
CHAPTER 3

ASParseV3: Auto-Static Parser and
Customizable Visualizer

Iman Almomani, Rahaf Alkhadra, and Mohanned Ahmed

3.1 INTRODUCTION

Ourmodern world is rapidly moving toward digitalization and automation,
where everything is converging into an automated version. As technology
takes over our lives, we are at the start of the 4th industrial revolution,
which mainly focuses on a world that relies heavily on technology and
innovation. The use of technology not only provides us with convenience
but comfort as well. However, the rapid development of technology comes
at the price of ensuring cybersecurity. Attackers are finding many ways
to achieve their malicious goals, which requires us to take precautions to

I. Almomani (�)
Security Engineering Lab, Prince Sultan University, Riyadh, Saudi Arabia

Computer Science Department, The University of Jordan, Amman, Jordan
e-mail: imomani@psu.edu.sa; i.momani@ju.edu.jo

R. Alkhadra • M. Ahmed
Security Engineering Lab, Computer Science Department, Prince Sultan
University, Riyadh, Saudi Arabia
e-mail: rkhadra@psu.edu.sa; mqasem@psu.edu.sa

© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2024
I. Almomani et al. (eds.), Cyber Malware, Security Informatics and
Law Enforcement, https://doi.org/10.1007/978-3-031-34969-0_3

41

 29185 -2241 a 29185 -2241
a

 1152
42043 a 1152 42043 a

mailto:imomani@psu.edu.sa
mailto:imomani@psu.edu.sa
mailto:imomani@psu.edu.sa

 10537 42043 a 10537 42043 a

mailto:i.momani@ju.edu.jo
mailto:i.momani@ju.edu.jo
mailto:i.momani@ju.edu.jo
mailto:i.momani@ju.edu.jo

 1152 47528 a 1152 47528 a

mailto:rkhadra@psu.edu.sa
mailto:rkhadra@psu.edu.sa
mailto:rkhadra@psu.edu.sa

 9999 47528 a 9999 47528 a

mailto:mqasem@psu.edu.sa
mailto:mqasem@psu.edu.sa
mailto:mqasem@psu.edu.sa
https://doi.org/10.1007/978-3-031-34969-0_3
https://doi.org/10.1007/978-3-031-34969-0_3
https://doi.org/10.1007/978-3-031-34969-0_3
https://doi.org/10.1007/978-3-031-34969-0_3
https://doi.org/10.1007/978-3-031-34969-0_3
https://doi.org/10.1007/978-3-031-34969-0_3
https://doi.org/10.1007/978-3-031-34969-0_3
https://doi.org/10.1007/978-3-031-34969-0_3
https://doi.org/10.1007/978-3-031-34969-0_3
https://doi.org/10.1007/978-3-031-34969-0_3
https://doi.org/10.1007/978-3-031-34969-0_3

42 I. ALMOMANI ET AL.

face such security issues. One of the most popular and common forms of
security invasion in our digital world is using malicious code, often referred
to as malware [27]. Malware is a code written by security attackers to
intrude into a specific computer system or software to perform malicious
acts such as stealing data or causing damage. For example, malware could
be in different forms, such as worms, viruses, trojans, spyware, adware, or
ransomware. Therefore, it is essential to protect any system from malware.
This can be done by detecting the malware and then classifying which type
it is. A tremendous amount of research has been conducted in the past
years regarding the topic of malware detection and classification [11].

According to recent reports, malware generation and creation have been
increasing rapidly on a daily basis. It is estimated that around one million
malware files are created daily [31]. This increase could seriously threaten
the economy, both financially and technically. The increase in cyber threats
and crimes costs the economy around 1 trillion dollars in 2022 for cyber
insurance, which results in an increase of 50% in comparison to the past 2
years [12]. The term malware refers to any malicious entity that changes
the original behavior by utilizing software flaws and vulnerabilities. In this
chapter, the term malware will be used to refer to any malicious software
that may include any of the following malware families, ransomware,
adware, viruses, or keyloggers [11].

Depending on the purpose and behavior of themalware, it is categorized
into different families. Every family has common features. For instance,
stealing information, creating vulnerability, and denial of service are all
examples of malware behavior. Such behaviors are essential in detecting
malware since this information will be used to analyze the software and
categorize it into benign or malware [35]. To differentiate between
malicious and benign apps, we need to scan the program code first, extract
its features, and analyze them [6]. Features extraction can be achieved
through two main ways: static analysis [3] and dynamic analysis [13].
Another possible way is to use hybrid analysis [2], a combination of the
previous two [25]. Static analysis is concerned with contextual data from
the source code without running the program. However, dynamic analysis
involves executing the program and extracting the runtime features. The
hybrid analysis uses both contextual and runtime features to detect malware
[11].

