
Chapter 16
Higher-Order Functions

16.1 Introduction

In this chapter we will explore the concept of high-order functions. These are func-
tions that take as a parameter, or return (or both), a function. To do this we will
first look into how Python represents functions in memory and explore what actually
happens when we execute a Python function.

16.2 Recap on Functions in Python

Let us first recap a few things regarding functions in Python:
Functions (mostly) have a name, and when invoked (or executed) the body of

code associated with the function name is run.
There are some important ideas to remember when considering functions:

● Functions can be viewed as named blocks of code and are one of the main ways
in which we can organize our programs in Python.

● Functions are defined using the keyword def and constitute a function header
(the function name and the parameters, if any, defined for that function) and the
function body (what is executed when the function is run).

● Functions are invoked or executed using their name followed by round brackets
‘()’ with or without parameters depending on how the function has been defined.

This means we can write a function such as the following get_msg function:

def get_msg():
return ’Hello Python World!’

We can then call it by specifying its name and the round brackets:

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_16

179

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_16&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_16

180 16 Higher-Order Functions

message = get_msg()
print(message)

This of course prints out the string ’Hello Python World!’ which is what
you should expect by now.

16.3 Functions as Objects

A few chapters back we threw in something stating that if you forgot to include the
round brackets then you were referencing the function itself rather than trying to
execute it!

What exactly does that mean? Let’s see what happens if we forgot to include the
round brackets:

message = get_msg
print(message)

The output generated now is:

<function get_msg at 0x10ad961e0>

which might look very confusing at first sight.
What this is actually telling you is that you have referenced a function called

get_msg that is located at a (hexidecimal) address in memory.
It is interesting to note that just as data has to be located in memory so does

program code (so that it can be found and run), although typically data and code are
located in separate areas of memory (as data tends to be short lived).

Another interesting thing to do is to find out what the type of get_msg is—hey
it’s a function—but what does that mean?

If we issue this statement and run it in Python:

print(type(get_msg))

Then we will get the following:

<class ’function’>

This means that it is of the class of things that are functions just as 1 is of the class
of things called integers, ’John’ is of the class of things called strings, and 42.6
is of the class of things called floating point numbers.

Taking this further it actually means that the thing being referenced by get_msg
is a function object (an example or instance of the function class). This get_msg is
really a type of variable that references (or points at) at the function object in memory
which we can execute using the round brackets.

This is illustrated by the following diagram:

16.3 Functions as Objects 181

This means that when we run get_msg() what actually happens is we go to the
get_msg variable and following the reference (or pointer) there to the function and
then because we have the round brackets we run that function.

This has two implications:

1. We can pass the reference to a function around.
2. We can make get_msg reference (point) at a different function.

Let us look at the first of these implications. If we assign the reference represented
by get_msg to something else, then in effect we have an alias for this function. This
is because another variable now also references the same function. For example, if
we write:

another_reference = get_msg
print(another_reference())

Then the result is that the string ‘Hello Python World!’ is again printed out.
What this has done is to copy the reference held in get_msg into another_

reference (but it is a copy of that reference and that is the address of the function
in memory). Thus, we now have in memory:

So just to emphasize this—we did not make a copy of the function; only its address
in memory. Thus the same value is held in both get_msg and another_reference, and
both these values are references to the same function object in memory.

What does this mean and why should we care? Well it means that we can pass
references to functions around within our program which can be a very useful feature
that we will look at later in this chapter.

Now let us go back to the second implication mentioned above; we can reassign
another function to get_msg.

For example, let’s say we wrote this next:

182 16 Higher-Order Functions

def get_some_other_msg():
return ’Some other message!!!’

get_msg = get_some_other_msg
print(get_msg())

Now get_msg no longer references the original functions; it now references the
new function defined by get_some_other_msg. It means that in memory we
now have

which means the result of calling print(get_msg()) will be that the
string ’Some other message!!!’ is returned and printed out (rather than the
’Hello Python World!’).

However, notice that we did not overwrite the original function; it is still being
referenced by the another_reference variable and indeed can still be called
via this variable. For example, the code:

print(get_msg())
print(another_reference())

now generates the output:

Some other message!!!
Hello Python World!

