involving Support Vector 
Machines and Random Forest, were used to predict the expression yields. The pre-
dictor achieved an overall average accuracy of 75% and a Pearson coefficient cor-
relation of 0.91 for correctly classified instances. Such models can be used as a 
substitute for numerous trial-and-error experiments in identifying optimal fermen-
tation conditions and yield for recombinant protein production.

4.1.4  K-Nearest-Neighbor (K-NN)

k-NN is a nonparametric method used for classification and regression. It is a simple 
algorithm that stores all available cases and classifies new cases based on a similar-
ity measure (e.g., distance functions). Patel et  al. applied the k-nearest-neighbor 
(k-NN) algorithm to optimize the production of mycophenolic acid (MPA) titer 
from Penicillium brevicompactum with respect to ultrasonic stimulation (Patel et al. 
2021). During the ultrasonic treatment, different independent factors such as 
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ultrasound power, irradiation duration, treatment frequency, and duty cycle were 
studied to determine their ability to enhance the MPA titer value. The use of k-NN 
algorithm to optimize these factors increases the production of MPA by 1.64-fold 
compared to nonoptimized condition.

4.1.5  Gradient Boosting

Gradient Boosting is a boosting algorithm that builds a model in a forward stage- 
wise fashion; it allows for the optimization of arbitrary differentiable loss functions 
(Bentéjac et al. 2021). Grafskaia et al. focus on using the gradient-boosting approach 
(CatBoost algorithm) to design new antimicrobial peptides (AMPs) to combat 
antibiotic- resistant pathogens (Grafskaia et al. 2022). The researchers used a data-
base of leech metagenome proteins and utilized the gradient-boosting approach to 
identify peptides with antimicrobial activity and reduced toxicity. Among the pep-
tides identified, Hm-AMP2 was found to be the most promising, with strong anti-
bacterial potential against both Gram-positive and Gram-negative bacteria, with 
minimal toxic and hemolytic effects (Grafskaia et al. 2022). The peptide can disrupt 
the bacterial membranes at low concentrations and adopts an α-helical structure in 
a membrane environment. The research also found that Hm-AMP2 interacts with 
lipopolysaccharides of different bacteria and can play a role in the defense against 
bacterial invasion (Grafskaia et al. 2022). The employed gradient-boosting approach 
was effective in identifying promising AMPs and could be useful for the rational 
design of effective, nontoxic peptide antibiotics (Bentéjac et al. 2021).

The future of computer-assisted prediction of conditioned production of micro-
bial products is likely to continue to evolve and improve as a computational tool. 
Some potential areas of development could include the use of more advanced ML 
algorithms such as DL or reinforcement learning to improve the accuracy and effi-
ciency of predictions. Additionally, the integration of big data and cloud computing 
technologies may enable the processing and analysis of larger and more diverse sets 
of data, which can further enhance the performance of computer-assisted prediction 
methods.

5  Chemometrics and Automated Microbial Drug Discovery 
in Dereplication Process

Dereplication is currently utilized to speed up NP screening and overcome the new 
drug discovery challenges. The initial definition of dereplication in 1990 was “the 
process of quickly identifying known chemotypes” (Beutler et  al. 1990). 
Dereplication is applied nowadays for the discovery of new drugs. There are five 
dereplication categories (DEREP1-DEREP5), which are involved in the search for 
novel natural bioactive compounds; however, each category follows certain work-
flow according to different separation procedures, different starting materials, and 
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different structural elucidation techniques (Hubert et  al. 2017; Nahar and Sarker 
2018). Recently, a huge improvement has been made in the field of separation and 
identification of compounds in pure form and within a mixture such as microbial 
culture or plant extracts by employing a variety of advanced analytical techniques 
(Atanasov et al. 2021). These analytical techniques include high-performance liquid 
chromatography (HPLC) (Wolfender 2009), high-performance thin-layer chroma-
tography (HPTLC) (Srivastava 2010), gas chromatography (GC) (Stavri et al. 2004), 
nuclear magnetic resonance (NMR) spectroscopy (Johansen et al. 2013), mass spec-
trometry (MS), combinations thereof, and MALDI-TOF MS (Tarfeen et al. 2022). 
Dereplication procedures have been applied in microbiological studies, mainly to 
identify the producer microbes by either morphology or gene analysis, and is used 
in combination with various chemometric techniques (Fiorini et  al. 2022). 
Dereplication process performed in 5 main steps including (i) detection of the pro-
ducer microbial colonies (Demarque et  al. 2020), (ii) construction of metabolite 
library by UHPLC-MS profiling (Genilloud et al. 2011; Ito and Masubuchi 2014), 
(iii) identification of the active peak by micro-fractionation (Harris et al. 2011), (iv) 
comparative quantification of small-amount compounds (Khoury et al. 2018; Spina 
et al. 2021), and (v) identification of structures of small amounts (Sugiki et al. 2018).

Chemometrics utilize multivariate analysis of data derived from mathematical, 
statistical, and optical radiation for the quick separation of known and unidentified 
bioactive NPs from natural crude extract (Gaudêncio and Pereira 2015). The most 
typical statistical techniques employed to study NPs were listed by Cornejo-Baez 
and colleagues (Saldívar-González et al. 2022). These include supervised ML meth-
ods such as orthogonal projection to latent structures and partial least squares, in 
addition to unsupervised featured as principal component analysis (PCA), hierar-
chical cluster analysis and discriminant analysis (Granato et al. 2018). New biologi-
cal insights were developed by using ML algorithms to extract information from 
metabolomic data (Liebal et al. 2020). Particularly, due to their capacity to make 
quantitative predictions, supervised machine learning algorithms such as SVM, 
Random Forest, ANN, and genetic algorithms have demonstrated significant prom-
ise in metabolomics research (Rafferty et al. 2020). The use of these algorithms has 
sped up the processing of analytical data, integrated omics information, and spurred 
biological applications. The overview of the application of AI approach in chemo-
metrics discovery is shown in Fig. 4.

Chemical profiles are conducted through bioassay-guided isolation and utiliza-
tion of dereplication process. Metabolomics analysis facilitates the bioassay-guided 
isolation by applying the multivariate data analysis to shorten the isolation path of 
an active compound, mainly in the identification and dereplication stages (Ho et al. 
2021). Multivariate data resulted from measuring several variables exist in the same 
sample. The main steps involved in a chemometric analysis are experimental design-
ing, data processing, classification, and calibration (Hanrahan and Gomez 2009). 
Modeling with chemometrics involves the utilization of instruments and software to 
interpret data patterns. Among methods included in chemometrics are PCA and 
prediction analysis; partial least square-discriminant analysis (PLS-DA). A multi-
variate analysis of data represents the statistical weights of the significant variables 
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Fig. 4 Overview of application of AI approach in chemometrics automated discovery

distributed among individuals based on their respective biochemical contents 
(Berrueta et al. 2007). The purpose of PCA is to decrease the large dimensions of 
the data space to smaller dimensions to simplify data description, reduce the num-
ber of variables in a matrix, and to identify new variables. Interpretation of PCA can 
be performed through a correlation between the original variable and the new vari-
able (Samirana et al. 2022).

For the aim of identification and dereplication, the metabolomic application is 
conducted through data reduction approach. The use of various analytical tech-
niques coupled with multivariate analytical data can be performed to fasten the 
isolation route by applying bioassays together with data reduction approaches, 
especially in both identification and dereplication phases (Cheng et  al. 2015). A 
study has reported that PCA was used to analyze 1H-NMR data obtained from 
Fusarium solani and F. oxysporum isolated from Senna spectabilis’s rhizosphere. 
The algorithm used loading values to choose the important peaks that differentiate 
between the species in PCA, leading to compound dereplication (Selegato 
et al. 2016).

5.1  Metabolite Dereplication Using MS and NMR Data

Dereplication of a metabolite by employing AI requires a careful comparative anal-
ysis of an extract and blank. LC-UV-MS is usually employed to extract comparable 
data in collision-induced dissociation (CID) process. Slicing the raw data into two 
datasets according to the ionization mode can be performed by MassConvert tool 
from ProteoWizard. The sliced datasets can be then imported into MZmine 
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(differential analysis framework for mass spectrometric data) where the high-reso-
lution mass spectral datasets can be deconvoluted and deisotoped. Chromatogram 
builder is used for the peak detection in both the sample and blank. Individual peaks 
can then be detected by performing chromatogram deconvolution. This is followed 
by isotopes identification using the isotopic peak grouper, reduction of the inter-
batch variation by the retention time normalizer, peak lists alignment (achieved by 
join aligner parameters) and gap filling peak finder is used to detect the missing 
peaks (Abdelmohsen et al. 2014).

Prediction of molecular formula and identification of a peak from the processed 
datasets are performed through a library creation by employing an algorithm from 
Antibase® or Marinlit® to recalculate the exact masses (Ricart 2020). Coupling the 
created library to MZmine using this custom database led to peak identification and 
dereplication. Xcalibur software is used to double check the hits and the unidenti-
fied peaks against the MS raw data (Li et al. 2020). Currently, several techniques are 
accessible for increasing the diversity and production of microbial secondary 
metabolites (Berdy 2005). HPLC has been used as a method to improve media, 
evaluate NP libraries, increase chemical diversity of collections, and even find rela-
tionships between species (Hubert et al. 2017). ML algorithms were used for the 
construction of NP collections and the identification of links between strains with 
various ancestries (Chen and Kirchmair 2020). It employed automated metabolite 
profiles identification and creating libraries of NP for drug development. Candidates 
that presented a clear MS/MS fragmentation pattern and concentrated on those with 
complex MS/MS profiles were ruled out, resulted in pinpointing of 10 promising 
strains that may be producing novel cyclic peptides. Paramyrothecium sp. was dis-
covered to biosynthesize xylomyrocins A–C, which were confirmed by 2 D NMR 
analysis (Wang et al. 2022b).

The Global Natural Products Social Molecular Networking (GNPS) created 
visual molecular networks from enormous tandem MS datasets. Nodes in molecular 
networking (MN) are used to display high-resolution spectra, while edges are used 
to describe alignments between spectra. Tandem MS records cannot be aligned, and 
the molecules cannot be recognized as long as the reference spectra are absent in 
molecular databases. As an alternative, researchers have created programs that con-
nect tandem MS spectra to specialized chemical databases to discover NP substruc-
tures such as CSI: FingerID (Blaženović et al. 2018), SIRIUS 4, and MS2LDA for 
small molecules (Qin et al. 2023), and VarQuest for peptides. ML methods (multiple 
kernel learning, and SVM) were used to build fragmentation trees from MS spectra 
and predict the presence or absence of large chemical fingerprints in unidentified 
chemicals such as ChemDistiller, MetFID (Fan et  al. 2020), and the Critical 
Assessment of Small Molecule Identification (CASMI) challenge (Shen et al. 2013). 
Platt probabilities are used to assess and rank each molecular fingerprint. ML tools 
applied for chemometric and dereplication process are listed in Table 2.

Computer-assisted structural elucidation (CASE) tool facilitates the identifica-
tion of NPs by comparing and integrating their 1D and 2D NMR spectral character-
istics to potential matches of multitechnique databases (Castaing-Cordier et  al. 
2022). Automated CASE program with residual chemical shift anisotropy (RCSA) 
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and residual dipolar couplings (RDCs) were employed for the determination of 
relative configurations in molecules (Pereira and Aires-de-Sousa 2018). Recently, 
the proposed chemical structure of the aquatolide was revised based on RDC/RCSA 
data for the model structure revealed the unusual core structure, which was subse-
quently confirmed by X-ray crystallography (Pereira and Aires-de-Sousa 2018) 
(Fig. 5).

Small Molecule Accurate Recognition Technology (SMART 2.0) was the first 
ML-driven method described by Reher and his colleagues for the quick identifica-
tion of JEOL database NPs (Reher et  al. 2020). CNNs were trained on a set of 
2D-NMR spectra from Heteronuclear Single Quantum Coherence spectroscopy 
(HSQC) of NCEs and ACD Labs Predictor (Zhang et al. 2017). SMART technology 
was employed for analysis of the filamentous marine Cyanobacterium symploca sp. 
mixture that revealed a novel cytotoxic swinholide known as symplocolide A 
(Zhang et al. 2017). CIM-ID as ML-based techniques established by Allen et al. 
increases the precision of computing molecular structure (Wang et al. 2021).

Among the recent examples is the discovery of polyol cyclodepsipeptides by 
applying HRMS-guided chemometrics (Wang et al. 2022b). Extraction of a loopful 
of collected mycelia was carried out from agar media, the extract was subjected to 
direct MALDI-TOF MS analysis. Around 182 strains out of 1748 were detected to 
produce a minimum of one set peptide-like metabolites. HCA was applied using 
imageGP platform to deconvolute the 182 peptide-containing extracts, resulting in 
61 clades where each clade shares a characteristic fingerprint of peptides in MALDI- 
TOF MS profiles. A representative strain was selected from each of the 61 clades to 
perform a solid-state fermentation, and the production of the metabolites was moni-
tored by LC-HRMS/MS.

6  Prediction of Biological Function and Deorphanization 
of Microbial Natural Products

6.1  AI in the Prediction of Biological Function 
of Microbial Metabolites

A metabolic pathway is a step-by-step series of interconnected biochemical reac-
tions that use variable precursors through a series of metabolic intermediates to 
yield a final product molecule (LibreTexts Project 2023). Researchers have devel-
oped many public repositories for microbial metabolites according to their resources 
and the identification process (Table 3). FAIRsharing is a curated, informative, and 
educational resource that is employing metadata standards to inter-relate databases 
and data policies (FAIRsharing n.d.). FAIRsharing provided 1985 databases as reg-
istry of knowledge bases and repositories of data and other digital assets 
(FAIRsharing n.d.). In the same context, Integbio Database Catalog that was devel-
oped by the University of Tokyo (Integbio Database Catalog University of Tokyo 
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Table 2 Chemometric and dereplication software combined ML tools for NPs discovery process

Software/Website 
tools ML and chemometric tools features Reference

SWATH-MS Identification of peptide biomarkers-based proteomic 
and chemometric analysis using ML models

Hu et al. (2018)

Mclust R program chemometric analysis model-based 
clustering and associated techniques for density 
estimation and discriminant analysis

Fraley and Raftery 
(2007)

ChemDistiller Mass spectrometry fingerprint and ML metabolite 
annotation

Laponogov et al. 
(2018)

MetFID MetFID predicts compound fingerprints for 
metabolite annotation using ANN

Fan et al. (2020)

Deep kernel 
learning

Deep kernel learning optimizes the ability to predict 
chemical fingerprints from NP multiple spectral data

Dührkop (2022)

CASE CASE speeded up novel NP identification by 
comparing and merging the 1D and 2D NMR 
benchtops of the NPs

Castaing-Cordier 
et al. (2022)

CASMI First small molecule metabolite identification tool of 
the computational MS community

Shen et al. (2013)

PLSR Combined with DL model for quick identification 
process

Divyanth et al. 
(2022)

SIMCA P Chemometric software programming tools that can 
accommodate ML algorithm for secondary 
metabolite

Solihin et al. 
(2021), Shin et al. 
(2020)

MetaboAnalyst 5 Growing data, a platform for metabolomic analysis Fernandes et al. 
(2019)

CSI: FingerID and 
SIRIUS 4

Discover novel NP substructure molecules by 
integrating ML algorithms for matching 
fragmentation ions with molecular substructures

www.csi- fingerid.
org

MS2LDA MS2LDA framework used unsupervised technique of 
latent Dirichlet allocation (LDA) to break down 
tandem MS data (MS2-) into groups of co-occurring 
fragments (called Mass2Motifs)

Blaženović et al. 
(2018) http://
ms2lda.org/

VarQuest Dereplicator tool for discovery and identification of 
novel peptides

Qin et al. (2023)

SMART First ML-driven method employing CNN for the 
quick identification of novel NPs utilizing 2D-NMR 
spectra

Castaing-Cordier 
et al. (2022), Zhang 
et al. (2017)

CFM-ID Hybrid ML and rule based for annotation, spectrum 
prediction, and metabolite identification from 
combinatorial mass spectra

Allen et al. (2014), 
Wang et al. (2021)

Library System n.d.) collectively includes the international life science databases 
and the associated basic metadata in Japan and all over the World. This catalog pro-
vided 2147 different databases with a description of these databases and informa-
tion about different organisms. Users can identify many databases according to the 
selective species and the identified targets of metabolites, proteins, carbohydrates, 
and lipids (Integbio Database Catalog University of Tokyo Library System n.d.). 
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Fig. 5 Identification of MNP structure utilizing CASE tool

Integbio Database Catalog also provided batches of downloadable databases and a 
primitive map of correlated Japanese databases relying on the description of each 
database and other scientific terminologies to calculate the similarity between these 
databases (https://integbio.jp/dbcatalog/files/relation- map.pdf). This promising 
future correlation of different databases facilitate the use of a batch of databases that 
can unravel new unpredicted knowledge.

6.2  AI in the Identification of Microbial Metabolic Pathways

In a cell, metabolic pathways are linked together in a series of chemical reactions. 
Enzymes catalyze these reactions, where the product of one enzyme acts as a sub-
strate for the next enzyme. ML is used to analyze metabolic pathways in three pipe-
lines: prediction (Faust et al. 2011), design or reconstruction (Qi et al. 2014), and 
optimization (Planes and Beasley 2009) (Fig. 6). ML prediction refers to the output 
of an algorithm after it is trained on a historical dataset and applied to new data, 
hidden from the training data, and used for testing the designed model. The algo-
rithm will generate probable values for an unknown variable for each record in the 
new data, allowing the scientist to identify the exact value (DataRobot n.d.). In MS, 
metabolites identification is performed based on ion fragmentation for accurate 
identification and quantification (Xiao et al. 2012). The prediction of the metabo-
lites is based on the similarity of spectra in the database and the compound under 
investigation (Hufsky et al. 2014). Furthermore, the metabolite’s retention time pro-
vides another ML angle that allows more insight into the true structure of that com-
pound in comparison to the available database (de Cripan et  al. 2022; 
Domingo-Almenara et al. 2019).

MS/MS machines accompanied with ML can provide direct identification of the 
microbial metabolites from biological samples. However, the reference database is 

R. Hamdy et al.

https://integbio.jp/dbcatalog/files/relation-map.pdf
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Artificial Intelligence and Discovery of Microbial Natural Products
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http://www.tanpaku.org/autophagy/
http://bacmap.wishartlab.com/
http://bacteriome.org
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Artificial Intelligence and Discovery of Microbial Natural Products
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sometimes incomplete and leading to unreliable matching results if the reference 
spectrum of the targeted metabolite is not contained within the database. Therefore, 
predicting the metabolic profiling from metagenomic sequencing may cover the 
shortcoming of MS/MS approaches. The development of MelonnPan is a computa-
tional method used to predict metabolite features from metagenomic sequencing 
data by incorporating biological knowledge in the form of either taxonomic or func-
tional profiles. MelonnPan uses elastic net model for prediction (Mallick et  al. 
2019). Later, Xie et al. improved elastic net model by adding extra step to consider 
variable importance scores and thus achieved better prediction power for the metab-
olites (Xie et al. 2021). The continuous improvement and novelty in AI models and 
biomedical ML are coming side by side with the importance of in vitro and in vivo 
assay for the functional identification of a metabolite or a bunch of metabolites 
(Fig. 6).

Although, there is a great development in constructing large datasets for meta-
bolic pathways represented mostly in KEGG (Okuda et al. 2008), BioCyc (Karp 
et al. 2019), and MetaCyc (Caspi et al. 2006), there are several metabolic pathways 
that remain unknown, and many reactions are still missing even in pathways that are 
well known. It is therefore necessary to identify these missing reactions during the 
reconstruction of metabolic pathways (Kotera and Goto 2016). Large datasets such 
as KEGG and MetaCyc are using the Enzyme List to reconstruct the incomplete 
metabolic pathways. The Enzyme List belongs to the Nomenclature Committee of 
IUBMB (NC-IUBMB) (McDonald and Tipton 2014). In this system, each enzyme 
is given a unique four-digit code called the Enzyme Commission (EC) number, in 
which the first three digits represent a hierarchical classification of the enzyme as 
class, subclass, and subsubclass (Kotera and Goto 2016). Recently, the Enzyme List 
(McDonald et  al. 2009) was updated to be an online database “ExplorEnz” and 
publicly available at https://www.enzyme- database.org/newenz.php. By using the 

Fig. 6 Summarized ML methods in the identification of metabolic pathways
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Enzyme List collectively, metabolic pathways can be reconstructed (Fig. 6). This 
Enzyme List contains enzymes that have been experimentally characterized in full. 
Several enzymes have already been described in the literature but may not yet be 
listed. Some enzymes that catalyze alternative or spontaneous reactions, may not be 
included in the Enzyme List (McDonald et al. 2009).

In MetaCyc (Caspi et  al. 2006) and KEGG (Okuda et  al. 2008), a metabolic 
pathway reconstruction is conducted using the Enzyme List and complemented 
with additional reactions to fill in the gaps for unknown compounds. These recon-
structions are combined pathways that describe the chemical transformations with-
out distinguishing between closely related organisms. These combined pathways 
are called “reference pathways” (Kotera et al. 2014). To overcome this challenge, 
their reconstruction processes should use sequence similarity programs such as 
BLAST and manual curation to assign orthologs based on the strongest hits to the 
genomes of various organisms (Kanehisa et al. 2016a; Caspi et al. 2016) (Fig. 6). 
KEGG provides reconstructed pathways based on BioCyc, a collection of organism- 
specific pathways (Caspi et al. 2016), and for complete genomes, KEGG provides 
pathways specific to each organism. It also provides a web-based tool called KEGG 
Automatic Annotation Server (KAAS) that enables reference-based metabolic path-
way reconstruction on demand (http://www.genome.jp/tools/kaas/) (Moriya et al. 
2007). In the model SEED, functionally related enzyme genes, called subsystems, 
are represented in a table-like manner to simplify reconstruction from a genome 
sequence (Henry et al. 2010). In recent years, improved tools have been developed 
with greater efficiency and interpretability including MG-RAST and MEGAN for 
reconstructing pathways and analyzing species distributions in large metagenomic 
datasets (Meyer et al. 2008; Huson et al. 2011), MAPLE for easier interpretation of 
the available metabolic functions (Takami et  al. 2012), and BlastKOALA and 
GhostKOALA for efficient ortholog assignments using reduced sets of reference 
genome datasets (Kanehisa et al. 2016b). These programs can be used for gaining 
insight into the metabolic potential in various environments (Fig. 6).

Most of the naturally produced metabolites or enzymes belong to a specific sub-
set of microorganisms, in this situation, the reconstruction of reference-based meta-
bolic pathway is not possible (Kotera and Goto 2016). Researchers are depending 
on two frameworks to solve this issue; compound-filling framework and the 
reaction- filling framework (Kotera and Goto 2016). Software programs in 
compound- filling framework predict pathways by hypothesizing intermediate com-
pounds between source and target compounds (Kotera et  al. 2013). This frame-
work’s prediction systems are freely available at PathPred (Moriya et al. 2010) and 
at the University of Minnesota Pathway Prediction System (UMPPS) (Gao et al. 
2011). Due to its prohibitive computational cost, the compound-filling framework is 
not suitable for predicting pathways for many compounds at once (Kotera et  al. 
2013). In the reaction-filling framework, chemical compounds are predefined, and 
pathways are predicted by filling in the reactions across them. The availability of 
databases containing chemical compounds with identified structures is enabling this 
framework to be adopted more widely (Aharoni et al. 2002; Kind and Fiehn 2006).

Artificial Intelligence and Discovery of Microbial Natural Products
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Optimizing metabolic pathways is the third pipeline of ML, which involves find-
ing or generating the optimal pathways to maximize product titers, rates, and yields 
(TRY)or minimize reaction numbers (Shah et al. 2021; Lawson et al. 2021) (Fig. 6). 
In this attempt, ML provides an orthogonal approach to computational approaches 
to improve the flux analysis and genome-scale models, which have been success-
fully used in the past to increase TRY (Maia 2018). Combining both approaches can 
be more effective than using them separately. TRY can also be increased by fine- 
tuning gene expression by modifying the promoter and ribosome binding site (RBS) 
sequences (Lawson et al. 2021). Predicting gene expression requires a comprehen-
sive understanding of transcription and translation (Leveau and Lindow 2001; Salis 
et al. 2009; Rhodius and Mutalik 2010). It is often difficult to obtain this knowledge, 
especially for nonmodel organisms. Thus, the majority of gene expression optimiza-
tion efforts rely on trial-and-error experimental approaches based on the promoter 
and RBS library screening (Choi et al. 2019). Neural network of ML guided the 
design of promoter and RBS sequences in a ML-driven pathway to improve the 
gene expression (Kotopka and Smolke 2020) (Fig. 6). Recently, Neural Network 
ensembles were implemented to improve a 5-step pathway for violacein production 
by selecting promoter combinations to tune the gene expression. They used only 24 
strains in their training set and obtained a new strain that improved violacein titer by 
2.42-fold after only 1 design-build-test-learn iteration (Zhou et  al. 2018). The 
impact of systemically leveraging high-throughput strain construction, testing, and 
ML to optimize multistep pathway expression can improve the product of TRY.

6.3  Deorphanization

Deorphanization of a NP is used to identify the native target protein (Civelli et al. 
2013). Most biologically active NPs were discovered through phenotypic studies, 
which rarely reveal the targets of their protein binding (Civelli et al. 2013). Emerging 
trends in the identification of an action mechanism, termed as “target fishing,” 
include ML algorithm for predicting the ligand-target proteins and to provide NP 
deorphanization (Jenkins et al. 2006). Deorphanizing predictors for NP drug targets 
utilize ML algorithms that have been trained with a combination of features such as 
structural representations as well as pharmacophoric descriptors necessary for the 
target interaction (Nisius et al. 2012). The major method used by ML servers for 
ligand-based target fishing is chemical similarity searches. The first used server was 
Prediction of Activity Spectra for Substances (PASS) (Parasuraman 2011), ChEMBL 
(Mayr et al. 2018), and similarity ensemble approach (SEA) (Wang et al. 2016) to 
predict NPs biological activities from 2D chemical structures using molecular frag-
ment descriptors. SPiDER strategy used self-organizing maps (SOMs), a clustering 
technique that maps the links between chemical compounds using pharmacophore 
correlations and physicochemical attributes (Chau et al. 2001). SPiDER was suc-
cessfully employed to predict the target of NP intricate structure such as the macro-
cyclic archazolid A, and (-)-englerin-A by deconvoluting structures into fragments 

R. Hamdy et al.
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Fig. 7 Deorphanization of (±)-marinopyrrole A using TIGER software

that store the bioactivity fingerprint (Schneider and Schneider 2018). Target 
Inference GEneratoR (TIGER) is a computational chemocentric (ligand-based) tar-
get prediction tool using scoring approach (Schneider and Schneider 2018), where 
higher score values indicate a greater agreement in the prediction (Rodrigues and 
Bernardes 2020). Drug-Target Relationship Predictor (DEcRyPT) was utilized to 
accurately identify β-lapachone target as an allosteric modulator of 5-lipoxygenase 
(Akhtar et al. 2020). It was also successfully applied to deorphanize marine natural 
anticancer (±)-marinopyrrole A (Schneider and Schneider 2017) (Fig. 7).

7  Perspective and De Novo Generation 
of NP-Inspired Compounds

NPs contain privileged scaffold with pharmacophoric features required for interac-
tion with biological target and can be used for the de novo design of mimicry struc-
tures (Welsch et al. 2010) (Fig. 8). Therefore, NPs with a successful track record in 
the era of evolutionary drug development offer benchmark data for exploring inno-
vative molecular frameworks for synthetically accessible therapeutics drugs (Chen 
and Kirchmair 2020).

7.1  NPs-Based De Novo Drug Design Using AI

De novo drug design is a computational tool used to design novel bioactive struc-
tures entirely from scratch using chemical building blocks (Mouchlis et al. 2021). It 
transferred relevant attributes and activity of pharmacologically active NPs to syn-
thetic small molecule drug. De novo design had become popular in studies of natu-
ral drugs (Popova et al. 2018). It includes ligand-based and structure-based drug 
design (SBDD) that depend on the recognition of pharmacophoric features of the 
ligand or the characterization of the biological target’s active site, respectively. The 
availability of 3D crystal structure of a biological target provides an excellent 
opportunity for SBDD (Hamdy et  al. 2022). Ligand-based de novo design of 
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Fig. 8 De novo design and generation process of NP-inspired compounds

distinctive molecular cores with drug-like properties that are inspired by NPs offers 
a promising solution to minimize the NPs synthetic burden (Perron et al. 2022).

De novo design algorithms previously relied on the selection of appropriate scaf-
fold and the subsequent hybridization to create novel bioactive compounds 
(Hartenfeller and Schneider 2011). Recently, the emergence of AI approach includ-
ing ML provide excellent opportunities for the de novo design by training neuronal 
networks to generate innovative molecules (Grebner et al. 2020). Artificial Neural 
Networks of DL and reinforcement learning (RL) architectures were combined in 
deep reinforcement learning (DRL), a subset of ML that is used in de novo drug 
design (Popova et al. 2018; Wang et al. 2022c) (Fig. 9).

Drug design approaches applied a variety of artificial networks including recur-
rent neural networks (RNN) with long-short term memory (LSTM), generative 
adversarial networks (GAN) (Martinelli 2022), convolutional neural networks 
(CNN) (Xiong et al. 2021), and autoencoders (AE) (Blaschke et al. 2018). ML algo-
rithms were implemented in every stage of process of developing innovative 
NP-inspired drug candidates with inherited bioactivities (Button et al. 2019). DL 
model was trained with NPs structure libraries to design, enumerate, and explore 
novel small molecule with synthetic accessibility (Martinelli 2022). Reinforcement 
Learning for Structural Evolution (ReLeaSE) applied DRL algorithm to develop 
chemical libraries with the appropriate physicochemical and pharmacological activ-
ity (Mouchlis et al. 2021). Mapping and selection of relevant chemical candidate 
from the pool of enumerated compounds followed by deorphanizing techniques 
were employed to identify the target of interest (Mouchlis et al. 2021). Muller and 
his colleagues recently adjusted LSTM-RNNs to develop unique peptide sequences 
from natural antimicrobial peptides that have been void of repeated cysteine and 
proline residues (Saldívar-González et  al. 2022). The model was established to 
implicitly capture pertinent structural properties for the targets of interest, only a 
minimal collection of known bioactive template structures were required (Gallego 
et al. 2021).

The discovery and development of NP mimetics therapeutic candidates have 
considerably improved due to advancements in high-throughput screening of in- 
house or commercially available libraries (Mishra et al. 2008). The primary hurdle 
in de novo drug design is the limited available chemical space to explore with syn-
thetic accessibility (Chen and Kirchmair 2020). Therefore, respective advancements 
have been made to generate as many libraries as feasible (Friedrich 2019). Exploring 
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Fig. 9 Employing artificial intelligence in de novo drug design

novel chemical entities that preserve the privilege structures of NPs, several combi-
natorial de novo design strategies have been employed for developing synthetically 
accessible NP mimetics hits such as Diversity-Oriented Synthesis (DOS), 
Complexity to Diversity (CtD), Biology-Oriented Synthesis (BIOS), and 
Functionally Oriented Synthesis (FOS) (Saldívar-González et al. 2022) (Fig. 10).

7.2  Biology-Oriented Synthesis (BIOS)

BIOS uses NPs as templates to create derivatives with synthetic accessibility (Wilk 
et al. 2010). Most small molecule inhibitors and medications are built on ring sys-
tems, cyclization typically causes the overall molecular structure to tighten, which 
increases the target affinity because less entropy is lost during the binding 
(Zimmermann 2012). The underlying NPs framework is broken down into smaller 
scaffold based on rings, linkers chains, and ring-based double bonds (Zimmermann 
2012). The BIOS concept depends on that the scaffold’s fundamental structural 
underpinnings with biological relevance and prevalidation are used to generate 
compound collections with targeted biological activity (Cremosnik et  al. 2020). 
Waldmann and his coworker have employed cheminformatic approach to visualize 
the chemical space occupied by NPs and their scaffolds, as a consequence, a new 
class of mycobacterium tuberculosis protein tyrosine phosphatase B inhibitors was 
discovered (Nören-Müller et al. 2008).
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Fig. 10 Combinatorial de novo design strategies

The reductionistic scaffold tree’s hierarchy of scaffolds shows many chemical enti-
ties and substructures of the original NPs (Bon and Waldmann 2010). Thus, the tree 
offers the opportunity to categorize structural variety to logical and chemically signifi-
cant (Wilk et al. 2010). Consequently, the scaffold tree enables the comparison of 
increasingly complicated scaffolds and provides a tool for the reduction of molecular 
intricately to simpler frameworks (Kaiser et al. 2008). Recently, alternative scaffold 
trees have been produced using bioactivity data and a technique known as “brachia-
tion” as intuitive leading criteria to choose hierarchically arranged scaffold sequences 
(Wetzel et  al. 2011). For example, application of BIOS strategy revealed a highly 
selective protein phosphatase 2A inhibitor with improved characteristics from cyto-
statin, a naturally occurring molecule with an unsaturated d-lactone motif (Umarye 
et al. 2007) (Fig. 11). Finally, additional cheminformatic studies showed great poten-
tial to increase the applicability of compound libraries derived from BIOS (Bon and 
Waldmann 2010). It is reasonable to conclude that continued advancement of alterna-
tive cheminformatic techniques in this direction would be extremely beneficial to the 
field of biological science and chemical engineering (Wilk et al. 2010).

7.3  Diversity-Oriented Synthesis Strategy

Diversity-oriented synthesis (DOS) aimed to discover novel unexplored chemical 
space with NP-like pharmacophores and certain degree of chemical diversity. DOS 
library compounds have been found to alter protein-protein interactions, function of 
transcription factor, and multidrug resistance (Galloway et al. 2009). Wyatt and col-
leagues explored DOS libraries for first in class antibiotics with distinctive biologi-
cal properties (Galloway et  al. 2009). The study resulted in the discovery of the 
previously unexplored structure of emmacin antibiotic, which emphasizes the value 
of DOS as a tool in the de novo drug development process (Galloway et al. 2009).
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Fig. 11 Biology-oriented synthesis of cytostatin-inspired compound

7.4  Complexity-to-Diversity Strategy

The complexity-to-diversity technique (CtD) chemically functionalizes and distorts 
NPs to produce structurally varied compound collections, simulating enzyme pro-
cesses in a synthetic manner (Srinivasulu et al. 2022). The diversification of pleuro-
mutilin and ring contraction using CtD, along with screening in a phenotypic assay, 
revealed the biological relevance of CtD and led to the discovery of ferroptocide, 
which has anticancer potential by blocking redox proteins called thioredoxin 
(Llabani et al. 2019) (Fig. 12).

7.5  Functionally Oriented Synthesis Strategy

FOS represents an increasingly significant direction in synthesis that is centered on 
achieving function and has inspired the development of innovative methodologies 
with improved or entirely new functions (Wender et al. 2008). FOS-inspired strat-
egy further expanded the BIOS concept by recapitulating or fine-tuning the function 
of a biologically active lead structure to produce more straight forward scaffolds 
and make them easier to synthesize (Wender et al. 2008).

7.6  Pseudonatural Products

Pseudonatural products (Pseudo-NPs), which exhibit biological function unrelated 
to the guiding NPs, have been developed recently by combining NP-derived frag-
ments (NPDFs) (Saldívar-González et al. 2022; Grigalunas et al. 2020). It discov-
ered through cheminformatic research of the Dictionary of Natural Products (DNP). 
Strategy of pseudo-NPs creation facilitates the chemical innovation and incorpora-
tion of new scaffolds fragments, that were assembled in arrangements irrelevant to 
the biosynthetic pathway; this is leading to the development of innovative libraries 
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Fig. 12 CtD strategy of pleuromutilin involved ring contraction in blue and diversification 
in purple

with drug-like features such as sizes, shapes, and lipophilicity (Wilk et al. 2010). It 
is worth noting that chromopynone, the first example of pseudo-NPs provides a 
novel bioactivity (Yildirim 2021). It was created by a combination of biosynthetic 
unrelated fragments of chromane and a tetrahydro-pyrimidine (Karageorgis et al. 
2018), which revealed a selective inhibition of glucose transporters GLUT-1 and 
GLUT-3 (Fig. 13).

7.7  Scaffold Hopping with the Design of Genuine 
Structures (DOGS)

Molecular scaffold hopping aims to identify molecules with distinctly different 
chemical structures that share a desirable function by binding to the same biological 
target (Mauser and Guba 2008). De novo structure development enumerates a struc-
turally diverse compounds that share specific pharmacophoric features by computa-
tionally screen an unlimited chemical space (Zhao 2007). De novo fragment-base 
design using scaffold hopping from NPs is a validated approach for the discovery of 
isofunctional hit and lead compounds (Krueger et al. 2009), with unique structural 
properties in absence of the biological target information (Lloyd et al. 2004). DOGS 
is one of the most implemented software for the de novo molecular design and uti-
lization of unexplored molecular building blocks and chemical reactions (Merk 
et al. 2018a). It was firstly implemented for independent scaffold hopping design of 
valerenic acid, isopimaric acid, and dehydroabietic acid as template to generate and 
test NP mimetic chemotypes that resulted in the de novo generated tetrahydro- 
indole molecule (Schneider et al. 2022) (Fig. 14). Retinoid X receptor (RXR) ago-
nism was predicted by target prediction using SPiDER software for both NPs and 
the de novo designed compound (Rodrigues and Bernardes 2020). On all three RXR 
subtypes, screening confirmed the de novo compound potent micromolar potency 
(Schneider et al. 2022).
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7.8  Shape-Based De Novo Design

The shape of a molecule shapes its binding to a biological target from alignment- 
based approaches (Desaphy et al. 2012). Prominent strategies maximize possible 
overlap and rank against NP template (Ballester and Richards 2007). Shape analysis 
offers a quick filtering of large compound libraries based on similarity-based virtual 
screening of fixed set reference descriptors considering the geometrical distance 
distribution and its Connolly surface. Weighted holistic atom localization and entity 
shape (WHALES) descriptors was carried out by Grisoni and colleagues as ranking 
criterion for shape-based virtual screening using the four most prevalent phytocan-
nabinoid NPs, that led to prospective potent cannabinoid receptor modulators with 
novel scaffold (Grisoni et al. 2018). Consequently, it is apparent that the WHALES 
technique is effective at retrieving isofunctional synthetic characteristics of bioac-
tive natural compounds (Skalic et al. 2019).

ML model framework that has been trained to automatically generate small syn-
thetic molecules that mimic NPs characteristics features based on shape similarity 
search (Merk et al. 2018b). NP mimetic molecules of the intricate natural anticancer 
drug (−)- englerin was computationally designed by Friedrich and colleagues in 
2016. ML tool using SPiDER software was employed for the target predication of a 
potential calcium channel subfamily M (melastatin) member 8 (TRPM8) (Friedrich 
et al. 2016, 2020) (Fig. 15).
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Fig. 15 Shape-based de novo design of potential NP-inspired TRPM8 inhibitor using (-)- Englerin 
A as a template
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8  Limitation of AI Application in NP Drug Discovery

Like any emerging technologies, AI is still developing and still has a lot to achieve 
(Sethuraman 2020). One restriction is the requirement for considerable training data 
that relies on human judgment, which might be incorrect (Pareek et al. 2022). In the 
de novo drug discovery process, AI can forecast models to predict structures that are 
not readily accessible by chemical synthesis (Pareek et al. 2022).

9  Conclusion

NPs are the continuous source of numerous successful medication discovery tales. 
AI approach has gradually integrated diverse stages of NP drug research. ML algo-
rithms assisted the discovery and elucidation of bioactive structures to capture the 
molecular patterns of these favored structures for molecular design and target selec-
tivity. ML can also identify the most promising conditions for compound produc-
tion based on a variety of factors including the characteristics of the organism and 
the type of NP being targeted.

ML-generated techniques for chemometric analysis and sequential use of dimen-
sionality reduction techniques have provided the means to compare NP-privileged 
properties with those of pharmaceuticals interpreting of the free accessible datasets. 
The development of ML models to predict the biological activity of NPs has pushed 
candidates into more advanced stages of drug development. Deorphanizing models 
and de novo design work together to create novel isofunctional chemotypes, or “NP 
mimetics.” Eventually, the synthetic accessibility, potency, and drug-likeness resem-
blance of NP-inspired compounds are being improved by these techniques. Overall, 
AI has the potential to enhance the discovery of new NP-based medication from 
microorganisms.
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Abstract Essential oils are secondary metabolites biosynthesized by aromatic 
plants, composed of terpene derivatives (monoterpenes, sesquiterpenes), phenylpro-
panoids, aldehydes, ketones, esters, furans, and lactones. They have biological 
properties, including bactericide, fungicidal, cytotoxic, insecticide, antiparasitic, 
anti-inflammatory, analgesic, and antioxidant. Thus, they have potential in the dis-
covery and development of new drugs. This work shows several studies involving 
pharmacological properties associated with the bioactive constituents of essential 
oils, aiming to elucidate and encourage their application in developing new phyto-
therapies. Thus, the oils have shown promising antimicrobial, antiviral, anti- 
inflammatory, antioxidant, and anticancer agents against in vitro and in vivo assays. 
In addition, many essential oils are considered safe with low toxicity, so they can be 
incorporated into different pharmaceutical forms to improve their bioavailability. 
However, developing research that evaluates essential oils‘pharmacokinetic mecha-
nisms and quality control is fundamental.
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1  Introduction

Since ancient civilizations, essential oils have been used as cosmetics, medicine, 
religious rituals, or cooking. The interest in this natural product is growing due to its 
aroma and biological properties. Therefore, essential oils research has been devel-
oped to evaluate their biological activities once they can treat diseases (Tariq et al. 
2019; Wani et al. 2021).

The essential oils are volatile compounds of secondary metabolites composed of 
monoterpenes, sesquiterpenes, and phenylpropanoids, which are biosynthesized by 
different parts of the plant such as leaves, seeds, bark, and fruits (Chamorro et al. 
2012; Tariq et al. 2019). In addition, they have a lipophilic character and low molec-
ular weight, which allow them to cross cell membranes easily (Sharifi-Rad et al. 
2017; Tariq et al. 2019).

However, for the essential oil’s application, it is important to carry out their 
chemical characterization, as the composition may change between individuals of 
the same botanical species. These variations are due to the occurrence of different 
chemotypes, according to the adaptation of the plant to the environment, genetic 
variation, or its development (Chamorro et al. 2012). Therefore, the extracted vola-
tile can vary quantitatively and qualitatively due to climate, soil characteristics, 
plant part, and age (de Sousa Peixoto Barros et al. 2022).

In this way, the phytochemical constituents of essential oils can be effective as 
antimicrobial agents against neurodegenerative diseases, heart disease, lung disor-
ders, and cancer. Therefore, essential oils have the potential for use as new drugs. 
However, studies related to safety, efficacy, dosage, formulation, and drug interac-
tion must be considered to avoid unwanted responses such as hypersensitivity and 
inflammation (Osuntokun 2017).

2  Essential Oils: General Aspects

Essential oils are volatile, liquid, natural substances with a strong odor. They are 
secondary metabolites synthesized by aromatic plants and responsible for flavor and 
aroma. In the plant, they have important functions such as protection against bacte-
ria, fungi, and viruses, and they can also attract insects to favor pollination or repel 
undesirable ones (Bakkali et al. 2008; Tisserand and Young 2014).

In addition, essential oils have other physicochemical characteristics such as low 
stability in the air presence, light, heat, and humidity, optical properties, and most 
of them are yellowish or colorless. The chemical composition of this natural product 
is complex, and its main constituents are terpene derivatives and phenylpropanoids. 
Among the different chemical classes present in EOs are hydrocarbons (monoter-
penes, sesquiterpenes), aldehydes, ketones, esters, furans, and lactones (Sangwan 
et al. 2001; Simões and Spitzer 2007).
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Essential oils can be extracted from various plants part such as flowers, leaves, 
fruits, roots, stems, and seeds. The excretory plant structures of these volatiles vary 
according to the botanical family, such as glandular hairs (Lamiaceae), parenchyma 
cells (Lauraceae, Piperaceae, Poaceae), oil channels (Apiaceae), or in lysigenous or 
schizolysigenous pockets (Pinaceae, Rutaceae) (Simões and Spitzer 2007; Tisserand 
and Young 2014).

Regarding the extraction methods, the most used are enfloration, expression 
(pressing), solvent extraction, supercritical CO2, steam distillation, and hydrodistil-
lation (Buckle 2003). However, regardless of the type of extraction, the essential oil 
yield at the end of the extraction is generally very low quantitatively (Silveira 
et al. 2012).

Several factors influence the chemical composition and yield of essential oils as 
the plant organ, environmental factors (climate, soil, temperature), water stress, and 
collection period. These are said to be intrinsic parameters. Other parameters that 
can affect the oil qualitatively and quantitatively are the extrinsic ones, which 
include the method and time of extraction and storage of the botanical material (Li 
et al. 2014; Duarte et al. 2018).

The essential oils application is becoming increasingly widespread as an alterna-
tive to synthetic substances in pharmaceutical, food, agronomic, cosmetic, and sani-
tary products. This fact is due to the biological properties, some of which have been 
known since antiquity, such as bactericide, fungicide, cytotoxic, insecticide, anti-
parasitic, anti-inflammatory, analgesic, and antioxidant (Bakkali et  al. 2008; 
Schmidt 2010; Bhardwaj et al. 2013).

3  Biological Activities

3.1  Antimicrobial Activity

The infections caused by microorganisms represent a significant health concern and 
are responsible for most deaths worldwide (Nair et al. 2022). In addition, the emer-
gence of new drug-resistant strains commonly used in clinical practice has ham-
pered therapeutic success. In this context, essential oils can be an alternative for 
treating these pathogens (Tariq et al. 2019; Nair et al. 2022).

Several bacteria species transmit antimicrobial resistance through the gene 
exchange cycle’s translation, conjugation, and transformation processes (Nair et al. 
2022). Thus, the growth of infections by bacterial pathogens occurs, resulting in 
high rates of tolerance to multidrug worldwide, in addition to the adverse effects 
due to the use of antimicrobials in higher doses (Hou et al. 2022).

Essential oils can act on microorganisms according to the strain and agent. 
Gram-positive bacteria are more vulnerable to the action of this natural product, as 
they do not have a thick layer of lipopolysaccharides, unlike gram-negative bacteria. 
Thus, the active components of essential oils can bind to the cell surface and 
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permeate the phospholipid bilayer of the membrane, which causes metabolic dam-
age and apoptosis (Nair et al. 2022).

The phenolic monoterpene carvacrol is a lipophilic compound that interferes 
with the membrane structure modifying the fatty acid profile and causing adenosine 
triphosphate (ATP) depletion in microbial agents. The oxygenated monoterpenes 
carveol and carvone contribute to the leakage of potassium ions. In addition, other 
compounds such as methyl carvacrol, menthol, citronellol, and thymol can increase 
passive ionic movement between phospholipids and expand the cell wall (Nair et al. 
2022; Hou et al. 2022).

Furthermore, some oils, such as those from Alpinia galanga, Elwendia persica, 
Litsea cubeba, and Homalomena pineodora, and their components, such as ethyl 
cinnamate, methyl cinnamate, α-terpinene, cuminaldehyde, and α-phellandrene, 
have antimicrobial activities through cell membrane disruption, cytolytic swelling, 
and loss of membrane function (Nair et al. 2022; Hou et al. 2022). These constitu-
ents are illustrated in Fig. 1.

The antibacterial action of essential oils can inhibit the proliferation of bacteria 
or kill them. Therefore, several methods, such as microdilution wells and disc diffu-
sion, are applied to determine the minimum inhibitory concentration (MIC) of 
microbial agents. In this sense, the most appropriate bioassays to indicate the MIC 
value are dilution methods, tests in agar medium or broth (Chouhan et al. 2017). In 

Fig. 1 Essential oil constituents with antimicrobial properties
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comparison, the minimum bactericidal concentration (MBC) evaluates the ability to 
eliminate 99.9% of the initial inoculum, where agar diffusion is used (Tariq 
et al. 2019).

In vitro MIC values show that essential oils with strong antimicrobial action 
should be up to 500 μg/mL, while moderate activity is between 600 and 1500 μg/
mL, and values greater than 1600 μg/mL have poor activity (Nair et  al. 2022). 
Table 1 shows some essential oils and the spectrum of action achieved.

Thus, Eryngium campestre essential oil has shown strong activity (MIC 250 μg/
mL) against Bacillus cereus and Staphylococcus aureus bacteria (Medbouhi et al. 
2019). Moreover, Origanum majorana oil showed MIC of 156 μg/mL and 312 μg/
mL against Staphylococcus epidermidis and Cryptococcus neoformans strains, 
respectively (Paudel et  al. 2022). Furthermore, the essential oil extracted from 
Solanum nigrum exhibited MIC of 200 μg/mL combating the gram-negative bacte-
ria Proteus mirabilis (Khaled et al. 2021).

A study carried out by Da Silva et al. (2016) evaluated the antimicrobial activity 
of essential oils from leaves and branches of Endlicheria arenosa from the Brazilian 
Amazon. The oils showed high antibacterial potential against Escherichia coli, with 
MIC of 0.020 and 0.156 mg/mL, for leaves and branches, respectively. Furthermore, 
both oils showed strong activity against Bacillus cereus (MIC 0.156 mg/mL).

Table 1 Antimicrobial activities of essential oils and their main chemical components

Specie
Plant 
part Strain

Assay 
methods

Minimum 
inhibitory 
concentration 
(MIC) (μg/mL) Reference

Endlicheria 
arenosa

Leaves Escherichia coli Micro- 
broth 
dilution 
method

20 da Silva 
et al. 
(2016)

Bacillus cereus 156
Twigs Bacillus cereus 156

Origanum 
majorana

Aerial 
parts

Staphylococcus 
epidermidis

Micro- 
broth 
dilution 
method

312 Paudel 
et al. 
(2022)Candida albicans 156

Cryptococcus 
neoformans

312

Eryngium 
campestre

Aerial 
parts

Bacillus cereus Dilution 
agar 
assays

250 Medbouhi 
et al. 
(2019)

Enterococcus faecalis 125
Staphylococcus aureus 125

Syzygium 
aromaticum

Flowers Staphylococcus aureus, 
Escherichia coli, Listeria 
monocytogenes, 
Salmonella typhimurium

Micro- 
broth 
dilution

304 Radünz 
et al. 
(2019)

Solanum 
nigrum

Seeds Proteus mirabilis Micro- 
broth 
dilution

200 Khaled 
et al. 
(2021)
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In vivo studies performed using the essential oil of Zingiber officinale report 
increased survival of mice infected with Klebsiella pneumonia. During the test, the 
animals treated with the oil received 300 mg/kg; this dosage was responsible for the 
decrease in the number of colony-forming units in the pleural fluid, where there was 
a significant reduction in the bacteremia of those infected. This points to the thera-
peutic efficiency of Z. officinale oil compared to polymyxin antibiotics (Vaz 
et al. 2022).

The antimicrobial properties of essential oils can help treat or kill microbial cell, 
such as Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella spp., 
Staphylococcus Coagulase-negative, Shigella sp., Enterococcus sp., and Escherichia 
coli, which are more resistant and are commonly acquired in the community and 
hospitals. Therefore, essential oils can be applied to control resistant pathogens 
(Tariq et al. 2019; Mangalagiri et al. 2021; Hou et al. 2022).

3.1.1  Essential Oils in Combination with Antibiotics

The combination of essential oils and antimicrobials can lead to an antagonistic, 
additive, or synergistic effect. The antagonistic effect occurs when there is a decrease 
in antimicrobial activity. The additive effect happens when two antimicrobial 
agents’ results equal the sum of the individual effects. On the other hand, synergism 
occurs when this combination potentiates and increases antimicrobial activity 
(Chouhan et al. 2017). Therefore, antimicrobial activity is determined by its chemi-
cal content, concentration, interactions between the main active components, and 
the vulnerability of microorganisms (Wani et al. 2021).

Chemical constituents such as carvacrol, cinnamaldehyde, cinnamic acid, euge-
nol, and thymol present in essential oils can synergistically affect antimicrobials. 
Studies show that essential oils synergize with beta-lactam antibiotics acting on the 
cell membrane. This effect was observed between penicillin and thymol, a constitu-
ent present in the oil of Origanum vulgare, against Escherichia coli (Rosato et al. 
2010; Langeveld et al. 2014).

The association of aminoglycoside antibiotics with Melaleuca alternifolia oil 
was analyzed. In combination with gentamicin, there was synergism against strains 
of Escherichia coli, Yersinia enterocolitica, Serratia marcescens, and Staphylococcus 
aureus. Furthermore, Melaleuca alternifolia oil, in conjunction with tobramycin 
exhibited synergism against E. coli and S. aureus. The interaction between beta- 
lactams and eugenol against E. coli strains is diversified. The combination of euge-
nol with penicillin showed a synergistic effect for unspecified strains. However, 
ampicillin, penicillin, or erythromycin in association with eugenol demonstrated an 
additive action against E. coli (Langeveld et al. 2014).
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3.2  Antiviral

The incidence of viral pathogens, such as herpes simplex virus (HSV), human 
immunodeficiency virus (HIV), swine flu (H1N1), and coronavirus (COVID-19), 
constantly affects society and causes irreversible damage to public health. Through 
their capsule proteins, viruses have an accelerated replication that favors entry and 
compromises the body’s immune defense (Ghosh et al. 2022).

Few antiviral drugs promote effective therapy due to resistance acquired by some 
viruses to drugs and difficulty in the treatment of viral diseases. Thus, essential oils 
are considered a new therapeutic option due to their phytochemical constituents, but 
studies are mainly focused on in vitro assays (Reichling et al. 2009; Strub et al. 2022).

The most suitable antiviral drugs for clinical practice are substances that act on 
specific stages of viral synthesis. As a result, they hinder specific procedures in the 
viral replication phase to minimize or prevent the virus’s progeny. Antivirals should 
be used in low concentrations without influencing the host cell mechanism and 
impairing viral dissemination. In this way, antivirals denature proteins or glycopro-
teins, thereby eliminating the ability to infect (Reichling et al. 2009). Essential oils 
are efficient in combating a wide variety of viruses, such as influenza virus, human 
immunodeficiency, herpes, avian influenza, and yellow fever, which are the ones 
that most lead to death in immunocompromised patients (Asif et al. 2020).

Among the essential oil compounds, illustrated in Fig. 2, with antiviral proper-
ties eugenol, carvacrol, thymol, 1,8-cineole, pulegone, piperitenone oxide, methyl 
salicylate, germacrone, α-thujone, terpinen-4-ol, terpinolene, α-terpineol, cinnam-
aldehyde, patchouli alcohol, p-cymene, and β-caryophyllene stand out in the litera-
ture (Reichling 2022).

The different polarity of the thymol-derived influences their activities against 
herpes simplex virus (Ma and Yao 2020). Moreover, cytopathogenic cell assays evi-
denced about 221 compounds of essential oils have activity against severe acute 
respiratory syndrome (SARS-CoV) (Wani et al. 2021).

In vitro assays were performed to determine the properties of essential oils and 
their isolated constituents against viral pathogens such as HSV, influenza, HIV, and 
COVID-19. Therefore, a study showed that the treatment with Syzygium aromati-
cum essential oil increased the primary and secondary humoral response and also 
showed antiviral activities against the herpes simplex virus, using a set of primary 
human cell systems, which simulates the environment of the herpes simplex virus 
and cellular biomarkers (Panda et al. 2022).

The essential oils of Cinnamomum cassia, Cymbopogon citratus, Citrus ber-
gamia, Thymus vulgaris, and Lavandula angustifolia have high antiviral activity 
against the type A influenza virus, while the oils extracted from Lippia spp. showed 
efficacy against the yellow fever virus at a concentration of 11.1  μg/mL (Wani 
et al. 2021).

In in vivo assay, animals treated with 1,8-cineole could prolong survival by five 
days after virus infection. In addition to these results, it was also reported that the 
constituent was able to reduce nuclear factor-κB by 60 and 120 mg/kg, linked to the 

Drug Development from Essential Oils: New Discoveries and Perspectives



86

Fig. 2 Essential oil constituents with antiviral properties

inflammatory response, in lung tissues of mice, proving the reduction of lung 
inflammation (Reichling 2022).

In addition, the use of essential oils in the form of steam can help in the treatment 
of the flu. A study evaluated the anti-influenza properties of liquid and vapor forms 
of various plant species’ essential oils. Oil vapors extracted from Citrus bergamia, 
Eucalyptus globulus, and their constituents, such as citronellol and eugenol, exhib-
ited rapid action against the influenza virus. On the other hand, in liquid form, oils 
from Cinnamomum zeylanicum, Citrus bergamia, Cymbopogon flexuosus, and 
Thymus vulgaris obtained better results against the virus, with 100% inhibitory 
activity at 3.1 μL/mL (Asif et al. 2020).

Moreover, in vivo studies of plants compounds such as decanoyl acetaldehyde, 
myrcene, lauric aldehyde, α-pinene, D-limonene, and methyl n-nonyl ketone 
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demonstrate positive effects against HIV infection by interfering with the virus 
envelope. Furthermore, carvacrol and its thymol isomer, compounds identified in 
Origanum vulgare oil, blocked viral entry into the host organism from the depletion 
of cholesterol in the HIV-1 envelope (Ghosh et al. 2022).

3.2.1  Activity Against COVID-19 Virus

Coronaviruses are covered with a lipid layer, that is, enveloped, the main target of 
the hosts is the animal kingdom. The viruses commonly cause milder, common 
colds are HCoV-HKU1, HCoV-229E, HCoV-NL63, and HCoV-OC43, while 
MERS-CoV and SARS-CoV can progress to a more severe respiratory infection 
that can lead to death (Strub et al. 2022; Ghosh et al. 2022).

COVID-19 virus is the seventh coronavirus known to infect humans, which trig-
gered the current pandemic as a severe respiratory syndrome. Combating this recent 
virus is a complex problem due to its high mutation rate, which forms more virulent 
strains. Current treatments with corticosteroids provide only symptomatic relief in 
mild cases and support of vital function in severe cases. Thus, existing vaccines 
remain viable to address this global health issue (Valussi et al. 2021; Strub et al. 
2022; Ghosh et al. 2022).

In this context, international efforts have been made to find an adequate drug 
therapy to suppress the virus. However, the effectiveness is still insufficient. To 
avoid indiscriminate use and collateral damage, bioactive phytochemicals have 
been considered to guarantee the safety of the treatment, being a viable alternative 
to synthetic drugs (Strub et al. 2022). In view of this, numerous essential oils are 
currently being studied as options for the symptomatic treatment of respiratory dis-
eases in adequate doses; they can be used orally, inhaled, or topically due to their 
therapeutic effects on the respiratory system described in the literature (Valussi 
et al. 2021).

The viral protease that acts in the replication process of SARS CoV-2 is the main 
therapeutic target of phytochemical compounds. In recent studies, Eucalyptus glob-
ulus, Eucalyptus jensenii, Origanum vulgare, and Allium sativum oils have been 
reported to be effective in combating COVID-19 (Reichling 2022). Furthermore, 
Eucalyptus spp. essential oil can expand the ciliary performance of human nasal 
epithelial cells, which enhances the natural protections of the upper airways. On the 
other hand, the monoterpenes eucalyptol (1,8-cineole) and menthol are the two 
components most analyzed in oils (Valussi et al. 2021). So, these oils have been 
used in treating respiratory disorders and have shown positive results (Panikar 
et al. 2021).
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3.3  Anti-Inflammatory

The inflammation is part of innate immunity acting in response to the pathogenic 
invasion, infection, tissue injury, and other external agents. The inflammatory pro-
cess includes increased blood flow, endothelial cell permeability, immune cell 
influx, and release of inflammatory mediators, in addition to the action of enzymes, 
such as oxygenases, nitric oxide synthases, and peroxidases that will affect tissue 
function and structure (Miguel 2010; Korinek et al. 2021; Pandur et al. 2021).

Neutrophils constitute the body’s first line of recognition and defense, the most 
abundant and essential innate immune cells at the beginning of the inflammatory 
process since they activate the other immune system cells and eliminate invading 
microorganisms. While monocytes differentiate into M1 with proinflammatory and 
phagocytic activity, or M2 stimulating proliferation and tissue repair. Acute inflam-
mation can evolve into chronic inflammation, when not properly cured, which con-
tributes to the emergence of other diseases, such as autoimmune, pulmonary, 
neurodegenerative and cancerous diseases (Miguel 2010; Korinek et  al. 2021; 
Pandur et al. 2021).

Studies show that some essential oils have anti-inflammatory activity. Melaleuca 
alternifolia and Lavandula angustifolia oils have been reported to have immuno-
modulatory activity, which is related to inflammatory processes. Therefore, they 
may be a potential alternative treating of numerous infectious or immunological 
diseases (Sandner et al. 2020; Pandur et al. 2021). Moreover, Sandner et al. (2020) 
reported that the essential oils of Eucalyptus globulus, Melaleuca alternifolia, 
Lavandula angustifolia, and Syzygium aromaticum promoted the reduction of cyto-
kines, such as interleukins (IL-1α, IL-1β, IL-3, IL-4, IL-5, IL-6, IL-8, IL-10, IL-13), 
tumor necrosis factor (TNFα), nitric oxide, and interferon (IFNγ), measured in acti-
vated monocytes and macrophages.

In vitro assays using myristicin, a phenylpropanoid present in the essential oil of 
Myristica fragrans, evaluated the anti-inflammatory activity of this constituent in 
mouse macrophages stimulated by double-stranded RNA.  Thus, it was observed 
that myristicin stopped the production of calcium, nitric oxide, interleukins, inter-
feron- 10 inducible protein, monocyte chemotactic protein, granulocyte-macrophage 
colony stimulating factor, macrophage inflammatory proteins, and leukemia inhibi-
tory factor, all directly related to inflammation. Therefore, these results corroborate 
the anti-inflammatory action of the essential oil (de Cássia da Silveira E Sá et al. 
2014). In addition, the in vitro anti-inflammatory activities of Hyssopus officinalis 
oil were also evaluated, demonstrating an inhibitory effect on the activity of cyclo-
oxygenase enzymes (COX-1 and -2) at a concentration of 20  μg/mL (Mićović 
et al. 2022).

The in vivo study performed by (Wong et al. 2022) demonstrated that Houttuynia 
cordata essential oil reduced edema growth in mice. During the analysis, 66 μg of 
the aerosol formulation developed with the oil were applied. This average dose 
showed a 66.6% reduction in ear edema, presenting an inhibitory effect with perito-
neal capillary permeability.

G. B. Pinto et al.



89

Another research carried out in mice with the essential oils of Boswellia serrata, 
Commiphora myrrha, Aucklandia costus, Matricaria chamomilla, Jasminum sam-
bac, and Syzygium aromaticum evaluated the inflammatory responses through the 
inhibition of the activation of cyclooxygenase 2 (COX-2), tumor necrosis factor-α 
(TNF-α), interleukin-6 (IL-6), and nuclear factor-κB (NF-κB) revealed that 
Commiphora myrrha, A. costus, and M. chamomilla oils showed better anti- 
inflammatory activity compared to commercial anti-inflammatory drugs (ibupro-
fen) (Zhang et al. 2020).

In another assay carried out in mice, it was observed that Hyptis crenata oil, rich 
in 1,8-cineol, camphor, α-pinene, and β-pinene, showed significant anti- inflammatory 
activity, with peripheral antinociceptive action and without central antinociceptive 
action. Abdominal writhing decreased at 300  mg/kg (44.4%) and 100  mg/kg 
(79.5%). While for ear edema, the oil showed an inhibitory effect in all doses tested, 
but at a dose of 30 mg/kg, the best result was shown with 64% of inhibition. Thus, 
these results show a real perspective on the use of H. crenata oil in the development 
of herbal product (de Lima et al. 2022).

Furthermore, the isolated compounds safrole, dillapiole, and dihydrodylapiol, 
present in Piper aduncum oil, significantly reduced paw edema, exhibiting anti- 
inflammatory action. Since dillapiol and dihydrodilapiol caused edema suppression, 
while safrole had the lowest inhibitory activity than the positive control. Constituents 
such as eugenol, o-cresol, and guaiacol from Croton geayi oil, when applied topi-
cally, inhibited the formation of edema in mice at doses of 0.2 and 0.5 mg per site 
for 15 minutes, or 1.0 and 2 0.0 mg for 60 minutes after oil application (de Cássia 
da Silveira E Sá et al. 2014).

3.4  Antioxidant

Antioxidants are substances that react with radicals or mitigate oxidative stress 
caused by reactive oxygen species. Many chemical assays are developed to identify 
the antioxidant capacity of isolated phytochemicals or natural extracts based on the 
reaction of this potential with a radical, such as 2,2-diphenyl-1-picrylhydrazyl 
(DPPH) or 2,2′-azino-bis (3-ethylbenzothiazoline)-6-sulfonic acid (ABTS+); or 
nonradical oxidizing substances, such as Fe3+ ions in the iron reduction method 
(FRAP) (Amorati et al. 2013).

The DPPH in methanol is a stable free radical in its reduced form in the presence 
of radical scavengers as they supply hydrogen radicals or release electrons. While 
ABTS+ is obtained through 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid, 
in these methods, the antioxidant captures radicals causing a decrease in absor-
bance. On the other hand, FRAP comprises the formation of Fe2+ ions through the 
reduction of Fe3+ ions, detected in the 2,4,6-tripyridyl-s-triazine complex (TPTZ) 
and indicates the ability of antioxidant compounds to donate electrons and reduce 
the products oxidized in the process of lipid peroxidation (Locatelli et al. 2017).
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The inhibitory concentration (IC50) represents the necessary capacity of an anti-
oxidant to sequester by 50% the free radicals present in the DPPH or ABTS solution 
(Caldwell et al. 2012).

Synergistic, additive, and antagonistic interactions are parameters used to iden-
tify the type of antioxidant interaction, when there is a combination of two or more 
antioxidant agents, being verified from the antioxidant combination index (CI), in 
which CI greater than 1, given as antagonist; CI equal to 1, additive; and CI less than 
1, synergistic (Purkait et al. 2020).

A study evaluated the antioxidant capacity by the DPPH method of Syzygium 
aromaticum and Cinnamomum verum oils. S. aromaticum oil had the highest anti-
oxidant potential compared to C. verum, due to the higher concentration of the 
phenolic compound such as eugenol. On the other hand, in that same research, the 
combination of these oils resulted in an IC equal to 0.82, which indicates a syner-
gistic antioxidant activity (Purkait et al. 2020).

In the studies by Ge et al. (2019), ABTS and DPPH assays were used to evaluate 
the antioxidant activities of Camellia euphlebia, C. petelotii, and C. tunghinensis 
oils that presented IC50 in the ABTS method equal to 102.56, 198.34, and 321.7 μg/
mL, respectively. While the results for the DPPH assay were 42.8, 90.9, and 
164.8 μg/mL. In this sense, the essential oil of C. euphlebia showed greater effi-
ciency in eliminating radicals than other oils. Furthermore, C. tunghinensis exhib-
ited moderate antioxidant capacity due to the high concentration of hexanal.

Research has shown that Ocimum basilicum oil has a DPPH radical scavenging 
action with an IC50 of 11.23 μg/mL, which can be attributed to the high phenolic 
content in its composition. Furthermore, Kickxia aegyptiaca oil exhibited signifi-
cant antioxidant activity with IC50 of 30.48 mg/L (DPPH) and 35.01 mg/L (ABTS) 
(Hou et al. 2022).

Moreover, Jerônimo et al. (2021) evaluated the essential oils from the Brazilian 
Amazon, such as Psidium guineense, Psidium guajava, Myrcia sylvatica, Myrcia 
splendens, Eugenia stipitata, and Eugenia patrisii, and reported that these samples 
exhibited weak-to-moderate antioxidant activity, with rates of 11% and 5% to 
38.6% scavenging of DPPH radicals at a concentration of 10 mg/mL.

3.5  Anticancer

Cancer is a major health challenge worldwide, the second disease that kills the 
most, with approximately 17% of deaths. Recently, synthetic or semisynthetic anti-
cancer drugs have promoted numerous side effects, such as reduced white blood cell 
count, impaired immunity, bone marrow depression, alopecia, and weakness. 
Therefore, the anticancer activity of essential oils has been investigated to avoid 
drug resistance and adverse effects caused by antitumor drugs (Bayala et al. 2014; 
Nguyen et al. 2022; Alipanah et al. 2022).

Initial assays determined that the rate of mutation within cells could be driven by 
oxidative stress acting in a damaging manner to DNA. In this perspective, reactive 
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oxygen species contribute to tumor development by activating signaling pathways 
that promote stages of carcinogenesis, such as cell transformation, promotion, sur-
vival, proliferation, invasion, angiogenesis, and metastasis. In this way, the compo-
nents of essential oils can be efficient against cancer cells. Effects on oral, bone, 
breast, cervical, colon, kidney, liver, lung, ovarian, pancreas, prostate, and uterine 
cancers have been investigated. In addition, properties against glioblastoma, mela-
noma, and leukemia have also been reported (Bayala et al. 2014).

In this perspective, the oils of Eugenia spp. exhibited activity against colorectal, 
gastric, and melanoma cancer cell lines (da Costa et al. 2020c). Investigations on the 
essential oil of Cymbopogon flexuosus indicated the ability to imbalance of cell 
death (apoptosis) in human leukemia cells. Furthermore, the oil extracted from the 
leaves of Malus domestica, at 1000 μg/mL, caused an inhibition of the human acute 
monocytic leukemia cell. Moreover, Patrinia scabra root oil showed inhibitory 
activity on human ovarian tumor cells (Bayala et al. 2014).

Cymbopogon flexuosus oil and isointermedeol sesquiterpene promoted the inhi-
bition of human leukemia cell proliferation with IC50 values equal to 30 and 20 μg/
mL, respectively. Thus, the anticancer effect of Cymbopogon citratus oil and citral 
(neral + geranial) for cervical cancer cell lines was evaluated, citral oil and emulsion 
caused apoptosis by decreasing cell proliferation (Angelini et al. 2018). Furthermore, 
Eugenia uniflora oil and curzerene sesquiterpene displayed cytotoxic activity 
against lung, colon, stomach, and melanoma cancer cell lines. Thus, curzerene 
induced apoptosis at 5.0 μM and 10.0 μM compared to Doxorubicin, exhibiting a 
decrease in cell migration at 5.0  μM and 10.0  μM after 30  hours of treatment 
(Figueiredo et al. 2019).

In vivo studies, Cymbopogon citratus oil exhibited cytotoxicity against Chinese 
hamster ovarian cells (Bayala et al. 2014). Another assay evaluated the antitumor 
activity through the subcutaneous implantation of Curcuma zedoaria essential oil at 
doses of 2, 4, 12, 60, and 240 mg/kg in lung carcinoma cells of mice and it was 
concluded that the administration of the oil for 3 weeks caused a dose-dependent 
inhibition of tumor volume and a reduction in tumor weight (Chen et al. 2013).

To investigate the cytotoxic property against lung cancer of the essential oil of 
Origanum majorana, a therapy was performed in mice to evaluate lymph node 
metastasis using the xenograft model of cancer cells. The treatment dose of 400 mg/
kg/day was observed for 24 days, and the oil reduced the growth and occurrence of 
metastasis; after 24 days, 71% of mice were free of lymph node metastases (Arafat 
et al. 2022).

4  Toxicity

The drug development is a slow and costly process, and few products reach the 
market due to the high incidence of failure in the clinical trial phase due to low 
efficacy and high toxicity. In this perspective, the pharmacological and toxicologi-
cal properties of the constituents need to be analyzed carefully (Radulović et  al. 
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2013; Tomiotto-Pellissier et al. 2022). In this way, essential oils stand out for quickly 
crossing biological barriers to finally reach the circulatory system (Nair et al. 2022).

Due to the high absorption rate of essential oils and their lipophilic properties, 
the organism’s toxicity risk must be evaluated (Nair et al. 2022). The active con-
stituents interfere the toxicity of essential oils according to their chemical structure 
and concentration. In this way, research on toxicity enables an answer about its 
potentiating effects and its safe use (Herman and Herman 2015).

Systemic toxicity of essential oils can be considered low or moderate. Clinical 
studies in humans based on the topical use of Pinus sylvestris and Eucalyptus globu-
lus oils reported good tolerance when used by inhalation and topically (Reichling 
et al. 2009). An acute toxicity test in mice classified the association of essential oils 
from Croton argyrophyllus and C. tetradenius (1:1) as medium toxicity when 
administered intraperitoneally, so the combination from this route of administration 
should be careful. On the other hand, when used orally, it did not manifest toxicity, 
being safe in mammals (da Cruz et al. 2020).

Studies generally recognize that the oils of the Curcuma genus are safe due to 
their low irritability in mice. In rats, when administered orally, the average lethal 
dose (LD50) was greater than 5 g/kg. However, it is reported that despite not present-
ing acute toxicity or adverse reactions, Curcuma zedoaria oil should not be recom-
mended during pregnancy and breastfeeding, as it presented embryotoxicity in mice 
when administered intraperitoneally at 300 mg/kg and by intravaginally at doses of 
60 or 400 mg/kg/day in rabbits (Dosoky and Setzer 2018).

5  Incorporation of Essential Oils 
in Pharmaceutical Formulations

Nanotechnology is expanding, which can be defined as the use of matter in atomic 
area, supramolecular and molecular scale, providing viable forms of inclusion for 
compounds of natural origin with a lipid character in cosmetics and pharmaceutical 
products (Nahar et al. 2021).

Essential oils have volatile and fragile constituents, which limits their use due to 
enzymatic reactions and phenomena that interfere with their activities, which may 
increase toxicity. In this way, nanotechnology improves the distribution system of 
essential oils in the body, increasing their bioavailability, potency and enabling a 
good pharmacokinetic profile (Cimino et al. 2021).

According to the lipid formulations, nanoparticles, nanoencapsulation, and 
nanoemulsions stand out, with differences indicated in Fig. 3, as they present phar-
maceutical benefits such as ease of production, good solubility, and drug safety 
(Masiero et al. 2021).
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Fig. 3 Lipid dosage forms used with essential oils

5.1  Nanoparticles

Nanoparticles have 1 to 100 nanometers, which makes it possible to develop new 
treatment and diagnostic strategies, considered an innovation for pharmaceutical 
sciences, thus improving biological mechanisms (Nair et al. 2022). In this sense, 
nanoparticles have different forms that depend on the specific condition and are of 
great importance in combating many pathologies, playing a key role in biomedical 
applications (Rai et al. 2017). In this way, nanoparticles have the potential to protect 
essential oils from degradation, heat, ensuring greater stability, increasing the thera-
peutic effects and shelf life of the product (Nair et al. 2022).

Drug release mechanisms consist of three stages. The first stage involves the 
release of the active compound on the nanoparticle‘s surface. The second involves 
kinetic release through factors such as the dissolution medium, concentration gradi-
ent, and diffusion medium. The final stage involves degradation of nanoparticle 
components. In this perspective, nanoparticles are a revolutionary advance capable 
of expanding the stability of the drug, increasing the transport capacity, facilitating 
the different routes of administration, incorporating hydrophobic and hydrophilic 
compounds and the controlled release of the drug, bringing benefits to the bioavail-
ability and improving the nonadherence problem (Masiero et al. 2021).

Chitosan nanoparticles containing the essential oil of Elettaria cardamomum, 
proved to be effective and safe, with positive results for the absence of necrosis and 
hemolysis in mammalian cells. According to the authors, the oil-laden nanoparticles 
provided high solubility, chemical stability, decreased volatility, increased shelf life, 
and good antimicrobial action. In addition, studies on the essential oil of Mentha 
spicata have shown that its adsorption on the surface of hydroxyapatite nanoparti-
cles can improve the production of implants that reduce postoperative infections 
(Nair et al. 2022).
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5.2  Nanocapsules

Nanocapsules are encapsulation systems composed of an oil and aqueous phase 
core of approximately 115 nm, which protect the active compounds against photo-
degradation through a natural or synthetic polymeric membrane (Bilia et al. 2017).

Presenting an oily phase, the nanocapsule promotes the ideal transport for lipo-
philic molecules, such as essential oils, while enabling a controlled release of con-
stituents, with a regulated penetrability rate, from polymers and surfactants during 
formulation. In addition, it also reduces irritability and harmful effects due to bio-
compatibility with tissues and cells, being a system commonly applied topically and 
associated with semisolid systems, such as creams. Currently, research has success-
fully developed responsive nanocapsules capable of transporting essential oils (da 
Costa et al. 2020b; Deng et al. 2020; Oliveira et al. 2022; Gupta et al. 2022).

Kalita et al. (2017) evaluated the antibacterial activity of Cymbopogon flexuous 
essential oil nanoencapsulation with chloramphenicol and reported significant 
improvement in its action. The adequate particle size, low cytotoxicity, and sus-
tained release of the active compounds contributed to the bioavailability and thera-
peutic efficacy against bacterial resistance.

Furthermore, the literature reports that the nanoencapsulation with Origanum 
glandulosum oil showed a greater inhibitory capacity against human liver cancer 
cell line than the non-nanoencapsulated oil (Ali et al. 2020). Meanwhile, another 
study shows that different methods, such as nanoprecipitation, emulsion- 
coacervation, and polymer-coating can improve the pharmacokinetics of nanocap-
sules, allowing a better controlled release and contributing to the anticancer activity 
of the essential oil (Rahman et al. 2020).

5.3  Nanoemulsion

Nanoemulsions are colloidal dispersions with an average droplet size of less than 
200 nm, composed of a liquid phase and an oil phase, with a structure represented 
by an oil core surrounded by mono- or multilayers of a surfactant with the nonpolar 
tails oriented toward the hydrophobic core. The polar ends toward the hydrophilic 
medium allow the combination of two immiscible liquids, thereby reducing interfa-
cial tension (Pavoni et al. 2020).

Nanoemulsions are excellent carriers of lipophilic drugs as they increase drug 
absorption due to the high surface area and low energy demand to prepare them, in 
addition to providing controlled drug release (Barradas and de Holanda e Silva 
2021; Masiero et al. 2021).

The most used essential oil-based lipid nanocarriers are nanoemulsions due to 
their physicochemical stability, ability to reduce the hydrophobicity of oils, serve as 
protection against environmental degradation and early evaporation, and good 
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performance in in vitro and in vivo assays (Barradas and de Holanda e Silva 2021; 
Masiero et al. 2021).

Nanoemulsions containing essential oils from Foeniculum vulgare or Syzygium 
aromaticum could modulate the transdermal release of oils and skin retention. 
Specifically, the oil of Syzygium aromaticum associated with the surfactant Pluronic 
F68 caused an increase in retention and low skin permeation. While F. vulgare oil is 
associated with the emulsifying agent, Cremophor RH40 contributed to greater pen-
etration and retention in the skin (Barradas and de Holanda e Silva 2021).

Nanoemulsions with the antitumor agent mitomycin C, associated with essential 
oils of Zingiber officinale and Boswellia carteri, resulted in greater nuclear apop-
totic activity, relative to free mitomycin C, in cervical and breast cancer cells. 
Furthermore, it was reported that the Cymbopogon flexuosus oil nanoemulsion dem-
onstrated high antimicrobial activity against Candida albicans, Cryptococcus gru-
bii, Pseudomonas aeruginosa, and Staphylococcus aureus when compared to the 
free oil (Masiero et al. 2021). Furthermore, (de Moraes et al. 2018) evaluated the 
leishmanicidal activity of nanoemulsions of Copaifera sp. and Carapa guianensis 
in mice with promastigotes of Leishmania infantum and Leishmania amazonensis 
and concluded that treatment with nanoemulsions reduced the size of lesions caused 
by these pathogens with a decrease in parasites in the liver and spleen.

6  Standardization of Essential Oils: Influences of Biotic 
and Abiotical Factors

The composition and content of essential oils can be affected by biotic, abiotic, 
environmental, and genetic aspects (Kumar et al. 2021). Moreover, other factors can 
also influence constituents, such as adulteration and mislabeling. Therefore, the 
authenticity of essential oils must be ensured through standardized methods for 
their application in pharmaceutical industries (Ordoudi et al. 2022).

The oils can be influenced by environmental and genetic factors (da Costa et al. 
2020a). The collection period of Chamomilla recutita with and without weed was 
evaluated at the following times: 6 am, 12 am, and 6 pm. The results showed that the 
essential oil content was higher in chamomile flowers without grass compared to 
with grass. The highest oil content of C. recutita without grass was detected between 
12 and 18 hours. This increase may be related to the temperature and light intensity 
increase, which improves metabolic reactions by increasing the synthesis of second-
ary plant metabolites (Kumar et al. 2021).

The production of plant secondary metabolites can be altered by seasonality 
since the seasonality can modify the metabolic route leading to the synthesis of dif-
ferent compounds (de Castro et al. 2022). Psidium acutangulum oil was evaluated 
for the influence of climatic factors (humidity, sunlight, and precipitation) on its 
yield and composition, showing seasonal variability. Thus, a prior investigation 
must be carried out before its application (Santos et al. 2022). On the other hand, the 
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essential oil of Lippia alba showed geraniol as the predominant constituent with 
few quantitative variations during the seasonal study. However, environmental fac-
tors had little effect on chemical composition, suggesting that seasonal changes do 
not alter herbal biological activities (de Sousa Peixoto Barros et al. 2022).

As an adaptation mechanism, Eucalyptus species may change due to growth, 
development, morphology, and physiological functions due to environmental varia-
tions directly affecting the oil quantitatively and qualitatively. In addition, plant age 
also contributes to changes in chemical composition. Eucalyptus tereticornis sam-
pled at different ages reported that the 1,8-cineole content of the 25-year-old sample 
was higher than the 28-year-old sample (de Castro et al. 2022).

Thus, analysis of the chemical composition of essential oils is critical to ensure 
their safety (Pandey et al. 2020; Kumar et al. 2021). Moreover, it is essential to carry 
out phytochemical studies to control the quality of the oil, in addition to using the 
data obtained from the pharmacopeia and other studies as a reference (de Castro 
et al. 2022).

Therefore, essential oils have pharmacological properties with the potential for 
therapeutic use and the development of new drugs. In addition, they can be a useful 
tool for safe and effective therapy against various pathologies. However, further 
studies are needed to deepen the pharmacokinetic mechanisms and verify toxicity 
profiles and quality control of essential oils.
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Essential Oil-Derived Monoterpenes 
in Drug Discovery and Development

Thadiyan Parambil Ijinu, Bernard Prabha, Palpu Pushpangadan, 
and Varughese George

Abstract Essential oils are complex mixtures of plant secondary metabolites com-
posed mostly of terpenoids, aliphatic and aromatic hydrocarbons, and their deriva-
tives such as aldehydes, ketones, alcohols, and esters. They play important roles as 
defense compounds against microbes, herbivores, and other ecological stress fac-
tors according to their structural designs. Among the secondary metabolites, mono-
terpenes (C10) form the major group. Several reports have shown that both natural 
monoterpenes and their synthetic derivatives exhibit a wide range of biological 
activities. In this chapter, a review of the anti-inflammatory, analgesic, antitumor, 
anticonvulsant, cardioprotective, gastroprotective, wound-healing, antifungal, anti-
bacterial, and antiviral properties of different classes of monoterpenes is discussed.

Keywords Plant secondary metabolites · Essential oils · MEP pathway · MVA 
pathway · Monoterpenoids · Acyclic monoterpenes

1  Introduction

Essential oils are highly concentrated hydrophobic volatile oily liquids (secondary 
metabolites) responsible for the characteristic odor in aromatic plants. They can be 
synthesized by all plant organs, i.e., buds, flowers, leaves, stems, twigs, seeds, fruits, 
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roots, wood, or bark, and are stored in secretory cells, cavities, canals, epidermic 
cells, or glandular trichomes (Baby and George 2009; Chouhan et al. 2017). The 
chemical fingerprint of the essential oil varied in quality, quantity, and composition 
according to agroclimatic (climatic, seasonal, and geographical) conditions, stage of 
maturity, and the adaptive metabolism of plants (Angioni et al. 2006; Ahmed et al. 
2019). In plants, they function as important chemical mediators of antagonistic and 
mutualistic ecological interactions (Nunes et al. 2016) and are also involved in plant 
growth promotion, light harvesting, and photoprotection (Bhatla 2018). Apiaceae, 
Asteraceae, Clusiaceae, Cupressaceae, Fabaceae, Geraniaceae, Hypericaceae, 
Lamiaceae, Lauraceae, Liliaceae, Malvaceae, Myristicaceae, Myrtaceae, Oleaceae, 
Pinaceae, Poaceae, Rosaceae, Rutaceae, and Zingiberaceae are examples of essential 
oil-bearing plant families (Pragadheesh et al. 2020).

Terpenes or terpenoids or isoprenoids are structurally diverse and the most abun-
dant secondary metabolites (Pragadheesh et al. 2020). It comprises over 80,000 com-
pounds produced by plants, fungi, insects, marine organisms, and animals 
(Christianson 2017). Essential oils are complex mixtures of terpenes (terpenoids), 
aliphatic and aromatic hydrocarbons, and their derivatives such as aldehydes, 
ketones, alcohols, and esters. Terpenoids are classified according to the number of 
incorporated five-carbon isoprene molecules and are distinguished into hemiterpenes 
(C5), monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), sesterterpenes (C25), 
triterpenes (C30), and tertraterpenes (C40) (Baby and George 2009). Among these, 
monoterpenes are the major component of essential oils, followed by sesquiterpenes 
(Falleh et al. 2020). Diterpenes, triterpenes, and tetraterpenes with their oxygenated 
derivatives are also detected in small amounts (Stephane and Jules 2020; Masyita 
et al. 2022). In certain plant genera, phenylpropanoids are also found in the essential 
oil (Sadgrove et al. 2022), sometimes as the main component (e.g., cinnamaldehyde 
in Cinnamomum zeylanicum and eugenol in Syzygium aromaticum).

2  Biosynthesis of Monoterpenes

Monoterpenes are biosynthetically derived from two 5-carbon-base isoprene pre-
cursors, namely isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate 
(DMAPP), which are synthesized via either the methylerythritol 4-phosphate 
(MEP) or the mevalonate-dependent (MVA) pathways (Fig. 1). The MVA pathway 
operates in the cytosol and starts with the condensation of two molecules of acetyl- 
coenzyme A (CoA) to yield acetoacetyl-CoA, which undergoes another condensa-
tion to form 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA). With the help of an 
enzyme HMG-CoA reductase, HMG-CoA is reduced to (R)-mevalonate which is 
phosphorylated to get mevalonate-5-phosphate by mevalonate-5-kinase. The meva-
lonate-5-phosphate is again phosphorylated to yield mevalonate pyrophosphate by 
phosphomevalonate kinase. The resulting mevalonate pyrophosphate undergoes 
decarboxylation to get IPP by an enzyme called mevalonate pyrophosphate decar-
boxylate. The conversion of IPP to DMAPP is enabled by isopentyl pyrophosphate 
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Fig. 1 Monoterpene 
biosynthetic pathway

isomerase (Baser and Demirci 2007; Lange and Ahkami 2013; Zuzarte and Salgueiro 
2015; Haymond et al. 2014; Zebec et al. 2016).

The 2C-methyl-D-erythritol-4-phosphate (MEP) or non-mevalonate or deoxyx-
ylulose phosphate pathway starts off with condensation of D-glyceraldehyde-3- 
phosphate and pyruvate affording 1-deoxy-D-xylulose-5-phosphate (DXP). The 
next step is reductive isomerization of DXP to MEP by DXP reductoisomerase. 
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Then, coupling between MEP and cytidine triphosphate (CTP) is catalyzed by 
CDP-ME synthetase which produces methylerythritol cytidyl diphosphate 
(CDP-ME), which is phosphorylated to 4-diphosphocytidyl-2-C-methyl-D-
erythritol- 2-phosphate (CDP-MEP-2-phosphate). The CDP-MEP is cyclized by 
2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF) to 2-C-methyl-D-
erythritol2,4-cyclodiphosphate (MEc-PP), which further undergoes ring opening of 
the cyclic pyrophosphate followed by the C3-reductive dehydration to produce 
4-hydroxy-3-methyl-butenyl-1-diphosphate (HMBPP). Finally, the enzyme 
4-hydroxy-3-methylbut-2-enyl diphosphate reductase or isoprenoid synthesis H 
(IspH) converts (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) to 
both IPP and DMAPP. A head-to-tail condensation of IPP with DMAPP in the pres-
ence of prenyltransferase forms geranyl diphosphate or geranyl pyrophosphate 
(GPP, C10), the common precursor for monoterpenes (Baser and Demirci 2007; 
Lange and Ahkami 2013; Zuzarte and Salgueiro 2015; Haymond et al. 2014; Zebec 
et al. 2016).

3  Classification of Monoterpenes

Monoterpenes represent a major group of secondary metabolites. Monoterpenes 
comprises of two isoprene units (C10H16) and are found in plants, fungi, bacteria, 
etc. (Ninkuu et al. 2021). They are odoriferous and one of the major components in 
the essential oils. Monoterpene motif also containing heteroatoms such as oxygen 
or nitrogen are recognized as monoterpenoids (Volcho and Anikeev 2014). They 
occur as acyclic (e.g., geraniol, citral) and cyclic compounds, the cyclic compounds 
occurring as monocyclic (e.g., carvone, thymol), and bicyclic (e.g., camphor, thu-
jone). The bicyclic monoterpenes may be further divided into another three classes 
according to the size of the second ring. The first ring being cyclohexane in each 
class and the second ring may be three, four, or five membered (Waser and Rinner 
2016; Ninkuu et al. 2021).

3.1  Acyclic Monoterpenes

Acyclic monoterpenes are relatively few, unstable, highly volatile, and their oxy-
genated derivatives are widely distributed in nature. These are biogenetically derived 
from common precursor, geranyl pyrophosphate. For example, elimination of the 
pyrophosphate moiety from geranyl pyrophosphate leads to the formation of 
β-myrcene and ocimene and the hydrolysis of the phosphate groups give geraniol 
(trans-3,7-dimethyl-2,6-oktadien-1-ol). Moreover, oxidation, reduction, and rear-
rangement provide various alicyclic monoterpenes such as citral, citronellal, citro-
nellol, linalool, and many others (Fig. 2) (Wise and Croteau 1999; Bicas et al. 2009).
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Fig. 2 Some acyclic monoterpenes

3.2  Cyclic Monoterpenes

Cyclic monoterpenes are highly volatile secondary metabolites commonly used in 
pharmaceutical and cosmetic industry. They include limonene, menthol, camphor, 
and carvone. These are the active constituent of lemon oil, mint oil, camphor oil, 
and caraway oil. They are further subdivided into monocyclic such as menthane and 
bicyclic such as pinane, camphane, isocamphane, fenchane, carane, and thujane 
type. Monoterpenoids are biosynthetically derived from menthyl or α-terpinyl cat-
ion which undergo series of cyclizations, hydride shifts or Wagner–Meerwein rear-
rangements, deprotonation, and addition of a nucleophile enable the synthesis of a 
broad variety of mono- and bicyclic monoterpenes (Fig. 3) (Loza-Tavera 1999; de 
Carvalho and da Fonseca 2006; Degenhardt et al. 2009; Zebec et al. 2016).

3.2.1  Monocyclic Monoterpenes

Monocyclic monoterpenes are structural homologs of cyclohexane ring and are 
derived from dehydrogenation of methyl-isopropyl cyclohexane. Menthane is fun-
damental unit of monocyclic monoterpenes and exist in three isomeric forms: 
ortho-, meta-, and para-menthanes. Carvone from the leaves of Salvia karelinii (syn. 
Perovskia angustifolia), menthol from Mentha arvensis, thymol from Thymus pube-
scens, γ-terpinene from Cinnamomum longepaniculatum, and limonene from Citrus 
× limon (syn. Citrus × bergamia) are some of the examples of monocyclic mono-
terpenes (Fig. 4) (Loza-Tavera 1999; de Carvalho and da Fonseca 2006; Degenhardt 
et al. 2009; Zebec et al. 2016).

3.2.2  Bicyclic Monoterpenes

Bicyclic monoterpenes are more complex than monocyclic monoterpenes and com-
prises of two cyclic rings that are condensed together. Depending on the size of the 
second ring, bicyclic monoterpenes are further divided into three classes, the first 
being a six-membered cyclohexane moiety in each class while the second can be 
either a three (6 + 3; e.g., thujone, δ-3-carene), four (6 + 4; e.g., α-pinene, β-pinene), 
or five (6 + 5; e.g., borneol, camphor) membered rings. Thujane-type monoterpenes 
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Fig. 3 Different types of cyclic monoterpenes

Fig. 4 Some monocyclic monoterpenes

are unusual monoterpenes with a cyclopropane ring in a bicyclo[3.1.0] skeleton, 
which is formed from terpinen-4-yl cation. Carane-type also contain cyclopropane 
ring in a bicyclo [4.1.0] skeleton. Pinane monoterpenes are bicyclic [3.1.1] skeleton 
resulting from intramolecular rearrangement of the α-terpinyl cation. The bornane-, 
camphane-, and fenchane-type monoterpenes have [2.1.1] bicyclic skeleton formed 
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Fig. 5 Some bicyclic monoterpenes

from different cyclisation of the terpinyl cation (Fig.  5) (Loza-Tavera 1999; de 
Carvalho and da Fonseca 2006; Degenhardt et al. 2009; Zebec et al. 2016).

4  Bioactivity of Monoterpenes

Studies around the globe have shown that monoterpenes have diverse biological 
properties. In this chapter, we have discussed the anti-inflammatory (de Cássia da 
Silveira e Sá et al. 2013; Quintans et al. 2019), analgesic (Guimarães et al. 2013), 
antitumor (Sobral et al. 2014; Machado et al. 2022), anticonvulsant (Zhu et al. 2014; 
da Fonsêca et al. 2019), cardioprotective (Santos et al. 2011; de Andrade et al. 2017; 
Silva et  al. 2021), gastroprotective (Périco et  al. 2020), wound-healing (Barreto 
et  al. 2014), and antimicrobial (Baby and George 2009; Marchese et  al. 2017; 
Mahizan et  al. 2019) properties of various monoterpenes isolated from plants 
(Kozioł et al. 2014; Salakhutdinov et al. 2017; Zielińska-Błajet and Feder-Kubis 
2020; Yang et al. 2020).

4.1  Anti-inflammatory Activity

In an electrophysiological study of HEK293T epithelial cells, Ye et al. (2019) found 
that geraniol reversibly blocked Kv1.3 (voltage-gated potassium channel) currents 
in a voltage-dependent manner (half maximal inhibitory concentration [IC50] of 
490.50 1.04 M at +40 mV). Geraniol also inhibited the secretion of cytokines such 
as interleukin (IL)-2, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ by acti-
vated human T cells. In an imiquimod-induced psoriasis-like animal model, gera-
niol significantly reduced psoriasis area and severity index scores. Su et al. (2010) 
found that geraniol and citronellol inhibited nitric oxide (NO) and prostaglandin E2 
(PGE2) production in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. 
Katsukawa et al. (2011) found that geraniol and citronellol reduced LPS-induced 
cyclooxygenase (COX)-2 protein and messenger ribonucleic acid (mRNA) expres-
sion and activated peroxisome proliferator-activated receptor (PPAR)-α and PPARγ. 
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Limonene effectively inhibited LPS-induced NO, PGE2, and proinflammatory cyto-
kine production in RAW 264.7 macrophages (Yoon et al. 2010).

Paeoniflorin isolated from the dried rhizome of Paeonia lactiflora and its deriva-
tives such as 4-O-methyl paeoniflorin, 4-O-methylbenzoyl paeoniflorin inhibited 
the production of NO, IL-6, and TNF-α induced by LPS (Bi et al. 2017). 1,8-Cineole 
showed anti-inflammatory activity in various animal models and in in vitro studies 
(Juergens et al. 1998a, 1998b, 2003, 2004; Santos and Rao 2000; Santos et al. 2004; 
Bastos et al. 2011). A double-blind, placebo-controlled clinical trial on the effect of 
1,8-cineole evidenced a mucolytic and steroid-saving effect in bronchial asthma 
patients (Juergens et al. 2003). Juergens et al. (1998) found that l-menthol signifi-
cantly reduced the production of leukotriene B4 (LTB4), PGE2, and IL-1β in LPS- 
stimulated monocytes. El Mezayen et  al. (2006) found that administration of 
thymoquinone effectively reduced COX-2 protein expression in sensitized 
mouse lungs.

El Gazzar et al. (2006) found that thymoquinone treatment markedly decreased 
lung eosinophilia and the production of T-helper 2 (Th2) cytokines following stimu-
lation of lung cells with ovalbumin. Liu et al. (2011) found that borneol ameliorated 
oxygen glucose deprivation and reperfusion (OGD/R)-induced neuronal injury, 
nuclear condensation, intracellular free radical generation, and mitochondrial mem-
brane potential dissipation. Borneol inhibited the nuclear factor kappa B (NF-κB) 
p65 nuclear translocation induced by OGD/R, thereby reduced the release of proin-
flammatory cytokines. He et al. (2006) found that experimental rats given borneol 
had fewer intercellular adhesion molecule (ICAM)-1-positive vessels, IL-1β- 
positive cells, TNF-α-positive cells, and neutrophils, indicating anti-inflammatory 
potential. Bornyl acetate showed anti-inflammatory activities in various experimen-
tal models (Wu et al. 2004). Sousa et al. (2020) found that (S)-(+)-carvone (100μg/
ml) significantly decreased the expression of nitric oxide synthase (Nos)2 and IL-1β 
in murine macrophages and in a primary human chondrocyte model of 
osteoarthritis.

Riella et al. (2012) discovered that thymol (10, 30, and 100 mg/kg, i.p.) signifi-
cantly reduced edema, inhibited myeloperoxidase (MPO) activity, and decreased 
leukocyte influx in carrageenan-induced paw edema in rats. Sosa et al. (2005) found 
that carvacrol (0.1, 1, 10, 50, and 100μM) significantly inhibited the production of 
PGE2 catalyzed by COX-2  in in  vitro. Carvacrol inhibited LPS-induced COX-2 
mRNA in human macrophage-like U937 cells (Hotta et al. 2010). Silva et al. (2012) 
found that carvacrol significantly reduced paw edema induced by histamine, dex-
tran, and substance P by 46%, 35% (50 mg/kg), and 46% (100 mg/kg), respectively. 
Batista et al. (2010) found that (−)-linalool significantly reduced complete Freund’s 
adjuvant (CFA)-induced mechanical hypersensitivity and produced an effective 
reduction in CFA-induced paw edema. Peana et al. (2002) found that (−)-linalool, 
its racemate form, i.e., (±)-linalool, and linalyl acetate showed anti-inflammatory 
activity in a carrageenan-induced edema rat model. Gomes et al. (2017) found that 
myrtenol (12.5, 25, and 50  mg/kg, p.o.) reduced oxidative stress and neutrophil 
migration in a CFA-induced arthritis model and carrageenan-induced peritonitis 
in rats.
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Ramos et al. (2020) found the anti-edematogenic and anti-inflammatory poten-
tial of isopulegol in rodent models. Isopulegol significantly reduced inflammatory 
activity by decreasing albumin extravasation, leukocyte migration, and MPO con-
centration, as well as IL-1β and TNF-α exudate levels. Siqueira et al. (2016) discov-
ered that α-phellandrene (50, 100, and 200  mg/kg, p.o.) inhibited neutrophil 
migration, proinflammatory cytokine production (TNF-α and IL-6), and mast cell 
degranulation. Rufino et al. (2015) found that myrcene (IC50 = 37.3μg/ml) had sig-
nificant anti-inflammatory activity in human chondrocytes by inhibiting IL-1β- 
induced NF-κB, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein 
kinase (MAPK) activation, and the expression of induced nitric oxide synthase.

