
Security Informatics and Law Enforcement
Series Editor: Babak Akhgar
Iman Almomani
Leandros A. Maglaras
Mohamed Amine Ferrag
Nick Ayres Editors

Cyber
Malware
Offensive and Defensive Systems

Security Informatics and Law Enforcement

Series Editor
Babak Akhgar

CENTRIC (Centre of Excellence in Terrorism, Resilience,
Intelligence and Organised Crime Research)

Sheffield Hallam University
Sheffield, UK

The primary objective of this book series is to explore contemporary
issues related to law enforcement agencies, security services and industries
dealing with security related challenges (e.g., government organizations,
financial sector insurance companies and internet service providers) from
an engineering and computer science perspective. Each book in the series
provides a handbook style practical guide to one of the following security
challenges:

Cyber Crime – Focuses on new and evolving forms of crimes. Books
describe the current status of cybercrime and cyber terrorism develop-
ments, security requirements and practices.

Big Data Analytics, Situational Awareness and OSINT – Provides
unique insight for computer scientists as well as practitioners in security and
policing domains on big data possibilities and challenges for the security
domain, current and best practices as well as recommendations.

Serious Games – Provides an introduction into the use of serious
games for training in the security domain, including advise for design-
ers/programmers, trainers and strategic decision makers.

Social Media in Crisis Management – explores how social media
enables citizens to empower themselves during a crisis, from terrorism,
public disorder, and natural disasters.

Law enforcement, Counterterrorism, and Anti-Trafficking –
Presents tools from those designing the computing and engineering
techniques, architecture or policies related to applications confronting
radicalisation, terrorism, and trafficking.

The books pertain to engineers working in law enforcement and
researchers who are researching on capabilities of LEAs, though the series
is truly multidisciplinary – each book will have hard core computer science,
application of ICT in security and security / policing domain chapters.
The books strike a balance between theory and practice.

Iman Almomani • Leandros A. Maglaras •
Mohamed Amine Ferrag • Nick Ayres

Editors

Cyber Malware
Offensive and Defensive Systems

Editors
Iman Almomani
Security Engineering Lab
Prince Sultan University
Riyadh, Saudi Arabia
Computer Science Department
The University of Jordan
Amman, Jordan

Mohamed Amine Ferrag
AI and Digital Science Research Center
Technology Innovation Institute
Masdar City, Abu Dhabi, United Arab
Emirates

Leandros A. Maglaras
School of Computing
Edinburgh Napier University
Edinburgh, UK

Nick Ayres
School of Computer Science and
Informatics
De Montfort University
Leicester, UK

ISSN 2523-8507 ISSN 2523-8515 (electronic)
Security Informatics and Law Enforcement
ISBN 978-3-031-34968-3 ISBN 978-3-031-34969-0 (eBook)
https://doi.org/10.1007/978-3-031-34969-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2024
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher,
whether the whole or part of the material is concerned, specifically the rights of translation,
reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in
any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information
in this book are believed to be true and accurate at the date of publication. Neither the
publisher nor the authors or the editors give a warranty, expressed or implied, with respect
to the material contained herein or for any errors or omissions that may have been made.
The publisher remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland
AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-34969-0
https://doi.org/10.1007/978-3-031-34969-0
https://doi.org/10.1007/978-3-031-34969-0
https://doi.org/10.1007/978-3-031-34969-0
https://doi.org/10.1007/978-3-031-34969-0
https://doi.org/10.1007/978-3-031-34969-0
https://doi.org/10.1007/978-3-031-34969-0
https://doi.org/10.1007/978-3-031-34969-0
https://doi.org/10.1007/978-3-031-34969-0
https://doi.org/10.1007/978-3-031-34969-0

PREFACE

The threat landscape is changing very quickly. With billions of connected
IoT devices, mostly reactive detection and mitigation strategies, and finally
big data challenges, we face an extremely rapidly expanding attack surface
with a variety of attack vectors, a clear asymmetry between attackers and
defenders, and a rapidly expanding attack surface. Additional arguments
suggest that cybersecurity approaches must be rethought in terms of
reducing the attack surface, making the attack surface dynamic, automating
detection, risk assessment, and mitigation, and investigating the prediction
and prevention of malware attacks with the use of emerging technologies
like blockchain, artificial intelligence, and machine learning. Additionally,
there is a clear asymmetry of attacks and an enormous amount of data.

This book provides the foundational aspects of malware attack vectors
and appropriate defense mechanisms against malware. In addition, the
book equips you with the necessary knowledge and techniques to success-
fully lower risk against emergent malware attacks. The book discusses both
theoretical, technical, and practical issues related to malware attacks and
defense making it an ideal reading material.

Many aspects motivated the decision toward the creation of this book.
As mentioned in recent threat landscape reports, malware is on the rise
again after the decrease that was noticed and linked to COVID-19. Mali-
cious actors frequently employ malware in their campaigns. Gaining and
maintaining control of assets, evading and deceiving defenses, and carrying
out post-compromise actions all require this fundamental capability. The
book has two clear goals. The first is to bring in front important security
problems that arise in the advent of malware, and the second is to highlight

v

vi PREFACE

a variety of possible solution approaches that might be able to address
them. Specialists and experts present their significant efforts to fulfill these
goals.

This book starts with an introductory chapter about the emerging trends
of cyber-malware, and then it includes nine chapters that are organized into
the following three parts:

Part 1 presents solutions on Android OS malware static features extraction
and detection of Android malware applications.

Part 2 contains many applications that use artificial intelligence for detect-
ing fast flux service networks and malware.

Part 3 presents and discusses techniques that can be used for IoT and cloud
malware analysis.

In Chap. 1, an effective vision-based multi-classification system for
detecting various malware families in Android apps is presented. Malware
in Android apps could be detected using the proposed system in visual color
or grayscale formats. The tested evaluation metrics and acquired detection
results performed in the chapter demonstrate that the proposed vision-
based system is a promising option for Android OS malware analysis.

Based on network traffic behavior analysis, Chapter 2 proposes a novel
privacy-preserving federated deep learning method that makes use of
convolutional neural networks (CNN) to identify various kinds of malware.
The proposed detection method is evaluated in terms of detection rate,
accuracy, and performance under various federated learning settings.

The third version of the Android automatic Static Parsing tool (ASParse-
V3), and its integration with other detection methods are discussed in
Chap. 3 in terms of the significance of static analysis for feature extraction,
dataset generation, and malware analysis systems. The results of the analysis
can be fed to deep learning models and machine learning algorithms for
malware analysis and detection. In addition, Android OS applications were
used to demonstrate the system’s capabilities.

The fast flux architecture, operation, and characterization of FFSNs
are the primary topics of discussion in Chap. 4. In addition, the chapter
provides a summary of fast flux detection mechanisms, highlighting the
most significant difficulties and potential future research directions.

 4344 17013 a 4344 17013 a

 23839 24983 a 23839 24983 a

 1100 34281 a 1100 34281 a

 19872
42251 a 19872 42251 a

PREFACE vii

A static, graph-based approach is presented in Chap. 5 that uses machine
learning to classify executable samples into malicious or benign API Call
Graphs. A measure of the Abstract API Call Graph’s similarity to the
samples of a given dataset, which include labeled samples of malware and
benign samples, is calculated by the proposed method. Additionally, it
divides the similarity vector space and performs classification using the
support vector machine (SVM) algorithm. Both unweighted and weighted
Abstract API Call Graphs are used to evaluate the method, demonstrating
high accuracy.

Chapter 6 gives a thorough survey of cutting-edge deep learning-based
malware analysis and detection solutions focusing on Microsoft Windows,
over the time of 2015–2022. The section gives a detailed scientific classifi-
cation that classifies these solutions as per different measures including the
investigation task, the analysis task, the nature of the extracted features,
the used features representation method, and the used deep learning
algorithms. Besides, the section talks about these solutions concerning the
size and nature of the testing dataset, the performance evaluation metrics
for the various tasks, and the accomplished outcomes.

Threats to the Internet of Things (IoT) and smart systems are covered in
Chap. 7, as is a brief overview of malware detection and evasion techniques.
For the IoT and smart systems to be utilized to their full potential, it is
essential to investigate novel cyberattacks while simultaneously developing
and implementing countermeasures. The objectives of this chapter are to
investigate various strategies for the detection and evasion of cybersecurity
threats in the IoT domain as well as evaluate security issues that are
anticipated to limit IoT deployment.

In Chap. 8, a method for multiclass classification employing XG-Boost
and CatBoost to classify the intrusion attack’s category type is proposed.
The proposed strategy aimed to develop a recent multiclass classification to
classify the category type labels of IoT intrusion attacks. Precision, recall,
f1-score, and G-mean were used to evaluate the experiments, which were
then compared to other basic classifiers.

Malware attacks and methods for preventing malware threats in cloud
computing architecture are examined in Chap. 9. Data breaches, mali-
cious insiders, man-in-the-middle attacks, denial-of-service (DOS) and
distributed denial-of-service (DDOS) attacks, cookie poisoning attacks,

 23608 -270 a 23608 -270
a

 1043 24968 a 1043 24968
a

 3853 34267 a 3853 34267 a

 21247 43565 a 21247 43565
a

viii PREFACE

and wrapping attacks are among the most frequently reported security
threats, according to the study. The majority of these attacks are the result
of multiple malware variants.

Riyadh, Saudi Arabia Iman AlMomani
Edinburgh, UK Leandros A. Maglaras
Masdar City, Abu Dhabi, Mohamed Amine Ferrag
United Arab Emirates
Leicester, UK Nick Ayres

INTRODUCTION: EMERGING TRENDS

IN CYBER-MALWARE

Cyber-malware refers to malicious software that is designed to damage or
gain unauthorized access to computer systems, networks, and data. Cyber-
malware has become a significant threat to individuals, businesses, and
governments worldwide, and its impact can be devastating [1].

The history of cyber-malware dates back to the 1970s when the first
computer virus, known as the Creeper virus, was created as an experimental
program. The Creeper virus was designed to move between computers
on a network and display the message “I’m the Creeper, catch me if you
can.” The first antivirus software, known as the Reaper, was then created
to remove the Creeper virus from infected computers [2].

In the 1980s, as personal computers became more popular, cyber-
criminals began developing malware to exploit vulnerabilities in operating
systems and software. In 1986, the first computer worm, known as the
Morris worm, was created by a graduate student named Robert Morris.
The Morris worm caused widespread damage to computer systems and
resulted in significant financial losses. This incident prompted the creation
of the Computer Emergency Response Team (CERT), which provides
guidance and support for organizations affected by cyber-attacks [3].

In the 1990s, cybercriminals began developing more sophisticated
malware, such as Trojans and keyloggers, to steal sensitive information
from individuals and businesses [4]. The first known ransomware attack,
known as the AIDS Trojan, was also created in 1990. The AIDS Trojan
would encrypt the victim’s files and demand payment in exchange for the
decryption key.

ix

x INTRODUCTION: EMERGING TRENDS IN CYBER-MALWARE

In the 2000s, cyber-malware attacks became more prevalent, with
high-profile incidents such as the ILOVEYOU virus and the Code Red
worm causing significant damage to computer systems worldwide [5].
Additionally, cybercriminals began using social engineering techniques,
such as phishing emails and fake websites, to trick individuals into giving
up their login credentials and other sensitive information.

One of the most significant cyber-attacks involving malware in recent
years was the SolarWinds attack. In December 2020, it was discovered that
Russian hackers had gained access to the computer systems of several US
government agencies and private companies by exploiting a vulnerability
in the SolarWinds software [6]. The malware used in the attack, known as
Sunburst, was a sophisticated piece of software that allowed the hackers
to access sensitive information and carry out other malicious activities
undetected for months.

Another recent cyber-attack involving malware was the Colonial
Pipeline hack. In May 2021, a group of cybercriminals known as DarkSide
used ransomware to gain access to the computer systems of Colonial
Pipeline, a major US fuel pipeline operator. The attack forced the company
to shut down its pipeline, causing widespread fuel shortages and price hikes
across the eastern United States. The group demanded a ransom of $4.4
million in Bitcoin, which Colonial Pipeline ultimately paid [7].

In March 2021, Microsoft announced that Chinese hackers had been
using malware to target organizations around the world. The hackers
were exploiting four zero-day vulnerabilities inMicrosoft Exchange Server,
a popular email and collaboration platform used by many businesses
and organizations [8]. The hackers used the malware to steal data and
carry out other malicious activities, and the attack affected thousands of
organizations in at least 115 countries.

In April 2021, cybersecurity researchers discovered a new type of
malware known as Silver Sparrow. Unlike many other types of malware,
Silver Sparrow was designed to target Apple computers, and it was found
on nearly 30,000 Macs around the world [9]. While the malware was not
actively causing any harm, its presence on so many devices was a cause for
concern.

In recent years, cybercriminals have continued to evolve their tactics,
with the development of more sophisticated ransomware, such as the
WannaCry and NotPetya attacks, and the rise of cryptojacking, which
involves using the victim’s computer to mine cryptocurrency without their
knowledge or consent [10].

INTRODUCTION: EMERGING TRENDS IN CYBER-MALWARE xi

As technology continues to advance, cyber-malware attacks are likely
to become even more sophisticated and difficult to detect. However,
cybersecurity professionals and organizations are also developing new
tools and strategies to combat cyber-malware and protect against future
attacks. So, the evolution of cyber-malware has beenmarked by increasingly
sophisticated attacks and techniques. From the early days of the Creeper
virus to the modern-day threats of ransomware and cryptojacking, cyber-
criminals have continuously adapted their tactics to exploit vulnerabilities
in computer systems and networks [11]. However, through collaboration
and innovation in cybersecurity, individuals, businesses, and governments
can work to stay one step ahead of cyber-malware threats.

Individuals can become victims of cyber-malware through various
means, including phishing emails, infected downloads, and social
engineering attacks. Once the malware infects an individual’s device, it can
steal sensitive information such as login credentials, financial information,
and personal data [3–5]. In some cases, cyber-malware can lock users out
of their devices and demand payment for the return of access, also known
as ransomware.

Businesses are at an even higher risk of cyber-malware attacks, as
they often store large amounts of sensitive data that can be targeted by
cybercriminals. The impact of cyber-malware on businesses can range from
financial losses to reputational damage [7]. For instance, if a company’s
financial data is breached, it can result in significant financial losses and a
loss of customer trust. Additionally, if a company’s reputation is damaged
due to a cyber-attack, it can lead to a decline in sales and revenue.

Governments are also vulnerable to cyber-malware attacks, as they often
store classified information and sensitive data. A cyber-attack on a govern-
ment’s system can have severe consequences, including the theft of sensitive
information, disruption of essential services, and even sabotage [9]. In
some cases, cyber-malware attacks on governments have been carried out
by state-sponsored hackers, leading to tensions between nations.

The impact of cyber-malware on individuals, businesses, and govern-
ments is not limited to financial losses and reputational damage. Cyber-
malware attacks can also result in a loss of privacy, psychological distress,
and physical harm. For instance, cyber-malware can be used to gain
access to medical devices and cause harm to patients or to disrupt critical
infrastructure and cause widespread power outages [8–11].

To protect against cyber-malware, individuals, businesses, and govern-
ments must take proactive measures to secure their systems and data.

xii INTRODUCTION: EMERGING TRENDS IN CYBER-MALWARE

This includes implementing strong passwords, keeping software up-to-
date, using anti-virus software, and educating employees and users about
cyber threats. Additionally, governments must work together to develop
international frameworks and regulations to combat cyber-malware and
hold cybercriminals accountable for their actions. Thus, cyber-malware is
a growing threat to individuals, businesses, and governments worldwide
[12]. The impact of cyber-malware can range from financial losses to
reputational damage and can even result in physical harm. To protect
against cyber-malware, it is essential to take proactive measures to secure
systems and data and to work together to develop international frameworks
and regulations to combat cybercrime.

Cyber-malware attacks can target a wide range of individuals, businesses,
and organizations. However, certain targets are more commonly targeted
by cybercriminals due to their vulnerability or potential for financial gain.
Some of the common targets of cyber-malware include [13]:

• Individuals: Cybercriminals often target individuals with phishing
emails or malware disguised as legitimate software. Individuals can
be targeted for their personal information, such as login credentials,
banking information, and social security numbers. Additionally, cyber-
criminals may use malware to gain access to an individual’s computer
system, allowing them to steal sensitive information or use the victim’s
computer for illegal activities.

• Small businesses: Small businesses are often targeted by cybercriminals
due to their limited resources and lack of robust cybersecurity mea-
sures. Small businesses may be targeted for their financial information,
customer data, or intellectual property. Ransomware attacks are also
common among small businesses, as cybercriminals may demand
payment in exchange for restoring access to the victim’s files or
computer system.

• Large corporations: Large corporations are also common targets of
cyber-malware attacks, as they may hold valuable intellectual property
or financial information. Cybercriminals may use malware to gain
unauthorized access to a corporation’s network or use phishing emails
to trick employees into giving up sensitive information.

• Government agencies: Government agencies are often targeted by
cybercriminals seeking sensitive information or attempting to disrupt
government operations. Cyber-malware attacks on government agen-

INTRODUCTION: EMERGING TRENDS IN CYBER-MALWARE xiii

cies can result in the theft of classified information, disruption of
critical infrastructure, and other significant consequences.

• Healthcare providers: Healthcare providers are another common tar-
get of cyber-malware attacks, as they may hold sensitive patient infor-
mation, including medical records and billing information. Cyber-
criminals may use malware to gain unauthorized access to a healthcare
provider’s network or steal patient data for identity theft or insurance
fraud.

Consequently, staying up to date with new trends in cyber-malware is
incredibly important in today’s digital age. With the increasing number of
devices and networks connected to the internet, the threat of cyber-attacks
is more prevalent than ever before. Malware, short for malicious software,
is designed to damage, disrupt, or gain unauthorized access to computer
systems. The technology used by cybercriminals is continually evolving,
and new types of malware are being developed all the time. By staying up
to date with the latest trends in cyber-malware, you can ensure that you are
better prepared to defend against attacks and protect your digital assets.

One of the most significant reasons to stay up to date with cyber-
malware trends is to identify new threats before they become widespread.
Cybercriminals often use new malware to exploit vulnerabilities in systems
before antivirus software and other security measures can be updated to
address the threat [14]. By being aware of new types of malware, you can
take steps to protect yourself and your organization before an attack occurs.

Another reason to stay up to date with cyber-malware trends is to keep
your security measures current. As new malware is developed, antivirus
software and other security measures are updated to protect against them.
By staying informed about new threats, you can ensure that your security
measures are up-to-date and effective [15]. Failure to update your security
measures can leave your devices and networks vulnerable to attack.

Additionally, staying up to date with cyber-malware trends can help
you stay ahead of the competition. Cybersecurity is becoming increasingly
important in today’s digital landscape, and companies that fail to take it
seriously may suffer reputational damage or lose customers. By demon-
strating that you are aware of the latest threats and taking steps to protect
your digital assets, you can build trust with your customers and gain a
competitive advantage.

In conclusion, staying up to date with new trends in cyber-malware is
essential to protect yourself, your organization, and your customers from

xiv INTRODUCTION: EMERGING TRENDS IN CYBER-MALWARE

cyber-attacks. By being aware of new threats and keeping your security
measures current, you can stay one step ahead of cybercriminals and avoid
the potentially devastating consequences of a successful cyber-attack.

MALWARE ANALYSIS TECHNIQUES

Cyber-malware, also known as malicious software, is a type of software
designed to infiltrate, damage, or disrupt computer systems, networks, and
devices. Cyber-malware is often used for criminal purposes, such as stealing
sensitive information or extorting money from victims.

Common Types of Cyber-Malware

There are several types of cyber-malware, including [13, 14]:

• Virus: A computer virus is a type of malware that infects a computer
system by inserting its code into legitimate programs or documents.
Once infected, the virus can replicate itself and spread to other
systems, causing damage and stealing sensitive information.

• Trojan: A Trojan is a type of malware that disguises itself as legiti-
mate software, often through email attachments or downloads. Once
installed, the Trojan can allow cybercriminals to gain unauthorized
access to the victim’s computer, steal sensitive data, and even take
control of the system.

• Worm: A worm is a self-replicating malware that spreads through
networks and can cause significant damage to computer systems and
networks. Worms often exploit vulnerabilities in software or operating
systems, allowing cybercriminals to gain unauthorized access and steal
sensitive information.

• Ransomware: Ransomware is a type of malware that encrypts the
victim’s files or computer system, rendering it unusable. The cyber-
criminals then demand payment, often in cryptocurrency, to provide
the decryption key and restore access to the victim’s data or system.

• Adware: Adware is a type of malware that displays unwanted or
intrusive advertisements on the victim’s computer system. Adware can
also collect personal information, browsing history, and search queries
for targeted advertising purposes.

• Spyware: Spyware is a type of malware that collects sensitive infor-
mation, such as login credentials, browsing history, and personal
data, without the victim’s knowledge or consent. Cybercriminals can

INTRODUCTION: EMERGING TRENDS IN CYBER-MALWARE xv

then use this information for identity theft, financial fraud, or other
malicious purposes.

• Rootkit: A rootkit is a type of malware that allows cybercriminals to
gain administrative access to the victim’s computer system. Rootkits
often remain hidden from antivirus software and can be difficult to
detect and remove, allowing cybercriminals to maintain access to the
victim’s system for an extended period.

To conclude, cyber-malware is a type of malicious software that can
cause significant damage and disrupt computer systems, networks, and
devices. There are several types of cyber-malware, including viruses, Tro-
jans, worms, ransomware, adware, spyware, and rootkits [16, 17]. Under-
standing the different types of cyber-malware and taking proactive mea-
sures to protect against them is essential for individuals, businesses, and
governments.

Dynamic and Static Analysis

Dynamic and static analysis are two techniques commonly used in cyber-
security to detect and analyze malware [17]. Static analysis involves exam-
ining the code of a program or file without actually executing it. This can
involve using specialized tools and techniques to scan the code for known
patterns or characteristics of malware. Static analysis is often used as a first
step in malware analysis to quickly identify potential threats and determine
whether further analysis is necessary.

Dynamic analysis, on the other hand, involves executing the program or
file in a controlled environment to observe its behavior. This can involve
running the program or file in a virtual machine or sandboxed environment
to prevent any harm to the host system. Dynamic analysis can provide more
detailed information on the behavior of malware, including its interactions
with the operating system, network connections, and other processes.

Both dynamic and static analysis have their advantages and limitations
[18]. Static analysis is often faster and less resource-intensive than dynamic
analysis, making it a useful tool for quickly identifying potential threats.
However, static analysis may not always be able to detect more advanced
or sophisticated malware that is designed to evade detection.

Dynamic analysis, on the other hand, provides a more comprehensive
view of the behavior of malware, which can be useful in understanding how
the malware operates and identifying potential vulnerabilities in the system.

xvi INTRODUCTION: EMERGING TRENDS IN CYBER-MALWARE

However, dynamic analysis can be more time-consuming and resource-
intensive than static analysis, as it requires the execution of the malware in
a controlled environment.

In practice, both dynamic and static analysis are often used in combina-
tion to provide a more comprehensive view of malware and its behavior.
By using both techniques, cybersecurity professionals can quickly identify
potential threats using static analysis, and then perform more detailed
analysis using dynamic analysis to gain a deeper understanding of the
malware’s behavior and potential impact on the system [17, 18].

Malware Debugging Techniques

Malware authors are constantly evolving their techniques to evade detec-
tion and infect systems, which means that malware analysts need to
constantly develop new techniques to detect and remove malware. One
such technique is malware debugging [19].

Malware debugging is the process of analyzing malware by examining
its code in a controlled environment. This allows analysts to identify
the malware’s behavior, the techniques it uses to evade detection, and
the vulnerabilities it exploits. Several techniques can be used in malware
debugging, including [20]:

• Disassembly: Disassembling the malware code is the process of con-
verting the binary executable code into human-readable assembly
code. This technique can help malware analysts to understand the
behavior of the malware and identify potential vulnerabilities that it
exploits.

• Debugging tools: Debugging tools, such as OllyDbg, IDA Pro, and
WinDbg, can be used to analyze malware by allowing analysts to step
through the code, set breakpoints, and view the contents of memory
and registers. These tools can help to identify how the malware
communicates with its command and control server, the files it creates
on the infected system, and other behaviors that it exhibits.

• Virtual machines: Malware can be run in a virtual machine envi-
ronment, such as VirtualBox or VMWare, to create a controlled
environment for analysis. This technique can help to isolate the
malware from the rest of the system, preventing it from infecting other
files and processes on the host machine.

INTRODUCTION: EMERGING TRENDS IN CYBER-MALWARE xvii

• Sandboxing: A sandbox is a virtual environment that isolates the
malware from the rest of the system. This technique can help to
prevent the malware from infecting other files and processes on the
host machine while still allowing malware analysts to observe its
behavior.

• Dynamic analysis: Dynamic analysis involves observing the malware
as it runs in a controlled environment. This technique can help to
identify the malware’s behavior, such as the files it creates, the registry
keys it modifies, and the network connections it establishes.

• Code injection: Code injection involves injecting code into the mal-
ware’s process to modify its behavior or to observe its interactions
with the operating system. This technique can help to identify the
malware’s communication with its command and control server, the
data it exfiltrates, and other behaviors that it exhibits.

Identifying Malware Behavior

Identifying malware behavior is a critical step in malware analysis, as it can
help security professionals to understand how a malware infection works
and develop strategies for mitigating its impact. Malware behavior can
include a range of activities, such as modifying system settings, stealing
data, and communicating with remote servers. Here are some common
techniques used to identify malware behavior [21–23]:

• Static analysis: This involves examining the malware code without
actually running it. This can be done by examining the binary file
or the source code and can help to identify the malware’s behavior by
looking at functions and routines used by the malware. Static analysis
can also be used to identify specific strings or signatures associated
with the malware.

• Dynamic analysis: This involves running the malware in a controlled
environment to observe its behavior. This can be done in a sandbox,
virtual machine, or other isolated environment. Dynamic analysis can
help to identify the malware’s activities, such as files it creates, registry
keys it modifies, network connections it makes, and commands it
sends or receives.

• Network traffic analysis: This involves monitoring network traffic
to identify unusual activity. This can include unusual data transfers,
unusual ports or protocols, and unusual server activity. Network traffic

xviii INTRODUCTION: EMERGING TRENDS IN CYBER-MALWARE

analysis can help to identify malware that is communicating with
remote servers.

• Endpoint detection and response (EDR): EDR tools monitor activity
on endpoints (such as desktops, servers, and mobile devices) to detect
suspicious behavior. EDR tools can identify indicators of compromise
(IoCs), such as suspicious processes, changes to the registry or file
system, and attempts to bypass security controls.

• Reverse engineering: This involves decompiling or disassembling the
malware code to identify its behavior. Reverse engineering can help
to identify how the malware communicates with its command and
control server, how it encrypts or decrypts data, and how it modifies
system settings.

• Memory analysis: This involves examining the contents of the com-
puter’s memory to identify malware behavior. Memory analysis can
help to identify malware that has been loaded into memory and
identify any unusual processes or network connections.

• Behavioral analysis: This involves observing the malware’s behavior
in a virtual environment to identify any unusual or malicious activity.
Behavioral analysis can help to identify the specific behavior of the
malware, which can be used to develop targeted mitigation strategies.

In conclusion, identifying malware behavior is an important step in
malware analysis. It involves using a combination of techniques, such as
static analysis, dynamic analysis, network traffic analysis, endpoint detec-
tion and response, reverse engineering, memory analysis, and behavioral
analysis, to identify the malware’s activities and develop strategies for
mitigating its impact [24]. By understanding the behavior of malware,
security professionals can better protect their systems and networks against
malware infections.

