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 Introduction

• Surgical pathologists dedicate limitless hours in a struc-
tured training environment equipped with textbooks, sci-
entific literature, principles, algorithms, and professional 
expertise to achieve proficiency in the diagnosis of dis-
ease and to interpret laboratory data
 – Based on their expertise and experience, they provide 

a report with the diagnosis, with or without prognostic 
factors

• With the emergence of genomics, proteomics, informat-
ics, and associated metadata, in addition to the clinical, 
imaging, and laboratory data, surgical pathologists are 
now well equipped with managing, interpreting, and 
leveraging data of unmatched complexity
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• Bioinformatics is a branch of science that refers to the 
management, acquisition, manipulation, and presentation 
of complex biological data sets, while clinical informatics 
is the application of information management in health 
care to promote safe, efficient, effective, and personalized 
care

• Computational pathology (CPATH) is the analysis of 
digitized pathology images with associated metadata, 
typically using artificial intelligence (AI) methods
 – Deep learning (DL) is a type of AI method, commonly 

used in CPATH that can ‘learn’ how to perform tasks 
based on examples

 – Training a typical supervised deep learning algorithm 
in CPATH involves large amounts of laboratory train-
ing data. Understanding the components of bioinfor-
matics pipelines is also important for surgical 
pathologist

 – A few examples of bioinformatics-based computa-
tional pathology include predicting cancer outcomes 
from histology and genomics using convolutional net-
works and automated Gleason grading of prostate can-
cer tissue microarrays via deep learning

 Bioinformatics, a Distinct Field in Pathology 
and Where Are We Now

• Bioinformatics is a blend of Computer Science, Statistics, 
and Biology. Several pathology laboratories, particularly 
the molecular pathology laboratories, have recruited spe-
cialists in dry laboratories who have skills in data man-
agement, statistics, computer programming, and data 
visualization that are needed for big-data applications in 
pathology, especially in the analyses of surgical pathol-
ogy of cancers

• Pathology Informatics (PI) is a specialized branch of 
computational biology that deals with genetic and 
genomic information
 – Bioinformaticians/Pathology informaticians must 

have a strong background in population genetics, 
should have skills in computer programming, and must 
also have sufficient skills in information systems to set 
up and maintain computer-based algorithms required 
for genome-level data analyses and presentations

 – In essence, PI involves the collection, evaluation, 
reporting, and storage of large complex data sets 
derived from tests performed in clinical surgical 
pathology laboratories, and research laboratories to 
improve patient care and enhance our understanding of 
disease-related processes

 – PI is also ingrained in translational research tools and 
translates those into clinical practice required for 
timely, high-quality, accurate, regulated, contempo-

rary, and safe patient diagnostic, prognostic, and pre-
dictive applications

 – Researchers with a background in PI who are entering 
the field of clinical laboratory practice need additional 
training to fit themselves into the clinical environment. 
Also, scientists coming from a wet laboratories back-
ground require targeted training in computational and 
information technologies

 Pathology Bioinformaticians and Their Role

• A clinical bioinformatician manages the complete suite of 
information and computational technologies that tracks a 
sample from intake through clinical report generation and 
delivery

• Additionally, they are the key managers of data aggrega-
tion and data sharing. These specialists typically develop 
and maintain laboratory information management sys-
tems so that samples coming to the laboratories can be 
tracked throughout the entire testing process and result 
data is properly linked to the case. For example, once the 
raw data is produced, bioinformaticians develop, manage, 
and operate analyses pipelines that synthesize the results 
into forms comprehensible to the laboratory staff tasked 
with reporting the results

• Bioinformaticians maintain and develop analysis infor-
mation management systems which are also used to col-
lect and monitor performance metrics and quality 
control

• Sequencing database calling algorithms (primary data 
analysis), alignment and variant calling (secondary analy-
sis), and variant annotation and filtering (tertiary analysis) 
must all fit together—ideally in a set of linked methods 
that minimize manual processes such as data 
reformatting

• All these steps require the use of complex software that 
needs professional supervision to manage installation, 
versioning and updating, knowledge of error modes, abil-
ity to manage outputs, carry out statistical analyses of 
validation data, and maintain quality standards

• The latter is exceptionally important because the quality 
metrics for sequencing are complex and failure to under-
stand them deeply leads to increased costs, slower turn-
around, excessive requirements for confirmatory testing, 
and even interpretive errors

 Specialized Training in Bioinformatics

• When a new clinical laboratory discipline begins to 
coalesce, only some members are scientists who are 
already practicing clinical bioinformatics

S. K. Mohanty et al.



71

• Some of these scientists have mastered bioinformatics 
skills by self-instruction, while other laboratories recruit 
research bioinformatics specialists or have new trainees 
enter the diagnostic laboratories with a knowledge of 
computational biology

• A group of scientists is effectively putting together this 
new discipline, and in the process, they are creating a pro-
nounced impact on clinical diagnosis

• The next step is the recognition of the need for training 
standards and a process for the certification of specialists

• Individuals who have already in practice should be offered 
the opportunity to certify under a credentialing program

• Scientists who are already practicing in this area should 
be immediately eligible for certification after passing a 
skill-and knowledge-oriented board examination

• Two-year fellowships for new trainee scientists entering 
the field would be ideal to ensure that they have mastered 
all the skills necessary for dry laboratories clinical 
diagnostics

• These individuals must have training in human, popula-
tion, and medical genetics and genomics

• They must master the basic principles of human disease 
genetics, gain exposure to the real-world problems of 
genetic diagnosis, and get specific training in ethical clin-
ical practice

• These individuals need exposure and competence in the 
programming languages used in routine laboratory prac-
tice and systems architecture, and the algorithmic basis 
for primary and secondary analyses and develop an 
approach for tertiary analyses and reporting

 Definitions and Terminologies Related 
to Bioinformatics and Computational 
Pathology

 Annotation

• Indication of the position and/or outline of structures or 
objects within digital images, usually produced by 
humans using a computer mouse or drawing tablet. 
Annotations may have associated metadata

• Annotations can be manually generated or can be estab-
lished by algorithm tools

 Artificial Intelligence (AI)

• A branch of computer science that deals with the simula-
tion of intelligent behavior in computers

• Recently, there has been a momentous drive to apply 
advanced AI technologies to diagnostic medicine

