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PREFACE 

The threat landscape is changing very quickly. With billions of connected 
IoT devices, mostly reactive detection and mitigation strategies, and finally 
big data challenges, we face an extremely rapidly expanding attack surface 
with a variety of attack vectors, a clear asymmetry between attackers and 
defenders, and a rapidly expanding attack surface. Additional arguments 
suggest that cybersecurity approaches must be rethought in terms of 
reducing the attack surface, making the attack surface dynamic, automating 
detection, risk assessment, and mitigation, and investigating the prediction 
and prevention of malware attacks with the use of emerging technologies 
like blockchain, artificial intelligence, and machine learning. Additionally, 
there is a clear asymmetry of attacks and an enormous amount of data. 

This book provides the foundational aspects of malware attack vectors 
and appropriate defense mechanisms against malware. In addition, the 
book equips you with the necessary knowledge and techniques to success-
fully lower risk against emergent malware attacks. The book discusses both 
theoretical, technical, and practical issues related to malware attacks and 
defense making it an ideal reading material. 

Many aspects motivated the decision toward the creation of this book. 
As mentioned in recent threat landscape reports, malware is on the rise 
again after the decrease that was noticed and linked to COVID-19. Mali-
cious actors frequently employ malware in their campaigns. Gaining and 
maintaining control of assets, evading and deceiving defenses, and carrying 
out post-compromise actions all require this fundamental capability. The 
book has two clear goals. The first is to bring in front important security 
problems that arise in the advent of malware, and the second is to highlight 
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vi PREFACE 

a variety of possible solution approaches that might be able to address 
them. Specialists and experts present their significant efforts to fulfill these 
goals. 

This book starts with an introductory chapter about the emerging trends 
of cyber-malware, and then it includes nine chapters that are organized into 
the following three parts: 

Part 1 presents solutions on Android OS malware static features extraction 
and detection of Android malware applications. 

Part 2 contains many applications that use artificial intelligence for detect-
ing fast flux service networks and malware. 

Part 3 presents and discusses techniques that can be used for IoT and cloud 
malware analysis. 

In Chap. 1, an effective vision-based multi-classification system for 
detecting various malware families in Android apps is presented. Malware 
in Android apps could be detected using the proposed system in visual color 
or grayscale formats. The tested evaluation metrics and acquired detection 
results performed in the chapter demonstrate that the proposed vision-
based system is a promising option for Android OS malware analysis. 

Based on network traffic behavior analysis, Chapter 2 proposes a novel 
privacy-preserving federated deep learning method that makes use of 
convolutional neural networks (CNN) to identify various kinds of malware. 
The proposed detection method is evaluated in terms of detection rate, 
accuracy, and performance under various federated learning settings. 

The third version of the Android automatic Static Parsing tool (ASParse-
V3), and its integration with other detection methods are discussed in 
Chap. 3 in terms of the significance of static analysis for feature extraction, 
dataset generation, and malware analysis systems. The results of the analysis 
can be fed to deep learning models and machine learning algorithms for 
malware analysis and detection. In addition, Android OS applications were 
used to demonstrate the system’s capabilities. 

The fast flux architecture, operation, and characterization of FFSNs 
are the primary topics of discussion in Chap. 4. In addition, the chapter 
provides a summary of fast flux detection mechanisms, highlighting the 
most significant difficulties and potential future research directions. 
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A static, graph-based approach is presented in Chap. 5 that uses machine 
learning to classify executable samples into malicious or benign API Call 
Graphs. A measure of the Abstract API Call Graph’s similarity to the 
samples of a given dataset, which include labeled samples of malware and 
benign samples, is calculated by the proposed method. Additionally, it 
divides the similarity vector space and performs classification using the 
support vector machine (SVM) algorithm. Both unweighted and weighted 
Abstract API Call Graphs are used to evaluate the method, demonstrating 
high accuracy. 

Chapter 6 gives a thorough survey of cutting-edge deep learning-based 
malware analysis and detection solutions focusing on Microsoft Windows, 
over the time of 2015–2022. The section gives a detailed scientific classifi-
cation that classifies these solutions as per different measures including the 
investigation task, the analysis task, the nature of the extracted features, 
the used features representation method, and the used deep learning 
algorithms. Besides, the section talks about these solutions concerning the 
size and nature of the testing dataset, the performance evaluation metrics 
for the various tasks, and the accomplished outcomes. 

Threats to the Internet of Things (IoT) and smart systems are covered in 
Chap. 7, as is a brief overview of malware detection and evasion techniques. 
For the IoT and smart systems to be utilized to their full potential, it is 
essential to investigate novel cyberattacks while simultaneously developing 
and implementing countermeasures. The objectives of this chapter are to 
investigate various strategies for the detection and evasion of cybersecurity 
threats in the IoT domain as well as evaluate security issues that are 
anticipated to limit IoT deployment. 

In Chap. 8, a method for multiclass classification employing XG-Boost 
and CatBoost to classify the intrusion attack’s category type is proposed. 
The proposed strategy aimed to develop a recent multiclass classification to 
classify the category type labels of IoT intrusion attacks. Precision, recall, 
f1-score, and G-mean were used to evaluate the experiments, which were 
then compared to other basic classifiers. 

Malware attacks and methods for preventing malware threats in cloud 
computing architecture are examined in Chap. 9. Data breaches, mali-
cious insiders, man-in-the-middle attacks, denial-of-service (DOS) and 
distributed denial-of-service (DDOS) attacks, cookie poisoning attacks, 


 23608 -270 a 23608 -270
a
 

 1043 24968 a 1043 24968
a
 

 3853 34267 a 3853 34267 a
 

 21247 43565 a 21247 43565
a
 


viii PREFACE 

and wrapping attacks are among the most frequently reported security 
threats, according to the study. The majority of these attacks are the result 
of multiple malware variants. 

Riyadh, Saudi Arabia Iman AlMomani 
Edinburgh, UK Leandros A. Maglaras 
Masdar City, Abu Dhabi, Mohamed Amine Ferrag 
United Arab Emirates 
Leicester, UK Nick Ayres 



INTRODUCTION: EMERGING TRENDS 

IN CYBER-MALWARE 

Cyber-malware refers to malicious software that is designed to damage or 
gain unauthorized access to computer systems, networks, and data. Cyber-
malware has become a significant threat to individuals, businesses, and 
governments worldwide, and its impact can be devastating [1]. 

The history of cyber-malware dates back to the 1970s when the first 
computer virus, known as the Creeper virus, was created as an experimental 
program. The Creeper virus was designed to move between computers 
on a network and display the message “I’m the Creeper, catch me if you 
can.” The first antivirus software, known as the Reaper, was then created 
to remove the Creeper virus from infected computers [2]. 

In the 1980s, as personal computers became more popular, cyber-
criminals began developing malware to exploit vulnerabilities in operating 
systems and software. In 1986, the first computer worm, known as the 
Morris worm, was created by a graduate student named Robert Morris. 
The Morris worm caused widespread damage to computer systems and 
resulted in significant financial losses. This incident prompted the creation 
of the Computer Emergency Response Team (CERT), which provides 
guidance and support for organizations affected by cyber-attacks [3]. 

In the 1990s, cybercriminals began developing more sophisticated 
malware, such as Trojans and keyloggers, to steal sensitive information 
from individuals and businesses [4]. The first known ransomware attack, 
known as the AIDS Trojan, was also created in 1990. The AIDS Trojan 
would encrypt the victim’s files and demand payment in exchange for the 
decryption key. 

ix 
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In the 2000s, cyber-malware attacks became more prevalent, with 
high-profile incidents such as the ILOVEYOU virus and the Code Red 
worm causing significant damage to computer systems worldwide [5]. 
Additionally, cybercriminals began using social engineering techniques, 
such as phishing emails and fake websites, to trick individuals into giving 
up their login credentials and other sensitive information. 

One of the most significant cyber-attacks involving malware in recent 
years was the SolarWinds attack. In December 2020, it was discovered that 
Russian hackers had gained access to the computer systems of several US 
government agencies and private companies by exploiting a vulnerability 
in the SolarWinds software [6]. The malware used in the attack, known as 
Sunburst, was a sophisticated piece of software that allowed the hackers 
to access sensitive information and carry out other malicious activities 
undetected for months. 

Another recent cyber-attack involving malware was the Colonial 
Pipeline hack. In May 2021, a group of cybercriminals known as DarkSide 
used ransomware to gain access to the computer systems of Colonial 
Pipeline, a major US fuel pipeline operator. The attack forced the company 
to shut down its pipeline, causing widespread fuel shortages and price hikes 
across the eastern United States. The group demanded a ransom of $4.4 
million in Bitcoin, which Colonial Pipeline ultimately paid [7]. 

In March 2021, Microsoft announced that Chinese hackers had been 
using malware to target organizations around the world. The hackers 
were exploiting four zero-day vulnerabilities inMicrosoft Exchange Server, 
a popular email and collaboration platform used by many businesses 
and organizations [8]. The hackers used the malware to steal data and 
carry out other malicious activities, and the attack affected thousands of 
organizations in at least 115 countries. 

In April 2021, cybersecurity researchers discovered a new type of 
malware known as Silver Sparrow. Unlike many other types of malware, 
Silver Sparrow was designed to target Apple computers, and it was found 
on nearly 30,000 Macs around the world [9]. While the malware was not 
actively causing any harm, its presence on so many devices was a cause for 
concern. 

In recent years, cybercriminals have continued to evolve their tactics, 
with the development of more sophisticated ransomware, such as the 
WannaCry and NotPetya attacks, and the rise of cryptojacking, which 
involves using the victim’s computer to mine cryptocurrency without their 
knowledge or consent [10]. 
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As technology continues to advance, cyber-malware attacks are likely 
to become even more sophisticated and difficult to detect. However, 
cybersecurity professionals and organizations are also developing new 
tools and strategies to combat cyber-malware and protect against future 
attacks. So, the evolution of cyber-malware has beenmarked by increasingly 
sophisticated attacks and techniques. From the early days of the Creeper 
virus to the modern-day threats of ransomware and cryptojacking, cyber-
criminals have continuously adapted their tactics to exploit vulnerabilities 
in computer systems and networks [11]. However, through collaboration 
and innovation in cybersecurity, individuals, businesses, and governments 
can work to stay one step ahead of cyber-malware threats. 

Individuals can become victims of cyber-malware through various 
means, including phishing emails, infected downloads, and social 
engineering attacks. Once the malware infects an individual’s device, it can 
steal sensitive information such as login credentials, financial information, 
and personal data [3–5]. In some cases, cyber-malware can lock users out 
of their devices and demand payment for the return of access, also known 
as ransomware. 

Businesses are at an even higher risk of cyber-malware attacks, as 
they often store large amounts of sensitive data that can be targeted by 
cybercriminals. The impact of cyber-malware on businesses can range from 
financial losses to reputational damage [7]. For instance, if a company’s 
financial data is breached, it can result in significant financial losses and a 
loss of customer trust. Additionally, if a company’s reputation is damaged 
due to a cyber-attack, it can lead to a decline in sales and revenue. 

Governments are also vulnerable to cyber-malware attacks, as they often 
store classified information and sensitive data. A cyber-attack on a govern-
ment’s system can have severe consequences, including the theft of sensitive 
information, disruption of essential services, and even sabotage [9]. In 
some cases, cyber-malware attacks on governments have been carried out 
by state-sponsored hackers, leading to tensions between nations. 

The impact of cyber-malware on individuals, businesses, and govern-
ments is not limited to financial losses and reputational damage. Cyber-
malware attacks can also result in a loss of privacy, psychological distress, 
and physical harm. For instance, cyber-malware can be used to gain 
access to medical devices and cause harm to patients or to disrupt critical 
infrastructure and cause widespread power outages [8–11]. 

To protect against cyber-malware, individuals, businesses, and govern-
ments must take proactive measures to secure their systems and data. 
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This includes implementing strong passwords, keeping software up-to-
date, using anti-virus software, and educating employees and users about 
cyber threats. Additionally, governments must work together to develop 
international frameworks and regulations to combat cyber-malware and 
hold cybercriminals accountable for their actions. Thus, cyber-malware is 
a growing threat to individuals, businesses, and governments worldwide 
[12]. The impact of cyber-malware can range from financial losses to 
reputational damage and can even result in physical harm. To protect 
against cyber-malware, it is essential to take proactive measures to secure 
systems and data and to work together to develop international frameworks 
and regulations to combat cybercrime. 

Cyber-malware attacks can target a wide range of individuals, businesses, 
and organizations. However, certain targets are more commonly targeted 
by cybercriminals due to their vulnerability or potential for financial gain. 
Some of the common targets of cyber-malware include [13]: 

• Individuals: Cybercriminals often target individuals with phishing 
emails or malware disguised as legitimate software. Individuals can 
be targeted for their personal information, such as login credentials, 
banking information, and social security numbers. Additionally, cyber-
criminals may use malware to gain access to an individual’s computer 
system, allowing them to steal sensitive information or use the victim’s 
computer for illegal activities. 

• Small businesses: Small businesses are often targeted by cybercriminals 
due to their limited resources and lack of robust cybersecurity mea-
sures. Small businesses may be targeted for their financial information, 
customer data, or intellectual property. Ransomware attacks are also 
common among small businesses, as cybercriminals may demand 
payment in exchange for restoring access to the victim’s files or 
computer system. 

• Large corporations: Large corporations are also common targets of 
cyber-malware attacks, as they may hold valuable intellectual property 
or financial information. Cybercriminals may use malware to gain 
unauthorized access to a corporation’s network or use phishing emails 
to trick employees into giving up sensitive information. 

• Government agencies: Government agencies are often targeted by 
cybercriminals seeking sensitive information or attempting to disrupt 
government operations. Cyber-malware attacks on government agen-
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cies can result in the theft of classified information, disruption of 
critical infrastructure, and other significant consequences. 

• Healthcare providers: Healthcare providers are another common tar-
get of cyber-malware attacks, as they may hold sensitive patient infor-
mation, including medical records and billing information. Cyber-
criminals may use malware to gain unauthorized access to a healthcare 
provider’s network or steal patient data for identity theft or insurance 
fraud. 

Consequently, staying up to date with new trends in cyber-malware is 
incredibly important in today’s digital age. With the increasing number of 
devices and networks connected to the internet, the threat of cyber-attacks 
is more prevalent than ever before. Malware, short for malicious software, 
is designed to damage, disrupt, or gain unauthorized access to computer 
systems. The technology used by cybercriminals is continually evolving, 
and new types of malware are being developed all the time. By staying up 
to date with the latest trends in cyber-malware, you can ensure that you are 
better prepared to defend against attacks and protect your digital assets. 

One of the most significant reasons to stay up to date with cyber-
malware trends is to identify new threats before they become widespread. 
Cybercriminals often use new malware to exploit vulnerabilities in systems 
before antivirus software and other security measures can be updated to 
address the threat [14]. By being aware of new types of malware, you can 
take steps to protect yourself and your organization before an attack occurs. 

Another reason to stay up to date with cyber-malware trends is to keep 
your security measures current. As new malware is developed, antivirus 
software and other security measures are updated to protect against them. 
By staying informed about new threats, you can ensure that your security 
measures are up-to-date and effective [15]. Failure to update your security 
measures can leave your devices and networks vulnerable to attack. 

Additionally, staying up to date with cyber-malware trends can help 
you stay ahead of the competition. Cybersecurity is becoming increasingly 
important in today’s digital landscape, and companies that fail to take it 
seriously may suffer reputational damage or lose customers. By demon-
strating that you are aware of the latest threats and taking steps to protect 
your digital assets, you can build trust with your customers and gain a 
competitive advantage. 

In conclusion, staying up to date with new trends in cyber-malware is 
essential to protect yourself, your organization, and your customers from 
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cyber-attacks. By being aware of new threats and keeping your security 
measures current, you can stay one step ahead of cybercriminals and avoid 
the potentially devastating consequences of a successful cyber-attack. 

MALWARE ANALYSIS TECHNIQUES 

Cyber-malware, also known as malicious software, is a type of software 
designed to infiltrate, damage, or disrupt computer systems, networks, and 
devices. Cyber-malware is often used for criminal purposes, such as stealing 
sensitive information or extorting money from victims. 

Common Types of Cyber-Malware 

There are several types of cyber-malware, including [13, 14]: 

• Virus: A computer virus is a type of malware that infects a computer 
system by inserting its code into legitimate programs or documents. 
Once infected, the virus can replicate itself and spread to other 
systems, causing damage and stealing sensitive information. 

• Trojan: A Trojan is a type of malware that disguises itself as legiti-
mate software, often through email attachments or downloads. Once 
installed, the Trojan can allow cybercriminals to gain unauthorized 
access to the victim’s computer, steal sensitive data, and even take 
control of the system. 

• Worm: A worm is a self-replicating malware that spreads through 
networks and can cause significant damage to computer systems and 
networks. Worms often exploit vulnerabilities in software or operating 
systems, allowing cybercriminals to gain unauthorized access and steal 
sensitive information. 

• Ransomware: Ransomware is a type of malware that encrypts the 
victim’s files or computer system, rendering it unusable. The cyber-
criminals then demand payment, often in cryptocurrency, to provide 
the decryption key and restore access to the victim’s data or system. 

• Adware: Adware is a type of malware that displays unwanted or 
intrusive advertisements on the victim’s computer system. Adware can 
also collect personal information, browsing history, and search queries 
for targeted advertising purposes. 

• Spyware: Spyware is a type of malware that collects sensitive infor-
mation, such as login credentials, browsing history, and personal 
data, without the victim’s knowledge or consent. Cybercriminals can 
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then use this information for identity theft, financial fraud, or other 
malicious purposes. 

• Rootkit: A rootkit is a type of malware that allows cybercriminals to 
gain administrative access to the victim’s computer system. Rootkits 
often remain hidden from antivirus software and can be difficult to 
detect and remove, allowing cybercriminals to maintain access to the 
victim’s system for an extended period. 

To conclude, cyber-malware is a type of malicious software that can 
cause significant damage and disrupt computer systems, networks, and 
devices. There are several types of cyber-malware, including viruses, Tro-
jans, worms, ransomware, adware, spyware, and rootkits [16, 17]. Under-
standing the different types of cyber-malware and taking proactive mea-
sures to protect against them is essential for individuals, businesses, and 
governments. 

Dynamic and Static Analysis 

Dynamic and static analysis are two techniques commonly used in cyber-
security to detect and analyze malware [17]. Static analysis involves exam-
ining the code of a program or file without actually executing it. This can 
involve using specialized tools and techniques to scan the code for known 
patterns or characteristics of malware. Static analysis is often used as a first 
step in malware analysis to quickly identify potential threats and determine 
whether further analysis is necessary. 

Dynamic analysis, on the other hand, involves executing the program or 
file in a controlled environment to observe its behavior. This can involve 
running the program or file in a virtual machine or sandboxed environment 
to prevent any harm to the host system. Dynamic analysis can provide more 
detailed information on the behavior of malware, including its interactions 
with the operating system, network connections, and other processes. 

Both dynamic and static analysis have their advantages and limitations 
[18]. Static analysis is often faster and less resource-intensive than dynamic 
analysis, making it a useful tool for quickly identifying potential threats. 
However, static analysis may not always be able to detect more advanced 
or sophisticated malware that is designed to evade detection. 

Dynamic analysis, on the other hand, provides a more comprehensive 
view of the behavior of malware, which can be useful in understanding how 
the malware operates and identifying potential vulnerabilities in the system. 
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However, dynamic analysis can be more time-consuming and resource-
intensive than static analysis, as it requires the execution of the malware in 
a controlled environment. 

In practice, both dynamic and static analysis are often used in combina-
tion to provide a more comprehensive view of malware and its behavior. 
By using both techniques, cybersecurity professionals can quickly identify 
potential threats using static analysis, and then perform more detailed 
analysis using dynamic analysis to gain a deeper understanding of the 
malware’s behavior and potential impact on the system [17, 18]. 

Malware Debugging Techniques 

Malware authors are constantly evolving their techniques to evade detec-
tion and infect systems, which means that malware analysts need to 
constantly develop new techniques to detect and remove malware. One 
such technique is malware debugging [19]. 

Malware debugging is the process of analyzing malware by examining 
its code in a controlled environment. This allows analysts to identify 
the malware’s behavior, the techniques it uses to evade detection, and 
the vulnerabilities it exploits. Several techniques can be used in malware 
debugging, including [20]: 

• Disassembly: Disassembling the malware code is the process of con-
verting the binary executable code into human-readable assembly 
code. This technique can help malware analysts to understand the 
behavior of the malware and identify potential vulnerabilities that it 
exploits. 

• Debugging tools: Debugging tools, such as OllyDbg, IDA Pro, and 
WinDbg, can be used to analyze malware by allowing analysts to step 
through the code, set breakpoints, and view the contents of memory 
and registers. These tools can help to identify how the malware 
communicates with its command and control server, the files it creates 
on the infected system, and other behaviors that it exhibits. 

• Virtual machines: Malware can be run in a virtual machine envi-
ronment, such as VirtualBox or VMWare, to create a controlled 
environment for analysis. This technique can help to isolate the 
malware from the rest of the system, preventing it from infecting other 
files and processes on the host machine. 
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• Sandboxing: A sandbox is a virtual environment that isolates the 
malware from the rest of the system. This technique can help to 
prevent the malware from infecting other files and processes on the 
host machine while still allowing malware analysts to observe its 
behavior. 

• Dynamic analysis: Dynamic analysis involves observing the malware 
as it runs in a controlled environment. This technique can help to 
identify the malware’s behavior, such as the files it creates, the registry 
keys it modifies, and the network connections it establishes. 

• Code injection: Code injection involves injecting code into the mal-
ware’s process to modify its behavior or to observe its interactions 
with the operating system. This technique can help to identify the 
malware’s communication with its command and control server, the 
data it exfiltrates, and other behaviors that it exhibits. 

Identifying Malware Behavior 

Identifying malware behavior is a critical step in malware analysis, as it can 
help security professionals to understand how a malware infection works 
and develop strategies for mitigating its impact. Malware behavior can 
include a range of activities, such as modifying system settings, stealing 
data, and communicating with remote servers. Here are some common 
techniques used to identify malware behavior [21–23]: 

• Static analysis: This involves examining the malware code without 
actually running it. This can be done by examining the binary file 
or the source code and can help to identify the malware’s behavior by 
looking at functions and routines used by the malware. Static analysis 
can also be used to identify specific strings or signatures associated 
with the malware. 

• Dynamic analysis: This involves running the malware in a controlled 
environment to observe its behavior. This can be done in a sandbox, 
virtual machine, or other isolated environment. Dynamic analysis can 
help to identify the malware’s activities, such as files it creates, registry 
keys it modifies, network connections it makes, and commands it 
sends or receives. 

• Network traffic analysis: This involves monitoring network traffic 
to identify unusual activity. This can include unusual data transfers, 
unusual ports or protocols, and unusual server activity. Network traffic 
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analysis can help to identify malware that is communicating with 
remote servers. 

• Endpoint detection and response (EDR): EDR tools monitor activity 
on endpoints (such as desktops, servers, and mobile devices) to detect 
suspicious behavior. EDR tools can identify indicators of compromise 
(IoCs), such as suspicious processes, changes to the registry or file 
system, and attempts to bypass security controls. 

• Reverse engineering: This involves decompiling or disassembling the 
malware code to identify its behavior. Reverse engineering can help 
to identify how the malware communicates with its command and 
control server, how it encrypts or decrypts data, and how it modifies 
system settings. 

• Memory analysis: This involves examining the contents of the com-
puter’s memory to identify malware behavior. Memory analysis can 
help to identify malware that has been loaded into memory and 
identify any unusual processes or network connections. 

• Behavioral analysis: This involves observing the malware’s behavior 
in a virtual environment to identify any unusual or malicious activity. 
Behavioral analysis can help to identify the specific behavior of the 
malware, which can be used to develop targeted mitigation strategies. 

In conclusion, identifying malware behavior is an important step in 
malware analysis. It involves using a combination of techniques, such as 
static analysis, dynamic analysis, network traffic analysis, endpoint detec-
tion and response, reverse engineering, memory analysis, and behavioral 
analysis, to identify the malware’s activities and develop strategies for 
mitigating its impact [24]. By understanding the behavior of malware, 
security professionals can better protect their systems and networks against 
malware infections. 

MALWARE DISTRIBUTION METHODS 

Malware distribution methods refer to the various ways in which malicious 
software is disseminated to infect systems and devices. Malware can take 
many forms, including viruses, worms, Trojans, ransomware, and spyware, 
among others. Malware authors often use multiple distribution methods to 
increase the likelihood of infecting as many devices as possible. The most 
common malware distribution methods are as follows [25, 26]: 
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• Email Attachments: Malware authors use emails to distribute malware 
by attaching malicious files to emails. The recipient is tricked into 
downloading and opening the attachment, which infects their system. 
The attachments may appear as legitimate files, such as a PDF or 
a Word document, but once opened, the malware executes on the 
system. 

• Social Engineering: Social engineering involves tricking users into 
downloading or installing malware by using psychological manipu-
lation techniques. For example, attackers may use a fake website to 
convince users to download an application that is malware. Social 
engineering may also involve using fake antivirus alerts or fake soft-
ware updates to trick users into installing malware. 

• Drive-By Downloads: Drive-by downloads involve malware being 
installed on a user’s computer without their knowledge or consent 
when they visit a website. This is typically accomplished by exploiting 
vulnerabilities in the user’s web browser or other software. 

• Malvertising: Malvertising is the distribution of malware through 
online advertisements. Attackers use legitimate-looking advertise-
ments to lure users into clicking on them, which then leads to the 
installation of malware on the user’s computer. 

• Infected Software: Malware authors sometimes distribute infected 
software or applications that appear legitimate but are infected with 
malware. Once the software is downloaded and installed, the malware 
executes on the system. 

• USB Drives: Malware can also be distributed through USB drives that 
are infected with malware. When the USB drive is inserted into a 
computer, the malware automatically executes on the system. 

• Watering Hole Attacks: In a watering hole attack, attackers infect 
a website that is frequently visited by their target audience. The 
attackers then wait for their targets to visit the infected website, where 
they are infected with malware. 

• Phishing:This method involves sending emails or messages that appear 
to be from a trusted source but contain links to malicious websites or 
attachments that download malware onto the victim’s computer. 

• Software vulnerabilities: Cybercriminals can exploit vulnerabilities in 
legitimate software applications to install malware onto a victim’s 
computer. 
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• Malicious websites: Cybercriminals can create malicious websites that 
contain malware. These websites may look legitimate, but they are 
designed to infect visitors’ computers with malware. In some cases, 
simply visiting the website is enough to download the malware. 

• Social media: Cybercriminals can use social media platforms to dis-
tribute malware. They may create fake profiles or pages that appear to 
be legitimate but contain links to infected websites or downloads. 

• File sharing networks: Some malware is distributed through peer-to-
peer (P2P) file-sharing networks. Cybercriminals may upload infected 
files, such as movies or music, and entice users to download them. 

• Mobile devices: Malware can also be distributed through mobile 
devices, such as smartphones and tablets. Cybercriminals may create 
fake apps that contain malware or send infected links through text 
messages or social media. 

Thus, malware distributionmethods are constantly evolving, and attack-
ers are becoming more sophisticated in their techniques. It is essential to 
remain vigilant when opening emails, downloading software, or visiting 
websites to avoid falling victim to malware. Keep your software updated, 
use reputable antivirus software, and be cautious of suspicious emails 
and websites. So, to protect against these malware distribution methods, 
it’s important to keep software up to date, use antivirus software, be 
cautious when opening email attachments or clicking on links, and avoid 
downloading software from untrusted sources. 

MALWARE PREVENTION AND MITIGATION STRATEGIES 

Malware prevention and mitigation strategies are essential in today’s 
digital age, where malware threats are prevalent and continue to evolve. 
Prevention and mitigation strategies are measures put in place to reduce 
the likelihood and severity of potential hazards, disasters, or crises. These 
strategies aim to prevent or mitigate the negative impact of these events on 
individuals, communities, and the environment [27]. 

Prevention strategies involve taking measures to prevent an event from 
occurring. These strategies can include implementing safety measures, such 
as using protective equipment, conducting safety training, or installing 
safety features in buildings or equipment. Preventive strategies can also 
involve enforcing regulations or laws to deter risky behaviors or practices. 

Mitigation strategies involve taking steps to reduce the impact of an 
event that has already occurred. These strategies can include emergency 
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response plans, such as evacuation plans, first aid procedures, and disaster 
relief efforts. Mitigation strategies can also involve restoration efforts, such 
as rebuilding infrastructure or rehabilitating natural habitats [28]. 

Effective prevention and mitigation strategies are essential for reducing 
the impact of disasters and crises. By taking proactive steps to prevent 
events from occurring or mitigating their effects, we can reduce the risk of 
harm and save lives [29]. Additionally, these strategies can also help reduce 
the economic and environmental impact of disasters, making recovery and 
restoration efforts more manageable. 

Examples of prevention and mitigation strategies include [27–29]: 

• Hazard assessments: Conduct regular assessments to identify potential 
hazards and develop appropriate prevention and mitigation strategies. 

• Early warning systems: Implement systems that provide early warning 
of potential hazards, such as natural disasters or industrial accidents, 
to allow for timely response and mitigation. 

• Infrastructure improvement: Upgrade and maintain infrastructure, 
such as roads, bridges, and buildings, to make them more resilient 
to disasters. 

• Community education and outreach: Educate communities about 
potential hazards, how to prepare for disasters, and what to do in 
case of emergency. 

• Disaster response planning: Develop comprehensive plans for respond-
ing to disasters and crises, including evacuation plans, emergency 
communication systems, and disaster relief efforts. 

• Environmental protection measures: Implement measures to protect 
the environment, such as reducing pollution and conserving natural 
resources, to prevent or mitigate the impact of disasters. 

• Risk assessments: Conduct regular assessments to identify potential 
hazards and develop appropriate prevention and mitigation strategies. 

• Use Antivirus Software: Install and regularly update a reputable 
antivirus software program on your computer or device. Antivirus 
software can help detect and remove malware from your system. 

• Keep Software Up-to-date: Keep your operating system, web browser, 
and other software applications up-to-date with the latest security 
patches and updates. Cybercriminals often exploit vulnerabilities in 
outdated software. 

• Use Strong Passwords: Use strong, unique passwords for all your 
accounts and avoid using the same password across multiple accounts. 
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Consider using a password manager to generate and store complex 
passwords. 

• Be Cautious of Email Attachments: Do not open email attachments or 
click on links from unknown or suspicious sources. Malware can be 
spread through email attachments and links. 

• Enable Two-Factor Authentication: Enable two-factor authentication 
(2FA) whenever possible. This adds an extra layer of security to your 
accounts by requiring a second form of authentication, such as a code 
sent to your mobile device. 

• Back Up Your Data: Regularly back up your data to an external hard 
drive or cloud storage service. This can help mitigate the impact of 
malware if your system is infected. 

• Educate Yourself: Stay informed about the latest threats and best prac-
tices for preventing and mitigating malware. Learn how to recognize 
and avoid phishing scams, and be cautious when downloading and 
installing software from the Internet. 

FUTURE OF CYBER-MALWARE 

The future of cyber-malware is a topic of concern for cybersecurity pro-
fessionals and businesses worldwide. As technology continues to evolve 
and become more complex, so do the threats posed by cyber-malware. 
One trend that is likely to continue in the future is the use of artificial 
intelligence (AI) by cybercriminals to develop more sophisticated and 
effective malware. AI-powered malware can adapt to its environment, 
evade detection, and target specific vulnerabilities in a network or system. 
This type of malware can also learn from its actions and adjust its behavior 
accordingly, making it more difficult to stop. 

Another potential development in cyber-malware is the increased use 
of ransomware attacks. Ransomware is a type of malware that encrypts a 
victim’s files or data and demands payment in exchange for the decryption 
key. This type of attack has become increasingly common in recent years 
and is likely to continue in the future, as it can be highly profitable 
for attackers. In fact, some experts predict that ransomware attacks may 
become more targeted, with attackers focusing on specific industries or 
organizations with high-value data. 

The Internet of Things (IoT) is another area of concern when it comes 
to the future of cyber-malware. IoT devices are often connected to the 
internet and can be vulnerable to attacks, as they may not have strong 
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security protocols in place. As the number of IoT devices continues to 
grow, so does the potential for cyber-attacks targeting them. This could 
lead to large-scale disruptions, such as attacks on critical infrastructure or 
widespread data breaches. 

Finally, there is a growing concern about the use of nation-state-
sponsored cyber-malware attacks. Governments may use cyber-malware to 
gain access to sensitive information, disrupt rival countries’ infrastructure, 
or carry out espionage activities. These attacks can be difficult to trace and 
may have significant political and economic consequences. 

So, the future of cyber-malware is likely to be characterized by 
increasingly sophisticated and targeted attacks. As technology continues 
to advance, so do the threats posed by cybercriminals. To mitigate these 
risks, businesses and individuals must remain vigilant and take steps to 
protect their networks, devices, and data. This includes implementing 
strong security protocols, keeping software up-to-date, and educating 
users about the risks of cyber-malware. 

Trends and Predictions for Future Malware Development 

Malware, or malicious software, has been a persistent threat to computer 
systems and networks since the dawn of the internet. Cybercriminals 
constantly seek out new ways to exploit vulnerabilities in software and 
hardware to gain unauthorized access to sensitive data or control systems 
for nefarious purposes. In recent years, malware development has become 
more sophisticated, and new trends are emerging that could shape the 
future of cybercrime [30]. Here are some predictions for trends in malware 
development in the near future [31]. 

• Fileless malware: Fileless malware attacks are on the rise, and this 
trend is likely to continue in the coming years. Fileless malware, also 
known as memory-resident malware, operates entirely in a computer’s 
memory and leaves no trace on the system’s hard drive. This makes it 
difficult to detect and remove, as traditional antivirus software relies 
on scanning files on a hard drive. As more businesses adopt cloud-
based computing and mobile devices become more prevalent, fileless 
malware is likely to become a more significant threat. 

• Malware as a service: Malware as a service (MaaS) is a growing trend 
in the cybercriminal underground. Just like software as a service 
(SaaS), MaaS allows cybercriminals to rent or purchase malware 
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from a third-party provider. This lowers the barrier to entry for less 
technically savvy criminals, who can now launch sophisticated attacks 
without having to develop their ownmalware. AsMaaS becomesmore 
prevalent, we can expect to see more varied and sophisticated malware 
being developed and deployed. 

• Advanced evasion techniques: As cybersecurity defenses become more 
sophisticated, malware developers are turning to advanced evasion 
techniques to avoid detection. These techniques include using encryp-
tion to hide malicious code, exploiting vulnerabilities in antivirus 
software, and creating polymorphic malware that can change its code 
to evade detection. As evasion techniques becomemore sophisticated, 
it will become increasingly difficult to detect and prevent malware 
attacks. 

• Targeted attacks: Rather than launching mass attacks, cybercriminals 
are increasingly targeting specific individuals or organizations. This 
allows them to conduct more sophisticated attacks, such as spear-
phishing, that are tailored to the victim’s interests or behaviors. As 
more data becomes available on individuals and organizations, we can 
expect to see more targeted attacks that leverage this information to 
bypass defenses and gain access to sensitive data. 

• IoT malware: With the rise of the Internet of Things (IoT), there is a 
growing concern about the security of these devices. IoT devices are 
often not designed with security in mind and can be easily hacked, 
giving cybercriminals access to sensitive data or control over critical 
infrastructure. As the number of IoT devices continues to grow, we 
can expect to see more malware specifically designed to target these 
devices. 

• Machine Learning-Based Malware: Machine learning has become 
a powerful tool for cybersecurity, and malware developers are no 
exception. By using machine learning algorithms, malware can adapt 
to its environment and learn how to evade detection. 

• Deepfakes: Deepfakes are videos or images that have been manipulated 
using artificial intelligence to make them appear real. In the future, we 
can expect to see more malware that uses deepfakes to trick users into 
downloading or installing malicious software. 

• Mobile Malware: With the increasing use of mobile devices, mobile 
malware has become a growing concern. In the future, we can expect 
to see more mobile-specific malware that can steal sensitive data or 
take control of the device. 
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Consequently, malware development is constantly evolving, and new 
trends and techniques are emerging all the time. As cybersecurity defenses 
become more sophisticated, cybercriminals will continue to find new ways 
to bypass them. Individuals and organizations need to stay informed about 
the latest trends in malware development and take appropriate measures to 
protect their systems and data. 

Emerging Threats and Attack Vectors 

As the digital landscape continues to evolve, so do the threats and attack 
vectors that cybercriminals use to compromise systems and steal data. Here 
are some emerging threats and attack vectors to be aware of [30, 31]: 

• Supply Chain Attacks: Supply chain attacks involve targeting a third-
party vendor that supplies software or hardware components to a 
larger organization. The attackers compromise the vendor’s systems, 
injecting malware into the products or services that the vendor pro-
vides. When the larger organization installs or uses the compromised 
product or service, the malware spreads to their systems, giving the 
attackers access to sensitive data. 

• Zero-Day Exploits: Zero-day exploits are vulnerabilities in software or 
hardware that are unknown to the vendor or manufacturer. Attackers 
exploit these vulnerabilities before the vendor can patch them, giving 
them access to the affected systems. Zero-day exploits are particularly 
dangerous because there are no known defenses against them. 

• Phishing: Phishing attacks are social engineering attacks that attempt 
to trick users into revealing sensitive information or installing mal-
ware. Phishing attacks can take many forms, including emails, text 
messages, or phone calls. These attacks are becoming increasingly 
sophisticated, using tactics such as personalized messaging and spoof-
ing trusted sources. 

• Ransomware: This is a type of malware that encrypts an organization’s 
data and demands payment in exchange for the decryption key. 
Ransomware attacks are becoming increasingly common and can 
cause significant disruption and financial losses. 

• Social engineering: Social engineering attacks involve tricking individ-
uals into divulging sensitive information or performing an action that 
compromises the security of an organization. Common techniques 
include phishing emails and pretexting. 
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• Machine learning attacks: Machine learning algorithms are vulnerable 
to attack, which can lead to inaccurate predictions or even malicious 
behavior. Adversarial attacks, where an attacker deliberately modifies 
data to trick the algorithm, are becoming increasingly common. 

• Insider threats: Insider threats can be intentional or unintentional, 
but they can cause significant damage to an organization’s security. 
Organizations need to implement policies and procedures to detect 
and prevent insider threats. 

• AI-Powered Attacks: As artificial intelligence (AI) becomes more 
prevalent in cybersecurity, attackers are using AI-powered tools to 
automate attacks. AI can be used to automate phishing attacks, 
identify vulnerabilities, and evade detection by security measures. 

• Cloud-Based Attacks: Cloud computing has become a popular choice 
for businesses, but it has also created new attack vectors for cyber-
criminals. Cloud-based attacks can include exploiting vulnerabilities 
in cloud infrastructure, stealing login credentials, or compromising 
data stored in the cloud. 

• Internet of Things (IoT) Attacks: IoT devices, such as smart home 
devices and industrial control systems, are becoming more prevalent 
in our lives. However, these devices often have weak security measures 
and are vulnerable to attack. Attackers can use IoT devices to launch 
attacks, such as Distributed Denial of Service (DDoS) attacks, or to 
steal sensitive data. 

Therefore, as technology continues to advance, cybercriminals will 
continue to find new and more sophisticated ways to compromise systems 
and steal data. It is important to stay informed about emerging threats 
and attack vectors and take proactive measures to protect our systems and 
data. This includes regularly updating software, using strong passwords, 
and implementing multi-factor authentication. 

The Role of Artificial Intelligence in Malware Development 
and Detection 

Artificial intelligence (AI) is playing an increasingly important role in both 
malware development and detection. On the one hand, AI can be used to 
create more sophisticated and effective malware, while on the other hand, 
it can also be used to develop more advanced detection and prevention 
techniques [32]. 
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One of how AI is being used in malware development is through 
the use of machine learning algorithms. By training these algorithms on 
large datasets of existing malware, researchers can develop new malware 
that is specifically designed to evade existing detection methods. Machine 
learning can also be used to create more sophisticated attack strategies, 
such as spear-phishing campaigns that are tailored to individual victims. 

However, AI is also being used to develop new and more effective 
methods for detecting and preventing malware. For example, AI can be 
used to analyze network traffic and identify patterns of behavior that are 
indicative of a malware infection. Similarly, machine learning algorithms 
can be trained to identify specific features of malware code, making it 
possible to detect and block new malware strains as they emerge. 

Another area where AI is having a significant impact on malware 
detection is in the development of so-called “next-generation” antivirus 
(NGAV) solutions. These solutions use a combination of machine learning 
algorithms and behavioral analysis techniques to detect and block malware 
in real time, even if it has never been seen before. NGAV solutions can also 
be used to identify and block previously unknown attack vectors, such as 
zero-day exploits, that traditional antivirus solutions are unable to detect 
[33]. 

Here are some of the new research trends for the role of AI in malware 
development and detection [32, 33]: 

• Adversarial machine learning: Adversarial machine learning is a tech-
nique where an attacker deliberately modifies data to trick themachine 
learning algorithm into making a wrong prediction. In the context of 
malware detection, attackers can use this technique to evade detection 
by creating malware that appears benign to machine learning algo-
rithms. New research is exploring how to develop machine learning 
algorithms that are more resilient to adversarial attacks. 

• Explainable AI: Explainable AI is a technique that enables humans to 
understand how a machine learning algorithm is making its predic-
tions. In the context of malware detection, explainable AI can help 
security analysts understand how a particular malware was detected 
and what features of the malware triggered the detection. This can 
help security analysts develop more effective detection strategies. 

• Deep learning: Deep learning is a subfield of machine learning that 
involves training deep neural networks with multiple layers. New 
research is exploring how deep learning can be used to detect malware 
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by analyzing its behavior. For example, deep learning can be used 
to analyze network traffic and identify patterns of behavior that are 
indicative of a malware infection. 

• Reinforcement learning: Reinforcement learning is a type of machine 
learning where an algorithm learns to make decisions by interacting 
with an environment. In the context of malware detection, reinforce-
ment learning can be used to train an algorithm to make decisions 
about whether a particular file is malware or not based on feedback 
from the environment. 

• Generative adversarial networks (GANs): GANs are a type of deep 
learning algorithm that consists of two neural networks that compete 
against each other. One network generates samples, while the other 
network tries to distinguish between real and fake samples. In the 
context of malware detection, GANs can be used to generate syn-
thetic malware samples that can be used to train machine learning 
algorithms. 

• Transfer learning: Transfer learning is a technique that involves train-
ing a machine learning algorithm on one task and then transferring 
that knowledge to another task. In the context of malware detection, 
transfer learning can be used to train a machine learning algorithm 
on a large dataset of non-malicious software and then transfer that 
knowledge to detect malware. 

In conclusion, while AI is being used to create more sophisticated and 
effective malware, it is also playing an important role in the development of 
new and more advanced malware detection and prevention techniques. As 
the threat landscape continues to evolve, AI will likely play an increasingly 
important role in both offensive and defensive cybersecurity strategies. 

CONCLUSIONS AND FUTURE WORK 

This chapter highlighted some of the latest trends and challenges in the 
field of malware detection and prevention. One of the key takeaways from 
this chapter is the increasing sophistication and complexity of malware 
attacks. Malware developers are becoming more adept at evading detection 
and are using more advanced techniques like artificial intelligence and 
machine learning to develop new strains of malware. As a result, traditional 
malware detection methods are becoming less effective. To combat this 
evolving threat landscape, researchers are exploring new approaches to 
malware detection and prevention. These include the use of artificial 
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intelligence and machine learning algorithms to analyze network traffic 
and identify patterns of behavior that are indicative of a malware infection. 
Next-generation antivirus solutions that use a combination of machine 
learning and behavioral analysis techniques are also emerging as an impor-
tant defense against malware attacks. 

Another important trend highlighted in this chapter is the increasing 
importance of collaboration between industry, academia, and government 
in the fight against cyber-malware. By working together and sharing 
information, researchers and cybersecurity professionals can stay ahead of 
emerging threats and develop more effective countermeasures. Looking to 
the future, the chapter concludes by suggesting that the field of malware 
detection and prevention will continue to evolve rapidly. New techniques 
and approaches will be developed to combat increasingly sophisticated 
attacks, and the role of artificial intelligence and machine learning in this 
field will continue to grow. In addition, the rise of the IoT is expected to 
introduce new challenges for malware detection and prevention, as these 
devices often lack the security features of traditional computers and servers. 

In conclusion, this chapter provided a valuable overview of the latest 
trends and challenges in the field of malware detection and prevention. 
By staying abreast of these trends and developing new and innovative 
solutions, cybersecurity professionals can help to protect individuals, busi-
nesses, and organizations against the growing threat of cyber-malware. 
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CHAPTER 1 

A Deep-Vision-Based Multi-class 
Classification System of Android Malware 

Apps 

Iman Almomani, Walid El-Shafai, Mohanned Ahmed, 
Sara AlAnsary, Ghada AlMudahi, and Lama AlSwayeh 

1.1 INTRODUCTION 

Nowadays, smartphones have become an essential part of our lives because 
they are not used only for phone calls; they can be used for personal 
payment, keeping personal data, healthcare facilities, and other different 
personal services and applications [17]. Furthermore, it is commonly 
known that Android Operating System (OS) is considered the most 

I. Almomani (�) 
Security Engineering Lab, Prince Sultan University, Riyadh, Saudi Arabia 

Computer Science Department, The University of Jordan, Amman, Jordan 
e-mail: imomani@psu.edu.sa; i.momani@ju.edu.jo 

W. El-Shafai 
Security Engineering Lab, Computer Science Department, Prince Sultan 
University, Riyadh, Saudi Arabia 

© The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2024 
I. Almomani et al. (eds.), Cyber Malware, Security Informatics and 
Law Enforcement, https://doi.org/10.1007/978-3-031-34969-0_1

1


 29185 -2241 a 29185 -2241
a
 

 1152 40875 a 1152 40875 a
 
mailto:imomani@psu.edu.sa
mailto:imomani@psu.edu.sa
mailto:imomani@psu.edu.sa

 10537 40875 a 10537 40875 a
 
mailto:i.momani@ju.edu.jo
mailto:i.momani@ju.edu.jo
mailto:i.momani@ju.edu.jo
mailto:i.momani@ju.edu.jo
https://doi.org/10.1007/978-3-031-34969-0_1
https://doi.org/10.1007/978-3-031-34969-0_1
https://doi.org/10.1007/978-3-031-34969-0_1
https://doi.org/10.1007/978-3-031-34969-0_1
https://doi.org/10.1007/978-3-031-34969-0_1
https://doi.org/10.1007/978-3-031-34969-0_1
https://doi.org/10.1007/978-3-031-34969-0_1
https://doi.org/10.1007/978-3-031-34969-0_1
https://doi.org/10.1007/978-3-031-34969-0_1
https://doi.org/10.1007/978-3-031-34969-0_1
https://doi.org/10.1007/978-3-031-34969-0_1


2 I. ALMOMANI ET AL.

popular OS for personal smartphones compared to other operating sys-
tems. Therefore, smartphones with Android OS platforms are highly 
targeted by cybercriminal operations [14]. 

Android OS is a Linux-based open-source OS developed and sponsored 
by Google company [23]. Google offers an authorized mobile play store 
with millions of Android applications (APKs). However, the Google play 
store is not the only open source of APKs; several other unauthorized third-
party mobile stores are available for APKs. Therefore, due to the availability 
of a massive number of official and unofficial sources for APKs, the number 
of possible privacy and security problems by malicious software is boosted. 

In 2017, Google company introduced a machine learning (ML)-based 
system called “Play Protect” as an attempt to alleviate the malware risks 
[24]. This ML-based ecosystem checks the APKs before and after their 
uploading to the Google market. However, it has been reported that over 
one million users have been infected by APKs available on the Google play 
store, and they have different types of malware [32]. Therefore, researchers 
and developers must put great effort into developing efficient and accurate 
malware detection tools to reduce the effect of growing malware risks. 

Three different types of malware detection (MD) scenarios could be 
used to detect malware risks: static-based MD, dynamic-based MD, and 
vision-based MD [5, 7, 10]. The static-based MD algorithms analyze the 
Android APKs to extract some static features without running the APK 
files [6]. On the other hand, the dynamic-based MD algorithms monitor 
and examine the malware running behavior inside an isolated operating 
environment (i.e., an Android emulator) to check the behavior and effect 
of the produced malware traffic [8, 15]. Finally, the vision-based MD 
algorithms convert the Android APK files or their extracted features into 
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visual images before in-depth training and testing analyses by different 
artificial intelligence (AI) tools, including machine learning (ML) and deep 
learning (DL) algorithms [12, 25]. 

The main advantages of vision-based MD algorithms compared to other 
static-based or dynamic-based MD algorithms are reducing the computa-
tional cost and avoiding reverse engineering steps required in static-based 
malware analysis [9]. In addition, they do not need to utilize special 
and isolated running environments to check the behavior of the malware 
APKs as required in dynamic-based malware analysis [11]. Thus, this 
encourages us to introduce a deep-vision-based multi-class classification 
system for android malware apps. The proposed vision-based MD system 
is based on utilizing 21 different convolutional neural network (CNN) 
models for malware detection and recognition. In the proposed MD 
system, the android apps’ binary formats are first converted into color and 
grayscale vision formats before forwarding them to utilized CNN models 
for training and testing mechanisms. The classification performance of the 
proposed vision-based detection system is examined using different security 
and recognition metrics. The obtained results prove the high detection 
performance of the suggested MD system in effectively detecting various 
malware families. 

The main contributions in this chapter are summarized as follows: 

• Outlining the most recent related Android malware detection sys-
tems tested on the two open-source CICAndMal2017 and CICMal-
Droid2020 datasets. 

• Proposing an accurate deep-vision-based multi-class classification sys-
tem for Android malware apps for two recent Android datasets that 
compose different malware families. 

• Developing and implementing different 21 fined-tuned DL algo-
rithms on the proposed classification system. 

• Testing the proposed classification system’s performance on different 
color and grayscale vision formats of the android malware families. 

• Presenting comprehensive security and detection analyses for the 
proposed classification system using different assessment parameters. 

The remainder of this chapter is structured as follows. Section 1.2 
presents the summary of the recent Android malware detection algo-
rithms applied to the CICAnd- Mal2017 and CICMalDroid2020 datasets. 
Section 1.3 explains the proposed vision-based multi-class classification
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system. Section 1.4 introduces the evaluations and discussions. Finally, 
Sect. 1.5 provides the concluding remarks and future works. 

1.2 RELATED WORKS 

Different malware detection and classification models have been intro-
duced in the literature for malware analysis of Android apps using two 
open-source CICAndMal2017 and CICMalDroid2020 datasets [26, 27]. 
To the best of our knowledge, all these malware analysis studies were 
based on static, dynamic, or hybrid-based detection techniques. But, none 
of these previous related studies are based on vision-based detection 
algorithms. Thus, this motivated us to introduce a deep-vision-based 
multi-class classification system for Android malware apps in the CICAnd-
Mal2017 and CICMalDroid2020 datasets. 