MALWARE DISTRIBUTION METHODS

Malware distribution methods refer to the various ways in which malicious
software is disseminated to infect systems and devices. Malware can take
many forms, including viruses, worms, Trojans, ransomware, and spyware,
among others. Malware authors often use multiple distribution methods to
increase the likelihood of infecting as many devices as possible. The most
common malware distribution methods are as follows [25, 26]:

INTRODUCTION: EMERGING TRENDS IN CYBER-MALWARE xix

• Email Attachments: Malware authors use emails to distribute malware
by attaching malicious files to emails. The recipient is tricked into
downloading and opening the attachment, which infects their system.
The attachments may appear as legitimate files, such as a PDF or
a Word document, but once opened, the malware executes on the
system.

• Social Engineering: Social engineering involves tricking users into
downloading or installing malware by using psychological manipu-
lation techniques. For example, attackers may use a fake website to
convince users to download an application that is malware. Social
engineering may also involve using fake antivirus alerts or fake soft-
ware updates to trick users into installing malware.

• Drive-By Downloads: Drive-by downloads involve malware being
installed on a user’s computer without their knowledge or consent
when they visit a website. This is typically accomplished by exploiting
vulnerabilities in the user’s web browser or other software.

• Malvertising: Malvertising is the distribution of malware through
online advertisements. Attackers use legitimate-looking advertise-
ments to lure users into clicking on them, which then leads to the
installation of malware on the user’s computer.

• Infected Software: Malware authors sometimes distribute infected
software or applications that appear legitimate but are infected with
malware. Once the software is downloaded and installed, the malware
executes on the system.

• USB Drives: Malware can also be distributed through USB drives that
are infected with malware. When the USB drive is inserted into a
computer, the malware automatically executes on the system.

• Watering Hole Attacks: In a watering hole attack, attackers infect
a website that is frequently visited by their target audience. The
attackers then wait for their targets to visit the infected website, where
they are infected with malware.

• Phishing:This method involves sending emails or messages that appear
to be from a trusted source but contain links to malicious websites or
attachments that download malware onto the victim’s computer.

• Software vulnerabilities: Cybercriminals can exploit vulnerabilities in
legitimate software applications to install malware onto a victim’s
computer.

xx INTRODUCTION: EMERGING TRENDS IN CYBER-MALWARE

• Malicious websites: Cybercriminals can create malicious websites that
contain malware. These websites may look legitimate, but they are
designed to infect visitors’ computers with malware. In some cases,
simply visiting the website is enough to download the malware.

• Social media: Cybercriminals can use social media platforms to dis-
tribute malware. They may create fake profiles or pages that appear to
be legitimate but contain links to infected websites or downloads.

• File sharing networks: Some malware is distributed through peer-to-
peer (P2P) file-sharing networks. Cybercriminals may upload infected
files, such as movies or music, and entice users to download them.

• Mobile devices: Malware can also be distributed through mobile
devices, such as smartphones and tablets. Cybercriminals may create
fake apps that contain malware or send infected links through text
messages or social media.

Thus, malware distributionmethods are constantly evolving, and attack-
ers are becoming more sophisticated in their techniques. It is essential to
remain vigilant when opening emails, downloading software, or visiting
websites to avoid falling victim to malware. Keep your software updated,
use reputable antivirus software, and be cautious of suspicious emails
and websites. So, to protect against these malware distribution methods,
it’s important to keep software up to date, use antivirus software, be
cautious when opening email attachments or clicking on links, and avoid
downloading software from untrusted sources.

MALWARE PREVENTION AND MITIGATION STRATEGIES

Malware prevention and mitigation strategies are essential in today’s
digital age, where malware threats are prevalent and continue to evolve.
Prevention and mitigation strategies are measures put in place to reduce
the likelihood and severity of potential hazards, disasters, or crises. These
strategies aim to prevent or mitigate the negative impact of these events on
individuals, communities, and the environment [27].

Prevention strategies involve taking measures to prevent an event from
occurring. These strategies can include implementing safety measures, such
as using protective equipment, conducting safety training, or installing
safety features in buildings or equipment. Preventive strategies can also
involve enforcing regulations or laws to deter risky behaviors or practices.

Mitigation strategies involve taking steps to reduce the impact of an
event that has already occurred. These strategies can include emergency

INTRODUCTION: EMERGING TRENDS IN CYBER-MALWARE xxi

response plans, such as evacuation plans, first aid procedures, and disaster
relief efforts. Mitigation strategies can also involve restoration efforts, such
as rebuilding infrastructure or rehabilitating natural habitats [28].

Effective prevention and mitigation strategies are essential for reducing
the impact of disasters and crises. By taking proactive steps to prevent
events from occurring or mitigating their effects, we can reduce the risk of
harm and save lives [29]. Additionally, these strategies can also help reduce
the economic and environmental impact of disasters, making recovery and
restoration efforts more manageable.

Examples of prevention and mitigation strategies include [27–29]:

• Hazard assessments: Conduct regular assessments to identify potential
hazards and develop appropriate prevention and mitigation strategies.

• Early warning systems: Implement systems that provide early warning
of potential hazards, such as natural disasters or industrial accidents,
to allow for timely response and mitigation.

• Infrastructure improvement: Upgrade and maintain infrastructure,
such as roads, bridges, and buildings, to make them more resilient
to disasters.

• Community education and outreach: Educate communities about
potential hazards, how to prepare for disasters, and what to do in
case of emergency.

• Disaster response planning: Develop comprehensive plans for respond-
ing to disasters and crises, including evacuation plans, emergency
communication systems, and disaster relief efforts.

• Environmental protection measures: Implement measures to protect
the environment, such as reducing pollution and conserving natural
resources, to prevent or mitigate the impact of disasters.

• Risk assessments: Conduct regular assessments to identify potential
hazards and develop appropriate prevention and mitigation strategies.

• Use Antivirus Software: Install and regularly update a reputable
antivirus software program on your computer or device. Antivirus
software can help detect and remove malware from your system.

• Keep Software Up-to-date: Keep your operating system, web browser,
and other software applications up-to-date with the latest security
patches and updates. Cybercriminals often exploit vulnerabilities in
outdated software.

• Use Strong Passwords: Use strong, unique passwords for all your
accounts and avoid using the same password across multiple accounts.

xxii INTRODUCTION: EMERGING TRENDS IN CYBER-MALWARE

Consider using a password manager to generate and store complex
passwords.

• Be Cautious of Email Attachments: Do not open email attachments or
click on links from unknown or suspicious sources. Malware can be
spread through email attachments and links.

• Enable Two-Factor Authentication: Enable two-factor authentication
(2FA) whenever possible. This adds an extra layer of security to your
accounts by requiring a second form of authentication, such as a code
sent to your mobile device.

• Back Up Your Data: Regularly back up your data to an external hard
drive or cloud storage service. This can help mitigate the impact of
malware if your system is infected.

• Educate Yourself: Stay informed about the latest threats and best prac-
tices for preventing and mitigating malware. Learn how to recognize
and avoid phishing scams, and be cautious when downloading and
installing software from the Internet.

FUTURE OF CYBER-MALWARE

The future of cyber-malware is a topic of concern for cybersecurity pro-
fessionals and businesses worldwide. As technology continues to evolve
and become more complex, so do the threats posed by cyber-malware.
One trend that is likely to continue in the future is the use of artificial
intelligence (AI) by cybercriminals to develop more sophisticated and
effective malware. AI-powered malware can adapt to its environment,
evade detection, and target specific vulnerabilities in a network or system.
This type of malware can also learn from its actions and adjust its behavior
accordingly, making it more difficult to stop.

Another potential development in cyber-malware is the increased use
of ransomware attacks. Ransomware is a type of malware that encrypts a
victim’s files or data and demands payment in exchange for the decryption
key. This type of attack has become increasingly common in recent years
and is likely to continue in the future, as it can be highly profitable
for attackers. In fact, some experts predict that ransomware attacks may
become more targeted, with attackers focusing on specific industries or
organizations with high-value data.

The Internet of Things (IoT) is another area of concern when it comes
to the future of cyber-malware. IoT devices are often connected to the
internet and can be vulnerable to attacks, as they may not have strong

INTRODUCTION: EMERGING TRENDS IN CYBER-MALWARE xxiii

security protocols in place. As the number of IoT devices continues to
grow, so does the potential for cyber-attacks targeting them. This could
lead to large-scale disruptions, such as attacks on critical infrastructure or
widespread data breaches.

Finally, there is a growing concern about the use of nation-state-
sponsored cyber-malware attacks. Governments may use cyber-malware to
gain access to sensitive information, disrupt rival countries’ infrastructure,
or carry out espionage activities. These attacks can be difficult to trace and
may have significant political and economic consequences.

So, the future of cyber-malware is likely to be characterized by
increasingly sophisticated and targeted attacks. As technology continues
to advance, so do the threats posed by cybercriminals. To mitigate these
risks, businesses and individuals must remain vigilant and take steps to
protect their networks, devices, and data. This includes implementing
strong security protocols, keeping software up-to-date, and educating
users about the risks of cyber-malware.

Trends and Predictions for Future Malware Development

Malware, or malicious software, has been a persistent threat to computer
systems and networks since the dawn of the internet. Cybercriminals
constantly seek out new ways to exploit vulnerabilities in software and
hardware to gain unauthorized access to sensitive data or control systems
for nefarious purposes. In recent years, malware development has become
more sophisticated, and new trends are emerging that could shape the
future of cybercrime [30]. Here are some predictions for trends in malware
development in the near future [31].

• Fileless malware: Fileless malware attacks are on the rise, and this
trend is likely to continue in the coming years. Fileless malware, also
known as memory-resident malware, operates entirely in a computer’s
memory and leaves no trace on the system’s hard drive. This makes it
difficult to detect and remove, as traditional antivirus software relies
on scanning files on a hard drive. As more businesses adopt cloud-
based computing and mobile devices become more prevalent, fileless
malware is likely to become a more significant threat.

• Malware as a service: Malware as a service (MaaS) is a growing trend
in the cybercriminal underground. Just like software as a service
(SaaS), MaaS allows cybercriminals to rent or purchase malware

xxiv INTRODUCTION: EMERGING TRENDS IN CYBER-MALWARE

from a third-party provider. This lowers the barrier to entry for less
technically savvy criminals, who can now launch sophisticated attacks
without having to develop their ownmalware. AsMaaS becomesmore
prevalent, we can expect to see more varied and sophisticated malware
being developed and deployed.

• Advanced evasion techniques: As cybersecurity defenses become more
sophisticated, malware developers are turning to advanced evasion
techniques to avoid detection. These techniques include using encryp-
tion to hide malicious code, exploiting vulnerabilities in antivirus
software, and creating polymorphic malware that can change its code
to evade detection. As evasion techniques becomemore sophisticated,
it will become increasingly difficult to detect and prevent malware
attacks.

• Targeted attacks: Rather than launching mass attacks, cybercriminals
are increasingly targeting specific individuals or organizations. This
allows them to conduct more sophisticated attacks, such as spear-
phishing, that are tailored to the victim’s interests or behaviors. As
more data becomes available on individuals and organizations, we can
expect to see more targeted attacks that leverage this information to
bypass defenses and gain access to sensitive data.

• IoT malware: With the rise of the Internet of Things (IoT), there is a
growing concern about the security of these devices. IoT devices are
often not designed with security in mind and can be easily hacked,
giving cybercriminals access to sensitive data or control over critical
infrastructure. As the number of IoT devices continues to grow, we
can expect to see more malware specifically designed to target these
devices.

• Machine Learning-Based Malware: Machine learning has become
a powerful tool for cybersecurity, and malware developers are no
exception. By using machine learning algorithms, malware can adapt
to its environment and learn how to evade detection.

• Deepfakes: Deepfakes are videos or images that have been manipulated
using artificial intelligence to make them appear real. In the future, we
can expect to see more malware that uses deepfakes to trick users into
downloading or installing malicious software.

• Mobile Malware: With the increasing use of mobile devices, mobile
malware has become a growing concern. In the future, we can expect
to see more mobile-specific malware that can steal sensitive data or
take control of the device.

INTRODUCTION: EMERGING TRENDS IN CYBER-MALWARE xxv

Consequently, malware development is constantly evolving, and new
trends and techniques are emerging all the time. As cybersecurity defenses
become more sophisticated, cybercriminals will continue to find new ways
to bypass them. Individuals and organizations need to stay informed about
the latest trends in malware development and take appropriate measures to
protect their systems and data.

Emerging Threats and Attack Vectors

As the digital landscape continues to evolve, so do the threats and attack
vectors that cybercriminals use to compromise systems and steal data. Here
are some emerging threats and attack vectors to be aware of [30, 31]:

• Supply Chain Attacks: Supply chain attacks involve targeting a third-
party vendor that supplies software or hardware components to a
larger organization. The attackers compromise the vendor’s systems,
injecting malware into the products or services that the vendor pro-
vides. When the larger organization installs or uses the compromised
product or service, the malware spreads to their systems, giving the
attackers access to sensitive data.

• Zero-Day Exploits: Zero-day exploits are vulnerabilities in software or
hardware that are unknown to the vendor or manufacturer. Attackers
exploit these vulnerabilities before the vendor can patch them, giving
them access to the affected systems. Zero-day exploits are particularly
dangerous because there are no known defenses against them.

• Phishing: Phishing attacks are social engineering attacks that attempt
to trick users into revealing sensitive information or installing mal-
ware. Phishing attacks can take many forms, including emails, text
messages, or phone calls. These attacks are becoming increasingly
sophisticated, using tactics such as personalized messaging and spoof-
ing trusted sources.

• Ransomware: This is a type of malware that encrypts an organization’s
data and demands payment in exchange for the decryption key.
Ransomware attacks are becoming increasingly common and can
cause significant disruption and financial losses.

• Social engineering: Social engineering attacks involve tricking individ-
uals into divulging sensitive information or performing an action that
compromises the security of an organization. Common techniques
include phishing emails and pretexting.

xxvi INTRODUCTION: EMERGING TRENDS IN CYBER-MALWARE

• Machine learning attacks: Machine learning algorithms are vulnerable
to attack, which can lead to inaccurate predictions or even malicious
behavior. Adversarial attacks, where an attacker deliberately modifies
data to trick the algorithm, are becoming increasingly common.

• Insider threats: Insider threats can be intentional or unintentional,
but they can cause significant damage to an organization’s security.
Organizations need to implement policies and procedures to detect
and prevent insider threats.

• AI-Powered Attacks: As artificial intelligence (AI) becomes more
prevalent in cybersecurity, attackers are using AI-powered tools to
automate attacks. AI can be used to automate phishing attacks,
identify vulnerabilities, and evade detection by security measures.

• Cloud-Based Attacks: Cloud computing has become a popular choice
for businesses, but it has also created new attack vectors for cyber-
criminals. Cloud-based attacks can include exploiting vulnerabilities
in cloud infrastructure, stealing login credentials, or compromising
data stored in the cloud.

• Internet of Things (IoT) Attacks: IoT devices, such as smart home
devices and industrial control systems, are becoming more prevalent
in our lives. However, these devices often have weak security measures
and are vulnerable to attack. Attackers can use IoT devices to launch
attacks, such as Distributed Denial of Service (DDoS) attacks, or to
steal sensitive data.

Therefore, as technology continues to advance, cybercriminals will
continue to find new and more sophisticated ways to compromise systems
and steal data. It is important to stay informed about emerging threats
and attack vectors and take proactive measures to protect our systems and
data. This includes regularly updating software, using strong passwords,
and implementing multi-factor authentication.

The Role of Artificial Intelligence in Malware Development
and Detection

Artificial intelligence (AI) is playing an increasingly important role in both
malware development and detection. On the one hand, AI can be used to
create more sophisticated and effective malware, while on the other hand,
it can also be used to develop more advanced detection and prevention
techniques [32].

INTRODUCTION: EMERGING TRENDS IN CYBER-MALWARE xxvii

One of how AI is being used in malware development is through
the use of machine learning algorithms. By training these algorithms on
large datasets of existing malware, researchers can develop new malware
that is specifically designed to evade existing detection methods. Machine
learning can also be used to create more sophisticated attack strategies,
such as spear-phishing campaigns that are tailored to individual victims.

However, AI is also being used to develop new and more effective
methods for detecting and preventing malware. For example, AI can be
used to analyze network traffic and identify patterns of behavior that are
indicative of a malware infection. Similarly, machine learning algorithms
can be trained to identify specific features of malware code, making it
possible to detect and block new malware strains as they emerge.

Another area where AI is having a significant impact on malware
detection is in the development of so-called “next-generation” antivirus
(NGAV) solutions. These solutions use a combination of machine learning
algorithms and behavioral analysis techniques to detect and block malware
in real time, even if it has never been seen before. NGAV solutions can also
be used to identify and block previously unknown attack vectors, such as
zero-day exploits, that traditional antivirus solutions are unable to detect
[33].

Here are some of the new research trends for the role of AI in malware
development and detection [32, 33]:

• Adversarial machine learning: Adversarial machine learning is a tech-
nique where an attacker deliberately modifies data to trick themachine
learning algorithm into making a wrong prediction. In the context of
malware detection, attackers can use this technique to evade detection
by creating malware that appears benign to machine learning algo-
rithms. New research is exploring how to develop machine learning
algorithms that are more resilient to adversarial attacks.

• Explainable AI: Explainable AI is a technique that enables humans to
understand how a machine learning algorithm is making its predic-
tions. In the context of malware detection, explainable AI can help
security analysts understand how a particular malware was detected
and what features of the malware triggered the detection. This can
help security analysts develop more effective detection strategies.

• Deep learning: Deep learning is a subfield of machine learning that
involves training deep neural networks with multiple layers. New
research is exploring how deep learning can be used to detect malware

xxviii INTRODUCTION: EMERGING TRENDS IN CYBER-MALWARE

by analyzing its behavior. For example, deep learning can be used
to analyze network traffic and identify patterns of behavior that are
indicative of a malware infection.

• Reinforcement learning: Reinforcement learning is a type of machine
learning where an algorithm learns to make decisions by interacting
with an environment. In the context of malware detection, reinforce-
ment learning can be used to train an algorithm to make decisions
about whether a particular file is malware or not based on feedback
from the environment.

• Generative adversarial networks (GANs): GANs are a type of deep
learning algorithm that consists of two neural networks that compete
against each other. One network generates samples, while the other
network tries to distinguish between real and fake samples. In the
context of malware detection, GANs can be used to generate syn-
thetic malware samples that can be used to train machine learning
algorithms.

• Transfer learning: Transfer learning is a technique that involves train-
ing a machine learning algorithm on one task and then transferring
that knowledge to another task. In the context of malware detection,
transfer learning can be used to train a machine learning algorithm
on a large dataset of non-malicious software and then transfer that
knowledge to detect malware.

In conclusion, while AI is being used to create more sophisticated and
effective malware, it is also playing an important role in the development of
new and more advanced malware detection and prevention techniques. As
the threat landscape continues to evolve, AI will likely play an increasingly
important role in both offensive and defensive cybersecurity strategies.

CONCLUSIONS AND FUTURE WORK

This chapter highlighted some of the latest trends and challenges in the
field of malware detection and prevention. One of the key takeaways from
this chapter is the increasing sophistication and complexity of malware
attacks. Malware developers are becoming more adept at evading detection
and are using more advanced techniques like artificial intelligence and
machine learning to develop new strains of malware. As a result, traditional
malware detection methods are becoming less effective. To combat this
evolving threat landscape, researchers are exploring new approaches to
malware detection and prevention. These include the use of artificial

INTRODUCTION: EMERGING TRENDS IN CYBER-MALWARE xxix

intelligence and machine learning algorithms to analyze network traffic
and identify patterns of behavior that are indicative of a malware infection.
Next-generation antivirus solutions that use a combination of machine
learning and behavioral analysis techniques are also emerging as an impor-
tant defense against malware attacks.

Another important trend highlighted in this chapter is the increasing
importance of collaboration between industry, academia, and government
in the fight against cyber-malware. By working together and sharing
information, researchers and cybersecurity professionals can stay ahead of
emerging threats and develop more effective countermeasures. Looking to
the future, the chapter concludes by suggesting that the field of malware
detection and prevention will continue to evolve rapidly. New techniques
and approaches will be developed to combat increasingly sophisticated
attacks, and the role of artificial intelligence and machine learning in this
field will continue to grow. In addition, the rise of the IoT is expected to
introduce new challenges for malware detection and prevention, as these
devices often lack the security features of traditional computers and servers.

In conclusion, this chapter provided a valuable overview of the latest
trends and challenges in the field of malware detection and prevention.
By staying abreast of these trends and developing new and innovative
solutions, cybersecurity professionals can help to protect individuals, busi-
nesses, and organizations against the growing threat of cyber-malware.

Security Engineering Lab, Computer
Science Department
Prince Sultan University, Riyadh,
Saudi Arabia
Electronics and Electrical Communication
Engineering Department, Faculty of
Electronic Engineering
Menoufia University, Menouf, Egypt
e-mail: welshafai@psu.edu.sa;
walid.elshafai@el-eng.menofia.edu.eg

Walid El-Shafai

 1504 40963 a 1504 40963
a

mailto:welshafai@psu.edu.sa
mailto:welshafai@psu.edu.sa
mailto:welshafai@psu.edu.sa

 -2016 42291 a -2016 42291 a

mailto:walid.elshafai@el-eng.menofia.edu.eg
mailto:walid.elshafai@el-eng.menofia.edu.eg
mailto:walid.elshafai@el-eng.menofia.edu.eg
mailto:walid.elshafai@el-eng.menofia.edu.eg
mailto:walid.elshafai@el-eng.menofia.edu.eg
mailto:walid.elshafai@el-eng.menofia.edu.eg

xxx INTRODUCTION: EMERGING TRENDS IN CYBER-MALWARE

Security Engineering Lab,
Prince Sultan University, Riyadh,
Saudi Arabia
Computer Science Department,
The University of Jordan, Amman, Jordan
e-mail: imomani@psu.edu.sa;
i.momani@ju.edu.jo

Iman Almomani

School of Computing
Edinburgh Napier University, Edinburgh,
UK
e-mail: l.maglaras@napier.ac.uk

Leandros A. Maglaras

REFERENCES

1. Aziz S, Irshad M, Haider SA, Wu J, Deng DN, Ahmad S (2022)
Protection of a smart grid with the detection of cyber-malware
attacks using efficient and novel machine learning models. Front
Energy Res 10:1102

2. Choi KS, Lee CS, Merizalde J (2023) Spreading viruses and mali-
cious codes. In: Handbook on crime and technology. Edward Elgar
Publishing, Florida, United States, pp 232–250

3. Riebe T, Kaufhold MA, Reuter C (2021) The impact of organi-
zational structure and technology use on collaborative practices in
computer emergency response teams: an empirical study. Proc ACM
Hum-Comput Interact 5(CSCW2):1–30

4. Gazet A (2010) Comparative analysis of various ransomware virii. J
Comput Virol 6:77–90

5. Bridges L (2008) The changing face of malware. Netw Secur
2008(1):17–20

6. Alkhadra R, Abuzaid J, AlShammari M, Mohammad N (2021)
Solar winds hack: in-depth analysis and countermeasures. In: 2021
12th international conference on computing communication and
networking technologies (ICCCNT). IEEE, Kharagpur, India,
pp 1–7

 1504 6590 a 1504 6590
a

mailto:imomani@psu.edu.sa
mailto:imomani@psu.edu.sa
mailto:imomani@psu.edu.sa

 -2016
7919 a -2016 7919 a

mailto:i.momani@ju.edu.jo
mailto:i.momani@ju.edu.jo
mailto:i.momani@ju.edu.jo
mailto:i.momani@ju.edu.jo

 1504 13232 a 1504 13232
a

mailto:l.maglaras@napier.ac.uk
mailto:l.maglaras@napier.ac.uk
mailto:l.maglaras@napier.ac.uk
mailto:l.maglaras@napier.ac.uk

INTRODUCTION: EMERGING TRENDS IN CYBER-MALWARE xxxi

7. Danisevskis J, Piekarska M, Seifert JP (2014) Dark side of the
shader: mobile gpu-aided malware delivery. In: Information secu-
rity and cryptology–ICISC 2013: 16th international conference,
Seoul, Korea, November 27–29, 2013, Revised Selected Papers 16.
Springer International Publishing, Seoul, Korea, pp 483–495

8. Singh UK, Joshi C, Kanellopoulos D (2019) A framework for zero-
day vulnerabilities detection and prioritization. J Inf Secur Appl
46:164–172

9. Kumar R, Bawa SR (1979) Hepatic silver binding protein (Ag BP)
from sparrow (Passer domesticus). Experientia 35:1621–1623

10. Lika RA, Murugiah D, Brohi SN, Ramasamy D (2018) NotPetya:
cyber attack prevention through awareness via gamification. In:
2018 International conference on smart computing and electronic
enterprise (ICSCEE). IEEE, Shah Alam, Malaysia, pp 1–6

11. Warmsley D, Waagen A, Xu J, Liu Z, Tong H (2022) A survey of
explainable graph neural networks for cyber malware analysis. In:
2022 IEEE international conference on big data (big data). IEEE,
Osaka, Japan, pp 2932–2939

12. Eboibi FE (2017) A review of the legal and regulatory frame-
works of Nigerian Cybercrimes Act 2015. Comput Law Secur Rev
33(5):700–717

13. Wu M, Moon YB (2017) Taxonomy of cross-domain attacks on
cybermanufacturing system. Procedia Comput Sci 114:367–374

14. Patel P, Kannoorpatti K, Shanmugam B, Azam S, Yeo KC (2017)
A theoretical review of social media usage by cyber-criminals. In:
2017 International conference on computer communication and
informatics (ICCCI). IEEE, Coimbatore, India, pp 1–6

15. Rogers MK (2011) The psyche of cybercriminals: a psycho-social
perspective. In: Cybercrimes: a multidisciplinary analysis, Springer,
Singapore, pp 217–235

16. Almomani I, Ahmed M, El-Shafai W (2022) Android malware
analysis in a nutshell. PloS One 17(7):e0270647

17. Almomani I, Alkhayer A, El-Shafai W (2022) An automated vision-
based deep learning model for efficient detection of android mal-
ware attacks. IEEE Access 10:2700–2720

18. El-Shafai W, Almomani I, AlKhayer A (2021) Visualized malware
multi-classification framework using fine-tuned CNN-based trans-
fer learning models. Appl Sci 11(14):6446

xxxii INTRODUCTION: EMERGING TRENDS IN CYBER-MALWARE

19. Afianian A, Niksefat S, Sadeghiyan B, Baptiste D (2019) Malware
dynamic analysis evasion techniques: a survey. ACM Comput Surv
(CSUR) 52(6):1–28

20. Chen P, Huygens C, Desmet L, Joosen W (2016) Advanced or
not? A comparative study of the use of anti-debugging and anti-
VM techniques in generic and targeted malware. In: ICT systems
security and privacy protection: 31st IFIP TC 11 international
conference, SEC 2016, Ghent, Belgium, May 30–June 1, 2016,
Proceedings 31. Springer International Publishing, Ghent, Bel-
gium, pp 323–336

21. Yu B, Fang Y, Yang Q, Tang Y, Liu L (2018) A survey of malware
behavior description and analysis. Front Inf Technol Electron Eng
19:583–603

22. Shaid SZM, Maarof MA (2014) Malware behavior image for
malware variant identification. In: 2014 International symposium
on biometrics and security technologies (ISBAST). IEEE, Kuala
Lumpur, Malaysia, pp 238–243

23. Almomani I, Alkhayer A, El-Shafai W (2022) A crypto-
steganography approach for hiding ransomware within hevc streams
in android iot devices. Sensors 22(6):2281

24. Almomani I, AlKhayer A, El-Shafai W (2021) Novel ransomware
hiding model using HEVC steganography approach. Comput
Mater Contin 70(2):1209–1228