• The introduction of AI has provided vast new opportuni-
ties to improve health care and has introduced a new wave 
of heightened precision in oncologic pathology

• The impact of AI on oncologic pathology has now become 
apparent, and its use with respect to oral oncology is still 
in the nascent stage

 Black Box/Glass Box

• A neural network can be perceived as a black box that 
lacks a clear depiction of the image features used for a 
decision

• However, several methods can be employed to transform 
it into a glass box to understand the relationship between 
the input parameters and the output of the network

 Cloud Computing

• The practice of using a network of remote servers hosted 
on the internet to store, manage, and process data, rather 
than a local server or a personal computer

 Computational Pathology (CPATH)

• A branch of pathology that involves computational analy-
ses of a broad array of methods to analyze patient speci-
mens for the study of disease

 Convolutional Neural Network (CNN)

• A type of deep neural network particularly designed for 
images. It uses a kernel or filter to convolve an image, 
which results in features useful for differentiating images

 Deep Learning

• The subset of machine learning composed of algorithms 
that permit software to train itself to perform tasks by 
exposing multilayered artificial neural networks to vast 
amounts of data

• Data is fed into the input layers and is sequentially pro-
cessed in a hierarchical manner with increasing complex-
ity at each layer, modeled loosely after the hierarchical 
organization in the brain

• Optimization functions are iteratively trained to shape the 
processing functions of the layers and the connections 
between them

2 Bioinformatics, Digital Pathology, and Computational Pathology for Surgical Pathologists
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 Data Augmentation

• Method commonly used in deep learning to increase the 
training data using operations such as rotating, crop-
ping, zooming, and image histogram-based 
modifications

• This provides several advantages such as promoting posi-
tional and rotational invariance, robustness to staining 
variability, and improves the generalizability of the 
classifier

 Digital Pathology (DP)

• A blanket term that encompasses tools and systems to 
digitize pathology slides and associated metadata, their 
storage, review, analyses, and enabling infrastructure

 Gold Standard

• The practical standard that is used to capture the ‘ground 
truth’

• The gold standard may not always be perfectly correct, 
but in general, it is viewed as the best approximation

 Ground Truth

• A category, quantity, or laboratories assigned to a data-
set that provides guidance to an algorithm during 
training

• Depending on the task, the ground truth can be a patient- 
or slide-level characterization or can be applied to objects 
or regions within the image

• The ground truth is an abstract concept of the ‘truth’

 Image Analysis

• A method to extract typically quantifiable information 
from images

• Image analysis can be applied to images of histology 
slides, but the term itself is broader and applies to the 
extraction of information from any image, biomedical or 
not

 Machine Learning (ML)

• A branch of AI in which computer software learns to per-
form a task by being exposed to representative data

 Metadata

• In the context of DP, the term metadata describes descrip-
tive data associated with the individual, sample, or slide

• It may include image acquisition information, patient 
demographic data, pathologist annotation or classifica-
tion, or outcome data from treatment

• Typically, metadata are entries that allow searches in 
databases

• Highly complex, large, multiple-time-point associated 
data, such as longitudinal image data (such as radiology) 
or genomic data, is not usually called ‘metadata’

 Supervised Machine Learning

• Supervised learning is used to train a model to predict an 
outcome or to classify a dataset based on a laboratory 
associated with a data point (i.e., ground truth)

• An example of supervised machine learning includes the 
design of classifiers to distinguish benign from malignant 
regions based on manual annotations

 Unsupervised Machine Learning

• Unsupervised learning seeks to identify natural divisions 
in a dataset without the need for ground truth, often using 
methods such as cluster analysis or pattern matching

• Examples of unsupervised machine learning include the 
identification of images with similar attributes or the clus-
tering of tumors into subtypes

 Whole-Slide Image (WSI)

• Digital representation of an entire histopathology glass 
slide, digitized at microscope resolution

• These whole-slide scans are typically produced using 
slide scanners

• Slide scan viewing software enables inspection of the 
image in a way that mimics the use of a traditional 
microscope; the image can be viewed at different 
magnifications

 Differences Between Traditional Image 
Analysis and Computational Pathology

• Traditional image analysis differs from the deep learning 
based computational pathology in the following ways 
(Table 2.1)
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Table 2.1 Differences between traditional image analysis and deep 
learning-based computational pathology

Characteristics Image analysis

Deep learning-based 
computational 
pathology

Definition and 
tasks performed

It is the extraction of 
meaningful information 
from the digital images 
by means of digital 
image processing 
techniques. It is the 
automation of repetitive 
tasks, e.g., cell 
counting, quantification 
of immune staining 
areas, etc.

It is the analysis of 
digitized pathology 
images with associated 
metadata, typically 
using AI methods, and 
the image features are 
correlated with the 
patient metadata that 
assist in disease 
diagnosis and predict 
therapy.

Tuning of the 
parameters used

Image features are 
manually tuned.

Automatic learning and 
extraction of a large 
number of features by 
computer-based 
algorithms.

Algorithm 
testing

A few marked regions 
of the stained slide.

The entire stained slide.

Computer unit 
used

Central processing unit. Graphics processing 
unit.

Number of 
images required 
in the training 
set

It depends on the 
application, usually low.

Usually, very high 
images are required.

 Digital Pathology, Machine Learning, 
and Computational Pathology

• The development of slide scanners has made the process 
of virtualizing and digitalizing the whole glass slides 
possible

• DP involves the process of digitizing histopathology, 
immunohistochemistry, and cytology slides using whole- 
slide scanners and the interpretation, management, and 
analysis of these digitized whole-slide images using com-
putational approaches

• The digital data of the slides can be stored in a central 
cloud-based space allowing for remote access to the infor-
mation for manual review by a pathologist or automated 
review by a computer-assisted data algorithm

• This enables AI, a branch of computational biology that 
generates the data algorithms, to be applied to pathology

• Based on the degree of intelligence, AI can be divided 
into two major categories such as weak AI and strong AI

• Weak AI or artificial narrow intelligence refers to the clas-
sification of data based on a well-established statistic 
model that has already been trained to perform specific 
tasks, while strong AI or artificial general intelligence 
(AGI) can create a system, which can function intelli-

gently and independently by executing machine learning 
from any available normalized data

• Generally, ML is an AI process to allow a computer to 
automatically learn and improve from the data set by 
itself and to solve problems without being programmed 
during the process

• ML is an advanced branch of AGI using a large amount of 
initial data, training set, to build statistic algorithms to 
interpret and act on new data later

• Currently, various ML-based approaches have been devel-
oped and tested in pathology to assist pathologic diagno-
sis using the basic morphology pattern such as cancer 
cells, cell nuclei, cell divisions, ducts, blood vessels, etc.

