
Chapter 17
Curried Functions

17.1 Introduction

Currying is a technique which allows new functions to be created from existing
functions by binding one or more parameters to a specific value. It is a major source
of reuse of functions in Python which means that functionality can be written once,
in one place and then reused in multiple other situations.

The name currying may seem obscure, but the technique is named after Haskell
Curry (for whom the Haskell programming language is also named).

This chapter introduces the core ideas behind currying and explores how currying
can be implemented in Python. The chapter also introduces the concept of closures
and how they affect curried functions.

17.2 Currying Concepts

At an abstract level, consider having a function that takes two parameters. These two
parameters x and y are used within the function body with the multiply operator in
the form x * y. For example, we might have:

operation(x, y): return x * y

This function operation() might then be used as follows

total = operation(2, 5)

Which would result in 5 being multiplied by 2 to give 10. Or it could be used:

total = operation(10, 5)

Which would result in 5 being multiplied by 10 to give 50.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_17

189

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_17&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_17

190 17 Curried Functions

If we needed to double a number, we could thus reuse theoperation() function
many times, for example:

operation(2, 5)
operation(2, 10)
operation(2, 6)
operation(2, 151)

All of the above would double the second number. However, we have had to
remember to provide the 2 so that the number can be doubled. However, the number
2 has not changed between any of the invocations of operation() function. What
if we fixed the first parameter to always be 2, thus would mean that we could create
a new function that apparently only takes one parameter (the number to double). For
example, let us say we could write something like:

double = operation(2, *)

Such that we could now write:

double(5)
double(151)

In essence double() is an alias for operation(), but an alias that provides
the value 2 for the first parameter and leaves the second parameter to be filled in by
the future invocation of the double function.

17.3 Python and Curried Functions

A curried function in Python is a function where one or more of its parameters have
been applied or bound to a value, resulting in the creation of a new function with
one fewer parameters than the original. For example, let us create a function that
multiplies two numbers together:

def multiply(a, b):
return a * b

This is a general function that does exactly what it says; it multiplies any
two numbers together. These numbers could be any two integers or floating-point
numbers, etc.

We can thus invoke it in the normal manner:

print(multiply(2, 5))

The result of executing this statement is:

10

17.4 Closures 191

We could now define a new method that takes a function and a number and returns a
new (anonymous) function that takes one new parameter and calls the function passed
in with the number passed in and the new parameter:

def multby(func, num):
return lambda y: func(num, y)

Look carefully at this function; it has used or bound the number passed into the
multby function to the invocation of the function passed in, but it has also defined
a new variable ‘y’ that will have to be provided when this new anonymous function
is invoked. It then returns a reference to the anonymous function as the result of
multby.

The multby function can now be used to bind the first parameter of the multiply
function to anything we want. For example, we could bind it to 2 so that it will
always double the second parameter and store the resulting function reference into
a property double:

double = multby(multiply, 2)

We could also bind the value 3 to the first parameter of multiple to make a function
that will triple any value:

triple = multby(multiply, 3)

Which means we can now write:

print(double(5))
print(triple(5))

which produces the output

10
15

You are not limited to just binding one parameter; you can bind any number of
parameters in this way.

Curried functions are therefore very useful for creating new functions from
existing functions.

17.4 Closures

One question that might well be on your mind now is what happens when a function
references some data that is in scope where it is defined but is no longer available
when it is evaluated? This question is answered by the implementation of a concept
known as closure.

Within Computer Science (and programming languages in particular) a closure
(or a lexical closure or function closure) is a function (or more strictly a reference to
a function) together with a referencing environment. This referencing environment

192 17 Curried Functions

records the context within which the function was originally defined and if necessary,
a reference to each of the non-local variables used by that function. These non-local
or free variables allow the function body to reference variables that are external to
the function, but which are utilized by that function. This referencing environment
is one of the distinguishing features between a functional language and a language
that supports function pointers (such as C).

The general concept of a lexical closure was first developed during the 1960s but
was first fully implemented in the language Scheme in the 1970s. It has since been
used within many functional programming languages including LISP and Scala.