25. Choi SY, Lim CG, Kim YM (2019) Automated link tracing for clas-
sification of malicious websites in malware distribution networks. J
Inf Process Syst 15(1):100–115

26. Kim D (2019) Potential risk analysis method for malware distribu-
tion networks. IEEE Access 7:185157–185167

27. Rudd EM, Rozsa A, Günther M, Boult TE (2016) A survey of
stealth malware attacks, mitigation measures, and steps toward
autonomous open world solutions. IEEE Commun Surv Tutorials
19(2):1145–1172

28. Kapoor A, Gupta A, Gupta R, Tanwar S, Sharma G, Davidson IE
(2021) Ransomware detection, avoidance, and mitigation scheme:
a review and future directions. Sustainability 14(1):8

29. Djenna A, Bouridane A, Rubab S, Marou IM (2023) Artificial
intelligence-based malware detection, analysis, and mitigation.
Symmetry 15(3):677

INTRODUCTION: EMERGING TRENDS IN CYBER-MALWARE xxxiii

30. Gazzan M, Sheldon FT (2023) Opportunities for early detection
and prediction of ransomware attacks against industrial control
systems. Future Internet 15(4):144

31. Gorment NZ, Selamat A, Cheng LK, Krejcar O (2023) Machine
learning algorithm for malware detection: taxonomy, current chal-
lenges and future directions. IEEE Access, 11:1–50

32. Samtani S, Zhao Z, Krishnan R (2023) Secure knowledge manage-
ment and cybersecurity in the era of artificial intelligence. Inf Syst
Front 25(2):425–429

33. Akhtar MS, Feng T (2023) Evaluation of machine learning algo-
rithms for malware detection. Sensors 23(2):946

CONTENTS

Introduction: Emerging Trends in Cyber-Malware ix

1 A Deep-Vision-Based Multi-class Classification System of
Android Malware Apps 1
Iman Almomani, Walid El-Shafai, Mohanned Ahmed,
Sara AlAnsary, Ghada AlMudahi, and Lama AlSwayeh

2 Android Malware Detection Based on Network Analysis
and Federated Learning 23
Djallel Hamouda, Mohamed Amine Ferrag,
Nadjette Benhamida, Zine Eddine Kouahla,
and Hamid Seridi

3 ASParseV3: Auto-Static Parser and Customizable Visualizer 41
Iman Almomani, Rahaf Alkhadra, and Mohanned Ahmed

4 Fast-Flux Service Networks: Architecture, Characteristics,
and Detection Mechanisms 63
Basheer Al-Duwairi and Ahmed S. Shatnawi

5 Efficient Graph-Based Malware Detection Using
Minimized Kernel and SVM 91
Billy Tsouvalas and Dimitrios Serpanos

xxxv

xxxvi CONTENTS

6 Deep Learning for Windows Malware Analysis 119
Mohamed Belaoued, Abdelouahid Derhab, Nassira Chekkai,
Chikh Ramdane, Noureddine Seddari, Abdelghani Bouras,
and Zahia Guessoum

7 Malware Analysis for IoT and Smart AI-Based Applications 165
Syed Emad ud Din Arshad, Moustafa M. Nasralla,
Sohaib Bin Altaf Khattak, Taqwa Ahmed Alhaj
and Ikram ur Rehman

8 A Multiclass Classification Approach for IoT Intrusion
Detection Based on Feature Selection and Oversampling 197
Zayna Amierh, Lina Hammad, Raneem Qaddoura,
Huthaifa Al-Omari, and Hossam Faris

9 Malware Mitigation in Cloud Computing Architecture 235
Sai Kumar Medaram and Leandros Maglaras

Index 279

CHAPTER 1

A Deep-Vision-Based Multi-class
Classification System of Android Malware

Apps

Iman Almomani, Walid El-Shafai, Mohanned Ahmed,
Sara AlAnsary, Ghada AlMudahi, and Lama AlSwayeh

1.1 INTRODUCTION

Nowadays, smartphones have become an essential part of our lives because
they are not used only for phone calls; they can be used for personal
payment, keeping personal data, healthcare facilities, and other different
personal services and applications [17]. Furthermore, it is commonly
known that Android Operating System (OS) is considered the most

I. Almomani (�)
Security Engineering Lab, Prince Sultan University, Riyadh, Saudi Arabia

Computer Science Department, The University of Jordan, Amman, Jordan
e-mail: imomani@psu.edu.sa; i.momani@ju.edu.jo

W. El-Shafai
Security Engineering Lab, Computer Science Department, Prince Sultan
University, Riyadh, Saudi Arabia

© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2024
I. Almomani et al. (eds.), Cyber Malware, Security Informatics and
Law Enforcement, https://doi.org/10.1007/978-3-031-34969-0_1

1

 29185 -2241 a 29185 -2241
a

 1152 40875 a 1152 40875 a

mailto:imomani@psu.edu.sa
mailto:imomani@psu.edu.sa
mailto:imomani@psu.edu.sa

 10537 40875 a 10537 40875 a

mailto:i.momani@ju.edu.jo
mailto:i.momani@ju.edu.jo
mailto:i.momani@ju.edu.jo
mailto:i.momani@ju.edu.jo
https://doi.org/10.1007/978-3-031-34969-0_1
https://doi.org/10.1007/978-3-031-34969-0_1
https://doi.org/10.1007/978-3-031-34969-0_1
https://doi.org/10.1007/978-3-031-34969-0_1
https://doi.org/10.1007/978-3-031-34969-0_1
https://doi.org/10.1007/978-3-031-34969-0_1
https://doi.org/10.1007/978-3-031-34969-0_1
https://doi.org/10.1007/978-3-031-34969-0_1
https://doi.org/10.1007/978-3-031-34969-0_1
https://doi.org/10.1007/978-3-031-34969-0_1
https://doi.org/10.1007/978-3-031-34969-0_1

2 I. ALMOMANI ET AL.

popular OS for personal smartphones compared to other operating sys-
tems. Therefore, smartphones with Android OS platforms are highly
targeted by cybercriminal operations [14].

Android OS is a Linux-based open-source OS developed and sponsored
by Google company [23]. Google offers an authorized mobile play store
with millions of Android applications (APKs). However, the Google play
store is not the only open source of APKs; several other unauthorized third-
party mobile stores are available for APKs. Therefore, due to the availability
of a massive number of official and unofficial sources for APKs, the number
of possible privacy and security problems by malicious software is boosted.

In 2017, Google company introduced a machine learning (ML)-based
system called “Play Protect” as an attempt to alleviate the malware risks
[24]. This ML-based ecosystem checks the APKs before and after their
uploading to the Google market. However, it has been reported that over
one million users have been infected by APKs available on the Google play
store, and they have different types of malware [32]. Therefore, researchers
and developers must put great effort into developing efficient and accurate
malware detection tools to reduce the effect of growing malware risks.

Three different types of malware detection (MD) scenarios could be
used to detect malware risks: static-based MD, dynamic-based MD, and
vision-based MD [5, 7, 10]. The static-based MD algorithms analyze the
Android APKs to extract some static features without running the APK
files [6]. On the other hand, the dynamic-based MD algorithms monitor
and examine the malware running behavior inside an isolated operating
environment (i.e., an Android emulator) to check the behavior and effect
of the produced malware traffic [8, 15]. Finally, the vision-based MD
algorithms convert the Android APK files or their extracted features into

Electronics and Electrical Communication Engineering Department, Faculty of
Electronic Engineering, Menoufia University, Menouf, Egypt
e-mail: welshafai@psu.edu.sa; walid.elshafai@el-eng.menofia.edu.eg

M. Ahmed • S. AlAnsary • G. AlMudahi • L. AlSwayeh
Security Engineering Lab, Computer Science Department, Prince Sultan
University, Riyadh, Saudi Arabia
e-mail: mqasem@psu.edu.sa; 221421242@psu.edu.sa; 221420463@psu.edu.sa;
221421227@psu.edu.sa

 1152 43505 a 1152 43505 a

mailto:welshafai@psu.edu.sa
mailto:welshafai@psu.edu.sa
mailto:welshafai@psu.edu.sa

 10577 43505 a 10577 43505 a

mailto:walid.elshafai@el-eng.menofia.edu.eg
mailto:walid.elshafai@el-eng.menofia.edu.eg
mailto:walid.elshafai@el-eng.menofia.edu.eg
mailto:walid.elshafai@el-eng.menofia.edu.eg
mailto:walid.elshafai@el-eng.menofia.edu.eg
mailto:walid.elshafai@el-eng.menofia.edu.eg

 1152 48990 a 1152 48990 a

mailto:mqasem@psu.edu.sa
mailto:mqasem@psu.edu.sa
mailto:mqasem@psu.edu.sa

 10278 48990 a 10278 48990
a

mailto:221421242@psu.edu.sa
mailto:221421242@psu.edu.sa
mailto:221421242@psu.edu.sa

 20938 48990 a 20938 48990 a

mailto:221420463@psu.edu.sa
mailto:221420463@psu.edu.sa
mailto:221420463@psu.edu.sa

 -2016 50207 a -2016 50207 a

mailto:221421227@psu.edu.sa
mailto:221421227@psu.edu.sa
mailto:221421227@psu.edu.sa

A DEEP-VISION-BASED MULTI-CLASS CLASSIFICATION SYSTEM OF ANDROID… 3

visual images before in-depth training and testing analyses by different
artificial intelligence (AI) tools, including machine learning (ML) and deep
learning (DL) algorithms [12, 25].

The main advantages of vision-based MD algorithms compared to other
static-based or dynamic-based MD algorithms are reducing the computa-
tional cost and avoiding reverse engineering steps required in static-based
malware analysis [9]. In addition, they do not need to utilize special
and isolated running environments to check the behavior of the malware
APKs as required in dynamic-based malware analysis [11]. Thus, this
encourages us to introduce a deep-vision-based multi-class classification
system for android malware apps. The proposed vision-based MD system
is based on utilizing 21 different convolutional neural network (CNN)
models for malware detection and recognition. In the proposed MD
system, the android apps’ binary formats are first converted into color and
grayscale vision formats before forwarding them to utilized CNN models
for training and testing mechanisms. The classification performance of the
proposed vision-based detection system is examined using different security
and recognition metrics. The obtained results prove the high detection
performance of the suggested MD system in effectively detecting various
malware families.

The main contributions in this chapter are summarized as follows:

• Outlining the most recent related Android malware detection sys-
tems tested on the two open-source CICAndMal2017 and CICMal-
Droid2020 datasets.

• Proposing an accurate deep-vision-based multi-class classification sys-
tem for Android malware apps for two recent Android datasets that
compose different malware families.

• Developing and implementing different 21 fined-tuned DL algo-
rithms on the proposed classification system.

• Testing the proposed classification system’s performance on different
color and grayscale vision formats of the android malware families.

• Presenting comprehensive security and detection analyses for the
proposed classification system using different assessment parameters.

The remainder of this chapter is structured as follows. Section 1.2
presents the summary of the recent Android malware detection algo-
rithms applied to the CICAnd- Mal2017 and CICMalDroid2020 datasets.
Section 1.3 explains the proposed vision-based multi-class classification

4 I. ALMOMANI ET AL.

system. Section 1.4 introduces the evaluations and discussions. Finally,
Sect. 1.5 provides the concluding remarks and future works.

1.2 RELATED WORKS

Different malware detection and classification models have been intro-
duced in the literature for malware analysis of Android apps using two
open-source CICAndMal2017 and CICMalDroid2020 datasets [26, 27].
To the best of our knowledge, all these malware analysis studies were
based on static, dynamic, or hybrid-based detection techniques. But, none
of these previous related studies are based on vision-based detection
algorithms. Thus, this motivated us to introduce a deep-vision-based
multi-class classification system for Android malware apps in the CICAnd-
Mal2017 and CICMalDroid2020 datasets.

Therefore, different recent static- or dynamic-based malware analysis
and classification systems were introduced based on the CICAndMal2017
andCICMalDroid2020 datasets [2–4, 16, 16, 19, 21, 28–31, 34].Mahshid
et al. [19] used the CICAndMal2017 dataset with 89 extracted network
traffic features to detect and categorize Android malware. They employed
two deep neural models that were based on a hybrid of long short-term
memory (LSTM) and convolution neural network (CNN). Their proposed
CNN-LSTM model achieved a malware category classification with an
accuracy of 98.9% and malware family classification with an accuracy of
97.29%.

Syed et al. [21] suggested a DeepAMD model based on different ML
algorithms to identify and detect various android malware families. They
tested their proposed model using the CICAndMal2017 and CICMal-
Droid2020 datasets, including benign and malicious Android apps. The
introduced DeepAMD model was based on both dynamic and static
detection algorithms. For the static-based analysis, the DeepAMD model
achieved a 93.4% accuracy for binary malware classification, while it intro-
duced 93.1% accuracy in the case of multi-malware families classification.
In addition, for the dynamic analysis, the DeepAMD model scored a
maximum detection accuracy of 80.3% for binary malware classification
and 59.0% for a different malware families classification.

In [16], the authors introduced a detection algorithm based on the
hybridization of gated recurrent units (GRU) and recurrent neural network

A DEEP-VISION-BASED MULTI-CLASS CLASSIFICATION SYSTEM OF ANDROID… 5

(RNN) for identifying malicious attacks in Android apps. First, they col-
lected two control attributes from Android apps: program interface (API)
phones and privileges. Then, they tested the proposed detection algorithm
on the different Android families of the CICAndMal2017 dataset. The
results reveal that the developed DL algorithm is better than several other
detection methods by achieving a 98.2% detection accuracy.

In [31], the authors suggested an ML-based ransomware detection
model. This model uses different ML algorithms to extract and analyze the
valuable features of Android ransomware apps. They tested the detection
efficacy of their proposed model on the CICMalDroid2020 dataset to
check its classification accuracy of 10 distinct families of ransomware
apps. The obtained results prove that the random forest classifier achieved
superior ransomware detection efficiency compared to those of the other
employed ML-based classifiers.

The authors in [4] presented an android malware detection system using
five different ML algorithms and one DL algorithm to analyze and extract
the main static features of the Android apps. These extracted features were
permissions, API calls, permissions rate, and monitoring system events.
The suggested detection system was examined using the CICAndMal2017
dataset that composes both benign and malware apps, and it achieved a
detection accuracy of 98%.

In [30], a semi-supervised ML algorithm is presented to distinguish
between ransomware from benign Android apps. The proposed algorithm
composes different feature extraction and selection techniques that were
tested on different labeled and unlabeled Android apps of the CICAn-
dMal2017 dataset. In [34], a host-level encrypted traffic shaping-based
Android malware classification approach was proposed. The classification
approach tested three different ML algorithms on the real-world CICMal-
Droid2020 dataset for feature extraction and detection mechanisms. In
addition, the authors simulated two experimental scenarios: malware family
classification and binary malware detection. The results proved that the
proposed classification approach had an accuracy of 98.8% for binary
malware classification, while it achieved a 95.2% detection accuracy for
malware family classification scenario.

In [2], a conversation-level traffic feature-based Android malware cate-
gorization and detection approach was presented. This approach consisted
of four phases: feature extraction, data cleaning, feature selection, and
training and testing. Different ML-based classifiers were tested, and the
attained results tested on the CICMalDroid2020 dataset proved that the

6 I. ALMOMANI ET AL.

extra-trees ML classifier achieved superior detection and categorization
efficiency in terms of accuracy, recall, and precision compared to those of
other employed ML-based classifiers.

In [16], a novel DL-based Android malware detection algorithm was
presented. It was based on utilizing a gated recurrent network to extract the
static API and permission features fromAndroid apps. The proposed detec-
tion algorithmwas trained and tested on the CICAndMal2017 dataset, and
an accuracy of 98.2% was accomplished. In [3], AI-based Android malware
analysis and detection systems were introduced. This malware detection
system was based on using different ML and DL algorithms such as k-
nearest neighbors (KNN), support vector machine (SVM), autoencoder,
long short-term memory (LSTM), linear discriminant analysis (LDA),
and convolution neural network long short-term memory (CNN-LSTM)
algorithms. The proposed detection system was tested using the CICMal-
Droid2020 dataset. The SVM achieved the highest detection accuracy of
99.5% for the detection analysis of the employed ML algorithms. For the
security analysis of the DL algorithms, the LSTM algorithm presented a
superior accuracy of 98.7%.

In [29], the authors presented different supervised learning algorithms
for network traffic-based malware detection. Therefore, the Android mal-
ware detection was based on employing six algorithms: SVM, naïve Bayes,
decision tree, multilayer perceptron neural network, K-nearest neighbors,
and random forest. These ML-based classifiers were examined using the
CICAndMal2017 dataset for binary and multi-classification scenarios. The
random forest classifier introduced the best malware detection perfor-
mance compared to other tested classifiers in terms of the obtained recall,
precision, and accuracy results.

In [28], an efficient pseudo-label stacked auto-encoder (PLSAE)-based
Android malware detection approach was suggested. The PLSAE algo-
rithm is a semi-supervised learning approach; thus, it does not require
more labeled data for efficient malware detection. The experimental anal-
ysis examines both labeled and unlabeled training Android instances. In
addition, the feature extraction operation utilized both static and dynamic
mechanisms. The security and detection analysis was based on analyzing
five different Android categories of the CICMalDroid2020 dataset. The
obtained outcomes proved that the suggested semi-supervising algorithm
introduced high detection accuracy compared to other traditional super-
vised and semi-supervised ML algorithms.

A DEEP-VISION-BASED MULTI-CLASS CLASSIFICATION SYSTEM OF ANDROID… 7

1.3 PROPOSED DEEP-VISION-BASED MULTI-CLASS
CLASSIFICATION SYSTEM

The main aim of this chapter is to propose a deep vision-based multi-
class classification system for Android malware apps. As shown in Fig. 1.1,
the proposed vision-based classification system composes four consecutive
phases: dataset gathering, preprocessing, training, and testing and evalua-
tion.

In the first phase of dataset gathering, we collected the Android APKs
and categorized them into different families, as presented in Table 1.1.
In addition, in this phase, we ensured that there were no intersections or
repeating apps in each tagged family. Then, in the second preprocessing
phase, the Android apps were converted into two different vision-based
formats (color and grayscale). The conversion process of Android apps
to vision formats is performed by converting the 1D byte vectors of the
portable executable Android files into 2D vector images [8, 15].

In the third phase of the proposed classification system, we performed
the training process for the employed DL algorithms. First, we split
the vision-based dataset into three different subsets: training, validation,
and testing with the ratios of 80%, 10%, and 10%. Then, the training
process starts by training each one of the utilized CNN algorithms by
the 80% of generated vision-based Android images. Finally, the best-
trained parameters of each employed CNN algorithm were collected and
saved to be exploited in the testing stage. In the training process, we
used two formats of color and gray images to extensively train the used
CNN algorithms to examine their detection capabilities in identifying the
Android malware attacks when they are represented in different vision-
based formats.

In the proposed multi-class classification system, 21 different pre-
trained CNN algorithms (ResNet50, VGG16, DenseNet121, VGG19,
DenseNet201, DenseNet169, EfficientNetB7, EfficientNetB6, Effi-
cientNetB5, EfficientNetB4, EfficientNetB3, EfficientNetB2, Efficient-
NetB1, EfficientNetB0, InceptionResNetV2, MobileNet, InceptionV3,
MobileNetV3Large, MobileNetV2, Xception, and MobileNetV3Small)
[13, 20, 33] were tested. These CNN algorithms were implemented in
Python and developed by TensorFlow and Keras libraries [1, 18, 22].

Finally, in the last testing and evaluation phase, we exploited the best
collected fine-tuned parameters resulting from the prior stage to accurately
test and evaluate the utilized CNN algorithms. So, in this phase, we used

8 I. ALMOMANI ET AL.

Fig. 1.1 Flow structure of the proposed deep-vision-based multi-class classifica-
tion system

A DEEP-VISION-BASED MULTI-CLASS CLASSIFICATION SYSTEM OF ANDROID… 9

Table 1.1 Families and
the number of samples of
the employed Android
datasets

Dataset Family No. of samples
CICAndMal2017 Benign 1648

Adware 103
Ransomware 100
Scareware 112
SMSMalware 109

CICMalDroid2020 Benign 4042
Adware 1515
Banking 2506
Riskware 4362
SMSMalware 4822

10% of the visual Android images for the validation process and 10% for
the testing process. In the evaluation of the employed CNN algorithms,
different security and detection assessment parameters are estimated, as
will be discussed and clarified in Sect. 1.4.3.

1.4 EVALUATIONS AND DISCUSSIONS

This section presents a discussion of the security analysis and detection
assessment of the proposed vision-based multi-class classification system
for Android malware apps. All experimental tests were carried out using
the vision formats of the Android apps included in the CICAndMal2017
[26] and CICMalDroid2020 [27] datasets, as clarified in Sect. 1.4.1. The
proposed vision-based malware detection system is extensively evaluated
using different detection and evaluation metrics, as indicated in Sect. 1.4.2.

1.4.1 Datasets Description

We tested the detection performance of the proposed multi-class classi-
fication system on the vision-based formats of two standard unbalanced
Android datasets: CICAndMal2017 and CICMalDroid2020 [26, 27].
Table 1.1 presents the names of the families and the number of samples
included in the examined Android datasets. As indicated in Table 1.1,
each one of these datasets consists of five families: one benign and
four malware families. For example, the first CICAndMal2017 dataset
composes of Adware, Ransomware, Scareware, and SMSmalware malicious
families, while the secondCICMalDroid2020 dataset composes of Adware,
Banking, Riskware, and SMSMalware families.

10 I. ALMOMANI ET AL.

Table 1.2 shows samples of the vision-based color and grayscale formats
of the binary Android APKs for the two examined datasets. It is observed
that each android family, benign or malware, has distinct features and char-
acteristics compared to other android families. So, vision-based Android
malware detection models are highly recommended for malware classifica-
tion systems compared to other static or dynamic detection models.

1.4.2 Security Detection Metrics

In the performance analysis of the proposed vision-based multi-class
classification system, various security detection metrics were employed
to comprehensively test the detection and classification efficacy of the
examined DL algorithms. The mathematical formulas of the exploited
security detection metrics are expressed as follows:

.F1-Score = 2T P

2T P + FN + FP
(1.1)

.Precision (PPV) = T P

FP + T P
(1.2)

.Recall = T P

T P + FN
(1.3)

. Accuracy = T N + T P

T N + FP + T P + FN
(1.4)

.Misclassification rate (MR) = FP + FN

T N + FP + T P + FN
(1.5)

.FOR = FN

FN + T N
(1.6)

.FDR = FP

FP + T P
(1.7)

.FNR = FN

FN + T P
(1.8)

A DEEP-VISION-BASED MULTI-CLASS CLASSIFICATION SYSTEM OF ANDROID… 11

T
ab

le
 1
.2

V
is
io
n-
ba

se
d
co
lo
r a

nd
 g
ra
ys
ca
le

 sa
m
pl
es

 o
f A

nd
ro
id

 A
PK

s

C
ol
or

G
ra
y

C
ol
or

G
ra
y

C
ol
or

G
ra
y

C
ol
or

G
ra
y

C
ol
or

G
ra
y

B
en

ig
n

A
dw

ar
e

R
an

so
m
w
ar
e

Sc
ar
ew

ar
e

SM
SM

al
w
ar
e

(i
)
C
IC

A
nd

M
al
20

17
 d
at
as
et
.

C
ol
or

G
ra
y

C
ol
or

G
ra
y

C
ol
or

G
ra
y

C
ol
or

G
ra
y

C
ol
or

G
ra
y

B
en

ig
n

A
dw

ar
e

B
an

ki
ng

R
is
kw

ar
e

SM
SM

al
w
ar
e

(i
i)

 C
IC

M
al
D
ro

id
20

20
 d
at
as
et
.

12 I. ALMOMANI ET AL.

.FPR = FP

FP + T N
(1.9)

.NPV = T N

FN + T N
(1.10)

.TNR = T N

FP + T N
, (1.11)

where the confusion matrix of each examined DL algorithm is exploited to
estimate the numerical values of the TN (true negative), TP (true positive),
FN (false negative), and FP (false positive) parameters. Where, FOR: false
omission rate, FDR: false discovery rate, TPR: true positive rate, FNR:
false negative rate, FPR: false positive rate, NPV: negative predictive value,
TNR: true negative rate, and PPV: positive predictive value.

In addition to testing the performance of the proposed classification
system using the evaluation parameters given in Eqs. (1.1–1.11), the
confusion matrix [15] and loss and accuracy curves [8] were also utilized
to comprehensively assess the security and detection capabilities of the
employed CNN algorithms.

1.4.3 Results Analysis

This section discusses the obtained results of the detection and security
analysis for the proposed vision-based multi-class classification system in
terms of the assessment parameters described in Sect. 1.4.2. The experi-
mental parameters of the CNN algorithms used in the proposed classifica-
tion system are organized in Table 1.3.

For a simple presentation of the analysis of the results, the precision, F1-
Score, recall, and accuracy metrics are emphasized for each employed CNN
algorithm in the proposed classification system for color and grayscale
vision-based scenarios on the examined unbalanced datasets (CICAnd-
Mal2017 and CICMalDroid2020), as revealed in Tables 1.4 and 1.5.

Tables 1.4 and 1.5 introduce the detection and security performance
analysis of all 21 CNN predictive algorithms examined on two vision-
based color and grayscale formats of the two unbalanced CICAndMal2017
and CICMalDroid2020 datasets. The attained results disclosed that the
MobileNetV3Large and VGG16 CNN algorithms achieve superior detec-
tion efficiency for the color and grayscale formats of the CICAndMal2017

A DEEP-VISION-BASED MULTI-CLASS CLASSIFICATION SYSTEM OF ANDROID… 13

Table 1.3 Experimental parameters of the CNN algorithms used in the proposed
classification system
Simulation parameter Value
Software Python libraries TensorFlow and Keras
Training/testing/validation ratio 80/10/10 (%)
CNN optimizer ADAM
Learning rate 0.0001
Regularizer decay rate 0.001
CNN regularizer L2 regularizer algorithm
Epochs number 128
Function of loss Categorical cross-entropy function
Minimum batch size 64

dataset, respectively. In addition, the obtained results clarified that the
EfficientNetB7 and ResNet50 CNN algorithms accomplish the most
excellent detection proficiency for the color and grayscale formats of the
CICMalDroid2020 dataset, respectively.

To provide a simple presentation of the experimental analysis, we show
only the confusion matrices and loss and accuracy curves of the best-
accomplished CNN algorithms for the two examined vision-based color
and grayscale formats of the two unbalanced datasets. Figure 1.2 shows
the obtained confusionmatrices of the best-performedMobileNetV3Large
and VGG16 CNN algorithms for the two vision-based color and grayscale
formats of the CICAndMal2017 dataset. Figure 1.3 demonstrates the
attained confusion matrices of the best-performed EfficientNetB7 and
ResNet50 CNN algorithms for the two vision-based color and grayscale
formats of the CICMalDroid2020 dataset. It is revealed from these
obtained confusion matrices that the MobileNetV3Large, VGG16, Effi-
cientNetB7, and ResNet50 CNN algorithms provide low false detection
performance for the two vision-based color and grayscale formats in both
CICAndMal2017 & CICMalDroid2020 datasets.

