
Chapter 12
Functions in Python

12.1 Introduction

As discussed in the last chapter, when you build an application of any size you will
want to break it down into more manageable units, these units can then be worked
on separately, tested and maintained separately. One way in which these units can
be defined is as Python functions.

This chapter will introduce Python functions, how they are defined, how they
can be referenced and executed. It also considers how parameters work in Python
functions and how values can be returned from functions. It also introduces lambda
or anonymous functions.

12.2 What are Functions?

In Python functions are groups of related statements that can be called together, that
typically perform a specific task and which may or may not take a set of parameters
or return a value.

Functions can be defined in one place and called or invoked in another. This helps
to make code more modular and easier to understand.

It also means that the same function can be called multiple times or in multiple
locations. This helps to ensure that although a piece of functionality is used in multiple
places, it is only defined once and only needs to be maintained and tested in one
location.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_12

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_12&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_12

136 12 Functions in Python

12.3 How Functions Work

We have said what they are and a little bit about why they might be good but not
really how they work.

When a function is called (or invoked) the flow of control a program jumps from
where the function was called to the point where the function was defined. The body
of the function is then executed before control returns back to where it was called
from.

As part of this process, all the values that were in place when the function was
called are stored away (on something called the stack) so that if the function defines
its own versions, they do not overwrite each other.

The invocation of a function is illustrated below:

Each time when the call is made to function_name() the program flow jumps
to the body of the function and executes the statements there. Once the function
finishes it returns to the point at which the function was called.

In the above this happens twice as the function is called at two separate points in
the program.

12.5 Defining Functions 137

12.4 Types of Functions

Technically speaking there are two types of functions in Python: built-in functions
and user-defined functions.

Built-in functions are those provided by the language, and we have seen several
of these already. For example, both print() and input() are built-in functions.
We did not need to define them ourselves as they are provided by Python.

In contrast user-defined functions are those written by developers. We will be
defining user-defined functions in the rest of this chapter, and it is likely that in many
cases, most of the programs that you will write will include user-defined functions
of one sort or another.

12.5 Defining Functions

The basic syntax of a function is illustrated below:

def function_name(parameter list):
"""docstring"""
statement
statement(s)

This illustrates several things:

1. All (named) functions are defined using the keyword def; this indicates the start
of a function definition. A keyword is a part of the syntax of the Python language
and cannot be redefined and is not a function.

2. A function can have a name which uniquely identifies it; you can also have
anonymous functions, but we will leave those until later in this chapter.

3. The naming conventions that we have been adopting for variables are also applied
to functions, and they are all lowercase with the different elements of the function
name separated by ‘_’.

4. A function can (optionally) have a list of parameters which allow data to be passed
into the function. These are optional as not all functions need to be supplied with
parameters.

5. A colon is used to mark the end of the function header and the start of the function
body. The function header defines the signature of the function (what is called
and the parameters it takes). The function body defines what the function does.

6. An optional documentation string (the docstring) can be provided that
describes what the function does. We typically use the triple double quote string
format as this allows the documentation string to go over multiple lines if required.

7. One or more Python statements make up the function body. These are indented
relative to the function definition. All lines that are indented are part of the
function until a line which is intended at the same level as the def line.

8. It is common to use 4 spaces (not a tab) to determine how much to indent the
body of a function by.

138 12 Functions in Python

12.5.1 An Example Function

The following is one of the simplest functions you can write; it takes no parameters
and has only a single statement that prints out the message ’Hello World’:

def print_msg():
print(’Hello World!’)

This function is called print_msg, and when called (also known as invoked)
it will run the body of the function which will print out the string, for example,

print_msg()

will generate the output

Hello World!

Be careful to include the round brackets () when you call the function. This
is because if you just use the function’s name then you are merely referring to the
location in memory where the function is stored, and you are not invoking it.

We could modify the function to make it a little more general and reusable by
providing a parameter. This parameter could be used to supply the message to be
printed out, for example:

def print_my_msg(msg):
print(msg)

Now the print_my_msg function takes a single parameter, and this parameter
becomes a variable which is available within the body of the function. However, this
parameter only exists within the body of the function; it is not available outside of
the function.

This now means that we can call the print_my_msg function with a variety of
different messages:

print_my_msg(’Hello World’)
print_my_msg(’Good day’)
print_my_msg(’Welcome’)
print_my_msg(’Ola’)

The output from calling this function with each of these strings being supplied as
the parameter is:

Hello World
Good day
Welcome
Ola

12.6 Returning Values from Functions 139

12.6 Returning Values from Functions

It is very common to want to return a value from a function. In Python this can be
done using the return statement. Whenever a return statement is encountered
within a function then that function will terminate and return any values following
the return keyword.

