
Chapter 15 
Introduction to Functional Programming 

15.1 Introduction 

There has been much hype around Functional Programming in recent years. However, 
Functional Programming is not a new idea and indeed goes right back to the 1950s 
and the programming language LISP. However, many people are not clear as to what 
Functional Programming is and instead jump into code examples and never really 
understand some of the key ideas associated with Functional Programming such as 
Referential Transparency. 

This chapter introduces Functional Programming (also known as FP) and the key 
concept of Referential Transparency (or RT). 

One idea to be aware of is that Functional Programming is a software coding style 
or approach and is separate from the concept of a function in Python. 

Python functions can be used to write functional programs but can also be used to 
write procedural style programs; so do not get too hung up on the syntax that might 
be used or the fact that Python has functions just yet. Instead explore the idea of 
defining a functional approach to your software design. 

15.2 What is Functional Programming? 

Wikipedia describes Functional Programming as: 

… a programming paradigm, a style of building the structure and elements of computer 
programs, that treats computation as the evaluation of mathematical functions and avoids 
state and mutable data. 

There are a number of points to note about this definition. The first is that it 
is focused on the computational side of computer programming. This might seem 
obvious but most of what we have looked at so far in Python would be considered 
procedural in nature.

© Springer Nature Switzerland AG 2023 
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics 
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_15 

171

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_15&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_15


172 15 Introduction to Functional Programming

Another thing to note is that the way in which the computations are represented 
emphasizes functions that generate results based purely on the data provided to them. 
That is these functions only rely on their inputs to generate a new output. They do not 
rely on any side effects and do not depend on the current state of the program. As an 
example of a side effect, if a function stored a running total in a global variable and 
another function used that total to perform some calculation, then the first function 
has a side effect of modifying a global variable and the second relies on some global 
state for its result. 

Taking each of these in turn: 

1. Functional Programming aims to avoid side effects. A function should be 
replaceable by taking the data it receives and in lining the result generated (this 
is referred to as Referential Transparency). This means that there should be 
no hidden side effects of the function. Hidden side effects make it harder to 
understand what a program is doing and thus make comprehension, development 
and maintenance harder. Pure functions have the following attributes: 

2. The only observable output is the return value. 
3. The only output dependency is the arguments. 
4. Arguments are fully determined before any output is generated. 

5. Functional Programming avoids concepts such as state. Let us take these as 
separate issues. If some operation is dependent upon the (potentially hidden) 
state of the program or some element of a program, then its behaviour may differ 
depending upon that state. This may make it harder to comprehend, implement, 
test and debug. As all of these impact on the stability and probably reliability 
of a system, state-based operations may result in less reliable software being 
developed. As functions do not (should not) rely on any given state (only upon 
the data they are given) they should as a result be easier to understand, implement, 
test and debug. 

6. Functional Programming promotes immutable data. Functional Program-
ming also tends to avoid concepts such as mutable data. Mutable data is data that 
can change its state. By contrast immutability indicates that once created, data 
cannot be changed. In Python strings are immutable. Once you create a new string 
you cannot modify it. Any functions that apply to a string that might conceptu-
ally alter the contents of the string and result in a new string being generated. 
Many developers take this further by having a presumption of immutability in 
their code; that means that by default all data holding types are implemented as 
immutable. This ensures that functions cannot have hidden side effects and thus 
simplifies programming in general. 

7. Functional Programming promotes declarative programming which means 
that programming is oriented around expressions that describe the solution 
rather than focus on the imperative approach of most procedural program-
ming languages. Imperative languages emphasize aspects of how the solution is



15.3 Advantages to Functional Programming 173

derived. For example, an imperative approach to looping through some container 
and printing out each result in turn would look like this: 

int sizeOfContainer = container.length 
for (int i = 1 to sizeOfContainer) do 

element = container.get(i) 
print(element) 

enddo 

Whereas a Functional Programming approach would look like: 

container.foreach(print) 

Functional Programming has its roots in the lambda calculus, originally developed 
in the 1930s to explore computability. Many Functional Programming languages 
can thus be considered as elaborations on this lambda calculus. There have been 
numerous pure Functional Programming languages including Common Lisp, Clojure 
and Haskell. Python provides some support for writing in the functional style, partic-
ularly where the benefits of it are particularly strong (such as in processing various 
different types of data). 

Indeed, when used judiciously, Functional Programming can be a huge benefit 
for, and an enhancement to, the toolkit available to developers. 