Figure 1.4 presents the obtained accuracy and loss curves of the best-
accomplished MobileNetV3Large and VGG16 CNN algorithms for the
two vision-based color and grayscale formats of the CICAndMal2017
dataset. Figure 1.5 presents the obtained accuracy and loss curves of the
best-executed EfficientNetB7 and ResNet50 CNN algorithms for the two
vision-based color and grayscale formats of the CICMalDroid2020 dataset.
The acquired simulation outcomes verify that the MobileNetV3Large,
VGG16, EfficientNetB7, and ResNet50 CNN algorithms offer the lowest

14 I. ALMOMANI ET AL.

Table 1.4 Detection performance analysis of the proposed classification system
for the CICAndMal2017 dataset
Model Format Accuracy (%) F1-score (%) Precision (%) Recall (%)
VGG16 Color

Gray
86.12
89.0

84.41
88.16

84.87
88.5

86.12
89.0

ResNet50 Color
Gray

86.6
87.56

85.72
86.73

86.97
88.97

86.6
87.56

VGG19 Color
Gray

86.6
88.04

85.89
87.6

87.52
87.83

86.6
88.04

DenseNet121 Color
Gray

86.12
84.69

83.77
82.78

81.85
86.66

86.12
84.69

DenseNet169 Color
Gray

85.17
87.08

83.37
86.02

85.84
85.82

85.17
87.08

DenseNet201 Color
Gray

87.08
86.6

85.82
85.08

87.29
86.04

87.08
86.6

EfficientNetB0 Color
Gray

84.21
84.21

81.33
81.09

83.26
81.93

84.21
84.21

EfficientNetB1 Color
Gray

86.6
84.21

85.54
81.82

85.32
80.57

86.6
84.21

EfficientNetB2 Color
Gray

85.17
85.65

84.09
84.17

84.62
84.24

85.17
85.65

EfficientNetB3 Color
Gray

87.08
86.6

85.69
85.7

88.47
86.51

87.08
86.6

EfficientNetB4 Color
Gray

87.08
86.6

85.86
86.23

85.52
86.11

87.08
86.6

EfficientNetB5 Color
Gray

84.21
86.12

82.12
84.58

84.27
86.01

84.21
86.12

EfficientNetB6 Color
Gray

82.3
83.25

78.59
80.07

80.42
86.12

82.3
83.25

EfficientNetB7 Color
Gray

84.21
81.82

81.52
78.49

81.89
77.35

84.21
81.82

InceptionResNetV2 Color
Gray

79.9
78.95

74.9
69.66

71.1
62.33

79.9
78.95

InceptionV3 Color
Gray

83.25
83.73

79.88
81.27

78.89
81.02

83.25
83.73

MobileNet Color
Gray

81.82
82.3

78.17
79.69

76.63
80.59

81.82
82.3

MobileNetV2 Color
Gray

81.34
82.3

77.64
79.2

75.66
78.41

81.34
82.3

MobileNetV3Large Color
Gray

86.6
88.04

86.46
87.21

87.69
88.22

86.6
88.04

MobileNetV3Small Color
Gray

85.17
85.65

84.68
83.68

84.6
85.13

85.17
85.65

Xception Color
Gray

80.38
82.3

78.88
80.52

78.0
80.72

80.38
82.3

A DEEP-VISION-BASED MULTI-CLASS CLASSIFICATION SYSTEM OF ANDROID… 15

Table 1.5 Detection performance analysis of the proposed classification system
for the CICMalDroid2020 dataset
Model Format Accuracy (%) F1-score (%) Precision (%) Recall (%)
VGG16 Color

Gray
88.6
89.29

88.64
89.29

88.72
89.31

88.6
89.29

ResNet50 Color
Gray

88.77
89.99

88.82
89.99

88.89
90.03

88.77
89.99

VGG19 Color
Gray

88.66
88.66

88.77
88.69

88.94
88.77

88.66
88.66

DenseNet121 Color
Gray

87.04
85.71

86.95
85.83

87.1
86.23

87.04
85.71

DenseNet169 Color
Gray

86.17
86.92

86.26
86.75

86.89
86.67

86.17
86.92

DenseNet201 Color
Gray

87.15
88.66

87.2
88.63

87.4
88.66

87.15
88.66

EfficientNetB0 Color
Gray

89.64
89.24

89.67
89.18

89.72
89.15

89.64
89.24

EfficientNetB1 Color
Gray

89.7
89.47

89.72
89.58

89.77
89.8

89.7
89.47

EfficientNetB2 Color
Gray

88.02
88.6

88.03
88.54

88.05
88.63

88.02
88.6

EfficientNetB3 Color
Gray

88.89
89.0

88.78
88.97

89.03
89.1

88.89
89.0

EfficientNetB4 Color
Gray

89.64
88.77

89.68
88.83

89.74
88.9

89.64
88.77

EfficientNetB5 Color
Gray

87.96
89.41

88.05
89.41

88.4
89.41

87.96
89.41

EfficientNetB6 Color
Gray

88.19
87.62

88.16
87.63

88.16
87.66

88.19
87.62

EfficientNetB7 Color
Gray

89.87
88.37

89.88
88.51

90.01
88.88

89.87
88.37

InceptionResNetV2 Color
Gray

54.8
60.42

47.81
54.69

46.43
57.34

54.8
60.42

InceptionV3 Color
Gray

81.19
80.61

80.86
79.81

81.03
80.4

81.19
80.61

MobileNet Color
Gray

78.18
83.8

77.84
83.91

77.72
84.13

78.18
83.8

MobileNetV2 Color
Gray

79.92
83.97

80.0
83.82

80.2
83.87

79.92
83.97

MobileNetV3Large Color
Gray

89.41
89.7

89.4
89.67

89.47
89.72

89.41
89.7

MobileNetV3Small Color
Gray

88.31
88.66

88.27
88.68

88.23
88.82

88.31
88.66

Xception Color
Gray

80.56
82.47

81.13
82.49

82.57
82.66

80.56
82.47

16 I. ALMOMANI ET AL.

Fig. 1.2 Confusion matrices of the best-performed CNN algorithms on the color
and grayscale formats of the CICAndMal2017 dataset. (a) MobileNetV3Large. (b)
VGG16

Fig. 1.3 Confusion matrices of the best-performed CNN algorithms on the color
and grayscale formats of the CICMalDroid2020 dataset. (a) EfficientNetB7. (b)
ResNet50

detection loss and highest detection accuracy compared to the other
tested CNN algorithms used in the proposed classification system, as also
summarized in Tables 1.4 and 1.5.

A DEEP-VISION-BASED MULTI-CLASS CLASSIFICATION SYSTEM OF ANDROID… 17

Fig. 1.4 Accuracy and loss curves for the best-performed CNN algorithms
on the color and grayscale formats of the CICAndMal2017 dataset. (a)
MobileNetV3Large. (b) VGG16

Fig. 1.5 Accuracy and loss curves for the best-performed CNN algorithms on the
color and grayscale formats of the CICMalDroid2020 dataset. (a) EfficientNetB7.
(b) ResNet50

1.5 CONCLUSIONS AND FUTURE WORK

This chapter introduced an efficient vision-basedmulti-classification system
to detect different types of malware families in Android apps. The proposed
MD system could be adapted to detect malware in Android apps in visual
color or grayscale formats. An in-depth evaluation of the proposed MD

18 I. ALMOMANI ET AL.

system has been conducted to comprehensively check the detection efficacy
of all utilized 21 CNN algorithms. The acquired detection outcomes for
all employed CNN algorithms and tested evaluation metrics prove that
the proposed vision-based MD systems can be a promising solution for
malware analysis in Android OS. For future work, the proposed vision-
based MD system should include different preprocessing stages, such as
extracting handcrafted features from the visual malware images, to improve
detection accuracy. In addition, the proposed system could be examined
to detect different ransomware families. Furthermore, we aim to examine
the proposed MD system performance for other mobile operating systems.
Moreover, we can investigate the impact of obfuscation techniques on the
performance of vision-based MD systems.

Acknowledgments The authors would like to thank the support of Prince Sultan
University. Moreover, this research was done during the author Iman Almomani’s
sabbatical year 2021/2022 from the University of Jordan, Amman, Jordan.

REFERENCES

1. Abadi M et al (2016) TensorFlow: a system for large-scale machine
learning. In: 12th USENIX symposium on operating systems
design and implementation (OSDI 16), pp 265–283

2. Abuthawabeh MKA, Mahmoud KW (2019) Android malware
detection and categorization based on conversation-level network
traffic features. In: 2019 International Arab conference on infor-
mation technology (ACIT). IEEE, Piscataway, pp 42–47

3. Alkahtani H, Aldhyani TH (2022) Artificial intelligence algorithms
for malware detection in android-operated mobile devices. Sensors
22(6):2268

4. Almahmoud M, Alzu’bi D, Yaseen Q (2021) Redroiddet: android
malware detection based on recurrent neural network. Proc Com-
put Sci 184:841–846

5. Almohaini R, Almomani I, AlKhayer A (2021) Hybrid-based anal-
ysis impact on ransomware detection for android systems. Appl Sci
11(22):10976

6. Almomani I, AlKhayer A, Ahmed M (2021) An efficient machine
learning-based approach for android v. 11 ransomware detection.
In: 2021 1st international conference on artificial intelligence and
data analytics (CAIDA). IEEE, Piscataway, pp 240–244

A DEEP-VISION-BASED MULTI-CLASS CLASSIFICATION SYSTEM OF ANDROID… 19

7. Almomani I, Qaddoura R, Habib M, Alsoghyer S, Al Khayer A,
Aljarah I, Faris H (2021) Android ransomware detection based on
a hybrid evolutionary approach in the context of highly imbalanced
data. IEEE Access 9:57674–57691

8. Almomani I, Alkhayer A, El-Shafai W (2022) An automated
vision-based deep learning model for efficient detection of android
malware attacks. IEEE Access 10:2700–2720

9. Awan MJ, Masood OA, Mohammed MA, Yasin A, Zain AM,
Damaševičius R, Abdulkareem KH (2021) Image-based malware
classification using VGG19 network and spatial convolutional
attention. Electronics 10(19):2444

10. Bakour K, Ünver HM (2021) Visdroid: android malware classi-
fication based on local and global image features, bag of visual
words and machine learning techniques. Neural Comput Appl
33(8):3133–3153

11. Ben Abdel Ouahab I, Elaachak L, Bouhorma M (2022) Classifica-
tion of malicious and benign binaries using visualization technique
andmachine learning algorithms. In: Big data intelligence for smart
applications. Springer, Berlin, pp 297–315

12. Bovenzi G, Cerasuolo F, Montieri A, Nascita A, Persico V, Pescapé
A (2022) A comparison of machine and deep learning models for
detection and classification of android malware traffic. In: IEEE
DistInSys 22

13. Brownlee J (2016) Deep learning with Python: develop deep
learning models on Theano and TensorFlow using Keras

14. Dhalaria M, Gandotra E (2021) Android malware detection tech-
niques: a literature review. Recent Patents Eng 15(2):225–245

15. El-Shafai W, Almomani I, AlKhayer A (2021) Visualized malware
multi-classification framework using fine-tuned CNN-based trans-
fer learning models. Appl Sci 11(14):6446

16. Elayan ON, Mustafa AM (2021) Android malware detection using
deep learning. Proc Comput Sci 184:847–852

17. Garg S, Baliyan N (2021) Comparative analysis of android and IOS
from security viewpoint. Comput Sci Rev 40:100372

18. Géron A (2019) Hands-on machine learning with Scikit-Learn,
Keras, and TensorFlow: concepts, tools, and techniques to build
intelligent systems

20 I. ALMOMANI ET AL.

19. Gohari M, Hashemi S, Abdi L (2021) Android malware detection
and classification based on network traffic using deep learning. In:
2021 7th international conference on web research (ICWR). IEEE,
Piscataway, pp 71–77

20. Hodnett M, Wiley JF (2018) R Deep Learning Essentials: a step-
by-step guide to building deep learning models using TensorFlow,
Keras, and MXNet

21. Imtiaz SI, ur Rehman S, Javed AR, Jalil Z, Liu X, Alnumay WS
(2021) Deepamd: Detection and identification of android malware
using high-efficient deep artificial neural network. Fut Gener Com-
put Syst 115:844–856

22. Joseph FJJ, Nonsiri S, Monsakul A (2021) Keras and tensorflow: a
hands-on experience, pp 85–111

23. Kiran KumarM, Kranthi Kumar S, Kalpana E, SrikanthD, Saikumar
K (2022) A novel implementation of Linux based android platform
for client and server. In: A fusion of artificial intelligence and
internet of things for emerging cyber systems. Springer, Berlin, pp
151–170

24. Kouliaridis V, Kambourakis G (2021) A comprehensive survey
on machine learning techniques for android malware detection.
Information 12(5):185

25. Kumar S, Janet B, Neelakantan S (2022) Identification of malware
families using stacking of textural features and machine learning.
Expert Syst Appl 208:118073

26. Lashkari AH, Kadir AFA, Taheri L, Ghorbani AA (2018) Toward
developing a systematic approach to generate benchmark android
malware datasets and classification. In: 2018 international Carna-
han conference on security technology (ICCST). IEEE, Piscataway,
pp 1–7

27. Mahdavifar S, Kadir AFA, Fatemi R, Alhadidi D, Ghorbani AA
(2020) Dynamic android malware category classification using
semi-supervised deep learning. In: 2020 IEEE international con-
ference on dependable, autonomic and secure computing. Inter-
national conference on pervasive intelligence and Computing,
International conference on cloud and big data computing, Inter-
national conference on cyber science and technology congress
(DASC/PiCom/CBDCom/CyberSciTech). IEEE, Piscataway, pp
515–522

A DEEP-VISION-BASED MULTI-CLASS CLASSIFICATION SYSTEM OF ANDROID… 21

28. Mahdavifar S, Alhadidi D, Ghorbani A et al (2022) Effective and
efficient hybrid android malware classification using pseudo-label
stacked auto-encoder. J Netw Syst Manag 30(1):1–34

29. Manzano C, Meneses C, Leger P, Fukuda H (2022) An empirical
evaluation of supervised learning methods for network malware
identification based on feature selection. Complexity 18:6760920.
https://doi.org/10.1155/2022/6760920

30. Noorbehbahani F, Saberi M (2020) Ransomware detection with
semi-supervised learning. In: 2020 10th international conference
on computer and knowledge engineering (ICCKE). IEEE, Piscat-
away, pp 024–029

31. Noorbehbahani F, Rasouli F, Saberi M (2019) Analysis of machine
learning techniques for ransomware detection. In: 2019 16th
international ISC (Iranian Society of Cryptology) conference on
information security and cryptology (ISCISC). IEEE, Piscataway,
pp 128–133

32. Razgallah A, Khoury R, Hallé S, Khanmohammadi K (2021) A
survey of malware detection in android apps: recommendations and
perspectives for future research. Comput Sci Rev 39:100358

33. Vasilev I, Slater D, Spacagna G, Roelants P, Zocca V (2019) Python
Deep Learning: exploring deep learning techniques and neural
network architectures with Pytorch, Keras, and TensorFlow

34. Zhou J, Niu W, Zhang X, Peng Y, Wu H, Hu T (2020) Android
malware classification approach based on host-level encrypted
traffic shaping. In: 2020 17th international computer conference
on wavelet active media technology and information processing
(ICCWAMTIP). IEEE, Piscataway, pp 246–249

https://doi.org/10.1155/2022/6760920
https://doi.org/10.1155/2022/6760920
https://doi.org/10.1155/2022/6760920
https://doi.org/10.1155/2022/6760920
https://doi.org/10.1155/2022/6760920
https://doi.org/10.1155/2022/6760920
https://doi.org/10.1155/2022/6760920

CHAPTER 2

Android Malware Detection Based on
Network Analysis and Federated Learning

Djallel Hamouda, Mohamed Amine Ferrag,
Nadjette Benhamida, Zine Eddine Kouahla,

and Hamid Seridi

2.1 INTRODUCTION

With the development and the increasing number of available Android-
based systems and application software, such as in industrial IoT systems
and smartphones [2], the latter are also becoming more popular targets
for cyber criminals, who plant their malicious apps as an exploit to conduct
serious and devastating cyber attacks over a large network of connected

D. Hamouda • N. Benhamida • Z. E. Kouahla • H. Seridi
Labstic Laboratory, Department of Computer Science, Guelma University,
Guelma, Algeria
e-mail: hamouda.djallel@univ-guelma.dz; benhamida.nadjette@univ-guelma.dz;
kouahla.zineeddine@univ-guelma.dz; seridi.hamid@univ-guelma.dz

M. A. Ferrag (�)
Technology Innovation Institute, Abu Dhabi, United Arab Emirates
e-mail: mohamed.ferrag@tii.ae

© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2024
I. Almomani et al. (eds.), Cyber Malware, Security Informatics and
Law Enforcement, https://doi.org/10.1007/978-3-031-34969-0_2

23

 29185 -2241 a 29185 -2241
a

 1152 42043 a 1152 42043
a

mailto:hamouda.djallel@univ-guelma.dz
mailto:hamouda.djallel@univ-guelma.dz
mailto:hamouda.djallel@univ-guelma.dz
mailto:hamouda.djallel@univ-guelma.dz

 15773 42043 a 15773 42043 a

mailto:benhamida.nadjette@univ-guelma.dz
mailto:benhamida.nadjette@univ-guelma.dz
mailto:benhamida.nadjette@univ-guelma.dz
mailto:benhamida.nadjette@univ-guelma.dz

 -2016
43261 a -2016 43261 a

mailto:kouahla.zineeddine@univ-guelma.dz
mailto:kouahla.zineeddine@univ-guelma.dz
mailto:kouahla.zineeddine@univ-guelma.dz
mailto:kouahla.zineeddine@univ-guelma.dz

 14079 43261 a 14079 43261 a

mailto:seridi.hamid@univ-guelma.dz
mailto:seridi.hamid@univ-guelma.dz
mailto:seridi.hamid@univ-guelma.dz
mailto:seridi.hamid@univ-guelma.dz

 1152 47528 a 1152 47528 a

mailto:mohamed.ferrag@tii.ae
mailto:mohamed.ferrag@tii.ae
mailto:mohamed.ferrag@tii.ae
https://doi.org/10.1007/978-3-031-34969-0_2
https://doi.org/10.1007/978-3-031-34969-0_2
https://doi.org/10.1007/978-3-031-34969-0_2
https://doi.org/10.1007/978-3-031-34969-0_2
https://doi.org/10.1007/978-3-031-34969-0_2
https://doi.org/10.1007/978-3-031-34969-0_2
https://doi.org/10.1007/978-3-031-34969-0_2
https://doi.org/10.1007/978-3-031-34969-0_2
https://doi.org/10.1007/978-3-031-34969-0_2
https://doi.org/10.1007/978-3-031-34969-0_2
https://doi.org/10.1007/978-3-031-34969-0_2

24 D. HAMOUDA ET AL.

devices. Several malware detection strategies have been proposed in the
literature and consist primarily of two stages: malware analysis and malware
detection (Fig. 2.1) [18]. The former describes the analysis and processing
techniques used for detection and consists of two types of approaches: static
analysis and dynamic analysis (Fig. 2.1a). The static analysis investigates the
malware code without running it, using reverse engineering techniques.
Usually, the application package (APK) file is decompressed, and many
representative features are extracted from it [19]. This static analysis had
proven to be effective against known malware. It is, however, ineligible
with new ones and easily deceived by obfuscation techniques. Dynamic
analysis monitor and analyze the runtime characteristics of malware appli-
cations while running their code, based on an assessment of behaviors to
determine the functionality of malware, such as information flow tracking,
function call monitoring, and instruction tracing, which can be applied
[16]. Dynamic analysis generally uses virtual environments and emulators
for analysis and data collection, an effective technique to identify unknown
malware. However, it is time-consuming and requires costly computation.
Dynamic malware detection was also introduced from a network traffic
aspect to detect malware that conducts its attacks over networks to remote
targets [4]. And due to this, they produce network traffic traces that can be
detected by analyzing the network traffic behavior. However, the latter is
also a tough task and suffers from increasing false alarm rates or decreasing
sensitivity (i.e., detecting attack classes) as the number of different types of
behaviors increases.

Fig. 2.1 A taxonomy of malware analysis techniques and detection strategies. (a)
Taxonomy of Malware analysis techniques for feature extraction. (b) Taxonomy of
Malware detection techniques

FEDERATED LEARNING BASED ANDROID MALWARE DETECTION 25

The malware detection strategy (Fig. 2.1b) describes the placement
strategy and the detection approach. The placement strategy specifies
whether the malware detection system is implemented on the host (a
mobile or IoT device) or in the cloud to characterize the detection
system’s efficiency against complex code variants of malware while using
limited computation resources [5]. On the other side, malware detection
approaches describe the methods and algorithms used to detect and
identify malware. Several ML and DL approaches have been proposed
in this context to improve the accuracy of malware detection. However,
their efficiency depends on the availability of large and diverse datasets.
In addition to the described challenges, data privacy and shortages are
another important challenge when deploying conventional cloud-based
and deep-learning-based (DL) security solutions. In this chapter, we study
the effectiveness of the recently proposed federated learning paradigm for
malware detection against the aforementioned challenges. Our objective
is to develop an efficient and effective learning mechanism for malware
detection in terms of detection accuracy and computation cost, all while
maintaining data privacy. The main contributions to this chapter are as
follows:

• We first reviewed Android malware detection strategies and related
challenges.

• We propose a novel privacy-preserving federated deep learning tech-
nique using convolutional neural networks (CNN) to detect several
types of malware, based on network traffic behavior analysis.

• We evaluate the performance of the proposed detection methodology
in terms of accuracy, detection rate, and under different FL settings
(i.e., number of participating devices).

The remainder of this chapter is organized as follows. We review
malware detection strategies in Sect. 2.1. Section 2.2 provides an overview
of related works. Section 2.3 demonstrates the deployment architecture.
Section 2.4 demonstrates experimental results and effectiveness of the
proposed FL-based malware detection methodology. Finally, we conclude
our work in Sect. 2.5.

2.2 RELATED STUDIES

Several studies have been conducted in the domain of Android malware
detection relying on deep learning methodologies. Researches are making

26 D. HAMOUDA ET AL.

use of both static and dynamic malware analysis techniques to extract
representative features necessary for the learning process of deep learning
models. In a case study proposed by Yuan et al. [21] that links the
features from the static analysis with the features from the dynamic
analysis of Android apps for malware detection, the extracted features
fall into three categories: required permission, sensitive API, and dynamic
behavior. The authors proposed a deep learning approach based on a deep
belief network (DBN) for malware detection engine (DroidDetector);
the results reveal that the proposed model obtained improved accuracy
under diverse scenarios and outperformed traditional machine learning
techniques especially with the availability of more training data. Similar in
[22], the authors used FlowDroid static analysis tool to extract data flows
from all sensitive sources to sensitive sinks and proposed deep learning-
based approach using DBN for identifying malware directly from their data
flows. Results show that the proposed approach significantly outperforms
traditional ML approaches in appropriate settings. Karbab et al. [10]
presented an automatic detection system of Android malware using deep
learning techniques and raw sequences of API method calls to identify
Android malware. Kim et al. [11] proposed a multimodal deep learning
method for malware detection based on only static analysis features by
analyzing APK files such as manifest file, adex file, and a .so file to reflect
various characteristics of applications in various aspects. The proposed deep
learning multimodal was utilized to discriminate the properties of different
types of input features that are processed in different initial networks
separately, and the results of the initial networks are subsequently used
to train the final network, to produce the classification results. Iadarola et
al. [9] proposed a deep convolutional network (CNN) for image-based
malware classification aimed to discriminate between Android malware
and trusted samples (Benign). They also provided a methodology about
the interpretability of the predictions performed by the model using a
cumulative heatmap manually performed by the analyst. Experimental
results demonstrated the efficiency of the proposed method, by identifying
six different malware families from benign samples and also by providing
interpretability about the predictions performed by the model. Unlike in
[4], Arora et al. proposed the first Android malware detection using its
network traffic analysis. They captured network traffic data of 13 malware
apps. Then, dynamic analysis was conducted on the traffic behavior to
generate significant features for malware detection. The authors selected a
rule-based machine learning classifier and obtained reasonably acceptable

FEDERATED LEARNING BASED ANDROID MALWARE DETECTION 27

results. Similar in [6], the authors presented a network-based detection
model to distinguish malicious applications from normal ones installed on
Android mobile devices. They tried various ML models to select the best
deployment model. Another study [23] employed a dynamic detection
approach based on network traffic, which captured the application’s behav-
ior throughout runtime. The authors considered seven network traffic
features and obtained acceptable results. In [12], and [13], Lashkari et
al. proposed new Android malware datasets using network traffic analysis.
The authors installed a large number of Android apps (both benign and
malicious) on real devices and then captured network traffic from user
interactions to collect all normal and abnormal behaviors that character-
ize malware apps. The authors proposed several ML-based techniques
to detect and identify malware apps. Experimental results showed the
effectiveness of network-based malware detection. However, results for
malware identification were not good enough. Recently, Rey et al. [17]
investigated the potential afforded by the emergent federated learning
(FL) paradigm for IoT malware detection, and the experimental findings
indicated the promising performance with an extra security service, which
is data privacy protection. Table 2.1 summarizes related works on Android
malware detection based on deep learning.

In summary, several Android malware detection studies have been pro-
posed and discussed, applying bothML andDL approaches and employing
different malware analysis techniques with matching features. However,
DL-based malware detection using the predictability of their network
behavior has not been widely discussed. In addition, other constraints
identified, including computing resource limitations, a lack of training data,
and privacy concerns, have not been commonly discussed.

To this end, we proposed a novel privacy-preserving DL-based malware
detection system employing the emergent federated learning paradigm
to efficiently and effectively detect a large number of Android malware
samples based on network analysis and without data sharing.

2.3 METHODOLOGY

2.3.1 Federated Learning Paradigm

Recently, a novel collaborative learning paradigm and a decentralized
optimization strategy named federated learning (FL) have been proposed
to train ML and DLmodels based on datasets and computational resources

28 D. HAMOUDA ET AL.

T
ab

le
 2
.1

Su

m
m
ar
y
of

 re
la
te
d
st
ud

ie
s o

f A
nd

ro
id

 m
al
w
ar
e
de

te
ct
io
n
us
in
g
D
L

R
ef
er
en
ce

In
pu
t f
ea
tu
re
s

D
. a
pp
ro
ac
h

Pe
rf
or
m
an
ce

 %
Ye
ar

D
at
as
et

Yu

an
 e
t a

l.
[2
1]

St
at
ic

 a
nd

 D
yn

am
ic

D
B
N

A
cc

 =
 9
6.
76

20
16

C
on

ta
gi
o

Z
hu

 e
t a

l.
[2
2]

St
at
ic

D
B
M

A
cc

 =
 9
5.
05

20
17

M
al
G
en

om
e

K
im

 e
t a

l.
[1
1]

St
at
ic

D
N
N

A
cc

 =
 8
5,

 F
nr

 =
 1
4

T
nr

 =
 9
6,

 T
pr

 =
 8
5

Fp
r =

 1
5

20
18

M
al
G
en

om
e

K
ar
ba

b
et

 a
l.
[1
0]

St
at
ic

 a
nd

 D
yn

am
ic

A
N
N

F1
 =

 9
8.
18

, F
pr

 =
 1
.1
5

20
18

M
al
D
oz

er

G
ar
g
et

 a
l.
[6
]

D
yn

am
ic

R
an

do
m

 fo
re
st

D
ec
is
io
n
tr
ee

K

 n
ea
re
st

 n
ei
gh

bo
r,

A
cc

 =
 9
8

Fp
r =

 1
.6

20

17
N
/
A

Z
ul
ki
fli

 e
t a

l.
[2
3]

D
yn

am
ic

D
ec
is
io
n
tr
ee

A
cc

 =
 9
7.
6–

98
.4

R
oc

 =
 9
3.
2–

95
.4

20

18
D
re
bi
n

C
on

ta
gi
od

um
ps
et

Ia
da
ro
la

 e
t a

l.
[9
]

St
at
ic

C
N
N

A
cc

 =
 9
8.
0,

 P
r =

 9
7.
2

A
uc

 =
 9
9.
5,

 R
c
=
97

F1

 =
 9
7.
1

20
21

D
re
bi
n

M
al
G
en

om
e

A
nd

re
si
ni

 e
t a

l.
[3
]

D
yn

am
ic

A
ut
oE

nc
od

er

A
cc

 =
 8
9.
63

R
c
=
66

.4
–9

5.
4

F1
 =

 7
1.
9

20
21

A
A
G
M
20

17

R
ey

 e
t a

l.
[1
7]

D
yn

am
ic

M
L
P,

 A
ut
oE

nc
od

er

A
cc

 =
 9
9–

99
.9

T
pr

 =
 9
7–

99

T
nr

 =
 9
1–

99

20
22

N
-B

aI
oT

A
cc
: A

cc
ur
ac
y,

 P
r:

 P
re
ci
si
on

, R
c:

 R
ec
al
, T

nr
: T

ru
e
ne

ga
tiv

e
ra
te
, F

pr
 :
Fa

ls
e
po

si
tiv

e
ra
te
, F

1
: F

2-
sc
or
e

FEDERATED LEARNING BASED ANDROID MALWARE DETECTION 29

that are distributed across multiple devices through parameter exchange
while preventing data leakage [15]. This novel paradigm has the potential
to overcome significant challenges of traditional ML approaches for mal-
ware detection, such as resource constraints, data privacy, data distribution,
and heterogeneity [7]. The main idea of FL is to solve the conventional
optimization problem of ML iteratively in a distributed manner, such
that each device tries to minimize its local cost function through local
training while seeking to optimize the global model parameters. The FL
optimization problem can be formulated as follows:

. min
W∈Rd

f (W) = 1
N

N∑

i=1

(W,Di)ג (2.1)

where .W ∈ Rd denotes the global model parameters to be optimized,
.N,Di denotes the participating devices and their corresponding data
samples, and .ג(W,Di) denotes the cost function to be optimized and
returns the locally computed updates. In each round of FL, three main
steps are performed [15]:

• Device sampling: A subset of devices, also called clients, is chosen
according to selection criteria to participate in the training procedure.