This means that if a value is provided, then it will be made available to any calling
code.

For example, the following defines a simple function that squares whatever value
has been passed to it:

def square(n):
return n * n

When we call this function, it will multiply whatever it is given by itself and then
return that value. The returned value can then be used at the point that the function
was invoked, for example:

Store result from square in a variable
result = square(4)
print(result)
Send the result from square immediately to another function
print(square(5))
Use the result returned from square in a conditional expression
if square(3) < 15:

print(’Still less than 15’)

When this code is run, we get:

16
25
Still less than 15

It is also possible to return multiple values from a function; for example, in this
swap function the order in which the parameters are supplied is swapped when they
are returned:

def swap(a, b):
return b, a

We can then assign the values returned to variables at the point when the function
is called:

a = 2
b = 3
x, y = swap(a, b)
print(x, ’,’, y)

which produces

3 , 2

140 12 Functions in Python

In actual fact the result returned from the swap function is what is called a tuple
which is a simple way to grouping data together. This means that we could also have
written:

z = swap(a, b)
print(z)

which would have printed the tuple out:

(3, 2)

We will look at tuples more when we consider collections of data.

12.7 Docstring

So far our example functions have not included any documentation strings (the
docstring). This is because the docstring is optional, and the functions we have
written have been very simple.

However, as functions become more complex and may have multiple parameters
the documentation provided can become more important.

The docstring allows the function to provide some guidance on what is expected
in terms of the data passed into the parameters, potentially what will happen if the
data is incorrect, as well as what the purpose of the function is in the first place.

In the following example, the docstring is being used to explain the behaviour of
the function and how the parameter is used.

def get_integer_input(message):
"""
This function will display the message to the user
and request that they input an integer.

If the user enters something that is not a number
then the input will be rejected
and an error message will be displayed.

The user will then be asked to try again."""

value_as_string = input(message)
while not value_as_string.isnumeric():

print(’The input must be an integer’)
value_as_string = input(message)

return int(value_as_string)

12.8 ReStructured Text 141

When used, this method will guarantee that a valid integer will be returned to the
calling code:

age = get_integer_input(’Please input your age: ’)
print(’age is’, age)

An example of what happens when this is run is given below:

Please input your age: John
The input must be an integer
Please input your age: 21
age is 21

The docstring can be read directly from the code but is also available to IDEs
such as PyCharm so that they can provide information about the function. It is even
available to the programmer via a very special property of the function called __
doc__ that is accessible via the name of the function using the dot notation:

print(get_integer_input.__doc__)

which generates

This function will display the message to the user
and request that they input an integer.

If the user enters something that is not a number
then the input will be rejected
and an error message will be displayed.

The user will then be asked to try again.

12.8 ReStructured Text

It is also possible to place formatting commands within a docstring that can be picked
up by a tool such as PyCharm to improve the layout and information presented. There
are several options available for this such as Google style docstrings and NumPy
style docstrings (see https://betterprogramming.pub/3-different-docstring-formats-
for-python-d27be81e0d68). However we are going to look at reStructured Text style
docstrings as this is the style recommended by the Python organization itself.

ReStructured Text (aka ReST) is intended to be an easy-to-read markup syntax
used to add additional meaning to the text within a docstring. Like many other simple
markup languages it uses inline markup such as ‘*’ or a ‘#’ to indicate emphasis or
lists, etc. and as such is intended to be much simpler and easier to use than more
complex markup languages such as HTML.

https://betterprogramming.pub/3-different-docstring-formats-for-python-d27be81e0d68
https://betterprogramming.pub/3-different-docstring-formats-for-python-d27be81e0d68

142 12 Functions in Python

As a simple example, consider the following code:

def get_integer_input(message):
"""
This function will display the message to the user
and request that they input an integer.

:param message: The message to print
:returns: the integer entered by the user

"""
value_as_string = input(message)
while not value_as_string.isnumeric():

print(’The input must be an integer’)
value_as_string = input(message)

return int(value_as_string)

This function has a docstring containing some reStructured Text formatting,
namely the :param and :returns directives.

A directive is an item of meta information that will be used by the ReST parser
to generate the formatted output.

● In this case the :param directive indicates that message is a parameter to
the function and the information after the final : provides a description of that
parameter.

● In turn the :returns: directive indicates that this function returns a value and
the text after this described the meaning of the returned value.

