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9Neuroinflammation Imaging 
in Neurodegenerative Diseases

Dima A. Hammoud and Peter Herscovitch

�Introduction

Neuroinflammation is a natural response of a 
competent immune system to any type of CNS 
insult, and it includes both innate (e.g., mono-
cytes) and adaptive components (lymphocytes). 
A special characteristic of the CNS is the pres-
ence of specialized resident immune cells, the 
microglia. When faced with a noxious stimulus 
or injury, microglial cells become activated, 
increase in size, assume an ameboid shape with 
shorter processes, and secrete a variety of cyto-
kines and other neurotoxic compounds. An 
excessive reaction can result in a vicious cycle 
that eventually results in neuronal injury and 
death. Microglial activation, however, is only one 
part of the neuroinflammatory process, with addi-
tional contributions from astrocytes, peripherally 
derived macrophages, and sometimes T-cell lym-
phocytes (Fig. 9.1).

The potential contribution of neuroinflamma-
tion to CNS injury has been extensively studied 
using molecular imaging with positron emission 

tomography (PET) in many disease entities, 
including neurodegenerative diseases (NDDs). 
Most research using neuroinflammation imaging 
in NDDs has focused on Alzheimer’s disease 
(AD), with fewer studies evaluating Parkinson’s 
disease (PD) and other movement disorders. The 
overarching goal of such studies is to understand 
the role of neuroinflammation in disease patho-
physiology and progression. Imaging can also be 
used to monitor treatment effects and to provide 
surrogate endpoints in clinical trials of strategies 
to modify neuroinflammation. While there are 
many targets that could be used to image neuro-
inflammation with PET, the most commonly 
studied target has been the 18-kDa translocator 
protein (TSPO), an outer mitochondrial mem-
brane receptor that is expressed in many CNS 
and peripheral immune cells [1]. Basal TSPO 
expression in the brain parenchyma is low but it 
is upregulated in inflammatory states. As a result, 
imaging TSPO has been used to assess the neuro-
inflammatory process in various diseases includ-
ing NDDs, and many radioligands have been 
developed to image TSPO with PET.

However, TSPO as a target to monitor neu-
roinflammation does have several shortcom-
ings. In the CNS, TSPO is expressed in several 
cell types. These include resident microglia 
and monocyte-derived macrophages, astro-
cytes, and endothelial, choroid plexus and 
ependymal cells, with low but ubiquitous 
expression in the parenchyma [2]. Although 
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Fig. 9.1  Neuroinflammation and mechanism of neuronal 
injury: activated microglia, astrocytes, peripherally 
derived monocytes, and lymphocytes contribute to neuro-
inflammation. Excess production of cytokines, chemo-

kines, and other neurotoxic molecules can result in 
synaptic loss, axonal degradation, and neuronal cellular 
damage

generally assumed not to be expressed in neu-
rons, colocalization of TSPO staining with 
tyrosine hydroxylase has been reported, raising 
the possibility that dopaminergic neurons also 
express TSPO [3]. TSPO imaging also cannot 
distinguish between activated microglia that 
are harmful (pro-inflammatory M1 phenotype) 
versus neuroprotective (anti-inflammatory 
M2), and cannot differentiate microglia from 
astrocytes, which also participate in the neuro-
inflammatory process.

The original and most commonly used TSPO 
PET ligand is [11C]-PK11195, an isoquinolone 
TSPO antagonist. However, it has several limita-

tions as a PET radiotracer, including low blood–
brain barrier permeability and high binding to 
plasma proteins, limiting tracer entry to brain, 
and low specific binding to the TSPO target with 
a poor signal-to-noise ratio in the PET images. 
As a result, many other ligands have since been 
and continue to be developed to improve neuroin-
flammation imaging (Fig. 9.2).

In general, TSPO ligands other than [11C]-
PK11195 are referred to as second- or third-
generation ligands (Fig.  9.2), with improved 
affinity and higher specific-to-nonspecific bind-
ing. The use of second-generation ligands, how-
ever, was immediately hampered because almost 
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Fig. 9.2  Chemical structures of first-, second-, and third-generation TSPO PET ligands (adapted and reproduced with 
permission from [65])

10% of subjects showed no specific binding. 
Upon further evaluation, a polymorphism was 
discovered in exon 4 of the TSPO gene resulting 
in a nonconservative amino-acid substitution 
from alanine to threonine (Ala147Thr). This 
resulted in three possible binding levels: high-
affinity binders (HAB) (C/C; Ala/Ala), medium-
affinity binders (MAB) (C/T; Ala/Thr), and 
low-affinity binders (LAB) (T/T; Thr/Thr) [4, 5]. 
This necessitates genotyping before imaging and 
exclusion of almost 10% of the population, as 
well as the need to increase the sample number to 
match the binding levels between patients and 
controls.