Therefore, different recent static- or dynamic-based malware analysis 
and classification systems were introduced based on the CICAndMal2017 
andCICMalDroid2020 datasets [2–4, 16, 16, 19, 21, 28–31, 34].Mahshid 
et al. [19] used the CICAndMal2017 dataset with 89 extracted network 
traffic features to detect and categorize Android malware. They employed 
two deep neural models that were based on a hybrid of long short-term 
memory (LSTM) and convolution neural network (CNN). Their proposed 
CNN-LSTM model achieved a malware category classification with an 
accuracy of 98.9% and malware family classification with an accuracy of 
97.29%. 

Syed et al. [21] suggested a DeepAMD model based on different ML 
algorithms to identify and detect various android malware families. They 
tested their proposed model using the CICAndMal2017 and CICMal-
Droid2020 datasets, including benign and malicious Android apps. The 
introduced DeepAMD model was based on both dynamic and static 
detection algorithms. For the static-based analysis, the DeepAMD model 
achieved a 93.4% accuracy for binary malware classification, while it intro-
duced 93.1% accuracy in the case of multi-malware families classification. 
In addition, for the dynamic analysis, the DeepAMD model scored a 
maximum detection accuracy of 80.3% for binary malware classification 
and 59.0% for a different malware families classification. 

In [16], the authors introduced a detection algorithm based on the 
hybridization of gated recurrent units (GRU) and recurrent neural network
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(RNN) for identifying malicious attacks in Android apps. First, they col-
lected two control attributes from Android apps: program interface (API) 
phones and privileges. Then, they tested the proposed detection algorithm 
on the different Android families of the CICAndMal2017 dataset. The 
results reveal that the developed DL algorithm is better than several other 
detection methods by achieving a 98.2% detection accuracy. 

In [31], the authors suggested an ML-based ransomware detection 
model. This model uses different ML algorithms to extract and analyze the 
valuable features of Android ransomware apps. They tested the detection 
efficacy of their proposed model on the CICMalDroid2020 dataset to 
check its classification accuracy of 10 distinct families of ransomware 
apps. The obtained results prove that the random forest classifier achieved 
superior ransomware detection efficiency compared to those of the other 
employed ML-based classifiers. 

The authors in [4] presented an android malware detection system using 
five different ML algorithms and one DL algorithm to analyze and extract 
the main static features of the Android apps. These extracted features were 
permissions, API calls, permissions rate, and monitoring system events. 
The suggested detection system was examined using the CICAndMal2017 
dataset that composes both benign and malware apps, and it achieved a 
detection accuracy of 98%. 

In [30], a semi-supervised ML algorithm is presented to distinguish 
between ransomware from benign Android apps. The proposed algorithm 
composes different feature extraction and selection techniques that were 
tested on different labeled and unlabeled Android apps of the CICAn-
dMal2017 dataset. In [34], a host-level encrypted traffic shaping-based 
Android malware classification approach was proposed. The classification 
approach tested three different ML algorithms on the real-world CICMal-
Droid2020 dataset for feature extraction and detection mechanisms. In 
addition, the authors simulated two experimental scenarios: malware family 
classification and binary malware detection. The results proved that the 
proposed classification approach had an accuracy of 98.8% for binary 
malware classification, while it achieved a 95.2% detection accuracy for 
malware family classification scenario. 

In [2], a conversation-level traffic feature-based Android malware cate-
gorization and detection approach was presented. This approach consisted 
of four phases: feature extraction, data cleaning, feature selection, and 
training and testing. Different ML-based classifiers were tested, and the 
attained results tested on the CICMalDroid2020 dataset proved that the
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extra-trees ML classifier achieved superior detection and categorization 
efficiency in terms of accuracy, recall, and precision compared to those of 
other employed ML-based classifiers. 

In [16], a novel DL-based Android malware detection algorithm was 
presented. It was based on utilizing a gated recurrent network to extract the 
static API and permission features fromAndroid apps. The proposed detec-
tion algorithmwas trained and tested on the CICAndMal2017 dataset, and 
an accuracy of 98.2% was accomplished. In [3], AI-based Android malware 
analysis and detection systems were introduced. This malware detection 
system was based on using different ML and DL algorithms such as k-
nearest neighbors (KNN), support vector machine (SVM), autoencoder, 
long short-term memory (LSTM), linear discriminant analysis (LDA), 
and convolution neural network long short-term memory (CNN-LSTM) 
algorithms. The proposed detection system was tested using the CICMal-
Droid2020 dataset. The SVM achieved the highest detection accuracy of 
99.5% for the detection analysis of the employed ML algorithms. For the 
security analysis of the DL algorithms, the LSTM algorithm presented a 
superior accuracy of 98.7%. 

In [29], the authors presented different supervised learning algorithms 
for network traffic-based malware detection. Therefore, the Android mal-
ware detection was based on employing six algorithms: SVM, naïve Bayes, 
decision tree, multilayer perceptron neural network, K-nearest neighbors, 
and random forest. These ML-based classifiers were examined using the 
CICAndMal2017 dataset for binary and multi-classification scenarios. The 
random forest classifier introduced the best malware detection perfor-
mance compared to other tested classifiers in terms of the obtained recall, 
precision, and accuracy results. 

In [28], an efficient pseudo-label stacked auto-encoder (PLSAE)-based 
Android malware detection approach was suggested. The PLSAE algo-
rithm is a semi-supervised learning approach; thus, it does not require 
more labeled data for efficient malware detection. The experimental anal-
ysis examines both labeled and unlabeled training Android instances. In 
addition, the feature extraction operation utilized both static and dynamic 
mechanisms. The security and detection analysis was based on analyzing 
five different Android categories of the CICMalDroid2020 dataset. The 
obtained outcomes proved that the suggested semi-supervising algorithm 
introduced high detection accuracy compared to other traditional super-
vised and semi-supervised ML algorithms.
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1.3 PROPOSED DEEP-VISION-BASED MULTI-CLASS 
CLASSIFICATION SYSTEM 

The main aim of this chapter is to propose a deep vision-based multi-
class classification system for Android malware apps. As shown in Fig. 1.1, 
the proposed vision-based classification system composes four consecutive 
phases: dataset gathering, preprocessing, training, and testing and evalua-
tion. 

In the first phase of dataset gathering, we collected the Android APKs 
and categorized them into different families, as presented in Table 1.1. 
In addition, in this phase, we ensured that there were no intersections or 
repeating apps in each tagged family. Then, in the second preprocessing 
phase, the Android apps were converted into two different vision-based 
formats (color and grayscale). The conversion process of Android apps 
to vision formats is performed by converting the 1D byte vectors of the 
portable executable Android files into 2D vector images [8, 15]. 

In the third phase of the proposed classification system, we performed 
the training process for the employed DL algorithms. First, we split 
the vision-based dataset into three different subsets: training, validation, 
and testing with the ratios of 80%, 10%, and 10%. Then, the training 
process starts by training each one of the utilized CNN algorithms by 
the 80% of generated vision-based Android images. Finally, the best-
trained parameters of each employed CNN algorithm were collected and 
saved to be exploited in the testing stage. In the training process, we 
used two formats of color and gray images to extensively train the used 
CNN algorithms to examine their detection capabilities in identifying the 
Android malware attacks when they are represented in different vision-
based formats. 

In the proposed multi-class classification system, 21 different pre-
trained CNN algorithms (ResNet50, VGG16, DenseNet121, VGG19, 
DenseNet201, DenseNet169, EfficientNetB7, EfficientNetB6, Effi-
cientNetB5, EfficientNetB4, EfficientNetB3, EfficientNetB2, Efficient-
NetB1, EfficientNetB0, InceptionResNetV2, MobileNet, InceptionV3, 
MobileNetV3Large, MobileNetV2, Xception, and MobileNetV3Small) 
[13, 20, 33] were tested. These CNN algorithms were implemented in 
Python and developed by TensorFlow and Keras libraries [1, 18, 22]. 

Finally, in the last testing and evaluation phase, we exploited the best 
collected fine-tuned parameters resulting from the prior stage to accurately 
test and evaluate the utilized CNN algorithms. So, in this phase, we used
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Fig. 1.1 Flow structure of the proposed deep-vision-based multi-class classifica-
tion system
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Table 1.1 Families and 
the number of samples of 
the employed Android 
datasets 

Dataset Family No. of samples 
CICAndMal2017 Benign 1648 

Adware 103 
Ransomware 100 
Scareware 112 
SMSMalware 109 

CICMalDroid2020 Benign 4042 
Adware 1515 
Banking 2506 
Riskware 4362 
SMSMalware 4822 

10% of the visual Android images for the validation process and 10% for 
the testing process. In the evaluation of the employed CNN algorithms, 
different security and detection assessment parameters are estimated, as 
will be discussed and clarified in Sect. 1.4.3. 

1.4 EVALUATIONS AND DISCUSSIONS 

This section presents a discussion of the security analysis and detection 
assessment of the proposed vision-based multi-class classification system 
for Android malware apps. All experimental tests were carried out using 
the vision formats of the Android apps included in the CICAndMal2017 
[26] and CICMalDroid2020 [27] datasets, as clarified in Sect. 1.4.1. The  
proposed vision-based malware detection system is extensively evaluated 
using different detection and evaluation metrics, as indicated in Sect. 1.4.2. 

1.4.1 Datasets Description 

We tested the detection performance of the proposed multi-class classi-
fication system on the vision-based formats of two standard unbalanced 
Android datasets: CICAndMal2017 and CICMalDroid2020 [26, 27]. 
Table 1.1 presents the names of the families and the number of samples 
included in the examined Android datasets. As indicated in Table 1.1, 
each one of these datasets consists of five families: one benign and 
four malware families. For example, the first CICAndMal2017 dataset 
composes of Adware, Ransomware, Scareware, and SMSmalware malicious 
families, while the secondCICMalDroid2020 dataset composes of Adware, 
Banking, Riskware, and SMSMalware families.
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Table 1.2 shows samples of the vision-based color and grayscale formats 
of the binary Android APKs for the two examined datasets. It is observed 
that each android family, benign or malware, has distinct features and char-
acteristics compared to other android families. So, vision-based Android 
malware detection models are highly recommended for malware classifica-
tion systems compared to other static or dynamic detection models. 

1.4.2 Security Detection Metrics 

In the performance analysis of the proposed vision-based multi-class 
classification system, various security detection metrics were employed 
to comprehensively test the detection and classification efficacy of the 
examined DL algorithms. The mathematical formulas of the exploited 
security detection metrics are expressed as follows: 

.F1-Score = 2T P

2T P + FN + FP
(1.1) 

.Precision (PPV) = T P

FP + T P
(1.2) 

.Recall = T P

T P + FN
(1.3) 

. Accuracy = T N + T P

T N + FP + T P + FN
(1.4) 

.Misclassification rate (MR) = FP + FN

T N + FP + T P + FN
(1.5) 

.FOR = FN

FN + T N
(1.6) 

.FDR = FP

FP + T P
(1.7) 

.FNR = FN

FN + T P
(1.8)
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.FPR = FP

FP + T N
(1.9) 

.NPV = T N

FN + T N
(1.10) 

.TNR = T N

FP + T N
, (1.11) 

where the confusion matrix of each examined DL algorithm is exploited to 
estimate the numerical values of the TN (true negative), TP (true positive), 
FN (false negative), and FP (false positive) parameters. Where, FOR: false 
omission rate, FDR: false discovery rate, TPR: true positive rate, FNR: 
false negative rate, FPR: false positive rate, NPV: negative predictive value, 
TNR: true negative rate, and PPV: positive predictive value. 

In addition to testing the performance of the proposed classification 
system using the evaluation parameters given in Eqs. (1.1–1.11), the 
confusion matrix [15] and loss and accuracy curves [8] were also utilized 
to comprehensively assess the security and detection capabilities of the 
employed CNN algorithms. 

1.4.3 Results Analysis 

This section discusses the obtained results of the detection and security 
analysis for the proposed vision-based multi-class classification system in 
terms of the assessment parameters described in Sect. 1.4.2. The  experi-
mental parameters of the CNN algorithms used in the proposed classifica-
tion system are organized in Table 1.3. 

For a simple presentation of the analysis of the results, the precision, F1-
Score, recall, and accuracy metrics are emphasized for each employed CNN 
algorithm in the proposed classification system for color and grayscale 
vision-based scenarios on the examined unbalanced datasets (CICAnd-
Mal2017 and CICMalDroid2020), as revealed in Tables 1.4 and 1.5. 

Tables 1.4 and 1.5 introduce the detection and security performance 
analysis of all 21 CNN predictive algorithms examined on two vision-
based color and grayscale formats of the two unbalanced CICAndMal2017 
and CICMalDroid2020 datasets. The attained results disclosed that the 
MobileNetV3Large and VGG16 CNN algorithms achieve superior detec-
tion efficiency for the color and grayscale formats of the CICAndMal2017
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Table 1.3 Experimental parameters of the CNN algorithms used in the proposed 
classification system 
Simulation parameter Value 
Software Python libraries TensorFlow and Keras 
Training/testing/validation ratio 80/10/10 (%) 
CNN optimizer ADAM 
Learning rate 0.0001 
Regularizer decay rate 0.001 
CNN regularizer L2 regularizer algorithm 
Epochs number 128 
Function of loss Categorical cross-entropy function 
Minimum batch size 64 

dataset, respectively. In addition, the obtained results clarified that the 
EfficientNetB7 and ResNet50 CNN algorithms accomplish the most 
excellent detection proficiency for the color and grayscale formats of the 
CICMalDroid2020 dataset, respectively. 

To provide a simple presentation of the experimental analysis, we show 
only the confusion matrices and loss and accuracy curves of the best-
accomplished CNN algorithms for the two examined vision-based color 
and grayscale formats of the two unbalanced datasets. Figure 1.2 shows 
the obtained confusionmatrices of the best-performedMobileNetV3Large 
and VGG16 CNN algorithms for the two vision-based color and grayscale 
formats of the CICAndMal2017 dataset. Figure 1.3 demonstrates the 
attained confusion matrices of the best-performed EfficientNetB7 and 
ResNet50 CNN algorithms for the two vision-based color and grayscale 
formats of the CICMalDroid2020 dataset. It is revealed from these 
obtained confusion matrices that the MobileNetV3Large, VGG16, Effi-
cientNetB7, and ResNet50 CNN algorithms provide low false detection 
performance for the two vision-based color and grayscale formats in both 
CICAndMal2017 & CICMalDroid2020 datasets. 

Figure 1.4 presents the obtained accuracy and loss curves of the best-
accomplished MobileNetV3Large and VGG16 CNN algorithms for the 
two vision-based color and grayscale formats of the CICAndMal2017 
dataset. Figure 1.5 presents the obtained accuracy and loss curves of the 
best-executed EfficientNetB7 and ResNet50 CNN algorithms for the two 
vision-based color and grayscale formats of the CICMalDroid2020 dataset. 
The acquired simulation outcomes verify that the MobileNetV3Large, 
VGG16, EfficientNetB7, and ResNet50 CNN algorithms offer the lowest
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Table 1.4 Detection performance analysis of the proposed classification system 
for the CICAndMal2017 dataset 
Model Format Accuracy (%) F1-score (%) Precision (%) Recall (%) 
VGG16 Color 

Gray 
86.12 
89.0 

84.41 
88.16 

84.87 
88.5 

86.12 
89.0 

ResNet50 Color 
Gray 

86.6 
87.56 

85.72 
86.73 

86.97 
88.97 

86.6 
87.56 

VGG19 Color 
Gray 

86.6 
88.04 

85.89 
87.6 

87.52 
87.83 

86.6 
88.04 

DenseNet121 Color 
Gray 

86.12 
84.69 

83.77 
82.78 

81.85 
86.66 

86.12 
84.69 

DenseNet169 Color 
Gray 

85.17 
87.08 

83.37 
86.02 

85.84 
85.82 

85.17 
87.08 

DenseNet201 Color 
Gray 

87.08 
86.6 

85.82 
85.08 

87.29 
86.04 

87.08 
86.6 

EfficientNetB0 Color 
Gray 

84.21 
84.21 

81.33 
81.09 

83.26 
81.93 

84.21 
84.21 

EfficientNetB1 Color 
Gray 

86.6 
84.21 

85.54 
81.82 

85.32 
80.57 

86.6 
84.21 

EfficientNetB2 Color 
Gray 

85.17 
85.65 

84.09 
84.17 

84.62 
84.24 

85.17 
85.65 

EfficientNetB3 Color 
Gray 

87.08 
86.6 

85.69 
85.7 

88.47 
86.51 

87.08 
86.6 

EfficientNetB4 Color 
Gray 

87.08 
86.6 

85.86 
86.23 

85.52 
86.11 

87.08 
86.6 

EfficientNetB5 Color 
Gray 

84.21 
86.12 

82.12 
84.58 

84.27 
86.01 

84.21 
86.12 

EfficientNetB6 Color 
Gray 

82.3 
83.25 

78.59 
80.07 

80.42 
86.12 

82.3 
83.25 

EfficientNetB7 Color 
Gray 

84.21 
81.82 

81.52 
78.49 

81.89 
77.35 

84.21 
81.82 

InceptionResNetV2 Color 
Gray 

79.9 
78.95 

74.9 
69.66 

71.1 
62.33 

79.9 
78.95 

InceptionV3 Color 
Gray 

83.25 
83.73 

79.88 
81.27 

78.89 
81.02 

83.25 
83.73 

MobileNet Color 
Gray 

81.82 
82.3 

78.17 
79.69 

76.63 
80.59 

81.82 
82.3 

MobileNetV2 Color 
Gray 

81.34 
82.3 

77.64 
79.2 

75.66 
78.41 

81.34 
82.3 

MobileNetV3Large Color 
Gray 

86.6 
88.04 

86.46 
87.21 

87.69 
88.22 

86.6 
88.04 

MobileNetV3Small Color 
Gray 

85.17 
85.65 

84.68 
83.68 

84.6 
85.13 

85.17 
85.65 

Xception Color 
Gray 

80.38 
82.3 

78.88 
80.52 

78.0 
80.72 

80.38 
82.3
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Table 1.5 Detection performance analysis of the proposed classification system 
for the CICMalDroid2020 dataset 
Model Format Accuracy (%) F1-score (%) Precision (%) Recall (%) 
VGG16 Color 

Gray 
88.6 
89.29 

88.64 
89.29 

88.72 
89.31 

88.6 
89.29 

ResNet50 Color 
Gray 

88.77 
89.99 

88.82 
89.99 

88.89 
90.03 

88.77 
89.99 

VGG19 Color 
Gray 

88.66 
88.66 

88.77 
88.69 

88.94 
88.77 

88.66 
88.66 

DenseNet121 Color 
Gray 

87.04 
85.71 

86.95 
85.83 

87.1 
86.23 

87.04 
85.71 

DenseNet169 Color 
Gray 

86.17 
86.92 

86.26 
86.75 

86.89 
86.67 

86.17 
86.92 

DenseNet201 Color 
Gray 

87.15 
88.66 

87.2 
88.63 

87.4 
88.66 

87.15 
88.66 

EfficientNetB0 Color 
Gray 

89.64 
89.24 

89.67 
89.18 

89.72 
89.15 

89.64 
89.24 

EfficientNetB1 Color 
Gray 

89.7 
89.47 

89.72 
89.58 

89.77 
89.8 

89.7 
89.47 

EfficientNetB2 Color 
Gray 

88.02 
88.6 

88.03 
88.54 

88.05 
88.63 

88.02 
88.6 

EfficientNetB3 Color 
Gray 

88.89 
89.0 

88.78 
88.97 

89.03 
89.1 

88.89 
89.0 

EfficientNetB4 Color 
Gray 

89.64 
88.77 

89.68 
88.83 

89.74 
88.9 

89.64 
88.77 

EfficientNetB5 Color 
Gray 

87.96 
89.41 

88.05 
89.41 

88.4 
89.41 

87.96 
89.41 

EfficientNetB6 Color 
Gray 

88.19 
87.62 

88.16 
87.63 

88.16 
87.66 

88.19 
87.62 

EfficientNetB7 Color 
Gray 

89.87 
88.37 

89.88 
88.51 

90.01 
88.88 

89.87 
88.37 

InceptionResNetV2 Color 
Gray 

54.8 
60.42 

47.81 
54.69 

46.43 
57.34 

54.8 
60.42 

InceptionV3 Color 
Gray 

81.19 
80.61 

80.86 
79.81 

81.03 
80.4 

81.19 
80.61 

MobileNet Color 
Gray 

78.18 
83.8 

77.84 
83.91 

77.72 
84.13 

78.18 
83.8 

MobileNetV2 Color 
Gray 

79.92 
83.97 

80.0 
83.82 

80.2 
83.87 

79.92 
83.97 

MobileNetV3Large Color 
Gray 

89.41 
89.7 

89.4 
89.67 

89.47 
89.72 

89.41 
89.7 

MobileNetV3Small Color 
Gray 

88.31 
88.66 

88.27 
88.68 

88.23 
88.82 

88.31 
88.66 

Xception Color 
Gray 

80.56 
82.47 

81.13 
82.49 

82.57 
82.66 

80.56 
82.47
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Fig. 1.2 Confusion matrices of the best-performed CNN algorithms on the color 
and grayscale formats of the CICAndMal2017 dataset. (a) MobileNetV3Large. (b) 
VGG16 

Fig. 1.3 Confusion matrices of the best-performed CNN algorithms on the color 
and grayscale formats of the CICMalDroid2020 dataset. (a) EfficientNetB7. (b) 
ResNet50 

detection loss and highest detection accuracy compared to the other 
tested CNN algorithms used in the proposed classification system, as also 
summarized in Tables 1.4 and 1.5.
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Fig. 1.4 Accuracy and loss curves for the best-performed CNN algorithms 
on the color and grayscale formats of the CICAndMal2017 dataset. (a) 
MobileNetV3Large. (b) VGG16 

Fig. 1.5 Accuracy and loss curves for the best-performed CNN algorithms on the 
color and grayscale formats of the CICMalDroid2020 dataset. (a) EfficientNetB7. 
(b) ResNet50 

1.5 CONCLUSIONS AND FUTURE WORK 

This chapter introduced an efficient vision-basedmulti-classification system 
to detect different types of malware families in Android apps. The proposed 
MD system could be adapted to detect malware in Android apps in visual 
color or grayscale formats. An in-depth evaluation of the proposed MD
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system has been conducted to comprehensively check the detection efficacy 
of all utilized 21 CNN algorithms. The acquired detection outcomes for 
all employed CNN algorithms and tested evaluation metrics prove that 
the proposed vision-based MD systems can be a promising solution for 
malware analysis in Android OS. For future work, the proposed vision-
based MD system should include different preprocessing stages, such as 
extracting handcrafted features from the visual malware images, to improve 
detection accuracy. In addition, the proposed system could be examined 
to detect different ransomware families. Furthermore, we aim to examine 
the proposed MD system performance for other mobile operating systems. 
Moreover, we can investigate the impact of obfuscation techniques on the 
performance of vision-based MD systems. 
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CHAPTER 2 

Android Malware Detection Based on 
Network Analysis and Federated Learning 

Djallel Hamouda, Mohamed Amine Ferrag, 
Nadjette Benhamida, Zine Eddine Kouahla, 

and Hamid Seridi 

2.1 INTRODUCTION 

With the development and the increasing number of available Android-
based systems and application software, such as in industrial IoT systems 
and smartphones [2], the latter are also becoming more popular targets 
for cyber criminals, who plant their malicious apps as an exploit to conduct 
serious and devastating cyber attacks over a large network of connected 
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devices. Several malware detection strategies have been proposed in the 
literature and consist primarily of two stages: malware analysis and malware 
detection (Fig. 2.1) [18]. The former describes the analysis and processing 
techniques used for detection and consists of two types of approaches: static 
analysis and dynamic analysis (Fig. 2.1a). The static analysis investigates the 
malware code without running it, using reverse engineering techniques. 
Usually, the application package (APK) file is decompressed, and many 
representative features are extracted from it [19]. This static analysis had 
proven to be effective against known malware. It is, however, ineligible 
with new ones and easily deceived by obfuscation techniques. Dynamic 
analysis monitor and analyze the runtime characteristics of malware appli-
cations while running their code, based on an assessment of behaviors to 
determine the functionality of malware, such as information flow tracking, 
function call monitoring, and instruction tracing, which can be applied 
[16]. Dynamic analysis generally uses virtual environments and emulators 
for analysis and data collection, an effective technique to identify unknown 
malware. However, it is time-consuming and requires costly computation. 
Dynamic malware detection was also introduced from a network traffic 
aspect to detect malware that conducts its attacks over networks to remote 
targets [4]. And due to this, they produce network traffic traces that can be 
detected by analyzing the network traffic behavior. However, the latter is 
also a tough task and suffers from increasing false alarm rates or decreasing 
sensitivity (i.e., detecting attack classes) as the number of different types of 
behaviors increases. 

Fig. 2.1 A taxonomy of malware analysis techniques and detection strategies. (a) 
Taxonomy of Malware analysis techniques for feature extraction. (b) Taxonomy of 
Malware detection techniques



FEDERATED LEARNING BASED ANDROID MALWARE DETECTION 25

The malware detection strategy (Fig. 2.1b) describes the placement 
strategy and the detection approach. The placement strategy specifies 
whether the malware detection system is implemented on the host (a 
mobile or IoT device) or in the cloud to characterize the detection 
system’s efficiency against complex code variants of malware while using 
limited computation resources [5]. On the other side, malware detection 
approaches describe the methods and algorithms used to detect and 
identify malware. Several ML and DL approaches have been proposed 
in this context to improve the accuracy of malware detection. However, 
their efficiency depends on the availability of large and diverse datasets. 
In addition to the described challenges, data privacy and shortages are 
another important challenge when deploying conventional cloud-based 
and deep-learning-based (DL) security solutions. In this chapter, we study 
the effectiveness of the recently proposed federated learning paradigm for 
malware detection against the aforementioned challenges. Our objective 
is to develop an efficient and effective learning mechanism for malware 
detection in terms of detection accuracy and computation cost, all while 
maintaining data privacy. The main contributions to this chapter are as 
follows: 

• We first reviewed Android malware detection strategies and related 
challenges. 

• We propose a novel privacy-preserving federated deep learning tech-
nique using convolutional neural networks (CNN) to detect several 
types of malware, based on network traffic behavior analysis. 

• We evaluate the performance of the proposed detection methodology 
in terms of accuracy, detection rate, and under different FL settings 
(i.e., number of participating devices). 

The remainder of this chapter is organized as follows. We review 
malware detection strategies in Sect. 2.1. Section  2.2 provides an overview 
of related works. Section 2.3 demonstrates the deployment architecture. 
Section 2.4 demonstrates experimental results and effectiveness of the 
proposed FL-based malware detection methodology. Finally, we conclude 
our work in Sect. 2.5. 

2.2 RELATED STUDIES 

Several studies have been conducted in the domain of Android malware 
detection relying on deep learning methodologies. Researches are making
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use of both static and dynamic malware analysis techniques to extract 
representative features necessary for the learning process of deep learning 
models. In a case study proposed by Yuan et al. [21] that links the 
features from the static analysis with the features from the dynamic 
analysis of Android apps for malware detection, the extracted features 
fall into three categories: required permission, sensitive API, and dynamic 
behavior. The authors proposed a deep learning approach based on a deep 
belief network (DBN) for malware detection engine (DroidDetector); 
the results reveal that the proposed model obtained improved accuracy 
under diverse scenarios and outperformed traditional machine learning 
techniques especially with the availability of more training data. Similar in 
[22], the authors used FlowDroid static analysis tool to extract data flows 
from all sensitive sources to sensitive sinks and proposed deep learning-
based approach using DBN for identifying malware directly from their data 
flows. Results show that the proposed approach significantly outperforms 
traditional ML approaches in appropriate settings. Karbab et al. [10] 
presented an automatic detection system of Android malware using deep 
learning techniques and raw sequences of API method calls to identify 
Android malware. Kim et al. [11] proposed a multimodal deep learning 
method for malware detection based on only static analysis features by 
analyzing APK files such as manifest file, adex file, and a .so file to reflect 
various characteristics of applications in various aspects. The proposed deep 
learning multimodal was utilized to discriminate the properties of different 
types of input features that are processed in different initial networks 
separately, and the results of the initial networks are subsequently used 
to train the final network, to produce the classification results. Iadarola et 
al. [9] proposed a deep convolutional network (CNN) for image-based 
malware classification aimed to discriminate between Android malware 
and trusted samples (Benign). They also provided a methodology about 
the interpretability of the predictions performed by the model using a 
cumulative heatmap manually performed by the analyst. Experimental 
results demonstrated the efficiency of the proposed method, by identifying 
six different malware families from benign samples and also by providing 
interpretability about the predictions performed by the model. Unlike in 
[4], Arora et al. proposed the first Android malware detection using its 
network traffic analysis. They captured network traffic data of 13 malware 
apps. Then, dynamic analysis was conducted on the traffic behavior to 
generate significant features for malware detection. The authors selected a 
rule-based machine learning classifier and obtained reasonably acceptable
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results. Similar in [6], the authors presented a network-based detection 
model to distinguish malicious applications from normal ones installed on 
Android mobile devices. They tried various ML models to select the best 
deployment model. Another study [23] employed a dynamic detection 
approach based on network traffic, which captured the application’s behav-
ior throughout runtime. The authors considered seven network traffic 
features and obtained acceptable results. In [12], and [13], Lashkari et 
al. proposed new Android malware datasets using network traffic analysis. 
The authors installed a large number of Android apps (both benign and 
malicious) on real devices and then captured network traffic from user 
interactions to collect all normal and abnormal behaviors that character-
ize malware apps. The authors proposed several ML-based techniques 
to detect and identify malware apps. Experimental results showed the 
effectiveness of network-based malware detection. However, results for 
malware identification were not good enough. Recently, Rey et al. [17] 
investigated the potential afforded by the emergent federated learning 
(FL) paradigm for IoT malware detection, and the experimental findings 
indicated the promising performance with an extra security service, which 
is data privacy protection. Table 2.1 summarizes related works on Android 
malware detection based on deep learning. 

In summary, several Android malware detection studies have been pro-
posed and discussed, applying bothML andDL approaches and employing 
different malware analysis techniques with matching features. However, 
DL-based malware detection using the predictability of their network 
behavior has not been widely discussed. In addition, other constraints 
identified, including computing resource limitations, a lack of training data, 
and privacy concerns, have not been commonly discussed. 

To this end, we proposed a novel privacy-preserving DL-based malware 
detection system employing the emergent federated learning paradigm 
to efficiently and effectively detect a large number of Android malware 
samples based on network analysis and without data sharing. 

2.3 METHODOLOGY 

2.3.1 Federated Learning Paradigm 

Recently, a novel collaborative learning paradigm and a decentralized 
optimization strategy named federated learning (FL) have been proposed 
to train ML and DLmodels based on datasets and computational resources
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that are distributed across multiple devices through parameter exchange 
while preventing data leakage [15]. This novel paradigm has the potential 
to overcome significant challenges of traditional ML approaches for mal-
ware detection, such as resource constraints, data privacy, data distribution, 
and heterogeneity [7]. The main idea of FL is to solve the conventional 
optimization problem of ML iteratively in a distributed manner, such 
that each device tries to minimize its local cost function through local 
training while seeking to optimize the global model parameters. The FL 
optimization problem can be formulated as follows: 

. min
W∈Rd

f (W) = 1
N

N∑

i=1

(W,Di)ג (2.1) 

where .W ∈ Rd denotes the global model parameters to be optimized, 
.N,Di denotes the participating devices and their corresponding data 
samples, and .ג(W,Di) denotes the cost function to be optimized and 
returns the locally computed updates. In each round of FL, three main 
steps are performed [15]: 

• Device sampling: A subset of devices, also called clients, is chosen 
according to selection criteria to participate in the training procedure. 

• Local computation: Each chosen device trains its local model on its 
local dataset, minimizing its local cost function  .(W,Di)ג.

• Aggregation and consensus: The locally computed model updates 
are aggregated to update the global model, either with the help 
of a central entity called an aggregation server, which describes the 
centralized FL, or by communicating with only neighboring devices, 
which describes the decentralized FL. 

Although FL provides data privacy and effective deployment of ML 
approaches, there are also research efforts to make FL more secure against 
inherited vulnerabilities within the framework, such as poisoning attacks, 
model stealing, and Byzantine attacks [8]. 

2.3.2 Our Proposed Detection Methodology 

With the aim to efficiently and effectively detect large-scale Android mal-
ware while considering privacy preservation, we incorporate FL for model
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training. Our methodology consists mainly of three steps: data processing, 
FDL-based model training, and results evaluation (in Sect. 2.4). 

Dataset Processing 
Deep-learning-based malware detection is largely influenced by the quan-
tity and quality of training data; the more high-quality data there is, the 
higher the accuracy and results. In this study, we selected an adequate and 
benchmark dataset named AAGM (Android Adware and General Malware) 
due to its diversity in malware samples [12]. This dataset comprises 1500 
benign app samples and 400 malware samples from 10 families, including 5 
families of adware and 5 families of general malware. The authors installed 
these samples on actual smartphones and started running user-interaction 
scenarios to capture meaningful network traffic behavior. They provided 
a total of 471597 benign instances and 160358 malware instances, along 
with 80 network traffic features (i.e., flow-based, time-based, and packet-
based features), in order to distinguish Android malware behavior from 
that of benign apps. Before training, it is essential to do exploratory analyses 
and data processing on the dataset to handle multiple issues. First, we elim-
inate five null features that would have a negative impact on model perfor-
mance “furg_cnt,” “burg_cnt,” “flow_urg,” “flow_cwr,” and “flow_ece,” 
we also eliminate four other almost null features like “std_idle,” “bAvg-
BytesPerBulk,” “bAvgPacketsPerBulk,” and “bAvgBulkRate.” After that, 
we dropped redundant instances and instances with missing values, and 
then the data was normalized before being split to 80% for training and 
20% for testing using the hold-out validation strategy. In the FDL settings, 
80% of the training data is again distributed to the participating clients. 
Figure 2.2 illustrates dataset class distribution after the preprocessing step 
using the t-SNE technique [20]. 

FDL-Based Model Training 
We setup the FDL process using multiple clients holding local datasets. 
These local datasets were sampled from the main dataset and identically 
distributed according to the number of participating clients, all with the 
same feature vector as the main dataset. 

Our proposed FDL-based training paradigm is demonstrated in Algo-
rithm 1. Figure 2.3 depicts an organizational chart of our FDL-based 
Android malware detection method: 

1. A coordinating central server starts the FDL process by initializing 
the global model architecture and corresponding global parameters
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Fig. 2.2 Exploring the high-dimensional AAGM2017-dataset using the t-SNE 
technique [20]. (a) Train data visualization. (b) Test data visualization 

Fig. 2.3 A flow chart of the proposed FDL-based Android malware detection 
such as the learning rate, the local batch size, and the local training 
epochs. 

2. The server sends this information to pre-selected clients (i.e., clients 
with resource availability and sufficient training data) to compute 
local updates in an asynchronous manner. 

3. Each client performs a number of local training epochs on the 
received model and then sends back the computed updates (i.e., the 
new model parameters) to the server.
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4. To update the global model, the server aggregates all local updates 
from selected clients. After that, Steps 2, 3, and 4 are repeated for 
another round of FDL until model convergence. 

5. The server evaluates and maintains the final version of the global 
model for future use. Depending on its local performance to be 
deployed for malware detection, each participating client is inde-
pendent in preserving any global model states throughout the FDL 
training. 

Algorithm 1: Federated learning based Android Malware detec-
tion [15] 
1 Server (K :Selected clients , C :Total clients, R : Total rounds) 

/* model initialization */ 
2 Cnn1 ← Initilize_Cnn_Model() 
3 

/* Start FDL with a random selected clients at each 
round */ 

4 for t = 1, .., R do 
5 St ← Subset randomly chosen clients from C 
6 Parallel.for k ∈ St do 
7 Cnnk 

t+1 ← Client(Cnnt , k) // Compute local updates 

8 end 
9 Cnnt+1 ← 1 

K

∑K 
k=1 Cnnk 

t+1 // Aggregate all client updates 

10 end 
1 Client (i.e., device) (m :model, k :client-Id) 

/* Split the local dataset D into B local data batch */ 
33 B ← Split(D, B) 
55 for i = 1,..,E :local epochs do 
6 for b ∈ B do 
7 m ← m − η∇fc(m, b) // Local client training 
8 end 
9 end 

10 Send m to the Server 

For the DL approach, different model architectures are well equipped 
and can be deployed to treat and handle the required malware behaviors, 
degrees of difficulty, and complexity. In our study, we selected the convolu-
tional neural network model (CNN), a dedicated class of neural networks 
for data processing with a familiar network structure, designed mainly to
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extract discriminatory spatial features for model decisions. CNN networks 
are composed of a set of convolutional layers that use a mathematical 
operation called convolution and process perceptron layers [14]. 

2.4 RESULT AND DISCUSSION 

The proposed FDL-based Android malware detection approach using 
CNN was tested in a free environment of the Google Colaboratory using 
the PyTorch library and GPU hardware accelerators. Table 2.2 depicts our 
experimental setting. Several experiments were carried out to adjust hyper-
parameters and achieve an accurate and generalized detection model. The 
performance evaluation is conducted for malware detection (i.e., binary 
classification) using the following performance measures: 

• Accuracy (Acc): given by: 

.Acc = T P + T N

T P + FP + T N + FN
where : (2.2) 

TP: is the number of correctly classified positive samples. 
TN: is the number of correctly classified negative samples. 

Table 2.2 Experimental settings for federated learning 
Subject Parameters Values 
CNN Pytorch Conv1d-1 Classifier [1, 64, 70] 

Conv1d-2 [1, 32, 70] 
Conv1d-3 [1, 16, 70] 
Linear-4 [1, 32] 
Linear-5 [1, 2] 
Learning rate .η 0.001 
Loss function CrossEntropyLoss 
Activation function ReLu 
Batch size 126 
Classification function SoftMax 

FDL Clients Sets [10, 20, 40] 
Data Distribution IID 
Local epochs [2,3] 
Total rounds 30 
Local Batch size 32 
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FP: is the number of wrongly classified positive samples 
FN: is the number of wrongly classified negative samples. 

• Precision (Pr): the proportion of appropriate malware predictions 
(TP) to the total number of predicted malware outcomes, as given 
by : 

.Pr = T P

T P + FP
(2.3) 

• Detection rate (Dr): the proportion of appropriate malware predic-
tions (TP) compared to the overall count of all samples that should 
have been detected as malware as given by : 

.Dr = T P

T P + FN
(2.4) 

• Time complexity: the temporal complexity of the global model conver-
gence and depends on the client’s training time and model aggrega-
tion time. Considering that clients are training simultaneously, the 
time complexity would be the average time of all clients’ training 
plus model aggregation. The temporal complexity of the server-client 
interaction was ignored. 

Table 2.3 presents a comparison of detection performance with other 
comparable recent research using the AAGM-2017 dataset. The experi-
mental settings differed, with different validation strategies and different 
test and training samples. For that, we implemented a centralized detection 

Table 2.3 Comparison of performance between our proposed detection method 
and other related works using AAGM2017 dataset 
Reference Classes Acc Pr Recall F1-score Support 
Lashkari et al. 2018 [12] Benign + Mal 0.91 0.91 N/A N/A N/A 

Benign N/a 0.95 8000Andresini et al. 2021 [3] 
Malware 0.89 

0.66 0.71 
2000 

Benign N/AAcharya et al. 2022 [1] 
Malware N/A 0.97 0.96 0.97 1915 
Benign 0.87 0.89 0.88 41877 Our centralized 

Cnn Malware 0.84 
0.78 0.76 0.77 22408 

Benign 0.85 0.91 0.88 41877 Our proposed FDL 
approach Malware 0.837 

0.80 0.71 0.75 22408 

Acc: Accuracy, Pr: Precision, Support : Number of test instances 
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strategy using the same settings and compared it with the proposed FDL-
based detection approach. The FDL-based model classified the “Benign” 
class, which represents normal apps, with a recall of 92%, and the “mal-
ware” class, which comprises all ten Android malware families, with a 71% 
of detection rate. The results demonstrate the efficiency of FDL, with 
practically the same performance as the centralized approach. However, 
these results of both detection approaches are not enough for real-world 
application, considering the high rate of false positives and false negatives 
as illustrated in Fig. 2.4. 

Figure 2.5 illustrates a comparison of model accuracy, loss, and time 
complexity using different training approaches. In terms of time complex-
ity, we can demonstrate the efficacy of the proposed FDL approach. How-
ever, when using a large number of participating clients, the global model’s 
accuracy decreased from 83.74% to 78.47%, as depicted in Table 2.4. 

Fig. 2.4 Confusion matrix results. (a) with the centralized approach. (b) with the  
federated deep learning (FDl) 
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Fig. 2.5 Comparison of model accuracy, loss, and time complexity using different 
training approaches 

Table 2.4 Accuracy evaluation results of proposed federated deep learning 
method 

Round one Round 10 
Total clients Best client Worst client Global model Best client Worst client Global model 
K = 10 68.17 66.31 60.95 83.07 82.16 83.74 
K = 20 69.01 66.45 68.27 82.14 81.74 82.27 
K = 40 65.79 63.6 65.34 78.05 76.38 78.47 

2.5 CONCLUSION 

In this chapter, we propose a novel, cost-effective DL-based Android mal-
ware system (FDL) leveraging the emergent federated learning paradigm. 
The analysis was conducted using the network layer features of malware 
samples to detect any variation from their normal behavior. Experimen-
tal results proved the efficiency and effectiveness of the proposed FDL 
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paradigm compared with conventional centralized methods in terms of 
computation cost and privacy protection. However, the detection effi-
ciency was not good enough when considering only network-based statis-
tical features, and it was limited to only those sets of malware that require 
network connectivity and produce some abnormal network behavior. In 
the future, we intend to integrate local behavior with traffic behavior 
to efficiently detect large sets of malware. Also, we plan to improve the 
detection approach of our proposed FDL by employing non-identically 
distributed data as well as secure aggregation against emergent adversarial 
attacks. 
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CHAPTER 3 

ASParseV3: Auto-Static Parser and 
Customizable Visualizer 

Iman Almomani, Rahaf Alkhadra, and Mohanned Ahmed 

3.1 INTRODUCTION 

Ourmodern world is rapidly moving toward digitalization and automation, 
where everything is converging into an automated version. As technology 
takes over our lives, we are at the start of the 4th industrial revolution, 
which mainly focuses on a world that relies heavily on technology and 
innovation. The use of technology not only provides us with convenience 
but comfort as well. However, the rapid development of technology comes 
at the price of ensuring cybersecurity. Attackers are finding many ways 
to achieve their malicious goals, which requires us to take precautions to 
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face such security issues. One of the most popular and common forms of 
security invasion in our digital world is using malicious code, often referred 
to as malware [27]. Malware is a code written by security attackers to 
intrude into a specific computer system or software to perform malicious 
acts such as stealing data or causing damage. For example, malware could 
be in different forms, such as worms, viruses, trojans, spyware, adware, or 
ransomware. Therefore, it is essential to protect any system from malware. 
This can be done by detecting the malware and then classifying which type 
it is. A tremendous amount of research has been conducted in the past 
years regarding the topic of malware detection and classification [11]. 

According to recent reports, malware generation and creation have been 
increasing rapidly on a daily basis. It is estimated that around one million 
malware files are created daily [31]. This increase could seriously threaten 
the economy, both financially and technically. The increase in cyber threats 
and crimes costs the economy around 1 trillion dollars in 2022 for cyber 
insurance, which results in an increase of 50% in comparison to the past 2 
years [12]. The term malware refers to any malicious entity that changes 
the original behavior by utilizing software flaws and vulnerabilities. In this 
chapter, the term malware will be used to refer to any malicious software 
that may include any of the following malware families, ransomware, 
adware, viruses, or keyloggers [11]. 

Depending on the purpose and behavior of themalware, it is categorized 
into different families. Every family has common features. For instance, 
stealing information, creating vulnerability, and denial of service are all 
examples of malware behavior. Such behaviors are essential in detecting 
malware since this information will be used to analyze the software and 
categorize it into benign or malware [35]. To differentiate between 
malicious and benign apps, we need to scan the program code first, extract 
its features, and analyze them [6]. Features extraction can be achieved 
through two main ways: static analysis [3] and dynamic analysis [13]. 
Another possible way is to use hybrid analysis [2], a combination of the 
previous two [25]. Static analysis is concerned with contextual data from 
the source code without running the program. However, dynamic analysis 
involves executing the program and extracting the runtime features. The 
hybrid analysis uses both contextual and runtime features to detect malware 
[11]. 

Over the years, researchers have been developing new techniques for 
malware detection. The latest trend in this field is using machine learning 
for malware detection. However, this technique cannot be used without
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analyzing the program code and extracting important features that help in 
discriminating the malware families [22]. It is possible to evade the risk 
of malware if the related features are available. Therefore, a collection of 
advanced detection methods using machine learning depends on feature 
engineering as well as reverse engineering [33]. Feature engineering is 
a technique used to manipulate unstructured data into features that can 
be understandable by the computer or machine [32]. However, other 
techniques, such as binary obfuscation, can be used by attackers to design 
a reverse engineering resistant file [30]. Moreover, deep learning can be 
used in an advanced model of neural networks to capture features, learn, 
and adapt during training. Even though a few studies report the use of deep 
learning, some do not discuss the scalability and different architectures 
enough for malware detection [5, 33]. 

One of the main benefits of using static analysis over any other technique 
is that this analysis does not require executing the program, making it a 
safer choice to apply [25]. Moreover, another vital benefit is examining 
the code without regard to the diversity of IoT architecture or the physical 
capabilities of an IoT device. Hence, the analysis considers all possible 
inspection methods with no reference to the physical performance [24]. 
Furthermore, due to the nature of the static analysis, the malware may not 
be able to avoid, hide, and/or obfuscate during the analysis process because 
it runs passively [34]. Finally, its automation characteristic is what makes 
static analysis prominent and outstanding [16]. 

Therefore, this chapter introduces a new comprehensive static parsing 
software called ASParseV3. It is an extension to ASParseV1 [1]. It is a 
GUI-based tool with various features such as (a) selecting many files or 
directories to be scanned in one experiment, (b) adding or removing key-
words/features, (c) filtering the keywords/features and specific file types, 
(d) efficient scanning process as many files are scanned simultaneously, (e) 
providing customizable visualization dashboards with the ability to export 
the chart(s), and (f) exporting the results in different formats such as JSON 
and CSV. 

The rest of the chapter sections present and discuss the related works 
regarding malware analysis techniques, malware detection, and the use of 
static analysis for malware detection. Moreover, they present the proposed 
developed software (ASParseV3), which performs static features extraction 
and parsing. Also, the chapter demonstrates a use case of Android OS 
malware static features extraction using the ASParseV3 software. Finally, 
conclusions with a summary of possible future works are presented.
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3.2 RELATED WORKS 

Parsing the features of source code is potentially utilized in estimating 
the software performance, reverse engineering, and static analysis [20]. 
However, the extracted features can be represented in different formats 
such as gray-scale images, structural entropy, or JSON file [15]. Moreover, 
the extracted features can be further deployed in various fields. For 
instance, the authors of [21] have developed a tool named DeepTLS 
to analyze encrypted traffic by extracting the features from the network 
packets. In [28], the python-Evtx-parser (pexp) has been developed to 
parse the required features to detect Lateral Movement Attacks. In a 
nutshell, Table 3.1 demonstrates a comparison among related works. 

Several tools have been proposed to perform static parsing in Android 
platform [1, 8, 23]. Khalid et. al. proposed a memory parsing tool for 
Android applications [19]. The authors of [17] have developed Sena 
TLS-Parser, a tool that automates the software testing process by parsing 
the Android source code. Initially, the Android source code is imported 
into the Eclipse environment. Subsequently, Sena TLS-Parser scans the 
code and generates the required test cases. Another approach that utilizes 
static parsing in enhancing the development of Android applications is by 
recommending a suitable API for the Android developer based on the 
parsing results. In [36], the authors have developed APIMatchmaker, a 
tool that recommends the best API usage by parsing similar Android apps. 

Parsing Android source code can further be deployed in detecting 
malicious applications. In [26], the authors have parsed the suspect meth-
ods of two Android apps in order to extract their similarities using their 
proposed tool, StrAndroid. Consequently, they identified the potential 
malicious behaviors that are shared between the two apps. Additionally, 
Android permissions can be parsed in order to rank the risk of the malicious 
application. Dharmalingam et al. proposed a permission grading scheme 
that extracts and defines the required permissions in an Android app and 
rates the risk of the app accordingly [14]. In their proposed scheme, 
the Manifest file is parsed to extract the defined permission in the app. 
Subsequently, the extracted permissions are fed into the feature encoder 
to be further utilized in the deep neural algorithm for detecting malware 
applications. However, static analysis can be combined with dynamic 
analysis to increase the efficiency of malware detection. In [2], the authors 
have applied static analysis as a prior stage to implementing the dynamic 
analysis.
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The efficiency of the parsing approach highly affects the overall static 
analysis process. The authors of [18] applied canonical representation 
to enhance the parsing process for Android code by developing the 
static analyzing tool, PetaDroid. The core of this proposed solution is to 
define the application’s behavior by tracking the used APIs and the app’s 
actions. Consequently, fingerprinting the malware applications. Besides 
the API calls, the permissions can be utilized to determine the malicious 
application’s behavior. In [29], the APK file has been decomposed using 
APKtool to retrieve theManifest file and class.dex file. The aforementioned 
files were parsed to extract the permissions and the API calls, respectively. 
Then, multidimensional behavior analysis was conducted on the extracted 
features to develop a malware portrait. Even though there are many static 
parsing tools, they are not flexible in accepting many file systems and can 
extract only a limited number of features. Moreover, they do not have a 
customizable graphical user interface (GUI). Therefore, there is a need 
for a customizable GUI-based system with the ability to scan an unlimited 
number of features on various file systems. 

3.3 PROPOSED SYSTEM 

There is a need for user-friendly, extensible, and flexible software. This 
chapter introduces the third version of the Android Static Parse (ASParse). 
The tool ASParse-V3 is an improvement to the previous versions. It is 
a cross-platform, portable, and general tool that performs static analysis 
and features parsing for any file type while supporting different operating 
systems. This version of ASParse is efficient and fast due to its concur-
rent scanning characteristic. Furthermore, ASParseV3 can be used as a 
preprocessing method for static feature extraction to construct datasets 
for subsequent processing through ML/DL models due to its feature of 
exporting the results to JSON and CSV files. For instance, the previous 
versions of the ASParse tool were used to extract static features and develop 
different types of datasets [1]. For example, [4, 7] utilized the ASParse tool 
to extract the API and permissions of thousands of Android applications. 
The extracted features created a dataset that helped detect Ransomware 
apps with high accuracy.
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Fig. 3.1 Flow structure of the proposed system 

3.3.1 System Overview 

To illustrate the system flow, Fig. 3.1 shows how the ASParseV3 application 
generally works. The first step is uploading the files, directories, or multiple 
directories. The second step is choosing a set of predefined features or 
adding specific features. Then, moving to the third step, the system scans
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the files to export the results. Finally, after the results are exported, they 
can be visualized via a customizable dashboard. 