D-Limonene increased the survival of lymphoma-bearing BALB/c mice and 
delayed the hypersensitivity reaction to 2,4-dinitrofluorobenzene (Del Toro-Arreola 
et  al. 2005). Hydroxydihydrocarvone obtained by hydration of the natural com-
pound (R)-(−)-carvone exhibits anti-inflammatory activity in a carrageenan-induced 
paw edema rodent model (de Sousa et al. 2010a). Ramalho et al. (2015) found that 
γ-terpinene significantly alleviated inflammatory parameters such as edema and 
proinflammatory cytokine production, as well as cell migration in different Swiss 
mouse models of inflammation. Ozbek (2007) found that fenchone at a dose of 
0.20 ml/kg exerted significant anti-inflammatory activity (70.6%) in a carrageenan- 
induced right hind-paw edema rat model. (S)-cis-Verbenol reduced the cerebral 
ischemic injury caused by a 1.5-hour middle cerebral artery occlusion followed by 
24-hour reperfusion (Choi et al. 2010). The structures of the abovementioned mono-
terpenes with anti-inflammatory activity are given in Fig. 6.

4.2  Analgesic Activity

Pereira et al. (2022) found that limonene significantly reduced acute and chronic 
corneal nociception and formalin-induced temporomandibular joint nociception. 
Limonene decreased the TNF-α levels, downregulated the NF-κB and p38 MAPK 
signaling pathways and reduced protein kinase C (PKC) substrate phosphorylation 
and cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) 
immunocontent. Kaimoto et al. (2016) found that limonene significantly reduced 
the hydrogen peroxide-induced nociceptive behaviors through transient receptor 
potential ankyrin (TRPA)-1 activation tested in a mouse model. de Santana et al. 
2015 discovered that p-cymene (25, 50, and 100 mg/kg) significantly reduced the 
hyperalgesia induced by carrageenan, TNF-α, dopamine, and PGE2, implying a pos-
sible opioid system involvement and modulation of some proinflammatory cyto-
kines. p-Cymene at a dose range of 25 to 100  mg/kg showed significant 
antinociceptive activity in male Swiss mice demonstrated in the tail flick test and 
showed an increase in dose-dependent reaction time (de Santana et  al. 2015). 
Quintans-Júnior et al. (2013) analyzed the comparative antinociceptive activity of 
p-cymene, (+)-camphene, and geranyl acetate (50, 100, and 200 mg/kg, i.p.) in male 
Swiss mice tested in the acetic acid-induced writhing and formalin models. They 
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Fig. 6 Some monoterpenes with anti-inflammatory activity

discovered that p-cymene had a strong antinociceptive effect at all doses, while 
(+)-camphene and geranylacetate (200  mg/kg) had a moderate effect. They also 
found that p-cymene at doses of 25, 50, and 100 mg/kg, i.p., demonstrated orofacial 
antinociceptive activity in Swiss mice. Bonjardim et  al. (2012) reported that 
p-cymene at doses of 50 and 100 mg/kg, i.p., significantly decreased the number of 
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writhes in the acetic acid-induced writhing model and licking time in the first and 
second phases of the formalin test.

Intraplantar injection of (±)-linalool (5 and 10μg/paw) in male ddY-strain mice 
effectively and dose-dependently suppressed behavioral responses to paclitaxel- 
induced mechanical allodynia and hyperalgesia (Katsuyama et al. 2012). Tashiro 
et al. (2016) found that linalool exhibited antinociceptive activity in vapor exposure 
mediated by hypothalamic orexin neurons. Dal Bó et  al. (2013) discovered that 
eugenol (3–300 mg/kg, p.o.) had antinociceptive action via opioid receptor involve-
ment, glutamatergic receptor modulation, and TNF-α inhibition. Ferland et  al. 
(2012) found that eugenol (40  mg/kg, p.o.) showed antinociceptive activity in 
monoiodoacetate-induced osteoarthritis in Sprague-Dawley rats. Wang et al. (2015) 
found that methyl eugenol dose- and voltage-dependently inhibited the peripheral 
nerve Nav1.7 (voltage-gated sodium channel) currents in the whole-cell patch- 
clamp method (IC50 of 295μmol/l at a − 100 mV holding potential). Pan et al. (2012) 
found that menthol (50 and 100 mg/kg, i.p.) suppressed ipsilateral and contralateral 
pain hypersensitivity induced by complete Freund’s adjuvant reduction and reduced 
nociceptive activity up on formalin injection in both phases tested in cluster of dif-
ferentiation (CD)-1 male mice.

Citronellal at doses of 50, 100, and 200  mg/kg administered intravenously 
resulted in dose-dependent significant reduction in nociception in various models 
(Quintans-Júnior et al. 2011a). Citronellal reduced nociception induced by TNF-α 
and carrageenan at doses of 25, 50, and 100 mg/kg, i.p. (de Santana et al. 2013). 
Citronellol at doses of 25, 50, and 100 mg/kg i.p. showed a significant reduction in 
nociception in acetic acid-induced writhing, formalin-induced pain, the hot plate 
test, and orofacial nociception models. Citronellol also reduced neutrophil infiltra-
tion and TNF-α levels in carrageenan-induced pleurisy exudates (Brito et al. 2012, 
2013, 2015). α-Phellandrene at doses ranging from 3.125 to 50 mg/kg p.o., as well 
as citronellyl acetate at 100 and 200 mg/kg, significantly reduced nociception in 
chemically induced acute pain models in mice (Lima et al. 2012; Rios et al. 2013). 
Quintans-Júnior et al. (2011b) discovered that α-terpineol (25, 50, and 100 mg/kg, 
i.p.) reduced nociception significantly in all doses tested in chemically induced 
mouse models. Safaripour et al. (2018) discovered that α-terpineol (40 and 80 mg/
kg) exerted antinociceptive activity in mice via the L-arginine/ S-nitroso-N- 
acetylpenicillamine (SNAP)/NO/cyclic guanosine monophosphate (cGMP)/ade-
nosine triphosphatase-sensitive potassium (KATP) channel pathway. Bilbrey et al. 
(2022) found the analgesic potential of α-terpineol, β-caryophyllene, and γ-terpinene 
in the mouse chronic constriction injury model of neuropathic pain. Hernandez- 
Leon et  al. (2020) discovered that β-caryophyllene (3.16 to 10 mg/kg) exhibited 
significant analgesic properties in various rodent models via receptors such as opi-
oids, benzodiazepines, and serotonin 1A receptor, as well as nitric oxide.

Gonçalves et al. (2008, 2013) found the antinociceptive action of carvone in both 
the central and peripheral nervous systems. They reported that carvone increased 
cytosolic calcium levels in dorsal root ganglion (DRG) neurons by activating tran-
sient receptor potential vanilloid (TRPV)1 channels. Xu et  al. (2015) found that 
thymol increased the frequency of spontaneous excitatory postsynaptic current 
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through activation of TRPV1 channels and produced membrane hyperpolarization 
without TRP activation in substantia gelatinosa neurons of adult rat spinal cord 
slices. Parvardeh et al. (2018) reported the central and peripheral antinociceptive 
activity of thymoquinone through the L-arginine/NO/cGMP/KATP channel path-
way. de Sousa et al. (2011a) found that (R)-(+)-pulegone (31.3, 62.5, and 125 mg/
kg, i.p.) showed potent antinociceptive activity in formalin and hot plate test mouse 
models. Guimarães et al. (2012a, b) found that carvacrol, at a dose range of 25 to 
100 mg/kg i.p., markedly reduced the nociception in a male Swiss mouse model 
induced with carrageenan, formalin, capsaicin, and glutamate. Luo et  al. (2014) 
reported that carvacrol treatment significantly increased the secretion of L-glutamate 
from nerve terminals by activating TRPA1 and produced membrane hyperpolariza-
tion in adult rat spinal cord slices.

Citral (25, 100, and 300  mg/kg, p.o.) showed potent antinociceptive activity 
against acute and chronic nociceptive mouse models and found that citral has the 
potential for the treatment of inflammatory and neuropathic pain (Nishijima et al. 
2014). Almeida et al. (2013) found that borneol (5, 25, and 50 mg/kg, i.p.) exhibits 
significant central and peripheral antinociceptive and anti-inflammatory properties. 
In another study conducted by Jiang et  al. (2015), it was found that (+)-borneol 
(125, 250, and 500 mg/kg, p.o. or i.t.) showed antihyperalgesic activity on neuro-
pathic and inflammatory pain in different animal models. Borneol dose-dependently 
decreased mechanical hypersensitivity in both segmental spinal nerve ligation- 
induced neuropathic pain and complete Freund’s adjuvant-induced chronic inflam-
matory pain models. Silva et al. (2014) reported that myrtenol (25–75 mg/kg, i.p.) 
showed antinociceptive and anti-inflammatory activities in mouse models. Myrtenol 
inhibited the cell migration and signaling pathways of receptors involved in the 
transmission of pain. The structures of the abovementioned monoterpenes with 
analgesic activity are given in Fig. 7.

4.3  Antitumor Activity

Geraniol is a well-known acyclic monoterpene alcohol found in many essential oil- 
bearing plants. Studies have shown that geraniol has both therapeutic and prophy-
lactic effects on different types of cancer, such as lung cancer (Galle et al. 2014), 
colon cancer (Carnesecchi et al. 2001), prostate cancer (Kim et al. 2011), pancreatic 
cancer (Burke et al. 1997), and liver cancer (Ong et al. 2006). In the breast cancer 
cell line MCF-7, geraniol inhibits tumor cell growth by blocking the G1 phase of the 
cell cycle (Duncan et al. 2004). Geraniol reduced tumor weight and volume in mice 
bearing tumors that formed from human pulmonary adenocarcinoma A549 cells 
(Galle et al. 2014). In Caco-2 cells (a human colon cancer cell line, geraniol at a 
dose of 400μM caused a 70% inhibition of cell growth (Carnesecchi et al. 2001).

Perillyl alcohol showed significant broad-spectrum antitumor activity in various 
cancer cell lines (Chen et al. 2015; Yang et al. 2020). Treatment with perillyl alcohol 
at a dose of 1 to 2 g/kg in rats significantly reduced the incidence and multiplicity 
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Fig. 7 Some monoterpenes with analgesic activity

of colonic invasive adenocarcinoma induced by azomethane injection (Chen et al. 
2015). 4-(Methyl-nitrosamino)-1-(3-pyridyl)-1-butanone-induced lung cancer in 
mice was significantly inhibited by perillyl alcohol at a dose of 75 mg/kg (i.p.), 
three times per week (Lantry et al. 1997; Chen et al. 2015). Perillyl alcohol showed 
cytotoxic effects in OVCAR-8 (human ovarian epithelial cancer cell line), HCT-116 
(human colon cancer cell line), and SF-295 (human glioblastoma cell line) cell 
lines, with a 90.92%–95.82% range (Andrade et al. 2015). Andrade et al. (2016) 
found that perillyl alcohol showed 35.3% and 45.4% inhibition of tumor growth in 
mice with a dose of 100 and 200 mg/kg, respectively. Oturanel et al. (2017) reported 
that perillyl alcohol showed cytotoxicity against human liver cancer HepG2 cells 
with an IC50 of 409.2μg/ml.

Hou et al. (2022) found that linalool inhibits colorectal cancer progression by 
modulating the protein kinase B (Akt)/mammalian target of rapamycin (mTOR) 
and Janus kinase (JAK)2/signal transducer and activator of transcription (STAT)3 
pathways. Linalool (2 mM) and 1,8-cineole (8 mM) inhibited cell proliferation by 

Essential Oil-Derived Monoterpenes in Drug Discovery and Development



116

inducing G0/G1 and/or G2/M cell cycle arrest in lung adenocarcinoma A549 cells 
without affecting the viability of normal lung WI-38 cells (Rodenak-Kladniew et al. 
2020). Rodenak-Kladniew et al. (2020) found that 1,8-cineole inhibited cell prolif-
eration by promoting G0/G1 arrest in HepG2 cells through oxidative stress and 
MAPK, adenosine monophosphate-activated protein kinase (AMPK), and Akt/
mTOR pathways. Linalyl acetate, α-terpineol, and camphor inhibited the growth of 
human colon cancer cell lines (HCT-116 p53+/+ and p53−/−) while being nontoxic 
to normal human intestinal FHs 74 Int cells (Itani et al. 2008). Hassan et al. (2010) 
reported that α-terpineol inhibits tumor cell growth by acting on the NF-κB. Allo- 
ocimene showed a significant cytotoxic effect in mouse P388 leukemia cells 
(Okamura et al. 1993). Menthol showed a cytotoxic effect in human gastric cancer 
cells (SNU-5) by inhibiting the expression of topoisomerases I, IIα, and IIβ and 
promoting the expression of NF-κB (Lin et al. 2005). Wang et al. (2012) found that 
menthol inhibited the proliferation and motility of prostate cancer DU145 cells. Li 
et al. (2009) and Okamoto et al. (2012) found that menthol induced cell death via 
the transient receptor potential melastatin subtype (TRPM)8 channel in human 
bladder cancer and oral squamous carcinoma cells.

Jo et al. (2021) found that α-pinene treatment caused cytotoxicity in natural killer 
cells (NK-92MI) cells via the extracellular signal-regulated kinase (ERK)/Akt path-
way. Furthermore, in CT-26 colon cancer cells allografted into Bagg albino 
(BALB/c) mice, α-pinene inhibited tumor growth. Matsumura et al. (2001) reported 
that 0.32 𝜇m/ml γ-thujaplicin inhibited human gastric cancer KATO-III and mice 
Ehrlich’s ascites adenocarcinoma cell lines by 85% and 91%, respectively. Su et al. 
(2013) found that borneol potentiates selenocysteine-induced apoptosis in human 
hepatocellular carcinoma cells by enhancement of cellular uptake and activation of 
reactive oxygen species (ROS)-mediated DNA damage. Ascaridole showed antitu-
mor activity in a Swiss mouse tumor model with sarcoma 180 cells with an inhibi-
tion percentage of 33.9% at a dose of 10 mg/kg (Bezerra et al. 2009). Horváthová 
et al. (2006, 2007) demonstrated that carvacrol showed cytotoxicity against K562, 
HepG2, and Caco2 cells and significantly reduced the hydrogen peroxide-induced 
DNA damage. Slamenová et al. (2007) also found the cytotoxic and DNA-protective 
effects of carvacrol in mammalian cells. Jaafari et al. (2007) found that carvacrol 
dose-dependently inhibited P815 mastocytoma cell growth. Arunasree (2010) found 
that carvacrol dose-dependently inhibited the growth of MDA-MB-231 human met-
astatic breast cancer cells. Jaafari et al. (2009) demonstrated that carvacrol induced 
apoptosis in the P815 tumor cell line via cell cycle arrest at the S phase. Carvacrol 
showed inhibition in myoblast cells even after activation of a mutated N-ras onco-
gene (Zeytinoglu et al. 2003).

Paramasivam et al. (2012) reported that thymol exhibited cytotoxicity in mouse 
neuroblastoma (Neuro-2a) cells with an IC50 value of 88.5 𝜇g/ml. Yin et al. (2012) 
found that thymol induced cell cycle arrest at the G0/G1 phase in the human hepa-
tocellular carcinoma cell line HepG2. Deb et al. (2011) found that thymol exhibited 
an apoptotic effect in HL-60 cells via caspase-dependent and caspase-independent 
pathways. Thymohydroquinone exhibited antitumor activity in murine tumor mod-
els with an inhibition rate of 52% (Ivankovic et  al. 2006). Johnson et  al. (2006) 
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studied the comparative cytotoxic effect of thymoquinone and thymohydroquinone 
in human prostate cancer PC-3 cells and found that there is a 1.7-fold decrease in 
the cytotoxicity of thymohydroquinone when compared to thymoquinone. Cecarini 
et  al. (2010) found that thymoquinone induced time-dependent selective protea-
some inhibition in glioblastoma cells, thereby inducing apoptosis in cancer cells. 
When treated against nonsmall cell lung cancer (NSCLC) and small cell lung can-
cer (SCLC) cell lines, Jafri et  al. (2010) found that thymoquinone alone and in 
combination with cisplatin inhibited cell proliferation (90%) and induced apoptosis. 
Gali-Muhtasib et al. (2008) found that thymoquinone induced the inactivation of the 
stress response pathway sensor checkpoint kinase (CHEK)1 and contributed to 
apoptosis in colorectal cancer cells. Roepke et al. (2007) found that thymoquinone 
showed p53-independent apoptosis in human osteosarcoma cells. Peng et al. (2013) 
found that thymoquinone exhibited an antitumor and antiangiogenesis effect on 
osteosarcoma through the NF-ĸB pathway. Yazan et al. (2009) discovered that thy-
moquinone was toxic to HeLa cells in a dose- and time-dependent manner, inducing 
apoptosis through a p53-dependent pathway. Thymoquinone induced apoptosis in 
Hep-2 human laryngeal carcinoma cells by depleting glutathione (GSH) and acti-
vating caspase 3 (Rooney and Ryan 2005). Thymoquinone activated caspase-3, 
causing apoptosis in p53-null HL-60 cancer cells (El-Mahdy et al. 2005). Rajput 
et al. (2013) found that thymoquinone promoted G1 arrest through the inhibition of 
cyclin D1 and induced apoptosis in breast cancer cells.

Bai and Tang (2020) found that myrcene (0.25, 0.50, and 1.0μg/ml) mediates the 
anticancer activity of A549 lung adenocarcinoma cells through the activation of the 
apoptosis mechanism via mitochondria-mediated cell death signaling and induction 
of oxidative stress. Myrcene showed a cytotoxic effect against HeLa (cervical can-
cer cells), A-549 (lung carcinoma epithelial cells), HT-29 (colorectal adenocarci-
noma cells), and Vero (cells derived from the kidney of an African green monkey) 
cell lines (Silva et al. 2007). Sobrerol exhibited anticarcinogenic activity during the 
initiation phase of 7, 12-dimethylbenz[a]anthracene (DMBA)-induced carcinogen-
esis (Elegbede et al. 1993). Kawamori et al. (1996) found the apoptotic effect of 
D-limonene in human leukemia HL-60 cells is via the activation of caspase-8. Chen 
et al. (1998) found that limonene showed anticancer activity via the inhibition of the 
membrane association of p21ras protein and increased gap junction intercellular 
communication. Haag et al. (1992) and Chander et al. (1994) found that limonene 
induced regression of mammary carcinomas. Limonene in combination with 
4-hydroxyandrostenedione showed greater regression of the rat mammary tumor 
(83.3%). Elegbede and Gould (2002) found that limonene significantly inhibited 
aflatoxin-DNA adduct formation in hepatocytes. Kawamori et al. (1996) found that 
D-limonene inhibited the development of colonic aberrant crypt foci induced by 
azoxymethane in F344 rats. Zheng et al. (1994) found that p-mentha-2,8-dien-1-ol 
and p-mentha-8(9)-en-1,2-diol inhibited benzo[α]pyrene-induced carcinogenesis in 
mice. The structures of the abovementioned monoterpenes with antitumor activity 
are given in Fig. 8.
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Fig. 8 Some monoterpenes with antitumor activity

4.4  Anticonvulsant Activity

Quintans-Júnior et al. (2010a) and Viana et al. (2000) reported that treatment with 
400  mg/kg citral orally increases the latency and inhibits convulsions by 40% 
induced by pentylenetetrazol (PTZ) and maximal electroshock (MES). They have 
established the agonist effect of citral on the gamma-aminobutyric acid type A 
(GABAA) receptor. Citronellal at doses of 100, 200, and 400 mg/kg increased the 
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latency time, inhibited convulsions, and decreased mortality in mouse seizure mod-
els induced by injecting PTZ and picrotoxin (PIC) (Melo et al. 2011a). The anticon-
vulsive effect of citronellal is due to its GABAA agonist action (Melo et al. 2011b), 
glutamatergic receptor-modulating effect (Santos et al. 2016), blockage of voltage- 
gated sodium ion (Na+) channels (Quintans-Júnior et al. 2010b), activation of the 
potassium ion (K+) channel (de Santana et al. 2013), and attenuation of inflamma-
tion and oxidative stress (Melo et al. 2011b). The anticonvulsant effect of (+)-citro-
nellol at different doses (100, 200, and 400 mg/kg, i.p.) was evaluated by de Sousa 
et  al. (2006) in convulsion models, and it was found that the time of latency 
increased. Aoshima and Hamamoto (1999) and Kessler et  al. (2014) showed the 
effect of citronellol on the GABAA receptor. Ziemba et al. (2015) found that citro-
nellol acts as a blocker of the 5-HT3A receptor.

Geraniol at a dose of 200 mg/kg (i.p.) decreases seizure signs by 50% and mor-
tality by 100% in the PTZ-induced seizure model (Lins et al. 2014). Ziemba et al. 
(2015) and Medeiros et al. (2018) reported that geraniol has the ability to block the 
5-hydroxytryptamine receptor 3A (5-HT3A) receptor. (S)-(+)-Linalool and (R)-(−)-
linalool enantiomers, as well as the racemic mixture (±)-linalool at doses of 200 and 
300 mg/kg i.p., showed anticonvulsive effects in different seizure models (de Sousa 
et al. 2010a, b). Elisabetsky et al. (1999) found that linalool reduces convulsions 
induced by N-methyl-D-aspartate (NMDA) and quinolinic acid via competitive 
antagonism of the L-[3H] glutamate receptor. Leal-Cardoso et  al. (2010) and 
Venâncio et al. (2011) found that linalool also modulated neural excitability through 
the blockade of voltage-dependent Na+ channels. Sabogal-Guáqueta et al. (2018) 
found that linalool exhibited neuroprotective effects in hippocampal and motor cor-
tex regions through the reduction of astrogliosis and microgliosis. da Guedes et al. 
(2022) found that trans-anethole at a dose of 400  mg/kg attenuated seizures by 
increasing the time for the onset of spasms and convulsions and reducing the dura-
tion of seizures. The electroencephalographic profile substantiates the above results 
and showed a reduction in the amplitude of waves compared to the PTZ- 
induced group.

In an acute PTZ-induced model, β-myrcene reduced convulsions (Viana et al. 
2000). Carvacrol at a dose of 100 mg/kg, i.p., showed a protective effect on a 6 Hz 
psychomotor convulsion model (Mishra and Baker 2014). Administration of carva-
crol three times a day (75  mg/kg, i.p.) prevents the reoccurrence of early status 
epilepticus, reduces early seizure frequency without altering chronic epilepsy 
(Khalil et al. 2017). Pires et al. (2015a) found that carvacryl acetate increases sei-
zure latency and decreases the seizure rates and mortality of animals induced with 
pilocarpine (PILO), PTZ, and PIC.  Furthermore, carvacryl acetate increased the 
activities of Na+, K+-adenosine triphosphatase (ATPase) and δ-aminolevulinic acid 
dehydratase.

(−)-Carvone and (+)-carvone modulate the seizure signal by voltage-gated 
sodium channel blockade (Gonçalves et  al. 2010). However, (−)-carvone and 
(+)-carvone inhibit GABAA receptors (Sánchez-Borzone et al. 2014). p-Cymene 
reduces cholinergic signs, tremors, and the induction of seizures by PILO (de 
Oliveira et  al. 2014). γ-Decalactone showed anticonvulsant activity in different 
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models (de Oliveira et al. 2008; Pfluger et al. 2018a, b). Isopulegol at doses of 100 
and 200 mg/kg in mice increased seizure latency similar to diazepam (Silva et al. 
2009). Viana et al. (2000) found that limonene (200 and 400 mg/kg i.p.) showed 
anticonvulsant effects against PTZ-induced seizures. Limonene decreased gluta-
mate levels while increasing GABA levels in the brain (Zhou et al. 2009). Souto- 
Maior et al. (2016) found that linalool oxide at doses of 50, 100, and 150 mg/kg, 
i.p., showed anticonvulsant activity. Zhang et al. (2008) found that menthol pro-
motes anticonvulsive effects in models induced by PTZ. (R)-(+)-Pulegone was 
found to increase the seizure latency time in a PTZ-induced acute model (de Sousa 
et al. (2011a).

Apart from the monoterpenes mentioned above, safranal (Hosseinzadeh and 
Sadeghnia 2007), (±)-α-terpineol (de Sousa et  al. 2007), terpinen-4-ol (de Sousa 
et al. 2009; Nóbrega et al. 2014), thymol (Mishra and Baker 2014), thymoquinone 
(Hosseinzadeh and Parvardeh 2004; Hosseinzadeh et  al. 2005; de Sousa et  al. 
2011b; Velagapudi et al. 2017; Zeinvand-Lorestani et al. 2018; Alkharfy et al. 2018; 
Arjumand et  al. 2019), (−)-borneol (Granger et  al. 2005; Quintans-Júnior et  al. 
2010a; Jiang et al. (2015); Tambe et al. 2016; Madhuri and Naik 2017; Skalicka- 
Woźniak et  al. 2018), and 1,8-cineole (de Figuêiredo et  al. 2019), (1S)-(−)-
verbenone (de Melo et al. 2017) also demonstrated anticonvulsant properties, owing 
primarily to the GABAA agonist effect, as well as antioxidant and anti- inflammatory 
activity by modulating opioid and 5-HT receptors. α-Pinene at doses of 0.2 and 
0.4 mg/kg, i.p., and β-pinene at a dose of 400 mg/kg, orally demonstrated anticon-
vulsant activity (Yang et al. 2016; Zamyad et al. 2019; Felipe et al. 2019; Ueno et al. 
2020). The structures of the abovementioned monoterpenes with anticonvulsant 
activity are given in Fig. 9.

4.5  Cardiovascular Protective Activity

Magyar et al. (2002) reported that thymol induced cardiac arrhythmias by inhibiting 
K+ and calcium ion (Ca2+) currents in ventricular myocytes isolated from dogs. 
Magyar et al. (2004) showed that thymol inhibits L-type Ca2+ currents in human and 
canine ventricular cardiomyocytes. Aydin et al. (2007) found that carvacrol at a dose 
of 100 mg/kg, i.p., reduced blood pressure and heart rate and inhibited the hyperten-
sion induced by NG-nitro-L-arginine-methyl ester (L-NAME) in normotensive rats. 
Peixoto-Neves et  al. (2010) proved that carvacrol induced an endothelium- 
independent relaxation, possibly involving inhibition of Ca2+ influx through the 
membrane. Pires et  al. (2015a, b) showed that carvacrol promoted an increased 
influx of calcium by activating the TRPV3 channel. Carvacrol showed a hypoten-
sive effect that was probably due to bradycardia and peripheral vasodilatation 
(Dantas et  al. 2015). Đukanović et  al. (2022) reported that carvacrol (1 mmol/l) 
showed vasorelaxation through the blockage of L-type Ca2+ channels on smooth 
muscle cells (human umbilical arteries).
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Fig. 9 Some monoterpenes with anticonvulsant activity

Lahlou et al. (2002a) found that intravenous administration of eucalyptol signifi-
cantly reduced the blood pressure of both conscious and anaesthetized rats and 
showed vasorelaxant activity. Pinto et  al. (2009) reported that the vasorelaxation 
property of eucalyptol depended on the integrity of the vascular endothelium and 
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nitric oxide release. Soares et al. (2005) found that eucalyptol effects papillary mus-
cle relaxation in the preparations from the rat ventricle. Johnson et  al. (2009) 
revealed that menthol causes dilatation in human forearm cutaneous vessels via 
activation of muscarinic receptors and/or production of nitric oxide. Rotundifolone 
is the major component (63%) of the essential oil of Mentha x villosa (Guedes et al. 
2002). Guedes et al. (2004) reported that intravenous administration of rotundifo-
lone in rats significantly reduced blood pressure and heart rate via induction of 
negative inotropic and chronotropic effects in the atrium. Guedes et al. (2002) also 
found that the vasorelaxation was due to the inhibition of Ca2+ influx through the 
membrane and the release of Ca2+ from intracellular stores.

Saito et al. (1996) showed that α-terpineol at a dose of 5 mg/kg administered 
intravenously had a hypotensive effect in rats. α-Terpineol induced vasorelaxation 
in the perfused rat mesenteric vascular bed, which was terminated in the presence of 
L-NAME, indicating the involvement of NO (Magalhães et al. 2008). According to 
Ribeiro et al. (2010), the hypotensive and vasorelaxant properties of α-terpineol are 
primarily due to NO release and activation of the NO-cGMP pathway. Intravenous 
administration of α-terpinen-4-ol resulted in an immediate reduction in blood pres-
sure in both normotensive (Lahlou et  al. 2002b) and hypertensive (Lahlou et  al. 
2003) rats. Lahlou et al. (2003) revealed that a depolarizing solution of K+ up on 
α-terpinen-4-ol treatment precontracted rat aorta preparation. Höferl et al. (2006) 
found that the optical isomers (+) and (−)-linalool showed opposite effects on blood 
pressure and heart rate, administered by inhalation. The (+)-linalool showed a stim-
ulating effect on the cardiovascular system, while the (−)-linalool found to have a 
depressing effect. Menezes et al. (2010) found that (±)-linalool in nonanesthetized 
normotensive rats induced hypotension associated with tachycardia.

Demirel (2022) discovered that geraniol (0.4 to 3.2μg/ml) and β-citronellol (1.6, 
3.2, and 6.4μg/ml) dilate the rat thoracic aorta. Citronellol caused vasorelaxation in 
isolated rings of the superior mesenteric artery of rats by inhibiting Ca2+ influx 
through the membrane and releasing Ca2+ from intracellular stores (Bastos et  al. 
2010). In rats, oral administration of limonene and sobrerol at a dose of 400 mg/rat 
significantly decreased the changes in pulmonary hypertension and right ventricular 
hypertrophy induced by monocrotaline (Touvay et  al. 1995). Both limonene and 
sobrerol also reduced the increase in medial thickness of the pulmonary artery. El 
Tahir et al. (2003) found that intravenous administration of α-pinene and p-cymene 
caused hypotension and bradycardia in urethane-anesthetized rats. Menezes et al. 
(2010) demonstrated that intravenous administration of (+)-α-pinene and 
(−)-β-pinene showed a hypotensive effect associated with tachycardia in nonanes-
thetized normotensive rats. Saito et al. (1996) found that intravenous administration 
of myrtenal, myrtenol, and perillyl alcohol at doses of 1 and 5 mg/kg showed hypo-
tensive activity in rats.

Ghayur et al. (2012) found that thymoquinone exerted relaxant activity in the rat 
aorta by blocking voltage-operated Ca2+ channels. Silva-Filho et al. (2012) demon-
strated the relaxation effect of borneol in phenylephrine or potassium chloride (KCl) 
contracted aortic rings. Kundu et al. (2014) found that carvone showed a vasorelax-
ant effect on aortic rings and guinea pig tracheas through its action on calcium 
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voltage-dependent channels. de Sousa et al. (2015) reported that there is no differ-
ence in the pharmacological action of (+)- and (−)-enantiomers of carvone. They 
also found the relaxant effects of (+)-limonene and (−)-limonene enantiomers on 
the tracheas and aortic rings independent of the endothelium. Cheang et al. (2013) 
demonstrated that menthol suppressed the CaCl2-induced contraction in rat aortae, 
mesenteric, and coronary arteries by inhibiting calcium influx. da Silva et al. (2020) 
revealed that (−)-carveol possesses a vasorelaxant effect in human umbilical arter-
ies (HUAs) through the opening of calcium and potassium channels. Cardoso- 
Teixeira et al. (2018) found that limonene, carveol, and perillyl alcohol showed a 
relaxant effect on the aorta smooth muscle of rats by the mechanism of inhibition of 
protein kinase C and inositol trisphosphate pathways. The structures of the above-
mentioned monoterpenes with cardiovascular protective activity are given in 
Fig. 10.

4.6  Gastroprotective Activity

Several monoterpenes isolated from various plant species showed significant gas-
troprotective effects against nonsteroidal anti-inflammatory drugs (NSAIDs) in 
experimental animals. The gastrointestinal complications caused by NSAIDs are 
mainly due to the inhibition of COX, a key enzyme in the production of prostaglan-
dins (Laine et al. 2008; Sostres et al. 2010). Koc et al. (2020) reported that thymol 
at low doses (50, 100, and 200 mg/kg) significantly improved the gastroprotection 
in an indomethacin-induced gastric ulcer model. Various studies have shown that 
thymol (Ribeiro et al. 2016), ascaridole (Zhu et al. 2012), citral (Nishijima et al. 
2014), eucalyptol (Rocha Caldas et al. 2015), epoxy-carvone (Siqueira et al. 2012), 
menthol (Rozza et al. 2013, 2014), α-terpineol (Souza et al. 2011), thymoquinone 
(Zeren et al. 2016), carvacrol (Oliveira et al. 2012), limonene (Rozza et al. 2011), 
and β-myrcene (Bonamin et al. 2014) possesses gastroprotective property against 
NSAIDs. Limonene ameliorated 99% of indomethacin-induced gastric ulcers 
(Rozza et al. 2011). At a dose of 25 mg/kg, citral prevented 76% of gastric ulcers 
(Nishijima et al. 2014). Thymol, menthol, limonene, and carvacrol showed gastro-
protective effects via stimulating mucus secretion and/or PGE2 production, thereby 
increasing gastric mucosal integrity. Thymoquinone showed gastroprotective effects 
by increasing the antioxidant defense mechanisms of the cells. Serafim et al. (2021) 
revealed that (−)-carveol showed gastroprotective effects in ethanol, stress, and 
NSAID-induced animal models. (−)-Carveol (25, 50, 100, and 200 mg/kg, p.o.) 
significantly reduced the ulcerative lesion. Gastroprotective activity of (−)-carveol 
is related to antisecretory, antioxidant, and immunomodulatory mechanisms.

Monoterpenes showed significant gastroprotective effects against experimental 
models induced with ethanol, 70% ethanol, or alcoholic hydrochloric acid (HCl). 
Carvacrol (Oliveira et al. 2012), geraniol (de Carvalho et al. 2014), epoxy-carvone 
(Siqueira et al. 2012), α-pinene (Pinheiro Mde et al. 2015), myrtenol (Viana et al. 
2016), α-terpineol (Souza et  al. 2011), linalyl acetate (Barocelli et  al. 2004), 

Essential Oil-Derived Monoterpenes in Drug Discovery and Development



124

Fig. 10 Some monoterpenes with cardiovascular protective activity

menthol (Rozza et al. 2013, 2014), nerol (González-Ramírez et al. 2016), eucalyptol 
(Rocha Caldas et  al. 2015), limonene (Rozza et  al. 2011; de Souza et  al. 2019), 
thymol (Ribeiro et  al. 2016), and β-myrcene (Bonamin et  al. 2014) reduced the 
gastric lesions induced by ethanol up to 100% via increased production of mucus, 
PGE2, NO, and sulfhydryl compounds. According to Vespermann et al. (2017), the 
isomeric forms α-pinene and β-pinene have completely different activities. In an 
ethanol-induced gastric lesion, α-pinene (30 mg/kg) showed up to 44% protection, 
and β-pinene (33  mg/kg) did not show any protective effect. In an I/R model, 
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carvacrol and β-myrcene significantly reduced gastric lesions by 38% and 86%, 
respectively (Oliveira et al. 2012; Bonamin et al. 2014). β-Myrcene improved the 
antioxidant status of the mucosal tissue of the stomach.

The acetic acid-induced gastric lesions resemble human ulcers in terms of patho-
logical and healing mechanisms (Tarnawski 2005; Silva and de Sous 2011). 
Bhattamisra et al. (2018) found that geraniol showed antiulcer activity against ace-
tic acid and anti-Helicobacter pylori activity in rats. Geraniol at a dose of 30 mg/kg 
significantly increased the gastric pH along with a reduction in total acidity and 
gastric juice volume. Geraniol also enhanced the antioxidant status of the gastric 
mucosa. A rapid urea test revealed that geraniol cured 33% of H. pylori infections. 
Carvacrol (Silva et  al. 2012), linalool (da Silva et  al. 2016), eucalyptol (Rocha 
Caldas et al. 2015), thymol (Ribeiro et al. 2016), ascaridole (Zhu et al. 2012), and 
geraniol (Venzon et al. 2022) significantly protected from acetic acid induced gas-
tric lesions in different experimental models. Ascaridole induces antisecretory 
effects that inhibit acid secretion and accelerate ulcer healing (Zhu et  al. 2012). 
Carvacrol inhibits the release of inflammatory mediators and induces PGE2 produc-
tion (Silva et al. 2012). Geraniol also enhanced oxidative status and prevented the 
production of IL-6 and TNF-α (Venzon et al. 2022). Eucalyptol (Rocha Caldas et al. 
2015) and linalool (da Silva et al. 2016) showed significant ROS scavenging and 
gastric cell regeneration properties.

One of the main therapeutic modalities for treating gastric ulcers is the elimina-
tion of Helicobacter pylori infection. Some monoterpenes with gastroprotective 
activity also had anti-H. pylori activity (Zielińska-Błajet and Feder-Kubis 2020). 
Both carvacrol and geraniol inhibited 92% of the H. pylori growth with minimal 
inhibitory concentrations (MICs) of 40 mg/l and 2 mg/l, respectively (Boyanova 
and Neshev 1999; Bergonzelli et al. 2003). The MICs for limonene and β-myrcene 
were 75μg/ml and 500μg/ml, respectively (Rozza et al. 2011; Bonamin et al. 2014). 
De Monte et al. (2015) reported that safranal showed a 32μg/ml MIC. The structures 
of the abovementioned monoterpenes with gastroprotective activity are given in 
Fig. 11.

4.7  Wound-Healing Activity

Pivetta et al. (2018) found that carbopol gel containing nanoencapsulated thymol 
(50% w/w) at a concentration of 12.5μM appeared to stimulate the growth of kera-
tinocytes and promote cell viability. Thymol showed wound-healing activity by 
increasing the production of macrophage migration inhibitory factor and enhancing 
fibroblast growth (Riella et al. 2012). They further found that the anti-inflammatory 
effect of thymol is due to the inhibition of MPO activity and decreased leukocyte 
influx. In human neutrophils stimulated with N-formyl-methionyl-leucyl-
phenylalanine, thymol delayed the elastase activity (Braga et  al. 2006). Thymol 
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Fig. 11 Some monoterpenes with gastroprotective activity

significantly inhibited COX-1 (Marsik et al. 2005) and inducible lymphocyte prolif-
eration (Amirghofran et al. 2011).

Gunal et al. (2014) reported that carvacrol (12.5%) diluted in sunflower oil (2%) 
significantly reduced the surface of the lesion and promoted changes in granulation 
tissue thickness and lesion depth. Carvacrol also influenced the release of TNF-α, 
transforming growth factor (TGF)-α, and IL-1 during tissue repair. Carvacrol (0.5% 
or 1%) incorporated into chitosan films reduced wound areas and tissue edema, 
induced earlier granulation tissue formation, increased cell proliferation, increased 
epithelialization rates, and improved collagenization on excision wounds in rats 
(Barreto et al. 2015). Using an in vitro scratch assay, de Christo Scherer et al. (2019) 
found that terpinolene and α-phellandrene stimulate fibroblast proliferation and 
migration. Salas-Oropeza et al. (2021) found that α-pinene (9%) and α-phellandrene 
(1%) produce stress-resistant scars and accelerate wound contraction through col-
lagen deposition in the early stages of the wound.

Borneol showed wound-healing properties (Mai et al. 2003) through antimicro-
bial (Unlü et  al. 2002) and anti-inflammatory (Almeida et  al. 2013) activities. 
Borneol inhibited leukocyte migration (Almeida et al. 2013), fibroblast growth, and 
matrix metalloproteinase (MMP)-2 activity, and it further inhibited collagen and 
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TIMP-1 production (Dai et al. 2009). In another study, borneol suppressed the pro-
duction of the proinflammatory cytokines IL-1β and IL-6 (Park et al. 2003). Villegas 
et  al. (2001) reported the wound-healing potential of (+)-epi-α-bisabol and 
α-terpineol isolated from Peperomia galioides. α-Terpineol inhibits neutrophil 
influx (Oliveira et  al. 2012) and selectively inhibits ovine COX-2 (Kawata et  al. 
2008). The structures of the abovementioned monoterpenes with wound-healing 
potential are given in Fig. 12.

4.8  Antifungal Activity

Raut et  al. (2013) found that menthol showed significant inhibitory activity on 
Candida albicans. Menthol tested against Fusarium verticillioides showed a 75% 
reduction in growth (Dambolena et  al. 2008). 1,8-Cineole showed good activity 
against Aspergillus carbonarius (Dammak et  al. 2019). Venkatesh et  al. (2017) 
found that Boswellia serrata essential oil containing monoterpenes 3-carene and 
β-ocimene showed inhibitory activity against Alternaria brassicicola, A. geophila, 
and Curvularia tetramera. Geraniol showed better efficacy against Trichophyton 
rubrum, T. mentagrophytes, and Microsporum canis when compared with terbin-
afine and miconazole (Miron et al. 2014). The trans isomers showed higher antifun-
gal activity than cis, signifying the importance of configurational isomerism in 
bioactivity (Miron et al. 2014). Singh et al. (2016) found that geraniol may inhibit 
the calcineurin pathway, damage to the plasma membrane and the cell wall of 
Candida albicans. Thymol and carvacrol showed potent antifungal activity against 
Cryptococcus neoformans and C. laurentii (Kumari et  al. 2017). Ahmad et  al. 
(2013) found that eugenol and thymol showed antifungal activity in Candida albi-
cans through the inhibition of hydrogen ion (H+)-ATPase activity. Ahmad et  al. 
(2011) also found the synergistic antifungal activity of thymol and carvacrol against 
Candida albicans through the inhibition of efflux-pump genes (CDR1 and MDR1) 
overexpression.

Nikitina et al. (2021) found that (−)-myrtenol exhibits good activity against both 
yeast (Candida albicans) and mycelial (Rhizopus nigricans, Aspergillus fumigatus, 
and Fusarium solani) fungi species. Scariot et al. (2021) found that citral, geraniol, 
citronellol, and citronellal showed antifungal activity against Saccharomyces cere-
visiae through cell membrane damage with minimum inhibitory concentration and 
minimum fungicidal concentration values between 0.64 and 3.68 mM, and 1.56 and 
6.25 mM, respectively. Kaur et  al. (2019) found that citral at a concentration of 
0.2μl/ml exhibited strong fungicidal effect against Fusarium oxysporum and 
Sclerotium rolfsii while geraniol showed better activity against S. rolfsii at a concen-
tration range of 0.2 to 2μl/ml. de Oliveira Lima et al. (2017) found that linalool 
(minimum inhibitory concentration 256μg/ml) caused leakage of intracellular mate-
rial in clinical isolates of fluconazole resistant Trichophyton rubrum. Pereira Fde 
et al. (2015) found that geraniol at a minimum inhibitory concentration range of 
16–256 μg/ml and citronellol at a minimum inhibitory concentration range of 8 to 
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Fig. 12 Some monoterpenes with wound-healing activity

1024μg/ml inhibited Trichophyton rubrum mycelial growth and conidia germina-
tion. Chaillot et al. (2015) found that carvacrol exhibits antifungal activity against 
Candida albicans by altering endoplasmic reticulum integrity. The structures of the 
abovementioned monoterpenes with antifungal activity are given in Fig. 13.

4.9  Antibacterial Activity

Contreras Martínez et al. (2022) found that isoespintanol isolated from Oxandra 
xylopioides showed biofilm eradication potential against the clinical isolate 
Pseudomonas aeruginosa after 1 hour of exposure. Menthol exhibited broad spec-
trum antibacterial activity (Pattnaik et al. 1997; Osawa et al. 1999; Inouye et al. 
2001; Trombetta et  al. 2005). Trombetta et  al. (2005) reported the antibacterial 
effect of (+)-menthol, thymol, and linalyl acetate against Staphylococcus aureus 
and Escherichia coli. Thymol was found to be effective against Salmonella 
typhimurium and Escherichia coli with minimum inhibitory concentration values of 
1.0 and 1.2 mmol/l, respectively (Olasupo et al. 2003). Nostro et al. (2004) found 
that all the Staphylococcus aureus and Staphylococcus epidermidis clinical isolates 
tested were susceptible to thymol, with minimum inhibitory concentration values 
ranging from 0.03 to 0.06% v/v. There is no difference in methicillin-resistant and 
methicillin-sensitive Staphylococci. Xu et al. (2008) found that thymol at a concen-
tration of 200 mg/ml inhibited the growth of Escherichia coli.

Carson and Riley (1995) found that terpinen-4-ol, (+)-α-terpineol, and ρ-cymene 
inhibited the growth of Acinetobacter baumannii, Aeromonas veronii biogroup 
sobria, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Salmonella 
enterica subsp. enterica serovar Typhimurium, Serratia marcescens, and 
Staphylococcus aureus. Kotan et al. (2007) found that oxygenated monoterpenes 
such as nerol, linalool, α-terpineol, fenchol, and terpinen-4-ol showed broad 
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Fig. 13 Some monoterpenes with antifungal activity

spectrum antibacterial activity. Muilu-Mäkelä et  al. (2022) found that α-pinene, 
β-pinene, R-limonene, S-limonene, and 3-carene are effective against Escherichia 
coli. Coêlho et  al. (2016) found that nerol showed antibacterial activity against 
Escherichia coli. In addition, nerol synergistically enhanced the activity of nor-
floxacin against Staphylococcus aureus.

The optical isomers of carvone, (4R)-(−)-carvone, and (4S)-(+)-carvone are 
effective against Campylobacter jejuni and Listeria monocytogenes, respectively. 
Carvone also showed good inhibition against Enterococcus faecium and Escherichia 
coli (Friedman et  al. 2002). Rivas da Silva et  al. (2012) found that a mixture of 
(+)-α-pinene and (+)-β-pinene showed potent activity against Staphylococcus 
aureus. Ellouze et  al. (2012) found that (−)-linalool showed potent antibacterial 
activity against Bacillus subtilis, Staphylococcus aureus, Porphylomonas gingiva-
lis, Prevotella intermedia, and Fusobacterium nucleatum. Park et al. (2012) found 
that (−)-linolool showed antibacterial activity against Staphylococcus aureus resis-
tant to vancomycin and Pseudomonas aeruginosa. Liu et al. (2020) found the mini-
mum inhibitory concentration (431μg/ml) and minimum bactericidal concentration 
(862μg/ml) of linalool against Pseudomonas aeruginosa. The structures of the 
abovementioned monoterpenes with antibacterial activity are given in Fig. 14.
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Fig. 14 Some monoterpenes with antibacterial activity

4.10  Antiviral Activity

Borneol and isoborneol showed activity against herpes simplex virus-1 (HSV-1). 
Isoborneol showed total inhibition of HSV-1 replication at a concentration of 0.06% 
(Armaka et al. 1999). Astani et al. (2010) found that thymol, α-terpinene, γ-terpinene, 
1,8-cineole, α-terpineol, and citral isolated from tea tree, thyme, and eucalyptus 
exhibited significant activity (>80%) against HSV-1. Mundinger and Efferth (2008) 
found the anti-HSV-1 activity of 1,8-cineole. Orhan et al. (2012) found the anti- 
HSV- 1 activity of citral. (−)-α-Pinene and (−)-β-pinene at a concentration of 1 mM 
exhibited anti-IBV (infectious bronchitis virus) activity (Yang et al. 2011). Garozzo 
et al. (2011) and Orhan et al. (2012) found that citral, citronellal, and citronellol 
showed anti-herpes simplex virus-1 activity. Zamora et  al. (2016) found that 
terpinen- 4-ol present in the tea tree oil (Melaleuca alternifolia) showed significant 
activity against the influenza A H1N1/Puerto Rico/8/34 and West Nile viruses. The 
structures of the abovementioned monoterpenes with antiviral activity are given in 
Fig. 15.
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Fig. 15 Some monoterpenes with antiviral activity

5  Conclusion and Future Prospects

Emerging and re-emerging pathogens, lifestyle-related metabolic disorders, and 
chronic diseases continue to pose a major threat to global public health. During the 
past 3 years, mankind has faced a hitherto unknown global outbreak of the SARS- 
Cov- 2 virus, which caused COVID-19 disease and associated complications. 
Similarly, we are facing regional epidemics caused by several new and emerging 
pathogens such as H1N1 Swine Flu, Nipah, Zika, Ebola, Dengue, Chikungunya, 
MERS, and SARS. Malaria is another epidemic that is reappearing in spite of its 
eradication toward the end of the twentieth century. This emergence of new patho-
gens, their variants, and drug resistance has thrown a challenge to the medicinal 
chemists. Although there are several drugs in clinical trials, no one knows at the 
moment how effective they will be or whether they will arrive in time to make any 
difference to the present challenge.

As detailed in this chapter, bioactive monoterpenes have a significant role in 
future drug development processes, which requires further in-depth research in a 
combination of recent “omics” biology and network pharmacology approaches. In 
addition to this, the use of bioactive monoterpenes as chemical scaffolds for novel 
compounds with improved drug-likeness, pharmacokinetic, and pharmacodynamic 
properties is another promising strategy in the drug discovery process. Recent 
advancements in synthetic biology and metabolic engineering may further acceler-
ate the drug development process by enabling sustainable and economically viable 
large-scale production processes of desired bioactive molecules.
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cation of bioactive compounds in complex samples. Chromatography is a technique 
that is based on the separation of the components in a mixture into a stationary and 
mobile phase. There are several types of chromatography, including liquid chroma-
tography (HPLC), gas chromatography (GC), thin-layer chromatography (TLC), and 
ion-exchange chromatography. Each type of chromatography has its advantages and 
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example, HPLC is often used to separate high-polarity compounds, while GC is best 
suited for volatile compounds. Chromatography can be combined with other analyti-
cal methods, such as mass spectrometry, to help identify specific compounds in a 
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1  Introduction

The separation of complex mixtures from natural matrices still represents a chal-
lenge for chemists, even with substantial advances in separation techniques (Bucar 
et al. 2013). Bioactive compounds are often in low concentrations, so the develop-
ment of a selective and effective separation method is essential for obtaining higher 
yields of these substances (Zhang et al. 2018; Abdelmohsen et al. 2022).

Since the 1990s, interest in natural product research has increased considerably. 
The emergence of new chromatographic techniques and the improvement of existing 
ones, as well as spectroscopic techniques and sensitive bioassays, allowed the 
isolation and structural elucidation of new chemical entities (Sticher 2008). Even 
the use of more-primitive chromatographic techniques, such as thin-layer 
chromatography (CCD), still find applications in the purification of natural 
molecules (Wilson and Poole 2023).

Currently, the use of hyphenated techniques such as gas chromatography-mass 
spectrometry (GC/MS), liquid chromatography-mass spectrometry (LC/MS), 
capillary electrophoresis-mass spectrometry (CE/MS), and nuclear magnetic 
resonance-liquid chromatography (NMR/LC), among others, takes the leading role 
in the search for natural products with pharmacological potential (Sarker and 
Nahar 2012).

In the following sections of this chapter, we will discuss the main chromato-
graphic techniques currently employed in the isolation of bioactive compounds 
from natural matrices, as well as the main spectroscopic techniques used for the 
structural elucidation of these compounds, in order to show the principles of these 
techniques and their improvements.

2  Gas Chromatography

Evaluating the chemical constituents of plant material is a challenging task, as the 
investigated matrices are generally complex. For the most part, compounds with 
higher biological potential are present in very small amounts and often have similar 
structures (Ganzera and Murauer 2017). Thus, the separation of the chemical 
components of complex matrices via chromatographic methods is a major concern 
for researchers in the area of natural products and also for those who evaluate 
chemical compounds of natural origin in biological and active activity tests (Friesen 
et al. 2015). Thus, it is necessary to use techniques that meet strict requirements for 
selectivity, versatility, and sensitivity.

Large parts from volatile compounds are directly subjected to analysis by using 
the gas chromatography (GC) technique, which has a unique separation capacity. 
This technique can offer high sensitivity and selectivity when combined with 
identification methods, such as mass spectrometry (Stalikas 2007).
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Commonly, GC is versatile for analyzing nonpolar and semipolar chemicals and 
volatile and semivolatile chemicals. Without chemical derivatization, such a 
technique is often used for the analysis of oils, short-chain fatty acids, sterols, 
aromas, and constrictors that provide flavors to food (Lehotay and Hajšlová 2002). 
In addition, the different methods of gas chromatography are also essential for the 
elucidation of different bioactive compounds, including pesticide agents. An 
example of its convenience is the use of the gas chromatography (GC) technique in 
conjunction with high-efficiency liquid chromatography (HPLC) in combination 
with prior sample separation through modern microextraction systems, which have 
proven to be valuable in rapidly controlling food quality, providing assurance and 
safety in its application for such purposes (Parys et al. 2021).

In the contemporary period, the market has benefited from the wide application 
of volatile oils, which has generated the need to ensure that the content of the 
complexes sold remains consistent. However, the characterization of volatile oils, 
such as essential oils, is an extremely laborious and complex task because these oils 
are chemically diverse mixtures. Therefore, GC has been an indispensable technique 
for identifying the unknown constituents of volatile oils. Methods, based on various 
retention rates that can be calculated from patterns, have been proposed to chemically 
characterize unknown substances in volatile oils. More often, the identification and 
confirmation of the components of these matrices is completed by analyzing gas 
chromatography coupled with a mass spectrometer (GC-MS) or by comparing them 
with authentic patterns (He and Beesley 2005).

Recent research seeks to evaluate the presence of secondary metabolites via 
exclusive multidimensional GC methods, seeking to innovate techniques in order to 
observe the complexities in structural analyses of volatile compounds. 
Multidimensional GC has been a successful technique for the isolation of 
sesquiterpenes in essential oils, and GC-MS is the most important technique for the 
characterization of components in the analysis of this type of sample. The quality of 
the data obtained in these analyses proportionally increases and becomes very 
useful after the elution time of the constituent has been determined and combines 
with the mass spectrum. In addition, it has been a common practice to use infrared 
spectroscopy with mass spectrometry (IR-MS) and combined with GC-MS as a 
practical solution for the separation and detection of volatile compounds (Waseem 
and Low 2015).

The separation time of gas chromatography can be decreased in different ways, 
such as by increasing the flow of drag gas, heating the column faster, increasing the 
column diameter, shortening the column, reducing the thickness of the column film, 
or reducing the viscosity of the drag gas. However, compensating for a higher speed 
causes the sample capacity to be reduced, generating higher detection limits and/or 
worse separation efficiency. In practice, the shortest GC analysis time should be 
projected according to the necessary selectivity (i.e., separation of the analytes and 
matrices). Thus, one possibility would be the use of selective detectors to improve 
the selectivity of the analyte matrix. Mass spectrometry detection generally improves 
selectivity, which reduces dependence on GC separation and can lead to faster 
analysis times for a given list of analytes and matrices (Lehotay and Hajšlová 2002). 
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Although the CG technique is widely disseminated and used, it is important to 
highlight that there is a need to optimize the speed of analysis.

3  High-Performance Liquid Chromatography

High-performance liquid chromatography (HPLC) is one of the most widely used 
analytical methods, by different research laboratories, for the separation of complex 
mixtures of substances with satisfactory accuracy and commercially available 
equipment. Having started in the mid 1900s, it was formerly known as classical 
liquid chromatography or liquid column chromatography. The whole process was 
developed manually and by using glass columns filled with solid particles adsorbed 
in solvents, called the stationary phase (Snyder 2000).

In general, after the preparation of the stationary phase, the solubilized sample is 
applied to the top of the column, and a solvent, mobile phase is poured. The solvent 
descends the column thanks to gravity and interaction with particles, and thus, analyti-
cal separation occurs by obtaining analyses of interest at different velocities. Although 
it is a method still widely used, with the advancement of science, its theories, and the 
need for types of solvents that were faster, more efficient, and applicable to different 
types of samples, the use of equipment with even-smaller particles and that supported 
high solvent pressures in the columns was emerging (Meyer 2010).

Because of this, sometimes this technique was also called high-pressure liquid 
chromatography (HPLC). In this system (Fig.  1), the equipment is designed 
commonly containing the following modules: pump, injector, column oven, detector, 
and a data-retrieval system. In its operation, the moving phase leaves the reservoir 
to the pump, which controls the solvent flow and the pressure required for this 
solvent to pass through the column. The sample is injected into the column with the 
aid of an automatic sampler or injector, and separation occurs inside the column, 
which can have its temperature controlled in the oven. Depending on the 
concentration of the analyses, the response occurs in the detector, and the data 
system monitors and processes the data obtained (Dong 2019).

Each of the modules can be changed according to the characteristic of the sample 
to be analyzed, thus leading to the different types of liquid chromatography existing 
today, defined by the stationary phase and the separation modes. Among them, we 
can mention chromatography via ion exchange, adsorption, exclusion, affinity, and 
chiral. The performance of each equipment intended for these analyses depends on 
the accuracy of the modules and, more, the sensitivity of the detector (Dong 2013).

The great advantage of this system goes beyond its use in different types of ana-
lytes, such as small organic molecules, large biomolecules, and even polymers 
(Dong 2013). Hyphenation with mass spectrometry improved the technique, which 
combined the great separation capacity of analytes in chromatography with the 
specificity and sensitivity of the mass spectrometer, aiming to overcome the possible 
limitations that would be found in the HPLC, thus expanding its use to several new 
areas and applications (Ganzera and Sturm 2018).
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Fig. 1 System of an HPLC with the essential components (Snyder 2000)

One of the most used techniques, reverse-phase liquid chromatography 
(RP-HPLC), has a separation system that is based on the hydrophobicity of solute 
molecules in the stationary phase (Pratab et al. 2013). In it, the form of elution can 
be a gradient of solvents, where the concentration of the solvent gradually increases 
over time, or an isocratic condition, with a maintained concentration (Aguilar 2004). 
In the study by Mohamed et al. (2022), the research strategies of some organic acids 
in vinegar were used, using RP-HPLC to detect and identify possible adulterations. 
The technique proved to be accurate and had a high recovery rate, and it is 
recommended for different real samples.

In the case of complex samples, combined separation techniques, such as two- 
dimensional chromatography, have become options. In this method, two modes of 
applications of the technique can be performed. In heart cutting or LC-LC, only the 
fractions selected in a first column, called the first dimension, are directed to the 
second column, called the second dimension. In the comprehensive LC or LC × LC, 
the entire sample can be separated by using both columns—i.e., in both dimensions 
(Ganzera and Sturm 2018).

Varfaj et  al. (2023), using the two-dimensional chromatographic technique to 
analyze branched-chain amino acids (BCAAs) in dietary supplements, applied the 
achiral–chiral heart-cutting method (mLC-LC) in an enantioselective analysis. This 
method proved advantageous not only for dealing with the limited chemoselectivity 
of some techniques but also for obtaining more information with only one analysis 
and for green analytical chemistry.
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In the recent literature, we can find its use in the analysis and identification of 
pigments in cultural heritage objects (Careaga et al. 2023), separation and detection 
of organic substances in extracts of natural products and supplements (Shafaei et al. 
2022; Pereira et al. 2023), and quantification of compounds (Gao et al. 2018), in 
addition to analyses that combine different techniques (Proch and Niedzielski 2021; 
Baj et al. 2022; Da Silva et al. 2023). This shows that for a successful execution of 
the technique, the analysis will require more than the simple push of a button. It is 
essential to plan it by incorporating data from advanced studies, gaining assistance 
from a qualified professional, and using equipment with accessories designed to 
obtain the best chromatographic conditions for the analysis of the sample of interest.

4  Countercurrent Chromatography (CCC) and Centrifugal 
Partition Chromatography (CPC)

Countercurrent chromatography (CCC) is based on liquid–liquid partition systems, 
without the use of any solid adsorbent, where two immiscible liquid phases are 
used, in which one is in the stationary phase and the other is in the mobile phase 
(Conway 1995). The stationary phase is maintained within the column via a 
centrifugal field or a gravitational field. The first type of equipment was based on the 
gravitational field, such as the countercurrent distribution created by Lyman Craig 
in 1940 (Craig 1950). Thanks to technological advances, the new separation 
equipment in countercurrent chromatography is based on the centrifugal field, and 
its development is directly associated with the name Yoichiro Ito (Pauli et al. 2008).

Centrifugal field techniques are divided into two groups: centrifugal partition 
chromatography (CPC) and high-speed countercurrent chromatography (HSCCC). 
In CPC, there is a hydrostatic balance between the two liquid phases that is caused 
by the rotation of the column on the centrifuge axis (Berthod et al. 2009b; Spînu 
et al. 2020), and in this technique, it is possible to operate the equipment in ascending 
mode and descending mode. In ascending mode, the mobile phase (FM) is the least 
dense of the liquid–liquid partition, which is pumped by the bottom of the column 
containing the stationary phase (FE); it rises to the top of the column, separating the 
analytes according to their affinity with the phases (Fig. 2a). In descending mode, 
the denser phase is used as FM, which is pumped by the top of the column (Fig. 2b).

At HSCCC, the two phases are in hydrodynamic equilibrium thanks to the move-
ment of the two axes of rotation (Ito 2005a; Berthod et al. 2009b); the spiral column 
rotates on its own axis and the centrifuge axis, similar to a planetary system. The 
synchronous combination of these rotation and revolution movements maintains the 
less-dense phase at one end of the column, which Ito called the head, and the denser 
phase at the other end, called the tail. Therefore, in the HSCCC the equipment can 
be operated in two ways: (1) in normal mode, the lower phase (denser) is used as FE 
to fill the column, and the upper phase (less dense) is pumped by the tail of the col-
umn as FM, and (2) in reverse mode, the less-dense phase is used as FE, and the 
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Fig. 2 Modes of operation for the CPC: (a) represents the ascending mode and (b) the descending 
mode. (Adapted from Örkényi et al. (2017))

densest phase is FM, which is pumped by the head of the spine. For a thorough 
investigation of the entire development of CCC-based techniques, see Countercurrent 
Chromatography: Apparatus, Theory and Applications, by Von W. D. Conway (1990).

The choice of solvent composition for FM and EF is of fundamental importance 
because its composition demands 90% of the time required for developing the 
chromatographic method in HSCCC and CPC (Ito 2005b). For a complex sample 
such as plant extracts, and the literature on established systems, such as Ito 
(n-hexane, AcOEt, MeOH, n-BuOH, and H2O) (Ito 2005b; Liu et  al. 2018), 
ARIZONA (n-heptane, AcOEt, MeOH, H2O) (Liu et al. 2018), HEMWat (n-hexane, 
AcOEt, MeOH, H2O) (Friesen and Pauli 2015; Liu et  al. 2018), and HBAW 
(n-hexane, ACN, n-BuOH, H2O) (Costa and Leitão 2010; Liu et al. 2018), needs to 
be reviewed. In these solvent-proportioned systems, it is possible to work with low-, 
medium-, and high-polarity molecules, from aqueous and nonaqueous systems, and 
they may be mixtures of two, three, or more solvents. They must not form emulsion, 
or this emulsion mist disappear in less than 30 seconds after agitating the phases in 
a test tube (Costa and Leitão 2010). The sample needs to be soluble in order to 
prevent any obstructions from entering the column.

The choice of the composition of FM and EF is directly related to the partition 
coefficient (K), calculated by the solute concentration in EF by the concentration of 
solute in FM (Ito 2005b). If the generated value is below 0.5, it has greater affinity 
with FM, and values above 2.0 indicate affinity with E, causing long runtimes for 
chromatographic runs. The ideal range of K values is from 0.5 to 2.12 for extracts 
of natural products; the calculation of K can be impeded, so thin-layer chromatography 
(CCD) is used. The analyst must use a capillary to solubilize the sample in the 
chosen solvent system and shake the vial to separate the phases. They analyst must 
make two application points in the CCD, namely the upper and lower phases, after 
eluting the CCD in an appropriate solvent. The visual information on the 
chromatographic plate is sufficient to choose the modes of operation for the 
equipment, where metabolites should be present in both the upper and lower phases 
to properly following the chromatographic method.

For isolating flavonoids, the HEMWat system is the most cited method in the 
literature, and to this class of metabolites is attributed numerous biological activities, 
such as antioxidant, anticancer, anti-inflammatory, antimicrobial, and antiviral 
activities (Dias et  al. 2021). Costa and Leitão (2010) used the HEMWat 
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 (Hex- EtOAc- MeOH-H2O) solvent system to isolate free, prenylated and diprenyl-
ated flavonoids. Boonloed et al. (2016) and Giesbers et al. (2019) used CPC with the 
ARIZONA solvent system for xylidine isolation from the fungus Chlorociboria 
aeruginosa, a molecule that could be used as a material for sustainable semiconduc-
tors. Huang et al. (2022) used the HSCCC to isolate and purify naphthoquinones in 
fractions obtained from the hexagonal extract of Arnebia euchroma, which previ-
ously worked in silica gel and liquid chromatography in reverse mode. Li et  al. 
(2015) developed a method in HSCCC to isolate six compounds from a Panax 
japonicus plant extract, and it inhibited xanthine oxidase, an enzyme that produces 
uric acid and is associated with gout.

Different elution modes can be used in CCC: pH gradients, FM composition, 
flow, extrusion elution, dual-mode elution, etc. (Huang et al. 2016), as seen in recent 
progress made in different modes of elution. The advantages of HSCCC and CPC 
are as follows: They use only liquid phases, such as FM and FE; samples can be 
fully recovered, eliminating irreversible adsorption problems; each proportion of 
the FE solvent can be considered a new column; and the analyses are in contact with 
the entire volume of FE (Berthod et al. 2009a). This versatility assists in the isolation 
and purification of synthetic molecules and natural products.

5  Capillary Electrophoresis (CE)

Capillary electrophoresis (CE) was introduced in the mid 1980s and since then has 
been improved. It is a technique that presents more-attractive characteristics 
compared to other separation techniques such as high simplicity in configuration 
and miniaturization, rapid separation with high resolution and efficiency, and low 
sample and solvent consumption. Thus, EC is constantly applied in the biomedical, 
forensic, environmental, and food areas, for qualitative and quantitative analysis of 
analytes ranging from small ions and proteins to the metabolites of plants and 
microorganisms (Unger 2009; Gao and Zhong 2022).

In capillary electrophoresis, the dissections are based on the migration of the 
analytes in an electric field that runs through a narrow capillary filled with a 
background electrolyte. In this method, the migration occurs through two distinct 
mechanisms: electro-osmotic flow (EOF) and electrophoretic mobility (EM) 
(Suntornsuk 2010). The electro-osmotic flow consists of the mass flow of the 
background electrolyte. Thanks to the electric field in a fused silica capillary, EOF 
moves from the anode toward the delicacy because of the negative surface load of 
the capillary and the presence of the electric field. In electrophoretic mobility, the 
size of the molecule determines the speed of transport because the analyte is 
attracted by the anode or cameo. These two modes of transport usually occur 
simultaneously in most CE sections. During a CE separation with the anode at the 
injection site in a bare molten silica capillary, when EOF is present, the analyte 
migrates in the following order: positively charged molecules, positively charged 
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larger molecules, comigration-neutral molecules, negatively charged large mole-
cules, smaller molecules, and negatively charged molecules (Lu et al. 2018).

As shown in Fig. 3, the separation via CE is performed through the passage of an 
electric current between two reservoirs containing buffer solutions that are joined 
by a filled and fused silica capillary. This results in the generation of electro-osmotic 
flow, which allows target molecules to be charged from one electrode to the other. 
The capillaries are 30–50 cm long with 50–75 μm i.d. (thin) walls, allowing the 
quick and efficient change of Joule heating that results from the high voltages 
required for electrophoretic partitioning. The outside of the fused silica capillary is 
coated with a layer of polyamide that confers excellent tensile strength to the fragile 
capillary. The polyamide coating is carefully burned from a small portion of the 
capillary to expose a section of silica. This transparent section of the capillary is 
inserted into the light path of a UV detector and becomes the flow cell. As the 
protein and peptide molecules are swept through the capillary by the EOF, they pass 
through the path of the detector light and are recorded on the UV monitor. In fact, 
the capillary becomes a very low-volume flow cell (Burgi and Smith 2001).

The capillary electrophoresis technique has become an important ally in the sep-
aration and resolution of a complex mixture of natural products thanks to the versa-
tility among injection modes, its high separation efficiency, and its low consumption 
of samples and reagents (Tubaon et al. 2014). These attributes determined the phy-
tochemical profile of Rourea minor, in which several phenolic compounds were 
identified, derived mainly from bergenins, catechins, and lignans, in addition to 
fatty acids (Ngoc et al. 2019). Moreover, some adaptations, such as capillary zone 
electrophoresis, allowed the technique to perform the separation of phenolic com-
pounds, alkaloids, and phenolic acids (Gotti 2011).

Fig. 3 Capillary electrophoresis equipment scheme (Burgi and Smith 2001)
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6  Spectroscopic Methods for Structural Elucidation 
of Natural Products

6.1  Infrared (IR) Spectrometry

Infrared (IR) spectrometry is an analytical technique that involves the interaction of 
molecules with electromagnetic energy (Pavia et  al. 2009; Mcmurry 2011; 
Silverstein et  al. 2014). This analytical tool is essential for analyzing chemical 
structures (Xia et al. 2022) and performs fast, accurate, and nondestructive analyses 
(Ng and Simmons 1999; Arrigone and Hilton 2005). IR spectroscopy has great 
potential in quality assessments of a variety of products, including agricultural, 
food, pharmaceutical, soil, and petrochemical products (Ackerman and Hurtubise 
2002) and in the evaluation of different materials (Kim et al. 2013). In addition, 
more-recent advances in IR development have increased the ability of this technique 
to analyze various types of biological specimens (Su and Lee 2020).

The vast majority of compounds that have covalent bonds, whether organic or 
inorganic, absorb various frequencies of electromagnetic radiation in the infrared 
region. This region involves wavelengths greater than those associated with visible 
light, ranging from approximately 400 to 800 nm (Pavia et  al. 2009; Silverstein 
et al. 2014). However, most chemists refer to radiation in the vibrational infrared 
region of the electromagnetic spectrum by using units of wave number (n) data in 
(cm−1) instead of wavelength (μ or μm). The wave number is preferred as a unit 
because it is directly proportional to the energy. Therefore, in terms of wave number, 
vibrational infrared ranges from 4000 to 400  cm−1. This range corresponds to 
wavelengths of 2.5 to 25 μm (Pavia et al. 2009). In organic chemistry, there has been 
huge interest in the regions of near infrared, from 14,290 to 4000 cm−1, as well as 
far infrared, from 700 to 200 cm−1 (Silverstein et al. 2014).

Infrared absorption comprises energy changes of the order of 8–40 kJ/mol. The 
radiation in this range encompasses vibrational frequencies from the stretching and 
folding of bonds in most covalent molecules. In this process, the level of radiation 
that is absorbed is equivalent to the natural vibrational frequencies of the molecule, 
and the absorbed energy serves to increase the amplitude of the vibrational 
movements of the bonds. However, not all bonds in a molecule are capable of 
absorbing energy in infrared, even if the frequency of radiation is the same as that 
of vibrational motion. Only connections that have a dipole moment that changes as 
a function of time are able to absorb radiation in infrared. Symmetric bonds, such as 
hydrogen gas (H2) and chlorine gas (Cl2), do not absorb radiation in infrared (Pavia 
et al. 2009).

The mechanism that obtains the infrared absorption spectrum of a compound is 
called an infrared spectrometer or spectrophotometer. In chemistry laboratories, 
dispersive spectrophotometers and Fourier transform (FT) spectrophotometers are 
widely used. These instruments provide composite spectra in the range of 4000 to 
400  cm−1. The two devices produce almost identical spectra, but the FT 
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spectrophotometers generate spectra with higher speeds than those of the dispersive 
spectrophotometers (Su and Lee 2020).

Fourier transform infrared (FTIR) spectrophotometers have become dominant 
equipment for measuring infrared spectra (Su and Lee 2020). In FTIR spectroscopy, 
schematized in Fig. 4, an external light-beam infrared radiation source accompanies 
the beam separator. A part of it is reflected in a mirror fixed at a 90° angle, while 
another part is transmitted to a moving mirror. After being reflected in the respective 
mirrors, the beams make their way back to the beam divider. When the two beams 
meet in the beam divider, they recombine. The difference in the optical path can be 
controlled by moving the moving mirror. Owing to interference, the intensity of 
each beam that passes to the detector and returns to the source depends on the 
difference in the path of the beams in the two arms of the interferometer. The com-
bined beam containing these interference patterns produces the interferogram (Su 
and Lee 2020).

The beams produced by the divider then pass through the sample, and it simulta-
neously absorbs all the frequencies found in its infrared spectrum. The 
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Fig. 4 Scheme of an FTIR spectrophotometer (Pavia et al. 2010)
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interferogram signal then reaches the detector that contains information about the 
amount of energy absorbed in each frequency. Thus, using the final interferogram, 
the computer performs a mathematical operation called the Fourier transform, 
producing an infrared spectrum (Fig. 5) (Pavia et al. 2009).

6.2  Mass Spectrometry

Mass spectrometry (MS) is currently one of the main analytical techniques used. It 
can analyze a large number of small molecules in complex samples; more 
specifically, it can identify and quantify metabolites. MS is a widely used technique 
thanks to its high sensitivity, high yield, and ability to detect a significant number of 
molecules in samples (Zhang et al. 2020).

In MS, molecules are first ionized by colliding them into a high-energy electron 
beam. The shock between the electrons and the analyte molecules provides enough 
energy to leave them in excited states (Skoog et  al. 2007). Fragmented ions are 
magnetically arranged according to their mass/load (m/z) ratios. In this process, the 
precursor ion (molecular ion, referring to the loss of electrons in the molecule) 
undergoes fragmentation, generating other ions (Pavia et al. 2009; Mcmurry 2011; 
Silverstein et al. 2014). This is exemplified in the case of ethylbenzene (Fig. 6), in 
which the main product is the molecule C6H5CH2

+, which arises from the loss of a 
methyl group (CH3); in this case, other small fragments are also formed (Skoog 
et al. 2007). In turn, these ions make it possible to obtain information on the nature 
and structure of its precursor molecule (Mcmurry 2011).

Generally, the mass spectrometer equipment consists of five main components 
(Fig. 7). The first is the sample input unit, where the sample can be a gas, a liquid, 
or a solid. The sample is then converted into steam to obtain a flow of molecules, 
which is directed to the ionization source, where the molecules are transformed into 
gas-phase ions; these ions are accelerated by an electromagnetic field, and next, the 
mass analyzer strains the ions from the sample according to their m/z ratios. The 
ions then reach the detector and are counted, and the signal is processed and recorded 
by the data system, usually on a computer. The result of the data is a mass spectrum 
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graph that represents the number of ions that were detected to have an m/z ratio 
function, as shown earlier (Pavia et al. 2009; Silverstein et al. 2014).

In metabolomic analysis, there are three more common MS techniques, includ-
ing gas chromatography-mass spectrometry (GC/MS), liquid chromatography-mass 
spectrometry (LC/MS), and image mass spectrometry (IMS) (Zhang et al. 2020).

Currently mass spectrometry is used in a multitude of activities. The biotechnol-
ogy industry uses MS to examine and sequence proteins, oligonucleotides, and 
polysaccharides (Pavia et  al. 2009), and it is also used in the determination of 
polypeptide structures and other high-molecular-mass biopolymers (Skoog et  al. 
2007). MS is essential in the pharmaceutical industry because it is used in all phases 
of the drug-development process, from the identification of compounds to structural 
analyses and the production of synthetic products (Pavia et al. 2009). In the area of 
health, this technique is widely used in clinical research, blood tests, urine tests, and 
drug tests and in the identification of compounds designated as pathological markers 
(Zhang et al. 2020).
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6.3  Nuclear Magnetic Resonance (NMR)

Nuclear magnetic resonance spectroscopy is the ideal technique in numerous appli-
cations because experiments that use it are not destructive. Analyses using NMR 
spectroscopy are quantitative (with proper experimental assemblies), which allows 
them to determine the concentrations of analytes (Ben-Tal et al. 2022). It is appli-
cable in a wide spectrum of the common nuclei of organic and organometallic sub-
stances and in molecular interaction studies. It is reasonably sensitive and provides 
detailed structures. Spectroscopy also provides data on the spatial arrangement of 
molecules; for this, both one-dimensional and two-dimensional experiments are 
used. Thus, experiments should be designed to determine the number of chiral and/
or enantiomeric molecules.

According to Ben-Tal et al. (2022), through NMR, it is possible to monitor the 
reaction mechanisms of organic biomolecules in order to verify the analysis 
approach, reaction conditions, temperature, speed, symmetry, resolution, and 
complexity of kinetics, among other parameters. It also has applications in analyses 
using synthesis and isotopic markers.

The identification of components in complex mixtures has led to the develop-
ment of a new trend in the chemistry of natural products. One method of such iden-
tification call metabolomics. The goal of metabolomics is to detect and identify all 
the metabolites involved in specific processes, an objective that cannot be realisti-
cally achieved by any of the existing analytical methods (Ge et al. 2018). Therefore, 
the development of new analytical platforms is an important issue in the field of 
metabolomics. These combined techniques are often called the hyphenated method, 
characterized by a combination of chromatography techniques and/or extraction- 
based techniques with spectroscopic analytical instruments. Among them are plat-
forms that combine spectroscopy and spectrometry with LC (Wu et al. 2008; Porzel 
et al. 2014; Mung and Li 2018).

As an emerging field, metabolomics requires a new test approach, different from 
the NMR technique, to enable a simple and rapid screening of constituents in mix-
tures (Castejón et al. 2014; Pinheiro et al. 2022)—such as determining the chemical 
profile of fatty acid contents to classify the quality of edible oils (Jabeur et al. 2014). 
This approach has been made possible thanks to technical advances in the field of 
automatic sample exchangers, improvements in the quality of  spectrometers, and 
the development of new software for processing spectral data. It also involves a 
fully automated system comprising the preparation, acquisition, processing, analy-
sis, and interpretation of spectral data (Spraul et al. 2009; Monakhova et al. 2014; 
Castejón et al. 2016).

Thus, technique spectrometry is associated with a range of applications, includ-
ing the identification and quantification of isolated structures, the monitoring of 
chemical reactions, and the screening of samples in mixtures. In this way, its use in 
the chemistry of organic molecules is essential.
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6.4  X-Ray Diffraction

After X-rays were discovered in 1895 by Conrad Wilhelm Röntgen, in 1912, Max 
Von Lou and coworkers observed that X-rays interact with crystalline substances, 
producing interference patterns, which were interpreted as being the result of a 
regular three-dimensional arrangement (Coppens and Penner-Hahn 2001; Wagner 
and Kratky 2015).

X-rays are generated from a tube that is composed of a metallic filament that acts 
as the cathode, which is the opposite of the anode (larger than the filament) of the 
tube (Haschke 2014; Skoog 2017). After applying a high voltage to the filament, 
high-energy electrons are produced and travel toward the anode, and after this 
collision, X-rays are generated (Haschke 2014; Skoog 2017). Cu (Kα1 = 0.154056 nm) 
and Mo (Kα1 = 0.070930 nm) are the elements most used as sources of radiation 
(Přichystal et  al. 2016). The adjusted level of the applied voltage indicates the 
energy of the electrons (Haschke 2014).

Next, when the target material interacts with electromagnetic radiation, the elas-
tic scattering (diffraction) of a small fraction of the incoming light occurs, produc-
ing X-ray spectra characteristic of the sample (Bunaciu et al. 2015). When it is not 
possible to obtain single crystals of the substance, the technique can be applied to 
the analysis of powder samples (Jegorov and Hušák 2014). Hence, X-ray diffraction 
(also called crystallography) is one of the most powerful techniques for determining 
the details of the three-dimensional structures of molecules.

X-ray diffraction can help explain these compounds’ biological activities by con-
firming their structure, stereochemistry, and relative or absolute configuration. For 
example, a pair of enantiomeric alkaloid dimers, (+)- and (−)-pestaloxazine A 
(Fig. 1), isolated from a Pestalotiopsis sp. fungus, shows anti-enterovirus activity 
(IC50 14.2 and 69.1 μM, respectively), which indicates that the stereochemistry of 
the spiro center might contribute to this antiviral activity (Jia et al. 2015).

The (S)- enantiomer of 8-formyl-5,7-dihydroxyflavanone (Fig. 1), a formylated 
flavonoid, had higher antifungal activity against Cryptococcus neoformans (IC50 
70.4 μM) compared to the (R)- enantiomer (no obvious activity), which indicates 
that the configuration of the C2 atom is associated with this data (Zaki et al. 2016).

In one study, the difference in the immunosuppressive activity of the murine 
splenocytes of fischeramides A (IC50 7.08  μM) and B (no obvious activity), 
geometric isomers, and alkaloids suggested that the C10–C11 double bond 
(highlighted in red in Fig. 1) in E-geometry (fischeramide A) was more beneficial 
than that in Z-geometry (fischeramide B) at improving inhibitory potency (Lin 
et al. 2020).

Two lignan isomers, (cis)-pensione and (trans)-penchinone, exhibited different 
protective activities against acetaminophen (AP)-induced damage to hepatocytes 
(trans showed effective protection, while cis showed weak activity), demonstrating 
that the configuration of the propenyl unit was related to this result (He et al. 2015).

Dong et al. (2020) identified a new bilobalide isomer (Fig. 1), a terpene from an 
extract of Ginkgo biloba, and after confirming the structure and absolute 
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configuration, this terpene showed no obvious antiplatelet aggregation activity, 
which was a divergence from the activity obtained from this same test with another 
bilobalide isomer (IC50 37.34 μg/mL), identified by (Zheng et al. 2019).

The anti-inflammatory effects from (±)-homocrepidine A (Fig. 1), isolated from 
Dendrobium crepidatum, on the production of nitric oxide indicated that racemic 
alkaloids have different biological activities and that (+)-homocrepidine A (IC50 
3.6 μM) (Fig. 1) had much stronger anti-inflammatory activity than (−)-homocrepidine 
A (IC50 22.8 μM) (Hu et al. 2016).

After confirming the absolute configuration of the triterpene dichapegenins A 
(Fig.  1), via X-ray crystallography, triterpene dichapegenins A showed better 
cytotoxic activity against human tumor cells (human Burkitt’s lymphoma IC50 
5 μM; human alveolar basal epithelial IC50 6.9 μM; and human liver hepatocellular 
carcinoma cell line IC50 6 μM) compared to isomer dichapegenins B (no activity 
against tumor cells) (Zhou et al. 2021).

Wang et  al. (2021) reported that the synthesis of 32 stereochemically diverse 
isomers of spirooliganin and their structures were determined via spectroscopic 
techniques and also supported by the X-ray of crystal products. Only one isomer 
had a similar level of activity to that of spirooliganin against coxsackievirus B3 
(spirooliganin = IC50 2.1 μM; isomer spirooliganin = IC50 3.7 μM) (Fig. 8). X-ray 
diffraction is as important a tool as NMR spectrometry in characterizing natural 
compounds, although one of the advantages of X-rays is the exact reflection of the 
structure of the substance independent of the influences of neighboring atoms, 
whereas the NMR technique is affected by such influences. In this way, 
crystallography is a powerful ally in the discovery of new bioactive compounds with 
therapeutic properties.

6.5  Ultraviolet-Visible Spectroscopy (UV-Vis Spectroscopy)

UV-vis spectrophotometry is a simple and versatile analytical technique that has 
been widely used for the quantification and characterization of the structure of 
various compounds. This method is based on the absorption of light by a sample, 
and the quantification of this measurement provides key information for the analyst. 
In different regions of the electromagnetic spectrum, atomic and molecular 
transitions can be generated when the molecule interacts with radiation, which 
provides important information about it in that each substance can absorb at specific 
frequencies of electromagnetic radiation. In the case of UV-vis spectrophotometry, 
the wavelength range for the UV region is between 180 and 380 nm. The Beer–
Lambert law relates to the process of absorption of radiation by the analyte and its 
concentration: when light passes through the absorbing sample, the intensity 
decreases thanks to the excitation of the analyte. In this way, it is possible to measure 
the amount of analyte by developing a calibration curve that compares the absorbance 
or transmittance of light with the concentration of the sample, showing a directly 
proportional relationship: The higher the concentration, the higher the absorption or 
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Fig. 8 Natural compounds with their structures and configurations confirmed by X-ray diffrac-
tion (Wang et al. 2021)

absorbance. An absorption spectrum is a graph of the absorbance of the sample 
versus the wavelength. Molar absorptivity as a function of wavelength is independent 
of concentration and is characteristic of each molecule, allowing these graphs to be 
used for the identification or confirmation of a compound (Skoog et al. 2007).

Spectroscopy equipment is composed mainly of the following components: (1) a 
radiation source, (2) a wavelength selector, (3) one or more containers for the 
sample, (4) a radiation detector, and (5) a data system that processes the signals and 
readings. In the case of UV spectrophotometry, the lamp most used to emit radiation 
is deuterium, or hydrogen, which provides a useful continuous spectrum, in the 
region of 160–375 nm. Many equipments use a monochromator or filter to select the 
desired wavelength so that only a band of interest is detected and measured, which 
is achieved by the diffraction grating that these devices have, and that allows the 
light to be scattered in its wavelengths. The detector converts the radiation into an 
electrical signal that can then be amplified and converted into numbers proportional 
to the magnitude of the original quantity. The most commonly used detectors for 
UV are phototubes and photomultiplier tubes that work within a wavelength range 
from 150 to 1000  nm. The spectroscopic instrument used to measure sample 
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absorption is called a spectrometer, and it uses a monochromator or polychrome in 
combination with a detector to convert radiation intensity into electrical signals. A 
spectrophotometer is a type of equipment that can measure the relationship between 
the radiation between two rays, which is necessary to measure absorbance. This 
comes with the notable advantage of continuous variation in wavelengths, which 
allows absorption spectra to be recorded (Skoog et al. 2007).

Organic molecules can absorb radiation at wavelengths between 180 and 780 nm 
thanks to the interactions of photons and electrons involved in bond formation or 
around nitrogen, oxygen, sulfur, and halogen atoms. Organic functional groups that 
absorb radiation in UV-vis are known as chromophores (Maleš et al. 2022), including 
alkenes, alkynes, carbonyls, carboxyls, amides, azo groups, nitrous groups, nitrous 
groups, nitrates, and some aromatics. Therefore, ultraviolet spectrophotometry may 
be useful for the detection of chromophore groups and aromatic rings in various 
samples thanks to the electron transitions of π bonds, σ bonds, and lone-electron 
pairs (Patle et  al. 2020). Among these are phenolic compounds and flavonoids, 
which are biomolecules in natural products and provide health benefits for humans 
(Lin et al. 2016). Phenols are molecules whose structures contain phenolic rings, 
carboxylic acids, and hydroxyl groups such as gallic acid, ferulic acid, coumaric 
acid, and caffeic acid, among others. Flavonoids are polyphenols that have at least 
two phenolic rings, and about 4000 compounds of this type have been identified in 
different plant species (Marinova et  al. 2005; Aziz et  al. 2022). Flavonoids and 
polyphenols show antimicrobial, anticancer, antioxidant, and antidiabetic properties 
(Lin et al. 2016).

Patle et al. (2020) used UV-vis spectrophotometry to screen phytochemicals in 
plant samples, where through absorption spectra, they showed the presence of 
flavonoids, phenolic acids, and tannins by using as standards gallic acid, quercetin, 
rutin, and tannic acid, which exhibit absorption levels between 250 and 370 nm. 
Scano (2021) carried out the characterization of polyphenols in red and white wines 
by integrating the spectral data of the techniques of FTIR (Fourier transform infrared 
spectroscopy) and UV-vis spectrophotometry, which allowed them to identify 
composites such as flavonoids and flavonols in the ultraviolet region in such a way 
that the complementary use of these two instrumental techniques was confirmed to 
provide valuable information on the fingerprint of the fractions of polyphenolic 
compounds in red and white wines. On the other hand, some researchers applied 
chemometrics to data obtained from NMR  (Nuclear Magnetic Resonance 
Spectroscopy) and UV-vis spectroscopy as a way to evaluate artichoke extracts and 
concluded that they are efficient techniques for the structural characterization of 
cynaropicrin, a bioactive lactone that was obtained in high proportions from this 
plant product (Boffo et al. 2022). Giglio et al. (2023) also used chemometry from 
data obtained by UV-vis spectroscopy and high-performance liquid chromatography 
(HPLC) for the quantification of various phenols in New Zealand pinot noir wines. 
They concluded that UV-vis spectroscopy can be used to perform calibrations for a 
wide variety of phenolic compounds in commercial wines. In addition, they obtained 
accurate models for higher-concentration molecules such as malvidin-3-glucoside 
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and caftaric acid, which may be useful for small wine companies that aim to quan-
tify these types of molecules at a low cost and with a high degree of accuracy.

Song et al. (2020) used data from the UV-vis and UHPLC/Q-TOF-MS spectro-
photometry techniques to predict the antioxidant capacity of and total phenol con-
tent in Gayuba leaves. In the experimental part, they observed two peaks in the UV 
spectrum, at 280 and 358 nm, which corresponded to electronic transitions n-π^* 
that were caused by aromatic compounds and some chromophores, which were 
assigned to phenolic acids and flavonols (Aleixandre-Tudo and du Toit 2018). In 
addition, the samples that had high antioxidant capacities provided higher absor-
bances at these two wavelengths, which may be markers that predict antioxidant 
capacities. The results of the study indicate that the data obtained by UV-vis 
spectrophotometry are suitable for the prediction of this capacity and are comparable 
with techniques such as FTIR or NIR in other studies (Silva et al. 2014). On the 
other hand, research has also been carried out on the rapid quantification of total 
phenols and total ferulic acids in whole wheat by using the data provided by this 
analytical technique and developing partial least squares models, which provided 
very accurate predictive models, especially for the quantification of the total content 
of phenols (Tian et al. 2021). In conclusion, UV-vis spectrophotometry is an efficient 
technique for the determination of the chromophore groups present in the bioactive 
compounds of plants.
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Supercritical Fluid for Extraction 
and Isolation of Natural Compounds

K. Vidwathpriya, S. Sriranjani, P. K. Niharika, and N. V. Anil Kumar

Abstract Supercritical fluid (SCF) extraction has emerged as an effective and effi-
cient method for separating important phytoconstituents. The extraction process is 
simple and environmentally friendly, generating minimal to no waste. This proce-
dure offers various advantages over traditional extraction techniques. This chapter 
discusses the procedure, advantages, and different types of phytoconstituents iso-
lated using supercritical fluids, with a preference for natural products.

Keywords Supercritical · Extraction · Phytoconstituents · Solvent · CO2 · Dissolve 
· Oil · Alkaloids · Flavonoids · Terpenes

1  Introduction

Supercritical fluid (SCF) extraction is an analytical method to separate the analyte 
from the sample matrix using supercritical fluids as solvents (Hedrick et al. 1992). 
This technique is rapid, inexpensive, sustainable, and simple to execute, compared 
to the traditional Soxhlet extraction, where solvent costs are usually high, requiring 
several hours accompanied by an additional concentration step that aids pollution 
(Sapkale et al. 2010).

SCF extraction was initiated along with supercritical fluid chromatography in the 
late twentieth century for isolating forensically relevant compounds (Khaw et al. 
2017). It later gained popularity when supercritical toluene was used mainly in the 
petroleum industry with many commercial interests.

Over the last few years, SCF extraction has gained recognition for its many 
established advantages, particularly supercritical carbon dioxide, because of its 
easy-to-use properties (2017). CO2 has a near ambient critical temperature of 31 °C, 
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allowing many biological materials and natural products to be processed around 
35 °C without denaturation. It is being extensively used in decaffeination and power 
generation processes and is widely used to extract natural products, leaving no toxic 
residues behind (Khaw et al. 2017).

The advantage of supercritical CO2 (ScCO2) is that its extraction properties can 
be precisely varied with just minute changes in temperature and pressure. The 
properties can also be modified using solvents like ethanol (Camel 2001). Other 
than CO2, various solvents are used to extract bioactive components from plants, 
namely, propane, DME, SF2, and ethanol (Bizaj et al. 2021).

2  Methodology/Mechanism

A supercritical fluid is a substance whose thermodynamic properties are higher than 
the critical temperature and pressure of the source compound. The maximum 
temperature, beyond which the gaseous state of a substance cannot be liquified, 
irrespective of the amount of pressure applied, is called the critical temperature of 
the substance. Critical pressure is the minimum pressure required to condense a 
gaseous substance to a liquid at its critical temperature (Alekseev et al. 2020). For 
carbon dioxide, the critical temperature is 304.2 K and 73.0 atm.

In the supercritical region, a homogenous fluid materializes, which has unique 
physiochemical properties. In this region, the surface tension of the supercritical 
fluid is equal to zero, the dissolving and swelling capacity increases, and the 
viscosity decreases (Alekseev et al. 2020). The physiochemical properties can be 
modulated by changing the parameters of the supercritical state. The density of 
supercritical fluids changes with variations in pressure and temperature; a slight 
increase in pressure can cause a drastic increase in the density of the supercritical 
fluid, which in turn causes an increase in the solubility of the supercritical solvent. 
Once extraction is complete, solvent recovery is relatively simple due to the 
volatility of the supercritical fluid leaving behind the extracted analyte (Pourmortazavi 
et al. 2014). Such manipulations of the physiochemical properties make SCFs an 
excellent solvent for extraction due to their high selectivity, solubility, and extraction 
efficiency (Yousefi et al. 2019).

The setup (Fig. 1) for supercritical fluid extraction involves a pump, a pressur-
ized compartment, and a collecting vessel. The solvent is commonly stored in a tank 
connected to a pressurized pump. The commonly used solvent is CO2, pumped into 
the system as a liquid below 5 °C and at around 50 bars of pressure. The fluid is 
cooled to remain a liquid but heated to critical condition after pressurization. The 
pressure must be maintained in the extraction cell, and heating should be provided 
to counteract the cooling caused by the adiabatic expansion of the CO2. Raw 
material from which the natural product is extracted is placed in the extraction cell, 
where pressure and temperature are controlled. The raw material is also pre-treated 
to modulate the moisture content and particle size for optimal extraction. The super-
critical fluid is allowed to enter the pressurized extraction cell, where the natural 
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CO2 cylinder

Valve Pump Heater Extractor

CollectorFlow gauge

Fig. 1 Setup of ScCO2 extraction

Table 1 List of chemicals isolated from different species using ScCO2

Sl 
no Species name Chemicals/phytochemicals Ref

1 Abelmoschus 
manihot

Rutin, hyperin, isoquercetin, hibifolin, 
myricetin, quercetin-3′-O-glucoside, quercetin

Li et al. (2016a)

2 Acacia dealbata Oxygenated triterpenes Casas et al. (2021)
3 Acacia dealbata Lupenyl acetate, lupenone, tetracosanoic acid, 

hexacosan-1-ol
Rodrigues et al. (2021)

4 Acanthophoenix 
rubra

Vitamin E 2018)

5 Acanthus 
ilicifolius

2-benzoxazolinone Arumugam and 
Thiruganasambantham 
(2018)

6 Acer nikoense Diarylheptanoids Alberti et al. (2018)
7 Alnus glutinosa β-Sitosterol, betulin, betulinic acid, lupeol Felföldi-Gáva et al. 

(2012)
8 Alnus hirsuta Diarylheptanoids Alberti et al. (2018)
9 Aloysia 

citrodora
Phenylpropanoids, Flavonoids Leyva-Jiménez et al. 

(2020)
10 Alpinia 

blepharocalyx
Diarylheptanoids Alberti et al. (2018)

11 Alpinia 
officinarum

Diarylheptanoids Alberti et al. (2018)

(continued)

products to be extracted dissolve in the supercritical fluid based on its solubility, 
which in turn is dictated by its density and pressure. Once the extraction is com-
pleted, the fluid with the dissolved natural product is passed through a chamber with 
lesser pressure, reducing the fluid’s dissolving power, and the natural product gets 
precipitated out. The depressurization of the supercritical CO2 causes the fluid to 
become a gas and can be collected separately for further use (Sapkale et al. 2010).