• Deep learning, otherwise known as deep structured learn-
ing, is a subfield of ML that is based on artificial neural 
networks (ANNs) in which the statistic models are estab-
lished from input training data

• Deep neural networks provide architectures for deep 
learning

• The ANNs can perform their own determination as to 
whether their interpretation or prediction is correct, 
resembling a biological complex neural network of the 
human brain

• ANNs are comprised of three functional layers of artifi-
cial neurons, known as nodes, which include an input 
layer, multiple hidden layers, and an output layer

• The artificial neurons are connected to each other in the 
ANNs, and the strength of their connections is known as 
weights

• The connections between artificial neurons in the ANNs 
are assessed using statistical methods, including cluster-
ing algorithms, K-nearest neighbor, support vector 
machines (SVM), and logistic regressions

• The involved artificial neurons, which are related to the 
output event, and their associated connections, which 
bear different weight, need to be trained by qualified big 
dataset to achieve an optimized algorithm for specific 
tasks

• The CNNs are a type of deep multilayer neural network 
particularly designed for visual image

• It employs convolutional kernels, a set of learnable filters, 
to build up a pooling layer that can effectively reduce the 
dimensions of the image data while still retaining its 
characteristics

• By flattening an image, removing, or reducing the dimen-
sions, convolutional kernels act as a preprocess treatment 
that then allows for computer vision and machine vision 
models to process, analyze, and classify the digital 
images, or parts of the image, into known categories

• With slide scanning technology getting faster and more 
reliable, a larger volume of WSI data becomes available 
to train and validate CNN models

2 Bioinformatics, Digital Pathology, and Computational Pathology for Surgical Pathologists
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• In combination with clinical information, biomarkers, 
and multi-omics data, CPATH will become part of the 
new standard of care

• Computational pathology not only facilitates a more effi-
cient pathology workflow, but also provides a more com-
prehensive and personalized view, enabling pathologists 
to address the progress of complex diseases for better 
patient care

 Training Algorithm

 Case Selection

• Patients’ selection is the initial step in training the algo-
rithm (Fig. 2.1)

• Both training set and validation set must include all sam-
ple types or variants which are related to the subject of 
diseases including stages, grades, histologic classifica-
tion, complication, etc., to eliminate false- negative and 
false-positive scenarios

• Still very much a machine-driven process, algorithms 
have no way to recognize the variants that have not been 
included in the training set

• The criteria for the samples and subsequent slide selec-
tion for the learning set need to be established by experi-
enced pathologists alongside a computational team

• Confounding variables must be isolated and removed. For 
example, the patients with other medical conditions which 
may interfere with the outcome should be eliminated

• In addition, inadequate slide preparation including blurred 
vision, over- or under-staining, air-bubbles, and folded 
tissue can produce inaccurate results and wrong 
algorithms

• The comprehensive initial and follow-up clinical infor-
mation, as well as laboratory results, should be collected 
and included

• The more relevant the information included, the more 
accurate the resulting algorithm

 Whole-Slide Imaging

• Histopathology has been an integral part of the work of 
pathologists since the seventeenth century

• Today, histopathology largely remains a manual process 
in which pathologists examine glass slides using conven-
tional brightfield microscopy

• Advances in digitization of glass slides in pathology 
occurred much later than the digital transformation wit-
nessed in radiology, where digital sensors are 
widespread

• When histologic glass slides are digitized, they can be 
remotely viewed by a pathologist on a computer screen, 
or digitally analyzed using image analysis techniques

• At its inception, digital image analysis was predominantly 
used by researchers and often limited to individual fields 
of views, which was cumbersome and could introduce 
bias

• WSI allowed developments that have brought us from the 
application of traditional image analysis techniques on 
small manually selected regions of interest, to what is the 
current state-of-the-art in digital pathology: techniques 
that process the entire slide image automatically

• This allowed researchers to identify features not easily 
analyzed by visual evaluation alone

• Several slide scanning systems for WSI have been 
approved by the US Food and Drug Administration (FDA) 
to be used in clinical settings (Table 2.2)

• The first FDA-approved Ultra-Fast Scanner, the Philips 
IntelliSite Pathology Solution (PIPS), has a resolution of 
0.25 μm/pixel, scanning speed of 60 s for a 15 × 15-mm 
scan area, and scanning capacity of 300 slides in one load

• The Aperio AT2 DX System from Leica Biosystems has 
400 slide capacity for brightfield and fluorescent slides

• File sizes of digital images at applicable resolution vary 
depending on the scan area on the glass slides

• In general, pathology images are tremendously large, in 
the range of 1–3 GB per image

• Therefore, it requires a high capacity and fast digital 
working computer

• Furthermore, the number of slides needed to achieve a 
clinically accepted algorithm may vary by tissue type and 
diagnosis

• Campanella et al. showed that at least 10,000 slides are 
necessary for training to reach a good performance

Fig. 2.1 The process of creating an algorithm is basically divided into 
the above steps. The initial step involves the procurement of clinically 
annotated samples/specimens, followed by the process of whole-slide 
imaging and annotation. Based on the image analysis data, an algorithm 
is developed and trained by both the training set and the independent 
validation set

S. K. Mohanty et al.
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Table 2.3 Basic principles for the development of supervised deep- 
learning algorithm development in computational pathology

Obtaining ground truth data
   •  Patient outcome data
   •  A field from the pathology report or laboratory information 

system
   •  A quantitative score assigned to the case
   •  Manually provided by a pathologist
   •  Considerations in acquisition
    –  Streamlined workflows
    –  Single common annotation tool
    –  Trade-off between quantity and accuracy
Good practices
   •  Training images must be representative of the image algorithm 

it is designed to be applied to
   •  Use a wide variety of data sources
   •  Use consistent preimaging steps
   •  Apply manual or automated image quality control processes
   •  Use larger and more representative training sets
   •  Calibrate algorithms for each laboratory prior to being used for 

clinical work
   •  Apply image preprocessing strategies such as color 

normalization
   •  Data augmentation to artificially add variation and increase (or 

balance) the training data
   •  Test developed models using a variety of test and validation sets 

to avoid overfitting

• The authors also observed the discrepancy in the predic-
tion between Leica Aperio and PIPS and found that 
brightness, contrast, and sharpness affect the prediction 
performance