3.3.2 Features and User Interfaces 

The scalability and portability of ASParseV3 are achieved by integrating it 
with a portable development environment that also makes the software 
cross-platform to be installed on various operating systems (OSs). In 
addition, the software’s scope can be used as general and specific. For 
example, it can scan and parse different input formats, such as Android 
and Windows applications. Furthermore, ASParseV3 is user-friendly due 
to the modern graphical user interface (GUI) that is easy to use and 
its customizability based on the user’s needs. For instance, the user can 
customize features and file types to be scanned and customize the scanning 
results based on the filtering feature available on the results dashboard. The 
system process is dividedmainly into five steps: uploading files, selecting file 
types, choosing keywords, scanning, and results visualization. Each phase 
has a separate user-friendly window. 

3.3.2.1 Uploading Files Window 
The first window of the application is used to upload files or applications 
to be scanned. The user can upload multiple files, directories, or a single 
directory. As Fig. 3.2 illustrates, the button “Add” is clicked to upload 
the applications, which opens a file selector dialog window to upload 
files/directories. All uploaded files will be shown on a panel field. The user 
may also clear the uploaded files in the panel field by clicking on the “Clear” 
button and adding new applications when needed. 

3.3.2.2 Selecting File Types Window 
The second window allows users to select files of specific types (file 
extensions) to be scanned. Figure 3.3a shows a sample of Android OS 
file types. The user may choose one or multiple types by checking the 
checkbox. Moreover, the user can customize the file types by adding or 
deleting types by clicking on the settings icon on the top right of Fig. 3.3a. 
The settings button opens a newwindow for editing, as Fig. 3.3b illustrates. 
The user can write the file types in the text field and then click on the 
button “Add” to add them to the current panel. The user can also delete 
any newly defined types by clicking on the button “Remove.” By default,
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Fig. 3.2 Uploading applications window 

if no checkboxes were chosen, all predefined file types will be included in 
the scanning process. 

3.3.2.3 Selecting Keywords Window 
The third window allows users to select the keywords to look for while 
scanning. Figure 3.3a shows a sample of Android OS file types. However, 
the user can customize the features through the settings window by adding 
or deleting keywords by clicking on the settings icon on the top right of 
the window (as shown in Fig. 3.4a). Similar to the file types editing feature,
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Fig. 3.3 Selecting and customizing file types windows. (a) Selecting Window. (b) 
Customizing Window 

Fig. 3.4 Selecting and customizing keywords windows. (a) Selecting Window. 
(b) Customizing Window
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Fig. 3.5 Scanning window 

the settings button can be used to edit the list of keywords, as illustrated 
in Fig. 3.4b. 

3.3.2.4 Scanning Window 
The fourth window allows users to add the configuration values of an 
experiment, such as the experiment name and the path used to save the 
results, as shown in Fig. 3.5. Then, the scanning process begins by clicking
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Fig. 3.6 Visualization window and page. (a) Visualization Window. (b) Dash-
board Page 

on the “Scan” button. Finally, the progress bar provides the user with real-
time updates on the scanning progress. 

3.3.2.5 Visualizing Results and Dashboard Window 
The fifth and final window links the tool to the visualization dashboard. 
After completing the scanning progress, the user can move to the visual-
ization window and click on the “Visualize” button as shown in Fig. 3.6a to  
display the results in terms of a plot. The actions performed in this window 
do not affect the scanning results. It is a complimentary step for results 
visualization and filtering. However, this step cannot be completed without 
performing the scanning. When visualization is activated, a dashboard page 
opens in the browser. The dashboard is where the user can visualize the 
parsing results. The plot’s X-axis represents the features (keywords), and 
the Y -axis represents the number of occurrences. As Fig. 3.6b illustrates, 
the dashboard is customizable based on the user’s preference. For instance, 
the user may filter out and visualize the results according to the minimum 
number of feature occurrences and features containing a specific string or 
substring. Also, the resulting graph (plot) can be exported as an image 
using the saving button on the right of the plot. This can help the 
researchers/experts to share their results conveniently.
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3.3.3 Use Case 

To demonstrate the tool, Android benign samples and malware samples 
were used. The samples come in the form of an Android Package Kit 
(APK). The APKs contain all software details, including source code, 
permissions, and APIs used. However, APKs are compressed files that need 
reverse engineering to recover the application code [9]. APKTool1 s was 
used to decompile the apps and extract the source files. Afterward, the 
decompiled APKs were fed to the ASParse tool. 

3.3.3.1 Data Collection 
For data collection, two sources were used, Drebin Dataset [10] and  
APKCombo.2 The Drebin Dataset contained 5560 malware samples 
belonging to 179 malware families. On the other hand, the benign 
data samples were downloaded through APKCombo. Ten samples were 
randomly chosen from the Drebin dataset, along with ten samples from 
APKCombo. To ensure that the apps downloaded from APKCombo are 
benign, they were scanned by a well-known website called VirusTotal.3 

This website offers tens of Antivirus engines that are specialized in 
detecting different types of malware. 

3.3.3.2 Tests and Results 
The experiment was performed on a sample of 10 benign APKs and 10 
malicious samples from the Derbin dataset. First, all files were added to 
the application upload field. Then, all predefined file types were chosen. 
Afterward, six keywords from the predefined ones were chosen, including 
android, android/animation, and android/app. In addition to the key-
words Bundle and Button and Callback. After clicking on the visualization 
button in the final window, the application will shift to the dashboard, 
where the plot will be displayed with the ability to save the plot after 
customizing it. Figure 3.7 illustrates the saved plot sample. Moreover, 
Fig. 3.8 illustrates a sample of the saved plot where it illustrates the details of 
each data point on the plot. Furthermore, Table 3.2 demonstrates a sample 
of the resulting CSV. Finally, Fig. 3.9 represents the JSON metadata file 
resulting from the scan.

1 https://ibotpeaches.github.io/Apktool/. 
2 https://apkcombo.com/. 
3 https://www.virustotal.com/gui/home/upload. 

https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://apkcombo.com/
https://apkcombo.com/
https://apkcombo.com/
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
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Fig. 3.7 Features vs. Occurrences Plot 

3.3.3.3 Validation 
The validation process for ASParseV3 was carried out thoroughly to ensure 
that its performance, user interface (UI), and user experience (UX) met 
the required needs. The Security Engineering Lab (SEL) conducted the 
validation and compared the scanning results of ASParseV3 with previous 
releases of ASParse. In addition, VirusTotal was used to retrieve informa-
tion such as permissions used in the applications/APKs to compare with 
ASParseV3 and verify further its scanning results’ accuracy. To validate the 
use case, VirusTotal was used to collect the permissions used by the APK.
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Fig. 3.8 Data point details 

Figure 3.10 shows a sample of the permissions used by the APK validation 
test sample. The resulting permissions were then used to scan the same 
APK using ASParseV3. The results showed that ASParseV3could scan the 
uploaded APK and accurately report the number of occurrences for each 
permission. Overall, the validation process demonstrates that ASParseV3 
is a reliable and efficient tool for scanning applications and APKs features 
such as permissions. The comparison with previous releases and the use 
of VirusTotal helped ensure the scanning results’ accuracy. For example, 
Table 3.3 illustrates the number of occurrences of each permission found 
by ASParseV3 during the validation process. Moreover, using ASParseV3 
to scan the same application without specifying any keywords has resulted 
in showing additional permissions/API calls other than the ones retrieved 
from VirusTotal as Table 3.4 illustrates. Hence, this validates the accuracy 
of the ASParseV3 and its additional capabilities compared with similar 
tools.
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1 { 
2 { 
3 "ApplicationPath": [ 
4 "/Users/rahaf/Desktop/Use Case/Malware Sample 5", 
5 "/Users/rahaf/Desktop/Use Case/Malware Sample 4", 
6 "/Users/rahaf/Desktop/Use Case/Malware Sample 3", 
7 "/Users/rahaf/Desktop/Use Case/Malware Sample 2", 
8 "/Users/rahaf/Desktop/Use Case/Malware Sample 1", 
9 ... 
10 "/Users/rahaf/Desktop/Use Case/Benign Sample 5", 
11 "/Users/rahaf/Desktop/Use Case/Benign Sample 4", 
12 "/Users/rahaf/Desktop/Use Case/Benign Sample 3", 
13 "/Users/rahaf/Desktop/Use Case/Benign Sample 2", 
14 "/Users/rahaf/Desktop/Use Case/Benign Sample 1" 
15 ], 
16 "OutputPath": "/Users/rahaf/Desktop", 
17 "filetypes": [ 
18 "xml", 
19 "smali", 
20 "dex" 
21 ], 
22 "selectedFileTypes": [ 
23 "smali", 
24 "xml", 
25 "dex" 
26 ], 
27 "keywords": [ 
28 "android", 
29 "android/accessibilityservice", 
30 "android/accounts", 
31 "android/animation", 
32 "android/annotation", 
33 "android/app", 
34 "android/app/admin", 
35 "android/app/assist", 
36 "android/app/backup", 
37 "android/app/blob", 
38 "android/app/job", 
39 "android/app/role", 
40 "android/app/slice", 
41 "android/app/usage", 
42 "android/appwidget", 
43 "android/bluetooth", 
44 "Button", 
45 "Bundle", 
46 "Callback" 
47 ... 
48 

49 ], 
50 "selectedKeywords": [ 
51 "android", 
52 "android/animation", 
53 "android/app", 
54 "Button", 
55 "Bundle", 
56 "Callback" 
57 ], 
58 "ExperimentName": "Experiment_One" 
59 } 
60 

61 } 

Fig. 3.9 Metadata JSON content for the use case
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Fig. 3.10 APK permissions from VirusTotal 

Table 3.3 Validation results 
/Users/rahaf/Desktop/PSU/Use Case/Benign Sample 1 

Permissions Occurrences 
android.permission.RECEIVE_BOOT_COMPLETED 1 
android.permission.ACCESS_WIFI_STATE 4 
com.google.android.gms.permission.AD_ID 3 
com.google.android.finsky.permission.BIND_GET_INSTALL_REFERRER_ 
SERVICE 

2 

com.android.vending.BILLING 1 

Table 3.4 ASParseV3 
additional permissions 
and calls 

/Users/rahaf/Desktop/PSU/Use Case/Benign Sample 1 
Permissions and calls Occurrences 
Android 18474 
CallbackHandler 117 
CameraAccessException 14 
Certificate 285 
Connection 1522 
CookieSyncManager 1 
DownloadRequest 8 
FragmentHostCallback 3 
LruCache 2 
INTERNET 25 

3.4 CONCLUSION AND FUTURE WORK 

This chapter proposed a third version of ASParse software as a parsing and 
static analysis tool. The analysis results can be used to feedmachine learning 
algorithms and deep learning models for malware analysis and detection. 
Moreover, a demonstration was presented on Android OS applications 
showing the system’s capabilities. In future work, the ASParse tool will
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be used to carry on with malware detection using ML and DL algorithms 
and models. Moreover, it will be enhanced in terms of performance and 
user experience. 
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CHAPTER 4 

Fast-Flux Service Networks: Architecture, 
Characteristics, and Detection Mechanisms 

Basheer Al-Duwairi and Ahmed S. Shatnawi 

4.1 INTRODUCTION 

The Internet has witnessed an explosion in the kinds of tools available to 
attackers as well as attack techniques in recent years. Attackers continuously 
develop advanced tools and techniques to bypass defense technologies, 
conceal their identities, and evade detection. There are a lot of various tools 
that attackers can use to control systems they have compromised in target 
environments [1, 25, 40, 41]. These tools implement different ways to 
communicate across the network. This has resulted in a remarkable increase 
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in the number of attacks with an increased level of sophistication at all 
protocol layers and exploiting vulnerabilities in protocols such as HTTPS, 
HTTP, and DNS. 

The domain name system (DNS) is a critical Internet infrastructure 
component that primarily provides a mapping between domain names 
and IP addresses in addition to other services [26]. DNS is implemented 
as a distributed hierarchical database and is viewed as an entry point to 
the Internet as most Internet services depend mainly on resolving the 
IP addresses of domain names as a primary step in Internet access. For 
example, visiting a website or connecting to an FTP server is preceded by 
resolving that website’s or FTP server’s IP address. The central role of DNS 
in the operation of the Internet has attracted adversaries to take advantage 
of this core Internet infrastructure element to perform different types of 
malicious activities. 

Most attacks involve the DNS in some way or another [21, 23]. 
However, certain attacks rely primarily on DNS. This includes performing 
DNS amplification attacks [6, 18, 31], DNS cache poisoning [20, 32], 
malware distribution [7, 22], and botnets [39–41]. In DNS amplification, 
an attacker instructs thousands of bot machines to send spoofed DNS 
queries to open DNS resolvers such that the target system is flooded with 
the corresponding DNS replies. In DNS cache poisoning, the attacker 
inserts a bogus DNS record in the DNS server cache such that Internet 
users are tricked into visiting a website controlled by the attacker. Fast-
flux service networks (FFSNs) [14] have been used widely in recent 
years as a DNS-based mechanism to hide malware distribution servers or 
to provide robust communication with botnets’ command and control 
(C&C) servers. 

FFSNs provide shelter for web servers hosting malicious content. This 
technique has become one of themain techniques adopted by adversaries to 
provide highly available services while evading detection. This is especially 
important because cybersecurity professionals are equipped with tools and 
mechanisms that would allow them to identify malicious websites and 
blacklist them or shut them down when possible. Typically, a fast-flux 
network consists of thousands of bot machines known as flux agents that 
are configured to act as proxy nodes that relay traffic between end users 
and the mothership server hosting the malicious content [2, 14, 33]. 
Therefore, forming a protective layer prevents end users from directly 
reaching malicious servers. 

FFSNs adopt techniques that are initially used in content distribution 
networks (CDNs) [8] and round-robin DNS (RRDNS) [9]. This is
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achieved by mapping the malicious server’s domain name to multiple 
IP addresses selected from the pool of flux agents and changing over 
time, therefore increasing the chances that the origin server is reachable 
from some of the flux agents that are still running and have not been 
blacklisted yet. There has been growing concern in recent years about 
the increased adoption of fast-flux networks to protect phishing websites 
and botnets’ C&C servers [19, 28, 44]. Clearly, identifying and shutting 
down these servers becomes more challenging when hosted in fast-flux 
service networks. This means that an effective and efficient approach to 
detecting the websites hosted in these networks is critical to addressing 
botnet-related attacks effectively. 

Characterizing and understanding this type of malicious networks has 
received considerable research attention. Several research studies were 
conducted to fully understand the nature of this threat (e.g., [14, 17, 
24, 37]), its new trends, and its role in hosting malicious phishing and 
spam campaigns. In addition, several fast-flux detection mechanisms (e.g., 
[2, 4, 12, 27, 33]) were proposed to efficiently detect fast-flux domain 
names based on characterizing features that can be obtained from different 
sources by active probing or passive probing. This chapter provides a 
detailed description of fast-flux networks focusing on their main char-
acteristics and discussing major detection approaches. Also, it highlights 
new trends in fast-flux networks and identifies new features for fast-
flux detection. However, it is important to mention that this chapter is 
not intended to provide a comprehensive survey of fast-flux detection 
approaches as in [46] and  [5]. 

The rest of this chapter is organized as follows: Sect. 4.2 explains fast-
flux networks and describes their main architecture. Section 4.3 discusses 
the main characteristics of fast-flux networks. Section 4.4 describes the 
main features that are typically used to detect fast-flux domains. Section 4.5 
discusses fast-flux detection. Finally, Sect. 4.6 concludes the chapter. 

4.2 FAST-FLUX SERVICE NETWORKS 

FFSNs were first introduced and described in detail by the Internet 
Honeyproject in 2007 [37]. Several research studies (e.g., [2, 14, 17, 
33, 34]) were conducted to characterize and develop mechanisms for 
FFSNs detection. Most of these mechanisms rely on analyzing DNS traffic 
information that corresponds to fast-flux domains in order to characterize
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their behavior and identify their distinguishing features. In this regard, 
DNS records can be obtained actively by issuing DNS requests about 
domain names of fast-flux domains obtained from email spam campaigns 
and phishing archives or by analyzing passively collected DNS traffic traces. 

FFSNs adopt techniques that are originally used in round-robin DNS 
and content distribution networks. Round-robin DNS and content dis-
tribution networks (CDNs) are two main techniques that web servers 
employ to achieve load balancing and high availability. In round-robin 
DNS [9], the authoritative domain name server of a certain domain name 
is configured to distribute the workload to multiple redundant web servers 
by mapping the hostname of the webserver to multiple IP addresses. This 
mapping keeps changing in a round-robin fashion. Each time a client issues 
a DNS query, the client may obtain a list of IP addresses for the given 
hostname in a different order. A content delivery network [8] is a service  
that accelerates Internet content delivery, therefore making websites much 
faster. This is achieved by reducing the distance between the user and 
the server providing the content by placing Content Delivery Network 
endpoints in as many locations worldwide as possible, reducing the amount 
of traffic that actually hits the server. In CDNs, the content is pushed to 
many geographically distributed servers. Global load balancing is achieved 
by providing the client with a set of IP addresses of nearby servers. For 
example, a user in the USA, who is trying to access a CDN-hosted website, 
sends a DNS query for that website and will get a reply with a set of IP 
addresses of servers that are hosted in nearby locations within the CDN. 

FFSN [14, 29, 34] is a technique employed by botherders to hide their 
malicious webservers while providing high availability and resiliency. Figure 
4.1 depicts the main steps of forming and operating these networks. Ini-
tially (Step 1), the botherder sets up themothership server and configures it 
with a specific domain name (e.g., myfastfluxdoamin.com). This represents 
the server where themalicious content is hosted. It is also called the content 
server. Usually, a high-end machine with enough computing and storage 
resources is provisioned to serve as the mothership server. The mothership 
server usually hosts some sort of malicious content for the purpose of 
malware distribution, illegal pharmaceutical products sale, adult content, 
etc. Also, it can represent the command and control (C&C) server of 
another botnet. Then (step 2) the botherder registers the domain name 
myfastfluxdomain.com with a set of IP addresses that belong to a botnet 
controlled in advance by him/her. This step is crucial in the sense that the
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Fig. 4.1 Fast-flux service network life cycle 

domain name of the mothership server does not map directly to the real 
IP address assigned to the mothership server. 

The botherder configures the bot machines to act as proxies that for-
ward traffic between end users and mothership servers (Step 3). Therefore, 
each bot machine that is part of this network is referred to as a flux 
agent. When visiting the website hosted by myfastfluxdomain.com, end  
users resolve the IP addresses of the mothership domain name myfast-
fluxdomain.com through the domain name system (Step 4). The domain 
name would be resolved to a set of IP addresses that belong to the botnet 
representing fast-flux agents. It is to be mentioned here that flux agents 
are mainly compromised machines with intermittent connectivity, limited 
computational power, and low to average bandwidth. Finally, the end user 
accesses the content through one of the flux agents returned by the DNS 
reply (Step 5). 

It is clear that the botnet of flux agents forms a protective layer for the 
hidden malicious server. In order to increase the resilience of the network 
and to evade detection, the botherder keeps changing the domain name 
registration in a fast manner. This type of FFSNs is called a single-flux. 
There is a more sophisticated type of FFSNs called double-flux FFSNs, in 
which the botherder also changes the mapping between the authoritative 
name server of the FFSN and its IP addresses quickly, resulting in a 
constantly changing set of DNS servers, therefore providing a layer of 
protection for the FFSN’ original authoritative name server. In this type
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of FFSNs, when a client resolves the IP addresses of a FFSN domain name, 
the DNS request is sent to one of the flux agents that in turn forward 
the request to the authoritative name server of that domain, and the DNS 
response message is relayed back through the same fast-flux agent. This 
may contribute to an additional delay in loading the website. However, in 
most cases, it goes without being noticed by Internet users. 

4.3 CHARACTERISTICS OF FAST-FLUX SERVICE 
NETWORKS 

Classifying a domain name as a fast-flux domain or a non-fast-flux domain 
is a challenging problem because fast-flux domains look similar to domain 
names associated with CDN-hosted web servers in several aspects. In the 
following subsections, we illustrate the main differences between DNS A 
records associated with a fast-flux domain and DNS A records associated 
with a CDN-hosted domain name. Then, we identify main characteristics 
of fast-flux service networks based on previous research in this field. 

4.3.1 Fast-Flux Domain Names Versus CDN-Hosted Domain Names 

To illustrate the difference between a fast-flux domain name and a CDN-
hosted domain name, let us consider the DNS name resolution of fast-flux 
domain rgyui.top and a CDN-hosted domain timeline.com. Figure 4.2 
shows the DNS response message for domain rgyui.top and Fig. 4.3 shows 

Fig. 4.2 Output of the first dig of the fast-flux domain rgyui.top (performed on 
June 12 2022)
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Fig. 4.3 Output of dig of the CDN-hosted domain timeline.com (performed on 
June 12 2022) 

Table 4.1 Country 
and ASN number of IP 
addresses of fast-flux 
domain rgyui.top 

IP Address Country ASN # 
1.248.122.240 Korea AS9318 

211.171.233.129 Korea AS3786 

211.59.14.90 Korea AS9318 

138.36.3.134 Brazil AS264562 

203.228.9.102 Korea AS4766 

190.140.74.43 Panama AS18809 

211.119.84.112 Korea AS3786 

189.165.26.224 Mexico AS8151 

211.119.84.111 Korea AS3786 

210.92.250.133 Korea AS3786 

the DNS response message for domain timeline.com. The common thing 
about these two domains is that they resolve to multiple IP addresses. 
However, a careful inspection of the response messages reveals major 
differences that would allow us to distinguish between fast-flux domains 
and CDN-hosted domains. Tables 4.1 and 4.2 show the country and ASN 
number of each IP address for both domains. 

It is clear that IP addresses of a fast-flux domain are usually distributed 
in different countries and belong to several autonomous systems, while IP 
addresses of CDN-hosted domains are located in the same country (inmost
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Table 4.2 Country 
and ASN number of IP 
addresses of cdn-hosted 
domain timeline.com 

IP Address Country ASN # 
52.4.38.70 USA AS14618 

52.1.173.203 USA AS14618 

52.1.147.205 USA AS14618 

52.5.181.79 USA AS14618 

52.4.175.111 USA AS14618 

52.4.145.119 USA AS14618 

52.6.46.142 USA AS14618 

52.1.119.170 USA AS14618 

52.4.225.124 USA AS14618 

52.6.3.192 USA AS14618 

52.0.16.118 USA AS14618 

52.4.240.221 USA AS14618 

cases) and belong to the same autonomous system. This is expected because 
of the intrinsic behavior of fast-flux service networks where domain names 
are registered with botnet flux agents’ IP addresses located in different 
countries and belonging to different autonomous systems. One of the main 
characteristics of fast-flux networks is the short TTL value assigned for their 
domain names compared to other domains. This is necessary to ensure the 
frequent and rapid change in mapping between IP addresses of flux agents 
and fast-flux domain names. As expected, performing another dig for the 
fast-flux domain name rgyui.top shortly after the first dig returned another 
set of IP addresses as shown in Fig. 4.4. 

Fast-flux networks are characterized by frequent and fast mapping 
changes between domain names and IP addresses. As a result, a particular 
domain name would map to many IP addresses (selected from the pool of 
flux agents controlled by the botherder) over a short period of time. For 
example, the domain name rgyui.top maps to 17 distinct IP addresses based 
on two consecutive IP addresses. Of course, this number grows fast when 
performing more DNS queries for a longer period of time (Table 4.3). 

In order to provide a reliable service and overcome the problem of 
blacklisting fast-flux domain names, fast-flux operators keep registering 
new domain names for their content servers. These domain names remain 
active for a short period and are assigned IP addresses from the pool of IP
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Fig. 4.4 Output of the first dig of the fast-flux domain rgyui.top (performed on 
June 12 2022) 

Table 4.3 Country 
and ASN number of IP 
addresses of fast-flux 
domain rgyui.top 

IP Address Country ASN # 
187.170.250.215 Mexico AS8151 

211.59.14.90 Korea AS9318 

190.140.74.43 Panama AS18809 

180.69.193.102 Korea AS9318 

196.200.111.5 Eritrea AS30987 

211.119.84.111 Korea AS3786 

109.98.58.98 Romania AS9050 

187.190.48.60 Mexico AS22884 

148.0.95.36 Dominican 
Republic 

AS6400 

123.213.233.194 Korea AS9318 

addresses of fast-flux agents. Therefore, by monitoring DNS traffic traces 
over a long period, it is expected to observe that IP addresses belonging to 
specific fast-flux networks have been assigned to different fast-flux domains 
representing a malicious campaign. Figure 4.5 shows an example of such IP 
address reuse in fast-flux service networks, which is considered a standard 
practice. The figure shows a snapshot of the passive DNS replication 
history of IP address 183.78.205.92 obtained from VirusTotal [42]. The 
IP address was assigned to multiple fast-flux domain names on different 
dates.
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Fig. 4.5 A snapshot of passive DNS replication history of IP address 
183.78.205.92 (obtained from VirusTotal on June 20th 2022) 

4.3.2 Main Characteristics of Fast-Flux Service Networks 

Several research studies have been conducted to identify malicious cam-
paigns hosted by fast-flux service networks (e.g., [14, 24]). For example, 
the empirical study conducted in [24] showed that fast-flux service net-
works play a significant role in hosting scam campaigns. The study focused 
on monitoring DNS records of domain names hosting scam websites 
over a period of 1 month. The study revealed that fast-flux networks 
are usually shared among different spam campaigns. Figure 4.6 shows a 
visual representation of mapping between fast-flux domain names and their 
resolved addresses based on data used [2]. Each cluster represents a unique 
domain name and its associated IP addresses. This set of IP addresses and 
domain names is believed to belong to the same fast-flux service network. 

Based on the discussion above and with reference to previous research 
studies that studied the problem of fast-flux networks (e.g., [14, 17, 24, 
35], fast-flux networks are characterized by several characteristics that can 
be summarized as follows [2]: 

• Large number of IP addresses. The A records included within a single 
DNS response message of a fast-flux domain are relatively large. 
Suppose one or more of the fast-flux agents that are associated with 
the IP addresses are down, a client. In that case, trying to access the 
mothership server of the associated domain name would automatically 
try another IP address (i.e., another agent) until it succeeds. Register-
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Fig. 4.6 Sample FF hostnames and their FFSNs observed in the study conducted 
in [2] 

ing the domain name withmany IP addresses provides high availability 
of the malicious server as it increases the probability that one of the 
flux agents is up and running. 

• Large IP growth. To avoid blacklisting, mapping between a fast-flux 
domain and agent IP addresses keeps changing over time. Therefore, 
the number of IP addresses associated with a certain fast-flux domain 
becomes large. 

• Low TTL value. Since the mapping between a domain name and IP 
addresses changes very fast in FFSNs, then the TTL values are kept 
low. This guarantees that the values expire soon after the fast-flux 
domain is resolved in order for users to obtain the new list of IP 
addresses. 

• Large number of autonomous systems. The number of IP addresses that 
are returned in response to a DNS query for a fast-flux domain rep-
resents compromised machines that belong to different organizations
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and Internet service providers. Therefore, these agents’ IP addresses 
are expected to belong to multiple autonomous systems. 

• Large number of countries. Previous studies showed that the IP 
addresses of fast-flux domains are usually located in a relatively large 
number of countries. This is expected since attackers register their 
fast-flux domains with a set of IP addresses selected randomly from a 
pool of fast-flux agents. 

• Domain names do not last for a long time. The lifetime of a fast-flux 
domain is relatively short. Attackers tend to register many domains 
for their FFSNs, where each domain name remains active for a short 
period. 

4.4 FFSNS FEATURE SET COLLECTION 

The detection of fast-flux service networks depends mainly on the informa-
tion collected about the suspect domain names and their corresponding IP 
addresses. Information about domain names and their IP addresses can be 
collected from different sources passively and actively. The passive manner 
does not involve direct interaction with the source of information. Instead, 
it relies on analyzing passively collected information from traffic traces from 
strategic network locations. On the other hand, an active manner involves 
direct interaction with the source of information through request/reply-
based protocols. Primary sources of information to be collected about 
suspect domain names include the domain name system, IP geolocation 
databases, and Internet-wide scanning projects. In the following subsec-
tions, we present these sources and highlight the main features obtained 
from each source. 

4.4.1 Domain Name System-Based Features 

The domain name system represents a primary source of information about 
domain names. When resolving a domain name into IP addresses, the 
DNS returns different types of resource records, such as A records and 
NS records. This includes the list of IP addresses for a domain name, 
the TTL value for the domain name, the number of IP addresses in 
each DNS reply, and the number of different IP addresses over a long 
period of time. This information can be obtained actively by probing DNS 
about suspect domains or passively by collecting DNS traffic traces using
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Table 4.4 List of features extracted from DNS response message for fast-flux 
domain rgyui.top and legitimate domain timeline.com 
Feature rgyui.top timeline.com 
# IP addresses returned in 
one DNS lookup 

10 12 

domain name length 9 12 

TTL value of DNS record 75 284 

# of distinct ASNs for all IP 
addresses in a single DNS 
lookup 

6 1 

# unique IP addresses 
returned in all DNS lookups 
(IP address growth) 

Additional information 
required 

Additional information 
required 

strategically placed network sensors while users are surfing the Internet. 
For example, with reference to the DNS response message of the fast-
flux domain rgyui.top shown in Fig. 4.2 and legitimate domain name 
timeline.com shown in Fig. 4.3, the features shown in Table 4.4 can be 
extracted directly from their DNS response messages. 

In active DNS probing, it is required to start with a list of suspect 
domain names that are usually obtained from email spam traps after 
extracting URLs embedded in spam emails and stripping domain names 
from them. A DNS lookup is then performed for each suspect domain 
name using the Unix dig utility or any other ns lookup tools. Main 
features are then extracted from DNS replies. A significant problem with 
this approach is that it results in a large number of DNS queries which 
may be suspected as a form of DDoS attack. In passive DNS probing, 
information about all domain names queried by users in an organizational 
network is collected passively. Collected DNS traffic traces are analyzed to 
filter suspect domain names based on specific criteria. While this approach 
does not incur additional DNS traffic, it deals with many DNS traffic traces 
that require significant computational and storage resources. However, it 
has the advantage of preventing false DNS replies that can be provided 
by attackers who might be controlling authoritative domain name servers 
while observing a large number of DNS queries. Moreover, it has the 
advantage of discovering fast-flux domains that could potentially appear 
in different malicious sources such as phishing emails, hacker forums, and 
online social networks.
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4.4.2 IP Geolocation-Based Features 

DNS-based features provide good insight into suspect domain names. 
However, additional information about suspect domain names and their 
IP addresses are usually required to accurately classify a domain name as 
a fast-flux domain name. This includes using (i) IP2location service to 
determine the location of IP addresses obtained through active or passive 
DNS probing. Having IP addresses scattered in different countries is an 
essential feature of fast-flux networks. Also, using (ii) IP to ASN lookup 
tool to determine the ASN number of each IP address as IP addresses that 
maps to specific fast-flux domain usually belong to different autonomous 
systems. For example, with reference to the DNS response message of the 
fast-flux domain rgyui.top shown in Fig. 4.2 and legitimate domain name 
timeline.com shown in Fig. 4.3, the features shown in Table 4.5 can be 
extracted by looking up their IP addresses in IP2location and IP2ASN 
databases. 

Compared to legitimate domains, the IP addresses of FFSN domains 
exhibit a more uniform geographic distribution and a more widespread 
service relationship [43]. A framework to geolocalize fast-flux servers was 
proposed in [11]. The main objective of this framework was to determine 
the physical location of the fast-flux networks roots (mothership servers) 
based on network measurements. That was achieved through extensive 
network measurements from several vantage points distributed in the 
Internet. The framework was able to determine the physical location of 
fast-flux mothership servers within a distance of 100 km. 

Table 4.5 List of features extracted from geolocation databases for fast-flux 
domain rgyui.top and legitimate domain timeline.com 
Feature rgyui.top timeline.com 
# of distinct ASNs for all 
IP addresses in a single 
DNS lookup 

6 1 

# of distinct ASNs for all 
IP addresses in a all DNS 
lookup 

Additional information 
required 

Additional information 
required 

# of distinct countries 4 1 

# of distinct countries for 
all IP addresses in a all 
DNS lookup 

Additional information 
required 

Additional information 
required
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4.4.3 Internet-Wide Scanning-Based Features 

Additional features of suspect domain IP addresses can be obtained from 
daily scans of IPv4 address space projects such as Censys [13] and Shodan 
[38]. Both Censys and Shodan are public search engines that provide 
information about devices connected to the Internet such as webcams, 
servers, routers, etc. The information provided by these search engines 
is collected by performing daily Internet wide scanning. For fast-flux 
detection, the certain information about suspect domain IP addresses can 
be collected. This includes the open ports on each scanned IP address, the 
service associated with each port number, and the operating system version. 
The premise here is that fast-flux agents corresponding to certain fast-flux 
domains do not necessarily have the same configuration. In contrast, it is 
expected that these flux agents would have heterogeneous network services 
running on them because each flux agent originally belonged to an end user 
who runs specific applications and services. 

For illustration, we consider Shodan search results for two IP addresses 
(IP1, 211.171.233.126, and IP2, 222.232.238.243) selected arbitrarily 
from the set of IP addresses of fast-flux domain rgyui.top shown in Figs. 4.7 
and 4.8, respectively. The search results show that port numbers 7, 17, 19, 
8080, and 443 are open on the first IP address, while port numbers 80, 
443, 4433, and 1434 are open on the second IP address. This difference in 
open port numbers is expected due to the fact that fast-flux agents belong 
to different end users. The count of unique port numbers that are open 
on all IP addresses associated with the fast-flux domain rgyui.top in a single 

Fig. 4.7 Shodan search result for fast-flux domain rgyui.top IP address 
211.171.233.126
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Fig. 4.8 Shodan search result for fast-flux domain rgyui.top IP address 
222.232.238.243 

Fig. 4.9 Shodan search result for legitimate domain timeline.com IP address 
52.2.173.203 

DNS responsemessage was eight. On the other hand, Shodan search results 
for two IP addresses (IP1, 52.1.173.203, and IP2, 52.6.3.192) selected 
arbitrarily from the set of IP addresses of fast the legitimate domain name 
timeline.com shown in Figs. 4.9 and 4.10, respectively. The search results 
show that both IP addresses have the same port numbers 80 and 443 open. 
In fact, all IP addresses that correspond to this domain have the same ports 
open. Table 4.6 shows the list of features extracted from Shodan.io for fast-
flux domain rgyui.top and legitimate domain timeline.com. 

4.4.4 Active Delay Measurement-Based Features 

The fact that malicious servers hosted in fast-flux networks are accessed 
through flux agents rather than being accessed directly by end users implies 
that accessing a fast-flux domain incurs significantly more delay than access-
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Fig. 4.10 Shodan search result for legitimate domain timeline.com IP address 
52.1.119.170 

Table 4.6 List of features extracted from Shodan.io for fast-flux domain rgyui.top 
and legitimate domain timeline.com 
Feature rgyui.top timeline.com 
# of distinct open ports 11 2 

# IP addresses found in the 
database 

8 out of 10 12 out of 12 

ing a non-fast-flux domain. Flux agents work as proxy nodes that relay 
traffic between end users and mothership servers. Going through these 
agents takes additional processing and communication time. Typically, fast-
flux agents are office, or home machines with limited computational power 
and intermittent Internet connectivity with low-speed Internet links [15]. 
In addition, it is expected that a flux agent’s actual owner would run several 
applications and use the available bandwidth. This means that there is an 
excellent chance that connecting to a flux agent does not succeed from 
the first time or incurs additional overhead, resulting in additional delay in 
setting up the connection. 

Performing active delay measurement indicates whether a domain name 
is a fast-flux domain name and may contribute to detecting fresh, fast-flux 
domains that did not appear yet on any blacklist or do not have enough 
DNS-related information to decide whether they are fast-flux domains or 
no. Here response time measurement variations can be observed spatially 
and temporally. Spatial variations are because fast-flux domain name maps 
to multiple IP addresses that are distributed in different locations and 
temporal variations to fluctuating workload on flux agents over time. In 
other words, performing delay measurement between an end user machine



80 B. AL-DUWAIRI AND A. S. SHATNAWI

Table 4.7 List of features commonly used by different fast-flux detection mech-
anisms 
Feature Source(s) Mode (Active/Passive) 
# IP addresses returned in one 
DNS lookup 

DNS Active/Passive 

# unique IP addresses returned 
in all DNS lookups (IP address 
growth) 

DNS Active/Passive 

# nameserver (NS) records in 
one single lookup 

DNS Active/Passive 

TTL value of DNS record DNS Active/Passive 

# of distinct ASNs for all IP 
addresses in a single DNS 
lookup 

IP to ASN service Active 

# of distinct ASNs for all IP 
addresses in a all DNS lookup 

IP to ASN service Active 

# of distinct countries IP to location service Active 

# of distinct open ports Internet wide scanning 
database 

active 

# of distinct open ports Internet wide scanning 
database 

active 

# Response time difference Active delay measurement active 

and a flux agent would be affected by the workload on that flux agent 
depending on the running applications and Internet usage. 

Table 4.7 summarizes the main features commonly used by fast-flux 
detection mechanisms and shows the source of each feature and whether 
this feature can be obtained actively or passively. It is to be noted that 
various fast-flux detection mechanisms may use other features that are 
primarily derived from the list shown in this table. 

4.5 FAST-FLUX DETECTION 

The main objective of fast-flux detection is to distinguish fast-flux domain 
names from non-fast-flux domain names. Typically, a domain name is 
considered a suspect domain name based on a combination of rules that 
are stemmed from fast-flux networks characteristics [45] such as (1) having 
short time to live value, (2) the domain name resolves to multiple IP 
addresses with scattered geographical distribution, and (3) frequent change
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of the set of resolved IP addresses returned in each query. Detection of 
fast-flux networks is generally achieved by analyzing certain information 
collected about suspect domain names from different sources as discussed 
in the previous section. Fast-flux detection mechanisms are generally 
characterized by the following attributes: 

• Detection mode: This attribute refers to the mode of performing fast-
flux detection which can be offline or online (i.e., in real time). 
Offline fast-flux detection mechanisms classify domain names into 
fast-flux domains and non-fast-flux domains by applying the detection 
algorithm on data sets collected in advance. On the other hand, online 
fast-flux detection mechanisms have the ability to classify domain 
names in real time. 

• Feature collection mode: As explained in Sect. 4.4, fast-flux features can 
be collected either in active mode or passive mode. In active mode, 
specific features can be collected by issuing queries about the suspect 
domain name. While in passive mode, features about a suspect domain 
are obtained from traffic captured in a passive manner (e.g., while 
users are browsing the Internet). 

• Features used: As explained in Sect. 4.4, there are four main types 
that are typically used by fast-flux detection mechanisms. This include 
DNS-based features, IP geolocation features, Internet wide scanning-
based features, and active delay measurement-based features. 

• Classification algorithm: This represents the core of any fast-flux 
detection mechanism. The majority of fast-flux detection mecha-
nisms apply machine learning algorithms to classify domain names 
into fast-flux domain names and non-fast-flux domain names (e.g., 
[2, 4, 35, 36]). Generally, machine learning models are initially 
trained using labeled data sets containing a known fast-flux domains 
usually collected from blacklisted domains and legitimate domains 
usually collected from Alexa top domains list [3]. Feature selection 
algorithms are usually used to reduce the size of the feature set. Then 
the performance of the machine learning algorithm is evaluated in 
terms of accuracy, precision, false-positive rate, and false-negative rate. 
Machine learning-based FFSN detection mechanisms differ in several 
aspects that include FFSNs features used for classification, the mode 
of operation (i.e., whether the mechanism performs active or passive 
information collection), the machine learning algorithms used for 
classification, and the data set used for evaluation.
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Table 4.8 Summary of main fast-flux detection mechanisms 
Reference Detection 

mode 
Feature 
collection 
mode 

Features used Classification algorithm 

Perdisci, R. 
et. al. [35], 

offline Passive DNS-based Machine learning 
algorithms 

Hsu, F. H. 
et. al., [16] 

online Active DNS-based and Active 
Delay 
measurement-based 

statistical approach 
based on computing 
FastFlux score value 

Al-Momani 
[4] 

online Active DNS-based Adaptive evolving fuzzy 
neural networks 
(EFuNN) 

Perdisci, R. 
et. al. [35] 

offline Pasive DNS-based, IP 
Geolocation-based 

The C4.5 decision tree 
classifier 

Hsu C-H et. 
al., [15] 

online Active Delay Measurement 
–based 

SVM classifier 

Al-Duwairi 
B., et. al., [2] 

online passive DNS based features, IP 
Geolocation-based, 
Internet Scanning –based 

SVM (RBF kernel) 
classifier 

Lombardo, 
P., et. al. 
[30], 

offline Active DNS-based Mathematical and data 
mining approach 

Nagunwa, T. 
[33] 

offline Active + 
Passive 

DNS-based, IP 
Geolocation-based, 
Delay- measurement 
based ( A total of 83 
features were introduced) 

supervised ML 
techniques (e.g., SVM, 
DT, NB, LR) 

Lin, H. T. et. 
al., [29] 

online Active DNS-based, Delay-
measurement based 

Genetic algorithms 

Zang, X. D., 
et. al [45] 

online Active + 
Pasive 

DNS-based, IP 
Geolocation-based 

different machine 
learning algorithms 
(e.g., SVM, C4.5, ELM) 

Table 4.8 summarizes the main fast-flux detection mechanisms and 
compares them in terms of detection mode, feature collection mode, 
features used, and the core mechanism used. 

In [35], the authors proposed a machine learning-based system, called 
FluxBuster, for FFSN detection. The high-level overview of FluxBuster is 
depicted in Fig. 4.11. Initially, DNS traffic traces are collected passively 
from different locations within an enterprise network. The traffic traces 
include mainly DNS A records that provide mapping between domain
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Fig. 4.11 High-level system overview of FluxBuster [35] 

names and their resolved IP addresses. For a given domain name, the DNS 
Message Aggregator module aggregates information from all observed 
DNS messages corresponding to that domain during certain time interval. 
This includes the set of resolved IP addresses for that domain, the number 
of DNS queries observed during the monitoring time interval, and the 
average TTL values for collected A records. The aggregated DNS messages 
pass through the Message Pre-filtering module to filter out messages that 
correspond to unlikely fast-flux domains. Remaining domain names are 
processed by the Domain Clustering module, where domain names that 
share the same set of IP addresses are grouped together in one cluster. 
Finally, a machine learning-based classifier is used to classify each domain 
into fast-flux domain name or non-fast-flux domain name. 

PASSVM [2] is a mechanism that performs online fast-flux detection of 
fast-flux domain names based on features extracted from the DNS response 
message itself, local Censys database, and local geolocalization database. 
The features include the number of IP addresses in the DNS response 
message, TTL value, domain name length, number of distinct countries 
where IP addresses are located, and number of distinct ASNs to which IP 
addresses belong. As depicted in Fig. 4.12, whenever a user visits a website, 
the A records of a suspect domain name received in a DNS reply message 
in response to a DNS query are analyzed, and the required features are 
obtained on the fly. Then, a decision is made on the fly whether the domain 
name is a fast-flux domain or a non-fast-flux domain by using the SVM 
machine learning algorithm. 

Among the different features used in PASSVM, two new features 
extracted from the Censys database have significantly improved the accu-
racy of fast-flux detection. IP ratio: The ratio of the number of IP addresses 
returned from Censys to the number of IP addresses submitted in the
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Fig. 4.12 High-level overview of PASSVM [2] 

query. Ports: The number of distinct open port protocols for all IP 
addresses returned from the Censys search engine. 

The authors in [16] proposed a fast-flux detection mechanism that 
is based on computing a FastFlux Score value. The system, called fast-
flux domain detector (FFDD), consists of three major modules that 
include retriever, resolver, and recorder. The retriever performs active 
DNS probing using the UNIX dig utility for fast-flux domain names and 
legitimate domain names obtained from public sources. Also, it performs 
active delay measurements between the client machine and each of the 
resolved IP addresses after making the necessary formatting of the URL 
link. For each domain name, the resolver calculates the FF-Score value 
based on the response time measurements collected by the retriever and 
stored by the recorder module. 

FFDD has a training phase and a testing phase. The main objective 
of the training phase is to determine the FF-Score of known fast flux 
and legitimate domain names. The FF-Score threshold value is selected
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manually in such a way as to distinguish fast-flux domains from other 
domains. In the detection phase, FFDD resolves the IP addresses for each 
suspect domain name by performing DNS lookups. Then, it performs 
active delay measurements to calculate the FF-Score for each domain. 
Here, the retriever sends 200HTTP requests for each IP address. A suspect 
domain name is considered to be a fast-flux domain name if its FF-Score is 
larger than the threshold score determined in the training phase. A major 
problemwith this approach is that it requires active interaction with suspect 
domains, where the client is supposed to issue large number of HTTP 
requests to each IP address associated with a suspect domain. This takes 
a lot of time and results in high traffic overhead. 

The work presented in [14] was the first to present a detailed empirical 
study about FFSNs. It provided a comprehensive analysis of the threat 
of fast-flux networks and explained their main characteristics. Also, it 
developed a metric, called Flux-score, for fast-flux detection. This metric 
takes into account several parameters obtained from active probing of DNS 
servers. This includes the number of unique A records returned in all DNS 
lookups, the number of nameserver (NS) records in one single lookup, and 
the number of unique ASNs for all A records. Using linear programming 
[10], the optimal values of fast-flux score decision function parameters are 
determined. 

4.6 CONCLUSION 

Fast-flux service networks represent a major trend in the operation and 
management of botnets, malware distribution networks, and online 
spam/scam campaigns. In these campaigns, spammers flood email boxes 
of thousands of email users with advertisements about specific products 
or services (e.g., pharmaceutical, adult content, and phishing). The 
advertisements usually include hyperlinks to websites representing these 
campaigns’ point-of-sale. Traditionally, spammers host the point of sale 
website using a domain name that maps to a single IP address or multiple 
IP addresses that remain constant for a considerable amount of time, which 
would allow defenders to quickly identify and blacklist these IP addresses, 
therefore denying access to spammers’ websites. On the other hand, fast-
flux service networks provide a layer of protection for point of sale website 
by mapping the website to multiple IP addresses that keep changing at a 
fast rate.
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This chapter provided a detailed discussion of fast-flux service networks 
focusing on their architecture, operation, characteristics and detection 
mechanisms. Also, it highlighted their role in hosting online spam, scam, 
and phishing campaigns. There is a need to develop mechanisms to find 
the location of actual mothership servers, which would be necessary to 
shutdown malicious services hosted by them. Detection of zero-day fast-
flux domains remains a challenging issue because of lack of information 
about these domains when they become active for the first time. It is 
possible that fast-flux service networks exhibit a behavior that deviate from 
the known fast-flux service networks characteristics. For example, fast-flux 
domain name can map to a single IP address that keeps changing quickly 
instead of mapping to multiple IP addresses. It is important to develop 
efficient mechanisms to detect such domain names. 
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CHAPTER 5 

Efficient Graph-Based Malware Detection 
Using Minimized Kernel and SVM 

Billy Tsouvalas and Dimitrios Serpanos 

5.1 INTRODUCTION 

Cyberattacks are continuously increasing, and the estimation of the total 
value at risk globally, due to these attacks, may reach 5.2 trillion USD until 
2023 [37]. Cyberattacks employ different attack vectors, and a common 
goal is the insertion of malware to target systems. Malware is defined as 
a piece of software designed to cause damage or a program that performs 
an undesired action, whether it be to disrupt or gain unauthorized access 
to a system. Malware detection and classification is a hard task that 
becomes increasingly difficult when we consider the high production rate 
of new malicious executables and re-purposing of previously deployed 
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ones (malware variants). This leads to a malware landscape that consists 
of diverse attack strategies and a wide range of vulnerability targets. Mal-
ware is divided into categories, such as viruses, Trojans, worms, rootkits, 
ransomware, adware, etc., based on the method employed to carry out 
the attack, to distribute copies (if any) and, in general, the techniques 
used for a security breach. Considering that malware-related cybercrime 
and breaches account for 28% of all cyberattacks [64], it is apparent that 
malware attacks are a problem of paramount importance and consequence, 
and furthermore, malware analysis and detection mechanisms are essential 
against cybercrime. 

Malware analysis is performed with two different types of analysis: static 
and dynamic [27]. Static analysis examines a software sample without 
executing it, while in dynamic analysis the sample is executed in a secure 
environment, typically a virtual machine named sandbox, in order to collect 
runtime execution data. Typical static analysis methods include signatures, 
where a predefined database of unique digital malware signatures enables 
threat recognition through signature matching, disassembly methods, and 
code analysis, where a sample is reverse-engineered, using a disassembler 
or a decompiler, in order to examine the code and classify executable. 
Dynamic analysis is behavioral and allows for additional information extrac-
tion, because the runtime behavior of the sample is explored. Dynamic 
analysis is more advantageous, because it enables collection of significant 
information, observes actual sample execution, and can evaluate more 
aspects of the sample. However, dynamic analysis is significantly more 
costly and power demanding, because it requires the setup of a virtual 
machine and its teardown, in addition to the execution of the sample. 
Considering the high computational cost of dynamic analysis, significant 
effort is spent to develop highly effective static analysis solutions to the 
malware problem. 

We introduce an efficient static analysis method, which includes dis-
assembling an executable sample, extraction of the API call graph, and 
evaluating the sample based on graph analysis. Our analysis exploits 
machine learning methods, considering that such methods are widely 
employed in malware detection, especially in classification [25, 40, 47, 
55, 67, 72, 74], achieving very high accuracy providing promising results. 
In our work, we use support vector machine (SVM) for the binary 
classification part of the process, which is a classification algorithm that 
accounts for 29% of all learning schemes applied to malware detection [56]. 
For the analysis, we use models of API call graphs of both benign and
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malicious executable samples. In order to reduce the size of the statically 
constructed API call graphs, we perform a graph abstraction, which enables 
us to vectorize the comparison among samples. Specifically, we vectorize 
the graph comparison problem using a minimized version of a random 
walk graph kernel, which is, in turn, used as the input of the SVM. We 
evaluate the results of this approach for an unweighted and a weighted 
version of the API call graph, and we employ a dataset that contains samples 
that we have collected. The curated dataset contains malware, collected 
from acknowledged malware sources, such as VirusShare [2], and benign 
software, composed of popular benign software such as operating system 
installation files and version control managers, i.e., Windows [3] or Git  
[4]. Considering the dependence of malware on the operating system that 
is required for sample execution, we have focused on Windows samples, 
i.e., the executable is a Windows executable and the API graph includes 
its calls to the Windows API; the method can be easily implemented for 
alternative operating systems (Unix, Linux, MacOS, etc.). 