Table 1 lists the chemicals/phytochemicals extracted from the species. Some of 
the chemicals listed in this table are generic in name, as the literature does not 
specify the individual compound. The table is arranged in alphabetical order of the 
species name.
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Table 1 (continued)

Sl 
no Species name Chemicals/phytochemicals Ref

12 Amaranthus 
cruentus

Linoleic acid, decadieneal, linoleic acid propyl 
ester, 2.5-pentadecadiene-l-ol, 9-oxononanoic 
acid

Velikorodov et al. 
(2018)

13 Ananas 
comosus

Esters, ketones, alcohols, aldehydes, acids Mohamad et al. (2019)

14 Andrographis 
paniculata

Rosmarinic acid, eurycomanone, 
andrographolide

Abd Aziz et al. (2021)

15 Andrographis 
paniculata

Andrographolide Kumoro et al. (2019)

16 Andrographis 
paniculata

Andrographolides Kumar et al. (2014)

17 Annona 
muricata

Flavonoids, Tannins, Phenolics, Phytate Mesquita et al. (2021)

18 Aquilaria 
malaccensis

n-Hexadecanoic,1H-Cycloprop[e]azulene, 
decahydro-1,1,7-trimethyl-4-methylene

Eissa et al. (2018)

19 Artemisia annua Artemisinin Baldino and Reverchon 
(2018)

20 Ascophyllum 
nodosum,

Alginate, agar, carrageenan Abdul Khalil et al. 
(2018)

21 Azadirachta 
indica

Terpinen-4-ol, 1,2,4-Trithiolane, 3,5-diethyl, 
allyl isopropyl sulphide, Cycloisolongifolene, 
á-Bisabolene, (−)-α-Panasinsen, 
Isocaryophyllene, trans-Sesquisabinene 
hydrate, 1-Naphthalenol

Swapna Sonale et al. 
(2018)

22 Baccharis 
uncinella

α-Pinene, β-pinene, limonene, (E)- 
caryophyllene, germacrene D, 
bicyclogermacrene, spathulenol, caryophyllene 
oxide

Minteguiaga et al. 
(2021)

23 Betula 
platyphylla

Diarylheptanoids Alberti et al. (2018)

24 Boswellia 
serrata

α-Thujene, camphene, β-pinene, myrcene, 
limonene, m-cymene, cis-verbenol

Ayub et al. (2018)

25 Brassica 
campestris

Linolenic acid amide, linolenic acid glyceride, 
linolenic acid, palmitic acid

Li et al. (2016c)

26 Brassica napus Phytosterols Jafarian Asl et al. 
(2020)

27 Bryonopsis 
laciniosa

Linoleic acid, linolenic acid, β-sitosterol 
stigmasterol

Balkrishna et al. (2022)

28 Calendula 
officinalis

Bioactive pentacyclic triterpenes Villanueva-Bermejo 
et al. (2019)

29 Calluna 
vulgaris

Bioactive pentacyclic triterpenes Villanueva-Bermejo 
et al. (2019)

(continued)
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Table 1 (continued)

Sl 
no Species name Chemicals/phytochemicals Ref

30 Camellia 
oleifera

Palmitic acid, stearic acid, oleic acid, linoleic 
acid, α-tocopherol, β-carotene, squalene 
phytosterol. 3-hydroxytyrosol, benzoic acid, 
catechins, 4-hydroxybenzoic acid, chlorogenic 
acid

Fang et al. (2015)

31 Cananga 
latifolia

Phenolic acids, flavonoids, tannins, alkaloids Chhouk et al. (2018)

32 Cannabis sativa Tetrahydrocannabinol Gallo-Molina et al. 
(2019)

33 Cannabis sativa ω-6 linoleic acid, ω-3 α-linolenic acid Devi and Khanam 
(2019b)

34 Cannabis sativa Cannabidiol Marzorati et al. (2020)
35 Capsicum 

annuum
γ-Tocopherol Cvetković et al. (2020)

36 Capsicum 
chinense

Rutin, vicenin-2 de Aguiar et al. (2019)

37 Capsicum 
frutescens

Capsaicinoids de Aguiar et al. (2018)

38 Carica papaya Oleic acid Devi and Khanam 
(2019a)

39 Catharanthus 
roseus

Vincristine Karimi and Raofie 
(2019)

40 Chaenomeles 
japonica

α-Tocopherol, β-tocopherol, γ-tocopherol Górnaś et al. (2019)

41 Chenopodium 
quinoa

Tocopherol Benito-Román et al. 
(2018)

42 Cinnamomum 
cambodianum

Phenolic acids, flavonoids, tannins, alkaloids Chhouk et al. (2018)

43 Cinnamomum 
verum

Cinnamaldehyde, eugenol Masghati and 
Ghoreishi (2018)

44 Cinnamomum 
verum

Eugenol, eugenol acetate Khalil et al. (2017)

45 Citrus grandis 7-Methoxy-8-(2-oxo-3-methylbutyl) coumarin, 
(6E,8E,10E)-2,6,11,15-tetramethyl-2,6,8,10,14- 
hexadecapentaene, γ-sitosterol, hexadecanoic 
acid, (E,E)-2,4-decadienal, pentacosane

Gyawali et al. (2012a)

46 Citrus grandis (Z)-9-Octadecenoic acid, limonene, 
α-Terpineol, (E,E)-2,4-decadienal, 
hexadecanoic acid, pentacosane, stigmasterol, 
γ-sitosterol

Gyawali et al. (2012b)

47 Citrus hassaku (Z)-9-Octadecenoic acid, limonene, 
α-Terpineol, (E,E)-2,4-decadienal, 
hexadecanoic acid, pentacosane, stigmasterol, 
γ-sitosterol

Gyawali et al. (2012b)

48 Citrus Iyo (Z)-9-Octadecenoic acid, limonene, 
α-Terpineol, (E,E)-2,4-decadienal, 
hexadecanoic acid, pentacosane, stigmasterol, 
γ-sitosterol

Gyawali et al. (2012b)

(continued)
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Table 1 (continued)

Sl 
no Species name Chemicals/phytochemicals Ref

49 Citrus maxima Terpenes, terpenoids, aldehydes, alcohols, 
esters

Chen et al. (2018a)

50 Citrus reticulata Nobiletin, 3,5,6,7,8,3′,4′-heptamethoxyflavone, 
tangeretin

Long et al. (2019)

51 Citrus sinensis α-Terpineol, D-Limonene, hesperidin Barrales et al. (2018)
52 Citrus sinensis Limonene, Hesperidin Jokić et al. (2020)
53 Colchicum 

speciosum
Colchicine Bayrak et al. (2019)

54 Corallina 
officinalis

Acyclic alkanes, branched alkanes, alkenes, 
organobromine compounds, organosulfur 
compounds, aromatic compounds, 
monoterpenes, sesquiterpenes, diterpenes, 
triterpene

Djapic (2018)

55 Coriandrum 
sativum

Linalool, camphor, linalool oxide, p-cymene, 
α-pinene, limonene, geranyl acetate

Choi and Lee (2018)

56 Corylus 
avellana

Diarylheptanoids Alberti et al. (2018)

57 Crocus sativus Crocetin sugar esters, picrocrocin, safranin Kyriakoudi and 
Z. Tsimidou (2018)

58 Crocus sativus Apocarotenoids, anthocyanins, flavonoids, 
anthocyanidins, phenolic compounds

Bakshi et al. (2022)

59 Croton 
Polycarpus

Flavanols, sesquiterpenoids Aponte-Buitrago et al. 
(2017)

60 Cucumis melo Linoleic acid, oleic acid, palmitic acid, stearic 
acid

Bouazzaoui et al. 
(2018)

61 Cucurbita 
maxima

Tocopherols Rohman and Irnawati 
(2020)

62 Cucurbita pepo Desmosterol, campesterol, stigmasterol, 
β-sitosterol, spinasterol, Δ7,22,25- 
stigmastatrienol, Δ7-stigmastenol, Δ7,25- 
stigmastadienol, Δ7-avenasterol

Hrabovski et al. (2012)

63 Cuminum 
cyminum

Cumin aldehyde, γ-terpinene, β-pinene, 
β-Cumic aldehyde, α-phellandrene

Fang et al. (2018)

64 Curcuma caesia Beta-elemene, curzerenone, boldenone, 
2-cyclohexen-1-one, 4-ethynyl-4-hydroxy-3, 5, 
5-trimethyl.

Chaturvedi et al. 
(2020)

65 Curcuma longa Tumerone, ar-turmerone, curlone Haiyee et al. (2016)
66 Curcuma longa Turmeric oil Priyanka and Khanam 

(2018)
67 Cymbopogon 

citronella
Essential oil Wu et al. (2019)

68 Cymbopogon 
winterianus

Citronella oil Salea et al. (2018)

(continued)
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Table 1 (continued)

Sl 
no Species name Chemicals/phytochemicals Ref

69 Cynomorium 
coccineum

Glucose, Fructose, Sucrose, Alanine, 
Asparagine, Glutamine Proline, Valine, 
Acetate, Citrate, Formate, Fumarate, Malate, 
Malonate, Succinate, Betaine, Choline

Attia et al. (2018)

70 Cyphomandra 
Betacea

Linoleic acid, oleic acid, palmitic acid, stearic 
acid, linolenic acid, palmitoleic acid, squalene, 
β-sitosterol, cycloartenol, dihydrolanosterol, 
sterols, γ-tocopherol

Dorado Achicanoy 
et al. (2018)

71 Dalbergia 
ecastophyllum

Artepillin C, p-coumaric acid Machado et al. (2016)

72 Daucus carota Carotenoids Miȩkus et al. (2019)
73 Derris elliptica Rotenoids Baldino et al. (2018b)
74 Descurainia 

sophia
Sinapic acid Hadinezhad et al. 

(2015)
75 Dialium 

cochinchinense
Phenolic acids, flavonoids, tannins, alkaloids Chhouk et al. (2018)

76 Dipteryx 
odorata

Alcohols, carbonyl compounds, acids, esters, 
terpenes, terpenoids, lactones, aliphatic 
aromatic hydrocarbons

Bajer et al. (2018)

77 Duguetia 
furfuracea

Alloaromadendrene oxide-1, β-caryophyllene 
oxide,(+)-Spathulenol, Spathulenol,(−)(−) 
Caryophyllene oxide, Methyl eladiate, 
Aromadendrene oxide-2,Alloaromadendrene 
oxide-2,(−)-Spathulenol,Isoaromadendrene 
epoxide, 2-methylenecholestran-3-ol, 
α-tocoferol,Palmitic acid,3-Deoxyestradiol,2 
Methyhexadecan-1-ol

Favareto et al. (2019)

78 Echinacea 
purpurea

Caftaric acid, cichoric acid, chlorogenic acid, 
cynarin, echinacoside

Konar et al. (2014)

79 Eichhornia 
crassipes

Stigmasterol, cholesterol, β-sitosterol Martins et al. 2016)

80 Elaeagnus 
angustifoli

Linoleic acid, decadieneal, linoleic acid propyl 
ester, 2.5-pentadecadiene-l-ol, 9-oxononanoic 
acid

Velikorodov et al. 
(2018)

81 Elaeagnus 
mollis

Linoleic acid, oleic acid, palmitic acid Mu et al. (2021)

82 Elaeis 
guineensis

Phenolics, flavonoids, carotenoids Bezerra et al. (2018)

83 Elaeis 
guineensis

Phenolic compounds Chan et al. (2018)

84 Elaeis 
guineensis

Vitamin E Damrongwattanakool 
and Raviyan (2018)

85 Elaeis 
guineensis

Hexadecanoic acid, octadecanoic acid Jaafar et al. (2011)

(continued)
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Table 1 (continued)

Sl 
no Species name Chemicals/phytochemicals Ref

86 Elaeis 
guineensis

α-Carotene, β-carotene Carmona et al. (2018)

87 Elettaria 
cardamomum

1,8-cineol Ghosh et al. (2015)

88 Eremanthus 
erythropappus

α-Bisabolol Náthia-Neves et al. 
(2020)

89 Eucalyptus 
globulus

Quinolizidine alkaloids, ß- Carotenes, 
Saponins, tannins, steroids, flavonoids

Abd Hamid et al. 
(2018)

90 Eucommia 
ulmoides

Linolenic acid Zhang et al. (2018)

91 Eugenia 
involucrata

α-Tocopherol Barzotto et al. 2019)

92 Eurycoma 
longifolia

Rosmarinic acid, eurycomanone, 
andrographolide

Abd Aziz et al. (2021)

93 Ficus hirta Elemicin, Psoralen, Palmitic acid, Bergapten, 
Linolenic acid, Medicarpin, Retinoic Acid, 
Maackiain, Squalene

Deng et al. (2018)

94 Foeniculum 
vulgare

Sterols Bettaieb Rebey et al. 
(2019)

95 Furcraea selloa Saponins Ramli et al. (2019)
96 Ganoderma 

lucidum
Oleic acid, palmitic acid, linoleic acid, 
Ergosta-7, 22-dien-3β-ol, ergosterol

Li et al. (2016b)

97 Garcinia 
mangostana

Squalene, α-Cubebene Hamid et al. (2013)

98 Garcinia 
Mangostana

α-Mangostin Hamid et al. (2018)

99 Gardenia 
angkorensis

Phenolic acids, flavonoids, tannins, alkaloids Chhouk et al. (2018)

100 Glycine max Phytosterol, tocopherol Han et al. (2016)
101 Glycine max Polyene phosphatidyl choline Jiang et al. (2016)
102 Glycyrrhiza 

uralensis
1-Methoxyerythrabyssin II, 
6,8-diprenylgenistein, gancaonin G, 
isoglycyrol, licorisoflavan C, licoricidin, 
licorisoflavan D, licorisoflavan E

Villinski et al. (2014)

103 Haematococcus 
pluvialis

Astaxanthin Cheng et al. (2018)

104 Haematococcus 
pluvialis

Phorbol 12-myristate 13-acetate, doxycycline Chou et al. (2016)

105 Haematococcus 
pluvialis

Astaxanthin, lutein, fatty acids Di Sanzo et al. (2018)

106 Hancornia 
speciosa

Amyrin, lupeol, α-amyrin, β-carotene Maia et al. (2018)

107 Helianthus 
annuus

Chlorogenic acid Daraee et al. (2019)

(continued)
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Table 1 (continued)

Sl 
no Species name Chemicals/phytochemicals Ref

108 Hippophae 
rhamnoides

β-Sitosterol, α-tocopherol Dienaitė et al. (2021)

109 Hippophae 
rhamnoides

Zeaxanthin, β-carotene, lycopene, 
α-tocopherol, β-tocopherol, δ-tocopherol, 
β-sitosterol

Mihalcea et al. (2021)

110 Humulus 
lupulus

Xanthohumol, desmethylxanthohumol, bitter 
acids, phenolic compounds

Bizaj et al. (2021)

111 Humulus 
lupulus

Phenolic acids, ferulic acid, flavonoids, 
resveratrol, xanthohumol

Veiga et al. (2021)

112 Hylocereus 
polyrhizus

Linoleic acid Abdullah et al. (2018)

113 Ilex guayusa Caffeine, squalene, α-amyrin. Cadena-Carrera et al. 
(2019)

114 Inula racemose Alantolactone, isoalantolactone Chi et al. (2016)
115 Iris lactea Linoleic acid, oleic acid, docosahexaenoic acid. Luan et al. (2020)
116 Isatis tinctoria Isatin, tryptanthrin, deoxyvasicinone, 

isaindigotone, isaindigotidione, quinazolines, 
indolinone, benzodiazepine, glucoraphanin 
progoitrine, glucobrassicine, aromatic, aliphatic 
carboxylic acids

Hamburger (2002)

117 Juniperus 
communis

Sesquiterpene, diterpene alcohols, terpene 
oxides, ketones

Bogolitsyn et al. 
(2019)

118 Laminaria 
digitata

Alginate, agar, carrageenan Abdul Khalil et al. 
(2018)

119 Laminaria 
hyperborean

Alginate, agar, carrageenan Abdul Khalil et al. 
(2018)

120 Larix sibirica Dehydroquercetin Averyanova et al. 
(2018)

121 Lavandula 
angustifolia

Linalyl acetate Győri et al. (2019)

122 Lavandula 
angustifolia

Tannins, flavonols, anthocyanins Tyskiewicz et al. 
(2019)

123 Leucas 
cephalotes

Oleanolic acid Kaushik et al. (2021)

124 Linum 
usitatissimum

α-Linolenic acid, lignans, proteins, dietary 
fibers

Tang et al. (2021)

125 Lippia 
graveolens

Flavonoids Arias et al. (2020)

126 Lippia 
origanoides

Flavonoids Arias et al. (2020)

127 Lupinus luteus Apigenin, fisetin Buszewski et al. (2019)
128 Lycopodium 

clavatum
Quinolizidine alkaloids, ß-Carotenes, Saponins, 
tannins, steroids, flavonoids

Abd Hamid et al. 
(2018)

129 Macrocystis 
pyrifera

Alginate, agar, carrageenan Abdul Khalil et al. 
(2018)
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130 Mangifera 
indica

Pectin, phenolic compounds, carotenoids 
(mainly all-trans-ß-carotene), various vitamins

Sánchez-Camargo 
et al. (2019)

131 Mangifera 
indica

Mangiferin, isomangiferin, quercetin 
3-O-galactoside, quercetin 3-O-glucoside, 
quercetin 3-O-xyloside, quercetin 
3-O-arabinoside, quercetin, kaempferol

Meneses et al. (2015)

132 Marrubium 
vulgare

Marrubiin Gavarić et al. (2021)

133 Matricaria 
chamomilla

Cycloalkane polyols Al-Suod et al. (2019)

134 Melaleuca 
cajuputi

Caryophyllene, humulene Kueh et al. (2018)

135 Melissa 
officinalis

Eugenol, geraniol, D-limonene, ortho-cresol Zaid et al. (2020)

136 Mitragyna 
speciosa

Quinolizidine alkaloids, ß-Carotenes, Saponins, 
tannins, steroids, flavonoids

Abd Hamid et al. 
(2018)

137 Momordica 
cochinchinensis

β-Carotene, lycopene Kha et al. (2014)

138 Moringa 
oleifera

Quinolizidine alkaloids, ß-Carotenes, Saponins, 
tannins, steroids, flavonoids

Abd Hamid et al. 
(2018)

139 Moringa 
oleifera

Gallic acid, vanillic acid, p-coumaric acid, 
catechin, 1-triacontanol, nonacosane, 
heptacosane, phytol, γ-tocopherol, 
α-tocopherol

da Silva et al. (2022)

140 Morus nigra Phenolic acids, flavonoids Nastić et al. (2018)
141 Muricauda 

lutaonensis
Zeaxanthin Hameed et al. (2011)

142 Musa 
paradisiaca

Lupenone, methyl 2-hydroxy-2-(3- 
nitrophenyl)-2-(4-nitrophenyl)-acetate, 
pentacosane, 3,6,9-nonacosatriene, 
10-hentriacontene, 7,23-dimethyltritriacontane

Correa et al. (2016)

143 Myrcia 
blanchetiana

Myrciaine de Cerqueira et al. 
(2013)

144 Myrica rubra Diarylheptanoids Alberti et al. (2018)
145 Myrmecodia 

pendans
Gallic acid, catechin, ferulic acid, caffeic acid, 
p-coumaric acid, quercetin, luteolin, 
kaempferol

Sanjaya et al. (2014)

146 Myrtus 
communis

Quinolizidine alkaloids, ß- carotenes, Saponins, 
tannins, steroids, flavonoids

Abd Hamid et al. 
(2018)

147 Narcissus 
poeticus

Benzyl benzoate, benzyl linoleate, benzyl 
alcohol α-Terpineol, Limonene, (3E)-hexenol, 
heneicosanol, dihydroactinidiolide, 
4,8,12,16-tetramethyl heptadecan-4-olide, 
heptanal, nonanal, (2E,4E)-decadienal, 
octadecanal

Baranauskienė and 
Venskutonis (2022)
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148 Nelumbo 
nucifera

Linoleic acid, decadieneal, linoleic acid propyl 
ester, 2.5-pentadecadiene-l-ol, 9-oxononanoic 
acid

Velikorodov et al. 
(2018)

149 Nicotiana 
tabacum

Nicotine, neophytadiene, 4,8,13-duvatriene- 
1,3-diol. Palmitic acid, stearic acid, oleic acid, 
linoleic acid, linolenic acid

Banožić et al. (2021)

150 Nigella sativa Thymoquinone, thymol, p-cymene, 
chlorquinaldol, amylmetacresol, 
2,4-dichlorobenzyl alcohol

Gawron et al. (2019)

151 Ocimum 
basilicum

1,8-cineole, linalool, eugenol, germacrene D, 
T-cadinol

Occhipinti et al. (2013)

152 Ocimum 
basilicum

Linalool, estragol Győri et al. (2019)

153 Ocimum 
sanctum

Eugenol Ghosh et al. (2013)

154 Ocimum 
tenuiflorum

Eugenol, eugenol acetate Khalil et al. (2017)

155 Odontonema 
strictum

Flavonoids Ouédraogo et al. 
(2018)

156 Oenocarpus 
distichus

Oleic acid, palmitic acid, linoleic acid Cunha et al. (2019)

157 Olea europaea Polyphenols Trucillo et al. (2018)
158 Olea europaea Oleuropein (OLE) Baldino et al. (2018a)
159 Olea europaea Oleuropein, luteolin-7-glucoside were the main 

phenolic antioxidants
Cejudo Bastante et al. 
(2018)

160 Olea europaea Oleuropein Uzel (2018)
161 Olea europaea β-Cyclodextrin Jaski et al. (2019)
162 Opuntia 

ficus-indica
Isorhamnetin-3-O-glucosyl-rhamnosyl- -
rhamnoside, isorhamnetin-3-O-glucosyl-
rhamnosyl- pentoside, 
isorhamnetin-3-O-glucosyl-rhmanoside

Antunes-Ricardo et al. 
(2018)

163 Orbignya 
phalerata

Lauric acid, oleic acid, lauric acid de Oliveira et al. 
(2019)

164 Origanum 
majorana

Cis-sabinene hydrate Busatta et al. (2017)

165 Origanum 
vulgare

Cis-sabinene hydrate Busatta et al. (2017)

166 Origanum 
vulgare

α-Linolenic acid, palmitic acid, oleic acid, 
linoleic acid, carvacrol, heneicosane, 
nonacosane, docosane, borneol, thymol

García-Pérez et al. 
(2019)

167 Oroxylum 
indicum

Phenolic acids, flavonoids, tannins, alkaloids Chhouk et al. (2018)

168 Orthosiphon 
aristatus

Rosmarinic acid, eurycomanone, 
andrographolide

Abd Aziz et al. (2021)
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169 Orthosiphon 
stamineus

Sinensetin Aziz et al. (2018)

170 Orthosiphon 
stamineus

Sinensetin, Isosinensetin, Rosmarinic Acid Abdul Aziz et al. 
(2020)

171 Parthenium 
argentatum

Terpenoids, phenolics, alkaloids, sterols, fatty 
acids/triglycerides

Dehghanizadeh and 
Brewer (2020)

172 Passiflora 
mucronate

β-amyrin, β-sitosterol, stigmasterol, oleanolic 
acid

da Silva et al. (2020)

173 Petroselinum 
crispum

Apigenin Saotome and Imai 
(2018)

174 Physalis 
angulate

Trinitrobenzenesulphonic acid Almeida Jr. et al. 
(2017)

175 Picea Abies Methyl dehydroabiatate Burčová et al. (2018)
176 Picea abies Catechin, dihydroquercetin, astringin, 

isorhapontin
Ferrentino et al. (2021)

177 Pimpinella 
anisum

Sterols Bettaieb Rebey et al. 
(2019)

178 Piper amalago Pyrrolidine Alkaloid Carrara et al. (2017)
179 Piper betle Phenolic compounds Pise et al. (2022)
180 Piper betle Tannins, quercetin, eugenol, hydroxychavicol, 

chavibetol
Azahar et al. (2020)

181 Piper hispidum Cinnamoyl pyrrolidine amides Lima et al. (2020)
182 Piper 

klotzschianum
Germacrene D, pipercallosidine, 14-oxy-α- 
muuroleno, bicyclogermacrene, 
(E)-caryophyllene

Lima et al. (2019)

183 Piper nigrum Eugenol, eugenol acetate Khalil et al. (2017)
184 Piper nigrum Piperine, piperlonguminine, piperanine, 

pipercallosine, dehydropipernonaline, 
pipernonatine, retrofractamide B, pellitorine, 
guineensine

Yu et al. (2022)

185 Pistacia 
lentiscus

α-Pinene, terpinene-4-ol Aydi et al. (2020)

186 Pistacia vera α-Pinene, β-myrcene, limonene-D, 
α-terpinolene

Demirkoz et al. (2018)

187 Pleurotus 
ostreatus

Heteropolysaccharides, β-glucans, α-glucans, 
oligosaccharides

Barbosa et al. (2020)

188 Pongamia 
pinnata

Oleic acid, arachidic acid, cis-10- 
pentadecenoic acid, stearic acid, cis-8,11,14- 
Eicosatrienoic acid, linolenic acid, 
gamma(γ)-linolenic acid, cis-11-Eicosenoic 
acid

Suryawanshi and 
Mohanty (2018)

189 Populus 
balsamifera

Pinostrobin, tectochrysine, pinocembrin, 
chrysin

Adekenov et al. (2020)
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190 Prunus 
armeniaca

Tocopherols, Amygdalin, Fatty Acids Pavlović et al. (2018)

191 Punica 
granatum

Punicic acid, tocopherols, phytosterols, 
triterpenes, phospholipidsquercetin, 
epicatechin, catechins, delphinidin, 
pelargonidin, cyanidin, punicalagin, punicalin, 
gallic acids, caffeic acids, chlorogenic acids

El-Shamy and Farag 
(2021)

192 Punica 
granatum

Punicic acid, linoleic acid, oleic acids Khoddami et al. (2014)

193 Putranjiva 
roxburghii

β-Sitosterol, oleic acid, linoleic acid Balkrishna et al. (2021)

194 Rhodiola rosea Salidroside, rhodioloside B, rhodioloside C, 
rhodiosin, luteolin, catechin, quercetin, 
quercitrin, herbacetin, sacranoside A, vimalin, 
dihydroquercetin, acacetin, mearnsetin, 
taxifolin-O-pentoside, tricetin trimethyl ether 
7-O-hexosyl-hexoside, tricin 7-O-glucoronyl- 
O-hexoside, tricin O-pentoside, tricin-O- 
dihexoside, eriodictyol-7-O-glucoside; 
flavan-3-ols: gallocatechin, hydroxycinnamic 
acid caffeoylmalic acid, di-O-caffeoylquinic 
acid, esculetin, esculin, fraxin, lignans: 
hinokinin, pinoresinol, L-ascorbic acid, 
glucaric acid, palmitic acid, linolenic acid

Zakharenko et al. 
(2021)

195 Rhus 
punjabensis

Dihydrofisetin Dong et al. (2020)

196 Rosa canina Linoleic acid, linolenic acid, palmitic acid, 
stearic acid

Jahongir et al. (2019)

197 Rosa 
damascene

Citronellol, geraniol, nerol, nonadecane, 
nonadecene, heneicosane, heptadecane

Antonova et al. (2021)

198 Roselle calyces Anthocyanins Idham et al. (2021)
199 Rosmarinus 

eriocalyx
β-Amyrin, camphor, tetradecenoic acid, 
linolenic acid

Bendif et al. (2018c)

200 Rosmarinus 
officinalis

Carnosic acid, carnosol, rosmanol, genkwanin, 
cirsimaritin, homoplantaginin, ursolic acid

Sharifi-Rad et al. 
(2020)

201 Rosmarinus 
officinalis

Carnosic acid, carnosol, methyl carnosate, 
rosmanol, rosmarinic acid. Moreover, carnosic 
acid, carnosol

Fornari et al. (2014)

202 Rosmarinus 
officinalis

Verbenone, cirsimaritin, salvigenin, carnosol, 
carnosic acid

Kuo et al. (2011)

203 Rosmarinus 
officinalis

Essential oils, phenolic compounds Ali et al. (2019)

204 Rosmarinus 
officinalis

Palmitic acid, α-linolenic acid, linoleic acid, 
oleic acid, stearic acid, d-camphor, eicosane, 
1,8-cineole, tetracosane, borneol, 
β-caryophyllene

García-Pérez et al. 
(2020)
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205 Rubia tinctorum Alizarin, lucidin, rubiadin Yekefallah and Raofie 
(2022)

206 Rubus idaeus Fatty acids, tocopherols Marić et al. (2020)
207 Ruellia 

angustiflora
Fatty acids, triterpenes, tetraterpenes, 
tocopherols, phytosterols

Pires et al. (2021)

208 Saccharum 
officinarum

Alcohols, esters, hydrocarbons, ketones, 
aldehydes

Ahmed Baloch et al. 
(2018)

209 Saccharum 
officinarum

Long-chain fatty alcohols, phytosterols Albarelli et al. (2018)

210 Salvia hispanica Linoleic acid, a-linolenic acid, tocopherols, 
polyphenols

Ixtaina et al. (2014)

211 Salvia hispanica Squalene, sterols, tocopherols, polyphenols, 
carotenoids

Dąbrowski et al. 
(2018)

212 Salvia 
officinalis

1,8-cineole, α-/β-thujone, camphor, 
α-humulene, viridiflorol, manool

Jokić et al. (2018)

213 Salvia 
officinalis

Carnosic acid, carnosol Pavić et al. (2019)

214 Salvia 
Rosmarinus

α-Pinene Allawzi et al. (2019)

215 Salvia 
Rosmarinus

Carnosic acid, rosmarinic acid, carotenoids, 
chlorophyll

Lefebvre et al. (2021)

216 Salvia viridis Vanillin, Ethyl syringate, Syringaldehyde 
(3,5-Dimethoxy-4-hydroxybenzaldehyde), 
Antiarol (3,4,5-Trimethoxyphenol), Indole-4- 
carbaldehyde, Coumarin, Coniferyl aldehyde 
(4-Hydroxy-3-methoxycinnamaldehyde), 
N-(2-Phenylethyl)acetamide, Sinapyl aldehyde 
(3,5-Dimethoxy-4-hydroxycinnamaldehyde), 
Dimethoxy-trihydroxy(iso)flavone isomer 1, 
Dihydroxy-dimethoxy(iso)flavone, Dimethoxy- 
trihydroxy(iso)flavone isomer 2, Genkwanin, 
Dihydroxy-trimethoxy(iso)flavone, Hydroxy- 
trimethoxy(iso)flavone, Hydroxy- 
tetramethoxy(iso)flavone, 1-Oxomicrostegiol, 
Viroxocin, Apigenin-4′,7-dimethyl ether 
(4′,7-Dimethoxy-5-hydroxyflavone), 
3-Oxomicrostegiol, Hexadecanedioic acid, 
Viridoquinone

Zengin et al. (2019)

217 Sambucus nigra Quercetin, kaempferol, rutin Anusha Siddiqui et al. 
(2022)

218 Satureja 
montana

Thymol, carvacrol, γ-terpinene, p-cymene Damjanović-Vratnica 
et al. (2016)
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219 Saururus 
chinensis

Aurantiamide acetate, echinuline, (−) -(7R, 
8R) -7-O-acetylpolysphorin, elemicin, 
isoelemicin, 1, 4-bis (3, 4-dimethyoxyphenyl) 
2, 3-dimethyl-1, 4-butanedione, saucerneol D, 
(2R) -3-(3′, 4′, 5′-trimethoxyphenyl) -1, 
2-propanediol, grandisin, rel-(7R, 8R, 7′R, 8′R) 
3′, 4′- methylenedioxy-3, 4, 5, 
5′-tetramethoxy-7, 7 -epoxylignan, 
zanthopyranone, (±) -eritro-1-(3, 4, 
5-trimethoxy) -1, 2 -propanodiol, threo-3, 4, 
5-trimethoxy-7-hydroxy-1′-allyl-3′, 
5′-dimethoxy-8. O. 4′-neolignan, (+) -(8R) -(2, 
6 -dimethoxy-4-propenylphenoxy) -1-(3, 4, 
5-trimethoxyphenyl) propan-1-one, meso- 
dihydroguaiaretic acid, (−) -galbacin, 
(−) - (7R, 8R) -7-O-acetylraphidecursinol B

Chen et al. (2018b)

220 Scenedesmus 
almeriensis

Lutein Mehariya et al. (2019)

221 Schinus 
terebinthifolia

Germacrene D, sabinene, β phellandrene, 
α- phellandrene

Andrade et al. (2017)

222 Schinziophyton 
rautanenii

Campesterol, stigmasterol, β-sitosterol, 
Δ5- avenasterol, 22-dihydrospinasterol, 
Δ7-avenasterol, lanosterol, Δ5,23- 
stigmastadienol, Δ7-campesterol, clerosterol, 
obtusifoliol, Δ 5,24(25)-stigmastadienol, 
α-amyrin, gramisterol, cycloeucalenol, 
cycloartenol, stigmasta-8,24-dienol-3-β-ol, 
28-methylobtusifoliol, 
24-methylenecycloartenol, citrostadienol, 
β-sitosterol, Δ5-avenasterol, campesterol.

Gwatidzo et al. (2014)

223 Serenoa repens Fatty acids, beta-sitosterol, fatty alcohols Bartolomé Ortega et al. 
(2017)

224 Sesamum 
indicum

Sesamin, sesaminol, sesamolinol Hu et al. (2004)

225 Sesamum 
indicum

γ-Tocopherol, lignan Shi et al. (2018)

226 Sesamum 
indicum

Sesamin, sesamolin, tocopherols, linoleic acid, 
oleic acid

Buranachokpaisan 
et al. (2021)

227 Sida 
rhombifolia

Isoquercitin Ferro et al. (2019)
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228 Sideritis sipylea ß-Caryophyllene, α -Humulene, 9-epi-(E)-
Caryophyllene, Germacrene D, 
Bicyclogermacrene, cis-Sesquisabinene 
hydrate, Spathulenol, Caryophyllene oxide, 
Humulene epoxide II, (E)-Sesquilavandulyl 
acetate, Cyclopentadecanolide, 
Hexahydrofarnesyl acetone, (Z)-Lanceol 
acetate, Isopimara-9(11),15-diene, Totarene, 
Beyerene, Geranyl-α-terpinene, Geranyl-p- 
cymene, (Z,Z)-Geranyl linalool, Dolabradiene, 
Sclarene, (E,Z)-Geranyl linalool, (Z,E)-Geranyl 
linalool, 13-epi-Dolabradiene, 13-epi-Manool 
oxide, (E,E)-Geranyl linalool, Manool, 
13-epi-Manool, Phytol, Abienol, Abieta- 
8(14),13(15)-diene, Sandaracopimarinal, 
Sclareol, 7-α-hydroxy-Manool, 3-α-hydroxy- 
Manool, Isopimarol, Sideridiol, n-Hexacosane, 
7-Epicandicandiol, Siderol, n-Heptacosane, 
n-Octacosane, n-Nonacosane, Sidol, 
Sesquiterpene hydrocarbons, Oxygenated 
sesquiterpenes, Diterpene hydrocarbons, 
Oxygenated diterpenes, lkanes

Axiotis et al. (2020)

229 Solanum 
lycopersicum

Polyphenols, flavonoids, lycopenes, 
carotenoids

Haddadin and 
Haddadin (2015)

230 Solanum 
lycopersicum

Lycopene Inakuma (2015)

231 Solanum 
lycopersicum

Lycopene, β-carotene Cante et al. (2022)

232 Solanum 
lycopersicum

Lycopene Reverchon et al. (2022)

233 Solanum 
lycopersicum

α-Tocopherol, γ-tocopherol, lycopene, 
β-carotene

Romano et al. (2020)

234 Solanum viarum 1,2-Benzenedicarboxylic acid, quinic acid, 
octadecenoic acid, solasodine

Confortin et al. (2019)

235 Sophora 
flavescens

Genistein Han and Kang (2015)

236 Sorbus 
aucuparia

Linoleic acid, oleic acid, palmitic acid Bobinaitė et al. (2020)

237 Sorghum 
bicolor

Linoleic acid, decadieneal, linoleic acid propyl 
ester, 2.5-pentadecadiene-l-ol, 9-oxononanoic 
acid

Velikorodov et al. 
(2018)

238 Spina gleditsiae Saponins Liu (2018)
239 Spinacia 

oleracea
Lutein, chlorophyll Derrien et al. (2018)

240 Spinacia 
oleraecea

Phenolics Lee et al. (2018)

(continued)

K. Vidwathpriya et al.



193

Table 1 (continued)

Sl 
no Species name Chemicals/phytochemicals Ref

241 Stellera 
chamaejasme

Hexanedioic acid, bis(2-ethylhexyl) ester, 
πsitosterol, 7-methyl-Z-tetradecen-1-ol acetate, 
9-hexadecenoic acid-hexadecyl ester (Z), 
1,2- benzenedicarboxylic acid-diisooctyl ester, 
(3π24Z) stigmasta-5,24(28)-dien-3-ol, 
stigmastan-3,5-diene, squalene

Bai et al. (2012)

242 Stevia 
rebaudiana

Polyphenols, chlorophylls, carotenoids Bursać Kovačević et al. 
(2018)

243 Sucupira branca Alpha-humulene, beta-caryophyllene, 
alpha-copaene, (−)-beta-elemene, 
(E)-germacrene D(−)-gamma-elemene, 
spathulenol

Chañi-Paucar et al. 
(2022)

244 Swietenia 
mahagoni

Linoleic acid Hartati et al. (2018)

245 Syzygium 
aromaticum

Eugenol, eugenol acetate Idowu et al. (2021)

246 Syzygium 
aromaticum

Eugenol, chavicol, n-pentacosane, hexacosanal, 
vitamin E

Frohlich et al. (2019)

247 Syzygium 
aromaticum

Eugenol, caryophyllene, eugenol acetate Győri et al. (2019)

248 Syzygium 
aromaticum

Eugenyl acetate, β-caryophyllene, α-humulene Haro-González et al. 
(2021)

249 Syzygium 
campanulatum

Flavanones, chalcone, triterpenoids Memon et al. (2016)

250 Tagetes erecta Lutein Pal and Bhattacharjee 
(2018)

251 Tanacetum 
parthenium

Parthenolide, sudachitin, aceronin, nevadensin Végh et al. (2018)

252 Teucrium 
polium

Germacrene D, β-eudesmol, shyobunol, 
δ-cadinene

Bendif et al. (2018b)

253 Theobroma 
cacao

Polyphenols, mainly procyanidins, flavan-3-ols Hernández et al. (2019)

254 Thymus 
mastichina

Thymol, α-terpinene, p-cymene Kessler et al. (2022)

255 Thymus 
munbyanus

Tocopherol Bendif et al. (2018a)

256 Thymus vulgaris Chlorophyll b, chlorophyll a Hamdan and Daood 
(2011)

257 Trachyspermum 
ammi

Thymol, o-Cymene, γ-Terpinene, 
2-methyl-5-(1-methylethyl)-phenol

Bhatt et al. (2018)

258 Trifolium 
pratense

Isoflavonoids (3-phenyl chromones), flavonoids 
(2-phenyl chromones)

Klejdus et al. (2005)

259 Triticum 
Vulgare

Tocopherol Özcan and Ören (2019)
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260 Vaccinium 
Meridionale

Anthocyanins (ACNs) Colorado et al. (2020)

261 Vaccinium 
myrtillus

Anthocyanins, flavonols, tocopherols. 
Polyunsaturated fatty acids, vitamin E.

Gustinelli et al. (2018)

262 Viburnum 
opulus

β-Sitosterol, α-tocopherol Dienaitė et al. (2021)

263 Viburnum 
opulus

Phenolic acids, iridoids, quercetin, (epi)
catechina, flavalignans, procyanidins, 
anthocyanins

Dienaite et al. 2020)

264 Virola 
surinamensis

Steroids, terpenes, coumarins, phenolics Cordeiro et al. (2019)

265 Vitis vinifera 1-Hexacosanol, 1-octacosanol,1-triacontanol, 
α-tocopherol, β-sitosterol, β-amyrin

de Melo et al. (2020)

266 Xanthium 
strumarium

Linoleic acid, decadieneal, linoleic acid propyl 
ester, 2.5-pentadecadiene-l-ol, 9-oxononanoic 
acid

Velikorodov et al. 
(2018)

267 Xinjiang jujube Quercetin-3-O-robinobioside, Rutin 
(Quercetin-3-O-rutinoside), Hyperoside 
(Quercetin-3-O-β-d-galactoside), Quercetin-3- 
O-β-d-glucoside, Kaempferol-3-O- 
robinobioside, Kaempferol-3-O-glucoside, 
Quercetin-3-O-β-l-arabinosyl-(1 → 2)-α-l- 
rhamnoside, 
Quercetin-3-O-β-d-xylosyl-(1 → 2)-α-l- 
rhamnoside.

Song et al. (2019)

268 Zingiber 
officinale

α-Zingiberene de Souza Junior et al. 
(2020)

269 Zingiber 
officinale

6-Gingerol Gan et al. (2016)
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Abstract Microwave-assisted extraction (MAE) has emerged as a promising tech-
nique for the extraction of phytochemicals and has received substantial scientific 
attention in recent years. MAE involves the utilization of microwaves to heat the 
sample, which facilitates the release of bioactive compounds from the plant matrix. 
MAE offers several advantages over traditional extraction methods, including faster 
extraction times, higher extraction yields, and reduced solvent consumption. To 
improve the efficiency of the extraction process, research has concentrated on 
optimizing various parameters, including the extraction temperature, extraction 
time, and solvent type. Additional studies have investigated the effect of MAE on 
the chemistry and bioactivity of the extracted phytochemicals. Several classes of 
phytochemicals, including phenolic compounds, flavonoids, and alkaloids, have 
been successfully extracted using MAE.  These compounds possess various 
biological activities, such as antioxidant, antimicrobial, and anticancer properties. 
Essential oils from aromatic plants have also been extracted using MAE, which is 
widely employed in the food, cosmetic, and pharmaceutical industries. Despite its 
many advantages, the major challenge in the application of MAE is the potential 
degradation of the extracted compounds due to the high-temperature and high- 
pressure conditions during extraction. Additionally, the cost of microwave equipment 
and the need for specialized expertise may stunt its widespread adoption. In diverse 
omics disciplines, MAE shows promise, notably for the development of analytical 
platforms for research in genomics, proteomics, metabolomics, and related 
subdisciplines. Nonetheless, more investigation is required to optimize the extraction 
conditions and guarantee that the chemical makeup and biological activity of the 
isolated phytochemicals are preserved.
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1  Introduction

For the separation, identification, and usage of valuable chemicals from various 
plants, extraction is a crucial step. Depending on the characteristics of the desired 
chemical, a suitable technique must be chosen in order to achieve the highest yield 
and purity. Compounds from plants are extracted using a wide range of chemical 
and mechanical procedures, including solvent extraction and steam distillation. The 
extraction of essential oils, fats, and oils is now done using Soxhlet, hydrodistillation, 
and alcohol-maceration methods. Reproducibility is a significant problem because 
these techniques involve manual operations. Low extraction yields are the result of 
the heating process degrading thermally sensitive components. The mentioned 
restrictions, along with the sharp rise in demand for bioactive components, essential 
oils, fat, and oils, have motivated the need for appropriate, selective, economical, 
and environmentally friendly extraction technologies that are quick and yield more 
(Stévigny et al. 2007).

Many efforts have been made to enhance the Soxhlet extraction in order to 
shorten the extraction time, use less solvent, and do away with the requirement for 
concentration and evaporation at the end of the extraction. Randall presented a 
three-step extraction process that includes boiling, rinsing, and solvent removal as a 
significant enhancement to the Soxhlet extraction equipment (Randall 1974). It is 
well known that microwave energy, with a frequency of 2.45 GHz, significantly 
affects the speed of numerous processes in the chemical and food industries. The 
use of microwave dielectric heating in analytical chemistry has garnered a lot of 
attention due to the shorter analysis times, easier manipulation, and improved purity 
of the end result. All of the applications that have been documented have 
demonstrated that microwave-assisted solvent extraction (MAE) is a practical 
substitute for traditional methods for such matrixes. The key advantages are the 
decreases in solvent, energy, and extraction time (Virot et al. 2008).

2  Fundamentals of Microwave Extraction 
(Microwave Theory)

Gedye, Giguere, and Ganzler were the first to discuss the use of microwave energy 
in chemical laboratories for organic synthesis and the extraction of biological 
matrices for the creation of analytical samples, respectively, in 1986 (Ganzler et al. 
1990). Ultrasound-assisted extraction (UAE) is a technique that is around 35 years 
older than MAE.  The huge potential of this non-conventional energy source for 
synthetic, analytical, and processing applications has nevertheless been investigated 
in great detail by numerous laboratories. Dielectric heating has been used in 
synthesis and extraction thus far, and over 7000 and 2000 articles, respectively, have 
documented this utilization. Early investigations, which did not measure the 
temperature or power, described the microwave-assisted extraction in a 
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screw-capped vial with a volume of only 3  mL using conventional microwave 
ovens. Techniques for extracting bioactive chemicals from plants were developed. 
Microwaves (MW) are electromagnetic radiation with frequencies ranging from 
300 MHz (radiofrequency radiation) to 300 GHz. In chemistry research, 2.45 GHz 
and 915  MHz are employed as frequencies for lab equipment and industrial 
equipment, respectively.

The following categories can be used to group microwave interactions with 
materials: (Gupta and Wai Leong Wong 2007)

Opaque Materials Microwave applicators are made of opaque materials, which 
are often conducting materials with free electrons, such as metals, that reflect 
electromagnetic waves but do not allow them to pass through.

Transparent Materials Transparent materials, such as low-loss dielectric materi-
als or insulating materials like glass, ceramics, and air, allow microwaves to travel 
through easily with minimum attenuation. These materials are used to make reac-
tors that are put within microwave applicators.

Absorbing Materials Materials that absorb energy include those with conductiv-
ity and insulating characteristics. These materials, which are the focus of microwave 
extraction, are commonly referred to as high-loss dielectrics or high dielectric loss 
materials because they absorb electromagnetic energy and convert it to heat.

Since it is lower than the typical ionization energies of chemical bonds (3–8 eV) 
or even hydrogen bonds, the MW photon energy corresponding to the frequency 
used in microwave heating systems, ranging from 3.78 × 10−6 to 1.01 × 10−5 eV, acts 
as a non-ionizing radiation that has no effect on the molecular structure 
(0.04–0.44  eV). The interaction with materials happens by heating them since 
microwave radiation is non-ionizing. Only substances that can take in microwave 
energy can be heated. Heating can come from dielectric and magnetic losses caused 
by interactions between the microwave’s electric and magnetic field components 
and the materials. For non-metal materials, the importance of the dielectric losses is 
greater. Ionic conduction and dipole rotation serve as their foundations. Ionic 
conduction, the first of these, is the term used to describe the induced electrophoretic 
migration of charge carriers (such as ions and electrons) when the electric field of 
the microwaves is present. The migrating ions and the medium experience “friction” 
as a result of the migration, and this can result in heating. When dipolar molecules 
strive to align themselves with the alternating electric field in a medium created by 
microwaves, the second principle, known as dipole rotation, takes place (Zhang 
et al. 2011). These dipolar species’ oscillation causes them to collide with nearby 
molecules, which generates heat. Temperature is a major factor in determining the 
relative importance of the energy conversion mechanisms, dipole rotation, and ionic 
conduction. Ionic conduction rises with rising sample temperature, whereas dipole 
rotation decreases for small molecules like water and some other solvents. This 
means that when microwave energy is used to heat a sample that contains both ionic 
and polar chemicals, the heating is first dominated by the contribution of dipole 
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rotation and, as the temperature rises, it becomes dominated by ionic conduction. 
The mobility, concentration, and sample relaxation time of the ions all affect the 
relative contribution of these two heating mechanisms. This information is crucial 
for the MAE (Lee et al. 2016). The extraction yield drastically alters when the plant 
material’s microwave absorption capacity exceeds that of the solvent. Having an 
estimate of the medium’s reaction to microwave radiation is crucial for achieving 
the best possible microwave applicator design (permittivity). This information will 
enable the process to be characterized (including its heating rate, penetration depth, 
and temperature distribution, among other things), and it will aid in understanding 
its behavior (Vinatoru et al. 2017).

MAE extraction technology has been used for both large-scale and laboratory 
applications. The MAE method has been applied in recent years to isolate essential 
oils, fats, and oils. In terms of speed, safety, and cost, microwave technology has 
been found to be an effective extraction method (Bélanger et al. 1997). The closed- 
vessel MAE system and the open-vessel system comprise the two types of MAE 
systems. Closed containers are used for extraction. Whereas open-vessel systems 
are for extractions of target chemicals at high-temperature and high-pressure 
conditions performed under circumstances of atmospheric pressure.

The selection of the proper solvent is a key element that influences extraction. 
The choice of solvent is mostly determined by the desired analyte’s solubility, the 
solvent‘s capacity to interact with the matrix, and its microwave absorption. The 
chosen solvent should be compatible with additional chromatographic analysis 
steps and should have a high selectivity of the target analyte over matrix components. 
Transparent solvents are not heated in the microwave, and those that have a high 
capacity for absorption are heated more quickly to speed up the extraction. Hexane 
is regarded as a top-notch solvent for absorbing microwave energy (Virot et  al. 
2008). For the best extraction yields, researchers have combined solvents with high 
and low microwave absorbabilities.

3  Instrumentation of the Microwave Extraction

Instrumentation systems for microwave-assisted extraction and its laboratory appli-
cation are available in two varieties (Pastor et al. 1997; Luque-Garcı́a and Luque de 
Castro 2004), namely:

 (a) Closed extraction vessels/multimode microwave ovens.
 (b) Focused microwave ovens.

Controlled pressure and temperature drive extraction in a closed extraction vessel/
multimode microwave oven. In contrast, in focused microwave-assisted Soxhlet or 
solvent extraction (FMASE), as the name implies, only the portion of the extraction 
vessel containing the sample is targeted for microwave irradiation. Closed-vessel 
and focused vessel systems are both commercially available as multimode and 
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single-mode or focused systems (Luque-García 2003). A multimode system 
provides for the random distribution of microwave radiation throughout the 
microwave cavity, ensuring that every zone in the cavity and the sample is evenly 
irradiated. Focused MAE systems allow subjecting the sample to a much restricted 
and focused delivery of microwave radiations under a strong electric field. Domestic 
microwave oven behaves as a modified multimode open-vessel extraction system 
(Moen et al. 2012).

The sample and solvent are also situated within the sealed vessel, which is com-
monly made of microwave-transparent materials such as polyether imide or trifluo-
romethoxy polymers in the pressurized MAE system (Fig. 1). The following are the 
general operating conditions for MAE:

• Pressure: 200 psi
• Temperature: Between 110 °C and 145 °C
• Power Setting: 100% at 900 W

3.1  Fundamental Components in an MAE Device

The microwave extraction assembly is composed of four major parts:

 1. Magnetron/ Microwave Generator: Used to generate microwaves.
 2. Wave Guide: Used to direct the microwaves from the source to the micro-

wave cavity.
 3. Applicator: Contains the sample holder which houses the sample.
 4. Circulator: Used to regulate microwave propagation only in the forward direction.

In the case of multimode systems, the applicator is a closed cavity within which a 
random dispersion of microwaves occurs (Kristenson et al. 2006). Beam reflectors 
or turntables aid in the consistent distribution of microwave energy inside the cavity, 
regardless of sample placement position. The microwave waveguide serves as the 
applicator in focused microwave systems, and the extraction vessel is placed 
immediately in the cavity. Only a few inches of the vessel’s bottom are exposed to 
microwaves, and because glass is microwave-transparent, the upper area of the 
vessel remains cool. As a result of the microwave‘s integrated architecture, an 
effective condensing process occurs (Figs. 2 and 3).

3.2  Advantages of Closed-Vessel Systems

Higher temperatures can be obtained in a closed-vessel system due to greater pres-
sure inside the vessel, which raises the boiling point of the solvents utilized. In a 
closed vessel system, there is virtually no loss of volatile compounds and just a little 
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Fig. 1 Scheme of a modified multimode domestic microwave oven for MAE (open-vessel 
extraction)

amount of solvent is required. Because there is no need to add solvent/s frequently, 
the risk of air-borne contamination is reduced. The vessel is capable of containing 
all the potentially hazardous fumes produced during an acid microwave extraction 
and doesn’t require any additional provision for the same (Tatke and Jaiswal 2011).
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Fig. 2 Schematic view of focused microwave oven

3.3  Limitations of Closed-Vessel Systems

A closed-vessel system’s shortcomings include the risk of using high pressures and 
the limited volume of samples that can be processed. The material utilized for vessel 
construction, such as PTFE (polytetrafluoroethylene), does not allow for high 
temperatures, and when utilizing volatile compounds, the vessel must be opened 
only after a cooling process to avoid the loss of extracted volatile elements. The 
high pressures used in closed-vessel systems pose a safety risk as they are prone to 
explosions. The single-step procedure also excludes the addition of reagents or 
solvents during the operation of the system (Tatke and Jaiswal 2011).

3.4  Atmospheric Pressure or Open MAE System

Atmospheric pressure or open-vessel systems offer much more effective microwave 
sample preparation than closed-vessel systems. The usage of atmospheric pressure 
systems has several substantial advantages over pressurized-vessel systems (Tatke 
and Jaiswal 2011), including:

 (a) Open vessels have increased safety as they can be operated at atmospheric pres-
sure and the reagents can be added at any time during the treatment.

 (b) The oven containers can be made of PTFE, glass, or quartz, and surplus sol-
vents can be easily removed.
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Fig. 3 Schematic view of multimode microwave oven

 (c) The instrument’s main advantage is its capacity to process huge samples with-
out the need for a cooling process.

 (d) The equipment is inexpensive, and complete automation with open-vessel oper-
ation is possible.

 (e) It has the ability to go through leaching cycles until quantitative removal of the 
target species is achieved.

 (f) The atmospheric system is best suited for thermolabile species as it utilizes 
lower temperatures compared to closed-vessel systems.

Notwithstanding their many benefits, open-vessel systems have significant short-
comings (Tatke and Jaiswal 2011), which are as follows:

 (a) Methods employed in open-vessel systems are typically less precise than those 
used in closed-vessel systems.

 (b) The open-vessel system cannot process many samples at the same time, but 
closed-vessel systems can handle 10 to 14 samples at a time.

 (c) Open-vessel systems require longer extraction durations to achieve extraction 
efficiencies comparable to those of closed-vessel systems.
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4  Scaleup of Microwave-Assisted Extraction

Although MAE has been successfully employed for several years and laboratory 
studies have shown promising industrial potential, the commercialization of this 
technology seems very stale. Environment Technology Centre (ETC) and 
Environment Canada made the first step towards the scale-up of MAE technology. 
The instrumentation is represented in Fig. 4. As depicted, the system is a continuous 
process where materials and solvents are pumped into the TEFLON tube located in 
a microwave cavity. Within the cavity, microwave-assisted extraction occurs. This 
flowing continuous process allows this technique to be scaled up to 0.5 tonnes/hr. 
with a microwave power of 6 kW. System analyses have shown that the continuous- 
flow pipe system used for this technique can only be applied when the temperature 
is below the boiling point of the solvent (preferably nonpolar) used for the extraction 
with a mechanism given by Paré and Bélanger in 1997 (Bélanger et  al. 1997). 
Notwithstanding, in most cases, the extraction is performed in reflux conditions for 
a short duration (a few minutes to hours) where the equipment cannot be employed. 
In such cases, a batch-fed MAE system equipped with a condenser is much more 
economical (Dai 2006).

5  Factors Influencing Microwave-Assisted Extraction

When we speak in terms of extraction procedures, there are various methods that 
can be followed. One of the most commonly followed extraction method is 
microwave-assisted extraction. In this method, there are various factors which will 

Fig. 4 Schematic diagram of a scaled-up MAE equipment
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influence the extraction procedure of which some will accelerate the process and 
others will hinder the process of extraction (Bagade and Patil 2019).

Here are some key factors which will influence the process of extraction:

• A blend of microwave-assisted solvents should be used for the isolation of spe-
cific active compounds from the plant sample. This helps to obtain a good yield 
(Bagade and Patil 2019).

• Time of heating (temperature) during extraction is a very important factor 
because if more heat is provided then the main elements to be extracted may also 
get degraded. The temperature should be optimized and generally set in a range 
of 60 °C to 120 °C (Llompart et al. 2019).

• The microwave power should be appropriate or else will lead to the loss of plant 
constituents.

• Extraction efficiency of microwave-assisted extraction is affected by the particle 
size of the matrix (Bagade and Patil 2019) (Fig. 5).

6  Microwave-Assisted Extraction of Fats and Oils

A group of lipids known as acylglycerides, or esters in which two or three fatty 
acids are linked to a glycerol molecule to create monoglycerides, diglycerides, or 
triglycerides, respectively, are collectively referred to as fats. Triglycerides, which 
are triesters of glycerol and fatty acids and can either be solid or liquid at room 
temperature depending on their specific structure and composition, are the most 

Fig. 5 Factors affecting microwave-assisted extraction of herbal matrices
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prevalent types of fats. The terms “oils,” “fats,” and “lipids” are frequently used to 
refer to fats, but they typically refer to lipids that are liquid or solid at room 
temperature, respectively. The main sources of raw materials with extractable fats 
and oils are either plants or animals. A unique process is used for each raw material 
to produce ambient-temperature solid fats made from plant sources (such as cocoa 
butter, coconut fat, and palm butter). These fats are commonly utilized as fat filling 
in the food industry (e.g., cocoa butter in the chocolate industry) (de Castro 
et al. 2012).

Olives are an example of a fruit from which vegetable oils are derived (e.g., sun 
flower, soybean, corn, cotton). Fruit or seed oils are used for frying in both domestic 
and commercial settings (de Castro et  al. 2012). Seed oils can be used to make 
margarine by hydrogenating them to raise their melting point. Additionally, albeit 
less frequently, edible oils can be made from grape seeds and dried fruits like 
pecans, hazelnuts, or almonds (a by-product of wine production). The cosmetics 
sector also makes use of several vegetable fats and oils. Linseed oil is also utilized 
in varnishes and paints because of its high polyunsaturated fatty acid content and 
semidrying qualities.

7  Types of MAE Extractants

Depending on the individual extractant, there are a variety of methods by which 
extraction under heating might occur. The sample can therefore be submerged in a 
single solvent or a mixture that can effectively absorb large amounts of microwave 
energy (mechanism I). As an alternative, the sample can be extracted into a mixture 
of solvents with a changeable ratio of both high and low dielectric losses (mechanism 
II). A sample with a significant dielectric loss can also be extracted using a solvent 
that is transparent to microwaves (mechanism III). Using specialized bars made of 
a chemically inert fluoropolymer can achieve heating if the sample and extractant 
are both transparent to microwaves (mechanism IV). Usually, one of these 
mechanisms—or a combination of them—is used for solute extraction and 
partitioning.

In order to assure the quantitative extraction of both neutral lipids and membrane- 
associated polar lipids, the analytical extraction of lipids from tissues necessitates 
the use of an extractant or extractant mixture that is sufficiently polar. The solvents 
that are most typically employed for MAE of lipids are mixtures of n-hexane and 
acetone (Lopez-Avila 1999). However, combinations of ethyl acetate and 
cyclohexane have also proven successful for tissue extraction. The ethyl acetate/
cyclohexane azeotrope has a composition that is approximately equal in volume 
(54:46) and a boiling point that is 23 °C higher than the n-hexane/acetone mixture’s 
boiling point at 72.8 °C (Shackelford and Alexander 2000). Additionally, it doesn’t 
require a microwave transformer to be heated directly because it has a high enough 
dielectric constant. It also performs a dual function since it functions as a nonpolar 
system but accepts some water. Water in the sample evaporates, breaking down the 
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cell’s structure and enabling the separation of lipids from their interaction with 
lipoproteins and cell membranes. From this perspective, having water in the sample 
is beneficial for speeding up extraction (particularly under microwave irradiation). 
Water, on the other hand, makes the extraction solvent more polar, which reduces its 
effectiveness and, potentially, lipid yields. Aqueous tissue samples are often dried 
before extraction because of this. The debate over whether to use less toxic or 
nontoxic solvents in place of toxic ones like n-hexane has been reignited by the 
current trend toward green processes in extraction (Virot et al. 2008). One example 
is the discovery that limonene, a significant component of the citrus fruit industry’s 
by-products, is more effective than n-hexane for the MAE of oil from olive drupes 
(de Castro et al. 2012).

8  Microwave-Assisted Extraction of Antioxidants

Without endangering essential molecules, antioxidants interact with free radicals to 
stop chain events, such as those that lead to lipid peroxidation. Balance reactive 
oxygen species (ROS) by eating foods high in antioxidants to reduce such health 
hazards.

In order to extract high-quality antioxidant extracts from a range of plant matri-
ces, microwave-assisted extraction (MAE) is a very helpful technique. Its benefits 
come from microwave (MW) heating, which is quick and efficient since heat is sup-
plied directly to the material. As a result, phytochemical substances are released 
from plant cell compartments more rapidly and easily (Camel 2000). Additionally, 
MAE operations take much less time and use less solvent than Traditional Solvent 
Extraction. The most efficient parameters in the microwave- assisted extraction pro-
cess were determined to be temperature, microwave power, solvent concentration, 
solid-to-solvent ratio, and extraction time (Hayat et  al. 2009). A closed-vessel 
microwave technology is generally utilized, which automatically adjusts power to 
balance temperature variations, and the temperature is optimized rather than the 
power. According to temperature variations, the system-applied microwave power is 
in the range of 0 to 1500 watts (Şen et al. 2019).

Response surface methods is used to optimize the key parameters, including 
extraction temperature, extraction time, solvent concentration (ethanol in water), 
and solid-to-solvent ratio. The extraction efficiency for antioxidants rose as the 
ethanol content of the water decreased from 80% to 58%, whereas there was little 
change at lower concentrations. It is believed that ethanol breaks the link between 
antioxidant chemicals and plant matrix while water acts as a plant-blowing agent. 
The concentration of 58% ethanol in water was found to be the ideal solvent 
composition, and the mixture of water and ethanol was found to be the most effective 
solvent for the extraction of antioxidants. For a high extraction yield, the ethanol 
concentration in the water should have a limiting value to speed up the damage to 
the plant cell membranes. However, once the critical ethanol concentration is 
reached, protein coagulation and impurity extraction may take over as the main 
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factors that negatively affect solvent penetration (González and González 2010). 
The solvent ratio of ethanol to water is found to have a statistically significant 
impact on extraction yield, reducing power, and total phenolic content for lemon 
grass, galangal, holy basil, and rosemary. Solvent concentration is the parameter 
that has the greatest impact on MAE antioxidant yield.

Because the analytes are more soluble in the matrix’s active sites at higher tem-
peratures, extraction efficiencies rise as a result. Additionally, the analytes can be 
dissolved by the solvents at higher temperatures, and as the temperature rises, the 
surface tension and viscosity of the solvents both decrease, improving sample 
wetting and matrix penetration, respectively. The extraction of antioxidants is said 
to increase with temperature in the literature, while structural disintegration begins 
at high temperatures. High temperatures should also not be used for safety and 
energy efficiency reasons. Therefore, the ideal working temperature may be 78 °C 
(Şen et al. 2019). The MAE system offers advantages over traditional extraction 
methods due to features like multiple sample extraction, the capacity to work in 
closed vessels beyond the boiling point, speed (minutes), simplicity of use, automatic 
temperature control using power at various voltages, and high extraction efficiency. 
The MAE approach is therefore probably a significant alternative method for the 
easy, affordable, quick, and highly successful extraction of antioxidants from plants 
(Dorta et al. 2013).

9  Extraction of Natural Pigments by 
Microwave-Assisted Technology

Nearly all plant parts, including leaves, flowers, fruits, seeds, and roots, can be used 
to make natural colorants and dyes. Because chlorophyll can transform sunlight into 
chemical energy through photosynthesis, green is thought to be the hue that is most 
frequently found in plant leaves. In addition to shielding plants from natural 
predators, other colors in plants can also draw in insects or other creatures that can 
act as intermediaries in pollination and ultimately reproduction (Dangles 2012).

In order to make our living world vibrant and colorful, it is important to note that 
all of these natural hues can be utilized to add color to an infinite range of products 
(textiles, food, varnishes, cosmetics, etc.). The majority of the color compounds that 
make up natural pigments are from one or more of the following groups: carotenoids, 
anthocyanins, betanin, chlorophyll, curcumin, and flavonoids (Velíšek et al. 2008). 
Additionally, chromophores and auxochromes are the two main chemical groups 
that make up a pigment molecule, according to chemical studies of pigment. The 
chromophore is typically compared to an aromatic ring with unsaturated bonds 
because of its coloring property, and the number of unsaturated bonds determines 
the color intensity. In order to impart color, the auxochrome can aid in combining 
the pigment molecule with the substrate (Siva 2007). In order to improve the 
aesthetic value of foods, colorants have been widely utilized in a variety of food 
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products. The use of natural colorants and dyes has been rapidly declining as a 
result of rising market demands, which have led to an increase in the usage of 
artificial colorants and dyes made from petrochemical sources. However, due to its 
benefits to human health, safety, and the environment, people choose to utilize 
natural colors (Velíšek et  al. 2008). Natural colors haven’t, however, been a 
commercial success due to several technical issues (lack of extraction knowledge, 
challenging plant gathering, etc.). The greatest class of naturally occurring colorants 
are carotenoids. In fact, carotenoids, which are orange-red pigments found in many 
plant species including tomato, orange, and carrot as well as in some animals, make 
up a large portion of the natural food colors (Dangles 2012).

A chain of isoprene units makes up the structure of carotenoids. The number of 
distinct carotenoid molecules has increased to above 500. With at least 40 carbon 
atoms and a long chain of carbon–carbon conjugated double bonds, carotenoids are 
hydrophobic compounds. Because carotenes only contain carbon and hydrogen and 
xanthophylls also contain oxygen atoms, they can be distinguished from one another 
in the carotenoids class (Gedye et al. 1986).

9.1  Recovery of Natural Pigments by Microwave Assistance

In order to improve the aesthetic appeal of foods, colorants have been utilized for a 
very long time in a variety of food products. The use of natural colorants and dyes 
has rapidly decreased as a result of rising market demand, which has led to an 
increase in the usage of artificial colorants and dyes made from petrochemical 
sources. Although several technical issues (lack of extraction knowledge, difficulty 
in plant gathering, etc.) have stopped natural colors from being successful 
commercially, people are eager to utilize them because of their health, safety, and 
environmental benefits. One of the cutting-edge extraction methods, microwave- 
assisted extraction, has been used to get beyond natural color extraction.

Red raspberries were processed by Sun et al. using the MAE technique to extract 
anthocyanins (Acys) (Sun et  al. 2007). Twelve different types of Acys were 
successfully extracted without causing any damage to the chemical structure, and 
the compositions of the extracted Acys were comparable to those obtained using 
traditional solvent extraction (Liazid et al. 2011). Additionally, Liazid et al. created 
a new technique for analyzing anthocyanins in grapes and discovered that the 
solvent employed in MAE is the key factor in determining the optimal Acys 
extraction yield (Chen et al. 2006). Additionally, the MAE technique has been used 
to study other natural colors like curcumin and carotenoids, with results that are 
comparable (Lianfu and Zelong 2008; Mandal et al. 2008). Safflower yellow and 
flavonoids were extracted using dynamic microwave-assisted extraction as opposed 
to traditional techniques (Gao et al. 2006). By using this derivative technique, the 
extraction process may be conveniently tracked and continuously measured. 
Vacuum microwave-assisted extraction (VMAE), a derivative MAE technique, was 
put up against MAE in a comparison of the extraction of microalgal pigments 
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(Dabiri et al. 2005). They found that the mechanical barrier—that pigment must be 
extracted from microalgae with a robust frustule—can be significantly reduced by 
the use of microwaves. In order to extract safflomin A from Chinese herbs, Wang 
et al. also used this method; nevertheless, they concluded that VMAE was preferable 
for extracting thermosensitive chemicals (Sun et al. 2007). An intriguing study on 
coupling techniques for lycopene extraction found that ultrasound and microwave- 
assisted extraction (UMAE) produced a higher yield of lycopene (97.4%) while 
using less solvent and less time (367  s) than ultrasound and microwave-assisted 
extraction (UAE), which produced a yield of (89.4%) in 29.1 minutes.

With the presence of water in the extract, the combined UAME approach may 
prevent the generation of hydroxyl radicals by the ultrasonic cavitation effect, which 
could break down lycopene. Green extraction has emerged as the future trend, as we 
covered in the antioxidant part. Zill-e-Huma et al. (2011) explored a solvent-free 
microwave hydrodiffusion and gravity extraction of flavonol from onions. The 
advantages of the prior microwave-assisted approach were preserved by this new, 
original methodology, but they were also enhanced in terms of extraction time, 
solvent, efficiency, etc. It is noteworthy to note that microscopic examinations of the 
extracted tissues revealed that microwave irradiation might cause a significant 
disturbance in the structure of plant tissue (cell walls, vacuoles, etc.), allowing for 
the effective extraction of target substances (Hemwimon et al. 2007).

10  Extraction of Personal Care Products

Pharmaceuticals and personal care products (PPCPs) have been reported in a variety 
of natural matrices from numerous locations (Golet et al. 2002; Ternes et al. 2004). 
PPCPs include medications ranging from analgesics and antibiotics to contraceptives 
and lipid regulators, in addition to the active ingredients in soaps, detergents, 
perfumes, and skin, hair, and dental care products (Peck and Hornbuckle 2003; 
Ferrer et al. 2004). Continuous introduction of PPCPs into the environment, multiple 
dispersal mechanisms, and their pharmacological activities may result in detrimental 
impacts on wildlife and humans (Kolpin et al. 2002; Ternes et al. 2004).

The extent of exposure from contaminated matrices remains largely unknown; 
however, studies have reported the bioaccumulation of some PPCPs in lobster, 
clams, and human breast milk (DiFrancesco et al. 2003; Ohoro and Okoh 2019). 
Increased hermaphroditism in organisms exposed to female reproductive hormones 
has also been observed (Kuster et al. 2004). In addition, increased bacterial resistance 
among colonies subjected to widely used antibacterial agents has been documented 
(Prat et al. 2006; Lima et al. 2022). The discovery of multiple classes of PPCPs 
coincident in environmental samples further necessitates the consideration of 
potential interactive effects (Kolpin et  al. 2002). For instance, a mixture of 13 
pharmaceuticals resulted in a 10–30% reduction in growth of human embryonic 
kidney cells after 2 days of exposure in vitro, while no effects were observed when 
one of the chemicals was presented individually (Prat et  al. 2006). Wastewater 
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treatment plant (WWTP) effluents are considered a primary source for PPCP 
introduction to the environment. Pharmaceuticals may enter wastewater via 
excretion or disposal of unused medications (Cunningham et al. 2006).

Personal care products are incorporated through washing and bathing practices. 
During wastewater treatment, some removal of PPCPs occurs through sorption to 
sludge (Ternes et al. 2004). Over one-half of the sewage sludge generated annually 
in the United States is further stabilized, then referred to as biosolids, and applied to 
agricultural fields, golf courses, and residential lawns as fertilizer/soil conditioner 
(Renner 2000; la Guardia et  al. 2003). The remainder is placed in landfills or 
incinerated (Kuster et  al. 2004). Following biosolid application onto land, 
incorporated contaminants may enter soil or be translocated via leaching, 
volatilization, or transport on eroded particles (DiFrancesco et al. 2003; la Guardia 
et al. 2003). Some contaminants in biosolids are likely to be available for uptake by 
plants, microorganisms and animals which inhabit or feed on soil and sediment 
(Renner 2000; DiFrancesco et al. 2003; Kuster et al. 2004). Biosolids have high 
nutrient and organic carbon content; however, the identities and levels of organic 
contaminants therein are largely unknown and unregulated. Diverse chemicals 
constitute the compound class known as PPCPs and, hence, such chemicals will 
exhibit a variety of fates in WWTPs and the natural environment. The incorporation 
of polar functional groups in many suggests considerable water solubility, while 
others are more hydrophobic or possess positively charged moieties which may lead 
to significant interaction with solids. Many PPCPs contain combinations of these 
structural properties, complicating the prediction of their behavior and necessitating 
their quantification in multiple matrices (Ternes et al. 2004). The synthetic steroid 
Ethinyl-estradiol has been detected in sewage effluent, surface waters, activated and 
digested sludge, and river sediment (Gomes et al. 2004), while the over-the-counter 
anti-histamine diphenhydramine was found in sediment at concentrations that are 
believed to exceed those in aqueous matrices by three orders of magnitude (Ferrer 
et al. 2004) (Table 1).

11  Extraction of Pharmaceuticals

More than 3000 distinct compounds, such as antibiotics, antidiabetics, beta- 
blockers, contraceptives, lipid regulators, antidepressants, or nonsteroidal anti- 
inflammatory medications, are utilized as pharmaceutical components to treat 
illnesses in humans or animals (NSAIDs) (Guedes-Alonso et al. 2016; Muzammil 
et  al. 2023). Human-use pharmaceuticals and their metabolites are partially 
eliminated in urban Wastewater Treatment Plants (WWTPs) from domestic and 
medical effluent. As a result, several environmental components (such as water, 
sediments, but also biota) play a role in their ultimate fate (Kumirska et al. 2015).

The majority of the samples of sewage sludge from wastewater treatment plants 
have been subjected to analytical procedures based on MAE to identify 
pharmaceuticals (WWTP). Numerous classes of pharmaceutical substances have 

S. Nithya et al.



225

Table 1 Target compounds selected for development of mixed PPCP method

Target compound Function References

Caffeine Stimulant Kuster et al. (2004)
Diphenhydramine 
hydrochloride

Anti-histamine Ferrer et al. (2004)

Epicoprostanol Molecular marker for fecal waste (steroid) Kuster et al. (2004)
17-Estradiol Female reproductive hormone Gomes et al. (2004)
Ibuprofen Anti-inflammatory; analgesic Ferrer et al. (2004)
Ketoprofen Anti-inflammatory; analgesic Ferrer et al. (2004)
Musk ketone Synthetic fragrance Peck and Hornbuckle (2003)
Naproxen Anti-inflammatory; analgesic Gomes et al. (2004)
Triclosan Anti-bacterial agent Ferrer et al. (2004)

been examined in this matrix, including steroid hormones (Snow et  al. 2012), 
nonsteroidal anti-inflammatory medicines (NSAIDs) (Petrie et  al. 2016), 
antiepileptic drugs (Mohapatra et al. 2012), and antibiotics (Montesdeoca-Esponda 
et  al. 2011; Dorival-García et  al. 2013). Additionally, MAE has been effectively 
used to identify pharmaceuticals in a variety of solid matrices, including compost 
(Speltini et al. 2015), sediments (Tong et al. 2016), biota (Kazakova et al. 2018), and 
air samples (Jiao et al. 2014). The most significant class of steroid hormones are the 
estrogens, and their release into the environment, particularly into aquatic 
environments, can have detrimental impacts on aquatic animals.

The major extraction solvents used for the MAE optimization of steroid hor-
mones in sewage sludge and sediments were MeOH (Snow et  al. 2012), water 
(Azzouz and Ballesteros 2015), and a combination of MeOH/water (3:2, v/v) 
(Kumirska et al. 2015). Following MAE, extract evaporation and reconstitution in 
MeOH was used as a concentration step before the LC-MS analysis of 20 synthetic 
and natural steroids and their associated metabolites in sediments (Snow et al. 2012) 
and 15 sex hormones and corticosteroids in sludge (Guedes-Alonso et al. 2016). 
Prior to analysis, SPE was also used as an extra clean-up step. In every instance, 
LODs and good recoveries between 71% and 102% were realized at the low ng/g−1 
(Vega- Morales et al. 2013).

Antibiotics are used to treat bacterial infections. Due to their wide range of activ-
ity and effective oral absorption, fluoroquinolones are arguably the most significant 
class of synthetic antibiotics. They have been found in wastewater effluents, and 
because they are lipophilic, they can gather in sediments or sludge (Dorival-García 
et al. 2013; Alves et al. 2023). Fluoroquinolones have been successfully extracted 
by MAE from compost and sewage and wastewater sludge (Montesdeoca-Esponda 
et al. 2011).

In order to extract 54 multiclass pharmaceuticals (NSAIDs, sedatives, sulfon-
amides, quinolones, and other popular medications) and PCPs from fish samples, 
innovative techniques including MAE combined with hollow fiber-liquid/solid 
phase microextraction (HF-L/SME) have recently been developed  
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(Zhang et al. 2017). In this instance, microwave energy was used during the HF-L/ 
SME operation on a synthesized SPME fiber since it demonstrated high capacity, 
concentration rate, and efficiency. Combining these two options provides for a faster 
rate of target compound diffusion, which cuts down on extraction time (12 min). For 
all substances, LODs between 0.01 and 0.50  ng/g−1 were attained (Huang et  al. 
2016) (Table 2).

12  The Role of Microwaves in Omics Disciplines

12.1  Omics

Genomics is the exploration of all genes and their interrelationships in order to 
determine their collective influence on an organism’s growth and development. 
Proteomics, on the other hand, is concerned with the study of the expression, 
localizations, functions, and interactions of all proteins expressed by an organism’s 
genetic code. Finally, metabolomics is concerned with quantifying all low- 
molecular- weight metabolites (sugars, amino acids, organic acids, fatty acids, and 
others) in an organism’s cells at a certain time under precise environmental/ 
biological conditions. Omics is currently a magical suffix from the Latin “ome,” 
which means mass or gigantic, and alludes to the massive amount of analytical data 
generated and required to gain the information sought by the so-called omics 
disciplines. To gather the data required for an omics investigation, an analytical 
procedure must be performed. Microwave (MW) energy can be used to expedite, 
improve, or allow the gathering of target analytical data during one or more steps of 
the analytical process (Delgado-Povedano and Castro 2017) (Fig. 6).

12.2  Microwave Equipment for Assisting Omics

Microwaves have been employed to varying degrees to facilitate research on ana-
lytical platforms in various omics disciplines. Metabolomics has reaped maximum 
advantage of the great number of methodologies created under the umbrella of 
reductionist theory in molecular biology over several decades by employing micro-
waves to optimize sample preparation stages. Other omics, on the other hand, have 
used MWs primarily to speed up sluggish procedures like sample preparation and/
or detection, which are substantially slower when done without the aid of micro-
waves. In the three major omics and their subdisciplines, a number of microwave 
devices have been employed to perform analytical MW-assisted tasks (especially 
sample preparation). For this reason, both monomode and multimode MW genera-
tion have been utilized. In addition, to speed up standard omics procedures, com-
mercially available devices, laboratory-made designs, and household ovens have 
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Fig. 6 General scheme of omics disciplines

been used. Two factors characterize the use of MW in omics disciplines: (1) The 
device used to apply this sort of energy, which entails decisions on two aspects: MW 
mode and continuous or batch performance of the MW-subjected target step; (2) 
The medium or solvent with which the sample (or, after separation, the portion of it 
to be analyzed) comes into contact when MW is applied (de Castro et al. 2012).

A number of MW systems have been commercialized for specialized biological 
and biochemical applications. CEM, for example, sells a piece of specialized 
equipment for high-throughput digestion. The setup consists of a Discover system 
with a screw-top container that can store numerous microvials or Eppendorf tubes, 
as well as an insert for a fiber-optic temperature probe. The fiber-optic probe is 
designed to aid in temperature stabilization by monitoring magnetron power while 
simultaneously cooling to allow energy input while keeping the comparatively cool 
temperature required for the desired reaction. This equipment is appropriate for 
metabolite digestion and/or extraction (particularly from solid matrices). CEM 
offers a 45 mL vapor-phase hydrolysis jar for use with the Discover MW device, 
which can handle up to ten 300  mL samples in concurrently. A valve panel is 
included in the system to simplify connecting the hydrolysis vessel to the vacuum 
and nitrogen sources. To promote hydrolysis under inert, anaerobic conditions and 
hence prevent oxidative deterioration of the sample components, the sealed sample 
vessel is alternatively vacuum evacuated and purged with nitrogen (Delgado- 
Povedano and Castro 2017; Almeida et al. 2022).

Furthermore, numerous businesses have marketed systems designed with omics 
operations in mind. The CEM MARS 5, a microwave system with PTFE tanks for 
MW-assisted digestion, is one example. The MW-accelerated reaction system was 
created for digesting, dissolving, and/or hydrolyzing a wide range of materials in 
the laboratory. It rapidly heats samples in polar or ionic liquids at high pressures 
using MW energy. Its primary application is to prepare samples for atomic absorption 
(AA), inductively coupled plasma emission spectroscopy (ICP), or gas or liquid 
chromatography. A number of laboratories employ the vacuum-assisted automatic 
MW histoprocessor MFX-800-3, which has an in-built vacuum system and 
temperature stabilizer to allow for quick tissue processing without compromising 
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the original structure. This is an environmentally friendly, quick, cost-effective, 
fully automatic microprocessor-controlled histoprocessor that can also be used 
manually and is ideal for a wide range of applications (Delgado-Povedano and 
Castro 2017).

12.3  Microwave-Assisted Steps in Various Omics

Microwave irradiation can help to speed up some procedures in genomics, pro-
teomics, metabolomics, and related subdisciplines. The specific omics procedures 
that can be accelerated by employing microwaves (MWs) vary, as do the MW 
devices used to accomplish this, which include focused or multimode MWs, single 
continuous or high-throughput formats, and laboratory-adapted, commercial, or 
dedicated equipment. Cell fixation, DNA extraction, deparaffinization, digestion, 
PCR hybridization, rolling circle amplification, and metal-enhanced fluorescence 
are the specific activities most efficiently aided by MW in genomic applications. 
Proteomics can advantage from MW effects for operations such as enzyme 
quenching and proteolysis (enzymatic or chemical), identification and 
characterization of posttranslational modifications or metal-catalyzed reaction sites 
on proteins and lipase selectivities, dissociation of protein complexes and protein 
quantitation using commercially available processes such as ICATR® and 
iTRAQR®, or traditional procedures based on sensitive phenomena such as 
fluorescence. In any event, metabolomics has benefited the most from MW 
assistance, particularly for drying, digesting, solid–liquid extraction (or, more 
precisely, “leaching”), steam distillation, liquid–liquid extraction, and derivatization 
of a wide range of metabolites from diverse matrices (Delgado-Povedano and 
Castro 2017).

12.4  Solvents Used in MW-Assisted Steps in Various 
Omics Disciplines

Because MW heating can induce a sudden increase in the internal temperature of a 
solution, which can result in an explosion, solvent characteristics must be thoroughly 
tested ahead of time. In order to accelerate proteolytic digestion, it has become more 
popular to incorporate a tiny quantity of organic solvent in digestion buffers to 
partially denature the substrate protein, allowing better access to the proteolytic 
enzyme. Furthermore, the presence and composition of surfactants in the working 
medium can have an impact on the MW-assisted sample preparation stage (Lin et al. 
2005). Enzymes that can catalyze in non-aqueous environments, on the other hand, 
are frequently highly compatible with MW assistance, in which they tend to be 
exceedingly thermally stable without notable inactivation. Because of the large 
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range of metabolite polarity, choosing an adequate solvent in metabolomics is more 
complex (Sandoval et al. 2007). There is no such thing as an ideal solvent when it 
comes to extraction. When designing the overall analytical process, consider the 
option of directly introducing the digested extract, eluate, and so on (i.e., the 
analytical sample) into the analytical equipment. This entails choosing a solvent 
that satisfies the unique needs of the analytical equipment being employed.

12.5  Microwave Assistance Trends in the Omics Approach

Despite its rapid expansion, MW’s analytical help in omics is still in its infancy. 
Unanswered questions include the precise mechanisms of action of MW in 
comparison to conventional heating, as well as the actual usage and potential of this 
area. So far, the kinetics and specificity of MW-assisted incubations and reactions in 
genomics, transcriptomics, and proteomics have only been investigated in a few 
regions and on a few systems. MW-assisted processes involving metabolites, on the 
other hand, have been developed almost from the advent of MW devices in the 
analytical laboratory.

Past research and current demands indicate the following predictable trends in 
the use of MW to help omics:

 (a) Magnetite beads are used to speed up MW-assisted enzymatic digestion and 
other SP procedures (Chen and Chen 2007).

 (b) Quantum dots, which are widely utilized as fluorescent reporters in biomedical 
research and are now being used in the omics arena (Dua et  al. 2010), will 
almost certainly necessitate technological improvements based on MW support.

 (c) Nanostructured materials, which have been widely used in the therapeutic field 
(Phan et al. 2009; Feliu and Fadeel 2010), would benefit from MWs to improve 
target processes, notably in integrated omics investigations (Gibb et al. 2011).

 (d) Microfluidic technologies, which are becoming more prevalent in omics 
(Brouzes et  al. 2009), nanomedicine in general (Sakamoto et  al. 2010), and 
nanoscale platforms (Soundararajan et al. 2010), can be predicted to gain from 
MW support, increasing and accelerating their performance.

 (e) Bioinformatic approaches (Cho et  al. 2007), such as nanoparticle ontology 
(Thomas et al. 2011) and nanoinformatics (Maojo et al. 2011), could make it 
easier to interpret interactions of micro- and nano-omics systems with MW.

 (f) New commercially available miniaturized MW devices can solve the question 
of what type of MW device to utilize for MW-assisted omic processes at the 
micro- and nanoscale (Aydoğan et al. 2020).
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13  Conclusion

As a result of groundbreaking research, microwaves are being used to extract phyto-
constituents from diverse herbal specimens. Conventional extraction procedures are 
time-consuming, need more solvents, and are no longer appropriate for thermally 
sensitive plant components. The extraction stage must be more yielding; rapid, spe-
cific, and solvent-free, while also preserving the stability of thermolabile compo-
nents, and microwave extraction meet these demands. Heat is generated while 
employing microwave energy in this unconventional method. The significant char-
acteristics that determine extraction efficiency are solvent attributes, volume, dura-
tion of exposure, microwave control, system attributes, temperature, and application. 
Microwave-assisted extraction is a green technology when compared to other 
extraction techniques. Thus, MAE is an effective green technology that has become 
one of the key strategies for extracting bioactive components from environmental, 
biological, and geological matrices.

MAE approach was developed in the mid-1980s to isolate bioactive chemicals 
from plants. From an existing perspective of green chemistry, this is an 
environmentally benign and human-friendly technique. It is currently widely 
accepted as a method for extracting bioactive natural chemicals from plant sources. 
In today’s herbal isolation context, extraction techniques for plant matrix are key 
tasks that must be completed in order to meet quality control attributes. In this case, 
microwave-aided extraction can be used as a guide for the extraction of new and 
selective bioactive compounds from the plant sample matrix. This method 
outperforms conventional methods in terms of selectivity, specificity, and extraction 
efficiency. Furthermore, several research studies reveal that microwave-assisted 
extraction offers substantial advantages over conventional approaches, such as 
shorter extraction times, higher extraction yield, and lower solvent usage.

Furthermore, heat- or oxygen-sensitive chemicals should be extracted under con-
trolled circumstances (such as a vacuum or inert atmosphere) to avoid oxidative and 
thermal destruction. Solvent-free microwave extraction yields a more valuable 
product with higher levels of oxygenated chemicals. Some highly polar chemicals 
can be employed in suitable proportions in a solvent blend under increased heat and 
pressure. As a result, microwave-aided extraction can produce higher quality 
samples (in particular chemical classes of substance) than other conventional 
approaches. It also allows full control over extraction factors like as duration, 
energy, and temperature, which improves reproducibility. Several aspects, including 
solvent composition, solvent quantity, and plant material loading, influence 
microwave-aided extraction. To efficiently recover the chemicals of interest, 
thorough process optimization with parameter regulation and control is required. 
New batch microwave assemblies are more intelligent than prior designs. For 
sample loading and recognition, these systems employ a sample set time program. 
At a single moment in time, microwave operators can now choose the temperature 
for each sample as well as the sample type for different extraction systems.
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Unfortunately, relatively few studies have been published on microwave-assisted 
extraction of bioactive components from plants on a significant scale. This could be 
attributed to crucial control points in industrial microwave design, such as the 
processing facility, processing conditions, safety and operation-related hazards, and 
product parameters. As a result, specific efforts should be undertaken to address 
technical challenges connected to the design of microwave extractors and their 
suitability for isolating bioactive components from plant matrices in order to 
encourage the use of microwave-aided extraction in the food and pharmaceutical 
industries. To facilitate the application of microwave-assisted extraction to the food 
and drug industries, special efforts should be made to solve conceptual and practical 
problems such as the unveiling of the extraction mechanism, the development of 
microwave-based extractors, and the diagnostic testing of plant materials.
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Software for Drug Discovery and Protein 
Engineering: A Comparison Between 
the Alternatives and Recent Advancements 
in Computational Biology

Tathagata Adhikary and Piyali Basak

Abstract “Omic” technologies (such as genomics, transcriptomics, proteomics, 
and metabolomics) generate huge databases that demand computational approaches 
to state novel conclusions. With the advent of machine learning and artificial intel-
ligence algorithms, the analysis of biological data and protein engineering has taken 
a step forward. Different virtual screening servers and standalone software paved 
their importance in the initial phase of drug discovery, aiding in drug repurposing 
and high-throughput screening. Besides, interaction networks, often encountered in 
polypharmacology and network pharmacology, guide a researcher in target fishing 
and developing drug combinations. Visualization and prediction of molecular struc-
tures, modeling antibodies, and peptides including homology modeling are crucial 
to bioinformaticians and clinical biologists. Biological network analysis, pharmaco-
phore modeling, molecular docking, and dynamics simulation are broadly exploited 
in the domain of computational biology and elucidate the mechanisms underlying 
biomolecular interactions, consequently revealing the orchestra of biological path-
ways. Considering the intended purposes, advantages, and limitations of the exist-
ing software, this chapter highlights only a fraction of popular platforms and 
encourages the readers to explore other alternatives in various domains of drug dis-
covery and protein engineering.

Keywords Big data · Virtual screening · Biological networks · Pharmacophore · 
Homology modeling

1  Introduction: The Need for Computational Biology

Discovering novel drug molecules strictly demands huge investments in terms of 
time, infrastructure, and labor to identify, optimize, and validate the drug-likeliness 
of such molecules by conducting in  vitro, in  vivo, and preclinical experiments  
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(Lei et al. 2016; Rifaioglu et al. 2019). To ease the process, a shift toward the appli-
cation of computational tools is witnessed in the early stages of identifying drug-
like molecules. Constant advancements in software and its algorithms aid to bridge 
the “innovation gap” that exists due to higher investments and lower approval rates. 
The process of drug discovery sequentially includes the identification and validation 
of disease targets, lead compound identification and its optimization, and finally 
success in clinical trials. Accordingly, establishing a drug can take around 10 to 
13 years with huge capital expenditure (Malathi et al. 2018). Challenges arising due 
to the pleiotropic nature of biomolecules and the interaction of chemical compounds 
with multiple pharmacological targets (often encountered in combinatorial/multi-
targeted approaches) can be addressed by chemo- and bioinformatics tools that 
make use of databases on physicochemical characteristics and therapeutic use of 
compounds (Lagunin et  al.). The fact that the primary healthcare of 80% of the 
population in developing countries counts on the conventional herbal remedies and 
the steep rise of 380% in plant-based supplements’ sales in the United States from 
1990 to 2000 encouraged the development of numerous databases on ethnomedi-
cine (Dunkel et al. 2006; Mosihuzzaman and Choudhary 2008). This expands the 
prospects of utilizing traditional knowledge on medicinal plants in modern-day 
drug discovery and drug repurposing.

In 1971, the database Protein Data Bank (PDB) came into existence, being the 
first open-access digital repository in the field of biology. It is a collection of 3D 
structures (resolved by laboratory experimentations namely X-ray crystallography 
or nuclear magnetic resonance (NMR) spectroscopy) of biological macromolecules 
and receptor–ligand complexes (https://www.rcsb.org/) (Burley et  al. 2017). 
ChemCom (Chemical Comparator) is an application based on Java Web Start 
(JavaWS) technology and includes UnionBit Tree Algorithm to search and compare 
large chemical libraries (Saeedipour et al. 2015). The list of such repositories can be 
long enough (Lagunin et  al.). A few open-source databases on medicinal plants, 
phytochemicals and other chemical compounds can be listed as follows: Plants For 
A Future (PFAF), Indian Medicinal Plants Phytochemistry And Therapeutics 2.0 
(IMPPAT 2.0), Native American Ethnobotany database, SuperNatural 3.0, The 
Natural Compound (NC) collection, NCBI PubChem, ChEMBL, Collection of 
open natural products (COCONUT), Traditional Chinese Medicine Information 
Database (TCMID), Dr. Duke’s Phytochemical and Ethnobotanical Databases, 
Aromatic and Medicinal Plants Index (by Purdue University), Agricultural Science 
and Technology (or AGRIS supported by the Food and Agriculture Organization 
(FAO) of the United Nations), Compendium of Ayurveda Medicinal Plants of Sri 
Lanka, Botanical.com, Chinese Herbal Medicine Dictionary (by Complementary 
and Alternative Healing University), Clinicaltrials.gov database, Medicinal Plant 
Database (by Botanical Survey of India), EcoPort, TIPdb (a database of indigenous 
and endemic plant species in Taiwan), Traded Medicinal Plants Database, Herbal 
Medicines Compendium Medicinal Herbs and Plant Database, Drugs Herbs and 
Supplements by MedlinePlus, ZINC database, Marowina database medicinal sup-
port, Natural Medicines, Herbs at a Glance, Prelude Medicinal Plants Database, 
Raintree Tropical Plant Database, The World Flora Online, and TRAMIL database 
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(Xie et al.; Duke 2020). Commercial databases with paid access include Chemical 
Abstracts Service (CAS), HerbalThink-TCM, Dictionary of Natural Products 
(DNP), and HerbMed.

The increasing data relating to the bioactivities of a chemical compound, the 
composition of phytoconstituents in an extract, and the target receptors responsible 
for specific bioactivity need to be stored and be able to be retrieved systematically. 
“Omic” technologies have led to the development of diverse databases, and inter-
preting/interconnecting them or data mining from them is a major challenge to 
human capabilities. Hence, computational approaches including artificial intelli-
gence and machine learning algorithms (e.g., artificial neural networks (ANN), 
Naive Bayes, K-Means, support vector machine (SVM), random decision forest, 
etc.) are widely adopted to provide solutions to complex biological questions (Gupta 
et al. 2021; Muzammil et al. 2023). Continuous development of in silico tools for 
chemoinformatics and bioinformatics provides insight to the vast multiomics data 
and adds different perspectives to the scientists in the domain of drug discovery. 
Chemoinformatics particularly aims to model a statistical correlation between the 
observed bioactivity and structural parameters. These approaches relating to 
computer- aided drug design have gained noteworthy momentum in the drug discov-
ery process. Genome-wide functional genetic screening (e.g., using deep learning 
algorithms) is a cutting-edge technique that has led to the discovery of genotype–
phenotype interconnections and established new phenotypes (Zhang et al. 2011). 
Genomics and proteomics analyses in high-throughput screening have shown prom-
ising results to rationalize the drug discovery process; however, the cost inflation 
incurred due to these technologies does not meet the expected growth of the drug’s 
approval rate. Freely available software that are frequently employed in machine 
learning and statistical analysis of data are R, PSPP by the GNU Project, and WEKA 
while commercial ones include MATLAB, SAS/STAT, SIMCA, SPSS Statistics by 
IBM, and TIBCO Data Science/Statistica (Dzemyda et al. 2019).

The first thing that needs to be checked while selecting a software for computer- 
aided drug designing is its vendor and license—whether it is under academia, com-
mercial, open-source, or in-house software. Open-source software are popular 
among academic personnel as, unlike commercial software, no license fee is 
required, their source code is made available freely and can be modified by a user. 
Based on the intended use, license fee, and characteristic features of the software/
platforms, attempts are made to categorize and list the in silico tools employed in 
the various domains of drug discovery (Singh et al. 2021). Molecular docking, phar-
macophore modeling, methods relating (Q)SAR, molecular dynamics simulation, 
network pharmacology and machine learning algorithms accelerate the drug discov-
ery process and complement the traditional bioactivity-guided fractionation, high- 
throughput screening and systems biology approaches. In this chapter, the tables 
summarizing the in silico tools only provide a fraction of popular platforms and 
encourage the readers to explore other alternatives in various domains of drug dis-
covery and protein engineering.
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2  Visualization of Molecular Structures

Molecular graphics enhances the experience of representing, modeling and analyz-
ing multifaceted biochemical systems. Besides modeling the 3D architecture of 
molecular structures, 2D illustrations of molecules have gained interest among 
chemical scientists and biologists in the field of theoretical chemistry and discovery 
because of their clear representation of structural characteristics and interactions 
between atoms (Zhou and Shang 2009). Visualizing molecular structures in any 
virtual reality environment demands rapid high-quality rendering of geometries to 
build molecular models with intuitive and informative interactions. Different visu-
alization techniques (such as the space-filling model, the ball-and-stick model, and 
the reconstruction of the surface of the secondary structures alpha helixes and beta 
sheets) are used while representing a molecular model, and some available plat-
forms to design, analyze and visualize molecular structures are listed in Table 1.

3  Prediction of Pharmacokinetic/Pharmacodynamic Profile

Evaluating the ADMET (absorption, distribution, metabolism, excretion and toxic-
ity) properties of a molecule is a major step in discovering novel drug compounds. 
In general, compounds having natural origin tend to have desirable ADMET proper-
ties compared to synthetic compounds. Early prediction of ADMET properties of a 
chemical compound can be of utmost importance since most drug failures occur in 
the later phases due to undesirable pharmacokinetics and toxicological characteris-
tics. Lipinski’s rule of five is often checked to predict the drug-likeliness (in humans) 
of an oral-administered compound (Lipinski 2004; Rego et al. 2022). According to 
it, a drug molecule can have at most one violation among these five rules: (a) 
ligand’s molecular weight should be less than or equal to 500 Daltons, (b) the num-
ber of H-bond donors should be less than 5, (c) the number of H-bond acceptor 
should be less than 10, (d) value of octanol partition coefficient (miLogP) should be 
less than 5 and (e) the number of rotatable bonds should be less than 10.

Most of the software packages that predict the ADMET of compounds (e.g., their 
affinity toward transporter proteins, blood proteins and drug-metabolizing enzymes 
P450 cytochromes isoforms, etc.) consider their structural/physicochemical charac-
teristics to develop (Q)SAR models. Derek Nexus (Lhasa Ltd.), TOPKAT (Accelrys), 
OSIRIS Property Explorer, MCASE (Multicase) and PASS can be opted to predict 
various toxicities and report the teratogenic, mutagenic, cardiotoxic, hepatotoxic, 
carcinogenic, and renal-toxic nature of the compounds (Kar et al. 2018). The online 
server of GUSAR (www.way2drug.com) predicts the LD50 values of query com-
pounds on rodents when administered via four different routes. Some other soft-
ware/web-servers to study the ADMET properties are listed in Table 2.
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4  Prediction of Structures Including Homology Modeling

Molecular modeling based on structure-based drug designing requires 3D structures 
of the receptor and ligand molecules (experimentally determined by X-ray crystal-
lography and NMR spectroscopy). In cases where experimental data are unavail-
able, the existing data and sequences can be used to predict the structures by 
homology-based modeling, sometimes referred to as comparative modeling of pro-
tein. The amino acid sequence of a protein (acquired from NCBI or UniPort) is used 
to generate the structure using computational tools. Evolutionarily related proteins 
share a similarity in sequences and homologous proteins exhibit similarity in their 
protein structure (substitution matrices such as Blosum 60 describe such homol-
ogy). The 3-D protein structure is found to be evolutionarily more conserved com-
pared to the sequence conservation alone (Kaczanowski and Zielenkiewicz 2010). 
Homology modeling starts with recognizing a template that shows similarity in 
sequence (searching is accomplished by employing BLAST (Basic Local Alignment 
Search Tool) or PSI-BLAST (Position-Specific Iterated BLAST) or fold recognition 
methods) and subsequent alignment of the known structures (resolved by experi-
ments) in the database. A similarity of less than 30% is generally not preferred in 
homology modeling. BLAST compares a query sequence with the existing database 
and identifies the most suitable sequence with significant similarity, i.e., it identifies 
the homologous sequences. Alignments with an expectation value (E-value) closer 
to zero indicate a higher similarity index. A higher E-value makes the alignment of 
two sequences strenuous, thus considering sequences from other homologous pro-
teins can help in this scenario (Pearson 2013; Alves et al. 2023). Multiple Sequence 
Alignment programs, e.g., CLUSTALW, can align sequences by performing inser-
tions and deletions. Alignment correction, if done not properly, will generate defec-
tive structures. Some of the methods that are used to build models are spatial 
restraint, rigid-body assembly, segment matching and artificial evolution. Modeling 
tools, namely Modeller or CASP, can be used to build the backbone from the aligned 
sequences. Most often, aligning the model sequence with the template sequence 
creates gaps that can be resolved by considering conformational changes, inser-
tions/deletions/substitutions of amino acid residues. Thus, refining the model 
includes loop modeling and side-chain modeling following the principles of molec-
ular dynamics, Monte Carlo, and genetic algorithms. After modeling, structures are 
energetically minimized by employing force fields (for instance OPLS, AMBER, 
MM3, and CHARMM22 force fields) (Lewis-Atwell et al.). Loop modeling can be 
knowledge-based or energy-based. Knowledge-based loop modeling, sometimes 
referred to as template-based or homology-based, searches existing databases to 
identify known loop conformations that match the input sequence and geometric 
descriptors about the anchoring points (Karami et al.). It does not require complex 
simulations and high computation power; however, it relies on the availability of 
appropriate loop conformations present in the existing repositories of protein struc-
tures to consider the entire conformational space. Energy-based loop modeling cor-
responds to nontemplate-based or de novo methods that use an energy function and 
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minimizes it by Monte Carlo methods or molecular dynamics to optimize the loop 
conformation. Proteins that share structural similarity also exhibit similarity in tor-
sion angle about Ca-Cb bond (psi angle) when side-chain conformations are consid-
ered. The entire conserved residues can be taken from the template and copied to the 
model to yield highly accurate results when compared to the methods that copy the 
backbone or predict the side chains. Modeling of side chains includes knowledge- 
based methods to extract a library of rotamers from known crystallographic struc-
tures and substitutes the side chains on the backbone structure. After side chain 
modeling, the analysis is done by using their root mean square deviation (RMSD) 
values. The errors found in the final model are dependent on the extent of similarity 
between the template and the target. If it is >90%, then the crystallographic struc-
ture is fairly predicted, whereas for a value <90%, the r.m.s.d errors will be signifi-
cant. The estimation of errors can be done by using a force field to calculate the 
model’s energy and checking if the bond lengths and angles are exhibiting a value 
in the normal range (Dolan et al. 2012; Wink et al. 2019; Lima et al. 2022). However, 
this method does not evaluate the folding nature of the model and the misfolding in 
proteins is taken care of by 3D distribution functions. Model validation is necessary 
to establish the prediction accuracy.