Multiple third-generation ligands have subse-
quently been developed with claims of lower or 
no sensitivity to polymorphism [6, 7]. However, 
to our knowledge no ligand has been found that is 
completely insensitive to polymorphism.

�Imaging Neuroinflammation 
in Alzheimer’s Disease

One reason neuroinflammation has been consid-
ered a possible factor in the pathophysiology of 
AD is that the amyloid-β deposition hypothesis 
seems to be insufficient to explain all aspects of 
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disease pathogenesis. In addition, increased 
inflammatory markers have been described in 
AD, and the AD risk genes such as ApoE are 
known to be associated with innate immune func-
tion modulation [8]. Therefore, PET has been 
widely used to assess the role of neuroinflamma-
tion in AD pathogenesis. These PET studies 
typically include imaging with radiotracers for 
amyloid and tau to confirm the stage and relation 
to neuroinflammation of the underlying AD 
pathophysiological process. Unfortunately, the 
results of these studies have generally been 
inconsistent.

Two early studies using [11C]-PK11195 sug-
gested a role for neuroinflammation in AD and 
mild cognitive impairment (MCI). Cagnin et al. 
found that while in controls regional binding sig-
nificantly increased with age in the thalamus, 
patients with AD showed significantly increased 
binding in the entorhinal, temporoparietal, and 
cingulate cortex [9]. Okello et  al. showed that 
amyloid deposition and microglial activation can 
be detected in about 50% of patients with 
MCI. However, there was no correlation between 
regional levels of [11C]-PK11195 and amyloid, 
suggesting that the two pathologies can co-exist 
but can also occur independently [10].

Many later studies using second-generation 
ligands often showed discordant results. 
Yasuno et al. showed increased [11C]-DAA1106 
binding in 10 AD patients [11] and Kreisl et al. 
found elevated [11C]-PBR28 binding in AD but 
not in MCI [12]. Two other papers, however, 
using [11C]-vinpocetine and [18F]-FEDAA1106, 
showed no difference between AD subjects and 
age-matched controls [13, 14]. Interestingly, 
Kreisl et al. found a correlation between neuro-
inflammation (measured by [11C]-PBR28) and 
amyloid (imaged with [11C]-PIB), and between 
neuroinflammation and neurocognitive impair-
ment in AD (although not in MCI patients), 
contrary to the findings of Okello et  al. [10]. 
Since increased binding of [11C]-PBR28 was 
seen only in AD, the authors proposed that 
neuroinflammation occurs after conversion of 
MCI to AD and worsens with disease progres-
sion, thus making its detection possibly useful 
in marking the conversion from MCI to AD 

and in assessing response to experimental 
treatments.

More recently, many studies using either 
[11C]-PK11195 or second-generation ligands to 
assess MCI and AD also demonstrated conflict-
ing results. Some showed no correlation between 
inflammation, cognition and/or pathologic corre-
lates (amyloid and/or tau burden) [15–17]. 
However, others showed the opposite, albeit to 
different degrees or distributions, e.g., in differ-
ent brain regions or using a global measure of 
neuroinflammation [18–25].

There are several possible explanations for 
these discrepant results. The use of different 
ligands with different imaging characteristics and 
sensitivities to detect TSPO expression likely is a 
major factor. This was elegantly demonstrated by 
Yokokura et al. who used the “gold standard” of 
receptor blocking experiments to determine the 
specific binding of two TSPO radiotracers. While 
[11C]-PK11195 showed small differences 
between AD and controls in the precuneus, imag-
ing with [11C]-DPA713 demonstrated more 
impressive increased binding in multiple regions 
including the anterior and posterior cingulate 
gyri, thalamus, and precuneus [26] (Fig. 9.3).

Another factor likely underlying the conflict-
ing PET imaging results is the use of different 
patient populations at different stages of the AD 
pathophysiological process, often with small 
sample numbers. A third factor is the use of dif-
ferent image analysis methods to estimate the 
level of TSPO binding. These include graphical 
analysis with a measured arterial plasma input 
function (e.g., [19]), simplified reference tissue 
methods with various brain regions used to pro-
vide information about the delivery of radiotracer 
to tissue (e.g., [27]), or a semi-quantitative 
approach using the ratio of local regional radio-
activity to radioactivity in the cerebellum which 
is assumed not to be affected by the disease pro-
cess (e.g., [28]).