• Local computation: Each chosen device trains its local model on its
local dataset, minimizing its local cost function .(W,Di)ג.

• Aggregation and consensus: The locally computed model updates
are aggregated to update the global model, either with the help
of a central entity called an aggregation server, which describes the
centralized FL, or by communicating with only neighboring devices,
which describes the decentralized FL.

Although FL provides data privacy and effective deployment of ML
approaches, there are also research efforts to make FL more secure against
inherited vulnerabilities within the framework, such as poisoning attacks,
model stealing, and Byzantine attacks [8].

2.3.2 Our Proposed Detection Methodology

With the aim to efficiently and effectively detect large-scale Android mal-
ware while considering privacy preservation, we incorporate FL for model

30 D. HAMOUDA ET AL.

training. Our methodology consists mainly of three steps: data processing,
FDL-based model training, and results evaluation (in Sect. 2.4).

Dataset Processing
Deep-learning-based malware detection is largely influenced by the quan-
tity and quality of training data; the more high-quality data there is, the
higher the accuracy and results. In this study, we selected an adequate and
benchmark dataset named AAGM (Android Adware and General Malware)
due to its diversity in malware samples [12]. This dataset comprises 1500
benign app samples and 400 malware samples from 10 families, including 5
families of adware and 5 families of general malware. The authors installed
these samples on actual smartphones and started running user-interaction
scenarios to capture meaningful network traffic behavior. They provided
a total of 471597 benign instances and 160358 malware instances, along
with 80 network traffic features (i.e., flow-based, time-based, and packet-
based features), in order to distinguish Android malware behavior from
that of benign apps. Before training, it is essential to do exploratory analyses
and data processing on the dataset to handle multiple issues. First, we elim-
inate five null features that would have a negative impact on model perfor-
mance “furg_cnt,” “burg_cnt,” “flow_urg,” “flow_cwr,” and “flow_ece,”
we also eliminate four other almost null features like “std_idle,” “bAvg-
BytesPerBulk,” “bAvgPacketsPerBulk,” and “bAvgBulkRate.” After that,
we dropped redundant instances and instances with missing values, and
then the data was normalized before being split to 80% for training and
20% for testing using the hold-out validation strategy. In the FDL settings,
80% of the training data is again distributed to the participating clients.
Figure 2.2 illustrates dataset class distribution after the preprocessing step
using the t-SNE technique [20].

FDL-Based Model Training
We setup the FDL process using multiple clients holding local datasets.
These local datasets were sampled from the main dataset and identically
distributed according to the number of participating clients, all with the
same feature vector as the main dataset.

Our proposed FDL-based training paradigm is demonstrated in Algo-
rithm 1. Figure 2.3 depicts an organizational chart of our FDL-based
Android malware detection method:

1. A coordinating central server starts the FDL process by initializing
the global model architecture and corresponding global parameters

FEDERATED LEARNING BASED ANDROID MALWARE DETECTION 31

Fig. 2.2 Exploring the high-dimensional AAGM2017-dataset using the t-SNE
technique [20]. (a) Train data visualization. (b) Test data visualization

Fig. 2.3 A flow chart of the proposed FDL-based Android malware detection
such as the learning rate, the local batch size, and the local training
epochs.

2. The server sends this information to pre-selected clients (i.e., clients
with resource availability and sufficient training data) to compute
local updates in an asynchronous manner.

3. Each client performs a number of local training epochs on the
received model and then sends back the computed updates (i.e., the
new model parameters) to the server.

32 D. HAMOUDA ET AL.

4. To update the global model, the server aggregates all local updates
from selected clients. After that, Steps 2, 3, and 4 are repeated for
another round of FDL until model convergence.

5. The server evaluates and maintains the final version of the global
model for future use. Depending on its local performance to be
deployed for malware detection, each participating client is inde-
pendent in preserving any global model states throughout the FDL
training.

Algorithm 1: Federated learning based Android Malware detec-
tion [15]
1 Server (K :Selected clients , C :Total clients, R : Total rounds)

/* model initialization */
2 Cnn1 ← Initilize_Cnn_Model()
3

/* Start FDL with a random selected clients at each
round */

4 for t = 1, .., R do
5 St ← Subset randomly chosen clients from C
6 Parallel.for k ∈ St do
7 Cnnk

t+1 ← Client(Cnnt , k) // Compute local updates

8 end
9 Cnnt+1 ← 1

K

∑K
k=1 Cnnk

t+1 // Aggregate all client updates

10 end
1 Client (i.e., device) (m :model, k :client-Id)

/* Split the local dataset D into B local data batch */
33 B ← Split(D, B)
55 for i = 1,..,E :local epochs do
6 for b ∈ B do
7 m ← m − η∇fc(m, b) // Local client training
8 end
9 end

10 Send m to the Server

For the DL approach, different model architectures are well equipped
and can be deployed to treat and handle the required malware behaviors,
degrees of difficulty, and complexity. In our study, we selected the convolu-
tional neural network model (CNN), a dedicated class of neural networks
for data processing with a familiar network structure, designed mainly to

FEDERATED LEARNING BASED ANDROID MALWARE DETECTION 33

extract discriminatory spatial features for model decisions. CNN networks
are composed of a set of convolutional layers that use a mathematical
operation called convolution and process perceptron layers [14].

2.4 RESULT AND DISCUSSION

The proposed FDL-based Android malware detection approach using
CNN was tested in a free environment of the Google Colaboratory using
the PyTorch library and GPU hardware accelerators. Table 2.2 depicts our
experimental setting. Several experiments were carried out to adjust hyper-
parameters and achieve an accurate and generalized detection model. The
performance evaluation is conducted for malware detection (i.e., binary
classification) using the following performance measures:

• Accuracy (Acc): given by:

.Acc = T P + T N

T P + FP + T N + FN
where : (2.2)

TP: is the number of correctly classified positive samples.
TN: is the number of correctly classified negative samples.

Table 2.2 Experimental settings for federated learning
Subject Parameters Values
CNN Pytorch Conv1d-1 Classifier [1, 64, 70]

Conv1d-2 [1, 32, 70]
Conv1d-3 [1, 16, 70]
Linear-4 [1, 32]
Linear-5 [1, 2]
Learning rate .η 0.001
Loss function CrossEntropyLoss
Activation function ReLu
Batch size 126
Classification function SoftMax

FDL Clients Sets [10, 20, 40]
Data Distribution IID
Local epochs [2,3]
Total rounds 30
Local Batch size 32

34 D. HAMOUDA ET AL.

FP: is the number of wrongly classified positive samples
FN: is the number of wrongly classified negative samples.

• Precision (Pr): the proportion of appropriate malware predictions
(TP) to the total number of predicted malware outcomes, as given
by :

.Pr = T P

T P + FP
(2.3)

• Detection rate (Dr): the proportion of appropriate malware predic-
tions (TP) compared to the overall count of all samples that should
have been detected as malware as given by :

.Dr = T P

T P + FN
(2.4)

• Time complexity: the temporal complexity of the global model conver-
gence and depends on the client’s training time and model aggrega-
tion time. Considering that clients are training simultaneously, the
time complexity would be the average time of all clients’ training
plus model aggregation. The temporal complexity of the server-client
interaction was ignored.

Table 2.3 presents a comparison of detection performance with other
comparable recent research using the AAGM-2017 dataset. The experi-
mental settings differed, with different validation strategies and different
test and training samples. For that, we implemented a centralized detection

Table 2.3 Comparison of performance between our proposed detection method
and other related works using AAGM2017 dataset
Reference Classes Acc Pr Recall F1-score Support
Lashkari et al. 2018 [12] Benign + Mal 0.91 0.91 N/A N/A N/A

Benign N/a 0.95 8000Andresini et al. 2021 [3]
Malware 0.89

0.66 0.71
2000

Benign N/AAcharya et al. 2022 [1]
Malware N/A 0.97 0.96 0.97 1915
Benign 0.87 0.89 0.88 41877 Our centralized

Cnn Malware 0.84
0.78 0.76 0.77 22408

Benign 0.85 0.91 0.88 41877 Our proposed FDL
approach Malware 0.837

0.80 0.71 0.75 22408

Acc: Accuracy, Pr: Precision, Support : Number of test instances

FEDERATED LEARNING BASED ANDROID MALWARE DETECTION 35

strategy using the same settings and compared it with the proposed FDL-
based detection approach. The FDL-based model classified the “Benign”
class, which represents normal apps, with a recall of 92%, and the “mal-
ware” class, which comprises all ten Android malware families, with a 71%
of detection rate. The results demonstrate the efficiency of FDL, with
practically the same performance as the centralized approach. However,
these results of both detection approaches are not enough for real-world
application, considering the high rate of false positives and false negatives
as illustrated in Fig. 2.4.

Figure 2.5 illustrates a comparison of model accuracy, loss, and time
complexity using different training approaches. In terms of time complex-
ity, we can demonstrate the efficacy of the proposed FDL approach. How-
ever, when using a large number of participating clients, the global model’s
accuracy decreased from 83.74% to 78.47%, as depicted in Table 2.4.

Fig. 2.4 Confusion matrix results. (a) with the centralized approach. (b) with the
federated deep learning (FDl)

36 D. HAMOUDA ET AL.

Fig. 2.5 Comparison of model accuracy, loss, and time complexity using different
training approaches

Table 2.4 Accuracy evaluation results of proposed federated deep learning
method

Round one Round 10
Total clients Best client Worst client Global model Best client Worst client Global model
K = 10 68.17 66.31 60.95 83.07 82.16 83.74
K = 20 69.01 66.45 68.27 82.14 81.74 82.27
K = 40 65.79 63.6 65.34 78.05 76.38 78.47

2.5 CONCLUSION

In this chapter, we propose a novel, cost-effective DL-based Android mal-
ware system (FDL) leveraging the emergent federated learning paradigm.
The analysis was conducted using the network layer features of malware
samples to detect any variation from their normal behavior. Experimen-
tal results proved the efficiency and effectiveness of the proposed FDL

FEDERATED LEARNING BASED ANDROID MALWARE DETECTION 37

paradigm compared with conventional centralized methods in terms of
computation cost and privacy protection. However, the detection effi-
ciency was not good enough when considering only network-based statis-
tical features, and it was limited to only those sets of malware that require
network connectivity and produce some abnormal network behavior. In
the future, we intend to integrate local behavior with traffic behavior
to efficiently detect large sets of malware. Also, we plan to improve the
detection approach of our proposed FDL by employing non-identically
distributed data as well as secure aggregation against emergent adversarial
attacks.

REFERENCES

1. Acharya S, Rawat U, Bhatnagar R (2022) A low computational cost
method for mobile malware detection using transfer learning and
familial classification using topic modelling. Appl Comput Intell
Soft Comput 2022:1–22

2. Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash
M (2015) Internet of things: a survey on enabling technolo-
gies, protocols, and applications. IEEE Commun Surv Tutorials
17(4):2347–2376

3. Andresini G, Appice A,Malerba D (2021) Autoencoder-based deep
metric learning for network intrusion detection. Inf Sci 569:706–
727

4. Arora A, Garg S, Peddoju SK (2014) Malware detection using
network traffic analysis in android based mobile devices. In: 2014
eighth international conference on next generation mobile apps,
services and technologies. IEEE, New York, pp 66–71

5. Aslan ÖA, Samet R (2020) A comprehensive review on malware
detection approaches. IEEE Access 8:6249–6271

6. Garg S, Peddoju SK, Sarje AK (2017) Network-based detection of
android malicious apps. Int J Inf Secur 16(4):385–400

7. Hamouda D, FerragMA, Benhamida N, Seridi H (2021) Intrusion
detection systems for industrial internet of things: A survey. In:
2021 International Conference on Theoretical and Applicative
Aspects of Computer Science (ICTAACS). IEEE, New York,
pp 1–8

38 D. HAMOUDA ET AL.

8. Hamouda D, Ferrag MA, Benhamida N, Seridi H (2022) PPSS:
a privacy-preserving secure framework using blockchain-enabled
federated deep learning for industrial IoTs. Pervasive Mob Comput
88:101738

9. Iadarola G, Martinelli F, Mercaldo F, Santone A (2021) Towards
an interpretable deep learning model for mobile malware detection
and family identification. Comput Secur 105:102198

10. Karbab EB, Debbabi M, Derhab A, Mouheb D (2018) Maldozer:
automatic framework for android malware detection using deep
learning. Digit Investig 24:S48–S59

11. Kim T, Kang B, Rho M, Sezer S, Im EG (2018) A multimodal
deep learning method for android malware detection using various
features. IEEE Trans Inf Forensics Secur 14(3):773–788

12. Lashkari AH, Kadir AFA, Gonzalez H, Mbah KF, Ghorbani AA
(2017) Towards a network-based framework for android malware
detection and characterization. In: 2017 15th annual conference on
privacy, security and trust (PST). IEEE, New York, pp 233–23309

13. Lashkari AH, Kadir AFA, Taheri L, Ghorbani AA (2018) Toward
developing a systematic approach to generate benchmark android
malware datasets and classification. In: 2018 International Car-
nahan Conference on Security Technology (ICCST). IEEE, New
York, pp 1–7

14. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature
521(7553):436–444

15. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA
(2017) Communication-efficient learning of deep networks from
decentralized data. In: Artificial intelligence and statistics. PMLR,
New York, pp 1273–1282

16. Qamar A, Karim A, Chang V (2019) Mobile malware attacks:
review, taxonomy and future directions. Futur Gener Comput Syst
97:887–909

17. Rey V, Sánchez PMS, Celdrán AH, Bovet G (2022) Federated
learning for malware detection in IoT devices. Comput Netw
204:108693

18. Souri A, Hosseini R (2018) A state-of-the-art survey of malware
detection approaches using data mining techniques. Hum-centric
Comput Inf Sci 8(1):1–22

FEDERATED LEARNING BASED ANDROID MALWARE DETECTION 39

19. Tam K, Feizollah A, Anuar NB, Salleh R, Cavallaro L (2017)
The evolution of android malware and android analysis techniques.
ACM Comput Surv (CSUR) 49(4):1–41

20. Wattenberg M, Viégas F, Johnson I (2016) How to use t-SNE
effectively. Distill 1(10):e2

21. Yuan Z, Lu Y, Xue Y (2016) Droiddetector: android malware
characterization and detection using deep learning. Tsinghua Sci
Technol 21(1):114–123

22. Zhu D, Jin H, Yang Y, Wu D, Chen W (2017) Deepflow: deep
learning-based malware detection by mining android application
for abnormal usage of sensitive data. In: 2017 IEEE symposium on
computers and communications (ISCC). IEEE,New York, pp 438–
443

23. Zulkifli A, Hamid IRA, Shah WM, Abdullah Z (2018) Android
malware detection based on network traffic using decision tree
algorithm. In: International conference on soft computing and data
mining. Springer, Berlin, pp 485–494

CHAPTER 3

ASParseV3: Auto-Static Parser and
Customizable Visualizer

Iman Almomani, Rahaf Alkhadra, and Mohanned Ahmed

3.1 INTRODUCTION

Ourmodern world is rapidly moving toward digitalization and automation,
where everything is converging into an automated version. As technology
takes over our lives, we are at the start of the 4th industrial revolution,
which mainly focuses on a world that relies heavily on technology and
innovation. The use of technology not only provides us with convenience
but comfort as well. However, the rapid development of technology comes
at the price of ensuring cybersecurity. Attackers are finding many ways
to achieve their malicious goals, which requires us to take precautions to

I. Almomani (�)
Security Engineering Lab, Prince Sultan University, Riyadh, Saudi Arabia

Computer Science Department, The University of Jordan, Amman, Jordan
e-mail: imomani@psu.edu.sa; i.momani@ju.edu.jo

R. Alkhadra • M. Ahmed
Security Engineering Lab, Computer Science Department, Prince Sultan
University, Riyadh, Saudi Arabia
e-mail: rkhadra@psu.edu.sa; mqasem@psu.edu.sa

© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2024
I. Almomani et al. (eds.), Cyber Malware, Security Informatics and
Law Enforcement, https://doi.org/10.1007/978-3-031-34969-0_3

41

 29185 -2241 a 29185 -2241
a

 1152
42043 a 1152 42043 a

mailto:imomani@psu.edu.sa
mailto:imomani@psu.edu.sa
mailto:imomani@psu.edu.sa

 10537 42043 a 10537 42043 a

mailto:i.momani@ju.edu.jo
mailto:i.momani@ju.edu.jo
mailto:i.momani@ju.edu.jo
mailto:i.momani@ju.edu.jo

 1152 47528 a 1152 47528 a

mailto:rkhadra@psu.edu.sa
mailto:rkhadra@psu.edu.sa
mailto:rkhadra@psu.edu.sa

 9999 47528 a 9999 47528 a

mailto:mqasem@psu.edu.sa
mailto:mqasem@psu.edu.sa
mailto:mqasem@psu.edu.sa
https://doi.org/10.1007/978-3-031-34969-0_3
https://doi.org/10.1007/978-3-031-34969-0_3
https://doi.org/10.1007/978-3-031-34969-0_3
https://doi.org/10.1007/978-3-031-34969-0_3
https://doi.org/10.1007/978-3-031-34969-0_3
https://doi.org/10.1007/978-3-031-34969-0_3
https://doi.org/10.1007/978-3-031-34969-0_3
https://doi.org/10.1007/978-3-031-34969-0_3
https://doi.org/10.1007/978-3-031-34969-0_3
https://doi.org/10.1007/978-3-031-34969-0_3
https://doi.org/10.1007/978-3-031-34969-0_3

42 I. ALMOMANI ET AL.

face such security issues. One of the most popular and common forms of
security invasion in our digital world is using malicious code, often referred
to as malware [27]. Malware is a code written by security attackers to
intrude into a specific computer system or software to perform malicious
acts such as stealing data or causing damage. For example, malware could
be in different forms, such as worms, viruses, trojans, spyware, adware, or
ransomware. Therefore, it is essential to protect any system from malware.
This can be done by detecting the malware and then classifying which type
it is. A tremendous amount of research has been conducted in the past
years regarding the topic of malware detection and classification [11].

According to recent reports, malware generation and creation have been
increasing rapidly on a daily basis. It is estimated that around one million
malware files are created daily [31]. This increase could seriously threaten
the economy, both financially and technically. The increase in cyber threats
and crimes costs the economy around 1 trillion dollars in 2022 for cyber
insurance, which results in an increase of 50% in comparison to the past 2
years [12]. The term malware refers to any malicious entity that changes
the original behavior by utilizing software flaws and vulnerabilities. In this
chapter, the term malware will be used to refer to any malicious software
that may include any of the following malware families, ransomware,
adware, viruses, or keyloggers [11].

Depending on the purpose and behavior of themalware, it is categorized
into different families. Every family has common features. For instance,
stealing information, creating vulnerability, and denial of service are all
examples of malware behavior. Such behaviors are essential in detecting
malware since this information will be used to analyze the software and
categorize it into benign or malware [35]. To differentiate between
malicious and benign apps, we need to scan the program code first, extract
its features, and analyze them [6]. Features extraction can be achieved
through two main ways: static analysis [3] and dynamic analysis [13].
Another possible way is to use hybrid analysis [2], a combination of the
previous two [25]. Static analysis is concerned with contextual data from
the source code without running the program. However, dynamic analysis
involves executing the program and extracting the runtime features. The
hybrid analysis uses both contextual and runtime features to detect malware
[11].

Over the years, researchers have been developing new techniques for
malware detection. The latest trend in this field is using machine learning
for malware detection. However, this technique cannot be used without

ASPARSEV3: AUTO-STATIC PARSER AND CUSTOMIZABLE VISUALIZER 43

analyzing the program code and extracting important features that help in
discriminating the malware families [22]. It is possible to evade the risk
of malware if the related features are available. Therefore, a collection of
advanced detection methods using machine learning depends on feature
engineering as well as reverse engineering [33]. Feature engineering is
a technique used to manipulate unstructured data into features that can
be understandable by the computer or machine [32]. However, other
techniques, such as binary obfuscation, can be used by attackers to design
a reverse engineering resistant file [30]. Moreover, deep learning can be
used in an advanced model of neural networks to capture features, learn,
and adapt during training. Even though a few studies report the use of deep
learning, some do not discuss the scalability and different architectures
enough for malware detection [5, 33].

One of the main benefits of using static analysis over any other technique
is that this analysis does not require executing the program, making it a
safer choice to apply [25]. Moreover, another vital benefit is examining
the code without regard to the diversity of IoT architecture or the physical
capabilities of an IoT device. Hence, the analysis considers all possible
inspection methods with no reference to the physical performance [24].
Furthermore, due to the nature of the static analysis, the malware may not
be able to avoid, hide, and/or obfuscate during the analysis process because
it runs passively [34]. Finally, its automation characteristic is what makes
static analysis prominent and outstanding [16].

Therefore, this chapter introduces a new comprehensive static parsing
software called ASParseV3. It is an extension to ASParseV1 [1]. It is a
GUI-based tool with various features such as (a) selecting many files or
directories to be scanned in one experiment, (b) adding or removing key-
words/features, (c) filtering the keywords/features and specific file types,
(d) efficient scanning process as many files are scanned simultaneously, (e)
providing customizable visualization dashboards with the ability to export
the chart(s), and (f) exporting the results in different formats such as JSON
and CSV.

The rest of the chapter sections present and discuss the related works
regarding malware analysis techniques, malware detection, and the use of
static analysis for malware detection. Moreover, they present the proposed
developed software (ASParseV3), which performs static features extraction
and parsing. Also, the chapter demonstrates a use case of Android OS
malware static features extraction using the ASParseV3 software. Finally,
conclusions with a summary of possible future works are presented.

44 I. ALMOMANI ET AL.

3.2 RELATED WORKS

Parsing the features of source code is potentially utilized in estimating
the software performance, reverse engineering, and static analysis [20].
However, the extracted features can be represented in different formats
such as gray-scale images, structural entropy, or JSON file [15]. Moreover,
the extracted features can be further deployed in various fields. For
instance, the authors of [21] have developed a tool named DeepTLS
to analyze encrypted traffic by extracting the features from the network
packets. In [28], the python-Evtx-parser (pexp) has been developed to
parse the required features to detect Lateral Movement Attacks. In a
nutshell, Table 3.1 demonstrates a comparison among related works.

Several tools have been proposed to perform static parsing in Android
platform [1, 8, 23]. Khalid et. al. proposed a memory parsing tool for
Android applications [19]. The authors of [17] have developed Sena
TLS-Parser, a tool that automates the software testing process by parsing
the Android source code. Initially, the Android source code is imported
into the Eclipse environment. Subsequently, Sena TLS-Parser scans the
code and generates the required test cases. Another approach that utilizes
static parsing in enhancing the development of Android applications is by
recommending a suitable API for the Android developer based on the
parsing results. In [36], the authors have developed APIMatchmaker, a
tool that recommends the best API usage by parsing similar Android apps.

Parsing Android source code can further be deployed in detecting
malicious applications. In [26], the authors have parsed the suspect meth-
ods of two Android apps in order to extract their similarities using their
proposed tool, StrAndroid. Consequently, they identified the potential
malicious behaviors that are shared between the two apps. Additionally,
Android permissions can be parsed in order to rank the risk of the malicious
application. Dharmalingam et al. proposed a permission grading scheme
that extracts and defines the required permissions in an Android app and
rates the risk of the app accordingly [14]. In their proposed scheme,
the Manifest file is parsed to extract the defined permission in the app.
Subsequently, the extracted permissions are fed into the feature encoder
to be further utilized in the deep neural algorithm for detecting malware
applications. However, static analysis can be combined with dynamic
analysis to increase the efficiency of malware detection. In [2], the authors
have applied static analysis as a prior stage to implementing the dynamic
analysis.

ASPARSEV3: AUTO-STATIC PARSER AND CUSTOMIZABLE VISUALIZER 45
T
ab

le
 3
.1

A

 c
om

pa
ri
so
n
am

on
g
ex
is
tin

g
pa
rs
in
g
to
ol
s

W
or
k
Ye
ar

To
ol

 n
am

e
A
im

Sc
an
ne
d

Fi
le

 T
yp
e

H
as

 G
U
I?

C
us
to
m
iz
at
io
n

N
um

be
r o
f

E
xt
ra
ct
ed

Fe
at
ur
es

E
xp
or
te
d
Fi
le

Fo
rm
at

Sc
an
ni
ng

E
nv
ir
on
-

m
en
t

Is
 a

Sy
st
em
?

D
ev
el
op
in
g

La
ng
ua
ge

[2
1]

20

22
 D

ee
pT

L
S

T
o
an

al
yz
e
en

cr
yp

te
d

tr
af
fic

 b
y
ex
tr
ac
tin

g
th
e

fe
at
ur
es

 fr
om

 th
e
ne

tw
or
k

pa
ck
et
s

Pc
ap

Ye
s

N
o

70
+

JS
O
N

N
M

Ye
s

C
++

[1
5]

20

22
 P

E
 P
ar
se
r

T
o
pa
rs
e
ex
ec
ut
ab

le
 b
in
ar
y

fil
es

 in
 o
rd
er

 to
 e
xt
ra
ct

re
qu

ir
ed

 fe
at
ur
es

 fo
r

m
al
w
ar
e
de

te
ct
io
n

E
xe

 fi
le
s

N
o

N
o

14
G
ra
y-
sc
al
e

im
ag
es
,

st
ru
ct
ur
al

en

tr
op

y.