Regarding the dataset, we note that, although malware detection and 
classification are an active field of research and development, there do not 
exist benchmark datasets containing executable samples. The benchmark 
datasets employed in relevant literature and used by the community are 
mainly curated by the industry and, typically, contain only extracted fea-
tures of malicious executables, instead of the executable samples themselves 
[14, 24, 29, 49]. Independently of the lack of benchmarks, there is not 
even a single dataset of executable samples that is used widely—as a 
reference point—to compare different malware detection methods and 
frameworks. Importantly, many malware detection tools employ propri-
etary and unavailable datasets for experiments and evaluation. This leads to 
results that are not reproducable and thus not comparable. Furthermore, 
many datasets used inmalware detection experiments contain very few sam-
ples, limiting the ability for safe conclusions about their effectiveness and 
performance [17]. For this reason, we collect and curate our own dataset 
that contains benign and malicious executable samples. Importantly, we 
analyze the collected data and provide an evaluation on the similarity of 
the samples, demonstrating the dataset’s diversity. 

The paper’s contribution is a method for efficient graph-comparison 
of API call graphs exploiting the problem’s constraints, in order to achieve 
an efficient, high-performance malware detection method. More explicitly, 
our contributions are:
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– introducing a method to construct abstract API call graphs taking into 
account problem constraints and enabling calculation of random walk 
graph kernels more efficiently than current methods (our method 
achieves .O(n3) complexity relatively to .O(n6), where  n is the number 
of nodes in the graph); 

– achieving the same accuracy levels as similar efforts [21] by using  a  
substantially smaller dataset; 

– achieving higher accuracy levels by introducing weighted API call 
graphs. 

The chapter is organized as follows: subsequent to the presented 
Introduction of Sects. 5.1 and 5.2 discusses the related work and state-of-
the-art of the field, Sect. 5.3 contains extensive description of the graph-
based modeling and malware classification scheme, Sect. 5.4 presents the 
experimental settings and results of the malware classification mechanism, 
and Sect. 5.5 concludes the chapter. 

5.2 RELATED WORK 

There are several approaches that address malware detection utilizing the 
calls that a software sample makes to the operating system, especially for 
the Windows API. API calls of an executable provide information about 
the resources it needs from the operating system; the API call sequence 
is a fundamental behavioral characteristic of an executable, because it 
reflects its control flow and possible execution paths. In this direction, 
efforts have targeted to identify API call sequence differences between 
benign and malicious executables and to exploit these differences to 
formulate detection schemes. API call sequences are a widely used feature 
for several detection methods; such methods consider API call selection, 
frequency, and ordering/sequential characteristics [41], identify distinct 
API call sequences and use n-grammodels for the sequence length selection 
[9, 63, 72], use feature extraction algorithms based on the behavioral 
analysis of the various API call sequences [61, 62], and develop metrics 
to measure the similarity between malware through alignment techniques 
[19] or word embedding and clustering schemes [13]. 

Other approaches employing API call sequences focus on searching for 
the longest common subsequence of API calls extracted using dynamic 
analysis [38], while language-based models have also been adapted to 
API call sequences to measure the similarity between executables and thus
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conclude on their nature [71]. API calls provide crucial information to 
analyze a sample’s runtime behavior and, thus, have been used for analysis 
in alternative approaches that do not take into account API call sequences. 
These approaches include classification of API functions based on their 
behavior and the potential malicious intent of the software [10]. Features 
such as the API call names and input arguments have proven effective in 
detection schemes [50, 51]. Furthermore, API call-related features have 
been employed for obfuscated malware detection [9], while the frequency 
of API call usage has also been employed for classification purposes [11]. 
Other state-of-the-art approaches have employed the appearance of API 
calls in malicious and benign software as a means of categorization [52]. 
In mobile systems security, where there is high availability of open Android 
application packages (APK) andmobile malware samples, several efforts for 
mobile malware detection that employ API calls and Android permission 
requests have been quite successful [12, 22, 45]. 

Graph-based malware analysis is widespread, considering the typical 
modeling of flows in programs. Graph-based detection schemes that 
employ static analysis have proven effective and achieve high performance, 
either by focusing on function call graphs and clustering mechanisms [30] 
or by following more general approaches such as API calls and dynamic 
link libraries (DLLs) relations modeled into a heterogeneous information 
networks (HIN) [26]. Moreover, in mobile malware detection, employing 
different characteristics of statically extracted API calls, such as names, 
frequency of appearance, or other sequence characteristics, has yielded 
encouraging results [41]. 

Dynamic analysis often employs graph-based schemes, which include 
API or system calls. This is carried out in the context of dynamically 
extracted API call sequences modeled into API call graphs [18] or by  
utilizing dynamic taint analysis to produce system call and dependency 
graphs and producing similarity metrics between samples in order to detect 
and classify malware [44]. 

A promising approach to malware detection based on API call graphs 
that involves static extraction of API calls, modeling of each executable 
with an API call graph, and comparison of these graphs using a kernel 
has provided very good results [21]. Our approach is analogous, and, in 
contrast to the conventional one, it exploits the constraints of the problem, 
and, more specifically, it addresses the possible size reduction during the 
subgraph comparison of the labeled API call graphs. This leads to even 
higher accuracy, faster, and with a smaller dataset.



96 B. TSOUVALAS AND D. SERPANOS

In the context of API and system call-based malware classification, 
machine learning (ML) and deep learning (DL) techniques have been 
widely adopted. ML approaches include clustering algorithms such as 
k-nearest neighbors [68] and decision-based methods [34], while DL 
frameworks have shown promising results, with approaches employing 
autoencoders [32, 35] and convolutional neural networks [42, 46, 48]. 
Furthermore, combinations of ML and DL components, using graph 
convolutional networks [16] and stacked autoencoders [70] along with 
a variety of classifiers, have demonstrated elevated detection performance. 
Although there is a wide range of classification methods employed in API-
based malware research, SVM techniques still hold a prevalent position in 
the field [22, 22, 45, 69]. 

Support vector machine [20] is a machine learning supervised algo-
rithm used widely for malware binary classification (malware/benign). 
Its extensive use originates from the fact that it allows fine-tuning of its 
parameters in order to avoid overfitting and underfitting; this makes SVM 
advantageous over alternative machine learning algorithms for malware 
detection. Representative frameworks that employ SVM include (i) n-gram 
schemes on API call sequences [9, 59] where classification takes as input 
vectors of sample extracted features, (ii) text-mining approaches on API 
call sequences [58], and (iii) API call flow graph vectorization and feature 
extraction schemes [18] where features are extracted using data mining 
techniques and used for training. 

We employ SVM for the classification part of our method after having 
transformed the API call graph comparison into a feature vector through 
use of an appropriate minimized random walk graph kernel; the kernel 
serves as a similarity metric for two graphs. 

The lack of available benchmark malware datasets, which contain both 
malicious and benign executables, is a significant limitation in malware 
analysis research and development. Available and recent malware datasets 
typically contain extracted features of malicious and benign executa-
bles, but not the executable samples themselves. The main feature-based 
benchmark datasets are summarized in Table 5.1. Although datasets with 
extracted features enable analyses with machine learning frameworks, they 
are inappropriate for methods that analyze software samples prior to clas-
sification. The unavailability of public and free datasets with samples is also 
due to intellectual property constraints [29]. Specifically, the constraints are 
for benign samples which may be parts of proprietary software. Malicious 
executable samples can be collected from dedicated malware repositories,
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Table 5.1 Feature-based benchmark malware datasets 
Executable samples 

Dataset Size Feature extraction availability 
Ember [14] 1.1M LIEF [60] None 

SoReL-20M [29] 20M 
Ember [14] 9, 919, 251 
features and malware binary 
PE metadata samples—No benign 

BIG 2015 [49] . > 20k
Disassembly and Hexdump conversion 
Bytecode necessary—No benign 

such as VirusTotal [5] and VirusShare [2], using their hash. Due to 
these limitations, most efforts that require the availability of executable 
samples employ proprietary or privately collected datasets, and, thus, 
their results are not reproducible, and there is no ability for independent 
comparisons. Since our approach requires analysis of executable samples 
prior to classification, we have created our own dataset, collecting benign 
and malicious executable samples; to demonstrate the dissimilarity and 
diversity of the collected samples, we provide a similarity metric for both 
sets of samples as we describe in Sect. 5.4. 

5.3 API CALL GRAPH-BASED ANALYSIS FRAMEWORK 

We introduce a graph-based detection scheme based on static analysis 
of executables and a machine learning technique, specifically support 
vector machines (SVMs). Our scheme follows trends of recently proposed 
schemes [21, 23, 43, 73] and differs from alternatives in the construction 
of the final graph used for the classification which is based on SVM. 

Our method is composed of four stages (steps), considering the exis-
tence of a labeled dataset DS of benign and malicious executables. When 
a new sample (executable) S, not included in DS, is processed for classifi-
cation, the four processing stages are the following: 

1. extraction of the API call graph of S; 
2. extraction of an abstract API call graph of S; 
3. for every executable D in DS, calculation and reduction of a graph 

kernel 
4. classification 

The extraction of the API call graph (ACG) for an executable S is achieved 
through disassembly of the executable, extraction of its API calls to the
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operating system, extraction of API call sequencing information, and 
subsequent construction of the ACG based on the collected data. Then, in 
the second step, the ACG is processed, reducing the ACG and calculating 
an abstract API call graph (AACG) of S, which has a smaller size. In the 
third step, the AACG is used to make pairwise comparisons of the AACG of 
S with the AACGs of all the executables in DS. These pairwise comparisons 
are calculations of an appropriate graph kernel [39], which effectively 
vectorizes the AACGs and renders the comparison data appropriate for use 
in classification. Finally, in the fourth step, SVM-based classification inputs 
the vectorized comparisons to classify the sample S as malicious or benign. 

In the following subsections, we detail our method based on the 
implementation of our method, which focuses on Windows executables 
and binary classification (malicious or benign). 

5.3.1 Extraction of API Call Graph 

We disassemble S using the open source program Ghidra [1]. Ghidra 
provides a wide range of operations, such as disassembly and decompi-
lation while enabling scripting and graph representation of data related to 
resources identified in the disassembled code. An important capability of 
Ghidra is that its API can be used to develop custom code to perform 
desired procedures, such as the resource extraction that is required in our 
method. In our method implementation, we extract the API calls that S 
makes and their connectivity information in order to construct API call 
graphs. 

A successful Ghidra analysis of S establishes that S is correctly disas-
sembled and its code can be represented in an assembly language. From 
the assembly code, we extract basic information of the executable, such as 
the used registers, the called functions, the included API calls, and other 
relevant data. Based on the assembly code, Ghidra calculates codeblocks, 
which are bundles of disassembled code that Ghidra relates distinct actions 
to. Effectively, codeblocks are considered as internal functions of S. 

5.3.2 Extraction of Abstract API Call Graph 

Using the extracted codeblocks, we construct the control flow graph 
(CFG) of S denoted as .G = (N,E), where N is the set of nodes and 
E is the set of edges. G is a directed graph, where nodes correspond to
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Table 5.2 AACG size reduction 
Sample Label ACG nodes AACG nodes Gain 
VSd0595f53a68e289e55c9aa37546c6c89 Malware 956 5 191.2 
VS27c17e3b1111fc5c3d4f6d779b15d4da Malware 911 5 182.2 
VScc755bfe842d44f14d87b77848e4ed6d Malware 538 4 134.5 
GitHub.Authentication.exe Benign 131 4 32.75 
FlashPlayerApp.exe Benign 2688 206 13.05 

S’s codeblocks and edges connect codeblocks in sequence to model the 
possible execution paths. Thus, two nodes . ni and . nj represent two distinct 
codeblocks, and an edge .(ni, nj ) demonstrates that the execution of the 
codeblock of . ni can be followed by the execution of the codeblock of . nj

in an execution path of S. 
The API call graph (ACG) of sample S is the directed graph that is 

extracted from the CFG of S, by replacing each node with the API calls that 
the specific Codeblock leads to. For example, if the codeblock represented 
with node . ni leads to API call . f1 and the codeblock of node . nj leads to 
API call . f2, the ACG includes nodes .(ni, f1) and .(nj , f2), respectively. The 
ACG is denoted as .GAPICall = (NAPI , EAPI ). We reiterate that the nodes 
of a CFG are codeblocks, which have been extracted by the disassembly 
process. These codeblocks may lead to zero, one, or more API calls. Given 
the fact that a single API call may be reached from several points during 
the execution of the software, the size of the ACG may exceed the size 
of the CFG in terms of nodes and edges. Furthermore, considering that 
a codeblock of S may lead to several API calls, we expect the size of the 
ACG to be greater than that of the CFG. 

Our method targets to exploit pairwise comparisons of sample ACGs for 
classification with SVM. The speed of pairwise calculations is critical and 
depends on the size of the compared graphs. For this, considering that 
ACGs have large sizes, we calculate a reduced size abstract API call graph 
(AACG) to enable faster comparisons. 

An AACG is an undirected graph that is constructed from an ACG by 
merging all ACG nodes that correspond to the same API call. The AACG 
nodes are connected with undirected links merging the corresponding links 
in the ACG. Thus, the AACG’s node set is equal to the set of distinct API 
calls that are used by the executable sample. In Table 5.2, we provide a few 
examples of graph size reduction achieved by the AACG manipulation.
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In addition to the unweighted AACG described, we also consider the 
case of a weighted AACG. The weights are the transition frequencies 
between the connected API calls. 

5.3.3 Calculation and Reduction of a Graph Kernel 

Our method is based on pairwise comparisons of executable samples, 
with the objective to calculate a measure of their similarity. We calculate 
similarity exploiting a random walk graph kernel, which vectorizes graph 
comparison and enables classification exploiting vector-based techniques, 
such as SVM. Our choice for the kernel originates from the need to use 
the similarity measure as input to the SVM for classification. 

A graph kernel is a kernel function, i.e., a generalized dot product 
function [54], that calculates the inner product of two graphs and provides 
a measure of similarity between them [8, 15]. Thus, a graph kernel is 
suitable for kernelized learning and classification algorithms such as SVMs. 
In our method, we use a special case of graph kernels, a random walk graph 
kernel. 

Random walk graph kernels (RWGK) for two graphs . G1 and . G2
calculate random walks on the two graphs and count the number of 
matching walks [66]. Importantly, it is proven that performing random 
walks simultaneously on a pair of graphs . G1 and . G2 is equivalent to 
performing a random walk on the direct product graph .G1 × G2 of the 
two graphs [33]. 

Given two graphs .G1 = (N1, E1) and .G2 = (N2, E2), their direct 
product graph .G× = (N×, E×) is a graph over all possible pairs of nodes 
from . G1 and . G2, where two nodes of . G× are neighboring if and only if 
the corresponding nodes in . G1 and . G2 are neighbors in both graphs. 

In the following, we consider the representation of graphs with their 
adjacency matrices: . A1 and . A2 are the adjacency matrices of . G1 and . G2, 
respectively. The adjacency matrix of . G× is 

.A× = A1 × A2 (5.1) 

In order to calculate a random walk in a graph, we need to define distribu-
tion probabilities for the starting and stopping point of the random walk; 
we denote these probabilities p and q, respectively [28, 66]. Considering 
the two graphs, . G1 and . G2, their starting and stopping distributions are
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.p1, q1, and .p2, q2, respectively. Considering these distributions for . G1 and 

. G2, the equivalent probability distributions of the direct product graph are 

.p× = p1 ⊗ p2 and q× = q1 ⊗ q2 (5.2) 

The Random walk graph kernel for the pair . G1 and . G2 is defined as 

.κ(G1,G2) =
T∑

k=0

μ(k)q
ᵀ
×Ak×p× (5.3) 

where: 

– .A× is the adjacency matrix of . G×, and, thus, . Ak represents the 
probability of simultaneous k-length random walks on . G1 and . G2; 

– . p× and . q× are the initial and stopping probability distributions of . G×, 
respectively (as described in . (2)); 

– T is the maximum length of a random walk; 
– .μ(k) = λk ∈ [0,1] is a coefficient that controls the importance of 

length in randomwalks which we use to ensure that the sum converges 
and the kernel value is well defined [66]. 

In the implementation of our method, we use .p1 = q1 = 1/|N1| and 
.p2 = q2 = 1/|N2|, i.e., uniform distributions over the nodes of . G1 and 
. G2, as commonly used [21, 28]. For the extracted abstract API call graphs, 
we note that: 

– . A× in the kernel definition refers to an unweighted graph, while in the 
case of weighted graph, . A× is replaced with matrix . W× which contains 
the edge weights;  

– the nodes of the graphs in our method are labeled, where the node 
labels are the names of the corresponding distinct API calls. Thus, 
.W× = A×, leading to Eq. (5.3) [28, 57, 66]. 

Based on the above, the kernel definition becomes 

.κ(G1,G2) = q
ᵀ
×(I − λA×)−1p× (5.4) 

In Eq. (5.4), we employ the generalized definition of the random walk 
graph kernel for labeled graphs [28, 57, 66].
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The calculation of the kernel is equivalent to inverting . (I − λA×)

as derived from Eq. (5.4). Considering that the complexity to invert a 
matrix is .O(n3), where  n is the matrix dimension (rows/columns in the 
adjacency matrix), the computation to invert .(I− λA×) is .O(n6) [36, 66]. 
In our method, we calculate the kernel with complexity of .O(n3) by pre-
processing the adjacency matrices and performing the kernel calculation 
employing decomposition into Kronecker products and the Sylvester 
method [65]. To achieve this, we exploit properties of the AACGs, elimi-
nating unnecessary nodes and reducing the adjacency matrices involved in 
the kernel computation to equal sizes. Specifically, considering that AACGs 
have uniquely labeled nodes (the labels are the API calls) and that only 
common nodes contribute to the results, we can eliminate all the nodes 
that are different between the two compared graphs. Thus, the resulting 
matrices have the same dimension and the same labels. The employment 
of equal size matrices in the kernel computation enables decomposition 
into Kronecker products and adoption of the Sylvester method [65], which 
leads to the lower complexity of .O(n3). Importantly, the elimination of the 
unnecessary nodes from the direct product graph and the corresponding 
costly computations reduce significantly the running time of the graph 
comparison method [36]. 

The random walk graph kernel is a measure of similarity between two 
graphs [8, 15]. We compute kernel values and evaluate the similarity of all 
possible pairs of graphs. Thus, for every executable sample, we compute 
a kernel value for every other executable sample in DS. For a dataset of 
M executable samples, we have a total of .(M − 1)2 kernel values, overall. 
Given these kernel values, which correspond to the all pairwise comparisons 
of samples in a dataset, we can directly use the kernel, as input to the SVM 
classifier. The principle of kernelization of the data is known as the kernel 
trick [31, 53]. 

After their calculation, kernel values are normalized as follows: 

.κ̂(G1,G2) = κ(G1,G2)

max(κ(G1,G1), κ(G2,G2))
(5.5) 

Normalization leads to kernel values in the range .{0,1}, where 1 is the 
result when a graph is compared to itself.
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5.3.4 Classification 

Classification is performed using all kernel values of the executable pairs 
.(S,Di), where  .Di ∈ DS, as well as all kernel values of the executable pairs 
.(Dk,Dl), where .Dk,Dl ∈ DS; these values are . M2, where .M = |DS|. These  
kernel values are used for a support vector machine (SVM) classification 
scheme. 

The training of the SVM is performed using the set of the M vectors, 
where each vector has the form . [(x11, y1), . . . , (x1n, y1)], [(x21, y2), . . . ,

.(x2n, y2)], . . . ., .[(xn1, yn), . . . , (xnn, yn)], where  . xij represents the kernel 
value of the comparison of samples . Si and . Sj , and  . yi is the class label, 
which is an integer value a with .a = −1 or .a = 1 for malicious and benign 
executables, respectively. 

5.4 EXPERIMENTS AND TESTING 

We evaluate our method in two directions: (a) the effectiveness of the 
kernel results and (b) the SVM classification. 

In the first direction, we conduct experiments for both weighted and 
unweighted AACGs, calculating and comparing kernel values for sample 
pairs. We analyze separately benign and malware samples, to establish 
metrics for each category, and then we compare the categories to evaluate 
their effective separation using kernel values as a metric. Specifically, we 
conduct the following measurements: 

1. Benign-Benign: Since the kernel is a measure of similarity, we 
demonstrate the extent to which the benign samples are similar 
among them. In this context, a small kernel value demonstrates the 
dissimilarity of the dataset and the reliability of the benign sample 
collection. 

2. Malware-Malware: In the same manner as for the benign samples, we 
observe the kernel values (similarity measurements) of the malicious 
executables and conclude on the reliability of the malicious sample 
collection. 

3. Benign-Malware: The kernel value of the comparison of benign 
and malicious samples is a preliminary classification metric, which 
demonstrates how similar or different the benign and malicious 
samples are. In this context, we can observe the inner workings of 
a classifier.
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Using the computed kernel values for the benign and the malicious 
samples, we also evaluate binary classification using SVM. Considering 
as baseline the case of the unweighted AACG, we evaluate the weighted 
AACG approach. 

5.4.1 Dataset 

We have created our own dataset for the experimentation and testing of 
our method, due to lack of appropriate public datasets. Focusing on the 
Windows operating system, the dataset includes both benign and malicious 
Windows executable files, containing only labeled executable samples. The 
included benign samples are installation and support files and have been 
collected from trusted sources such as Windows [3], Git [4], Cygwin [6], 
and Codeblocks [7]. The dataset includes 567 benign executables, with 
size ranging from several hundred KB to several MB. The malware samples 
have been drawn from VirusShare [2], which is a website that provides 
malware samples for academic and scientific purposes. We collected 827 
malicious executables, with sizes ranging from several hundred KB to 
several MB. 

5.4.2 Evaluation of Kernel Effectiveness 

We evaluate the effectiveness of the kernel use as a metric and the diversity 
of the collected executable samples by analyzing the dissimilarity of benign 
and malicious samples independently, as well as among these two sample 
categories. Analyzing similarity of all benign samples and all malware 
samples independently shows us that the samples of these two subsets of 
the dataset are not similar; thus, the results of the method are reliable. 

5.4.2.1 Unweighted API Call Graph 
For the 567 benign dataset samples, we calculate the kernel values for 
subsets of 50, 100, 150, 200, 250, and 300 benign samples; we perform 
3 calculations per subset size, drawing samples with uniform probability 
among the 567 benign samples for each calculation. Analogous calculations 
are made for the 827 malware samples. The average kernel value for each 
dataset size appears in Table 5.3. Furthermore, Fig. 5.1 plots all results 
including a histogram of the kernel value distribution at the right of 
each plot. As the results show, the maximum average kernel value, i.e.,
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Table 5.3 Benign-benign and malware-malware normalized kernel values aver-
age of unweighted API call graph for the different dataset sizes 
Subset size 50 100 150 200 250 300 
Benign—Benign 28.34 29.09 32 29.35 28.86 28.68 
Malware—Malware 22.86 22.92 28.58 20.53 25.39 22.21 

Fig. 5.1 Unweighted graph: benign-benign (top), malware-malware (bottom) 
kernel values for dataset size: (from left to right) 50, 200, and 300 

the maximum average similarity metric, is 32% for benign and 28.58% 
for malware samples, respectively. This indicates that the similarity metric 
between benign and malicious samples is sufficiently different. 

5.4.2.2 Weighted API Call Graph 
We perform the same procedure for the weighted graph approach, and we 
demonstrate that the maximum average kernel value for benign and mal-
ware samples does not surpass 32%. We present these results in Table 5.4 
and Fig. 5.2.
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Fig. 5.2 Weighted graph: benign-benign (top), malware-malware (bottom) ker-
nel values for dataset size: (from left to right) 50, 200, and 300 

Table 5.4 Benign-benign and malware-malware normalized kernel values aver-
age of weighted API call graph for the different dataset sizes 

50 100 150 200 250 300 
Benign—Benign 30.78 34.10 30.37 30.50 29.36 31.41 
Malware—Malware 31.43 28.20 25.52 27.20 24.26 23.54 

5.4.2.3 Benign-Malware Kernel Results 
Considering that the kernel values are a similarity metric between two 
graphs, we present in Fig. 5.3 and Table 5.5 the kernel values from the 
comparison of benign and malware samples. For the largest dataset of 300 
benign and malware samples, the average similarity of graphs is 11.15% 
and 12.21% for the unweighted and weighted graph approach, respectively. 
This clearly demonstrates that the API call graphs are a very effective and 
a significant feature for malware detection.
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Fig. 5.3 Benign-malware kernel values for dataset size: (from left to right) 50, 
200, and 300, for unweighted graph (top) and weighted graph (bottom) 

5.4.3 SVM Training and Classification 

We test the trained SVM classifier by using nine different train-to-test 
set splits, by randomly splitting the kernel values in a 10%–90% split 
and arriving to 90%–10% train-to-test split in 10% intervals. The whole 
procedure is repeated 100 times, and the resulting evaluation metrics 
are the average metric values over the 100 repetitions. The kernel values 
are split in groups containing an equal number of malware and benign 
originating kernel values: sets of 50, 100, 150, 200, 250, and 300. We 
evaluate the classification performance of the proposed framework using 
the accuracy, precision, recall, and the ROC curve of the SVM testing 
for the different train-to-test-splits (these evaluation metrics are elaborated 
upon in Table 5.6). 

In Tables 5.7 and 5.8, we present the experimental results of the 
malware detection scheme for unweighted and weighted API call graphs, 
respectively. The unweighted approach achieves a maximum accuracy of 
98.62% for the largest dataset, which is comparable to the results attained
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Table 5.5 Benign-malware normalized kernel values average of unweighted and 
weighted API call graph for the different dataset sizes 

50 100 150 200 250 300 
Unweighted graph 10.75 11.07 13.03 11.21 13.84 11.15 
Weighted graph 13.37 12.32 11.63 12.35 11.93 12.21 

Table 5.6 Evaluation metrics 
Metric Equationa Definition 

Accuracy . 
T P + T N

T P + T N + FP + FN

The number of correct predictions 
over the total number of 
predictions. 

Precision . 
T P

T P + FP

The ratio of positive identifications 
that were actually correct. 

Recall . 
T P

T P + FN

The ratio of actual positives that 
were correctly identified. 

TPR . 
T P

T P + FN

The number of correct predictions 
over the total number of 
predictions 

FPR . 
FP

FP + T N

The number of correct predictions 
over the total number of 
predictions 

ROC Curve-AUC -

A Receiver operating 
characteristic (ROC) 
curve shows the performance of a 
classifier at all classification thresholds. 
The ROC curve plots the TPR against 
the FPR at different classification 
thresholds. AUC measures the 
accumulated performance across all 
thresholds of classification. 
The ROC-AUC measures the quality 
of the classifier, no matter what 
classification threshold is chosen. 

[a] T P is the number of True Positives, T N is the number of True Negatives, FP is the
number of False Positives, and FN is the number of False Negatives

by similar attempts [21]; however, the dataset size we use is significantly 
smaller, and the computational cost is substantially reduced. On the other 
hand, the weighted graph approach surpasses 99.1% and almost reaches 
perfect accuracy while still functioning with a small dataset and keeping 
computational cost and operation time low.
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Table 5.7 SVM evaluation metrics for unweighted graph 
Benign-Malware Accuracy Precision Recall ROC-AUC 
50–50 89.43 90.50 88.55 89.58 
100–100 98.55 97.22 99.93 98.57 
150–150 97.43 97.59 97.57 97.48 
200–200 97.05 96.09 98.82 97.07 
250–250 98.14 98.19 98.12 98.16 
300–300 98.62 98.03 99.26 98.59 

Table 5.8 SVM evaluation metrics for weighted graph 
Benign-Malware Accuracy Precision Recall ROC-AUC 
50–50 90.58 90.50 88.56 89.58 
100–100 94.73 97.22 99.92 98.57 
150–150 96.33 97.59 97.57 97.48 
200–200 97.47 96.09 98.83 97.07 
250–250 98.99 98.03 98.12 98.16 
300–300 99.15 98.88 99.26 98.58 

It is worth mentioning that the SVM algorithm is fine-tuned so as to 
avoid over- or underfitting and the dataset used has been examined and 
evaluated as per its good standing, and thus the detection results are reliable 
and robust. In Fig. 5.4, we present a comparison of our unweighted and 
weighted graph approaches. 

As  shown in Tables  5.7 and 5.8, the best classification accuracy 
is achieved by employing the SVM algorithm for weighted graphs. 
In Table 5.9, we compare the accuracy of our malware classification 
scheme against the accuracy achieved by similar state-of-the-art malware 
classification schemes. We note that one of the compared approaches 
employs an API call graph-based malware classification scheme which is 
relatively analogous to our method [21]. However, as mentioned before, in 
contrast to this conventional approach, we efficiently exploit the constraints 
of the problem and achieve higher accuracy faster and with a smaller dataset 
while also considering the case of weighted graphs. We also compare our 
classification scheme with other state-of-the-art malware classification 
approaches that employ API calls and/or graph-based solutions. 

The comparison with state-of-the-art methods that employ API calls 
as features for malware classification demonstrates that our approach 
achieves higher accuracy than all static analysis approaches. Furthermore,
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Fig. 5.4 SVM accuracy for unweighted and weighted abstract API call graph for 
the different dataset sizes and train-to-test splits 

Table 5.9 Comparison with state-of-the-art malware classification approaches 
Approach Accuracy Notes 

[21] 98.91 Similar effort employing API calls on a 
Random Walk Graph Kernel with unweighted graphs. 

[9] 96.50 Obfuscated malware detection using API call features 
and SVM to find optimal n-gram model 

[11] 98.50 Extract API calls from disassembled executable 
and classify based on frequency of API Call usage 

[52] 98.31 API call categorization based on appearance 
in benign or malicious executables 

[46] 98.86 API call graphs transformed into low dimension 
numeric vector feature set introduced to DNNs 

[71] 93.67 LSTM language model calculates similarity score 
based on Android system call sequences of executables 

[22] 96.50 Android malware detection using 
features based on system calls (MALINE) 

[42] 69.00 CNN applied to raw opcode sequences 

[48] 94.00 Deep learning approach using the raw bytes 
of an executable file as input (MalConv) 

[26] 98.30 HIN-embedding model metagraph2vec 
representing relatedness over files 

Our Approach 99.15 Efficient API call graph classification
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we observe that our proposed classification scheme outperforms both n-
gram and language-based models, as well as graph-based approaches. 

5.5 CONCLUSIONS 

We introduced an efficient and effective static method for malware detec-
tion, which employs API call graphs. Our method is based on the cal-
culation of an appropriate abstract API call graph, with reduced size 
taking into account problem constraints. Furthermore, it includes efficient 
calculation of a random walk graph kernel as a similarity metric. Through 
experiments using an appropriate dataset, we show that the calculated 
kernel constitutes an effective metric, which can be readily used for 
malware classification with machine learning methodologies such as SVM. 
Employing SVM and considering two different cases for the abstract API 
call graph, an unweighted and a weighted one, we demonstrate that our 
method is comparable to available alternatives when using unweighted 
graphs, reaching more than 99% accuracy, and outperforms alternatives 
when employing weighted graphs. 
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Deep Learning for Windows Malware 
Analysis 
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6.1 INTRODUCTION 

The emergence of the Internet has provided a powerful means of com-
munication and data sharing, which has a huge impact on the worldwide 
economic growth. However, systems and networks have become exposed 
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to different types of cyberattacks, which are launched by cybercriminals 
(i.e., Hackers) and could cause significant economic losses.1 Malware is the 
suitable tool for hackers to launch cyberattacks. The term malware is used 
to refer to any computer program that was developed in order to perform 
malicious activities on computer systems. In the last 2 years, with the 
COVID-19 pandemic, we have witnessed a very concerning and alarming 
proliferation of Malware, with hundreds of thousands of malware samples 
that are discovered every day.2 Moreover, the number of ransomware has 
doubled during the same period.3 Therefore, deploying a robust anti-
malware solution is vital in order to deal with malware proliferation. 

The signature-based malware detection techniques, which have been 
widely used by the anti-virus vendors, are inefficient at detecting zero-
day malware. Therefore, malware analysts have shifted to machine learning 
techniques in order to build intelligent and robust malware detection 
systems [77], which are more effective compared to the signature-based 
ones. However, they are facing several challenges. First, ML-based malware 
detection systems require a pre-processing phase called feature engineer-
ing, which aims at extracting features that characterize the analyzed mal-
ware samples, and are used as inputs to train the detection or classification 
model. Since these features are manually crafted by security researchers, 
and since most of existing malware instances are obfuscated using different 

1 https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/. 
2 https://www.comparitech.com/antivirus/malware-statistics-facts/. 
3 https://www.securitymagazine.com/articles/97166-ransomware-attacks-nearly-

doubled-in-2021. 

N. Seddari 
LIRE Laboratory, Abdelhamid Mehri-Constantine 2 University, Constantine, 
Algeria 
e-mail: noureddine.seddari@univ-constantine2.dz 

A. Bouras 
Department of Industrial Engineering, College of Engineering, Alfaisal 
University, Riyadh, Saudi Arabia 
e-mail: abouras@alfaisal.edu 

Z. Guessoum 
CReSTIC EA 3804, University of Reims Champagne Ardenne, Reims, France 
e-mail: zahia.guessoum@univ-reims.fr


 -484 32153 a -484 32153 a
 

 -484 33282 a -484 33282 a
 

 -484 34411 a -484 34411 a
 
https://www.securitymagazine.com/articles/97166-ransomware-attacks-nearly-doubled-in-2021

 1152 41783 a 1152 41783 a
 
mailto:noureddine.seddari@univ-constantine2.dz
mailto:noureddine.seddari@univ-constantine2.dz
mailto:noureddine.seddari@univ-constantine2.dz
mailto:noureddine.seddari@univ-constantine2.dz

 1152 47268 a 1152 47268 a
 
mailto:abouras@alfaisal.edu
mailto:abouras@alfaisal.edu

 1152 51536 a 1152 51536 a
 
mailto:zahia.guessoum@univ-reims.fr
mailto:zahia.guessoum@univ-reims.fr
mailto:zahia.guessoum@univ-reims.fr
mailto:zahia.guessoum@univ-reims.fr


DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 121

techniques, such as packing, encryption, etc., the extraction of such 
characteristics can be a tedious task.Moreover, the high dimensionality that 
characterizes the extracted features requires a feature selection (reduction) 
phase that aims at removing irrelevant features, and which can be a labor-
intensive task as well. 

In the last decade, researchers have shifted to deep learning in order 
to overcome the aforementioned limitations of conventional machine 
learning approaches. Simply speaking, deep learning techniques can be 
defined as as a neural network with a large number of parameters and 
layers [70]. In fact, they are a subclass of machine learning algorithms 
that use many nonlinear information processing layers for supervised 
or unsupervised feature extraction, transformation, and classification, as 
well as pattern analysis [24]. Deep learning has widely been investigated 
in language processing [99] and have been extended to various fields, 
including cybersecurity [11, 12], and more specifically in the context 
of malware analysis and detection. In fact, deep learning has shown an 
impressive potential for detecting malware. Indeed, it can identify patterns 
in data that are too complex for traditional machine learning methods, 
making it more accurate and efficient. Additionally, deep learning can be 
used to detect new and unknown types of malware, making it an essential 
tool in the fight against cyberattacks. Indeed, employing deep learning 
techniques in the context of malware analysis and detection has various 
advantages, such as: 

• Automatic feature learning from data is possible with deep learning, 
which can improve the detection accuracy. 

• Deep learning can learn from data with different levels of abstraction, 
which can improve detection of more sophisticated malware. 

• Deep learning can identify patterns that are too difficult for humans 
to discern. 

• Deep learning can be used with unsupervised learning methods to 
detect previously unknown malware. 

This survey paper aims at providing the most recent and comprehensive 
review of solutions that employ deep Learning for Windows malware 
analysis. The main contributions of this paper are the following: 

• We provide a content-rich background about malware and malware 
analysis, as well as deep learning.
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• We provide a detailed taxonomy that covers various classification crite-
ria, namely, the analysis task, the type of extracted features, the feature 
representation method, and finally the deep learning algorithm. 

• We comprehensively present the deep learning malware detection 
solutions for Windows malware and discuss them with regard to the 
proposed taxonomy. 

• Furthermore, we provide an insight regarding the limitations and 
the challenges that face the existing deep learning malware analysis 
solutions, as well as some recommendations for future research. 

This survey is organized as follows: Sect. 6.2 presents background 
concepts related to deep learning. Section 6.3 discusses the related surveys. 
In Sect. 6.4, we present the adopted research methodology. Section 6.5 
presents our proposed taxonomy for deep learning malware analysis. In 
Sect. 6.6, we review, analyze, and discuss the current state-of-the-art mal-
ware detection solutions according to the proposed taxonomy. Section 6.7 
highlights the open challenges for malware analysis using deep learning 
and recommends future research directions. Finally, Sect. 6.8 concludes the 
survey. 

6.2 DEEP LEARNING: BACKGROUND AND BASIC 
CONCEPTS 

6.2.1 Definition 

Nowadays, deep learning technique has attracted considerable attention 
because of its efficiency and usages. It can solve complex problems whose 
solutions did not exist before and even if they exist, they cannot achieve 
good results. Indeed, the arrival of deep learning has overcome several 
limitations of machine learning by dealing with high-dimensional data. 

Deep learning (DL) is defined as a subfield of machine learning (ML) 
and artificial intelligence (AI) based on the use of multiple processing lay-
ers, in order to effectively extract useful features from the raw input, which 
can be used to handle multiple challenges in different application areas 
(e.g., natural language processing, cybersecurity, recommender systems, 
computer vision, healthcare, speech recognition, and many other fields) 
[55]. Deep learning algorithms imitate the human brain structure and 
function in order to compute information and then make decision to use 
multiple layers of neurons. In fact, as indicated in the following figure, DL



DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 123

Input 
layer L1 

Hidden 
layer L2 

Hidden 
layer L3 

Hidden 
layer L4 

Hidden 
layer L4 

y0 

x1 

x2 

x3 

xp 

W(1) 

W(2) 

W(3) 
W(4) 

a(2) a(3) 

a(4) 

a(5) 

y0 

y1 

Fig. 6.1 General architecture of a deep neural network (source: towardsdata-
science.com) 

is made up of an input layer, an output layer, and one or more hidden 
layers, as shown in Fig. 6.1. 

The input layer is made of one or more nodes that represent the 
artificial input neurons which receive the input data from the external 
environment. The inputs can, then, be normalized in ranges. The hidden 
layer is composed of one or many layers; it is responsible for the global 
processing of the network based on the data introduced by the input layer. 
Hidden layer uses activation functions in order to produce the results, by 
employing artificial neurons which calculate the weighted sum of the input 
data. Finally, the output layer is the last layer, and it provides the output 
data resulting from the processing of the hidden layer. More recently, a new 
category of neural networks has emerged, which are called graph neural 
networks (GNNs) [94]. GNNs are a powerful tool for learning on graph-
structured data. GNNs learn to map node features to a low-dimensional 
representation and then use this representation to make predictions about
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Fig. 6.2 Deep learning techniques 

the graph structure or node labels. GNNs have been applied to a variety of 
tasks, including node classification, link prediction, and graph classification. 

6.2.2 Deep Learning Techniques 

Deep learning techniques are classified into four categories as shown in 
Fig. 6.2. 

6.2.2.1 Deep Supervised Learning 
This technique feeds labeled data. The sets of input and that of the resulting 
output are known and the deep learning model attempts to learn the 
mapping function. We find in this category various techniques, such as 
deep neural networks (DNNs)which are composed of three layers at least 
(input, output, and hidden), convolutional neural networks (CNNs) 
that are based on multiple multilayer perceptrons and hold one or many 
convolutional layers that are completely linked or pooled, and recurrent 
neural networks (RNNs) which successfully interpret temporal informa-
tion. RNN class includes gated recurrent units (GRUs) technique which 
is based on particular memory elements that aim to quickly build recurrent 
neural networks by using few network parameters and long short-term
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memory (LSTM) technique which is able to learn long-term dependencies 
in complex problem behaviors such as sequence prediction. 

The key advantage of deep supervised learning is its simplicity and 
capacity of mapping data to produce known output results. Thus, we can 
identify the number of classes we want to have, and the obtained results 
are exact and credible. Hence, supervised learning algorithms were largely 
applied in forecast sales and risk evaluation. Nevertheless, the drawback of 
this technique is that the absence of some necessary samples can lead to 
exceeding the decision boundaries [2]. 

6.2.2.2 Deep Semi-supervised Learning 
This technique feeds semi-labeled data including both tagged and 
untagged data which improves the learning performance. In this model, 
the outputs are known, but not all of them are labeled as the input. 
Generative Adversarial Networks (GANs) and RNNs are often 
employed as semi-supervised learning. One efficient application of semi-
supervised learning is the text document classifier [35, 93]. The most 
important advantage of semi-supervised technique is the minimization of 
labeled data amount, whereas its disadvantage is the false output result 
that can be generated using inappropriate input features. 

6.2.2.3 Deep Unsupervised Learning 
This technique uses unlabeled data where only the inputs are known. 
Indeed, this model allows predicting the output results from incomplete 
and predefined labels. Clustering is included in deep unsupervised tech-
nique and was largely applied in many fields such as social networks 
analysis and anomaly detection. Among the most recent and efficient 
unsupervised learning techniques, we find GANs, restricted Boltzmann 
machines (RBMs) that use the connection between neurons of the same 
layer in addition to their connection with neurons of other layers, and 
auto-encoders which is capable of compressing and encoding data in 
an unsupervised way [16, 83]. Unsupervised learning algorithms allow 
discovering underlying patterns and effectively predicting relevant informa-
tion. However, they are less accurate and computationally more complex 
compared to supervised learning.
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6.2.2.4 Deep Reinforcement Learning 
The deep reinforcement learning algorithms learn to act and react in an 
environment by using the most suitable actions. These algorithms use 
reactive agents in order to minimize the risk and maximize the reward. 
Deep Q-learning is a widely used reinforcement learning approach, which 
is based on the use of a deep neural network to learn the Q value of 
an action having a special state in its environment. The most advantage 
of deep reinforcement learning is its high performance of exploitation or 
exploration. It can also learn a set of action series. Thus, deep reinforcement 
learning algorithms find large applications in games and health areas. 
However, this technique requires a lot of computation due to the number 
of parameters [15]. 

6.2.3 Deep Learning vs Machine Learning 

As mentioned before, deep learning is a subclass of machine learning; these 
two concepts are, hence, related to each other. The key differences between 
DL and ML are illustrated in Table 6.1. 

The most important difference between deep learning and machine 
learning is the data dependency. As depicted in Table 6.1, deep learning 
algorithms require huge data to achieve good results, while machine learn-
ing algorithms can reach successful results with small data. Furthermore, 
ML needs structured data unlike DL that can work with both structured 
and unstructured data. 

In terms of execution time, machine learning algorithms take only 
seconds or hours to train, while training a deep learning algorithm could 
take more than 2 weeks due to the large number of its parameters. 

Table 6.1 Comparison between deep learning and machine learning 
Feature Machine learning Deep learning 
Data amount Large Small 
Execution time (training) Fast Slow 
Execution time (testing) Slow Fast 
Data structure Structured data Structured and 

unstructured data 
Hardware dependency CPUs CPUs and GPUs 
Human intervention Considerable Little 
Use Simple and bi-complex problems Complex problems
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However, during the testing step, deep learning algorithms are faster than 
ML ones. Moreover, DL requires machines with significant computing 
power and multiple GPUs due to its big data, whereas ML can function 
on low-end machines with CPUs. 

From Table 6.1, we can also observe that deep learning layers are 
able to learn and solve problems without human intervention, while 
machine learning model largely depends on the human intervention. 
Finally, machine learning is suitable for simple applications such as pre-
diction and forecasting, while deep learning is used to solve complex 
problems. 

6.3 RELATED SURVEYS 

In the literature, there are several surveys on malware analysis. As shown in 
Table 6.2, we summarize the malware analysis surveys with respect to the 
following criteria: 

• Detection approach: It indicates themalware detection approaches that 
are covered by the survey. 

• Operating system platform: It indicates the targeted operating system 
platforms that are covered by the survey. 

• Outline and observations: It states the main outline of the survey and 
any related observations. 

From Table 6.2, we can observe that most of the surveys focused 
on two detection approaches: machine learning and deep learning. The 
surveys [45, 51, 58, 86] solely covered machine learning techniques. On 
the other hand, surveys in deep learning [72, 75, 81] only considered 
deep learning techniques. Other surveys covered both machine and deep 
learning techniques [32, 87]. In addition to machine learning techniques, 
Pan et al. [68] covered statistical detection models. Aslan et al. [5] 
presented detection techniques belonging to three detection approaches, 
including model checking, machine learning, and deep learning. Data 
mining approaches were covered in [82, 98], whereas malware analysis 
tools were presented in [26]. 

We can also observe that Windows and Android were the most inves-
tigated operating systems. The surveys [26, 32, 86, 98] and  [45, 51, 58, 
68, 72] only focused on Windows and Android OS, respectively. Other 
surveys considered the two operating system platforms [75, 81, 82, 87]. In 
addition to these two OS platforms, Aslan et al. [5] covered IoT malware.
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Table 6.2 Related surveys on malware analysis 
Reference Year Detection 

approach 
OS 
platform 

Outline and observations 

Egele et 
al. [26] 

2012 Malware analysis 
tools 

Windows Scope of the survey is restricted to dynamic 
analysis 

Ye et al. 
[98] 

2017 Data mining Windows Survey on malware detection using data 
mining techniques 

Souri et al. 
[82] 

2018 Data mining Windows 
Android 

Survey on malware detection using data 
mining techniques 

Ucci et al. 
[86] 

2019 Machine learning Windows Survey of machine learning techniques for 
malware analysis 

Pan et al. 
[68] 

2020 Statistical analysis Android Systematic literature review of Android 
malware detection 

Machine learning Scope of the survey is restricted to static 
analysis 

Aslan et al. 
[5] 

2020 Model checking Windows Comprehensive review on malware 
detection approaches 

Machine learning Android 
Deep learning IoT 

Liu et al. 
[58] 

2020 Machine learning Android Review of android malware detection 
techniques using machine learning 

Qiu et al. 
[72] 

2020 Deep neural 
networks 

Android Survey of android malware detection using 
deep neural models 

Sahin et al. 
[75] 

2020 Deep learning Windows 
Android 

Survey on malware detection using deep 
learning techniques 
No taxonomy is provided 
Short survey 

Gibert et 
al. [32] 

2020 Machine learning Windows Systematic review of malware detection and 
classification techniques 

Deep learning Taxonomy of features used by machine and 
deep learning 

Urooj et 
al. [87] 

2021 Machine learning Windows Scope of the survey is restricted to 
ransomware and to dynamic analysis 

Deep learning Android 
Singh et 
al. [81] 

2021 Deep learning Windows Survey on machine learning-based malware 
detection 

Android No taxonomy is provided 
Short survey 

Kouliaridis 
et al. [51] 

2021 Machine learning Android Survey on machine learning techniques for 
android malware detection 

Kambar et 
al. [45] 

2022 Machine learning Android Survey on mobile malware detection 
techniques using machine learning 

Our work Deep learning Windows Survey on malware detection and 
classification using deep learning 
techniques
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Some surveys are short [75, 81] or restricted to some analysis type like 
static analysis [68] or dynamic analysis [26]. Urooj et al. [87] only focused 
on ransomware using dynamic analysis. Four surveys [5, 32, 75, 81] are  the  
closest to our work as they cover deep learning and target Windows oper-
ating system. However, our work differs from the four earlier-mentioned 
surveys in the following points: 

• Multiple detection approaches and multiple operating system plat-
forms are covered in [5]. In [75, 81], only deep learning approach 
is considered, and two operating systems, i.e., Windows and Android 
OS, are targeted. Differently, our work solely focuses on deep learning 
and only considers Windows OS. 

• No taxonomy is provided in [75, 81]. In [32], feature-based taxon-
omy is proposed. Differently, our work proposes a taxonomy that 
classifies works with respect to different criteria. 

6.4 RESEARCH METHODOLOGY 

This section presents the adopted approach for selecting the reviewed 
papers, and which consists of data sources, search criteria, as well as the 
inclusion and exclusion criteria. 

6.4.1 Data Sources and Search Criteria 

In order to conduct a comprehensive literature coverage, and increasing 
the likelihood of finding high-quality papers, we selected a set of highly 
relevant databases, namely, ACM Digital Library, Springer Link, Science 
Direct, IEEE eXplore, PubMed, Web of Science, and Google Scholar. 

We conducted an exhaustive search on the aforementioned databases 
using a search string that is based on various keywords such as “malware 
analysis,” “malware detection,” “deep learning,” “Windows desktop,” and 
“portable executable.” The use search string is the following: “deep learn-
ing” and (“malware” and (“analysis” or “detection” or “classification”) 
and (“Windows” or “desktop” or “portable executable” or “PE”)). 

6.4.2 Inclusion and Exclusion Criteria 

In this survey paper, and in order to make the research more specific 
and comprehensive, we conducted a qualitative and quantitative study
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Table 6.3 Inclusion and exclusion criteria 
Criteria Description 
Inclusion Papers that use deep learning techniques to detect malware 

Papers that provide solutions designed for Microsoft Windows desktop 
environment 
Papers that were peer-reviewed (if not, they must be highly cited) 

Exclusion Papers that use only traditional machine learning techniques 
Papers that are designed for other environments (i.e., Android, IoT, etc.) 
Papers that are not peer-reviewed (and with few citations) and short papers 
Papers written in a language other than English 
Papers that received less than five citations for the 3 years following their 
publication 

of published research papers from 2015 onward by considering various 
inclusion and exclusion criteria, which are presented in Table 6.3. 

6.5 PROPOSED TAXONOMY 

In this section, we introduce the proposed taxonomy (see Fig. 6.3) on  
how the existing solutions employ deep learning algorithms in malware 
analysis. In this taxonomy, we consider four main criteria for classifying the 
reviewed solutions, namely, the analysis task, the type of extracted features, 
the used feature representation method, and finally the used deep learning 
algorithm. These criteria are discussed in the rest of the section. 