To summarize then:

● Imperative Programming is what is currently perceived as traditional program-
ming. That is, it is the style of programming used in languages such as C, C++, 
Java and C#. In these languages a programmer tells the computer what to do. It 
is thus oriented around control statements, looping constructs and assignments.

● Functional Programming aims to describe the solution, that is, what the program 
needs to do (rather than how it should be done). 

15.3 Advantages to Functional Programming 

There are a number of significant advantages to Functional Programming compared 
to imperative programming. These include: 

1. Less code. Typically, a Functional Programming solution will require less code 
to write than an equivalent imperative solution. As there is less code to write, 
there is also less code to understand and to maintain. It is therefore possible that 
functional programs are not only more elegant to read but easier to update and 
maintain. This can also lead to enhanced programmer productivity as they spend 
less time writing reams of code as well as less time reading those reams of code. 

2. Lack of (hidden) side effects (Referential Transparency). Programming 
without side effects is good as it makes it easier to reason about functions (that 
is a function is completely described by the data that goes in and the results that 
come back). This also means that it is safe to reuse these functions in different



174 15 Introduction to Functional Programming

situations (as they do not have unexpected side effects). It should also be easier 
to develop, test and maintain such functions. 

3. Recursion is a natural control structure. Functional languages tend to empha-
size recursion as a way of processing structures that would use some form of 
looping constructs in an imperative language. Although you can typically imple-
ment recursion in imperative languages, it is often easier to do in functional 
languages. It is also worth noting that although recursion is very expressive and a 
great way for a programmer to write a solution to a problem, it is not as efficient 
at runtime as iteration. However, any expression that can be written as a recursive 
routine can also be written using looping constructs. Functional Programming 
languages often incorporate tail end recursive optimizations to convert recursive 
routines into iterative ones at runtime. A util end recursive function is one in 
which the last thing a function does before it returns to call itself. This means 
that rather than actually invoking the function and having to set up the context for 
that function, it should be possible to reuse the current context and to treat it in 
an iterative manner as a loop around that routine. Thus the programmer benefits 
from the expressive recursive construct and the runtime benefits of an iterative 
solution using the same source code. This option is typically not available in 
imperative languages. 

4. Good for prototyping solutions. Solutions can be created very quickly for algo-
rithmic or behaviour problems in a functional language, thus allowing ideas and 
concepts to be explored in a rapid application development style. 

5. Modular functionality. Functional Programming is modular in terms of func-
tionality (where object-oriented languages are modular in the dimension of 
components). They are thus well suited to situations where it is natural to want 
to reuse or componentize the behaviour of a system. 

6. The avoidance of state-based behaviour. As functions only rely on their inputs 
and outputs (and avoid accessing any other stored state) they exhibit a cleaner and 
simpler style of programming. This avoidance of state-based behaviour makes 
many difficult or challenging areas of programming simpler (such as those in 
concurrent applications). 

7. Additional control structures. A strong emphasis is on additional control 
structures such as pattern matching, managing variable scope, tail recursion 
optimizations, etc. 

8. Concurrency and immutable data. As Functional Programming systems advo-
cate immutable data structures it is simpler to construct concurrent systems. 
This is because the data being exchanged and accessed is immutable. Therefore, 
multiple executing thread or processes cannot affect each other adversely. The 
Akka Actor model builds on this approach to provide a very clean model for 
multiple interacting concurrent systems. 

9. Partial evaluation. Since functions do not have side effects, it also becomes 
practical to bind one or more parameters to a function at compile time and to reuse 
these functions with bound values as new functions that take fewer parameters.



15.5 Referential Transparency 175

15.4 Disadvantages of Functional Programming 

If Functional Programming has all the advantages previously described, why isn’t 
it the mainstream force that imperative programming languages are? The reality is 
that Functional Programming is not without its disadvantages, including:

● Input–Output is harder in a purely functional language. Input–Output flows 
naturally align with stream style processing, which does not neatly fit into the 
data in, results out, nature of functional systems.

● Interactive applications are harder to develop. Interactive applications are 
constructed via request response cycles initiated by a user action. Again, these do 
not naturally sit within the purely functional paradigm.

● Continuously running programs such as services or controllers may be more 
difficult to develop, as they are naturally based upon the idea of a continuous loop.