PyCharm uses this information and generates reference documentation that can
be viewed in the pop-up displayed when the programmer hovers over a call to the
get_integer_input function. This is displayed below:

12.8 ReStructured Text 143

As you can see the params and returns directives are displayed in such a way
as to make it easy to read and understand the information provided.

It is also possible to use ReST markup to emphasize text or to make the text bold
or to indicate that a value is a literal:

● Emphasis is indicated using an asterisk ‘*’, for example: *emphasis*.
● Bold is indicated using a double asterisk ‘**’, for example: **strong**.
● Literal values, variables and small code samples can be indicated using two back

quotes, for example: “literal“.

For example:

def get_input(prompt):
"""This function is primarily used to illustrate ReST, for

example:
This is used for *emphasis* while this is used for **bold**.

Finally
this is used for a literal “result“.
"""
result = input(prompt)
return result

This is rendered by PyCharm as shown below:

Note that if asterisks or back quotes appear within the text and could be confused
with inline markup delimiters, they should be escaped with a backslash, for example:
*.

There are a few additional restrictions on this markup that you should be aware
of, including:

● The markup cannot be nested; that is, you cannot nest a bold element within an
emphasis element.

● The content may not start or end with whitespace: * text* is wrong, as is *text *.
● It must be separated from surrounding text by non-word characters. It is

thus necessary to use a backslash escaped space to work around that for
example: thisis\ *one*\ word.

144 12 Functions in Python

It is also possible to create lists within ReST, bulleted lists are represented by
placing an asterisk at the start of a line, and numbered lists are represented by a ‘#.’;
it is also possible to explicitly number a list. Examples of these are shown below:

* This is a bulleted list.
* It has two items, the second

item uses two lines.

1. This is a numbered list.
2. It has two items too.

#. This is a numbered list.
#. It has two items too.

For example, when used in a function docstring:

def get_more_input(prompt):
"""This function is used to illustrate lists, for example:

* This is a bulleted list.
* It has two items, the second item uses two lines.

1. This is a numbered list.
2. It has two items too.

#. This is a numbered list.
#. It has two items as well.

"""
result = input(prompt)
return result

Nested lists are possible, but be aware that they must be separated from the parent
list items by blank lines, for example:

* this is
* a list

* with a nested list
* and some subitems

* and here the parent list continues

As an example, lists and sub lists are used below within a function docstring that
also uses a couple of directives for the parameter and the return value.

def get_something(prompt):
"""

12.8 ReStructured Text 145

We can use lists:

* this is
* a list

* with a nested list
* and some subitems

* and here the parent list continues

:param prompt: the input prompt
:return: the value entered by the user
"""
result = input(prompt)
return result

This is illustrated below:

Section headers are created by underlining the section title with a punctuation
character, at least as long as the text:

This is a heading
=================

Finally, if you want to embed some source code as an example within a docstring
you can use the special marker ::. This creates a literal block that will not be processed
as formatted text but must be indented and with a gap following the ::. For example:

def get_another_thing(prompt):
"""

146 12 Functions in Python

To use this function see the code block::

result = get_another_thing("please input data: ")
print(result)

This is back to normal text
"""
result = input(prompt)
return result

PyCharm renders this as:

12.9 Function Parameters

Before we go any further it is worth clarifying some terminology associated with
passing data into functions. This terminology relates to the parameters defined as part
of the function header and the data passed into the function via these parameters:

● A parameter is a variable defined as part of the function header and is used to
make data available within the function itself.

● An argument is the actual value or data passed into the function when it is called.
The data will be held within the parameters.

Unfortunately many developers use these terms interchangeably, but it is worth
being clear on the distinction.

12.9.1 Multiple Parameter Functions

So far the functions we have defined have only had zero or one parameter; however
that was just a choice. We could easily have defined a function which defined two or
more parameters. In these situations, the parameter list contains a list of parameter
names separated by a comma.

12.9 Function Parameters 147

For example,

def greeter(name, message):
print(’Welcome’, name, ’-’, message)

greeter(’Eloise’, ’Hope you like Rugby’)

Here the greeter function taken defines two parameters: name and message. These
parameters (which are local to the function and cannot be seen outside of the function)
are then used within the body of the function.

The output is

Welcome Eloise - Hope you like Rugby

You can have any number of parameters defined in a function (prior to Python 3.7
there was a limit of 256 parameters—although if you have this many then probably
you have a major problem with the design of your function—however this limit has
now gone).

12.9.2 Default Parameter Values

Once you have one or more parameters you may want to provide default values for
some or all of those parameters, particularly for ones which might not be used in
most cases.

