
Chapter 19
Python Classes

19.1 Introduction

In Python everything is an object and as such is an example of a type or class
of things. For example, integers are an example of the int class, real numbers
are examples of the float class, etc. In this chapter we will look at what a class
is in Python, how it is defined, how instances of a class can be created, how
attributes (data) and methods (behaviour) can be defined for a class and outline
how memory is managed within Python with respect to instance creation and
deletion.

19.2 Python and Classes

As mentioned above everything in Python is an object! This is illustrated below for
a number of different types within Python:

print(type(4))
print(type(5.6))
print(type(True))
print(type(’Natalia’))
print(type([1, 2, 3, 4]))

This prints out a list of classes that define what it is to be an int, or a float or
a bool etc. in Python:

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_19

209

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_19&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_19

210 19 Python Classes

<class ’int’>
<class ’float’>
<class ’bool’>
<class ’str’>
<class ’list’>

That is the number 4 is an example or instance of the class int representing how
integers work in Python. In turn the number 5.6 is an instance of the class float
(representing floating-point numbers). The value True is an instance of the class
bool and the string ‘Natalia’ is an instance of the class str (representing for strings in
Python). Finally [1, 2, 3, 4] is an instance of a type of collection called a list (which
is discussed later in this book).

However, you are not just restricted to the built-in types (aka classes); it is also
possible to define user defined types (classes). These can be used to create your own
data structures, your own data types, your own applications, etc.

Three remainder of this chapter considers the constructs in Python used to create
user defined classes.

19.3 Class Definitions

In Python, a class definition has the following format

class nameOfClass(SuperClass):
__init__
attributes
methods

Although you should note that you can mix the order of the definition of attributes,
and methods as required within a single class.

The following code is an example of a class definition:

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

Although this is not a hard and fast rule, it is common to define a class in a file
named after that class. For example, the above code would be stored in a file called
Person.py; this makes it easier to find the code associated with a class. This is
shown below using the PyCharm IDE:

19.3 Class Definitions 211

The Person class possesses two attributes (or instance variables) called name and
age.

There is also a special method defined called __init__. This is an initializer
(also known as a constructor) for the class. It indicates what data must be supplied
when an instance of thePerson class is created and how that data is stored internally.

In this case a name and an agemust be supplied when an instance of the Person
class is created.

The values supplied will then be stored within an instance of the class (represented
by the special variable self) in instance variables/attributes self.name and
self.age. Note that the parameters to the __init__ method are local variables
and will disappear when the method terminates, but self.name and self.age
are instance variables and will exist for as long as the object is available.

Let us look for a moment at the special variable self . This is the first parameter
passed into any method. However, when a method is called we do not pass a value
for this parameter ourselves; Python does. It is used to represent the object within
which the method is executing. This provides the context within which the method
runs and allows the method to access the data held by the object. Thus self is the
object itself.

You may also be wondering about that term method. A method is the name given
to behaviour that is linked directly to the Person class; it is not a free-standing
function rather it is part of the definition of the class Person.

Historically, it comes from the language Smalltalk; this language was first used to
simulate a production plant and a method represented some behaviour that could be
used to simulate a change in the production line; it therefore represented a method
for making a change.

212 19 Python Classes

19.4 Creating Examples of the Class Person

New instances/objects (examples) of the class Person can be created by using
the name of the class and passing in the values to be used for the parameters of the
initialization method (with the exception of the first parameter self which is provided
automatically by Python).

For example, the following creates two instances of the class Person:

p1 = Person(’John’, 36)
p2 = Person(’Phoebe’, 21)

The variable p1 holds a reference to the instance or object of the class Person
whose attributes hold the values ‘John’ (for the name attribute) and 36 (for the age
attribute). In turn the variable p2 references an instance of the class Person whose
name and age attributes hold the values ‘Phoebe’ and 21. Thus in memory we have:

The two variables reference separate instances or examples of the class Person.
They therefore respond to the same set of methods/operations and have the same set
of attributes (such as name and age); however, they have their own values for those
attributes (such as ‘John’ and ‘Phoebe’).

Each instance also has its own unique identifier—that shows that even if the
attribute values happen to be the same between two objects (for example, there happen
to be two people called John who are both 36); they are still separate instances of the
given class. This identifier can be accessed using the id() function, for example:

print(’id(p1):’, id(p1))
print(’id(p2):’, id(p2))

When this code is run p1 and p2 will generate different identifiers, for example:

id(p1): 4547191808
id(p2): 4547191864

Note that actual number generated may vary from that above but should still be
unique (within your program).