The stereochemical aspects of the protein can be explored by WHATCHECK, 
WHAT IF, VADAR, and PROCHECK. Ramachandran plot, obtained by plotting the 
torsional angles of amino acids φ (phi) and ψ (psi) in a protein sequence two- 
dimensionally, is used to analyze the stereochemical and geometrical nature of the 
structure and verifies the presence of geometries in the electrostatically unfavored 
regions of the plot. A higher proportion of residues in the favored region indicates 
the structural feasibility of the model (Agnihotry et al. 2022). Popularly used tools 
for homology-based modeling are MODELLER, SWISS PDB VIEWER, SWISS 
MODEL and COMPOSER (Malathi et  al. 2018). MODELLER is also used for 
sequence searching, comparing and clustering protein structures or sequences. In 
brief, steps in homology modeling take into account template identification, 
sequence alignment, structural modification, energy minimization and model vali-
dation to predict the 3D structure.

5  Interaction Networks

Hopkins in 2007 brought the concept of network pharmacology that makes use of 
network analysis algorithms (on the existing knowledge of biological networks con-
sisting of structural/physicochemical properties of proteins/ligands, the interaction 
of a protein/gene with another protein/gene/ligand, signaling and metabolic path-
ways) to predict the therapeutic action of small molecules, elucidate their mecha-
nism of action, and understand the drug-disease relationships at the system-level 
(Csermely et al. 2013). Visualization of biological networks (such as pie-nodes and 
edge-pie matrix visualization) and network comparison (by employing network 
alignment and computing pair-wise similarity between selected networks) is 
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essential for network analysis, identification of key components/nodes/interactions 
in a concerned biological system, and highlighting the union/intersection/comple-
ment regions in a set of biological networks. Networks have the capability to high-
light the interacting elements within a complex biochemical system, thus aiding in 
the visualization and exploration of big data. However, the challenges relating the 
large size and high complexity of biological networks generate the so-called “hair-
balls” in the networks. Hence, there is a need for an efficient and interactive graphi-
cal user interface for network comparison and visualization (Pirch et  al. 2021; 
Almeida et al. 2022). One needs to consider several types of relationships (namely 
“target–effect,” “target–pathway,” “pathway–effect,” and “target–pathway–effect” 
relationships) to investigate the pleiotropic and synergistic effects of a drug com-
pound or a combination of drug compounds. The benefit of conceptualizing such 
“cause–effect” relationships unfold gradually—if the bioactivity of a drug relates to 
certain molecular targets and their corresponding pathways are established, then 
other mode-of-actions of influencing those pathways can yield similar effects.

Analysis of biological pathways (such as signaling pathways, regulatory path-
ways, metabolic pathways, signal transduction pathways, etc.) makes use of various 
pathway databases (Lagunin et al.). To name a few, WikiPathways (https://www.
wikipathways.org), HumanCyc (https://humancyc.org/), NetPath (http://www.net-
path.org/), Reactome (https://reactome.org/), KEGG (https://www.genome.jp/kegg/
pathway.html), SignaLink (http://signalink.org/), and Small Molecule Pathway 
Database (https://www.smpdb.ca/). QIAGEN Ingenuity Pathway Analysis (IPA) is 
an online platform that is used to analyze, integrate, model and interpret the nexus 
of data from “omic” technologies including RNAseq experiments and Single- 
Nucleotide Polymorphism (SNP) microarrays. It aids in the identification of genes 
and pathways that functionally interact with the drug molecules and compares the 
gene regulatory circuits involved in the phenotypic responses. Connectivity Map 
(CMap) connects the genes and the drugs (currently in use) underlying various dis-
eases and enables us to perform data-driven analysis of repurposing/reprofiling/
repositioning of drugs (it does so by analyzing the disease-specific and drug- specific 
gene signatures). A user provides the “gene hit lists” (aka “signatures”) to the CMap 
for its comparison with a gene differential expression (DE) database (obtained by 
perturbation of cell lines with numerous drug-like molecules) to output a rank of 
compounds that exhibit similarity in expression patterns considering the query hit 
list. The CMap resource hosts over 1.5 million gene expression profiles from around 
5000 chemical compounds and 3000 genetic reagents that are tested in various cell 
lines (Lim and Pavlidis 2021). The similarity in the gene expression profiles based 
on drug–drug, drug–disease, and disease–disease relationships is used to create the 
disease–drug networks for studying the potential side effects, targets and pathways 
associated with the drug compound. Aside CMap, Gene Expression Omnibus 
(GEO), and the Comparative Toxicogenomics Database (CTD) can be opted to cre-
ate such disease-specific gene expression signatures. DIGEP-Pred is a free web- 
based platform that considers the structural characteristics of compounds to predict 
drug-induced variations in gene expression profiles (Lagunin et al. 2013). Natural 
Product-based Drug Combination and Its Disease-specific Molecular Regulation 

T. Adhikary and P. Basak

https://www.wikipathways.org
https://www.wikipathways.org
https://humancyc.org/
http://www.netpath.org/
http://www.netpath.org/
https://reactome.org/
https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
http://signalink.org/
https://www.smpdb.ca/


255

(NPCDR) is an interactive database that shares knowledge on drug combinations 
(of natural products) with clinical or experimental validations. It also provides 
information on disease-specific molecular recognition and pathways and allows 
integration of available databases, easing the research on network pharmacology 
and medicinal chemistry (Sun et al. 2022).

The platforms that are free for academic use in bioinformatics and systems biol-
ogy researches to analyze complex data from “omic” technologies are OmicsNet 
(https://www.omicsnet.ca/) (Zhou and Xia 2018), Cell Illustrator (http://www.cellil-
lustrator.com/home), Cytoscape (https://cytoscape.org/), ConsensusPathDB (http://
cpdb.molgen.mpg.de/), Gene Set Enrichment Analysis or GSEA (https://www.gsea- 
msigdb.org/gsea/index.jsp), The Database for Annotation, Visualization and 
Integrated Discovery or DAVID (https://david.ncifcrf.gov/), VANESA (https://
cbrinkrolf.github.io/VANESA/). Other software with paid licenses include the gen-
eXplain platform (https://genexplain.com/), QIAGEN Ingenuity Pathway Analysis 
(https://digitalinsights.qiagen.com/products- overview/discovery- insights- portfolio/
analysis- and- visualization/qiagen- ipa/), and Elsevier’s Pathway Studio (https://
www.elsevier.com/en- in/solutions/pathway- studio- biological- research). Other 
alternatives that can be explored in this domain of research are presented in Table 3.

6  Pharmacophore Modeling and Molecular Docking

From a large library of chemical compounds, virtual screening identifies the lead 
compounds having a specific bioactivity. There exists structure-based and ligand- 
based virtual screening. The former approach utilizes the 3D structure of the target 
protein and performs molecular docking to report the potential active compounds 
that exhibit good binding affinity/score with the target receptor structure. Molecular 
docking is a structure-based approach and is used in the prediction of the 3D orien-
tation of the ligand molecule with respect to a particular conformation of the recep-
tor molecule when both are interacting and forming a stable complex (Sahoo et al.). 
It is one of the first-line tools used in discovering/designing novel drug molecules 
that predict the binding affinity of a chemical compound with the target receptor and 
ranks the ligands based on their respective docking scores. Molecular docking pre-
dicts the atomistic model of the receptor–ligand interactions and their binding ori-
entations. In site-specific or targeted docking, the active sites of the target protein 
are reviewed or predicted by using programs such as CASTp, Q-SiteFinder, LigA 
Site, and MetaPocket, while blind docking considers the entire protein structure as 
the probable region of ligand interaction (Wong and Kwan 2015). Searching algo-
rithms that fish out favorable conformations from infinite possibilities include 
matching algorithms, incremental construction methods, multiple copy simultane-
ous searching, Monte Carlo and genetic algorithms. Scoring functions (either 
empirical, force field, or knowledge-based) of a docking software estimate the bind-
ing affinity of the ligand with the target receptor and rank the ligands based on dock-
ing scores.
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Table 3 Some software/servers to generate, visualize, and analyze biological networks

Software/platform Description URL

Cytoscape It is an open-source platform used in the 
integration and graphical interpretation of 
complex networks and analysis of human- 
curated pathway datasets such as 
WikiPathways, Reactome, and KEGG (Shannon 
et al.)

https://cytoscape.
org/

PathVisio Developed in Java, it is a free open-source 
software for pathway analysis that allows a user 
to draw, edit, and analyze biological pathways. 
It is the pathway editor for WikiPathways

https://pathvisio.
org/

ToxPi (Toxicological 
Prioritization Index)

It is a free interface distributed under the GNU 
GPL. It allows the integration of multiple data 
sources to generate visual profiles and 
clustering of data (Marvel et al. 2018)

https://toxpi.org/

ReactomeFIViz It is used to build subnetworks and search 
pathways and network patterns related to 
several diseases including cancer. It has access 
to the Reactome Functional Interaction (FI) 
network. It needs Cytoscape to be preinstalled 
where it can be found as “ReactomeFIPlugIn”

https://reactome.
org/tools/
reactome- 
fiviz#Overview

PyPathway It is a python package for analyzing and 
visualizing biological networks

https://pypi.org/
project/pypathway/

Conan It is a C++/Python library developed for 
generating, inferencing and analyzing complex 
networks (Honorato-Zimmer et al. 2010)

https://github.com/
rhz/conan/

CyTargetLinker This tool allows the extension of biological 
networks and comes with Cytoscape automation 
feature

https://apps.
cytoscape.org/apps/
cytargetlinker

multiSLIDE (Multi- 
omics Systems-Level 
Interactive Data 
Exploration)

It is a web server to analyze multiomics data 
and explore the interconnection of components 
of biological pathways (the connected 
molecular features are visualized in heatmaps) 
(Ghosh et al. 2021)

https://github.com/
soumitag/
multiSLIDE

VRNetzer It allows efficient visualization, interactive 
exploration, customization, integration of 
external databases and extension of highly 
complex networks (Pirch et al. 2021)

https://menchelab.
com/vrnetzer

MONGKIE (Modular 
Network Generation and 
Visualization Platform 
with Knowledge 
Integration 
Environments)

It is a single platform that analyzes (such as 
performing network clustering and over- 
representation analysis) and visualizes 
integrated networks generated from multiomics 
data

http://yjjang.github.
io/mongkie/

CellDesigner This modeling tool is a kind of editor that 
provides an intuitive GUI to draw gene- 
regulatory and biological networks (Funahashi 
et al.)

https://www.
celldesigner.org/
index.html

(continued)
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Table 3 (continued)

Software/platform Description URL

RING (Residue 
Interaction Network 
Generator)

It is used in the identification of noncovalent 
interactions in a given protein structure. It can 
create probabilistic networks and 
conformational-dependent contact maps

https://ring.
biocomputingup.it/
submit

MinePath It analyses gene expression data and identifies 
differentially expressed functional paths or 
subpaths within a gene regulatory network 
(Koumakis et al. 2016)

http://www.
minepath.org/

Pathview It is used for integrating and mapping diverse 
biological data on pathways and produces 
top-notch hyperlinked graphs (Luo et al. 2017)

https://pathview.
uncc.edu/

NAPS (Network 
Analysis of Protein 
Structures)

It is a web-based platform that models proteins 
as a network of noncovalent interactions 
between amino acid residues (rather than the 
traditional way of analyzing the secondary 
structure and fold arrangement) to describe the 
topological characteristics and structure–
function relationship (Chakrabarty and Parekh 
2016)

https://bioinf.iiit.
ac.in/NAPS/

ProSNEx (Protein 
Structure Network 
Explorer)

The web service is used to construct Protein 
Structure Networks (PSNs) and allows 
sequence conservation, annotation, and analysis 
of amino acid flexibility (Aydlnkal et al. 2019)

http://prosnex- tool.
com/demos/
technical/

Qualitative “structure–activity relationships” (i.e., SAR) and quantitative struc-
ture–activity relationships (i.e., QSAR) are used in virtual screening (and target 
fishing) if the structures of the chemical compounds are available or predicted/
designed. These approaches assume the bioactivity of a ligand as a function of its 
structural or physicochemical characteristics. Analysis and comparison of the struc-
tures are achieved with the help of some descriptors (such as structural fragments, 
fingerprints, constitutional, topological, electro-topological, quantum-chemical and 
physicochemical descriptors) (Lagunin et al.). Pharmacophore modeling considers 
a group of atoms in the structure whose presence directs the pharmacological effect 
of the ligand. Ligand-based virtual screening employs QSAR approaches that aim 
to develop mathematical models to study the correlation between the observed bio-
activities and structural/physicochemical characteristics. Software such as Sybyl-X 
2.0 and E-Dragon perform QSAR studies (Browne et al.; Fedyushkina et al. 1990).

Two techniques, namely comparative molecular field analysis (CoMFA) and 
comparative molecular similarity indices analysis (CoMSIA), are encountered in 
3D OSAR for ligand-based drug designing (Chavda and Bhatt 2019). In CoMFA, a 
library of ligands comprising their physicochemical characteristics and biological 
activities is created. These bioactive compounds vary between themselves by some 
substitutions. Seventy percent of data in the database is fed as the input to the train-
ing set (regression models are generated using it following the Partial Least Squares 
(PLS) regression and correlating the models with the pIC50 value), whereas the rest 
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of the 30% data is kept as the test set (used to establish the prediction accuracy of 
the QSAR regression models). Finally, the models undergo leave-one-out (LOO) 
cross-validation. The descriptors in CoMFA are determined by the sp3 probe. 
Columbic potential energy calculates the electrostatic field and Lennard Jones 
potential energy describes the bond energy curves for Van der Waals bonding. The 
3D steric and electrostatic contour plots depict the variation in bioactivity with the 
alteration of molecular fields. The SEAL similarity method in CoMSIA takes into 
account the electrostatic, steric, hydrogen bonding and hydrophobic descriptors to 
predict the similarity between molecules using Gaussian functions. The contour 
plots produced by the CoMSIA portray the favorable and unfavorable regions for 
the interaction of ligands (Bordás et al. 2003).

Approaches to build pharmacophore-based models identify the molecular char-
acteristics that direct the macromolecular recognition of ligands, thus triggering the 
biological response. The aromaticity, hydrophobicity, presence of hydrogen bond 
acceptors/donors and anion/cation residues are considered to model pharmacoph-
ores that act as a query to search the potential bioactives from a database of com-
pounds in virtual screening. Developing pharmacophore models can follow either 
structure-based or ligand-based approaches. The former approach relies on the 
availability of X-ray crystallographic or NMR spectroscopic 3D structure of the 
receptor molecule/target protein. The active sites and the spatial interactions are 
described by certain physicochemical properties that complement the interacting 
ligands and selectively identify the compounds with high binding affinity. A good 
model must incorporate protein flexibility to consider the structural changes that 
occur during the formation of the receptor–ligand complex. Ligand-based modeling 
is useful in cases where the 3D molecular structure of the receptor molecule is not 
available and the pharmacophores are generated by studying the common features 
(e.g., hydrophobic and electrostatic interaction, hydrogen bonding, etc.) that exist at 
the same position in the ligand structures. In ligand-based pharmacophore model-
ing, chemical compounds in the training set create a conformational space that takes 
care of ligand flexibility (Braga et al.). HipHop, DISCO, HypoGen, and PHASE are 
some software for generating pharmacophore models.

The structural data generated by NMR, X-ray crystallography, and homology 
modeling are static in nature that fails to describe the dynamic nature of the bio-
recognition process during receptor–ligand binding. These experimental data high-
light the binding sites for some endogenous agonists; however, other active sites 
(including the allosteric and cryptic binding sites) are often not identified. Neither 
the receptor nor the ligand is a frozen/rigid entity; instead, the structures are inter-
acting under constant motion in a solution (any biological fluid). Moreover, an 
approaching ligand can cause a series of conformational changes in the receptor 
structure to improve its binding affinity. In order to consider the flexibility of the 
macromolecular structures, the relaxed complex scheme (RCS) has been developed 
that extracts several conformations of the receptor sampled using simulation and 
then performs molecular docking of the ligand with each of the conformations. The 
scoring functions often consider conformational entropy and solvation energy as 
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negligible parameters while calculating the binding affinity to make the process 
computationally less expensive (but compromising with the model’s accuracy).

Often researchers employ both QSAR modeling and molecular docking to pre-
dict the bioactivity and investigate the mechanism of action of compounds. In a 
study, the immunomodulatory effect of the ligands is evaluated by employing for-
ward stepwise multiple linear regression to develop a QSAR model with 52 
physical- chemical descriptors (important ones are namely dipole moment, steric 
energy, amide group count, ƛmax (UV-visible) and molar refractivity) using the 
SCIGRESS platform. Finally, molecular docking is performed to predict their bind-
ing affinity with immunomodulatory targets namely TLR-4, iNOS, COX-2, CD14, 
IKK b, CD86, and COX-1 (Yadav et  al. 2010). A similar QSAR model with 50 
descriptors from SYBYL-X 1.3 is used to study the cytotoxicity of ursolic acid 
analogs against human glioblastoma and lung cancer cell lines. The model exhibited 
a good regression coefficient (r2) and the cross-validation regression coefficient 
(rcv

2) (values ranging from 0.8 to 0.96). The relevant parameters for cytotoxicity are 
found to be LUMO energy, ring count, dipole vector and solvent-accessible surface 
area (Kalani et al. 2012).

Some freely available software and webservers to generate descriptors (that 
include arithmetical, topological, constitutional, geometrical, electrostatic, thermo-
dynamic, quantum-chemical descriptors and other molecular fingerprints) are 
AFGen (http://glaros.dtc.umn.edu/gkhome/afgen/overview), ISIDA-fragmentor 
(https://complex- matter.unistra.fr/equipes- de- recherche/laboratoire- de- 
chemoinformatique/software- development/#c89382), E-DRAGON (http://www.
vcclab.org/lab/edragon/), Open3DQSAR (https://open3dqsar.sourceforge.net/), 
ToMoCoMD-CARDD (http://tomocomd.com/), MOLGEN (http://molgen.
de/?src=documents/molgenqspr.html), Mold2 (https://www.fda.gov/science- 
research/bioinformatics- tools/mold2), Toxicity Estimation Software Tool or TEST 
by United States Environmental Protection Agency (https://www.epa.gov/chemical- 
research/toxicity- estimation- software- tool- test) and Open Babel (http://openbabel.
org/wiki/Main_Page) while commercial alternatives are The CODESSA PRO proj-
ect (http://www.codessa- pro.com/). Along with the model’s high internal accuracy 
(i.e., R2 > 0.9 and Rcv2 > 0.8 calculated using the training set only), external valida-
tion of the (Q)SAR model with experimental data is desirable as per the OECD 
guidelines (www.oecd.org/env/ehs/risk- assessment/37849783.pdf). In order to bet-
ter correlate the structural characteristics with the bioactivities, one must use molar 
units (such as mol/kg, or mmol/kg) instead of mass units (i.e., mg/kg) in the models 
(Dearden et al. 2009). In inverse docking or target fishing, identification of the pos-
sible targets/receptors for the query ligand is performed by software such as GOLD, 
FlexX, TarFisDock, TarSearch-X, and TarSearch-M.

The evaluation of the bioactivities of a novel compound (i.e., the potential drug 
targets) can be accomplished by using pair similarity with known compounds (e.g., 
ChEMBL database calculates the Tanimoto coefficient based on fingerprints), 
molecular docking, pharmacophore modeling, Bayesian statistics and designing 
substructural descriptors or fingerprints. However, one must take to avoid the 
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“activity-cliff” problem in the model that arises when the compounds share analo-
gous structural characteristics but exhibit dissimilar bioactivity spectra. Despite 
being a rapid and efficient technique in virtual screening, pharmacophore modeling 
essentially relies on the knowledge of reported active ligands, necessitates sampling 
conformers using a search algorithm, and is based on a rigid framework for search-
ing hit compounds from the database (Horvath 2010; Kaushik et  al. 2018; Lans 
et al. 2020).

Some platforms to perform protein-protein or protein-DNA docking include 
SPServer (http://aleph.upf.edu/spserver/), pyDockDNA (https://model3dbio.csic.
es/pydockdna), CoDockPP (http://codockpp.schanglab.org.cn/), DOCKSCORE 
(http://caps.ncbs.res.in/dockscore/), PIIMS Server (http://chemyang.ccnu.edu.cn/
ccb/server/PIIMS/index.php), GalaxyDomDock (https://galaxy.seoklab.org/cgi- 
bin/submit.cgi?type=DOMDOCK_INTRO), P3DOCK server, HDOCK server, and 
GRAMM (Global RAnge Molecular Matching) (https://gramm.compbio.ku.edu/). 
ezCADD is a fast 2D/3D molecular visualization software that allows small- 
molecule docking, protein-protein docking, prediction of binding sites, identifica-
tion of drug targets, homology modeling and structure quality assessment (Tao et al. 
2019). FragVLib is an open-source software (distributed under the GNU General 
Public License) that generates a virtual library of ligand fragments (used for 
structure- based drug designing) by searching the binding pocket similarity consid-
ering a database of ligand-receptor complexes (Khashan 2012). eMolFrag is used 
for the virtual fragmentation of molecules and extracts the molecular fragments to 
build a library for virtual screening (Liu et al. 2017). Other software/servers used in 
virtual screening (structure-based and/or ligand-based) can be listed as follows, 
although other popular platforms do exist: DENVIS (https://github.com/deeplab- ai/
denvis), ReMODE (Receptor-based MOlecular Design for de novo drug designing 
available at http://cadd.zju.edu.cn/relation/remode/), Pocket2Drug (https://github.
com/shiwentao00/Pocket2Drug), DrugRep (http://cao.labshare.cn/drugrep/), 
DockingPie (a docking plugin for PyMOL), CB-Dock2 (https://cadd.labshare.cn/cb- 
dock2/php/index.php), PharmRF (https://github.com/Prasanth- Kumar87/PharmRF), 
DeepDock (https://github.com/OptiMaL- PSE- Lab/DeepDock), Knime workflow 
(https://hub.knime.com/), RNALigands (http://rnaligands.ccbr.utoronto.ca/php/
downloads.php), AutoDock Vina (https://vina.scripps.edu/), eSPC (https://spc.embl- 
hamburg.de/), RASPDplus (https://github.com/HITS- MCM/RASPDplus), LigRMSD 
(https://ligrmsd.appsbio.utalca.cl/), LeDock (http://www.lephar.com/index.htm), 
VSpipe (https://github.com/sabifo4/VSpipe), PyRx (https://pyrx.sourceforge.io/), 
LiSiCA ((Ligand Similarity using Clique Algorithm available at http://insilab.org/
lisica/), ALIDE (http://chemyang.ccnu.edu.cn/ccb/server/AILDE/), Open3DALIGN 
(https://open3dalign.sourceforge.net/), PrepFlow (https://ifm.chimie.unistra.fr/prep-
flow), QSAR-Co-X (https://github.com/ncordeirfcup/QSAR- Co- X), PyRMD (https://
github.com/cosconatilab/PyRMD), SwissSimilarity (http://www.swisssimilarity.ch/), 
PharmMapper (http://lilab- ecust.cn/pharmmapper/), and ZINCPharmer (http://zinc-
pharmer.csb.pitt.edu/).
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7  Molecular Dynamics Simulation

The deterministic approach of the quantum-mechanical model of motion in the 
macroscopic world contrasts the use of probability functions that describe the 
motion in the microscopic world. This is because the electron clouds (that interact 
while bonding) exhibit wave-particle duality and not simple mechanical bonding. 
Simulating the system of proteins and other receptor molecules interacting with 
ligands at the atomistic level has paved its importance to the drug discovery process. 
The breakthroughs in hardware-based computational power and the development of 
new algorithms ease the calculation of molecular forces that exist in the system. The 
limitations of the conventional “lock and key” model of receptor–ligand interaction 
(where the receptor is held rigid and conformational sampling of the ligand is done, 
restricting the atomistic motions to keep the model simple) are overcome by such 
simulations. This considers the dynamic nature of the proteins, thus sampling 
numerous conformational states and selectively stabilizing them when an agonist or 
antagonist interacts. Any simulation starts with the modeling of the receptor–ligand 
system (using the data obtained from NMR, crystallography, or homology model-
ing), subsequently, the forces experienced by each atom (present in the system) are 
estimated and the positional changes of atoms are done following Newton’s laws of 
motion. These forces are the results of bonded interactions (i.e., charged/electro-
static interactions that use Coulomb’s law to generate the model) and nonbonded 
interactions (i.e., van der Waals interactions that use the Lennard-Jones 6–12 poten-
tial for modeling). Virtual springs and sinusoidal functions are used in the estima-
tion of the difference in potential energy between eclipsed and staggered 
conformations. The parameters used in the functions identify the stiffness and 
lengths of the springs, estimate the atomic angles (and dihedral angles), calculate 
the partial atomic charges (responsible for electrostatic interactions), and predict the 
van der Waals atomic radii. These parameterizations form the basis of a “force- 
field” that depicts the nature of molecular dynamics under the influence of several 
atomic forces. Finally, the simulation time is advanced (by 1–2 femtoseconds, i.e., 
10−15 s), and the process is iterated (in the order to 106) (Durrant and McCammon 
2011). Different force fields exist depending on how they are parameterized, 
although they mostly generate similar outputs. AMBER, CHARMM, and GROMOS 
force fields are generally encountered in simulation modeling. Molecular dynamics 
simulation demands performing a huge number of calculations; hence, computer 
clusters or supercomputers with numerous processors need to operate parallelly. 
Message Passing Interface (MPI) compatible simulation software like NAMD, 
CHARMM, and AMBER help in connecting multiple processors so that they can be 
simultaneously used to execute a complex assignment. Such simulations can esti-
mate the values of NMR-related parameters (e.g., spin relaxation), thus allowing 
comparison between the theoretical prediction and experimental value.

Simulating molecular systems follows Newton’s laws of motion. Such simula-
tions output trajectory graphs for evaluating the stability of the target protein or its 
docked complexes. In order to perform molecular dynamics simulation, the protein 
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topology is generated by applying force fields such as Amber and Gromos (using 
GROMACS or LEaP program), while the PRODRG server can be used for obtain-
ing ligand topology (Strasser and Wittmann 2013). The structures are placed inside 
a cube and solvation is done using the flexible simple point-charge (SPC) water 
model. Followed by system neutralization, the steepest descent algorithm mini-
mizes the energy of the system. At a particular temperature (let’s say 300  K), 
position- restraining simulations are performed for a certain period of time under 
constant volume and temperature dynamics (NVT) and pressure and temperature 
dynamics (NPT). LINear Constraint Solver (LINCS) algorithm is frequently 
reviewed for molecular simulations with bond constraints (Hess et al. 1997). The 
Particle Mesh Ewald algorithm estimates the electrostatic energy (Madelung 
energy) of the complex/crystal. After performing the molecular dynamics simula-
tion, the trajectories (w.r.t. time) are generated by the XMGrace tool and the param-
eters namely the root mean square deviation (RMSD), root mean square fluctuation 
(RMSF), the radius of gyration (Rg), and intermolecular hydrogen bond formations 
are considered to analyze the stability of the protein-ligand complex (Van Der Spoel 
et al. 2005). The advantages of molecular dynamics simulation come with a cost—
the process becomes computationally expensive. Lower simulation time will reflect 
the inadequacy (of the model) in the conformation sampling step. Force fields are 
used in the approximation of the quantum-mechanical model of motion at the atom-
istic level; hence, molecular dynamics simulations fail largely for the systems hav-
ing dominant quantum effects such as bonds involving transition metal atoms 
(Durrant and McCammon 2011). The tools/platforms that can be employed to per-
form molecular dynamics simulations and analyze the output files post simulation 
are reviewed in Table 4.

8  Conclusion

To ease the process of drug discovery, a shift toward the application of computa-
tional tools is witnessed in the current era of research. Challenges arising due to the 
pleiotropic nature of biomolecules and the interaction of chemical compounds with 
multiple pharmacological targets (often encountered in combinatorial/multitargeted 
approaches) can be addressed by chemo- and bioinformatics tools that make use of 
databases on physicochemical characteristics and therapeutic use of compounds. 
Early prediction of ADMET properties of a chemical compound can be of utmost 
importance since most drug failures occur in the later phases due to undesirable 
pharmacokinetics and toxicological characteristics. Simulating the system of pro-
teins and other receptor molecules interacting with ligands at the atomistic level has 
paved its importance to identifying novel drug-like compounds. This considers the 
dynamic nature of the proteins, thus sampling numerous conformational states and 
selectively stabilizing them when an agonist or antagonist interacts. The break-
throughs in hardware-based computational power and the development of new algo-
rithms ease the calculation of molecular forces that exist in the system. Biological 
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Table 4 Platforms to perform molecular dynamics simulations and analysis of output files

Software/platform Description URL

YASARA (Yet 
Another Scientific 
Artificial Reality 
Application)

It is compatible with Windows, Linux, macOS and 
Android and requires a license fee to design 
photorealistic molecular graphics, and models and 
perform simulations

http://www.yasara.
org/

Abalone It is a package of molecular graphics used for 
molecular modeling, geometry optimization, and 
simulations of proteins, nucleic acids, and ligands. It 
includes features such as semiautomated 
parameterization of force fields, GPU acceleration, 
interfacing with quantum chemical programs, and 
scripting

http://www.
biomolecular- 
modeling.com/
Abalone/index.html

NAMD It is based on Charm++ parallel objects and exhibits 
high-performance molecular dynamics simulation of 
complex systems (having a large number of atoms). It 
uses VMD (a tool for molecular graphics) for 
analyzing trajectories

https://www.ks.
uiuc.edu/Research/
namd/

LARMD Server 
(Ligand and 
Receptor 
Molecular 
Dynamics)

It is used to study the molecular dynamics of 
protein-ligand interactions. It helps in structure 
preparation, building force field libraries for 
molecules, energy calculation (MM/PBSA), and 
analysis of hydrogen bonds, trajectories, Root-Mean- 
Square Deviation (RMSD), Radius of Gyration (Rg), 
Fraction of Native Contacts (Q), Root Mean Square 
Fluctuation (RMSF), B-factor, Principal Component 
Analysis (PCA) being some features among others

http://chemyang.
ccnu.edu.cn/ccb/
server/LARMD/

GROMACS A free and open-source platform for performing 
molecular dynamics simulations and their output 
analysis

https://www.
gromacs.org/

GROMITA Written in Perl language, it is a GUI (providing both 
a window-based environment and a terminal mode) 
front-end for GROMACS (Sellis et al. 2009)

http://gromita.bio.
demokritos.gr/

YAMACS It is a collection of plugins for performing 
GROMACS simulations through the YASARA 
platform

https://github.com/
YAMACS- SML/
YAMACS

3dRS 
(3-dimensional 
structure 
Representation 
Sharing)

It is used to visualize 3D biological structures and 
molecular dynamics trajectories (Bayarri et al. 2021)

https://mmb.
irbbarcelona.
org/3dRS/

LAMMPS It stands for Large-scale Atomic/Molecular Massively 
Parallel Simulator. It runs on a single processor and 
also supports Message Passing Interface for parallel 
operation

https://www.
lammps.org/

BitClust It is based on Python and follows Daura’s algorithm 
and is used for efficient clustering of relatively long 
molecular dynamics trajectories

https://pypi.org/
project/bitclust/

MDAnalysis It is a Python library exclusively used in the analysis 
of molecular dynamics trajectories

https://www.
mdanalysis.org/

(continued)
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Table 4 (continued)

Software/platform Description URL

Tinker-HP It utilizes multiple CPUs and GPUs and supports 
MPI to ease long molecular dynamics simulations

https://tinker- hp.
org/?Download- 
instructions

QwikMD It provides an easy connection between VMD and 
NAMD for performing hassle-free simulations 
following a few steps

http://www.ks.uiuc.
edu/Research/
qwikmd/

PREFMD It stands for Protein structure REFinement via 
Molecular Dynamics. The input file must be in PDB 
format

http://feig.bch.msu.
edu/prefmd

Amber It is a collection of molecular dynamics simulation 
programs (Salomon-Ferrer et al. 2012)

http://ambermd.org/

DynOmics ENM 
server

It is used to study the dynamics of biological 
systems. It integrates two elastic network models 
(ENMs)—the Gaussian Network Model (GNM) and 
the Anisotropic Network Model (ANM) (Li et al.)

https://dyn.life.
nthu.edu.tw/oENM/

networks have the capability to highlight the interacting elements within a complex 
biochemical system, thus aiding in the visualization and exploration of big data. In 
brief, molecular docking, pharmacophore modeling, methods relating (Q)SAR, 
molecular dynamics simulation, network pharmacology, and machine learning 
algorithms accelerate the drug discovery process and complement the traditional 
bioactivity-guided fractionation, high-throughput screening, and systems biology 
approaches. The examples that are listed/tabularized in this chapter highlight only a 
fraction of popular software/platforms and encourage the readers to explore other 
alternatives in various domains of drug discovery and protein engineering.
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Multicomponent Reactions 
for the Synthesis of Natural Products 
and Natural Product-Like Libraries

Miriam Ruiz-Serrano and J. Carlos Menéndez

Abstract Multicomponent reactions involve at least three starting materials that 
are combined in a single operation and are convergent, atom-economic, and step- 
efficient. They provide a highly efficient alternative to sequential multistep proce-
dures and are therefore ideally suited for simplifying target-oriented synthetic 
efforts. In this context, this chapter reviews the use of multicomponent reactions as 
key step for natural product synthesis.

Keywords Strecker reaction · Mannich reaction · Petasis reaction · Povarov 
reaction · Passerini reaction · Ugi reaction · [C + NC + CC] coupling · Anion relay 
chemistry · Catellani reaction

1  Introduction

Transformations that generate several bonds, thus minimizing the number of syn-
thetic operations, are very attractive when planning routes to complex targets such 
as natural products. Among the various types of multiple bond-generating transfor-
mations, multicomponent reactions stand out as particularly interesting due to their 
flexibility. For the purposes of this chapter, we will define multicomponent reac-
tions as “one-pot processes that combine three or more substrates either simultane-
ously or through a sequential-addition procedure that does not involve any change 
of solvent” (Touré and Hall 2009), in such a way that the reaction products contain 
significant fragments of each individual component.

Although some of the classical multicomponent reactions were discovered dur-
ing the very early development of organic chemistry, their systematic use in synthe-
sis has taken a long time to take off, until the advent of combinatorial chemistry led 
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to the identification of multicomponent reactions as an ideal technology to assemble 
compound libraries, especially in medicinal chemistry contexts.

There is a great deal of literature on the application of multicomponent chemistry 
to natural product synthesis, as testified by the abundance of review articles on the 
various aspects this topic (Touré and Hall 2009; Perreault and Rovis 2009; Dömling 
et al. 2012; Smietana et al. 2018; Ziarani et al. 2019). We have striven to produce a 
balanced, reasonably concise summary of the current status of the field.

2  Imine-Initiated Multicomponent Reactions

2.1  Strecker Reaction

The preparation of α-aminonitriles from amines, aldehydes or ketones and a cya-
nide salt was first reported in 1850 by the German chemist Adolph Strecker (Strecker 
1850; Kouznetsov and Galvis 2018). This classical reaction holds the distinction of 
being the first multicomponent reaction described in the literature and it also enabled 
the first synthesis of an amino acid, even before their isolation from natural sources. 
Some methodologies that have been shown to improve the Strecker reaction include 
ultrasound irradiation (Menéndez et  al. 1986), flow chemistry (Wiles and Watts 
2008) and mechanochemical activation (Hernández et al. 2016). The Strecker reac-
tion has become an important tool in the synthesis of complex heterocyclic systems, 
including natural products (Grundke et al. 2020).

The first step of the mechanism of the Strecker reaction (Li 2007) is the acid- 
promoted condensation of the amine and carbonyl components, affording the 
α-aminoalcohol intermediate 1 (Singh et al. 2022) and then imine 2. The cyanide 
anion attacks the iminium intermediate arising from imine protonation to give the 
corresponding α-amino nitrile 3. The initial step competes with cyanohydrin forma-
tion, but this reaction is reversible under the reaction conditions and the equilibria 
are displaced toward α-aminonitrile formation (Fig. 1).

The synthesis of reserpine by the Stork group (Stork et al. 2005) provides an 
example of the use of the Strecker reaction as a key step in alkaloid synthesis. 
Reserpine was first isolated from the dried root of Rauvolfia serpentina, used in 
traditional Indian medicine under the name sarpagandha as a tranquilizer and for 
other applications. This compound was introduced in clinical practice in the 1950s 
as an antihypertensive agent and is still employed, in combination with diuretics, 
when the more usual treatments fail. The Stork total synthesis of reserpine has as the 
key step the reaction of 6-methoxytryptamine, aldehyde 4 and potassium cyanide, 
which led to the formation of the 2-cyanodecahydroisoquinoline 6, presumably 
through the intermediacy of the initial Strecker product 5. Compound 6 was trans-
formed into reserpine by a Pictet–Spengler cyclization in acidic conditions, with 
concomitant cyanide elimination, followed by acylation of the secondary hydroxyl 
with 3,4,5-trimethoxybenzoyl chloride (Fig. 2).
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Fig. 1 Mechanism of the Strecker reaction

Fig. 2 Stork’s total synthesis of reserpine

Another example of a diastereoselective Strecker reaction from chiral starting 
materials is found in the work by the Corey group on the total synthesis of the anti-
cancer natural product trabectedin (ecteinascidin-743), commercialized under the 
brand name Yondelis® for the treatment of advanced soft-tissue sarcoma and ovarian 
cancer. This marine alkaloid is highly complex, containing the pentacyclic frame-
work characteristic of the tetrahydroisoquinoline family of natural products plus an 
additional tetrahydroisoquinoline moiety attached to the B-ring by a chain that 
forms a 10-membered lactone. One of the key steps of the Corey synthesis of this 
alkaloid is the Strecker reaction of aldehyde 7, tetrahydroisoquinoline derivative 8 
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Fig. 3 A Strecker reaction as part of Corey’s total synthesis of trabectedin

and potassium cyanide in acetic acid that furnished α-aminonitrile 9, from which 
the polycyclic scaffold of trabectedin was built in 17 additional steps (Fig. 3) (Corey 
et al. 1996).

2.2  Mannich Reaction

The Mannich reaction, or Mannich aminomethylation, is a three-component reac-
tion that combines ammonia or a primary or secondary amine, an aldehyde (often 
formaldehyde) and a compound having at least one active hydrogen atom to furnish 
aminomethyl derivatives of the latter component (Allochio Filho et al. 2017). The 
Mannich reaction is normally performed under acid catalysis, and starts with the 
reaction of the amine with the nonenolizable aldehyde to give a hemiaminal whose 
dehydration leads to an iminium cation 10. This intermediate reacts with the enoliz-
able carbonyl compound through an aldol-type reaction resulting in the formation 
of the final product (Fig. 4).

Nakadomarin A is a cytotoxic marine alkaloid of the manzamine family that was 
isolated from the sponge Amphimedon sp. and contains a very unusual 8/5/5/5/15/6 
ring system. The Dixon group has reported a synthesis of this alkaloid that has a 
nitro-Mannich reaction as one of its key steps (Faisca Phillips et al. 2020). Thus, the 
reaction between compound 11, bearing a nitroalkane unit, 5-hexenamine and form-
aldehyde afforded compound 12 via a nitro-Mannich/lactamization domino 
sequence, and this intermediate was then transformed into the natural product in 
four additional steps (Fig. 5) (Jakubec et al. 2009). A similar strategy is being stud-
ied for the synthesis of additional members of this alkaloid family, such as kera-
maphidin (Jakubec et al. 2016).
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Fig. 4 Mechanism of the acid-promoted Mannich reaction

Fig. 5 Synthesis of nakadomarin A by Dixon, featuring a nitro-Mannich reaction

Although not strictly multicomponent, we will also discuss intramolecular 
Mannich reactions due to their importance in natural product synthesis (Shi 
et al. 2018).

Morphine, a Papaver somniferum alkaloid, is one of the most widely employed 
narcotic analgesics, and a popular target for total synthesis. In 2006, the Fukuyama 
group reported a total synthesis of morphine, in racemic form, featuring construc-
tion of one ring via an intramolecular Mannich reaction (Uchida et al. 2006). This 
double cyclization was induced by refluxing compound 13 in methanolic HCl, 
which presumably induced first the deprotection of the acetal moiety in the starting 
material, followed by intramolecular cyclocondensation with the carbamate group 
nitrogen to generate an eight-membered ring bearing an iminium function 
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(intermediate 14). An intramolecular Mannich reaction would then complete the 
formation of the pentacyclic ring system of the alkaloid and gave compound 15, 
which was transformed into morphine in nine additional steps (Fig. 6).

Plants of the Lycopodium genus have been used in traditional Chinese medicine 
and some of their alkaloids have shown interesting pharmacological properties. 
Within this group, lycojaponicumin D is a challenging synthetic target due to its 
particularly unusual architecture. Fan and coworkers (Zhao et  al. 2017) have 
reported the first total synthesis of (±)-lycojaponicumin D starting from its putative 
biosynthetic precursor lycodoline, as summarized in Fig. 7. α-Hydroxylation of this 
starting material gave (±)-lycoposerramine G, another Lycopodium alkaloid, whose 
oxidation with hydrogen peroxide afforded (±)-lycoposerramine F. Treatment of the 
latter with triphosgene afforded lycojaponicumin D via a domino ring opening-ring 
closure sequence, where the latter process involved an intramolecular Mannich 
reaction.

Robinson’s pioneering synthesis of tropinone (Robinson 1917; Medley and 
Movassaghi 2013), the first example of a biomimetic synthesis, is a landmark of 
natural product total synthesis and involved the construction of a bicyclic nitrogen 
heterocycle via a multicomponent domino process comprising inter- and intramo-
lecular Mannich steps (Fig. 8). The reduction of tropinone to tropine followed by 
esterification with tropic acid affords atropine, an antimuscarinic alkaloid present in 
Atropa belladonna and other plants of the Solanaceae family that is employed to 
treat bradycardia and poisoning by organophosphate pesticides. A related flow pro-
tocol for atropine synthesis has also been developed (Dai et al. 2015).

Vinylogous Mannich reactions have also found widespread application in natural 
product synthesis (Sánchez-Roselló et  al. 2016). One example is summarized in 
Fig.  9, representing a unified organocatalytic synthesis of indolizidine alkaloids 

Fig. 6 Generation of the morphinan B-ring using an intramolecular Mannich reaction in the 
Fukuyama synthesis of (±)-morphine
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Fig. 7 Collective synthesis of some Lycopodium alkaloids including lycojaponicumin D

Fig. 8 The Robinson tropinone synthesis and its application to the preparation of atropine

developed by Schneider. A vinylogous Mukaiyama–Mannich reaction from p- 
anisidine, succinic hemialdehyde ethyl ester, and the silyldienolate 16 (Hoppmann 
and García-Mancheño 2021) in the presence of the chiral phosphoric acid catalyst 
17 afforded intermediate lactam 18, which was readily transformed into several 
indolizidine alkaloids including coniceine, indolizidine 167B, and monomorine 
(Abels et al. 2014).
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Fig. 9 Unified organocatalytic synthesis of some indolizidine alkaloids

Fig. 10 The Petasis (Borono–Mannich) reaction

2.3  Petasis (Borono–Mannich) Reaction

A variation of the Mannich reaction where the nucleophile is a boronic acid is 
known as the Petasis reaction (Fig.  10). It is compatible with the presence of 
hydroxyl and carboxy groups in the molecule core and retains the double bond 
geometry of vinylboronic acids (Wu et al. 2019). Mechanistically, the Petasis reac-
tion involves the formation of an iminium ion by condensation between the amine 
and the carbonyl compound, followed by coordination with the boronic acid and 
migration of the substituent attached to boron to the iminium carbon (Souza 
et al. 2015).

Pyne and coworkers have shown that the 2,5-dihydropyrrole-derived acetonide 
23 is a suitable intermediate for the synthesis of natural compounds with polyhy-
droxylated 3-hydroxymethylpyrrolizidine-type structures (Ritthiwigrom and Pyne 
2008; Ritthiwigrom et al. 2010). Thus, a three-component Petasis reaction between 
xylose 19, allylamine and vinylborane 20 afforded compound 21. Protection of the 
amino group as a Boc carbamate and the terminal diol as an acetonide led to diene 
22. Finally, a ring-closing metathesis reaction using Grubbs’ first-generation ruthe-
nium catalyst provided the common intermediate 23, which was transformed into 

M. Ruiz-Serrano and J. C. Menéndez



281

OH
OH

OH

OH

O

H

NH2

Ph
B(OH)2

+

+

EtOH, OH
OH

OH

OH

NH

Ph
a. (Boc)2O, Et3N,
    MeOH (80%)

(92%)

O
O

OH

OH

N

Ph

Me Me

Grubbs-I,
CH2Cl2, reflux

 (97%)

b. DMP, PPTS,
    acetone (64%)

Casuarine

3-epi-AustralineAustraline

Boc
2221

20

19

N

OHHO

HO

H

OH

OHO
O

OH

OH

N

Me Me

Boc 23

N

OHHO H

OH

OH
N

OHHO H

OH

OH

N

OHHO

HO

H

OH

OH

Uniflorine A

Fig. 11 Synthesis of pyrrolidine alkaloids through a Petasis-type reaction

polyhydroxylated alkaloids such as uniflorine A, casuarine, and australine (Fig. 11). 
These compounds are of interest as inhibitors of enzymes such as α-glucosidase and 
intestinal maltase (Kato et al. 2003; Li et al. 2022).

2.4  Povarov Reaction

The Povarov reaction is a versatile and efficient method that gives access to the 
tetrahydroquinoline scaffold via an inverse electron-demand hetero Diels–Alder 
cycloaddition between N-arylamines and electron-rich olefins, generally catalyzed 
by Lewis or Brönsted acids (Ghashghaei et al. 2018). A large variety of dienes and 
dienophiles are suitable substrates for this reaction, and enantioselective variations 
have been thoroughly explored (Clerigué et al. 2022; Lemos et al. 2022). Two types 
of mechanism are being considered for the Povarov reaction starting from the initial 
formation of an imine (Palacios et al. 2010; Ríos-Gutiérrez et al. 2015), namely a 
Mannich/Friedel Crafts stepwise sequence via cationic intermediate 24, or an asyn-
chronous concerted process proceeding through transition state 25 (Fig. 12).

Extracts of the root of the vine Martinella iquitosensis have been traditionally 
used by Amazonic indigenous peoples to treat eye inflammation and conjunctivitis. 
This root contains two guanidine alkaloids derived from the hexahydropyrrolo[3,2-
 c]quinoline skeleton, namely martinellic acid and martinelline. The Povarov 
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Fig. 12 The Povarov reaction and its mechanism

reaction can be readily adapted to yield fused tetrahydroquinolines by employing 
cyclic olefins as the dienophile component, and in this context, Powell and Batey 
developed an ABB’-type three-component process starting from anilines and 2 
equivalents of N-protected 2-pyrrolines to give functionalized derivatives of the 
hexahydropyrrolo[3,2-c]quinoline framework. During their optimization work, they 
discovered that the use of camphorsulfonic acid as catalyst afforded the exo relative 
configuration characteristic of the Martinella alkaloids, in contrast with the endo 
configuration obtained in the presence of Lewis acids. As shown in Fig. 13, com-
pound 26 thus obtained was transformed into (±)-martinellic acid in seven addi-
tional steps, and finally this alkaloid was also readily converted into (±)-martinelline 
(Powell and Batey 2002).

In a similar approach, Iwabuchi and coworkers carried out the enantioselective 
total synthesis of (−)-martinellic acid and (−)-martinelline by application of intra-
molecular Povarov chemistry (Fig. 14). The chiral cyclic imine 27 was transformed 
into a diastereomeric mixture of pyrroloquinolines using a Povarov reaction pro-
moted by boron trifluoride and proceeding through the o-azaxylylene intermediate 
28. The exo major product (29) was subsequently transformed into the natural prod-
ucts (Ikeda et al. 2007).

Intramolecular Povarov reactions have also been successfully employed in natu-
ral product synthesis. For instance, Batey reported a formal total synthesis of the 
alkaloid camptothecin, an anticancer compound acting by topoisomerase I inhibi-
tion, that relies on an intramolecular Povarov reaction of the in situ-generated imine 
30 (Fig. 15). A similar strategy was employed to achieve a brief synthesis of luo-
tonin A, a camptothecin-related quinazoline alkaloid (Twin and Batey 2004), and 
also of libraries of anticancer compounds related to the latter alkaloid (Almansour 
et al. 2017).
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Fig. 13 Synthesis of (±)-martinellic acid and (±)-martinelline developed by the Batey group. CSA 
camphorsulfonic acid

3  Isonitrile-Based Multicomponent Reactions

Multicomponent reactions involving an isocyanide (isonitrile) as one of the compo-
nents are particularly important in synthetic chemistry. These isocyanide-based 
multicomponent reactions (IMCRs) are among the first multicomponent reactions 
to be discovered and can be regarded as the flagship of modern multicomponent 
chemistry.

3.1  Passerini Reaction and Its Variants

The first isocyanide-based multicomponent reaction described in the literature was 
first reported by Mario Passerini in 1921 and involves the combination of an isocya-
nide, a carboxylic acid and an aldehyde in nonpolar solvents to give an 
α-acyloxyamide. It is generally accepted that this reaction follows the concerted 
mechanism shown in Fig. 16, followed by a Mumm rearrangement (Banfi et al. 2021).

Tubulysins are natural bacterial tetrapeptides that disrupt the microtubule spindle 
and are among the most potent known antimitotic agents. A tubulysin-folate conju-
gate (EC1456) is under clinical testing against cancer and some tubulysins have 
been employed as the cytotoxic component of drug-antibody conjugates. It is thus 
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Fig. 14 Synthesis of enantiomerically pure martinellic acid and martinelline using an intramo-
lecular Povarov reaction to generate the hexahydropyrrolo[3,2-c]quinoline core
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not surprising that tubulysin synthesis is an active area, although routes based on 
conventional peptide chemistry require tedious functional group manipulations 
while also suffering from the need for coupling sterically hindered amino acids. The 
Passerini reaction has simplified access to these molecules as showcased by the 
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Fig. 17 Synthesis of N14-desacetoxytubulysin H by Dömling, based on a Passerini reaction

concise total synthesis of N14-desacetoxytubulysin H reported by Dömling 
(Vishwanatha et al. 2020). This route relied on the use of a chiral oxazoline additive 
35, together with zinc bromide, to induce a diastereoselective Passerini reaction of 
carboxylic acid 32, aldehyde 33 and isonitrile 34 via the transition state 36, to yield 
compound 37, which was then transformed into the target molecule in six additional 
steps, starting with a base-promoted Fmoc deprotection/Mumm rearrangement 
sequence (Fig. 17).

A variation of the Passerini reaction that employs an oxime rather than an alde-
hyde has been employed by Ichikawa as the key step for the total synthesis of pseu-
douridimycin, a nucleoside antibiotic from a Streptomyces species with potent, 
broad spectrum antibacterial activity that includes drug-resistant strains (Okawa 
et  al. 2022). The key step of this synthesis was the three-component reaction 
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between isonitrile 38, oxime 39 and N-fmoc glycine to furnish compound 40, which 
was transformed in three steps into the target natural product or its epimer at the 
asparagine center (Fig. 18).

A truncated variation of the Passerini reaction developed by Denmark which, 
moreover, can be made enantioselective, allows the mild one-carbon homologation 
of aldehydes to α-hydroxyamides or α-hydroxyesters (Denmark and Fan 2005). It 
involves the use of silicon tetrachloride instead of the usual carboxylic acid as the 
third Passerini component. This compound, acting as a weak Lewis acid, interacts 
with a strong Lewis base (e.g., HMPA, pyridine N-oxide), forming a silicon cation 
that activates the aldehyde for nucleophilic attack of the isocyanide to give an imi-
doyl chloride 41. Aqueous workup affords α-hydroxy tert-butyl amides 42, whereas 
a low-temperature methanol quench followed by basic workup furnishes α-hydroxy 
methyl esters 43 (Fig. 19).

The lapidilectine and grandilodine alkaloids have an unusual structure compris-
ing a common pyrroloazocine indole core where the azocine ring is embedded in a 
rigid [4.2.2]azabicyclic structure and some of them are able to reverse multidrug 
resistance in vincristine-resistant cancer cells. Echavarren has reported the collec-
tive total synthesis of seven members of this family (Miloserdov et al. 2018) using 
an approach where the pyrroloazocine indole core was built via a gold-catalyzed 
8-endo-dig hydroarylation that furnished aldehyde 44 after functional group manip-
ulation. The homologation of the aldehyde to an ester-containing precursor suitable 
for the subsequent cyclization was carried out using the Denmark variation of the 
Passerini reaction (compound 45). Finally, the azabicyclo system 46 was created via 
a radical 6-exo-trig photoredox cyclization, using again as catalyst an Au complex 
(Fig. 20).

Another variant of this reaction includes the Passerini reaction-amine 
deprotection- acyl migration (PADAM) sequence (Banfi et al. 2000), often used in 
the preparation of peptidomimetic compounds such as eurystatin A (Owens et al. 
2001) and norstatine derivatives (Shaw et al. 2012). The process involves a Passerini 
condensation between a N-protected enantiomerically pure α-aminoaldehyde 47, an 

Fig. 18 Total synthesis of pseudouridimycin and an epimer
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Fig. 19 Truncated Passerini reaction developed by Denmark, leading to α-hydroxyamides or 
α-hydroxy esters

Fig. 20 Collective synthesis of seven pyrroloazocine alkaloids by Echavarren. Dppm 
bis(diphenylphosphanyl)methane
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isonitrile and a carboxylic acid, followed by one-pot N-deprotection and intramo-
lecular acyl migration to give α-hydroxy-α-acylaminoamide 48, which can be oxi-
dized to provide compounds 49 containing α-oxoamide and α-amino acid moieties 
(Fig. 21).

An interesting application of this methodology has been described by Aitken and 
coworkers (Faure et al. 2009) as the key step for the synthesis of cyclotheonamide 
C, a cyclic pentapeptide isolated from marine sponges Theonella ircinia and 
Theonella swinhoei that possesses potent inhibitory activity against serine prote-
ases. The synthetic sequence involves an initial Passerini reaction of protected chi-
ral amino acid 50, isonitrile 51 and Fmoc-protected α-amino aldehyde 51 to afford 
α-acyloxyamide 52. N-Boc deprotection induced an acyl migration that furnished 
pentapeptide 53. Three additional steps that included simultaneous N/C deprotec-
tion, pentapeptide cyclization, and oxidation completed the synthesis of cyclotheon-
amide C (Fig. 22).

3.2  Ugi Reaction

Ivar Ugi, starting in 1959, expanded the synthetic possibilities of the Passerini reac-
tion by introducing a primary amine as the fourth component. This process is known 
as the Ugi four-component reaction (U-4CR) or simply the Ugi reaction and affords 
dipeptide-like scaffolds, greatly increasing the potential of multicomponent reac-
tions as tools for natural product synthesis (Fouad et al. 2020).

The mechanism of the classical 4CR Ugi reaction (Dömling 2006) starts with the 
condensation between the amine and the carbonyl component to give an imine that 
is then protonated by the carboxylic acid. The activated iminium (54) reacts with the 
isocyanide leading to an α-aminonitrilium 55, which reacts with the carboxylate to 
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give 56. Finally, the amino group promotes the Mumm rearrangement, which is 
irreversible and drives the equilibria to the formation of the final product (Fig. 23).

Several natural products containing glutarimide (2,6-piperidinedione) moieties 
show interesting bioactivities. For instance, julocrotine has in vitro antiproliferative 
effects against Leishmania amazonensis. Dömling has described an efficient synthe-
sis of this framework and the total syntheses of representative alkaloids via an Ugi 
four-component reaction (Konstantinidou et al. 2018). Thus, julocrotine was obtained 
in four steps starting with the Ugi reaction between aldehyde 57, chiral acid 58, chi-
ral amine 59 and isonitrile 60. The reaction product was hydrolyzed to 61, cyclized 
via mixed anhydride formation to 62 and finally N-deprotected to the natural prod-
uct. A similar strategy was employed to obtain crotinimides A-C (Fig. 24).
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Fig. 24 Total synthesis of julocrotine and crotinimides A–C

Fig. 23 The Ugi four-component reaction (U-4CR)

Hemiasterlin is an antimitotic marine natural product, binding at the vinca 
domain between the α- and β-subunits of tubulin, and showing in vitro low- to sub- 
nanomolar potency against several cancer cell lines. Taltobulin (HTI-286) is a syn-
thetic hemiasterlin analogue that advanced to Phase II clinical trials for the treatment 
of nonsmall cell lung cancer (NSCLC), although its subsequent development was 
halted for business reasons. Spring has described a concise synthesis of both hemi-
asterlin A and taltobulin based on an Ugi reaction (Fig. 25), together with an inves-
tigation of the use of both compounds as cytotoxic payloads in antibody–drug 
conjugates (Charoenpattarapreeda et al. 2020).

As a third example of a synthetic route to a highly complex natural product based 
on an Ugi reaction, this time having as an intermediate a 2,5-diketopiperazine, we 
will discuss a second synthesis of the anticancer agent trabectedin, due to the 
Fukuyama group (Endo et al. 2002). The Ugi reaction of the chiral starting materials 
63 and 64, p-methoxyphenyl isocyanide and acetaldehyde gave dipeptide 65, 
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Fig. 25 Total synthesis of hemiasterlin A and taltobulin based on an Ugi reaction

Fig. 26 Synthesis of trabectedin based on a four-component Ugi reaction

containing all the carbon atoms of the pentacyclic core of the alkaloid. This inter-
mediate was cyclized in 4 steps to diketopiperazine 66, which was transformed into 
the target natural product by a 32-steps route (Fig. 26).

Syringolin A is a member of the syrbactins, which are 12-membered macrolac-
tams containing an E α,β-unsaturated carboxamide moiety and a side chain. These 
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Fig. 27 Total synthesis of syringolin A based on an intramolecular Ugi four-component reaction, 
and structure of an analogue (67) with high activity as a proteasome inhibitor. DMB 
dimethoxybenzyl

Fig. 28 The Ugi-5-center-4-component reaction (U-5C-4CR)

natural products are irreversible inhibitors of the 20S proteasome, an important anti-
cancer target. The Ichikawa group has employed an intramolecular Ugi reaction as 
the key step of a total synthesis of syringolin A, as shown in Fig. 27. This chemistry 
was adapted to the synthesis of analogues of the natural product and yielded, among 
others, compound 67, which showed ca. 1100-fold proteasome inhibition activity 
and ca. 750-fold cytotoxicity over the natural model (Chiba et al. 2014).

One interesting variation of the Ugi reaction is the so-called Ugi-5-center-4-
component reaction (U-5C-4CR) that employs α or β-amino acids as bifunctional 
reagents, leading to a lactone that is finally opened by the alcohol used as solvent 
(Fig. 28).

An application of this reaction that led to the first total synthesis of the marine 
natural product exigurin from (+)-menthone is summarized in Fig. 29. The reaction 
between intermediate (–)-10-epi-axisonitrile-3 68, formaldehyde, sarcosine, and 
methanol constructed the target exigurin in a single step (Hosokawa et al. 2020).

A three-component version of the Ugi reaction (U-3CR or truncated Ugi reac-
tion) starts from an aldehyde or ketone, an amine and an isocyanide to give an 
α-aminoamide 69. An acid catalyst is needed, but it is not incorporated into the final 
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Fig. 29 Synthesis of exigurin using an Ugi-5-center-4-component reaction
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product. The classical U-3CR starts as the U-4CR but, due to the absence of the 
carboxylic acid component, the nucleophile is the molecule of water released in the 
initial amine-aldehyde condensation (Fig. 30) (Flores-Reyes et al. 2021).

An application of this reaction to natural product synthesis (Avilés and Rodríguez 
2010) has allowed a one-step synthesis of monamphilectine A, a terpenic α-lactam 
isolated from the marine sponge Hymeniacidon sp. and endowed with potent anti-
malarial activity (Fig. 31).

4  Cycloaddition-Based Multicomponent Reactions

4.1  [3 + 2] Cycloadditions

Spirotryprostatin B is a cytotoxic agent isolated from the fermentation of Aspergillus 
fumigatus that inhibits the progression of G2/M phase in mammalian tsFT210 cells 
(Cui et  al. 1996). An approach to the synthesis of this alkaloid developed by 
Williams and coworkers is shown in Fig. 32. Their key step involves the preparation 
of spirooxoindoline 73 through a diastereoselective 1,3-dipolar cycloaddition 
between enantiomerically pure morpholine 70, oxoindole 71, and aldehyde 72. 
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Fig. 31 Total synthesis of monamphilectine A using U-3CR chemistry
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Reductive cleavage of the chiral auxiliary in 73 followed by coupling with D-proline 
benzyl ester yielded diketopiperazine 74 through a sequence that involves amide 
bond formation, deprotection of the benzyl group, and intramolecular cyclization. 
The total synthesis of the natural product was subsequently completed in four addi-
tional steps (Sebahar and Williams 2000).

Garner has developed a three-component synthesis of highly functionalized pyr-
rolidines catalyzed by silver(I), usually described as the [C + NC + CC] coupling 
(Garner et al. 2006). The starting materials are an aldehyde (the “C” component), an 
amine (the “CN” component), which also contains Oppolzer’s camphorsultam as a 
chiral auxiliary, and an olefin (the “CC” component). The domino process is initi-
ated by the formation of an imine, which generates an azomethine ylide in the pres-
ence of the Ag(I) cation with assistance from the chiral auxiliary. Finally, a 
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Fig. 33 Garner’s AgI-catalyzed asymmetric [C + NC + CC] coupling reaction

Fig. 34 Total synthesis of kaitocephalin based on the [C + NC + CC] coupling

1,3-dipolar cycloaddition with the olefin yields the pyrrolidine product (Fig. 33). 
The advantage of this reaction over alternative [3 + 2] cycloaddition methodologies 
is that it allows the use of aliphatic aldehydes without side processes resulting from 
enolization or enamine formation.

Kaitocephalin, isolated from the fungus Eupenicillium shearii, is a potent com-
petitive antagonist of ionotropic glutamate receptors that was efficiently synthe-
sized using the route summarized in Fig. 34. The [C + NC + CC] coupling of the 
aspartic acid-derived aldehyde 75, (S)-glycyl Oppolzer’s sultam 76 and vinyl sul-
fone was carried out at room temperature in the presence of Ag(I) acetate and 
afforded pyrrolidine derivative 77 in 85% yield. Subsequent methanolysis of the 
acyl sultam using Mg(OMe)2, N-carbamoylation, and reductive cleavage of the phe-
nylsulfonyl group with sodium amalgam afforded compound 78, which was trans-
formed into kaitocephalin in seven additional steps (Garner et al. 2014).
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Fig. 35 The Knoevenagel/Hetero Diels–Alder domino sequence. EDDA ethylene diammonium 
diacetate

4.2  Knoevenagel/Hetero Diels–Alder Domino Sequence

The Tietze group (Tietze and Rackelmann 2004, 2005) developed a three- component 
base-promoted reaction of aldehydes, 1,3-dicarbonyl compounds and enol ethers, 
affording functionalized dihydropyran derivatives through a Knoevenagel conden-
sation/oxa Diels–Alder cycloaddition domino sequence (Fig. 35).

Using this chemistry, the Tietze group has achieved the synthesis of representa-
tives of several families of bioactive alkaloids. Thus, the synthesis of emetine, an 
Ipecacuanha alkaloid employed as an antiprotozoal and an emetic, and the Alangium 
alkaloid tubulosine has been achieved using a three-component domino 
Knoevenagel–hetero Diels–Alder reaction as one of the key steps (Tietze et  al. 
2004). Enantiomerically pure aldehyde 80, prepared by enantioselective hydrogena-
tion of the imino group in the dihydroquinoline derivative 79, was treated with 
Meldrum’s acid and enol ether 81 in the presence of a catalytic amount of ethylene 
diammonium diacetate led to 82 after a Knoevenagel–hetero Diels–Alder sequence 
and thermal fragmentation of the dioxinone ring. The cycloadduct 82 was treated in 
crude state with methanolic potassium carbonate and a catalytic amount of Pd/C, 
first in an inert atmosphere and afterward under hydrogen to remove the carboben-
zoxy protection to give the benzoquinolizidine derivative 83 (together with two 
additional diastereomers), which was transformed into the target alkaloids using 
straightforward sequences of reactions (Fig. 36).

5  Multicomponent Reactions Based on Aryne Intermediates

Dehydroaltenuene B is an antibacterial compound isolated from marine fungal spe-
cies from the Tubeufiaceae family. Drawing on their expertise in aryne chemistry, 
Barrett and coworkers described the first total synthesis of this natural compound 
through an elegant route that involved a four-component aryne coupling as the key 
step (Soorukram et al. 2008). Their route starts with the generation of benzyne 84 
from 1-fluoro-3,5-dimethoxybenzene by lithiation-elimination. Then, Grignard 
reagent 85 was added to form regioselectively the arylmagnesium derivative 86, on 
which a carboxylation reaction followed by a diastereoselective iodolactonization 
of the arylcarboxylate 87 was carried out in a one-pot procedure to obtain 
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compound 88. The tricyclic product was then subsequently transformed into dehy-
droaltenuene B over six steps (Fig. 37).

The same approach was employed for the synthesis of the enantiomer of clavi-
lactone B, a potent natural kinase inhibitor. As shown in Fig. 38, the three- component 
aryne coupling of compounds 89, 90, and 91 afforded the advanced intermediate 92, 
which was transformed into the target compound, with the complete synthesis com-
prising only ten steps (Larrosa et al. 2006).
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Fig. 38 Total synthesis of ent-clavilactone B

6  Anion Relay Chemistry

Anion relay chemistry (ARC) is a powerful synthetic tool to prepare complex struc-
tures in a single operation. According to the classification proposed by Smith, anion 
relay reactions can be divided into two classes, involving negative charge migration 
“through-bonds” or “through-space” (Smith and Wuest 2008). Through-bonding 
anion relay involves a charge transfer through the bond system of the molecule, as 
in the case of 1–4-conjugate addition reactions where anionic charge is transferred 
through the unsaturated α-system of the molecule (Fig. 39a).
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On the other hand, through-space anion relay involves the migration of a group 
resulting in the breaking of a σ-bond and development of anionic charge at the adja-
cent carbon where the σ-bond was broken, as happens in the Brook rearrangement 
wherein negative charge of the generated alkoxide is transferred to the adjacent 
carbon via silyl group migration through the formation of a hypervalent pentacoor-
dinate silicate species. Through-space anion relay reactions are further divided into 
types I and II, differentiated by type of linchpin used (the coupling partner contain-
ing the migrating group) and placement of the anionic charge after the relay. Thus, 
in a type I anion relay process, the linchpin is the nucleophile that initiates the attack 
to an electrophile, and after the coupling the negative charge goes back to its initial 
position on the linchpin. In type II additions, a nucleophile is added to a linchpin 
derivative, which acts as an electrophile, forming an anionic intermediate. On the 
anion formed, the transfer of the silyl group and the migration of the negative charge 
to a new locus on the linchpin takes place (Fig. 39b).

Anion relay chemistry has many desirable features, including the ability to build 
complex molecular architectures and a good control of their stereochemical fea-
tures, especially in the case of through-space anion relay processes. For this reason, 
it has special importance in the synthesis of natural products and has been exploited 
by many groups, most notably that of Smith (Deng and Smith 2020). We will 
describe some representative examples, classified according to the above- 
mentioned scheme.
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6.1  Type I Anion Relay Chemistry

Mycoticins are polyene macrolides isolated from Streptomyces ruber that show 
antibiotic activity. The first total synthesis of mycoticin A was described by 
Schreiber in 1993 (Poss et al. 1993) through a route that had acetonide 101 as a key 
intermediate. Smith and Pitram approached the synthesis of this intermediate by 
means of anion-relay chemistry (Smith and Pitram 1999), beginning with the depro-
tonation of silyl dithiane 93 with tBuLi, followed by alkylation with epoxide 94. The 
alkoxy intermediate 95 thus generated was treated in situ with HMPA to promote 
the migration of the silyl group and afford carbanion 96. Then, 1 equivalent of bis- 
epoxide 97 was added giving adduct 98 through a one-pot, five-component coupling 
process. The transformation of 98 into the Schreiber intermediate 101 required 7 
additional steps, including the protection of the diol as an acetonide followed by the 
elimination of the silyl group and the hydrolysis of the dithiol to obtain compound 
99. Its reduction with sodium borohydride and subsequent reaction with 
2,2- dimethoxypropane yielded triacetonide 100, which by hydrogenolysis of the 
O-benzyl groups and subsequent protection of one of the alcohols as a silyl deriva-
tive afforded the target 101 (Fig. 40), thus completing a formal total synthesis of the 
natural product with an improved step count over the original route.

The type-I anion relay chemistry developed by Smith and coworkers has led to 
the synthesis of several additional natural products such as spongistatin 1 (Smith 
et al. 2001a, b, 2008), spongistatin 2 (Smith et al. 2009), enigmazole A (Ai et al. 
2015), indolizidine 223A, and alkaloid 205B (Smith and Kim 2006) (Fig. 41).

6.2  Type II Anion Relay Chemistry

Secu’amamine A is an indolizidine alkaloid isolated from Securinega suffruticosa 
var. amamiensi by Ohsaki (Ohsaki et al. 2003). Its chemical structure consists of an 
unsaturated azabicyclo[3.3.1]nonane core fused with piperidine and butanolide 
rings. In view of their atypical skeleton and the varied biological activities of this 
family of alkaloids, several research groups, including that of Weinreb (Liu et al. 
2008), have reported the total synthesis of secu’amamine A. In this connection, the 
Smith group reported a four-component Type II anion relay reaction allowing the 
synthesis of tetracyclic compound 110, an intermediate of Weinreb’s route (Haan 
and Smith 2015). The synthesis begins with alkylation of dithiol 102 by reaction 
with (R)-linchpin 103 in the presence of potassium tert-butoxide and lithium tert- 
butyl. The alkoxide 104 formed undergoes a solvent-mediated Brook rearrangement 
and gives rise to a new nucleophile 105 which initiates a controlled nucleophilic 
attack on the aldehyde 106 via Felkin-Anh control to give 107. Its in situ reaction 
with methoxymethyl bromide leads to the four-component adduct 108 in one pot. 
The sequence continued with the cyclization of 108 to indolizine 109, followed by 
five additional steps that yielded Weinreb’s intermediate 110 and completed the 
formal synthesis of the alkaloid (Fig. 42).
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6.3  Combination of Type I and Type II Anion Relay Chemistry

Mandelalide A is a glycosylated macrolide isolated from a species of Lissoclinum 
that exhibited a potent cytotoxic activity (Sikorska et al. 2012). For its synthesis, 
Smith and coworkers applied a route that relied on the construction of both hemi-
spheres of the molecule using type I and type II anion relay chemistry, respectively 
(Nguyen 2016). Thus, the preparation of fragment 117 involved a three-component 
type II anion relay chemistry reaction between dithiol 111, vinyl epoxide 112 and 
acetal 114 via formation of the intermediate anion 113 followed by Brook rear-
rangement. Nucleophilic attack onto electrophile 114 leads to the formation of 
intermediate 115 through a cyanide-mediated cross-coupling reaction. Then, depro-
tection of 115 with tetra-n-butylammonium fluoride (TBAF) yields the unprotected 
alcohol 116, which was transformed into iodovinyl derivative 117 in ten additional 
steps (Fig. 43).

Using four-component type I anion relay chemistry, an intermediate correspond-
ing to the southern hemisphere of the molecule (compound 122) was obtained 
through a sequence of reactions involving the alkylation of dithiane 93 by reaction 
with the epoxide 118, (S)-epichlorohydrin 119, and vinylmagnesium bromide 120 
in a single step. The preparation of tetrahydropyran 122 was completed by a 10-step 
sequence of reactions (Fig. 44).
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Fig. 43 Preparation of the mandelalide A northern hemisphere (117) using type II anion relay 
chemistry. TBAF tetrabutylammonium fluoride
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Fig. 44 Preparation of the mandelalide A southern hemisphere (122) through type I anion relay 
chemistry. Trt trityl (triphenylmethyl)

With both hemispheres of the natural product in hand, the final steps involved 
their coupling via a Yamaguchi esterification to give compound 123, followed by 
Kahne glycosylation with sulfoxide 124 and macrocyclic ring closure by an intra-
molecular Heck reaction (Fig. 45).
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Fig. 46 Total synthesis of (±)-frondosin B described by Flynn

7  Transition Metal-Catalyzed Multicomponent Reactions

7.1  Palladium-Catalyzed Reactions

Frondosin B is a sesquiterpenoid isolate from marine sponge Dysidea frondosa 
which behaves as an antagonist of the interleukin-8 (IL-8) receptor. Although sev-
eral groups of chemists have achieved its total synthesis, in the context of multicom-
ponent reactions it is noteworthy the strategy developed by Flynn and coworkers 
and summarized in Fig. 46 (Kerr et al. 2004). The route begins with the preparation 
of benzofuran 127 in a palladium-catalyzed Kumada-type coupling between 
2-bromo-4-methoxyphenol and enyne derivative 125, followed by the addition of 
bromocyclohexanone 126. A metathesis reaction using the Grubbs ruthenium cata-
lyst yields tetracycle 128. The final steps to obtain the natural compound include the 
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transformation of the ketone into the dimethyl derivative 129, the subsequent selec-
tive hydrogenation of C6-C7 double bond and a final O-demethylation.

The Catellani reaction, described in 1997, is an interesting method to achieve the 
synthesis of highly substituted arenes. The typical reaction, summarized in Fig. 47, 
involves an aryl iodide 130, an alkyl halide 131 and a terminal olefin 132 in the pres-
ence of norbornene and palladium as cocatalysts to furnish the ortho and ipso func-
tionalized derivate 133 in one pot (Fig. 47a) (Catellani et al. 1997). The accepted 
mechanism of this reaction includes numerous steps including the formation of 
C,C-palladacycle 134, which allows the C-H bond activation at ortho position for its 
subsequent alkylation, and a Mizoroki–Heck reaction to incorporate the olefin 
(Fig. 47b). Since its discovery, numerous variants of this method have been devel-
oped, greatly increasing its versatility (Dong and Luan 2021).

Lauten and coworkers reported the total synthesis of the lignan linoxepin, iso-
lated from Linum perenne and structurally similar to anticancer lignans such as 
etoposide and podophyllotoxin (Motyka et al. 2023). This achievement represented 
the first synthesis of a complex natural product in enantiomerically pure form using 

Fig. 47 A. The Catellani reaction and B. its proposed mechanism

Multicomponent Reactions for the Synthesis of Natural Products and Natural…



306

a Catellani reaction, and is summarized in Fig. 48. The preparation of unsaturated 
ester 137 was attained through a direct three-component Catellani coupling reaction 
between aryl iodide 135, iodolactone 136 and tert-butyl acrylate. The next step 
involved the preparation of oxidative cleavage of the olefin to give 138, which was 
followed by intramolecular aldol condensation to give 139. Finally, the total synthe-
sis of linoxepin was completed by generation of the seven-membered oxepane ring 
via an intramolecular Mizoroki–Heck reaction (Weinstabl et  al. 2013; Qureshi 
et al. 2014).

More recently, a three-component Catellani type reaction, combined with an 
oxa-Michael reaction, was applied by Qu, Zhou, and coworkers to achieve a concise 
synthesis of (−)-berkelic acid, a spiroketal isolated from a Penicillium fungus that 
exhibits a high cytotoxicity against the ovarian cancer cell line OVCAR-3 (Cheng 
et al. 2021). To this end, a mixture of iodobenzoate 140, chiral epoxide 141, and 
enone 142 was heated at 60 °C in the presence of palladium and norbornene as cata-
lysts. Cesium carbonate was then was added in order to promote the intramolecular 
oxa-Michael reaction that closed the chromane system, yielding compound 143 as 
a mixture of diastereoisomers. Consecutive deprotection of the benzyl groups by 
catalytic hydrogenation and of the acetonide in acidic conditions induced the forma-
tion of the spiroketal 144 as the major diastereoisomer, which was transformed into 
berkelic acid in three steps (Fig. 49).

Fig. 48 Total Synthesis of (+)-linoxepin using a Catellini coupling as the key step
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7.2  Copper-Catalyzed Reactions

Rottnestol, a cyclic hemicetal isolated from marine sponges of the genus Haliclona 
sp., was synthesized by Hoveyda and coworkers using a copper-catalyzed sequen-
tial three-component reaction as the key step (Meng et al. 2014). Thus, bis(pinacolato)
diboron (B2(pin)2) 145 was mixed with chiral ligand 146, copper chloride and potas-
sium tert-butoxide as a base to afford the N-heterocyclic carbene-Cu-B(pin) com-
plex 147. Then, allene 148 and allylic phosphate 149 were added to the same 
reaction medium, yielding the Z adduct 150 as the major product (98:2 er). Treatment 
of 150 with methyllithium and iodine resulted in the substitution of the C-B bond by 
a C-Methyl, with complete isomerization of the double bond (>98% E), as shown in 
Fig.  50. On the other hand, the reaction between allene 153, aldehyde 154, and 
bis(pinacolato) diboron (B2(pin)2) in presence of chiral ligand 155 and cooper chlo-
ride, followed by silicon protection of the hydroxy substituent, afforded silyl deri-
vate 156, from which an additional four-step sequence led to the advanced 
intermediate 157. Then, a N-heterocyclic carbene-Cu-catalyzed protoboration of 
the alkyne group in 157 provided compound 158, which was finally coupled with 
the iodo derivative 152 previously obtained under palladium catalysis, followed by 
acidic acetal hydrolysis, to afford the natural compound (Fig. 51).

The Hoveyda group used a similar protocol in their synthesis of herboxidiene 
(Fig. 52). This polyketide, isolated from a Streptomyces chromofuscus A7847 clus-
ter, exhibits a wide range of activities such as antitumor, herbicidal, and anticholes-
terol (Thirupathi and Zilla 2019). For its synthesis, a three-component reaction 
cooper-catalyzed reaction was carried out between allene 159, allyl derivate phos-
phonate 160, and bis(pinacolato) diboron (B2(pin)2) 145 in the presence of ligand 
146 and cooper chloride to achieve compound 161. Its reaction with methyllithium 
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Fig. 50 Preparation of fragment 152 based on a copper-catalyzed three-component reaction; er, 
enantiomeric ratio
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rottnestol

and iodine followed by cross metathesis with vinyl-B(pin) 162 resulted in the for-
mation of diene 163 (>98:2 E,E). In the next step, compound 163 was treated with 
tetrahydropyran 164 under palladium-catalyzed conditions to provide compound 
165. The synthesis of herboxidiene was completed in three additional steps (Meng 
et al. 2014).
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8  Miscellaneous Multicomponent Reactions

Marine butenolides of the cadiolide family are broad spectrum antibacterials and 
some of them are inhibitors of Candida albicans isocitrate lyase. In an effort to 
contribute to structure–activity relationships in this area, cadiolides A–C and a 
library of synthetic analogues were synthesized by application of a three- component 
reaction from condensation of aryldioxinones 166, hydroxyketones 167, and alde-
hydes 168 under thermal conditions (Boulangé et al. 2015). At high temperatures, 
the dioxinones 166 undergo a retro Diels–Alder reaction that transforms them into 
acylketones 169, which react with the hydroxy group in compounds 167 to provide 
170, whose cyclization by an intramolecular Knoevenagel reaction to give 171, fol-
lowed by a second Knoevenagel reaction with aldehyde 168 led to the butenolides 
172. A final demethylation of the methoxy groups with boron tribromide afforded 
the library of natural products and their analogues (Fig. 53).

Liu et al. developed a method for the preparation of quinazolines through a one- 
pot sequential three-component condensation promoted by microwave irradiation 
(Liu et  al. 2005). This procedure allowed the synthesis of bioactive quinazoline 
alkaloids such as glyantrypine, fumiquinazoline F, and fiscalin B (Fig.  54). The 
sequence begins with the condensation of anthranilic acid with the suitable N-Boc- 
L-amino acid in the presence of triphenyl phosphite. Subsequently, tryptophan 
methyl ester is added, and the system is heated under microwave conditions to 
afford the target alkaloids.
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Fig. 53 Three-component synthesis of cadiolides A, B, and C
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Fig. 54 Synthesis of quinazoline alkaloids based on a sequential three-component reaction

The same strategy was employed to achieve a concise total synthesis of alantrypi-
none, an insecticidal alkaloid isolated from the fungus Penicillium thymicola that 
acts as a selective GABA antagonist. Nishida’s group approached the synthesis of 
this alkaloid and a library of derivatives thereof using the three-component strategy 
summarized above followed by a hetero Diels–Alder reaction to construct the pen-
tacyclic system (Watanabe et al. 2009). In this case, the condensation of anthranilic 
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acid, Boc-L-alanine, and glycine methyl ester under microwave conditions afforded 
quinazolinone 173 in one pot. Its reaction with boron trifluoride etherate, followed 
by DDQ dehydrogenation, gave the aromatic quinazoline 174, which served as the 
Diels–Alder 2-azadiene against the dienophile 175, affording the natural product 
after a final lactim ether hydrolysis step (Fig. 55).

Many bioactive alkaloids isolated from skin extracts of dendrobatid or manteline 
frogs have a decahydroquinoline as its key structural fragment. These natural prod-
ucts often have potent pharmacological activities, particularly as nicotinic receptor 
antagonists. Our group has developed (Maiti and Menéndez 2011) a diastereoselec-
tive synthesis of one of these alkaloids, pumiliotoxin C (Fig. 56), based on an in- 
house- developed (Sridharan et  al. 2009) four-component reaction between 
1,3-cyclohexanedione, benzylamine, crotonaldehyde, and ethanol in the presence of 
indium triflate that gave octahydroquinoline derivative 176 through the generation 
of one C-C, two C-N and one C-O bonds. The three-carbon chain at C-2 was incor-
porated by allylation of 176 with allyltrimethylsilane in the presence of boron tri-
fluoride, presumably via an iminium intermediate, to give 177. From this point, a 
linear sequence of seven steps completed the synthesis of the natural product 
(Fig. 56).

Fig. 55 Total synthesis of (±)-alantrypinone by the Nishida group
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Fig. 56 Total synthesis of the dendrobatid alkaloid pumiliotoxin C based on a four-component 
reaction

9  Combinations of Multicomponent Reactions in Natural 
Product Synthesis

The combination in the same synthetic route of two or more multicomponent reac-
tions can provide fast access to structurally complex molecular architectures. Some 
examples of the application of this strategy to the synthesis of natural products and 
their analogues are given below.

9.1  Passerini, Ugi-3CR, and Ugi-4CR

Tubugis (also called tubUgis) are synthetic tubulysin analogues designed for a lower 
energy barrier between the s-cis and s-trans configurations by amino acid 
N-alkylation. This relatively minor structural change increases the hydrolytic stabil-
ity of the peptide toward amidases.

Wessjohann has described a route that provides ready access to tubugis by com-
bination of three multicomponent reactions (Pando et al. 2011). Thus, the thiazole 
derivative 178 was obtained by a variation of the Passerini reaction described by 
Dömling, while compound 179 was obtained in parallel using an Ugi three- 
component reaction. Finally, an Ugi four-component reaction allowed the combina-
tion of both fragments (Fig. 57). A similar strategy has given access to derivatives 
of pretubulysins, which are slightly simplified analogues of the tubulysin (Hoffmann 
et al. 2015).

9.2  Combination of Two Joullié–Ugi Reactions

The Joullié–Ugi three-component reaction (JU-3CR) starts from a cyclic five- or 
six-membered imine, a carboxylic acid and an isocyanide and yields an 
N-acetylpyrrolidine or piperidine carboxamide. The group of Ichikawa has used this 
reaction to prepare two key fragments of plusbacin A3, a cyclic lipodepsipeptide 
with potent antibacterial activity against a wide range of Gram-positive bacteria 
(Fig. 58). They discovered that the reaction of isonitrile 180, carboxylic acid 181 
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Fig. 57 Synthesis of tubulysin analogues (tubugis) by combination of Passerini–Domling, 
Ugi-3R, and Ugi-4-CR multicomponent reactions

and imine 182 in 1,1,1,3,3,3-hexafluoroisopropanol as solvent gave the required 
trans compound 183, whereas a cis isomer was the predominant product in toluene 
(Katsuyama et al. 2016). Compound 183 was then transformed into the required 
fragment 184 in two additional steps. Fragment 186 was obtained similarly via 
intermediate 185, and 184 and 186 were coupled with two additional fragments to 
give plusbacin A3 in nine steps (Katsuyama et al. 2017). The same group has adapted 
this chemistry to the use of solid-phase peptide synthesis (Takashina et al. 2022).

9.3  Combination of a C + NC + CC Coupling 
and a Strecker Reaction

The silver acetate-catalyzed [C + NC + CC] reaction of aldehyde 187, (S)-glycyl 
Oppolzer’s sultam 188 and methyl acrylate, used as solvent, furnished pyrrolidine 
189, which was transformed into compound 190 in six steps. Its Swern oxidation of 
the primary hydroxyl to aldehyde in the presence of trimethylsilyl cyanide allowed 
an intramolecular Strecker reaction that afforded compound 191. Four additional 
functional group manipulation steps allowed the formation of 192, thus completing 
a formal total synthesis of cyanocycline A and bioxalomycin (Fig. 59) (Kaniskan 
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Fig. 58 Total synthesis of plusbacin A3 using a combination of two Joullié-Ugi reactions. HFIP 
1,1,1,3,3,3-hexafluoroisopropanol

and Garner 2007). Both fungal metabolites are of considerable biological interest 
because they are endowed with broad-spectrum antibacterial activity.

10  Natural Products as Substrates 
for Multicomponent Reactions

One way to achieve the rapid generation of natural product-like libraries is the use 
of a natural product as a substrate for multicomponent reactions. Curcumin, having 
a relatively simple polyfunctional structure, is well suited to this approach (Nelson 
et al. 2017; Ajavakom et al. 2017). Some multicomponent transformations that take 
advantage of the α-dicarbonyl structure of curcumin are summarized in Fig. 60, and 
include:

 (a) The synthesis of curcumin-based pyrano[2,3-d]pyrimidines 193 from cur-
cumin, aromatic aldehydes, and barbituric acid in the presence of a new catalyst 
prepared by surface modification of magnetic nanoparticles with sulfanilic acid 
(Panahi et al. 2017).
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Fig. 59 Formal synthesis of cyanocycline A and bioxalomycin based on a C + NC + CC coupling. 
TMSCN trimethylsilyl cyanide

 (b) The synthesis of a library of curcumin-derived 1,4-dihydropyridines 194 from 
curcumin, aromatic aldehydes, malononitrile, and aromatic amines in ethanol, 
in the presence of p-toluenesulfonic acid (Dangolani et al. 2020) while, in the 
absence of the amine component, curcumin-derived 4H-pyrans were obtained, 
both with toluenesulfonic acid or sodium formate (Brahmachari and Mandal 
2019) as catalysts. The latter compounds have shown interesting properties 
against diabetes, being inhibitors of α-glucosidase and α-amylase as well as 
showing antioxidant activity (Tavaf et al. 2020).

 (c) The synthesis of curcumin-derived 4H-pyrimido [2,1-b] [1,3]benzothiazoles 
195 from curcumin, aromatic aldehydes and 2-aminobenzothiazoles in ethanol, 
with pyridine as catalyst (Agarwal et al. 2018).

 (d) Finally, we will mention the Biginelli reaction between curcumin, urea or thio-
urea, and aromatic aldehydes that give antioxidant and anti-inflammatory 
3,4-dihydropyrimidinones/thiones 196 (Lal et al. 2016).
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Fig. 60 Some multicomponent reactions having curcumin as one of the substrates

11  Conclusions

Multicomponent reactions, the main class of multiple bond-generating processes, 
are one of the most promising approaches to the goal of achieving improved effi-
ciency and sustainability in synthesis due to their high atom- and step-economy and 
the avoidance of intermediate isolation and purification steps, which allows for a 
lower consumption of solvents and chromatographic stationary phases. Due to these 
features, multicomponent reactions provide a highly efficient alternative to sequen-
tial multistep procedures and are therefore ideally suited for simplifying routes aim-
ing at the total synthesis of natural products. This area is in constant evolution, and 
we hope to have given a representative cross-section of the main methods.
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Abstract Natural products that originate from fungal, bacteria, plant, marine, and 
animal sources have a wide variety of applications. Numerous studies have high-
lighted natural products in different areas for medicinal purposes, such as antimi-
crobial, antioxidant, anti-inflammatory, and anticancer agents. Although they are 
fascinating from an applied point of view, natural products can be unstable and 
fragile. A key issue for using these natural products and biomolecules is their bio-
availability and stability, depending on the context in which they will be applied. In 
this context, encapsulation is a viable alternative to protect active compounds 
against the deterioration of environmental conditions, maintaining their natural 
compounds. Many encapsulation methods can be used, whether physical or chemi-
cal, and their use is intrinsically linked to their application. Among them, we can 
highlight electrospinning methods and micelles’ formation. These encapsulation 
methods allow their application internally or externally to living organisms, bring-
ing a series of distinct benefits. In an increasingly efficient search for new drugs, the 
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encapsulation of natural products can enhance delivery and use. This chapter will 
emphasize physical and chemical methods and the characterization of nanoencap-
sulated natural products for different applications.

Keywords Encapsulation · Natural products · Biomolecules

1  Introduction

Biomolecules are biological compounds derived from cells, comprising nucleic 
acids, lipids, and structural proteins that lead to important antioxidant, anti- 
inflammatory, anticarcinogenic, and antimicrobial properties, being available in 
fruits and vegetables, yeasts, bacteria, animals, and even marine and freshwater 
organisms that have gained notoriety due to its potential of interacting with designed 
systems to enhance therapeutic activity and/or technological applications (e.g., drug 
delivery and bioremediation) (Rajput et al. 2022; Saeed et al. 2022).

However, biomolecules extracted from their natural matrices exhibit some degree 
of instability when exposed to changes in temperature, pH, light, and oxygen con-
centration once their native structures do not protect them. As the biomolecules can 
deteriorate by polymerization (Jakobek 2015) with other molecules and oxidation 
reactions, the challenge for Science and Industry for scaling up the technological 
production lies in preserving the desired biological effects of bioactive compounds, 
mainly, their antioxidant activity and bioavailability by improving its stability. In 
this context, the literature has drawn attention to (nano)encapsulation as an impor-
tant prospective method for addressing this challenge (Giaconia et al. 2020).

Encapsulation consists of an active substance known as core material entrapped 
into a coating material (Gupta et  al. 2016). This combination allows changes in 
solubility (Chaari et al. 2018), chemical and thermogravimetric stability (Centurion 
et al. 2021; Schmatz et al. 2020), and inhibition of bacterial growth (Malheiros et al. 
2016), corroborating to several specific purposes. Encapsulating biomolecules has 
several benefits, such as maintaining their functionality, preventing degradation 
through processing and storing, controlling its release in living tissues, and keeping 
food safe along shelf-life (Pereira et  al. 2022). Along these lines, this chapter is 
underpinned by examining nanoencapsulated natural products from microbes, 
plants, animals, and marine and freshwater organisms over physical and chemical 
methods and their characterization for different applications.

2  Encapsulation Methods

Bioactive compounds have several biological properties such as anti-inflammatory, 
anticarcinogenic, and antimicrobial antioxidant; however, these properties are 
affected when these biomolecules are exposed to changes in physical and chemical 
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factors such as temperature, pH, light, and oxygen concentration, these conditions 
being frequent in processes industrial and biological (Ramos et  al. 2020). Faced 
with these limitations for the application of these compounds, encapsulation is a 
powerful tool to overcome these drawbacks as it provides protection to a wide vari-
ety of compounds by coating the molecules with a matrix (Ramos et al. 2022).

Due to the diversity of properties that bioactive compounds present, different 
techniques can be used to guarantee protection and maintenance of the biomolecule, 
the performance of the selected matrix, and mainly the bioavailability to exert the 
necessary action. Each technique for forming encapsulated materials (nano- or 
microencapsulation) depends on a series of factors that related to the material to be 
protected, since the matrix-forming substance and the conditions in which the tech-
niques will be applied are also fundamental in the process. Choosing the most 
appropriate methodology includes analyzing several parameters such as physico-
chemical characteristics of the substances for encapsulation, particle size (or struc-
ture) and release rate, in addition to the economic aspect (Giaconia et al. 2020).

Nanoemulsions are kinetically stable solutions composed of two dispersed insol-
uble liquid phases and in the presence of surfactants, in which it is possible to guar-
antee the bioavailability of lipophilic bioactive compounds in aqueous medium 
(oil-in-water (o/w)) or hydrophilic compounds in oil phase (water-in-oil (w/o)). The 
formation of nanoemulsions can occur by high energy, such as homogenization 
under high pressure and sonication, or low energy, such as phase inversion tempera-
ture or solvent displacement, the latter being more applied since it ensures greater 
control in particle formation and low cost (Giaconia et al. 2020). Nanoemulsions 
consist of the formation of nanometric droplets that have excellent stability, which 
is why they have been widely used as a delivery system due to their protective effect 
on bioactive compounds against hostile environments provided, mainly in biologi-
cal systems and industrial processes, improving their stability, solubility, and bio-
availability (Saini et al. 2019).

The nanoemulsion formation by solvent evaporation is a traditional technique 
that involves the emulsification of a polymer in the liquid phase and the consequent 
evaporation of the solvent, resulting in precipitation of the polymer as nanoparticles 
with a spherical shape and its size is related to properties such as viscosity of the 
solution polymer used, agitation rate and temperature (Sabjan et  al. 2019). 
Researchers evaluated the bacterial activity of lavender essential oil before and after 
incorporation into a nanoemulsion using ethanol and acetone as organic solvents, 
and subsequent dispersion in an aqueous phase, under agitation. The nanoemulsion 
of lavandula essential oil formed after solvent evaporation showed greater activity 
against bacteria when compared to its crude form (Garzoli et  al. 2020). 
Nanoemulsions are commonly used for delivery systems, and thus, pesticide micro-
capsules have been synthesized using solvent evaporation system from dichloro-
methane as solvent, polylactic acid as carrier material, and polyvinyl alcohol as 
emulsifier. The microcapsules containing β-cypermethrin as a pesticide had a 
smooth, spherical shape with an encapsulation efficiency greater than 80%, in addi-
tion to an effective release mechanism (Feng et al. 2018).
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Nanoemulsions is associated with the change in the surfactant spontaneous cur-
vature during the emulsification process. This change can be achieved in two differ-
ent ways: maintaining a constant composition while varying the temperature (phase 
inversion temperature method—PIT method) and maintaining a constant tempera-
ture while varying the composition (phase inversion composition method—PIC 
method). Both methods imply phase inversion (Ren et al. 2019).

In the PIT method, at low temperatures, temperature-sensitive surfactants are 
water soluble and the spontaneous curvature of the surfactant layer at the micelle 
interface is positive, and at high temperatures, these surfactants are oil soluble and 
the spontaneous curvature of the surfactant layer at the micelle interface becomes 
negative. At an intermediary temperature (PIT), the surfactants have the same affin-
ity for the oil and aqueous phase, and the spontaneous curvature of the surfactant 
layer at the micelle interface is zero (Jintapattanakit 2018). Nanoemulsions of cin-
namon oil were produced by PIT method using nonionic surfactant and water. The 
mixture was heated above the PIT of the system, and then rapidly cooled with con-
tinuous stirring, which led to the spontaneous generation of small oil droplets 
(107.30 nm and 100.70 nm) were formed in the condition using 40:60 wt% of cin-
namon oil and surfactant in total lipid phase (Chuesiang et  al. 2018). The PIC 
method does not have restriction on surfactant characteristics, as in the PIT method 
which requires thermosensitive surfactants. The procedure for forming the emulsion 
in the PIC method consists of adding water, at constant temperature, to a mixture 
containing the oil phase and surfactant. As the oily mixture (w/o) is added to water, 
generally slowly or stepwise, there is a change in the spontaneous curvature of the 
surfactant and consequent change of the mixture to o/w (Feng et al. 2020).

The spontaneous emulsification technique is used to obtain nanoemulsions with 
properties similar to obtained by physical methods, but this method, in addition to 
being simpler and faster, has a lower cost. This technique takes place through spon-
taneous emulsification of an oil phase with surfactant that has affinity for the organic 
phase. An organic solvent is used to dissolve the oil phase and then this phase is 
poured into an aqueous phase, consisting of water and hydrophilic surfactant, under 
agitation. The next step consists of removing the solvent through evaporation under 
reduced pressure. After adding the oil phase to the water phase, the diffusion of 
solvents promotes the formation of droplets (Bouchemal et al. 2004). Carotenoids- 
loaded nanoemulsions were prepared by spontaneous emulsification, and the opti-
mized conditions of the process produced particles with diameters of 50 nm (Zhang 
and Li 2022).