Over the years, researchers have been developing new techniques for
malware detection. The latest trend in this field is using machine learning
for malware detection. However, this technique cannot be used without

ASPARSEV3: AUTO-STATIC PARSER AND CUSTOMIZABLE VISUALIZER 43

analyzing the program code and extracting important features that help in
discriminating the malware families [22]. It is possible to evade the risk
of malware if the related features are available. Therefore, a collection of
advanced detection methods using machine learning depends on feature
engineering as well as reverse engineering [33]. Feature engineering is
a technique used to manipulate unstructured data into features that can
be understandable by the computer or machine [32]. However, other
techniques, such as binary obfuscation, can be used by attackers to design
a reverse engineering resistant file [30]. Moreover, deep learning can be
used in an advanced model of neural networks to capture features, learn,
and adapt during training. Even though a few studies report the use of deep
learning, some do not discuss the scalability and different architectures
enough for malware detection [5, 33].

One of the main benefits of using static analysis over any other technique
is that this analysis does not require executing the program, making it a
safer choice to apply [25]. Moreover, another vital benefit is examining
the code without regard to the diversity of IoT architecture or the physical
capabilities of an IoT device. Hence, the analysis considers all possible
inspection methods with no reference to the physical performance [24].
Furthermore, due to the nature of the static analysis, the malware may not
be able to avoid, hide, and/or obfuscate during the analysis process because
it runs passively [34]. Finally, its automation characteristic is what makes
static analysis prominent and outstanding [16].

Therefore, this chapter introduces a new comprehensive static parsing
software called ASParseV3. It is an extension to ASParseV1 [1]. It is a
GUI-based tool with various features such as (a) selecting many files or
directories to be scanned in one experiment, (b) adding or removing key-
words/features, (c) filtering the keywords/features and specific file types,
(d) efficient scanning process as many files are scanned simultaneously, (e)
providing customizable visualization dashboards with the ability to export
the chart(s), and (f) exporting the results in different formats such as JSON
and CSV.

The rest of the chapter sections present and discuss the related works
regarding malware analysis techniques, malware detection, and the use of
static analysis for malware detection. Moreover, they present the proposed
developed software (ASParseV3), which performs static features extraction
and parsing. Also, the chapter demonstrates a use case of Android OS
malware static features extraction using the ASParseV3 software. Finally,
conclusions with a summary of possible future works are presented.

44 I. ALMOMANI ET AL.

3.2 RELATED WORKS

Parsing the features of source code is potentially utilized in estimating
the software performance, reverse engineering, and static analysis [20].
However, the extracted features can be represented in different formats
such as gray-scale images, structural entropy, or JSON file [15]. Moreover,
the extracted features can be further deployed in various fields. For
instance, the authors of [21] have developed a tool named DeepTLS
to analyze encrypted traffic by extracting the features from the network
packets. In [28], the python-Evtx-parser (pexp) has been developed to
parse the required features to detect Lateral Movement Attacks. In a
nutshell, Table 3.1 demonstrates a comparison among related works.

Several tools have been proposed to perform static parsing in Android
platform [1, 8, 23]. Khalid et. al. proposed a memory parsing tool for
Android applications [19]. The authors of [17] have developed Sena
TLS-Parser, a tool that automates the software testing process by parsing
the Android source code. Initially, the Android source code is imported
into the Eclipse environment. Subsequently, Sena TLS-Parser scans the
code and generates the required test cases. Another approach that utilizes
static parsing in enhancing the development of Android applications is by
recommending a suitable API for the Android developer based on the
parsing results. In [36], the authors have developed APIMatchmaker, a
tool that recommends the best API usage by parsing similar Android apps.

Parsing Android source code can further be deployed in detecting
malicious applications. In [26], the authors have parsed the suspect meth-
ods of two Android apps in order to extract their similarities using their
proposed tool, StrAndroid. Consequently, they identified the potential
malicious behaviors that are shared between the two apps. Additionally,
Android permissions can be parsed in order to rank the risk of the malicious
application. Dharmalingam et al. proposed a permission grading scheme
that extracts and defines the required permissions in an Android app and
rates the risk of the app accordingly [14]. In their proposed scheme,
the Manifest file is parsed to extract the defined permission in the app.
Subsequently, the extracted permissions are fed into the feature encoder
to be further utilized in the deep neural algorithm for detecting malware
applications. However, static analysis can be combined with dynamic
analysis to increase the efficiency of malware detection. In [2], the authors
have applied static analysis as a prior stage to implementing the dynamic
analysis.

ASPARSEV3: AUTO-STATIC PARSER AND CUSTOMIZABLE VISUALIZER 45
T
ab

le
 3
.1

A

 c
om

pa
ri
so
n
am

on
g
ex
is
tin

g
pa
rs
in
g
to
ol
s

W
or
k
Ye
ar

To
ol

 n
am

e
A
im

Sc
an
ne
d

Fi
le

 T
yp
e

H
as

 G
U
I?