19.5 Be Careful with Assignment 213

19.5 Be Careful with Assignment

Given that in the above example, p1 and p2 reference different instances of the class
Person; what happens when p1 or p2 are assigned to another variable? That is,
what happens in this case:

p1 = Person(’John’, 36)
px = p1

What does px reference? Actually, it makes a complete copy of the value held
by p1; however, p1 does not hold the instance of the class Person; it holds the
address of the object. It thus copies the address held in p1 into the variable px. This
means that both p1 and px now reference (point at) the same instance in memory;
we there have this:

This may not be obvious when you print p1 and px:

print(p1)
print(px)

As this could just imply that the object has been copied:

John is 36
John is 36

However, if we print the unique identifier for what is referenced by p1 and px
then it becomes clear that it is the same instance of class Person:

print(’id(p1):’, id(p1))
print(’id(px):’, id(px))

which prints out

id(p1): 4326491864
id(px): 4326491864

As can be seen the unique identifier is the same.

214 19 Python Classes

Of course, if p1 is subsequently assigned a different object (for example, if we
ran p1 = p2) then this would have no effect on the value held in px; indeed, we
would now have:

19.6 Printing Out Objects

If we now use the print() function to print the objects held by p1 and p2, we
will get what might at first glance appear to be a slightly odd result:

print(p1)
print(p2)

The output generated is

<__main__.Person object at 0x10f08a400>
<__main__.Person object at 0x10f08a438>

What this is showing is the name of the class (in this case Person) and a hexadec-
imal number indicates where it is held in memory. Neither of which is particularly
useful and certainly doesn’t help us in knowing what information p1 and p2 are
holding.

19.6.1 Accessing Object Attributes

We can access the attributes held by p1 and p2 using what is known as the dot
notation. This notation allows us to follow the variable holding the object with a dot
(‘.’) and the attribute we are interested in access. For example, to access the name of
a person object we can use p1.name or for their age we can use p1.age:

19.6 Printing Out Objects 215

print(p1.name, ’is’, p1.age)
print(p2.name, ’is’, p2.age)

The result of this is that we output

John is 36
Phoebe is 21

Which is rather more meaningful.
In fact, we can also update the attributes of an object directly, for example we can

write:

p1.name = ’Bob’
p1.age = 54
If we now run

print(p1.name, ’is’, p1.age)

then we will get

Bob is 54

We will see in a later chapter (Python Properties) that we can restrict access to
these attributes by making them into properties.

19.6.2 Defining a Default String Representation

In the previous section we printed out information from the instances of class
Person by accessing the attributes name and age.

However, we now needed to know the internal structure of the class Person to
print out its details. That is, we need to know that there are attributes called name
and age available on this class.

It would be much more convenient if the object itself knew how to convert its self
into a string to be printed out!

In fact we can make the class Person do this by defining a method that can be
used to convert an object into a string for printing purposes.

This method is the __str__ method. The method is expected to return a string
which can be used to represent appropriate information about a class.

The signature of the method is

def __str__(self)

Methods that start with a double underbar (‘__’) are by convention considered
special in Python and we will see several of these methods later on in the book. For
the moment we will focus only on the __str__() method.

We can add this method to our class Person and see how that affects the output
generated when using the print() function.

216 19 Python Classes

We will return a string from the __str__ method that provides and the name
and age of the person:

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

def __str__(self):
return self.name + ’ is ’ + str(self.age)

Note that in the __str__ method we access the name and age attributes using
the self parameter passed into the method by Python. Also note that it is necessary
to convert the age number attribute into a string. This is because the ‘+’ operator
will do string concatenation unless one of the operands (one of the sides of the ‘+’)
is a number; in which case it will try and do arithmetic addition which of course will
not work if the other operand is a string!

If we now try to print out p1 and p2:

print(p1)
print(p2)

The output generated is:

John is 36
Phoebe is 21

Which is much more useful.

19.6.3 Defining a Default Storage Representation

Somewhat confusingly Python provides two ways in which an instance of a class
can be converted into a String. One approach is the __str__() method described
in the previous section. The other is __repr()__ method. An example of a __
repr__() string representation function is given below:

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

def __repr__(self):
return f’Person(name = {self.name}, age = {self.age})’

If we now use the following code to print an instance of the class Person:

19.7 Providing a Class Comment 217

p1 = Person(’John’, 36)
print(p1)

The output that is generated is

Person(name=John, age=36)

So what’s the difference between __str__() and __repr__()? The answer
is that:

● __str__() is intended dot be used to create a string version of an object that
can be used for printing and logging purposes.