One of the most used methods for nanoencapsulation is the electrospun tech-
nique, in which a polymeric solution subjected to a high voltage, promotes the evap-
oration of the solvent from the solution and the formation of nanostructures. 
Electrospun does not require specific reagents or extreme temperatures and there-
fore is closely related to food and pharmaceutical applications (Ramos et al. 2021).

The electrospun technique can lead to the formation of two types of structures: 
nanoparticles (electrospray) or nanofibers (electrospinning). In both techniques, a 
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polymeric matrix is used that will protect the bioactive compound and, conse-
quently, increase its properties and application viability. The polymeric solution is 
subjected to a potential difference when it is ejected through a metal needle until it 
reaches a collector that is also metallic. The solid nanostructure is deposited in the 
collector since the solvent evaporated during the process. The diameter size of the 
structures formed depends on the flow rate and the applied voltage. However, the 
polymer type, solute concentration, and nozzle to collector distance are also impor-
tant regulators of the process (Walia et al. 2019).

To attest to the use of nanoencapsulation of natural pigments in the face of diges-
tive processes, nanofiber composite with incorporated anthocyanins from jussara 
pulp using polyethylene oxide was developed through electrospinning. The poly-
meric solution and composites produced maintained the antioxidant activity, show-
ing their protective effect on bioactive compounds and the composite improved 
thermal stability of the anthocyanins (Kalsoom et al. 2020). Nanofibers containing 
hydroxyapatite dispersed in polycaprolactone/chitosan were developed by electros-
pinning aiming application in tendon and ligament tissue engineering. The nanofi-
bers showed significant mechanical and biological properties (Wu et al. 2018).

3  Nanoencapsulation of Biomolecules from Microbes

Biological, ubiquitous, and diverse organisms classified as viruses, bacteria, archaea, 
fungi, or protists, considered pathogenic, beneficial, or neutral, are called microbes. 
They can be found in almost all habitats and are adapted to survive extreme condi-
tions (Berg et al. 2020). Microorganisms are critical cellular factories for synthesiz-
ing proteins, small and large metabolites, and the production of single-cell proteins. 
Microbial biotechnology includes methods and strategies for producing and using 
prokaryotic and eukaryotic microorganisms in essential applications such as indus-
trial, pharmaceutical, medical, agricultural, energy, food and feed, biocatalysis, 
mining, and biomaterials (Amaning Danquah et al. 2022; Kalsoom et al. 2020).

The recombinant DNA technology made it possible to modern microbial bio-
technology to include fermentation, microbial physiology, screening of new metab-
olites and strain improvement, bioreactor design and processing, cell immobilization, 
cell fusion, metabolic engineering, and directed evolution of enzymes (Adrio and 
Demain 2010). However, for these microbial cells to function optimally, they must 
find suitable growth and metabolic conditions while being protected from the threat-
ened environmental conditions to which they are exposed. Furthermore, in the case 
of microbial cells producing commercially essential substances, it is often desirable 
to achieve high cell densities for higher product yields, retention of activity over 
more extended periods, and ease of cell recovery from the product (Cho et al. 2022). 
The encapsulation of microbial cells or their products has been proposed to attain 
these goals for different commercially advantageous applications (Fig. 1).

Applications of (Nano)encapsulated Natural Products by Physical and Chemical Methods
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Fig. 1 Nanoencapsulation of biomolecules from microbe. Created in Biorender

3.1  Nanoencapsulation of Biomolecules from Bacteria

Bacteria are unicellular prokaryote organisms, generally classified into five groups 
according to their basic shapes: spherical (cocci), rod (bacilli), spiral (spirilla), 
comma (vibrio), or corkscrew (spirochaetes). They can be found as single cells, in 
pairs, chains, colonies, or biofilms. They are rich in bioactive compounds such as 
carbohydrates, proteins, enzymes, genetic material, antimicrobial peptides, viru-
lence factors, resistance genes, etc. Due to the facility of manipulation and engi-
neering, they can display specific functions for desired applications. This way, 
bacterial secondary metabolites, extracts, or biomolecules are potential bioactive 
compounds that can be encapsulated and used in various industries. In the pharma-
ceutical field, they can be applied in probiotic delivery, improving survival, resis-
tance, and targeted release of sensitive microorganisms. In the food industry, 
encapsulation increases important molecules’ functional properties and antimicro-
bial activities to avoid product spoilage (Bagheri Darvish et al. 2020; Freschlin et al. 
2022). The results presented in this section are summarized in Table 1.

In medical research, a vaccine delivery system is a novel application for encap-
sulated bacterial products. Outer membrane vesicles (OMV), a spherical, nonrepli-
cant structure naturally produced by Gram-negative bacteria, were encapsulated in 
sodium alginate nanoparticles using the unique gelation method. OMVs extracted 
from Bordetella pertussis are used as an adjuvant molecule to induce a stronger 
immune response in mice (Rami et  al. 2021). Alginate is a hydrophilic linear 

M. Assis et al.
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polysaccharide obtained from brown algae, composed of two interconnected mono-
saccharide chains: 1–4 β-D-mannuronic (M) and α-L-guluronic (G). The gelling 
mechanism of alginate occurs when the G chains link on opposite sides to form a 
hydrophilic cavity that binds Ca2+ using oxygen atoms from the carboxyl group. 
The ratio and sequence of G and M residues achieved the physical properties of 
alginate hydrogels: the more G chains, the more rigid and porous the gel will be. In 
comparison, the more M chains form soft gels that disintegrate more easily. Alginate 
has become an excellent support for the administration of biomolecules, mainly due 
to the processing under mild conditions by crosslinking ions at room temperature 
and the good permeability of alginate gels, which facilitates the exchange of air, 
nutrients, and the release of metabolites (Wang et al. 2022).

In the food industry, strict control of food safety and microbiological quality is 
one of the fundamental requirements present in all stages of production, storage, 
and distribution. Bacteria and fungi contaminate different food products and cause 
several adverse effects on the sensory properties of foods, such as taste, color, and 
texture, as well as nutritional and economic losses (Delshadi et al. 2021). They are 
responsible for food deterioration, causing a decrease in shelf life and disease trans-
mission and impairing food safety and quality. Microbial growth in food products 
can be affected by internal factors such as pH, oxygen, and amount of water present 
in the food; and external factors such as light, temperature, and humidity. Despite 
the recent exploration of chemical or artificial preservatives to prevent these losses, 
their growing association with adverse health implications, such as carcinogenic 
effects and allergies, has resulted in arisen of the bio-preservatives, which includes 
the use of microorganisms or their natural products (Kaur and Kaur 2021).

Among microbial compounds capable of controlling undesired microorganisms 
in food systems, bacteriocins naturally produced by some bacterial species are the 
best studied. Bacteriocins are antimicrobial peptides capable of prolonging the shelf 
life of food by inhibiting spoilage by pathogenic Gram-positive and Gram-negative 
bacteria (Kumariya et  al. 2019). Bacteriocins are mainly bactericidal, acting by 
forming pores in the membranes of microorganisms. At the same time, some are 
bacteriostatic, making them useful in the food and pharmaceutical sectors, espe-
cially where fermentation is undesirable. Although the producer organisms are gen-
erally recognized as safe, as proteolytic enzymes degrade them in the human 
intestinal tract, the direct incorporation of bacteriocins to the surface of food has 
some limitations, generally associated with the interaction with food compounds, 
which result in partial or total loss of antimicrobial activity (Mokoena et al. 2021; 
Kaur and Kaur 2021). Thus, the encapsulation of antimicrobial peptides in nano-
structures has been used to protect them against degradation and improve their bio-
availability. Encapsulated bacteriocins produced by Lactobacillus sakei subsp. 
sakei 2a in phosphatidylcholine and cationic 1,2-dioleoyloxy-3- trimethylammonium-
propane (DOTAP) nanovesicles were characterized and evaluated for their effect 
against Listeria monocytogenes, in  vitro and UHT contaminated goat milk 
(Malheiros et al. 2016). The method used for encapsulation was the thin-film hydra-
tion method. The encapsulation showed high efficiency of encapsulation (95%), low 
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polydispersion index, and excellent stability, and was able to delay bacterial growth 
in 5 days in UHT goat milk stored at 7 °C.

Among the existing bacteriocins, the most used is nisin, “Generally recognized 
as safe” (GRAS) by the US Food and Drug Administration (USFDA) and approved 
as a suitable additive for food applications by the European Food Safety Authority 
(ESFA). In Pinilla et al., nisin-loaded liposomes showed better results for the treat-
ment against L. monocytogenes compared to free nisin. The encapsulation obtained 
by the thin-film hydration method presented a bacteriostatic effect on L. after 30 min 
and reduced the expression of proteins that contribute to infection and resistance to 
nisin due to the stress imposed on the cells (Pinilla et al. 2021).

Another nisin encapsulation was developed to evaluate the biopreservative effect 
of nanoparticles using poly-γ-glutamic acid (γ-PGA) and poly-L-lysine (PLL) using 
the self-assembled electrostatic method. Based on the microbial, chemical, color, 
and texture analysis, nanoparticles could effectively control the growth of S. aureus 
in pork meat and have no impact on the quality of the product samples (Cui et al. 
2018). Furthermore, the antimicrobial activity of nisin encapsulated in olive oil- 
based microemulsions enriched with essential oils was investigated against 
S. aureus, L. monocytogenes, and B. cereus. Rosemary, thyme, oregano, and dittany 
essential oil-contained microemulsions were formulated by the W/O microemul-
sion method. This technique increases the membrane’s flexibility and facilitates the 
diffusion of nisin to the outer environment, enhancing the antimicrobial effect of the 
system (Chatzidaki et al. 2019).

Finally, nisin-loaded alginate nanoparticles were encapsulated by ionic gelation 
and further complexed with chitosan. Nanoparticles were prepared by ionic gelation 
of alginate upon dropwise addition of nisin, followed by complexation with drop-
wise addition of chitosan, under stirring. The nanocapsules were tested for antimi-
crobial activity against L. monocytogenes culture and as biopreservative agents of 
refrigerated, vacuum-packaged lean beef meat. The encapsulated nanoparticles not 
only delayed the growth of L. monocytogenes but also displayed sustained activity 
over time, both in vitro and in vivo assays (Zimet et al. 2018).

Other bacteriocins can be used as an antimicrobial agent in the food industry. 
CAMT2, a bacteriocin with antilisterial activity, was encapsulated in phosphatidyl-
choline nanovesicles by the reverse-phase evaporation method, which guaranteed 
an encapsulation efficiency of about 70% (Jiao et al. 2020). Liposome-encapsulated 
pediocin (extracted from Pediococcus pentosaceus) also showed an improved anti-
bacterial effect compared with free purified pediocin (Suganthi et  al. 2021). 
Enterocin Gr17 is a bacteriocin that presents inhibitory effects on many pathogens 
found in food and has the potential for application as a natural food additive, such 
as liquid smoked fish. However, bacteriocins with a high content of hydrophobic 
amino acids, such as Enterocin, easily bind to charged or hydrophobic macromole-
cules in food products. As salmon has a fat content of about 8% to 14%, the antimi-
crobial activity of bacteriocins is impaired. Thus, Duan et  al. proposed the 
encapsulation of bacteriocins and EOs in a nanoemulsion, which can be used as a 
delivery system to protect the effects of bioactive compounds. In addition, the con-
trolled release of the biomolecule allows for a longer duration of action of the active 

Applications of (Nano)encapsulated Natural Products by Physical and Chemical Methods



336

substances, maintaining their antimicrobial activity for a more extended period. The 
nanoemulsion system incorporating Enterocin Gr17 and cinnamaldehyde essential 
oil was able to significantly inhibit microbial growth and maintain better color and 
texture sensory profiles during the storage of smoked salmon at 4 °C. From a micro-
biological, physical–chemical, and sensory point of view, the treatment can extend 
the product’s shelf life to 42 days (Duan et al. 2023).

Sakacin-A is a bacteriocin produced by Lactobacillus sakei, which plays an anti-
microbial effect, especially against Listeria sp. In Mapelli et  al., sakacin-A was 
adsorbed on cellulose nanofibers without chemical modifications to obtain an anti-
microbial material. Cellulose nanofibers have been widely used to improve mechan-
ical and barrier properties when applied to packaging materials, which can help 
extend shelf life and enhance food quality (Mapelli et al. 2019).

In the same line of work, Lacticin is a noncytotoxic bacteriocin produced by 
Lactococcus lactis, comprised of two peptides that work synergistically to kill even 
antimicrobial-resistant bacteria such as Staphylococcus aureus and Clostridioides 
difficile. In addition, solid lipid nanoparticles (SLNs) are an excellent alternative 
transport system to traditional lipid-based methods, as they are biocompatible and 
biodegradable and can increase the stability, solubility, and, subsequently, the bio-
availability of a variety of drugs. In Ryan et al., seeking to optimize the encapsula-
tion method and increase the molecule’s stability, the two peptides of Lacticin were 
encapsulated individually in SLNs using a modificated nanoprecipitation method. 
The nanomaterial showed a higher encapsulation efficiency, cytotoxic activity, and 
protection from proteases in the duodenum (Kaur and Kaur 2021).

The biopreservative effect on food packaging can also be done by bacterial 
enzymes, organic acids, or bacteria. Lysozyme is an enzyme naturally produced by 
bacteria capable of decomposing the cell wall of other species, acting as an antimi-
crobial peptide. Bugatti et al. proposed a preparation of bio-based membranes com-
posed of Polyamide 11 from renewable sources and lysozyme encapsulated into 
halloysite nanotubes through the electrospinning process (Bugatti et al. 2018). On 
the other hand, lactoperoxidase (LPO), an enzyme included in the lactoperoxidase 
system (LPOS), has been widely used in food packaging due to its bactericidal or 
bacteriostatic properties, which inhibit microbial growth by transmitting sulfhydryl 
groups (SH) to microbial enzymes and other proteins. The research of Jasour et al. 
was based on an active packaging system for specific microorganisms of the fish 
industry. A chitosan solution was solubilized in acetic acid under stirring. Then, the 
solution was heated to add glycerol as a plasticizer. With the pH adjusted, LPOS 
was added to the chitosan solution. After antimicrobial, physical–chemical, and 
sensory tests, the authors could maintain the trout’s quality and guarantee the stor-
age time extension (Jasour et al. 2015).

Lactic acid can also be used as an antimicrobial agent, especially when com-
bined with other compounds with the same properties. A biocomposite film made of 
chitosan, pectin, and starch was loaded with nisin, acid lactic, rosemary, and mint 
essential oils to prevent lipid oxidation and microbial spoilage of foods. After incor-
porating the compounds in a film-forming solution, it was placed in glass plates and 
dried for a few hours. The films were tested for antioxidant and antimicrobial 
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activity against Bacillus subtilis, Listeria monocytogenes and Escherichia coli and 
showed that the incorporation positively influenced not only these properties but 
also the barrier and mechanical quality (Akhter et  al. 2019). Since the bacterial 
antagonists are sensitive to environmental conditions such as competition, pH fluc-
tuations, and temperature changes, the colonization process gets challenging, and 
they can rapidly disappear. Le et al. developed an alginate-gelatin compound that 
could protect Lactobacillus plantarum bacteria from these threats so it could sur-
vive and produce bacteriocins directly in refrigerated pork meat. The bacterial cells 
were extruded inside the nanomaterial and found to increase the percentage of anti-
microbial activity. Bacteriocins activity was enhanced with high temperatures and 
was not affected by pH. The formulation also inhibited the growth of pathogenic 
bacteria in pork meat throughout the 12 h period (Pour et al. 2019). A similar study 
was carried out by encapsulating Lactobacillus lactis in a film of corn starch and 
carboxymethylcellulose to improve nisin production and application on food pack-
aging. The films showed the best performance and the lowest water vapor transmis-
sion while preserving the antibacterial activity against Staphylococcus aureus for 
8 days (Lan et al. 2021).

The World Health Organization (WHO) defines probiotics as live microorgan-
isms that confer various health benefits to the host when administered adequately to 
the desired target site (Food and Agriculture Organization and World Health 
Organization and others 2006). These advantages encourage their wide use in sec-
tors such as the agricultural, food, pharmaceutical, and cosmetics industries. The 
most frequent genera are Lactobacillus, Bifidobacterium, Bacillus, Saccharomyces, 
and Escherichia coli, which are particularly sensitive to the harsh conditions of 
many foods and the human intestine (Yao et al. 2020a). Its preventive and therapeu-
tic properties against infectious diseases, metabolic, anticancer, and antimutagenic 
activities come mainly from the production of nutrients and cofactors, competition 
with pathogens for nutrients or adhesion sites, and stimulation of the host’s immune 
response (George Kerry et al. 2018). Although the potential for probiotics in treat-
ing or even preventing gastrointestinal diseases is high, their clinical efficacy still 
needs to improve due to conflicting results in clinical trials for many diseases. This 
is partly due to the lack of viability of probiotics using traditional manufacturing 
and packaging methods (Centurion et al. 2021). Several factors significantly affect 
the viability and survival rate of probiotics during processing, storage, and con-
sumption, such as harsh conditions within the upper human GI. such as the presence 
of antimicrobial lysozyme in the mouth, low pH conditions in the stomach, bile salts 
and digestive enzymes in the small intestine, and other complex factors, including 
osmotic pressure and oxidative stress throughout the gastrointestinal tract (Techo 
et al. 2019). Thus, probiotics must survive the hostile gastric environment, remain 
metabolically active, and be released in sufficient quantities and controlled at the 
site of action in the lower gastrointestinal (GI) tract to confer beneficial health 
effects (Razavi et al. 2021).

Nanoencapsulation of probiotics has been proposed as an effective solution to 
improve survival, resistance, and targeted release of sensitive microorganisms in the 
GI tract, as it can trap small amounts of bioactive compounds and/or 
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microorganisms in small nanostructured compounds (Centurion et  al. 2021). In 
essence, the goal of nanoencapsulation is to create a microenvironment that protects 
bacteria from exposure to external factors (such as low gastric pH) during digestion 
and subsequently reduces cell injury or death before their release to the target site 
(Pateiro et  al. 2021). There are many reports on nanoencapsulation of probiotic 
bacteria resulting in highly increased viability of probiotics during storage and 
administration. Due to unique physical and chemical properties, nanostructured 
materials show great promise for protecting microorganisms from the acidic condi-
tions of the stomach and therefore allow the successful release of trapped probiotic 
cells into the intestinal lumen at natural pH (Centurion et  al. 2021; Sharma 
et al. 2019).

In the food industry, the so-called “functional foods” have gained importance 
since consumers have been looking for foods with properties that go beyond nutri-
tion. A functional food can be defined as one that provides beneficial effects to the 
human body in addition to its basic nutritional properties, as is the case with probi-
otic foods (Atraki and Azizkhani 2021). The dietary supplemented probiotics mar-
ket is predicted to grow at a compound annual growth rate of 7% compound annual 
growth rate through 2027 (2022). Accordingly, studies have been conducted to 
increase the viability of these products both in the production stages and through the 
GI passage. Azfaal et  al. used sodium alginate and carrageenan to encapsulate 
Lactobacillus acidophilus in ice cream to evaluate the viability of probiotic bacteria 
under simulated GI conditions. The nanocapsules could provide protection and 
enhanced survival of probiotics in food, guaranteeing the health recommended level 
for the best benefits (Afzaal et al. 2019). In Yilmaz et al., the authors used the elec-
trospinning method to produce alginate-based nanoparticles with Lactobacillus 
paracasei KS-199. The viability in simulated GI conditions was improved, as well 
as the survival in kefir and the protection against thermal degradation (Yilmaz et al. 
2020). Similarly, cells of Lactobacillus gasseri were encapsulated in sodium algi-
nate capsules using ionic gelation and emulsification methods. The encapsulated 
probiotics retained 100% of their viability, compared with the free cells, and 
enhanced the viability in stored apple juice for 21 days (Romero-Chapol et al. 2022).

As already mentioned, probiotics are beneficial in different sectors of produc-
tion. In the pharmaceutical industry, probiotics are used as supplements and can be 
added to other health products, such as infant milk formulas. Probiotic agents are 
becoming a vital part of the tools against GI problems, especially in formula-fed 
infants (Putta et al. 2018). Algaithi et al. fortified camel milk infant formula with 
Lactobacillus reuteri encapsulated in sodium alginate and galactooligosaccharides 
via spray drying. The nanocapsules were evaluated for stability in simulated infant 
GI, storage conditions, physicochemical properties, and L. reuteri viability and 
proved to be an excellent delivery system of probiotics for kids (Algaithi et al. 2022).

In addition, probiotics have beneficial effects on the skin, not only when taken 
orally but also when applied topically. Oral consumption of probiotics improves the 
overall metabolic content of the human body by inhibiting harmful intestinal micro-
flora. Similarly, inhibiting harmful microbial growth by topical application of pro-
biotics alters the epithelial microbiome by lowering surface pH and generating an 

M. Assis et al.



339

amino acid layer, preserving skin moisture (Puebla-Barragan and Reid 2021). 
Moreover, probiotics produce valuable metabolites with antioxidant and tyrosinase 
inhibitory activity, which induce skin-lightening effects. Therefore, these extracts 
could be exploited as multifunctional natural preservatives in the cosmetics indus-
try. In this scenario, Lactobacillus curvatus cells were encapsulated in liposomes 
using the O/W emulsion technique. Characterization and cytotoxic tests indicated 
great stability, permeability, and functionality in lotion emulsion and inhibitory 
effect against Candida albicans and Aspergillus niger (Kim et al. 2021).

Lastly, the agricultural sector is one of developing countries’ most important 
economic sectors. Using soil microorganisms as biofertilizers for different agricul-
tural products has grown daily. When interacting with plants, these bacteria stimu-
late plant growth and health through mechanisms such as nitrogen fixation and 
phytohormone production. In addition, antagonistic bacteria play an essential role 
in the biocontrol of pathogens by producing substances that inhibit the growth of 
other microorganisms. However, the fundamental challenge to the success of bio-
control is the survival of the antagonist bacteria and the provision of the necessary 
conditions for the production of inhibitors in the correct amount and the correct 
place (de Souza Vandenberghe et  al. 2017). Two crucial plant growth-promoting 
bacteria were encapsulated in silica and carbon nanotubes to work as a delivery 
system in pistachio micropropagation. In a comparison of the free bacteria, the 
nanoformulation with Pseudomonas fluorescens and Bacillus subtilis successfully 
enhanced root length and proliferation and phytohormone production by rhizobac-
teria after three days (Moradipour et al. 2019).

3.2  Nanoencapsulation of Biomolecules from Yeasts

Yeasts are eukaryotic, unicellular microorganisms classified as members of the fun-
gal kingdom. With their unicellular growth habit, yeasts can be contrasted with 
molds, which develop hyphae. Fungal species that can assume both forms (depend-
ing on temperature or other conditions) are called dimorphic fungi (Coradello and 
Tirelli 2021). The beneficial physiological properties of yeast have led to its use in 
biotechnology. The yeast species Saccharomyces cerevisiae converts carbohydrates 
into carbon dioxide and alcohol through fermentation. The products of this reaction 
have been used in baking and making alcoholic beverages for thousands of years. 
S. cerevisiae is also an important model organism in modern cell biology research 
and is one of the most studied eukaryotic microorganisms. In addition, yeast is used 
as an ingredient in foods for its umami flavor, which contains free glutamic acid 
(Hittinger et al. 2018). Other yeast species, such as Candida albicans, are opportu-
nistic pathogens and can cause human infections. Some yeasts may find potential 
applications in the field of bioremediation. Yeasts such as Yarrowia lipolytica are 
known to degrade hydrocarbon contaminants such as alkanes, fatty acids, fats, and 
oils and have been investigated for their potential as a heavy metal biosorbent 
(Saeed et al. 2022). Yeasts are also used as probiotic supplements to maintain and 
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restore the natural microbiota of the gastrointestinal tract (Tamang and Lama 2022). 
In this way, for all these applications, it is vital to improve yeast bioavailability and 
reduce its degradation during storage to develop efficient nutraceutical additives 
and biocontrol agents based on fungi cells or their products. The results presented 
here are summarized in Table 2.

Like bacteria, yeasts can also face the same threats to survive during food pro-
cessing and passage through the human GI system. Some studies with this purpose 
include Sacharomycopsis flibugera encapsulated in electrospun wheat bran fiber 
and exopolysaccharide combined with polyvinylpyrrolidone (Ragavan and Das 
2020); Pichia barkeri, Yarrowia lipolytica, Wickerhamomyces anomalus, and 
Saccharomyces cerevisiae in sodium alginate nanoparticles or combined with chito-
san or starch (Suvarna et al. 2018); Saccharomyces boulardii extruded in calcium 
alginate nanocarriers (Morales-Amparano et al. 2019); and Kluyveromyces lactis in 
a gelatin hydrogel complexed with graphene oxide and glutaraldehyde (Patarroyo 
et al. 2021).

Alginate is an anionic polysaccharide mainly found in the cell wall of brown 
algae, which includes two copolymers, guluronic acid, and mannuronic acid. The 
use of alginate hydrogels for biomolecule delivery is being widely used (Angra 
et  al. 2021). Alginate-encapsulated dextranase exhibited maximum stability and 
activity in toothpaste for three months. Dextranase, generally extracted from 
Chaetomium gracile or Penicillium spp., is GRAS in cosmetics and drug formula-
tions for oral care products because it has excellent antibiofilm activity. Alginate 
beads were able to protect dextranase activity from harsh conditions, offer a higher 
release in toothpaste during brushing, and improve stability after long-term storage 
(Juntarachot et al. 2020). In Nguyen et al., sodium alginate and β-lactoglobulin were 
used to formulate a nanocapsule loaded with Saccharomyces cerevisiae by the 
layer-by-layer method. This technique facilitates the survival of the yeast since it 
avoids significant chemical changes in the cell caused by dehydration at the high 
processing temperatures of some food products (Nguyen et al. 2020).

Saccharomyces cerevisiae is a unicellular eukaryotic organism that belongs to 
the Fungi kingdom. It is the yeast used in the production of bread and beer, in addi-
tion to being used for the production of fuel alcohol. In the case of fermented alco-
holic beverages, Saccharomyces cerevisiae converts sugar into ethyl alcohol and 
can also contribute to the formation of secondary constituents responsible for flavor, 
as is the case with beer, rum, and whiskey (Vanderwaeren et al. 2022). This way, 
microencapsulated S. cerevisiae was used to promote a continuous fermentation 
process on a green beer. Chitosan-calcium alginate double-layer microcapsules 
reached 91% of encapsulation efficiency. They maintained physicochemical param-
eters such as pH, color, alcohol content, and bitterness, demonstrating an excellent 
approach for beer production (Benucci et al. 2021). Similarly, the same formulation 
was made to produce a sparkling wine, which displayed increased pressure and 
oxygen consumption compared to the free yeast. After six months, few differences 
in sensory properties were observed, similar to those produced with free cells 
(Benucci et al. 2019).
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Table 2 Nanoencapsulation of fungi products and its application

Yeast Encapsulation system
Encapsulation 
method Application References

Saccharomycopsis 
fibuligera

Wheat bran fiber or 
exopolysaccharide + 
polyvinylpyrrolidone 
(PVP)

Electrospinning Probiotic 
delivery

Ragavan and 
Das (2020)

Pichia barkeri;
Yarrowia 
lipolytica;
Wickerhamomyces 
anomalus;
Saccharomyces 
cerevisiae;

Sodium alginateSodium 
alginate + 
chitosanSodium alginate 
+ starch

ExtrusionExtrusion 
+ emulsification

Probiotic 
delivery

Suvarna et al. 
(2018)

Unknown yeasts Polyacrylamide 
nanofiber

Electrospinning Immobilized 
efficiency

Fan et al. 
(2021)

Penicillium 
roquefortii

Alginate Encapsulator Dextranase 
production in 
toothpaste

Juntarachot 
et al. (2020)

Trichoderma 
harzianum

Nanocellulose and/or 
Carboxymethylcellulose

Biocontrol 
activity

Brondi et al. 
(2022)

Yarrowia 
lipolytica

Organogel Photopolymerization Stability and 
physicochemical 
properties

Zhang et al. 
(2022)

Unknown yeast Silica Boron hydroxide 
click reaction

Cell protection 
and stability

Geng et al. 
(2019)

Saccharomyces 
cerevisiae

Β-lactoblobulin Sodium 
alginate

Layer by Layer Cell protection 
and stability

Nguyen et al. 
(2020)

Saccharomyces 
cerevisiae

Chitosan-calcium 
alginate

Microencapsulation Production of 
sparkling wine

Benucci et al. 
(2019)

Saccharomyces 
boulardii

Calcium alginate Extrusion Probiotic 
delivery

Morales- 
Amparano 
et al. (2019)

Saccharomyces 
pastorianus

Calcium alginate Encapsulator Biosorption 
performance

Rusu et al., 
(2022); 
Webster et al. 
(2022)

IM7-displaying 
yeast cells

Calcium alginate Crosslink reaction Protein 
purification

Yin et al. 
(2022)

Saccharomyces 
cerevisiae

Chitosan-calcium 
alginate

Encapsulator Optimization of 
bear production

Benucci et al. 
(2021)

Meyerozyma 
caribbica

Resistant maltodextrin Electrospraying Biocontrol 
activity

Aguirre- 
Güitrón et al. 
(2022)

Kluyveromyces 
lactis

Gelatin hydrogel + 
graphene oxide + 
glutaraldehyde

– Probiotics and 
bioreactor 
packings

Patarroyo 
et al. (2021)
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Despite their relevance as a eukaryotic model organism for medical and biotech-
nological applications, the potential use of antagonistic yeasts as biocontrol agents 
still needs to be explored. However, in addition to powerful antifungal activities, 
yeasts also show intense antagonistic activity, culture ability, formability, applica-
bility, and stress resistance and are therefore promising for developing biological 
plant protection agents. In addition, because they are extensively studied organisms, 
it is possible to take advantage of the molecular tools and the infinity of data devel-
oped for these organisms for basic and application-oriented studies in biocontrol 
yeasts (Freimoser et  al. 2019). Aguirre-Guitrón et  al. encapsulated Meyerozyma 
caribbica cells in whey protein processed with resistant maltodextrin to act as a 
biocontrol nanomaterial against Colletotrichum gloeosporioides. The electrospray-
ing process showed efficiency in increasing cell viability and stability in storage at 
4 °C, as well as a great antagonist effect (Aguirre-Güitrón et al. 2022).

Still, in the environmental field, persistent organic pollutants in different envi-
ronmental matrices are a primary concern worldwide. Over the past two decades, 
pharmaceuticals have been detected in surface water, seawater, groundwater, drink-
ing water, and effluent from sewage treatment plants. To avoid the negative impact 
of pharmaceutical products, it is necessary to develop technology for their complete 
removal from wastewater before being discarded in the environment. Although 
these conventional procedures have exciting characteristics such as efficiency, sus-
tainability, and cost, they cannot eliminate pharmaceuticals from water (Brazesh 
et al. 2021). Biosorption using natural polymers as support for biomass can repre-
sent an alternative to these methods because they are efficient, cheap, nontoxic, and 
readily available. The ability of microorganisms to remove pharmaceutical products 
from aqueous solutions has been studied and shows limited efficiency due to their 
separation from effluents after treatment. In this sense, researchers developed a 
calcium-alginate matrix encapsulating Saccharomyces pastorianus cells, used as a 
biosorption microorganism for ethacridine lactate contamination. The authors tested 
the influence of the main parameters on the biosorption process, and the best 
removal efficiency obtained for ethacridine lactate was over 85%, demonstrating to 
be a great low-cost material for environmental treatment (Webster et al. 2022).

Yeast cells can also act as encapsulating agents, particularly for fat- and water- 
soluble compounds. It is a simple and highly economical process. The species most 
used for encapsulation are S. cerevisiae, Torulopsis lipoferrina, Saccharomyces 
bayanus, Endomyces vernalis, and lactic yeasts such as Candida utilis and 
Kluyveromyces fragilis (Coradello and Tirelli 2021). In general, two parts of yeast 
cells can be used for encapsulation: the cell wall and the plasma membrane. The cell 
wall maintains the cell’s shape, protects the cytoplasm from cell lysis, and sur-
rounds certain enzymes that prevent unwanted activities. The plasma membrane is 
composed of two phospholipid chains with excessive steroids and neutral lipids. It 
has a liposome-like structure and makes the yeast cell suitable for use as a coating 
in encapsulation. These materials have been applied to encapsulate poorly soluble 
actives, such as flavoring agents, antioxidants, and biocides, resulting in increased 
water dispersibility, thermo/oxidative stability, mechanical protection, and release 
control (Dadkhodazade et al. 2021).
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3.3  Nanoencapsulation of Bacteriophages

Bacteriophages are viruses that exclusively infect bacterial cells that have been 
known for over a century. They are harmless to all organisms, including humans, 
except their target bacterial hosts and are the leading ones responsible for infections 
in bacteria. They interact with bacterial cells that express specific surface membrane 
receptors. However, suppose a bacterial cell does not have the specific receptor for 
a bacteriophage on its surface. In that case, the bacteriophage cannot infect it, which 
is why it is a mechanism of very high specificity. When a phage infects a bacterial 
cell, it replicates, and the new virions are released into the extracellular milieu and 
can infect other cells (Furfaro et al. 2018).

As a consequence, phages control bacterial population growth and, at the same 
time, contribute to moving genes from one cell to another. Their genomes encode 
proteins useful for biotechnological applications, including food safety, diagnostics, 
antibiotic therapy of infections caused by antimicrobial-resistant bacterial strains, 
DNA delivery vehicles, and many other relevant technologies. The study of bacte-
riophage particles provides information about the evolution of genomes, adaptive 
bacterial evolution, and the way DNA is expressed and copied, and potentially sheds 
light on the development of new biotechnological products (Harada et al. 2018).

However, these products need careful formulation development, and an assess-
ment of the chemical and physical stresses bacteriophages may encounter during 
processing and storage. Phage inactivation and long-term reduction after storage are 
highly undesirable. Delivery of high levels of phages and their controlled release to 
the treatment site affects pharmacokinetics and treatment efficiency. Phages are 
composed primarily of proteins and are therefore susceptible to factors known to 
denature proteins, such as exposure to organic solvents, high temperature, pH varia-
tions, ionic strength, and interfacial effects (Malik 2021). Incorporating bacterio-
phages in therapeutic formulations usually involves encapsulation within a 
stabilizing substance. Through this approach, various antimicrobial materials can be 
produced, offering effective delivery to the site of infection and, consequently, bet-
ter patient outcomes. Table 3 summarizes all the results presented in this section 
(Rosner and Clark 2021).

In Rahimzadeh et al., bacteriophages isolated from three different bacteria strains 
(Salmonella enterica, Shigella flexneri, and Escherichia coli) constituted a phage 
cocktail to be encapsulated in chitosan nanoparticles using the ion gelation method. 
The study aimed to use this novel nanocapsule to treat bacterial diarrhea in rats. The 
authors demonstrated that the encapsulation protected the phage from enzymes and 
stomach acid, thus effectively transporting it to the site of action. It prevented the 
rats from weight loss when submitted to gastrointestinal infection (Rahimzadeh 
et al. 2021). In another study, PEV2 (Podovirus) and PEV40 (Myovirus), two types 
of Pseudomonas phages, were encapsulated in a liposome matrix of soy phosphati-
dylcholine and cholesterol by two different techniques. The authors compared the 
microfluidic and conventional thin film hydration methods, followed by extrusion. 
PEV2-derived nanoparticles showed the smallest, and liposomes got the highest 
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Table 3 Nanoencapsulation of bacteriophage and its application

Bacteriophage
Encapsulation 
system

Encapsulation 
method

Bacteria 
target Application References

Phage cocktail Chitosan Ionic gelation S. enterica, 
S. flexneri 
and E. coli

Biocontrol 
agent

Rahimzadeh 
et al. (2021)

T3 W/O emulsion Encapsulator E. coli Animal feed 
and biocontrol

Richards and 
Malik (2021)

Podovirus 
PEV2
Myovirus 
PEV40

Liposome Thin-film 
hydration + 
extrusion and 
microfluidic

P. aeruginosa Encapsulation 
analysis

Leung et al. 
(2018)

UFV-AREG1 Alginate and 
alginate + 
chitosan, 
carrageenan or 
whey protein

Extrusion E. coli Encapsulation 
analysis

Silva 
Batalha et al. 
(2021)

ISP Hydrogel Emulsion S. aureus Bacteriophage 
therapy in 
rabbits

Onsea et al. 
(2021)

Paer4, Paer14, 
Paer2, 
W2005A

Hydrogel Crosslink 
reaction

P. aeruginosa Bacteriophage 
therapy in 
mice

Wroe et al. 
(2020)

phiIPLA- 
RODI

Liposome Encapsulator S. aureus Food industry Menéndez 
et al. (2018);
Webster 
et al. (2022)

S1 Alginate Ionotropic 
gelation

Salmonella 
spp.

Bacteriophage 
therapy in 
chicken

Gomez- 
Garcia et al. 
(2021)

pAh-6C PLGA/alginate W/O/W 
double- 
emulsion

A. hydrophila Bacteriophage 
therapy

Kim et al. 
(2022)

Podoviridae 
T7

PolyHIPE W/O/W triple 
emulsion

E. coli Bacteriophage 
therapy

Kopač et al. 
(2021)

ZCEC5 Chitosan- 
alginate

Extrusion E. coli Animal feed 
and biocontrol

Abdelsattar 
et al. (2019)

encapsulation efficiency (59% and 50%, respectively) and minimal titer reduction 
with the microfluidic formulation (Leung et  al. 2018). Gomez-Garcia et  al. used 
ionotropic gelation to formulate alginate nanoparticles loaded with lytic bacterio-
phage S1 for Salmonella enterica. The phages were encapsulated at a rate of 70% 
and were protected from pH changes in the chicken (Gallus gallus domesticus) 
gastrointestinal system for phage therapy for 3 h (Gomez-Garcia et al. 2021). Phage- 
loaded alginate matrices were used in PLGA microspheres for application in bacte-
riophage therapy against resistant pathogens. The encapsulation ensured a higher 
bacteriophage concentration than the PLGA matrix alone and showed a diminished 
immune response. The controlled release of the infective particles was extended for 
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60 days in vitro and 28 days in vivo after the W/O/W double emulsion (Kim et al. 
2022). The same technique was used to formulate nanocellulose-based hydrogels 
with lytic T7 bacteriophage isolated from E. coli. The encapsulation acted as a 
mechanical protection and a fast phage delivery system, providing improved patient 
compliance and reducing drug administration frequency. Finally, Abdelsattar et al. 
formulated E. coli phage ZCEC5 chitosan-alginate nanoparticles by extrusion for 
the delivery system in oral administration to farm animals (Kopač et al. 2021). The 
capsules demonstrated an efficient protective effect against pH changes and sus-
tained particle release and lysis activity for an extended period, proving to be an 
excellent application in the animal feed industry (Abdelsattar et al. 2019).

4  Nanoencapsulation of Biomolecules from Plants

The secondary metabolism of plants is directly related to the primary metabolism, 
which is responsible for plant growth and development, energy production, and 
production of small molecules that directly affect secondary metabolism, photosyn-
thesis, citric acid pathway, and other pathways (Xu et  al. 2021). Although most 
plant-derived bioactive compounds are produced as part of their secondary metabo-
lism, they can also be found in leaves, fruits, stems, and roots. Bioactive compounds 
from the secondary metabolism of plants have been used for thousands of years due 
to their medicinal properties. Although its exact mechanism of action was unknown, 
its positive effects in promoting health and combating disease were noted. Bioactive 
compounds have a major disadvantage since they are susceptible to degradation 
when exposed to various factors such as oxygen, humidity, light, and heat, which 
compromise their bioactivity (Zambrano-Zaragoza et  al. 2017). In this context, 
nano/microencapsulation techniques present an alternative to extend the useful life 
of compounds obtained through plant extracts (Hosseini and Jafari 2020; Rahaiee 
et al. 2020). Although encapsulation is advantageous for maintaining the integrity 
of the BCs, its functional characteristics will directly depend on the choice of mate-
rials used in the encapsulation, which need to be able to prevent the degradation of 
the BCs and, at the same time, maintain their properties without modifying them.

Bioactive compounds originating from plants are grouped, in general, into ter-
penes, nitrogen-containing compounds, and phenolic compounds (Montiel-Sánchez 
et al. 2021; Maccelli et al. 2020). The methods and materials used in  nano/microen-
capsulation, as well as the applications, characterizations, and limitations of the 
technique for each compound, will be discussed below.

Terpenes are one of the largest classes of inorganic compounds produced by 
plants. They are responsible for the taste, fragrance, and pigment of plants, being 
the major constituents of essential oils (Hosseini and Jafari 2020; Diniz et al. 2021). 
Terpenes are widely known for their anti-inflammatory effects and anticancer, 
insecticidal, fungicidal, bactericidal, and antiviral properties. However, their low 
water solubility and high susceptibility to oxidation limit their use (Diniz et  al. 
2021; Tunç and Koca 2019).
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The terpenes present in black pepper essential oil are volatile, and their proper-
ties can be reduced under certain conditions. Encapsulation can protect the EO and 
preserve its terpenes. Complex coacervation was chosen due to several advantages. 
Bastos et al. analyzed the composition of black pepper essential oil, determining the 
most suitable conditions for forming the complex between gelatin and sodium algi-
nate. The primary terpene identified in black pepper essential oil was β-caryophyllene, 
followed by limonene and sabinene. The ratio of 6:1 (gelatin/sodium alginate) at 
pH 4.0 was the ideal condition found by the authors for encapsulation. The encap-
sulation efficiency ranged from 49.13% to 82.36%, and the chemical composition 
of the encapsulated EO was identified by gas chromatography. GC analysis indi-
cated good core protection with the materials used. These biopolymers can serve as 
a potential delivery system for black pepper EO (Heckert Bastos et al. 2020).

Terpenes can be efficiently encapsulated within YPs by passive diffusion through 
porous cell walls, as YPDs are hollow, porous microspheres, a by-product of some 
yeast extract manufacturing processes. The first generation YP terpene materials 
were developed with a <2:1 terpene:YP weight ratio. Soto et al. reported methods to 
increase terpene carrying capacity in YPs up to a 5:1 terpene:YP weight ratio. A 
mixture of geraniol, eugenol, and thymol (GET) previously used to develop YP-GET 
1.1:1 was used as a model terpene composition to prepare hyperloaded 
YP-GET. Hypercharged YP terpenes extend payload release kinetics by up to three 
times compared to commercially available terpene YP formulations. The hyper-
charged YP-terpene compositions were optimized to achieve high terpene storage 
encapsulation stability from −20 °C to 54 °C. The development of hypercharged YP 
terpenes has a wide range of potential agricultural and pharmaceutical applications 
with terpenes and other compatible active substances that can benefit from a deliv-
ery system with high payload capacity combined with increased payload stability 
and sustained release properties (Soto et al. 2022).

Tackenberg et al. study aim to improve the understanding of a counter rotating 
twin screw extrusion process. Orange terpenes as model flavor, maltodextrin, and 
sucrose as matrix materials, were encapsulated by extrusion, amorphous and partly 
crystalline samples were obtained. The loss of crystalline sucrose was linked to a 
dissolution process of the sugar in the available water amount. Melting of the excip-
ients did not arise, resulting in a plasticization extrusion process. Maximally 67% of 
the flavor was retained (corresponding to a 4.1% product flavor load). The flavor 
loss correlated with insufficient mixing during the process and flavor evaporation 
after extrusion. Based on these results, recommendations for an improved encapsu-
lation process are given (Tackenberg et al. 2015).

The encapsulation of essential oils from fruit juices and the effect of delivery on 
the antimicrobial activity of terpenes were investigated by Donsi et al. to increase 
the antimicrobial capacity and increase the quality of the final product. A terpene 
mixture and d-limonene were encapsulated into nanoemulsions based on food- 
grade ingredients. The sunflower oil or essential oil-in-water nanoemulsions were 
prepared using a high-pressure homogenization (HPH) technique. Three different 
microorganisms were tested: Lactobacillus delbrueckii, Saccharomyces cerevisiae, 
and Escherichia coli. The increase in antimicrobial activity depended on the 
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formulation and average diameter of the delivery systems as well as on the microor-
ganisms class. The nanocapsules with the greatest antimicrobial capacity were pear 
and orange juices inoculated with L. delbrueckii. Due to the higher antimicrobial 
activity of the nanoencapsulated compounds, lower antimicrobial concentrations 
are required for a bactericidal action under accelerated aging at 32 °C, with a mini-
mal alteration of the organoleptic properties of the juice (Donsì et al. 2011).

Propolis extract is a bioactive compound with several properties and potent phar-
macological efficacy. Casein-maltodextrin nanocomplexes loading propolis was 
successfully synthesized by Soleimanifard et al. The characterization of the result-
ing nanocomplexes was carried out by monitoring the average size, polydispersity 
index (PDI), zeta potential, encapsulation efficiency (EE), Fourier transform infra-
red spectroscopy (FT-IR), X-ray diffraction (XRD), color properties, and morphol-
ogy. FT-IR and XRD analysis showed that propolis extract had been located 
adequately inside nanoparticles. Most of the particles were between 500 and 
3800 nm: particle size higher than 1000 nm could be due to particle aggregation or 
an increase in the amount of larger molecules of sodium casein. The results of DLS 
and EE showed that smaller nanoparticles with less polydispersity index and less 
coral material/encapsulant amount had better size distribution and stability. The 
authors demonstrated that the encapsulated propolis extract could be used in several 
applications by the pharmaceutical industry (Soleimanifard et al. 2021).

The use of essential oils from Origanum glandulosum Desf. has been used as an 
alternative to antibiotics due to the various bioactive compounds present. To over-
come the drawbacks of using oils as the hydrophobicity and negative interaction 
with the environmental conditions, in addition to increasing their activity, encapsu-
lation for the oil was performed using high-speed homogenization (HSH) into nano-
capsules and high-pressure homogenization (HPH) into nanoemulsion (Bouaouina 
et al. 2022). The antimicrobial activity of the essential oil, nanoemulsion, and nano-
encapsulation were tested against E. coli, S. aureus, and A. baumannii. Nine com-
ponents were identified in the essential oil, thymol (48.52%), carvacrol (16.13%), 
p-cymene (27.56%), and γ-terpinene (5.59%) were the predominates. A consider-
able change in composition was observed in oil nanocapsules concerning the essen-
tial oil. The mean particle size of the nanoemulsion was 54.24 nm, while that of 
nanocapsules was 120.60 nm. The antimicrobial activity assays demonstrated that 
the nanocapsules were more effective than the nanoemulsion, but both showed 
lower effectiveness in relation to the essential oil. The nanoencapsulation using 
intensive-energy techniques is responsible for the changes in aroma profiles dis-
cussed above and, consequently, for the antibacterial activities. Both formulations 
have shown relatively significant action against biofilm state at subinhibitory con-
centrations, where nanoemulsion was more potent than nanocapsules due to the 
higher thymol concentration.

Betalains are the leading group of compounds containing hydrogen atoms found 
in fruits. They are water-soluble and responsible for the fruits’ color, which varies 
between red and yellow (Montiel-Sánchez et al. 2021). To develop new products 
and applications, recent studies have been carried out to explore new alternatives for 
optimizing bioactive compounds. The antioxidant capacity, elimination of free 
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radicals and reactive oxygen species, inhibition of lipid peroxidation, and anti- 
inflammatory and antimicrobial activities are among the biological properties of 
interest (Coy-Barrera 2020; Yao et al. 2020b).

To encapsulate caffeine, a highlighted compound of the alkaloid family, the ideal 
conditions for manufacturing chitosan-coated liposomes were investigated. The 
morphological properties of the developed nanochitosan were investigated by 
FESEM, TEM, and AFM analyses. FT-IR analysis was also conducted to evaluate 
the possible interaction between chitosan and caffeine (Seyedabadi et  al. 2021). 
Nanoliposomes were synthesized by dissolving in deionized water and heating at 
50 °C. 0.09 g lecithin, 0.01 g cholesterol, and 0.02 g Tween® 80 were dissolved in 
absolute ethanol using a magnetic stirrer and dropped into the aqueous solution 
containing caffeine. The prepared solution was sonicated for 20 min (1 s on and 1 s 
off) at different ultrasonication power levels. Morphology evaluation revealed the 
formation of uniform spherical nanoliposomes with a size of 100 nm. Furthermore, 
the zeta potential of the sample was 31.9 mV after adding chitosan and −25.5 mV 
before chitosan addition. The FTIR analysis demonstrated that the inclusion of caf-
feine took place at the polar sites of phosphatidylcholine of the nanostructures, 
which are present on the internal surface of nanoliposomes. The increase in sonica-
tion power resulted in increased stability of chitosomes due to the size reduction of 
the developed chitosomes and homogenous distribution of the nanoparticles in the 
solution. It was demonstrated that chitosan nanoliposomes efficiently encapsulate 
caffeine and could be used in the pharmaceutical and food sectors.

The effects of microencapsulation of phenolic components obtained from grape 
pomace extract were investigated by Tolun et al. (Tolun et al. 2020). The polyphe-
nols obtained from grape pomace were encapsulated using the spray drying tech-
nique. After manufacturing the microcapsules, they were stored in two different 
humidity conditions (33% and 52%) for 75 days. Analyzes were performed every 
15 days to measure total phenolic content, antioxidant activity, and individual phe-
nolic compounds. The combination of maltodextrin and gum arabic as a microen-
capsulating material resulted in improved stability of the polyphenols when 
compared to the microcapsules obtained only with maltodextrin. The most promis-
ing results were obtained with encapsulation with maltodextrin DE4-7 prepared by 
adding gum arabic to the material in a ratio of 8:2. Stable polyphenols microencap-
sulated have great importance for several areas like the food industry to contribute 
to human health.

Curcumin is a phenolic component found in the turmeric plant, the best known 
of which is C. longa, native to India and tropical Asia. In addition to being widely 
used as a food spice, turmeric is also known for its orange and yellow dye. Due to 
its pharmaceutical properties, it has been used for thousands of years to treat com-
mon ailments such as arthritis, wounds, acne, digestive tract problems, and infec-
tions. Such functional properties have been mainly related to the unique active 
compounds called curcuminoids in the rhizome, the most important of which is 
curcumin (Maheshwari et al. 2006).
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5  Nanoencapsulation of Biomolecules from Marine 
and Freshwater Organisms

Of the total water available on the planet, 97% is in the seas and oceans, and only 3% 
is fresh water. Of that small percentage, just over 2% is in glaciers, so less than 1% 
is available for consumption. The seas and oceans make up approximately 70% of 
the coverage of the entire planet Earth, which is the largest natural habitat on Earth 
(Grosberg et al. 2012). Marine and freshwater ecosystems represent a high and com-
plex biological and chemical diversity, being a potential carrier of biomolecules of 
interest for developing new technologies, especially in the health field (Irfan and 
Alatawi 2019). Exploring the potential of aquatic habitats began with the cultivation 
of algae, sponges, and corals, later expanding to the study of cyanobacteria and fungi 
and, at the latest, to large organisms such as fish, crustaceans, and some aquatic 
mammals (Fig.  2). Through these pioneering studies, it was observed that these 
organisms are unique sources of unique bioactive compounds. Among these biomol-
ecules, polyunsaturated fatty acids (PUFAs), polysaccharides, minerals and vita-
mins, enzymes, and bioactive peptides stand out (Nova et al. 2020). Currently, these 
compounds are being widely studied, as in many cases, they have various molecular 
targets, which may be potential biomolecules for developing essential drugs.

5.1  Nanoencapsulation of Biomolecules from Algae

Algae are critical aquatic organisms in both marine and freshwater ecosystems. An 
infinity of algae is cataloged and subdivided into macro- or microalgae, differing by 
their cellular structure and the number of cells that form them. Macroalgae are 

Fig. 2 Aquatic environment and its primary sources of biomolecules

Applications of (Nano)encapsulated Natural Products by Physical and Chemical Methods



350

eukaryotic and multicellular organisms that do not have the specialized structures 
and forms of reproduction of true plants (Menaa et al. 2020). The different photo-
synthetic pigments can distinguish them in their cells (green, brown, and red). 
Microalgae are unicellular/multicellular eukaryotic algae (green algae) or prokary-
otic (cyanobacteria), the main base of the aquatic trophic chain. They are rich in 
bioactive compounds such as carbohydrates, proteins, minerals, polyunsaturated 
fatty acids, fatty acids, amines, amides, antioxidants, and pigments such as carot-
enoids, chlorophylls, carotene, xanthophylls, and phycobilins (Harwood 2019). The 
production of these compounds is totally influenced by the algae species and by the 
cultivation conditions (availability of nutrients, temperature, pH, salinity, luminos-
ity, etc.) (Menaa et  al. 2021). This way, metabolites and extracts from algae are 
potential biomolecules for their encapsulation and subsequent use with drugs, stabi-
lizers, and food supplements. The results presented below are summarized in 
Table 4.

Commercial algal oils rich in PUFAs, such as docosahexaenoic acid (DHA) and 
eicosapentaenoic acid (EPA), have been widely encapsulated to improve their sta-
bility. Wang et  al. encapsulated commercial algal oils in different proportions 
through the microfluidization method, using stearic acid as a solid lipid and polox-
amer 188 as a surfactant (Wang et al. 2014). The EE obtained in all proportions was 
greater than 88%, with a maximum loading capacity of approximately 18%, stable 
between 4 °C and 25 °C and at acidic pH. In another work, Prieto et al. analyzed the 
effect of whey protein purity on the encapsulation of commercial seaweed oils using 
the electrospraying method assisted by pressurized gas (Prieto et al. 2022). It was 
found that the whey protein’s purity interferes with the encapsulated material’s mor-
phology, which is reflected in its oxidative stability. Chen et al. investigated nano-
emulsions obtained by ultrasound using commercial seaweed oil with phytosterols 
stabilized by quillaja saponin to reduce the number of oxidized compounds from the 
oil that cause unpleasant odors to food (Chen et al. 2016). An excellent reconstruc-
tion of these nanoemulsions was observed 30 days after being dried and sprayed. In 
addition, compared to pure oil, there was a decrease in oxidized compounds that 
cause unpleasant odors, revealing that the nanoemulsion decreases the oxidation of 
this oil.

As previously mentioned, algae have a very rich composition of biomolecules, 
making their extract possess unique nutritional and pharmacological properties. The 
in vitro phytochemical release profiles of Jania rubens extract encapsulated with 
chitosan were analyzed using the ionic gelation method (Maghraby et al. 2022). A 
high EE was obtained for these nanoparticles (99.7%), observing that the release of 
the extract occurred in a controlled manner, maintaining its high antioxidant power. 
In another work, the same authors observed that the same extract encapsulated with 
chitosan and tripolyphosphate by the ionic gelation method considerably reduces 
the rancidity of vegetable oils, making this extract a natural alternative to the use of 
synthetic antioxidants (Maghraby et al. 2021). Sargassum boveanum extracts were 
encapsulated in lecithin using the Mozafari method and used as antimicrobial agents 
in mayonnaise formulations (Savaghebi et al. 2021). It was observed that the encap-
sulated extract delayed the lipid oxidation of mayonnaise and considerably reduced 
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the number of microbial colonies without deteriorating the product’s sensory prop-
erties, extending its shelf life by up to 4 months. Chitosan nanoparticles loaded with 
Ulva ohnoi extract were obtained through the ionotropic gelation method, produc-
ing active nanocarriers to be used against S. senegalensis macrophages (Fernández- 
Díaz et al. 2017). A drug delivery system was created using magnetic nanoparticles 
and gum arabic as carriers of Dunaliella salina extract (Zamani et al. 2019). For this 
system, an EE greater than 91% was observed with a minimum load capacity greater 
than 79%. This system’s antioxidant and cytotoxic analysis was evaluated in MCF-7 
and HeLa cells, indicating a high antioxidant and anticancer effect, time-dependent, 
and dose-dependent. Polypeptides extracted from Chlorella pyrenoidosa with anti-
tumor action (HepG2 human liver cancer cells) were encapsulated through complex 
coacervation and ionotropic gelation methods using chitosan as encapsulating poly-
mer (Wang and Zhang 2013). The encapsulation efficiency (EE) achieved was 
74.5% and 30.1% for the complex coacervation and ionotropic gelation method, 
respectively, despite the polypeptide content being approximately equal (12.7% and 
12.3%, respectively). Both encapsulations showed good preservation of gastric 
enzymatic degradation against in vitro release tests of these polypeptides.

Specific biomolecules from algae are also of extreme interest when it comes to 
pharmacological control and development (Takaichi 2013) Carotenoids are impor-
tant liposoluble pigments in bacteria, algae, fungi, and vegetables responsible for 
the orange, yellow, and red colors (Christaki et al. 2013). Photosynthetic organisms 
participate as coadjuvants in the photosynthesis process and help to protect against 
possible damage caused by light (Allen et al. 1964). The main applications of carot-
enoids involve their antioxidant and anti-inflammatory properties. Chaari et  al. 
extracted carotenoids from Archaea halophilic, encapsulating them in oil-in-water 
dispersions to increase their water solubility and use them as a functional food 
(Chaari et al. 2018). The encapsulation processes used were high-pressure homog-
enization and spontaneous microemulsion, using limonene with oil phase, Triton 
X-100/Tween-80 mixtures as emulsifiers, and water/glycerol solutions. The oxidiz-
ing activity of this compound was evaluated by radical scavenging using Electron 
Paramagnetic Resonance Spectroscopy (EPR) in the stable free radical scaveng-
ing Tempol.

Among the carotenoids, a biomolecule of interest is astaxanthin (ATX). ATX is 
one of the few carotenoids that does not convert to Vitamin A in the human body, a 
powerful antioxidant (Dose et  al. 2016). Due to its antioxidant properties, it has 
numerous health benefits, especially in the immune system (Anarjan et al. 2010). 
The primary sources of ATX come from marine organisms such as algae, krill, and 
shrimp. Salatti-Dorado et  al. encapsulated ATX from Haematococcus pluvialis 
using a combination of molecular solvents and the hot homogenization method 
(Salatti-Dorado et al. 2019). The EE obtained from this process was at least 58%, 
with a loading capacity of 19%, depending on the surfactant and solid phase used. 
The oxidizing capacity of this new type of encapsulation was superior to Trolox e 
and α-Tocopherol standards, in addition to protecting human endothelia from attack 
by reactive oxygen species (ROS). Similar studies used a combination of DNA and 
chitosan for the efficient encapsulation of ATX (Wang et al. 2017). These particles 
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showed good cytoprotective effects against oxidative cell damage and high effi-
ciency in eliminating ROS, being quickly endocytosed by Caco-2 cells.

The influence of the aqueous phase to encapsulate ATX nanoemulsions was eval-
uated by Khalid et al. using the high-pressure homogenization method (Khalid et al. 
2017). Lecithin and sodium caseinate were used as aqueous phases, showing that 
when lecithin is used, stability at different pHs and temperatures is greater, in addi-
tion to its bioavailability. In another work, the influence of the encapsulated polymer 
was evaluated against EE and its thermal degradation (Tachaprutinun et al. 2009). 
Poly(ethylene oxide)-4-methoxycinnamoylphthaloylchitosan (PCPLC), 
poly(vinylalcohol-co-vinyl-4-methoxycinnamate) (PB4), and ethylcellulose (EC) 
were used as encapsulating agents, showing that only PCPLC presents satisfactory 
EE (98%) and loaning capacity (40%). The supercritical antisolvent (SAS) process 
was efficient when encapsulating ATX using poly (l-lactic acid) (PLLA), with EE of 
91.5% and stability gain during storage (Liu et al. 2019b). A process similar to SAS 
is used for the encapsulation of ATX using poly(lactic-co-glycolic acid) (PLGA) 
nanoparticles coated with chitosan oligosaccharides, and EE greater than 85% and 
loading capacity greater than 15% are obtained (Liu et al. 2019a). Potato protein 
also proves to be an efficient way to increase the oral bioavailability of ATX when 
encapsulated, presenting a nonallergenic and vegan way to encapsulate lipophilic 
bioactive (Abuhassira-Cohen et al. 2020). The process of enhanced dispersion in 
solution by supercritical fluids (SEDS) also appears as an efficient alternative for 
the encapsulation of ATX (Kaga et al. 2018; Tirado et al. 2019). The pressure and 
temperature parameters used in SEDS are fundamental since they impact the bio-
availability and antioxidant activity of the final material.

Another marine carotenoid from brown algae and diatoms is fucoxanthin (FXT) 
(Nomura et al. 1997). FXT is one of the most abundant carotenoids and is character-
ized as an orange pigment (Shimoda et  al. 2010). The main potential health- 
promoting effects of FXT are associated with its antioxidant, anti- inflammatory, 
antitumor, antiobesity, and antidiabetic effects (Peng et al. 2011). This way, encap-
sulating it to protect its properties and increase its bioavailability and storage time 
is essential for this compound to be used as a nutraceutical additive or in developing 
new drugs. Indrawati et al. encapsulated carotenoids (mostly FXT) from Sargassum 
sp., using maltodextrin and Tween-80 as encapsulating agents (Indrawati et  al. 
2015). EE values greater than 88% were obtained, showing that the Freeze-Drying 
method effectively encapsulates these carotenoids. Koo et  al. encapsulated FXT 
extracted from Phaeodactylum tricornutum using alginate, casein, and chitosan 
through the ionic gelation method, achieving EE greater than 78% (Koo et al. 2023). 
It was observed that during simulated gastrointestinal digestion, there was a con-
trolled release of FXT and improvement in the permeability of Caco-2/TC7 cells. In 
addition, an increase in FTX metabolites was observed by analyzing the plasma of 
mice after oral ingestion. Chitosan nanogels with glycolipids also proved effective 
in increasing FXT bioavailability and PPARγ expression (Ravi and Baskaran 2017).

There is currently a growing interest in nutraceutical supplements derived from 
Spirulina. Spirulina is a microalgae known to be a superfood, consisting of carbo-
hydrates, lipids, and between 50% and 70% proteins (Stejskal et  al. 2020). In 
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addition, it is rich in fatty acids, vitamins, and some pigments such as phycobilipro-
teins (Fernández-Rojas et al. 2014). C-phycocyanin has been widely studied among 
phycobiliproteins due to its antioxidant, antitumor, anti-inflammatory, and COX-2 
enzyme inhibitor properties (Eriksen 2008). C-phycocyanin is an important blue 
pigment, and with carotenoids, it is one of the most studied pigments from algae. 
Encapsulation of Spirulina protein extract with chitosan nanoparticles was carried 
out by Karimzadeh et al., reaching a maximum EE of 67% and a loading capacity 
of 14% (Karimzadeh et al. 2023). These particles reduced microbial contamination 
in the adequate storage of fish. Liposomes with phycobiliproteins extracted from 
Gracilaria gracilis were obtained using soy lecithin as an encapsulating agent 
(Haghdoost et al. 2022). The results of this work show that the EE obtained was 
approximately 84%, providing less lipid oxidation and microbial deterioration in 
the storage of carp burgers. Liposomes of rice and soy lecithins with Spirulina phe-
nolic extracts were obtained (with EE greater than 88%) and evaluated against the 
controlled release of these extracts in a dynamic gastrointestinal system, getting 
satisfactory results (Machado et al. 2019).

Ultrafine fibers with antioxidant activity from Spirulina sp. LEB 18 was obtained 
from the electrospinning method, aiming to obtain smart packages (Moreira 
et al. 2019).

In another work, polyvinyl alcohol (PVA) and polyethylene oxide (PEO) fibers 
containing phycocyanin were obtained using electrospinning (Moreira et al. 2018). 
The fibers were used as pH sensors to be used in smart packaging since phycocyanin 
is a natural visible pH sensor. Fast-dissolving fibers were also obtained by electros-
pinning using gelatin and Spirulina protein extract, evaluating the DPPH and ABTS 
radical scavenging activity (Mosayebi et al. 2022). The electrospray technique is 
also effective for obtaining particles with encapsulated phycocyanin. Schmatz et al. 
used PVA to encapsulate commercial phycocyanin through the electrospraying 
technique with EE above 75%, in addition to high thermal resistance and mainte-
nance of its antioxidant activity (Schmatz et al. 2020).

Spirulina encapsulated materials have shown high potential to be used in devel-
oping new antitumor drugs. Wen et al. observed a significant antiproliferative effect 
on human colon cancer cells HCT116, indicating that electrospinning fibers based 
on polysaccharides, prebiotics, and phycocyanin have the potential to be used as 
antitumor agents (Wen et al. 2020). The antitumor activity of the Y2 polypeptide 
extracted from Spirulina platensis and encapsulated with chitosan was evaluated in 
human breast cancer MCF-7 cells and liver cancer HepG2 (Zhang and Zhang 2013). 
The EE obtained for this material was 49% with a loading capacity of 15%, with an 
IC50 for both cancer cells of 61 mg/mL.

Fucoidan is a term used to define heterofucan-type polysaccharides that contain 
less than 90% L-fucose from brown algae (Yoo et al. 2019). This polysaccharide has 
been extensively studied due to its varied pharmacological activities such as antico-
agulant, antiviral, antitumor, antithrombotic, etc. (Luthuli et al. 2019). Qadir et al. 
obtained fucoidan nanoliposomes encapsulated with lecithin to investigate its anti-
tumor and immunomodulatory activity (Qadir et al. 2008). It was found that after 
the particles were uptake by the cells, the antitumor activity increased by up to 10% 
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compared to free fucoidan. In another work, fucoidan was encapsulated with prot-
amine, showing an inhibitory effect against metastatic breast cancer cells (Lu 
et al. 2017).

5.2  Nanoencapsulation of Biomolecules from Fishes and Krill

In the last decade, several works have been developed on the effects of diets supple-
mented with fish oil as a source of omega-3 PUFAs in preventing several diseases, 
especially for the treatment of cardiovascular diseases (Sargent 1997). The fatty 
acids that form omega 3 are DHA and EPA, have numerous critical pharmaceutical 
properties, such as antiarrhythmic, antithrombotic, antiatherosclerotic, anti- 
inflammatory, help to reduce blood pressure and decrease the concentration of tri-
glycerides, etc. (Yetiv 1988; Harris 2004). In this way, improving its bioavailability 
and reducing its degradation during storage are extremely important for the devel-
opment of nutraceutical additives and drugs based on fish oil. The results presented 
below are summarized in Table 5.

One of the most used techniques for fish oil encapsulation is electrospinning 
since it has high reproducibility and high EE rates. Zein is a polymer widely used to 
encapsulate fish oil by electrospinning. Yang et al. encapsulated fish oil and ferulic 
acid with zein using a small portion of glycerol in the encapsulating phase, obtain-
ing EE of 94% and a loading capacity of 20% (Yang et al. 2017). In this case, ferulic 
acid decreased the oxidation of fish oil without changing its bioavailability. 
Alcoholic zein solutions can also reduce fish oil oxidation and increase the EE of 
electrospinning fibers (Moomand and Lim 2014). Torres-Giner et  al. produced 
DHA capsules encapsulated with zein, achieving better results against its degrada-
tion in confined environments (sealed packaging situation) (Torres-Giner et  al. 
2010). Cod liver oil nanofibers encapsulated with PVA were obtained from this 
technique with EE greater than 92% and a loading capacity of 11%. However, PVA 
encapsulation did not protect the fish oil from oxidation, with a higher content of 
oxidized products than pure oil (García-Moreno et al. 2016). Kafirin and mixtures 
of whey protein with carbohydrates also proved to be good encapsulating biovectors 
of fish oil by electrospinning, with an EE above 94% (García-Moreno et al. 2018; 
Cetinkaya et al. 2021).

Drying techniques can also produce stable fish oil encapsulations. Berjrapha 
et al. compared the stability of fish oil in poly-ϵ-caprolactone (PLCPL) nanocap-
sules obtained by the emulsion-diffusion method, followed by vacuum freeze dry-
ing (VFD) and conventional freeze drying (CFD) (Bejrapha et al. 2010). The sample 
obtained by CFD showed higher EE, in addition to having greater oxidative stabil-
ity, since VFD can compromise the PLCPL membrane. Sage polyphenols appear as 
an alternative for stabilizers of the encapsulating agent’s sodium caseinate and gum 
arabic in the encapsulation of sardine fish oil by spray-drying, presenting the final 
nanoencapsulated product with high EE, high thermal resistance, and low oxidation 
(Binsi et al. 2017). Peptides from Sardina pilchardus and Trachurus mediterraneus 
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Table 5 Type of fish/krill, target biomolecule(s), encapsulation technique, encapsulating agent, 
size, morphology, and application of nanoencapsulated bioactives from fishes and krill

Source
Encapsulated 
compound

Encapsulation 
method

Encapsulation 
system Application References

Commercial 
cod liver oil

– Electrospraying Polyvinylalcohol Stability García- Moreno 
et al. (2016)

Commercial 
fish oil

– Electrospraying Zein Stability Yang et al. 
(2017)

Commercial 
fish oil

– Electrospraying Zein Stability Moomand and 
Lim (2014)

Commercial 
fish oil

– Electrospraying Kafirin Stability Cetinkaya 
et al. (2021)

Commercial 
fish oil

DHA Electrospraying Zein prolamin Stability Torres-Giner 
et al. (2010)

Commercial 
cod liver oil

– Electrospraying Whey protein 
and 
carbohydrates

Stability García- Moreno 
et al. (2018)

Menhaden Fish oil Freeze drying Polycaprolactone Stability Bejrapha et al. 
(2010)

Sardinella 
longiceps

Fish oil Spray drying Sodium caseinate 
and gum arabic

Stability Binsi et al. 
(2017)

Commercial 
fish oil

Omega-3 Gas-Saturated 
Solutions-dried

Modified starch Stability Melgosa et al. 
(2019)

Commercial 
fish oil

Omega-3 Microfluidization Sunflower oil Stability Komaiko et al. 
(2016)

Commercial 
fish oil

DHA Emulsification- 
solvent 
evaporation

Casein Stability Zimet et al. 
(2011)

Commercial 
fish oil

Omega-3 Low energy 
spontaneous 
emulsification

Tween 80 Stability Walker et al. 
(2015)

Sparus aurata Sea bream 
scales 
collagen

Emulsification- 
solvent 
evaporation

Soybean lecithin Stability Mosquera et al. 
(2014)

Menhaden Fish oil Nanoelmulsion Palmitic acid and 
quercetin

Stability Azizi et al. 
(2019)

Commercial 
fish oil

– High intensity 
ultrasound 
method.

Tween 80 and 
span 80

Stability Nejadmansouri 
et al. (2016)

Commercial 
fish oil

Omega-3 Hot high- 
pressure 
homogenization

Tristearin and 
lecithin

Stability Salminen et al. 
(2013)

Engraulis 
encrasicolus 
L.

Omega-3 
fatty acids

Controlled 
crystallization 
and kneading 
method

Β-cyclodextrin Stability Ünlüsayin 
et al. (2016)

(continued)
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Table 5 (continued)

Source
Encapsulated 
compound

Encapsulation 
method

Encapsulation 
system Application References

Clupeonella 
cultriventris 
caspia

Peptídeos Electrospraying Chitosan and 
polyvinylalcohol

Antioxidant Hosseini et al. 
(2019)

Sardina 
pilchardus 
and Trachurus 
mediterraneus

Fish oil Spray-drying Glucose syrup Antioxidant Morales- 
Medina et al. 
(2016)

Oncorhynchus 
mykiss

Peptides Liposome Chitosan Antioxidant Ramezanzade 
et al. (2017)

Oncorhynchus 
mykiss

Fish oil Liposome 1,2-dipalmitoyl- 
sn-glycero-3- -
phosphocholine

Antioxidant Hosseini et al. 
(2017)

Commercial 
fish oil

– Liposome Soy lecithin and 
sunflower oil

Food 
additive

Ghorbanzade 
et al. (2017)

– EPA and 
DHA

Ionic gelation Sodium caseinate 
and gum arabic

Food 
additive

Ilyasoglu and 
El (2014)

Commercial 
fish oil

– Freeze drying Gum arabic and 
tween 80

Food 
additive

Moghadam 
et al. (2019)

Commercial 
krill oil

– Nanostructured 
lipid carriers

Palm stearin acid 
and lecithin

Stability Zhu et al. 
(2015)

Euphausia 
superba

– Emulsion- 
electrostatic 
interaction 
method

Chitosan and 
tripolyphosphate

Food 
additive

Haider et al. 
(2017)

Curcumin – Reflux followed 
by thin drug-lipid 
film hydration 
method

Commercial krill 
oil

Antitumor Ibrahim et al. 
(2018)

were also successfully encapsulated by spray-drying using different polymers with 
high cytocompatibility (Hosseini et al. 2019; Morales-Medina et al. 2016). Obtaining 
omega 3 nanocapsules with modified starch by the Gas-Saturated Solutions (PGSS)-
drying method showed EE above 95% and lowered susceptibility to oxidation 
(Melgosa et al. 2019).

Nanoemulsions obtained from microfluidization of fish oil in water using sun-
flower phospholipids as an emulsifier were obtained by Komaiko et al., and they 
have a series of advantages over artificial emulsifiers, such as high oxidative stabil-
ity and being hypoallergenic (Komaiko et  al. 2016). Surfactant concentration 
becomes a critical point in optimizing the encapsulation of fish oil in emulsions, 
reflecting on the emulsions’ morphology, size, EE, and stability (Walker et al. 2015). 
Zimet et al. took advantage of the self-assembly properties of casein to encapsulate 
DHA with high colloidal stability and bioactive conservation (Zimet et al. 2011).

The emulsification-solvent evaporation obtained peptide nanoliposomes from 
sea bream scales encapsulated with soy lecithin (Mosquera et  al. 2014). The 
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maintenance of antioxidant activity and ACE inhibitory activity remained constant 
for 8 days at low temperatures, preserving the biological activities of the extracted 
peptides. Oncorhynchus mykiss peptides were encapsulated in nanoliposomes with 
EE above 46%, depending on the polymer concentration used for encapsulation 
(Hosseini et al. 2017; Ramezanzade et al. 2017). To improve the properties of the 
encapsulated fish oil, quercetin is an antioxidant additive that may help slow down 
the oxidation of fish oil (Azizi et al. 2019). Other important factors to be considered 
when designing new encapsulations are the composition of the encapsulating agent, 
the surfactant’s nature, and the fish oil’s composition, which can abruptly alter the 
stability of nanoemulsions (Salminen et  al. 2013; Nejadmansouri et  al. 2016; 
Ünlüsayin et al. 2016).

Due to their excellent nutraceutical properties, fish oils are potent additives for 
fortifying foods. Ghorbanzade et al. used fish oil nanoliposomes with lecithin and 
soybean oil to fortify yogurt (Ghorbanzade et al. 2017). After 21 days of storage, the 
authors reported that liposome-fortified yogurt had higher EPA and DHA content. 
Gum arabic as an encapsulating agent and tween 80 as an emulsifier were also used 
to encapsulate fish oil by freeze drying to observe the viability of Lactobacillus 
plantarum in probiotic fermented milk (Moghadam et al. 2019). The results showed 
EE of 87% with increased probiotic bacterial viability and high content of EPA and 
DHA, which can be used as a food fortifier. Ilyasoglu et al. also used gum arabic to 
encapsulate EPA and DHA by ionic gelation to fortify fruit juice, achieving good 
nutritional values (Ilyasoglu and El 2014).

As an alternative source of omega 3 to fish, krill oil is gaining prominence, as 
30% to 65% of the fatty acids in krill oil are in the form of phospholipids (Kolakowska 
et al. 1994). This factor alters the bioavailability of krill oil, providing it with better 
bioavailability (Schuchardt et  al. 2011). Nanostructured lipid carriers containing 
high krill oil content were prepared using palm stearin as solid lipid and lecithin as 
the surfactant, with EE of 97% and a maximum loading capacity of 12%, aiming at 
their application in functional foods (Zhu et al. 2015). Haider et al. used chitosan 
and tripolyphosphate to encapsulate krill oil from Euphausia superba, obtaining a 
maximum EE of 59%, a loading capacity of 25%, and a high oxidant capacity 
(Haider et al. 2017). Liposomes with krill oil enriched with curcumin also showed 
good EE and loading capacity values used with antitumor agents against A549 lung 
cancer cells (Ibrahim et al. 2018).

6  Conclusions

Natural products generated from fungal, bacteria, plant, marine, and animal sources 
have a wide variety of applications with a high global impact. To preserve and main-
tain the natural molecules properties generated from these sources, it is necessary to 
apply robust techniques. Due to the diversity of properties that bioactive compounds 
present, different techniques can be used to guarantee protection and maintenance 
of the biomolecule, the performance of the selected matrix, and mainly the 
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bioavailability to exert the required action. Encapsulation is a viable alternative to 
protect active compounds against the deterioration of environmental conditions, 
maintaining their natural compounds. Many encapsulation methods can be used, 
whether physical or chemical, and their use is intrinsically linked to their applica-
tion. Among them, we can highlight electrospinning methods and micelles’ forma-
tion with several applications.

Each technique for forming encapsulated materials (nano or microencapsula-
tion) depends on a series of factors that are related to the material to be protected, 
since the matrix-forming substance and the conditions in which the techniques will 
be applied are also fundamental in the process. In food, nanoencapsulation applica-
tion can prolong postharvest shelf life. This process when applied to functional food 
ingredients can help increase their water solubility and/or dispersibility in foods and 
beverages, improving their bioavailability. Encapsulation imparts several benefits 
including improved thermal and chemical stability, preserves or masks flavor, taste, 
or aroma, controlled and targeted release, and enhanced bioavailability. The bio-
preservative effect on food packaging can also be done by bacterial enzymes, 
organic acids, or bacteria.

Nanoencapsulation is a technique based on enclosing a bioactive compound in 
liquid, solid or gaseous states within a matrix or inert material for preserving the 
coated substance (food or flavor molecules/ingredients). Nanoencapsulation strate-
gies, including the possibility to deliver controlled natural compounds, synthetic 
molecules, or other actives (viruses) for the treatment of different human disease 
could revolutionize conventional medical and food science, pharmaceutical and 
food industry.
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Targeted Delivery of Natural Products
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Abstract Natural products have been a precious source of innumerable bioactive 
chemicals due to which many conventional therapies and remedies have been asso-
ciated with them. Phytochemicals such as alkaloids, flavonoids, glycosides, terpe-
noids, and many more have contributed significantly to the drug discovery process. 
Many phytochemical formulations have aided in improving the health status of 
patients in clinical settings. However, some problems related to the effective deliv-
ery of natural constituents to their site of action still exist. These are mainly attribut-
able to the challenging physicochemical and pharmacokinetic characteristics. To 
address these issues, a lot of research is being conducted that is based upon the 
interlinking of natural products with nanotechnology. Many studies have shown 
encouraging outcomes in terms of the targeted delivery of these phytochemicals to 
their intended sites for the desired therapeutic response using nanocarriers such as 
metallic nanoparticles, liposomes, and dendrimers, among others. Due to their bet-
ter tolerability as compared to synthetic chemical entities, natural products particu-
larly the phytochemicals are being explored for achieving delivery through active 
and passive targeting. This chapter provides an introduction to the formulation bar-
riers of natural products and the recent advances in nanotechnology and formulation 
science in improving the overall drug targeting to the intended site of action.
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1  Introduction

Natural products have been used for centuries by virtue of their vast medicinal uses. 
The knowledge of traditional medicine has helped the drug developers in devising 
means for more efficient drug discovery using the phytochemicals. Of all the drugs 
approved by the United States Food and Drug Administration (FDA) in 2019, 
around 24% of the drugs were of natural origin (de la Torre and Albericio 2021). 
Not only plant-based, but animal and microbial origin natural products have also 
contributed to the development of an effective drug discovery and development pro-
cess, leading, thereby, to the clinical applications of a series of efficacious mole-
cules. A number of plant-origin drugs have been employed in clinical settings across 
various medicinal systems. These include Colchicine from Colchicum autumnale, 
Paclitaxel from Taxus brevifolia, Hyocyamine from Hyoscyamus niger, Morphine 
from Papaver somniferum, and Mitomycin from Streptomyces caespitosus, among 
others (Shah et al. 2020; Shao et al. 2020; Hemati et al. 2021; Bouabdallaoui and 
Tardif 2022; Sinawe and Casadesus 2022).

Novel, potentially active therapeutic agents are subject to a number of studies to 
establish their effectiveness in clinical settings. However, their therapeutic delivery 
remains an uphill task due to the complications in their pharmaceutical presenta-
tions including low dissolution profile, stability issues and subsequent problems 
associated with their pharmacokinetics and bioavailability. Phytochemicals includ-
ing terpenes, polyphenols, and alkaloids also undergo a higher metabolic processing 
by the phase II enzymes. This leads to a lesser amount of drug available in systemic 
circulation, thereby, leading to a decrease in the pharmacological activity of a poten-
tial drug candidate (Bose et  al. 2020). To cope with these drawbacks, natural 
product- based nanocarriers since their advent have bridged huge gaps in the tar-
geted drug delivery of these molecules. Based on the principles of targeted drug 
delivery, these novel mechanisms have been able to target specific receptors, thereby, 
ruling out the nonselective actions of some natural products such as cytotoxic phy-
tochemicals. This concept is being applied in the lead discovery with natural prod-
ucts of plant origin. Natural product-based nanocarriers have been successfully 
tested in animal-based models to target the desired sites such as tumors, leading to 
effective pharmacological profiling of these natural chemical entities. Computational 
experiments and tools have also confirmed the pharmacological activity of these 
compounds in silico (Chen et al. 2020). This chapter covers the scope and signifi-
cance of targeted delivery of natural product-based drugs for maximizing the utility 
of these bioactive phytochemicals.

2  Natural Products in Medicinal Use

Numerous secondary metabolites with variable chemical structures are produced by 
a diversity of medicinal plants. These secondary metabolites have played an impor-
tant part in the discovery and development of drugs. In brief, the plant-based 
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systems have given rise to a huge number of lead compounds used in both tradi-
tional and modern medicine. Cytotoxic agents, including antimicrobials and anti-
cancer agents developed by the study of floral and microbial metabolites as 
chemotherapeutics, are the chief examples of these molecules. Similarly, a wide 
variety of compounds have been discovered from sponges, algae and phytoplankton 
that have supplied a number of leads for drug discovery and development. Discovery 
of naturally occurring neurotransmitters and active peptides have also proved to be 
important milestones in therapeutic research.

Ethnopharmacology forms the basis of the medicinal use of plants and other 
natural sources. Ethnobotany, conversely, is the study of interaction of local plants 
with the biological aspects of the native people. This term basically deals with the 
medical applications of an indigenous plant using the inherent knowledge. This 
helps in imparting the essential parameters that are a prerequisite for the planting of 
these indigenous botanical sources and their use in day to day life. On the other 
hand, the broadest definition of ethnopharmacology is “the interdisciplinary scien-
tific examination of the biologically active compounds that are customarily utilized” 
(Leonti 2022). As a result, the ethnopharmacological approach is based upon the 
merger of pharmacology, chemistry, and botany for attaining therapeutic outcomes 
in human population. With a very wide scope, field observations, descriptions of the 
application and biological effects of traditional remedies, botanical identification of 
plant material, and phytochemical and pharmacological studies form a part of eth-
nopharmacology. Many researchers have been interested in studying traditional 
cures and their potential effects for a long time. This has led to significant discover-
ies that are still playing a vital part in current pharmacotherapy practices (Verma 
and Singh 2020).

The use of medicinal plants in various ailments has been established. A number 
of historical accounts have been found in ancient civilizations that provide a record 
of medicinal use of plants and other natural products for centuries. The rhizomes of 
Glycyrrhiza glabra L., for instance, are well known for their traditional use as anti-
tussive effects induced by glycyrrhizin, glycyrrhetinic acid, and other phytochemi-
cals. Papaver somniferum L. containing alkaloids including morphine, papaverine, 
and codeine have been used to relieve intense pain as herbal remedy since ancient 
times. Morphine, a popular and efficacious opioid, was first isolated by Friedrich 
Serturner in 1803 from poppy plant and continues to be a part of modern analgesic 
regimens. Cinchona officinalis L., a rich source of quinine, has been a promising 
medicinal therapy against malaria for centuries (Tisnerat et al. 2021). In Brazilian 
indigenous medicine, Achillea millefolium L. has been used for diuresis in patients 
with nephropathy and cardiac disease. Achillea arabica, a Mediterranean plant, is 
known to have lipid-lowering activity and has been used in many cardiovascular 
disorders. Bidens pilosa L., also known as Spanish needles, is a South American 
herb used as a decoction or tincture, that aids in lowering blood pressure by vasodi-
lation (Michel et al. 2020). Foeniculum vulgare Mill., belonging to Apiaceae family, 
is a traditional herb, the seeds of which are orally ingested to alleviate gastric acid-
ity, constipation and nonproductive coughs. Similarly, Argemone Mexicana L., 
Morus albal, Cassia fistula L., and Mentha longifolia L. are medicinal flora that 
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exhibit beneficial therapeutic effects in improving the digestion. Citrullus colocyn-
this L., containing polyphenols and tannins provides relief from urinary problems 
and jaundice and is used in the form of pharmaceutical powders to treat these ail-
ments. As per the ethnobotanical approach, the plants used for countering bacterial 
infections for hundreds of years include Acacia eriloba, also known as camel thorn, 
whose infusion helps to treat bacterial pneumonia. The infusions and decoctions of 
Abrus precatorius, Artemesia afra, Asparagus africanus, and Chrysanthemum sege-
tum L. provide adequate antitubercular effect and relieve whooping cough (Cock 
and van Vuuren 2020). Terminalia glaucescens extracts have shown activity against 
various gram-negative bacteria, while ethanolic extracts of Azadirachta indica and 
Zingiber officinale show inhibition of growth in Salmonella typhi strains (Ugboko 
et al. 2020). In brief, these and many other medicinal plants form an essential com-
ponent of the traditional and modern medicine. Figure 1 represents a summary of 
the diverse traditional medicinal uses of natural products derived from medici-
nal plants.

Recently, the advent of SARS-CoV-2 lead to dedicated research efforts for the 
drug discovery and development process using natural compounds. By employing 
in silico, in  vitro, and in  vivo approaches, many natural constituents have been 
investigated that may act as a potential inhibitor of SARS-CoV-2. A few of these 
components are summarized in Table 1.

In light of these applications, it can be established that the natural products 
encompass a vast family of varied chemical substances that may be produced by any 
organism or may originate from a mineral source. They possess a wide range of 

Fig. 1 Medicinal uses of the plant-based natural products and constituents
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Table 1 Natural lead compounds having potential activity against SARS-CoV-2

Natural compound Chemical class Botanical source References

Amentoflavone Flavonoid Torreya nucifera Orhan and Senol Deniz 
(2020)

Chrysin Flavonoid Oroxylum indicum Shah et al. (2021)
Quercetin Flavonoid Lactuca sativa L. Gasmi et al. (2022)
Quercetin-3-O- 
rutinoside

Glycoside Dysphania 
ambrosioides

da Silva et al. (2020)

Lycorine Alkaloid Lycoris radiata Jin et al. (2021)
Baicalin Flavonoid Scutellaria 

baicalensis
Wu et al. (2020)

Berberine Alkaloids Coptis chinensis Wink (2020)
3,7-di-O-methyl-
kaempferol

Flavanoid Siparuna cristata Leal et al. (2021)

Lactucin Sesquiterpene Cichorium intybus 
L.

Ávila-Gálvez et al. 
(2022)

Hispidulin Monomethoxyflavone Artemisia 
sublessingiana

Jalmakhanbetova et al. 
(2021)

biological activities and unique pharmacological effects. Natural products have his-
torically been important in the drug discovery process. This importance is further 
established owing to their use in traditional remedies. Natural products have been 
used for centuries as common remedies, and in recent years, the scientific commu-
nity has turned its attention to them as a result of mounting data linking them to 
health advantages and the prevention of numerous diseases. Recently, their signifi-
cance has again started to increase as masses are turning toward naturopathy appar-
ently considering the ill-effects of the synthetic chemicals. The major challenge, 
however, associated with discovery of bioactive compounds is to establish a drug 
delivery methodology that ensures that adequate amount of the therapeutic agent 
reaches the site of action. The formulation development of phytochemicals is a 
laborious process and incorporates a series of steps. Following, the early screening 
of the crude extract and extraction of specific metabolites, the identification process 
of natural product is started. This involves the structure elucidation processes 
including Mass Spectrometry and Nuclear Magnetic Resonance among others. 
Thereafter, in vitro and in vivo screening of the biological activities of the isolated 
compound is initiated. Preclinical studies based upon animal models to unveil the 
early information regarding the pharmacokinetics and pharmacodynamics of the 
active molecule are carried out. Once validated, formulation engineers develop a 
diverse series of formulations that can potentially be employed for human testing. 
During these preclinical trials, not only is the natural compound tested for its effec-
tiveness but the best formulation options available are also selected. Marketing of 
the drug after approval and subsequent post marketing surveillance is then carried 
out as the last, yet continuous, step of the process (Mushtaq et al. 2018).

Conventionally, the crude drug from natural sources is subjected to extraction 
processes using various solvents based upon the physicochemical properties of the 
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constituents. These mixtures are then processed for fractionation and final formula-
tion. These can be in the form of tinctures, i.e., the extracts of series of diverse 
compounds based upon their miscibility in water and alcohol like tinctures of 
Cannabis sativa. Similarly, decoctions which are extracts prepared by heating a 
medicinal crude drug in water for a given time interval to extract out its principal 
chemical substances like the decoction of Panax ginseng and Glycyrrhiza uralensis. 
Pastes, a semisolid formulation of natural products containing about half of solid 
powdered content of the crude drug levigated in a fatty base are also very common. 
Herbal teas comprising of infusions of comminuted herbs such as Camellia sinensis 
have been used for symptomatic relief for centuries. Similarly, liniments which are 
the preparations rubbed on skin for provision of warmth and pain alleviation, for 
instance of Capsicum annuum, are often employed for pharmacological benefits 
(Pengelly 2020).

3  Contemporary Approaches to Formulation Development 
of Natural Products

Natural products are accepted as one of the most significant components of both the 
traditional and modern medicine owing to their benefits and diverse biological 
activities. However, developing them into clinical candidates has been hampered by 
a number of problems including pharmaceutical issues like poor solubility, limited 
permeability, and poor chemical stability. These formulation problems may affect 
the bioavailability of these compounds and may lead to their therapeutic failure. 
Stability of a potential drug molecule in the systemic circulation also restricts its 
efficacy and leads to early degradation of molecule before reaching the target site. 
In order to get over these obstacles, novel drug delivery systems can be developed 
to enhance the stability, dissolution, therapeutic efficacy and selectivity of a given 
natural drug candidate (Almeida et al. 2022; Rego et al. 2022).

The advent of nanotechnology has provided various targeted drug delivery 
options including metallic nanoparticles, liposomes, micelles, nanotubes, den-
drimers and quantum dots among others. These systems have largely improved the 
pharmacological properties of these natural products. These systems targeted toward 
a specific receptor site to improve the pharmacological aspects of natural product 
formulations have been widely accepted both in basic and clinical applications. Of 
these, passive drug targeting of phytochemicals to the tumor microenvironment 
(TM) follows the application of nanotechnology in formulation development. It is 
well known that following an intravenous administration, the enhanced permeabil-
ity retention (EPR) effect causes macromolecules to reach and accumulate in the 
solid tumors more than they do in the healthy tissues. This EPR effect has gained 
popularity over the past years as it has been used to enhance the delivery of medi-
cines by nanoparticles for solid tumor diagnosis and treatment using the concept of 
passive drug targeting. Due to an imbalance of growth factors and mediators, the 
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vasculature contains endothelial gaps and becomes quite leaky. These leaky vessels 
could be used for passively targeting the solid tumor as nanoparticles can reach 
there and a better retention can be expected due to impaired drainage of lymphatics 
at tumor sites. Passive targeting involves spontaneous entry or diffusion of drug- 
loaded nanocarriers into the tumor microenvironment. In comparison, as repre-
sented in Fig.  2, the active targeting involves the formulation of nanocarriers 
decorated with a specific surface ligand that helps reaching the binding site, tumor 
site or site of injury more readily due to a its higher affinity for it, thereby, producing 
a targeted extravasation of the drug-loaded nanocarrier at the particular site. A num-
ber of tissue injuries have been reported to be relieved after coupling of nanomedi-
cine and EPR effect (Narum et al. 2020).

The widely accepted novel drug delivery systems, employing active or passive 
targeting approach, that have gained a widespread popularity are nanoparticles. 
Their size ranges from 1 to 100 nm approximately and may exploit the EPR effect 
for targeted natural product delivery. The use of nanoparticles in target-specific 
therapeutic activity may prove promising due to better physical and chemical char-
acteristics. Green synthesis or biogenic synthesis is a method that utilizes the con-
cept of using extracts or chemicals derived from natural sources to produce 
nanoparticles for the purpose of stabilization via either a bottom-up approach, i.e., 

Fig. 2 Active targeting of nanocarriers toward the desired receptor
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assembling small atoms or molecules into larger entities or a top-down approach by 
splitting a larger sized particle into tiny particles. The plant extract containing the 
phytochemicals, for instance polyphenols, terpenoids or other chemicals, is added 
in the solution containing metal ions which we want to use for the synthesis of 
nanoparticles. Several metallic nanoparticles (MNP) could be synthesized through 
green synthesis including silver, zinc oxide, gold, palladium, platinum and copper 
nanoparticles (Jadoun et al. 2021). Plant sources reported to contribute effectively 
in green synthesis of MNPs include, but are not limited to, Moringa oleifera Lam. 
(leaves), Acorus calamus L. (rhizome), Aerva lanata (L.) Juss. (whole plant), Allium 
sativum L., Curcuma longa L. (powder), Artemisia haussknechtii Boiss. (leaf), and 
Mirabilis jalapa L. (leaf) (Maghimaa and Alharbi 2020; Alavi and Karimi 2020; 
Puthur et al. 2020; Palithya et al. 2021; Paiva-Santos et al. 2021).

Silver (Ag) nanoparticles have been reported to possess efficient cytotoxic activ-
ity against cancer cells. Due to the nanosize range, they passively target tumor sites 
and have been reported to be effective on a number of cell lines including human 
lung epithelial A549 cells, MCF-7 human cell line, HepG2 cell line, and HCT116 cell 
line (Sankar et al. 2013; Abootalebi et al. 2021; Raj et al. 2020; Deepika et al. 2020). 
Their anticancer effect has been related to genotoxicity, cell cycle arrest, and anti-
angiogenic properties of Ag nanoparticles. It was also revealed that Ag nanoparti-
cles are involved in the generation of free radical species leading to disruption of 
mitochondrial processes and, ultimately, cell death (Ratan et  al. 2020; Lima 
et al. 2022).

Recent studies have established the role of Gold (Au) nanoparticles in anticancer 
therapy. They have been proven to be safe carriers for passive as well as active tar-
geting of natural products toward the binding sites. They have negligible toxicity, 
high biocompatibility and demonstrate rich surface reduction by phytochemicals. 
The effect of Hesperidin conjugated Au nanoparticles were studied in human triple- 
negative breast cancer cell line MDA-MB-231, which emphasized the antitumor 
potential of these nanoparticles along with their role in activation of macrophages in 
eradicating tumor cells effectively rendering them as a novel option in anticancer 
therapy (Sulaiman et al. 2020). Another study unveiled that quercetin-conjugated 
Au nanoparticles were very functional in case of inducing apoptosis in hormone- 
dependent MCF-7 cell lines. Furthermore, the epidermal growth factor receptor sig-
naling pathways involved in unregulated cell proliferation were also inhibited (Khan 
et al. 2021).

Apart from the MNPs, liposomal form of phytochemicals like curcumin has 
proven to have a significant cytotoxic activity against cancers. Curcumin-loaded 
liposomes and nanoparticles have been reported to arrest the uncontrolled cell divi-
sion in prostate cancer cell lines and cervical cancer cell lines respectively (Kashyap 
et al. 2021). D Kong et al. reported that Resveratrol plus epirubicin-loaded lipo-
somes modified with wheat germ agglutinin (WGA) demonstrated a promising 
cytotoxic effect, as compared to only epirubicin-loaded liposomes, in the C6 glioma 
cells cytotoxicity assay after about 48-hour incubation period. The Resveratrol plus 
Epirubicin liposomal formulation was also targeted in vitro for avascular C6 glioma 
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spheroids. A notable effect was produced as not only the volume of tumor spheroids 
was reduced, but most of tumor cells also underwent lysis (Kong et al. 2022).

Antibody–drug conjugates have also been effectively applied for the active drug 
targeting of cancer cells. This idea is widely adopted for natural products as well. 
Eribulin, a derivative of Halichondrin B, is a natural constituent obtained from 
Halichondria okadai, a marine sponge. Halichondrin B has been found to be effec-
tive against various solid tumors and has been used for the formulation of an anti-
body–drug conjugate. The formulation is currently under investigation in phase II 
clinical trials to establish its efficacy (Newman 2021). Similarly, studies are under-
way to study the active targeting of natural chemical constituents using hyaluronic 
acid labeled nanocarriers. Hyaluronic acid has affinity for CD-44, a protein overex-
pressed in many cancers. Hence, CD-44 receptor is a target through which the natu-
ral compounds can be specifically delivered in the cancer cells. A recent study 
exhibited that the hyaluronic acid decorated thymoquinone nanoparticles showed a 
marked cell death in triple negative breast cancer cell lines MDA-MB-468 and 
MDA-MB-231. This activity was also confirmed in in vivo study in mice model 
which recorded a decrease in tumor mass after inoculation of these nanoparticles 
(Bhattacharya et al. 2020). Figure 3 provides an insight into the process of active 
and passive targeting of cancer cells. Similarly, another study stated that the hyal-
uronic acid conjugated nanoparticles with curcumin, actively target the cancer cells. 
These nanoparticles did not only provide controlled drug release but the cell growth 
was also inhibited effectively in the human cancer cell lines, i.e., A549, PANC-1, 
HCT116, and Caco-2 cell lines (Malaikolundhan et  al. 2020; Thummarati 
et al. 2021).