6.5.1 Malware Analysis Task 

6.5.1.1 Detection 
Malware detection is the process of identifying the presence of malware on 
a computer or network. Malware detection is a binary classification issue, 
where the outcome indicates whether the analyzed sample is malicious or 
benign. The detection task is generally the primary step in the malware 
analysis process. Indeed, once a sample is identified as malicious, it needs 
to be assigned to a specific category or family. This is the role of the 
classification task, and which is discussed in the following subsection. From 
the total number of surveyed papers, we observed that the majority of 
them (. ≈60%) propose malware classification solutions, while the rest of 
the papers deal with the malware detection problematic.
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Fig. 6.3 Proposed taxonomy for malware analysis using deep learning 

6.5.1.2 Classification 
Malware classification is the process of categorizing malware according 
to its type or function. Indeed, malware classification is a more gen-
eral approach to deal with malware. Rather than trying to detect every 
individual piece of malware, malware classification focuses on identifying 
and categorizing different types of malware. Indeed, it will assign the 
malware to a category or a family of malware with which it shares specific 
characteristics (e.g., target, behavior, etc.). This information can then be 
used to develop better detection and removal methods. 

6.5.2 The Used Features 

Malware detection or classification requires a preliminary stage, which is 
the analysis stage. The latter allows the extraction of the various attributes 
(features) that will be used to classify a file. There are two types of analyses,
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namely, static analysis and dynamic analysis [26, 80]. Dynamic analysis 
requires the execution of the program. This is carried out in a controlled 
setting that is typically created using an emulator (virtual environment) 
[26]. This can be useful for understanding how the malware interacts with 
the system and what is its purpose is. On the other hand, static analysis 
does not require the execution of the program; instead of that, the analyzed 
program is disassembled. The disassembly, also called reverse engineering, 
is the process of converting a compiled (machine code, bytecode) program 
into a more human readable format (i.e., assembly code). There are pros 
and cons to both static and dynamic malware analysis. For instance, static 
analysis is suitable for getting a general overview of what a piece of malware 
does (i.e., malicious or benign), but it can be limited in its ability to show 
how the malware actually behaves when executed and may not be able to 
uncover all of the malware’s functionality since most existing malware are 
obfuscated. Dynamic analysis, on the other hand, is better for seeing how 
the malware behaves when executed, but it can be more difficult to set up 
and can be more time-consuming. Thus, these two types of analyses can be 
combined together resulting in what we call hybrid analysis. Based on the 
chosen analysis type, we can distinguish two main categories of features, 
namely, static features and dynamic features. 

6.5.2.1 Static Features 

Bytecode Data 
A bytecode is a low-level language that is just like a hardware processor’s 
assembly language (such as the IA-32 assembly language) [27]. It is often 
used to distribute programs or libraries in a platform-independent way. By 
examining the bytecode of a program, it is possible to identify previously 
seen patterns and thus efficiently determine if it contains a malicious code 
and preventing its execution on the system. Bytecode data has been widely 
investigated in the context of malware analysis and detection. The solutions 
presented in [3, 4, 18, 19, 21, 23, 42, 44, 48, 52, 54, 61, 64, 65, 88, 97, 
100, 101] used bytecode data as main features, which represents ≈35% of 
the total number of the reviewed papers. 

Operation Code 
Operation code, also known as opcode, is a part of the assembly code 
instructions that identifies the operation to be performed (e.g., Push, 
Move, ADD, etc.) by the processor. Malware detection systems use
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Fig. 6.4 A general PE 
file format structure 

opcodes to identify malicious code. By analyzing the opcodes in a piece 
of code, a malware detection system can determine whether the code 
is malicious or not. In addition, by analyzing the opcodes, malware 
detection systems can identify which type of malware a piece of code 
is allowing to take the appropriate action. This is because different types 
of malware have different opcodes. For example, a piece of code that 
is designed to delete files will have different opcodes than a piece of 
code that is designed to steal information. The solutions presented in 
[21, 43, 46, 47, 50, 66, 67, 89, 97, 102, 103] employ opcodes as features, 
which represents ≈20% of the reviewed solutions. 

PE Metadata 
PE (portable executable) is the common file format forMicrosoft Windows 
executable files [71]. A PE file is composed of several parts including 
headers (optional header, file header, etc.) as depicted in Fig. 6.4. The  
latter contains rich metadata regarding the file. PE metadata has been 
successfully leveraged in the context of malware analysis and detection, 
allowing the design of lightweight and highly accurate malware detection 
systems [7, 8, 78]. 

PE metadata has been also used to build deep learning-based malware 
detection systems, such as in [50, 73, 76, 90, 97].
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PE Imports (APIs, DLLs) 
Windows APIs (application programming interfaces) are a set of routines 
that are stored in dedicated libraries (DLLs, for Dynamic Link Libraries), 
and they provide a way for the program to request services from the 
operating system or other programs and to pass information back to them. 
In the case of malware detection, APIs are used as a mean to reflect the 
programs behaviors (malicious or legitimate). During the static analysis 
of the executable file, the APIs are extracted using the import address 
table (IAT) [71]. In the case of DL-based malware detection, statically 
extracted API calls have been used by [31, 36, 47, 50, 62, 76, 89]. The 
main advantage of these kinds of features is that they are extracted with 
minimum processing overhead. However, they are highly impacted with 
code obfuscation techniques, especially packing. 

6.5.2.2 Dynamic Features 

API/System Calls 
APIs calls can be also extracted dynamically and that by running the 
program in a sandbox. APIs can request OS services through making 
system calls. System calls are a low-level way for a program to request 
a service from the kernel of the operating system it is running on. This 
may include requesting more memory, doing input/output, or creating a 
new process. In this case, API/system calls sequences are considered, since 
they provide a better description of the programs behavior, based on their 
chronological order. For instance, API/system call sequences have been 
employed by [1, 6, 22, 40, 49, 53, 56, 60, 61, 69, 85, 92, 95]. Moreover, 
the work of Huanfg at al. considers the API arguments as an additional 
indicator [41]. 

Execution Traces 
By execution traces, we mean every action that is accomplished by the 
malware during its execution and that modifies the state of the system (i.e., 
host-based indicators). These can be file manipulations, registry updates, 
etc. The solutions presented in [22, 30, 85] employed such type of features. 

Network Traffic 
By analyzing network traffic, it is possible to identify malicious activities 
and take appropriate steps to mitigate the threat [9]. There is a variety of 
techniques that can be used for network traffic analysis, including packet
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inspection, flow analysis, and log analysis. Packet inspection is the most 
granular form of traffic analysis, as it allows analysts to examine each 
individual packet of data that passes through the network. Flow analysis 
groups together packets that are part of the same communication. Log 
analysis relies on data that has already been collected by network devices. 
The work of David et al. [22] and Shibahara et al. [79] employed network 
traffic features. 

6.5.3 Feature Representation Method 

There are various ways of representing malware features for detection pur-
poses. Some common methods include using vectors, sequences, graphs, 
n-grams, and more recently image representation. 

6.5.3.1 Vectors 
There are many ways to represent features for deep learning, but one of 
the most popular is using a vector. A vector is simply a list of numbers, 
and each number in it represents a particular feature. For example, a vector 
might represent the set of features extracted from a malware sample. There 
are many benefits for using vector representations for deep learning. First, 
they are easy to work with and can be fed directly into most deep learning 
algorithms. Second, vectors are often able to capture complex relationships 
between features, which can be helpful for detecting patterns in data. 
Finally, vectors can be easily extended to include additional features, which 
can improve the accuracy of deep learning models. The solutions presented 
in [20, 31, 36, 46, 47, 49, 50, 61, 62, 79, 85] employed vector-based 
feature representation. 

6.5.3.2 Sequences and n-Grams 
There are many ways to represent sequence data for the purpose of malware 
analysis and detection. One common approach is to use a bag-of-words 
representation, where each instance is represented as a fixed-length vector 
of counts of words in the sequence. Another approach is to use a sliding 
window over the sequence, which results in what is called n-grams. An n-
gram can be defined as an n-character slice of a longer string [17]. They are 
generated by shifting a windows of length l over that string. Formally, let 
S be the set of . Mn distinct n-grams that can be formed from . 

∑
. n-grams 

are all substrings of a larger string with a length of n [10]. As an example,
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from the word “M A L W A R E” we can extract the following 4-grams: 
“MALW,” “ALWA,”“LWAR,” and  “WARE.” In the  case of byte n-grams,  
the string represents the byte sequence of the analyzed file, and the byte 
n-grams are generated by shifting the window by n bytes. Opcode n-
grams, similarly to byte n-grams, are generated by shifting a window on an 
opcode sequence. Ding and Siyi [25, 102] used that feature representation 
method by the conversion of the generated and which will be generated and 
concatenated to each other resulting in a unique opcode stream. Finally, 
n-gram features (with .n = 3) are generated. For the reviewed solutions, 
those presented in [21, 31, 43, 49, 50, 56, 64, 73, 102] used sequence-
based feature representation, while those presented in [1, 6, 30, 50, 53, 
57, 60, 69, 84, 88, 92, 97] used n-gram-based feature representation. 

6.5.3.3 Graphs 
There are two main types of graphs that are frequently employed in 
malware analysis, namely, the control flow graph (CFG) and the function 
call graph (FCG). A control flow graph (CFG) is a graphical representation 
of the sequence of operations in a program. It is a directed connected 
graph, where each node represents an instruction of the file’s assembly 
code and each edge represents an execution sequence [28]. A function 
call graph (FCG), on the other hand, is a graphical representation of the 
sequence of function calls in a program. Both CFGs and FCGs can be used 
to visualize the behavior of a program and to help debug it. However, they 
have different uses. CFGs are more useful for understanding the overall 
flow of a program, while FCGs are more useful for understanding the 
sequence of function calls. 

In the case of DL-basedmalware detection, many researchers have opted 
for behavior graphs as the main feature representation for the analyzed 
samples. For instance, Ding and Siyi [25, 40, 102] opted for a CFG 
representation, while [95] opted for FCG one. In these pervious solutions, 
only the one of Hua et al. [40] used CFGs in its original from, since 
the latter solution employed a graph neural network, namely, deep graph 
convolutional network (DGCNN). For the rest of the solutions, they either 
transformed it into n-grams like the work of [102] or vector [95]. 

6.5.3.4 Image Representation 
By representing images of malware, one can more easily find similarities 
and differences between samples. This helps to identify new malware and
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also to track the changes made to existing malware. There are various ways 
of representing images for this purpose, including 2Dmatrices, histograms, 
run-length encoding, and wavelets. In addition, images can be generated 
from the entire file(i.e., bytecode) or specific parts of it. Each of these 
approaches has benefits and drawbacks of its own, and the choice of 
representation will depend on the specific application and the used DL 
algorithms. Utilizing a convolutional neural network (CNN) is the most 
popular approach. CNNs can automatically extract features from images 
and learn to classify them. Other approaches include using a recurrent 
neural network (RNN) or a long short-term memory (LSTM) network, 
which can learn to detect patterns over time. Deep learning models can 
also be combined with traditional machine learning methods to improve 
the performance. There are a few potential advantages to this approach. 
For instance, it can be much faster than traditional scanning methods. In 
addition, it can be more accurate, since the entire file can be analyzed. The 
solutions presented in [3, 5, 18, 19, 21, 23, 38, 42, 44, 48, 52, 54, 65– 
67, 88–90, 97, 100, 101, 103] used image-based feature representation. 

6.5.4 Used DL Algorithms 

As presented in Sect. 6.2, there are many different DL algorithms that can 
be used for malware detection, but some of the most popular ones include 
convolutional neural networks (CNNs), which have been used by . ≈55% 
of the reviewed solutions, and recurrent neural networks (RNNs), which 
have been used by . ≈30% of the reviewed solutions. CNNs are often used 
for image classification tasks, while RNNs are better suited for sequence 
data. All of these algorithms have been used to build successful malware 
detection systems. However, there is no perfect algorithm that can be used 
for all tasks. It is important to choose the algorithm that is best suited for 
the specific problem at hand. 

6.6 DESCRIPTION OF SOLUTIONS 

In this section, we discuss the reviewed solutions according to the proposed 
taxonomy.We also describe the solutions with respect to the size and nature 
(public or private) of the used datasets, the used performance evaluation 
metrics, the achieved results, as well as their weaknesses and strengths. 
The reviewed solutions have been grouped according the analysis task (i.e.,
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detection or classification) as well as the extracted features (i.e., static and 
dynamic). 

6.6.1 Malware Detection Solutions 

6.6.1.1 Solutions that Employ Static Features 
Saxe and Berlin [76] introduced a DL-based malware detection composed 
of three different components. The first component is the feature extractor, 
which allows extracting four types of features, namely, byte entropy his-
togram, string 2D histogram, PE imports, and PE metadata. The second 
one is the classifier, which is a four-layer deep feed forward neural network, 
with an input layer, two hidden layers, and an output layer. The input 
layer consists of 1024 nodes representing the input feature vector. The 
two hidden layers are also composed of 1024 nodes with a parametric 
rectified linear unit (PReLU) activation function [37]. The output layer 
predicts the output (malicious or benign) using the sigmoid function. The 
last component is the score calibrator, which represents the probability that 
a given file is malicious or not. Authors achieved 95% detection rate (DR) 
with 0.1% false-positive rate (FPR). 

Hardy et al. [36] introduced DL4MD (deep learning framework for 
malware detection), which consists of two main modules, which are a 
feature extractor and a deep learning-based classifier. The feature extractor 
is used to extract API calls from the analyzed PE files using static analysis. 
The DL-based classifier is composed of several stacked auto-encoders 
(SAE). The authors evaluated DL4MD on a dataset containing 50K 
samples (45k training, 5K testing), and the results showed that the best 
configuration of the latter model (i.e., 3 hidden layers with 100 neurons 
in each layer) was able to achieve 95.46% of accuracy, which is 2% higher 
compared with the accuracy achieved by classical ML classifiers, namely, 
artificial neural network (ANN), support vector machine (SVM), Naıve 
Bayes (NB), and decision tree (DT). 

Raff et al. [73] introduced an approach for efficient malware detec-
tion with minimum domain knowledge. Thus, the authors employ raw 
features(i.e., byte sequences), on which they will apply the minimum of 
pre-processing efforts. The authors introduced two baseline approaches as 
well as a deep neural networks based one. The first baseline approach uses 
PE metadata extracted using a third-party library called PortEX [34]. They 
extracted 115 features, which were fed to twomachine learning algorithms,
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namely, random forest [14] and extra random trees [29]. The second 
baseline approach generates byte n-grams from the first 328 bytes of the PE 
file, which represent the location of the PE headers. These features are then 
fed to logistic regression algorithm. The last approach consists of using two 
types of neural networks, namely, fully connected neural networks (FCN) 
and recurrent neural network (RNN), both fed with the aforementioned 
raw byte region (328 bytes). Experimental results showed that the FCN 
model outperforms the three others with regard to area under ROC curve 
(AUC) and the balanced accuracy (BAC). 

Choi et al. [18] introduced a malware detection approach that is based 
on the grayscale image representation of malware and benign binaries. 
They proposed a .256×256 images to represent the binaries, meaning that 
they only consider the first 64KB of the analyzed binaries. These images are 
then fed to a CNN composed of three convolutional layers, each followed 
by a pooling layer, in addition to two fully connected layers. They evaluated 
the model on a dataset composed of 10,000 benign and 2000 malware 
samples and achieved an accuracy of 95.66%. 

In [46], a lightweight deep convolutional neural network-based method 
for detecting windows malware (CNN) is proposed. The proposed system 
is composed of two main components, which are the instructions analyzer 
and the classifier. The first components aims at disassembling the analyzed 
binaries, extracting the set of opcodes, grouping them by functionalities, 
and, finally, mapping them as 2D array. The results on the experiments of 
the detection system, based on a dataset contains around 70,000 samples, 
show an overall accuracy of 95% with a promising 10 hours as a training 
time of the system with one convolutional layer. 

The study in [97] introduced MalNet, a novel self-learner malware 
detection approach, which uses CNN and LSTM networks. MalNet has 
two stages; the first one aims at statically analyzing the binaries and gen-
erating three types of features, namely, the grayscale image representation 
of bytecode, the opcode sequences, and various PE metadata. The second 
one is the core process of MalNet, in which the CNN and LSTM networks 
learn, respectively, from the grayscale images and the opcode sequences. 
In addition, and in order to optimize the detection performance, the 
authors used a stacking ensemble that integrates the two networks’ output 
alongside with themetadata features and outputs the final prediction result. 
The model was evaluated on more than 40,000 samples collected from 
online software providers and Microsoft. The evaluation to an interesting
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achievement of the level of accuracy for malware detection measured at 
99.88%. It also reached 99.14% of TPR with FPR of 0.1%. 

Ding and Siyi [102] proposed a malware detection system composed of 
three main modules: the PE parser, the feature extractor, and the decision 
module. The PE parser aims at statically extracting the opcodes sequence 
and generating a control flow graph (CFG) from the analyzed file using 
IDA Pro tool [39]. The CFG is then converted into an opcode running tree 
from which n-gram features (with .n = 3) are generated. In order to keep 
only the most relevant n-gram features, the authors employed document 
frequency, information gain, as well auto-encoder as feature selectors. The 
decision module is DBN-based and is fed using the generated n-gram 
feature vectors and is composed of three hidden layers each containing 200 
units and an output layer that is composed of two units one for each output 
label (malware, benign). The experimental results indicated that the DBN 
model surpassed various “baseline classifiers,” namely, k-nearest neighbor 
(KNN), decision tree(DT), and support vector machines (SVM). 

A system that identifies malware programs using convolutional neural 
networks (CNNs) built on the AlexNet, ResNet, and VGG16 bases was 
proposed by Davuluru et al. [23]. This visualization is implemented by 
converting bytecode into a 2D matrix then visualizing it as grayscale 
images, which are then normalized for classification purposes. The restric-
tions of static and dynamic analysis can be circumvented by this form 
of visualization because it doesn’t require any code disassembly and is 
computationally cheap. According to validation results from BIG 2015, 
CNN is a good feature extractor and classification tool. In Table 6.4, 
we provide a summary of the discussed malware detection solutions that 
employ static features. 

6.6.1.2 Solutions that Employ Dynamic Features 
In [69], Pascanu et al. proposed a method for malware detection that 
combines RNNs with multilayer perceptron (MLP) and logistic regression 
(LR). The RNN, which is trained in an unsupervised manner on dynam-
ically extracted API call sequences, aims at learning a language model for 
the analyzed samples and constructing their feature representations. The 
latter are fed to the MLP and the LR classifiers, which classify the samples 
into either malicious or benign. 

The work of Shibahara et al. [79] focuses on optimizing the analysis 
process by determining when to suspend it. They rely on the analysis of 
the network communications generated by the analyzed program with
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Table 6.4 Summary of malware detection solutions that employ static features 
Ref. Year Features used Feature rep. Dataset 

size 
DL 
Algo. 

Results 

[76] 2015 Byte/entropy, 
PE imp meta 

Histogram 431,926 DNN Acc: 95.6–96.85% 

[36] 2016 API calls 1-hot vect 50k SAEs Acc: 95.64% 
[18] 2017 Bytecode Image 12k CNN Acc: 91% 
[102] 2017 Opcode CFG, 

n-grams 
4600 DBN Acc: . ≈98% 

[97] 2018 Bytecode, 
Opcodes, PE 
Metadata 

Images, 
sequences 

40k CNN, 
LSTM 

Acc: 99.88% 

[46] 2018 Opcodes 2-D array 70k CNN Acc: 95% 
[19] 2019 Bytecode Grayscale 

image 
5k CNN Acc: 91.9–97.6% 

[23] 2019 Bytecode Grayscale 
image 

. ≈10,000 CNN Acc: 99.4 91.9–97.6% 

a command and control server (C&C). To achieve this, the authors 
considered different characteristics of malware communication (i.e., the 
modified communication’s intent and its shared latent purpose). The 
authors employed recursive tensor neural network (RSTNN) to decide 
when to stop the analysis for each sample and were able to reduce the 
total time taken by 67% compared with a conventional analyses methods. 

Tobiyama et al. [85] proposed an approach for host-based malicious 
activity detection by monitoring and analyzing the processes’ behaviors. 
The processes are represented by their ID, the executed operation (API), 
its result (success, access denied, etc.), etc. These information are stored 
in log files and will be used as raw features to train the feature extractor 
module, which is recurrent neural network (RNN) with LSTM units. The 
RNN then outputs a features vector, which will be then converted into 
an image, which contains local features representing processes’ activities. 
These images are then fed to a CNN, which is responsible for the 
classification of the processes into malicious or benign. 

Athiwaratkun et al. [6] proposed two deep learning models for malware 
detection. In the first model, RNN with LSTM units and GRU (i.e., gated 
recurrent unit) were investigated in order to build the features associated 
with different API call traces. The latter features are then used to train a 
fully connected layer and logistic regression algorithm. The second model, 
which is a CNN with six convolutional layers and three fully connected
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one, is trained on character-level features of size 1024 representing various 
events. Experimental results show that the LSTM-GRU model achieved a 
higher accuracy than the CNN one. 

Maniath et al. [60] proposed an approach for crypto-ransomware detec-
tion that consists of collecting three different dynamic features, namely, 
API calls, file operations, and registry values. The aim is to be able to 
capture crypto-ransomware behavior patterns (e.g., pre-encryption phase). 
For this purpose, long short-term memory (LSTM) algorithm is used in 
order to classify the API calls sequences. The proposed approach was able 
to achieve good accuracy rate; however, the analysis phase took 20 minutes 
to complete, which was the major limitation of this work. 

In [61], a malware detection system based on hybrid features and deep 
neural network is introduced. The authors did not implement any file 
analysis step, and instead they used an existing dataset,4 which contains 
both static (e.g., file sections, entropy, assembly n-grams, etc.) and dynamic 
(e.g., contacted IP, DNS queries, execution processes, AV signatures, etc.) 
features of four different malware families. The authors considered only 
two malware families and trained a deep neural network to detect these 
two families. 

Xiao et al. [95] designed a new behavior-based deep learning framework 
called BDLF. Instead of using API call sequences, the goal of BDLF is 
to gain deeper semantics in behavior graphs (e.g., n-gram). The authors 
investigated a deep learning model based on stacked auto-encoders (SAEs) 
to automatically obtain high-level representations of malware behaviors. 
In the proposed framework, they first constructed behavior graphs using 
the extracted API calls. In order to extract high-level characteristics from 
behavior graphs, authors used SAEs. The findings of the experiment show 
that BDLF can extract more useful abstract features and increase the 
accuracy of malware detection. Yakang et al. [40] directly fed the extracted 
FCG to a deep graph convolutional network (DGCNN). Then they use 
an algorithm to strip the subgraph that represents the unpack function call 
in the function call graph of the malware’s packet. Authors then run the 
expansion operation on the subgraph which only contains local function 
call graph to get control flow graph of the packed malware. The features

4 https://marcoramilli.com/2016/12/16/malware-training-sets-a-machine-learning-
dataset-for-everyone/. 

https://marcoramilli.com/2016/12/16/malware-training-sets-a-machine-learning-dataset-for-everyone/
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of the control flow graph are extracted as the input of the DGCNN for 
training, and the classifier is obtained to detect the packed malware. 

Ding and Zhu [102] focused on studying the following problems: (a) 
how to build a malware detection system based on DBNs, (b) whether 
the unlabeled data can be used to improve the accuracy of malware 
classification, and (c) whether the deep representation generated using 
DBNs is helpful for feature extraction and dimension reduction. Therefore, 
authors represented the malware program as opcode sequences and extract 
the opcode n-grams to specify the behavioral features of malware. The 
architecture of proposed system consists of three main components: the 
PE parser, the feature extractor, and the malware detection module. The 
testing results show that the proposedmodel has better classification results 
than other models: support vector machines, decision trees, and the k-
nearest. 

Darabian et al. [20] studied the potential of applying deep learning 
techniques to detect cryptomining malware by using both static and 
dynamic analysis approaches. They used long short-term memory (LSTN) 
and convolutional neural network (CNN) techniques to advance the 
analysis of cryptomining malware. They considered a set of hybrid features 
composed of the captured system call events and opcode sequences. The 
proposed system achieved an accuracy rate of 95% using static features and 
an accuracy rate of 99% using dynamic ones. 

An effective approach based on deep learning analysis for malware 
detection and explanation is proposed by Wang et al. in [91]; they used 
a classifier to predict whether the sample is malicious and an interpreter 
to explain the classifier result via a system call number sequence of the 
target sample with instrumentation tools in an elaborated sandbox. The 
approach just needs a small amount of feature data and can reduce the input 
dimension of the training model. The authors also adopted the layer-wise 
relevance propagation (LRP) algorithm to save the malware analyst time 
and to find which slice of a sequence makes the greatest contribution in 
the decision. 

Aditya et al. [1] introduced an approach for detecting malware based 
on deep neural network and utilized a API call sequences. The model is 
implemented with two different recurrent neural network architectures 
for comparison (LSTM and GRU). The classification model that has been 
created employs the LSTM architecture with RMSProp optimizer, and a 
learning rate parameter shows that LSTM is better than GRU, achieving 
an accuracy of 97.3%.
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Table 6.5 Summary of malware detection solutions that employ dynamic features 
Ref. Year Features used Feature rep. Dataset 

size 
DL Algo. Results 

[69] 2015 API calls Sequences 500K RNN,ESN,MLP TPR:71%, 
FPR:0.1% 

[79] 2016 Network traffic 1-hot Vect 29,562 RSTNN F-score: 96.9% 
[85] 2016 Process behavior 1-hot vect, 

Image 
26 RNN(LSTM), 

CNN 
AUC: 96% 

[6] 2017 System Calls Sequence 75k LSTM, MLP Acc: 95.6% 
[60] 2017 API Sequence 157 LSTM 96.67% 
[61] 2018 PE, Bytec, APIs, 

Net. traffic 
Vector 3772 DNN Acc: 97% 

[95] 2019 Call API graph 1760 SAE Acc: 98.6% 
[20] 2020 Opcodes, system 

calls 
Scale values, 
binary vectors 

1500 LSTN,ATT-
LSTM,CNN 

Acc: 95.99% 

[40] 2020 Functions calls Graph 600 DGCNN Acc: 96.4% 
[1] 2021 API calls Sequences 2210 LSTM Acc: 97.3% 
[91] 2021 API calls Sequences 2950 M-Bi-LSTM Acc: 97.39% 
[30] 2021 Execution traces Sequences 4000 CNN . + LSTM Acc: 91.63% 
[56] 2022 API calls n-gram, 

sequences 
43,007 CNN . + LSTM Acc: 97.31% 

Ghanei et al. [30] presented a dynamic malware analysis method which 
utilizes hardware events as feature inputs to the classification model during 
programs’ execution. They used hardware events-based features in three 
ways. Firstly, the feature set of each period are given to the convolutional 
neural network (CNN) separately. Secondly, a time series is formed and 
is given to a long short-term memory (LSTM) network. Thirdly, a fully 
connected network is used between the outputs of CNNs and the LSTM 
network to model a voting classifier. The results showed that the combina-
tion of hardware events with voting network can be effective and can reach 
91.63% of accuracy. In Table 6.5, we provide a summary of the discussed 
malware detection solutions that employ dynamic features. 

6.6.2 Malware Classification Solutions 

6.6.2.1 Solutions that Employ Static Features 
In [49], the authors proposed an approach for malware families identifica-
tion using system calls sequences. The latter are extracted by dynamically 
analyzing malware and benign samples using Cuckoo Sandbox [33] and
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are used to construct the execution paths of the analyzed samples. The 
redundant sequences are then removed, and the remaining ones are 
represented as 1-hot vector of length 60 (i.e., the 60 documented system 
calls) representing the presence or not of a specific kernel API call. These 
feature vectors are then fed to a convolutional network as 3-grams (3x60). 
The CNN will act as a feature extractor and will generate two features 
vectors, which are forwarded to the RNN part of the neural network. 
API traces dependencies are then modeled, and mean-pooling approach 
is used to extract features of highest importance from the LSTM output, 
which are forwarded to the Softmax layer that classifies each instance into a 
family. The experimental results show that the combination of CNN-RNN 
achieved better performances than the two models separately as well as 
two machine learning classifiers, namely, hidden Markov model (HMM) 
and support vector machine (SVM). 

Zhang et al. [103] introduced IRMD, which is a malware families 
classification method based on CNN and an image-based representation of 
opcode sequences. In the proposed method, the authors first disassemble 
binary executables and extract opcode sequences that are represented 
as 2-D array, which is then converted to grayscale images. The authors 
then applied image processing techniques on the generated images, such 
as histogram normalization, dilation, and erosion. The resulting images 
were then fed to a CNN. The latter has a baseline three-level archi-
tecture composed of a convolutional layer, a pooling layer, and a fully 
connected layer. A softmax function is then used to classify malware variant 
and benign images. IRMD was evaluated on a dataset collected from 
VxHeavens repository and composed of 9168 malware samples from 10 
distinct malware families and 8640 benign samples and was able to achieve 
96.7% of accuracy. Mourtaji et al. [65] also used a CNN with image 
representation of malware samples. They were able to achieve the highest 
accuracy (i.e., 99.88%) on two distinct experiment settings on Microsoft 
BIG15 dataset. Similarly, Kumari et al. [52] relied on image representation 
of the analyzed binaries and CNN for malware families classification. 
However, they introduced three different CNN architectures. The first one 
has baseline architecture that is composed of three convolutional layers. 
Each convolutional layer is followed by a max-pooling layer and a ReLU 
activation layer. The second one is based on the VGG-16 architecture 
which is pre-trained on the ImageNet dataset, which is composed of 1000 
classes. In the last model, the authors fine-tuned the last convolutional 
block of the VGG-16 model as well as the top-level classifier. Yue et al.
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[101] and Rahul et al. [74] also employed CNN for malware families 
classification using image representation. In the first work [101], they 
trained a very deep neural network (DNN) composed of ten layers and 
a complex pre-processing method on the MalImg dataset and achieved 
an accuracy of 97.32%, while in the second one [74], they trained a 
baseline CNN architecture, two convolutional and two dense layers on 
the BIG 2015 dataset Kalash et al. [44]. Hemalatha et al. [38] used a  
pretrained densely connected convolutional network (DenseNet) model 
with class-balanced loss function for reweighting the categorical cross-
entropy loss in the final classification layer. The DenseNet model uses fewer 
parameters and ensures information flow by connecting all the layers in 
the network with their feature maps. The performance of the proposed 
model was evaluated on four malware datasets, namely,Malimg, BIG 2015, 
Malicia, and Malvis, achieving, respectively, 98.23%, 98.46%, 89.48%, and 
98.21% of accuracy. Zhihua et al. [19] developed an approach to advance 
the detection of malicious programs using convolutional neural networks 
(CNNs) and non-dominated sorting genetic algorithm II (NSGA-II). The 
CNNs are used to identify and classify grayscale images converted from 
executable files of malicious code. NSGA-II is then employed to deal 
with the imbalanced data of malware families. A series of experiments are 
performed for malware image data from Vision Research Lab, and the 
results show that the proposed method is effective maintaining higher 
accuracy. Ni et al. [67] considered opcode sequences instead of bytecode. 
They encoded these sequences using SimHash, which they considered as 
pixels and converts them to grayscale images. Kebede et al. [48] opted  
for a deep learning architecture composed of multilayer neural network 
with auto-encoders applied on malware images. An approach based on 
visualization and fine-tuned CNN is proposed by Vasan et al. in [88]; they 
used color instead of grayscale images generated from the malware binaries 
to identify and detect both packed and unpacked malware. The proposed 
method is called image-based malware classification using ensemble of 
CNNs (IMCEC). According the experimental result on Malimg malware 
benchmark, the proposed model demonstrated 99% accuracy for unpacked 
malware and 98% accuracy for packed malware. The problem with this 
approach is that it considers the entire program’s binary, which is very large 
and takes considerable time to process. 

Venkatraman et al. [89] presented a hybrid model by employing simi-
larity mining and deep learning architectures for accurately detecting and 
classifying obfuscated malware into their malware families. The proposed



DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 147

model used two types of learning approaches: CNN and LSTM. The 
objectives are (1) to describe the use of image-based techniques for 
identifying suspicious system behavior and (2) to suggest and research the 
use of hybrid image-based approaches with deep learning architectures for 
an efficient malware detection. The performance of the models is evaluated 
on the three datasets: VX Heavens, Malimg, and Microsoft. The model 
accuracy achieved 96% on average and the advantage that it required less 
computational cost as compared to the classical machine learning-based 
methods. 

The work of [100] introduces MDMC, a byte-level malware classifi-
cation approach based on Markov images and deep learning. In contrast 
to grayscale images, the first phase of MDMC does not take the issue of 
resizing into account and instead attempts to transform malware binaries 
intoMarkov pictures according to the bytes transfer probability matrix. The 
deep convolutional neural network is then used to classify Markov pictures. 
In this procedure, only malware binaries were employed; dynamic and 
reverse analysis were not used. On the Microsoft dataset and the Drebin 
dataset, two malware datasets, the performance of the suggested model has 
been assessed. On the two datasets, the average MDMC accuracy rates are 
99.26% and 97.36%, respectively. 

Lin and  Yeh [57] presented an efficient one-dimensional convolutional 
neural network CNN models for malware classification. The 1D CNN 
models explore both bit-level and byte-level sequences extracted from 
malware executables. The authors designed a simple architecture of 1D 
CNN to learn the features from raw binary sequences and to convert 
malware executables into images. The experiments show that the proposed 
1D CNN model achieves better performance with smaller resizing byte 
sequences with an accuracy of 96.32% and 98.70% using two benchmark 
datasets. 

The comparison of the classification capabilities of convolutional neural 
networks (CNN) and extreme learning machines (ELM) for malware 
images classification is the main objective of Jain et al.’s [42] work.  They  
used both two-dimensional images and one-dimensional vectors produced 
from images to view malware samples as images and apply image analysis 
algorithms. Results on the Malimg dataset showed that ELMs train faster 
than CNNs and produce results with higher accuracy while processing 1D 
data. The authors also noted that ELMs handle 2D data more quickly than 
CNNs. Finally, authors concluded that ELMs are faster to train than CNNs, 
but only by a relatively small factor as compared to image-based training.
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The deep learning approach in [54] is practical for real-life uses since 
it has two interesting properties: it does not require neither feature 
engineering nor a long time to classify the malware class of a binary 
file. Indeed, the malware samples are converted into grayscale image 
representation and then fed to different neural network models. The latter 
are a combination of convolutional layers which process the input, with 
RNN and LSTM layers. The test conducted on the malware data from the 
Microsoft Malware Classification Challenge (i.e., BIG 2015) available on 
Kaggle (10,868 samples) shows an accuracy of 98.2% in the cross-validation 
procedure through the CNN bi-directional LSTM model. 

In [66], authors proposed an ensemble learning-based classification 
system comprised of convolutional network to classify malware programs. 
In their research, they used the nine-class Microsoft Malware Classification 
Challenge (BIG 2015) dataset. For each malware file in this dataset, there 
is an assembly file and a compiled file. Convolutional neural networks 
are used to classify compiled files and display them as images; then 
convolutional neural networks (CNNs) are used to classify these images. 
Long short-term memory (LSTM) networks are used to classify machine 
language opcodes in assembly files after they have been converted into 
sequences. When identifying assembly files using an LSTM network, 
accuracy is 97.2 percent; when categorizing compiled files with a CNN 
architecture, accuracy is 99.4 percent. 

Darem et al. [21] suggested a semi-supervised method for detecting 
obfuscated malware that combines opcode analysis, feature engineering, 
image processing, and deep learning approaches. The proposed approach 
transforms the malware binary into image for visual analysis of the malware 
executable and contrasts with well-known grayscale image-based classifica-
tion methods. As a result, the approach identifies and predicts associated 
malware families with minimal running time overhead. They validated 
the proposed method through comprehensive experiments and compared 
it with other methods. Experimental results proved that the proposed 
approach achieved the highest performances with 99.12% of accuracy. 

The work of [4] presents a new malware classification framework 
based on a hybrid deep learning algorithm. The framework combines 
two pretrained deep neural networks, namely, RestNet and Alexnet, in 
order to learn features from malware samples, which are represented as 
grayscale images, and classify them into different families. The framework
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is evaluated on a large dataset of malware samples and achieves state-of-
the-art performance. 

Mohammed et al. [64] introduced a malware detection mechanism 
based on convolutional neural networks (CNNs) and malware binaries 
images in the frequency domain (“bigram-dct” images). The authors 
proposed a joint feature metric that justifies the combination of two 
different features from byteplot images and “bigram-dct” images to create 
an accurate ensemble model for malware detection. They evaluated the 
proposed model on large dataset called MaleX consisting of Windows 
executable samples, obtaining an accuracy of 96%. 

Meng et al. [62] introduced MCSMGS, which a malware classification 
model based on deep learning and statically extracted API calls sequences. 
The latter are considered malware gene sequences and are fed to a CNN. 
MCSMGS was evaluated on dataset composed of 5647 samples, obtained 
from VxHeavens repository, and it was able to achieve 98% of accuracy. 

Kang et al. [47] introduced an approach for classifying malware 
into different categories using opcode and API sequences fetaures with 
word2vec and long short-term memory (LSTM) network. Moreover, 
authors showed the possibility that word2vec can be applied to classify 
malware and it can victorizes data using fewer dimensions than one-hot 
encoding. According to the experimental results on using the Microsoft 
Malware Classification dataset, the proposed model has 97.59% as accuracy 
classification rate. 

Gibert et al. [31] have designed a novel multimodal deep learning 
framework named HYDRA, which is a network structure with multi-
ple inputs and single output, for malware classification. The suggested 
approach combines end-to-end components with hand-engineered fea-
tures in a modular architecture to categorize malware using CNN, Deep-
Conv, and Malconv models. The features, which are learned via different 
network architectures, are fed through byte opcodes and API calls. Finally, 
all of the functions are connected seamlessly. Testing results show that the 
model achieved 99.75% of accuracy on the Microsoft BIG 2015 dataset. 

In [3], authors investigated that most large datasets that include mali-
cious and non-malicious programs are not public. To reduce this limitation, 
first they developed a new large public dataset for malware classification 
it called MC-dataset-multiclass (malware and clean ware in multiclass 
scenario). This dataset was then used to train a multiclass classification 
RNN, namely, an LSTM. Unknown programs were used to test this model 
for interpreting unstructured data. Evaluation findings indicate that the
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accuracy was 67.60%, with six classes containing five separate malware 
kinds. 

A malware detection and family classification framework for malware 
based on deep neural networks and visualization is proposed by Jian et al. 
in [43]; they convert an executable file samples into asm files bytes files 
by disassembly technology. As a result, a balanced experimental dataset 
containing normal software samples and malware samples is constructed. 
To this end, the authors designed a new data representation approach 
based on the binaries and word vectors extracted from both asm files and 
bytes files and combined visualization technology with data augmentation 
to build an optimized deep neural network architecture, i.e., SERLA ( 
SER esNet50 . + Bi- L STM . + A ttention) for malware detection. The 
experimental results show that proposed method is superior to the state-of-
the-art methods and can achieve 98.31% accuracy. Li et al. [56] proposed  
a deep framework for malware detection using deep learning models, 
which is based on multiple API sequence intrinsic features. The proposed 
method is able to detect whether the software is malicious or not and to 
distinguish between malware and goodware. The authors firstly applied 
embedding and convolutional layers to well depict the actual software 
behaviors. Secondly, they designed an encoder to represent the semantic 
information of APIs and the relationship between API calls using the Bi-
LSTMmodule. The experiments show that the proposedmethod performs 
better than all the baselines in using API sequence to detect the malware, 
achieving an accuracy score of 97.31%. In Table 6.6, we provide a summary 
of the discussed malware classification solutions that employ static features. 

6.6.2.2 Solutions that Employ Dynamic Features 
David and Netanyahu [22] introduced a malware classification approach 
based on behavior signature generation and deep belief networks (DBNs). 
The proposed approach uses a dynamic analysis technique to extract the 
behavior of each analyzed file using cuckoo sandbox. The resulted log file 
contains various information about the program’s behavior, such as API 
calls, file manipulations, IP addresses, URLs, etc. The log file is then parsed 
and converted into a fixed-sized binary vectors that will be provided as an 
input to the DBN. The latter is composed of eight layers of auto-encoders, 
and the output layer contains 30 neurons. The authors experimented their 
approach on a dataset composed of 1800 samples and achieved an overall 
accuracy of 98.6%.
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Table 6.6 Summary of malaware classification solutions that employ static fea-
tures 
Ref. Year Features used Feature rep. Dataset 

size 
DL Algo. Results 

[103] 2016 Opcode Image 17,808 CNN Acc: 96.7% 
[101] 2017 Bytecode Image 9435 CNN Acc: 97/32% 
[52] 2017 Bytecode Image 21,741 CNN Acc: 97.07% 
[48] 2017 Bytecode Image 10,826 AE 99.15% 
[62] 2017 API calls Word2Vect 5647 CNN Acc: 98% 
[50] 2017 PE Meta, 

imp, opcod 
n-gram, 
vector 

22,757 FFNN, CNN F1S: 92% 

[54] 2018 Bytecode Image 10,860 CNN . + biLSTM Acc: 98.2% 
[44] 2018 Bytecode Image . ≈30k CNN Acc: 99.97% 
[67] 2018 Opcode Image . ≈10k CNN Acc: 98.862% 
[3] 2019 Bytecode Image 19,740 CNN Acc: 97.19% 
[65] 2019 Bytecode Grayscale 

image 
. ≈30k LSTM Acc: 

97.02–99.88% 
[47] 2019 Opcode, API 

calls 
Binary 
vectors 

10,868 LSTM Acc: 97.59% 

[89] 2019 Opcode, API 
calls 

Image . ≈30k CNN,LSTM Acc: 96% 

[73] 2017 PE metadata n-gram . ≈95K CNN, RNN Acc: 90.8–97.7% 
[31] 2020 APIs, Bytec, 

Opcode 
Binary 
vectors, 
n-gram 

. ≈10K Multimodal CNN Acc: 99.75% 

[88] 2020 Bytecode Sequence, 
Image 

. ≈10K CNN Acc: 98.99% 

[66] 2020 Opcode Image . ≈10K LSTM,CNN,RNN Acc: 97.2, 99.4, 
99.8% 

[100] 2020 Bytecode Image . ≈15K CNN Acc: 99.26, 
97.36% 

[42] 2020 Bytecode Image 9300 CNN,ELM Acc: 96.3, 97.7% 
[21] 2021 Opcode, 

bytecode 
n-gram, 
image 

10,868 CNN . + XGBoost Acc: 99.12% 

[4] 2021 Bytecode Image . ≈40k Alexnet, restnet Acc: 97.78% 
[43] 2021 Opcode n-gram 10,868 CNN . + RNN Acc: 98.31% 
[64] 2021 Bytecode n-gram, 

image 
179,725 CNN Acc: 96.15% 

[38] 2021 Bytecode Image 21,741 DenseNet Acc: 98.46% 
[57] 2022 Bytecode Image 10,868 CNN Acc: 96.32%
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Huang and Stokes [41] introduced MtNet (i.e., multi-task neural 
network), which is a system for malware detection and family classification. 
The proposed system provides a lightweight emulation engine that aims 
at extracting dynamic raw features, which are as follows: API calls, their 
input arguments, in addition to null terminated objects, which are the 
result of code unpacking process. During the preprocessing phase, which 
is a manual feature engineering processes, the API calls that have the same 
role are mapped into higher level concept, resulting in 114 API calls in 
total. The latter are combined with n-gram (with .n = 3) features.  In  
order to reduce the number of generated features, and only keep the 
most relevant ones, MtNet integrates a features selection method based 
on mutual information and random projection. Finally, only 4k features 
are kept and used for training a deep feed forward neural network. MtNet 
has been evaluated on a dataset containing 6.5M samples (2.8Mmalicious 
and 3.7 M benign) and was able to achieve a 0.36% and 2.94% error rates, 
in the binary malware detection problem and the malware classification 
problem, respectively. 

In [50] a neural network architecture consisting of CNN and feed-
forward neural network (FFNN) for malware families classification is 
proposed. In this work, they opted for a static analysis of executables, 
more precisely the PE header metadata, the PE imports, and the opcode 
sequences. The proposed system has been evaluated on a dataset composed 
of 22,757 samples (22,694 malicious and 63 benign executables) and was 
able to achieve an F-score of 92% of along with a precision and recall of 
93%. 

Kown et al. [53] employed RNN on API call sequences belonging 
to nine (09) different malware families in order to generate behavioral 
patterns that can allow to distinguish between these different families. 
They used Jaccard similarity measure compared with the generated APIs 
patterns with those of extracted from test samples. They achieved an 
average classification accuracy of 71%. 

With the aim of detecting and categorizing malware into their respective 
families, Vinaykumar et al. [90] designed a scalable and hybrid approach 
that combines visualization and deep learning architectures for static, 
dynamic, and image processing-based. The proposed approach is called 
ScaleMalNet and executes the task into two phases. In the first one, various 
machine learning and deep learning algorithms are employed for static and 
dynamic malware analysis. In addition, detection of malware from images 
using deep learning is evaluated where the file is converted into an image.
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Table 6.7 Summary of malware classification solutions that employ dynamic 
features 
Ref. Year Features used Feature 

representation 
Dataset 
size 

DL Algo. Results 

[22] 2015 API, exec 
traces, net. 
traffic 

Vector 1800 DBN Acc: 98.6% 

[49] 2016 APIs 1-hot vect, 
n-gram, 
sequences 

4753 CNN . + LSTM Acc: 89.4% 

[41] 2016 APIs . + Args 
NullTerObj 

n-grams, 
sequences 

6.5M FFN ER: 0.23%, 2.94% 

[53] 2017 API calls Sequence 787 RNN, Similarity Acc: 71% 
[90] 2019 PE Metadata, 

bytecode 
Image . ≈300K DNN, CNN, 

LSTM 
Acc: 98.9% 

In the second stage, malware were grouped into corresponding malware 
families using image-processing approaches. Various experimental tests 
on both the publicly and privately collected datasets indicated that deep 
learning-based methodologies outperformed classical machine learning 
algorithms. In Table 6.7, we provide a summary of the discussed malware 
classification solutions that employ dynamic features. 

6.7 OPEN ISSUES AND FUTURE DIRECTIONS 

In this section, we identify the following main open challenges and future 
research directions with respect to malware analysis using deep learning: 

• Concept drift problem and deep learning model update: Machine and 
deep learning models assume that training data follow a stationary 
distribution, and this distribution is valid for new data. However, mal-
ware are continuously evolving in order to evade detection, which is 
known as “concept drift,” and defined as changing of relationships in 
the data, and hence the performance of the learning models decreases 
over time. Thus, the main challenge is how to define patterns from 
malware that can resist to malware evolution for a long time. Also, 
there is a need to continuously adapt the deep learningmodel through 
full, partial, or incremental learning to detect new variants of known 
malware or zero-day malware. In this case, the challenge is how to
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reduce the cost of continuous learning model update, especially if the 
updated model needs to be transferred to machines at large-scale. 

• Manual malware investigation: The high number of false positives 
generated by deep learning malware detection systems can be a major 
issue, as it imposes on security analysts spending time on investigating 
false alarms. 

• Comparison of anti-malware solutions using deep learning: In the  liter-
ature, the deep learning models for malware analysis are tested under 
different datasets and different validation and experimental settings. 
Thus, it is not possible to provide a fair comparison among the state-
of-the-art solutions. To deal with this issue, researchers should share 
their datasets or conduct experiments on common datasets, such as 
Kaggle Microsoft Malware Prediction [63]. 

• Explainable deep learning model: The deep learning models are con-
sidered as black boxes and produce unexplainable predictions, which 
limit their acceptability and their adoption in anti-malware products. 
In order to make these models interpretable, few works that extract 
rules from deep neural networks are proposed in the context of 
malware analysis, which extract the embedded knowledge in the DNN 
in the form of explainable rules [59, 96]. Further efforts could be 
made to make to focus on explainable anti-malware deep learning 
models. 

• Adversarial learning: Malware developers could identify ways to 
evade detection. To this end, they deceive the deep learning model 
by injecting adversarial inputs, i.e., samples that are subject to feature 
perturbations, which induce feature representations that are close to 
benign samples and cause the deep learning model to make wrong 
decisions. Future research should focus on fortifying and testing the 
deep learning models against adversarial samples through different 
techniques, such as data augmentation from Generative Adversarial 
Networks (GANs). 

• Collaborative anti-malware solutions using deep learning: Deep learn-
ing models require huge amount of data to train the model, and 
they are generated in high-computing infrastructures like a cloud 
or a server. Hence, there is a need for the server and the different 
client machines to work in a collaborative manner through different 
forms, such as sharing of pre-trained global model and sharing of 
local model’s parameter between the client and the server. The above 
collaborative forms raise privacy concerns like exposing the local data
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and models. To deal with this issue, it is recommended that future 
research efforts on malware analysis using deep learning consider 
some collaborative schemes, such as deep learning model splitting and 
deferentially private model parameters [13]. 

6.8 CONCLUSION 

In this paper, we surveyed the state-of-the-art solutions for Windows 
malware analysis using deep learning. We first provided the necessary back-
ground information regarding malware analysis as well as deep learning. 
We then introduced our proposed taxonomy, and we discussed the existing 
solutions with regard to this taxonomy. 

In conclusion, we believe that deep learning can be extremely effective 
in malware analysis and detection, especially when dealing with obfuscated 
and zero-daymalware. However, it is important to remember that no single 
solution is perfect, and there are always trade-offs to be made. For example, 
deep learning models may require more resources to train and deploy than 
conventional machine learning solutions or signature-based approaches. 
Additionally, deep learning models may be more susceptible to adversarial 
attacks. Therefore, it is important to carefully consider the risks and benefits 
of deploying a deep learning model for malware analysis. 
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CHAPTER 7 

Malware Analysis for IoT and Smart AI-Based 
Applications 
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Altaf Khattak, Taqwa Ahmed Alhaj, and Ikram ur Rehman 

7.1 INTRODUCTION 

Recent years have seen a sharp rise in the usage of Internet of Things (IoT) 
devices in a number of industries, including industry, health, automation, 
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and education, as well as smart homes and smart cities [1, 2]. According 
to current estimates, there will be 75.44 billion connected IoT devices 
worldwide by 2025 [3]. According to another study, the next significant 
step in achieving the Internet’s goal of linking the entire world is the 
network of connected “smart” products [3]. The IoT technology is closely 
related to our daily life and is applied in several real-life related applications. 
It has evolved rapidly and now has covered almost every aspect of modern 
life, with its applications ranging from home-based services to emergency 
management services and from societal and environmental applications to 
industrial and technological applications [4]. Under the umbrella of each 
of these domains lie thousands of use cases and applications, for example, 
smart living rooms, smart kitchens, smart garages, smart doors, smart 
cooling, and refrigerating systems, healthcare applications for older people, 
or any other monitoring, tracking, or reporting systems [2, 5]. Intelligent 
transportation and traffic management is another example of IoT, which 
has a significant effect on our lives. The societal applications improve the 
lifestyle of the general public and bring a lot of services at the tip of their 
fingers. Security and surveillance have been revolutionized with the advent 
of IoT, like intrusion detection systems, and smart surveillance systems. 
Wildlife monitoring, environmental monitoring, smart farming, observing 
energy consumption patterns, electricity management, water distribution, 
waste management, smart marketing, and many similar applications are 
an essential part of our society now. IoT devices are usually connected 
through the wireless channel because of their flexibility and mobility. 
Several wireless communication technologies are used for IoT deployment, 
depending upon the application requirements [4]. These communication 
technologies can also be classified as long and short range. The most 
commonly used short-range communication technologies are RFID, Wi-
Fi, ZigBee, and Bluetooth. The widely used long-range communication 
technologies for IoT are Sigfox, LoRaWAN,Weightless, Narrow Band IoT, 
and Enhanced Machine Type Communication (eMTC) (Fig. 7.1). 