● __repr__() is intended to generate a string representation of an object that can
be used to recreate the object - hence the format used above that would allow you
to use Person(name = John, age = 36) to recreate an instance of the
person John.

Which is used by Python depends on what you have define. If you print an object
out then Python first tries to use the __str__() method, if that does not exist it
uses the __repr__()method. You can therefore choose to just use the __repr_
_() method. However, if instances of a class are contained within for example a
list, then when the list is printed out it will always use the __repr__() method.
For this reason it is quite common to find that a class has both a __str__() and a
__repr__() method using slightly different formats. Alternative, one of the two
methods may call the other one.

For example we might define the class Person as:

class Person:
""" An example class to hold a persons name and age"""

def __init__(self, name, age):
print(’init called with’, name, age)
self.name = name
self.age = age

def __str__(self):
return self.name + ’ is ’ + str(self.age).

def __repr__(self):
return f’Person(name = {self.name}, age = {self.age})’

19.7 Providing a Class Comment

It is common to provide a comment for a class defining what that class does, its
purpose and any important points to note about the class.

218 19 Python Classes

This can be done by providing a docstring for the class just after the class decla-
ration header; you can use the triple quotes string ("""…""") to create multiple line
docstrings, for example:

class Person:
""" An example class to hold a

persons name and age"""

def __init__(self, name, age):
self.name = name
self.age = age

def __str__(self):
return self.name + ’ is ’ + str(self.age)

The docstring is accessible through the __doc__ attribute of the class. The
intention is to make information available to users of the class, even at runtime. It
can also be used by IDEs to provide information on a class.

Note that a class comment can also contain reStructured Text formatting
commands and directives. This is a common practice as it provides improved
information layout over a basic comment.

19.8 Adding a Birthday Method

Let us now add some behaviour to the class Person. In the following example, we
define a method called birthday() that takes no parameters and increments the
age attribute by 1:

class Person:
""" An example class to hold a persons name and age"""

def __init__(self, name, age):
self.name = name
self.age = age

def __str__(self):
return self.name + ’ is ’ + str(self.age)

def birthday(self):
print (’Happy birthday you were’, self.age)
self.age += 1
print(’You are now’, self.age)

Note that again the first parameter passed into the method birthday is self.
This represents the instance (the example of the class Person) that this method will
be used with.

19.9 Defining Instance Methods 219

If we now create an instance of the class Person and call birthday() on it,
the age will be incremented by 1, for example:

p3 = Person(’Adam’, 19)
print(p3)
p3.birthday()
print(p3)

When we run this code, we get

Adam is 19
Happy birthday you were 19
You are now 20
Adam is 20

As you can see Adam is initially 19; but after his birthday he is now 20.

19.9 Defining Instance Methods

The birthday() method presented above is an example of what is known as an
instance method; that is, it is tied to an instance of the class. In that case the method
did not take any parameters, nor did it return any parameters; however, instance
methods can do both.

For example, let us assume that the Person class will also be used to calculate
how much someone should be paid. Let us also assume that the rate is £7.50 if you
are under 21 but that there is a supplement of 2.50 if you are 21 or over.

We could define an instance method that will take as input the number of hours
worked and return the amount someone should be paid:

class Person:
""" An example class to hold a persons name and age"""
#...
def calculate_pay(self, hours_worked):

rate_of_pay = 7.50
if self.age >= 21:

rate_of_pay += 2.50
return hours_worked * rate_of_pay

We can invoke this method again using the dot notation, for example:

pay = p2.calculate_pay(40)
print(’Pay’, p2.name, pay)
pay = p3.calculate_pay(40)
print(’Pay’, p3.name, pay)

Running this shows that Phoebe (who is 21) will be paid £400 while Adam who
is only 19 will be paid only £300:

220 19 Python Classes

Pay Phoebe 400.0
Pay Adam 300.0

Another example of an instance method defined on the class Person is the is_
teenager() method. This method does not take a parameter, but it does return a
Boolean value depending upon the age attribute:

class Person:
""" An example class to hold a persons name and age"""
#...
def is_teenager(self):

return self.age < 20

Note that the implicitly provided parameter ‘self’ is still provided even when
a method does not take a parameter.