C
us
to
m
iz
at
io
n

N
um

be
r o
f

E
xt
ra
ct
ed

Fe
at
ur
es

E
xp
or
te
d
Fi
le

Fo
rm
at

Sc
an
ni
ng

E
nv
ir
on
-

m
en
t

Is
 a

Sy
st
em
?

D
ev
el
op
in
g

La
ng
ua
ge

[2
1]

20

22
 D

ee
pT

L
S

T
o
an

al
yz
e
en

cr
yp

te
d

tr
af
fic

 b
y
ex
tr
ac
tin

g
th
e

fe
at
ur
es

 fr
om

 th
e
ne

tw
or
k

pa
ck
et
s

Pc
ap

Ye
s

N
o

70
+

JS
O
N

N
M

Ye
s

C
++

[1
5]

20

22
 P

E
 P
ar
se
r

T
o
pa
rs
e
ex
ec
ut
ab

le
 b
in
ar
y

fil
es

 in
 o
rd
er

 to
 e
xt
ra
ct

re
qu

ir
ed

 fe
at
ur
es

 fo
r

m
al
w
ar
e
de

te
ct
io
n

E
xe

 fi
le
s

N
o

N
o

14
G
ra
y-
sc
al
e

im
ag
es
,

st
ru
ct
ur
al

en

tr
op

y.

N
M

N
o

Py
th
on

[2
8]

20

22
 p

yt
ho

n-
E
vt
x-

pa
rs
er

(p
ex
p)

T
o
pa
rs
e
th
e
re
qu

ir
ed

fe
at
ur
es

 fr
om

 th
e
ne

tw
or
k

pa
ck
et

 to
 d
et
ec
t L

at
er
al

M
ov

em
en

t A
tt
ac
ks

.e
vt
x
fil
es

N
o

N
o

N
M

xm
l o

bj
ec
ts

W
in
do

w
s

10
, m

ac
O
S,

U
bu

nt
u

N
o

Py
th
on

[1
7]

20

22
 T

L
S-
Pa

rs
er

T
o
au

to
m
at
e
th
e
so
ft
w
ar
e

te
st
in
g
pr
oc

es
s b

y
pa
rs
in
g

th
e
A
nd

ro
id

 so
ur
ce

 c
od

e

.ja
va

N
o

Ye
s

N
M

.ja
va

W
in
do

w
s

N
o

Ja
va

[2
6]

20

20
 S

tr
A
nd

ro
id
,

T
o
pa
rs
e
th
e
su
sp
ec
t

m
et
ho

ds
 o
f t
w
o
A
nd

ro
id

ap
ps

 in
 o
rd
er

 to
 e
xt
ra
ct

th
ei
r s

im
ila
ri
tie

s

A
PK

N
o

N
o

N
M

T
ex
t fi

le
N
M

Ye
s

Py
th
on

[3
6]

20

22
 A

PI

M
at
ch

m
ak
er

T
o
re
co
m
m
en

d
th
e
be

st

A
PI

 u
sa
ge

 b
y
pa
rs
in
g

si
m
ila
r A

nd
ro
id

 a
pp

s

A
PK

N
o

N
o

N
M

T
ex
t fi

le
N
M

N
o

Ja
va

[1
8]

20

21
 P

et
aD

ro
id

T
o
cl
us
te
r t
he

 m
al
w
ar
e

fa
m
ili
es

 b
as
ed

 o
n
st
at
ic

an

al
ys
is

 fo
r A

nd
ro
id

 O
S

A
PK

N
o

N
o

30
0+

T
ex
t fi

le
N
M

Ye
s

Py
th
on

,
B
as
h

[1
4]

20

20
 P

er
m
is
si
on

G
ra
de

r
T
o
gr
ad

e
th
e
ri
sk

 le
ve
l o

f
A
nd

ro
id

 m
al
w
ar
e
ap
p

ba
se
d
on

 it
s e

xt
ra
ct
ed

pe

rm
is
si
on

s

M
an

ife
st

 fi
le

N
o

Ye
s

10
00

T
ex
t fi

le
N
M

Ye
s

N
M

[2
9]

20

20
 D

ro
id
Po

rt
ra
it

T
o
ut
ili
ze

 th
e
ex
tr
ac
te
d

A
nd

ro
id

 p
er
m
is
si
on

s a
nd

A
PI

 c
al
ls

 in
 d
ev
el
op

in
g
a

m
al
w
ar
e
po

rt
ra
it

M
an

ife
st

fil
e,

cl
as
s.
de

x

N
o

Ye
s

50
,0
00

PN
G

N
M

Ye
s

N
M

T
hi
s

w
or
k

20
22

 A
SP

ar
se
V
3

T
o
pr
op

os
e
a
G
U
I-
ba

se
d,

cu

st
om

iz
ab

le
, a

nd

co
m
pr
eh

en
si
ve

 st
at
ic

pa
rs
in
g
to
ol

 w
ith

 th
e

ab
ili
ty

 to
 e
xp

or
t

re
su
lts
/
ch

ar
ts

 in
 d
iff
er
en

t
fo
rm

at
s

Fl
ex
ib
le

(A

ny
)