• Whole-slide image analysis techniques are now routinely 
utilized for basic and translational research, drug develop-
ment, and clinical diagnostics including laboratory-devel-
oped tests and in vitro diagnostics

 Traditional Image Analysis Enhanced by 
Machine Learning

• Traditional digital image analysis focuses on three broad 
categories of measurements: localization, classification, 
and quantification of image objects

• This method is an iterative process where typically a few 
parameters are manually tuned, built into an algorithm, 
and often tested only on a region of the slide image

• Aspects that fail a quality control review are tweaked until 
the algorithm performance meets predetermined analysis 
criteria

• ML has facilitated significant advancements within the 
field of image analysis, as it often allows the generation of 
more robust algorithms that need fewer iterative optimi-
zations for each dataset, compared with methods where 
parameters are manually tuned

• Supervised ML techniques, in which an algorithm is 
trained using ground truth laboratories, are particularly 
effective in image segmentation (detection of specific 
objects) and classification (such as tumor diagnosis) 
tasks

• The ground truths may be a category or laboratories 
assigned to a dataset that provides guidance to an 
algorithm

• The capabilities of ML have dramatically expanded in the 
last decade due to the developments in deep learning, an 
approach that enables an algorithm to automatically dis-
cover relevant image features that contribute to computer 
vision tasks

• One of the first uses of deep learning in histopathology 
was the work of Ciresan et  al. in the International 
Conference on Pattern Recognition (ICPR) challenge in 
2012, which focused on fully automated recognition of 
mitotic figures in hematoxylin and eosin (H&E)-stained 
breast cancer tissue

• Using CNNs, the authors were able to generate results 
that far exceeded those of the competition

• These early studies applied ML to histopathology using 
small, manually selected regions of interest, but later 
research showed that these techniques could work equally 
well on whole-slide images

• In DP, ML-enhanced image analysis is now widely 
employed by researchers and implemented in several 
commercially available image analysis software products 
(Table 2.3)

• For digital slide analysis, Senaras et  al. described a 
novel deep-learning framework, called DeepFocus, 
which enables the automatic identification of blurry 
regions in digital slides for immediate re-scan to 
improve image quality for pathologists and image anal-
ysis algorithms
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• Janowczyk et  al. presented an open-source tool called 
HistoQC to assess color histograms, brightness, and con-
trast of each slide and to identify cohort-level outliers 
(e.g., darker or lighter stain than other slides in the cohort)

• These methods play an essential role in the quality control 
of whole-slide images to standardize the quality of images 
in computational pathology

• Due to improvements in various smart image-recognition 
algorithmic discriminators, based on high-capacity deep 
neural network models, the pathologist can be released 
from extensive manual annotations for each whole-slide 
images at the pixel level so that they can focus on other 
parts of the clinical workflow

• The patch-based whole-slide images (224  ×  224 to 
256 × 256) have been widely used in many machine learn-
ing domains to train classifiers for diagnostic or prognos-
tic tasks

• For example, Campanella et  al. employed multiple 
instance learning (MIL) approaches with ‘bag’ and 
‘instance’ based on convolutional neural networks and 
recurrent neural networks to classify the prostate cancer 
images of H&E slides

• Kapil et al. applied deep semi-supervised architecture and 
auxiliary classifier generative adversarial networks, 
including one generator network and one discriminator 
network, to automatically analyze the PD-L1 expression 
in immunohistochemistry slide of late-stage nonsmall cell 
lung cancer needle biopsies

• Barker et  al. revealed an elastic net linear regression 
model and weighted voting system to differentiate glio-
blastoma and lower-grade glioma with an accuracy of 
93.1%

• Several machine learning tools such as QuPath, Halo, 
Visiopharm, Image J are readily available for automatic 
quantification of various biomarkers

• Of these, QuPath is an open-source digital pathology tool 
that has been used for the objective assessment and scor-
ing of several markers like Ki67, KLF4, SOX2, etc.

• QuPath performs WSI analysis through tissue and nuclei 
segmentation and automatically computes a series of fea-
tures with various algorithms

• Briefly, stain vectors are identified using QuPath tools, 
then applied to ROI using the ‘tissue detection’ command 
(Fig. 2.2)

• After a step of evaluable tissue selection, excluding all 
nonassessable areas and regions without tumors, the ‘cell 
detection’ tool is used to segment nuclei

• If necessary, it is possible to then proceed to draw further 
annotations around areas of interest

• These can be processed one-by-one by running ‘positive 
cell detection’ on an annotation when it is selected, or else 
they can be processed all together (in parallel)
 – This has been used for the assessment of the prolifera-

tive compartment of solid tumors on H&E- stained sec-
tions as well as for an objective determination of 
Ki67 in cancers
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Fig. 2.2 The relationship 
between different levels of 
artificial intelligence and 
important hurdles. The four 
challenges are experienced 
computational experts who 
can develop algorithms for 
particular issues, hardware 
limitations, qualified 
applicable data, and ethical 
issues
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 Pathologist-Centered Medical System

• Although most AI research is still focused on the detec-
tion and grading of tumors in digital pathology and radi-
ology, computational pathology is not limited to the 
detection of a morphological pattern

• It can also contribute to the complex process of analysis 
and judgment using demographic information, digital 
pathology, −omics, and laboratory results

• Therefore, AI has the potential to contribute to nearly all 
aspects of the clinical workflow, from more accurate diag-
nosis to prognosis, and individualized treatment

• Multiple sources of clinical data are incorporated into 
mathematic models to generate diagnostic inferences and 
predictions, to enable physicians, patients, and laboratory 
personnel to make the best possible medical decisions

• For example, deep neural networks have been applied to 
automated biomarker assessment of breast tumor images, 
such as HER2, ER, and Ki67

• Hamidinekoo et al. created a novel convolutional neural 
network-based mammography–histology–phenotype–
linking–model to connect and map the features and phe-
notypes between mammographic abnormalities and their 
histopathological representation