The common features among most applications are low cost, low 
processing, low power, low storage, and low bit rate. Computers, smart-
phones, communication interfaces, RFID tags, actuators, readers, cameras, 
controllers, GPS, sensors, operating systems, lightweight services, and 
preloaded apps generally make the IoT infrastructure. This technology is 
not as secure as it seems, and it also raises additional security and privacy 
issues. IoT networks have weak or no security since they rely on inexpensive 
devices (such temperature sensors, security cameras, etc.) with constrained
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Fig. 7.1 Cyberattacks in IoT 

resources (such as low-power sources, limited memory, and computing 
power) [6]. Due to these restrictions, it is challenging to perform complex 
security tasks on those devices, making it simple for malicious actors 
to compromise them and engage in a number of illegal activities that 
jeopardize the security and integrity of the devices and network [7, 8]. As 
IoT and artificial intelligence (AI) are enabling a wide range of services 
across several sectors [9, 10], it makes all these sectors also vulnerable 
to cyberattacks as shown in Fig. 7.1. Malware encompasses all types of 
malicious software, such as data theft, snooping, and so on as shown in 
Fig. 7.2. According to Kaspersky Lab, the virus is a “computer software 
designed to infect and increase harm to a genuine user’s PC” [11]. 

If the cybersecurity issues are not effectively controlled, hackers will 
exploit the flaws and vulnerabilities of devices or objects and subsequently
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Fig. 7.2 Cyberattacks 
in IoT 

manipulate data or disrupt systems over the global IoT network. IoT 
faults and assaults may overshadow its benefits. In addition, standard 
security methods and mechanisms are inadequate due to the low scalability, 
integrity, and interoperability of existing devices. To address the security, 
privacy, and dependability requirements of IoT, new approaches and 
technologies should be created. The topic of cybersecurity challenges on 
IoT platforms and AI-based applications is a big global concern that neces-
sitates a comprehensive evaluation from both the research and industrial 
groups. This chapter evaluates security issues that are expected to limit IoT 
deployment and intends to explore different methods for the detection and 
evasion of cybersecurity threats in IoT domain. The chapter is structured 
as follows: Sect. 7.2 discusses the work related to IoT cybersecurity. In 
Sect. 7.3, the potential threat challenges in relation to IoT applications and 
services are assessed. In Sect. 7.4 malware attacks and threats are discussed. 
In Sect. 7.5 malware detection and evasion approaches are presented, and 
the final section concludes the chapter. 

7.2 RELATED WORKS 

A large number of researchers have discussed the network vulnerabilities 
and their potential solutions for cyber physical systems. This section covers
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some of these researches and provide a brief overview of the existing work 
in this domain. 

The authors of [12] examined home automation systems, such as mag-
netic sensors, motion sensors, and industrial IoT devices, and discovered 
that smart meters are susceptible to a number of assaults because of the 
inadequate security measures used during their development and deploy-
ment. These gadgets advocate using an encrypted channel as a security 
mechanism while communicating via an RF (radio frequency) channel. 
Mutual authentication, the physically unclonable function, finite resources, 
side-channel analysis, and cloning attacks were all topics covered in the 
research in [13]. In their article, security mechanisms for protocol verifica-
tion, session key formation, and mutual authentication are given. Mutual 
authentication offers useful information about key distribution between 
devices and during sessions. The suggested remedy lessens the danger of 
replay and man-in-the-middle attacks. The author of [14] discussed several 
security difficulties and threats, privacy worries, IoT device integration 
with the blockchain, and various security research fields. One of the most 
critical problems in Android/iOS applications is application repackaging. 
The authors of [15] presented their research on repackaged software. They 
addressed five issues: (1) the current unfavorable repackaging practices, 
(2) the way adware is embedded in the code, (3) the kinds of apps used 
to repackage, (4) the motivations behind people downloading repackaged 
software, and (5) the way an app’s characteristics change in the repackaged 
version. The drawback of static malware detection techniques, such as 
TinyDroid, DroidFDR [16], DroidEnsemble, and NsDroid, is that they 
are not appropriate for dynamic analysis. A quick and efficient Android 
malware detection tool is NsDroid. NsDroid is 20 times faster than 
previous graph-based techniques [17, 18] since it is built on a local function 
graph [19]. The author of [20] cited a dispute between various sensors 
managed by a smartphone and offered a LOD-based solution (Linked 
Open Data). LOD makes it possible to more effectively utilize the services 
and features of the resident’s profile while also defining the connections 
between the various services and items in the home. The authors of the 
article [21] provided useful insight into the use of signature- and anomaly-
based methods for detecting mobile malware. 

Authors in [22] discuss the cybersecurity threats in Mobile Adhoc 
Networks (MANETS), which plays a key function in many IoT settings. 
MANETS are vulnerable to numerous packet-drop attacks, including as 
gray- and black-hole attacks. The authors looked at numerous black-



170 S. E. UD DIN ARSHAD ET AL.

hole attack types and employed learning, cooperative, and other detection 
strategies. Their study concludes that trust-based scheme performs better 
when compared to other schemes. For availability, security, and reliability 
of MANETS, the threat of botnets must be taken care of. The newly 
developed botnets are designed to dodge the detection systems. Large 
amounts of data processing are required for high computational require-
ments to differentiate between normal and botnet traffic. The authors in 
[23] proposed a system to address this problem by developing a scalable 
and decentralized framework, based on characterization of the behavior of 
legitimate hosts, and detect unseen botnet traffic. 

Cross-architecture detection of IoT malware is a very challenging task 
because these IoT devices are very heterogeneous. A solution to this 
problem is proposed by using graph-based malware detection methods 
to detect malware in IoT devices [24]. Graph-based techniques detected 
complicated and zero-day malicious codes with greater accuracy. MalIn-
sight, [25] a malware detection system, breaks down malware into three 
categories: basic structure, low-level behavior, and high-level behavior. 
Operations were carried out based on the three elements on files, structural 
features, networks, and registries. The framework might quickly identify 
malware that hasn’t been seen and make it simple for future researchers to 
find spyware. 

Wang et al. [26] utilized lightweight network analysis and machine 
learning to develop a framework for malware identification in Android 
devices. In this work, authors combine machine learning with network 
traffic analysis on the server-side, with minimum resource consumption 
and minimum impact on the user experience. For the purpose of identi-
fying cyber vulnerabilities and threats, a unique machine learning-based 
methodology was put forth by [27] to identify cyber threats using novel 
machine learning-based framework. This framework used observed attack 
patterns, and in result it was able to identify and detect cyberattacks. 
Another machine learning technique based on hamming distance is used 
for malware detection [28]. This method made use of k-medoid-based 
nearest neighbors (KMNN), weighted all nearest neighbors (WANN), 
and first nearest neighbors (FNN). These algorithms, which have high 
recall and precision rates, were employed to identify malicious software. 
A classification model is proposed to detect mobile malware attacks in 
IoT systems [29]. Mobile malware attacks are mainly caused because of 
fraudulent mobile applications and injected malicious applications. Other 
machine learning techniques for malware detection adopted in IoT and
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AI-based smart systems are decision tree, SVM, random forest, and logistic 
regression [30, 31]. 

Other popular techniques for malware detection are sandbox envi-
ronment techniques, blockchain technology, and deep learning. Sandbox 
is a testing environment used to investigate malware behaviors [32]. 
Kachare et al. [33] propose a concept for a sandbox environment that 
analyzes malware, produces reports automatically, and fixes issues. In 
order to study malware at three different levels–static malware analysis, 
real-time malware analysis, and network analysis–the suggested model 
employs multiple machine learning algorithms. Advanced persistent threats 
(APTs) are immune to anti-malware and anti-virus systems along with 
other conventional security systems. Advanced evasive techniques are used 
to tackle these malwares. The work in [34] measures the divergence 
from a program’s typical behavior utilizing Analysis Evasion Malware 
Sandbox to discover malware evasive behavior (AEMS). Blockchain uses its 
principles of cryptography, decentralization, and consensus for security. In 
[35], a blockchain-based malware detection technique leveraging shared 
signatures of suspicious malware files is put out. With the help of this 
technique, users can quickly respond to the growing threat of malware 
by sharing the signatures of dubious files. Deep learning is a part of 
machine learning family and has been widely used recently in wide range of 
applications including cybersecurity [36]. Authors in [37] develop a tool 
to detect IoT-malware infections in smart home networks. It analyzes IoT 
traffic as captured by means of a spoofing technique. 

7.3 CYBERSECURITY THREATS FOR IOT AND SMART 
AI APPLICATIONS 

The rise of smart cities is made possible by the hyper-connectivity and 
constant availability of IoT technologies, but they also raise cybersecurity 
threats and attacks [38]. Approximately 300 percent more cyberattacks on 
IoT devices were reported in 2019 according to a Forbes review of security 
incidents [39]. The following are some examples of cyberattacks that could 
occur in a smart city: 

• Traffic light control: because wireless networks have made traffic 
signals more susceptible to attack, attackers are now able to modify 
traffic lights and cause accidents [40].
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• Attacks on smart vehicles: Attackers can simulate other vehicles in 
the environment or insert bogus routes into smart vehicles to induce 
crashes [41]. 

• Power grid collapse: Attackers might knock out the city’s electricity 
through a power grid collapse [42]. 

• Water supply:Attackers may alter the concentrations of chemical 
additives in the water, endangering the public’s health [43]. 

• Surveillance cameras: Attackers can eavesdrop on people and steal 
personal information via surveillance cameras [44]. 

Furthermore, based on Hassija [45], the development of IoT solutions 
raised concerns about data privacy.Data consent is linked to data privacy. 
Devices or sensors, such cameras on the street or motion sensors under 
a patient’s bed, may capture people’s data without their permission. In 
other words, it’s possible that people aren’t aware that their data is 
being gathered. They might also have a vague idea of what information 
is gathered, how it is kept and processed, and who gains from it. The 
ambiguity in data gathering and use may jeopardize people’s privacy and 
confidence [46]. The problem of data ownership and the benefits gained 
through the chain of IoT applications is also related to the data privacy 
issue [47]. 
For several years, cities have been the target of security attacks all over the 
world. For example, in 2015, cyberattacks caused a power outage in Kyiv (a 
Ukrainian city), depriving residents of electricity for 1 hour [39]. In 2019, 
ransomware infected the computers of the city administration in Baltimore, 
USA, and demanded 13 bitcoins in compensation for the decryption of 
files [48]. Cyberattacks have a negative effect on the technical axis, the 
city’s economy, the quality of life, and more. When cities lose control of 
their systems, people’s lives could also be in danger. 

7.4 MALWARE ATTACKS IN IOT 
Software that assists malicious attackers in achieving their objectives is 
known as malware [49]. It was developed to aid attackers in achieving 
their goals. These goals include interfering with system operations, gaining 
access to computer system and network resources, and gathering private 
information about users without their consent [50]. As a result, malware 
regularly puts users’ privacy, the integrity of the hosts, and the availability 
of the Internet at danger. Based on the program’s execution characteristics,
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malware is categorized. Additionally, malware is categorized according to 
its payload, how it exposes or exploits the system, and how it spreads. As 
a result, malware can be classified into different types, as shown in Fig. 7.2 
and discussed below. 

7.4.1 Malware Threats in Software 

The most dangerous threat to IoT systems is malware since it can either 
damage the device or, in some situations, change its state to one where the 
attacker has full control [51]. According to cyberattack statistics, the most 
well-known malware in IoT software are [52]: 

• A rootkit: One of the most deadly kinds of malicious software is a 
rootkit. With the aid of a rootkit, hackers can get remote access to (and 
control over) a computer or IoT device without being noticed by the 
user or security devices. Without the user or security devices realizing 
it, hackers can use rootkit to remotely access (manage) a machine (i.e., 
an IoT device). Once installed, the hacker has the ability to remotely 
execute files, steal important information, modify system settings, and 
alter the functionality of security software [53].Its stealthiness makes 
it incredibly challenging to identify and prevent. A rootkit will always 
attempt to conceal its existence, making security tools incapable of 
finding and eliminating it. Due to this, it is detected manually using 
techniques including static analysis, signature scanning, and machine 
behavior (behavior-based detection) [53]. 

• Viruses: This harmful software can reproduce itself and infect other 
systems. By affixing itself to different programs, it spreads to other 
computers by running the code when a user launches one of the 
infected apps [53].Because they need their “host” programs to be 
activated in order to function, viruses cannot run independently. 
The experimental self-replicating programs known as Bob Thoma’s 
Creeper virus was first identified in the early 1970s [50]. 

• Worm:An autonomous computer software is called a “worm.” A 
worm may transfer a completely functional clone of itself to other 
devices, which is important to know. The Morris worm was the first 
program reported to exhibit worm-like behavior [50]. 

• Spyware: A form of software known as spyware tracks user behavior 
without their consent. It integrates itself into a conventional program
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by taking advantage of software weaknesses. It might also change the 
security preferences of the software [53]. 

• Ransomware: One of the most prevalent types of malware in recent 
years is ransomware. It’s a different kind of virus that controls a gadget 
(in this case, an IoT device) and demands money from its owner 
(ransom). By locking the system or encrypting contents on the hard 
drive, it stops users from accessing the computer. Messages asking the 
user to pay the ransom to the malware’s owner are then displayed by 
the infection. The key to unlock the hard drive’s encrypted files is 
then given by the ransomware’s creator. Typically, it spreads through 
downloaded files or other network or system software bugs [53]. 

• Trojan horse: To trick users into downloading and installing it, this 
spyware impersonates a trustworthy program. It makes it possible for a 
hacker to get approved remote access to a compromised system. Once 
a hacker has access to a compromised system, they can take valuable 
data (e.g., financial information such as account numbers and credit 
card numbers). To perform even more nefarious actions, it has the 
ability to install more malicious software on the system. 

• Keylogger: A keylogger allows a hacker to monitor a user’s keystrokes. 
Passwords, IDs, and other login details are all logged along with 
anything else a user puts on the keyboard. A dictionary or brute force 
assault cannot compete with a key logger attack. By tricking users 
into downloading the malicious application by clicking on a link in an 
email, this dangerous program tries to access their device. It is one of 
the most serious malwares, and you cannot avoid it even with a strong 
password [53]. 

• Scareware: Scareware is a new breed of malicious software that tries 
to convince users to purchase and download pointless and potentially 
harmful software, including phoney antivirus protection, endangering 
their financial and personal information [50]. 

7.4.2 Malware Threats in Hardware 

Attackers have learned how to operate at the chip level, a crucial part of 
any system, when it comes to malware in hardware. A device or system can 
be exposed through a variety of methods. Multiple attacks could be caused 
by minor modifications to a chip [51].Furthermore, IoT devices are visible 
in public due to their clear structure. As a result, the system is exposed to
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multiple threats, including the device ID or serial number of IoT devices 
being exposed. Meanwhile, the majority of IoT devices are linked to cloud 
infrastructure, which raises serious security concerns. Therefore, it’s very 
likely that an attacker could compromise the cloud by sending a single piece 
of malware to multiple IoT devices at the same time [54]. Accordingly, an 
example of malware-affected hardware is listed below: 

• Rowhammer: Rowhammer enables hostile actors to manipulate mem-
ory in order to steal information from weak systems, including 
passwords. The issue has been identified in DDR3 and DDR4 DRAM 
chips and, when used in conjunction with other attacks, allows users 
of systems employing the chips to access the data stored in memory. 

7.4.3 Malware Threats in Network Communication 

Network services are one of the platforms that IoT devices may be attacked 
over [54]. IoT systems are more susceptible to data leakage attacks as a 
result of complex encryption algorithms’ inability to function on these 
platforms. A system may be vulnerable to malware infection through 
distributed denial of service (DDoS) attacks if normal data traffic is not 
recognized [55]. Additionally, IoT devices are not required to perform 
payload verification or integrity checks due to resource limitations like 
computational power and data storage capacity, which encourages IoT 
device security issues. The most well-known malware in IoT network 
communication are: 

• Bots: A bot is a malicious application that gives its owner remote 
access to an infected system. Bots are frequently distributed by taking 
advantage of software bugs and other social engineering techniques. 
Once a system is compromised, the bot master can utilize Trojans, 
malware, and worms to turn the affected systems into a botnet. 
Botnets are frequently used in DDoS assaults, the distribution of spam 
emails, and phishing scams. Agobot and Sdbot are two of the most 
well-known bots [50]. 

• Mirai:Mirai creates a botnet out of networked devices running Linux 
in order to launch extensive network attacks. Mirai-infected devices 
are constantly searching the Internet for the common IP addresses of 
IoT devices. In order to connect into vulnerable IoT devices and infect 
them with its malware once it has detected them, Mirai employs a 
collection of common factory default passwords and usernames [56].
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• Hajime: Hajime and Mirai are comparable in that both use username 
and password tables to spread via unsecured open Telnet ports. Unlike 
Mirai, Hajime is a part of a peer-to-peer network. The controller 
issues commands to its peer network, and over time, the peer network 
spreads the message to all other peers. This has a strong design, 
making it more challenging to knock it over. Aside from design, 
Hajime has a few other benefits over Mirai. Hajime takes several steps 
to conceal its operating processes and data on file systems, making it 
more stealthy [56]. 

7.5 MALWARE DETECTION AND EVASION 
APPROACHES 

The process of evaluating the program’s content to determine if the 
assessed software is malicious or benign is known as malware detec-
tion. Three phases are used to detect malware:malware analysis, feature 
extraction, and classifying malware [57]. In recent years, data mining and 
machine learning methods have been widely used for malware detection 
[58]. Data mining is the process of obtaining new andmeaningful informa-
tion from massive datasets or databases and is used for extracting malware 
characteristics. Machine learning (ML) is a collection of algorithms that 
effectively predicts application outcomes without being explicitly pro-
grammed. The objective of machine learning is to transform the input data 
into acceptable value intervals via statistical analysis. Machine learning can 
be used to performmany operations on linked data, including classification, 
regression, and grouping. 

As it is necessary to ensure that only authorized users can access 
system services, authentication is a key requirement for many layers of 
a smart system. Particularly in smart cities, IoT devices can authenticate 
communications from control stations, other nodes, and the network itself. 
Furthermore, new technologies must be developed to guarantee real-time 
and trustworthy authentication because the amount of authentication data 
in smart cities is growing quickly. 

7.5.1 Major Malware Detection Approaches in IoT 

According to the vulnerabilities explained in the previous section, an IoT 
based smart system must be capable of detecting abnormal events in a real-



MALWARE ANALYSIS FOR IOT AND SMART AI-BASED APPLICATIONS 177

time manner. Predicting about the upcoming cyber threats is important 
and is better than recovery after the attack. Therefore it is crucial to 
develop intelligent malware detection and evasion approaches in order 
to achieve cybersecurity awareness and automatically predict attacks on 
smart applications [58]. This section describes several defenses for IoT 
and smart cities applications against cyber malware attacks. The shared 
defense strategies will help to advance the security measures for facilitating 
future commercializing of smart city services. Different malware detection 
approaches are proposed recently as shown in Fig. 7.3; below we present 
an overview of these malware detection approaches: 

• Signature-based malware detection: Signature is a characteristic of 
malware that consists of the structure of the malware and uniquely 
identifies it. This detection method is prevalent in commercial 
antivirus software and is quick and effective at detecting known 
malwares, but is ineffective for detecting a novel malware. Using 
obfuscation techniques, malware belonging to the same family can 
also readily evade signature-based detection. General functionality of 
this detection method can be seen in Fig. 7.4. 

• Behavior-based malware detection: These approaches analyzes the 
behavior of the program using monitoring tools and identify whether 
the program is a malware or not. Even if the program codes are 

Heuristic 
Based 

Model 
Checking 

Based 

Deep 
Learning 
Based 

IoT Based 

Malware 
Detection 

Techniques 

Behavior 
Based 

Signature 
Based 

Mobile 
Devices 
Based 

Fig. 7.3 Major malware detection approaches in IoT
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Fig. 7.4 
Signature-based malware 
detection 

different, still this detection approach can make identification on the 
basis of behavior making it an efficient method of malware detection. 
Figure 7.5 shows the working of this malware detection method. 

• Heuristic-based detection: These approaches have become increas-
ingly popular in recent years. It’s a complicated detection method that 
relies on past experiences as well as various strategies based on as rules 
andmachine learning [59]. It can detect zero-day malware with a high
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Fig. 7.5 
Behavior-based malware 
detection
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degree of accuracy; however, it cannot detect sophisticated malware. 
Figure 7.6 shows the visual illustration of this method. 

• Model checking-based detection: Model checking has been used to 
identify malware even though its original purpose was to evaluate 
a system’s compliance with standards. In this detection method, 
malware behaviors are manually extracted, and behavior groups are 

Fig. 7.6 Heuristic-based detection
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linear temporal logic (LTL) coded to exhibit a particular trait. CTL 
and CTPL are two other typical formulas. By examining the flow 
relationship between one or more system calls and using character-
istics like hiding, spreading, and injecting to identify them, program 
behaviors can be identified. By contrasting these actions, it is possible 
to tell if the application is malicious or benign. Some new malware 
can be partially detected using this method, but not all new malware 
generations. This method is illustrated in Fig. 7.7. 

Fig. 7.7 Model checking-based detection
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• Deep learning-based detection: Artificial neural networks (ANNs), 
which learn from examples, are a subset of machine learning (ML) 
that gave rise to deep learning. Although it is a cutting-edge method 
that is frequently used for image processing, autonomous driving, 
and voice control, malware detection rarely makes use of it. It greatly 
minimizes feature space and is extremely effective, although it is not 
evasion attack resistant. This approach can be seen in Fig. 7.8. 

• Cloud-based detection: Cloud computing is quickly taking off 
because it has so many advantages, like simple access and on-demand 
storage. The cloud has been used to detect viruses because of its 
widespread use. With much larger malware database volumes and 
intensive computational resources, cloud-based malware detection 
enhances the performance of desktops and mobile devices in malware 
detection. Cloud-based detection offers security as a service and 
makes use of a range of detection agents on cloud servers. Any type 
of file can be submitted, and the user will get a report stating whether 
or not the file includes malware. 

• Mobile device-based detection: In the realm of mobile devices, 
Android has become the dominant platform. According to recent 
studies, a new malicious Android app is released every 10 seconds. In 
light of this, researchers have prioritized Android over other platforms 
for malware detection. Numerous virus detection approaches, 
particularly for the Android platform, have been proposed for mobile 
devices. In general, these technologies identify malware using data 
mining and machine learning algorithms. Various aspects, including 
system calls, security-sensitive APIs, information flows, and control 
flow architectures, are utilized. Even though current research has 
made progress in detecting old and next-generation malware for 
mobile devices, detecting complicated malware and scalability of 
detection algorithms for a big bundle of apps remain formidable 
challenges. 

• IoT-based detection: IoT architecture often consists of a variety of 
Internet-connected smart devices, such as network cameras, house-
hold appliances, and sensors. IoT technology and mobile devices 
have begun to dominate the Internet more than personal comput-
ers. Since mobile and IoT devices are becoming increasingly popu-
lar among consumers, they are also becoming increasingly popular 
among attackers. As a result, the landscape of malware detection 
schemas is shifting from desktops to IoT and mobile devices.
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Fig. 7.8 Deep 
learning-based detection
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7.5.2 Machine Learning Techniques for Malware Detection in IoT 

This section covers learning-based IoT security approaches to detect irreg-
ularities in the IoT device activities. In such detection approaches, machine 
learning (ML) models are trained to identify malicious behavior and then 
respond accordingly [60]. ML-based approaches outperformed signature-
based systems because a minor modification in an attack pattern can readily 
circumvent a signature-based detection system. However, ML-based sys-
tems learn from traffic patterns. They can detect the attack versions with 
ease [61]. In addition, the CPU load of ML-based systems ranges from low 
to high because they do not analyze all database signatures. In addition to 
superior performance in terms of accuracy and speed, ML-based systems 
capture and reveal the intricate features of attack behavior [62]. These tech-
niques are mainly divided into supervised, unsupervised, and deep learning 
methods [63]. Supervised ML methods are extensively applied to ensure 
accuracy and efficiency, whereas unsupervised methods are less common in 
IoT networks for intrusion detection. Meanwhile, deep learning systems 
face challenges such as higher computational resource requirements and 
longer prediction response times. In supervised learning, models are fed 
with labeled data samples in order to identify the corresponding input-
output pattern. 

If we have unlabeled data, unsupervised learning techniques are applied. 
These approaches are predominantly employed for clustering and dimen-
sion reduction. Here a quick overview of the aforementioned learning 
paradigms of ML in the context of IoT security is provided. 

7.5.2.1 Brief Description of Commonly Used ML Techniques 
• The most extensively used and successful machine learning tech-
nology for cybersecurity applications is the support vector machine 
(SVM). Based on a reference to the margin on either side of the 
hyperplane, SVM categorizes and separates the two data groups. 
The margin and separation between hyperplanes can be increased 
to increase the accuracy of data point detection. SVM needs a lot 
of memory to operate on data and takes a long time to train. For 
improved results, SVM should be trained repeatedly to learn the 
dynamic user’s behavior. SVMs were first used in IoT security to 
distinguish between typical and anomalous behavior. The SVM is 
used for real-time intrusion detection, with its training pattern being 
continuously updated, due to its stability, measures, and eligibility.
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• Decision tree (DT) is a supervised machine learning technique that 
utilizes a recursive tree topology. It consists of three compontents: 
a root or intermediate node, a path, and a leaf node. A tree’s root 
or intermediate node represents an object or property. Each branch 
of the tree indicates the possible values of the parent node (object). 
The predicted category or categorized characteristic corresponds to 
the leaf node. The generated tree is additionally represented as if-
then rules. Entropy and information gain metrics are used to choose 
the ideal intermediate node for further processing as a tree grows. It 
functions as a classifier either directly or indirectly in IoT intrusion 
detection techniques. 

• K-nearest neighbor (kNN) is an unsupervised learning algorithm. 
It uses a distance function to calculate the difference/dissimilarity 
between two data instances. It requires less training time than other 
classifiers. However, throughout the classification process, its compu-
tation time is an overhead. This classifier is based on the concept that 
data points in the same area that are similar will be closer together than 
data points that are dissimilar. Based on anomaly scores, there are two 
primary groups of kNN. The anomaly scores are determined in one of 
two ways: (1) based on the difference between the kth  neighbor and 
the data point and (2) the density of each data instance that is used to 
calculate it. The kth  data point’s value has an impact on the classifier’s 
overall performance.Using KNN, an intrusion detection model for 
IoT security can be constructed to categorize the normal and abnor-
mal behavior of wireless network sensors in the IoT environment. 

• Random forest: An ensemble learning technique called random forest 
(RF) combines a number of classifiers to produce a problem hypothe-
sis and a typical outcome. It is used to categorize and predict data 
and is also referred to as a random decision forest. The majority 
of the time, RF is a collection of predictions from various decision 
trees. The random forest has been employed in the literature to gauge 
spam production and identify intrusions. During the model’s training 
phase, it uses less computational power and performs better on 
nonlinear issues. The decision trees that will be reviewed throughout 
the prediction process must be picked though, as the random forest 
combines the predictions of several decision trees. 

• The Bayes theorem, which is frequently applied in supervised clas-
sification, is the foundation of a Naive Bayes approach. The Bayes 
theorem uses prior knowledge to describe an incident that might
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happen soon. Using previous data, Bayes’ technique can identify 
potential harmful network traffic. In order to show the possibility that 
a specific characteristic of an unlabeled example matches the labeled 
feature set under the assumption of feature uniqueness, NB computes 
the likelihood of specific events using the Bayes’ method. NB classifies 
the properties that may be used during connection protocols and 
measures the connection status flag in intrusion detection techniques. 
These traits can be utilized to distinguish between normal and abnor-
mal network behavior. 

• Through a series of forward and backpropagation cycles, ANNs are 
trained. In feedforward, information is supplied into each node of a 
hidden layer. The activation value of each node in a hidden layer and 
output layer is established. A classifier’s activation function affects how 
well it performs. Error is calculated using the discrepancy between the 
network output and the desired value. Using the Guardian Descent 
method, backpropagation modifies the weights between hidden and 
output nodes based on this disparity. Up until the necessary level is 
reached, this process is repeated. Although ANN is easy to use, noise-
resistant, and a nonlinear model, it has one drawback in that it requires 
a lot of training time. 

• Forward-looking convolutional neural networks aremulti-layer neural 
networks that are created by extending ANN (CNN). It consists of 
one or more convolutional layers, one or more fully connected layers, 
and pooling layers, which are three different types of layers. In order 
to utilize them at the coarser resolution, it transforms the higher-
resolution features into more complex features. CNN is frequently 
employed in the identification of anomalies and the classification of 
malicious traffic. 

7.5.2.2 Detection and Mitigation Using ML 
In order to protect IoT smart furniture from perception-layer assaults, 
Nasralla et.al [7] have presented a novel security technique. In this method, 
input time series from different sensors are compared using dynamic time 
warping (DTW) similarity in order to discover anomalies using a novelty 
detector that was previously trained with genuine, normal data as well as 
some realistic potential perception-layer attacks. They used the example 
of a smart cupboard (SC) with door magnetic sensors being subjected to 
magnetic field fluctuations in order to change how door events were per-
ceived to exemplify this method. The experimental findings demonstrated
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the performance in detecting perception layer attacks without needlessly 
alerting the user during normal SC usage. More specifically, in the studies, 
3.5% of the typical usages could not be authenticated, yet none of them 
were identified as attacks. Additionally, 95.5% of attacks on the perception 
layer were correctly detected, 4.20% of attacks were not classified, and only 
0.30% of attacks were incorrectly labeled as common usages. Every one of 
these statistics was run on every analysis day. If they are not discovered 
on the first day, all attacks will likely be found in a few days. Figure 7.9 
illustrates a block diagram for safeguarding a smart furniture item from 
perception-layer attacks. 

To identify aberrant traffic and distinguish DDoS attacks from the flash 
crowd (FC), a unique detection and classification mechanism is introduced 
in [8] work. In general, both types of traffic share similar characteristics, 
although they can be distinguished from one another by a few crucial 
differences. To get the desired result, numerous steps are taken in this 
system, and the analysis data from the traffic analysis is then processed 
further. The number of packets, size of the payload, and inter-packet arrival 
time variations are the main factors taken into account. Ultimately, FC 
traffic is identified and distinguished from DDoS attacks using a Naive 
Bayesian model. Their proposed model is shown in Fig. 7.10. To confirm 
the system’s performance, various simulations are created and compared 
with some existing methods. Their experimental and simulation findings 
demonstrate that their proposed detection system can distinguish DDoS 
attack traffic from FC with more than 93% accuracy (CAIDA–DDoS 
Attack 2007 and FIFA World Cup are two real-world datasets used in this 
research.) 

7.6 CONCLUSIONS 

Cybersecurity has become a global concern for establishing improved secu-
rity mechanisms to investigate and react to cyberattacks. In this chapter, 
we identify several application and service domain vulnerabilities inherent 
to the IoT and smart systems. The ineffectiveness of conventional security 
solutions in detecting novel cyberattacks renders them insufficient. Numer-
ous applications of cybersecurity systems make use of machine learning 
techniques. In this chapter, we’ve covered threats to IoT and smart systems, 
as well as a quick overview of malware detection and evasion approaches. It 
is essential to investigate novel cyberattacks while simultaneously building
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Train the System? 

Door events are collected from a SC 
for each hour of a day 

Represent each data case as 
a time series 

Finish Training? 

Conform the reliable prototype 
series as a corpus 

Establish the similarity function 
between cases based on DTW 

Develop the novelty detector 

Calculate distances for normal cases 
and perception-layer attacked SCs 

Adjust the thresholds for distinguising 
normal cases, attack cases and 

unknown cases 

Classify new Series of SC 
with Novelty Detector 

Assess whether the result is correct 

Finish Validation? 

Yes 

No 

Validation Phases 

Training Phase 

No 

No 

Yes 

Yes 

Fig. 7.9 Block diagram for securing an SC against magnetic perception-layer 
attacks [7]
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Fig. 7.10 Bayesian model to detect abnormal data traffic and discriminate DDoS 
attacks from FC [8] 

and executing solutions to resist these cyberattacks, so the IoT and smart 
systems could be utilized to their full potential. 
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CHAPTER 8 

A Multiclass Classification Approach for IoT 
Intrusion Detection Based on Feature 

Selection and Oversampling 
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8.1 INTRODUCTION 

The concept Internet of Things (IoT) revolves around a time when there 
will be more objects linked to the Internet than there will be humans. 
Under the current Internet infrastructure, the Internet of Things refers to 
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the interconnection of recognizable embedded computing devices [1]. The 
simple idea behind the Internet of Things is to enable autonomous and safe 
data exchange and connection between applications and real-world devices 
in addition to connecting the physical and virtual worlds through personal 
devices, servers, smart cities, and anything connected to the Internet [2]. 
IoT is the next evolution of the Internet, and its effect on education, 
communication, enterprise, research, government, and industry has made 
it one of humanity’s most significant and influential creations [1]. 

The Internet of Things has advanced exponentially in recent years. 
Yet, IoT is not a new concept; it was initially presented in 1999 by 
Kevin Ashton, co-founder and executive director of the Auto-ID Center, 
who suggested that computers, and hence the Internet, are completely 
reliant on human understanding [3]. Despite this, in 2003, IoT did not 
exist yet due to the limited number of connected things and also since 
omnipresent devices such as smartphones were just being introduced. With 
time that has passed by, IoT came out of the shadows in 2009 when actual 
implementation started [4]. 

IoT has been applied in many fields that we would not have expected 
such as in agriculture and predicting the occurrence of natural calami-
ties [5]. Furthermore, the Internet of Things has been used in health 
monitoring systems [6], surveillance monitoring systems [7], autonomous 
vehicles [8], smart cities [9], and a variety of other applications where all 
information can be used. With the help of Big Data, IoT has now become 
extremely powerful, allowing us to collect and analyze large amounts of 
data in a variety of ways, assisting in the transformation of businesses, 
industries, government services, and people’s lives [10]. 

As the number of Internet-connected devices and new IoT applications 
increases, security threats in each device/network develop as a result of 
network intrusions attacks that can occur as a result of various security 
vulnerabilities that allow this, as well as IoT devices that do not recognize 
and consider all security flaws [11]. As an example, in a survey on real IoT 
devices having security flaws, commercial “smart” services and products 
(smart appliances, smart watches, smart TVs, and so on) are provided with 
insufficient, incomplete, and ill-designed security mechanisms, resulting in 
numerous risks relating to access to sensitive information or critical controls 
[12]. Having said that, intrusion detection systems (IDS) are a security 
mechanism that can detect anomalies and malicious activities in a network 
and protect against three types of attacks: anomaly-based attacks, signature-
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based attacks, and even a mixture known as hybrid attacks. Signature-based 
techniques identify attacks based on their signatures. However, due to 
the evolution of intrusion attacks, this technique is not always capable of 
detecting zero-day or newly evolved attacks. Anomaly-based attacks, on 
the other hand, can attempt to detect attacks based on abnormal network 
behavior. In hybrid techniques, it is a mixture of both previous detection 
techniques [13]. Machine learning techniques (both unsupervised and 
supervised learning methods) have been used with these techniques to 
improve by automatically creating unique rules for signature-based IDS 
or adapting the detection patterns of anomaly-based IDS for creating 
predictions and analysis based on the data given to detect patterns [14]. 

With all the existing techniques for intrusion detection, a substantial 
amount of data is generated from IoT devices, and this can be quite an 
issue for the methods for detection in terms of collecting, storing, and 
processing the data in addition to the delay in prediction and actions [15]. 
Due to the production of all this data, it is known that it could be associated 
with an imbalance of this data. An imbalanced dataset has non-uniformly 
distributed instances with regard to their corresponding labels [16]. The 
problem of the imbalanced dataset in machine learning applications is the 
tendency to aggressively identify the instances with the minority labels as 
instances of the majority class, which degrades the quality of the machine 
learning outcomes [17]. This is a problem since it can compromise the real 
performance of the machine learning techniques and algorithms that are 
used in the detection and classification sincemost standardmethods assume 
balanced class distribution and mis-classification costs as equal leading 
to inaccuracies and weak representations and results for the distributive 
characteristics [18]. Most machine learning techniques face challenging 
the imbalanced nature of the data generated especially in the multiclass 
problem found in the dataset. So far, this issue could be overcome with 
the many different solutions such as oversampling, undersampling, and 
cost-sensitive learning methods [19]. If not resolved, they can lead to 
a low predictive performance in detection and identification of normal 
activity vs intrusion to classify them based on normal and types of attacks 
[20]. For detection and classification in the IDS, many approaches were 
combined to gain different results and accuracy whether with the use 
of supervised or unsupervised learning. Classification based on multiclass 
problems is accompanied with oversampling techniques specific for the 
adjustment of the data distribution in the multiclass problem for detection 
and classification of the intrusions in spite of the change of percentages of
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the normal and attack traffic [21]. With the datasets used for the detection 
of intrusions, the multiclasses must have identified feature variables that 
could influence and play a big role in the prediction of this class to adopt 
valid test and evaluation to reflect the trends and evident diversity [22]. 

Putting all these stages together, it forms a pipeline for the classification 
of IoT intrusion detection with the use of feature selection, oversampling, 
and feature importance. Although this research has been adopted before, 
it has not been considered on one of the most recent imbalanced datasets 
using new popular classification techniques. Hence, in this chapter, the 
main contributions are as follows: 

• Develop the multiclass classification to classify the category label for 
IoT intrusion attacks. 

• Application of heuristic approach for feature selection to adopt valid 
predictions for detection of IoT intrusion attacks. 

• Application of oversampling technique to use for themulticlass dataset 
problem to solve imbalance distribution. 

• Specify the influencing feature variables that play a big role in the 
prediction power. 

• Application of pipeline on recent dataset IoTID2020 using new 
popular algorithms. 

The rest of this chapter is organized by discussing the literature review, 
security system framework, background, research methodology, experi-
mental results, and discussions along with the conclusion and future works 
of this research. 

8.2 LITERATURE REVIEW 

As IoT is evolving drastically over the years, it can be seen that a massive 
amount of data is being produced by all the IoT devices and it is very hard 
to detect the intrusion activities using proper mechanism even with the 
use of machine learning techniques (whether supervised or unsupervised 
learning techniques). To detect the intrusions and normal activities for 
classification, Qaddoura et al. [23] proposed an entire approach in multi-
stages for the classification based on clustering, performing reduction 
along with oversampling and classification methods, as well as working 
on the IoT training data with undersampling, while the dataset is still left 
representative for training by using the unique reduction and clustering 
approach. Oversampling was also done to solve the imbalanced distribution
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of the data in the classes. With all the procedures done, it was experimented 
on the IoTID2020 dataset by dividing the training data into three clusters 
with the use of k-means clustering which were then reduced by 10% 
before aggregating them to the three reduced clusters. SVM-SMOTE was 
furtherly used with an oversampling ratio of 0.9 and then aggregated 
into an enlarged one for supplementarily producing the oversampled 
data classification model using the single-hidden layer feed-forward neural 
network (SLFN) classification method. When evaluated, it was shown to 
be exceeding other approaches based on the G-mean (GM), precision 
(PREC), accuracy (ACC), and recall (REC) [23]. The same authors also 
proposed a multi-layer approach for the IoT intrusion detection using the 
IoTID2020 dataset to predict the intrusion identification and the category 
label using SLFN and long short-termmemory (LSTM)with oversampling 
[17]. 

With the ongoing research on detecting IoT intrusions, there are many 
aspects and pathways to follow with many theories and techniques to 
investigate. Finding approaches for the classification of IoT intrusions 
can be quite challenging especially due to the many issues and obstacles 
surrounding it. For example, it has been studied that class imbalance is a 
big type of issue in classification since there are classes that are marginalized 
when compared to others. This raises an effectiveness conflict particularly 
in minority class prediction when using algorithms of machine learning. 
There are different numerous approaches to tackling this matter although 
the majority focus on bi-class scenarios in the imbalance problems. There-
fore, it has been proved that dealing with multiclass problems based on 
these algorithms is less efficient and has negative consequences. With this 
said, Wang and Yao [21] have addressed this point by considering why 
addressing multiclass problems tends to be difficult using these approaches. 
It was concluded unsatisfactory of strategizing the effect of the multiclass 
on the random and undersampling execution processes in the multi-
majority and multi-minority class cases. Due to this, they proposed their 
developed ensemble algorithm named AdaBoost. NC [21] along with 
oversampling to resolve the multiclass problem and improve the balance 
and recognition of minority classes that can improve the performance in 
classification [21]. 

Furthermore, Abdi and Hashemi [20] worked on opposing the mul-
ticlass imbalance problem using Mahalanobis distance-based oversampling 
technique (MDO) to minimize the consequential challenge of the overlap-
ping risk that can occur between regions of different classes in the detection
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of IoT intrusions using model-based solutions such as ensemble learning 
to address these issues. With the application of the simple oversampling 
techniqueMDO, it overcomes the multiclass problems by considering each 
class candidate and oversampling the minority class and inventing a synthe-
sis instance that can be useful for maintaining the covariance data structure 
for the minority classes that can help the prevalent issue of overlaps. The 
MDO strategy was compared with many existing oversampling techniques 
and tested across 20 multiclass UCI and KEEL benchmark datasets with 
a few classifiers that are different. It shows that this technique works great 
in multiclass imbalance problems due to higher capability of learning the 
boundaries of different classes such as feature space similarities that are hard 
to learn by other methods. Additionally, not only has the MDO reduced 
the oversampling risk by sampling the minority classes and creating samples 
in dense feature space areas, but it has also outperformed other data-level 
solution algorithms based on the precision of minority classes and MAUC 
in classification [20]. 

However, the MDO [20] has demonstrated that it is only applicable to 
numerical attributes in datasets and can ruin the majority class accuracy due 
to the generation of unrealistic samples and immoderate synthetic samples 
for the minority classes. Thus, Yang et al. [24] put forward the extension 
of the study and adapted it to propose the adaptive Mahalanobis distance-
based oversampling (AMDO) [24] which handles not only the mixed-type 
attributes inmulticlass imbalanced datasets effectively but also improves the 
MDO performance using a partially stabilized re-sampling method using 
a strategy to gain the adaptive samples. Based on comparison and testing, 
AMDO shows outperforms MDO in terms of numeric datasets and mixed-
typed datasets and concluded higher accuracy of the minority classes and 
classifiers performance in most datasets as promising results of precision 
and AUC [24]. 

As many other new techniques arise to detect IoT intrusions, many 
of these machine learning models assume that each of the classes to 
detect from contains an equal number of samples. Yet, with the imbalance 
data nature in IoT security, a very poor performance of predicting and 
identifying anomalies is observed. This has made it very difficult to attempt 
to design a model for detecting anomalies using the machine learning 
models. Based on this, Dash et al. [15] initiated a different technique 
for anomaly prediction with a synthetic minority oversampling technique 
(SMOTE) with a multiclass adaptive boosting ensemble learning-based 
model to be tested on DSOS data in comparison and other machine
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learning approaches in handling this issue. It was concluded by the authors 
[15] that the imbalanced multiclass nature was handled successfully and 
effectively in identifying the normal activities vs abnormal activity along 
with the anomaly types. Moreover, it surely shows that based on evalua-
tion metrics and performance indexes, greater efficiency was achieved in 
contrast to other approaches [15]. 

Finding a procedure to detect and classify network attacks in multiclass 
problems is used in intrusion detection systems (IDS), and they use 
machine learning models to handle whether based on anomaly behavior or 
signatures that are known to the systems. Many techniques could be used 
for detection whether based on patterns or rules for multiclass problems. 
Alaiz-Moreton et al. [14] did research on three methods in machine 
learning to decide on the normal vs abnormal activity within the same 
time period. Many modes such as LSTM, GRU, and XGBoost were used. 
Models based on recurrent neural networks have high accuracy due to their 
time and sequence importance in the attacks, while the XGBoost was used 
for its beneficial structure. Based on usage, ensemble techniques had the 
best results overall, followed by deep learning techniques, having the worst 
results for linear models [14]. 

Furtherly, knowing there are many techniques for classification based on 
rules and patterns of the attacks knowledge, it is quite prone to errors in the 
intrusion detection system due to the presence of the class-imbalance data. 
Owing to this, Panigrahi et al. [25] looked into this issue and introduced a 
C4.5-based detector in the system with the consolidated tree construction 
algorithm along with Supervised Relative Random Sampling (SRRS) and 
multiclass feature selection for efficient intrusion detection. This system 
was evaluated on the NSL-KDD dataset and the CICIDS2017 dataset 
using 34 features showing the accuracy of 99.96% and 99.95% [25]. 

Although this approach discussed by Panigrahi et al. [25] could be a 
solution. Yet, many other researchers have other techniques to suggest. 
Iwendi et al. [26] proposed an improvement to the system for bi-class and 
multiclass data by the use of CFS + Ensemble Classifiers (Bagging and 
Adaboost) with base classifiers (J48, RandomForest, and Reptree). This 
was tested on KDD99 and NSL-KDD datasets for binary and multiclass 
classification resulting in 99.90% and 98.60% detection rates and 0 and 
0.5% false alarm rates correspondingly [26]. 

In the classification of intrusion attacks, a large quantity of data is 
processed, and the detection rate is quite low as a default especially if 
data is highly imbalanced. Thus, Miah et al. [27] proposed a multi-layer
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classification approach using cluster-based undersampling with a random 
forest classifier to improve the detection rate to classify minority-class 
intrusions addressing imbalanced and overfitting problems. The KDD99 
dataset was used in the experiment showing that the proposed method 
raises detection rates and abates false-positive rates compared to other 
classifiers with 87% achievement as other algorithms can achieve less than 
30% [27]. 

Due to the rise of applications of IoT, they have become more subjected 
to attacks that are malicious, and now most mechanisms are unable 
to overcome and protect against completely even if they try to defend 
against the majority types of attacks, despite that the systems for detecting 
traditionally havemany flaws in their detection and time efficiency. Yet, they 
can identify suspicious attacks based on the behavior which is abnormal in 
the IoT devices. Now timely response and implementation of measure to 
protect effecting is essential and is done based on the collecting of data 
from the network to view the behavior although the data contains many 
features, featural dimensions that are high with complex structures to deal 
with, so this is an issue for the performance of detecting in the existing 
algorithms used. This was addressed by Zheng et al. [28] that came up with  
a better version detection algorithm based on the LDA ELM classification 
to fulfill efficient and timely detection by the use of improving the linear 
discriminant analysis LDA and adding similarity functions that are special 
to achieve better spatial separation after the reduction of the dimensions of 
the data. In addition to this, the paper used the extreme learning machine 
(ELM) classifier with this speedy classification for better decisions, with 
further experimentation and processes that managed to test this on the 
NSL-KDD dataset and compare it against other algorithms concluding the 
highest accuracy and detection rate [28]. 

All in all, it can be viewed that there are many different ways researchers 
view and think about solving these problems with various approaches 
using different algorithms and techniques accompanied by considering 
different factors. Based on the different views, each concludes different 
results in their papers giving a bigger reason to work on this topic further 
since comparing the results together and implementing different multiple 
methodologies to classify intrusion attacks in multiclass problems can 
propose a whole new hypothesis to investigate and build on next, especially 
in IoT.
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8.3 SECURITY SYSTEM FRAMEWORK 

The intrusion detection prevention system (IDPS) is a mechanism that 
focuses on the security of the network layer of an IoT system. The way this 
systemworks is by analyzing the packets of data and generating responses in 
real time with fast responses and high-volume data processing capabilities. 
In the analysis process, the data is collected into a monitored environment 
and preprocessed. Beyond this, it is fed through the classification model 
to predict whether the data from the network attack matches an intrusion 
attack or not. If it is a normal packet, no alarm is given, and the packet 
passes through the network. Yet, if the data is malicious, it predicts which 
type of attack this packet matches (e.g., DoS, Mirai, MITM, Scan) and 
alerts the system to take action to prevent potential harm to the IoT 
network [29]. An interpretation of this system framework is shown in 
Fig. 8.1. 

8.4 BACKGROUND 

This section discusses the preliminary information needed to understand 
the main parts of the proposed methodology. It mainly includes a discus-
sion on the XGBoost and CatBoost classifier algorithms. 

8.4.1 XGBoost 

XGBoost algorithm, like many other ensemble learning algorithms, is used 
for regression and classification for supervised learning problems and large 
datasets where there is multiple features in the training data to predict a 
target variable. This algorithm was developed by Chen and Guestrin [30] 
and was optimized with the structure of gradient boosting. The XGBoost 
is a regression tree that is popular for its scalability in all scenarios as it 
can allow the system to run ten times faster than any solution on a single 
machine. This is due to its algorithmic optimizations as sparse data is han-
dled by a novel tree learning procedure; instance weights in approximation 
tree learning is handled by a theoretically justified weighted quantile sketch 
procedure, and this helps in the split finding algorithms [31]. Learning is 
sped up with the use of parallel and distributed computing. This helps in 
solving complex problems in machine learning allowing for more rapid 
model generation in a fast and accurate way [32]. It works by integrating 
the estimates of several simpler, weaker models to try to accurately predict
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Fig. 8.1 Security system framework to classify and alert IoT intrusion attacks
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Fig. 8.2 Representation of decision trees in XGBoost 

a target variable. A convex loss function (determined from the anticipated 
and target outputs difference) is combined with a penalty term in XGBoost 
for model complexity to diminish a regularized regression tree function 
(objective function). The training process is repetitious, with new trees 
being included that forecast the errors or residuals of prior trees, which 
are then integrated with previous trees to provide the final prediction 
as  shown in Fig. 8.2. Gradient boosting in the XGBoost uses a gradient 
descent approach to reduce loss when newmodels are added. Yet, XGBoost 
cannot handle categorical features so one-hot-encoding must be used to 
transform the categorical features into numerical values for the algorithm. 
As a whole, the XGBoost algorithm is used as it is a recent and popular 
strong algorithm that supports numerous objective functions, such as 
regression, classification, and ranking with a fast execution speed and a 
highly accurate model performance [33]. 