Ye
s

Ye
s

U
nl
im

ite
d

C
SV

M
et
a-
D
at
a:

Js
on

 G
ra
ph

:
PN

G

C
ro
ss
-

pl
at
fo
rm

Ye

s
Py

th
on

46 I. ALMOMANI ET AL.

The efficiency of the parsing approach highly affects the overall static
analysis process. The authors of [18] applied canonical representation
to enhance the parsing process for Android code by developing the
static analyzing tool, PetaDroid. The core of this proposed solution is to
define the application’s behavior by tracking the used APIs and the app’s
actions. Consequently, fingerprinting the malware applications. Besides
the API calls, the permissions can be utilized to determine the malicious
application’s behavior. In [29], the APK file has been decomposed using
APKtool to retrieve theManifest file and class.dex file. The aforementioned
files were parsed to extract the permissions and the API calls, respectively.
Then, multidimensional behavior analysis was conducted on the extracted
features to develop a malware portrait. Even though there are many static
parsing tools, they are not flexible in accepting many file systems and can
extract only a limited number of features. Moreover, they do not have a
customizable graphical user interface (GUI). Therefore, there is a need
for a customizable GUI-based system with the ability to scan an unlimited
number of features on various file systems.

3.3 PROPOSED SYSTEM

There is a need for user-friendly, extensible, and flexible software. This
chapter introduces the third version of the Android Static Parse (ASParse).
The tool ASParse-V3 is an improvement to the previous versions. It is
a cross-platform, portable, and general tool that performs static analysis
and features parsing for any file type while supporting different operating
systems. This version of ASParse is efficient and fast due to its concur-
rent scanning characteristic. Furthermore, ASParseV3 can be used as a
preprocessing method for static feature extraction to construct datasets
for subsequent processing through ML/DL models due to its feature of
exporting the results to JSON and CSV files. For instance, the previous
versions of the ASParse tool were used to extract static features and develop
different types of datasets [1]. For example, [4, 7] utilized the ASParse tool
to extract the API and permissions of thousands of Android applications.
The extracted features created a dataset that helped detect Ransomware
apps with high accuracy.

ASPARSEV3: AUTO-STATIC PARSER AND CUSTOMIZABLE VISUALIZER 47

Fig. 3.1 Flow structure of the proposed system

3.3.1 System Overview

To illustrate the system flow, Fig. 3.1 shows how the ASParseV3 application
generally works. The first step is uploading the files, directories, or multiple
directories. The second step is choosing a set of predefined features or
adding specific features. Then, moving to the third step, the system scans

48 I. ALMOMANI ET AL.

the files to export the results. Finally, after the results are exported, they
can be visualized via a customizable dashboard.

3.3.2 Features and User Interfaces

The scalability and portability of ASParseV3 are achieved by integrating it
with a portable development environment that also makes the software
cross-platform to be installed on various operating systems (OSs). In
addition, the software’s scope can be used as general and specific. For
example, it can scan and parse different input formats, such as Android
and Windows applications. Furthermore, ASParseV3 is user-friendly due
to the modern graphical user interface (GUI) that is easy to use and
its customizability based on the user’s needs. For instance, the user can
customize features and file types to be scanned and customize the scanning
results based on the filtering feature available on the results dashboard. The
system process is dividedmainly into five steps: uploading files, selecting file
types, choosing keywords, scanning, and results visualization. Each phase
has a separate user-friendly window.

3.3.2.1 Uploading Files Window
The first window of the application is used to upload files or applications
to be scanned. The user can upload multiple files, directories, or a single
directory. As Fig. 3.2 illustrates, the button “Add” is clicked to upload
the applications, which opens a file selector dialog window to upload
files/directories. All uploaded files will be shown on a panel field. The user
may also clear the uploaded files in the panel field by clicking on the “Clear”
button and adding new applications when needed.

3.3.2.2 Selecting File Types Window
The second window allows users to select files of specific types (file
extensions) to be scanned. Figure 3.3a shows a sample of Android OS
file types. The user may choose one or multiple types by checking the
checkbox. Moreover, the user can customize the file types by adding or
deleting types by clicking on the settings icon on the top right of Fig. 3.3a.
The settings button opens a newwindow for editing, as Fig. 3.3b illustrates.
The user can write the file types in the text field and then click on the
button “Add” to add them to the current panel. The user can also delete
any newly defined types by clicking on the button “Remove.” By default,

ASPARSEV3: AUTO-STATIC PARSER AND CUSTOMIZABLE VISUALIZER 49

Fig. 3.2 Uploading applications window

if no checkboxes were chosen, all predefined file types will be included in
the scanning process.