• Mobadersany et al. developed a genomic survival convolu-
tional neural network model to integrate information from 
both histology images and genomic data to predict time-to-
event outcomes and demonstrated that the prediction accu-
racy surpassed the current clinical paradigm for predicting 
the overall survival of patients diagnosed with glioma

• As electronic health record (EHR) systems enable us to 
collect medical data such as age, race, gender, social his-
tory, and clinic history, applying these data as indepen-
dent factors of a particular disease to an appropriate 
mathematic algorithm becomes feasible

• These integrated data allow pathologists to gain deeper 
insights and to switch between different algorithms of 
treatment at different stages of the disease and/or for dif-
ferent statuses of the patient

• As the health-related apps on mobile devices and smart 
personal trackers become popular, direct access to con-
tinuous real-time health information, such as temperature, 
heart rate, respiratory rate, electrocardiogram, body mass 
index, blood glucose, and blood oxygen content, can be 
recorded into individual health data

• These data can then be incorporated into the EHR and 
laboratory information systems (LIS) to reintegrate into a 

virtualized and digitalized person, which was not possible 
previously and was beyond what the human brain alone 
can accomplish

• This new system of data-driven care requires the pathol-
ogy, as a cornerstone of modern medicine, to integrate 
data, algorithms, and analytics to deliver high- quality and 
efficient care

• The combination of computational pathology and big- 
data mining offers the potential to create a revolutionary 
way of practicing evidence-based, personalized medicine

 Global Pathology Service Model

• Three essential advancements happened in recent years: 
the possibility to store a great amount of data from net-
work-attached storage to cloud storage, the growing speed 
of network from WIFI-6 to 5  G, and high- performance 
central processing unit (CPU) and graphics processing 
unit

• These technological improvements not only enhance peo-
ple’s daily life, but also have a great impact on medicine, 
especially digital and computational pathology (Fig. 2.3)

• Together with the surging development of network and 
information technology, these technologic improvements 
allow for the centralization of medical and computing 
resources—with the benefit of larger sample data volume 
for optimization of algorithms

• Furthermore, the central cloud-based AI laboratory and 
data bank of digital and computational pathology make 
the global network of computational pathology possible

• In local laboratories or centralized scanning centers, his-
tology slides can be converted to whole-slide images and 
numerical data

• This data can then be transferred to the central laboratory 
together with EHR data and multi-omics data for further 
analysis

• Patients in different geographic areas around the world 
can benefit from more efficient and effective diagnosis, 
treatment, and follow-up

• In the meantime, pathologists can access the information 
they need to care for patients or to collaborate with spe-
cialists anytime and anywhere

• Deep-learning platforms have the potential to facilitate 
the discovery of more complicated or subtle connections 
and to help pathologists make the best clinical decisions 
to meet every patient’s needs
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Fig. 2.3 A computational 
pathology team includes 
pathologists to identify a 
clinically relevant issue, data 
scientists to develop and train 
the algorithm, and engineers 
to support the operating 
environment. Subsequently, 
during the actual clinical 
practice, the pathologists play 
an important role in applying 
and monitoring the algorithm 
and relay feedback to the 
developers for optimization

 Examples of Bioinformatics and AI-Driven 
Pathology Workflow

• Increasingly, AI detection is being applied to different 
subspecialties with various sample types

• Early reports on accuracy have shown to be promising 
and that the AI-assisted systems have the potential to clas-
sify accurately at an unprecedented scale and lay the 
foundation for the deployment of computational pathol-
ogy in nearly all subspecialties

 Prostate Cancer

• Campanella et al. validated a high-capacity deep neural 
network-based algorithm to analyze image classification 
and categorization of 44,732 whole-slide images across 
three different cancer types, including prostate cancer, 
basal cell carcinoma, and breast cancer metastases to axil-
lary lymph nodes

• In terms of whole-slide images, they found that ×5 mag-
nification has higher accuracy

• They trained a statistic model with MIL-based tile classi-
fier for each tissue type and achieved area under receiver 
operating curve (AUC) above 0.98 for all cancer types

• Its clinical application would allow pathologists to exclude 
65–75% of slides while retaining 100% sensitivity

• Wildeboer et al. discussed deep learning techniques based 
on different imaging sources including magnetic reso-
nance imaging, echogenicity in ultrasound imaging, and 
radio density in computed tomography as computer- aided 
diagnostic tools for prostate cancer

• They found that the algorithm of convolutional neural 
network architecture performed equal or better than SVM 
or random forest classifiers in machine learning

• As usage of AI for diagnosing prostate cancer in biopsies 
are limited to individual studies, they lack validation in 
multinational settings

• The PANDA challenge, the largest histopathology com-
petition to date, joined by 1290 developers, has been 
organized to catalyze development of reproducible AI 
algorithms for Gleason grading using 10,616 digitized 
prostate biopsies

• They validated a diverse set of submitted algorithms that 
reached pathologist-level performance on independent 
cross-continental cohorts, fully blinded to the algorithm 
developers

• In United States and European external validation sets, 
the algorithms achieved agreements of 0.862 (quadrati-
cally weighted κ, 95% confidence interval (CI), 0.840–
0.884) and 0.868 (95% CI, 0.835–0.900) with expert 
uropathologists

• Successful generalization across different patient popula-
tions, laboratories, and reference standards, achieved by a 
variety of algorithmic approaches, warrants evaluating 
AI-based Gleason grading in prospective clinical trials

 Colorectal Cancer

• Korbar et  al. developed multiple deep-learning algo-
rithms, modified version of a residual network architec-
ture, which can accurately classify whole-slide images of 
five types of colorectal polyps, including hyperplastic, 
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sessile serrated, traditional serrated, tubular, and tubulo-
villous/villous polyps

• Among 2074 images, 90% of them were used for model 
training and the remaining 10% of images were assigned 
to the validation set

• The overall accuracy for classification of colorectal pol-
yps was 93% (confidence interval (CI) 95%, 
89.0–95.9%)

• Bychkov et al. combined CNNs and recurrent neural net-
work architectures to predict colorectal cancer outcomes 
based on tissue microarray (TMA) samples from 420 
colorectal cancer patients

• Their results show that the AUC of deep neural network- 
based outcome prediction was 0.69 (hazard ratio, 2.3; CI 
95%, 1.79–3.03)