Fig. 3 (a) Passive targeting of nanoparticles with natural constituents toward tumor cells exploit-
ing the EPR effect (b). Actively targeted natural drug-loaded nanoparticles labeled with a ligand 
(Hyaluronic acid) reaching the targeted receptor site of tumor cells, CD 44 receptor
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For the pharmacotherapy of Alzheimer’s disease (AD), dedicated research stud-
ies are underway to identify the phytochemicals that can specifically target the 
mechanisms involved in the disease progression. The major challenge lies in the 
delivery of the natural products to the target site by crossing the Blood Brain Barrier 
(BBB). Hence, nanodrug delivery systems have been employed in order to cope 
with such issues. Exosome-like liposomes (<200 nm size), for instance, have been 
loaded with curcumin from Curcuma longa and tested for their neuroprotective 
activity in the human neuroblastoma cell lines SH-SY5Y. They halted the oxidative 
stress, hence exhibiting their antioxidant and anti-inflammatory activities. This has 
been confirmed in  vivo studies using zebrafish embryo model (Fernandes et  al. 
2021). Similarly, a glycoside, Luteolin-loaded chitosan nanoparticles have been 
studied for the protective effects in AD. In vivo studies in mice model exhibited the 
improvement in space-related memory by providing an improved antioxidant effect 
along with reduction in neuroinflammation by retarding neurofibrillary tangle for-
mation at molecular level (Abbas et al. 2022). In another study, female Swiss mice 
were injected with amyloid peptide to induce Alzheimer’s disease. Lipid-core nano-
capsules loaded with Chrysin, obtained from Passiflora caerulea, were prepared 
and the mice were administered with the formulation. The findings exhibited that 
the neuroinflammation was reduced up to a significant extent. The brain-derived 
neurotrophic factor (BDNF) level was upheld along with reduced oxidative damage 
in prefrontal cortex of the brains of mice (Giacomeli et al. 2020). In addition to AD, 
targeted drug delivery of phytochemicals has also been studied in other neurodegen-
erative conditions. The extract of plant Aphanamixis polystachya, loaded in liposo-
mal formulation has been tested for its anti-Parkinson’s activity in mouse model. 
The principal constituents, including 2-Pentanone, 5-hydroxypipecolic acid, and 
beta-elemene in liposomal carrier, successfully provided targeted drug delivery and 
provided pronounced neuroprotective and anti-inflammatory effects. The positive 
changes in the behavior of mice along with betterment of their locomotion were also 
observed (Shariare et al. 2020).

The targeted delivery of phytoconstituents also attenuates bacterial infections to 
a significant level. Recently, the zinc nanoparticles synthesized using the leaf extract 
of Aloe socotrina proved to possess effective antibacterial potential against 
Pseudomonas aeruginosa and Proteus vulgaris at concentrations of 50 μg/mL and 
75  μg/mL.  Bactericidal effect was also observed for Klebsiella pneumonia and 
Escherichia coli at higher concentrations. These nanoparticles are described to dis-
rupt the bacterial cell membranes and subsequent killing of bacteria (Fahimmunisha 
et al. 2020). Similarly, palladium nanoparticles synthesized by using Rosmarinus 
officinalis extract have shown significant antibacterial and antifungal activity both 
in vitro and in vivo (Rabiee et al. 2020). While considering the clinical and regula-
tory processes, the natural product-based nanoformulations aimed at targeted drug 
delivery of these actives have acquired the attention in the global market. They are 
being employed in routine clinical use at a number of settings internationally. 
Table  2 summarizes a few marketed brands based upon natural product 
nanoformulations.
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Table 2 Marketed nanoformulations for the targeted drug delivery of phytochemicals

Marketed 
product name

Natural product 
formulation Manufacturer Actions References

Abraxane® Nanosuspension of 
human serum albumin 
protein loaded with 
paclitaxel

American 
BioScience 
(USA)

Treats breast 
cancer after failure 
of prior 
chemotherapies

Yuan et al. 
(2020)

PICN® Paclitaxel injection 
mixture for 
nanodispersion

Sun pharma 
advanced 
research co., ltd. 
(Mumbai, India)

Attenuation of 
breast cancer

Ma et al. 
(2021)

Bepanthol 
ultra facial 
protect 
Cream®

Lecithin, ceramides, 
niacin, Dexpantenol, 
glycine, glycerine, etc. 
dispersed in 
nanoemulsion

Bayer 
HealthCare 
(Spain)

Moisturizes the 
skin, prevents 
aging of skin

Cardoza 
et al. (2022)

Nouriva repair 
moisturizing 
Cream®

White petrolatum, zinc 
oxide, lanolin, liquid 
paraffin, glycerin, 
lecithin, glycolic acid, 
allantoin, etc. loaded 
nanoparticles

Ferndale 
laboratories, Inc.
(United States)

Provides 
moisturizing effect 
to the skin

Kaushik and 
Kumar 
(2020)

Marquibo® Vincristine Sulfate 
loaded liposomes

Talon 
Therapeutics Inc.
(United States)

Attenuates 
Hodgkin and 
non-Hodgkin 
lymphoma

Shahin et al. 
(n.d.)

Identik 
masque floral 
repair®

Seed extract of Punica 
granatum and hydrolyzed 
yeast

Identik (France) Provides repair to 
the hair

Kaul et al. 
(2018)

4  Opportunities and Challenges in Targeted Delivery 
of Natural Products

On the landscape of natural drug development, the accumulation of natural products 
and nanotechnology has made a significant breakthrough over the past decades. 
This paradigm shift has provided more effective drug delivery at the intended site of 
action with less hazardous effects, thereby, resulting in the development of efficient 
therapeutic options especially in neoplastic diseases for specifically targeting the 
tumor cells. However, there is still a long way to go before it is adequately stream-
lined for acceptance at both preclinical and clinical phases.

A number of factors determine the in vivo behavior and efficacy of the nanocar-
riers encapsulating a natural constituent desired for targeting. The physicochemical 
characteristics of the carrier as well as the charge induced on the its surface, the 
specific polymer or metallic group used in formulation, and any particular func-
tional group decorated on the surface of the carrier may affect its stability within the 
bloodstream. One of the major problems is that the circulation half-life of the nano-
carrier may not be too sound to reach the desired target due to their rapid clearance 
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by the reticuloendothelial system. This may lead to early exit of the nanocarriers 
from the bloodstream of the patient and, hence, failure of the drug delivery system. 
Efforts are currently underway to optimize the circulation half-life of the nanocarri-
ers for productively reaching the target. A number of techniques including stealth-
ing of nanocarriers by polyethylene glycol (PEG) or related chemicals and 
nanosizing further to refine the pharmacokinetics are currently being tested clini-
cally (Yadav and Dewangan 2020). In addition, these drug delivery systems intended 
for active targeting of the cells may contain peptides or proteins that might make 
them mimic a biological entity. They can, hence, be considered as antigens or 
immunogens by the immune system, thereafter initiating a hypersensitivity response 
or related toxicities (Kashyap et al. 2021; Muzammil et al. 2023).

Translation of safety and effectiveness observed during preclinical studies into 
clinical applications remains one of the most daunting tasks for the drug developers. 
Many compounds and drug delivery systems may prove to be efficient in reducing 
the overall disease presentations in preclinical studies; however, when employed to 
clinical conditions, these pharmacological systems do not show any significant 
potential. While studying the EPR effect in cancer models, for instance, there may 
exist a significant difference in EPR effect in human subjects with cancer and in vivo 
models. Another hurdle is the interindividual genetic and clinical differences, that 
may also hinder the selective targeting of the nanocarrier loaded with natural com-
pounds. Every tumors environment differs, and hence, the pharmacological proper-
ties of various nanocarriers may also vary. Moreover, many studies have revealed 
that the nanocarriers may require a synchronization of their physicochemical fea-
tures as per the type of individual or patient in order to ensure maximum bioavail-
ability. Developing natural product-based personalized nanomedicines, hence, 
needs to be exploited for attaining effective clinical outcomes (Narum et al. 2020).

5  Conclusion and Future Perspectives

The association of natural products and nanomedicine has imparted very promising 
outcomes in the field of contemporary pharmacotherapy research. Many problems 
such as the toxicities of synthetic chemical entities and their processing schemes 
have been overcome by employing phytochemicals having adequate pharmacologi-
cal activities against various diseased conditions. The recently developed systems 
have proved to be effective in a number of in vivo studies and ongoing clinical trials 
and have exhibited targeted delivery of the natural constituent to the desired recep-
tor sites without any notable nonselectivity and toxicity. However, scalability, safety, 
effectiveness, and cost management still remain major challenges before these natu-
ral products can be translated for targeted delivery in clinical conditions. Moreover, 
more focused research in the field of nanotechnology in tailoring the nanocarriers as 
per the individual factors may be done for developing improved natural product 
formulations based on the idea of precision medicine. A large number of natural 
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products can be made to target specific cell and tissue types by the concerted efforts 
of pharmacognosists, pharmacologists, and formulation developers by the employ-
ment of advanced technologies.
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Quorum Sensing and Quorum Sensing 
Inhibitors of Natural Origin

Nourhan G. Naga and Mona I. Shaaban

Abstract Now, infectious bacteria represent the worldwide health threat. Treatment 
with antimicrobial agents becomes ineffective with the time, especially with the 
massive development of antimicrobial resistance. For instance, there should be 
alternatives, and one of the main approaches to control bacterial virulence is quo-
rum sensing (QS). QS is a bacterial communication system that controls the expres-
sion of bacterial virulence factors including secretion of exoenzymes, bacterial 
toxins, biofilm, and bacterial motility. Bacteria secret QS signals that control bacte-
rial quorum and associated virulence factors. These signals are mainly acyl homo-
serine lactones (AHLs) in Gram-negative bacteria, autoinducing peptides in 
Gram-positive bacteria, and AI-2 signals in both. Therefore, QS is a promising tar-
get to control bacterial pathogenicity and enhance bacterial inactivation by the 
immune system. Many quorum sensing inhibitors have been developed that either 
block QS receptors, inhibit the biosynthesis of QS signals, or degrade QS signals. 
Various quorum sensing inhibitions (QSI) have been identified from natural sources 
such as plant extracts, pure compounds, natural enzymes, marine organisms, fungi, 
bacteria, and herbs. Plants are considered as a rich source of QSI inhibitors either, 
edible plants, fruits, spices, essential oils, medicinal plants. Also, several pure 
extracts exhibited QSI activity, such as terpenoids, flavonoids, and phenolic acids. 
This chapter highlights the QSI activities of natural products and how they affect 
QS-regulated virulence. Also, the influence of natural products on the expression of 
QS-regulatory network will be discussed, with focus on their advanced applications 
in the elimination of microbial virulence and suppression of bacterial 
pathogenicity.
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1  Introduction

The number of different microorganisms in the adult human body was evaluated to 
be at least ten times more than the number of human cells (Walter et al. 2011). A 
majority of these microorganisms are commensal and may even play an important 
role in maintaining our health and well-being (Gerritsen et al. 2011). They can live 
inside the human body and silently work, but they can turn on us and become 
“pathogenic” with too many virulence factors and cause diseases if our immune 
systems are weakened. Additionally, pathogenic bacteria in our environment fre-
quently infect us. Our immune system successfully destroys microorganisms in 
most cases; however, at other times, our defenses cannot. Antibiotic use has been 
the only treatment choice for bacterial infections that for almost a century (Davies 
et al. 2006). Firstly, antibiotics were identified as substances produced by microor-
ganisms that inhibit the growth of other microorganisms. With continuous and 
excessive use of antibiotics through the years, antibiotics were abused and overused, 
and this led to a serious consequence: multiple-drug resistance (MDR). The World 
Health Organization (WHO) identified multiple-drug resistance (MDR) as one of 
the top ten global public health challenges facing humanity as they lost their effi-
cacy in the treatment of pathogenic infections (Rather et al. 2017). Therefore, the 
pharmaceutical industries need to develop new approaches to combat bacterial 
pathogens. Many pathogens that affect people, plants, animals, and aquatic life rely 
on bacterial communication between cells (Bruhn et al. 2005). These communica-
tion systems are called “quorum sensing” (QS) which is considered to be the key 
regulator of virulence factors (Williams et al. 2007). Therefore, any disruption of 
QS will prevent the release of virulence factors which consequently affect the 
pathogenicity of microorganisms. This is an innovative and effective strategy to 
control infectious bacterial diseases (Dong et al. 2007; Muzammil et al. 2023).

QS controls the virulence factors by regulating gene expression through autoin-
ducer (AI) production. AIs are small organic signaling molecules that are primarily 
produced during the stationary phase (Czajkowski and Jafra 2009). Once the growth 
reaches a certain threshold level, these molecules act as mirrors that reflect the inoc-
ulum size density and control the expression of associated genes (Elgaml et  al. 
2014). AIs can be categorized into three classes: autoinducing peptides (AIPs), 
autoinducer-1 (AI-1), and autoinducer-2 (AI-2). AI-1 is known as N-acylated 
L-homoserine lactones (AHLs) which are the most prevalent class of QS signaling 
molecules in Gram-negative bacteria (Geske et al. 2008). In Gram-positive bacteria, 
AIPs are the main autoinducers (Sturme et al. 2002). AI-2 is used by both Gram- 
negative and Gram-positive bacteria and is produced in intraspecies, so it is known 
to be a “universal” AI (Lowery et al. 2008; Alves et al. 2023).
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Quorum sensing inhibition (QSI) is achieved by too many pathways; blocking 
bacterial receptors, inhibiting the biosynthesis of QS signal, and degrading of QS 
signal in the extracellular environment. QSI strategy is an innovative and potent 
alternative to antibiotics use and it is thought to be less likely result in the emer-
gence of resistance (Miller and Bassler 2001). However, according to the latest 
studies, it is difficult to predict this consequence, and it is probably influenced by 
too many factors (Cornforth et al. 2014). Designing de novo quorum sensing inhibi-
tors (QSIs) can be opportune to draw inspiration from nature as it has long been 
believed that natural products are a good source of vital antibacterial agents that can 
be utilized to treat a variety of pathogenic diseases (Howes et  al. 2020). In this 
review, we highlight natural QSIs from many different sources and how they affected 
QS-regulated virulence genes expression.

Everything Starts in Nature
Nature is always the key; it introduces a massive source of drugs. More than half of 
all prescribed drugs are originated from natural sources (Harper 2001; Marris 2006). 
Similarly, many QSIs were isolated from many natural sources such as marine 
organisms, fungi, plants, and herbs due to the natural competition. They exhibited a 
high potency in inhibiting and disrupting the bacterial QS mechanism (Rasmussen 
and Givskov 2006). Here, we provide a list of the most potent naturally occurring 
anti-QS that have been identified from a variety of diverse habitats.

1.1  Plants

Plants harbor a high density of microbial communities. So, they developed many 
defense mechanisms against pathogenic organisms. They display an extensive range 
of therapeutic purposes in conventional medicine. The therapeutically effective 
plant-isolated active ingredients should be safe for human cells. Toxicological stud-
ies on these active substances must be carried out to avoid their toxicity. The aim to 
detect and study the biological processes and mechanisms behind their therapeutic 
effects has increased. Biologically active components of natural resource, espe-
cially those produced from plants, have thus far prompted the creation of brand-new 
medicines for the treatment of a variety of diseases. QS system manipulation by 
plants is thought to be a form of protection against microbial pathogens because 
plants lack an immune system, unlike animals and humans. This forced researchers 
to hypothesize additional defense mechanisms to overcome the pathogenic strains 
infection (Koh et al. 2013). Plant extracts were reported to act as QSI. Plant chemi-
cals often target the bacterial QS system in three different pathways (Fig. 1): by 
degradation of the signaling molecules, blocking the synthesis of AIs, or by target-
ing the receptors of the signals (Koh et al. 2013).
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Fig. 1 Mechanisms of quorum sensing inhibition by plants secondary metabolites through block-
ing the synthesis of AIs (A), targeting the receptors of the signals (B), and degradation of the sig-
naling molecules (C)

1.1.1  Edible Plants

All plant’s diversity approved efficacy against QS signaling systems of pathogenic 
bacteria. For example, some plants used for nutrition exhibited QSI potency as 
Medicago truncatula Gaertn plant extract could inhibit the QS against 
Chromobacterium violaceum CV026, Escherichia coli JM109, Pseudomonas aeru-
ginosa, and Sinorhizobium Meliloti (Gao et  al. 2003). Also, Pisum sativum was 
reported to reduce violacein pigment in C. violaceum and swarming and motility in 
P. aeruginosa PA01 (Fatima et al. 2010). Methanolic extract of Capparis spinosa 
inhibited QS and virulence in E. coli, C. violaceum, S. marcescens, P. mirabilis, and 
P. aeruginosa PA01 (Abraham et al. 2011). Erucin and sulforaphane compounds 
isolated from Brassica oleracea (broccoli) plant inhibited P. aeruginosa PA01 viru-
lence factors (Ganin et al. 2013). Phaseolus vulgaris (bean) and Oryza sativa (rice) 
inhibited the biofilm formation in Sinorhizobium fredii SMH12 and Pantoea anana-
tis AMG501 (Pérez-Montaño et al. 2013). Additionally, myristic acids and panto-
lactone isolated from Allium cepa (onion) inhibited P. aeruginosa virulence factors 
(Abd-Alla and Bashandy 2012).
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1.1.2  Fruits

Fruits also showed potent QSI activity against QS-regulated virulence genes. For 
example, the methanolic extract of Mangifera indica (mango) reduced the pyocya-
nin, elastase, chitinase, total protease, swarming motility, and exopolysaccharide 
(EPS) production by 89% 76%, 55%, 56%, 74%, and 58%, respectively, in P. aeru-
ginosa PAO1 at 800 μg/mL (Kim et  al. 2019). Vitis sp. (grape), total extracts of 
Rubus idaeus (raspberry), and Vaccinium angustifolium Aiton (blueberry) inhibited 
violacein production in C. violaceum (Kalia 2013). The limonoids in orange seeds 
including deacetyl nomilinic acid glucoside, ichangin, and isolimonic acid inhibited 
the biofilm formation in V. harveyi (Vikram et al. 2010). Similarly, aqueous extracts 
of edible fruits such as Musa paradisiacal (banana), Ananas comosus (pineapple), 
and Manilkara zapota (sapodilla) showed QSI activity against violacein pigment in 
C. violaceum, pyocyanin, biofilm formation, and protease in P. aeruginosa 
PA01(Musthafa et al. 2010). Biofilm formation of Yersinia enterocolitica was inhib-
ited by the peel extract of Punica granatum (pomegranates) (Oh et  al. 2015). 
Psidium guajava (guava) could reduce the biofilm production in P. aeruginosa 
PAO1 and violacein pigment synthesis in C. violaceum (Vasavi et  al. 2014). 
Similarly, it inhibited quorum sensing mediated virulence factors of Staphylococcus 
aureus (Divyakolu et al. 2021).

1.1.3  Spices

Spices exhibited to be a potent source of QSIs. For instance, curcumin, which is 
produced from Curcuma longa inhibited the expression of virulence genes in 
P. aeruginosa PA01 (Rudrappa et al. 2008). Furthermore, curcumin was evaluated 
for its ability to disrupt mature biofilms in uropathogenic strains. It was discovered 
to reduce QS-dependent virulence factors such as extracellular polymeric substance 
formation, alginate production, and swarming motility. Curcumin was found also to 
make P. aeruginosa PA01 more susceptible to common antibiotics (Packiavathy 
et al. 2014). Besides, the effects of cinnamaldehyde and its derivatives were reported 
to be effective QSI in QS-regulated processes, including biofilm formation in 
P. aeruginosa and AI-2-mediated QS in several Vibrio species (Brackman et  al. 
2008). Additionally, it was discovered that extracts from various plant components 
including the leaves, flowers, fruit, and bark of Combretam albiflorum, Laurus nobi-
lis, and Sonchus oleraceus had anti-QS properties (Al-Hussaini and Mahasneh 
2009). Allium sativum (garlic) extract inhibited β-galactosidase in Agrobacterium 
tumefaciens NTL4 and violacein production in C. violaceum (Bodini et al. 2009). 
Moreover, Vanilla planifolia aqueous methanolic extract inhibited violacein pig-
ment in C. violaceum CV026 (Choo et al. 2006).
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1.1.4  Essential Oils

Essential oils showed some anti-QS properties, and the production of violacein in 
C. violaceum CV026 was significantly affected by the QSI properties of the essen-
tial oils extracted from Piper brachypodon Benth, P. caucasanum Bredemeyer, and 
P. bogotense (Olivero V et al. 2011). Similarly, methanol and hexane extracts of 
clove inhibited violacein pigmentation in C. violaceum CV026. Chloroform and 
methanol clove extracts dramatically decreased the amount of bioluminescence in 
E. coli [pSB1075] that is produced when cultivated with N-3-oxododecanoyl-L-
homoserine lactone. While virulence factors of P. aeruginosa PAO1, such as pyo-
cyanin pigment synthesis, were suppressed by the hexane extract (Krishnan et al. 
2012). Eugenol is the key component of clove extract as it exhibited anti-QS proper-
ties and inhibited the virulence factors of P. aeruginosa and E. coli biosensors at 
subinhibitory concentrations (Zhou et al. 2013).

1.1.5  Medicinal Plants

Recent studies revealed that medicinal plants are a very potent source of QSIs. This 
potency is modulated by the secondary metabolites production. These metabolites 
are classified mainly into three main classes; terpenoids, phenolic acids, and flavo-
noids (Bouyahya et al. 2022).

Terpenoids

Terpenoids demonstrated remarkable antibacterial activity through a variety of 
pathways, including QS inhibition. Many terpenoids, including eugenol, carvacrol, 
linalool, D-limonene, and -pinene, have inhibitory effects via various QS mediators. 
For example, eugenol showed significant effects on methicillin-resistant 
Staphylococcus aureus (MRSA) isolated from food handlers (Al-Shabib et  al. 
2017), as well as biofilms of clinical isolates of P. mirabilis, S. marcescens, and 
P. aeruginosa (Packiavathy et al. 2012). Interestingly, an additional study showed 
that eugenol hindered P. aeruginosa from producing its virulence factors such as 
elastase, pyocyanin, and the development of biofilms (Zhou et al. 2013; Al-Shabib 
et al. 2017; Rathinam et al. 2017). Moreover, eugenol had a notable impact against 
(AIs) and significantly reduced the formation of biofilm of P. aeruginosa PAO1 by 
65.6% (Rathinam et al. 2017). Recently, other studies demonstrated that eugenol 
decreases the production of N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo- 
C12-HSL) and C4-HSL N-acyl homoserine lactone signal molecules, pyocyanin, 
and swarming motility in P. aeruginosa by 50% at sub-MIC (Lou et  al. 2019). 
Besides, eugenol reduced the expression of QS-regulated genes by 65%, 61%, and 
65% for lasI, rhlI, and rhlA, respectively, and by 36% for biofilm formation (Lou 
et al. 2019).
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Similar to this, carvacrol displayed a QSI activity against QS and biofilm devel-
opment. Recent research demonstrated that carvacrol inhibited the development of 
biofilms in P. aeruginosa at very low concentrations (0.9–7.9 mM) and reduced the 
synthesis of pyocyanin by 60% (Tapia-Rodriguez et al. 2017). Furthermore, another 
study reported that subinhibitory concentrations (<0.5 mM) of carvacrol inhibited 
biofilm formation in S. aureus 0074, Salmonella enterica subsp., and S. Typhimurium 
DT104 (Burt et al. 2014).

Phytol is a well-known diterpene and was reported as QSI. Specifically, this sub-
stance inhibited the biofilm formation in S. marcescens and P. aeruginosa PAO1 
(Pejin et al. 2015; Srinivasan et al. 2016, 2017). Phytol inhibited prodigiosin, prote-
ase, and biofilm formation by 92%, 68%, and 64%, respectively in S. marcescens at 
a concentration of 10 μg/mL (Srinivasan et al. 2016).

Another terpene that has demonstrated anti-QS action is called sesquiterpene 
lactone. This substance inhibited the activity of QS mediators in C. violaceum and 
P. aeruginosa ATCC 27853 (Amaya et al. 2012; Aliyu et al. 2021). It was reported 
that sesquiterpene lactones belonging to goyazensolide and isogoyazensolide chem-
ical families approved QSI activity and inhibited the production of AHL. Also, olea-
nolic aldehyde coumarate inhibited biofilm formation in P. aeruginosa and all 
lasI/R, rhlI/R regulated genes (Rasamiravaka et al. 2015). Other terpenoids as lin-
alool inhibited the biofilm formation of A. baumannii (Alves et  al. 2016; Wang 
et al. 2018).

Flavonoids

The second classes of secondary metabolites found in medicinal plants are flavo-
noids. Recent studies revealed that this chemical group has an antibacterial impact 
through various mechanisms of action, including inhibition of QS and its main 
traits, like the development of biofilm. Epigallocatechin is one of the flavonoids, it 
showed antibiofilm activity against S. typhimurium (Wu et al. 2018; Hosseinzadeh 
et al. 2020) and disrupted the QS activity of Streptococcus mutans biofilms. It also 
reduced motility and decreased AI-2-regulated virulence factors activity (Castillo 
et al. 2015). Additionally, epigallocatechin inhibited QS and the formation of bio-
film in S. aureus and Burkholderia cepacia (Huber et  al. 2003), Listeria 
Monocytogenes (Nyila et  al. 2012), and Eikenella corrodens (Matsunaga et  al. 
2010). Besides, naringenin inhibited biofilm formation in S. mutans and downregu-
lated mRNA expression of luxS, gtfC, gtfB, comE, and comD (Yue et al. 2018). 
Moreover, this compound inhibited the swarming and motility in C. violaceum 
(Truchado et al. 2012).

Quercetin exerts antagonistic effects on bacterial signaling systems, and has 
been shown to have an important role as QSI (Vikram et al. 2010). For instance, it 
inhibited the biofilm formation of E. coli and V. harvei (Vikram et al. 2010). Also, it 
inhibited the violacein pigment production in C. violaceum and QS-regulated phe-
notypes in P. aeruginosa PAO1 (Al-Yousef et al. 2017). Other flavonoids like narin-
genin showed QSI activity against P. aeruginosa and inhibited elastase and 
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pyocyanin virulence factors (Hernando-Amado et al. 2020). Meanwhile, morin fla-
vonoids inhibited EPS production, biofilm formation, and motility in S. aureus 
(Chemmugil et  al. 2019). In addition, methoxyisoflavone inhibited the violacein 
pigment in C. violaceum and pyocyanin, protease, hemolysin, and biofilm in P. aeru-
ginosa clinical isolates, PAO1, and PA14 (Naga et  al. 2022). On the other side, 
kaempferol inhibited adhesion-related gene expression (Ming et al. 2017). Taxifolin 
flavonoids also showed a significant QSI activity on P. aeruginosa and reduced 
elastase and pyocyanin production (Vandeputte et al. 2011).

Phenolic Acids

Several natural resources, including medicinal plants release phenolic acids as sec-
ondary metabolites. Numerous studies showed that these phenolic compounds have 
anti-QS properties. In two Pectobacterium species, P. carotovorum and P. aroi-
dearum, salicylic acid has been found to interfere with the QS system, influence QS 
machinery, and changed the expression of bacterial virulence factors (Joshi et al. 
2016). Additionally, it decreased the intensity of the AHL signal and reduced the 
expression of several QS genes. Salicylic acid treatment significantly decreased the 
biofilm formation of P. aeruginosa as well as twitching, swarming, and motility 
(Chow et al. 2011). Similarly, salicylic acid modulated 103 virulence-related gene 
families and decreased AHL production and biofilm formation in A. tumefaciens 
(Yuan et al. 2007). On the other hand, rosmarinic acid (RA) at 750 μg/mL decreased 
elastase, hemolysin, and lipase production in Aeromonas hydrophila and inhibited 
the development of biofilms. The virulence genes ahh1, aerA, lip, and ahyB were 
also downregulated (Rama Devi et al. 2016). Also, RA inhibited the QS-regulated 
virulence factors in P. aeruginosa, it inhibited elastase, pyocyanin, and biofilm for-
mation (Walker et  al. 2004; Corral-Lugo et  al. 2016; Fernández et  al. 2018). 
Cinnamic acid is another phenolic acid with known biofilm and QS inhibitory prop-
erties. It effectively prevented P. aeruginosa from producing the QS-dependent 
virulence factors and biofilm formation at sublethal concentrations without any 
effect on viability (Rajkumari et al. 2018). Additionally, research revealed that cin-
namic acid inhibited the virulence gene expression of P. aroidearum and P. caroto-
vorum (Joshi et al. 2016). Cinnamic acid also decreased the intensity of the AHL 
signal and suppressed the production of QS genes. Similar effects were reported 
when C. violaceum ATCC12472 was exposed to two cinnamic acid derivatives, 
4-dimethylaminocinnamic acid (DCA) and 4-methoxycinnamic acid (MCA) 
(Cheng et al. 2020). DCA and MCA reduced the production of violacein, chitinase, 
and hemolysin in C. violaceum and decreased the levels of N-decanoyl-homoserine 
lactone (C10-HSL).

Researchers reported that chlorogenic acid (CA) significantly reduced P. aerugi-
nosa virulence factors such as biofilm formation, swarming, elastase, protease, pyo-
cyanin, and rhamnolipid (Wang et al. 2019). Also, p-coumaric acid inhibited the 
QS-related virulence genes of P. chlororaphis, C. violaceum 5999, and A. tumefa-
ciens NTL4 (Bodini et al. 2009). In addition, it inhibited violacein pigmentation in 
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C. violaceum (Chen et al. 2020). Another QSI phenolic acid is caffeic acid which 
showed antibiofilm activity in S. aureus in addition to hemolysin inhibition activity 
(Luís et al. 2014). Besides, phenylacetic and ellagic acid were reported to be effi-
cient against the biofilm-forming bacteria B. cepacia (Huber et  al. 2003) and 
P. aeruginosa (Musthafa et al. 2012).

2  Fungal Quorum Sensing Inhibitors

Fungi inhabit a wide range of ecosystems and interact with other organisms, such as 
microorganisms, animals, and plants. They are almost cosmopolitan in nature. 
Additionally, they can live in extreme habitats. Organisms that cohabit in nature as 
partners have evolved tools to fight one another, including chemicals, enzymes, and 
metabolites (Sharma and Jangid 2015; Almeida et al. 2022). In soil, bacteria and 
mycorrhizal fungi work together closely. Fungi have inherent defenses against a 
bacterial population that have formed or evolved as a result of their close associa-
tion. These could be for space, nutrition, or pathogenicity. Furthermore, they are 
known to produce a number of secondary metabolites such as enzymes, chemicals, 
and mycotoxins (Pitt 2000; Frisvad et al. 2008). Even so, there is little information 
available on fungal QSIs. So, finding fungal QSI potency isolated from varied habi-
tats, such as endophytes and marine fungi may help.

Fungi are well-known to produce a variety of quorum sensing molecules (QSMs). 
For example, Candida albicans produces farnesol and tyrosol. Farnesol is also pro-
duced by a majority of dimorphic yeasts with a significant impact on their morpho-
genesis (Shirtliff et al. 2009; Weber et al. 2010). It exhibited antimicrobial activity 
against Fusarium graminearum (Semighini et al. 2006), Paracoccidioides brasil-
iensis (Derengowski et  al. 2009), Staphylococcus epidermidis, S. aureus (Cerca 
et al. 2012), and other bacteria (Pammi et al. 2011). It was reported to act as an 
adjuvant against S. epidermidis when combined with antibiotics (Pammi et  al. 
2011). On the other hand, farnesol produced by C. albicans was reported to inhibit 
biofilm formation, which is regulated by QS (Ramage et al. 2002). It showed effi-
cacy in protecting mice from candidiasis (Hisajima et al. 2008). A comparable study 
on C. parapsilosis and C. tropicalis revealed that farnesol at high concentrations 
reduced the formation of biofilms (Laffey and Butler 2005; Zibafar et al. 2015).

Additionally, many fungal secondary metabolites showed QSI activities. For 
instance, secondary metabolites of Tremella fuciformis; Tremella is a member of the 
Basidiomycota family Tremellaceae, also known as “jelly fungi.” T. fuciformis 
inhibited QS in C. violaceum CVO26 and inhibited the production of violacein pig-
ment. This pigment is regulated by QS and AHL signaling molecules. It was inhib-
ited by different concentrations (0.2%–0.8%) of T. fuciformis extracts without any 
effect on viability and growth (Zhu and Sun 2008). Also, Phellinus Igniarius which 
is classified as a plant pathogen was reported to have anti-QS activity (Zhu et al. 
2012) as well as anticancer, antidiabetic, and antioxidant characteristics (Lung et al. 
2010). Additionally, heterocyclic compounds that synthesize the pigments of 
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Auricularia auricula could bind to the active site of receptor proteins and inhibit the 
AHL-regulated signaling mechanism (Zhu et  al. 2011; Almeida et  al. 2022). 
Similarly, its total extract reduced the biofilm formation of Escherichia coli by 73% 
(Li and Dong 2010).

Mycotoxins were reported to have QSI activity. Penicillic acid mycotoxin which 
is produced by Penicillium radicola and patulin which is produced by P. coprobium 
inhibited QS in P. aeruginosa by targeting the LasR and RhlR proteins (Rasmussen 
et al. 2005b). Additionally, a mouse with P. aeruginosa infection recovered faster 
after receiving patulin treatment, and it was more susceptible to tobramycin antibi-
otic (Rasmussen et al. 2005b). Also, a lot of promises exist for metabolites with 
antibacterial activity in endophytic fungi that inhabit a plant host. So, some endo-
phytic fungi were isolated from Ventilago madraspatana plant (Rajesh and Rai 
2013; Lima et al. 2022).

3  Marine Organisms Are a Potent Source of QSIs

Before the emergence of the first plants on the land about half a billion years ago, 
life existed primarily in the oceans for almost three billion years and it was at this 
point when QS molecules and their inhibitors started to perform their distinct roles. 
Numerous marine bacteria, fungi, algae, and bryozoans have been identified as 
QSIs, in addition to corals and sponges. For example, marine cyanobacteria are one 
of the richest sources of physiologically active and structurally distinct natural com-
pounds. The family of halogenated furanones that were isolated from the marine 
alga Delisea pulchra has attracted a lot of attention and is considered to be one of 
the most effective and widely used natural QSI.

3.1  Algae

In the aquatic environment, beneficial and pathogenic bacteria coexist in close con-
tact with eukaryotes including algae, protozoa, fungi, and plants. Eukaryotes have 
inevitably evolved several defense mechanisms for interacting with bacteria, such 
as creating secondary metabolites like as QSIs (Kjelleberg and Steinberg 2002; 
Rasmussen et al. 2005a; Dudler and Eberl 2006). For example, the red macroalga 
Delisea pulchra was the source of the first identified QSI and it exhibited a strong 
antifouling activity (Givskov et al. 1996). A variety of secondary metabolites like 
halogenated furanones were detected at the algae surface and were approved to be 
the main cause of the QSI activity (Dworjanyn et  al. 1999). They are similar in 
structure to AHL, these halogenated furanones differ in having a furan ring rather 
than a homoserine lactone ring. The crude extract of D. pulchra approved efficacy 
against the human pathogenic bacteria; Proteus mirabilis and inhibited the motility 
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and swarming activity (Gram et al. 1996). The natural compound that has received 
the greatest attention to date is the halogenated furanones as it exhibited high QSI 
activity in AHL-controlled expression in various Gram-negative bacteria (Rasmussen 
et al. 2000; Hentzer and Givskov 2003) and also inhibited AI-2 signaling molecules 
(Ren et al. 2001). The disruption of AI-2 QS by natural and synthetic brominated 
furanones has been shown to protect Artemia franciscana shrimp from pathogenic 
isolates of the species Vibrio Harveyi, V. campbellii, and V. parahaemolyticus 
(Defoirdt et al. 2006). Furthermore, it was demonstrated that natural furanone inhib-
ited the pathogenic V. harveyi strain from producing the toxin T1 and luminescence, 
both of which are QS-regulated against farmed shrimp (Manefield et  al. 2000). 
Besides, it was shown that the natural furanone attenuated the adverse effects of 
various pathogenic V. harveyi strains in the rotifer Brachionus plicatilis (Tinh et al. 
2007b; Tinh et al. 2007a). These findings demonstrated the ability of furanones to 
function as antivirulence compounds in several microbial marine ecosystems.

3.2  Bacteria

According to studies, a variety of bacteria can suppress the QS of other bacteria by 
producing quorum-quenching enzymes (QQEs) such as acylase and lactonase 
enzymes (Kalia 2013). A bacterial flora was isolated from the gut of white shrimp 
Penaeus vannamei. Then, it was cultivated with AHLs as the sole nitrogen and car-
bon source. It was discovered that the enrichment cultures accelerated the growth of 
rotifers in vitro exposed to pathogenic V. harveyi and degraded its signaling mole-
cules in vitro (Tinh et al. 2007b). Similarly, other bacterial QSIs were isolated from 
the gut of Lates calcarifer and Dicentrarchus labrax fish (Van Cam et al. 2009). 
Some bacteria can serve as antagonists by releasing substances that interfere with 
QS signaling systems. For instance, 35 out of 88 actinomycetes stains prevented 
biofilm formation of V. vulnificus, V. harveyi, and V. anguillarum without any effect 
on their growth (You et  al. 2007). Similarly, borrelidin, behenic acid, and 
1H-pyrrole-2-carboxylic acid isolated from Streptomyces coelicoflavus KJ855087 
inhibited QS-regulated virulence factors of P. aeruginosa PAO1(Hassan et al. 2016). 
In a cocultivation study, phenethylamine compounds were produced by Halobacillus 
salinus C42 inhibited V. harveyi bioluminescence. Also, these compounds inhibited 
several QS regulated phenotypes in Gram-negative bacteria, including lumines-
cence in V. harveyi, violacein pigment in C. violaceum CV026, and fluorescence in 
E. coli JB525 reporter strain (Teasdale et al. 2009).

Similarly, 11 bacterial strains that were isolated from Palk Bay sediments inhib-
ited the QS signaling systems in C. violaceum ATCC 12472 and C. violaceum 
CV026 (Nithya et al. 2010). Moreover, the marine isolated bacteria Bacillus pumi-
lus significantly inhibited P. aeruginosa PAO1 virulence factors (Nithya et al. 2010). 
It inhibited LasB elastase by 84%, LasA protease by 76%, caseinase by 70%, pyo-
cyanin by 84%, and pyoverdine, as well as biofilm formation by 87%. Bacillus 
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pumilus S8-07 approved QSI activity against virulence factors of Serratia marces-
cens. It exhibited a highly significant reduction in biofilm formation by 61%, hemo-
lytic activity by 73%, prodigiosin by 90%, and caseinase by 92% (Nithya et al. 2010).

Another example of marine Bacillus sp. strain was isolated from the coastal 
region of Calimere showed a potency as QSI was reported by Musthafa and coau-
thors (2011). Bacillus sp. SS4 inhibited the violacein pigment production in C. vio-
laceum by 86% and reduced the virulence factors of P. aeruginosa PAO1 by 88%, 
68%, 65%, 68%, and 86% for biofilm, LasA protease, total protease, elastase, and 
pyocyanin, respectively.

3.3  Other Marine Organisms as QSIs

Aquatic invertebrates and sponges as well as marine algae and bacteria can produce 
QSIs that may hinder QS systems (Husain and Ahmad 2015). For example, the 
bryozoan Flustra foliacea from the North Sea excretes brominated alkaloids that 
lowered the signal intensity of various QS phenotypes by 20% to 50%. Additionally, 
the metabolites suppressed QS-regulated phenotypes of P. aeruginosa such as pro-
tease production (Peters et al. 2003). Furthermore, the sponge Luffariella variabilis 
exhibited a potent QS inhibition in LuxR-regulated systems. The inhibitory effect of 
this sponge was discovered to be mediated by manoalide, monoacetate, and seco-
manoalide secondary metabolites production (Skindersoe et al. 2008). Expression 
of virulence gene in S. marcescens and the violacein synthesis in C. violaceum were 
used to test the QSI activity of marine sponges which were collected from Palk Bay, 
India. Among 29 tested marine sponges, methanol extract of Clathria atrasan-
guinea, Aphrocallistes bocagei, and Haliclona (Gellius) megastoma inhibited the 
violacein production in C. violaceum ATCC 12472 and CV026. Besides, these 
sponge methanol extracts inhibited the virulence factors of S. marcescens PS1 such 
as biofilm formation, protease, hemolysin, and prodigiosin pigment production 
(Annapoorani et al. 2012).

4  Natural Enzymatic Degradation of QSMs

Another major class of natural QSIs is enzymes. All organisms; mammals, plants, 
fungi, archaea, and bacteria have all been reported to participate in the production 
of QQEs. So, enzymatic degradation has arguably received the most attention to 
date (Romero et al. 2015). Many species of bacteria with enzymatic QSI activity 
have been identified so far (Table 1). The widespread enzymatic QSI activity among 
bacteria shows that disrupting bacterial communication is essential to giving bacte-
rial populations a strategic advantage over the competition. There are now three 
primary groups of AHL QQEs based on the modification process. The first is the 
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Table 1 Quorum quenching enzymes produced by bacterial strains

Organism Activity Enzyme Reference

Agrobacterium tumefaciens Lactonase AttM Zhang et al. (2002)
Lactonase AiiB Carlier et al. (2003)

Anabaena sp. Acylase AiiC Romero et al. (2008)
Arthrobacter nitroguajacolicus PQS Hod Pustelny et al. (2009)
Anabaena sp. Acylase AiiC Romero et al. (2008)
Bacillus megaterium Oxidoreductase CYP102A1 Chowdhary et al. (2007)
Bacillus sp. Lactonase AiiA Dong et al. (2001)
Brucella melitensis Acylase AibP Terwagne et al. (2013)
Chryseobacterium sp. Lactonase AidC Wang et al. (2012)
Geobacillus kaustophilus Lactonase GKL Chow et al. (2010)
Kluyvera citrophila Acylase KcPGA Mukherji et al. (2014)
Klebsiella pneumoniae Lactonase AhlK Park et al. (2003)
Mesorhizobium loti Lactonase MLR6805 Funami et al. (2005)
Microbacterium testaceum Lactonase AiiM Wang et al. (2010)
Mycobacterium avium Lactonase MCP Chow et al. (2009)
Ochrobactrum sp. Acylase AiiO Czajkowski et al. (2011)

Lactonase AidH Mei et al. (2010)
Pseudoalteromonas byunsanensis Lactonase QsdH Huang et al. (2012)
Rhodococcus erythropolis Lactonase QsdA Uroz et al. (2008)
Rhizobium sp. Lactonase DlhR Krysciak et al. (2011)

Lactonase QsdR1
Solibacillus silvestris Lactonase AhlS Morohoshi et al. (2012)
Sulfolobus solfataricus Lactonase SsoPox Merone et al. (2005)

lactonase enzyme, which breaks down the ester linkage in the homoserine lactone 
ring of metalloproteins AHL (Dong et  al. 2000, 2001) (Fig.  2). These enzymes 
break down all signals regardless of acyl side chain substitutions and size, making 
them the ones with the widest diversity of AHL specificity. The second category is 
the acylase enzyme which breaks down the AHL amide linkage, releasing the cor-
responding homoserine lactone ring and free fatty acid (Lin et al. 2003). Acylases 
exhibit more substrate selectivity than lactonases, which could be a result of their 
ability to detect the signal’s acyl chain. The oxidoreductases are the third class of 
known AHL QQEs; unlike acylase and lactonase activities, they oxidize or reduce 
the acyl chain of the AHLs instead of destroying them. The signals are not degraded 
by these reactions, but the alterations change the specificity and this consequently 
affects signal and receptor interaction.

Fungi are well known for producing extracellular enzymes such as cellulases, 
proteases, amylases, and others that can be used to degrade bacterial biofilms. For 
example, some enzymes extracted from Trichoderma viride, Aspergillus niger, and 
Penicillium species approved their efficacy as QSIs and degraded the biofilm of 
P. aeruginosa (Gautam et al. 2013).
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Fig. 2 Mechanisms of action of lactonase enzyme; A, oxidoreductase enzyme; B, and acylase 
enzymes; C

5  Conclusions

This review shows how we might draw inspiration from nature to focus on bacterial 
communication networks in the battle against diseases. Many other molecular enti-
ties that can interfere with bacterial virulence have been found in recent research, 
and many more are expected to be found in the near future. Anti-QS is crucial for 
combating infections because it does not put selection pressure on the population 
and is unlikely to lead to a resistance issue. For a better understanding of the pro-
cesses involved, in vivo investigations in relevant animal models are required. It is 
crucial to thoroughly examine the organism’s pathogenicity mechanisms, including 
their relationship to QS.
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Bioactive Natural Products from Medicinal 
Plants

Athar Ata

Abstract Natural product chemistry has provided many lead compounds to the 
drug discovery process. Approximately 50% of the commercially available pharma-
ceuticals on the market are of natural product origin. This high success rate of this 
class of organic chemistry in providing new bioactive compounds is due to its enor-
mous structural diversity compared to other sources, including synthetic chemistry, 
combinatorial chemistry, and genomic approaches. We have identified natural prod-
ucts exhibiting antimicrobial and health-related antienzymatic activities. These 
health-related enzymes include glutathione S-transferase, α-glucosidase, acetylcho-
linesterase, and renin–angiotensin system, which are involved in the pathogenesis 
of cancer drug resistance, type 2 diabetes, Alzheimer’s disease, and hypertension, 
respectively. This chapter describes the results obtained from our bioassay-directed 
phytochemical studies on medicinally important plants. Additionally, structure–
activity relationship studies on some potent bioactive natural products have also 
been discussed.

Keywords Glutathione S-transferase inhibitors · α-glucosidase inhibition · 
Acetylcholinesterase inhibition · Antimicrobial natural products · Antirenin 
activity · Phytochemistry

1  Introduction

Natural product chemistry plays a key role in providing lead compounds for drug 
discovery, especially in treating cancer, infectious diseases, cardiovascular diseases, 
and neurodegenerative diseases (Atanasov et al. 2021; Newman and Cragg 2016; 
Waltenberger et al. 2016; Barnes et al. 2016). This is mainly due to two reasons: (i) 
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the enormous diversity in scaffolds; and (ii) the complex structural features of natu-
ral products. These compounds contain more sp3 carbon and oxygen atoms; fewer 
nitrogen and halogen atoms have also been reported. The presence of oxygen, nitro-
gen, and halogen atoms in this class of organic compounds provides higher numbers 
of hydrogen bond acceptors and donors and hydrophilic properties to these com-
pounds, whereas many carbon atoms provide higher hydrophobic features to natural 
products.

Additionally, these structural features have greater molecular rigidity (Atanasov 
et al. 2021). These features are required for discovering lead compounds for drug 
discovery which are difficult to achieve in compounds obtained from traditional 
organic synthesis (Lawson et al. 2018; Shultz 2019; Lachance et al. 2012). Though 
these features mentioned above make natural product chemistry an attractive source 
for discovering lead compounds for the drug discovery process, research in this area 
has several challenges. These challenges led pharmaceutical companies to reduce 
their natural products-based drug discovery programs (Henrich and Beutler 2013). 
These challenges are multifold and are summarized as follows.

1.1  Screening of Crude Extracts

The starting point for identifying lead bioactive compounds for drug discovery is to 
achieve a library of bioactive extracts by screening crude extracts obtained from 
natural sources. Two types of bioassays, cell- or enzyme-based, are used to screen 
crude extracts/fractions and pure natural products. The latter bioassay is frequently 
used in modern drug discovery to discover small molecules with enzyme-inhibiting 
activities. This bioassay is safe to perform in medicinal chemistry labs and to pro-
vide bioactive lead compounds against targeted diseases as enzymes perform all 
biochemical processes of human life, including metabolism, catabolism, cellular 
signal transduction, cell cycling and development. Malfunctioning in these bio-
chemical processes is responsible for several diseases, including cancer, diabetes, 
cardiac problems, neurodegenerative diseases, etc. These malfunctions are associ-
ated with the dysfunction of enzymes/overexpression or hyperactivation of enzymes 
involved (Ata et al. 2011a, b). The detailed studies of biochemical processes have 
led to understanding diseases at the molecular level that resulted in the discovery of 
effective enzyme inhibitors against several diseases used in clinics (Ata et al. 2011a, 
b). The enzymes involved in these bioassays are purified human enzymes. The mea-
surement of product formation is obtained by spectroscopic methods, and the results 
are compared using reference compounds. The crude extracts are colored and con-
tain polyphenols such as lignans in plants that could lead to false-positive results in 
antienzymatic assays. This problem can be overcome by decolorizing crude extracts 
by passing through charcoal or removing lignans by filtering extracts through com-
mercially available resins (Ata 2012).
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1.2  Bioassay-Directed Isolation of Lead Compounds

For the drug discovery process, bioassay-directed investigation of bioactive extracts 
has a higher chance of providing lead compounds. This process is labor intensive 
and has several problems, including replication (isolation of known compounds) 
and bioactivity of crude extracts due to the synergetic effect. The former problem 
can be overcome by analytical techniques, including LC-MS and NMR-based 
metabolomics of bioactive extracts and correlations of these results with bioactivity 
profiling (Atanasov et  al. 2021). NMR analysis of crude extracts is a reliable 
approach for studying this aspect of natural product chemistry as the data is repro-
ducible. Also, it provides direct quantitative and structural information on constitu-
ents of crude extracts. This method has relatively low sensitivity as it is helpful in 
profiling major constituents only (Hubert et al. 2017; Wolfender et al. 2019; Stuart 
et al. 2020). The LC-MS approach, especially the high-resolution mass spectrome-
ter (HR-MS), is routinely used in natural products lab for metabolomics of bioactive 
extracts as it can separate and identify numerous isomers present in very minor 
quantities in bioactive extracts (Wolfender et al. 2015). HR-MS provides molecular 
mass and formula as well as MS/MS data that are cross-searched in the literature or 
databases, including Dictionary of Natural Products, METLIN, and Global Natural 
Products Social (GNPS) molecular networking platform, developed in the Dorrestein 
laboratory (Wang et al. 2016; Atanasov AG et al. 2021). The identification of natural 
products in bioactive extracts can provide dereplicated bioactive extracts. Comparing 
metabolomics data with the biological activities of bioactive extracts using chemo-
metric methods can help overcome the replication problem during bioassay-directed 
chemical studies on bioactive extracts. The bioactive compounds can be traced 
using multivariate data analysis by correlating the determined bioactivity with NMR 
and MS spectra signals.

Another problem in natural product chemistry is the bioactivity of the crude 
extract due to the synergetic effect. Bioassay-directed chemical investigation of 
crude extracts exhibiting bioactivity due to synergetic effect results in the isolation 
of moderately bioactive natural products. The bioactivity of crude extracts due to 
synergetic effect may be determined early in bioassay-directed chemical studies 
using bioautographic assays. These assays not only help to inform about the bioac-
tivity, qualitatively, of chemical constituents present in bioactive crude extracts but 
also provide chromatographic information on bioactive compounds. The latter 
information can help purify bioactive chemical constituents from bioactive crude 
extracts. These bioautographic assays can give false-positive results. We must per-
form detailed in-vitro bioassays on pure natural products isolated based on the bio-
autographic information to overcome this problem. The bioautographic assays do 
not rule out the possibility of synergetic effect in bioactive extracts, and bioassay- 
directed chemical studies on these extracts provide moderately bioactive natural 
products. These scaffolds can help to design new chemical entities using synthetic 
organic chemistry.
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Our research group is involved in discovering new health-related natural prod-
ucts from medicinally important plants. Plants produce a wide range of structurally 
diverse natural products, which is why plants have provided a significant number of 
bioactive lead compounds to drug discovery (Erdogan et al. 2021). Approximately 
over 370,000 species of plants are used as folk medicines in India, China and 
African Countries (Orhan et al. 2007). Plants for identifying new bioactive natural 
products are selected using different approaches, including previously reported bio-
activities, ethnomedical knowledge, bioinformatic, and phylogenetic approaches 
(Ata et al. 2007a, b, c; Ata 2012). The latter two methods have so far shown limited 
success in selecting plants for drug discovery for two reasons: (i) very limited 
genomic data is available on medicinal plants, and (ii) correlate the bioactivity of 
plants with their major metabolites. The ethnomedical approach has shown a rela-
tively high success rate (over 70%) in discovering new pharmaceutically active 
compounds from medicinally important plants (Lobbens et al. 2007). We also select 
medicinally important plants using ethnomedicinal reports, and our chemical stud-
ies on these plants have yielded bioactive natural products described as follows.

2  Antimicrobial Natural Products

Plants are used to treat wounds in folk medicines and have been ignored for discov-
ering natural antimicrobial products. It would be worthwhile to explore medicinally 
important plants for discovering antimicrobial compounds as they produce these 
compounds for their survival. These compounds might help overcome microbial 
drug resistance problems, which significantly threaten human life. Few research 
groups are working on discovering new antimicrobial compounds as only a few 
antimicrobial candidate molecules are in the pipeline to develop them as antibiotics 
for clinics (Taubes 2008). One of our research group’s projects is identifying anti-
microbial compounds from medicinally important plants.

During our screenings of the crude extracts of medicinally important plants for 
antimicrobial activity, we identified two plants Drypetes staudti and Sphaeranthus 
indicus exhibiting potent antimicrobial activity in our bioassays. These results 
prompted us to perform antimicrobial-directed chemical studies on the crude 
extracts of these two plants.

Drypetes staudti was collected from Nigeria, where this plant is used to heal 
wounds by traditional healers. Our bioassay-directed chemical studies on the meth-
anolic extract of D. staudti afforded nine antimicrobial compounds. These com-
pounds were named 4,5-(methylenedioxy)-o-coumaroylputrescine (1), 4,5-  
(methylenedioxy)-o-coumaroyl-4′-N-methylputrescine (2), 4a- hydroxyeremophila- 
1,9-diene-3,8-dione (3), drypemolundein B (4), friedelan- 3b-ol (5), erythrodiol (6), 
ursolic acid (7), p-coumaric acid (8), and b-sitosterol (9) (Grace et  al. 2016. 
Compounds 1–9 showed antimicrobial activity against Gram-positive and Gram-
negative bacteria with minimum inhibitory concentration (MIC) in the 8–128 mg/
ml range. Compounds 1–2 were moderately active against Candida albicans with a 
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Table 1 Antibacterial activity data (MIC in μg/ml) of compounds 1–18

Compounds S. aureus S. agalactiae E. coli P. aeruginosa

1.
2.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

8
8
64
32
16
32
32
128
128
32
8
8
128
128
128
128
128
128

8
8
64
32
16
32
32
128
128
32
8
8
128
128
128
128
128
128

16
16
64
64
32
64
64
128
128
128
64
64
128
128
128
128
128
128

16
16
64
64
32
64
64
128
128
128
64
64
128
128
128
128
128
128

Thymol 8 8 16 16
Penicillin G 1 1 1 8

MIC value of 32  μg/ml. The bioactivity data of compounds 1–9 are shown in 
Table 1.

 

During our α-glucosidase inhibition-directed studies on D. gossweileri (dis-
cussed in the anti-α-glucosidase section), we have identified compounds 47 and 53 
exhibiting antifungal activity against Candida albicans with minimum inhibitory 
concentrations (MIC) of 8.0 and 16 μg/ml, respectively. In order to study the struc-
ture–activity relationships of compound 53 for antifungal activity, it was reacted 
with m-chloroperbenzoic acid to afford 12,13-epoxy analogues of 53 (54 and 55). 
Both of these compounds were further reacted with 20% ammonium hydroxide 
solution to give compounds 56 and 57 (Ata et  al. 2011a, b). Compounds 55–57 
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showed antifungal activity against C. albicans with MIC values of 4.0, 8.0, 8.0, and 
≤2.0 μg/ml. The bioactivity data of compounds 54–57 suggested that the enhanced 
bioactivity of these compounds might be due to the presence of β-oriented C-12/C-13 
epoxy functionality and an amino group at C-12 in these compounds. Furthermore, 
it was also observed that the presence of C-12/α-amino and C-13/β-OH groups sig-
nificantly increased the bioactivity in this bioassay.

Sphaeranthus indicus was collected from Sri Lanka. This plant has been reported to 
treat wounds and exhibit antimicrobial activity against Gram-positive and Gram- 
negative bacteria. We perfumed antibacterial activity-guided fractionations of the 
crude extract to isolate sesquiterpenoid, 7α-hydroxyfrullanolide (10), exhibiting strong 
antibacterial activity against Gram-positive bacteria with a MIC value of 32 μg/ml. 
This compound was isolated in a large quantity from this plant (700 mg). We decided 
to study its structure–activity relationships by using a combination of chemical and 
microbial reactions. For microbial reactions, we used whole-cell cultures of fungi. 
Microorganisms are capable of performing oxidation, aldol condensation, Michael 
addition, and umpolung-type reactions on organic compounds (Ata et al. 2007a).

The whole-cell fungal catalyzed microbial reactions are helpful in predicting the 
fate of new chemical entities as the metabolites obtained from whole-cell microbial 
culture reactions are quite often similar to those obtained from mammal biotransfor-
mations. This relationship between mammal and fungal biotransformation is due to 
the presence of a common enzyme, cytochrome P-450 monooxygenase (Ata et al. 
2009a). Microbial reactions on compound 10 using the whole-cell cultures of 
Cunninghamella echinulata and Curvularia lunata resulted in the production of 
three compounds, 1β,7α-dihydroxyfrullanolide (11), 1-oxo-7α-hydroxyfrullanolide 
(12), 7α-hydroxy-4,5-dihydrofrullanolide (13). Compound 10, upon incubation 
with the Aspergillus niger and Rhizopus circinans gave three metabolites, namely 
17α-hydroxy-11,13-dihydrofrullanolide (14), 13-acetyl-7a-hydroxyfrullanolide 
(15), and 2α,7α-dihydroxysphaerantholide, (16) (Ata et  al. 2009a). While 4α,5α-
epoxy-7α-hydroxyfrullanolide (17), and 4β,5β-epoxy-7α-hydroxyfrullanolide (18) 
were prepared by performing an epoxidation reaction on 10 using meta chloroper-
benzoic acid. Compounds 10–18 were also active in the antibacterial assay. We used 
thymol and penicillin G as positive controls in our bioassays. These structure–activ-
ity relationship studies indicated that the double bonds Δ4–5, Δ11–13, and a γ-lactone 
moiety in compounds 10–18 are required pharmacophores for the expression of the 
antibacterial activity of compound 10.
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3  Antiglutathione S-Transferase Natural Products

Glutathione S-transferase (GST) is a multifunctional enzyme that protects cells 
from cytotoxic and genotoxic stresses. GST acts as a catalyst between the reaction 
of the electrophilic center of cytotoxic agents (xenobiotics) and glutathione to form 
an inert water-soluble adduct to excrete from the body. This nature of GST classifies 
this enzyme as a phase II detoxification system and is believed to be involved in the 
acquired drug resistance for curing cancer and parasitic diseases. Pharmaceuticals 
with anticancer and antiparasitic properties contain electrophilic centers in their 
structures and act as xenobiotics by the human body. GST converts them into water- 
soluble adducts by reacting with glutathione, and hence, they are excreted from the 
body. This lowers the concentrations of these pharmaceutical agents in the body and 
results in the inefficiency of anticancer and antiparasitic chemotherapeutic agents 
(Ata et al. 2007c; Ata and Udenigwe 2008). The over-expression of GSTs has been 
observed in various human cancer cells than normal tissues (Douglas 1987; Adang 
et  al. 1990). Lymphocytes isolated from chronic lymphocytic leukemia (CLL) 
patients that were resistant to chlorambucil A exhibit a two-fold increase in GST 
activity compared to untreated CLL patients (Schisselbauer et  al. 1990). These 
reports suggest that GST inhibitors can be used as adjuvants during cancer and para-
sitic chemotherapy to overcome acquired drug resistance problems.

Natural products have yet to be explored for discovering new GST inhibitors, as 
synthetic compounds are currently used. These compounds exhibit either severe in- 
vivo toxicity or are inactive in  vivo. Toward this end, we have screened several 
medicinally important plants collected from various parts of the world in our anti- 
GST assay. This screening process led us to identify the crude extracts of medici-
nally important plants (Caesalpinia bonduc, Artocarpus nobilis, and Nauclea 
latifolia) exhibiting anti-GST activity with IC50 values of 83.0, 125, and 10.5 μg/ml, 
respectively. We carried out GST inhibition-directed phytochemical investigation of 
these bioactive extracts to isolate anti-GST natural products. The results of these 
phytochemical studies are described as follows.

Our phytochemical studies on bioactive fractions of Caesalpinia bonduc afforded 
nine compounds, namely, 17-hydroxycompesta-4,6-dien-3-one (19), 13,14-seco- 
stigmasta-5,14-dien-3a-ol (20), 13,14-seco-9(11),14-dien-3a-ol (21), caesaldekarin 
J (22), neocaesalpin P (23), neocaesalpin H (24), cordylane A (25), caesalpinin B 
(26), caesalpinianone (27), 6-O-methylcaesalpinianone (28), and hematoxylol (29) 
(Udenigwe et al. 2007; Ata et al. 2009b; Iverson et al. 2010). Compounds 19–29 
exhibited anti-GST activity with IC50 values of 380, 230, 248, 259, 200, 218, 250, 
350, 16.5, 17.1, and 23.6 μM, respectively. Among these isolates, compounds 27, 
28, and 29 were significantly active in this assay, and their IC50 values were compa-
rable to ethacrynic acid (IC50 = 16 μM), a standard GST inhibitor which was used as 
a positive control in our bioassays, Furthermore, it was also observed that com-
pounds 27 and 28 are homoisoflavonoids and have more or less the same potency of 
inhibiting GST activity as that of ethacrynic acid.
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Similarly, GST inhibition-directed chemical investigation of ethanolic extract of 
Artocarpus nobilis, collected from Sri Lankan, afforded four known triterpenoids, 
cyclolaudenyl acetate (30), lupeol acetate (31), β-amyrine acetate (32), and zizphur-
solic acid (33). Additionally, we have also identified five known flavonoids from 
bioactive fraction. These compounds are named as artonins E (34), artobiloxan-
thone (35) artoindonesianin U (36), cyclocommunol (37), and multiflorins A (38). 
Compounds 30–38 showed a wide range from weak to strong anti-GST activity 
with IC50 values of 195.1, 146.1, 251.0, 68.5, 2.0, 1.0, 6.0, 3.0, and 14.0 μM, respec-
tively. Again, flavonoids (34–38), especially 34–27, were significantly more active 
than the rest of the isolates. The higher potency of 34–37 might be due to the pres-
ence of the prenyl group in these compounds (Zahid et al. 2007).

Nauclea latifolia has been reported to exhibit GST inhibitory activity. Additionally 
this plant also shows antimalarial and antihypertensive activities. This plant was also 
active in our anti-GST screening assay. Based on the anti-GST activity data, we 
decided to perform GST inhibition-directed chemical studies and these studies 
resulted in the isolation of five known compounds. These compounds were identified 
as strictosamide (39), naucleamides A (40), naucleamide F (41), quinovic acid-3-O-
β-rhamnosylpyranoside (42), and quinovic acid 3-O-β-fucosylpyranoside (43). 
Phytochemicals 39–43 showed anti-GST activity with IC50 values of 20.3, 27.2, 23.6, 
143.8, and 53.5 μM, respectively. Compound 39 was a major metabolite of N. latifo-
lia, and was significantly active in our GST inhibition assay. Therefore, it was decided 
to carry out structure–activity relationships studies by generating its derivatives using 
microbial reactions. Incubation of this compound with the liquid culture of Rhizopus 
circinans afforded three derivatives that were characterized as 10-hydroxystrictos-
amide (44), 10-β-glucosyloxyvincoside lactam (45), and 16,17-dihydro-10-β-
glucosyloxyvincoside lactam (46) (Ata et al. 2009d) Compounds 40–43 were also 
active in our anti-GST assay with IC50 values of 18.6, 12.3, and 16.6 μM, respectively.
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Our structure–activity relationships studies revealed that among compounds 
19–46 were significantly active in anti-GST assay. A common functional group, 
α, β−unsaturated carbonyl group, is present in these compounds. This func-
tional group is believed to be a required pharmacophore for the expression of 
this bioactivity. The α, β-unsaturated carbonyl group may form a glutathione 
adduct of these compounds through Michael addition to inhibit the activ-
ity of GST.
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4  Anti-α-Glucosidase Natural Products

α-Glucosidase is a membrane-bound intestinal enzyme that helps to digest carbohy-
drates by hydrolyzing the glycosidic bonds to liberate free glucose. The glucose 
produced from this enzymatic reaction causes a significant rise in blood sugar level. 
This is known as postprandial hyperglycemia and causes type 2 diabetes mellitus 
affecting over 21 billion people worldwide (Wilcox 2005; Atkinson et  al. 2014; 
Dirir et al. 2022). This ailment can be managed by using potent α-glucosidase inhib-
itors, as these inhibitors slow down the breakdown of carbohydrates during their 
digestion to control the blood glucose level. These compounds may also be a thera-
peutic target for other carbohydrate-mediated diseases, including viral infections, 
cancer, HIV, obesity, and hepatitis (Berrino et al. 2009; Roglic and Unwin 2010). 
Our phytochemical studies on medicinal plants for discovering new naturally occur-
ring α-glucosidase inhibitors resulted in the identification of a few bioactive com-
pounds, summarized as follows.

Our α-glucosidase inhibition-directed phytochemical studies on the methanolic 
extract of Drypetes gossweileri, collected from South African based on its folk 
medicinal history, yielded seven compounds. These compounds were identified as 
N-β-D-glucopyranosyl-p-hydroxy-phenylacetamide (47), p-hydroxyphenylacetic 
acid (48), p-hydroxyphenylacetonitrile (49), p-hydroxyacetophenone (50), 
3,4,5- trimethoxyphenol (51), dolichandroside A (52), and β-amyrone (53). Among 
these phytochemicals, compound 47 was the first example of the plant natural prod-
ucts containing N-glucose moiety incorporated in its structure. These compounds 
(47–53) were active in our α-glucosidase inhibition assay with IC50 values of 12, 50, 
48, 50, 56, 20, and 25 μM, respectively (Ata et al. 2011a, b). Among all isolates, 
compound 47 was significantly active in this bioassay and we performed the acidic 
hydrolysis of this compound to afford compound 54 which was very weakly active 
in our α-glucosidase inhibition assay (IC50  =  60.0  μM). These structure–activity 
relationships studies revealed that the higher potency of compound 47, compared to 
the rest of the isolates, was due to the presence of the N-glucose moiety.
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Swertia corymbosa was collected from India and our chemical studies on the 
chloroform extract gave five bioactive xanthones that were identified as 3-allyl- 2,8-
dihydroxy- 1,6-dimethoxy xanthen-9-one (58), xanthones gentiacaulein (59), nor-
swertianin (60), 1,3,6,8-tetrahydroxy xanthone (61), and 1,3-dihydroxy xanthone 
(62). Compounds (58–62) exhibited anti-α-glucosidase activities with IC50 values of 
26.3, 44.5, 23.2, 39.0, and 35.2 μM, respectively (Uvarani et al. 2015).
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Muraya koenigii was collected from India and our chemical studies on the crude 
extract of this plant resulted in the isolation of nine carbazole alkaloids which were 
characterized as bisgerayafolines A-D (63–66), bismahanimbinol (67), bispyraya-
foline (68), O-methyl mahanine (69), O-methyl mukonal (70), and mahanine (71). 
Compounds 63–66 belong to dimeric class of carbazole alkaloids, and compounds 
67–71 are members of monomeric class carbazole alkaloids. Compounds 63–71 
showed anti-α-glucosidase activity with IC50 values of 45.4, 41.2, 69.0, 38.7, 51.3, 
29.1, 46.1, 77.5, and 21.4 μM, respectively (Uvarani et al. 2013, 2014). The higher 
potency of compounds 63, 64, and 66 in this bioassay was due to aR configuration 
of biphenyls. Compounds 68 and 71 were also significantly active with IC50 values 
of 29.1 and 21.4 μM. Their higher potency might be due to presence of C-9/OH that 
can help to bind these compounds with α-glucosidase via hydrogen bonding.
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5  Antiacetylcholinesterase Natural Products

Alzheimer’s disease (AD), a neurodegenerative disorder, is a source of severe health 
disorders. One of these disorders is memory loss in elderly people, which is believed 
to be due to the decrease in the level of acetylcholine, an important neurotransmitter 
required for the proper functioning of brain, by hydrolyzing it into acetic acid and 
choline by an enzyme, acetylcholinesterase (AChE) (Kumar et al. 2017). One of 
aspects of managing AD is the use of potent acetylcholinesterase inhibitors (AChE). 
These inhibitors also prevent the pro-aggregating activity of AChE leading to the 
deposition of β-amyloid, another cause of AD (Orhan et al. 2004). AChE inhibitors 
have also applications in treating senile dementia, ataxia, myasthenia gravis and 
Parkinson’s disease (Singhal et al. 2012). Currently, four AChE inhibitors, tacrine 
(72), donepezil (73), galanthamine (74), and rivastigmine (75), are approved by the 
FDA, USA, to be used in clinics for the treatment of AD in its early stage (Orhan 
and Sener 2003). All approved drugs have limited effectiveness and a several side 
effects. For instance, tacrine exhibits hepatotoxic lability. Similarly, rivastigmine 
has a short half-life.

 

Our phytochemical investigation of the crude extract of Buxus hyrcana resulted 
in the identification of steroidal alkaloids exhibiting anti-AChE activity (Babar et al. 
2006; Ata et al. 2010). These compounds include O6-buxafurandiene (76), and 
7-deoxy-O6- buxafurandiene (77), exhibiting this bioactivity with IC50 values 17.0 
and 13.0 μM, respectively.
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These preliminary results led us to collect Buxus natalesis and B. macowanii 
from South Africa based on their ethnomedicinal use. These plants are being used 
to enhance memory in elderly people by local traditional healers (Ata et al. 2007c). 
Both plants were also active in our anti-AChE assay with IC50 values of 28 and 
30 μg/ml, respectively. We decided to perform anti-AChE-guided phytochemical 
studies on B. natalensis and isolated four bioactive steroidal bases, O2-natafuranamine 
(78), O10-natafuranamine (79), buxafuranamide (80), and buxalongifolamidine 
(81). These alkaloids showed AChE inhibitory activity with IC50 values of 3.0, 8.5, 
14, and 30.2 μΜ, respectively (Matochko et al. 2010). Similarly, chemical investiga-
tion of B. macowanii yielded seven bioactive natural products, 31- hydroxybuxatrienone 
(82), macowanioxazine (83), 16α-hydroxymacowanitriene (84), macowanitriene 
(85), macowamine (86), Nb-demethylpapillotrienine (87), and moenjodaramine 
(88). Compounds 82–88 were active in the anti-AChE assay with IC50 values of 17, 
32.5, 11.4, 10.8, 45, 19, and 27 μM, respectively (Lam et al. 2015). Compound 78 
was more potent in this bioassay, and its potency is almost identical to huperzine A.

 

Furthermore, it was also observed that steroidal bases (76–80) were equally 
potent in AChE inhibition assay, suggesting the bioactivity of these compounds 
might be due to the presence of tetrahydrofuran incorporated in their structures. The 
location of an ether linkage in these compounds does not play any role in enzyme 
inhibition activity, as natural product 79 contains an ether linkage between C-31 and 
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C-10 while compounds 76, 77, and 80 contain linkage between C-31 and C-6, 
whereas an ether linkage between C-31 and C-2 is present in compound 78. The 
latter compound also contains an epoxy functionality at C-1/C-10. These two func-
tionalities might be responsible for its higher potency.

6  Antirenin Natural Products

The hypertension is mainly caused by abnormal blood pressure. A renin–angiotensin 
system (RAS) has been reported to be involved in controlling and maintaining blood 
pressure in mammals. The enzyme Renin (EC 3.4.23.15), produced by the epithelial 
cells of the kidney and released into the circulation system by various stimuli, gener-
ates the deca-peptide angiotensin I (AI). Angiotensin converting enzyme (ACE) con-
verts AI into angiotensin II (AII). AII lies on the arterial smooth muscle cells to 
maintain blood pressure and stimulates the synthesis and releases aldosterone from 
the adrenal cortex. Its overexpression leads to the abnormalities of blood pressure 
causing hypertension. Inhibition of the activity of RAS system is an important target 
for discovering new chemical entities against hypertension. Nauclea latifolia exhib-
its antihypertensive activity (Akubue and Mittal 1983) and it was active in our antire-
nin assay. Our antirenin-guided chemical investigation of methanolic extract of 
N. latifolia resulted isolation of five bioactive indole alkaloids. These compounds 
were identified as latifoliamide A-E (88–92) and were moderately active antirenin 
activity with IC50 values of 32.6, 11.3, 95.0, 94.5, and 16.3 μM, respectively. We 
used alkisiren, currently used antihypertensive drug (IC50 = 0.6 nM) as a positive 
control. This compound works by inhibiting the RAS activity (Agomuoh et al. 2013) 
but it has several side effects. It is worthwhile to explore natural products for discov-
ering novel antirenin lead compounds to overcome the hypertension problem as 
natural products have not been explored for this bioactivity.
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In summary, our phytochemical studies on medicinally important plants have 
resulted in the isolation of new bioactive natural products. Structure–activity rela-
tionships studies on bioactive natural products have provided us information regard-
ing the active pharmacophore required for prescribed bioactivity. This information 
will provide a rational for designing new lead compounds against these targets. 
Furthermore, in  vivo evaluation and structure–activity relationships studies on 
potent bioactive compounds are in progress in our lab to determine their potential as 
new pharmaceutical agents.
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Abstract Many of the human needs, including medicines, have been fulfilled by 
nature. Medicinal plants have been a source of myriad natural therapeutic agents. 
Chemically referred to as plant secondary metabolites, each class of these com-
pounds exerts therapeutic effects in different ways. They may act as antioxidants, 
anti-inflammatory, antibacterial, anticancer, and wound-healing agents. Therapeutic 
activities of botanic medicines are dependent on pharmacokinetic profile of these 
compounds. Hydrophilicity and lipophilicity of molecules affect solubility and 
membrane permeability. Similarly, first pass metabolism reduces the circulation 
half-life and, hence, the bioavailability of therapeutic agents. In addition, drug–drug 
interactions may be synergistic or antagonistic and also affect the bioavailability of 
these active pharmaceutical ingredients. These parameters of drugs hamper their 
use clinically. Conventionally used strategies to overcome these challenges are 
micronization, use of surfactants and solvents, and complexation. Recently, 
nanotechnology- based drug delivery systems in the form of nanoparticles, lipo-
somes, nanoemulsions, and bioconjugates have also provided efficient alternative to 
the conventional techniques. Nanocarriers ensure targeted delivery of medicines 
and, hence, can overcome toxicity-related challenges. Besides this, nanocarriers 
ensure intact drug delivery of all sorts of drugs to the target site, thus producing 
efficient outcomes even in smaller quantities. The current manuscript reviews the 
conventional and contemporary technologies for improving the pharmacokinetic 
parameters of natural products.
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1  Introduction

Humans are dependent on mother nature to fulfill their requirements of food, shel-
ter, and clothes. Among the natural resources, plants not only serve these purposes, 
but additionally they have been used to treat ailments since times immemorial. 
Archeologists have found records dating back to thousands of years mentioning the 
use of plant-based treatments in Ebers Papyrus, Latvian folk medicine, Traditional 
Chinese medicine, and Ayurveda, among others. According to Royal Botanic 
Gardens, Kew, UK, there are 391,000 vascular plant species on earth. Of these, 
more than 50,000 species have been reported to be used for medicinal purpose 
(Chen et al. 2016). Many flowering, aromatic, and culinary plant species including 
basil, mint, parsley, chamomile, and ginger are commonly used medically. With 
advances in analytical technology, scientists have been able to successfully extract 
and isolate thousands of natural compounds. Most synthetic and semisynthetic drug 
molecules are based on these phytochemicals. However, the potential adverse 
effects of synthetic medicines shift the focus back to the employment of phytomedi-
cines for medicinal purposes. It has been reported that more than 80% of world 
population uses plant-based medicines to treat their ailments in one form or another 
(Ekor 2014).

The pharmaceutical importance of plants is attributed to the metabolites pro-
duced by them that serve various therapeutic functions in the body. For example, 
polyphenols have antioxidative and antibacterial activity. Curcumin, a polyphenol 
from Curcuma longa, has wound-healing, antidiabetic, and antiobesity activity 
(Rathore et al. 2020). Alkaloids impart anesthetic, anti-inflammatory, cardioprotec-
tive, and antitumor role. Paclitaxel, a plant alkaloid extracted from Taxus brevifolia 
(Pacific yew), is effective against multiple cancers (Zhao et al. 2022). To ensure the 
stability and safe delivery to consumer, phytoproducts are formulated in different 
dosage forms including tablets, capsules, powders, and syrups, among others. 
However, clinical therapeutic efficacy of formulated products based on the pharma-
cokinetic profiles does not align with in vitro results. This chapter will discuss the 
challenges with natural product formulation development associated with their 
pharmacokinetics and recent technologies to overcome them.

2  Phytochemicals and Medicinal Uses

Any chemical compound produced by plant is a phytochemical. The word phyto-
chemical is derived from Greek word “Phyton” meaning “plant.” These are mainly 
the compounds produced by primary and secondary metabolism. Phytochemicals 
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are defined as biologically active plant derived chemical compounds which provide 
health benefits as medicine and nutrients (Prakash et al. 2020). Phytochemicals are 
found in natural food sources like fruits, vegetables, legumes, cereals, and other 
plant-based foods. In plant body, these compounds are involved in various primary 
and secondary metabolic pathways and may help plant to fight against biotic and 
abiotic stressors. Plant’s color, aroma, and flavor also attributed to these 
phytochemicals.

Primary metabolites are those chemical compounds that are involved in plant 
growth, development, and reproduction. Primary plant metabolites include carbohy-
drates, proteins, amino acids, and chlorophylls, among others. While secondary 
metabolites are the plant chemicals that are produced under stress conditions and 
help plants to stand against them. Most of these secondary metabolites have thera-
peutic significance as well and may include compounds including alkaloids, phe-
nols, flavonoids, steroids, and terpenoids. Plant secondary metabolites are reported 
to have anti-inflammatory, immunomodulatory, antidiabetic, anticancer, antimicro-
bial, and wound-healing properties (Tiwari and Rana n.d.).

As potential antimicrobial agent phytochemicals use different ways to kill bacte-
rial cells. Flavonoids are reported to disrupt bacterial cell wall by making pores in it 
(Górniak et al. 2019; Alves et al. 2023). Phenolic compounds in plant extracts may 
stick to cell membrane and change the hydrophobicity. This disrupts the potassium 
channels and K+ leaks out of the bacterial cell (Ergüden 2021). Conversely, alka-
loids intervene with cell wall synthesis and cellular DNA machinery and inhibit the 
protein synthesis (Yan et  al. 2021). Phytochemicals, like naringenin, anacardic 
acids, ursolic acid, and salicylic acid, regulate the genes for quorum sensing and 
inhibit biofilm formation (Asfour 2018). All these mechanisms eventually halt the 
bacterial growth and kill them. Not only the pure compounds but plant extracts also 
show very effective pharmacological activity. Phytochemical-rich extracts of 
Ocimum basilicum showed antimicrobial potential against three fungal species 
including Aspergillus flavus, Aspergillus niger, and Candida albicans, gram- positive 
bacteria including Clostridium difficile, Bacillus subtilis, and Staphylococcus 
aureus, and gram-negative bacteria like Escherichia coli, Salmonella typhi, and 
Klebsiella pneumoniae (Rubab et  al. 2021). Flavonoids from Carex meyeriana 
showed inhibition of Bacillus pumilus, Bacillus subtilis, and Escherichia coli 
(Cheng et al. 2020).

Free radical scavenging ability of phytochemicals, similarly, makes them poten-
tial antioxidants. Free radicals are electron accepting entities that cause oxidation of 
compounds. An imbalance in the generation of these reactive oxygen species (ROS) 
can cause damage to cellular components like carbohydrates, proteins, lipids, and 
DNA, ultimately ensuing cell death. Plant extracts are abundant in natural antioxi-
dants. Camellia sinensis extract have catechins, benzoic acids, cinnamic acids, and 
flavanols that act as potent antioxidants (Falla et al. 2021). Atractylis gummifera 
extract is rich in polyphenols, flavonoids, and tannins that prevent lipid peroxidation 
(Bouabid et al. 2020). Similarly, Ikonnikovia kaufmanniana extract having dihydro-
flavanonol, flavanol, isoflavone, and flavanol skeletons prevents oxidative damage 
of DNA (Baiseitova et al. 2021).
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In addition, phytochemicals induce anti-inflammatory action by modulating 
inflammatory cytokines. Inflammation is a host defense mechanism against cellular 
stressor. Chronic inflammation may lead to complex presentations including auto-
immune diseases, neurodegenerative disorders, and metabolic indications. 
Phytochemicals are known to attenuate proinflammatory cytokines signaling path-
ways including interferon (IFN) α and γ, Nuclear factor κB (NF-κB), mitogen- 
activated protein kinase (MAPK), signal transducers and activators of transcription 
(STAT), and nuclear factor erythroid 2-related factor 2 (Nrf-2). Phenolics, terpe-
noids, and alkaloids are main phytochemicals involved in reducing proinflamma-
tory cytokines in disorders like diabetes, rheumatoid arthritis, and Alzheimer’s 
disease (Shin et al. 2020). Phenolic rich Thymus species have anti-inflammatory, 
anticancer, and antioxidative properties (Afonso et  al. 2020). Curcumin longa 
extracts have established in vitro and in vivo anti-inflammatory, antioxidative, and 
immunomodulatory effect (Memarzia et al. 2021). Therapeutic potential of plant 
phytochemicals also includes anticancer properties. Plant secondary metabolites 
attenuate cell signaling pathways, e.g., MAPK, NF-κB, and ROS to regulate autoph-
agy, apoptosis, and pyroptosis (Zheng et al. 2022). The anticancer potential of poly-
phenols, terpenoids, and alkaloids on NF-κB signaling is well-established as well 
(Chauhan et al. 2022). Punica granatum phytochemicals also have potential appli-
cations in oncology. Their potential role in breast cancer and lung cancer treatment 
has been reported recently (Toda et al. 2020).

Apart from these antineoplastic, anti-inflammatory, and antimicrobial properties, 
plant secondary metabolites play crucial role in wound healing by scavenging ROS, 
cell proliferation, and re-epithelialization (Addis et al. 2020). Wound healing is a 
sequential process of homeostasis, inflammation, proliferation, and remodeling and, 
hence, provides an appropriate target for therapeutic intervention. Curcuma longa 
containing Curcumin that has been effectively used in wound healing. In inflamma-
tory phase, it causes apoptosis of inflammatory cells, reduces ROS, inhibits NF-κB, 
and reduces cytokines (TNF-α and IL-1) to shorten the inflammatory processes. 
During proliferation, it aids tissue remodeling, granulation, and collagen deposi-
tion, hence leading to wound contraction (Urošević et al. 2022). Senna auriculata, 
Piper betle, and Phlomis viscosa leaf extracts have been reported to possess promis-
ing wound-healing properties (Lien et al. 2015). Chingwaru and colleagues have 
recently identified 20 plant species rich in flavonoid, alkaloid, phenol, and saponin 
content to promote wound healing (Chingwaru et al. 2019). Table 1 provides a brief 
overview of some of the phytochemical classes and their therapeutic applications.

3  Pharmacokinetic Parameters of Natural Products

Though natural products have been used to treat ailments since the start of civiliza-
tion, scientific evidence on their efficacy had been lacking. Modern analytical tech-
nologies aided in determining how much and how fast the administered product is 
absorbed in body. Further elucidation of metabolism and drug excretion helped to 
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link in vitro data with clinical results. The therapeutic activity in the human body is 
dependent on its pharmacokinetic parameters even if the drug is highly potent. 
Pharmacokinetics (PK) deals with the characterization of drug in terms of absorp-
tion, distribution, metabolism, excretion, and toxicity (ADMET). Absorption or 
bioavailability of a product largely depends on physiochemical properties. Lipophilic 
drugs easily pass through the lipid membrane of the cells, but solubility is a major 
concern for lipophilic drugs. Hydrophilic drugs are more soluble, but passing 
through biomembrane is of concern. Therefore, an adequate balance of solubility 
and permeability of drug molecules is essential.

Regarding the natural products, plant phenolic compounds, for instance, are 
divided into soluble and nonsoluble categories based on their solubility and interac-
tion with the solvents. Soluble phenolic compounds are flavonoids, simple pheno-
lics, and hydrolysable tannins, while nonsoluble phenolic compounds include 
phenolic acids and condensed tannins. Curcumin, a polyphenolic, has diverse phar-
macological activity, but its poor bioavailability is a major challenge in its general 
acceptability. Poor bioavailability is attributed to its hydrophobic nature, rapid 
metabolism, and low absorption (Sohn et al. 2021). Quercetin is a flavonoid having 
promising therapeutic activities as an antioxidant, antibacterial, anticancer, and 
antiaging agent (Yang et al. 2020). Apart from their effect as individual therapeutic 
entities, the combined administration of curcumin and quercetin can provide a syn-
ergized anticancer effect (Mansourizadeh et al. 2020). Contrarily, combining two 
drugs may hinder each other’s activity, for example, 9-epi-artemisinin and artemisi-
tene both are components of Artemisia annua, but they antagonize one another 
against Plasmodium (Caesar and Cech 2019).

Among the pharmacokinetic parameters, drug distribution is referred to the 
availability of a pharmaceutical agent to different tissues and organs. Most of the 
drugs do not distribute evenly in the body tissues. Water-soluble drugs prefer body 
fluids, while lipophilic drugs tend to stay in fatty tissues or organs. Digoxin, for 
example, binds to skeletal muscles while its main target is myocardium. Such non-
specific bindings hinder actual efficacy of product (Ziff and Kotecha 2016). 
Metabolism of a product converts it into more excretable products to aid the elimi-
nation from the body. Gut bacteria and drug-metabolizing enzymes mediate the 
metabolism of therapeutic agents. Metabolism of a compound, generally, occurs in 
2 phases. Primarily occurring in the liver, the phase I, enzymatic oxidation or reduc-
tion of drug adds polar groups. Commonly used enzyme in phase I belongs to cyto-
chrome P-450 family. Conversion of paclitaxel to 6α-hydroxy paclitaxel may be 
considered as an example. Sometimes, phase I metabolism converts drug into its 
active form, such drugs are known as “prodrugs.” For example, codeine and heroin 
weakly bind to their receptors, but their metabolizing into morphine produces anal-
gesic effects. In phase II, enzymatic conjugation of polar groups to nonpolar com-
pounds converts it into large molecular weight yet less toxic molecule. 
Glutathione-S-transferases conjugate glutathione with many therapeutic compounds 
to make them less toxic compound so that they can be easily excreted from the body 
(Kaur et al. 2020).

Metabolizing makes a drug more hydrophilic to eliminate from body. Though the 
main elimination organ is kidney, excretion through other means including bile, 
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sweat, breast milk, saliva, and lungs also occurs. Polar metabolites get filtered in 
kidney and are generally not reabsorbed, while nonpolar drugs absorb back and get 
stored in fatty tissues (Garza et al. 2022). If a drug is not eliminated appropriately, 
it can be toxic to the body. It is a general perception that natural products are safe. 
However, any natural product itself may contain toxic substances like pyrrolizidine 
alkaloids that can cause liver damage, while aristolochic acid can cause renal toxic-
ity (Gertsch 2011). Moreover, sometimes interaction among natural products is 
harmful and can lead to allergy, serious illness, or high blood pressure. Optimizing 
these diverse contributors of pharmacological action needs to be considered while 
developing a safe and effective natural product-based formulation.

4  Challenges in Natural Product Formulation

A natural product formulation may be delivered through any of the available dosage 
forms including capsules, tablets, injection, cream, or gel to ensure safe and effec-
tive use by patients. Adequate formulations keep the product stable under diverse 
environmental conditions. Oral formulations are generally available in the form of 
tablets, infusions, decoctions, tinctures, teas, syrups, and capsules. Major challenge 
in the oral dosage forms of natural products is their bioavailability. Active ingredi-
ents in formulation may be poorly soluble in water or less permeable to biological 
membranes. Diterpenoid paclitaxel, for instance, obtained from Taxus brevifolia, is 
a broad spectrum cytotoxic therapeutic agent belonging to class IV of biopharma-
ceutical classification system (BCS) (Jahadi et  al. 2021). Compounds with low 
membrane permeability and less water solubility are classified in this category. 
They do not easily reach the receptors for therapeutic effects and become inactive 
before reaching to systemic circulation because of enzymatic breakdown or highly 
acidic pH in gastrointestinal tract. Another example of poor bioavailability is an 
alkaloid, berberine isolated from Berberis vulgaris. Its clinical applications in can-
cer, diabetes, hypertension, and polycystic ovarian syndrome make it a pharmaceu-
tically valuable natural product, but its poor bioavailability of 0.68% only poses a 
major challenge in its clinical use. Several mechanisms of poor berberine bioavail-
ability have been summarized by Khoshandam et al. and include demethylenation, 
reduction, and cleavage of the dioxymethylene in phase I. Phase II reactions include 
glucuronidation, sulfation, and methylation (Khoshandam et  al. 2022). Self- 
aggregation of berberine in intestine and stomach reduce its solubility in the gastro-
intestinal tract and hinder its efficacy. Rapid demethylation of berberine in liver and 
fast excretion of its metabolites in urine, feces, and bile further reduces its bioavail-
ability (Feng et al. 2019).

Another natural product, vincristine, from Catharanthus roseus, also has major 
problems associated with its solubility, the stability within the systemic circulation 
and overall toxic effects. All of these factors largely affect the bioavailability of the 
drug molecule. Many natural compounds such as flavonoids get extensively metab-
olized by the microsomal enzyme system, which leads to early clearance of flavo-
noids. Podophyllotoxin and its derivatives exhibit toxic effects which led to their 
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limited applicability in clinical settings. Many of the naturally occurring potential 
drug molecules are known to undergo substantial metabolism through methylation, 
sulfation, and other metabolic events. First pass metabolism prior to entering the 
systemic circulation further decreases the bioavailability of the natural drugs. 
Similarly, some aglycones of flavonoids have difficulty in dissolution as well as in 
crossing the membranes due to their unique chemical structures, resulting in 
decreased availability at the intended site of action and subsequent less therapeutic 
activity (Kashyap et al. 2021). Many flavonoids also show unacceptable pharmaco-
kinetics due to their enhanced plasma protein binding. For example, quercetin, an 
abundant dietary flavonoid, has strong affinity to human serum albumin. Some 
polyphenolic compounds after their administration are absorbed in the small intes-
tine to a little extent, while the rest is metabolized by the microflora of the large 
intestine. Digoxin and glycyrrhizin are metabolized by intestinal microflora into 
metabolites that hinder their bioavailability. All of these pharmacokinetic factors 
lead to unacceptable ADMET profiles. Figure 1 summarizes the pharmacokinetic 
challenges faced in developing an effective formulation of natural products.

These challenges require the incorporation of novel drug delivery systems con-
taining these natural products to ensure their targeted delivery at the site of action 
(Kashyap et  al. 2021). Nanocarriers such as metallic nanoparticles, liposomes, 
nanotubes, nanowires, niosomes, and nanoneedles could be potential options for 
overcoming all the challenges associated with the poor pharmacokinetics of the 
natural products. Incorporation of phytoconstituents and other natural products in 
contemporary delivery systems can provide the benefits of enhancing the bioavail-
ability and stability in circulation along with better dissolution and permeability 
profiles (Teng et al. 2023). Natural origin chemicals such as artemisinin, resveratrol, 
quercetin and curcumin have been studied by formulating them as nanocarriers, and 
they have provided very promising results in terms of improvement in ADMET 
profile as well as enhanced therapeutic efficacy (Idrees et al. 2020).

5  Formulation Technology Aspects of Natural Products

To overcome the technical challenges associated with natural product formulation, 
several strategies have been employed by researchers. Ever advancing field of nano-
technology is replacing the conventional methods to enhance the bioavailability, 
stability, solubility, distribution, and therapeutic potential of natural products. 
Conventional approaches to overcome PK challenges of natural products are size 
reduction, addition of surfactant/solubilizing agents, salt formation, and solid dis-
persion. Nanoparticles, nanoemulsions, dendrimers, liposomes, micelles, phyto-
somes, coordination polymer, and bioconjugates of natural products are targeted 
drug delivery systems that have recently been developed to improve the efficacy of 
phytomedicines. These approaches have been discussed to present the avenues that 
can be exploited for addressing the issues associated with the ADMET of natural 
products.
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Fig. 1 Pharmacokinetic challenges of natural products

5.1  Conventional Approaches

5.1.1  Size Reduction

Natural products are usually large sized molecules; this inherent property reduces 
the solubility and ultimately bioavailability. Micronization is a technique of reduc-
ing size of such pharmaceutical products to the micrometers range. Reduced size 
increase the surface area of molecules leading to increased dissolution that favors an 
increase in bioavailability of the product. Salvia miltiorrhiza is a therapeutical herb, 
the extract of which is used in traditional Chinese medicine (TCM). Its extract has 
a mixture of both hydrophilic and lipophilic compounds. Tanshinones are the main 
lipophilic diterpenoids that have pharmaceutical importance. However, their low 
bioavailability in oral dosage diminishes their clinical use. Reduction in size in the 
form of micronized tanshinones powder increases the surface area and improves the 
bioavailability. Granular powder of S. miltiorrhiza had greater plasma concentration 
(Cmax) and a broader area under curve (AUC) that indicates improved bioavailability. 
Half-life of S. miltiorrhiza has been found to improve in case of granular powder as 
compared to simple extract (Salehi et al. 2021; Muzammil et al. 2023).
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5.1.2  Surfactant and Solubilizing Agents

Hydrophobic metabolites depend on surfactants and solvents to get dissolved in 
water. One such example is paclitaxel. Its brand Taxol® sold for cancer has 
Cremophor® as a surfactant. While docetaxel’s marketed formulation Taxotere® 
uses hydroalcoholic solvent mixture with Tween-80 as a surfactant (Paroha et al. 
2020). Tween 80 is also employed as a surfactant for digoxin to improve its solubil-
ity. In gastrointestinal tract, P-glycoprotein (P-gp) limits digoxin’s permeability. 
Nonionic surfactant Tween-80 also inhibits P-gp and makes digoxin bioavailable 
while producing significant results in vivo (Rathod et al. 2022).

5.1.3  Salt Formation

Ionizable natural compounds dissolve at a specific pH.  Among phytomedicines, 
weak acids and weak bases become well soluble by the modification of the pH of 
the solution. Different acids or bases are used as pH modifiers, e.g., lactic acid and 
magnesium trisilicate. Acidic and basic salts of phytochemicals make them more 
acceptable pharmaceutically. Berberine with no ionizable groups is sold as berber-
ine chloride and can change to different hydrates according to humidity. To make 
berberine more stable, cocrystals of berberine chloride with citric acid and fumaric 
acid are developed that increase the solubility and stability of berberine (Lu 
et al. 2019).

5.1.4  Polymer Complexation

Conjugating the active ingredient with a polymer can also help in improving the 
solubility and, hence, absorption profile of the phytochemicals. Cyclodextrin are 
ring shaped oligosaccharides in which the sugar units are joined by α-1,4 glycosidic 
linkage. These are cone shaped molecules with inner side of cone being hydropho-
bic while outer side is hydrophilic. Hydrophilic covering of cyclodextrin increases 
the solubility of lipophilic molecules. Curcumin, an unstable and hydrophobic drug, 
is loaded in a conjugate of β-cyclodextrin and methacryloyl. This drug encapsula-
tion improves its stability and solubility. Increased therapeutic activity, deeper pen-
etration, biocompatibility, and degradation in vitro and in vivo can, thereafter, be 
observed (Zhou et al. 2020). Mitosis inhibitor PTX is a potential antitumor candi-
date that presents applications in breast cancer, lung cancer, liver cancer, prostate 
cancer, ovary cancer, and cervical cancer therapy. However, its water-insoluble 
nature limits its efficacy in vivo. PTX loaded in cyclodextrin in the form of nanopar-
ticles increases its bioavailability by 80% in breast cancer cells (Almeida et  al. 
2022; Velhal et al. 2022).
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5.2  Nanotechnological Approaches

5.2.1  Polymer/Lipid Nanoparticles

A phytoproduct Cuscuta chinensis extract has a higher content of water-insoluble 
flavonoids and lignans that hinder its bioavailability. To overcome the solubility 
issues, nanoparticles of C. chinensis have been prepared and tested in  vivo that 
effectively prevented hepatotoxicity in rats (Akbar 2020). Diminished pharmaco-
logical activity of Salvia miltiorrhiza extracts limits its clinical effectiveness. 
Synthesized nanoparticles of S. miltiorrhiza showed high antioxidative potential 
and oral availability (Mishra et  al. 2022). Genistein, the chief antioxidant in the 
extract, had poor bioavailability but in the form of nanoparticles it increased by 
241.8%. Maerua oblongifolia, another therapeutic plant, has active constituent 
maerua that otherwise has poor solubility, and its bioavailability limits its practical 
use. Maerua oblongifolia nanoparticles, however, showed controlled release with 
superior bioavailability (Nisar et al. 2021).

5.2.2  Nanocapsules

Nanocapsules are hollow shells encapsulating a therapeutic agent. Drug delivery 
through nanocapsules improves the pharmacokinetic parameters of a drug. A. annua, 
a powerful antimalarial therapy, undergoes first pass metabolism and has a very 
short half-life. To achieve its sustained release, nanocapsules have been developed 
and evaluated in vivo that increased the half-life and delayed the drug clearance of 
the bioactive compounds. Increased hydrophilicity and sustained release of 
Artemisia were also observed in nanocapsules and liposomes (Lyu et al. 2021; Rego 
et  al. 2022). Centella asiatica, another medicinal plant, finds its applications in 
dermatology. It initiates collagen synthesis and ROS scavenging that makes it a 
wound healer, skin moisturizer, and antiwrinkle agent. But poor stability and bio-
availability limit its use. To improve its physical stability and bioavailability, C. asi-
atica extract has been encapsulated in polymeric colloidal nanocapsules and tested 
for entrapment and stability. Encapsulated C. asiatica extract was found to be 97.7% 
entrapped and stable for 60  days under harsh environmental conditions (Perez 
et al. 2020).

5.2.3  Nanoemulsions

Nanoemulsions are prepared for increased permeability of hydrophilic drugs for 
dermal applications. Emulsions are prepared by mixing two immiscible liquids with 
the help of a surfactant. These are best carriers of irritants and lipoidal compounds 
because interior of emulsion has lipids. Camptothecin, a natural antitumor, has lim-
ited applications because of poor solubility, high toxicity, and rapid clearance. 
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However, oral delivery of camptothecin in the form of nanoemulsion increases its 
bioavailability up to 17-folds (Galatage et al. 2022). Gingerol is phenolic compound 
isolated from ginger that has therapeutic efficacy against cerebral ischemia, but its 
unfortunate solubility and absorption limit its use. Ahmad et al. tried a 6-gingerol 
nanoemulsion for nasal permeation and were able to successfully achieve improved 
intracranial bioavailability of the compound (Ahmad et al. 2021).