3.3.2.3 Selecting Keywords Window
The third window allows users to select the keywords to look for while
scanning. Figure 3.3a shows a sample of Android OS file types. However,
the user can customize the features through the settings window by adding
or deleting keywords by clicking on the settings icon on the top right of
the window (as shown in Fig. 3.4a). Similar to the file types editing feature,

50 I. ALMOMANI ET AL.

Fig. 3.3 Selecting and customizing file types windows. (a) Selecting Window. (b)
Customizing Window

Fig. 3.4 Selecting and customizing keywords windows. (a) Selecting Window.
(b) Customizing Window

ASPARSEV3: AUTO-STATIC PARSER AND CUSTOMIZABLE VISUALIZER 51

Fig. 3.5 Scanning window

the settings button can be used to edit the list of keywords, as illustrated
in Fig. 3.4b.

3.3.2.4 Scanning Window
The fourth window allows users to add the configuration values of an
experiment, such as the experiment name and the path used to save the
results, as shown in Fig. 3.5. Then, the scanning process begins by clicking

52 I. ALMOMANI ET AL.

Fig. 3.6 Visualization window and page. (a) Visualization Window. (b) Dash-
board Page

on the “Scan” button. Finally, the progress bar provides the user with real-
time updates on the scanning progress.

3.3.2.5 Visualizing Results and Dashboard Window
The fifth and final window links the tool to the visualization dashboard.
After completing the scanning progress, the user can move to the visual-
ization window and click on the “Visualize” button as shown in Fig. 3.6a to
display the results in terms of a plot. The actions performed in this window
do not affect the scanning results. It is a complimentary step for results
visualization and filtering. However, this step cannot be completed without
performing the scanning. When visualization is activated, a dashboard page
opens in the browser. The dashboard is where the user can visualize the
parsing results. The plot’s X-axis represents the features (keywords), and
the Y -axis represents the number of occurrences. As Fig. 3.6b illustrates,
the dashboard is customizable based on the user’s preference. For instance,
the user may filter out and visualize the results according to the minimum
number of feature occurrences and features containing a specific string or
substring. Also, the resulting graph (plot) can be exported as an image
using the saving button on the right of the plot. This can help the
researchers/experts to share their results conveniently.

ASPARSEV3: AUTO-STATIC PARSER AND CUSTOMIZABLE VISUALIZER 53

3.3.3 Use Case

To demonstrate the tool, Android benign samples and malware samples
were used. The samples come in the form of an Android Package Kit
(APK). The APKs contain all software details, including source code,
permissions, and APIs used. However, APKs are compressed files that need
reverse engineering to recover the application code [9]. APKTool1 s was
used to decompile the apps and extract the source files. Afterward, the
decompiled APKs were fed to the ASParse tool.

3.3.3.1 Data Collection
For data collection, two sources were used, Drebin Dataset [10] and
APKCombo.2 The Drebin Dataset contained 5560 malware samples
belonging to 179 malware families. On the other hand, the benign
data samples were downloaded through APKCombo. Ten samples were
randomly chosen from the Drebin dataset, along with ten samples from
APKCombo. To ensure that the apps downloaded from APKCombo are
benign, they were scanned by a well-known website called VirusTotal.3

This website offers tens of Antivirus engines that are specialized in
detecting different types of malware.

3.3.3.2 Tests and Results
The experiment was performed on a sample of 10 benign APKs and 10
malicious samples from the Derbin dataset. First, all files were added to
the application upload field. Then, all predefined file types were chosen.
Afterward, six keywords from the predefined ones were chosen, including
android, android/animation, and android/app. In addition to the key-
words Bundle and Button and Callback. After clicking on the visualization
button in the final window, the application will shift to the dashboard,
where the plot will be displayed with the ability to save the plot after
customizing it. Figure 3.7 illustrates the saved plot sample. Moreover,
Fig. 3.8 illustrates a sample of the saved plot where it illustrates the details of
each data point on the plot. Furthermore, Table 3.2 demonstrates a sample
of the resulting CSV. Finally, Fig. 3.9 represents the JSON metadata file
resulting from the scan.