• For comparison, pathology experts performed inferiorly 
on both TMA samples (HR, 1.67; CI 95%, 1.28–2.19; 
AUC, 0.58) and whole-slide level (HR, 1.65; CI 95%, 
1.30–2.15; AUC, 0.57), which implied that deep neural 
networks could extract more prognostic information from 
the tissue morphology of colorectal cancer than an expe-
rienced pathologist

 Breast Cancer

• Wang et  al., the team of winner of competitions in the 
CAMELYON16 challenge, used input 256  ×  256-pixel 
patches from positive and negative regions of the whole- 
slide images of breast sentinel lymph nodes to train vari-
ous classification models including GoogLeNet Patch, 
AlexNet, VGG16, and FaceNet

• The patch classification accuracy is 98.4, 92.1, 97.9, and 
96.8% separately

• Among the algorithms, GoogLeNet has the best perfor-
mance and is generally faster and more stable, which 
achieved AUC of 0.925 for whole-slide images 
classification

• With the assistance of deep learning system, the accuracy 
of pathologist’s diagnoses improved significantly as the 
AUC increased from 0.966 to 0.995, representing ~85% 
reduction of human error rate

• Furthermore, the open resource of a data set of annotated 
whole-slide images for CAMELYON16 and 
CAMELYON17 challenges enable testing of new machine 
learning and image analysis strategies for digital pathology

 Cancer Cytopathology

• Martin et  al. applied convolutional neural networks for 
classifying cervical cytology images into five diagnostic 
categories, including negative for intraepithelial lesion or 
malignancy, atypical squamous cells of undetermined sig-

nificance, low-grade squamous intraepithelial lesion, 
atypical squamous cells cannot exclude low-grade squa-
mous intraepithelial lesion and high-grade squamous 
intraepithelial lesion, and achieved accuracies of 56%, 
36%, 72%, 17%, and 86% separately, which implies con-
volutional neural networks are able to learn cytological 
features

• In another cytopathology study, the authors used morpho-
metric algorithm and semantic segmentation network 
based on VGG-19 to classify urine cytology whole-slide 
images according to Paris System for Urine Cytopathology 
and achieved a sensitivity of 77%, false- positive rate of 
30% and AUC of 0.8

 Challenges and Limitations

• Despite the promises of CPATH and advancement in ML 
with promising results and benefits, most algorithms used 
in current clinical practice are limited to traditional image 
analysis of immunohistochemical stains, which do not 
employ advanced ML techniques such as deep learning

• In this section, we address the many barriers to imple-
menting CPATH for clinical use, and potential strategies 
to overcome them (Fig. 2.4)

 Infrastructure Considerations

• Implementation of CPATH may require a significant 
investment in IT infrastructure

• In general, data to be analyzed is captured as images of 
tissue sections, often scanned at 20× or 40× objective 
magnification

• In clinical practice, pathology images are commonly 
larger than 50,000 by 50,000 pixels

• As a benchmark, this can translate into estimated file sizes 
ranging from 0.5 to 4 GB for 40× images, depending on 
the size of the scan area and image compression type

• The large size of these images may present a problem for 
evaluation, storage, and inventory management

• The primary computing obstacles that users face are pro-
cessor speed and memory requirements of local worksta-
tions, data storage requirements, and limitations of the 
network

• For CPATH to perform effectively, it is important that 
there are safeguards to ensure that images are fully loaded, 
and that the analysis algorithm is not interrupted due to 
insufficient bandwidth, processing power or memory

• Additional considerations when running deep-learning 
algorithms include, but are not limited to, the number of 
intended users, flexibility of the server or cloud configura-
tion to accommodate new algorithms or caseloads, cyber-
security, and associated costs
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Fig. 2.4 Cell detection by 
QuPath involves annotation of 
ROI, estimation of stain 
vectors, followed by positive 
cell detection, which gives a 
tabulated result and thus 
removes subjectivity in 
pathology

 Processor Speed and Sources

• The performance of any image processing is highly 
dependent on processor speed

• Deep learning is best performed using graphics process-
ing units (GPUs), which can provide significant perfor-
mance enhancement over central processing units (CPUs)

• Most computers are designed to perform computations on 
their CPU and use the GPU simply to render graphics

• It may be necessary to purchase a more powerful GPU 
designed for deep learning; these are generally more 
expensive and tend to generate more heat

• Some laboratories may therefore elect to dedicate high- 
performance workstations strictly for deep learning

• However, some vendors offer the ability to perform image 
analysis at the server or cloud level, which may provide 
significantly more resources and can potentially distribute 
deep learning capabilities to a much larger user base

 Network Limitations

• For implementations in which either data is stored 
remotely, or image processing is performed remotely, net-
work bandwidth becomes an important consideration

• The large size of whole-slide images presents a potential 
hurdle for efficient processing in environments that lack 
sufficient bandwidth

• Depending on the network implementation, there are sev-
eral data transfer considerations

• First, digital slide data from the whole-slide scanner must 
be transferred to its network storage location, which 
requires the file in its entirety

• Second, the digital slide must be transferred from its net-
work storage location to the image analysis environment 
(which may reside locally, elsewhere on the network, or 
in the cloud), which can often be accomplished in a more 
efficient manner, since the entire image is unlikely to be 
analyzed at once

• Training a deep learning network on an entire slide image 
at full resolution is currently very challenging, so it usu-
ally operates on a smaller tiled image or patch

• Downscaling (reducing resolution) of these images is one 
possible approach, but this may lead to loss of discrimina-
tive details as using small, high-resolution tiles may lose 
tissue context

• The optimal resolution and tile size for analysis are highly 
case-dependent

• If only small regions of interest are to be processed, or if 
the processing can occur at a reduced magnification, 
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smaller portions of the virtual slide file need to be trans-
ferred due to the pyramid structure of most WSI file 
formats

 Acquiring Training Data

• Deep learning is generally extremely data-hungry, espe-
cially compared with traditional image analysis where 
‘important features’ are manually selected, as it must 
automatically identify these features

• For supervised learning, in addition to the raw image sets, 
a ground truth must be included in the dataset to provide 
appropriate diagnostic context

• Algorithms can then be trained to predict or characterize 
an image guided by the ground truth provided