8.4.2 CatBoost 

CatBoost is a depth-wise gradient boosting algorithm that was developed 
by Yandex. Within gradient boosting, the trees are made one after the 
present one where the previous trees can’t be altered, but the results 
are used to improve the next trees. The CatBoost algorithm uses past
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Fig. 8.3 Representation of decision trees in CatBoost 

decision trees to grow a balanced tree where the left and right splits 
for each level of the tree are made from the same features as shown in 
Fig. 8.3. This algorithm can handle categorical features and numerical 
values and reduce overfitting with very less prediction time at a high 
accuracy giving the advantage that it can be used in complex problems with 
large datasets for classification and regression. CatBoost has the flexibility 
of giving categorical columns indices so one-got encoding can be used 
using one-hot-max-size. The CatBoost utilizes an encoding method to 
reduce the overfitting by permuting the set of inputs in an irregular order 
and converting label values from floating point or category to integer in 
addition to transforming the categorical feature values to numeric values 
using the formula: 

.Avg_target = countInClass + prior

totalCount + 1
(8.1) 

where the countInClass is number of times the label value was equal to 
1 for the present categorical feature value objects. Prior is the preliminary 
value for the numerator and is determined by the parameters at the start. 
The total count is the objects total number to the current that has the 
categorical value feature matching. Furthermore, minimal variance sample 
(MVS) is a stochastic gradient boosting weighted sampling form that 
CatBoost employs. Weighted sampling happens at the tree level instead 
of the split level in this technique. Each boosting tree’s observations are 
sampled in such a way that split scoring accuracy is maximized. The reason
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why CatBoost is popular and in demand for usage is that great results are 
provided with the default parameters; thus, less time is needed for tuning 
parameters, and it reduces overfitting due to improved accuracy, and the 
usage of the CatBoost model applier allows fast prediction [34]. 

8.5 METHODOLOGY 

In the multiclass perspective approach for detecting intrusion attacks in this 
research, the primary quantitative research method is used as a model for 
the experiments as it is developed to analyze specific data from a dataset by 
using sets of variables setting one as constant and measuring the differences 
against the other (training and testing sets), and this means that the 
information is gathered through the self-conducted research methods. The 
secondary research was used in the literature review, and the information 
was taken from different studies. This supports the proposed research. 
Moreover, as quantitative research has other approaches such as using 
surveys, they are not used, and neither is the qualitative research (e.g., 
interviews) be used as they are not necessary for this project and do 
not meet our objectives. The reason behind it is that both mentioned 
techniques focus on human experiences, behavior, and opinions, while 
this experiment looks at the home network’s traffic and corresponding 
connected devices for malicious activities, and this is not associated with any 
known ethical issues due to no human participation in research as the data 
is readily available online with no human data [35]. Thus, the quantitative 
experimental research approach is themost effective to reach the objectives. 
Yet, caution must be taken upon working on quantitative research as 
it involves limitations and drawbacks of difficulty in understanding the 
context of the phenomenon and explaining complex issues due to data not 
being robust enough and requires time and cost which is expensive [36]. 

Furthermore, in this methodology, the main focus is on the following 
aspects as shown in Fig. 8.4: 

• Problem understanding and formulation 
• Data collection 
• Data preprocessing 
• Model development 
• Evaluation and assessment
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Fig. 8.4 Multiclass 
classification research 
methodology 

8.5.1 Problem Understanding and Formulation 

Intrusion detection and classification have risen in importance as the 
use and development of IoT devices and applications have increased. As 
technology advances, it creates new vulnerabilities and weaknesses in the 
system, network, and device itself. With all of the vulnerabilities, more
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network intrusion attacks can target these vulnerabilities, causing adverse 
consequences. 

With the intrusion detection methods available today, detection algo-
rithms are required to detect all types of attacks. Because the devices 
generate a large amount of data, not all machine learning algorithms are 
capable of detecting accurately and having less prediction time. Further-
more, the data collected may have an imbalanced distribution and contain 
multiclasses, therefore less likely and accuracy in detection of the attacks. 
As a result, a solution must be found. Many researchers have addressed 
this issue on old datasets yet using the basic known classifiers such as 
random forest, decision trees, logistic regression, KNN, and others. Due 
to this, a multiclass classification is implemented with feature selection 
and oversampling on a recent imbalanced dataset using recent popular 
classifiers. 

8.5.2 Data Collection 

To bring the research to light, the data needed for the experiment is 
completely taken from an online dataset called IoTID2020 [37] that  
includes 80 features and 625,783 instances. This dataset is a recent 
and imbalanced dataset that contains extensive network and flow-based 
features based on home environments with three main labels, the intrusion 
identification label, the category label, and the subcategory label (Shown in 
Table 8.1). The category label contains five different categories each with 
a different number of instances (Shown in Table 8.2). This dataset was also 
used in different new studies such as Qaddoura et al. [23] paper during the 
experiment implementation. 

This data was obtained from a smart home environment that has a 
combination of IoT devices and interconnecting structures consisting of 
smart home device SKTNGU and EZVIZ Wi-Fi camera connected to the 
smart home Wi-Fi-router as it is connected to devices such as laptops, 
tablets, smartphones, and others. The data for IoTID2020 dataset was 
obtained as a result [38]. Although this dataset has the limitation of taking 
from the smart home environment, it is enough to test the methodology 
and gain results where it can be further improved and tested on other 
datasets.
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Table 8.1 IoTID2020 
taxonomy in terms of 
binary, category, and 
subcategory labels 

Label Category Subcategory 
Normal Normal Normal 
Anomaly DoS Synflooding 

Mirai Brute Force 
HTTP Flooding 
UDP Flooding 

MITM ARP Spoofing 
Scan Host Port 

OS 

Table 8.2 Distribution 
of data instances based 
on category label 

Category Number of instances 
DoS 59,391 
Mirai 415,677 
MITM 35,377 
Scan 75,265 
Normal 40,073 
Total 625,783 instances 

8.5.3 Data Preprocessing 

The fundamental step after collecting the data is to manipulate and 
transform the data to increase the quality and enhance the performance 
of the experiment. To do so, unwanted columns shall be removed from 
the dataset along with nan values. The target column category is encoded 
using the label encoder to transform the column data into a numeric form 
to convert them into the machine-readable form [39]. Beyond this, the 
dataset is separated into features and the label where the label contains the 
feature category while the features contain all other column features. These 
are then used to split the data by 50% into training and testing set to be 
used in the rest of the procedure. Beyond this, feature selection using the 
variance threshold technique is implemented to remove the features with 
low variances (features with the same values in all samples) that does not 
meet the threshold (Shown in Table 8.3). This is done to decrease training 
time and reduce the risk of overfitting. Oversampling to theminority classes 
is next applied to the training set using the SVM-SMOTE to address the 
imbalance distribution of the classes of the dataset by using the SVM 
algorithm to detect samples to use for new synthetic samples generation. 
The data preprocessing stage can need quite a heavy capacity in terms of 
time and power, but it is essential to ensure the quality of the data for the 
experiment.
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Table 8.3 Number of features selected and not selected based on the variance 
threshold technique 

Feature selection (overall 80)/0.8 variance threshold 
# of features selected # of features not selected 
60 20 

Table 8.4 
Representation of metric 
evaluation 

Actual 
Positive Negative 

Predicted Positive TP FP 
Negative FN TN 

Table 8.5 XGBoost 
experiment algorithm 

Algorithm: SVM-SMOTE-XGBoost-classification 
Input: dataset 
Output: ACC, PREC, REC, GM, F1 
1 train, test = split(dataset) 
2 feature-selection-dataset= variance threshold 
3 oversampled-dataset = 
SVM-SMOTE(feature-selection-dataset) 
4 model = XGBoost(oversampled-dataset) 
5 predicted-labels = predict(model, test) 
6 ACC, PREC, REC, GM, F1 = evaluate(predicted-labels) 
7 feature-importance = shap.summary.plot(model) 

8.5.4 Model Development 

After data preprocessing, the data is then passed into different classification 
models. The testing set of the data is the input for the model, which results 
in producing classified instances into the categories (DoS, MITM ARP 
Spoofing, Mirai, Scan, Normal). The main objective of classification is to 
build a model from items categorized to classify instances as correctly as 
possible by having many True positives (TPs) and True negatives (TNs) 
presented in Table 8.4. Such that data is fed into the models representing 
different classifiers specifically XGBoost and CatBoost since they are recent 
powerful algorithms with high prediction accuracy in short prediction 
timing that have strong potential in intrusion detection classification. Each 
classifier predicts the instances category as accurately as possible. It is 
essential to have high accuracy models to detect new changing attacks since 
most existing machine learning models are unable to identify some new 
attack patterns. Tables 8.5 and 8.6 refer to the algorithms for XGBoost 
and Catboost for model development, respectively.
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Table 8.6 CatBoost 
experiment algorithm 

Algorithm: SVM-SMOTE-CatBoost-classification 
Input: dataset 
Output: ACC, PREC, REC, GM, F1 
1 train, test = split(dataset) 
2 feature-selection-dataset= variance threshold 
3 oversampled-dataset = 
SVM-SMOTE(feature-selection-dataset) 
4 model = CatBoost(oversampled-dataset) 
5 predicted-labels = predict(model, test) 
6 ACC, PREC, REC, GM, F1 = evaluate(predicted-labels) 
7 feature-importance = shap.summary.plot(model) 

8.5.5 Evaluation and Assessment 

The evaluation and analysis of the results are done by the following 
points. 

• Measure the performance by calculating metrics GM, PREC, ACC, 
REC, and F1-score (F1) for each model using the Equations (8.2), 
(8.3), (8.4), (8.5), and  (8.6) [23, 40]. 

• Compare XGBoost and CatBoost classifiers with random forest clas-
sifier, KNeighbors classifier, GaussianNB, logistic regression, decision 
tree classifier. 

.Accuracy = T P + T N

T P + T N + FP + FN
(8.2) 

.Precision = T P

T P + FP
(8.3) 

.Recall = T P

T P + FN
(8.4) 

.F − measure = 2Precision × Recall

P recision + Recall
(8.5) 

.G − Mean = n
√

x1, x2, . . . xn (8.6) 

The experiment is repeated three times where each has a scenario as 
follows:
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• Scenario (1): Classification using XGBoost and CatBoost without data 
preprocessing. 

• Scenario (2): Classification using XGBoost and CatBoost with feature 
selection. 

• Scenario (3): Classification using XGBoost and CatBoost with feature 
selection and oversampling. 

8.5.6 Post Analysis 

To improve the predictive model performance and simplify and speed up 
the modeling process, feature importance is an essential technique to apply 
to the experiment. Feature importance techniques assign a specific score to 
each of the input features based on how useful they are in the prediction 
and classification of the target variables, and this as a result gives very useful 
insights about the data giving a better understanding of which features 
are relevant (highest scores) and irrelevant (lowest scores), thus reducing 
the number of input features to increase predictive model performance. 
Feature importance is used in the experiment for the analysis of which 
features are the most relevant in the prediction of the target variable in 
the XGBoost and CatBoost models. This is applied by finding the top 
important features using a different technique for each model [41]. 

XGBoost Feature Importance In the XGBoost, the general way to calculate 
the feature importance is with the boosted trees that are constructed and 
are used to extract each feature attribute importance scores based on the 
indication of how valuable each feature is in the boosted decision trees 
construction in the model. The more the feature has been used to make key 
decisions, the higher its relative importance [41]. Yet, another technique is 
called Shap which is model-agnostic and uses the Shapley values to estimate 
how does each feature contribute to the prediction for overall prediction 
[42]. 

CatBoost Feature Importance In the CatBoost, the known method for the 
feature importance is calculated by taking the difference between the loss 
functionmetric obtained using the original model with the feature and with 
the feature removed from all the trees in the model. The higher the value, 
the higher its importance and relevance in the prediction of the target value 
[41]. But SHAP is a technique that can be used to measure the impact
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of a feature on a single prediction value compared to baseline predictions 
whether the case is object-level contributions of features overall feature 
importance of the entire dataset [42]. 

The reason why the SHAP is the chosen technique for feature impor-
tance is because it calculates the impact of each feature on the model output 
magnitude and it shows the impact of having a certain value for a given 
feature in comparison to the prediction made if that feature took some 
baseline value [42]. 

8.6 EXPERIMENTAL RESULTS AND DISCUSSIONS 

This section presents the environmental settings and experimental results 
based on three scenarios and as an overall feature importance and cost 
analysis. 

8.6.1 Environmental Settings 

For the implementation of the experiments, an HP personal computer with 
Intel(R) Core i7-8850U CPU @ 1.80GHz 1.99GHz 16GB RAM was 
used for running the experiments on the Command Prompt on Microsoft 
Windows 10 Pro. The imbalanced-learn and Scikit Learn Python libraries 
with Python 3.9 were used to run SVM-SMOTE, variance threshold fea-
ture selection, RandomForest Classifier, GuassianNB, KNeighborsClassi-
fier, Logistic Regression, and DecisionTreeClassifier techniques. XGBoost 
and CatBoost libraries were used to run the classifier models. Also, 
Matplotlib and Seaborn libraries were used to assist in plotting the feature 
importance barplots for XGBoost and CatBoost models. The value 0.8 
threshold was used in the variance threshold technique in feature selection. 
The RandomForest Classifier, GuassianNB, KNeighborsClassifier, Logistic 
Regression, and DecisionTreeClassifier techniques were used for compar-
ison with proposed framework models. Finally, the category label of the 
IoTID2020 dataset was considered as the target variable in the experiment 
for the proposed framework. 

8.6.2 Experimental Results 

For the proposed framework, the experiment was divided into three 
experiments, with each aspect considered one at a time as an additional
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step in each experiment. The analysis is based on G-mean, precision, recall, 
and F1-Score. The overall accuracy was not a priority metric as the data is 
imbalanced and the focus is on classification; therefore accuracy is not a 
valid metric to conclude from. 

Experiment Without Data Preprocessing In this experiment, the data was 
fed directly to the classification models XGBoost and CatBoost to produce 
the results for the specified metrics and compare them against the other 
classifiers. As seen in Table 8.7, it has been analyzed that the XGBoost had 
the best performance compared to all other classifiers as it had the highest 
G-mean of 0.943 meaning it gave the most true results among the total 
number of cases examined and in the classification of the positive cases 
and ensures that the lack of minority classes does not affect the quality of 
results produced by the classifiers. Also, XGBoost had the highest precision 
of predicting true positives in the majority of category labels and the recall 
in the prediction of actual positives classified correctly. With this said, the 
F1-score is relatively the highest due to the high precision and recall results 
for the category labels. The decision tree classifier had the second best 
performance with a difference of 0.01 in terms of G-mean, and it had the 
second highest precision and recall in the majority of category labels thus 
second highest F1-score when compared to all other classifiers as CatBoost 
performance came third best with a difference between XGBoost of 0.022. 
Figure 8.5 shows the metric results for the top 3 performing models. 

Experiment with Feature Selection In the second experiment, the same 
experiment was executed with the addition of the variance threshold feature 
selection of 0.8 to select the best features for the classification of category 
labels. 

Results show in Table 8.8 that XGBoost also outperforms all other clas-
sifiers as it had the highest G-mean of 0.944 and also the highest precision, 
recall, and F1-score in the prediction and classification of the category 
labels for the intrusion attacks. The decision tree classifier outperformed all 
other classifiers in terms of precision, recall, and F1-score in the prediction 
of the category labels as they were comparatively high with a G-mean 
difference of only 0.013. CatBoost came best third as it did have quite 
high prediction and classification results for the category labels in terms of 
precision, recall, and F1-score with a G-mean difference from XGBoost of



218 Z. AMIERH ET AL.

T
ab

le
 8
.7

 
E
xp

er
im

en
t p

er
fo
rm

an
ce

 re
su
lts

 w
ith

ou
t d

at
a 
pr
ep

ro
ce
ss
in
g 

X
G
B
oo
st

C
at
B
oo
st

R
an
do
m
Fo
re
st

 C
la
ssi
fie
r

K
N
N

G
au
ssi
an
N
B

Lo
gi
st
ic
R
eg
re
ssi
on

D
ec
isi
on
Tr
ee
C
la
ssi
fie
r 

A
C
C

 
0.
97

6
A
C
C

 
0.
97

0
A
C
C

 
0.
93

1
A
C
C

 
0.
83

5
A
C
C

 
0.
55

9
A
C
C

 
0.
79

3
A
C
C

 
0.
96

5 
G
M

 
0.
94

3
G
M

 
0.
92

1
G
M

 
0.
83

4
G
M

 
0.
69

1
G
M

 
0.
60

9
G
M

 
0.
21

7
G
M

 
0.
93

3 
PR

E
C

 
R
E
C

 
F1

PR
E
C

 
R
E
C

 
F1

PR
E
C

 
R
E
C

 
F1

PR
E
C

 
R
E
C

 
F1

PR
E
C

 
R
E
C

 
F1

PR
E
C

 
R
E
C

 
F1

PR
E
C

 
R
E
C

 
F1

 
D
oS

1.
00

0 
0.
99

8 
0.
99

9 
1.
00

0 
0.
99

0 
0.
99

0 
1.
00

0 
0.
99

5 
0.
99

8 
0.
99

8 
0.
98

3 
0.
99

 
1.
00

0 
0.
99

3 
0.
99

6 
0.
99

3 
0.
99

5 
0.
99

4 
1.
00

0 
0.
99

8 
0.
99

9 

M
IT

M
 

A
R
P 

Sp
oo

fin
g 

0.
86

3 
0.
82

4 
0.
84

3 
0.
87

0 
0.
76

0 
0.
81

0 
0.
71

2 
0.
52

9 
0.
60

7 
0.
47

6 
0.
42

4 
0.
44

9 
0.
15

8 
0.
94

1 
0.
27

1 
0.
50

0 
0.
00

8 
0.
01

7 
0.
81

0 
0.
78

6 
0.
79

7 

M
ir
ai

0.
97

8 
0.
99

1 
0.
98

6 
0.
97

0 
0.
99

0 
0.
98

0 
0.
94

2 
0.
96

5 
0.
95

4 
0.
89

5 
0.
89

2 
0.
89

3 
0.
98

7 
0.
50

2 
0.
66

6 
0.
78

4 
0.
97

1 
0.
86

7 
0.
97

5 
0.
97

8 
0.
97

7 
Sc
an

0.
98

0 
0.
94

7 
0.
96

3 
0.
90

0 
0.
93

0 
0.
95

0 
0.
86

7 
0.
89

2 
0.
87

9 
0.
62

3 
0.
71

4 
0.
66

5 
0.
19

0 
0.
21

4 
0.
20

1 
0.
38

4 
0.
11

4 
0.
17

5 
0.
93

4 
0.
94

5 
0.
94

0 
N
or
m
al

 
1.
00

0 
0.
96

8 
0.
98

3 
1.
00

0 
0.
96

0 
0.
98

0 
0.
96

9 
0.
89

2 
0.
92

9 
0.
66

9 
0.
59

2 
0.
62

8 
0.
47

3 
0.
83

8 
0.
60

4 
0.
89

0 
0.
52

3 
0.
65

9 
0.
99

3 
0.
97

5 
0.
98

4



A MULTICLASS CLASSIFICATION APPROACH FOR IOT INTRUSION… 219

Fig. 8.5 Experiment (1): G-mean, precision, recall, and F1-score 

0.025. Figure 8.6 shows the metric results for the top 3 performing models 
for this experiment. 

Experiment with Feature Selection and Oversampling In the last experi-
ment, the SVM-SMOTE oversampling was added. Table 8.9 displays the 
fact that XGBoost still outperforms all classifiers with the highest G-mean 
of 0.932 along with the best results for the precision, recall, and F1-score 
in the majority of the category labels. CatBoost classifier came second 
best in performance in terms of precision, recall, and F1-score with a G-
mean difference of 0.008. Decision tree classifier was the third in best 
performance after the CatBoost classifier. Figure 8.7 shows the evaluation 
results for the highest three performing models. 

Overall Experimental Results As a whole, the XGBoost algorithm had 
outperformed all other classification algorithms in the three experiments 
with the highest metric results for precision, recall, f1-score, and G-mean 
although its G-mean stayed comparatively similar with a slight increase and 
decrease in the experiments. Yet, it can be analyzed in the second and third 
experiments that the recall has been improved for the basic classifiers KNN 
and random forest due to the presence of oversampling.
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Fig. 8.6 Experiment (2): G-mean, precision, recall, and F1-score 

8.6.3 Feature Importance Results 

The effect of the classifiers XGBoost and CatBoost in different condition 
experiments has played a role in identifying the influential features that 
improve the prediction power of classification of the category type of 
intrusion attack. Based on each of the three experiments, each had different 
results for each classifier algorithm. The feature importance SHAP focused 
on the impact of the highest ten influential feature variables. 

Experiment (1) No heavy data preprocessing was added to this experiment, 
and the data was fed to the classifiers directly. Based on the bar plot shown 
in Fig. 8.8 for XGBoost, it can be analyzed that the feature Flow_Duration 
showed to have the highest impact on the model output for classification 
of all the category types where the Dst_Port feature was the second most 
important variable for all category types except the DoS although it also 
had less prediction impact for predicting the scan class yet higher impact 
in predicting the normal class. The prediction impact for Mirai and MITM 
was similar for both features. 

For the CatBoost feature importance in Fig. 8.9, it is concluded that 
the Src_Port feature had the highest impact on the prediction of the 
category type classification for category labels. Flow_Duration was the 
second most important variable for detection although it has less impact
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Fig. 8.7 Experiment (3): G-mean, precision, recall, and F1-score 

Fig. 8.8 Experiment(1): Highest ten ranked features in XGboost
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Fig. 8.9 Experiment(1): Highest ten ranked features in CatBoost 

than the Src_Port for each of the classes but was quite similar in predicting 
the DoS category. 

Experiment (2) Feature selection was added to the procedure, and the fea-
ture variables that influenced and impacted the prediction power differed. 
For XGBoost, Fig. 8.10 shows that the most influential feature variable is 
the Flow_Duration as it has the highest impact on the prediction of the 
category type classes, while the second most influential is the Src_Port 
feature although it did not have much impact on the prediction of the 
DoS class. 

CatBoost differs slightly when compared to XGBoost as in Fig. 8.11 
displaying the Src_Port feature variable as the highest impact on detec-
tion prediction of the category types, while Flow_Duration came second 
highest for the prediction although it can be noticed that it had a higher 
impact on predicting the DoS class than Src_Port. Yet, Src_Port was more 
impactful on the other classes in comparison. 

Experiment (3) As the feature selection and oversampling techniques 
were added to the experiments, the change of effect on the influential 
features for a prediction made different impacts on classification for the
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Fig. 8.10 Experiment(2): Highest ten ranked features in XGboost 

Fig. 8.11 Experiment(2): Highest ten ranked features in CatBoost
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Fig. 8.12 Experiment(3): Highest ten ranked features in XGBoost 

category type classes. Figure 8.12 reveals for the XGBoost that the feature 
Flow_Duration ranked the highest impact for prediction of all category 
classes, while the Src_Port had the second highest impact on the prediction 
although not much impact on predicting the DoS category. 

Figure 8.13 that represents the feature importance for CatBoost indi-
cates that Src_Port had the highest impact on the prediction of the category 
type classes classification for all types, whereas the Flow_Duration had the 
next highest impact and importance with a higher impact on detecting DoS 
in comparison, while Src_Port predicted all other categories better. 

In general, feature importance interpretations in all three experiments 
show that the two highest influential feature variables for the prediction 
power in both XGBoost and CatBoost are Src_Port and Flow_Duration. 
The reason for this is that the source port identifies the process that sent 
the data to the network, so it could indicate if the packets came from 
a malicious source or not since it shows the origin and destination of 
a given flow in the network, while the flow duration feature shows the 
total duration of a flow in seconds indicating whether the flow pattern is 
suspicious or not.
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Fig. 8.13 Experiment(3): Highest ten ranked features in CatBoost 

Table 8.10 Time taken 
for each classification 
model in seconds 

Time taken for each model/s 
XGBoost CatBoost 

Experiment (1) 2.50 24.93 
Experiment (2) 2.25 23.31 
Experiment (3) 7.16 40.11 

8.6.4 Cost Analysis 

For the detection and classification of IoT intrusion attacks from an IoT 
network, it requires many crucial steps along with specific resources for its 
process. All 625783 samples from the IoT home environment were needed 
for the experiments for reliable prediction. Thus, it was very time- and 
power-consuming due to the power and time needed for the heavy data 
preprocessing, training, and testing of data in classification prediction and 
evaluation in the procedure along with feature importance. In addition 
to this, the experiment was repeated three times as mentioned. Thus, the 
power and time needed were tripled. Based on the environmental settings, 
Table 8.10 shows the time taken for each classifier model separately without 
the rest of the experiment time taken into consideration.
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8.6.5 Discussion 

In summary, the classification of the category label was tested on the 
IoTID2020 dataset with the classifiers XGBoost and CatBoost and com-
pared with the other basic classifiers. The effect of the addition of over-
sampling and feature selection using variance threshold was experimented 
in two experiments concluding that the XGBoost and CatBoost classifiers 
have only made a small improvement in presence of the oversampling 
and feature selection, yet the results stayed approximately the same in 
all experiments stating that these two algorithms can get high accurate 
results without heavy data preprocessing. Also, XGBoost has automatic 
feature selection; it has internal features that address imbalance distri-
bution. Yet, the oversampling and feature selection are needed for the 
simple classifiers as the oversampling especially helps improve the recall. 
Furthermore, although all features are important to detect and prevent 
IoT intrusions, it is essential knowing which features have the highest 
influential impact on predicting the category types to get accurate results 
fast, and in the experiments, it was shown how the two features Src_Port 
and Flow_Duration play a fundamental role in prediction. As an overall, the 
XGBoost performed best in all conditions in experiments validating how 
powerful and reliable the algorithm is in predicting the category labels of 
the intrusion attacks. 

The experiments were limited to the classification of the category labels, 
which could extend to the subcategory labels for the IoTID2020 dataset. 
Also, the SVMSMOTE oversampling was only considered and was not 
compared with other oversampling methods with different ratios. It also 
did not consider automatic clustering and data reduction although it 
could provide more insight toward the consumption behavior on different 
regions of the data distribution and undersample the data. Additionally, dif-
ferent feature selection techniques and techniques for predicting the most 
important feature variables were not taken into account. Moreover, it is 
noted the specific distribution of the activities for the IoTID20 dataset, and 
this should be tested on different datasets having a different distribution of 
activities for validation. Another limitation to the experiments is the lack 
of prior experience and repetition of the experiment as the experiments 
should be run repeatedly on an average of 30 times to get the mean and 
standard deviation for reliable results.
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8.7 CONCLUSIONS AND FUTURE WORKS 

This chapter proposes an approach for intrusion detection for the recent 
IoTID2020 dataset. The proposed approach includes: 

• Variance threshold feature selection of 0.8 threshold applied on data 
• SVM-SMOTE oversampling technique applied on feature selected 
data. 

• Generate a multiclass classification model of the feature selected and 
oversampled data by the XGBoost classification algorithm. 

• Generate a multiclass classification model of the feature selected and 
oversampled data by the CatBoost classification algorithm. 

• Evaluating the models using the testing data in terms of accuracy, 
precision, recall, f1-score, and G-mean. 

• Compare the evaluated models with other basic classifiers (logistic 
regression, knn, decision tree, and random forest). 

• Select the most important features that influence prediction power. 

The aim of the proposed approach was to develop a recent multiclass 
classification to classify the category type labels of IoT intrusion attacks 
with the application of the feature selection method variance threshold to 
adopt valid predictions with solving imbalanced distribution with SVM-
SMOTE oversampling based on XGBoost and CatBoost algorithms to 
view their performance against basic classifiers in addition to specifying 
the influencing feature variables that play a big role in the prediction 
power which are Src_Port and Flow_Duration. Results show that XGBoost 
outperformed CatBoost along with all other algorithms on the selected 
IoTID2020 dataset for producing high-quality results for IoT intrusion 
detection and classification. 

For future work and the engagement in the resource process leading 
to recommended actions for future improvement and research, multiple 
aspects can be considered such as data preprocessing in terms of auto-
matic clustering and data reduction, along with different oversampling 
techniques (with different parameters) and feature selection methods. The 
subcategory label from the dataset can be used to detect and classify the 
intrusion attacks subcategory. In addition, the proposed approach can be 
applied and tested on different IoT intrusion attack datasets.
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CHAPTER 9 

Malware Mitigation in Cloud Computing 
Architecture 

Sai Kumar Medaram and Leandros Maglaras 

9.1 INTRODUCTION 

Cloud computing is one of the decade’s most trending discussions in 
information technology (IT). A preponderant of IT either has integrated 
or has plans to adopt products and services around the cloud computing 
paradigm. Cloud computing is defined as a model for providing on-
demand, convenient and ubiquitous network access to a shared pool of 
computing resources that can be configured (such as storage, networks, 
servers, services and applications) and may be provisioned rapidly and 
released with little interaction with the service provider or little manage-
ment effort. “Cloud” itself is a shared resource which is widely influential 
since it is not merely shared among a large volume of users but offers 
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dynamic access which is dependent on the demands (Ou, 2015). The cloud 
is not an array of software, hardware or services. It is an integration and 
combination of vast provisions in information technologies. In the cloud 
environment, users do not need to possess the infrastructure enabling 
various computing services. But muchmore, the services become accessible 
to a computer from any location in the world. The features integrated 
into the environment include those offering support multi-tenancy and 
high scalability and enhanced flexibility compared to older methodologies 
for computing. It can be used to allocate, reallocate or deploy resources 
dynamically while being able to monitor their performance continuously. 
Cloud computing has four deployment models (public, private, hybrid 
and community), and three service models (infrastructure as a service, 
IaaS; software as a service, SaaS; and platform as a service, PaaS), which 
provides a description of the relationship that exists between cloud service 
producers and cloud service consumers. Thus, a user can access one or 
multiple cloud deployment models. However, the increased adoption of 
cloud services and products has met a growth of malicious activities, codes 
and programs targeted at the infrastructure. Even though the potentials of 
cloud computing are yet to be fully tapped, public consent already reveals 
security as its most critical flaw at the moment. Many of these activities 
and attacks are generically described as security threats that dissuade 
users from exploring these benefits. Nowadays, the number and severity 
of cyber-related attacks are on a drastic increase. Commonly reported 
security threats in cloud computing (CC) infrastructure include data loss 
and breaches, malicious insiders, account or service hijacking, identity 
theft, phishing attacks, man-in-the-middle attacks, denial of service (DOS), 
distributed denial of service (DDOS) attacks, cookie poisoning attacks, 
wrapping attacks, etc. [1]. In general, several variants of malware are the 
reason for these attacks. Malware is any type of software which put harmful 
and malicious effects on the OS (operating system), software or other 
components. It is designed with the intention to cause harm or damage 
to its target system. Trojan horses, worms, backdoors, viruses, spyware, 
rootkits, ransomware and botnet are typical examples of malware [2]. 
Each variant and family of the malicious code is designed for peculiar 
purposes. While some variants of malware steal sensitive data, many others 
initiate DDoS attacks and give room for remote code execution [3]. Highly 
sophisticated attacks employ more than one type and family of malware. 
The amount of malware samples has increased rapidly over the years.
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According to scientific and business reports, about one million variants 
of malicious software are generated on a daily basis [2]. The majority 
of these surfacing variants of malware are evolving/modified versions of 
malware previously in existence. The number of malware-related attacks 
has increased tangibly due to the addition of new devices, e.g. IoT devices 
to the 

computer networks daily, the volume of data generated daily on social 
as well as the number of applications built in a compressed period of 
time. The complexity of malware attacks, strategies for spreading as well 
as economic damage to economies across the globe have recently hit a 
peak. Research has it that these attacks cause damage in trillion dollars to 
the world economies [2]. Malware detection is, therefore, the procedure 
for specifying whether a particular program or code is benign or malware. 
The massive and continuously growing ecosystem of malicious tools 
and software constitutes a daunting challenge for IT administrators and 
network operators. Various methods exist for the detection of malware and 
may be broadly categorised as traditional and new approaches. Traditional 
methods include heuristic-, behaviour-, signature- and model checking-
based, while the new methods include mobile device-based and deep-
learning detection [4–6]. Some of these existing techniques are precise with 
detecting specific kinds of malware while being unable to identify other 
types, or even new variants of the same type. For example, the signature-
based method works optimally with known and various versions of the 
same malware, while it fails in detecting unknown malware that possesses 
a totally different signature. Heuristic-, behaviour- and model checking-
based methods of detection can help in detecting a reasonable part of the 
zero-day malware. Unfortunately, they are unable to detect new malware 
that employs advanced packing techniques [2]. 

It was posited over a decade ago that we can expect to experience 
several security exploitations with cloud service providers as well as users, 
which will shift research focus to fixing these loopholes. Hence, we are 
experiencing a drastic evolution in the CC discipline with underlying efforts 
to address the security and privacy issues raised by this paradigm. Therefore, 
research towards detecting these malware as well as safeguarding the cloud 
architecture against malware attacks are increasing. This necessitates this 
research which seeks to analyse malware mitigation strategies in cloud 
computing architecture. 

The contributions of this chapter are: 

• systematically analyse the security and malware threats in cloud com-
puting architecture.
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• examine malware detection methods in cloud computing infrastruc-
tures. 

• examine the techniques for safeguarding against malware challenges 
in cloud computing infrastructure. 

• make recommendations on the applicability of these techniques. 

This research work will be beneficial for both corporate/institutional 
and individual parties who provide or utilise cloud services, as well as those 
considering adopting cloud computing provisions. It will also help service 
providers, engineers and professionals to be abreast with malware chal-
lenges in cloud computing as well as the techniques for safeguarding this 
architecture against malware challenges. Cloud security service providers 
would find immense treasure in this research. The recommendations that 
will follow the findings will help facilitate the activities of these security 
providers, security analysts and threat intelligence professionals. 

This chapter comprises five sections. Section 9.1 (introduction) contains 
an overview of the study, as well as its aim and objectives, the expected 
impacts of the project and a brief of the whole project’s structure. Sec-
tion 9.2 contains the examination of the relevant literature, especially on 
security threats in cloud computing infrastructure. Section 9.3 contains the 
malware detection methods in cloud computing infrastructure. Section 9.4 
contains the techniques for safeguarding against the malware challenges 
in cloud computing. Section 9.5 contains discussion and analysis, while 
Sect. 9.6 comprise the conclusion and recommendations. 

9.2 CLOUD COMPUTING STRUCTURE AND 
DEPLOYMENT 

“Cloud” is a shared resource which is widely influential since it is notmerely 
shared among a large volume of users but offers dynamic access which is 
dependent on the demands (Ou, 2015). The term “Cloud” stems from 
the fact that there is an abstract boundary, dynamic change of scale and 
ambiguous location, which mimics an actual natural cloud (Ou, 2015), 
even though there is no such existence in the actual world. The cloud 
is not an array of software, hardware or services. It is an integration and 
combination of vast provisions in information technologies. Furthermore, 
because of the continuous introduction of new technologies to the cloud, 
the cloud size keeps increasing. Apart from this, the US Department of 
Commerce describes “Cloud computing as a model for providing on-
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demand, convenient and ubiquitous network access to a shared pool of 
computing resources that can be configured (such as storage, networks, 
servers, services and applications) may be provisioned rapidly and released 
with little interaction with the service provider or little management effort. 
Cloud Computing is simply the combination of a platform technology 
that offers storage and hosting and service. It is comprised of five major 
features, four deployment models and three service models”. Users in 
this environment do not need to possess their peculiar infrastructure 
to carry out various computing services. In fact, any user can have 
access to these from any computer from any location in the world. This 
integrates characteristics facilitating high multitenancy and scalability and 
providing increased flexibility when compared to conventional comput-
ing methodologies. It can be used to allocate or reallocate and deploy 
resources dynamically with the provision for continuous monitoring of 
their performance. Although the definitions of cloud computing (CC) have 
a lot of variations, certain fundamental principles underline this trending 
computing paradigm. CC has provisions for technological capabilities – for 
off-premises maintenance – which are to be delivered on-demand through 
the Internet [7]. Users of resources in the cloud do not own the resources 
but only pay for the resources on a pro-rata basis since the party public 
cloud services and resources are owned and managed by a third party, 
therefore virtualisation of a principal concept. Also, the cloud services and 
architecture comprise certain functionalities which are key in defining the 
features of cloud architecture. According to an article by NIST’s Cloud 
Computing Standards Roadmap [8], which states typical features of a cloud 
infrastructure to include: 

(i) self-service-on-demand: an individualistic and automatic offering of 
computing capabilities (server time and network storage) while elim-
inating the intervention of human agency. 

(ii) Broad network access, cloud offering capabilities and features available 
across the network by the use of tools which facilitate use by diverse 
clients (e.g. desktops, tabs, mobile devices). 

(iii) Resource pooling. Cloud computing resources are open to the service 
of multiple users on a need basis. These various virtual and physical 
resources (storage, processing, memory, and network bandwidth) are 
assigned actively according to the demands of the consumer.
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(iv) Location independence: The location of the service is virtually out of 
the authority of the customer. The consumer may only have an idea of 
possible locations of the infrastructure. 

(v) Rapid elasticity. The capabilities and services provided and released are 
automatic and elastic in some cases. Also, based on the demand for 
resources, the infrastructure should be able to scale rapidly and be 
appropriated dynamically. 

(vi) Measured service. The cloud service ensured optimised resource utili-
sation through leverage of measuring capability of service type at some 
level. 

Generally, CC combines traditional networking technologies and com-
puting methods, e.g. parallel computing, distributed computing, network 
storage technologies, utility computing, virtualisation, high available, load 
balance, etc. [9]. For example, distributed computing is aimed at breaking 
down large computations into little segments and allocating multiple 
computers to do the calculation, collection and assembling of all results 
(Ou, 2015). Meanwhile, parallel computing brings together a large volume 
of computational resources in order to process a particular task, which 
constitutes an effective solution to parallel problems [10]. Moreover, 
technologies for network-attached storage (NAS) link storage devices with 
a set of computers through the standard network topology. This network-
attached storage meets the requirement for rapidly increasing storage 
volumes and offering adequate space for storage for the connected hosts. 
Meanwhile, storage area network (SAN) is another technology for network 
storage, which uses a Fibre Channel to link a group of computers without 
standard topology, which is often used in an environment with high-
volume storage. However, the technologies mentioned above are just part 
of cloud computing, which indirectly indicates the massive scale of CC. 
Until now, several prominent information technology firms have used 
and deployed CC development because of its potential for revolutionary 
technology and commercial value. 

9.2.1 Historical Perspective 

The concept “Cloud” can be traced to the 1950s; at a time, the mainframe 
computer was gaining acceptance in the area of computation, deemed to 
be the future of computing, and was becoming attractive in corporations 
as well as academia. Nevertheless, as a result of the lack of capacities for
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internal processing as well as access by client computers, a proposal was put 
forward to support the idea that many users be allowed physical sharing and 
access to the computer as well as CPU time from more than one (many) 
terminals. It was popularly regarded across the industry as time-sharing 
[11]. Therefore, the “Cloud” rudiment was built. Sun Microsystems, 
in 1983, brought in the concept of “the network is the Computer”, 
which transcends the conventional boundary of the computer. Amazon, in 
2006, released its Elastic Computer Cloud service, which enables resizable 
computing capacity, which developers were excited about because the web-
scale cloud computing was optimised. Apart from this, the computing 
resources can be totally controlled with a high capacity for scalability 
with an adjustment of computing demands. On August 9, 2006, Google 
CEO, Eric Schmidt, brought in the idea of “cloud computing”, which was 
premised on “Google 101”, a project by Christophe Bisciglia. In 2007, 
IBM and Google began to promote CC in universities across the United 
States, such as Massachusetts Institute of Technology; Carnegie Mellon 
University; Maryland University; University of California, Berkeley; and 
Stanford University. The project was targeted at lessening distributed 
computing’s cost in academic investigations and also offered support for 
software, hardware and technique. In 2008, Google, in collaboration with 
National Chiao Tung University and National Taiwan University, launched 
“The Cloud Computing Project” in Taiwan for a massive campaign of this 
technology on campus. In 2008, IBM launched its’ first-ever centre for 
cloud computing in Wuxi, China. On July 29, 2008, Intel, HP and Yahoo 
disclosed an associated research program in Singapore, Germany and the 
United States, which was targeted at establishing six data centres, with each 
data centre designed with 1400 to 4000 processors. On the same 2008, 
on August 3, Dell was enforcing the trademark right, which was targeted 
at reinvigorating the fact that the control power may remodel the technical 
architecture. Still, in 2008, Microsoft introduced Microsoft Azure which 
is an infrastructure and platform for cloud computing, providing services 
and applications establishment, managing and implementation through the 
Microsoft data centre [12]. In 2010, Rackspace, NASA, Dell, Intel and 
AMD announced an open-source project, described as “OpenStack”, with 
the control for a large pool of computer, networking and storage resources 
across a data centre, which is used in the building of public and private 
clouds. Not long after, Oracle and IBM declared the “Oracle Cloud” and 
“IBM Smart Cloud” in 2012 and 2011, respectively. Judging from the
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above evolution and history, it is clear that cloud technology developed 
rapidly after 2000, and its embrace and application are increasing till today. 

9.2.2 Advantages of Cloud Computing 

Cloud computing is a technology experiencing rapid growth and is deliv-
ering attractive and amazing measurable services offering enterprises the 
opportunity to monetise their business and grow their productivity and 
profit level while simultaneously saving costs. It is keeping up to pace 
with the delivery of virtual, secure and economically viable solutions 
[1]. According to [13], cloud computing present a plethora of benefits 
and advantages; some of which include the following: scalability, the 
cloud allows enterprises to bring in computing resources whenever they 
are needed; masked complexity, without the users’ awareness [14] and  
participation, maintenance and upgrades of the service or product can 
be carried out; ecosystem connectivity, the cloud promotes external col-
laboration between partners and consumers which brings about increased 
innovation and improvements in productivity; cost flexibility, with cloud 
computing, the requirement to pay license fees for software, or to finance 
the installation of software or building of hardware, is eliminated; and 
adaptability, cloud computing affords enterprises the opportunity to adjust 
and accommodate several user groups that comprise several assortments of 
devices. 

In conventional computing, there is a requirement to duplicate the 
lessons learnt in one environment in the other. However, in CC, the 
improvement of some parts covers all users [13]. In CC, there is a provision 
to automatically scale up and down resources, whereas, in traditional 
computing, there is a need for the intervention of humans in order to 
add software and hardware. CC environments are commonly virtualised; 
meanwhile, traditional environments are primarily physical [13]. 

CC is changing the platform for service delivery and consumption, even 
the approach with which users and businesses interact with IT resources. 
The interest in the topic of cloud computing is growing across the industry. 
Transaction on Services Computing of IEEE, in 2008, adopted that 
CC be introduced into the taxonomy as an area in computing services 
[13]. The European Commission 2012 outlined a computing strategy to 
facilitate the drastic embrace of CC in every sector of the economy. Because 
several pieces of research in CC were funded, e.g. ARTIST, CLOUDMIG,
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REMICS, etc. [13], many companies since then have beenmigrating to the 
CC model, while others are evaluating their transition. In collaboration 
with Economist Intelligence Unit 2011, IBM carried out a survey which 
engaged 572 business as well as technology executives from all over the 
world to identify how establishments utilise CC today and what their plans 
for the future are [13]. Nearly 75% of establishments had adopted, piloted 
or substantially implemented CC in their operations (while the remaining 
proposed their adoption within 3 years). This survey also demonstrated 
that the adoption of cloud is not exclusive to big companies, as 67% of 
organisations with revenues lower than US1$ billion and 76% of companies 
with revenues between 1 and 20 billion US dollars have at some point 
adopted cloud computing. As it relates to quality attributes, over 31% of 
executives replied that cost flexibility was a strong justification for 

their adoption of cloud computing. Following cost flexibility are secu-
rity, scalability, masked complexity and adaptability [13]. According to 
Pathak et al., in [15], the primary goal of CC is to enable inexpensive and 
scalable on-demand computing infrastructure that presents high service 
levels. 

9.2.3 Classification of Cloud Computing Architecture 

CC may be classified on the basis of deployment models and services 
offered. Based on the service models, they can be categorised into three, 
namely, (i) software as a service (SaaS), platform as a service (PaaS) and 
infrastructure as a service (IaaS) [16]. IaaS is the lowest layer with the 
offering of service for basic infrastructural support. Meanwhile, PaaS is the 
middle layer, with the provision of services that are platform-oriented, apart 
from the provision of the environment for user applications’ hosting. SaaS 
is the top layer with the provision of a complete application that is made 
available as a service on demand. The following services are enumerated 
[8]. 

(a) Software as a Service (SaaS) SaaS are apps that operate within the 
infrastructure that is provided to be used by the service user. These 
apps are provided from the IT resources of different clients through a 
thick client or web browser. Software as a Service ensures that complete 
apps are hosted on the web and that consumers utilise them. Payment is 
done on a pay-per-use approach. This eradicates the demand to install 
and execute the app on the local computer of the customer, thereby
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taking off the burden for software maintenance from the customer. In 
software as a service, there is the convergence coherence mechanism 
and the divided cloud by which all data items have either the “Write 
Lock” or “Read Lock” [17]. Two kinds of servers are adopted by SaaS: 
the domain consistence server (DCS) and the main consistence server 
(MCS). Cache coherence is actualised by the agreement between DCS 
and MCS [18]. In this infrastructure, if the main consistence server is 
compromised or damaged, there is a consequential loss of control over 
the cloud environment. Therefore, the security of the MCS is a vital 
requirement. 

(b) Platform as a Service (PaaS) This enables the user of the service 
to deploy apps on the cloud infrastructure, apps built using libraries, 
tools, languages and services of the service provider. The provision 
also comprises an environment for software execution. For instance, 
there can be a Platform as a Service app server which affords the lone 
developers to deploy applications based on the web without the need 
to buy actual servers and carry out set-up. This model targets the 
protection of data, which is very paramount, especially in storage as 
a service. In the event of congestion, there can be the challenge of 
cloud environment outage. Therefore, the requirement of security to 
prevent outages is vital in ensuring load-balanced service. For security 
reasons, the data is required to be encrypted whenever it is hosted 
on a platform. There has been the proposition of CC architectures 
that employ multiple techniques for cryptography in order to provide 
cryptographic cloud storage. 

(c) Infrastructure as a Service (IaaS) This is concerned with hard-
ware resources’ sharing for services execution, typically by the use 
of virtualisation technology. Potentially, by the use of IaaS, several 
consumers utilise available resources. These resources may be scaled 
up easily depending on the user’s demand, and payments are ideally 
on a pay-per-use basis. These all require management since they are 
virtual machines. Therefore, there is a requirement for a governance 
framework to regulate the creation as well as the usage of virtual 
machines. This helps to also prevent unsanctioned access to sensitive 
information of users [19]. This is a provision that affords access to the 
platform to give room for the consumer to access services of networks, 
storage, processing, etc., to enable the consumer to access applications 
and operating systems that necessitate service provision through the 
provision of the infrastructure [20].
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In the enumerated services model, cloud infrastructure’s management 
transcends the control of the service user. For example, in SaaS (application 
configuration settings, network, operating systems, storage, servers, etc.), 
in PaaS (network, storage, servers, operating systems, with the exemption 
of deployed apps) many components are beyond the management and 
control of the user, while in IaaS, operating systems, applications and 
storage do not have adequate control over the network’s components, 
which lies within the consumer’s control. 

According to [1], the primary deployment models of the cloud com-
puting architecture can be described as represented below: 

(a) Private Cloud This infrastructure is found on a private network and 
is regularly managed by the cloud provider or internal enterprise data 
centre of the organisation and may reside either off-premises or on-
premises. The private cloud is more secure since only the organisation 
that owns the resources has access to the operation and control of 
environments for service delivery. It is targeted at addressing the 
concerns or bothers in data security and provides higher control, but 
does not offer advantages such as reducing operational and capital costs. 

(b) Public Cloud This is designed for a range of groups or the public, 
and it is owned and controlled by a cloud provider. The resources 
hosted on this infrastructure are dynamically provided on a pay-per-use 
and on-demand approach. It is, however, more vulnerable to malicious 
attacks and constitutes the reason for its not being so secure. It offers 
several advantages to its users, such as location independence, flexibility, 
scalability and no initial capital investment [1]. 

(c) Hybrid Cloud This particular infrastructure combines different clouds 
that are linked by standardised technology to share applications and 
data irrespective of location and ownership. It provides greater control 
and more flexibility over the application by combining the benefits of 
each other and as well addressing their limitations [21]. 

(d) Community Cloud This cloud infrastructure is made for use by several 
establishments that have common interests in a single community. 
Every participant in the community cloud has access, freely, to appli-
cations and data. Several other models of cloud deployment are being 
built due to the varied needs of different users. For instance, the virtual 
private cloud is a means of using the public cloud in a private way 
and using a virtual private network (VPN) to inter-connecting the 
resources.
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9.2.4 Areas of Application of Cloud Computing 

The industrial systems of today are typified by a strong reliance on 
comprehensive IT infrastructure at the site of the customer [22]. During 
the entire system’s lifecycle, the costs of IT infrastructure, hardware and 
cost of maintenance are quite high. CC offers a new means of providing 
services and delivering industrial software to customers on demand. There 
are main opportunities for companies as it relates to the provision of cloud 
services, which turns out to heighten the competitiveness by the offering 
of cutting-edge cloud solutions which is to be utilised in controlling and 
interacting with complex industrial systems [13]. A few examples of CC in 
the application space include: 

• Web-based email or online email: any email client accessed through 
the Internet and implemented as a web app. Examples include 
Google, Yahoo and Microsoft mails). 

• Online storage services: These provide services for storing e-data using 
third-party services that can be accessed through the Internet (e.g. 
Microsoft’s SkyDrive, ZumoDrive and Humyo) 

• Online collaboration tools: this refers to software, social andWeb tools 
that are used to promote website customer communication in order to 
attract more sales and real-time satisfaction across the Internet. These 
include Stixy, Google Wave, Mikogo and Spicebird 

• Online office suite: this refers to a set of programs that are imple-
mented as web-based apps used to automate conventional office tasks, 
such as Microsoft Office Live, ThinkFree, Ajax13 and Google Drive). 

9.2.5 Security Expectations in Cloud Computing 

Also, according to [23], the security expectations can be discussed as 
described below: 

(a) Data Security Fittingly verifying data from the outside world is very 
vital to assure that data is ensured and has a low propensity for 
damage. With the uptrend in cloud computing, several vulnerabilities 
may surface when the information is shared in an unprecise manner 
within the fluctuated frameworks in CC [23]. Guaranteeing the privacy 
and security of data in CC implies the ability to assure the standard 
key security facets, namely, accessibility, integrity and confidentiality. 
The most vital prerequisites for the security of data are data integrity
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which alludes to the guaranteeing that the data of clients are not 
changed outside their consent or approval. In order to guarantee data 
integrity, from the perspectives of both the supporter and supplier, 
secure encryption algorithms are most often adopted. Nevertheless, 
mere encryption does not absolutely guarantee noxious alteration of 
data [24]. As a result of the circulated as well as dynamic shared nature 
of the cloud, privacy is another fundamental requirement for cloud 
clients. This alludes to exactness and data security which gives room 
for ensuring delicate and private information is kept so. This means 
that the framework of the cloud framework is expected to be made 
available to approved, validated clients anywhere, at any time and across 
any platform. There are some threats in cybersecurity that cloud service 
availability may be faced with and are majorly network-based attacks, 
e.g. DDoS attacks [25]. Meanwhile, cloud suppliers should maintain a 
befitting activity plan in order to handle these threats and dangers. 