1 https://ibotpeaches.github.io/Apktool/.
2 https://apkcombo.com/.
3 https://www.virustotal.com/gui/home/upload.

https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://apkcombo.com/
https://apkcombo.com/
https://apkcombo.com/
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload

54 I. ALMOMANI ET AL.

Fig. 3.7 Features vs. Occurrences Plot

3.3.3.3 Validation
The validation process for ASParseV3 was carried out thoroughly to ensure
that its performance, user interface (UI), and user experience (UX) met
the required needs. The Security Engineering Lab (SEL) conducted the
validation and compared the scanning results of ASParseV3 with previous
releases of ASParse. In addition, VirusTotal was used to retrieve informa-
tion such as permissions used in the applications/APKs to compare with
ASParseV3 and verify further its scanning results’ accuracy. To validate the
use case, VirusTotal was used to collect the permissions used by the APK.

ASPARSEV3: AUTO-STATIC PARSER AND CUSTOMIZABLE VISUALIZER 55

Fig. 3.8 Data point details

Figure 3.10 shows a sample of the permissions used by the APK validation
test sample. The resulting permissions were then used to scan the same
APK using ASParseV3. The results showed that ASParseV3could scan the
uploaded APK and accurately report the number of occurrences for each
permission. Overall, the validation process demonstrates that ASParseV3
is a reliable and efficient tool for scanning applications and APKs features
such as permissions. The comparison with previous releases and the use
of VirusTotal helped ensure the scanning results’ accuracy. For example,
Table 3.3 illustrates the number of occurrences of each permission found
by ASParseV3 during the validation process. Moreover, using ASParseV3
to scan the same application without specifying any keywords has resulted
in showing additional permissions/API calls other than the ones retrieved
from VirusTotal as Table 3.4 illustrates. Hence, this validates the accuracy
of the ASParseV3 and its additional capabilities compared with similar
tools.