To help reconcile these results, Bradburn et al. 
performed a meta-analysis of TSPO studies in 
AD and MCI [29]. The authors concluded that 
neuroinflammation is increased in AD, with more 
modest effects in MCI. In the parietal region, the 
neuroinflammatory effects correlated with Mini-
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Fig. 9.3  Discrepancy of imaging results between first- 
and second-generation TSPO PET imaging in AD sub-
jects. While [11C]-PK11195 showed small differences 
between AD and controls in the precuneus, [11C]-DPA713 

demonstrated increased binding in multiple regions, 
including the anterior and posterior cingulate gyri, thala-
mus, and precuneus (adapted and reproduced with per-
mission from [26])

Mental State Examination scores in AD.  This 
meta-analysis was published in 2019; the inclu-
sion of more recent studies could provide differ-
ent results.

Two such studies are noteworthy because they 
included a large number of subjects who were 
studied longitudinally [22, 30]. Hamelin et  al. 
used [18F]-DPA714 to evaluate patients who were 
classified either as prodromal AD (amyloid posi-
tive, Clinical Dementia Rating (CDR) score = 0.5) 

or demented (amyloid positive, CDR ≥ 1.0 [30]). 
Follow-up scans in 1–2 years showed two distinc-
tive dynamic patterns of microglial activation: 
higher initial [18F]-DPA714 binding followed by a 
slower increase in subjects with slower disease 
progression, and lower initial [18F]-DPA714 bind-
ing followed by a more rapid increase in subjects 
with accelerated disease progression. This sug-
gested a possible protective role of microglial 
activation in early stages of AD.  This was pro-
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posed by Leng and Edison who suggested that an 
initial microglial response might be protective, 
thus slowing disease progression (Fig.  9.4). 
However, subsequent chronic activation eventu-
ally causes phenotypic changes in microglia and 
shifts their behavior toward a pro-inflammatory 
phenotype, which causes damage to neuronal net-

works and disease progression. On the other hand, 
AD patients with defective microglial functioning 
at the onset of disease would undergo a quicker 
progression and an exaggerated late-stage inflam-
matory response [31].

Pascoal et al. imaged 130 HAB subjects over 
the normal aging and AD clinical spectrum, lon-

Fig. 9.4  Proposed effect of microglial activation on 
Alzheimer disease progression [31]. The authors suggest 
that individual clinical presentation at a given pathologi-
cal stage in AD might be partly determined by different 
microglial responses in the early versus late stages of the 
disease. When microglial activity is deficient, i.e., not pro-
tective, at the onset of disease, AD patients might develop 
cognitive decline at an earlier stage in response to tau and 
amyloid deposition. This suggests that the initial microg-
lial activation to pathological changes is protective. 

However, chronic microglial activation eventually causes 
phenotypic changes in microglia toward a pro-
inflammatory phenotype, with secondary neuronal dam-
age and accelerated symptomatology. In patients with 
inappropriate early microglial responses, a weak initial 
protective response results in a quicker transition to worse 
phenotypes as well as an exaggerated late-stage inflam-
matory response. MCI: mild cognitive impairment (repro-
duced with permission from [31])
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gitudinally, for TSPO expression and amyloid 
and tau levels. Neuroinflammation and tau 
pathology correlated hierarchically with each 
other following Braak-like stages of neuropatho-
logical disease progression. The strongest predic-
tor of cognitive impairment was the co-occurrence 
of amyloid, tau, and microglial abnormalities. 
They concluded that amyloid and activated 
microglia interaction might determine the rate of 
tau spread across disease stages [22].

In conclusion, neuroinflammation seems to 
play an important role in the pathophysiology of 
AD, but a better understanding of this role is 
needed, especially since many trials of anti-
inflammatory drugs did not slow disease progres-
sion [32–34]. This is key for future AD clinical 
trials to suppress pro-inflammatory changes or 
enhance microglial anti-inflammatory properties, 
along with anti-amyloid or -tau approaches. 
Imaging of neuroinflammation in AD should be 
further refined to serve as a quantitative surrogate 
endpoint in clinical trials.

�Imaging Neuroinflammation in 
Parkinson’s Disease and Other 
Movement Disorders

Another NDD in which neuroinflammation is 
suspected to play a role is PD, which is character-
ized by the degeneration of dopaminergic neu-
rons in the substantia nigra and the pathologic 
presence of abnormal cytoplasmic inclusions, 
Lewy bodies, containing alpha-synuclein. PD is 
classically described as a movement disorder, 
with bradykinesia, resting tremor, rigidity, and 
postural instability [35]. More recently, however, 
it is being thought of as a multi-system disorder, 
where neuroinflammation and immune dysfunc-
tion play a major role, and with non-motor symp-
toms such as sleep and mood disorders [36] and 
gastrointestinal dysfunction [37] preceding motor 
manifestations. Many PD patients also develop 
dementia in the later stages of the disease.