This illustrates some of the power but also the potential confusion that comes
from how functions are represented and can be manipulated in Python.

16.4 Higher-Order Function Concepts

Given that we can assign a reference into a function to a variable, then this might
imply that we can also use the same approach to pass a reference to a function as an
argument to another function.

16.4 Higher-Order Function Concepts 183

This means that one function can take another function as a parameter. Such
functions are known as higher-order functions and are one of the key constructs in
Functional Programming.

That is, a function that takes another function as a parameter is known as a higher-
order function.

In fact, in Python, higher-order functions are functions that do at least one of the
following (and may do both):

● Take one or more functions as a parameter.
● Return as a result a function.

All other functions in Python are first-order functions.
Many of the functions found in the Python libraries are higher-order functions. It

is a common enough pattern that once you are aware of it you will recognize it in
many different libraries.

16.4.1 Higher-Order Function Example

As an abstract example, consider the following higher-order function apply. This
function (written in pseudo-code—not a real programming language) takes an integer
and a function. Within the body of the function being defined, the function passed in
as a parameter is applied to the integer parameter. The result of the function being
defined is then returned:

def apply(x, function):
result = function(x)
return result

The function apply is a higher-order function because its behaviour (and its
result) will depend on the behaviour defined by another function—the one passed
into it.

We could also define a function that multiplies a number by 10.0, for example:

def mult(y):
return y * 10.0

Now we can use the function mult with the function apply, for example:

apply(5, mult)

This would return the value 50.0.

184 16 Higher-Order Functions

16.5 Python Higher-Order Functions

As we have already seen when we define a function it actually creates a function
object that is referenced by the name of the function. For example, if we create the
function mult_by_two:

def mult_by_two(num):
return num * 2

Then this has created a function object referenced by the name multi_by_two
that we can invoke (execute) using the round brackets ‘()’.

It is also a one parameter function that takes a number and returns a value which
is twice that number.

Thus, a parameter that expects to be given a reference to a function that takes a
number and returns a number can be given a reference to any function that meets
this (implied) contract. This includes our mult_by_two function but also any of
the following:

def mult_by_five(num):
return num * 5

def square(num):
return num * num

def add_one(num):
return num + 1

All of the above could be used with the following higher-order function:

def apply(num, func):
return func(num)

For example:

result = apply(10, mult_by_two)
print(result)

The output from this code is:

20

The following listing provides a complete set of the earlier sample functions and
how they may be used with the apply function:

print(apply(10, mult_by_five))
print(apply(10, square))
print(apply(10, add_one))
print(apply(10, mult_by_two))

The output from this is:

50
100
11
20

16.5 Python Higher-Order Functions 185

16.5.1 Using Higher-Order Functions

Looking at the previous section you may be wondering why you would want to use a
higher-order function or indeed why define one. After all, could you not have called
one of the functions (multi_by_five, square, add_one or mult_by_two)
directly by passing in the integer to used? Yes, we could have, for example, we could
have done:

square(10)

And this would have exactly the same effect as calling:

apply(10, square)

The first approach would seem to be both simpler and more efficient.
The key to why higher-order functions are so powerful is to consider what would

happen if we know that some function should be applied to the value 10, but we do
not yet know what it is. The actual function will be provided at some point in the
future. Now we are creating a reusable piece of code that will be able to apply an
appropriate function to the data we have when that function is known.

For example, let us assume that we want to calculate the amount of tax someone
should pay based on their salary. However, we do not know how to calculate the tax
that this person must pay as it is dependent on external factors. The calculate_
tax function could take an appropriate function that performs that calculation and
provides the appropriate tax value.

The following listing implements this approach. The function calculate_tax
does not know how to calculate the actual tax to be paid, instead a function must be
provided as a parameter to the calculate_tax function. The function passed in
takes a number and returns the result of performing the calculation. It is used with
the salary parameter also passed into the calculate_tax function.

import math

def simple_tax_calculator(amount):
return math.ceil(amount * 0.3)

def calculate_tax(salary, func):
return func(salary)

print(calculate_tax(45000.0, simple_tax_calculator))

The simple_tax_calculator function defines a function that takes a
number and multiplies it by 0.3 and then uses the math.ceil function (imported
from the math library/module) to round it up to a whole number. A call is then made
to the calculate_tax function passing in the float 45000.0 as the salary and
a reference to the simple_tax_calculator function. Finally, it prints out the
tax calculated. The result of running this program is:

186 16 Higher-Order Functions

Thus, the function calculate_tax is a reusable function that can have
different tax calculation strategies defined for it.