19.10 Person Class Recap

Let us bring together the concepts that we have looked at so far in the final version
of the class Person.

class Person:
""" An example class to hold a persons name and age"""

def __init__(self, name, age):
self.name = name
self.age = age

def __str__(self):
return self.name + ’ is ’ + str(self.age)

def birthday(self):
print (’Happy birthday you were’, self.age)
self.age += 1
print(’You are now’, self.age)

def calculate_pay(self, hours_worked):
rate_of_pay = 7.50
if self.age >= 21:

rate_of_pay += 2.50
return hours_worked * rate_of_pay

def is_teenager(self):
return self.age < 20

This class exhibits several features we have seen already and expands a few others:

● The class has a two-parameter initializer that takes a String and an Integer.
● It defines two attributes held by each of the instances of the class; name and age.
● It defines a __str__ method so that the details of the Person object can be easily

printed.

19.11 The Del Keyword 221

● It defines three methods birthday(), calculate_pay() and is_
teenager().

● The method birthday() does not return anything (i.e., it does not return
a value) and is comprised of three statements, two print statements and an
assignment.

● is_teenager() returns a Boolean value (i.e., one that returns True or
False).

An example application using this class is given below:

p1 = Person(’John’, 36)
print(p1)
print (p1.name, ’is’, p1.age)
print(’p1.is_teenager’, p1.is_teenager())
p1.birthday()
print(p1)
p1.age = 18
print(p1)

This application creates an instance of the Person class using the values ‘John’
and 36. It then prints out p1 using print (which will automatically call the __
str__()method on the instances passed to it). It then accesses the values of name
and age properties and prints these. Following this it calls the is_teenager()
method and prints the result returned. It then calls the birthday() method. Finally,
it assigns a new value to the age property. The output from this application is given
below:

John is 36
John is 36
p1.is_teenager False
Happy birthday you were 36
You are now 37
John is 37
John is 18

19.11 The Del Keyword

Having at one point created an object of some type (whether that is a bool, an int
or a user defined type such as Person) it may later be necessary to delete that object.
This can be done using the keyword del. This keyword is used to delete objects
which allows the memory they are using to be reclaimed and used by other parts of
your program.

For example, we can write

222 19 Python Classes

p1 = Person(’John’, 36)
print(p1)
del p1.

After the del statement the object held by p1 will no longer be available and any
attempt to reference it will generate an error.

You do not need to use del as setting p1 above to the None value (representing
nothingness) will have the same effect. In addition, if the above code was defined
within a function or a method then p1 will cease to exist once the function or method
terminates and this will again have the same effect as deleting the object and freeing
up the memory.

19.12 Automatic Memory Management

The creation and deletion of objects (and their associated memory) is managed by the
Python Memory Manager. Indeed, the provision of a memory manager (also known
as automatic memory management) is one of Python’s advantages when compared
to languages such as C and C++. It is not uncommon to hear C++ programmers
complaining about spending many hours attempting to track down a particularly
awkward bug only to find it was a problem associated with memory allocation or
pointer manipulation. Similarly, a regular problem for C++ developers is that of
memory creep, which occurs when memory is allocated but is not freed up. The
application either uses all available memory or runs out of space and produces a run
time error.

Most of the problems associated with memory allocation in languages such as
C++ occur because programmers must not only concentrate on the (often complex)
application logic but also on memory management. They must ensure that they
allocate only the memory which is required and deallocate it when it is no longer
required. This may sound simple, but it is no mean feat in a large complex application.

An interesting question to ask is “why do programmers have to manage memory
allocation?”. There are few programmers today who would expect to have to manage
the registers being used by their programs, although 30 or 40 years ago the situation
was very different. One answer to the memory management question, often cited
by those who like to manage their own memory, is that “it is more efficient, you
have more control, it is faster and leads to more compact code”. Of course, if you
wish to take these comments to their extreme, then we should all be programming
in assembler. This would enable us all to produce faster, more efficient and more
compact code than that produced by Python or languages such as Java.

The point about high level languages, however, is that they are more produc-
tive, introduce fewer errors, are more expressive and are efficient enough (given
modern computers and compiler technology). The memory management issue is
somewhat similar. If the system automatically handles the allocation and deallo-
cation of memory, then the programmer can concentrate on the application logic.

19.13 Intrinsic Attributes 223

This makes the programmer more productive, removes problems due to poor
memory management and, when implemented efficiently, can still provide acceptable
performance.

Python therefore provides automatic memory management. Essentially, it allo-
cates a portion of memory as and when required. When memory is short, it looks
for areas which are no longer referenced. These areas of memory are then freed up
(deallocated) so that they can be reallocated. This process is often referred to as
Garbage Collection.