This can be done very easily in Python; all that is required is that the default value
must be declared in the function header along with the parameter name.

If a value is supplied for the parameter, then it will override the default. If no value
is supplied when the function is called, then the default will be used.

For example, we can modify the greeter() function from the previous section
to provide a default message such as ‘Live Long and Prosper’.

def greeter(name, message = ’Live Long and Prosper’):
print(’Welcome’, name, ’-’, message)

greeter(’Eloise’)
greeter(’Eloise’, ’Hope you like Rugby’)

Now we can call the greeter() function with one or two arguments.
When we run this example, we will get:

Welcome Eloise - Live Long and Prosper
Welcome Eloise - Hope you like Rugby

148 12 Functions in Python

As you can see from this in the first example (where only one argument was
provided) the default message was used. However, in the second example where a
message was provided, along with the name, then that message was used instead of
the default.

Note we can use the terms mandatory and optional for the parameters in
greeter(). In this case

● name is a mandatory field/parameter.
● message is an optional field/parameter (as it has a default value).

One subtle point to note is that any number of parameters in a function’s parameter
list can have a default value; however once one parameter has a default value all
remaining parameters to the right of that parameter must also have default values.
For example, we could not define the greeter function as

def greeter(message = ’Live Long and Prosper’, name):
print(’Welcome’, name, ’-’, message)

As this would generate an error indicating that name must have a default value
as it comes after (to the right) of a parameter with a default value.

12.9.3 Named Arguments

So far we have relied on the position of a value to be used to determine which
parameter that value is assigned to. In many cases this is the simplest and cleanest
option.

However, if a function has several parameters, some of which have default values,
it may become impossible to rely on using the position of a value to ensure it is given
to the correct parameter (because we may want to use some of the default values
instead).

For example, let us assume we have a function with four parameters

def greeter(name,
title = ’Dr’,
prompt = ’Welcome’,
message = ’Live Long and Prosper’):

print(prompt, title, name, ’-’, message)

This now raises the question how do we provide the name and the message
arguments when we would like to have the default title and prompt?

The answer is to use named arguments (or keyword arguments). In this approach
we provide the name of the parameter we want an argument/value to be assigned to;
position is no longer relevant. For example:

greeter(message = ’We like Python’, name = ’Lloyd’)

12.9 Function Parameters 149

In this example we are using the default values for title and prompt and have
changed the order of message and name. This is completely legal and results in
the following output:

Welcome Dr Lloyd - We like Python

We can actually mix positional and named arguments in Python, for example:

greeter(’Lloyd’, message = ’We like Python’)

Here ‘John’ is bound to the name parameter as it is the first parameter, but ‘We
like Python’ is bound to message parameter as it is a named argument.

However, you cannot place positional arguments after a named argument, so we
cannot write:

greeter(name=’John’, ’We like Python’)

As this will result in Python generating an error.

12.9.4 Arbitrary Arguments

In some cases, you do not know how many arguments will be supplied when a
function is called. Python allows you to pass an arbitrary number of arguments into
a function and then process those arguments inside the function.

To define a parameter list as being of arbitrary length, a parameter is marked with
an asterisk (*). For example:

def greeter(*args):
for name in args:

print(’Welcome’, name)

greeter(’John’, ’Denise’, ’Phoebe’, ’Adam’, ’Gryff’, ’Jasmine’)

This generates

Welcome John
Welcome Denise
Welcome Phoebe
Welcome Adam
Welcome Gryff
Welcome Jasmine

Note that this is another use of the for loop; but this time it is a sequence of
strings rather than a sequence of integers that is being used.

150 12 Functions in Python

12.9.5 Positional and Keyword Arguments

Some functions in Python are defined such that the arguments to the methods can
either be provided using a variable number of positional or keyword arguments. Such
functions have two arguments *args and **kwargs (for positional arguments and
keyword arguments).

They are useful if you do not know exactly how many of either position or keyword
arguments are going to be provided.