N
M

N
o

Py
th
on

[2
8]

20

22
 p

yt
ho

n-
E
vt
x-

pa
rs
er

(p
ex
p)

T
o
pa
rs
e
th
e
re
qu

ir
ed

fe
at
ur
es

 fr
om

 th
e
ne

tw
or
k

pa
ck
et

 to
 d
et
ec
t L

at
er
al

M
ov

em
en

t A
tt
ac
ks

.e
vt
x
fil
es

N
o

N
o

N
M

xm
l o

bj
ec
ts

W
in
do

w
s

10
, m

ac
O
S,

U
bu

nt
u

N
o

Py
th
on

[1
7]

20

22
 T

L
S-
Pa

rs
er

T
o
au

to
m
at
e
th
e
so
ft
w
ar
e

te
st
in
g
pr
oc

es
s b

y
pa
rs
in
g

th
e
A
nd

ro
id

 so
ur
ce

 c
od

e

.ja
va

N
o

Ye
s

N
M

.ja
va

W
in
do

w
s

N
o

Ja
va

[2
6]

20

20
 S

tr
A
nd

ro
id
,

T
o
pa
rs
e
th
e
su
sp
ec
t

m
et
ho

ds
 o
f t
w
o
A
nd

ro
id

ap
ps

 in
 o
rd
er

 to
 e
xt
ra
ct

th
ei
r s

im
ila
ri
tie

s

A
PK

N
o

N
o

N
M

T
ex
t fi

le
N
M

Ye
s

Py
th
on

[3
6]

20

22
 A

PI

M
at
ch

m
ak
er

T
o
re
co
m
m
en

d
th
e
be

st

A
PI

 u
sa
ge

 b
y
pa
rs
in
g

si
m
ila
r A

nd
ro
id

 a
pp

s

A
PK

N
o

N
o

N
M

T
ex
t fi

le
N
M

N
o

Ja
va

[1
8]

20

21
 P

et
aD

ro
id

T
o
cl
us
te
r t
he

 m
al
w
ar
e

fa
m
ili
es

 b
as
ed

 o
n
st
at
ic

an

al
ys
is

 fo
r A

nd
ro
id

 O
S

A
PK

N
o

N
o

30
0+

T
ex
t fi

le
N
M

Ye
s

Py
th
on

,
B
as
h

[1
4]

20

20
 P

er
m
is
si
on

G
ra
de

r
T
o
gr
ad

e
th
e
ri
sk

 le
ve
l o

f
A
nd

ro
id

 m
al
w
ar
e
ap
p

ba
se
d
on

 it
s e

xt
ra
ct
ed

pe

rm
is
si
on

s

M
an

ife
st

 fi
le

N
o

Ye
s

10
00

T
ex
t fi

le
N
M

Ye
s

N
M

[2
9]

20

20
 D

ro
id
Po

rt
ra
it

T
o
ut
ili
ze

 th
e
ex
tr
ac
te
d

A
nd

ro
id

 p
er
m
is
si
on

s a
nd

A
PI

 c
al
ls

 in
 d
ev
el
op

in
g
a

m
al
w
ar
e
po

rt
ra
it

M
an

ife
st

fil
e,

cl
as
s.
de

x

N
o

Ye
s

50
,0
00

PN
G

N
M

Ye
s

N
M

T
hi
s

w
or
k

20
22

 A
SP

ar
se
V
3

T
o
pr
op

os
e
a
G
U
I-
ba

se
d,

cu

st
om

iz
ab

le
, a

nd

co
m
pr
eh

en
si
ve

 st
at
ic

pa
rs
in
g
to
ol

 w
ith

 th
e

ab
ili
ty

 to
 e
xp

or
t

re
su
lts
/
ch

ar
ts

 in
 d
iff
er
en

t
fo
rm

at
s

Fl
ex
ib
le

(A

ny
)

Ye
s

Ye
s

U
nl
im

ite
d

C
SV

M
et
a-
D
at
a:

Js
on

 G
ra
ph

:
PN

G

C
ro
ss
-

pl
at
fo
rm

Ye

s
Py

th
on

46 I. ALMOMANI ET AL.

The efficiency of the parsing approach highly affects the overall static
analysis process. The authors of [18] applied canonical representation
to enhance the parsing process for Android code by developing the
static analyzing tool, PetaDroid. The core of this proposed solution is to
define the application’s behavior by tracking the used APIs and the app’s
actions. Consequently, fingerprinting the malware applications. Besides
the API calls, the permissions can be utilized to determine the malicious
application’s behavior. In [29], the APK file has been decomposed using
APKtool to retrieve theManifest file and class.dex file. The aforementioned
files were parsed to extract the permissions and the API calls, respectively.
Then, multidimensional behavior analysis was conducted on the extracted
features to develop a malware portrait. Even though there are many static
parsing tools, they are not flexible in accepting many file systems and can
extract only a limited number of features. Moreover, they do not have a
customizable graphical user interface (GUI). Therefore, there is a need
for a customizable GUI-based system with the ability to scan an unlimited
number of features on various file systems.

3.3 PROPOSED SYSTEM

There is a need for user-friendly, extensible, and flexible software. This
chapter introduces the third version of the Android Static Parse (ASParse).
The tool ASParse-V3 is an improvement to the previous versions. It is
a cross-platform, portable, and general tool that performs static analysis
and features parsing for any file type while supporting different operating
systems. This version of ASParse is efficient and fast due to its concur-
rent scanning characteristic. Furthermore, ASParseV3 can be used as a
preprocessing method for static feature extraction to construct datasets
for subsequent processing through ML/DL models due to its feature of
exporting the results to JSON and CSV files. For instance, the previous
versions of the ASParse tool were used to extract static features and develop
different types of datasets [1]. For example, [4, 7] utilized the ASParse tool
to extract the API and permissions of thousands of Android applications.
The extracted features created a dataset that helped detect Ransomware
apps with high accuracy.

ASPARSEV3: AUTO-STATIC PARSER AND CUSTOMIZABLE VISUALIZER 47

Fig. 3.1 Flow structure of the proposed system

3.3.1 System Overview

To illustrate the system flow, Fig. 3.1 shows how the ASParseV3 application
generally works. The first step is uploading the files, directories, or multiple
directories. The second step is choosing a set of predefined features or
adding specific features. Then, moving to the third step, the system scans

48 I. ALMOMANI ET AL.

the files to export the results. Finally, after the results are exported, they
can be visualized via a customizable dashboard.

3.3.2 Features and User Interfaces

The scalability and portability of ASParseV3 are achieved by integrating it
with a portable development environment that also makes the software
cross-platform to be installed on various operating systems (OSs). In
addition, the software’s scope can be used as general and specific. For
example, it can scan and parse different input formats, such as Android
and Windows applications. Furthermore, ASParseV3 is user-friendly due
to the modern graphical user interface (GUI) that is easy to use and
its customizability based on the user’s needs. For instance, the user can
customize features and file types to be scanned and customize the scanning
results based on the filtering feature available on the results dashboard. The
system process is dividedmainly into five steps: uploading files, selecting file
types, choosing keywords, scanning, and results visualization. Each phase
has a separate user-friendly window.

3.3.2.1 Uploading Files Window
The first window of the application is used to upload files or applications
to be scanned. The user can upload multiple files, directories, or a single
directory. As Fig. 3.2 illustrates, the button “Add” is clicked to upload
the applications, which opens a file selector dialog window to upload
files/directories. All uploaded files will be shown on a panel field. The user
may also clear the uploaded files in the panel field by clicking on the “Clear”
button and adding new applications when needed.

3.3.2.2 Selecting File Types Window
The second window allows users to select files of specific types (file
extensions) to be scanned. Figure 3.3a shows a sample of Android OS
file types. The user may choose one or multiple types by checking the
checkbox. Moreover, the user can customize the file types by adding or
deleting types by clicking on the settings icon on the top right of Fig. 3.3a.
The settings button opens a newwindow for editing, as Fig. 3.3b illustrates.
The user can write the file types in the text field and then click on the
button “Add” to add them to the current panel. The user can also delete
any newly defined types by clicking on the button “Remove.” By default,

ASPARSEV3: AUTO-STATIC PARSER AND CUSTOMIZABLE VISUALIZER 49

Fig. 3.2 Uploading applications window

if no checkboxes were chosen, all predefined file types will be included in
the scanning process.

3.3.2.3 Selecting Keywords Window
The third window allows users to select the keywords to look for while
scanning. Figure 3.3a shows a sample of Android OS file types. However,
the user can customize the features through the settings window by adding
or deleting keywords by clicking on the settings icon on the top right of
the window (as shown in Fig. 3.4a). Similar to the file types editing feature,

50 I. ALMOMANI ET AL.

Fig. 3.3 Selecting and customizing file types windows. (a) Selecting Window. (b)
Customizing Window

Fig. 3.4 Selecting and customizing keywords windows. (a) Selecting Window.
(b) Customizing Window

ASPARSEV3: AUTO-STATIC PARSER AND CUSTOMIZABLE VISUALIZER 51

Fig. 3.5 Scanning window

the settings button can be used to edit the list of keywords, as illustrated
in Fig. 3.4b.

3.3.2.4 Scanning Window
The fourth window allows users to add the configuration values of an
experiment, such as the experiment name and the path used to save the
results, as shown in Fig. 3.5. Then, the scanning process begins by clicking

52 I. ALMOMANI ET AL.

Fig. 3.6 Visualization window and page. (a) Visualization Window. (b) Dash-
board Page

on the “Scan” button. Finally, the progress bar provides the user with real-
time updates on the scanning progress.

3.3.2.5 Visualizing Results and Dashboard Window
The fifth and final window links the tool to the visualization dashboard.
After completing the scanning progress, the user can move to the visual-
ization window and click on the “Visualize” button as shown in Fig. 3.6a to
display the results in terms of a plot. The actions performed in this window
do not affect the scanning results. It is a complimentary step for results
visualization and filtering. However, this step cannot be completed without
performing the scanning. When visualization is activated, a dashboard page
opens in the browser. The dashboard is where the user can visualize the
parsing results. The plot’s X-axis represents the features (keywords), and
the Y -axis represents the number of occurrences. As Fig. 3.6b illustrates,
the dashboard is customizable based on the user’s preference. For instance,
the user may filter out and visualize the results according to the minimum
number of feature occurrences and features containing a specific string or
substring. Also, the resulting graph (plot) can be exported as an image
using the saving button on the right of the plot. This can help the
researchers/experts to share their results conveniently.

ASPARSEV3: AUTO-STATIC PARSER AND CUSTOMIZABLE VISUALIZER 53

3.3.3 Use Case

To demonstrate the tool, Android benign samples and malware samples
were used. The samples come in the form of an Android Package Kit
(APK). The APKs contain all software details, including source code,
permissions, and APIs used. However, APKs are compressed files that need
reverse engineering to recover the application code [9]. APKTool1 s was
used to decompile the apps and extract the source files. Afterward, the
decompiled APKs were fed to the ASParse tool.

3.3.3.1 Data Collection
For data collection, two sources were used, Drebin Dataset [10] and
APKCombo.2 The Drebin Dataset contained 5560 malware samples
belonging to 179 malware families. On the other hand, the benign
data samples were downloaded through APKCombo. Ten samples were
randomly chosen from the Drebin dataset, along with ten samples from
APKCombo. To ensure that the apps downloaded from APKCombo are
benign, they were scanned by a well-known website called VirusTotal.3

This website offers tens of Antivirus engines that are specialized in
detecting different types of malware.

3.3.3.2 Tests and Results
The experiment was performed on a sample of 10 benign APKs and 10
malicious samples from the Derbin dataset. First, all files were added to
the application upload field. Then, all predefined file types were chosen.
Afterward, six keywords from the predefined ones were chosen, including
android, android/animation, and android/app. In addition to the key-
words Bundle and Button and Callback. After clicking on the visualization
button in the final window, the application will shift to the dashboard,
where the plot will be displayed with the ability to save the plot after
customizing it. Figure 3.7 illustrates the saved plot sample. Moreover,
Fig. 3.8 illustrates a sample of the saved plot where it illustrates the details of
each data point on the plot. Furthermore, Table 3.2 demonstrates a sample
of the resulting CSV. Finally, Fig. 3.9 represents the JSON metadata file
resulting from the scan.

1 https://ibotpeaches.github.io/Apktool/.
2 https://apkcombo.com/.
3 https://www.virustotal.com/gui/home/upload.

https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://apkcombo.com/
https://apkcombo.com/
https://apkcombo.com/
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload

54 I. ALMOMANI ET AL.

Fig. 3.7 Features vs. Occurrences Plot

3.3.3.3 Validation
The validation process for ASParseV3 was carried out thoroughly to ensure
that its performance, user interface (UI), and user experience (UX) met
the required needs. The Security Engineering Lab (SEL) conducted the
validation and compared the scanning results of ASParseV3 with previous
releases of ASParse. In addition, VirusTotal was used to retrieve informa-
tion such as permissions used in the applications/APKs to compare with
ASParseV3 and verify further its scanning results’ accuracy. To validate the
use case, VirusTotal was used to collect the permissions used by the APK.

ASPARSEV3: AUTO-STATIC PARSER AND CUSTOMIZABLE VISUALIZER 55

Fig. 3.8 Data point details

Figure 3.10 shows a sample of the permissions used by the APK validation
test sample. The resulting permissions were then used to scan the same
APK using ASParseV3. The results showed that ASParseV3could scan the
uploaded APK and accurately report the number of occurrences for each
permission. Overall, the validation process demonstrates that ASParseV3
is a reliable and efficient tool for scanning applications and APKs features
such as permissions. The comparison with previous releases and the use
of VirusTotal helped ensure the scanning results’ accuracy. For example,
Table 3.3 illustrates the number of occurrences of each permission found
by ASParseV3 during the validation process. Moreover, using ASParseV3
to scan the same application without specifying any keywords has resulted
in showing additional permissions/API calls other than the ones retrieved
from VirusTotal as Table 3.4 illustrates. Hence, this validates the accuracy
of the ASParseV3 and its additional capabilities compared with similar
tools.

56 I. ALMOMANI ET AL.

T
ab

le
 3
.2

T
he

 re
su
lti
ng

 C
SV

 fr
om

 th
e
us
e
ca
se

fil
eN
am

e
A
nd
ro
id

A
nd
ro
id
/

an
im
at
io
n

A
nd
ro
id
/a
pp

B
ut
to
n

B
un
dl
e

C
al
lb
ac
k

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

M
al
w
ar
e
Sa
m
pl
e
5

21
2

0
0

10
0

0
/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

M
al
w
ar
e
Sa
m
pl
e
7

22
1

0
0

4
0

0
/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

M
al
w
ar
e
Sa
m
pl
e
8

53
0

0
0

0
0

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

M
al
w
ar
e
Sa
m
pl
e
4

64
1

0
0

15
1

9
/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

M
al
w
ar
e
Sa
m
pl
e
1

18
34

0
0

0
1

0
/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

M
al
w
ar
e
Sa
m
pl
e
10

35
5

0
0

0
0

0
/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

M
al
w
ar
e
Sa
m
pl
e
3

53
5

0
0

9
0

0
/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

M
al
w
ar
e
Sa
m
pl
e
6

25
4

0
0

2
1

5
/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

B
en

ig
n
Sa
m
pl
e
5

37
0

0
0

0
0

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

M
al
w
ar
e
Sa
m
pl
e
2

96
0

0
0

1
0

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

B
en

ig
n
Sa
m
pl
e
3

0
0

0
0

0
0

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

M
al
w
ar
e
Sa
m
pl
e
9

43
0

0
0

9
0

18

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

B
en

ig
n
Sa
m
pl
e
4

59
6

0
0

4
1

36

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

B
en

ig
n
Sa
m
pl
e
1

69
4

0
0

23
4

14
8

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

B
en

ig
n
Sa
m
pl
e
7

88
0

0
0

5
5

47
1

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

B
en

ig
n
Sa
m
pl
e
2

11
28

0
0

13
7

11
21

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

B
en

ig
n
Sa
m
pl
e
10

47
09

0
0

21
7

33
3

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

B
en

ig
n
Sa
m
pl
e
9

68
71

0
0

10
3

51
7

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

B
en

ig
n
Sa
m
pl
e
6

79
68

0
0

38
15

22
15

/
U
se
rs
/
ra
ha

f/
D
es
kt
op

/
U
se

 C
as
e/

B
en

ig
n
Sa
m
pl
e
8

18
63

8
0

0
40

16
30

10

ASPARSEV3: AUTO-STATIC PARSER AND CUSTOMIZABLE VISUALIZER 57

1 {
2 {
3 "ApplicationPath": [
4 "/Users/rahaf/Desktop/Use Case/Malware Sample 5",
5 "/Users/rahaf/Desktop/Use Case/Malware Sample 4",
6 "/Users/rahaf/Desktop/Use Case/Malware Sample 3",
7 "/Users/rahaf/Desktop/Use Case/Malware Sample 2",
8 "/Users/rahaf/Desktop/Use Case/Malware Sample 1",
9 ...
10 "/Users/rahaf/Desktop/Use Case/Benign Sample 5",
11 "/Users/rahaf/Desktop/Use Case/Benign Sample 4",
12 "/Users/rahaf/Desktop/Use Case/Benign Sample 3",
13 "/Users/rahaf/Desktop/Use Case/Benign Sample 2",
14 "/Users/rahaf/Desktop/Use Case/Benign Sample 1"
15],
16 "OutputPath": "/Users/rahaf/Desktop",
17 "filetypes": [
18 "xml",
19 "smali",
20 "dex"
21],
22 "selectedFileTypes": [
23 "smali",
24 "xml",
25 "dex"
26],
27 "keywords": [
28 "android",
29 "android/accessibilityservice",
30 "android/accounts",
31 "android/animation",
32 "android/annotation",
33 "android/app",
34 "android/app/admin",
35 "android/app/assist",
36 "android/app/backup",
37 "android/app/blob",
38 "android/app/job",
39 "android/app/role",
40 "android/app/slice",
41 "android/app/usage",
42 "android/appwidget",
43 "android/bluetooth",
44 "Button",
45 "Bundle",
46 "Callback"
47 ...
48

49],
50 "selectedKeywords": [
51 "android",
52 "android/animation",
53 "android/app",
54 "Button",
55 "Bundle",
56 "Callback"
57],
58 "ExperimentName": "Experiment_One"
59 }
60

61 }

Fig. 3.9 Metadata JSON content for the use case

58 I. ALMOMANI ET AL.

Fig. 3.10 APK permissions from VirusTotal

Table 3.3 Validation results
/Users/rahaf/Desktop/PSU/Use Case/Benign Sample 1

Permissions Occurrences
android.permission.RECEIVE_BOOT_COMPLETED 1
android.permission.ACCESS_WIFI_STATE 4
com.google.android.gms.permission.AD_ID 3
com.google.android.finsky.permission.BIND_GET_INSTALL_REFERRER_
SERVICE

2

com.android.vending.BILLING 1

Table 3.4 ASParseV3
additional permissions
and calls

/Users/rahaf/Desktop/PSU/Use Case/Benign Sample 1
Permissions and calls Occurrences
Android 18474
CallbackHandler 117
CameraAccessException 14
Certificate 285
Connection 1522
CookieSyncManager 1
DownloadRequest 8
FragmentHostCallback 3
LruCache 2
INTERNET 25

3.4 CONCLUSION AND FUTURE WORK

This chapter proposed a third version of ASParse software as a parsing and
static analysis tool. The analysis results can be used to feedmachine learning
algorithms and deep learning models for malware analysis and detection.
Moreover, a demonstration was presented on Android OS applications
showing the system’s capabilities. In future work, the ASParse tool will

ASPARSEV3: AUTO-STATIC PARSER AND CUSTOMIZABLE VISUALIZER 59

be used to carry on with malware detection using ML and DL algorithms
and models. Moreover, it will be enhanced in terms of performance and
user experience.

Acknowledgments The authors would like to thank the support of Prince Sultan
University. Moreover, this research was done during the author Iman Almomani’s
sabbatical year 2021/2022 from the University of Jordan, Amman—Jordan.

REFERENCES

1. Al Khayer A, Almomani I, Elkawlak K (2020) ASAF: android static
analysis framework. In: 2020 first international conference of smart
systems and emerging technologies (SMARTTECH). IEEE, New
York, pp 197–202

2. Almohaini R, Almomani I, AlKhayer A (2021) Hybrid-based anal-
ysis impact on ransomware detection for Android systems. Appl Sci
11(22):10976

3. Almomani I, Ahmed M, El-Shafai W (2022) Android malware
analysis in a nutshell. PloS One 17(7):e0270647

4. Almomani I, AlKhayer A, Ahmed M (2021) An efficient machine
learning-based approach for Android v. 11 ransomware detection.
In: 2021 1st international conference on artificial intelligence and
data analytics (CAIDA). IEEE, New York, pp 240–244

5. Almomani I, Alkhayer A, El-Shafai W (2022) An automated
vision-based deep learning model for efficient detection of android
malware attacks. IEEE Access 10:2700–2720

6. Almomani I, Khayer A (2019) Android applications scanning:
the guide. In: 2019 International conference on computer and
information sciences (ICCIS). IEEE, New York, pp 1–5

7. Alsoghyer S, Almomani I (2019) Ransomware detection system for
Android applications. Electronics 8(8):868

8. Anupama ML, et al (2021) Detection and robustness evaluation of
androidmalware classifiers. J Comput Virol Hacking Tech 18(3):1–
24

9. Ardito L, et al (2020) Automated test selection for Android apps
based on APK and activity classification. IEEE Access 8:187648–
187670

60 I. ALMOMANI ET AL.

10. Arp D, et al (2014) Drebin: effective and explainable detection of
android malware in your pocket. In: NDSS, vol. 14, pp 23–26

11. Aslan ÖA, Samet R (2020) A comprehensive review on malware
detection approaches. IEEE Access 8:6249–6271

12. Cremer F, et al (2022) Cyber risk and cybersecurity: a systematic
review of data availability. In: The Geneva Papers on Risk and
Insurance-Issues and Practice, pp 1–39

13. Dai Y, et al (2019) SMASH: a malware detection method based on
multifeature ensemble learning. IEEE Access 7:112588–112597

14. Dharmalingam VP, Palanisamy V (2021) A novel permission rank-
ing system for android malware detection—the permission grader.
J Ambient Intell Humaniz Comput 12(5):5071–5081

15. Gibert D (2022) PE Parser: A Python package for Portable Exe-
cutable files processing. Software Impacts 13:100365

16. Gosain A, Sharma G (2015) Static analysis: a survey of techniques
and tools. In: Intelligent computing and applications. Springer,
Berlin, pp 581–591

17. Ibrahim R, et al (2022) Sena TLS-Parser: a software testing tool for
generating test cases. Int J Adv Comput Sci Appl 13(6):397–403

18. Karbab EB, Debbabi M (2021) Resilient and adaptive framework
for large scale android malware fingerprinting using deep learning
and NLP techniques. arXiv e-prints arXiv–2105

19. Khalid Z, et al (2022) Forensic investigation of Cisco WebEx
desktop client, web, and Android smartphone applications. Ann
Telecommun 78:1–26

20. Laaber C, Basmaci M, Salza P (2021) Predicting unstable software
benchmarks using static source code features. Empir Softw Eng
26(6):1–53

21. Liu Z (2022) DeepTLS: comprehensive and high-performance
feature extraction for encrypted traffic. arXiv preprint
arXiv:2208.03862

22. Lu T, et al (2020) Android malware detection based on a hybrid
deep learning model. Secur Commun Netw 2020:1–11

23. Mahr A, et al 2022 Auto-Parser: Android Auto and Apple CarPlay
Forensics. In: International Conference on Digital Forensics and
Cyber Crime. Springer, Berlin, pp 52–71

ASPARSEV3: AUTO-STATIC PARSER AND CUSTOMIZABLE VISUALIZER 61

24. Ngo Q-D, et al (2020) A survey of IoT malware and detection
methods based on static features. ICT Express 6(4):280–286

25. Omer MA, et al (2021) Efficiency of malware detection in android
system: a survey. Asian J Res Comput Sci 7(4):59–69

26. PasettoM,Marastoni N, PredaMD (2020) Revealing similarities in
android malware by dissecting their methods. In: 2020 IEEE Euro-
pean Symposium on Security and PrivacyWorkshops (EuroS&PW).
IEEE, New York, pp 625–634

27. Shukla S (2022) Design of secure and robust cognitive system for
malware detection. arXiv preprint arXiv:2208.02310

28. Smiliotopoulos C (2022) Use of Sysmon tool to detect lateral
movement attacks

29. Su X, et al (2020) DroidPortrait: android malware portrait con-
struction based on multidimensional behavior analysis. Appl Sci
10(11):3978

30. Talukder S, Talukder Z (2020) A survey on malware detection and
analysis tools. In: International Journal of Network Security and Its
Applications (IJNSA), vol 12

31. Ugarte-Pedrero X, Graziano M, Balzarotti D (2019) A close look
at a daily dataset of malware samples. ACM Trans Privacy Secur
(TOPS) 22(1):1–30

32. Verdonck T, Baesens B, Óskarsdóttir M, et al (2021) Special issue
on feature engineering editorial. In: Machine learning, pp 1–12

33. Vinayakumar R, et al (2019) Robust intelligent malware detection
using deep learning. IEEE Access 7:46717–46738

34. Wu Q, Zhu X, Liu B (2021) A survey of android malware static
detection technology based on machine learning. Mob Inf Syst
2021:1–18

35. Ye Y, et al (2017) A survey on malware detection using data mining
techniques. ACM Comput Surv (CSUR) 50(3):1–40

36. Zhao Y, et al (2022) APIMatchmaker: matching the right APIs for
supporting the development of Android apps. IEEE Trans Softw
Eng 49(1):113–130

CHAPTER 4

Fast-Flux Service Networks: Architecture,
Characteristics, and Detection Mechanisms

Basheer Al-Duwairi and Ahmed S. Shatnawi

4.1 INTRODUCTION

The Internet has witnessed an explosion in the kinds of tools available to
attackers as well as attack techniques in recent years. Attackers continuously
develop advanced tools and techniques to bypass defense technologies,
conceal their identities, and evade detection. There are a lot of various tools
that attackers can use to control systems they have compromised in target
environments [1, 25, 40, 41]. These tools implement different ways to
communicate across the network. This has resulted in a remarkable increase

B. Al-Duwairi (�)
Department of Network Engineering and Security, Jordan University of Science
and Technology, Irbid, Jordan
e-mail: basheer@just.edu.jo

A. S. Shatnawi
Department of Software Engineering, Jordan University of Science and
Technology, Irbid, Jordan
e-mail: ahmedshatnawi@just.edu.jo

© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2024
I. Almomani et al. (eds.), Cyber Malware, Security Informatics and
Law Enforcement, https://doi.org/10.1007/978-3-031-34969-0_4

63

 29185 -2241 a 29185
-2241 a

 1152 42034 a 1152 42034 a

mailto:basheer@just.edu.jo
mailto:basheer@just.edu.jo
mailto:basheer@just.edu.jo

 1152 47519 a 1152 47519 a

mailto:ahmedshatnawi@just.edu.jo
mailto:ahmedshatnawi@just.edu.jo
mailto:ahmedshatnawi@just.edu.jo
https://doi.org/10.1007/978-3-031-34969-0_4
https://doi.org/10.1007/978-3-031-34969-0_4
https://doi.org/10.1007/978-3-031-34969-0_4
https://doi.org/10.1007/978-3-031-34969-0_4
https://doi.org/10.1007/978-3-031-34969-0_4
https://doi.org/10.1007/978-3-031-34969-0_4
https://doi.org/10.1007/978-3-031-34969-0_4
https://doi.org/10.1007/978-3-031-34969-0_4
https://doi.org/10.1007/978-3-031-34969-0_4
https://doi.org/10.1007/978-3-031-34969-0_4
https://doi.org/10.1007/978-3-031-34969-0_4

64 B. AL-DUWAIRI AND A. S. SHATNAWI

in the number of attacks with an increased level of sophistication at all
protocol layers and exploiting vulnerabilities in protocols such as HTTPS,
HTTP, and DNS.