● Functional Programming languages have tended to be less efficient on current 
hardware platforms. This is partly because current hardware platforms are not 
designed with Functional Programming in mind and also because many of the 
systems previously available were focused on the academic community where 
out and out performance was not the primary focus. However, this has changed 
to a large extent with modern functional languages such as Scala and Heskell.

● Not data oriented. A pure functional language does not really align with the 
needs of the primarily data-oriented nature of many of today’s systems. Many 
(most) commercial systems are oriented around the need to retrieve data from a 
database, manipulate it in some way and store that data back into a database. Such 
data can be naturally represented via objects in an object-oriented language.

● Programmers are less familiar with Functional Programming concepts and thus 
find it harder to pick up function-oriented languages.

● Functional Programming idioms are often less intuitive to (traditional) proce-
dural programmers than imperative idioms which can make debugging and 
maintenance harder. Although with the use of a functional approach in many 
other languages now becoming more popular (including in Python) this trend is 
changing.

● Many Functional Programming languages have been viewed as Ivory tower 
languages that are only used by academics. This has been true of some older 
functional languages but is increasingly changing with the advent of languages 
such as Scala and with the facilities provided in more mainstream programming 
languages such as Python. 

15.5 Referential Transparency 

An important concept within the world of Functional Programming is that of 
Referential Transparency.



176 15 Introduction to Functional Programming

An operation is said to be Referentially Transparent if it can be replaced with its 
corresponding value, without changing the program’s behaviour, for a given set of 
parameters. 

For example, let us assume that we have defined the function increment as shown 
below. 

def increment(num): 
return num + 1 

If we use this simple example in an application to increment the value 5: 

print(increment(5)) 
print(increment(5)) 

We can say that the function is Referentially Transparent (or RT) if it always 
returns the same result for the same value (i.e., that increment(5) always returns 
6): 

Any function that references a value which has been captured from its surrounding 
context and which can be modified cannot be guaranteed to be RT. This can have 
significant consequences for the maintainability of the resulting code. This can 
happen if for example the increment function did not add 1 to the parameter but 
added a global value. If this global value is changed then the function would suddenly 
start to return different values for the previously entered parameters. For example, 
the following code is no longer Referentially Transparent: 

amount = 1 
def increment(num): 

return num + amount 
print(increment(5)) 
amount = 2 
print(increment(5)) 

The output from this code is not 6 and 7—as the value of amount has changed 
between calls to the increment() function.



15.6 Further Reading 177

A closely related idea is that of No Side Effects. That is, a function should not 
have any side effects, it should base its operation purely on the values it receives, and 
its only impact should be the result returned. Any hidden side effects again makes 
software harder to maintain. 

Of course, within most applications there is a significant need for side effects; 
for example, any logging of the actions performed by a program has a side effect of 
updating some logged information somewhere (typically in a file), and any database 
updates will have some side effect (i.e., that of updating the database). In addition 
some behaviour is inherently non-RT; for example, a function which returns the 
current time can never be Referentially Transparent. 

However, for pure functions it is a useful consideration to follow. 

15.6 Further Reading 

There is a large amount of material on the web that can help you learn more about 
Functional Programming including:

● https://codeburst.io/a-beginner-friendly-intro-to-functional-programming-4f6 
9aa109569 intended as a friendly introduction to Functional Programming.

● https://medium.freecodecamp.org/an-introduction-to-the-basic-principles-of-fun 
ctional-programming-a2c2a15c84 which provides an introduction to the basic 
principles of Functional Programming.

● https://www.tutorialspoint.com/functional_programming which provides a good 
grounding in the basic concepts of Functional Programming.

● https://docs.python.org/3/howto/functional.html which is the Python standard 
library tutorial on Functional Programming.

https://codeburst.io/a-beginner-friendly-intro-to-functional-programming-4f69aa109569
https://codeburst.io/a-beginner-friendly-intro-to-functional-programming-4f69aa109569
https://medium.freecodecamp.org/an-introduction-to-the-basic-principles-of-functional-programming-a2c2a15c84
https://medium.freecodecamp.org/an-introduction-to-the-basic-principles-of-functional-programming-a2c2a15c84
https://www.tutorialspoint.com/functional_programming
https://docs.python.org/3/howto/functional.html

	15 Introduction to Functional Programming
	15.1 Introduction
	15.2 What is Functional Programming?
	15.3 Advantages to Functional Programming
	15.4 Disadvantages of Functional Programming
	15.5 Referential Transparency
	15.6 Further Reading