• The ground truth may be derived from patient outcome 
data, a field extracted from the pathology report or labora-
tory information system (e.g., histologic grade), a quanti-
tative score assigned to the case (e.g., molecular testing), 
or it can be a factor manually provided by a pathologist 
reviewing the case specifically to support the algorithm 
training

• Obtaining clinical ground truth data suitable for algorithm 
development is often time-consuming and challenging

• It usually takes a long time to generate enough survival 
data from clinical patients, and clinical data are generally 
locked into an unstructured format within one or more 
disparate electronic medical records

• The data must be manually or automatically curated 
before being incorporated into an algorithm

• Furthermore, training may also require manual annota-
tions applied to the digital slide, including the designation 
of specific areas of interest, for instance identifying can-
cer from benign tissue

• Obtaining adequately annotated datasets for deep learn-
ing by a trained expert can be difficult due to the amount 
of time required, associated expenses, and the tedious 
nature of the task

• The use of streamlined workflows and a single common 
annotation tool with an intuitive user interface can make 
the task of creating and sharing manual regional annota-
tions considerably easier

• Web-based tools may be ideal in sharing annotations 
between different research groups, as they avoid the need 
to install specific software on multiple systems

• In addition, research has shown that, for some tasks, 
annotations of expert observers (i.e., pathologists) may 
not always be necessary

• Yet there is generally a trade-off between quantity and 
accuracy

• Also, training images must be representative of the images 
that the algorithm is designed to be applied to, and appro-

priately ‘balanced’; for example, contain approximately 
similar numbers of examples for different objects it is 
intended to identify

 Data Variability

• It is important that supervised algorithms are developed 
using a wide variety of data sources, to handle variations 
more robustly when exposed to other datasets

• A pertinent consideration is to implement prospective 
review using retrospective data during development, and/
or verification or validation

• When algorithms are developed using limited datasets 
supplied by only one or few pathology laboratories, the 
algorithms may not have incorporated all the variations 
and artifacts encountered across different labs, including 
preimaging, imaging, and postimaging steps within the 
WSI workflow

• This is in part because, in surgical pathology, there is cur-
rently no accepted global standard for tissue processing, 
staining, and slide preparation

• Even digital acquisition may introduce variability. As 
such, an algorithm designed to perform well on one set of 
WSIs may not perform equally well when generalized 
and used around the world by many laboratories

• This could be somewhat alleviated by implementing con-
sistent preimaging steps, applying manual or automated 
image quality control processes, using larger and more 
representative training sets, and calibrating algorithms for 
each lab prior to being used for clinical work

• It is also possible to apply image preprocessing strategies 
such as color normalization to reduce the impact of stain 
and processing variability, and data augmentation to arti-
ficially add variation and increase (or balance) the train-
ing data to make it more representative of the application 
data

• Other best practices include testing developed models 
using a variety of test and validation sets to avoid overfit-
ting, and clearly reporting characteristics of the patients 
used to build a model, since additional training data may 
be required for it to perform well on other populations

• One may consider the addition of prospective real-world 
data collection to monitor and optimize performance

 Public Sources

• There are currently only limited publicly available datas-
ets with annotated images and associated nonimage 
patient data that are required for CPATH

• This may be one of the greatest factors limiting progress 
in the field of CPATH
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• However, some initiatives to overcome these hurdles are 
described below

• The Cancer Genome Atlas (TCGA) has performed com-
prehensive molecular profiling on approximately 10,000 
cancers (National Cancer Institute, The Cancer Genome 
Atlas, https://cancergenome.nih.gov/)

• In addition to the collection of molecular and clinical 
data, TCGA has collected WSI data from a subset of its 
participants

• Some other examples of public digital slide datasets are 
the breast cancer images used for the CAMELYON com-
petition; the Medical Image Computing and Computer 
Assisted Intervention Society (MICCAI) 2014 brain 
tumor digital pathology challenge for distinguishing brain 
cancer subtypes; and the Tumor Proliferation Assessment 
Challenge (TUPAC16), which includes hundreds of cases

• The Grand Challenge website (https://grand- challenge.
org/challenges/) maintains a list of all challenges that have 
been organized in the field of medical image analysis

• Some of these challenges offer developers additional 
pathology digital datasets for CPATH

• However, care must be taken as the quality of public sam-
ples may be variable, so they should be carefully tested 
before use

 Crowdsourcing

• An alternative for obtaining large-scale image annota-
tions is crowdsourcing, in which this function is out-
sourced to an undefined and generally large group of 
nonexpert people in the form of an open call

• Crowdsourced image annotation has been successfully 
used to serve a diverse set of scientific goals, including 
the detection of malaria from blood smears, and estrogen 
receptor classification

• Compared with public sources or pathologist annotations, 
crowdsourcing may be cheaper and quicker, but it has the 
potential to introduce noise

• It is possible that this noise can be compensated by a suf-
ficiently large body of training data, and by having mul-
tiple people annotate the same slide to achieve consensus

• But it is imperative to ensure that all annotators are taught 
to perform the task in the same way

 Active Learning

• Active learning is considered semi-supervised learning, 
which may reduce the size of required training data

• In active learning, the algorithm interactively queries for 
expert assistance to obtain annotations for ambiguous 
data points

• Essentially, the algorithm uses a sampling strategy to 
select small sets of data iteratively for experts to label, 
only when it has trouble determining the outcome

• For each iteration, the classifier is updated, and then all 
unlabeled data are re-evaluated for their ability to further 
improve the classifier

• Thus, active learning offers a solution to the problem of 
limited data annotations in pathology by having the 
pathologist engage actively with the algorithm, which 
evolves through continuous learning

 Quality Control and Reliability 
of the Algorithm

• It is currently difficult to establish strict quality control 
steps for deep learning algorithms, especially in segmen-
tation problems, for various reasons

• A general principle in training any machine learning algo-
rithm is to split the annotated data into ‘training’ and 
‘test’ datasets and ensure that these sets are independent 
when assessing performance

• The algorithm should be trained on the training set and 
applied to the test set, then the results should be compared 
with the ‘ground truth’ associated to the test set

• However, quality control for the segmentation step may 
suffer from the ‘gold-standard paradox’

• This paradox arises from histopathological assessments 
by the pathologist being considered the gold standard, but 
the algorithm data may in fact be more reproducible than 
human assessment