5.2.4  Dendrimers

Dendrimers are branched polymeric macromolecules that have central cavities to 
aid the carrying of drugs to the target site. They can efficiently carry hydrophobic 
molecules such as ursolic acid. Ursolic acid is a triterpenoid with remarkable anti-
bacterial, antioxidative, antidiabetic, and neuroprotective activities. However, its 
low solubility, less stability, and inappropriate absorption decrease its efficacy. To 
increase its solubility, Silvana Alfei and colleagues recently prepared polyester- 
based dendrimers carrying ursolic acid. Consequential solubility was increased by 
up to 392 times more than free ursolic acid with sustained release (Alfei et al. 2021; 
Lima et al. 2022).

5.2.5  Phytosomes

Phytosomes are phospholipid complexes containing phytochemicals. Compounds 
from plant origin interact with hydrophilic parts of phospholipids by hydrogen 
bonding. Hydrophilic phytomedicines become part of the phospholipid membrane 
and pass through the cell membrane thereby becoming available at the target site. 
Curcumin phytosomes, for example, showed increased bioavailability, anti- 
inflammatory, and antioxidative properties (Al-Kahtani et  al. 2020) (Baradaran 
et al. 2020) (Barani et al. 2021). Phytosomes of other medicinal plant extract, e.g., 
green tea, panax ginseng, olive oil, maidenhair tree, milk thistle, and grape seeds 
proved to have an enhanced pharmaceutical activity in comparison to free drug. 
Similarly, silymarin phytosomes showed high antihepatotoxic activity than silyma-
rin alone (Shriram et al. 2022).

5.2.6  Micelles

Micelles are nanostructures that have hydrophilic shell and lipophilic core. Micelles 
can carry macromolecules for sustained release to ensure enhanced bioavailability. 
Paclitaxel micelles have been proven to possess enhanced antitumor efficacy as 
these micelles change the PK properties of paclitaxel. In the form of micelles, PTX 
became more soluble, more permeable, more bioadherable, and resistant to liver 
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Fig. 2 Formulation interventions to overcome pharmacokinetic challenges

metabolism. These properties aided in increasing the bioavailability by around 3.8 
times more than Taxol® (Yang et al. 2020). Curcumin loaded in  chitosan/lignosul-
fonate micelles increased thermal and pH stability of curcumin, increased retention 
by 6.6 folds, and increased antioxidative potential (Lin et al. 2022) (Fig. 2).

6  Conclusion and Future Perspectives

Phytomedicines may be considered as the nature’s gift to humans. Use of plant 
secondary metabolites in the form of pure compounds or extracts needs a targeted 
delivery system to ensure their safe and effective delivery to the site of action. 
Targeted delivery and bioavailability of medicine define its efficacy in  vivo. 
Traditionally used natural product formulations face challenges related to solubility, 
permeability, metabolism, and bioavailability. Use of herbal nanomedicines can be 
an effective alternate to conventional approaches to increase therapeutic outcomes. 
Nanodrug carriers ensure drug bioavailability by overcoming pharmacokinetic 
challenges. The developments in the field of nanotechnology can, in future, pave the 
way to the development of phytonanotherapeutics that can be combined with a tar-
geting molecule to ensure on-site delivery and reduced cytotoxicity. Furthermore, 
nanoencapsulation of drugs in natural polymers can avoid immune response. To 
translate these outcomes in clinical practice, further studies on the pharmacokinetic 
profiling of phytonanomedicines shall be carried out.
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Antioxidants in Oral Cavity Disorders

Renata Duarte de Souza-Rodrigues, Wallacy Watson Melo Pereira, 
and Rafael Rodrigues Lima

Abstract Natural products can be used as therapeutic agents for several types of 
diseases, including those that affect the oral cavity. Among these products, 
antioxidants stand out, which are substances capable of delaying or neutralizing 
substrates generated from chemical and biochemical processes, in addition to 
modulating inflammatory and bacterial processes commonly present in oral diseases 
such as caries and periodontitis. Caries is the most common disease of the oral 
cavity, in which it develops from dental biofilm composed of different microorganisms 
adhered to the tooth surface. Periodontitis is a chronic inflammatory disease linked 
to the destruction of tooth support structures as a result of the accumulation of 
bacterial biofilm. Several studies demonstrate that grape seed extract, green tea, 
vitamin C, lycopene, and resveratrol have important antioxidant, antimicrobial, and 
anti-inflammatory properties capable of reducing the production of proinflammatory 
cytokines, thus preventing the appearance of these diseases or their development. 
The purpose of this chapter is to present the antioxidant effects of natural products 
on diseases of the oral cavity, caries and periodontitis.

Keywords Natural products · Antioxidants · Therapeutic · Oral cavity · Caries · 
Periodontitis · Green tea · Vitamin C · Lycopene · Resveratrol

1  Introduction

Natural products can be used as basic raw material for new therapeutic agents. In 
dentistry, one of the main research topics with these products is the prevention and 
therapy of oral diseases. Among these products, antioxidants can be mentioned. 
According to Kaur et  al. (2016), antioxidant is any substance that is capable of 
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significantly delaying or preventing the oxidation of a substrate as long as it is in 
concentrations lower than that of it. In other words, Yang et  al. (2018) define 
antioxidants as molecules that can act to reduce and neutralize the products caused 
by a wide range of chemical and biochemical processes, which are called reactive 
oxygen species (ROS). When used alone or in combination effectively, antioxidants 
can provide natural protection against exposure to these free radicals or neutralize 
them in disease states. Several compounds biologically necessary for the body have 
important antioxidant properties, such as vitamins, minerals, enzymes, hormones, 
as well as food supplements and herbal medicines (San Miguel et al. 2011).

Some studies have tested in vitro each antioxidant separately, and some of these 
can modulate inflammatory, carcinogenic, and bacterial processes. Nonetheless, 
Yang et  al. (2018) point out that the real effect of an antioxidant can only be 
evaluated taking into account some factors, such as its bioavailability, the 
concentration of the compound that can effectively reach a specific tissue, 
cytotoxicity, and whether this antioxidant can perform the same function obtained 
in vitro.

In this chapter, we will present the role of main antioxidants studied in two com-
mons oral diseases: dental caries and periodontitis.

2  Antioxidants in Caries

Dental caries is one of the most common diseases that affect the oral cavity. 
Machiulskiene et al. (2020) define caries as “a biofilm-mediated, diet modulated, 
multifactorial, non-communicable, dynamic disease, that results in mineral loss of 
dental hard tissues. It is determined by biological, behavioral, psychosocial and 
environmental factors.” Even today, dental caries remains a public health problem. 
So, preventing this disease remains one of the greatest challenges of dental practice. 
From this perspective, many products have been sought that can prevent it. To 
understand how antioxidants can act on caries, it is necessary to briefly understand 
how it develops.

The development of caries is associated with the formation of dental biofilm, a 
complex three-dimensional structure composed of different microorganisms 
adhered to the tooth surface and embedded in an extracellular polymeric matrix. 
The bacteria Streptococcus mutans (S. mutans) is identified as the primary etiologic 
agent, and it performs an important role in the formation of oral biofilm. S. mutans 
has some cariogenic properties, for example ability to adhere to solid surfaces, 
colonize the oral cavity, and survive the acidic condition of the oral cavity. Also, 
S. mutans can leads to acidic destruction and demineralization of the tooth enamel, 
and consequently, inducing dental caries by the carbohydrate producing acidic 
metabolites. S. mutans is capable of producing an extracellular enzyme responsible 
for the formation of glucan from sucrose from the diet, which is called 
glycosyltransferase B. The function of this synthesized glucan is to promote the 
adhesion of S. mutans to the tooth enamel, and even, the adhesion of other 
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microorganisms to each other, which causes increased protection against mechanical 
forces and various antimicrobial agents (Machiulskiene et  al. 2020; Zayed 
et al. 2021).

Although dental caries has well-established prevention and treatment protocols 
over the last few decades and antioxidants are not actually able to treat it, the effects 
of these agents have shown promise in modulating both the prevention and 
progression of this disease. Below two antioxidants most commonly studies in the 
prevention and treatment of caries will be described.

2.1  Grape Seed Extract

Grape seed extract (GSE) is rich content of proanthocyanidins (PACs) that have 
hydrophobic and hydrophilic properties able to irreversibly attach to minerals, 
proteins, and carbohydrates (Delimont and Carlson 2020). As natural antioxidants, 
free-radical scavengers, and a bioflavonoid, PACs contains a benzene–pyran–
phenolic acid molecular nucleus, that is named as flavin. Also, PACs are a mixture 
of monomeric flavanols, oligomers including the so-called oligomeric 
proanthocyanidins; and polymers, known as catechins, a scavenging free radical 
essential for calcium absorption, epicatechin, and epicatechin-3-O-gallate (Xie 
et al. 2008; Pavan et al. 2011; Zhao et al. 2014).

In general, GSE plays a role on caries in different ways. At first, it binds to car-
bohydrate substrates, which are indispensable for bacterial proliferation, and 
impairs biofilm formation on the tooth surface. PACs prevent enzymatic activity of 
glucosyltransferase, F-ATPase and amylase. Specifically, the inhibition of 
glucosyltransferase by PACS inhibits the formation of caries, whereas the 
glycosyltransferase polymerizes the glycosyl portion of sucrose and starch 
carbohydrates into glucans. This represents the sucrose-dependent pathway for 
S. mutans to attach to the tooth surface and is necessary for both the formation of 
dental plaque and the development of caries. In addition, adherent glucans contribute 
to the formation of dental plaque, and this acid accumulation results in  localized 
decalcification of the enamel surface, as it facilitates bacterial adhesion to the teeth, 
among themselves and, finally, the accumulation of biofilms (Jawale et al. 2017; 
Delimont and Carlson 2020).

At second, GSE is grouped with collagenases and other enzymes responsible for 
the degradation of the dentin surface that occurs after enamel demineralization and 
performs the crosslinking of collagen-rich dentin surfaces, favoring strengthening 
and remineralization. In cases of artificial root caries lesions experimentally induced 
and treated with a minimally invasive approach, GSE inhibits the demineralization 
and/or promotes the remineralization under dynamic pH cycling conditions, and 
this remineralization effect appears to be distinct from that of fluoride treatment. 
Possibly, it can supports mineral deposition on the superficial layer of the lesion 
and, when they are mixed with the remineralizing solution at pH 7.4, they give rise 
to insoluble complexes, which can combine with the Ca2+ of the remineralizing 
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solution and increase remineralization. Furthermore, through the PA-collagen bond, 
GSE interconnects with the organic portion of root dentin, strengthening the exposed 
collagen matrix. This relationship between PA and matrix proteins appears to 
involve covalent, ionic, hydrogen bonding, or hydrophobic interactions. So, under 
the experimental circumstances, the remineralizing effect of GSE can be attributed 
to changes in the organic matrix, particularly the presence of newly formed collagen 
cross-links (Xie et al. 2008).

In addition to, in an experimental model of caries progression induced by pH 
cycling, it has been hypothesized that GSE maintains the integrity of the dentin 
organic matrix similar to that of the internal carious layer, increasing remineralization 
and decreasing demineralization. The formation of hydrogen bonds between the 
amine, carboxyl, and phenolic hydroxyl groups may be the main mechanism for 
interactions between PA and collagen. The formation of hydrogen bonding between 
amine, carboxyl, and the phenolic hydroxyl groups may be the primary mechanism 
for PA and collagen interactions. Moreover, GSE improves the mechanical properties 
and reduces the degradation rates of sound and caries-affected dentin, indicating the 
ability of this natural agent to bond with and alter dentin collagen. GSE may perform 
a role in decreasing collagen digestibility by inhibiting proteases, such as intrinsic 
metalloproteinases. The collagen network can function as a mechanical barrier to 
acid diffusion and mineral release, as well as facilitate mineral precipitation in the 
remineralization process (Pavan et al. 2011).

2.2  Green Tea

Green tea (GT) is a popular nonfermented product of the Camellia sinensis leaf 
consumed all over the world. Historically, it has been used as a natural medicine for 
oral diseases. GT has a unique composition that includes proteins, carbohydrates 
such as cellulose, pectin, glucose, fructose and sucrose, and lipid components; 
vitamins B, C, E; xanthic bases such as caffeine and theophylline; pigments such as 
chlorophyll and carotenoids; volatile components such as aldehydes and alcohols; 
minerals and trace elements such as Ca, Mg, Cr, Mn, Fe, Cu, Zn, Mo, Se, Na, P, Co, 
Sr, Ni, K, F, and Al. Moreover, GT is a rich source of polyphenols, which has a wide 
range of biological proprieties as antioxidant, antimicrobial, anti-inflammatory, and 
anticarcinogenic. The major polyphenols in GT are epicatechin, epigallocatechin, 
epigallocatechin-3-gallate (EGCG), and epicatechin-3-gallate. EGCG is the most 
abundant polyphenol in GT, accounting for 50% to 70% of total  components (Wang 
and Ho 2009; Narotzki et al. 2012).

Some in vivo and in vitro studies have shown that GT consumption can decrease 
dental caries progression. There are several mechanisms to explain this action. One 
of these is based on a property of the EGCG, that is the strong inhibition it exerts on 
the activity of glycosyltransferase (GTF) in S. mutans, through reduction of the 
expression of three genes (gtfB, gtfC, and gtfD), which encode these enzymes. 
Glycosyltransferases are responsible for converting sucrose to glucan, the building 
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block of the biofilm-associated exopolysaccharide matrix. The activity of α-amylase 
was also inhibited by EGCG. Another explanation relies on the fact the EGCG is 
able to significantly suppress S. mutans-induced biofilm formation; suppress the 
sucrose-induced acid production of S. mutans and pH reductions. But what is the 
importance of these properties mentioned? With every pH unit decrease, the 
solubility of hydroxyapatite of dental enamel raises. So, EGCG given before sucrose 
administration protects tooth enamel, as it induces reduction in acid production and 
impaired the pH decrease by a mechanism inhibiting the enzyme lactate 
dehydrogenase that leads to the formation of lactic acid from pyruvate. Likewise, 
EGCG inhibits the uptake of glucose into bacterial cells and suppresses bacterial 
metabolism and bacterial growth. Finally, it is important to point out that GT has a 
greater effect in both gram-positive and gram-negative bacteria (Narotzki et  al. 
2012; Han et al. 2021; Zayed et al. 2021).

3  Antioxidants in Periodontitis

According Papapanou et al. (2018), periodontitis is “a chronic multifactorial inflam-
matory disease characterized by progressive destruction of the teeth- supporting 
apparatus. When left untreated, it can lead to tooth loss.” Periodontitis is a public 
health problem of high prevalence and one of the most common chronic diseases of 
the oral cavity that is associated with the accumulation of bacterial plaque microor-
ganisms, i.e., oral biofilm (Tóthová and Celec 2017; Castro et al. 2019).

Periodontitis can be influenced by many risk factors, for example, oral hygiene, 
alcohol, stress, smoking, genetic and epigenetic factor, systemic health, nutritional 
status of patient, diabetes, and hormonal alteration status. The main features of 
periodontitis that can be cited are gingival inflammation, clinical attachment loss, 
radiographic evidence of alveolar bone loss, presence of periodontal pocket, and 
gingival bleeding. All these factors impair the quality of life of patients, as they 
interfere with the function and aesthetics of patients (Tóthová  and Celec 2017; 
Kwon et al. 2021).

The role of oxidative stress has been discussed through several hypotheses and 
would be related to the recruitment of predominantly polymorphonuclear leukocytes 
(PMLs) to the site of infection. These cells are responsible for releasing reactive 
oxygen species (ROS). According to Sczepanik et al. (2020), a complex interplay 
between the subgingival biofilm and the magnitude of the host immune response is 
essential to establishing the pathogenesis of periodontitis.

Dietary antioxidants have a defensive and protective effect on the periodontium 
since they can reverse the free radicals (FRs), ROS, and reactive nitrogen species. 
Antioxidants work in periodontal health by three mechanisms: reduce the production 
of cytokines, chemokines, and proinflammatory proteins by leukocytes; neutralize 
ROS, and therefore, both safeguard fibroblasts from toxic ROS-emitting substances 
and assist in reversing the effect of oxidative damage; and facilitates wound healing 
(Kaur et al. 2016).
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Even though there is not enough scientific evidence to indicate the use of antioxi-
dants as a single therapy in periodontal diseases, over the last years, several studies 
have investigated the role of these antioxidants in the health of the periodontium and 
as an adjuvant in the treatment of periodontal diseases. One systematic review (Né 
et al. 2020) evaluated the effect of nutritional intervention in periodontitis, having 
as a reference point the action of macronutrients and micronutrients as modulators 
of pro- and anti-inflammatory cascades. Other systematic review (Varela-López 
et al. 2018) investigated the different vitamin type, periodontal risks, and periodon-
tal health improvement. In the aforementioned study, results were found for various 
types of vitamins, especially for the most studied, vitamin C. Finally, the results of 
another systematic review (Castro et al. 2019) suggest that antioxidants, especially 
lycopene and green tea, may work as good adjuvants in the nonsurgical therapy of 
periodontitis, acting in the modulation of oxidative stress and, therefore, favoring 
the maintenance of periodontal health.

Below, some of the main antioxidant agents most studied and cited in cases of 
periodontitis will be presented.

3.1  Vitamin C

One of the antioxidants that is often associated with periodontium is vitamin C, also 
known as L-ascorbic acid, a potent antioxidant radical that belongs to the scavenging 
group of antioxidants. It also scavenges free radicals and possesses antioxidant and 
immune-modulatory properties, which can control excessive ROS produced. 
Vitamin C supports the bactericidal activities of PMLs and macrophages and also 
raises the synthesis of nitric oxide. The supplementation of this vitamin can mitigate 
the production of proinflammatory cytokines in infected periodontal tissue, and 
therefore, attenuate gingival oxidative stress. In general, patients with periodontal 
disease ingest little Vitamin C and therefore have low blood levels of this vitamin 
(Tada and Miura 2019; Aytekin et al. 2020; Fageeh et al. 2021).

Finally, vitamin C can contribute to reducing the risk, preventing and slowing 
down the rate of progression of periodontal disease. This last property seems to be 
associated with the fact that, in vitro, vitamin C inducing, even in the absence of 
other osteogenic agents, the osteogenic differentiation, and maturation of periodon-
tal ligament (PDL) progenitor cell (Yan et al. 2013).

3.2  Lycopene

Another antioxidant commonly used as an adjuvant approach to nonsurgical peri-
odontal therapy is lycopene, a most efficient biological hydrocarbon carotenoid and 
one of the primary effective natural antioxidants in the diet present. It is a free radi-
cal scavenger that exhibit highest physical quenching rate with singlet oxygen and 
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is able to reverses the DNA damage promoted by hydrogen peroxide. According to 
Di Mascio et al. (1989), lycopene is “two times more effective than β-carotene, 100 
times more potent than α-tocopherol and 47 times stronger than vitamin E” (Tripathi 
et al. 2019).

As suggested by Castro et al. (2019), the main biological effects of lycopene are 
related to its antioxidant and nonoxidizing actions, such as anti-inflammatory and 
cell signaling activities. The first, that is, antioxidant activity, is associated with 
binding to ROS through three different mechanisms, namely, transfer of electrons 
and hydrogen atoms or formation of adducts. It is also associated with the scavenging 
of other free radicals, which causes a reduction in intracellular and extracellular 
ROS levels, less MDA formation in plasma and tissue, an increase in glutathione 
(GSH) levels and in the hepatic activities of GSH-Px, SOD, and CAT. Finally, it is 
important to highlight that it prevents NF-κB activation, DNA fragmentation, 
caspase-3 activation, and cytochrome c release; activates the factor 2 (Nrf2)/HO-1 
pathway related to NF-E2 p45; and activates kinases that release and translocate 
Nrf2 to the nucleus.

3.3  Green Tea (GT)

GT has antibacterial and antifilm properties; besides, it has antioxidant properties 
and can act to reduce the risk or control gingival inflammation. Melo et al. (2021) 
highlight that for the treatment of periodontitis, sachets for infusion, HPC 
(hydroxypropyl cellulose) strips, gel, and toothpastes can be used.

As mentioned before, the main active ingredients of GT are polyphenols, most of 
which are catechins (flavan-3-ols) with greater antioxidant activity than vitamins C 
and E. But how polyphenols and catechins can exert their antioxidant function? The 
first, i.e., polyphenols, through enzymes with antioxidant action, such as glutathione 
S-transferase and superoxide dismutase. Thus, they can not only inhibit growth, cell 
adhesion, and virulence factors by periodontal pathogens, but also restore alveolar 
bone. In turn, catechins can act by binding to iron and copper ions; preventing the 
activation of redox-sensitive transcription factors, suppressing nitric oxide synthase, 
cyclooxygenase 2 (COX-2), lipoxygenase 2 (LOX-2), and xanthine oxidase; and 
inhibiting periodontal pathogens and preventing periodontal tissue destruction. It is 
worth noting that GT also contains other antioxidants, such as carotenoids, ascorbate, 
and tocopherols (Kaur et al. 2016; Tripathi et al. 2019; Gartenmann et al. 2019).

3.4  Resveratrol

Resveratrol (3,5,4′-trihydroxystilbene) is a pleiotropic molecule, antifungal plant- 
derived substance, polyphenol not flavonoid stilbene, that is found in red wine, pea-
nuts, fruits like apples, vegetables, and berries. It has various biological effects, such 
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as antioxidant, anti-inflammatory, antiaging, anticancer, antimicrobial, cardiopro-
tective, and neuroprotective properties. It was described as a scavenger of superox-
ide radicals, hydroxyl radicals, and peroxynitrite (Corrêa et al. 2018; Andrade et al. 
2019; Kugaji et al. 2019).

A systematic review (Andrade et al. 2019) investigated the effects of resveratrol 
administration on periodontal disease control in preclinical studies and concluded 
that resveratrol treatment can prevent periodontitis progression, possibly by 
modulation of oxidative stress and inflammatory profile.

Also, Resveratrol can prevent biofilm formation and suppress the expression of 
virulence factors from Porphyromonas gingivalis (P. gingivalis), the main one 
involved in periodontal disease. But how specifically can Resveratrol inhibit biofilm 
formation? It can inhibit biofilm formation through some mechanisms: by blocking 
the expression of the Fimbriae gene and, therefore, bacterial adhesion and 
colonization; by its antimicrobial activity, with bacteriostatic and bactericidal 
effects; and by inhibiting the expression of the gingipain gene, which prevents 
connective tissue destruction and alveolar bone loss (Kugaji et al. 2019).

Resveratrol plays an important antimicrobial role against periodontal pathogens 
by acting directly on oxidative pathways important for the decrease of local oxidative 
stress, such as the reduction of reactive oxygen species (ROS) and the increase of 
superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), which have 
important enzymatic activity by metabolizing ROS in the region where periodontal 
disease is installed, thus promoting acceleration in the healing process (Ballini et al. 
2019; Tsang et al. 2016).

The response of the organism, on the surface of osteoblasts, against periodontal 
pathogens, promotes the increase of proinflammatory cytokines that promote 
changes in the expression of activating receptor kappa B-factor ligand (RANKL). 
RANKL responds for activating osteoclasts by promoting interaction with the 
activating receptor of nuclear factor kappa B (RANK), thus resulting in the initiation 
of bone resorption present in periodontitis. When the concentration of ROS is at 
high levels, the process of signal transduction begins within the cell, thus resulting 
in autophagy. This process plays a dual role in periodontitis as it promotes cell death 
or blocks apoptosis in infected cells. Furthermore, ROS can influence the activation 
of nuclear signaling factor-κB (NF-κB), causing the elevation of proinflammatory 
cytokines, thus stimulating osteoclast differentiation (Cochran 2008; Liu et al. 2017).

4  Conclusion

The use of natural products such as antioxidants is already a reality in dentistry. 
Several studies prove its effectiveness and its role in the maintenance of oral health. 
Meantime, it is important to point out that some results from the use of them come 
from in vitro experiments and that their use in patients still requires the performance 
of randomized clinical studies. Further studies are necessary to establish some 
parameters for the prescription and large-scale use of it, such as the best way of 
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administration of the antioxidants (diet, infusions, gels, varnishes, toothpastes, 
mouthwash, gum, lozenges, and oral sprays); safe dose; and the time and the 
frequency of application/use of the product. In addition, it is possible that the 
combination of antioxidants is more effective and promotes greater protective and 
therapeutic effects against the damage caused by free radicals to oral diseases than 
the use of antioxidants individually.
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Cotula cinerea as a Source of Natural 
Products with Potential Biological 
Activities

Fatima-Ezzahrae Guaouguaou and Nour Eddine Es-Safi

Abstract Cotula cinerea of the Asteraceae family is a traditional plant which 
grows in desert area. The plant is endowed with various biological activities due to 
the presence of several secondary metabolites. Owing to its use in traditional folk 
medicine and its interesting biological effects, the plant has been subjected to many 
scientific explorations resulting in the publication of a multitude of papers in a wide 
range of scientific fields including phytochemistry, biological activities, and toxi-
cology. The objective of this chapter is to report and gather previous studies on 
Cotula cinerea regarding its botanical description, geographic distribution, bioac-
tive compounds, toxicology, and in vivo and in vitro biological properties. The phy-
tochemical analysis was carried out by several spectroscopic methods, and the 
obtained results showed the richness of this plant in several phytochemicals includ-
ing phenolic compounds, volatile compounds, sesquiterpene lactones, and others. 
Studies on Cotula cinerea showed the harmlessness of this plant since its tested 
extracts were not toxic even at higher doses. The evaluation of the pharmacological 
activities of the essential oil and the extracts of Cotula cinerea have shown that the 
plant has significant antibacterial, antifungal, antioxidant, anticancer, analgesic, 
anti-inflammatory, and antipyretic effects. This review showed that even if a number 
of publications have been reported on the plant, research on Cotula cinerea remains 
an open research area of good interest. It is hoped that the information presented 
here will be beneficial and useful for further studies that will eventually lead to the 
development of therapeutic agents from this plant.
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1  Introduction

For several years, plants have played a major role in the art of healing throughout 
the world. The use of medicinal plants or herbal preparations is increasingly popu-
lar. Thus, according to estimates, 80% of the world’s population depends mainly on 
traditional medicine (WHO 2012). The use of traditional practices based on medici-
nal plants is explained by several reasons such as the high cost of pharmaceutical 
products, the sociocultural habits of the populations, the need to have therapeutic 
options for resistant pathogens, and the existence of diseases for which there is no 
effective treatment (Duke et al. 1993; Cox and Balik 1994).

Medicinal plants are extremely numerous. Indeed, estimates indicate that more 
than 13,000 species of medicinal plants are used as traditional remedies by various 
cultures around the world (Tyler 1994). Plants used in traditional medicine contain 
a wide range of chemical substances and compounds, such as phenolic compounds 
(phenolic acids, flavonoids, quinones, coumarins, lignans, stilbenes, tannins, etc.), 
nitrogen compounds (alkaloids, amines, etc.), vitamins, terpenoids, and certain 
other endogenous metabolites. Polyphenols are known for their significant antioxi-
dant activities, as they can act by direct scavenging of ROS (reactive oxygen spe-
cies) (Halliwell and Cross 1994). They are also present as ingredients in several 
cosmetic preparations used in the treatment of cellular aging and skin protection 
(Menaa et al. 2014). Thus, the chemical composition of plants can be used to treat 
chronic and infectious diseases.

According to the World Health Organization (WHO), approximately 80% of the 
world’s population still uses herbal medicines to treat several diseases (World 
Health Organization 2008).

In order to contribute to the valorization of medicinal plants, we have chosen to 
establish this review on the Cotula cinerea plant which is distributed in the desert 
regions especially in North Africa.

Cotula cinerea belongs to the Asteraceae family and is widely distributed in 
sandy and desert soils (Ahmed et al. 1987). It is known as “Gartoufa” and is used in 
traditional Moroccan medicine used to treat colic, cough, diarrhea, migraine, head-
aches, and digestive disorders (Bellakhdar 1997).

Moreover, several studies on Cotula cinerea have been based not only on the 
species itself but also on several variations which make the difference of the biologi-
cal effects namely the geographical origin, the climate, the parts of the plant used, 
the extraction solvent and the harvest period.

Previous work done on this plant has scientifically proven several biological 
properties and effects (Fig. 1), such as antibacterial, antifungal, antioxidant, anti-
cancer, anti-inflammatory, analgesic, and antipyretic activities.

The study of essential oil and extracts from different parts of Cotula cinerea 
showed the presence of several chemical classes, including phenolic acids, flavo-
noids, and terpenoids (Mekhadmi et  al. 2023; Chlif et  al. 2022; Guaouguaou 
et al. 2020b).

On the other hand, studies on the chemical composition of Cotula cinerea have 
also been analyzed to suggest this species as a new source of medicines, thus justi-
fying its traditional uses.
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Fig. 1 Pharmacological 
properties of Cotula 
cinerea

In this review, we tried to find the link between the ethnomedicinal use, the phar-
macological properties tested, and the chemical composition which could be the 
origin of its biological properties.

2  Research Methodology

The literary synthesis on Cotula cinerea botanical description, traditional medicinal 
application, chemical composition, biological activities, and toxicity of Cotula 
cinerea extracts have been collected, analyzed, and summarized in this review.

Scientific search engines such as PubMed, Science Direct, Springer Link, Web of 
Science, Scopus, Wiley Online, and Google Scholar were used to collect all pub-
lished papers on this species.

In this work, many key words and scientific terms have been used such as Cotula 
cinerea, essential oil, extracts, chemical composition of Cotula cinerea, acute toxic-
ity of Cotula cinerea, analgesic effect of Cotula cinerea, antioxidant effect of Cotula 
cinerea, cytotoxic activity of Cotula cinerea, antimicrobial activity of Cotula cine-
rea, antipyretic activity of Cotula cinerea, and anti-inflammatory activity of Cotula 
cinerea. All published papers containing the name Cotula cinerea have been cited 
in this review. To identify other relevant articles, reference lists of retrieved articles 
were also searched. All data has been discussed in the text and organized in tables 
to summarize.

3  Results and Discussion

3.1  Botanical Description

The Cotula cinerea is a Saharo-Arabic species common throughout the Sahara, in 
somewhat sandy soils, being very aromatic is used to flavor tea. It is a woolly- 
looking annual plant with prostrate stems and golden-yellow flowers (Fig. 2). Its 
stems are 10 to 40 cm in diameter, laid down, and then straightened (Ozenda 1993; 
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Fig. 2 General morphology of Cotula cinerea (Ozenda 1967)

Benhouhou 2005). The leaves are woolly, whitish, and thick, and the upper parts are 
divided into three to five obtuse. Concerning the flowers, they are flower heads 6 to 
10 mm in diameter, woolly involucre, tubular, brown in button then golden yellow 
when they open (Ozenda 1993; Benhouhou 2005). Brocchia cinerea is the synonym 
of Cotula cinerea and has several vernacular names such as Chihia, Chouihia, 
Robita, and Al gartoufa (Quezel and Santa 1962; Dupont and Guignard 2004).

3.2  Geographic Distribution

The Cotula cinerea is a xerophytic plant that grows in desert conditions and requires 
an average annual rainfall of 100 mm. The Cotula cinerea species is widely encoun-
tered throughout the Sahara (Djellouli et al. 2013). It grows in ergs and little sandy 
soils. Geographically, it is widely distributed in North Africa, particularly in the 
Saharan regions of Morocco, Algeria and Egypt (Ahmed et al. 1987; Boulos 1983; 
Ozenda 1993; Markouk et al. 1999a, b).

3.3  Ethnobotanical Use

The ethnopharmacological studies have shown that Cotula cinerea is widely used to 
treat colic, cough, diarrhea, migraine, headaches, and digestive disorders (Bellakhdar 
1997). In traditional medical practice, it is used as an antiseptic, antipyretic, analge-
sic, anti-inflammatory, and antibacterial agent, as well as for the treatment of rheu-
matism (Beloued 2005; Hammiche and Maiza 2006).
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The use of Cotula cinerea in traditional medicine is generally administered in the 
form of decoction, maceration, infusion and inhalation (Bellakhdar 1997; Djellouli 
et al. 2013).

3.4  Phytochemistry

In view of its use in traditional folk medicine and its interesting biological activities, 
Cotula cinerea has undergone several phytochemical investigations. These resulted 
in the identification and/or the isolation of a huge number of natural products and a 
wide variety of bioactive secondary metabolites pertaining to different families such 
as essential oil terpenoids, phenolic compounds, saponins, germacranolides, and 
other phytochemical compounds (Lakhdar 2018). Among these phytochemical 
families, the main terpenoids, phenolics, and other phytochemicals previously iden-
tified and reported in Cotula cinerea are gathered and described below.

3.4.1  Essential Oil Terpenoids

Cotula cinerea essential oils have been subjected to several research studies. The 
species is widely known as odoriferous and aromatic plant used in the south of 
Morocco to flavor hot beverages such as tea. The odoriferous and aromatic proper-
ties of the plant are due to the presence of essential oil with various volatiles and 
aromatic compounds. Essential oils of the aerial parts of the plant from different 
geographical regions in Algeria, Egypt and Morocco have been extracted through 
hydrodistillation and subjected to qualitative and quantitative analysis through 
GC-MS techniques. The main detected compounds have been gathered in Table 1 
and the structures of some of these compounds are presented in Fig. 3.

Examination of the reported data showed that the obtained essential oils varied 
both qualitatively and quantitatively according to the corresponding country and 
even from region to region within the same country. Such variations were thus 
observed for samples from Algeria (Mekhadmi et al. 2023; Bouziane et al. 2013; 
Atef et  al. 2015; Djellouli et  al. 2015), Egypt (Fournier et  al. 1989; Fathy et  al. 
2017), and Morocco (Boussoula et al. 2016; El Bouzidi et al. 2011; Guaouguaou 
et al. 2020a, b; Chlif et al. 2021; Hamdouch et al. 2022). It should be indicated that 
this variation could be due to several factors, such as the harvest site and the vegeta-
tion stage of the plant of the plant in addition to other exogenous conditions includ-
ing climate, soil composition, harvesting time and extraction method. It should also 
be noted that the differences in the phytochemical composition of plants extracts are 
not specific only to essential oil but usually observed both qualitatively and quanti-
tatively for the major if not any phytochemical metabolite. However, and even if the 
investigated samples are from different geographical regions, some commonalities 
could be observed in addition to some disparities in the phytochemical composition 
of the investigated Cotula cinerea essential oils. Thus, on the 14 investigated 
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Table 1 Major terpenoid compounds detected in various Cotula cinerea essential oils

Origin Used part
Yield 
(%) Major compounds (%) References

Algeria
(Sidi Aoun)

Dried aerial 
parts

0.30 Kessane (34.30), trans-chrysanthenyl 
acetate (20.5),
cis-chrysanthenol (6.08), terpinene 
(5.80), liguloxide (5.51)

Mekhadmi 
et al. (2023)

Algeria
(Beni Guecha)

Dried aerial 
parts

0.58 trans thujone (50.10), 1.8-cineole 
(8.74), sabinene (6.14), terpinen-4-ol 
(5.84), camphor (4.90), 
santolinatriene (4.00)

Mekhadmi 
et al. (2023)

Algeria 
(Ouargla)

Aerial parts
(flowering 
period)

0.75 Thujone (47.72), camphor (10.54), 
santolinatriene (8.00), eucalyptol 
(6.37), lyratyl cetate (4.17), 
terpinen-4-ol (2.77)

Bouziane et al. 
(2013)

Algeria
(Oued Souf)

Aerial parts
(flowering 
period)

0.080 3-Carene (30.99), thujone (21.73), 
santolinatriene (18.58), camphor 
(6.21), eucalyptol (2.79)

Atef et al. 
(2015)

Algeria
(Oued Souf)

Aerial parts
(fruiting 
period)

0.391 Thujone (28.78), 3-carene (15.90), 
eucalyptol (15.13), santolinatriene 
(13.38), camphor (7.49), m-cymene 
(3.34)

Atef et al. 
(2015)

Algeria
(Bechar)

Aerial parts 0.282 (E)-Citral (24.01), cis- limonene 
epoxide (18.26), thymol methylether 
(15.04), carvacrol (15.03), trans- 
carveol (13.79), carvone (3.06), 
trans- piperitol (2.54).

Djellouli et al. 
(2015)

Algeria
(Hassi Khalifa)

Aerial parts 0.74 trans-Thujone (51.86), 
santalinatriene (10.6), α-pinene 
(2.02), sabinene (6.17), cineole 
(5.34), δ-terpinene (1.57), camphor 
(2.63%)

Larbi et al. 
(2018)

Algeria 
(Southwestern)

Aerial parts – α-thujone (32.35) Ghouti et al. 
(2018a, b)

Egypt
(Cairo)

Fresh aerial 
parts

0.30 Camphor (50), thujone (15) Fournier et al. 
(1989)

Egypt Aerial parts – Camphor (65.5), thujone (15.59), 
4-terpineol (5.33), camphene (4.76)

Fathy et al. 
(2017)

Morocco
(Smara)

Aerial parts 0.64 Iso-3-thujanol (47.38), 
santolinatriene (11.67), camphor 
(10.95), santolina alcohol (7.68), 
borneol (5.49), neo-iso-3-thujanol 
(3.74), ß-Pinene (2.98)

Boussoula 
et al. (2016)

Morocco 
(Zagora)

Aerial parts 0.87 trans-Thujone (41.4), cis-verbenyl 
acetate (24.7), 1,8-cineole (8.2), 
santolinatriene (7.2), camphor (5.5)

El Bouzidi 
et al. (2011)

Morocco 
(Dakhla)

Dried aerial 
parts

0.92 Thujone (42.12), eucalyptol (12.59), 
santolinatriene (11.57)

Guaouguaou 
et al. (2020a, 
b)

(continued)
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Table 1 (continued)

Origin Used part
Yield 
(%) Major compounds (%) References

Morocco
(Tata)

Dried Aerial 
parts

0.66 Thujone (40.83), camphor (16.58), 
eucalyptol (10.99), santolinatriene 
(9.93), 3-caren-4-ol acetoacetate 
(6.91)

Hamdouch 
et al. (2022)

Morocco
(Al Nif)

Fresh Aerial 
parts 
(flowering 
period)

0.31 Thujone (26.05), cis chrysanthenyl 
formate (15.64), 2-bornanone 
(15.40), santolinatriene (10.68), 
1,8-cineol (8.48), α-phellandrene 
(3.79)

Chlif et al. 
(2021)

Morocco
(Al Nif)

Dried aerial 
parts 
(flowering 
period)

0.55 Thujone (22.37), santolinatriene 
(16.45), 1,8-cineol (12.19), cis 
chrysanthenyl formate (12.03), 
2-bornanone (11.56), α-Phellandrene 
(5.02)

Chlif et al. 
(2021)

Morocco
(Akka)

Predried 
aerial parts

0.39 Thujone (24.9), lyratyl acetate 
(24.32), camphor (13.55), 
1,8-cineole (10.81)

Agour et al. 
(2022)

Morocco
(Zagora)

Aerial parts 0.83 trans-thujone (41.4), cis verbenyl 
acetate (24.7),
1,8-cineole (8.2)

Kasrati et al. 
(2015)

samples, the compound thujone was indicated among the major detected and quan-
tified compounds in 11 samples with percentages up to 50% of the total quantified 
compounds. Thus, thujone was among the major compounds for Cotula cinerea 
samples from Algeria (Mekhadmi et al. 2023; Ghouti et al. 2018a, b; Bouziane et al. 
2013; Atef et al. 2015), from Egypt (Fournier et al. 1989; Fathy et al. 2017; Larbi 
et al. 2018), and from Morocco (El Bouzidi et al. 2011; Kasrati et al. 2015; Chlif 
et al. 2021; Hamdouch et al. 2022; Agour et al. 2022). This could also be noted for 
santolinatriene which was detected among the most abundant compounds in Cotula 
cinerea essential oil from Algeria with percentages ranging from 4% to 18.58% 
(Mekhadmi et  al. 2023; Atef et  al. 2015; Bouziane et  al. 2013). This was also 
observed for essential oil samples from Morocco with relative abundance ranging 
from 7.2% to 16.45% (Boussoula et al. 2016; El Bouzidi et al. 2011; Guaouguaou 
et  al. 2020a, b; Hamdouch et  al. 2022; Chlif et  al. 2021). This compound was 
reported among the major compounds in all the Moroccan explored Cotula cinerea 
essential oils. Finally, santolinatriene was reported with a weak percentage or not 
detected in samples from Algeria (Mekhadmi et al. 2023; Djellouli et al. 2015) and 
Egypt (Fournier et al. 1989; Fathy et al. 2017). In addition to thujone and santolina-
triene, camphor was also detected with a relatively high abundance in the major 
investigated samples with percentages varying from 4.90% to 65.5%. These higher 
percentages (50% and 65.5%) were observed for two samples from Egypt (Fournier 
et al. 1989; Fathy et al. 2017).

Besides these samples which phytochemical compositions were relatively 
homogenous on the qualitative level with thujone, santolinatriene, camphor as 

Cotula cinerea as a Source of Natural Products with Potential Biological Activities



472

Fig. 3 Structures of some essential oil terpenoids from Cotula cinerea
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major compounds and for which differences were observed on the quantitative 
aspect of these compounds, analysis of other Cotula cinerea samples showed a 
peculiar phytochemical composition. This was the case for the essential oil sample 
from Algeria for which kassane (34.3%) was indicated as major compounds 
(Mekhadmi et al. 2023). This was also the case for 3-carene which was present as 
major phytochemicals (30.99%) for the Cotula cinerea essential oil from Eastern 
Algeria (Atef et al. 2015). This especial fact appeared also for trans citral (24.01%) 
and iso-3-thujanol (47.38%) detected as major compounds in samples from Algeria 
(Djellouli et al. 2015) and Morocco (Boussoula et al. 2016) respectively.

In addition to the volatile compounds constituting the essential oils of Cotula 
cinerea, its nonvolatile secondary metabolites have also been the subject of several 
scientific investigations. The different compounds have been separated through 
various chromatographic techniques including high performance liquid chromatog-
raphy or column chromatography and have been characterized through hyphenated 
coupled compounds such as UHPLC-MS and MSn techniques with the use of pow-
erful high-resolution MS detectors with time of flight analyzers. Some compounds 
have also been characterized after isolation through one-dimensional (1D) and two- 
dimensional (2D) homonuclear and heteronuclear NMR spectroscopy techniques. 
Several identified compounds pertaining to various families such as phenolic acids, 
flavonoids, and germacranolides are discussed below.

3.4.2  Phenolic Acids

Cotula cinerea was reported to contain some phenolic acids. The phytochemical 
analysis of the plant summarized in Table 2 showed the presence of various pheno-
lic compounds pertaining to phenolic acids. The structures of some of these deriva-
tives previously reported in the plant are presented in Fig.  4. Among these, six 
mono- (chlorogenic acid and its isomers) and di- (3,4; 3,5; and 4,5) caffeoylquinic 
acid derivatives with different substitution site have been reported in Cotula cinerea 
from Morocco (Khallouki et al. 2015). Similar derivatives have also reported in a 
sample from Algeria with one mono and two dicaffeoylquinic acid adducts (Ghouti 
et al. 2018a, b). Another sample of the plant from Dakhla (Morocco) was also found 
to contain phenolic acids derivatives including caffeic acid, coumaric acids, and 
some other derivatives (Guaouguaou et al. 2020b).

3.4.3  Flavonoids

A phytochemical investigation on the flavonoids of Cotula cinerea from Egypt was 
carried out since the seventies of the last century where free quercetin and kaemp-
ferol in addition to quercetrin and kaempferitrin have been identified (Mahran et al. 
1976) as indicated in Table 2.

The phytochemical investigations of various Cotula cinerea extracts revealed the 
presence of several flavonoids. The content of flavonoids reported in the plant was 
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Table 2 Major compounds detected in Cotula cinerea extracts

Origin Plant part
Extraction 
solvent Compounds References

Algeria
Bechar

Aerial parts EtOH/H2O
Infusion

Phenolic acids: 5-O-caffeoylquinic 
acid, 4,5-O-dicaffeoylquinic acid, 
3,5-O-dicaffeoylquinic acid
Flavonoids: luteolin-7-O-glucoside, 
luteolin-O-malonylhexoside, 
luteolin-dihexoside,
quercetin-O-hexoside, luteolin-O- 
pentosyl-hexoside, quercetin-O- 
malonylhexoside, 
luteolin-O-malonylhexoside

Ghouti et al. 
(2018a, b)

Southeastern 
Algeria

Aerial parts 
(flowering 
stage)

EtOH/H2O Flavonoids: chrysospenol D, 
chrysosplenetin, oxyayanin-B, 
axillarin, 3-methylquercetin, pedaletin, 
isokaempferid, apigenin, luteolin, 
6-hydroxyluteolin, 
3-glucosylisorhamnetin, 3-methyl-7- 
glucosylquercetin, 7-O-β-D-
glucosylapigenin, 
7-O-β-D-glucosylluteolin, 7-O-β-D-
glucosyl- quercetin, 7-O-β-D-
glucosylaxillarin 
7-O-β-D-diglucosylluteolin
Germacranolides: 1α,6α- 
dihydroxygermacra- 4E,9Z,11(13)-
trien-12,8 α-olide

Dendougui 
et al. (2012)

Southern 
Algeria

Aerial parts CH2Cl2 Guaiantrienolides:, 6-acetoxy-1β- 
hydroxyguaiantrienolide, 6-acetoxy- 
1α-hydroxyguaiantrienolide, 
6-acetoxy-10-β-
hydroxyguaiantrienolide
Germacrenolides: haagenolide, 
1,10-epoxyhaagenolide

Cimmino 
et al. (2021)

Egypt Roots Flavonoids: kaempferitin, quercetrin, 
quercetin, and kaempferol

Mahran et al. 
(1976)

Egypt Aerial parts MeOH/
H2O

Flavonoids: luteolin, luteolin 
7-O-β-D-glucoside, luteolin 7-O-β-D-
diglucoside, luteolin 6-hydroxy-7-O-β- -
D-glucoside, apigenin, apigenin 
7-O-L-rhamnoside, apigenin 
6-C-arabinosyl-8-C-glucoside, 
isochaftoside, quercetin 3-O-β-D-
glucoside, quercetin 3-O-β-D-
galactoside, quercetin 
7–3-O-β-D-glucoside, 
5,3′,4′-trihydroxy 
3,6,7-trimethoxyflavone

Ahmed et al. 
(1987)

(continued)
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Table 2 (continued)

Origin Plant part
Extraction 
solvent Compounds References

Red Sea 
Region
Egypt

Aerial parts MeOH- 
Petrol- 
Ether

Spiroketal enol-ether, sesquiterpene 
lactones, germacranolides, guaianolide

Metwally 
et al. (1985)

Egypt Roots Ether- 
Petrol, 
Ether

Isofraxidin derivatives: farnochrol, 
drimartol A, acetyldrimartol A, 
acetyldrimartol B, pectachol, 
pectachol B, acetylpectachol B
Scopoletin derivatives: scopofarnol, 
farnesylscopoletin

Greger and 
Hofer (1985)

Eastern 
desert Egypt

Aerial parts Ether- 
Petrole- 
MeOH

Spiroketal enolethers, lactones, 
germacranolides, eudesmanolides, 
guaianolides, glaucolides

Jakupovic 
et al. (1988)

Errachidia 
Morocco

Aerial parts 
(flowering 
stage)

MeOH Phenolic acids: neochlorogenic acid, 
chlorogenic acid, cryptochlorogenic 
acid, 3,4-dicaffeoylquinic acid, 
3,5-dicaffeoylquinic acid, 
4,5-dicaffeoylquinic acid
Flavonoids: luteolin-4’-O-glucoside

Khallouki 
et al. (2015)

Dakhla
Morocco

Aerial parts Ethanol/
Water

Phenolic acids: caffeic acid, coumaric 
acid, caffeic acid derivative, coumaric 
acid derivative, HCA derivative
Flavonoids: chrysospenol D, 
chrysosplenetin, oxyayanin B, 
axillarin, 3-methyl quercetin, quercetin 
3-O-glucoside, axillarin 
7-O-glucoside, chrysospenol isomer, 
kaempferol, kaempferol 3,7-O-Me, 
luteolin, luteolin 7-O-glucoside, 
hydroxyluteolin, pedalitin, dimethoxy 
hydroxyluteolin, trihydroxy- 
trimethoxyflavone isomer, apigenin, 
apigenin derivative
Sulfated flavonoids: kaempferol 
3-sulfate 7-O-glucoside, kaempferol 
3-O-sulfate, luteolin 7-O-sulfate, 
apigenin 7-O-sulfate
Terpenoids: Tatridin derivative, 
dehydrotatridin derivative 
dehydrotatridin derivative

Guaouguaou 
et al. (2020b)

higher either qualitatively or quantitatively than that of phenolic acids. The major 
detected flavonoids are presented in Table 2 and the structures of some of them are 
presented in Fig. 5.

In 1987, flavones and flavonols derivatives have been reported in an hydroetha-
nolic extract of Cotula cinerea from Egypt (Ahmed et al. 1987). Free and glycosyl-
ated adducts with both C- and O-glycosylated adducts have been reported in this 
study. Among the flavones, free luteolin and apigenin in addition to their glycosides 
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Fig. 4 Structures of some phenolic acids of Cotula cinerea

have been reported while glycosides’ adducts of quercetin have been identified 
within the flavonols subgroup. In another sample from Algeria seventeen flavonoids 
have been isolated and structurally elucidated (Dendougui et al. 2012). Among the 
identified compounds in this study, free apigenin and luteolin have been evidenced. 
Additionally, several methoxylated, mono-, and diglycosylated derivatives of luteo-
lin, apigenin, and quercetin have also been reported. Glycosides of luteolin and 
quercetin with hexoses and pentoses moieties have also been found in another sam-
ple from Algeria (Ghouti et al. 2018a, b). Some phytochemicals of this sample were 
acylated with malonyl derivatives of luteolin and quercetin hexosides.
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Fig. 5 Structures of some flavonoids of Cotula cinerea

In addition to Cotula cinerea from Algeria and Egypt which were found to con-
tain flavonoids, such phytochemicals have also been reported to occur in popula-
tions from Morocco. The flavone derivative luteolin 4’-O-glucoside was thus 

Cotula cinerea as a Source of Natural Products with Potential Biological Activities



478

reported in a sample from Errachidia region (Khallouki et al. 2015). Another more 
thorough investigation on a sample from Dakhla region (Morocco) has been recently 
reported (Guaouguaou et  al. 2020b). In this study, free apigenin, luteolin and 
kaempferol have been found in the hydro ethanolic extract in addition to several 
methoxylated and glycosylated derivatives of flavones (apigenin, luteolin) and fla-
vonols (kaempferol, quercetin).

3.4.4  Sulfated Flavonoids

In addition to the flavonoids discussed above, Cotula cinerea from Morocco was 
also found to contain the sulfated flavonoids indicated in Table 2 and Fig. 5. Thus, 
kaempferol 3-sulfate 7-O-glucoside, kaempferol 3-O-sulfate, luteolin 7-O-sulfate in 
addition to apigenin 7-O-sulfate have been evidenced in the hydroethanolic extracts 
of the plant. The presence of such sulfated flavonoids has been previously identified 
in species other than Cotula cinerea (Teles et al. 2018). Their occurrence in this 
plant agree with the fact that sulfated flavonoids are reported to occur in some spe-
cific plant families such as Asteraceae to which Cotula cinerea belong (Teles et al. 
2018). This is also in agreement with the fact that such compounds were also 
reported to occur in species occurring in arid habitats such as Moroccan Sahara 
region from which the studied Cotula cinerea sample has been harvested.

3.4.5  Other Phytochemical Compounds

In addition to essential oil terpenoids and phenolic compounds, several other metab-
olites have been identified in Cotula cinerea plant from different geographical 
regions as indicated in Table 2 and Figs. 6 and 7. The phytochemical study of Cotula 
cinerea extracts from Egypt has been conducted in 1985 and afforded to the charac-
terization of compounds pertaining to spiroketal enol-ether, sesquiterpene lactones, 
germacranolides, and guaianolide (Metwally et al. 1985) in addition to Isofraxidin 
and scopoletin derivatives (Greger and Hofer 1985). Among the latter are farno-
chrol, drimartol A, acetyldrimartol A, acetyldrimartol B, pectachol, pectachol B, 
acetylpectachol B in addition to scopofarnol and farnesylscopoletin (Fig.  6 and 
Table 2). Another sample from the Egyptian eastern desert was also found to contain 
several spiroketal enolethers, lactones, germacranolides, eudesmanolides, guaiano-
lides and glaucolides (Jakupovic et al. 1988). A germacranolide compound (1α,6α-
dihydroxygermacra-4E,9Z,11(13)-trien-12,8 α-olide) which structure is indicated 
in Fig.  7 was isolated and identified from Cotula cinerea hydroethanolic extract 
from Algeria (Dendougui et al. 2012). In a relatively recent investigation on Cotula 
cinerea extract from Morocco, tatridin and dehydrotatridin derivatives (Fig. 7) have 
been detected (Guaouguaou et al. 2020b).

In addition to these phytochemicals other derivatives have been isolated from the 
dichloromethane extract through bioguided isolation affording five main sesquiter-
pene lactones (Cimmino et  al. 2021). These were shown to be three 
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Fig. 6 Structures of some isofraxidin and scopoletin derivatives of Cotula cinerea
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Fig. 7 Structures of some sesquiterpene lactones derivatives of Cotula cinerea
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guaiantrianolides (6-acetoxy-1β-hydroxyguaiantrienolide, 6-acetoxy-1α-
hydroxyguaiantrienolide, 6-acetoxy-10-β-hydroxyguaiantrienolide) and two ger-
macranolides (haagenolide and 1,10-epoxyhaagenolide) (Fig. 7).

3.5  Pharmacological Investigation

3.5.1  Antimicrobial Activity

The evaluation of the antimicrobial activity (bacterial and fungal) of Cotula cinerea 
extracts and essential oil harvested in different regions of the world has been 
reported in numerous studies (Table 3). Several researchers have shown that Cotula 
cinerea has broad-spectrum antimicrobial activity when tested against several 
pathogenic bacteria and fungi. The results of the various tests of the antimicrobial 
activity of Cotula cinerea extracts and essential oil are grouped in Table 3.

The antibacterial test of Cotula cinerea essential oil on Escherichia coli and 
Staphylococcus aureus showed strong inhibition with a diameter ranging from 
(16.70 to 14.64 mm) (Mekhadmi et al. 2023).

Hamdouch et al. (2022) showed that the evaluation of the bacterial activity by the 
essential oil of Cotula cinerea against three bacterial strains (Staphylococcus 
aureus, Listeria innocua, Pseudomonas aeruginosa) showed that the minimum 
inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) 
are important (Table 3).

The Staphylococcus aureus is the bacterial strain that was inhibited with a low 
concentration (MIC = 0.5 μL/mL and MBC = 4 μL/mL), followed by Pseudomonas 
aeruginosa (MIC = 0.6 μL/mL and MBC = 1.5 μL/mL) and in third position is 
Listeria innocua aeruginosa (MIC = 0.8 μL/mL and MCB = 3.5 μL/mL) (Hamdouch 
et al. 2022).

On the other hand, the antibacterial activity of Cotula cinerea essential oil was 
evaluated on two bacterial strains (Escherichia coli and Pseudomonas aeruginosa) 
(Table 3).

The results obtained show that the two bacteria tested have a low sensitivity vis- 
à- vis the different prepared concentrations of this essential oil compared to the 
negative control (the inhibitory zones of the two strains vary between 6 and 9 mm 
and those of Amoxyclav between 13 and 15 mm) (Mahboub et al. 2021).

The study of the antimicrobial activity of the methanolic extract of Cotula cine-
rea revealed the effectiveness of this extract on the strains: Escherichia coli, 
Escherichia coli ATCC 25922 and Pseudomonas aeruginosa and their inhibition 
diameter varies between 7.1 ± 0.6 mm and 23.2 ± 0.3 mm (Table 3).

Also, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus 
aureus ATCC 25923, and Proteus mirabilis showed high sensitivity toward the 
Cotula cinerea methanolic extract with a large inhibition diameter (28.7 ± 0.5 mm, 
23.7 ± 0.6 mm, 21.7 ± 0.2 mm, and 36.7 ± 0.1 mm, respectively). Thus, the zones 
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Table 3 Antibacterial and antifungal effects of Cotula cinerea essential oils and extracts

Part 
used Extracts Tested strains Key results References

Aerial 
parts

Essential oil 
(0.45%)

Staphylococcus 
aureus

(16.70–14.64 mm) Mekhadmi 
et al. (2023)

Escherichia coli (16.70–14.64 mm)
Aerial 
parts

Essential oil 
(0.66%)

Staphylococcus 
aureus

MIC = 0.5 μL/mL
MCB = 4 μL/mL

Hamdouch 
et al. (2022)

Listeria innocua MIC = 0.8 μL/mL
MCB = 3.5 μL/mL

Pseudomonas 
aeruginosa

MIC = 0.6 μL/mL
MCB = 1.5 μL/mL

Aerial 
parts

Essential oil 
(1.07%)

Escherichia coli ɸ = 6 to 9 mm Mahboub et al. 
(2021)Pseudomonas 

aeruginosa
ɸ = 6 to 9 mm

Leaves Methanol extract 
(11.2%)

Staphylococcus 
aureus

ɸ = 28.7 ± 0.5 mm Djahra et al. 
(2020)

Staphylocoque 
epidermidis

ɸ = 23.7 ± 0.6 mm

Escherichia coli ɸ = 7.3 ± 0.3 mm
Proteus mirabilis ɸ = 36.7 ± 0.1 mm
Escherichia coli 
ATCC 25922

ɸ = 23.2 ± 0.3 mm

Pseudomonas 
aeruginosa

ɸ = 7.2 ± 0.3 mm

Staphylococcus 
aureus ATCC 25923

ɸ = 21.1 ± 0.2 mm

Trichophyton 
verrucosum

ɸ = 8.3 ± 0.2 mm

Aerial 
parts

Essential oil 
(0.21%)

Staphylococcus 
aureus

ɸ = 6 mm Mehani et al. 
(2019)

Escherichia coli ɸ = 13 mm
Pseudomonas 
aeruginosa

ɸ = 15.23 mm

Enterobacter cloacae ɸ = 14 mm
Fusarium 
sporotrichioides

ɸ = 0 mm

Aerial 
parts

Essential oil 
(0.54%)

Bacillus cereus + Ghouti et al. 
(2018a)Bacillus subtilis MIC = 0.303 mg/mL

Micrococcus luteus +
Pseudomonas 
aeruginosa

+

Candida albicans +

(continued)

F.-E. Guaouguaou and N. E. Es-Safi



483

Table 3 (continued)

Part 
used Extracts Tested strains Key results References

Aerial 
parts

Hydroethanolic 
extract

Escherichia coli MIC = 10 mg/mL Ghouti et al. 
(2018b)Pseudomonas 

aeruginosa
MBC and MIC 
>20 mg/mL

Klebsiella 
pneumoniae

MBC and 
MIC = 20 mg/mL

Proteus mirabilis MBC and MIC 
>20 mg/mL

Morganella morganii MBC and MIC 
>20 mg/mL

Enterococcus faecalis MBC and MIC 
>20 mg/mL

Listeria 
monocytogenes

MIC = 20 mg/mL

MRSA MIC = 10 mg/mL
MSSA MIC = 5 mg/mL
Candida albicans MFC and MIC 

>20 mg/mL
Infusion extract Escherichia coli MIC = 10 mg/mL

Pseudomonas 
aeruginosa

MBC and MIC 
>20 mg/mL

Klebsiella 
pneumoniae

MBC and 
MIC = 20 mg/mL

Proteus mirabilis MBC and MIC 
>20 mg/mL

Morganella morganii MBC and MIC 
>20 mg/mL

Enterococcus faecalis MBC and MIC 
>20 mg/mL

Listeria 
monocytogenes

MIC = 20 mg/mL

MRSA MIC = 10 mg/mL
MSSA MIC = 5 mg/mL
Candida albicans MFC and MIC 

>20 mg/mL
Aerial 
parts

Aqueous Extracts Fusarium graminearum ɸ = 39 ± 0.57 mm Salhi et al. 
(2017)Fusarium 

sporotrichioides
ɸ = 50 ± 0.57 mm

(continued)
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Table 3 (continued)

Part 
used Extracts Tested strains Key results References

Aerial 
parts

Essential oil 
(0.64%)

Bacillus subtilis C = 1/500 v/v Boussoula et al. 
(2016)Escherichia coli C = 1/500 v/v

Staphylococcus 
aureus

C = 1/500 v/v

Micrococcus luteus C = 1/500 v/v
Asper gillusniger C = 1/250 v/v
Penicillium digitatum C = 1/250 v/v
Penicillium expansum C = 1/250 v/v
Gloeophyllum 
trabeum

C = 1/500 v/v

Coniophora puteana C = 1/1000 v/v
Poria placenta C = 1/2000 v/v
Coriolus versicolor C = 1/500 v/v

Aerial 
parts

Essential oil 
(0.39%)

Staphylococcus 
aureus

ɸ = 50 mm to 21 mm Atef et al. 
(2015)

Enterococcus faecium ɸ = 50 mm
Escherichia coli ɸ = 50 mm to 21 mm
Morganella morganii ɸ = 50 mm to 21 mm
Citrobacter freundii ɸ = 16 mm to 11 mm
Pseudomonas 
aeruginosa

ɸ = 21 mm

Proteus vulgaris ɸ = 50 mm to 21 mm
Acinetobacter 
baumannii

ɸ = 50 mm to 21 mm

Klebsiella 
pneumoniae

ɸ = 16 mm to 11 mm

(continued)
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Table 3 (continued)

Part 
used Extracts Tested strains Key results References

Aerial 
parts

Petroleum ether 
(1.0%)

Staphylococcus 
aureus

+ Bensizerara 
et al. (2013)

Escherichia coli +
Pseudomonas 
aeruginosa

+

Klebsiella 
pneumoniae

ɸ = 17 ± 1.73 mm

Candida albicans +
Ethyl acetate 
(1.2%)

Staphylococcus 
aureus

ɸ = 11.67 ± 3.79 mm

Escherichia coli +
Pseudomonas 
aeruginosa

+

Klebsiella 
pneumoniae

+

Candida albicans +
n-butanol (6.0%) Staphylococcus 

aureus
ɸ = 12 ± 5.20 mm

Escherichia coli +
Pseudomonas 
aeruginosa

+

Klebsiella 
pneumoniae

ɸ = 16.67 ± 5.77 mm

Candida albicans +
Aerial 
parts

Essential oil 
(0.87%)

Candida albicans 
CCMM L4

ɸ = 25.3 ± 0.6 mm Bouzidi et al. 
(2011)

Candida albicans 
CCMM L5

ɸ = 20.3 ± 0.6 mm

Candida krusei ɸ = 19.3 ± 0.6 mm
Candida glabrata ɸ = 21.3 ± 1.5 mm
Candida parapsilosis ɸ = 24.3 ± 0.6 mm

(continued)
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Table 3 (continued)

Part 
used Extracts Tested strains Key results References

Aerial 
parts

Ethyl acetate 
extract (0.64%)

Pseudomonas 
fluorescens 456–2

MIC = 200 μg/mL Markouk et al. 
(1999a, b)

Pseudomonas 
savastanoui T12–10

MIC = 200 μg/mL

Pseudomonas 
savastanoui 73–29/88

MIC = 200 μg/mL

Bacillus sp. VP5 MIC = 200 μg/mL
Bacillus brevis VP7 MIC = 200 μg/mL
Bacillus sp. 326 MIC = 200 μg/mL
Bacillus sphaericus 
324

MIC = 200 μg/mL

Bacillus sp. 459–1 MIC = 200 μg/mL
n-Butanol extract 
(2.02%)

Pseudomonas 
fluorescens 456–2

MIC = 12 μg/mL

Pseudomonas 
savastanoui T12–10

MIC = 100 μg/mL

Pseudomonas 
savastanoui 73–29/88

MIC = 50 μg/mL

Bacillus sp. VP5 MIC = 25 μg/mL
Bacillus brevis VP7 MIC = 25 μg/mL
Bacillus sp. 326 MIC = 25 μg/mL
Bacillus sphaericus 
324

MIC = 200 μg/mL

Bacillus sp. 459–1 MIC = 12 μg/mL

of inhibition measured exceed that of the antibiotic tested as reference (Amoxicillin) 
(Djahra et al. 2020).

The study of the antimicrobial activity of Cotula cinerea essential oil on bacterial 
strains showed that Enterobacter cloacae and Escherichia coli are moderately sen-
sitive (ɸ = 14 mm and ɸ = 13 mm, respectively) (Table 3). In addition, Pseudomonas 
aeruginosa is the most sensitive strain to this essential oil with a zone of inhibition 
of 15.23 mm.

On the other hand, the Staphylococcus aureus strain is more resistant with an 
inhibition zone of 6 mm. However, Fusarium sporotrichioides showed strong resis-
tance to different concentrations of Cotula cinerea essential oil, and no mycelial 
growth was observed (Mehani et al. 2019).

The evaluation of the antibacterial activity of Cotula cinerea essential oil by the 
disk diffusion method on four strains of bacteria (Bacillus cereus, Bacillus subtilis, 
Micrococcus luteus, Pseudomonas aeruginosa) and on a yeast (Candida albicans) 
has revealed the effectiveness of this essential oil with moderate minimum inhibi-
tory concentration (MIC). The Bacillus subtilis strain gave the best inhibition with 
MIC = 0.303 mg/mL (Table 3) (Ghouti et al. 2018a).
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The study of the antimicrobial activity of Cotula cinerea hydroethanolic extract 
and the infusion extract tested on ten microbial strains (Escherichia coli, 
Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Morganella 
morganii, Enterococcus faecalis, Listeria monocytogenes, MRSA, MSSA, and 
Candida albicans) showed inhibitory effects that ranged from moderate to weak 
and which are expressed as minimum inhibitory concentrations (MIC), minimum 
bactericidal concentrations (MBC) and minimum fungicidal concentrations (MFC) 
(Table 3). The MIC values varied between 5 and 20 mg/mL and the inhibitory effect 
of these extracts tested against all bacterial strains was more bacteriostatic than 
bactericidal (Ghouti et al. 2018b).

The results of the study of Cotula cinerea aqueous extract on Fusarium gra-
minearum and on Fusarium sporotrichioides (Table 3) revealed the effectiveness of 
this extract in inhibiting the growth of mycelia with the two concentrations of 10% 
and 20%. The growth inhibition zones of these two fungi are ɸ = 39 ± 0.57 mm and 
ɸ = 50 ± 0.57 mm, respectively (Salhi et al. 2017).

The antibacterial and antifungal activity of Cotula cinerea essential oil showed 
significant inhibitory effects (Table 3). For the four bacterial strains (Bacillus subti-
lis, Escherichia coli, Staphylococcus aureus, Micrococcus luteus), they were all 
inhibited at a concentration of 1/500  v/v. However, molds (Asper gillusniger, 
Penicillium digitatum, and Penicillium expansum) were less inhibited than bacteria, 
and their growth was stopped at a concentration of 1/250  v/v (Boussoula et  al. 
2016). Concerning the four strains of fungi (Gloeophyllum trabeum, Coniophora 
puteana, Poria placenta, and Coriolus versicolor), only Poria placenta which pre-
sented the greatest vulnerability compared with Cotula cinerea essential oil with a 
low concentration of 1/2000 v /v. For Coniophora puteana, it was inhibited with a 
concentration of 1/1000 v/v. However, Coriolus versicolor and Gloeophyllum tra-
beum showed resistance to the Cotula cinerea essential oil, and they were inhibited 
only with the concentration 1/500 v/v (Boussoula et al. 2016).

The antibacterial activity of Cotula cinerea essential oil tested on Enterococcus 
faecium showed a very high inhibitory effect (50 mm) by comparing with the diam-
eter of antibiotic inhibition (Lincomycin: 32  mm) (Atef et  al. 2015). Also, 
Escherichia coli, Morganella morganii, Proteus vulgaris, Staphylococcus aureus, 
and Acinetobacter baumannii showed great sensitivity to this essential oil with the 
concentrations (1/1, 1/2, 1/4, 1/8) where the diameter of inhibition varied between 
50 mm and 21 mm (Table 3). However, Citrobacter freundii and Klebsiella pneu-
moniae showed great sensitivity just at the three concentrations (1/1, 1/2, 1/4) with 
an inhibition diameter which reached 50  mm. Pseudomonas aeruginosa showed 
strong resistance with all tested concentrations of Cotula cinerea essential oil (Atef 
et al. 2015).

The antimicrobial activity of Cotula cinerea n-butanol and petroleum ether 
extracts tested on Klebsiella pneumoniae showed a major inhibitory effect 
(16.67 ± 5.77 mm and 17 ± 1.73 mm respectively) (Table 3). Also, a strong activity 
against Staphylococcus aureus was revealed with the n-butanol and ethyl acetate 
extracts where the zones of inhibition were 12 ± 5.20 mm and 11.67 ± 3.79 mm, 
respectively. However, weak antimicrobial activity was observed against Escherichia 
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coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans with 
the concentration 0.25 mg/mL (Bensizerara et al. 2013).

Analysis of the antimicrobial activity of Cotula cinerea essential oil showed 
strong activity against all Candida genus yeasts studied (Candida albicans CCMM 
L4, Candida albicans CCMM L5, Candida krusei, Candida glabrata, and Candida 
parapsilosis) (Table 3), with inhibition zones ranging from 19.3 to 25.3 mm (Bouzidi 
et al. 2011).

Markouk et  al. (1999a, b), tested the antibacterial activity of two extracts 
(n- butanol and ethyl acetate) of Cotula cinerea on eight bacterial strains 
(Pseudomonas fluorescens 456-2, Pseudomonas savastanoui T12-10, Pseudomonas 
savastanoui 73-29/88, Bacillus sp. VP5, Bacillus brevis VP7, Bacillus sp. 326, 
Bacillus sphaericus 324, and Bacillus sp. 459-1) (Table 3). They found the n- butanol 
extract to be highly effective against the bacterial strains tested with minimum 
inhibitory concentrations ranging from 12 to 200 μg/mL. Furthermore, Pseudomonas 
fluorescens 456-2 and Bacillus sp. 459-1 were inhibited at a low concentration of 
12 μg/mL. However, the ethyl acetate extract inhibited the growth of all the bacteria 
studied at a concentration of 200 μg/mL (Markouk et al. 1999a, b).

3.5.2  Antioxidant Activity

The antioxidant effect of Cotula cinerea extracts and essential oil obtained by 
extracting different parts of the plant has been proven by several studies. The anti-
oxidant activity of this plant was carried out by the DPPH, ABTS, reducing power, 
β-carotene bleaching inhibition, TBARS inhibition, FRAP, and ORAC tests. Table 4 
brings together all the work on the antioxidant activity of Cotula cinerea.

Hamdouch et al. (2022) showed that Cotula cinerea essential oil has a low anti-
oxidant activity compared to the selected positive controls (butylhydroxytoluene 
(BHT) and Cov-iox T50) with an IC50 of 0.080 ± 0.014 mg/mL (Table 4).

On the other hand, Mahboub et al. (2021) showed that the Cotula cinerea essen-
tial oil evaluated for its antioxidant power using the DPPH test showed a moderate 
antioxidant effect compared to ascorbic acid (IC50 = 79.28 mg/mL) (Table 4).

The study of the antioxidant activity of Cotula cinerea essential oil and extracts 
was carried out by two methods: DPPH and ABTS and several concentrations were 
tested (Guaouguaou et al. 2020a).

The DPPH test showed a higher antioxidant effect than that of ABTS and this for 
three extracts of Cotula cinerea (hexane, ethyl acetate, and n-butanol) with IC50 
values of 0.0602, 0.0644 and 0.0641 mg/mL respectively (Table 4). For the essential 
oil of the same plant, it showed a moderate effect (IC50 = 0.1832 mg/mL). However, 
the ABTS test showed that Cotula cinerea essential oil has powerful antioxidant 
activity compared to the other extracts tested (IC50  =  0.0093  mg/mL). Also, the 
n-butanol extract shows strong antioxidant activity with the ABTS test (0.0698 mg/
mL) (Guaouguaou et al. 2020a).
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Table 4 Antioxidant activity of Cotula cinerea essential oils and extracts

Part 
used Extracts Used methods Key results References

Aerial 
parts

Essential oil (0.66%) DPPH assay IC50 = 0.080 ± 0.014 mg/
mL

Hamdouch et al. 
(2022)

Aerial 
parts

Essential oil (1.07%) DPPH assay IC50 = 79.28 mg/ mL Mahboub et al. 
(2021)

Aerial 
parts

Essential oil (0.92%) DPPH assay IC50 = 0.183 mg/mL Guaouguaou 
et al. (2020a, b)ABTS assay IC50 = 0.009 mg/mL

Hexane extract (1%) DPPH assay IC50 = 0.060 mg/mL
ABTS assay IC50 = 0.073 mg/mL

Ethyl acetate extract 
(3%)

DPPH assay IC50 = 0.064 mg/mL
ABTS assay IC50 = 0.082 mg/mL

n-butanol extract (4.5%) DPPH assay IC50 = 0.064 mg/mL
ABTS assay IC50 = 0.069 mg/mL

Aerial 
parts

Essential oil (0.54%) DPPH assay IC50 = 28 mg/mL Ghouti et al. 
(2018a)

Aerial 
parts

Hydroethanolic extract DPPH assay EC50 = 26.0 ± 0.1 μg/mL Ghouti et al. 
(2018b)Reducing 

power
EC50 = 31.9 ± 0.2 μg/mL

β-carotene 
bleaching 
inhibition

EC50 = 14.7 ± 0.2 μg/mL

TBARS 
inhibition

EC50 = 7.4 ± 0. 3 μg/mL

Infusion extract DPPH assay EC50 = 24.8 ± 0.2 μg/mL
Reducing 
power

EC50 = 38 ± 1 μg/mL

β-carotene 
bleaching 
inhibition

EC50 = 20.2 ± 0.8 μg/mL

TBARS 
inhibition

EC50 = 7.5 ± 0.2 μg/mL

Aerial 
parts

Chlorogenic acid 
compound

DPPH assay IC50 = 10.5 μM Khallouki et al. 
(2015)FRAP assay EC1 = 478 μM

ORAC assay 3.07 units
Neochlorogenic acid 
compound

DPPH assay IC50 = 11.0 μM
FRAP assay EC1 = 527 μM
ORAC assay 2.42 units

3,4-Dicaffeoylquinic 
acid compound

DPPH assay IC50 = 30.25 μM
FRAP assay EC1 = 329 μM
ORAC assay 3.33 units

3,5-Dicaffeoylquinic 
acid compound

DPPH assay IC50 = 23.84 μM
FRAP assay EC1 = 407 μM
ORAC assay 3.62 units

4,5-Dicaffeoylquinic 
acid compound

DPPH assay IC50 = 31.49 μM
FRAP assay EC1 = 337 μM
ORAC assay 3.76 units

Luteolin-4´-O-glucoside 
compound

DPPH assay IC50 = 30.25 μM
FRAP assay EC1 = 422 μM
ORAC assay 3.46 units
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The evaluation of the antioxidant activity of Cotula cinerea essential oil using 
the DPPH method (Table 4) showed moderate inhibition (IC50 = 28 mg/mL) (Ghouti 
et al. 2018a).

On the other hand, the evaluation of the antioxidant activity of Cotula cinerea 
hydroethanolic and infusion extracts was carried out by four tests (DPPH, Reducing 
power, β-carotene bleaching inhibition and TBARS inhibition) in order to be able to 
compare their antioxidant effects (Ghouti et al. 2018b) (Table 4). For the TBARS 
inhibition test, the two hydroethanolic and infusion extracts of Cotula cinerea 
showed that they are three times more effective than the positive control (TROLOX) 
with high values: EC50 = 7.4 ± 0. 3 μg/mL and EC50 = 7.5 ± 0.2 μg/mL respectively. 
Also, for the DPPH test, Ghouti et al. (2018b) showed that Cotula cinerea hydro-
ethanolic and infusion extracts have significant antioxidant activity with 
EC50  =  26.0  ±  0.1  μg/mL and EC50  =  24.8  ±  0.2  μg/mL respectively (Ghouti 
et al. 2018b).

The phytochemical identification and fractionation of Cotula cinerea methanol 
extract, revealed the presence of six compounds (Chlorogenic acid, Neochlorogenic 
acid, 3,4-Dicaffeoylquinic acid, 3,5-Dicaffeoylquinic acid, 4,5-Dicaffeoylquinic 
acid, Luteolin-4´-O-glucoside) (Table 4) (Khallouki et al. 2015). These compounds 
were evaluated for their antioxidant effects using three tests namely DPPH, ABTS 
and ORAC. Furthermore, Chlorogenic acid showed strong antioxidant activity by 
the DPPH test with IC50 = 10.5 μM. For the FRAP test, 3,4-Dicaffeoylquinic acid 
gave an antioxidant effect with the lowest concentration (EC1 = 329 μM). However, 
neochlorogenic acid was able to inhibit fluorescence with 2.42  units (Khallouki 
et al. 2015).

3.5.3  Anticancer Activity

As part of promoting medicinal plants, the Cotula cinerea essential oil and extracts 
have also been targeted to assess their anticancer activity on several cancer cell 
lines. The methods and results of the antiproliferative activity of this plant have 
been compiled in Table 5.

The evaluation of the cytotoxic activity of Cotula cinerea extracts harvested in 
Algeria showed that the hydroethanolic extract has significant and important cyto-
toxic properties against the four cancer cell lines tested (Ghouti et al. 2018b). The 
HepG2 line (hepatocellular carcinoma) was inhibited by the lowest concentration 
and this by the two extracts (hydroethanolic GI50 = 31 ± 2 μg/mL and the infusion 
extract GI50 = 42 ± 4 μg/mL) (Ghouti et al. 2018b). Furthermore, the Cotula cinerea 
extracts also exhibited a moderate cytotoxic effect against the MCF-7, NCI-H460, 
HeLa, and PLP2 lines (Table 5).

The study of the antiproliferative activity of essential oil and three extracts (hex-
ane, ethyl acetate, and n-butanol) of Cotula cinerea carried out by the MTT test 
against two cell lines RD and VERO (Table 5) showed that for the RD cell line, the 
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Table 5 Anticancer activity of Cotula cinerea essential oils and extracts

Part 
used Extracts Cell lines Key results References

Aerial 
parts

Hydroethanolic 
extract

MCF-7 (breast 
carcinoma)

GI50 = 53 ± 4 μg/mL Ghouti et al. 
(2018a, b)

NCI-H460 (non-small- 
cell lung cancer)

GI50 = 50 ± 3 μg/mL

HeLa (cervical 
carcinoma)

GI50 = 47 ± 5 μg/mL

HepG2 (hepatocellular 
carcinoma)

GI50 = 31 ± 2 μg/mL

PLP2 (porcine liver 
primary cells)

GI50 = 120 ± 8 μg/mL

Infusion extract MCF-7 (breast 
carcinoma)

GI50 = 77 ± 6 μg/mL

NCI-H460 (non-small- 
cell lung cancer)

GI50 = 101 ± 10 μg/mL

HeLa (cervical 
carcinoma)

GI50 = 51 ± 4 μg/mL

HepG2 (hepatocellular 
carcinoma)

GI50 = 42 ± 4 μg/mL

PLP2 (porcine liver 
primary cells)

GI50 = 198 ± 5 μg/mL

Aerial 
parts

Essential oil 
(0.92%)

RD (human embryonal 
rhabdomyosarcoma)

IC50 = 173.05 ± 4.46 μg/
mL

Guaouguaou 
et al. (2018)

Vero (monkey kidney 
cancerous cell lines)

IC50 = 72.72 ± 2.18 μg/
mL

Hexane extract 
(1%)

RD (human embryonal 
rhabdomyosarcoma)

IC50 = 57.21 ± 3.43 μg/
mL

Vero (monkey kidney 
cancerous cell lines)

IC50 = 142.27 ± 11.33 μg/
mL

Ethyl acetate 
extract (3%)

RD (human embryonal 
rhabdomyosarcoma)

IC50 = 187.52 ± 6.27 μg/
mL

Vero (monkey kidney 
cancerous cell lines)

IC50 = 212.83 ± 9.02 μg/
mL

n-butanol extract 
(4.5%)

RD (human embryonal 
rhabdomyosarcoma)

IC50 > 500 μg/mL

Vero (monkey kidney 
cancerous cell lines)

IC50 = 447.38 ± 6.52 μg/
mL

hexane extract presents the highest cytotoxic effect with IC50 = 57.21 ± 3.43 μg/mL, 
followed by the ethyl acetate extract (IC50 = 187.52 ± 6.27 μg/mL), essential oil 
(IC50 = 173.05 ± 4.46 μg/mL), and lastly, we find the n-butanol extract (IC50 > 500 μg/
mL). However, the Vero cell line was better inhibited by the essential oil with 
IC50 = 72.72 ± 2.18 μg/mL (Guaouguaou et al. 2018).

Cotula cinerea as a Source of Natural Products with Potential Biological Activities
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3.5.4  Other Pharmacological Activities of Cotula cinerea

The evaluation of other pharmacological activities of Cotula cinerea essential oil 
and extracts has been carried out by several research teams. The results of this work 
are grouped in Table 6.

Bettayeb et al. (2022) showed that the essential oil of the leaves and flowers of 
Cotula cinerea administered orally to mice exhibited low toxicity (LD50 = 1131.37 mg/
kg, LD50 = 1264.91 mg/kg respectively).

Under the same conditions, Bettayeb et al. (2022) also showed that the essential 
oil of the leaves and flowers of Cotula cinerea possesses a significant anti- 
inflammatory effect at concentrations that do not exceed 300 mg/kg with percent-
ages of 86, 16% for the leaves and 80.87% for the flowers (Table 6).

The experimental study of the acute oral toxicity of the aqueous extract of the dry 
and fresh aerial parts of Cotula cinerea at several doses (200, 400, 600 and 800 mg/
kg) showed that these extracts did not cause any mortality or signs of toxicity in 
Wistar rats (Chlif et al. 2022).

On the other hand, the oral administration of the aqueous extract of the fresh and 
dry aerial parts at a dose of 200 mg/kg reduced the edema 3 h after the injection of 
carrageenan, with a percentage inhibition of 36.84% and 39.47%, respectively 
(Chlif et al. 2022). Furthermore, the study of the analgesic activity of the aqueous 
extract of fresh and dry aerial parts at a dose of 200 mg/kg and 400 mg/kg on rats 
by injecting 0.6% acetic acid showed a significant analgesic effect (Table 6). The 
aqueous extract of the dry aerial parts presents a higher percentage of inhibition 
(43.15% at the dose of 200 mg and 50.71% at the dose of 400 mg/kg) than that of 
the fresh parts (32.14% at the 200 mg dose and 45.51% at the 400 mg/kg dose) 
(Chlif et al. 2022).

By the same team and under the same conditions, Chlif et al. (2022) evaluated 
the antipyretic activity of the aqueous extract of the fresh and dry aerial parts of 
Cotula cinerea by the method Brewer’s yeast-induced pyrexia model in rats using 
two different concentrations (200 and 400 mg/kg). The results showed that these 
extracts possess a significant antipyretic activity after 4 h of administration. The 
aqueous extract of the fresh parts reduced the rectal temperature for the two concen-
trations tested (36.62 ± 0.24°C at the dose of 200 mg and 37.74 ± 0.25 °C at the dose 
of 400 mg/kg). However, the aqueous extract of the dry parts was more effective in 
reducing the rectal temperature at the dose of 400  mg/kg (37.73  ±  0.26°C and 
36.86 ± 0.41 °C, respectively) (Chlif et al. 2022).

The evaluation of the anti-inflammatory activity of Cotula cinerea extracts 
(hydroethanolic and infusion extracts) was evaluated by the Murine macrophage- 
like RAW method 264.7 cells and quantified through the nitric oxide (NO) produc-
tion (Table 6).

The results obtained showed a lower inhibition of the production of NO com-
pared to the positive control and this by the two extracts (the hydroethanolic extract 
(EC50 = 105 ± 9 μg/mL) and the infusion extract (EC50 = 122 ± 6 μg/mL)) (Ghouti 
et al. 2018a, b).
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The experimental study of acute oral toxicity of the Cotula cinerea essential oil 
and extracts administered orally at a dose of 2000 mg/kg showed that this plant 
showed no particular signs of toxicity, no lethality or no mortality was observed in 
treated mice (Guaouguaou et al. 2020a).

On the other hand, Guaouguaou et al. (2020a) used two methods (Tail flick and 
Hot plate) to evaluate the central analgesic activity of the Cotula cinerea essential 
oil and three extracts (hexane, ethyl acetate, and n-butanol) at a dose of 500 mg/kg. 
The results obtained showed that from the 45th minute, the reaction of the animals 
increased with the two methods used (Tail flick and Hot plate) and this for the four 
extracts tested and also for the positive control (Table  6). For analgesic effect 
observed by Tail flick method of ethyl acetate extract was 14.46 s, then n-butanol 
extract with 14.69 s, followed by essential oil (10.84 s) and of the hexane extract 
(10.22  s). However, the analgesic effect evaluated by the Hot plate method was 
higher than the first method (Tail flick). The n-butanol extract prolonged the reaction 
time to the thermal stimulus with a reaction time of 25.56 s, followed by the ethyl 
acetate extract (25.16 s). For the essential oil and the hexane extract, they showed 
moderate analgesic activity with a reaction time of 22.16 s and 22.25 s respectively 
(Guaouguaou et al. 2020a).

The evaluation of the antipyretic activity of Cotula cinerea of three extracts 
(ethyl ether, ethyl acetate, and n-butanol) by the method Brewer’s yeast-induced 
pyrexia model in rats (Table 6) showed that ether ethyl and ethyl acetate extract 
reduced fever with a percentage of 89.43% and 90.12%, respectively (Larhsini et al. 
2002). In the same direction and always on the same extracts cited in the work of 
Larhsini et al. (2002), Markouk et al. (1999a, b) showed that the oral administration 
of three extracts (ethyl ether, ethyl acetate, and n-butanol) of Cotula cinerea caused 
no mortality at doses of 1, 2, 3, 4, 5, and 6 g/kg and also the animals remained with-
out physiological abnormality. On the other hand, the ethyl acetate and n-butanol 
extracts showed a moderate analgesic effect with inhibition percentages of 50% and 
40.21%, respectively (Table 6). However, the ethyl ether extract gave a percentage 
inhibition of (62.49%) which is close to that of the positive control (acetylsalicylic 
acid) with a percentage inhibition of 73.9% (Markouk et al. 1999a, b).

4  Conclusion and Future Perspectives

This review was conducted to report all studies containing Cotula cinerea that 
describe its botanical description, medicinal use, chemical composition, toxicity, 
and pharmacological properties. Ethnopharmacological studies indicate that Cotula 
cinerea is widely used in traditional medicine to treat colic, cough, diarrhea, 
migraine and digestive disorders.

On the other hand, the pharmacological and toxicological activities carried out 
in vivo and in vitro on the various extracts and the essential oil of Cotula cinerea 
revealed numerous effects, namely the antibacterial, antifungal, antioxidant, anti-
cancer, anti-inflammatory, analgesic, and antipyretic activities.
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The Cotula cinerea extracts and essential oil have shown remarkable antibacte-
rial and antifungal effects against several bacteria and fungi. The antioxidant activ-
ity of Cotula cinerea extracts and essential oil was evaluated in vitro by several 
tests. The results obtained showed significant antioxidant effects. The results of the 
antiproliferative activity of Cotula cinerea extracts and essential oil show signifi-
cant and encouraging cytotoxic effects against the cancer cell lines tested, and could 
then be considered as a source of new antitumor agents. The toxicity study reveals 
that the Cotula cinerea extracts and essential oil do not cause any signs of mortality 
or signs of toxicity when administered to animals orally. With regard to the analge-
sic effect of Cotula cinerea extracts and essential oil, the results obtained showed a 
significant analgesic effect and this for all the methods used.

This review is an opportunity by which we invite the authors to further pursue 
their research in order to understand the physiological mechanism behind the bio-
logical activities and pharmacological effects of Cotula cinerea extracts. Other 
pharmacological and toxicological tests seem more than necessary and other thera-
peutic virtues remain to be revealed in the hope of finding a place for this plant in 
modern pharmacy.
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Essential Oil as a Source of Bioactive 
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Abstract Essential oils have been known as therapeutic agents since ancient times. 
Due to their properties, many biological effects have been investigated and demon-
strated in the literature so far, reinforcing the understanding that these can be used 
with the most diverse applications. In order to provide an overview of the subject, 
this chapter gathers and presents information regarding some of the main essential 
oils activities, addressing pharmacological effects in agriculture, food and cosmet-
ics as a viable alternative without toxicity.
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1  Introduction

Natural products are important tools in therapeutic procedures since they  
search for relief and cure of diseases through the use of medicinal plants, which  
was possibly one of the first ways of employing such materials (Mukherjee 
et al. 2010).

Essential oils are volatile secondary metabolites extracted from plants. They are 
characterized by complex mixtures of odoriferous, organic compounds that can be 
applied in several areas, with a world market estimated to be worth US$ 1.8 billion. 
Throughout history, these oils have been traditionally used due to their various 
properties. In Egypt, India, and China, people would use aromatic extracts for dif-
ferent purposes, such as physical well-being, beauty care, cooking, and spiritual 
applications (Kar et al. 2018).

Over the last decades, there has been a significant increase in natural plant-based 
therapies, both in developing countries and in regions where conventional medicine 
is still predominant (Fernandes Da Silveira et al. 2008). Currently, the search for 
natural products, as well as the reduction of degradation products generated by 
industries, and the increasing resistance to common pathogens have allowed the 
application of essential oils to avoid lipid deterioration, oxidation, and contamina-
tion by microorganisms, in pharmaceutical, cosmetics, food, beverage, and cos-
metic industries (Miranda et al. 2016).

As in the past, essential oils maintain their importance nowadays, being applied 
in the prevention and treatment of human diseases, besides their cosmetic, sanitary, 
agricultural, and food applications. In this context, considering the properties of 
volatile oils, many investigations have been conducted to characterize their poten-
tial biological uses since effects as anti-inflammatory and antioxidant have been 
demonstrated so far (Paola Angelini 2012; Muzammil et al. 2023).

In addition, some species have also shown activity against microorganisms (bac-
teria, fungi, and viruses), parasites, and insects, proving to be potential antimicro-
bial, antiparasitic, and insecticidal agents, respectively. Due to their complex nature, 
effects on the central nervous system have also been demonstrated, as well as their 
sedative, anxiolytic, and antidepressant properties (Dougnon and Ito 2020; Alves 
et al. 2023). Also, other applications of essential oils are reported, such as in agri-
culture, veterinary medicine, cosmetics, and aromatherapy, which will be discussed 
in different sections of this chapter (de Sousa et al. 2015; Mossa 2016; Bedini et al. 
2019; Batista De Oliveira et al. 2020).

Thus, considering their historical context, costs, and scientific importance, the 
present chapter aimed at presenting an updated literature review based on evidence 
about the benefits and applicability of oils for therapeutic purposes.
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2  Biological Activities

2.1  In Vitro

2.1.1  Antimicrobial Activity

The therapeutic potential of natural products and some of their constituents has 
been the object of several studies. It is noted that many of these compounds have 
contributed to the obtaining of several drugs of ample clinical use. Thus, more sub-
stances might be used in the future as medicinal agents (Bertin Carnevalli and Paula 
Serra de Araújo Resumo 2013).

Infections caused by microorganisms are widespread worldwide, especially in 
underdeveloped countries, and have been one of the leading causes of human mor-
bidity and mortality (Górniak et al. 2019). Therefore, studies related to the biologi-
cal activity of plants represent a great challenge for discovering and identifying new 
drug prototypes. It was not until 1928 that penicillin, the first proper antibiotic, was 
discovered by Alexander Fleming. Later, in the 1930s, sulfa drugs and arsenic were 
also identified (Bashir et al. 2016; Lima et al. 2022).

Antimicrobials have played an essential role over the past 60 years in treating 
diseases caused by microorganisms. However, a frequent increase in resistant bac-
teria has been observed (Saleem et al. 2010).

On the other hand, plants have been widely applied in the treatment of various 
diseases, and in 2007 it was observed that about 25% of available drugs were derived 
from plants used in folk medicine (Cushnie et al. 2008).

Essential oils, which are secondary metabolites of plants with differentiated bio-
logical properties, have also drawn attention for being an alternative against resis-
tant strains of microorganisms.

Studies have shown that several plant families have essential oils with antimicro-
bial activity determined by chemical characterization. Data are show in Table  1 
(Amorim et al. 2011; Aparecida Andrade et al. 2012; Sarrazin et al. 2012; Bedoya- 
Serna et al. 2018; Krishnamoorthy et al. 2021; Wintola et al. 2021; Badekova et al. 
2021; Santos et al. 2021; Zhao et al. 2021).

2.1.2  Antioxidant Activity

Secondary metabolites with antioxidant properties are compounds that have retard-
ing effect on oxidation rates, which occur by excessive production of oxygen-free 
radicals from pathophysiological processes or environmental causes. These sub-
stances have been increasingly exploited in food products, cosmetics, and pharma-
ceuticals, due to their antioxidant protection against cellular aging (Djeridane 
et al. 2006).

Several scientific studies have demonstrated the importance of essential oils as 
valuable sources of antioxidant compounds. Some species were tested by FRAP 
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Table 1 Antimicrobial activity of essential oils

Title Authors Study objectives Methods Main results

Enhanced 
antibacterial 
effect of 
antibiotics by the 
essential oil of 
Aloysia 
gratissima 
(Gillies & 
Hook.) Tronc, 
and its major 
constituent 
beta- 
caryophyllene

Santos et al. 
(2021)

Characterize the 
chemical profile 
and evaluate the 
antibacterial 
capacity and 
antibiotic activity 
of essential oil 
obtained from 
Aloysia gratissima 
(EOAG) and 
β-caryophyllene

Analysis of 
antibacterial 
activity against 
Pseudomonas 
aeruginosa, 
Staphylococcus 
aureus, and 
Escherichia coli 
by determining 
the MIC

A reduction in the 
MIC of the 
antibiotics against 
strains treated 
simultaneously 
with the essential 
oil or 
β-caryophyllene 
was observed

Chemical 
composition, 
antioxidant 
activities and 
antibacterial 
activities of 
essential oil from 
Erythrina caffra 
Thunb. growing 
in South Africa

Wintola et al. 
(2021)

Antibacterial 
analysis of the 
essential oil of 
Erythrina caffra 
Thunb

In vitro 
antibacterial 
susceptibility 
assay by agar 
diffusion method

The susceptibility 
study showed that 
all bacterial 
isolates were 
susceptible to 
essential oil. with 
the exception of 
Salmonella 
typhimurium and 
Pseudomonas 
aeruginosa

Composition and 
screening of 
Origanum 
vulgare essential 
oil for 
antimicrobial 
activity

Badekova et al. 
(2021)

This study aims to 
formulate a new 
Origanum vulgare 
anticaries dental 
gel with high 
antimicrobial 
activity

The effectiveness 
of O. vulgare 
essential oil was 
tested in vitro for 
Streptococcus 
mutans biofilm 
using colorimetric 
analysis

O. vulgare 
essential oil 
inhibited the 
growth of S. 
mutans biofilm by 
98% compared 
with unexposed 
control bacteria 
(p < 0.05)

Chemical 
composition and 
antifungal 
activity of 
essential oil from 
Origanum 
vulgare against 
Botrytis cinerea

Zao et al. 
(2021)

Characterization 
of the chemical 
composition and 
the antifungal 
activity of the 
Origanum vulgare 
essential oil

B. cinerea in vitro 
mycelial growth 
and spore 
germination

O. vulgare EO 
exhibited high 
antifungal activity 
against B. cinerea 
in vitro and in vivo

(continued)
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Table 1 (continued)

Title Authors Study objectives Methods Main results

Antifungal 
activity of 
nanoemulsion 
from Cleome 
viscosa essential 
oil against 
food-borne 
pathogenic 
Candida 
albicans

Krishnamoorthy 
et al. (2021)

Pathogenic and 
spoilage fungi 
cause enormous 
challenges to food 
related fatal 
infections. Plant 
essential oil based 
classical 
emulsions can 
functions as 
antifungal agents

The minimum 
inhibitory and 
fungicidal 
concentration of 
essential oil 
nanoemulsion 
(EONE) was 
tested against 
food borne 
pathogenic C. 
albicans

The MIC and MFC 
values ranged from 
16.5 to 33 ml/ml 
with significant 
reduction on 
biofilm of C. 
albicans isolates

Antifungal 
activity of 
nanoemulsions
encapsulating 
oregano 
(Origanum 
vulgare) 
essential oil: 
in vitro study 
and application 
in Minas Padrão 
cheese

Bedoya-Serna 
et al. (2018)

The objective of 
this study was to 
evaluate the 
antifungal activity 
of nanoemulsions 
encapsulating 
essential oil of 
oregano 
(Origanum 
vulgare), both 
in vitro and after 
application on 
Minas Padrão 
cheese

Minimal 
inhibitory 
concentrations of 
nonencapsulated 
and encapsulated 
oregano essential 
oil were 
determined

Nanoencapsulated 
oregano essential 
oil presented an 
inhibitory effect 
against the three 
genera of fungi 
evaluated. I

Chemical 
characterization 
and antibacterial 
activity of 
essential oils 
from medicinal 
and condiment 
plants against 
Staphylococcus 
aureus and 
Escherichia coli

Millezi et al. 
(2014)

Analyze the 
activity against 
microorganisms, 
for use in the food 
industry through 
the minimum 
inhibitory 
concentration 
(MIC)

Determination of 
MIC on 
Staphylococcus 
aureus ATCC 
2592 and 
Escherichia coli 
ATCC 25922

The MIC of the 
oils tested against 
E. coli and S. 
aureus was 1.5%, 
except for the 
essential oil from 
S. montana on S. 
aureus, which was 
sensitive to this oil 
from the 
concentration of 
5.0%

Chemical 
composition and 
antimicrobial 
activity of the 
essential oil of 
Lippia grandis 
Schauer 
(Verbenaceae) 
from the western 
Amazon

Sarrazin et al. 
(2012)

Analyze the 
antimicrobial 
potential of 
extracts and 
essential oils from 
several species of 
Lippia against 
several different 
microorganisms

In vitro 
antimicrobial 
susceptibility 
assay by agar 
diffusion method

The essential oil 
was effective 
against 75% of the 
micro-organisms 
analyzed, in 
particular, S. 
aureus, E. faecalis, 
and E. coli

(continued)
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Table 1 (continued)

Title Authors Study objectives Methods Main results

Essential oils of 
Cinnamomum 
zeylanicum, 
Cymbopogon 
nardus and 
Zingiber 
officinale: 
composition, 
antioxidant and 
antibacterial 
activities

Aparecida 
Andrade et al. 
(2012)

The aims of this 
study were to 
chemically 
characterize and 
to evaluate the 
antioxidant and 
antibacterial 
activities of the 
citronella, 
cinnamon and 
ginger essential 
oils

Evaluation of 
antibacterial 
activity was 
performed by 
using agar well 
diffusion method, 
with S. aureus, L. 
monocytogenes, 
E. coli, S. 
cholerasuis, and 
P. aeruginosa

The essential oils 
showed 
antibacterial 
activity for both 
Gram-negative and 
Gram-positive 
microorganisms, 
and the most 
efficient was C. 
zeylanicum 
essential oil

Antibacterial 
activity of 
essential oils and 
extracts on the 
development of 
Ralstonia 
Solanacearum in 
banana seedlings

Amorim et al. 
(2011)

This study aimed 
to evaluate the 
activity of 
different 
concentrations of 
essential oils and 
plant extracts to 
the control of 
Ralstonia 
solanacearum

In vitro 
antimicrobial 
susceptibility 
assay by agar 
diffusion method 
against 
phytopathogen 
Ralstonia 
solanacearum

The ginger extract, 
citronella, clove 
and ginger oils 
were able to inhibit 
the growth of R. 
solanacearum at 
all concentrations 
tested, with 
emphasis on clove 
oil, followed by 
ginger extract

(ferric reducing antioxidant power) and DPPH (2,2-diphenyl-1-picrylhydrazyl) 
methods, and satisfactory results were found (Baschieri et al. 2017).