56 I. ALMOMANI ET AL.

T
ab

le
 3
.2

T
he

 re
su
lti
ng

 C
SV

 fr
om

 th
e
us
e
ca
se

fil
eN
am

e
A
nd
ro
id

A
nd
ro
id
/

an
im
at
io
n

A
nd
ro
id
/a
pp

B
ut
to
n

B
un
dl
e

C
al
lb
ac
k

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

M
al
w
ar
e
Sa
m
pl
e
5

21
2

0
0

10
0

0
/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

M
al
w
ar
e
Sa
m
pl
e
7

22
1

0
0

4
0

0
/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

M
al
w
ar
e
Sa
m
pl
e
8

53
0

0
0

0
0

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

M
al
w
ar
e
Sa
m
pl
e
4

64
1

0
0

15
1

9
/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

M
al
w
ar
e
Sa
m
pl
e
1

18
34

0
0

0
1

0
/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

M
al
w
ar
e
Sa
m
pl
e
10

35
5

0
0

0
0

0
/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

M
al
w
ar
e
Sa
m
pl
e
3

53
5

0
0

9
0

0
/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

M
al
w
ar
e
Sa
m
pl
e
6

25
4

0
0

2
1

5
/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

B
en

ig
n
Sa
m
pl
e
5

37
0

0
0

0
0

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

M
al
w
ar
e
Sa
m
pl
e
2

96
0

0
0

1
0

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

B
en

ig
n
Sa
m
pl
e
3

0
0

0
0

0
0

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

M
al
w
ar
e
Sa
m
pl
e
9

43
0

0
0

9
0

18

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

B
en

ig
n
Sa
m
pl
e
4

59
6

0
0

4
1

36

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

B
en

ig
n
Sa
m
pl
e
1

69
4

0
0

23
4

14
8

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

B
en

ig
n
Sa
m
pl
e
7

88
0

0
0

5
5

47
1

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

B
en

ig
n
Sa
m
pl
e
2

11
28

0
0

13
7

11
21

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

B
en

ig
n
Sa
m
pl
e
10

47
09

0
0

21
7

33
3

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

B
en

ig
n
Sa
m
pl
e
9

68
71

0
0

10
3

51
7

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

B
en

ig
n
Sa
m
pl
e
6

79
68

0
0

38
15

22
15

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

B
en

ig
n
Sa
m
pl
e
8

18
63

8
0

0
40

16
30

10

ASPARSEV3: AUTO-STATIC PARSER AND CUSTOMIZABLE VISUALIZER 57

1 {
2 {
3 "ApplicationPath": [
4 "/Users/rahaf/Desktop/Use Case/Malware Sample 5",
5 "/Users/rahaf/Desktop/Use Case/Malware Sample 4",
6 "/Users/rahaf/Desktop/Use Case/Malware Sample 3",
7 "/Users/rahaf/Desktop/Use Case/Malware Sample 2",
8 "/Users/rahaf/Desktop/Use Case/Malware Sample 1",
9 ...
10 "/Users/rahaf/Desktop/Use Case/Benign Sample 5",
11 "/Users/rahaf/Desktop/Use Case/Benign Sample 4",
12 "/Users/rahaf/Desktop/Use Case/Benign Sample 3",
13 "/Users/rahaf/Desktop/Use Case/Benign Sample 2",
14 "/Users/rahaf/Desktop/Use Case/Benign Sample 1"
15],
16 "OutputPath": "/Users/rahaf/Desktop",
17 "filetypes": [
18 "xml",
19 "smali",
20 "dex"
21],
22 "selectedFileTypes": [
23 "smali",
24 "xml",
25 "dex"
26],
27 "keywords": [
28 "android",
29 "android/accessibilityservice",
30 "android/accounts",
31 "android/animation",
32 "android/annotation",
33 "android/app",
34 "android/app/admin",
35 "android/app/assist",
36 "android/app/backup",
37 "android/app/blob",
38 "android/app/job",
39 "android/app/role",
40 "android/app/slice",
41 "android/app/usage",
42 "android/appwidget",
43 "android/bluetooth",
44 "Button",
45 "Bundle",
46 "Callback"
47 ...
48

49],
50 "selectedKeywords": [
51 "android",
52 "android/animation",
53 "android/app",
54 "Button",
55 "Bundle",
56 "Callback"
57],
58 "ExperimentName": "Experiment_One"
59 }
60

61 }

Fig. 3.9 Metadata JSON content for the use case

58 I. ALMOMANI ET AL.

Fig. 3.10 APK permissions from VirusTotal

Table 3.3 Validation results
/Users/rahaf/Desktop/PSU/Use Case/Benign Sample 1

Permissions Occurrences
android.permission.RECEIVE_BOOT_COMPLETED 1
android.permission.ACCESS_WIFI_STATE 4
com.google.android.gms.permission.AD_ID 3
com.google.android.finsky.permission.BIND_GET_INSTALL_REFERRER_
SERVICE

2

com.android.vending.BILLING 1

Table 3.4 ASParseV3
additional permissions
and calls

/Users/rahaf/Desktop/PSU/Use Case/Benign Sample 1
Permissions and calls Occurrences
Android 18474
CallbackHandler 117
CameraAccessException 14
Certificate 285
Connection 1522
CookieSyncManager 1
DownloadRequest 8
FragmentHostCallback 3
LruCache 2
INTERNET 25

3.4 CONCLUSION AND FUTURE WORK

This chapter proposed a third version of ASParse software as a parsing and
static analysis tool. The analysis results can be used to feedmachine learning
algorithms and deep learning models for malware analysis and detection.
Moreover, a demonstration was presented on Android OS applications
showing the system’s capabilities. In future work, the ASParse tool will

ASPARSEV3: AUTO-STATIC PARSER AND CUSTOMIZABLE VISUALIZER 59

be used to carry on with malware detection using ML and DL algorithms
and models. Moreover, it will be enhanced in terms of performance and
user experience.

Acknowledgments The authors would like to thank the support of Prince Sultan
University. Moreover, this research was done during the author Iman Almomani’s
sabbatical year 2021/2022 from the University of Jordan, Amman—Jordan.

REFERENCES

1. Al Khayer A, Almomani I, Elkawlak K (2020) ASAF: android static
analysis framework. In: 2020 first international conference of smart
systems and emerging technologies (SMARTTECH). IEEE, New
York, pp 197–202

2. Almohaini R, Almomani I, AlKhayer A (2021) Hybrid-based anal-
ysis impact on ransomware detection for Android systems. Appl Sci
11(22):10976

3. Almomani I, Ahmed M, El-Shafai W (2022) Android malware
analysis in a nutshell. PloS One 17(7):e0270647

4. Almomani I, AlKhayer A, Ahmed M (2021) An efficient machine
learning-based approach for Android v. 11 ransomware detection.
In: 2021 1st international conference on artificial intelligence and
data analytics (CAIDA). IEEE, New York, pp 240–244

5. Almomani I, Alkhayer A, El-Shafai W (2022) An automated
vision-based deep learning model for efficient detection of android
malware attacks. IEEE Access 10:2700–2720

6. Almomani I, Khayer A (2019) Android applications scanning:
the guide. In: 2019 International conference on computer and
information sciences (ICCIS). IEEE, New York, pp 1–5

7. Alsoghyer S, Almomani I (2019) Ransomware detection system for
Android applications. Electronics 8(8):868

8. Anupama ML, et al (2021) Detection and robustness evaluation of
androidmalware classifiers. J Comput Virol Hacking Tech 18(3):1–
24

9. Ardito L, et al (2020) Automated test selection for Android apps
based on APK and activity classification. IEEE Access 8:187648–
187670

60 I. ALMOMANI ET AL.

10. Arp D, et al (2014) Drebin: effective and explainable detection of
android malware in your pocket. In: NDSS, vol. 14, pp 23–26