19.13 Intrinsic Attributes

Every class (and every object) in Python has a set of intrinsic attributes set up by the
Python runtime system. Some of these intrinsic attributes are given below for classes
and objects.

Classes have the following intrinsic attributes:

● __name__ the name of the class
● __module__ the module (or library) from which it was loaded
● __bases__ a collection of its base classes (see inheritance later in this book)
● __dict__ a dictionary (a set of key-value pairs) containing all the attributes

(including methods)
● __doc__ the documentation string

For objects:

● __class__ the name of the class of the object
● __dict__ a dictionary containing all the object’s attributes

Notice that these intrinsic attributes all start and end with a double underbar—this
indicates their special status within Python.

An example of printing these attributes out for the class Person and a instance
of the class are shown below:

print(’Class attributes’)
print(Person.__name__)
print(Person.__module__)
print(Person.__doc__)
print(Person.__dict__)
print(’Object attributes’)
print(p1.__class__)
print(p1.__dict__)

The output from this is:

Class attributes
Person
__main__
An example class to hold a persons name and age

224 19 Python Classes

{’__module__’: ’__main__’, ’__doc__’: ’ An example class to hold a
persons name and age’, ’instance_count’: 4, ’increment_instance_
count’: <classmethod object at 0x105955588>, ’static_function’:
<staticmethod object at 0x1059555c0>, ’__init__’: <function
Person.__init__ at 0x10595d268>, ’__str__’: <function Person._
_str__ at 0x10595d2f0>, ’birthday’: <function Person.birthday
at 0x10595d378>, ’calculate_pay’: <function Person.calculate_
pay at 0x10595d400>, ’is_teenager’: <function Person.is_teenager
at 0x10595d488>, ’__dict__’: <attribute ’__dict__’ of ’Person’
objects>, ’__weakref__’: <attribute ’__weakref__’ of ’Person’
objects>}
Object attributes
<class ’__main__.Person’>
{’name’: ’John’, ’age’: 36}

19.14 Online Resources

See the following for further information on Python classes:

● https://docs.python.org/3/tutorial/classes.html the Python Standard library Class
tutorial.

● https://www.tutorialspoint.com/python3/python_classes_objects.htm The tuto-
rials point tutorial on Python 3 classes.

19.15 Exercises

The aim of this exercise is to create a new class called Account.

1. Define a new class to represent a type of bank account.
2. When the class is instantiated you should provide the account number, the name

of the account holder, an opening balance and the type of account (which can be
a string representing ‘current’, ‘deposit’ or ‘investment’, etc.). This means that
there must be an __init__ method and you will need to store the data within the
object.

3. Provide three instance methods for the Account; deposit(amount),
withdraw(amount) and get_balance(). The behaviour of these
methods should be as expected, deposit will increase the balance, withdraw will
decrease the balance and get_balance() returns the current balance.

4. Define a simple test application to verify the behaviour of your Account class.

It can be helpful to see how your class Account is expected to be used. For this
reason a simple test application for the Account is given below:

acc1 = Account(’123’, ’John’, 10.05, ’current’)
acc2 = Account(’345’, ’John’, 23.55, ’savings’)

https://docs.python.org/3/tutorial/classes.html
https://www.tutorialspoint.com/python3/python_classes_objects.htm

19.15 Exercises 225

acc3 = Account(’567’, ’Phoebe’, 12.45, ’investment’)

print(acc1)
print(acc2)
print(acc3)

acc1.deposit(23.45)
acc1.withdraw(12.33)
print(’balance:’, acc1.get_balance())

The following output illustrates what the result of running this test application
might look like:

Account[123] - John, current account = 10.05
Account[345] - John, savings account = 23.55
Account[567] - Phoebe, investment account = 12.45
balance: 21.17

	19 Python Classes
	19.1 Introduction
	19.2 Python and Classes
	19.3 Class Definitions
	19.4 Creating Examples of the Class Person
	19.5 Be Careful with Assignment
	19.6 Printing Out Objects
	19.6.1 Accessing Object Attributes
	19.6.2 Defining a Default String Representation
	19.6.3 Defining a Default Storage Representation

	19.7 Providing a Class Comment
	19.8 Adding a Birthday Method
	19.9 Defining Instance Methods
	19.10 Person Class Recap
	19.11 The Del Keyword
	19.12 Automatic Memory Management
	19.13 Intrinsic Attributes
	19.14 Online Resources
	19.15 Exercises