The domain name system (DNS) is a critical Internet infrastructure
component that primarily provides a mapping between domain names
and IP addresses in addition to other services [26]. DNS is implemented
as a distributed hierarchical database and is viewed as an entry point to
the Internet as most Internet services depend mainly on resolving the
IP addresses of domain names as a primary step in Internet access. For
example, visiting a website or connecting to an FTP server is preceded by
resolving that website’s or FTP server’s IP address. The central role of DNS
in the operation of the Internet has attracted adversaries to take advantage
of this core Internet infrastructure element to perform different types of
malicious activities.

Most attacks involve the DNS in some way or another [21, 23].
However, certain attacks rely primarily on DNS. This includes performing
DNS amplification attacks [6, 18, 31], DNS cache poisoning [20, 32],
malware distribution [7, 22], and botnets [39–41]. In DNS amplification,
an attacker instructs thousands of bot machines to send spoofed DNS
queries to open DNS resolvers such that the target system is flooded with
the corresponding DNS replies. In DNS cache poisoning, the attacker
inserts a bogus DNS record in the DNS server cache such that Internet
users are tricked into visiting a website controlled by the attacker. Fast-
flux service networks (FFSNs) [14] have been used widely in recent
years as a DNS-based mechanism to hide malware distribution servers or
to provide robust communication with botnets’ command and control
(C&C) servers.

FFSNs provide shelter for web servers hosting malicious content. This
technique has become one of themain techniques adopted by adversaries to
provide highly available services while evading detection. This is especially
important because cybersecurity professionals are equipped with tools and
mechanisms that would allow them to identify malicious websites and
blacklist them or shut them down when possible. Typically, a fast-flux
network consists of thousands of bot machines known as flux agents that
are configured to act as proxy nodes that relay traffic between end users
and the mothership server hosting the malicious content [2, 14, 33].
Therefore, forming a protective layer prevents end users from directly
reaching malicious servers.

FFSNs adopt techniques that are initially used in content distribution
networks (CDNs) [8] and round-robin DNS (RRDNS) [9]. This is

FAST-FLUX SERVICE NETWORKS: ARCHITECTURE, CHARACTERISTICS, AND… 65

achieved by mapping the malicious server’s domain name to multiple
IP addresses selected from the pool of flux agents and changing over
time, therefore increasing the chances that the origin server is reachable
from some of the flux agents that are still running and have not been
blacklisted yet. There has been growing concern in recent years about
the increased adoption of fast-flux networks to protect phishing websites
and botnets’ C&C servers [19, 28, 44]. Clearly, identifying and shutting
down these servers becomes more challenging when hosted in fast-flux
service networks. This means that an effective and efficient approach to
detecting the websites hosted in these networks is critical to addressing
botnet-related attacks effectively.

Characterizing and understanding this type of malicious networks has
received considerable research attention. Several research studies were
conducted to fully understand the nature of this threat (e.g., [14, 17,
24, 37]), its new trends, and its role in hosting malicious phishing and
spam campaigns. In addition, several fast-flux detection mechanisms (e.g.,
[2, 4, 12, 27, 33]) were proposed to efficiently detect fast-flux domain
names based on characterizing features that can be obtained from different
sources by active probing or passive probing. This chapter provides a
detailed description of fast-flux networks focusing on their main char-
acteristics and discussing major detection approaches. Also, it highlights
new trends in fast-flux networks and identifies new features for fast-
flux detection. However, it is important to mention that this chapter is
not intended to provide a comprehensive survey of fast-flux detection
approaches as in [46] and [5].

The rest of this chapter is organized as follows: Sect. 4.2 explains fast-
flux networks and describes their main architecture. Section 4.3 discusses
the main characteristics of fast-flux networks. Section 4.4 describes the
main features that are typically used to detect fast-flux domains. Section 4.5
discusses fast-flux detection. Finally, Sect. 4.6 concludes the chapter.

4.2 FAST-FLUX SERVICE NETWORKS

FFSNs were first introduced and described in detail by the Internet
Honeyproject in 2007 [37]. Several research studies (e.g., [2, 14, 17,
33, 34]) were conducted to characterize and develop mechanisms for
FFSNs detection. Most of these mechanisms rely on analyzing DNS traffic
information that corresponds to fast-flux domains in order to characterize

66 B. AL-DUWAIRI AND A. S. SHATNAWI

their behavior and identify their distinguishing features. In this regard,
DNS records can be obtained actively by issuing DNS requests about
domain names of fast-flux domains obtained from email spam campaigns
and phishing archives or by analyzing passively collected DNS traffic traces.

FFSNs adopt techniques that are originally used in round-robin DNS
and content distribution networks. Round-robin DNS and content dis-
tribution networks (CDNs) are two main techniques that web servers
employ to achieve load balancing and high availability. In round-robin
DNS [9], the authoritative domain name server of a certain domain name
is configured to distribute the workload to multiple redundant web servers
by mapping the hostname of the webserver to multiple IP addresses. This
mapping keeps changing in a round-robin fashion. Each time a client issues
a DNS query, the client may obtain a list of IP addresses for the given
hostname in a different order. A content delivery network [8] is a service
that accelerates Internet content delivery, therefore making websites much
faster. This is achieved by reducing the distance between the user and
the server providing the content by placing Content Delivery Network
endpoints in as many locations worldwide as possible, reducing the amount
of traffic that actually hits the server. In CDNs, the content is pushed to
many geographically distributed servers. Global load balancing is achieved
by providing the client with a set of IP addresses of nearby servers. For
example, a user in the USA, who is trying to access a CDN-hosted website,
sends a DNS query for that website and will get a reply with a set of IP
addresses of servers that are hosted in nearby locations within the CDN.

FFSN [14, 29, 34] is a technique employed by botherders to hide their
malicious webservers while providing high availability and resiliency. Figure
4.1 depicts the main steps of forming and operating these networks. Ini-
tially (Step 1), the botherder sets up themothership server and configures it
with a specific domain name (e.g., myfastfluxdoamin.com). This represents
the server where themalicious content is hosted. It is also called the content
server. Usually, a high-end machine with enough computing and storage
resources is provisioned to serve as the mothership server. The mothership
server usually hosts some sort of malicious content for the purpose of
malware distribution, illegal pharmaceutical products sale, adult content,
etc. Also, it can represent the command and control (C&C) server of
another botnet. Then (step 2) the botherder registers the domain name
myfastfluxdomain.com with a set of IP addresses that belong to a botnet
controlled in advance by him/her. This step is crucial in the sense that the

FAST-FLUX SERVICE NETWORKS: ARCHITECTURE, CHARACTERISTICS, AND… 67

Fig. 4.1 Fast-flux service network life cycle

domain name of the mothership server does not map directly to the real
IP address assigned to the mothership server.

The botherder configures the bot machines to act as proxies that for-
ward traffic between end users and mothership servers (Step 3). Therefore,
each bot machine that is part of this network is referred to as a flux
agent. When visiting the website hosted by myfastfluxdomain.com, end
users resolve the IP addresses of the mothership domain name myfast-
fluxdomain.com through the domain name system (Step 4). The domain
name would be resolved to a set of IP addresses that belong to the botnet
representing fast-flux agents. It is to be mentioned here that flux agents
are mainly compromised machines with intermittent connectivity, limited
computational power, and low to average bandwidth. Finally, the end user
accesses the content through one of the flux agents returned by the DNS
reply (Step 5).

It is clear that the botnet of flux agents forms a protective layer for the
hidden malicious server. In order to increase the resilience of the network
and to evade detection, the botherder keeps changing the domain name
registration in a fast manner. This type of FFSNs is called a single-flux.
There is a more sophisticated type of FFSNs called double-flux FFSNs, in
which the botherder also changes the mapping between the authoritative
name server of the FFSN and its IP addresses quickly, resulting in a
constantly changing set of DNS servers, therefore providing a layer of
protection for the FFSN’ original authoritative name server. In this type

68 B. AL-DUWAIRI AND A. S. SHATNAWI

of FFSNs, when a client resolves the IP addresses of a FFSN domain name,
the DNS request is sent to one of the flux agents that in turn forward
the request to the authoritative name server of that domain, and the DNS
response message is relayed back through the same fast-flux agent. This
may contribute to an additional delay in loading the website. However, in
most cases, it goes without being noticed by Internet users.

4.3 CHARACTERISTICS OF FAST-FLUX SERVICE
NETWORKS

Classifying a domain name as a fast-flux domain or a non-fast-flux domain
is a challenging problem because fast-flux domains look similar to domain
names associated with CDN-hosted web servers in several aspects. In the
following subsections, we illustrate the main differences between DNS A
records associated with a fast-flux domain and DNS A records associated
with a CDN-hosted domain name. Then, we identify main characteristics
of fast-flux service networks based on previous research in this field.

4.3.1 Fast-Flux Domain Names Versus CDN-Hosted Domain Names

To illustrate the difference between a fast-flux domain name and a CDN-
hosted domain name, let us consider the DNS name resolution of fast-flux
domain rgyui.top and a CDN-hosted domain timeline.com. Figure 4.2
shows the DNS response message for domain rgyui.top and Fig. 4.3 shows

Fig. 4.2 Output of the first dig of the fast-flux domain rgyui.top (performed on
June 12 2022)

FAST-FLUX SERVICE NETWORKS: ARCHITECTURE, CHARACTERISTICS, AND… 69

Fig. 4.3 Output of dig of the CDN-hosted domain timeline.com (performed on
June 12 2022)

Table 4.1 Country
and ASN number of IP
addresses of fast-flux
domain rgyui.top

IP Address Country ASN #
1.248.122.240 Korea AS9318

211.171.233.129 Korea AS3786

211.59.14.90 Korea AS9318

138.36.3.134 Brazil AS264562

203.228.9.102 Korea AS4766

190.140.74.43 Panama AS18809

211.119.84.112 Korea AS3786

189.165.26.224 Mexico AS8151

211.119.84.111 Korea AS3786

210.92.250.133 Korea AS3786

the DNS response message for domain timeline.com. The common thing
about these two domains is that they resolve to multiple IP addresses.
However, a careful inspection of the response messages reveals major
differences that would allow us to distinguish between fast-flux domains
and CDN-hosted domains. Tables 4.1 and 4.2 show the country and ASN
number of each IP address for both domains.

It is clear that IP addresses of a fast-flux domain are usually distributed
in different countries and belong to several autonomous systems, while IP
addresses of CDN-hosted domains are located in the same country (inmost

70 B. AL-DUWAIRI AND A. S. SHATNAWI

Table 4.2 Country
and ASN number of IP
addresses of cdn-hosted
domain timeline.com

IP Address Country ASN #
52.4.38.70 USA AS14618

52.1.173.203 USA AS14618

52.1.147.205 USA AS14618

52.5.181.79 USA AS14618

52.4.175.111 USA AS14618

52.4.145.119 USA AS14618

52.6.46.142 USA AS14618

52.1.119.170 USA AS14618

52.4.225.124 USA AS14618

52.6.3.192 USA AS14618

52.0.16.118 USA AS14618

52.4.240.221 USA AS14618

cases) and belong to the same autonomous system. This is expected because
of the intrinsic behavior of fast-flux service networks where domain names
are registered with botnet flux agents’ IP addresses located in different
countries and belonging to different autonomous systems. One of the main
characteristics of fast-flux networks is the short TTL value assigned for their
domain names compared to other domains. This is necessary to ensure the
frequent and rapid change in mapping between IP addresses of flux agents
and fast-flux domain names. As expected, performing another dig for the
fast-flux domain name rgyui.top shortly after the first dig returned another
set of IP addresses as shown in Fig. 4.4.

Fast-flux networks are characterized by frequent and fast mapping
changes between domain names and IP addresses. As a result, a particular
domain name would map to many IP addresses (selected from the pool of
flux agents controlled by the botherder) over a short period of time. For
example, the domain name rgyui.top maps to 17 distinct IP addresses based
on two consecutive IP addresses. Of course, this number grows fast when
performing more DNS queries for a longer period of time (Table 4.3).

In order to provide a reliable service and overcome the problem of
blacklisting fast-flux domain names, fast-flux operators keep registering
new domain names for their content servers. These domain names remain
active for a short period and are assigned IP addresses from the pool of IP

FAST-FLUX SERVICE NETWORKS: ARCHITECTURE, CHARACTERISTICS, AND… 71

Fig. 4.4 Output of the first dig of the fast-flux domain rgyui.top (performed on
June 12 2022)

Table 4.3 Country
and ASN number of IP
addresses of fast-flux
domain rgyui.top

IP Address Country ASN #
187.170.250.215 Mexico AS8151

211.59.14.90 Korea AS9318

190.140.74.43 Panama AS18809

180.69.193.102 Korea AS9318

196.200.111.5 Eritrea AS30987

211.119.84.111 Korea AS3786

109.98.58.98 Romania AS9050

187.190.48.60 Mexico AS22884

148.0.95.36 Dominican
Republic

AS6400

123.213.233.194 Korea AS9318

addresses of fast-flux agents. Therefore, by monitoring DNS traffic traces
over a long period, it is expected to observe that IP addresses belonging to
specific fast-flux networks have been assigned to different fast-flux domains
representing a malicious campaign. Figure 4.5 shows an example of such IP
address reuse in fast-flux service networks, which is considered a standard
practice. The figure shows a snapshot of the passive DNS replication
history of IP address 183.78.205.92 obtained from VirusTotal [42]. The
IP address was assigned to multiple fast-flux domain names on different
dates.

72 B. AL-DUWAIRI AND A. S. SHATNAWI

Fig. 4.5 A snapshot of passive DNS replication history of IP address
183.78.205.92 (obtained from VirusTotal on June 20th 2022)

4.3.2 Main Characteristics of Fast-Flux Service Networks

Several research studies have been conducted to identify malicious cam-
paigns hosted by fast-flux service networks (e.g., [14, 24]). For example,
the empirical study conducted in [24] showed that fast-flux service net-
works play a significant role in hosting scam campaigns. The study focused
on monitoring DNS records of domain names hosting scam websites
over a period of 1 month. The study revealed that fast-flux networks
are usually shared among different spam campaigns. Figure 4.6 shows a
visual representation of mapping between fast-flux domain names and their
resolved addresses based on data used [2]. Each cluster represents a unique
domain name and its associated IP addresses. This set of IP addresses and
domain names is believed to belong to the same fast-flux service network.

Based on the discussion above and with reference to previous research
studies that studied the problem of fast-flux networks (e.g., [14, 17, 24,
35], fast-flux networks are characterized by several characteristics that can
be summarized as follows [2]:

• Large number of IP addresses. The A records included within a single
DNS response message of a fast-flux domain are relatively large.
Suppose one or more of the fast-flux agents that are associated with
the IP addresses are down, a client. In that case, trying to access the
mothership server of the associated domain name would automatically
try another IP address (i.e., another agent) until it succeeds. Register-

FAST-FLUX SERVICE NETWORKS: ARCHITECTURE, CHARACTERISTICS, AND… 73

Fig. 4.6 Sample FF hostnames and their FFSNs observed in the study conducted
in [2]

ing the domain name withmany IP addresses provides high availability
of the malicious server as it increases the probability that one of the
flux agents is up and running.

• Large IP growth. To avoid blacklisting, mapping between a fast-flux
domain and agent IP addresses keeps changing over time. Therefore,
the number of IP addresses associated with a certain fast-flux domain
becomes large.

• Low TTL value. Since the mapping between a domain name and IP
addresses changes very fast in FFSNs, then the TTL values are kept
low. This guarantees that the values expire soon after the fast-flux
domain is resolved in order for users to obtain the new list of IP
addresses.

• Large number of autonomous systems. The number of IP addresses that
are returned in response to a DNS query for a fast-flux domain rep-
resents compromised machines that belong to different organizations

74 B. AL-DUWAIRI AND A. S. SHATNAWI

and Internet service providers. Therefore, these agents’ IP addresses
are expected to belong to multiple autonomous systems.

• Large number of countries. Previous studies showed that the IP
addresses of fast-flux domains are usually located in a relatively large
number of countries. This is expected since attackers register their
fast-flux domains with a set of IP addresses selected randomly from a
pool of fast-flux agents.

• Domain names do not last for a long time. The lifetime of a fast-flux
domain is relatively short. Attackers tend to register many domains
for their FFSNs, where each domain name remains active for a short
period.

4.4 FFSNS FEATURE SET COLLECTION

The detection of fast-flux service networks depends mainly on the informa-
tion collected about the suspect domain names and their corresponding IP
addresses. Information about domain names and their IP addresses can be
collected from different sources passively and actively. The passive manner
does not involve direct interaction with the source of information. Instead,
it relies on analyzing passively collected information from traffic traces from
strategic network locations. On the other hand, an active manner involves
direct interaction with the source of information through request/reply-
based protocols. Primary sources of information to be collected about
suspect domain names include the domain name system, IP geolocation
databases, and Internet-wide scanning projects. In the following subsec-
tions, we present these sources and highlight the main features obtained
from each source.

4.4.1 Domain Name System-Based Features

The domain name system represents a primary source of information about
domain names. When resolving a domain name into IP addresses, the
DNS returns different types of resource records, such as A records and
NS records. This includes the list of IP addresses for a domain name,
the TTL value for the domain name, the number of IP addresses in
each DNS reply, and the number of different IP addresses over a long
period of time. This information can be obtained actively by probing DNS
about suspect domains or passively by collecting DNS traffic traces using

FAST-FLUX SERVICE NETWORKS: ARCHITECTURE, CHARACTERISTICS, AND… 75

Table 4.4 List of features extracted from DNS response message for fast-flux
domain rgyui.top and legitimate domain timeline.com
Feature rgyui.top timeline.com
IP addresses returned in
one DNS lookup

10 12

domain name length 9 12

TTL value of DNS record 75 284

of distinct ASNs for all IP
addresses in a single DNS
lookup

6 1

unique IP addresses
returned in all DNS lookups
(IP address growth)

Additional information
required

Additional information
required

strategically placed network sensors while users are surfing the Internet.
For example, with reference to the DNS response message of the fast-
flux domain rgyui.top shown in Fig. 4.2 and legitimate domain name
timeline.com shown in Fig. 4.3, the features shown in Table 4.4 can be
extracted directly from their DNS response messages.

In active DNS probing, it is required to start with a list of suspect
domain names that are usually obtained from email spam traps after
extracting URLs embedded in spam emails and stripping domain names
from them. A DNS lookup is then performed for each suspect domain
name using the Unix dig utility or any other ns lookup tools. Main
features are then extracted from DNS replies. A significant problem with
this approach is that it results in a large number of DNS queries which
may be suspected as a form of DDoS attack. In passive DNS probing,
information about all domain names queried by users in an organizational
network is collected passively. Collected DNS traffic traces are analyzed to
filter suspect domain names based on specific criteria. While this approach
does not incur additional DNS traffic, it deals with many DNS traffic traces
that require significant computational and storage resources. However, it
has the advantage of preventing false DNS replies that can be provided
by attackers who might be controlling authoritative domain name servers
while observing a large number of DNS queries. Moreover, it has the
advantage of discovering fast-flux domains that could potentially appear
in different malicious sources such as phishing emails, hacker forums, and
online social networks.

76 B. AL-DUWAIRI AND A. S. SHATNAWI

4.4.2 IP Geolocation-Based Features

DNS-based features provide good insight into suspect domain names.
However, additional information about suspect domain names and their
IP addresses are usually required to accurately classify a domain name as
a fast-flux domain name. This includes using (i) IP2location service to
determine the location of IP addresses obtained through active or passive
DNS probing. Having IP addresses scattered in different countries is an
essential feature of fast-flux networks. Also, using (ii) IP to ASN lookup
tool to determine the ASN number of each IP address as IP addresses that
maps to specific fast-flux domain usually belong to different autonomous
systems. For example, with reference to the DNS response message of the
fast-flux domain rgyui.top shown in Fig. 4.2 and legitimate domain name
timeline.com shown in Fig. 4.3, the features shown in Table 4.5 can be
extracted by looking up their IP addresses in IP2location and IP2ASN
databases.

Compared to legitimate domains, the IP addresses of FFSN domains
exhibit a more uniform geographic distribution and a more widespread
service relationship [43]. A framework to geolocalize fast-flux servers was
proposed in [11]. The main objective of this framework was to determine
the physical location of the fast-flux networks roots (mothership servers)
based on network measurements. That was achieved through extensive
network measurements from several vantage points distributed in the
Internet. The framework was able to determine the physical location of
fast-flux mothership servers within a distance of 100 km.

Table 4.5 List of features extracted from geolocation databases for fast-flux
domain rgyui.top and legitimate domain timeline.com
Feature rgyui.top timeline.com
of distinct ASNs for all
IP addresses in a single
DNS lookup

6 1

of distinct ASNs for all
IP addresses in a all DNS
lookup

Additional information
required

Additional information
required

of distinct countries 4 1

of distinct countries for
all IP addresses in a all
DNS lookup

Additional information
required

Additional information
required

FAST-FLUX SERVICE NETWORKS: ARCHITECTURE, CHARACTERISTICS, AND… 77

4.4.3 Internet-Wide Scanning-Based Features

Additional features of suspect domain IP addresses can be obtained from
daily scans of IPv4 address space projects such as Censys [13] and Shodan
[38]. Both Censys and Shodan are public search engines that provide
information about devices connected to the Internet such as webcams,
servers, routers, etc. The information provided by these search engines
is collected by performing daily Internet wide scanning. For fast-flux
detection, the certain information about suspect domain IP addresses can
be collected. This includes the open ports on each scanned IP address, the
service associated with each port number, and the operating system version.
The premise here is that fast-flux agents corresponding to certain fast-flux
domains do not necessarily have the same configuration. In contrast, it is
expected that these flux agents would have heterogeneous network services
running on them because each flux agent originally belonged to an end user
who runs specific applications and services.

For illustration, we consider Shodan search results for two IP addresses
(IP1, 211.171.233.126, and IP2, 222.232.238.243) selected arbitrarily
from the set of IP addresses of fast-flux domain rgyui.top shown in Figs. 4.7
and 4.8, respectively. The search results show that port numbers 7, 17, 19,
8080, and 443 are open on the first IP address, while port numbers 80,
443, 4433, and 1434 are open on the second IP address. This difference in
open port numbers is expected due to the fact that fast-flux agents belong
to different end users. The count of unique port numbers that are open
on all IP addresses associated with the fast-flux domain rgyui.top in a single

Fig. 4.7 Shodan search result for fast-flux domain rgyui.top IP address
211.171.233.126

78 B. AL-DUWAIRI AND A. S. SHATNAWI

Fig. 4.8 Shodan search result for fast-flux domain rgyui.top IP address
222.232.238.243

Fig. 4.9 Shodan search result for legitimate domain timeline.com IP address
52.2.173.203

DNS responsemessage was eight. On the other hand, Shodan search results
for two IP addresses (IP1, 52.1.173.203, and IP2, 52.6.3.192) selected
arbitrarily from the set of IP addresses of fast the legitimate domain name
timeline.com shown in Figs. 4.9 and 4.10, respectively. The search results
show that both IP addresses have the same port numbers 80 and 443 open.
In fact, all IP addresses that correspond to this domain have the same ports
open. Table 4.6 shows the list of features extracted from Shodan.io for fast-
flux domain rgyui.top and legitimate domain timeline.com.

4.4.4 Active Delay Measurement-Based Features

The fact that malicious servers hosted in fast-flux networks are accessed
through flux agents rather than being accessed directly by end users implies
that accessing a fast-flux domain incurs significantly more delay than access-

FAST-FLUX SERVICE NETWORKS: ARCHITECTURE, CHARACTERISTICS, AND… 79

Fig. 4.10 Shodan search result for legitimate domain timeline.com IP address
52.1.119.170

Table 4.6 List of features extracted from Shodan.io for fast-flux domain rgyui.top
and legitimate domain timeline.com
Feature rgyui.top timeline.com
of distinct open ports 11 2

IP addresses found in the
database

8 out of 10 12 out of 12

ing a non-fast-flux domain. Flux agents work as proxy nodes that relay
traffic between end users and mothership servers. Going through these
agents takes additional processing and communication time. Typically, fast-
flux agents are office, or home machines with limited computational power
and intermittent Internet connectivity with low-speed Internet links [15].
In addition, it is expected that a flux agent’s actual owner would run several
applications and use the available bandwidth. This means that there is an
excellent chance that connecting to a flux agent does not succeed from
the first time or incurs additional overhead, resulting in additional delay in
setting up the connection.

Performing active delay measurement indicates whether a domain name
is a fast-flux domain name and may contribute to detecting fresh, fast-flux
domains that did not appear yet on any blacklist or do not have enough
DNS-related information to decide whether they are fast-flux domains or
no. Here response time measurement variations can be observed spatially
and temporally. Spatial variations are because fast-flux domain name maps
to multiple IP addresses that are distributed in different locations and
temporal variations to fluctuating workload on flux agents over time. In
other words, performing delay measurement between an end user machine

80 B. AL-DUWAIRI AND A. S. SHATNAWI

Table 4.7 List of features commonly used by different fast-flux detection mech-
anisms
Feature Source(s) Mode (Active/Passive)
IP addresses returned in one
DNS lookup

DNS Active/Passive

unique IP addresses returned
in all DNS lookups (IP address
growth)

DNS Active/Passive

nameserver (NS) records in
one single lookup

DNS Active/Passive

TTL value of DNS record DNS Active/Passive

of distinct ASNs for all IP
addresses in a single DNS
lookup

IP to ASN service Active

of distinct ASNs for all IP
addresses in a all DNS lookup

IP to ASN service Active

of distinct countries IP to location service Active

of distinct open ports Internet wide scanning
database

active

of distinct open ports Internet wide scanning
database

active

Response time difference Active delay measurement active

and a flux agent would be affected by the workload on that flux agent
depending on the running applications and Internet usage.

Table 4.7 summarizes the main features commonly used by fast-flux
detection mechanisms and shows the source of each feature and whether
this feature can be obtained actively or passively. It is to be noted that
various fast-flux detection mechanisms may use other features that are
primarily derived from the list shown in this table.

4.5 FAST-FLUX DETECTION

The main objective of fast-flux detection is to distinguish fast-flux domain
names from non-fast-flux domain names. Typically, a domain name is
considered a suspect domain name based on a combination of rules that
are stemmed from fast-flux networks characteristics [45] such as (1) having
short time to live value, (2) the domain name resolves to multiple IP
addresses with scattered geographical distribution, and (3) frequent change

FAST-FLUX SERVICE NETWORKS: ARCHITECTURE, CHARACTERISTICS, AND… 81

of the set of resolved IP addresses returned in each query. Detection of
fast-flux networks is generally achieved by analyzing certain information
collected about suspect domain names from different sources as discussed
in the previous section. Fast-flux detection mechanisms are generally
characterized by the following attributes:

• Detection mode: This attribute refers to the mode of performing fast-
flux detection which can be offline or online (i.e., in real time).
Offline fast-flux detection mechanisms classify domain names into
fast-flux domains and non-fast-flux domains by applying the detection
algorithm on data sets collected in advance. On the other hand, online
fast-flux detection mechanisms have the ability to classify domain
names in real time.

• Feature collection mode: As explained in Sect. 4.4, fast-flux features can
be collected either in active mode or passive mode. In active mode,
specific features can be collected by issuing queries about the suspect
domain name. While in passive mode, features about a suspect domain
are obtained from traffic captured in a passive manner (e.g., while
users are browsing the Internet).

• Features used: As explained in Sect. 4.4, there are four main types
that are typically used by fast-flux detection mechanisms. This include
DNS-based features, IP geolocation features, Internet wide scanning-
based features, and active delay measurement-based features.