For example, the function my_function takes both a variable number of
positional and keyword arguments:

def my_function(*args, **kwargs):
for arg in args:

print(’arg:’, arg)
for key in kwargs.keys():

print(’key:’, key, ’has value: ’, kwargs[key])

This can be called with any number of arguments of either type:

my_function(’John’, ’Denise’, daughter=’Phoebe’, son=’Adam’)
print(’-’ * 50)
my_function(’Paul’, ’Fiona’, son_number_one=’Andrew’, son_
number_two=’James’, daughter=’Joselyn’)

which produces the output:

arg: John
arg: Denise
key: son has value: Adam
key: daughter has value: Phoebe
--
arg: Paul
arg: Fiona
key: son_number_one has value: Andrew
key: son_number_two has value: James
key: daughter has value: Joselyn

Also note that the keywords used for the arguments are not fixed.
You can also define methods that only use one of the *args and **kwargs

depending on your requirements (as we saw with the greeter() function above),
for example:

def named(**kwargs):
for key in kwargs.keys():

print(’arg:’, key, ’has value:’, kwargs[key])

named(a=1, b=2, c=3)

12.10 Anonymous Functions 151

In this case, the named function only supports the provision of keyword
arguments. Its output in the above case is:

arg: a has value: 1
arg: c has value: 3
arg: b has value: 2

In general, these facilities are most likely to be used by those creating libraries as
they allow for great flexibility in how the library can be used.

12.10 Anonymous Functions

All the functions we have defined in this chapter have had a name that they can be
referenced by, such as greeter or get_integer_input. This means that we
can reference and reuse these functions as many times as we like.

However, in some cases we want to create a function and use it only once; giving
it a name for this one time can pollute the namespace of the program (i.e., there
are lots of names around) and also means that someone might call it when we don’t
expect them to.

Python therefore has another option when defining a function; it is possible to
define an anonymous function. In Python an anonymous function is one that does
not have a name and can only be used at the point that it is defined.

Anonymous functions are defined using the keyword lambda, and for this reason
they are also known as lambda functions.

The syntax used to define an anonymous function is:

lambda arguments: expression

Anonymous functions can have any number of arguments but only one expression
(that is a statement that returns a value) as their body. The expression is executed,
and the value generated from it is returned as the result of the function.

As an example, let us define an anonymous function that will square a number:

double = lambda i : i * i

In this example the lambda definition indicates that there is one parameter to
the anonymous function (‘i’) and that the body of the function is defined after the
colon ‘:’ which multiples i * i; the value of which is returned as the result of the
function. The whole anonymous function is then stored into a variable called double.

We can store the anonymous function into the variable as all functions are instances
of the class function and can be referenced in this way (we just haven’t done this so
far).

152 12 Functions in Python

To invoke the function, we can access the reference to the function held in the
variable double and then use the round brackets to cause the function to be executed,
passing in any values to be used for the parameters:

print(double(10))

When this is executed the value 100 is printed out.
Other examples of lambda/anonymous functions are given below (illustrating that

an anonymous function can take any number of arguments):

func0 = lambda: print(’no args’)
func1 = lambda x: x * x
func2 = lambda x, y: x * y
func3 = lambda x, y, z: x + y + z

These can be used as shown below:

func0()
print(func1(4))
print(func2(3, 4))
print(func3(2, 3, 4))

The output from this code snippet is:

no args
16
12
9

12.11 Online Resources

See the Python Standard Library documentation for:

● https://docs.python.org/3/library/functions.html for a list of built-in functions in
Python.

● https://www.w3schools.com/python/python_functions.asp the W3 Schools brief
introduction to Python functions.

● https://www.w3schools.com/python/python_lambda.asp a short summary of
lambda functions.

● https://devguide.python.org/documentation/markup for information on reStruc-
tured Text style docstrings.

12.12 Exercises

For this chapter the exercises involve the number_guess_game you created in the last
chapter:

https://docs.python.org/3/library/functions.html
https://www.w3schools.com/python/python_functions.asp
https://www.w3schools.com/python/python_lambda.asp
https://devguide.python.org/documentation/markup

12.12 Exercises 153

Take the number guess game and break it up into a number of functions. There is
not necessarily a right or wrong way to do this; look for functions that are meaningful
to you within the code, for example:

1. You could create a function to obtain input from the user.
2. You could create another function that will implement the main game playing

loop.
3. You could also provide a function that will print out a message indicating if the

player won or not.
4. You could create a function to print a welcome message when the game starts

up.

	12 Functions in Python
	12.1 Introduction
	12.2 What are Functions?
	12.3 How Functions Work
	12.4 Types of Functions
	12.5 Defining Functions
	12.5.1 An Example Function

	12.6 Returning Values from Functions
	12.7 Docstring
	12.8 ReStructured Text
	12.9 Function Parameters
	12.9.1 Multiple Parameter Functions
	12.9.2 Default Parameter Values
	12.9.3 Named Arguments
	12.9.4 Arbitrary Arguments
	12.9.5 Positional and Keyword Arguments

	12.10 Anonymous Functions
	12.11 Online Resources
	12.12 Exercises