16.5.2 Functions Returning Functions

In Python as well as passing a function into another function, functions can be
returned from a function. This can be used to select among a number of different
options or to create a new function based on the parameters.

For example, the following code creates a function that can be used to check
whether a number is even, odd or negative based on the string passed into it:

def make_checker(s):
if s == ’even’:

return lambda n: n%2 == 0
elif s == ’positive’:

return lambda n: n >= 0
elif s == ’negative’:

return lambda n: n < 0
else:

raise ValueError(’Unknown request’)

Note the use of the raise Value Error; for the moment we will just say that
this is a way of showing that there is a problem in the code which may occur if this
function is called with an in appropriate parameter value for ‘s’.

This function is a factory for functions that can be created to perform specific
operations. It is used below to create three functions that can be used to validate what
type a number is:

f1 = make_checker(’even’)
f2 = make_checker(’positive’)
f3 = make_checker(’negative’)
print(f1(3))
print(f2(3))
print(f3(3))

Of course, it is not only anonymous functions that can be returned from a function;
it is also possible to return a named function. This is done by returning just the name
of the function (i.e., without the round brackets).

16.6 Online Resources 187

In the following example, a named function is defined within an outer function
(although it could have been defined elsewhere in the code). It is then returned from
the function:

def make_function():
def adder(x, y):

return x + y
return adder

We can then use this make_function to create the adder function and store it into
another variable. We can now use this function in our code, for example:

f1 = make_function()
print(f1(3, 2))
print(f1(3, 3))
print(f1(3, 1))

which produces the output

5
6
4

16.6 Online Resources

Further information on higher-order functions in Python can be found using the
following online resources:

1. https://en.wikipedia.org/wiki/Higher-order_function Wikipedia page on higher-
order functions.

2. https://docs.python.org/3.1/library/functools.html A module to support the
creation and use of higher-order functions.

3. https://www.tutorialspoint.com/functional_programming/functional_program
ming_higher_order_functions.htm A tutorial on higher-order functions.

https://en.wikipedia.org/wiki/Higher-order_function
https://docs.python.org/3.1/library/functools.html
https://www.tutorialspoint.com/functional_programming/functional_programming_higher_order_functions.htm
https://www.tutorialspoint.com/functional_programming/functional_programming_higher_order_functions.htm

188 16 Higher-Order Functions

16.7 Exercises

The aim of this exercise is to explore higher-order functions.
You should write a higher-order function called my_higher_order_

function(i, func). This function takes a parameter and a second function
to apply to the parameter.

Now you should write a sample program that uses the higher-order function you
just created to perform. An example of the sort of thing you might implement is
given below:

print(my_higher_order_function(2, double))
print(my_higher_order_function(2, triple))
print(my_higher_order_function(16, square_root))
print(my_higher_order_function(2, is_prime))
print(my_higher_order_function(4, is_prime))
print(my_higher_order_function(’2’, is_integer))
print(my_higher_order_function(’A’, is_integer))
print(my_higher_order_function(’A’, is_letter))
print(my_higher_order_function(’1’, is_letter))

If you are using the above code as your test application then you should write
each of the supporting functions; each should take a single parameter.

Sample output from this code snippet is:

4
8
4.0
True
False
True
False
True
False

Note a simple way to find the square root of a number is to use the exponent (or
power of) operator and multiply by 0.5.

	16 Higher-Order Functions
	16.1 Introduction
	16.2 Recap on Functions in Python
	16.3 Functions as Objects
	16.4 Higher-Order Function Concepts
	16.4.1 Higher-Order Function Example

	16.5 Python Higher-Order Functions
	16.5.1 Using Higher-Order Functions
	16.5.2 Functions Returning Functions

	16.6 Online Resources
	16.7 Exercises