PET imaging of neuroinflammation in PD 
patients was first reported by Gerhard et al. who 
showed increased [11C]-PK11195 binding, 
although the degree of microglial activation did 

not correlate with clinical severity or putaminal 
[18F]-DOPA uptake [38]. A study using a second-
generation ligand ([18F]-FEPPA), however, 
showed no effect of disease or disease x TSPO 
genotype interaction on ligand binding in any 
brain region [39]. Interestingly, the same group 
subsequently showed an interaction between 
neuroinflammation and amyloid deposition in PD 
with cognitive decline. They noted that further 
research is needed to determine whether amyloid 
deposits cause neuroinflammation and further 
neurodegeneration, or if increased microglia acti-
vation is a protective response [40]. These results 
likely overlap with prior work showing neuroin-
flammation in AD.

Using another second-generation ligand, 
[18F]-DPA714, a third group showed binding that 
suggested neuroinflammation in the nigrostriatal 
pathway, more so on the more affected side. 
However, this did not correlate with symptom 
severity, dopamine transporter (DAT) binding or 
disease duration. In the frontal cortex, neuroin-
flammation did correlate with disease duration 
[41]. The authors suggested this discrepancy 
between regions could reflect spreading of 
pathology in the later stage of the disease [41]. 
Finally, a study published in 2019 using 
[11C]-PBR28 in PD patients showed no neuroin-
flammation despite DAT imaging demonstrating 
dopaminergic degeneration [42].

A recent meta-analysis of neuroinflammation 
studies in PD clearly showed the effect of ligand 
choice on the results. While neuroinflammation 
was seen in multiple brain regions using [11C]-
PK11195, only the midbrain showed significant 
increases when second-generation ligands were 
used [43]. Heterogeneity in results was found in 
many brain regions. This could be due to differ-
ent ligands, different analysis approaches (e.g., 
the use of the cerebellum as a reference region), 
or suboptimal reporting of detailed clinical vari-
ables. Of note, the nonspecific binding of [11C]-
PK11195 has been reported to be lower in PD 
patients; this could affect the results of certain 
analysis methods [44]. Therefore, there is a need 
for a more uniform approach to performing PET 
studies and for using large-cohort longitudinal 
studies to better understand the role of neuroin-
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flammation in PD pathophysiology and 
progression.

Neuroinflammation imaging has been per-
formed to a lesser extent in other NDDs. In 
Huntington’s disease, for example, several studies 
identified neuroinflammatory changes, mainly in 
the globus pallidus and putamen in affected 
patients [45–47]. In one study, even premanifest 
HD gene carriers showed increased TSPO expres-
sion, although the changes were not significant 
when compared to controls and affected subjects 
[46]. In another study, the authors observed fur-
ther distinct regional and subregional imaging 
features, which seemed to correspond to pheno-
typical variability [45]. Imaging studies using 
first- and second-generation TSPO ligands also 
identified neuroinflammatory changes in progres-
sive supranuclear palsy patients [23, 48, 49]. In a 
study by Palleis et al., patients with corticobasal 
degeneration were also included and showed even 
more extensive inflammatory changes compared 
to progressive supranuclear palsy (PSP) subjects. 
TSPO upregulation, however, was not correlated 
with measures of disease progression in either 
PSP or corticobasal degeneration [49]. This con-
tradicts the findings of Malpetti et al., where neu-
roinflammation (measured with [11C]-PK11195) 
and tau burden in the brainstem and cerebellum 
correlated with the subsequent annual rate of PSP 
disease progression [50]. Additional work is thus 
needed to better understand the interaction 
between neuroinflammatory changes and disease 
progression in different NDDs.

�Conclusions

The use of TSPO as an imaging target in NDDs 
and other CNS diseases remains challenging at 
multiple levels, and the interpretation of study 
results should be done with caution. A better 
understanding of the cellular regulation of TSPO 
expression and how it changes in relationship to 
disease progression in NDDs might help deter-
mine whether TSPO is an appropriate marker for 
those diseases, especially AD [51]. Meanwhile, 
alternative biological targets and radioligands for 
imaging neuroinflammation are being developed 

and may prove superior in the assessment of pro- 
and anti-inflammatory activity in NDDs [52]. 
One such radioligand is 11C-BU99008, a novel 
PET tracer that selectively targets activated astro-
cytes. A recent study showed higher 11C-
BU99008 uptake in eight amyloid positive 
subjects compared to nine controls in the frontal, 
temporal, medial temporal, and occipital lobes 
(regions with high Aβ load) as well as across the 
whole brain [53], suggesting activated astrocytes 
in those locations. Other promising targets for 
imaging neuroinflammation that could be used to 
evaluate NDDs include cyclooxygenases [54–
57], purinergic receptors [58], cannabinoid 
receptors [59, 60], colony stimulating factor 
receptor (CSF-1R) [61], inducible nitric oxide 
synthase (iNOS) [62], and triggering receptor 
expressed on myeloid cells 1 (TREM1) [63, 64].
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