From the kinetic evaluation of antioxidant behavior in nonphenolic compounds, 
it was found that limonene, linalool, and citral acted as enhancers of the antioxidant 
effect. Although the tests were performed in a narrow concentration range with 
some oxidizable substrates, these compounds enhanced the antioxidant potential of 
essential oils (Bączek et al. 2017).

The profile of some essential oils was evaluated, and the following species pre-
sented antioxidant activity: Tanacetum parthenium, Cymbopogon nardus, Origanum 
vulgare, Foeniculum vulgare, Thymus serpyllum, Xylopia aromatica, Piper nigrum, 
Syzygium aromaticum, Cymbopogon citratus, Lippia alba, and Piper marginatum, 
as shown in Table 2 (Hurtado et al. 2016; Bączek et al. 2017; Kačániová et al. 2017; 
Morshedloo et al. 2018; Farias et al. 2019; Costa et al. 2021).

Studies on free radicals and the development of new methods to evaluate antioxi-
dant activity have increased considerably over the years, as evidenced in published 
papers. The knowledge of the effects of free radicals on cells and their relationship 
with some diseases, acting as catalysts in cellular aging, stimulated the search for 
new organic substances, mainly obtained from plant products capable of preventing 
or minimizing oxidative damage to living cells 46.
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Table 2 Antioxidant activity of essential oils

Title Authors Study objectives Methods Main results

Antibacterial and 
antioxidant 
activity of 
essential oils and 
extracts from 
costmary 
(Tanacetum 
balsamita L.) and 
tansy (Tanacetum 
vulgare L.)

Baczek 
et al. (2017)

Comparison of 
Tanacetum 
balsamita L. 
(costmary) and 
Tanacetum vulgare 
L. (tansy) in terms 
of the antibacterial 
and antioxidant 
activity of essential 
oils and 
hydroethanolic 
extracts in relation 
with their chemical 
profile

DPPH scavenging 
reaction and ferric 
reducing 
antioxidant power 
(FRAP) assay

The results 
obtained in the 
present study do 
not indicate on the 
relationship 
between the 
presence of 
identified 
flavonoids and the 
antioxidant 
activity of the 
investigated 
Tanacetum 
extracts

The antioxidant 
and antimicrobial 
activity of 
essential oils 
against 
Pseudomonas spp. 
isolated from fish

Kacˇániová 
et al. (2017)

Determination the 
antibacterial and 
antioxidant activity 
of 21 EO against 10 
Pseudomonas 
species isolated 
from freshwater fish

Free radical 
scavenging activity 
of samples was 
measured with 
2,2-diphenyl-1- 
picrylhydrazyl 
(DPPH)

The EOs of 
Cymbopogon 
nardus, Origanum 
vulgare, 
Foeniculum 
vulgare, and 
Thymus serpyllum 
showed the 
highest 
antioxidant 
activity

Antioxidant 
activity of 
ethanolic extracts 
and essential oils 
from Xylopia 
aromatica and 
Piper nigrum

Costa et al. 
(2021)

Compare the 
content, activity 
antioxidant and 
chemical 
composition of 
essential oils from 
monkey and black 
pepper fruits (white 
and black)

DPPH scavenging 
reaction and ferric 
reducing 
antioxidant power 
(FRAP) assay

The ability to 
reduce DPPH was 
21.13% for PM, 
and 12.68% and 
5.48% for PP and 
PB, respectively

Antioxidant 
activity and 
characterization of 
the essential oil 
from the roots of 
Piper marginatum 
Jacq.

Bay- 
Hurtado 
et al. (2016)

This study aimed to 
extract, identify and 
quantify the 
essential oil of fresh 
roots, as well as its 
antioxidant activity

DPPH scavenging 
reaction and ferric 
reducing 
antioxidant power 
(FRAP) assay

The following 
CE50 and %AA 
values were 
found: Ginkgo 
biloba (used as 
reference) 
46.96 mg/L and 
75.26 mg/L for 
the essential oil 
from the roots of 
P. marginatum

(continued)
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Table 2 (continued)

Title Authors Study objectives Methods Main results

Antioxidant 
activity of 
essential oils from 
condiment plants 
and their effect on 
lactic cultures and 
pathogenic 
bacteria

Farias et al. 
(2019)

Evaluation the 
antioxidant 
properties and 
antimicrobial 
activity of essential 
oils deriving from 
Syzygium 
aromaticum, 
Cymbopogon 
citratus, and Lippia 
alba against lactic 
and pathogenic 
bacteria responsible 
for food-borne 
diseases

The Free Radical 
Scavenging 
Capacity (RSC) 
was found by 
measuring the 
scavenging activity 
of essential oils 
assessed in 
2.2-diphenyl-1- 
picrylhydrazyl 
(DPPH) and OH 
radicals

The essential oil 
of S. aromaticum 
presented better 
antioxidant 
activity, with IC50 
equal to 5.76 μg/
mL and 
antioxidant 
activity index of 
6.94, and it was 
considered strong 
(AAI > 2.0) in 
comparison to the 
other evaluated 
oils

Chemical 
composition and 
antioxidant 
activity of 
essential oils in 
Origanum vulgare 
subsp. gracile at 
different 
phenological 
stages and plant 
parts

Morshedloo 
et al. (2018)

Determination the 
chemical 
composition and 
antioxidant activity 
of the essential oils 
of Origanum 
vulgare subsp. 
gracile in different 
plant parts and at 
different 
phenological stages

Free radical 
scavenging activity 
of samples was 
measured with 
2,2-diphenyl-1- 
picrylhydrazyl 
(DPPH)

All the essential 
oils exhibited high 
radical-scavenging 
properties as 
shown in the 
DPPH* assay

2.2  Antiparasitic Activity

Over the years, many essential oils have been characterized for their antiparasitic 
effect against pathogens capable of causing diseases in humans and animals (Setzer 
2012; Bero et al. 2014; Dawood et al. 2021). Studies published between 1988 and 
2012 concerning the evaluation of the antiprotozoal effect of essential oils revealed 
that until that moment, more than 60 plant species had shown activity on at least one 
protozoan. Essential oils were investigated against Plasmodium ssp., Trypanosoma 
ssp., Leishmania ssp., and other intestinal parasites, and it was noted that the main 
compounds were probably related to antiparasitic activity were monoterpenes, ses-
quiterpenes, and phenylpropanoids (Setzer 2012).

In addition, several essential oils from different species were tested for antipara-
sitic activity against Plasmodium falciparum, Trypanosoma cruzi, Leishmania toxo-
plasma, Giardia lamblia, Entamoeba histolytica, and Schistosoma mansoni. Data 
are described in Table 3 (Mota et al. 2012; Borges et al. 2012; Gonçalves et al. 2019; 
Ghadimi et al. 2020; Islam et al. 2020; Dawood et al. 2021).
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Table 3 Antiparasitic activity of essential oils

Title Authors Study objectives Methods Main results

Systematic 
review on 
medicinal plants 
used for the 
treatment of 
Giardia infection

Alnomasy 
et al. 
(2021)

This study was 
aimed at 
systematically 
reviewing the 
existing literature in 
herbal medicines to 
treat giardiasis

Preclinical 
Systematic 
Review and 
Meta-Analysis 
Facility (SyRF) 
database

The plant-based 
anti-Giardia agents 
are very promising 
as alternative and 
complementary 
resource for treating 
giardiasis since had 
low significant 
toxicity

Antiparasitic and 
Antibacterial 
Functionality of 
Essential Oils:
An Alternative 
Approach for 
Sustainable 
Aquaculture

Dawood 
et al. 
(2021)

To explore the 
effectiveness of EOs 
against fish parasites 
and pathogenic 
bacteria as an 
environment-friendly 
phytotherapeutic in 
the aquaculture 
industry

Preclinical 
Systematic 
Review

Essential oils (EOs) 
show beneficial 
effects on growth, 
immunity, 
antibacterial and 
antiparasitic 
activities in fish 
culture and are used 
as anesthetic 
compounds during 
fish handling and 
transportation

Trypanocidal and 
cytotoxic 
activities of 
essential oils 
from medicinal 
plants of 
Northeast of 
Brazil

Borges 
et al. 
(2012)

Determination of the 
antiparasitic activity 
of essential oils 
extracted from 
traditional medicinal 
plants in the search 
for alternatives for 
the treatment of 
Chagas disease

In vitro assay of 
trypanocidal 
activity

All essential oils 
tested demonstrated 
an inhibitory effect 
on the parasite 
growth and survival. 
L. sidoides and L. 
origanoides essential 
oils were the most 
effective against 
trypomastigote and 
amastigote forms 
respectively

The 
leishmanicidal 
activity of 
essential oils: A 
systematic
Review

Ghadimi 
et al. 
(2020)

To explore the 
effectiveness of EOs 
against Leishmania 
amazonensis, 
Leishmania 
infantum, and 
Leishmania major

Systematic 
Review

Frequently, 
substantial 
differences were 
found between the 
observed IC50s of 
one EO against 
promastigotes of 
different species of 
Leishmania

(continued)
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Table 3 (continued)

Title Authors Study objectives Methods Main results

In vitro 
Anti-parasitic 
Activity of 
Pelargonium X. 
asperum 
Essential Oil 
Against 
Toxoplasma 
gondii

Huang 
et al. 
(2021)

In this study, five 
essential oils (EO) 
were screened for 
their antiparasitic 
activity against T. 
gondii

The cytotoxicity 
of essential oils 
was evaluated 
using the MTT 
assay on human 
foreskin fibroblast 
cells

Only PaEO exhibited 
antiparasitic activity, 
and inhibited the 
growth of T. gondii 
in a dose-dependent 
manner

Anti- 
Schistosoma 
mansoni effects 
of essential oils 
and their
Components

Islam 
et al. 
(2020)

This review aimed at 
summarizing 
available in vitro, 
in vivo, and clinical 
trials showing 
evidence and 
mechanisms of 
actions of essential 
oils and their 
derivatives acting 
against S. mansoni

Systematic 
Review

The findings suggest 
that a number of 
essential oils and/or 
their components act 
against S. mansoni

In Vitro and In 
Vivo 
Antimalarial 
Activity of 
Essential Oils 
and Chemical 
Components 
from Three 
Medicinal Plants
Found in 
Northeastern 
Brazil

Mota 
et al. 
(2012)

Determination of the 
antiparasitic activity 
against the human 
malaria parasite, P. 
falciparum (K1 
strain) and the 
in vivo activity of 
EOs in mice infected 
with P. berghei

The acute toxicity 
of these oils was 
assessed in healthy 
mice and in vitro 
cytotoxicity was 
determined at 
different 
concentrations 
against HeLa cells 
and mice 
macrophages

This is the first study 
showing evidence 
for the antimalarial 
activity of these 
species from 
northeastern Brazil 
and the low toxicity 
of their EOs

2.3  Anti-Inflammatory Activity

The human body has defense mechanisms against various external agents given by 
the immune system. Such a network of cells and molecules is characterized by rec-
ognizing and developing responses of destruction or inactivation in the presence of 
these external agents (Abbas and Janeway 2000).

Inflammation is a defense response of the immune system that occurs after cel-
lular damage caused by external agents, such as bacteria, fungi, viruses, and proto-
zoa, as well as by physical agents, chemicals, tissue necrosis, and immune reactions 
(Miguel 2010).

Fundamentally, inflammation is a protective response to fight foreign body inva-
sion (Zuzarte et al. 2013). The increase in infection-stimulating agents associated 
with diseases that have no effective treatment due to resistance and adverse 
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reactions to drugs, has stimulated the development of less toxic, more effective, and 
cheaper medicines for the control of such diseases (da Silveira E Sá et al. 2014).

Essential oils are beautiful regarding the production of new interfering agents for 
the organism’s homeostasis. The secondary metabolites in essential oils, especially 
terpenes, present several bioactivities, including anti-inflammatory effects with low 
incidence of adverse effects. The profiles of some essential oils with anti- 
inflammatory properties were evaluated. They belong to the botanical families 
Myrtaceae, Apiaceae, Lamiaceae, Cyperaceae, and Verbenaceae, as can see in 
Table 4 (Mendes et al. 2010; de Bupleurum et al. 2013; Lv et al. 2015; da Silva et al. 
2019; Ma et al. 2021).

Table 4 Anti-inflammatory activity of essential oils

Species Authors Majority compounds Methods Main results

Eugenia 
dysenterica
DC.

Silva 
et al. 
(2019)

β-cariofileno, 
α-humuleno

Inhibition of 
lipopolysaccharide 
(LPS) induced nitric 
oxide (NO) production 
in the macrophage cell 
line (RAW 264.7)

The inhibition of nitric 
oxide by oEd and 
α-humulene suggested 
an anti-inflammatory 
effect.

Bluperium 
rigidum

Zuzarte 
et al. 
(2021)

α-pineno, β-pineno, 
limoneno

Inhibition of NO 
production

The essential oil of B. 
rigidum subsp. the 
anti-inflammatory 
exerts inhibitory 
activity and effects on 
the production of N.O., 
with no toxicity

Origanum 
Vulgare

Mir  
et al. 
(2021)

Timol, carvacrol, 
p-cimeno, borneol, 
Linalol acetato de 
linalilo, α-pineno, 
α-terpineno, 
β-bisabolol, 
β-cariofileno

Inhibition of 
proinflammatory 
cytokine

Inhibition of the 
production of 
inflammatory mediators 
such as TNF-α, IL-1β, 
NO, and PGE2 in RAW 
264.7 macrophages

Cyperus 
articulares

Mir  
et al. 
(2021)

Monoterpenos, 
Sesquiterpenes, 
Cetonas, 
Sesquiterpênicas

Inhibition of the 
production of 
inflammatory 
mediators such as 
TNF-α, IL-1β, NO, and 
PGE2 in RAW 264.7 
macrophages

OECA exerts potent 
anti-inflammatory 
activity and inhibitory 
effects on the 
production of important 
inflammatory mediators 
such as TNF-α, IL-1β, 
NO, and PGE2 in 
macrophages of the 
RAW 264.7 lineage

Lippia 
gracilis

Mendes 
et al. 
(2010)

Limoneno, 
β-cariofileno, 
p-cimeno cânfora, 
linalool, α-pineno, 
timol

Anti-inflammatory 
activity of the EO was 
evaluated using paw 
edema and peritonitis 
methods

The EO of Lippia 
gracilis leaves shows 
antinociceptive and 
anti-inflammatory 
activities
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2.4  Antiviral Activity

Viral infections are a significant threat to human health. Many diseases have no 
effective treatments, and drug resistance threatens standard therapies’ effectiveness. 
Drug resistance can arise in the presence of antivirals or due to the pre-existence of 
reduced susceptibility to such medications (Munir et al. 2017). Viral resistance and 
recurrent infections in immunocompromised patients require the development of 
new compounds with antiviral properties, which lead to the utilization of medicinal 
plants with significant pharmacological activities (Choi 2018).

The antiviral properties of essential oils are predominantly due to the presence of 
secondary metabolites such as cineole, linalool, β-pinene, linalyl acetate, thymol, 
and carvacrol (Feriotto et al. 2018; Panikar et al. 2021).

The antiviral activity of plant essential oils has been widely studied for severe 
acute respiratory syndrome (SARS) caused by coronavirus 2, acting synergistically 
with other drugs (da Silva et al. 2020; Panikar et al. 2021). Fourteen compounds 
derived from essential oils from Brazilian plants showed virucidal properties against 
herpes simplex virus 1 and 2 (HSV-1 and -2), dengue, Zika, and yellow fever. Also, 
they presented low toxicity as an anti-coronavirus agent (Carson et al. 2001).

Herpes simplex virus (HSV) is one of the most common causes of human viral 
infections, being responsible for encephalitis, dermatitis, genitourinary infections, 
and cervical cancer (Brezáni et al. 2018; Almeida et al. 2022). There are reports of 
the antiviral activity of Eucalyptus globulus essential oil against HSV-1. It demon-
strated excellent efficacy when compared with acyclovir, the standard drug in clini-
cal use for treating such diseases (Santoyo et al. 2014).

The essential oils of the species Thymus vulgaris, Thymus hyemalis, and Thymus 
zygis demonstrated, in vitro assays, antiviral action on HSV-1 by intracellular inhi-
bition of viral replication, as well as prevented viral adhesion to host cells (Vanti 
et al. 2020). Melissa officinalis essential oil showed antiviral activity against HSV-1 
when used in gallbladder infections (Tseliou et  al. 2019). Also, essential oils 
extracted from Melaleuca alternifolia topically applied in a clinical trial showed 
antiviral efficacy against herpes labialis (Brezáni et al. 2018).

Upper respiratory tract infections caused by influenza viruses of types A, B and 
C are characterized by their high mutation rates. An in vitro trial demonstrated that 
the combination of essential oils of Thymbra capitata (L) Cav., Origanum dictam-
nus L., Salvia pomifera L., and Salvia dendata showed inhibitory effect on influenza 
A virus subtype H1N1, influenza B, as well as antiviral effect on human rhinovirus 
14 (HRV-14) (Dorra et al. 2019).

Essential oils extracted from various plants demonstrated antiviral activity 
against the influenza A virus, with lower cytotoxicity compared to oseltamivir, an 
antiviral drug used to prevent and treat this disease. The species with the highest 
antiviral activity were Thymus mastichina L., Salvia sclarea L., and Pimpinella 
anisum L., with linalool being the common component to all (Feriotto et al. 2018).

Human immunodeficiency virus (HIV), a lentivirus of the retrovirus subgroup, 
causes the destruction of immune cells, and the most advanced stage of this 
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infection is acquired immunodeficiency syndrome (AIDS). Species Rosmarinus 
officinalis, Thymus vulgaris, and Cymbopogon citratus demonstrated antiviral 
action by inhibiting HIV-1 transcription, and may be promising sources of antiviral 
drugs for patients refractory to standard antiretroviral therapies (Panikar et al. 2021). 
Antiviral activity of essential oils against HIV has also been reported.

For many viral infections, there is no effective treatment available. This occurs 
due to the narrow spectrum of antivirals and in response to resistance and mutations 
of viruses (Ma and Yao 2020). Essential oils are considered solid therapeutic agents 
for viral diseases and prototypes of new antiviral drugs (de Sousa et al. 2015).

2.5  Anxiolytic and Antidepressant Activities

Souza et al. (Zhang and Yao 2019), who systematically reviewed essential oils with 
anxiolytic-like effects in animal models, listed more than 30 plant species whose 
oils presented such action until 2014. Lavandula angustifolia showed the best anx-
iolytic profile, and Citrus aurantium showed significant effects in various animal 
models when administered by different routes. Other essential oils considered 
promising were those of Achillea wilhelmsii, Alpinia zerumbet, Citrus sinensis, 
Citrus aurantium, Spiranthera odoratissima, and Citrus bergamia.

Zhang and Yao (2019) obtained essential oils from plants of the Lamiaceae and 
Rutaceae families, and in addition to volatile oils with characterized anxiolytic 
effects, the authors presented a variety of plant species investigated in clinical tests. 
Among the essential oils clinically evaluated, that obtained from Lavandula angus-
tifolia was the most investigated, capable of relieving anxiety by inhalation, topical 
application, or ingestion.

Some essential oils have been shown to promote more than one effect on the 
central nervous system. This is the case of Boswellia sp., Cananga odorata, 
Cinnamomum verum, Citrus aurantium, Citrus bergamia, Citrus sinensis, 
Cymbopogon citratus, Lavandula angustifolia, Citrus paradisi, Rosa damascena, 
Rosmarinus officinalis, and Salvia sclarea, which have been characterized in pre-
clinical and/or clinical trials as having both anxiolytic and antidepressant activities 
(Irie et al. 2004).

Regarding their antidepressant effect, essential oils of several species have been 
investigated in vivo, including those obtained from Asarum heterotropoides, Citrus 
limon, Eugenia uniflora, Perilla frutescens, Salvia sclarea, Syzygium aromaticum, 
Toona ciliata var. yunnanensis, and Valeriana wallichii were the most promising. 
Many compounds with antidepressant action have been detected in volatile oils, 
with eugenol and linalool being the most studied (Tao et al. 2005; Guzmán-Gutiérrez 
et al. 2012, 2015; de Sousa et al. 2017; Chandharakool et al. 2020).

The ability that essential oils have to act on different neural pathways without 
having the side effects of synthetic drugs makes them potential alternatives for treat-
ing mental disorders, including depression, anxiety, and dementia (Pharm n.d.).
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2.6  Sedative Activity

In various species, the main components of essential oils responsible for their seda-
tive effect are linalool, limonene, γ-terpinene, borneol, isovaleric acid, α-pinene, 
1,8-cineole, sabinene, and β-caryophyllene, as can be seen in Fig. 1 (Can and Sümer 
2019; Hirai and Ito 2019; Zhong et al. 2019; Das et al. 2021; Koriem 2021; Pharm 
n.d.). And due to their structure, they can cross the blood–brain barrier. For instance, 
Lantana camara and Ocimum basilicum essential oils were demonstrated to have 
strong sedative activity when administered in vivo by inhalation (Guzmán-Gutiérrez 
et al. 2012; Dougnon and Ito 2020).

In tests with volunteers, an electroencephalogram showed that the diluted essen-
tial oil of Citrus tangerine presented sedative activity by effectively decreasing 
alpha and beta wave power and increasing theta brain waves (Pharm n.d.). When 
evaluating neuronal waves, inhalation of Michelia alba essential oil resulted in sed-
ative activity in humans (Sattayakhom et al. 2021). Similarly, inhalation of Litsea 
cubeba essential oil showed a sedative effect in a human model by a reduction in 
alpha and beta wave power involving frontal, temporal, parietal, and occipital lobes 
of the brain (Shan et al. 2021).

Regarding studies on animals, species Valeriana officinalis and V. jatamansi 
demonstrated sedative effects, possibly due to interaction with the GABAA receptor 
(Can and Sümer 2019). In rats, intraperitoneal administration of the essential oil 
extracted from Citrus aurantium flowers was shown to promote sedative-hypnotic 
activity by potentiating the chloride ion-mediated GABAA receptor (Viana et al. 
2020). Similarly, Citrus limon essential oil presented a sedative-hypnotic effect 
without causing motor coordination deficit in rats (Diniz et al. 2019). Annona vepre-
torum essential oil also demonstrated a sedative effect in vivo (Abbasi-Maleki et al. 
2020); low concentrations of the essential oils of Mentha piperita and Lavandula 
angustifolia also showed a sedative effect in fish (Maïga et al. 2019).

Fig. 1 Majority components of essential oils responsible for their sedative activity
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Patients who take conventional antidepressants need these drugs to have the least 
possible adverse effects. Thus, medicinal plants may be a viable alternative with 
reduced side effects and greater treatment efficacy (Zhong et al. 2019).

2.7  Repellent and Insecticidal Activities

It is common knowledge that many insects can act as vectors in the transmission 
cycles of disease-promoting agents in humans, posing severe risks to public health 
worldwide. Aedes aegypti, for instance, is responsible for carrying pathogens that 
cause dengue, urban yellow fever, chikungunya, and Zika, while Culex quinquefas-
ciatus and mosquitoes of the genus Anopheles are related to the transmission of fila-
riasis and malaria, respectively (Enan 2001; Samy et  al. 2016; Najafi-Sharjabad 
et al. 2022).

The mechanism of action involved in the insecticidal activity of essential oils is 
not completely clarified, but their toxicity indicates a neurotoxic mode of action. 
The most prominent symptoms are hyperactivity followed by hyperexcitation, lead-
ing to rapid knockdown, immobilization, and death of the insect (Prajapati et al. 
2005; Pavela 2016).

Considering the importance of repellents and insecticides to prevent mosquito- 
borne diseases, many studies have focused on the search for essential oils that pres-
ent such properties (Nerio et  al. 2010; Said- et  al. 2017; Castillo et  al. 2017; 
Stevenson et al. 2017). And among the oils tested, several species proved to have 
insecticidal and repellent actions, as seen in Table 5.

With population growth and changes in global eating habits, the need to improve 
crop productivity intensifies the interest in insect pest control. In addition to losses 
caused during the crop-growing process, storage pests can subsequently cause dam-
age to agricultural products stored in barns and warehouses. Thus, essential oils 
have been investigated to obtain insecticides that can be used in the farming sector 
(Prajapati et al. 2005; Demeter et al. 2021).

2.8  Essential Oils in Veterinary Medicine

Essential oils can effectively act as insecticides and repellents. Because they gener-
ally have low mammalian toxicity and high biodegradability, essential oils are con-
sidered promising agents for developing low-toxicity and eco-friendly products for 
pest control (Zhai et al. 2018; Nehme et al. 2021).

The larvae of flies that belong to the families Oestridae and Calliphoridae impair 
the welfare of domestic and wild animals due to the incidence of myiasis. The 
essential oils of Clinopodium nubigenum and Lavandula angustifolia Mill. demon-
strated harmful activity by contact and/or fumigation against eggs and adults of the 
blowfly Lucilia sericata (Meigen) (Diptera: Calliphoridae), which is the agent 
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Table 5 Repellent and insecticidal activities of essential oils

Species Indication Vector

Cymbopogon citratus and 
Cymbopogon nardus

Repellent 
activity

Aedes aegypti, Anopheles dirus, and Culex 
quinquefasciatus

Cymbopogon winterianus Repellent 
activity

Aedes aegypti and Culex quinquefasciatus

Eucalyptus tereticornis and 
Eucalyptus deglupta

Repellent 
activity

Culex quinquefasciatus

Eucalyptus nitens and Eucalyptus 
citriodora

Repellent 
activity

Aedes aegypti

Ocimum basilicum Repellent 
activity

Anopheles

Ocimum gratissimum Repellent 
activity

Aedes aegypti

Ocimum americanum Repellent 
activity

Aedes aegypti, Aedes dirus and Culex 
quinquefasciatus

Lippia origanoides Insecticidal 
activity

Aedes aegypti

Citrus sinensis Insecticidal 
activity

Aedes aegypti

Cananga odorata, Insecticidal 
activity

Aedes aegypti

Cymbopogon flexuosus Insecticidal 
activity

Aedes aegypti

Lippia alba Insecticidal 
activity

Aedes aegypti

Eucalyptus citriodora Insecticidal 
activity

Aedes aegypti

Cananga odorata Insecticidal 
activity

Aedes aegypti

responsible for the parasitic infestation in living mammals (myiasis) (Zhai et  al. 
2018). In a test with 25 essential oils, 16 showed insecticidal activity against wheat 
weevil, Sitophilus granarius, being considered the main pest of stored grains. The 
essential oils with the highest toxicity to Sitophilus granaries, when applied to 
grains, were those from Allium sativum, Gaultheria procumbens L., Ocimum sanc-
tum L., Mentha arvensis, Thymus vulgaris, and Eucalyptus dives (Zhai et al. 2018).

Essential oils have multiple promising effects on rumen microbiota and can 
cause changes in rumen fermentation of cattle, pigs, goats, and poultry (Nocera 
et al. 2020; Nehme et al. 2021).

In vitro tests, essential oils from Cinnamomum zeylanicum, Melissa offcinalis, 
and Leptospermum scoparium demonstrated antibacterial and bactericidal activity 
against resistant strains of Staphylococcus pseudintermedius isolated from canines 
with pyodermitis (Rust 2020). And essential oils from Schinus mole L., Cinnamomum 
osmophloeum, Taiwania cryptomerioides, Plectranthus amboinicus, Ocimum gra-
tissimum, and Cinnamomum spp. are toxic to cat fleas (Ctenocephalides felis) 106.
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2.9  Aromatherapy

The Food and Drug Administration (FDA) guidelines of the United States classify 
essential oils for aromatherapy as cosmetics because they are not drugs for the treat-
ment and/or prevention of diseases (Farrar and Farrar 2020). These oils are used 
daily for their aromas, with different applications, such as perfumes, shampoos, air 
fresheners, fabric softeners, food flavorings, and health care. They promote comfort 
and balance, thus reducing symptoms of depression and stress. The oils are obtained 
by steam distillation or cold press from different plant parts: seeds, flowers, bark, 
fruits, roots, and rhizomes (Cristina De Souza et al. 2019).

It was observed in most articles that Lavandula angustifolia essential oil was the 
most used in pain relief during labor, justified by its major compounds, linalool, and 
linalyl acetate, which seemed to contribute to the action of female hormones, 
increasing concentration, and tranquility (Lima et  al. 2021). Recent studies evi-
dence the activity of this oil on the nervous system, decreasing stress and anxiety 
(Montibeler et al. 2018).

The hospital environment presents high levels of occupational stress due to the 
constant contact with suffering and pain. Thus, creating strategies to minimize 
stress becomes increasingly relevant, which may improve healthcare workers’ qual-
ity of life. Aromatherapy associated with massage in surgical centers has been used 
to reduce stress levels through the relaxation resulting from exposure to the aroma 
of essential oils. From an experimental study, it was observed that this practice has 
contributed to the decrease in heart rate and blood pressure of these professionals. 
The essential oils used were those from Lavandula angustifolia and Pelargonium 
graveolens (Buckle 2019).

When used correctly and with pure essential oils, aromatherapy will always be a 
vital resource in the search for self-care and improvement of quality of life. This 
therapy has a multiprofessional character, presenting several possibilities of use, 
depending on the types of treatment and administration. The simultaneous reach of 
physical, psychic, and spiritual dimensions is also considered (Kadunc et al. 2012).

3  Final Considerations

Essential oils can be used in a broad spectrum of possibilities related to several 
areas. They also present specific actions, such as antimicrobial and antiparasitic 
activities against Plasmodium Falciparum, Trypanosoma Cruzi, Leishmania 
Toxoplasma, Giardia lamblia, Entamoeba histolytica, and Schistosoma mansoni.

In addition, essential oils may be potent therapeutic agents for many viral infec-
tions for which no effective drug treatment exists. Thus, prototypes of new antiviral 
drugs may be developed since they are less toxic and residue-free.

Essential oils also have shown importance in formulating repellents and insecti-
cides as a type of prevention against diseases transmitted by mosquitoes since many 
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insects can act as vectors in transmission cycles, representing severe risks to public 
health worldwide.

Another possibility of application was demonstrated with a sedative-hypnotic 
effect without causing a deficit in animal motor coordination. Also, the potential use 
of essential oils for aesthetic purposes and rejuvenation has been verified, increas-
ing their demand.

Finally, it was found that essential oils do not present toxic characteristics and 
are a viable alternative to synthetic antioxidants with anticarcinogenic effects. They 
also enable a decrease in degradation products caused by harmful compounds in 
industries, which allows a new perspective for possible applications of these oils, 
increasing their range of use in pharmaceutical, food, agriculture, beverage, aroma-
therapy, and cosmetic industries.
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Natural Products from the Amazon Used 
by the Cosmetic Industry

Ludmilly Dantas Figueiredo Bezerra Torres and Jorddy Neves Cruz

Abstract The Amazon rainforest is known for its incredible biodiversity, which 
has made it a rich source of natural products used in the cosmetics industry. Over 
the years, a number of cosmetic companies have turned to the Amazon in search of 
unique and effective ingredients for their products. One of the most popular ingre-
dients used in cosmetics derived from the Amazon is the açai berry. Açai is a power-
ful antioxidant that is rich in vitamins and minerals and is believed to have antiaging 
properties. While the use of natural products from the Amazon has been embraced 
by the cosmetic industry, it is not without its challenges. One of the biggest chal-
lenges is ensuring that the products are harvested in a sustainable and ethical man-
ner. Many of the plants used in cosmetics are native to the Amazon and are often 
harvested by local communities who rely on these resources for their livelihoods. 
Here, we examine the use of natural products from the Amazon by the cosmetic 
industry and the potential benefits and challenges associated with their use.

Keywords Amazon · Compound · Cosmetic industry · Natural product

1  Introduction

The Amazon is the region with the most incredible biodiversity on the planet and the 
largest biome in Brazil. Sources of plant species are of great importance in the 
world because they have extractive processes from their native species (Antunes 
et al. 2021; Li et al. 2023). The fruits from these plants have diversified chemical 
compositions with biological properties, such as significant economic, nutritional, 
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and therapeutic ones, so that these fruits have awakened great interest in both scien-
tific and industrial circles for uses such as renewable fuels, foods, pharmaceutical 
products, and cosmetics, among others (Bruno and Almeida 2021; Alves et  al. 
2023). The Amazonian territory has undergone several stages of development, gen-
erating potential new resources. Therefore, studies in the Amazon aim to discover 
new nutritional and functional sources that are beneficial for human health. The vast 
diversity of bioactive components inspires ongoing investigations into gathering 
information on their physicochemical, chemical, biological, and sensory properties 
(da Silva and Pierre 2021; da Silva et al. 2023).

Biotechnology is still characterized as a new area of research. Still, it has shown 
great promise for regional development, combined with bioeconomy, thus showing 
new resources from the Amazonian fauna and flora for developing new pharmaceu-
tical products from this region (Santos et al. 2021). The current focus of the bioin-
dustry is on the high demand for investments in plant raw materials for formulations 
that have beneficial effects on human skin, leading to positive changes in its struc-
ture and functions (Funasaki et al. 2016). In this context, developing pharmaceutical 
products from plant ingredients is crucial, resulting in higher-quality, safer, more- 
effective, and more-innovative products. There is broad interest in products derived 
from Amazonian biodiversity, both nationally and internationally, primarily when 
the scientific research on raw materials produces satisfactory results (Lima 
et al. 2022).

The phytocosmetics market is one of the most promising. Currently, there is a 
strong demand for products that do not harm the skin and do not contain toxic ingre-
dients in their composition. This strong growth in demand for natural and vegan 
products, free of synthetic chemicals and not tested on animals, comes from public 
awareness of artificial products (Liu and Hong 2016). The production chains of 
cosmetics and herbal medicines are expanding, and companies and institutions are 
modernizing in response to productive communities, whether scientific or business 
(Martins et al. 2016). With this, phytocosmetics and the use of natural resources in 
the development of new bioproducts have been expanding in the current market, 
bringing new perspectives on the production of cosmetics. This theme is based 
mainly on the study aimed at applying knowledge of the action of active substances 
from species of the plant kingdom to personal hygiene, aesthetics, and the mainte-
nance of the whole healthy state of the human body. The widespread interest in 
developing phytocosmetics with innovative characteristics has propelled expanding 
scientific knowledge on the therapeutic, pharmacological, and cosmetic properties 
of the Brazilian flora (Homma 2012).

The use of resources sustainably extracted from nature has increased signifi-
cantly in today’s industrial world, to fight diseases and keep the human body and its 
structures healthy. These resources are mainly due to the Amazonian plants and 
fruits with aromatic properties, research on which has already been an important 
worldwide trend in the field of phytocosmetics. The importance of this study is 
related mainly to the provision of new references and studies on the potential of 
these fruits in cosmetology, as well as the impulses of the Brazilian market for the 
cosmetic industry, which presents great economic potential and resources for the 
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commercialization of these products while taking social and environmental respon-
sibility (Nobre et al. 2016).

The characteristics, particular properties, and various sources of the Amazon’s 
plant derivatives, such as saponins, flavonoids, triterpene acids, mucilages, essential 
oils, and fixed oils, are discussed in this section. The occurrence of more than 8000 
phenolic compounds in plants has already been detected. Flavonoids, for example, 
promote natural pigmentation and are widely distributed in the plant kingdom. 
Phenolic acids, flavonoids, and other plant polyphenols have been characterized as 
phytochemicals. In cosmetology, products containing them are used as functional 
cosmetics because they have therapeutic properties for the body. The functions of 
flavonoids in plant biology have been explored for their therapeutic activities, such 
as antioxidant, antifungal, bactericidal, and ultraviolet protection (Nicaretta 
et al. 2022).

In the last decades of the twentieth century, the environment has gained promi-
nence among consumers’ concerns, natural products are gaining more and more 
demand in the world market, and the pharmaceutical and cosmetic industries are 
obliged to respond to this natural and sustainable trend. The Amazon has always 
been a great source of raw materials thanks to its community that uses oils and 
extracts. The growing interest in phytotherapy and phytocosmetics has led to the 
search for information on the origin of plants, their chemical compositions, their 
levels of compatibility, and their actions in the human body because the various 
types of phytoderivatives can provide us with pharmaceutical ingredients such as 
astringents, emollients, humectants, tonics, stimulants, dyes, antiseptics, anti- 
inflammatories, and antioxidants (Maia and Andrade 2009).

The Amazon itself has numerous fruits with unusual characteristics, showing the 
bioavailability of the species in this region; fruit species cover 220 species of edible 
plants, with a percentage close to 44% of the diversity of native fruits in Brazil. This 
bioavailability of plants, especially native ones, has been promoting the heavy 
development of new bioproducts, mainly in the production of cosmetics 
(Giannino 2020).

The Euterpe oleracea Mart (açai), for example, is a complete food because it 
contains qualities such as dietary and functional fibers, relevant proteins, and anti-
oxidant compounds. Its fruit shows a high concentration of anthocyanins and phe-
nolic compounds (Gouvea and Kassicieh 2005). As described in the literature, the 
main constituents of açai are palmitic acid, oleic acid, and volatile acids; regarding 
its cosmetic use, studies discovered that it has febrifuge, purgative, repellent, heal-
ing, emollient, antiseptic, moisturizing, and softening effects (Morsello 2006).

The development of cosmetics from the fruit of cupuaçu (Theobroma grandiflo-
rum) is also based on its various properties, particularly polyphenols, described as 
phytonutrients with antioxidant properties, but also amino acids, fatty acids, phos-
phorus, fiber, vitamin C, and vitamins B1, B2, and B3 (Garcia et al. 2014). These 
attributes offer excellent opportunities for the aesthetic and cosmetic industries 
because they can be used in products to delay the premature aging of the skin; they 
also improve elasticity and combat harmful actions of ultraviolet A (UVA) and 
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ultraviolet (UVB) rays, thus reducing wrinkles and reducing certain skin irritations 
and hydrating the skin (Peixoto Araujo et al. 2021).

One of the most powerful antioxidants, beta-carotene, is recognized for its broad 
cell-renewal capacity and ability to absorb radicals from visible and ultraviolet 
(UV) light, so Amazon  ian fruit oils end up becoming extremely efficient in the 
pharmaceutical and cosmetic industries because they could be used to produce a 
natural sunscreen that reduces dryness and protects the skin (da Filho et al. 2010). 
Buriti oil (Mauritia flexuosa L.), for example, also contains carotenoids and tocoph-
erols, which are often used in the field of cosmetology; according to the literature, 
the benefits of the oil include lubrication and the regeneration of the hydrolipidic 
barrier of the skin, which suffers from injuries from inadequate lighting or UV rays 
(Cândido and Silva 2017).

In cosmetic formulations, these carotenoids confer antiaging activities thanks to 
their high antioxidant action, with the potential to absorb UV radiation and capture 
reactive oxygen species and free radicals. They also have depigmentation and anti-
acne activities. Other bioactive substances, such as fatty acids and phenolic com-
pounds, are present in the chemical composition of several plant species in the 
Amazon (Koolen et al. 2018). Thus, carotenoids play important roles in cosmetic 
formulations because their antioxidant activities stimulate the synthesis of elastin 
and collagen, inhibit elastase, and reduce melanocyte and melanin levels. The 
depigmentation and the reduction of oiliness occur thanks to the functionality of the 
sebaceous glands, thus protecting the skin and preventing premature aging (Gouvea 
and Kassicieh 2005).

2  Cosmetic Industry

Industries have proven to be highly relevant in the income of countries after the 
pandemic crisis; the greatest effort is needed to achieve and maintain national sov-
ereignty (Ansorge-Schumacher and Thum 2013). The cosmetic consumption index 
has been increasing since 2019, reaching about USD 95 million, and an increase of 
2% to 5% is expected within the next five years. Such expansion is explained by the 
high level of pharmaceutical consumption, mainly in the United States but also in 
China and Brazil (Eshun and He 2004).

Sustainable development requires a balance between human development and 
the detrimental effects that human activities have on the diversity and functions of 
ecological systems (Rodrigues et al. 2015). According to the literature, sustainable 
development is an economic development that guarantees the production of services 
and products that can meet the needs of human beings but in a way that protects the 
environment (Kumar et al. 2006).

The growing movement of companies toward prioritizing environmental per-
spectives is closely linked to public demands and the controls and taxes from gov-
ernment regulations. Another factor to be highlighted is the possibility of building 
competitive advantages, resulting in developing and incorporating products in a 
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way that cares for the environment so that companies’ images and reputations reflect 
sustainability values (Bom et al. 2019).

3  Amazonian Plant Species in the Production of Cosmetics

The plant species of the Brazilian biome have become known worldwide for having 
compounds with certain biological activities, so the Amazon is considered one of 
the greatest sources of ethnopharmacological knowledge (Merry et  al. 2009). 
Studies on bioproducts, biopharmaceuticals, bioinputs, and sustainable technolo-
gies have been gaining some attention in industry, bringing raw materials that have 
strong potential for the development of natural medicines and natural cosmetics 
(Nepstad et al. 2006).

Given the ongoing search for bioactive molecules, we show how these new bio-
products and sustainable technologies work in a circular economy so that the 
byproducts of a given product are used to generate income. The most important of 
these bioproducts come from Amazonian fruits such as açai (Euterpe oleracea), 
andiroba (Carapa guianensis Aublet), buriti (Mauritia flexuosa), and cupuaçu 
(Theobroma grandiflorum), which need to be further investigated to find new bioac-
tive molecules (Rodrigues Da Silva Enríquez and Drummond 2007; Lessmann 
et al. 2016).

In the evolution of the pharmaceutical and cosmetics industries, these fruits have 
been gaining economic prominence from the dissemination among and increased 
use by people. Technological and phytochemical advances have consolidated their 
high efficiency, biocompatibility, and low toxicity thanks to the use of natural prod-
ucts made from plant sources; these species have a variety of valuable properties for 
industrialization, including several useful chemical characteristics (Greve and Song 
2017; Baugh et al. 2018).

3.1  Açai (Euterpe oleracea)

The açai tree from Euterpe oleracea (Fig. 1) is a palm tree native to the Amazon, 
derived from the Arecaceae family, measuring approximately 3 to 20 meters in 
height, with a smooth stem of 7 to 18 meters in diameter. With fruitful characteris-
tics for the entire annual period, it shows greater growth in flooded areas because 
they contain moist soils and enable natural regeneration. The fruits, called açai ber-
ries, are smooth and globose, measure 1.2 to 1.3 meters in diameter, and are violet 
in color during the mature phase (Laurindo et al. 2023).

The açai trees generate small spherical dark-purple fruits found in clusters on the 
tops their palms. Its fruiting is abundant from July to December. A palm tree has a 
production capacity of about 120 kg each harvest; the essential extraction of this 
fruit occurs through its pulp, which occurs through maceration processes to remove 
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Fig. 1 Açai tree

undesirable residues and reduce particle sizes. The seeds constitute 85% of the total 
weight, 15% of which corresponds to the epicarp and mesocarp pulp, which can be 
pressed to extract its oil (Al Nasser and Mellor 2022).

The main consumer, producer, and exporter of açai berries is Brazil, specifically 
the north and northeast areas, comprising 42% of the current diet of the Amazonian 
community, where Pará is the largest state producer of the fruit, accounting for 95% 
of national production. The fruit, usually in its frozen pulp form, is widely exported 
to several countries, mainly China, Japan, the United States, Canada, and several 
European countries, usually sold and consumed in energy drinks (Yamaguchi 
et al. 2015).

The fruit of the açai tree demonstrates high socioeconomic relevance for the 
Amazon region given its enormous potential for the necessary improvement of this 
fruit, particularly the production and commercialization of the açai pulp, which is 
obtained from mechanical or manual extraction processes. The fruit is also used in 
popular foods and in industrial and artisanal products such as juices, ice creams, 
popsicles, jellies, and liqueurs, among others (Yamaguchi et al. 2015).

Its leaves are used as coverings for houses in areas where açai is planted and used 
in the treatment of snake bites, muscle aches, and pains in the chest. Açai seeds are 
widely used for handicrafts and mainly as organic fertilizer; from their stem, they 
are extracted from the hearts of palms. Another relevant application of açai pulp is 
the production of natural dyes; its ripe fruits end up providing a certain pigment 
derived from anthocyanins, which can produce colors varying from dark purple to 
dark bluish green, depending on the environment and the extraction method. Lastly, 
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oils can be extracted from the pulp of the fruit, which contains a dark green viscous 
fluid that has an aroma reminiscent of açai (Cavalcante et al. 2018).

3.2  Andiroba (Carapa guianensis)

Carapa guianensis (Fig. 2), popularly known as andiroba, is part of the Meliaceae 
family, which is widely used in traditional Brazilian medicine and activities in the 
Amazon region. The name andiroba comes from Tupi and means “bitter oil”; the 
tree of this species is the most important medicinal plants used in the production of 
herbal medicines by the Indigenous peoples and traditional inhabitants of the 
Amazon rainforest (Martinez et al. 2018).

It is found naturally in the northeast, specifically in the states of Acre, Amazonas, 
Amapá, and Pará, and in the northeast, it is only in the region of Maranhão and the 
Amazon in general. This species is adaptable in that it grows on forest canopies and 
develops best in clayey, muddy soils rich in organic matter. The parts that are gener-
ally used from this fruit in the extraction and production processes are the seeds, 
from which oils are extracted (Peixoto Araujo et al. 2021).

This species contains various bioactive compounds, such as coumarins, terpenes, 
and flavonoids. Andiroba fruit oil contains fatty acids such as linoleic, oleic, and 
palmitic acids. The so-called unsaponifiable fractions of this oil contain mainly 
limonoids and meliacins, bitter substances that exert a strong influence on the bio-
logical activities of this fruit (Figueiredo et al. 2022).

Fig. 2 Andiroba (Carapa guianensis)
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3.3  Buriti (Mauritia flexuosa)

Buriti (Mauritia flexuosa) (Fig.  3) is derived from a palm that belongs to the 
Arecaceae family. When mature, it can reach 30 meters in height. It flowers in the 
months between April and August and is found mainly in the wetlands and marshes 
of Brazilian regions with tropical or subtropical climates. It has spread primarily to 
the states of Amapá, Amazonas, Pará, Rondônia, Goiás, Bahia, Minas Gerais, Mato 
Grosso, Ceará Maranhão, Piauí, and Tocantins (Delgado et  al. 2007; Virapongse 
et al. 2017).

Buriti, popularly known as miriti, has wide territorial distribution throughout the 
Amazon region. It has a high population density and great genetic diversity. This 
species is considered the most important among the 11  in Brazil that have been 
called “trees of life,” because every part of them is useful. This tree produces fruits 
between late December and June, ranging from 2000 to 6000 fruits per palm tree 
(Pereira Freire et al. 2016; van der Hoek et al. 2019). The fruit is described as an 
elliptical fruit, in which the peel, pulp, fiber, and seed have an average mass and 
concentration of 11.08 g and 22.07%, 12.80 g and 24.25%, 10.49 g and 21.03%, and 
16.86 g and 32.65%, respectively (Koolen et al. 2013).

Mauritia flexuosa is important to its environment because it is part of the diets of 
several wild animals and acts as shelter for other species that choose to build nests 
at the top of these palm trees. This fruit can keep its soil moist and acts as a natural 
water resource. Buriti is also used for its core, which is rich in carbon. It is used in 
the production of filters for water purification (Albuquerque et al. 2003; Manzi and 
Coomes 2009). The pulp of buriti is a source of income for riverside and Indigenous 
communities, mainly in the Amazonian territory; in the food sector, the part of the 

Fig. 3 Buriti (Mauritia flexuosa) fruit
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mesocarp is widely used in products such as jellies, wines, sweets/candies, cakes, 
ice creams, and liqueurs (de Oliveira et al. 2013; Endress et al. 2013).

3.4  Cupuaçu (Theobroma grandiflorum)

The cupuaçu (Theobroma grandiflorum) comes from a tree in the Malvaceae family 
that is native to the Amazon. Each produces an amount of fruit that has an average 
weight of 4 kg. Approximately 20% of this fruit is composed of seeds; 35% of its 
interior is pulp; and 45% of its exterior is peel. The pulp of this species is the great-
est source of economic exploitation because it can be used in the food industry and 
in cosmetic production. This species is usually found in forested areas in the north-
ern parts of the Amazon and in the northeast of Maranhão (Rogez et al. 2004; Pereira 
et al. 2018).

In its natural habitat, the cupuaçu tree (Fig. 4) is medium size, reaching about 20 
meters in height. Its foliage has elongated physiological characteristics: They are 
approximately 30 cm long and 15 cm wide, with a leaf color ranging from pink 
when young to dark green when mature, and their flowers are large and have a red-
dish color (Pugliese et al. 2013).

The cupuaçu grows mainly in the Amazon region, where more than 30,000 seed-
lings are planted. The largest plantation of cupuaçu trees is in the state of Pará, fol-
lowed by the state of Amazonas, together making Brazil the largest producer (Costa 
et al. 2015; Abdullah et al. 2020). The economic activity of the Amazon region is 
mostly composed of family farming, where the cultivation of the fruit requires 
heavy labor and generates income for the local communities. Normally, production 
centers are formed by two or three farm properties, which support these families in 

Fig. 4 Cupuaçu (Theobroma grandiflorum) fruit
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a way that producers are included in the entire process, from soil preparation, man-
agement, cultivation, and harvesting to the commercialization of the final product 
(Vriesmann and de Oliveira Petkowicz 2009; de Oliveira and Genovese 2013).

Cupuaçu oils are extracted from cupuaçu seeds, which have a high fat content 
and are similar to cocoa butter, showing their great potential in industrial produc-
tion, which can be as food, pharmaceuticals, and even cosmetics. This part of the 
fruit, previously characterized as a byproduct, has been featured in studies because 
it can be used to obtain products similar to those made from cocoa seeds and because 
its stages of development are identical to those of cocoa seeds in industrialization 
(Rogez et al. 2004; Alves et al. 2007).

References

Abdullah WS, Mirza B, Ahmed I, Waheed MT (2020) Comparative analyses of chloroplast 
genomes of Theobroma cacao and Theobroma grandiflorum. Biologia (Bratisl) 75:761–771. 
https://doi.org/10.2478/s11756- 019- 00388- 8

Al Nasser MN, Mellor IR (2022) Neuroprotective activities of acai berries (Euterpe sp.): a review. 
J HerbMed Pharmacol 11:166–181. https://doi.org/10.34172/jhp.2022.21

Albuquerque MLS, Guedes I, Alcantara P, Moreira SGC (2003) Infrared absorption spec-
tra of Buriti (Mauritia flexuosa L.) oil. Vib Spectrosc 33:127–131. https://doi.org/10.1016/
S0924- 2031(03)00098- 5

Alves RM, Sebbenn AM, Artero AS, Clement C, Figueira A (2007) High levels of genetic diver-
gence and inbreeding in populations of cupuassu (Theobroma grandiflorum). Tree Genet 
Genomes 3:289–298. https://doi.org/10.1007/s11295- 006- 0066- 9

Alves FS, Cruz JN, de Farias Ramos IN, do Nascimento Brandão DL, Queiroz RN, da Silva 
GVGV, Dolabela MF, da Costa ML, Khayat AS, de Arimatéia Rodrigues do Rego J, do Socorro 
Barros Brasil D (2023) Evaluation of antimicrobial activity and cytotoxicity effects of extracts 
of Piper nigrum L. and Piperine. Separations 10. https://doi.org/10.3390/separations10010021

Ansorge-Schumacher MB, Thum O (2013) Immobilised lipases in the cosmetic industry. Chem 
Soc Rev 42:6475–6490. https://doi.org/10.1039/c3cs35484a

Antunes A, Simmons CS, Veiga JP (2021) Non-timber forest products and the cosmetic industry: 
an econometric assessment of contributions to income in the Brazilian Amazon. Land 10:588. 
https://doi.org/10.3390/LAND10060588

Baugh B, Ben-David I, Park H (2018) Can Taxes shape an industry? Evidence from the imple-
mentation of the “Amazon Tax”. J Finance 73:1819–1855. https://doi.org/10.1111/jofi.12687

Bom S, Jorge J, Ribeiro HM, Marto J (2019) A step forward on sustainability in the cosmetics 
industry: a review. J Clean Prod 225:270–290. https://doi.org/10.1016/j.jclepro.2019.03.255

Bruno C, Almeida M (2021) Óleos essenciais e vegetais: matérias-primas para fabricação de bio-
produtos nas aulas de química orgânica experimental. Quim Nova 44:899–907. https://doi.
org/10.21577/0100- 4042.20170722

Cândido TLN, Silva MR (2017) Comparison of the physicochemical profiles of buriti from the 
Brazilian Cerrado and the Amazon region. Food Sci Technol (Brazil) 37:78–82. https://doi.
org/10.1590/1678- 457X.32516

Cavalcante P, Cedrim AS, Marinho E, Barros A, Gomes Do Nascimento T, Amélio PC (2018) 
Propriedades antioxidantes do açaí (Euterpe oleracea) na síndrome metabólica. Braz J Food 
Technol 21. https://doi.org/10.1590/1981- 6723.09217

Costa MP, Frasao BS, Silva ACO, Freitas MQ, Franco RM, Conte-Junior CA (2015) Cupuassu 
(Theobroma grandiflorum) pulp, probiotic, and prebiotic: influence on color, apparent 

L. D. F. B. Torres and J. N. Cruz

https://doi.org/10.2478/s11756-019-00388-8
https://doi.org/10.34172/jhp.2022.21
https://doi.org/10.1016/S0924-2031(03)00098-5
https://doi.org/10.1016/S0924-2031(03)00098-5
https://doi.org/10.1007/s11295-006-0066-9
https://doi.org/10.3390/separations10010021
https://doi.org/10.1039/c3cs35484a
https://doi.org/10.3390/LAND10060588
https://doi.org/10.1111/jofi.12687
https://doi.org/10.1016/j.jclepro.2019.03.255
https://doi.org/10.21577/0100-4042.20170722
https://doi.org/10.21577/0100-4042.20170722
https://doi.org/10.1590/1678-457X.32516
https://doi.org/10.1590/1678-457X.32516
https://doi.org/10.1590/1981-6723.09217


535

 viscosity, and texture of goat milk yogurts. J Dairy Sci 98:5995–6003. https://doi.org/10.3168/
jds.2015- 9738

da Filho APSS, Cunha RL, de Vasconcelos MAM, das Zoghbi MGB (2010) Essential oil com-
ponents of pogostemon heyneanus benth, piper hispidinervum c. dc. and ocimum america-
num l. obtained in the amazon. J Essent Oil-Bearing Plants 13:347–352. https://doi.org/10.108
0/0972060X.2010.10643833

Rodrigues Da Silva Enríquez MA, Drummond J (2007) Social-environmental certification: sus-
tainable development and competitiveness in the mineral industry of the Brazilian Amazon. 
Nat Resour Forum 31:71–86. https://doi.org/10.1111/j.1477- 8947.2007.00127.x

da Silva LS, Pierre FC (2021) Applicability of Cupuaçu (Theobroma grandiflorum (Willd. Ex 
Spreng.) Schum.) in processed products and by-products. Tekhne e Logos 12:19–33

da Silva DF, de Souza JL, da Costa DM, Costa DB, Moreira POL, da Fonseca AL, de Varotti FP, 
Cruz JN, dos Santos CBR, Alves CQ, Leite FHA, Brandão HN (2023) Antiplasmodial activity 
of coumarins isolated from Polygala boliviensis: in vitro and in silico studies. J Biomol Struct 
Dyn. https://doi.org/10.1080/07391102.2023.2173295

de Oliveira TB, Genovese MI (2013) Chemical composition of cupuassu (Theobroma grandiflo-
rum) and cocoa (Theobroma cacao) liquors and their effects on streptozotocin-induced diabetic 
rats. Food Res Int 51:929–935. https://doi.org/10.1016/j.foodres.2013.02.019

de Oliveira DM, Siqueira EP, Nunes YRF, Cota BB (2013) Flavonoids from leaves of Mauritia 
flexuosa. Revista Brasileira de Farmacognosia 23:614–620. https://doi.org/10.1590/
S0102- 695X2013005000061

Delgado C, Couturier G, Mejia K (2007) Mauritia flexuosa (Arecaceae: Calamoideae), an 
Amazonian palm with cultivation purposes in Peru. Fruits 62:157–169. https://doi.org/10.1051/
fruits:2007011

Endress BA, Horn CM, Gilmore MP (2013) Mauritia flexuosa palm swamps: Composition, struc-
ture and implications for conservation and management. For Ecol Manage 302:346–353. 
https://doi.org/10.1016/j.foreco.2013.03.051

Eshun K, He Q (2004) Aloe Vera: avaluable ingredient for the food, pharmaceuti-
cal and cosmetic industries  - a review. Crit Rev Food Sci Nutr 44:91–96. https://doi.
org/10.1080/10408690490424694

Figueiredo AM, Cardoso AC, Buzati Pereira BL, Candido Silva RA, Goncalves Della Ripa AF, 
Bachiega Pinelli TF, Oliveira BC, Murino Rafacho BP, Watanabe Ishikawa LL, Azevedo PS, 
Okoshi K, Henrique Fernandes AA, Mamede Zornoff LA, Minicucci MF, Polegato BF, Rupp 
Paiva SA (2022) Açai supplementation (Euterpe oleracea Mart.) attenuates cardiac remod-
eling after myocardial infarction in rats through different mechanistic pathways. PLoS One 
17:e0264854. https://doi.org/10.1371/journal.pone.0264854

Funasaki M, dos Barroso HS, Fernandes VLA, Menezes IS (2016) Amazon rainforest cos-
metics: chemical approach for quality control. Quim Nova 39:194–209. https://doi.
org/10.5935/0100- 4042.20160008

Garcia TB, de Potiguara RCV, Kikuchi TYS, Demarco D, De Aguiar-Dias ACA (2014) Leaf ana-
tomical features of three Theobroma species (Malvaceae s.l.) native to the Brazilian Amazon. 
Acta Amazon 44:291–300. https://doi.org/10.1590/1809- 4392201300653

Giannino M (2020) Italian court orders Amazon not to sell luxury cosmetics subject to a selec-
tive distribution network. J Intell Prop Law Pract 15:154–156. https://doi.org/10.1093/
JIPLP/JPAA003

Gouvea R, Kassicieh S (2005) Using resources in R&D policy planning: Brazil, the Amazon 
and biotechnology. Technol Forecast Soc Change 72:535–547. https://doi.org/10.1016/J.
TECHFORE.2004.06.003

Greve HR, Song SY (2017) Amazon warrior: How a platform can restructure industry power and ecol-
ogy. Adv Strateg Manage 37:299–335. https://doi.org/10.1108/S0742- 332220170000037010

Homma AKO (2012) Plant extractivism or plantation: what is the best option for the Amazon? 
Estudos Avancados 26:167–186. https://doi.org/10.1590/S0103- 40142012000100012

Natural Products from the Amazon Used by the Cosmetic Industry

https://doi.org/10.3168/jds.2015-9738
https://doi.org/10.3168/jds.2015-9738
https://doi.org/10.1080/0972060X.2010.10643833
https://doi.org/10.1080/0972060X.2010.10643833
https://doi.org/10.1111/j.1477-8947.2007.00127.x
https://doi.org/10.1080/07391102.2023.2173295
https://doi.org/10.1016/j.foodres.2013.02.019
https://doi.org/10.1590/S0102-695X2013005000061
https://doi.org/10.1590/S0102-695X2013005000061
https://doi.org/10.1051/fruits:2007011
https://doi.org/10.1051/fruits:2007011
https://doi.org/10.1016/j.foreco.2013.03.051
https://doi.org/10.1080/10408690490424694
https://doi.org/10.1080/10408690490424694
https://doi.org/10.1371/journal.pone.0264854
https://doi.org/10.5935/0100-4042.20160008
https://doi.org/10.5935/0100-4042.20160008
https://doi.org/10.1590/1809-4392201300653
https://doi.org/10.1093/JIPLP/JPAA003
https://doi.org/10.1093/JIPLP/JPAA003
https://doi.org/10.1016/J.TECHFORE.2004.06.003
https://doi.org/10.1016/J.TECHFORE.2004.06.003
https://doi.org/10.1108/S0742-332220170000037010
https://doi.org/10.1590/S0103-40142012000100012


536

Koolen HHF, da Silva FMA, Gozzo FC, de Souza AQL, de Souza ADL (2013) Antioxidant, 
antimicrobial activities and characterization of phenolic compounds from buriti (Mauritia 
flexuosa L. f.) by UPLC-ESI-MS/MS.  Food Res Int 51:467–473. https://doi.org/10.1016/j.
foodres.2013.01.039

Koolen HHF, da Silva VSV, da Silva FMA, Paz WHP, Bataglion GA (2018) Buriti fruit—
Mauritia flexuosa. Exotic Fruits Reference Guide: 61–67. https://doi.org/10.1016/B978- 0- 1 
2- 803,138- 4.00004- 6

Kumar S, Massie C, Dumonceaux MD (2006) Comparative innovative business strategies 
of major players in cosmetic industry. Indus Manage Data Syst 106:285–306. https://doi.
org/10.1108/02635570610653461

Laurindo LF, Barbalho SM, Araújo AC, Guiguer EL, Mondal A, Bachtel G, Bishayee A (2023) 
Açaí (Euterpe oleracea Mart.) in health and disease: a critical review. Nutrients 15. https://doi.
org/10.3390/nu15040989

Lessmann J, Fajardo J, Muñoz J, Bonaccorso E (2016) Large expansion of oil industry in the 
Ecuadorian Amazon: biodiversity vulnerability and conservation alternatives. Ecol Evol 
6:4997–5012. https://doi.org/10.1002/ece3.2099

Li W, Muzammil S, Neves Cruz J, Mumtaz R, Rasul I, Hayat S, Khan MA, Khan AM, Umar Ijaz 
M, Lima RR, Zubair M, Ijaz MU, Lima RR, Zubair M (2023) Effects of drying temperature 
and solvents on in vitro diabetic wound healing potential of Moringa oleifera leaf extracts. 
Multidisciplinary Digital Publishing Institute

Lima SKR, Coêlho AG, Lucarini M, Durazzo A, Arcanjo DDR (2022) The Platonia insignis Mart. 
as the Promising Brazilian ‘Amazon Gold’: The State-of-the-Art and Prospects. Agriculture 
12:1827. https://doi.org/10.3390/agriculture12111827

Liu C, Hong J (2016) Strategies and service innovations of haitao business in the Chinese market. 
Asia Pac J Innov Entrepreneur 10:101–121. https://doi.org/10.1108/apjie- 12- 2016- 012

Maia OGS, Andrade LHA (2009) Database of the Amazon aromatic plants and their essential oils. 
Quim Nova 32:595–622. https://doi.org/10.1590/S0100- 40422009000300006

Manzi M, Coomes OT (2009) Managing Amazonian palms for community use: a case of aguaje 
palm (Mauritia flexuosa) in Peru. For Ecol Manage 257:510–517. https://doi.org/10.1016/j.
foreco.2008.09.038

Martinez RM, De Almeida Bauer Guimarães D, Berniz CR, De Abreu JP, Da Rocha APM, 
De Moura RS, Resende AC, Teodoro AJ (2018) Açai (Euterpe oleracea Mart.) seed extract 
induces cell cycle arrest and apoptosis in human lung carcinoma cells. Foods 7:178. https://doi.
org/10.3390/foods7110178

Martins FJ, Caneschi CA, Vieira JLF, Barbosa W, Raposo NRB (2016) Antioxidant activity 
and potential photoprotective from amazon native flora extracts. J Photochem Photobiol B 
161:34–39. https://doi.org/10.1016/j.jphotobiol.2016.05.012

Merry F, Soares-Filho B, Nepstad D, Amacher G, Rodrigues H (2009) Balancing conserva-
tion and economic sustainability: the future of the amazon timber industry. Environ Manage 
44:395–407. https://doi.org/10.1007/s00267- 009- 9337- 1

Morsello C (2006) Company-community non-timber forest product deals in the Brazilian Amazon: 
A review of opportunities and problems. For Policy Econ 8:485–494. https://doi.org/10.1016/j.
forpol.2005.08.010

Nepstad DC, Stickler CM, Almeida OT (2006) Globalization of the Amazon soy and beef 
industries: opportunities for conservation. Conserv Biol 20:1595–1603. https://doi.
org/10.1111/j.1523- 1739.2006.00510.x

Nicaretta BC, da Silva MEC, Corrêa CVP, Feitosa JM, Freitas de Souza S, Castro KCF, Andrade 
FWC, Moutinho VHP, Nunes KM (2022) Facial biocosmetics based on natural dyes from 
Amazon wood residues. J Sustain Forest. https://doi.org/10.1080/10549811.2022.2123821

Nobre CA, Sampaio G, Borma LS, Castilla-Rubio JC, Silva JS, Cardoso M (2016) Land-use and 
climate change risks in the amazon and the need of a novel sustainable development paradigm. 
Proc Natl Acad Sci U S A 113(10759–10):768. https://doi.org/10.1073/pnas.1605516113

L. D. F. B. Torres and J. N. Cruz

https://doi.org/10.1016/j.foodres.2013.01.039
https://doi.org/10.1016/j.foodres.2013.01.039
https://doi.org/10.1016/B978-0-12-803,138-4.00004-6
https://doi.org/10.1016/B978-0-12-803,138-4.00004-6
https://doi.org/10.1108/02635570610653461
https://doi.org/10.1108/02635570610653461
https://doi.org/10.3390/nu15040989
https://doi.org/10.3390/nu15040989
https://doi.org/10.1002/ece3.2099
https://doi.org/10.3390/agriculture12111827
https://doi.org/10.1108/apjie-12-2016-012
https://doi.org/10.1590/S0100-40422009000300006
https://doi.org/10.1016/j.foreco.2008.09.038
https://doi.org/10.1016/j.foreco.2008.09.038
https://doi.org/10.3390/foods7110178
https://doi.org/10.3390/foods7110178
https://doi.org/10.1016/j.jphotobiol.2016.05.012
https://doi.org/10.1007/s00267-009-9337-1
https://doi.org/10.1016/j.forpol.2005.08.010
https://doi.org/10.1016/j.forpol.2005.08.010
https://doi.org/10.1111/j.1523-1739.2006.00510.x
https://doi.org/10.1111/j.1523-1739.2006.00510.x
https://doi.org/10.1080/10549811.2022.2123821
https://doi.org/10.1073/pnas.1605516113


537

Peixoto Araujo NM, Arruda HS, Marques DRP, de Oliveira WQ, Pereira GA, Pastore GM (2021) 
Functional and nutritional properties of selected Amazon fruits: A review. Food Res Int 
147:110520. https://doi.org/10.1016/j.foodres.2021.110520

Pereira Freire JA, Barros KBNT, Lima LKF, Martins JM, de Araújo YC, da Silva Oliveira GL, 
de Souza Aquino J, Ferreira PMP (2016) Phytochemistry profile, nutritional properties and 
pharmacological activities of Mauritia flexuosa. J Food Sci 81:R2611–R2622. https://doi.
org/10.1111/1750- 3841.13529

Pereira ALF, Abreu VKG, Rodrigues S (2018) Cupuassu—Theobroma grandiflorum. Exotic Fruits 
Reference Guide:159–162. https://doi.org/10.1016/B978- 0- 12- 803,138- 4.00021- 6

Pugliese AG, Tomas-Barberan FA, Truchado P, Genovese MI (2013) Flavonoids, proanthocy-
anidins, vitamin C, and antioxidant activity of theobroma grandiflorum (Cupuassu) pulp and 
seeds. J Agric Food Chem 61:2720–2728. https://doi.org/10.1021/jf304349u

Rodrigues F, Pimentel FB, Oliveira MBPP (2015) Olive by-products: challenge application in 
cosmetic industry. Ind Crops Prod 70:116–124. https://doi.org/10.1016/j.indcrop.2015.03.027

Rogez H, Buxant R, Mignolet E, Souza JNS, Silva EM, Larondelle Y (2004) Chemical composition 
of the pulp of three typical Amazonian fruits: Araça-boi (Eugenia stipitata), bacuri (Platonia 
insignis) and cupuaçu (Theobroma grandiflorum). European Food Res Technol 218:380–384. 
https://doi.org/10.1007/s00217- 003- 0853- 6

Santos AB, Rocha JS, Mafra RZ, Ferreira MAC (2021) The relevance of bioeconomy to regional 
development: a case study in a biocosmetics company in Amazonas. Informe GEPEC 
25:91–108. https://doi.org/10.48075/igepec.v25i0.26305

van der Hoek Y, Solas SÁ, Peñuela MC (2019) The palm Mauritia flexuosa, a keystone plant 
resource on multiple fronts. Biodivers Conserv 28:539–551. https://doi.org/10.1007/
s10531- 018- 01686- 4

Virapongse A, Endress BA, Gilmore MP, Horn C, Romulo C (2017) Ecology, livelihoods, and 
management of the Mauritia flexuosa palm in South America. Glob Ecol Conserv 10:70–92. 
https://doi.org/10.1016/j.gecco.2016.12.005

Vriesmann LC, de Oliveira Petkowicz CL (2009) Polysaccharides from the pulp of cupuassu 
(Theobroma grandiflorum): structural characterization of a pectic fraction. Carbohydr Polym 
77:72–79. https://doi.org/10.1016/j.carbpol.2008.12.007

Yamaguchi KKDL, Pereira LFR, Lamarão CV, Lima ES, da Veiga-Junior VF (2015) Amazon 
acai: chemistry and biological activities: a review. Food Chem 179:137–151. https://doi.
org/10.1016/J.FOODCHEM.2015.01.055

Natural Products from the Amazon Used by the Cosmetic Industry

https://doi.org/10.1016/j.foodres.2021.110520
https://doi.org/10.1111/1750-3841.13529
https://doi.org/10.1111/1750-3841.13529
https://doi.org/10.1016/B978-0-12-803,138-4.00021-6
https://doi.org/10.1021/jf304349u
https://doi.org/10.1016/j.indcrop.2015.03.027
https://doi.org/10.1007/s00217-003-0853-6
https://doi.org/10.48075/igepec.v25i0.26305
https://doi.org/10.1007/s10531-018-01686-4
https://doi.org/10.1007/s10531-018-01686-4
https://doi.org/10.1016/j.gecco.2016.12.005
https://doi.org/10.1016/j.carbpol.2008.12.007
https://doi.org/10.1016/J.FOODCHEM.2015.01.055
https://doi.org/10.1016/J.FOODCHEM.2015.01.055


C1

Correction to: Natural Biopolymers  
as Scaffold

Antony V. Samrot, M. Sathiya Sree, D. Rajalakshmi, 
L. Noel Richard Prakash, and P. Prakash

 Correction to:  
Chapter 2 in: J. N. Cruz (ed.), Drug Discovery  
and Design Using Natural Products,  
https://doi.org/10.1007/978- 3- 031- 35205- 8_2

In Chapter 2 of the original version of this book, the term “Biopolymers” was mis-
spelt as “Bioplymers” in the chapter title. It was incorrectly titled as “Natural 
Bioplymers as Scaffold”, whereas it should be “Natural Biopolymers as Scaffold”. 
This has now been rectified.

The updated original version of this chapter can be found at  
https://doi.org/10.1007/978- 3- 031- 35205- 8_2

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. N. Cruz (ed.), Drug Discovery and Design Using Natural Products, 
https://doi.org/10.1007/978-3-031-35205-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35205-8_20&domain=pdf
https://doi.org/10.1007/978-3-031-35205-8_20


539

A
Absorption, distribution, metabolism, 

excretion, and toxicity (ADMET), 
39, 244, 250–251, 262, 436–447

Acetylcholinesterase (AChE) inhibition, 430
Activity, 5, 24, 38, 83, 110, 154, 225, 248, 

285, 324, 378, 399, 420, 436, 455, 
467, 502, 533

Acyclic monoterpenes, 106–107, 114
Agriculture, 5, 242, 502, 518
Alkaloids, 25–26, 28, 29, 42, 161, 167, 168, 

181, 183–188, 274–282, 286, 287, 
289, 291, 293, 296, 300, 309–312, 
378, 379, 381, 406, 428–431, 
436–439, 441, 466

α-glucosidase inhibition, 426
Amazon, 83, 90, 505, 525–534
Anion relay chemistry  

(ARC), 298–303
Anticancer, 6, 12–14, 24, 25, 27, 30, 31,  

43, 61, 65, 68, 90–91, 94, 117,  
159, 170, 275, 282, 290, 292, 305, 
337, 345, 352, 354, 379, 384, 403, 
423, 437–440, 460, 466, 
490–491, 496

Anti-inflammatory, 10, 11, 24, 26–28, 32, 81, 
88–89, 109–112, 114, 120, 123, 
125, 126, 159, 168, 224, 225, 228, 
315, 324, 345, 348, 354–357, 386, 
436–439, 446, 456, 458–460, 
466–468, 492–494, 496, 502, 
511, 527

Antimicrobial, 13, 46, 62, 80–84, 93, 95, 109, 
126, 159, 170, 324, 328–332, 
334–337, 343, 346–348, 350, 379, 

403, 420–423, 437–439, 455, 456, 
460, 467, 481–488, 502–508, 517

Anti-microbial natural products, 420–422
Antioxidant, 26, 27, 31, 32, 81, 89–90, 120, 

123, 125, 159, 170, 171, 187, 220, 
221, 223, 315, 324, 327, 331, 336, 
339, 342, 347, 348, 350–356, 359, 
360, 386, 403, 437, 440, 445, 
453–461, 466, 467, 488–490, 496, 
497, 502–504, 506–508, 518, 
527, 528

Antiparasitic, 81, 423, 502, 508–510, 517
Antirenin activity, 431
Antiviral, 6, 24, 26, 27, 85–87, 130–131, 167, 

345, 356, 439, 512, 513, 517
Artificial intelligence (AI), 38–69, 243, 431

B
Big data, 46, 254, 264
Bioavailability, 92–94, 324, 325, 334, 336, 

340, 352, 355, 357, 360, 361, 378, 
382, 388, 440–447, 454, 527

Biological networks, 253, 254, 
256–257, 262–264

Biological properties, 27, 64, 80, 81, 109, 324, 
327, 348, 466, 467, 503, 525

Biomolecules, 156, 170, 242, 262, 324, 325, 
328, 331, 334, 335, 340, 
349–354, 358–360

Bioscreening, 15–16

C
Caries, 454–457

Index

© The Editor(s) (if applicable) and The Author(s), under exclusive license to 
Springer Nature Switzerland AG 2023 
J. N. Cruz (ed.), Drug Discovery and Design Using Natural Products, 
https://doi.org/10.1007/978-3-031-35205-8

https://doi.org/10.1007/978-3-031-35205-8


540

Catellani reaction, 305, 306
Chemometrics, 46–51, 69, 170, 419
Chromatography, 9, 13, 15, 44
[C+NC+CC] coupling, 294, 295, 313, 315
CO2, 81, 177–179
Compounds, 4, 6, 14–16, 24, 26, 29, 31, 32, 

38–41, 43, 46–48, 51–57, 59–69, 
80, 82, 85–87, 89, 90, 92–95, 104, 
106, 111, 124, 131, 154–171, 
177–179, 182, 183, 185, 186, 188, 
189, 210, 213, 215, 218, 221, 222, 
224–226, 232, 242–244, 247–251, 
254, 255, 257–260, 262, 274, 
276–278, 280–282, 285, 286, 288, 
290, 292, 295–297, 300, 302, 304, 
306–309, 312, 313, 315, 324, 325, 
327–329, 334–338, 342, 345, 
347–351, 354, 355, 358, 360, 361, 
378–382, 385, 388, 398, 401–405, 
417–432, 436, 437, 440–447, 454, 
466, 469–471, 473–476, 478–481, 
489, 490, 502, 503, 506, 508, 509, 
511–513, 517, 518, 527–529, 531

Cosmetic industries, 27, 107, 502, 
518, 525–534

Cosmetics, 80, 81, 92, 219, 221, 337, 339, 
340, 466, 502, 503, 517, 526–534

Cotula cinerea, 466–497

D
Deorphanization, 50–61
Dissolve, 179, 326, 444
DNA barcoding, 13
Drug, 4–18, 25, 26, 29, 30, 32, 33, 38–41, 43, 

45, 46, 49, 60–64, 68, 69, 80–96, 
123, 131, 165, 225, 228, 233, 
241–244, 252, 254, 255, 257, 259, 
260, 262, 283, 290, 324, 336, 340, 
345, 349, 350, 354–357, 378, 
381–383, 385–388, 397, 420, 423, 
429, 431, 436, 438, 440–442, 
444–447, 503, 511–513, 515, 517

Drug discovery, 4, 6, 26, 33, 38–42, 46–50, 
69, 103–131, 241–264, 
378–381, 417–420

E
Encapsulation, 94, 324–329, 331, 334–336, 

341–348, 350–361, 444

Essential oil, 24, 30, 80–96, 103, 104, 106, 
122, 127, 155, 182, 189, 210, 212, 
325, 330, 335, 336, 345–347, 400, 
466, 467, 469–473, 478, 481–497, 
502–518, 527

Ethnobotany, 5–8, 10, 242, 379
Ethnopharmacology, 8–10, 379
Extraction, 9, 14, 50, 81, 177–179, 210–214, 

216–233, 381, 466, 469, 
474, 529–531

F
Flavonoids, 26, 27, 159, 160, 167, 170, 

179–187, 192, 193, 221, 222, 381, 
400–402, 424, 437–442, 445, 459, 
466, 473–478, 507, 527, 531

Food, 5–7, 14, 31, 38, 43, 81, 155, 160, 162, 
210, 219–222, 233, 242, 324, 
326–328, 334–340, 343, 344, 348, 
350, 351, 353, 354, 359–361, 400, 
436, 437, 454, 502, 503, 505, 517, 
518, 526, 527, 530, 532–534

Fourier transform infrared spectroscopy 
(FTIR), 163, 170, 171

G
Gas chromatography (GC), 7, 47, 154–156
Glutathione S-transferase (GST) 

inhibitors, 423
Green tea (GT), 446, 456–459

H
High performance liquid chromatography 

(HPLC), 7, 14, 47, 49, 155–157, 
170, 473

Homology modeling, 252–253, 258,  
260, 261

I
Isolation, 4, 9, 14, 16, 47, 48, 154, 155,  

160, 177–179, 218, 232, 274,  
316, 419, 424, 428, 431, 432,  
469, 473, 478

L
Lycopene, 185, 186, 192, 223, 458–459

Index



541

M
Mannich reaction, 276–280
Mass spectrometry (MS), 14, 15, 47–52, 58, 

154–156, 164–166, 227, 228, 381, 
419, 473

MEP pathway, 105
Microbial metabolites, 38, 50, 52, 379
Microwaves, 210–215, 217–220, 222–223, 

226, 229–233, 309, 311
Molecular targets, 41, 254
Monoterpenoids, 106, 107
MVA pathway, 104

N
Nanocapsule, 94, 335, 338, 340, 343, 347, 

357, 359, 386, 445
Nanoemulsion, 92, 94–95, 325, 326, 330, 335, 

336, 346, 347, 350, 355, 359, 360, 
387, 442, 445, 446, 505

Nanoparticle, 92, 93, 231, 314, 325, 326, 328, 
331, 335, 338, 340, 343–345, 347, 
348, 350, 351, 354–356, 382–387, 
442, 444, 445

Nanotechnology, 92, 382, 387, 388, 442, 447
Natural pigments, 221–223, 327
Natural products, 4–7, 9, 10, 13–17, 23–33, 

38–69, 80, 81, 154, 158–171, 
178–179, 242, 243, 255, 273–316, 
324–361, 378–389, 397, 417–432, 
436–447, 453, 460, 466–497, 502, 
503, 525–534

Nuclear magnetic resonance (NMR), 7, 14, 15, 
47–51, 154, 166, 168, 170, 242, 
246, 252, 258, 261, 381, 419, 473

O
Oil, 30, 104, 155, 182, 210, 325, 400, 446, 

469, 502, 527
Omics, 47, 55, 131, 226–231, 243, 254, 255
Omic techniques, 7–8
Oral cavity, 453–461

P
Passerini reaction, 283–288, 312
Pathway, 8, 24, 50, 91, 104, 253, 345, 384, 

397, 437, 455, 513
Periodontitis, 454, 457–460
Petasis reactions, 280
Pharmaceuticals, 4, 6, 7, 10, 14, 16, 17, 33, 38, 

42, 69, 81, 92–95, 107, 162, 165, 
223–225, 233, 326–328, 334, 337, 

338, 342, 346–348, 357, 361, 378, 
380, 382, 396, 418, 423, 432, 436, 
440, 443, 446, 466, 502, 503, 518, 
526–529, 534

Pharmacokinetics, 6, 16, 41, 92, 94, 96, 131, 
244, 251, 262, 343, 378, 381, 388, 
436, 438–443, 445, 447

Pharmacological, 8–10, 15, 62, 91, 123, 154, 
223, 242, 250, 257, 262, 278, 311, 
347, 354, 356, 437, 440, 441, 445, 
481–496, 512, 526, 529

Pharmacological properties, 96, 278, 350, 382, 
388, 467, 496

Pharmacophore, 60, 64, 243, 255–260, 264, 
422, 425, 432

Phytochemicals, 6, 7, 9, 14, 26, 80, 85, 87,  
89, 96, 161, 170, 179, 220, 242, 
350, 378, 379, 381, 382, 384, 
386–388, 423, 424, 426, 429,  
430, 432, 436–439, 444, 446,  
469, 471, 473, 476–478, 490, 
527, 529

Phytochemistry, 242, 469–481
Phytoconstituents, 8, 232, 243, 386, 442
Phytonanomedicine, 447
Plant products, 170, 506
Plant secondary metabolites, 95, 437,  

438, 447
Povarov reactions, 281, 282, 284

Q
Quorum-quenching enzymes (QQEs), 405
Quorum sensing (QS), 396–408, 437

R
Resveratrol, 185, 384, 439, 442, 459–460

S
Scaffold, 23–33, 61–68, 131, 276, 281, 288, 

418, 419
Separation, 9, 13–15, 46, 47, 154–158, 160, 

161, 166, 210, 220, 229, 342
Solvent, 81, 156, 157, 159, 160, 177, 178, 

210–215, 217–223, 225, 229–232, 
273, 283, 292, 313, 316, 325–327, 
343, 352, 354, 381, 440, 444, 
466, 474

Spectroscopy, 15, 47, 242, 473
Strecker reaction, 274–276, 313–315
Structure elucidation, 14–15, 381
Supercritical, 81, 177–179, 352

Index



542

T
Targeted delivery, 378–389, 442, 447
Terpenes, 24–25, 80, 104, 167, 168, 182, 183, 

185, 194, 345, 346, 378, 401, 
511, 531

Therapeutic, 4, 9, 16, 17, 24–29, 33, 61,  
62, 81, 84, 85, 87, 93, 94, 96,  
114, 125, 168, 231, 242, 251, 
 253, 262, 324, 337, 343,  
378–383, 387, 397, 426,  
436–438, 440–442, 444–447,  
453, 461, 466, 497, 502, 503,  
513, 517, 526, 527

Toxicity, 41, 46, 91–92, 96, 244, 250,  
251, 259, 384, 388, 397, 423,  

441, 445, 467, 492–497, 
 509–512, 515, 516, 529

Traditional use, 15, 379, 466

U
Ugi reactions, 288–292, 312, 314

V
Virtual screening, 31, 41, 68, 255, 257, 

258, 260
Vitamin C, 458, 527

Index


	Preface
	Contents
	Part I: Genesis of Research Projects That Use Natural Products to Design New Drugs
	Drug Development Projects Guided by Ethnobotany and Ethnopharmacology Studies
	1 Introduction
	2 Ethnobotany
	2.1 Ethnobotany and Natural Products
	2.2 Ethnobotanical Approaches and Omic Techniques in Conjunction

	3 Ethnopharmacology
	3.1 Ethnopharmacology and Drug Development

	4 Process of Ethnobotanical and Ethnopharmacological Drug Development
	4.1 Plant Selection Guided by Ethnopharmacological Knowledge
	4.2 Authentication of Plant
	4.3 Extraction and Isolation of Natural Compounds
	4.4 Structure Elucidation of Isolated Components
	4.5 Bioscreening of Extracts, Fractions, and Isolates
	4.6 Molecular Modeling and Natural Product Database

	5 Conclusions
	References

	Natural Biopolymers as Scaffold
	1 Introduction
	2 Therapeutic Uses of Natural Products
	2.1 Terpenes and Terpenoid
	2.2 Alkaloids
	2.3 Phenylpropanoid
	2.4 Evodiamine
	2.5 Tetracyclines

	3 Natural Product-Based Scaffold
	3.1 Alkaloid-Based Scaffold
	3.2 Phenylpropanoid-Based Scaffold
	3.3 Evodiamine-Based Scaffold
	3.4 Tetracyclines-Based Scaffold

	4 Conclusion
	References

	Artificial Intelligence and Discovery of Microbial Natural Products
	1 Introduction
	2 Machine Learning (ML) Algorithms in Microbial Drug Discovery
	2.1 ML in Microbial Drug Discovery

	3 Genome Mining in Relation to Microbial Drug Discovery
	4 Computer-Assisted Prediction of Conditional Production of Microbial Natural Products
	4.1 ML Algorithms and Conditional Production of Microbial Products
	4.1.1 Artificial Neural Networks (ANN)
	4.1.2 Support Vector Machines (SVMs)
	4.1.3 Random Forest
	4.1.4 K-Nearest-Neighbor (K-NN)
	4.1.5 Gradient Boosting


	5 Chemometrics and Automated Microbial Drug Discovery in Dereplication Process
	5.1 Metabolite Dereplication Using MS and NMR Data

	6 Prediction of Biological Function and Deorphanization of Microbial Natural Products
	6.1 AI in the Prediction of Biological Function of Microbial Metabolites
	6.2 AI in the Identification of Microbial Metabolic Pathways
	6.3 Deorphanization

	7 Perspective and De Novo Generation of NP-Inspired Compounds
	7.1 NPs-Based De Novo Drug Design Using AI
	7.2 Biology-Oriented Synthesis (BIOS)
	7.3 Diversity-Oriented Synthesis Strategy
	7.4 Complexity-to-Diversity Strategy
	7.5 Functionally Oriented Synthesis Strategy
	7.6 Pseudonatural Products
	7.7 Scaffold Hopping with the Design of Genuine Structures (DOGS)
	7.8 Shape-Based De Novo Design

	8 Limitation of AI Application in NP Drug Discovery
	9 Conclusion
	References

	Drug Development from Essential Oils: New Discoveries and Perspectives
	1 Introduction
	2 Essential Oils: General Aspects
	3 Biological Activities
	3.1 Antimicrobial Activity
	3.1.1 Essential Oils in Combination with Antibiotics

	3.2 Antiviral
	3.2.1 Activity Against COVID-19 Virus

	3.3 Anti-Inflammatory
	3.4 Antioxidant
	3.5 Anticancer

	4 Toxicity
	5 Incorporation of Essential Oils in Pharmaceutical Formulations
	5.1 Nanoparticles
	5.2 Nanocapsules
	5.3 Nanoemulsion

	6 Standardization of Essential Oils: Influences of Biotic and Abiotical Factors
	References

	Essential Oil-Derived Monoterpenes in Drug Discovery and Development
	1 Introduction
	2 Biosynthesis of Monoterpenes
	3 Classification of Monoterpenes
	3.1 Acyclic Monoterpenes
	3.2 Cyclic Monoterpenes
	3.2.1 Monocyclic Monoterpenes
	3.2.2 Bicyclic Monoterpenes


	4 Bioactivity of Monoterpenes
	4.1 Anti-inflammatory Activity
	4.2 Analgesic Activity
	4.3 Antitumor Activity
	4.4 Anticonvulsant Activity
	4.5 Cardiovascular Protective Activity
	4.6 Gastroprotective Activity
	4.7 Wound-Healing Activity
	4.8 Antifungal Activity
	4.9 Antibacterial Activity
	4.10 Antiviral Activity

	5 Conclusion and Future Prospects
	References


	Part II: Initial Processes for Identifying and Extracting Compounds: Isolation and Identifying These Structures
	Chromatographic Methods for Separation and Identification of Bioactive Compounds
	1 Introduction
	2 Gas Chromatography
	3 High-Performance Liquid Chromatography
	4 Countercurrent Chromatography (CCC) and Centrifugal Partition Chromatography (CPC)
	5 Capillary Electrophoresis (CE)
	6 Spectroscopic Methods for Structural Elucidation of Natural Products
	6.1 Infrared (IR) Spectrometry
	6.2 Mass Spectrometry
	6.3 Nuclear Magnetic Resonance (NMR)
	6.4 X-Ray Diffraction
	6.5 Ultraviolet-Visible Spectroscopy (UV-Vis Spectroscopy)

	References

	Supercritical Fluid for Extraction and Isolation of Natural Compounds
	1 Introduction
	2 Methodology/Mechanism
	References

	Microwave-Assisted Extraction of Phytochemicals
	1 Introduction
	2 Fundamentals of Microwave Extraction (Microwave Theory)
	3 Instrumentation of the Microwave Extraction
	3.1 Fundamental Components in an MAE Device
	3.2 Advantages of Closed-Vessel Systems
	3.3 Limitations of Closed-Vessel Systems
	3.4 Atmospheric Pressure or Open MAE System

	4 Scaleup of Microwave-Assisted Extraction
	5 Factors Influencing Microwave-Assisted Extraction
	6 Microwave-Assisted Extraction of Fats and Oils
	7 Types of MAE Extractants
	8 Microwave-Assisted Extraction of Antioxidants
	9 Extraction of Natural Pigments by Microwave-Assisted Technology
	9.1 Recovery of Natural Pigments by Microwave Assistance

	10 Extraction of Personal Care Products
	11 Extraction of Pharmaceuticals
	12 The Role of Microwaves in Omics Disciplines
	12.1 Omics
	12.2 Microwave Equipment for Assisting Omics
	12.3 Microwave-Assisted Steps in Various Omics
	12.4 Solvents Used in MW-Assisted Steps in Various Omics Disciplines
	12.5 Microwave Assistance Trends in the Omics Approach

	13 Conclusion
	References


	Part III: Screening of Compounds Using Molecular Modeling Approaches: Optimization of Natural Compounds Using In Silico Methods
	Software for Drug Discovery and Protein Engineering: A Comparison Between the Alternatives and Recent Advancements in Computational Biology
	1 Introduction: The Need for Computational Biology
	2 Visualization of Molecular Structures
	3 Prediction of Pharmacokinetic/Pharmacodynamic Profile
	4 Prediction of Structures Including Homology Modeling
	5 Interaction Networks
	6 Pharmacophore Modeling and Molecular Docking
	7 Molecular Dynamics Simulation
	8 Conclusion
	References


	Part IV: Synthesis and Encapsulation of Compounds of Natural Origin
	Multicomponent Reactions for the Synthesis of Natural Products and Natural Product-Like Libraries
	1 Introduction
	2 Imine-Initiated Multicomponent Reactions
	2.1 Strecker Reaction
	2.2 Mannich Reaction
	2.3 Petasis (Borono–Mannich) Reaction
	2.4 Povarov Reaction

	3 Isonitrile-Based Multicomponent Reactions
	3.1 Passerini Reaction and Its Variants
	3.2 Ugi Reaction

	4 Cycloaddition-Based Multicomponent Reactions
	4.1 [3 + 2] Cycloadditions
	4.2 Knoevenagel/Hetero Diels–Alder Domino Sequence

	5 Multicomponent Reactions Based on Aryne Intermediates
	6 Anion Relay Chemistry
	6.1 Type I Anion Relay Chemistry
	6.2 Type II Anion Relay Chemistry
	6.3 Combination of Type I and Type II Anion Relay Chemistry

	7 Transition Metal-Catalyzed Multicomponent Reactions
	7.1 Palladium-Catalyzed Reactions
	7.2 Copper-Catalyzed Reactions

	8 Miscellaneous Multicomponent Reactions
	9 Combinations of Multicomponent Reactions in Natural Product Synthesis
	9.1 Passerini, Ugi-3CR, and Ugi-4CR
	9.2 Combination of Two Joullié–Ugi Reactions
	9.3 Combination of a C + NC + CC Coupling and a Strecker Reaction

	10 Natural Products as Substrates for Multicomponent Reactions
	11 Conclusions
	References

	Applications of (Nano)encapsulated Natural Products by Physical and Chemical Methods
	1 Introduction
	2 Encapsulation Methods
	3 Nanoencapsulation of Biomolecules from Microbes
	3.1 Nanoencapsulation of Biomolecules from Bacteria
	3.2 Nanoencapsulation of Biomolecules from Yeasts
	3.3 Nanoencapsulation of Bacteriophages

	4 Nanoencapsulation of Biomolecules from Plants
	5 Nanoencapsulation of Biomolecules from Marine and Freshwater Organisms
	5.1 Nanoencapsulation of Biomolecules from Algae
	5.2 Nanoencapsulation of Biomolecules from Fishes and Krill

	6 Conclusions
	References


	Part V: Identification of Molecular Targets of Natural Molecules and Biological Potential
	Targeted Delivery of Natural Products
	1 Introduction
	2 Natural Products in Medicinal Use
	3 Contemporary Approaches to Formulation Development of Natural Products
	4 Opportunities and Challenges in Targeted Delivery of Natural Products
	5 Conclusion and Future Perspectives
	Bibliography

	Quorum Sensing and Quorum Sensing Inhibitors of Natural Origin
	1 Introduction
	1.1 Plants
	1.1.1 Edible Plants
	1.1.2 Fruits
	1.1.3 Spices
	1.1.4 Essential Oils
	1.1.5 Medicinal Plants
	Terpenoids
	Flavonoids
	Phenolic Acids



	2 Fungal Quorum Sensing Inhibitors
	3 Marine Organisms Are a Potent Source of QSIs
	3.1 Algae
	3.2 Bacteria
	3.3 Other Marine Organisms as QSIs

	4 Natural Enzymatic Degradation of QSMs
	5 Conclusions
	References

	Bioactive Natural Products from Medicinal Plants
	1 Introduction
	1.1 Screening of Crude Extracts
	1.2 Bioassay-Directed Isolation of Lead Compounds

	2 Antimicrobial Natural Products
	3 Antiglutathione S-Transferase Natural Products
	4 Anti-α-Glucosidase Natural Products
	5 Antiacetylcholinesterase Natural Products
	6 Antirenin Natural Products
	References

	Natural Product Formulations to Overcome Poor ADMET Properties
	1 Introduction
	2 Phytochemicals and Medicinal Uses
	3 Pharmacokinetic Parameters of Natural Products
	4 Challenges in Natural Product Formulation
	5 Formulation Technology Aspects of Natural Products
	5.1 Conventional Approaches
	5.1.1 Size Reduction
	5.1.2 Surfactant and Solubilizing Agents
	5.1.3 Salt Formation
	5.1.4 Polymer Complexation

	5.2 Nanotechnological Approaches
	5.2.1 Polymer/Lipid Nanoparticles
	5.2.2 Nanocapsules
	5.2.3 Nanoemulsions
	5.2.4 Dendrimers
	5.2.5 Phytosomes
	5.2.6 Micelles


	6 Conclusion and Future Perspectives
	References

	Antioxidants in Oral Cavity Disorders
	1 Introduction
	2 Antioxidants in Caries
	2.1 Grape Seed Extract
	2.2 Green Tea

	3 Antioxidants in Periodontitis
	3.1 Vitamin C
	3.2 Lycopene
	3.3 Green Tea (GT)
	3.4 Resveratrol

	4 Conclusion
	References

	Cotula cinerea as a Source of Natural Products with Potential Biological Activities
	1 Introduction
	2 Research Methodology
	3 Results and Discussion
	3.1 Botanical Description
	3.2 Geographic Distribution
	3.3 Ethnobotanical Use
	3.4 Phytochemistry
	3.4.1 Essential Oil Terpenoids
	3.4.2 Phenolic Acids
	3.4.3 Flavonoids
	3.4.4 Sulfated Flavonoids
	3.4.5 Other Phytochemical Compounds

	3.5 Pharmacological Investigation
	3.5.1 Antimicrobial Activity
	3.5.2 Antioxidant Activity
	3.5.3 Anticancer Activity
	3.5.4 Other Pharmacological Activities of Cotula cinerea


	4 Conclusion and Future Perspectives
	References

	Essential Oil as a Source of Bioactive Compounds for the Pharmaceutical Industry
	1 Introduction
	2 Biological Activities
	2.1 In Vitro
	2.1.1 Antimicrobial Activity
	2.1.2 Antioxidant Activity

	2.2 Antiparasitic Activity
	2.3 Anti-Inflammatory Activity
	2.4 Antiviral Activity
	2.5 Anxiolytic and Antidepressant Activities
	2.6 Sedative Activity
	2.7 Repellent and Insecticidal Activities
	2.8 Essential Oils in Veterinary Medicine
	2.9 Aromatherapy

	3 Final Considerations
	References

	Natural Products from the Amazon Used by the Cosmetic Industry
	1 Introduction
	2 Cosmetic Industry
	3 Amazonian Plant Species in the Production of Cosmetics
	3.1 Açai (Euterpe oleracea)
	3.2 Andiroba (Carapa guianensis)
	3.3 Buriti (Mauritia flexuosa)
	3.4 Cupuaçu (Theobroma grandiflorum)

	References


	Correction to: Natural Biopolymers as Scaffold
	Index