• This may be partially overcome by comparing the algo-
rithm data to patient outcome, to see whether it is better 
able to predict outcome compared with manual pathology 
assessment/scoring

• Still, the best methods to determine the reliability of an 
algorithm applied to novel datasets are an area of active 
debate

• In addition, local regulations apply to legally market any 
clinical-grade software solution

• In the USA, such an algorithm should be developed under 
the Food and Drug Administration’s existing Quality 
System Regulation (QSR, 21 CFR Part 820), and Good 
Machine Learning Practices (GMLP; https://www.fda.
gov/media/122535/download), which are currently being 
discussed

 Understanding Algorithms

• A principal concern with the use of deep learning is that it 
is very difficult to understand some of the features and 
neural pathways used to make decisions
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• When deep learning is used to automatically extract fea-
tures from an image that are directly correlated to clinical 
endpoints, without including a segmentation step where 
image objects are first extracted (see the section on cor-
relating images to patient response), it is particularly 
challenging to understand why the algorithm reached its 
conclusions

• Artificial neural networks have accordingly been 
described as a ‘black box’

• This has led to several concerns: difficulty in correcting 
an underperforming algorithm; lack of transparency, 
explicability, and provability for humans who may not 
trust how an algorithm generates reliable results; and reg-
ulatory concerns because, unlike traditional image analy-
sis, in deep learning the image features are abstracted in a 
way that is very difficult for a human to understand

• In response, there have been efforts to convert deep- learning 
algorithms into a ‘glass box’ by clarifying the inputs and 
their relation to measured outputs, making it more interpre-
table by a human using a variety of techniques

• By providing information to the reviewing pathologist 
about the histopathologic features used by the algorithm 
in a particular instance, trust in the algorithm can be fos-
tered, and synergy between pathologist and machine can 
be achieved that may exceed the performance of either AI 
or pathologist alone

 Ethics

• In the new era of computation-driven decision-making 
processes based on AI and machine learning, computa-
tional pathology will involve more complicated interac-
tions of massive information from clinical history, omics 
data, living environment to social habits

• It is very likely that the experts involved in these decision- 
making processes will no longer be exclusively 
pathologists

• Instead, the decision-making panel will include other 
experts such as data statisticians and bio-informaticians, 
which may raise ethical concerns

• A continuous massive, sensitive health data transfer 
among clinics, laboratories, and data banks can enable 
higher precision medicine but, at the same time, increases 
the security vulnerability

• Policies around the strict protection of patient privacy and 
personal data create an obstacle for computational pathol-
ogy to access the health databases need to create more 
comprehensive training data sets

• General Data Protection Regulation was enacted in May 
2018 in Europe to impose new responsibilities on organi-
zations that process the data of European Union citizens 
for scientific research

• This concept highlights the proportionate approach to 
regulate computational pathology-related security and 
ethical issues while not limiting innovation unduly, which 
is difficult but critical

 Cyber-Security

• Cyber-security concerns of CPATH primarily stem from 
storing large amounts of medical data in cloud-based sys-
tems that can be accessed via the Internet

• To minimize a data breach, it is prudent to decouple 
CPATH data (i.e., digital images) from patient data (i.e., 
personal identifiers such as medical record number and 
date of birth)

• Several cloud service providers now offer Health 
Insurance Portability and Accountability Act (HIPAA) 
compliant solutions

• In addition, the FDA has created guidelines for cyber- 
security (U.S. Food and Drug Administration, Postmarket 
Management of Cyber-security in Medical Devices, 
2016)

• The European Union’s general data protection regulation 
(GDPR) imposes similar security requirements on those 
who process personal data

 Future Directions

• Technological innovation in health care is growing at an 
increasingly fast pace and has been integrated into both 
our daily lives, such as smart healthy tracker, and diag-
nostic algorithm in medical practice

• With the rapid development of digital pathology, molecu-
lar pathology, and informatics pathology, computational 
pathology is increasingly involved in many subspecialties 
such as pulmonary, renal, gastrointestinal, neurology, and 
gynecology pathology

• We believe the initial phase of AI will start with specific 
tasks such as the diagnoses of particular cancers and clas-
sification of tissue types, which require limited and sim-
ple criteria

• For example, the common subtypes and variants of benign 
and malignant neoplasm in prostate should be included in 
the training and validation to ensure the feasibility of 
daily pathology practice

• As a result of more data collection and more powerful 
computing capacity over time, the clinical applications of 
AI will be broader, and the number of nonspecific cases in 
the gray zone or with red flags classified by AI for manual 
review will be decreased

• The growing medical data, including genomics, pro-
teomics, informatics, and whole-slide images, is expected 
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to integrate to become a data-rich pathomics and lead to 
rapid development and prosperity of an AI-assisted com-
putational pathology

• Although many challenges remain, computational pathol-
ogy with the deployment of digital pathology technology 
and statistic algorithm will continue to improve clinical 
workflows and collaboration among pathologist and other 
members of the patient care team

• The improved infrastructure of the network environment, 
the enhanced computing capacity, and broad integration 
of informatics has ushered in new horizons for both com-
putational pathology and collaborative pattern, which 
makes data travel and cloud-based central laboratory and 
data bank to deliver better care for patients at lower costs 
possible

 Conclusions

• In the new era of deep learning-assisted pathology, data 
banking, integration, and cloud laboratory are becoming 
an essential part of daily practice of pathology

• Furthermore, pathologists, data scientists, and industry 
are starting to incorporate genomics, proteomics, bioin-
formatics, and computer algorithms into a large amount 
of complex clinical information

• Through this process, computational pathology can con-
tribute valuable insights to the diagnosis, prognosis, and, 
ultimately treatment of disease

• Although many technical and ethical challenges need to 
be addressed, computational pathology as a synergistic 
system will lead to an integrated workflow, enabling clini-
cal teams to share and analyze image data in a broader 
platform

• Currently, deep learning has been applied to solve more 
and more specialized tasks in medicine

• Several studies discussed above show that algorithm 
assistance has the potential to not only improve the sensi-
tivity and accuracy of the diagnoses but also improve 
turnaround time

• Moreover, around 75% of pathologists across 59 coun-
tries in the world are interested and excited about using AI 
as a diagnostic tool

• Finally, despite the challenges and obstacles, the potential 
of computational pathology will change and improve the 
current healthcare system in promising and exciting ways
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