At the conceptual level, a closure allows a function to reference a variable available
in the scope where the function was originally defined, but not available by default
in the scope where it is executed.

For example, in the following simple programme, the variable more is defined
outside the body of the function named increase. This is permissible as the vari-
able is a global variable. Thus, the variable more is within scope at the point of
definition.

more = 100
def increase(num):

return num + more
print(increase(10))
more = 50
print(increase(10))

Within our program we then invoke the increase function by passing in the
value 10. This is done twice with the variable more being reset to 50 between the
two. The output from this program is shown below:

110
60

Note that it is the current value of more that is being used when the function
executes and not the value of more present at the point that the function was defined.
Hence the output is 110 and 60 that is 100 + 10 and then 50 + 10.

This might seem obvious as the variable more is still in scope within the same
function as the invocations of the function referenced by increase.

However, consider the following example:

def increment(num):
return num + 1

def reset_function():
global increment

addition = 50
increment = lambda num: num + addition
print(increment(5))
reset_function()
print(increment(5))

17.4 Closures 193

In the above listing the function increment initially adds 1 to whatever value
has been passed to it. Then in the program this function is called with the value 5
and the result returned by the function is printed. This will be the value 6.

However, after this a second function, reset_function() is invoked. This
function has a variable that is local to the function. That is, normally it would
only be available within the function reset_function. This variable is called
addition and has the value 50.

The variable addition is, however, used within the function body of a new
anonymous function definition. This function takes a number and adds the value of
addition to that number and returns this as the result of the function. This new
function is then assigned to the name increment. Note that to ensure we reference
the global name increment we must use the keyword global (otherwise we
will create a local variable that just happens to have the same name as the function).

Now, when the second invocation of increment occurs, the reset_
function()method has terminated and normally the variable additionwould
no longer even be in existence. However, when this program runs the value 55 is
printed out from the second invocation of increment. That is the function being
referenced by the name increment, when it is called the second time, is the one
defined within reset_function() and which uses the variable addition.

The actual output is shown below:

So, what has happened here? It should be noted that the value 50 was not copied
into the second function body. Rather it is a concrete example of the use of a reference
environment with the closure concept. Python ensures that the variable addition
is available to the function, even if the invocation of the function is somewhere
different to where it was defined by binding any free variables (those defined outside
the scope of the function) and storing them so that they can be accessed by the
function’s context (in effect moving the variable from being a local variable to one
which is available to the function anywhere; but only to the function).

194 17 Curried Functions

17.5 Online Resources

Further information on currying see:

● https://en.wikipedia.org/wiki/Currying Wikipedia page on currying.
● https://wiki.haskell.org/Currying A page introducing currying (based on the

Haskell language but still a useful reference).
● https://www.python-course.eu/currying_in_python.php A tutorial on currying in

Python.

17.6 Exercises

This exercise is about creating a set of functions to perform currency conversions
based on specified rates using currying to create those functions.

Write a function that will curry another function and a parameter in a similar
manner to multby in this chapter—call this function curry().

Now define a function that can be used to convert an amount into another amount
based on a rate. The definition of this conversion function is very straight forward
and just involves multiplying the number by the rate.

Now create a set of functions that can be used to convert a value in one currency
into another currency based on a specific rate. We do not want to have to remember
the rate, only the name of the function. For example:

dollars_to_sterling = curry(convert, 0.77)
print(dollars_to_sterling(5))

euro_to_sterling = curry(convert, 0.88)
print(euro_to_sterling(15))

sterling_to_dollars = curry(convert, 1.3)
print(sterling_to_dollars(7))

sterling_to_euro = curry(convert, 1.14)
print(sterling_to_euro(9))

If the above code is run the output would be:

3.85
13.2
9.1
10.26

https://en.wikipedia.org/wiki/Currying
https://wiki.haskell.org/Currying
https://www.python-course.eu/currying_in_python.php

	17 Curried Functions
	17.1 Introduction
	17.2 Currying Concepts
	17.3 Python and Curried Functions
	17.4 Closures
	17.5 Online Resources
	17.6 Exercises