(b) Cloud Network Infrastructure Security A provider of cloud service 
must accept trustful network traffic and have provisions for blocking 
malicious ones [23]. The security infrastructure of the cloud network 
should be able to identify and prevent intrusions, deny and protect 
against DoS attacks, to enable notification and logging. Denial of 
service defences is anchored on network security, which must efficiently 
filter queries and recognise attackers in order to prevent harmful attacks 
[23]. The intrusion prevention and detection systems IPS and IDS, 
respectively, block or detect malware attacks, spam signatures and virus 
signatures, but some also report positive results. Moreover, logging and 
notification create the avenue for cloud users to have certain hints into 
the cybersecurity health of the network. 

(c) Cloud Applications Security Companies are expected to protect 
their cloud-based apps against a vast array of cybersecurity attacks 
and threats. Additionally, the security of cloud apps resembles the 
security of web applications when they are hosted in server centres. 
Several businesses put out a single sign-on (SSO) which is to allow 
clients to have access to different individual cloud administrations 
[26]. In an overview, it is hard to accurately update SSO arrange-
ments since it is anchored on a safe programming layer, which is a 
requirement for different confirmation strategies. The International 
Standards Organization gave a definition of information security as 
concerns or bothers, which may also be guided as it relates to the CC 
principal security requirements for a secure and effective technology
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solution. According to [1], these primary requirements include the 
following: (i) confidentiality, this implies keeping the data of the users 
and only granting access to privileged entities, (ii) integrity implies the 
assuring of nomodification or alteration in data while being transported 
or stored, and access is granted to only the authorised modification, 
change, delete or copy data; (iii) availability implies the assurance that 
the services needed or the data in request by the user are steadily 
accessible anywhere and at any time [27]; (iv) authentication implies the 
verification of the user’s identity before access is granted to data, which 
may be carried out by utilising certain protections to their profiles; and 
v) authorisation implies the assurance that the user that made a request 
to the particular data has the right of access to it [28]. 

9.2.6 Security Threats in Cloud Computing 

Despite the massive adoption of CC so far, there still exist some aspects 
of these cloud computing that make several organisations not confident 
and excited about migrating to the cloud. As some of the characteristics 
of CC enable attacks and malware that is novel in nature. Also, it has 
been stated that malware developers has made the cloud their major 
target. Furthermore, certain architectural loopholes made CC vulnerable 
to several privacy and security threats. Despite the numerous advantages 
CC has introduced by its service-oriented-multi-tenancy approach, it has 
also opened up a worm of effect as well as issues to security and privacy 
of user information, as well as in seeking to improve the efficiency of asset 
protection [29]. For instance, the virtualisation of the software layer could 
lead to a vulnerability of shared physical resources within the regulation of 
the server, which also includes virtual machines (VMs), data and memory. 
In CC, the service user does not manage or control the underlying cloud 
infrastructure. The service provider would normally have the authority of 
the infrastructure. Therefore, several security risks exist in the usage of the 
cloud infrastructure, some at the provider and others at the consumer [29]. 

Generally, the threats that CC platforms encounter are very similar to 
those of other computing platforms. Suryateja (2020) recognised several 
major threats that cloud computing environments are exposed to, such as 
unethical and abused usage of cloud resources, shared technology vulnera-
bilities, application programming interface (API) vulnerability, malicious 
insiders, accounts, data leakage/loss service, unknown risk profile and
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traffic hijacking. Although several vulnerabilities and risks exist, the threats 
listed are popular in the CC environment; the environment also has risk 
factors. Tang in [16] reported these risks: inherent platform, virtualisation, 
storage data sharing, human resources management, security, operational 
management, misuse, network security, interoperability, multi-directional 
audit and multiparty audit. Security risks and threats are major sources of 
concern in cloud computing for many organisations, largely because of 
the physical infrastructure location dispersal as well as the data’s residency, 
which is geographically spread. The laws for data protection are general 
dependent on country; therefore, data location is an issue: where data 
residents in a country without adequate laws to protect sensitive data, 
therefore making user data vulnerable [30]. 

9.2.6.1 Malware Threats 
In the last couple of years, society is becoming increasingly reliant on 
technology. Computers and various devices are used for receiving emails, 
news and online shipping. These systems’ availability and integrity are to be 
protected deliberately against threats [31]. Terrorists, rival corporations, 
amateur hackers and even foreign governments launch complex attacks 
against these systems. Crucial to these attacks is the use of malicious codes 
ormalware. The word “malware” is gotten from twowords, “malicious and 
software”. This makes malware software which put harmful and malicious 
effects on the OS (operating system), software or other components. 
According to [31], various classes of malware exist, which include ordinary 
malware attacks and network-based malware attacks. Malware such as 
spyware is used to cause damage to the user’s machine, in network 
malware, while in ordinary malware attacks, malware such as inf system.inf 
or like autorun is used to constitute harm to the user. Various kinds of 
malware exist in the cloud, namely, Trojan horses, worms, backdoors, 
viruses, spyware, rootkits, ransomware and botnet, plus several other kinds 
of software with undesirable behaviour. These malwares used various 
approaches to afflict the user machine. They cause damages that may range 
from modification of files to a denial of service or a complete shutdown 
of the system or service [32]. Although there are several efforts towards 
the prevention and detection of this malware in cloud infrastructure, 
the results have not been absolutely effective, even as these attacks are 
metamorphosing and modifying their codes, allowing them to constitute 
another malware that the system will be naïve towards. This is beckoning
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on increased research into how this malware detection and prevention or 
resolution in cloud computing may be enhanced. 

9.2.7 Security Attacks in CC Architecture (Including Mitigation 
Strategies) 

In this section, some malicious attacks on CC infrastructure, with sug-
gested mitigation strategies are presented; 

(a) Cross-Site Scripting (XSS) Attacks – The eavesdropper inserts mali-
cious code into the web page of the user in order to redirect him to the 
website of the attacker and thereby secure access to the sensitive data 
of the user. According to [1], there are two ways this is being carried 
out, which include either the use of stored XSS (which stores malicious 
code permanently into a resource that is managed by the website app) 
or reflected XSS (which does not permanently store the malicious 
code, but instantly reflect it back to the user) [33]. The technique 
of sanitisation or content filtering employs filter functionalities to 
eliminate malicious data from the data of the user. These filter abilities 
are activated for operation after the web application has read the user 
input. Nevertheless, following content filtering, it is hard for some 
applications to remove untrusted content scripts whenever there is the 
allowance for HTML markup in user input. By the employment of 
advanced content filtering, the web browser parser of the users can 
anticipate untrusted content. However, there have been the discussion 
of some other approaches that may be employed to analyse and expose 
vulnerabilities in web applications [1]. 

(b) Structured Query Language (SQL) Injection Attacks – In the  
standard SQL code, the malicious agent uses malicious code to secure 
unsanctioned access to the database in order to obtain the user’s 
sensitive data. Here, the web gives way for the SQL Server to access 
the hacker’s data by perceiving it to be the user’s data, which helps the 
attacker to have information about the functioning of the website and 
then be able to effect changes therein. Owing to the insufficiency of 
structural knowledge of queries generated, it has been hard to imple-
ment the various measures proposed for the filter or validation of user 
input. In the instances where the source code of applications is available, 
static analysis may be employed to validate the user input before 
integration into the query. Some measures, such as dynamic prevention
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by the integration of extra meta data, require less human interaction to 
enforce a limit on user input which also has the propensity to alter the 
semantics of the original code. However, in these techniques, there is a 
requirement for additional effort to separate the application code from 
the user input. Using an architecture based on proxy to dynamically 
recognise user’s input from the application-generated query has a high 
detection rate as well as poses no requirement of access to the source 
code or database of the web application. 

(c) Man-in-the-Middle Attacks (MITM) – MITM attacks is said to 
happen whenever an assaulter seek to intrude into a conversation that 
is ongoing with the goal of injecting false information that will help 
to gain access to sensitive shared information. Secure Socket Layer 
(SSL) offers security for applications based on the web. Secure Socket 
Layer employs TCP to build end-to-end services that are reliable 
and secured by the use of three fundamental protocols, namely, alert 
protocol, change cipher spec and handshake. It targets the provision 
of authentication, message integrity and confidentiality to the users, 
etc., by the use of digital signatures, certificates and cryptography. By 
a thorough configuration, SSL attacks, e.g. Wrapping attacks, MITM, 
XSS etc., may be eliminated. 

(d) Phishing Attacks – Here, the attacker takes advantage of cloud service 
and compromises a web link and causes the redirection of the user 
to a false link, and by hacking, the user’s account secures access to 
sensitive data. This attack can be eliminated by detecting spam pop-
ups or emails, which may be carried out by the use of anti-spam tools. 

(e) Denial of Service (DOS) Attacks – Here, the attacker seeks to 
deny authorised users of services by launching ICMP flooding, UDP 
flooding, SYN flooding attacks, etc. on the server. This attacker seeks to 
disable services or break the network provided by the server by contin-
uously sending data packets across to the desired server without data 
packets, changing nodes or decrypting encrypted data. The network 
bandwidth is occupied by the data packets, which also consume the 
server’s resources [34]. 

(f) Distributed Denial of Service Attacks – DDOS is a higher kind of 
denial of service attack as it relates to bombarding the target server 
with a vast bulk of packets from several networks which have been 
earlier manipulated so as to disable the target server’s services while 
also creating more traffic than what is found in DOS in a manner that 
will render it difficult for the targeted server to handle the requests.
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An intrusion detection system is a program adopted to gather network 
traffic and analyse them and then generate alarms or alerts regarding 
identified intrusions (any malicious activities or violations of security 
policies) for the system to carry out every necessary action. This 
intrusion prevention software has the capability to detect an intrusion 
detection system and can take possible steps towards preventing likely 
counterattacks. 

(g) Sniffer Attacks – The malicious agent uses programs to launch these 
attacks to enable a host use an Ethernet network to capture flowing 
packets by the insertion of the network interface card (NIC) of the host 
into the malicious code. If the transferred information in these packets 
is not encrypted, these programs can easily compromise it. There are 
two techniques that are reportedly used to identify sniffer programs. 
First, address resolution protocol (ARP) identify sniffer attacks by 
relaying trap address resolution protocol packets which include false 
hardware addresses to a host that is suspicious. Then, on the ground 
of the response of address resolution protocol reply packets, decision is 
carried out whether or not a suspicious host is using a sniffer. Second, 
round-trip time (RTT) takes advantage of RTT evaluation of ICMP 
packet samples and thereafter makes a probabilistic decision by the use 
of a statistical model. 

(h) Google Hacking Attacks – This is otherwise regarded as Google 
dorking and is a method of hacking which uses Google search engine 
to identify loopholes in the security configuration. Taking advantage of 
search queries, these hackers can pinpoint vulnerabilities in security and 
can then gather information about their desired targets [35]. 

(i) Cookie Poisoning Attacks – Here, the cookie’s contents are manip-
ulated in order to secure access to an unauthorised web page or 
application [1]. The cookie comprises sensitive credentials regarding 
the data of the user, and the moment the hacker secures access to these 
contents, he also invariably secures access to the content therein and 
may not carry out illicit activities. 

(j) Malware – this being an acronym for malicious software, its threat and 
detection are the top two challenges in the CC environment [36]. The 
developers of malware are attempting/trying to interfere or impede 
with the integrity, confidentiality and/or the accessibility of data and 
the systems in which they are processed, transmitted and stored [37]. 
Also, statistics have shown, based on a study, that there was a notable 
increase in the total volume of malware between the period of 2011 and
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2019 [37]. Types of malware which include worms, Trojans, spyware, 
rootkits, bots and backdoor are usually shared by hackers in a way 
that makes their variants have little differences [36]. According to 
Rains [37], one way to aid the detection of malware attacks is by 
being knowledgeable about it and use of anti-malware, realising that 
one malware can have multi-malware characteristics. Also, focusing on 
cybersecurity fundamentals will aid the mitigation of malware threats, 
and blocking access to Internet regions without legitimate business 
purposes can reduce exposure to malware. 

(k) CAPTCHA Breaking Attacks – this is used to detect if the  user  
is a human or a malicious program [1]. CAPTCHAs are, therefore, 
standard strategies for security which is employed to identify malicious 
software such as botnets, worms, Trojan, etc. The attacker may employ 
an audio system to break the CAPTCHAs and may use software for 
speech-to-text conversion to read the CAPTCHAs and can also break 
video-based and break image-based schemes. Letter overlap may be 
employed in order to prevent vertical segmentation attacks. Connected 
letters will render it very difficult for OCR to separate the words. 
Using various random alphabets and various fonts makes it difficult to 
break down CAPTCHAs. Moreover, it will be harder to break down 
CAPTCHA if the string length can be made long. The perturbative 
background can be made to have colours, lines, dots, rectangles, 
circles, etc., which will be quite hard to break down [38]. Some other 
attacks on cloud computing include attacks on domain name server 
(DNS), wrapping attacks, reused IP address attacks, zombie attacks and 
hypervisor attacks [1]. 

9.3 MALWARE DETECTION METHODS IN CLOUD 
COMPUTING INFRASTRUCTURES 

9.3.1 Overview of Malware in Cloud 

The word “malware” is gotten from two words, “malicious and software”. 
Therefore, malware is software which put harmful and malicious effects 
on the OS (operating system), software or other components. Malware is 
malicious software that is designed with the intention to cause harm or 
damage to its target system. These are creating huge challenges in today’s 
technology world. There are various kinds of malware: Trojan horses,
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worms, backdoors, viruses, spyware, rootkits, ransomware and botnet, plus 
several other kinds of software with undesirable behaviour. Considering 
the exponential growth of the Internet, malware has also grown to be one 
of the primary cyber threats encountered today. Any program or product 
that executes malicious actions, including information theft, spying, etc., 
is malware. A highlight of the various families of these malware is given 
below: 

Worm This is a program with features similar to the viruses but rather 
affects the network instead of the host machine. It is designed to infect 
another machine after reproducing itself [39]. They are spread across a 
computer network and depend on security failures for the penetration 
of their target machine. The majority of worms are designed to steal 
data, delete data and ultimately have them spread to other systems. Virus: 
The major characteristic of a virus is malware built by cybercriminals by 
infecting the target machine’s file [39]. This sort of program self-replicates 
on the host machine and then connects to documents that eventually turn 
out to be their carriers. The design of a virus is such that it would spread 
from one machine to another. 

Trojan horses This is a harmful code masquerade as legal software or 
useful code. Cybercriminals employ it to land access to the system of the 
user. It’s a highly distinct malware type that appears useful at first glance, 
but has an embedded malicious code concealed and runs alongside when 
the program is run on the system. The provisions of social engineering 
are employed to deceive users and cause them to execute Trojans in their 
systems. 

Rootkits These are a group of software tools built to provide an unsanc-
tioned user with administrator privileges access to a system. Once the 
software has been installed, it may execute files or change system settings 
remotely [39]. They are advanced malware since they deal directly at the 
kernel level, a dangerous process that may result in the crash of the entire 
machine. They create direct harm to the victim’s infrastructure. However, 
these programs cannot self-propagate but must be installed on a host 
system. Backdoors: These are the loopholes the cyber attacker uses the 
program to exploit, and these loopholes are created by the attacker to access 
to steal the victim’s information.
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Adware Unlike Trojan and many others, adware is not a direct harmful 
code but slows down the host machine’s functioning by consistently 
displaying ads that land users on harmful pages or sources. Adware is 
targeted at displaying advertisements and redirecting search requests to 
other websites being advertised. Adware can explore functions like cookies 
to collect information about the user, e.g. the websites visited. Taking 
advantage of the information, customised ads are then displayed. 

Ransomware This malicious code is relatively newer. It encrypts all the 
files or data of the user and then asks for ransom in order to decrypt the 
vital user’s data. It also shows a warning alert requesting that Bitcoin be 
decrypted and the files or data be recovered. 

Bots and botnets These are harmful codes designed to invade a computer 
and carry out instruction the moment it receives instruction from a 
remotely controlled server. Just like viruses and Trojans, bots can replicate 
itself. An array of bots described as botnets may be employed in launching 
DDoS (distributed denial of service) attacks to render the communication 
across a network temporarily inaccessible. 

Key logger This malware tool takes a record of all the activities carried 
out on a monitoring tool similar to a machine. It regularly bypasses the 
permission of the user to execute. A key logger is predominantly utilised 
in obtaining confidential data, security phrases, passwords and usernames. 

9.3.2 Overview of Anomaly Detection in Clouds 

For several years, anomaly detection has remained an active area of research. 
Several techniques for various application domains and scenarios have been 
developed. The authors in [40] demonstrated through a survey across a 
number of disciplines the prediction, detection as well as estimated anomaly 
detection accuracy. Meanwhile, a thorough survey of the deployment 
of different schemes for anomaly detection in the area of IP backbone 
networks is found in the work of Marnerides in [41]. The production of 
the EbAT system a while ago gave room to the online analysis of a couple 
of metrics obtained from components at the system-level (such as memory 
utilisation, CPU utilisation on rack servers, operating system’s read/write 
counts, etc.). The proposed system demonstrated potential in the aspect of
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monitoring scalability and detection accuracy; however, pragmatic cloud 
scenarios were not adequately emphasised in its evaluation [42]. The CP 
intrusion detection system proposed in [43] for detecting intrusions and 
attacks at different cloud layers was deficient for use in dynamic cloud 
environments because of the flexibility required. About a decade ago, Lee 
et al. [44] brought forward a multi-level approach, which offers rapid 
detection of anomalies found in the system logs of the operating system 
of each guest. One of the primary demerits of the approach is its lack of 
scalability since there is a requirement for higher resources under heavy 
system workload. Also, it is made to assort text-based log data, where 
the effects of the malware may not be manifested. In [45] the authors 
made a new prototype which supported an online spatiotemporal scheme 
of anomaly detection in a cloud setting. From there, the researchers had 
the ability to formulate and as well implement a wavelet-based multi-
scale system for anomaly detection. The system is anchored on measured 
cloud performance metrics such as memory or CPU utilisation, which is 
gathered by several components such as system, software and hardware 
within the institution-wide cloud setting under examination. The findings 
were promising as the proposed method attained a sensitivity of 93.3% 
in the detection of anomalous events, even as merely 6.1% of the entire 
events reported were false alarms. However, just before this time, the 
work of Pannu et al. in [46] brought in a framework of online adaptive 
anomaly detection that could identify failures by the analysis of runtime 
and execution metrics where the conventional two-class support vector 
machine (SVM) algorithmwas used. In an actual practical employing above 
362-node CC environment in a university setting, the findings revealed an 
efficient proposed system that had an overall sensitivity of 87% in anomaly 
detection. However, the primary challenge with this work was that the 
conceptualisation of the two-class algorithm of the support vector machine 
(SVM) suffered the problem of data imbalance [41], which impacted the 
training phase, and ultimately led to various mis-groupings of newly tested 
anomalies. 

The work of Watson et al. in [42] on the online anomaly detection 
approach applicable at the cloud infrastructure’s hypervisor level covered 
the area of early detection of an attack and confronted the algorithmic 
constraint usually acquired in a majority of the conventional two-class on 
n-class techniques based on machine learning (e.g. Bayesian classifiers, 
artificial neural networks, two-class SVMs) whenever they are applied to 
cloud environments. The work, which emulated “static” detection and
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even detection in VM “live” migration scenarios, was said to have stemmed 
from suggestions from cloud operators. By the exploration of features 
collected at the system and at a cloud node’s network levels, it was 
demonstrated that the scheme could attain a high accuracy of detection 
of over 90% in the detection of various kinds of DoS attacks and malware. 
It was thereafter reported that the extracted features aided in detecting 
anomalies throughout the testing at a minimal time cost. Watson et al. 
in [42] recommended that this work can be furthered by expanding the 
feature reset to incorporate statistics obtained from the usage of vCPU and 
a more thorough investigation of process handles, which may help greatly 
in detecting very stealthy malware. However, this is expected to instigate a 
computational trade-off, considering that a more thorough introspection 
will demand more system resources. 

9.3.3 Malware Detection in Cloud Infrastructures 

In CC, there are three modules, and malware detection (and prevention) 
systems operate on these module’s databases, virtual machines and net-
works for different attacks: 

1. Malware Injection: This attack targets mainly servers and is designed 
such that whenever data is sent from the server, it contains embedded 
malicious code automatically, which will negatively impact all the 
server’s clients. 

2. MITM: These modes of attacks are utilised primarily for stealing users’ 
data. 

3. DDoS: These attacks are executed to disrupt the entire network by 
using useless traffic to jam the network traffic. 

One of the most fundamental challenges with the development of secure 
cloud-oriented and resilient mechanisms is around the adequate detection 
and identification of malware. This is because, in the predominant of cases, 
malware is the initiation point for large-scale email spamming and phishing, 
DDoS attacks, primarily through botware deployment. 

Malware detection and prevention systems (MDPS) help in the detec-
tion of malware by the use of signatures or several other heuristics tech-
niques or other string-based or rule-based pattern machine. Antivirus are 
also typical examples of malware detectors. The majority of malware writers 
are accustomed to these methods used by antivirus, so they devise new 
means of evading these techniques by making modifications to the malware
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code, or they input junk data, which changes the file’s hash and then 
renders it undetectable. These agents use password-protected approaches 
or encryption tools to escape detection. Conventional approaches for the 
detection of attacks on cloud infrastructures or the virtual machines they 
host are insufficient in addressing cloud-related issues, in spite of the great 
efforts put into previous studies as regard the behaviour of some kinds of 
malicious programs on the Internet [42]. 

Techniques for malware detection basically utilise two inputs for detec-
tion: (i) malware signature, rules or behaviour from the database and (ii) 
the target program to be evaluated for malicious intent. For higher security 
in the cloud, MDPS also employ real-time malware analysis. This real-time 
technique for prevention is very vital in dealing with the daily growing array 
of malware since it shields the user from unknown attacks and malware that 
may compromise the host machine and affect the user. The following is a 
detailed description of various approaches employed in malware detection 
in cloud infrastructures today. 

9.3.3.1 General Malware Detection Approach 
In the most basic malware detection, two methods are employed: shallow 
analysis and deep analysis. In the shallow method, the process parameters 
on the victim machine are checked. The check takes place prior to and 
following the malware execution. This is to diagnose the events the 
malware initiated and their effect on the machine. The following are the 
compromise to the machine instigated by malware: (i) update or change in 
key or windows registry entries; (ii) unexpected/unanticipated raise in the 
number of running processes on the system; (iii) file deletion, creation or 
modification. In the shallow analysis, these parameters mentioned above 
are explored to develop a profile of the machine. Different snapshots 
were done before the analysis and after the analysis, and both categories 
were compared to detect if there were unexpected changes that may 
be attributed to malware. The shallow analysis considers the following 
parameters: memory usage, CPU speed and usage, number of users, 
process state, and number of processes. However, in deep analysis, the file’s 
hash is calculated, and the file is checked for malware patterns and strings, 
for accurate detection of malware.
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9.3.3.2 Signature-Based Detection 
This approach seeks to define a hash file set that can be employed in 
deciding that a particular pattern belongs to the malware. Because of 
this characteristic, the signature-based system may attain high detection 
speed since there’s less size, accuracy as well as the minimal rate of false-
positive results in the identification of intrusions in the system. The major 
challenge of this system is that if a minor modification is made to the file, 
it changes the entire signature, and the signature-based detection becomes 
inefficient. Thus, this technique may generate false-positive results or be 
unable to detect unknown attacks. Despite these drawbacks, signature-
based detection is being employed due to the ease of updating and 
maintaining signatures. The signatures comprise various elements used in 
identifying the traffic. The parts of a signature include the header (e.g. 
ports, destination address, source address) and its options (e.g. metadata, 
payload), which are explored in determining if the network tallies with a 
known signature or not. Malware signature-based detection is adopted in 
cloud platforms for detecting samples that already exist in the database. The 
techniquemay be employed at a cloud gateway to detect external intrusions 
after a cloud firewall detects internal/external intrusion. 

Signature Optimising Pattern Matching These methods depend on the 
signatures stored in the database. Here, a string matching algorithm is used 
for detecting intrusion. This is often employed in the analysis of DNA 
and different protein sequences. This approach is important for malware 
detection because of its provision of basic ground level for the detection of 
viruses. With the availability of a database of viruses, the method secures 
the system against almost all known types of malware. Whenever unknown 
malware samples are detected, there is a need for them to be added to the 
database. Therefore, when there’s the detection of virus using the signature 
match, the signature of the virus is temporarily stored [32]. This is to 
ensure that other replicas have no need to match against the vast signatures 
in the actual database of signatures. This technique of pre-comparison will 
ensure that the signature matching times are drastically reduced. 

9.3.3.3 Heuristic Detection 
This method may be used in dealing with certain parts of the file where 
there is a maximum probability of finding the malware and thereafter 
calculating a hash of the specific byte of strings. Here, several signatures can
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be generated from the file. This is an advancement over the conventional 
signature-based approach since the whole file signature is estimated, which 
may not be effective when the signature changes when junk data is added 
or there’s a modification to a little part of the code. But in this fuzzy 
logic, contrary to the calculation of the signature of the entire file, only a 
certain part of the signature is calculated, which will have a straightforward 
approach and will build more efficiency for the system. The method is also 
capable of detecting unknown samples of malicious code. It minimises the 
false-positive rates and increases the scanning speed. This method is also 
used for real-time detection of intrusion. The parameters to be compared 
are extracted from the network packet header. This method is employed in 
large-scale network attacks. 

9.3.3.4 Automatic Signature Extraction 
Traditional methods of signatures extraction depend mostly on the manual 
extraction by an expert of a sequence of bytes. The byte sequence is 
embedded in the unknown file’s executable part, and there’s a high degree 
of unlikeliness that these kinds of a string are seen in normal files. This 
process is carried outmanually for the detection of a string of bytes, which is 
time-consuming and renders signature extraction quite tedious. Therefore, 
there’s a need for a system that will be used to extract signatures from 
malware samples automatically. 

One may use any byte sequence from a malware executable portion 
for the signature detection of that malware. Sometimes, the generated 
malware signatures can match some malicious contents and thus stimulate 
a high rate of false-positive results. Therefore, avoiding or reducing the 
rate of false-positive tests demands crucial consideration for the extraction 
of malware signatures. Another major factor to be considered is the time 
required to detect the malicious program in the network traffic. To reduce 
malware signatures’ scanning time, there’s a need to restrict the signature 
length. Also, the time to scan is reduced by the reduction of the signature 
of the malware and just those that may detect the majority of the samples 
of the malware. It is thus recognised that several malware samples comprise 
these popular executable parts. Since the concerned activity here is to 
reduce the total number of signatures and raise the efficiency of the 
signatures, there’s a need for researchers to seek a minimum cover set 
of signatures that can effectively detect all the samples. This will bring 
about increased scanning speed, as these signatures have a high likeliness
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of detecting already existing malware variants. However, it is difficult to 
reduce the scanning time as well as the false-positive rate at the same 
time while still maintaining the program’s efficiency and identifying the 
optimised set of malware signatures automatically [47]. 

9.3.3.5 Anomaly-Based Intrusion Detection 
This malware detection method is as well referred to as behavioural-based 
detection. Here, the events are the major objects of monitoring at regular 
intervals, and the events are then covered for analysis. The analysis is 
carried out according to the behaviour change in the machine following 
the introduction of the malware. The events preceding and following the 
injection of malware are compared, and then the code may be declared 
malicious or not. Comparatively, unlike in the signature-based approach, 
this  system  can be used to detect unknown malware  samples [48]. The key 
feature of this method is the efficient generation of rules that lowers the 
rate of false-positive results for both known and unknown attacks. 

9.3.3.6 Association Rule-Based IDS 
As malware and even virus samples are easily found on the Internet, 
malware attacks are quite popular now as one doesn’t have to be an expert 
to launch a malware attack, as the code is readily available, and the attack 
may be launched after some modification. In order to detect such malware 
attacks, one may use the signature a priori algorithm, which sorts common 
subsets containing elements of original attacks of a particular attack set. 
This method employs signature-based algorithm for the generation of 
signatures for detection ofmisuse.Meanwhile, the primary challenge of this 
algorithm is the time taken in generating signatures. A scanning reduction 
algorithm was proposed for the reduction of the number of database scans 
for an efficient generation of signatures from formerly identified attacks. 
However, this raises the rate of false-positive results since there’s a pro-
duction of unwanted patterns. Cloud attacks can occur at different levels. 
There are four basic types of intrusion detection systems used in the cloud: 
network-based intrusion detection system (NIDS), host-based intrusion 
detection system (HIDS), distributed intrusion detection system (DIDS) 
and hypervisor-based intrusion detection system. Some studies have given 
various viewpoints to their address of cloud security (e.g. hypervisor, the 
network, operating system and guest VM) under different approaches that
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are derived from either statistical anomaly detection models or traditional 
rule-based intrusion detection systems (IDSs). 

9.3.3.7 Convolutional Neural Network (CNN) 
Convolutional neural network is a kind of deep learning that has been 
applied in the analysis and classification of images [49]. One comparative 
benefit of this method is that only little pre-processing is required, as 
opposed to similar algorithms for image classification, even as it works on 
unprocessed data. It serves as a feature extractor, a provision that is very 
convenient sincemost cases of feature selection requires the input of human 
experts. The test is carried out by executing different malware (espe-
cially rootkits and Trojans) on virtual machines. Abdelsalam introduced 
a detection method for virtual machines which engaged a 2D CNN model 
by taking advantage of the performance metrics. On the testing dataset, 
the findings demonstrated an appreciable accuracy of around 79%. The 
challenge ofmislabelling was noted and improved on by the introduction of 
the 3DCNNmodel, which utilises samples over a specified time window. A 
3rd dimension was added to the 2D input matrix. A large improvement was 
recorded, and an accuracy of around 90%, which is practically acceptable, 
for the 3d CNN 2 classifier was shown. 

9.3.4 Challenges of Malware Detection in CC Infrastructure 

Some of the challenges encountered in the area of malware detection in 
the cloud are presented; thus, in the area of data collection, only a few 
of the methods used give consideration to feature selection in the process 
of classification towards increasing result accuracy [50]. There is also the 
challenge of the continued surfacing of malware. In terms of analysis, many 
of the techniques, such as the anomaly-based approach, are restricted to a 
particular amount of malware. Also, many of the approaches are unable 
to unravel the topmost number of features required to train a classifier. In 
the area of response, there are a high number of false-negative and false-
positive results. Also, there are scalability challenges in the handling of a 
massive number of malware samples. Also, there is the challenge of limited 
storage and computing resources. Also, the demand to gather newmalware 
and continually make it benign is very tasking. 

Some studies, such as Watson et al. in [42], criticised signature-based 
approaches such as intrusion detection systems (IDSs), on network packets,
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or the use of virtual machine introspection (VMI) for the detection of 
threats in a particular operating system of a virtual machine, saying that 
these purely signature-based approaches do not have the capability for a 
robust scheme that covers for future threats from novel strains of malware, 
as a result of its simplistic rule-based nature. 

A number of techniques for anomaly detection are designed to reactively 
and proactively detect threats that are cloud-specific. Nevertheless, as a 
result of their complex statistical measures, they frequently demand prior 
knowledge and majorly lack scalability, therefore rendering them unfit for 
online detection in cloud infrastructures [45, 51]. 

9.4 SAFEGUARDING AGAINST ATTACKS IN CLOUD 
INFRASTRUCTURE 

This section addresses measures or tools that are either being implemented 
or have been proposed for implementation in safeguarding against attacks 
in cloud infrastructure. The primary challenge in cloud environments is the 
provision of security that touches the area of isolation and multi-tenancy, 
which guarantees the customers more confidence beyond just the “trust 
us” mantra of clouds. Nevertheless, a holistic approach is sacrosanct to 
achieve a comprehensive level of security. Securing the infrastructure at 
various levels, such as the application level, host level and network level, 
is important for the continuous running of the cloud. To protect the 
cloud against various malware and security threats, e.g. backdoor, bots 
and botnets, SQL injection, DoS and DDoS attacks, cross-site scripting 
(XSS) and forced and Google hacking, various cloud service providers 
may implement various security techniques. Different kinds of security 
breaches, as well as the implemented or proposed safeguards, are discussed 
in the following section. 

9.4.1 Host Level Security 

This describes how the server prevents threats or mitigates the impact of an 
invasive attack and what response is designed for emerging threats. In the 
evaluation of host security as well as risk management, attention is given 
to the delivery models for cloud service, e.g. IaaS, PaaS, PaaS and private, 
public and hybrid implementation models. However, the duties for host 
security in PaaS and SaaS services are committed to the provider of cloud
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infrastructure. The hosts that the cloud system supports are supported 
by the IaaS clients [52]. A vital technology-Web 2.0, which enables the 
utilisation of SaaS, takes away tasks such as installation and maintenance of 
software from users. With the increase in the use of Web 2.0, there’s an 
urgent need for the environment now more than ever [53]. 

SQL Injection Attacks This involves the insertion of a malware code into 
a standard SQL code. By this, malicious persons secure unsanctioned access 
to the database and are then able to penetrate sensitive information [54]. 
Different techniques, such as preventing the use of SQL that is dynamically 
generated in the code or the use of filtering techniques, help in sanitising 
the input of the user, etc. and consequently help to mitigate SQL injection 
attacks. There has been a proposal for an architecture that is based on a 
proxy which dynamically detects and extracts the input of the users for 
SQL control sequences [52]. 

Cross-site scripting (XSS) attacks Since the introduction of Web 2.0., 
these attacks involving the injection of scripts into web contents (either 
by reflected XSS or stored XSS) have grown in popularity. We may classify 
a website as dynamic or static according to the kind of services provided. 
Dynamic websites, because of the multi-fold services they provide to users, 
are more vulnerable to attacks, e.g. XSS attacks, than static websites. 
Out of curiosity or even unknowingly, users click on pop-ups and links 
orchestrated by malicious programs, which allows the intruder to have 
control over the private information of the user, which may then be used 
to hack their accounts. Several techniques, such as active content filtering, 
technology for preventing content-based data leakage, for detecting web 
application vulnerability, have been developed to safeguard against XSS 
attacks. Also, an approach which is blueprint-based has been proposed that 
reduces the reliance on a web browser for the identification of untrusted 
content. 

Man-in-the-middle attacks (MITM) In this kind of attack, a certain 
entity makes an attempt to create an intrusion into a conversation that 
is ongoing between a client and a sender in order to know of vital data 
being shared or to inject fake information. Different tools that implement 
hard encryption technologies, such as Ettercap, Cain, Dsniff, Airjack, 
Wsniff, etc., have been designed to safeguard against these attacks [52].
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Also, test of data communication between license parties and proper SSL 
configuration has been found helpful in mitigating the risk of MITM 
attacks [55]. 

9.4.2 Network-Level Security 

Several security threats are recorded in different types of networks, whether 
private or public, shared and non-shared, large or small area networks. 
However, different levels of security are faced by private and public clouds. 
The private cloud is said to be less vulnerable compared to the public 
cloud. This justifies the preference for private cloud by organisations for 
the migration of their sensitive data [52]. 

However, even in the public cloud, strong methods for network traffic 
encryption can be employed to safeguard against the breach of confiden-
tial data, including Transport Layer Security (TLS) and Secure Socket 
Layer (SSL). Also, there is a recommendation for the implementation of 
protection features like user authentication [56], data integrity, privacy 
protection, data security, virtual machines accessibility, web server security, 
recovery and compatibility. There’s also a need for research efforts towards 
maintaining the consistent and smooth operations of the cloud [52]). 
The issues found in network-level security that demands preventive or 
management measures include sniffer attacks, DNS attacks, DDoS and 
DoS attacks, reused IP address, etc. [57]. 

Domain Name Server Attacks For easy remembrance, DNS helps to 
translate the domain name to an IP address. However, in some cases where 
after the user has called the server by name, the user is routed to a different 
malicious cloud different from the one they intended, where the use of IP 
addresses is therefore not feasible every time. Measures of reducing the 
impact of DNS threats include DNSSEC (Domain Name System Security 
Extensions). Nevertheless, there are reports of the inadequacy of these 
measures when a malicious connection is used to reroute the path between 
a receiver and a sender. 

Sniffer Attacks These attacks are achieved using malicious software that 
is able to capture a network’s packets, and without encryption of the data 
transferred across the packets, vital data can be traced, read or captured. 
A platform anchored on address resolution protocol (ARP) and round
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trip time (RTT) for malicious sniffing detection can be employed on the 
network for detecting running sniffing systems [52]. 

BGP Prefix Hijacking This kind of attack at the network level involves 
making a false announcement concerning the IP addresses that are linked 
to an autonomous system (AS). Therefore, malicious attackers are able to 
get into untraceable IP addresses. An AS can do an information broadcast 
of an IP within its regime across its entire neighbours [53]. 

9.4.3 Application Level Security 

This security level describes the use of hardware and software resources to 
secure applications in a manner that malicious parties are unable to make 
illicit changes or exercise control over the applications. A lot of platforms 
are safeguarded at the network level, although certain application level 
issues can grant access to unsanctioned users [52]). In recent times, attacks 
are being camouflaged as trusted users, and the system addresses them as 
trusted users, which allows infiltration of victim platforms and stealthily 
corrupts the victim’s entire data. 

There is, therefore, urgency for the installation of a more sophisticated 
level of security checks to mitigate these risks. The conventional approaches 
for handling security challenges have involved the use of task-oriented 
ASIC devices that can address a certain task that offers higher security 
levels with high performance [58]. However, because of the adaptable and 
dynamic nature of application-level threats, these approaches have been 
found to act comparatively slow. The adaptability of open-ended systems, as 
well as the capabilities of a closed system, have been combined in develop-
ing security avenues that are anchored on Check Point Open Performance 
Architecture by the use of Quad-Core Intel Xeon Processors [53]. Moreso, 
in the virtual environment, institutions such as VMware use the technology 
of Intel Virtualization for better security bases and performance. The 
issues found in application level security which demands preventive or 
management measures include SQL injection attacks, cookie poisoning, 
CAPTCHA breaking, backdoor and debug options, DoS attacks, etc. [28]. 

Denial of Service (DoS) Attacks This kind of attack, besides creating 
congestion, raises the bandwidth being consumed and thereby renders 
particular parts inaccessible to the users of the cloud. The use of an
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intrusion detection system is a common technique for safeguarding against 
these attacks [57], and separate IDS is loaded in each cloud. Also, the 
defence federation has been employed for protecting the cloud against DoS 
attacks [59], although the extent of its use is not well documented. The 
various IDS systems function on the group of information exchange. A co-
operative IDS also has the ability to alert the entire system on the occasion 
of an attack on a particular cloud. 

DDoS Attacks Distributed denial of service functions like an advanced 
DoS attack in denying users of the availability of the server’s services 
by bombarding the destination server with large packet numbers that 
overwhelm the ability of the server. However, unlike in DoS attacks, the 
attack in DDoS is distributed from different already compromised dynamic 
networks. The attackers then make certain information to be accessible 
at particular times. Therefore, the attacker has control over the type and 
amount of information available for consumption [58]. 

Cookie Poisoning This involves a change or modification of the cookie’s 
content to gain unsanctioned access to a web page or application. The 
cloud infrastructure can be safeguarded against cookie poisoning by the 
implementation encryption scheme or by carrying out regular cleanup of 
cookie data. 

CAPTCHA Breaking CAPTCHA itself is designed to prevent computers 
or bots from using the resources on the Internet, thereby preventing over-
exploitation and spam of resources on the network by bots. CAPTCHA 
has suffered breaking from spammers who have developed strategies to 
defeat the test. A method of attack involving static OCR (optical character 
recognition) can be addressed by the use of CAPTCHA design principles 
of single-frame zero knowledge. Hardware and software tools can also be 
employed to protect applications against CAPTCHA breaking [52]. 

Rootkit in Hypervisor Concerns The overall concept of cloud comput-
ing is anchored primarily on the idea of virtualisation. In this virtual setting, 
a hypervisor allows a system to simultaneously runmultiple OS and provide 
resources distinctly to each OS to avoid interference with one another. 
Various components of the hypervisor can be the subject of different 
kinds of attacks [53]. By majoring on an advanced comprehension of the
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behaviour of the different components of the hypervisor architecture, the 
use of intrusion prevention system and instruction detection system and 
firewall implementation, and inter-communication between the different 
components of the infrastructure, can be used to monitor the actions of 
the guest virtual machines [60]. 

Backdoor and Debug Options This attack is relatively passive, which 
affords the malicious party’s penetration into compromised systems and, by 
the use of backdoor channels, gains access and control to the confidential 
data and resources of the victims and even turns it into a subject of DDoS 
attack. Advanced authentication and isolation methodologies between 
virtual machines can help to safeguard against these attacks. 

9.5 DISCUSSION AND ANALYSIS 

This chapter aims to systematically analyse malware attacks and the tech-
niques for safeguarding against malware challenges in cloud computing 
architecture. The research will also seek to make recommendations on the 
applicability of these techniques. Cloud computing is one of the decade’s 
most trending discussions in information technology. It is described as 
a model for providing on-demand, convenient and ubiquitous network 
access to a shared pool of computing resources that can be configured 
(such as storage, networks, servers, services and applications) and may be 
provisioned rapidly and released with little interaction with the service 
provider or little management effort. The cloud itself is not an array of 
software, hardware or services but a vast shared resource that accommo-
dates a large volume of users and offers dynamic access that is dependent 
on the demands. This in itself implies that cloud users have no need to 
possess the infrastructure enabling various computing services. But much 
more, the services become accessible to a computer from any location in 
the world. 

This research found that some of the greatest selling points of cloud 
computing include its inherent features of multi-tenancy and, high scal-
ability, enhanced flexibility, which transcends the provisions of previous 
computing methodologies. The provisions in cloud computing will enable 
the society to handle future challenges in quality assurance, informa-
tion security and big data management. Furthermore, its possibilities of 
accessing new innovations like decentralised ledger technology, artificial
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intelligence, etc., as cloud computing services, are increasing. Despite all 
these benefits and potentials, the cloud is found to be highly vulnerable to 
a lot of security challenges, including malware. Thus, security is a major 
concern in cloud computing and a subject of discussion in several quarters. 
Therefore, research towards detecting this malware as well as safeguarding 
the cloud architecture against malware attacks is increasing. 

As a fundamental objective of this research, security and malware threats 
in cloud computing architecture were analysed. The study identified that 
despite the huge benefits of cloud computing, it has met a growth of 
malicious activities, codes and programs targeted at the infrastructure. 
Reports that date back to over a decade ago have it that with the teeming 
adoption of cloud computing, one can expect to experience several security 
exploitations with cloud service providers as well as users, which will shift 
research focus to fixing these loopholes. In this study, some of the most 
commonly reported security threats identified in cloud computing (CC) 
infrastructure include data loss and breaches, malicious insiders, account 
or service hijacking, identity theft, phishing attacks, man-in-the-middle 
attacks, denial of service (DOS), distributed denial of service (DDOS) 
attacks, cookie poisoning attacks, wrapping attacks, etc. The study also 
recognised that as much as these all could employ different approaches 
and be launched against certain components of the infrastructure per time, 
several variants of malware are the reason for these attacks. 

Therefore, there is a need for security at various levels towards the 
appropriate implementation of CC environment, e.g. Internet access secu-
rity, server access security, program access security, data privacy security 
and database access security. Also, security needs to be guaranteed at the 
host, network and application layer for the smooth running of the cloud. 
Therefore, the issues around the security of cloud infrastructure are found 
in the description as well as the implementation of security implications 
that are provided by every relevant party in the process. 

In this study, we found that with the exponential growth of the Internet, 
malware has also grown to be one of the primary cyber threats encountered 
today. The malware identified includes Trojan horses, worms, backdoors, 
viruses, spyware, rootkits, ransomware and botnet, plus several other 
kinds of software with undesirable behaviour. This study identified various 
malware detection techniques adopted in the cloud, e.g. malware detec-
tion and prevention systems (MDPS), antiviruses, use of virtual machine 
introspection (VMI), etc. The broad approaches used include automatic 
signature extraction, anomaly-based intrusion detection, association rule-



270 S. K. MEDARAM AND L. MAGLARAS

based IDS and convolutional neural network (CNN). Nevertheless, these 
methods do not perform satisfactorily, perhaps because of the continued 
surfacing of malware. Also, in the aspect of data collection, very few 
measures employed consider feature selection in the classification that is 
aimed at enhancing the accuracy of the result. Also, strategies like the 
anomaly-based approach are limited to a certain number of malware. The 
systems encounter scalability issues in their attempts to handle big amount 
of malware samples. Also, because of the complex nature of anomaly detec-
tion, they frequently demand prior knowledge and majorly lack scalability, 
rendering them unfit for online detection in cloud infrastructures. 

However, it was identified that in spite of all these measures, malware 
writers never cease to devise new means of evading these techniques by a 
change of file’s hash, modifications to the malware code, etc. In spite of 
the great efforts put into previous studies as regards the behaviour of some 
kinds of malicious programs, conventional approaches for the detection 
of attacks on cloud infrastructures or the virtual machines they host are 
insufficient in addressing cloud-related issues. Even though new provisions 
have been laid down by the various malware detection and protection 
techniques, there are no methods with the ability to detect and safe-
guard against all sophisticated and new-generation malware. Organisations 
embracing cloud computing and enlarging their on-premise infrastructure 
must be abreast with the security burdens of cloud computing. 

Also, beyond the detection of malware, to achieve a comprehensive 
level of security in the cloud, a holistic approach is sacrosanct. Various 
methods have been proposed for safeguarding the cloud against security 
attacks. However, this study found the safeguarding from the perspectives 
of application level, host level and network level to be more serviceable 
for the continuous running of the cloud. In the host level security, which 
involves paying attention to the delivery models for cloud service, various 
attacks such as SQL injection attacks, man-in-the-middle attacks (MITM) 
and cross-site scripting (XSS) attacks were identified. This study found 
such approaches as active content filtering, proper SSL configuration 
as well as data communication between license parties to be helpful in 
mitigating these attacks. At the network level, various kinds of threats 
identified include DNS attacks, sniffer attacks and BGP prefix hijacking. 
Measures such as Domain Name System Security Extensions, use of plat-
form anchored on address resolution protocol (ARP) and round trip time 
(RTT) can be advantageous for malicious sniffing detection. Meanwhile, in 
application level security which involves the use of hardware and software
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for securing applications, the identified attacks include SQL injection 
attacks, cookie poisoning, CAPTCHA breaking, backdoor and debug 
options and DoS attacks. Several mitigation measures that can be employed 
in safeguarding against these attacks include the intrusion prevention 
system and intrusion detection system, regular cookie cleanup, firewall 
implementation and advanced authentication and isolation methodologies 
between virtual machines. 

Although this study identified through the analytical study of several 
materials and previous works that there are several malware detection 
approaches as well as measures for safeguarding the cloud against various 
attacks, most of these measures are targeted at specific attacks or threats. 
This causes cloud service providers and several organisations and businesses 
with activities on the cloud to incur huge expenses in defending their 
systems against various forms of attacks they are vulnerable to. Also, these 
approaches will be incapable of handling multiple attacks simultaneously 
launched by attackers. But a generic/comprehensive framework is sug-
gested to enhance the cost-performance ratio and offer multi-dimensional 
and multi-layer security. The primary criteria to be met in this comprehen-
sive security framework are its interface with any cloud environment and 
its capacity to detect and address predefined and tailored security threats. 

9.6 CONCLUSION AND RECOMMENDATION 

Considering the rate at which the cloud has taken over the information 
technology market, a more drastic shift to the cloud is anticipated in these 
coming years. When we consider the several benefits and potentials of cloud 
computing to organisations and individuals, it’s succinct to say that cloud 
computing is a rapid revolutionary technology. Despite all the advantages, 
the cloud is found to be highly vulnerable to a lot of security challenges, 
includingmalware. Even the data in the cloud is vulnerable to various issues 
like integrity and confidentiality. To protect the cloud and utilise its full 
potential, there’s a need to address these security challenges. This research 
is another development in the analysis of these security and malware 
attacks, with the potential to influence individual and corporate decisions 
in their adoption and maintenance of cloud computing infrastructure. The 
primary goal of this chapter is to systematically analyse malware attacks 
and the techniques for safeguarding against malware challenges in cloud 
computing architecture. Recommendations are also made concerning the
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applicability of these techniques. This research has analysed several security 
and malware issues found in cloud infrastructure, as well as the techniques 
for detection. The research also analysed measures for safeguarding cloud 
infrastructure against these attacks. The merits and demerits of some of 
these measures were also documented. 

Even though new provisions have been laid down by the various mal-
ware detection and protection techniques, there are no methods with the 
ability to detect and safeguard against all sophisticated and new-generation 
malware. Organisations embracing cloud computing and enlarging their 
on-premise infrastructure must be abreast with the security burdens of 
cloud computing, as well as the available solutions for ensuring appreciable 
security in the cloud. 

Cloud service providers and proactive organisations should invest in 
security and implement these measures in their infrastructure to ensure 
security and be able to explore cloud computing ahead of their enemies. 
Although the trends in malware generation and detection are dynamic 
and constantly changing, this research is a great guide for the activities 
of developers and computer scientists with security responsibilities in the 
cloud. 

9.6.1 Recommendations 

From our findings, various recommendations that may be considered for 
further studies or help to guide the decision and activities of stakeholders 
are presented below: 

• There is a need to design a comprehensive framework for mitigating 
multiple malware and other security attacks in the cloud. This frame-
work will be able to interface with any kind of cloud environment 
and have the capacity to detect and address predefined and tailored 
security threats. This will be a cost-effective approach and will help 
to secure the system against attackers who launch multiple attacks 
simultaneously, which would otherwise have overwhelmed the cloud 
and hurt the services provided. 

• Since there is yet no omnibus approach to all security challenges, this 
study recommends that approaches that implement the combination 
of multiple detectors and/or mitigation approaches can be consid-
ered.
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• In order to protect the cloud against external threats, there is a need 
for regular auditing of the cloud. 

• Also, cloud service providers need to ascertain that all the service-level 
agreements are met, while human errors are appreciably minimised. 

• Since several of the existing detection and prevention approaches 
require prior knowledge, there is a need for stakeholders, engineers, 
etc., to build sophisticated skills and competencies that put them 
ahead of the attackers. 
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