11. Aslan ÖA, Samet R (2020) A comprehensive review on malware
detection approaches. IEEE Access 8:6249–6271

12. Cremer F, et al (2022) Cyber risk and cybersecurity: a systematic
review of data availability. In: The Geneva Papers on Risk and
Insurance-Issues and Practice, pp 1–39

13. Dai Y, et al (2019) SMASH: a malware detection method based on
multifeature ensemble learning. IEEE Access 7:112588–112597

14. Dharmalingam VP, Palanisamy V (2021) A novel permission rank-
ing system for android malware detection—the permission grader.
J Ambient Intell Humaniz Comput 12(5):5071–5081

15. Gibert D (2022) PE Parser: A Python package for Portable Exe-
cutable files processing. Software Impacts 13:100365

16. Gosain A, Sharma G (2015) Static analysis: a survey of techniques
and tools. In: Intelligent computing and applications. Springer,
Berlin, pp 581–591

17. Ibrahim R, et al (2022) Sena TLS-Parser: a software testing tool for
generating test cases. Int J Adv Comput Sci Appl 13(6):397–403

18. Karbab EB, Debbabi M (2021) Resilient and adaptive framework
for large scale android malware fingerprinting using deep learning
and NLP techniques. arXiv e-prints arXiv–2105

19. Khalid Z, et al (2022) Forensic investigation of Cisco WebEx
desktop client, web, and Android smartphone applications. Ann
Telecommun 78:1–26

20. Laaber C, Basmaci M, Salza P (2021) Predicting unstable software
benchmarks using static source code features. Empir Softw Eng
26(6):1–53

21. Liu Z (2022) DeepTLS: comprehensive and high-performance
feature extraction for encrypted traffic. arXiv preprint
arXiv:2208.03862

22. Lu T, et al (2020) Android malware detection based on a hybrid
deep learning model. Secur Commun Netw 2020:1–11

23. Mahr A, et al 2022 Auto-Parser: Android Auto and Apple CarPlay
Forensics. In: International Conference on Digital Forensics and
Cyber Crime. Springer, Berlin, pp 52–71

ASPARSEV3: AUTO-STATIC PARSER AND CUSTOMIZABLE VISUALIZER 61

24. Ngo Q-D, et al (2020) A survey of IoT malware and detection
methods based on static features. ICT Express 6(4):280–286

25. Omer MA, et al (2021) Efficiency of malware detection in android
system: a survey. Asian J Res Comput Sci 7(4):59–69

26. PasettoM,Marastoni N, PredaMD (2020) Revealing similarities in
android malware by dissecting their methods. In: 2020 IEEE Euro-
pean Symposium on Security and PrivacyWorkshops (EuroS&PW).
IEEE, New York, pp 625–634

27. Shukla S (2022) Design of secure and robust cognitive system for
malware detection. arXiv preprint arXiv:2208.02310

28. Smiliotopoulos C (2022) Use of Sysmon tool to detect lateral
movement attacks

29. Su X, et al (2020) DroidPortrait: android malware portrait con-
struction based on multidimensional behavior analysis. Appl Sci
10(11):3978

30. Talukder S, Talukder Z (2020) A survey on malware detection and
analysis tools. In: International Journal of Network Security and Its
Applications (IJNSA), vol 12

31. Ugarte-Pedrero X, Graziano M, Balzarotti D (2019) A close look
at a daily dataset of malware samples. ACM Trans Privacy Secur
(TOPS) 22(1):1–30

32. Verdonck T, Baesens B, Óskarsdóttir M, et al (2021) Special issue
on feature engineering editorial. In: Machine learning, pp 1–12

33. Vinayakumar R, et al (2019) Robust intelligent malware detection
using deep learning. IEEE Access 7:46717–46738

34. Wu Q, Zhu X, Liu B (2021) A survey of android malware static
detection technology based on machine learning. Mob Inf Syst
2021:1–18

35. Ye Y, et al (2017) A survey on malware detection using data mining
techniques. ACM Comput Surv (CSUR) 50(3):1–40

36. Zhao Y, et al (2022) APIMatchmaker: matching the right APIs for
supporting the development of Android apps. IEEE Trans Softw
Eng 49(1):113–130

	3 ASParseV3: Auto-Static Parser and Customizable Visualizer
	3.1 Introduction
	3.2 Related Works
	3.3 Proposed System
	3.3.1 System Overview
	3.3.2 Features and User Interfaces
	3.3.2.1 Uploading Files Window
	3.3.2.2 Selecting File Types Window
	3.3.2.3 Selecting Keywords Window
	3.3.2.4 Scanning Window
	3.3.2.5 Visualizing Results and Dashboard Window

	3.3.3 Use Case
	3.3.3.1 Data Collection
	3.3.3.2 Tests and Results
	3.3.3.3 Validation

	3.4 Conclusion and Future Work
	References