• Classification algorithm: This represents the core of any fast-flux
detection mechanism. The majority of fast-flux detection mecha-
nisms apply machine learning algorithms to classify domain names
into fast-flux domain names and non-fast-flux domain names (e.g.,
[2, 4, 35, 36]). Generally, machine learning models are initially
trained using labeled data sets containing a known fast-flux domains
usually collected from blacklisted domains and legitimate domains
usually collected from Alexa top domains list [3]. Feature selection
algorithms are usually used to reduce the size of the feature set. Then
the performance of the machine learning algorithm is evaluated in
terms of accuracy, precision, false-positive rate, and false-negative rate.
Machine learning-based FFSN detection mechanisms differ in several
aspects that include FFSNs features used for classification, the mode
of operation (i.e., whether the mechanism performs active or passive
information collection), the machine learning algorithms used for
classification, and the data set used for evaluation.

82 B. AL-DUWAIRI AND A. S. SHATNAWI

Table 4.8 Summary of main fast-flux detection mechanisms
Reference Detection

mode
Feature
collection
mode

Features used Classification algorithm

Perdisci, R.
et. al. [35],

offline Passive DNS-based Machine learning
algorithms

Hsu, F. H.
et. al., [16]

online Active DNS-based and Active
Delay
measurement-based

statistical approach
based on computing
FastFlux score value

Al-Momani
[4]

online Active DNS-based Adaptive evolving fuzzy
neural networks
(EFuNN)

Perdisci, R.
et. al. [35]

offline Pasive DNS-based, IP
Geolocation-based

The C4.5 decision tree
classifier

Hsu C-H et.
al., [15]

online Active Delay Measurement
–based

SVM classifier

Al-Duwairi
B., et. al., [2]

online passive DNS based features, IP
Geolocation-based,
Internet Scanning –based

SVM (RBF kernel)
classifier

Lombardo,
P., et. al.
[30],

offline Active DNS-based Mathematical and data
mining approach

Nagunwa, T.
[33]

offline Active +
Passive

DNS-based, IP
Geolocation-based,
Delay- measurement
based (A total of 83
features were introduced)

supervised ML
techniques (e.g., SVM,
DT, NB, LR)

Lin, H. T. et.
al., [29]

online Active DNS-based, Delay-
measurement based

Genetic algorithms

Zang, X. D.,
et. al [45]

online Active +
Pasive

DNS-based, IP
Geolocation-based

different machine
learning algorithms
(e.g., SVM, C4.5, ELM)

Table 4.8 summarizes the main fast-flux detection mechanisms and
compares them in terms of detection mode, feature collection mode,
features used, and the core mechanism used.

In [35], the authors proposed a machine learning-based system, called
FluxBuster, for FFSN detection. The high-level overview of FluxBuster is
depicted in Fig. 4.11. Initially, DNS traffic traces are collected passively
from different locations within an enterprise network. The traffic traces
include mainly DNS A records that provide mapping between domain

FAST-FLUX SERVICE NETWORKS: ARCHITECTURE, CHARACTERISTICS, AND… 83

Fig. 4.11 High-level system overview of FluxBuster [35]

names and their resolved IP addresses. For a given domain name, the DNS
Message Aggregator module aggregates information from all observed
DNS messages corresponding to that domain during certain time interval.
This includes the set of resolved IP addresses for that domain, the number
of DNS queries observed during the monitoring time interval, and the
average TTL values for collected A records. The aggregated DNS messages
pass through the Message Pre-filtering module to filter out messages that
correspond to unlikely fast-flux domains. Remaining domain names are
processed by the Domain Clustering module, where domain names that
share the same set of IP addresses are grouped together in one cluster.
Finally, a machine learning-based classifier is used to classify each domain
into fast-flux domain name or non-fast-flux domain name.

PASSVM [2] is a mechanism that performs online fast-flux detection of
fast-flux domain names based on features extracted from the DNS response
message itself, local Censys database, and local geolocalization database.
The features include the number of IP addresses in the DNS response
message, TTL value, domain name length, number of distinct countries
where IP addresses are located, and number of distinct ASNs to which IP
addresses belong. As depicted in Fig. 4.12, whenever a user visits a website,
the A records of a suspect domain name received in a DNS reply message
in response to a DNS query are analyzed, and the required features are
obtained on the fly. Then, a decision is made on the fly whether the domain
name is a fast-flux domain or a non-fast-flux domain by using the SVM
machine learning algorithm.

Among the different features used in PASSVM, two new features
extracted from the Censys database have significantly improved the accu-
racy of fast-flux detection. IP ratio: The ratio of the number of IP addresses
returned from Censys to the number of IP addresses submitted in the

84 B. AL-DUWAIRI AND A. S. SHATNAWI

Fig. 4.12 High-level overview of PASSVM [2]

query. Ports: The number of distinct open port protocols for all IP
addresses returned from the Censys search engine.

The authors in [16] proposed a fast-flux detection mechanism that
is based on computing a FastFlux Score value. The system, called fast-
flux domain detector (FFDD), consists of three major modules that
include retriever, resolver, and recorder. The retriever performs active
DNS probing using the UNIX dig utility for fast-flux domain names and
legitimate domain names obtained from public sources. Also, it performs
active delay measurements between the client machine and each of the
resolved IP addresses after making the necessary formatting of the URL
link. For each domain name, the resolver calculates the FF-Score value
based on the response time measurements collected by the retriever and
stored by the recorder module.

FFDD has a training phase and a testing phase. The main objective
of the training phase is to determine the FF-Score of known fast flux
and legitimate domain names. The FF-Score threshold value is selected

FAST-FLUX SERVICE NETWORKS: ARCHITECTURE, CHARACTERISTICS, AND… 85

manually in such a way as to distinguish fast-flux domains from other
domains. In the detection phase, FFDD resolves the IP addresses for each
suspect domain name by performing DNS lookups. Then, it performs
active delay measurements to calculate the FF-Score for each domain.
Here, the retriever sends 200HTTP requests for each IP address. A suspect
domain name is considered to be a fast-flux domain name if its FF-Score is
larger than the threshold score determined in the training phase. A major
problemwith this approach is that it requires active interaction with suspect
domains, where the client is supposed to issue large number of HTTP
requests to each IP address associated with a suspect domain. This takes
a lot of time and results in high traffic overhead.

The work presented in [14] was the first to present a detailed empirical
study about FFSNs. It provided a comprehensive analysis of the threat
of fast-flux networks and explained their main characteristics. Also, it
developed a metric, called Flux-score, for fast-flux detection. This metric
takes into account several parameters obtained from active probing of DNS
servers. This includes the number of unique A records returned in all DNS
lookups, the number of nameserver (NS) records in one single lookup, and
the number of unique ASNs for all A records. Using linear programming
[10], the optimal values of fast-flux score decision function parameters are
determined.

4.6 CONCLUSION

Fast-flux service networks represent a major trend in the operation and
management of botnets, malware distribution networks, and online
spam/scam campaigns. In these campaigns, spammers flood email boxes
of thousands of email users with advertisements about specific products
or services (e.g., pharmaceutical, adult content, and phishing). The
advertisements usually include hyperlinks to websites representing these
campaigns’ point-of-sale. Traditionally, spammers host the point of sale
website using a domain name that maps to a single IP address or multiple
IP addresses that remain constant for a considerable amount of time, which
would allow defenders to quickly identify and blacklist these IP addresses,
therefore denying access to spammers’ websites. On the other hand, fast-
flux service networks provide a layer of protection for point of sale website
by mapping the website to multiple IP addresses that keep changing at a
fast rate.

86 B. AL-DUWAIRI AND A. S. SHATNAWI

This chapter provided a detailed discussion of fast-flux service networks
focusing on their architecture, operation, characteristics and detection
mechanisms. Also, it highlighted their role in hosting online spam, scam,
and phishing campaigns. There is a need to develop mechanisms to find
the location of actual mothership servers, which would be necessary to
shutdown malicious services hosted by them. Detection of zero-day fast-
flux domains remains a challenging issue because of lack of information
about these domains when they become active for the first time. It is
possible that fast-flux service networks exhibit a behavior that deviate from
the known fast-flux service networks characteristics. For example, fast-flux
domain name can map to a single IP address that keeps changing quickly
instead of mapping to multiple IP addresses. It is important to develop
efficient mechanisms to detect such domain names.

REFERENCES

1. Agarwal V, Mishra P, Kumar S, Pilli ES (2022) A review on attack
and security tools at network layer of IoT. Optical and Wireless
Technologies 2020:497–506

2. Al-Duwairi B, Jarrah M, Shatnawi AS (2021) PASSVM: a highly
accurate fast flux detection system. Comput Secur 110:102431

3. Alexa—top sites. https://www.alexa.com/topsites (Accessed on
20/6/2022)

4. Almomani A (2018) Fast-flux hunter: a system for filtering online
fast-flux botnet. Neural Comput Applic 29(7):483–493

5. Al-Nawasrah A, Almomani AA, Atawneh S, Alauthman M (2020)
A survey of fast flux botnet detection with fast flux cloud comput-
ing. International Journal of Cloud Applications and Computing
(IJCAC) 10(3):17–53

6. Anagnostopoulos M, Kambourakis G, Kopanos P, Louloudakis G,
Gritzalis S (2013) DNS amplification attack revisited. Comput
Secur 39:475–485

7. Aslan ÖA, Samet R (2020) A comprehensive review on malware
detection approaches. IEEE Access 8:6249–6271

8. Bakiras S, Loukopoulos T (2005) Combining replica placement
and caching techniques in content distribution networks. Comput
Commun 28(9):1062–1073

https://www.alexa.com/topsites
https://www.alexa.com/topsites
https://www.alexa.com/topsites
https://www.alexa.com/topsites
https://www.alexa.com/topsites

FAST-FLUX SERVICE NETWORKS: ARCHITECTURE, CHARACTERISTICS, AND… 87

9. Borkar GM, Pund MA, Jawade P (2011) Implementation of round
robin policy in DNS for thresholding of distributed web server sys-
tem. In: Proceedings of the international conference and workshop
on emerging trends in technology, pp 198–201

10. Bradley PS, Mangasarian OL (2000) Massive data discrimination
via linear support vector machines. OptimMethods Softw 13(1):1–
10

11. Castelluccia C, Kaafar MA, Manils P, Perito D (2009) Geolocal-
ization of proxied services and its application to fast-flux hidden
servers. In: Proceedings of the 9th ACM SIGCOMM conference
on Internet measurement, pp 184–189

12. Celik ZB, Oktug S (2013) Detection of Fast-Flux Networks using
various DNS feature sets. In: 2013 IEEE symposium on computers
and communications (ISCC). IEEE, New York, pp 000868–
000873

13. Censys: attack surface management and data solutions. https://
www.censys.io/ (Accessed on 20/6/2022)

14. Holz T, Gorecki C, Rieck K, Freiling FC (2008) Measuring and
detecting fast-flux service networks. In: NDSS 2008

15. Hsu CH, Huang CY, Chen KT (2010) Fast-flux bot detection
in real time. In: International workshop on recent advances in
intrusion detection. Springer, Berlin, pp 464–483

16. Hsu FH, Wang CS, Hsu CH, Tso CK, Chen LH, Lin SH (2014)
Detect fast-flux domains through response time differences. IEEE
J Sel Areas Commun 32(10):1947–1956

17. Hu X, Knysz M, Shin KG (2011) Measurement and analysis of
global IP-usage patterns of fast-flux botnets. In: 2011 Proceedings
IEEE INFOCOM. IEEE, New York, pp 2633–2641

18. Ismail S, Hassen HR, Just M, Zantout H (2021) A review of
amplification-based distributed denial of service attacks and their
mitigation. Comput Secur 109:102380

19. Jiang H, Lin J (2021) Detect fast-flux domain name with DGA
through IP fluctuation. International Journal of Network Security
23(1):88–96

https://www.censys.io/
https://www.censys.io/
https://www.censys.io/
https://www.censys.io/

88 B. AL-DUWAIRI AND A. S. SHATNAWI

20. Jin Y, Tomoishi M, Matsuura S (2019) A detection method against
DNS cache poisoning attacks using machine learning techniques:
work in progress. In: 2019 IEEE 18th international symposium
on network computing and applications (NCA). IEEE, New York,
pp 1–3

21. Khormali A, Park J, Alasmary H, Anwar A, Saad M, Mohaisen D
(2021) Domain name system security and privacy: a contemporary
survey. Comput Netw 185:107699

22. Kim S (2020) Anatomy on malware distribution networks. IEEE
Access 8:73919–73930

23. Kim TH, Reeves D (2020) A survey of domain name system
vulnerabilities and attacks. Journal of Surveillance, Security and
Safety 1(1):34–60

24. Konte M, Feamster N, Jung J (2009) Dynamics of online scam
hosting infrastructure. In: Moon SB, Teixeira R, Uhlig S (eds)
Passive and active network measurement (PAM 2009)

25. Krishnamurthy P, Salehghaffari H, Duraisamy S, Karri R, Khorrami
F (2019) Stealthy rootkits in smart grid controllers. In: 2019 IEEE
37th international conference on computer design (ICCD). IEEE,
New York, pp 20–28

26. Kröhnke L, Jansen J, Vranken H (2018) Resilience of the Domain
Name System: A case study of the. nl-domain. Comput Netw
139:136–150

27. Kumar SA, Xu B (2018) A machine learning based approach to
detect malicious fast flux networks. In: 2018 IEEE symposium
series on computational intelligence (SSCI). IEEE, New York,
pp 1676–1683

28. Li W, Jin J, Lee JH (2019) Analysis of botnet domain names for
IoT cybersecurity. IEEE Access 7:94658–94665

29. Lin HT, Lin YY, Chiang JW (2013) Genetic-based real-time fast-
flux service networks detection. Comput Netw 57(2):501–513

30. Lombardo P, Saeli S, Bisio F, Bernardi D, Massa D (2018) Fast flux
service network detection via data mining on passive DNS traffic.
In: International conference on information security. Springer,
Cham, pp 463–480

FAST-FLUX SERVICE NETWORKS: ARCHITECTURE, CHARACTERISTICS, AND… 89

31. MacFarland DC, Shue CA, Kalafut AJ (2017) The best bang for
the byte: characterizing the potential of DNS amplification attacks.
Comput Netw 116:12–21

32. Man K, Qian Z, Wang Z, Zheng X, Huang Y, Duan H (2020) Dns
cache poisoning attack reloaded: revolutions with side channels. In:
Proceedings of the 2020 ACM SIGSAC conference on computer
and communications security, pp 1337–1350

33. Nagunwa T, Kearney P, Fouad S (2022) A machine learning
approach for detecting fast flux phishing hostnames. J Inf Secur
Appl 65:103125

34. Passerini E, Paleari R, Martignoni L, Bruschi D (2008) Fluxor:
detecting and monitoring fast-flux service networks. In: Interna-
tional conference on detection of intrusions and malware, and
vulnerability assessment. Springer, Berlin, pp 186–206

35. Perdisci R, Corona I, Giacinto G (2012) Early detection of mali-
cious flux networks via large-scale passive DNS traffic analysis. IEEE
Trans Dependable Secure Comput 9(5):714–726

36. Rana S, Aksoy A (2021) Automated fast-flux detection using
machine learning and genetic algorithms. In: IEEE INFOCOM
2021-IEEE conference on computer communications workshops
(INFOCOM WKSHPS). IEEE, New York, pp 1–6

37. Salusky W, Danford R (2007) Know your enemy: fast-flux service
networks. In: The Honeynet Project, pp 1–24

38. Shodan search engine. https://www.shodan.io/ (Accessed on
20/6/2022)

39. Silva SS, Silva RM, Pinto RC, Salles RM (2013) Botnets: a survey.
Comput Netw 57(2):378–403

40. Thanh Vu SN, Stege M, El-Habr PI, Bang J, Dragoni N (2021)
A survey on botnets: incentives, evolution, detection and current
trends. Future Internet 13(8):198

41. Tuan TA, Long HV, Taniar D (2022) On detecting and classifying
DGA botnets and their families. Comput Secur 113:102549

42. VirusTotal. https://www.virustotal.com/ (Accessed on
20/6/2022)

https://www.shodan.io/
https://www.shodan.io/
https://www.shodan.io/
https://www.shodan.io/
https://www.virustotal.com/
https://www.virustotal.com/
https://www.virustotal.com/
https://www.virustotal.com/

90 B. AL-DUWAIRI AND A. S. SHATNAWI

43. Wang HT, Mao CH, Wu KP, Lee HM (2012) Real-time fast-flux
identification via localized spatial geolocation detection. In: 2012
IEEE 36th annual computer software and applications conference.
IEEE, New York, pp 244–252

44. Williams J, King J, Smith B, Pouriyeh S, Shahriar H, Li L (2021)
Phishing prevention using defense in depth. In: Advances in secu-
rity, networks, and Internet of Things. Springer, Cham, pp 101–
116

45. Zang XD, Gong J, Mo SH, Jakalan A, Ding DL (2018) Identifying
fast-flux botnet with AGDnames at the upperDNS hierarchy. IEEE
Access 6:69713–69727

46. Zhou S (2015) A survey on fast-flux attacks. Inf Secur J: Global
Perspect 24(4–6):79–97

CHAPTER 5

Efficient Graph-Based Malware Detection
Using Minimized Kernel and SVM

Billy Tsouvalas and Dimitrios Serpanos

5.1 INTRODUCTION

Cyberattacks are continuously increasing, and the estimation of the total
value at risk globally, due to these attacks, may reach 5.2 trillion USD until
2023 [37]. Cyberattacks employ different attack vectors, and a common
goal is the insertion of malware to target systems. Malware is defined as
a piece of software designed to cause damage or a program that performs
an undesired action, whether it be to disrupt or gain unauthorized access
to a system. Malware detection and classification is a hard task that
becomes increasingly difficult when we consider the high production rate
of new malicious executables and re-purposing of previously deployed

B. Tsouvalas (�)
Stony Brook University, Stony Brook, NY, USA
e-mail: vtsouvalas@cs.stonybrook.edu

D. Serpanos
Computer Technology Institute and Press DIOPHANTUS, University of Patras,
Patras, Greece
e-mail: serpanos@cti.gr

© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2024
I. Almomani et al. (eds.), Cyber Malware, Security Informatics and
Law Enforcement, https://doi.org/10.1007/978-3-031-34969-0_5

91

 29185 -2241 a 29185
-2241 a

 1152 42043 a 1152 42043
a

mailto:vtsouvalas@cs.stonybrook.edu
mailto:vtsouvalas@cs.stonybrook.edu
mailto:vtsouvalas@cs.stonybrook.edu

 1152 47528 a 1152 47528
a

mailto:serpanos@cti.gr
mailto:serpanos@cti.gr
https://doi.org/10.1007/978-3-031-34969-0_5
https://doi.org/10.1007/978-3-031-34969-0_5
https://doi.org/10.1007/978-3-031-34969-0_5
https://doi.org/10.1007/978-3-031-34969-0_5
https://doi.org/10.1007/978-3-031-34969-0_5
https://doi.org/10.1007/978-3-031-34969-0_5
https://doi.org/10.1007/978-3-031-34969-0_5
https://doi.org/10.1007/978-3-031-34969-0_5
https://doi.org/10.1007/978-3-031-34969-0_5
https://doi.org/10.1007/978-3-031-34969-0_5
https://doi.org/10.1007/978-3-031-34969-0_5

92 B. TSOUVALAS AND D. SERPANOS

ones (malware variants). This leads to a malware landscape that consists
of diverse attack strategies and a wide range of vulnerability targets. Mal-
ware is divided into categories, such as viruses, Trojans, worms, rootkits,
ransomware, adware, etc., based on the method employed to carry out
the attack, to distribute copies (if any) and, in general, the techniques
used for a security breach. Considering that malware-related cybercrime
and breaches account for 28% of all cyberattacks [64], it is apparent that
malware attacks are a problem of paramount importance and consequence,
and furthermore, malware analysis and detection mechanisms are essential
against cybercrime.

Malware analysis is performed with two different types of analysis: static
and dynamic [27]. Static analysis examines a software sample without
executing it, while in dynamic analysis the sample is executed in a secure
environment, typically a virtual machine named sandbox, in order to collect
runtime execution data. Typical static analysis methods include signatures,
where a predefined database of unique digital malware signatures enables
threat recognition through signature matching, disassembly methods, and
code analysis, where a sample is reverse-engineered, using a disassembler
or a decompiler, in order to examine the code and classify executable.
Dynamic analysis is behavioral and allows for additional information extrac-
tion, because the runtime behavior of the sample is explored. Dynamic
analysis is more advantageous, because it enables collection of significant
information, observes actual sample execution, and can evaluate more
aspects of the sample. However, dynamic analysis is significantly more
costly and power demanding, because it requires the setup of a virtual
machine and its teardown, in addition to the execution of the sample.
Considering the high computational cost of dynamic analysis, significant
effort is spent to develop highly effective static analysis solutions to the
malware problem.

We introduce an efficient static analysis method, which includes dis-
assembling an executable sample, extraction of the API call graph, and
evaluating the sample based on graph analysis. Our analysis exploits
machine learning methods, considering that such methods are widely
employed in malware detection, especially in classification [25, 40, 47,
55, 67, 72, 74], achieving very high accuracy providing promising results.
In our work, we use support vector machine (SVM) for the binary
classification part of the process, which is a classification algorithm that
accounts for 29% of all learning schemes applied to malware detection [56].
For the analysis, we use models of API call graphs of both benign and

EFFICIENTGRAPH-BASEDMALWAREDETECTIONUSINGMINIMIZEDKERNEL… 93

malicious executable samples. In order to reduce the size of the statically
constructed API call graphs, we perform a graph abstraction, which enables
us to vectorize the comparison among samples. Specifically, we vectorize
the graph comparison problem using a minimized version of a random
walk graph kernel, which is, in turn, used as the input of the SVM. We
evaluate the results of this approach for an unweighted and a weighted
version of the API call graph, and we employ a dataset that contains samples
that we have collected. The curated dataset contains malware, collected
from acknowledged malware sources, such as VirusShare [2], and benign
software, composed of popular benign software such as operating system
installation files and version control managers, i.e., Windows [3] or Git
[4]. Considering the dependence of malware on the operating system that
is required for sample execution, we have focused on Windows samples,
i.e., the executable is a Windows executable and the API graph includes
its calls to the Windows API; the method can be easily implemented for
alternative operating systems (Unix, Linux, MacOS, etc.).

Regarding the dataset, we note that, although malware detection and
classification are an active field of research and development, there do not
exist benchmark datasets containing executable samples. The benchmark
datasets employed in relevant literature and used by the community are
mainly curated by the industry and, typically, contain only extracted fea-
tures of malicious executables, instead of the executable samples themselves
[14, 24, 29, 49]. Independently of the lack of benchmarks, there is not
even a single dataset of executable samples that is used widely—as a
reference point—to compare different malware detection methods and
frameworks. Importantly, many malware detection tools employ propri-
etary and unavailable datasets for experiments and evaluation. This leads to
results that are not reproducable and thus not comparable. Furthermore,
many datasets used inmalware detection experiments contain very few sam-
ples, limiting the ability for safe conclusions about their effectiveness and
performance [17]. For this reason, we collect and curate our own dataset
that contains benign and malicious executable samples. Importantly, we
analyze the collected data and provide an evaluation on the similarity of
the samples, demonstrating the dataset’s diversity.

The paper’s contribution is a method for efficient graph-comparison
of API call graphs exploiting the problem’s constraints, in order to achieve
an efficient, high-performance malware detection method. More explicitly,
our contributions are:

94 B. TSOUVALAS AND D. SERPANOS

– introducing a method to construct abstract API call graphs taking into
account problem constraints and enabling calculation of random walk
graph kernels more efficiently than current methods (our method
achieves .O(n3) complexity relatively to .O(n6), where n is the number
of nodes in the graph);

– achieving the same accuracy levels as similar efforts [21] by using a
substantially smaller dataset;

– achieving higher accuracy levels by introducing weighted API call
graphs.

The chapter is organized as follows: subsequent to the presented
Introduction of Sects. 5.1 and 5.2 discusses the related work and state-of-
the-art of the field, Sect. 5.3 contains extensive description of the graph-
based modeling and malware classification scheme, Sect. 5.4 presents the
experimental settings and results of the malware classification mechanism,
and Sect. 5.5 concludes the chapter.

5.2 RELATED WORK

There are several approaches that address malware detection utilizing the
calls that a software sample makes to the operating system, especially for
the Windows API. API calls of an executable provide information about
the resources it needs from the operating system; the API call sequence
is a fundamental behavioral characteristic of an executable, because it
reflects its control flow and possible execution paths. In this direction,
efforts have targeted to identify API call sequence differences between
benign and malicious executables and to exploit these differences to
formulate detection schemes. API call sequences are a widely used feature
for several detection methods; such methods consider API call selection,
frequency, and ordering/sequential characteristics [41], identify distinct
API call sequences and use n-grammodels for the sequence length selection
[9, 63, 72], use feature extraction algorithms based on the behavioral
analysis of the various API call sequences [61, 62], and develop metrics
to measure the similarity between malware through alignment techniques
[19] or word embedding and clustering schemes [13].

Other approaches employing API call sequences focus on searching for
the longest common subsequence of API calls extracted using dynamic
analysis [38], while language-based models have also been adapted to
API call sequences to measure the similarity between executables and thus

EFFICIENTGRAPH-BASEDMALWAREDETECTIONUSINGMINIMIZEDKERNEL… 95

conclude on their nature [71]. API calls provide crucial information to
analyze a sample’s runtime behavior and, thus, have been used for analysis
in alternative approaches that do not take into account API call sequences.
These approaches include classification of API functions based on their
behavior and the potential malicious intent of the software [10]. Features
such as the API call names and input arguments have proven effective in
detection schemes [50, 51]. Furthermore, API call-related features have
been employed for obfuscated malware detection [9], while the frequency
of API call usage has also been employed for classification purposes [11].
Other state-of-the-art approaches have employed the appearance of API
calls in malicious and benign software as a means of categorization [52].
In mobile systems security, where there is high availability of open Android
application packages (APK) andmobile malware samples, several efforts for
mobile malware detection that employ API calls and Android permission
requests have been quite successful [12, 22, 45].

Graph-based malware analysis is widespread, considering the typical
modeling of flows in programs. Graph-based detection schemes that
employ static analysis have proven effective and achieve high performance,
either by focusing on function call graphs and clustering mechanisms [30]
or by following more general approaches such as API calls and dynamic
link libraries (DLLs) relations modeled into a heterogeneous information
networks (HIN) [26]. Moreover, in mobile malware detection, employing
different characteristics of statically extracted API calls, such as names,
frequency of appearance, or other sequence characteristics, has yielded
encouraging results [41].

Dynamic analysis often employs graph-based schemes, which include
API or system calls. This is carried out in the context of dynamically
extracted API call sequences modeled into API call graphs [18] or by
utilizing dynamic taint analysis to produce system call and dependency
graphs and producing similarity metrics between samples in order to detect
and classify malware [44].

A promising approach to malware detection based on API call graphs
that involves static extraction of API calls, modeling of each executable
with an API call graph, and comparison of these graphs using a kernel
has provided very good results [21]. Our approach is analogous, and, in
contrast to the conventional one, it exploits the constraints of the problem,
and, more specifically, it addresses the possible size reduction during the
subgraph comparison of the labeled API call graphs. This leads to even
higher accuracy, faster, and with a smaller dataset.

96 B. TSOUVALAS AND D. SERPANOS

In the context of API and system call-based malware classification,
machine learning (ML) and deep learning (DL) techniques have been
widely adopted. ML approaches include clustering algorithms such as
k-nearest neighbors [68] and decision-based methods [34], while DL
frameworks have shown promising results, with approaches employing
autoencoders [32, 35] and convolutional neural networks [42, 46, 48].
Furthermore, combinations of ML and DL components, using graph
convolutional networks [16] and stacked autoencoders [70] along with
a variety of classifiers, have demonstrated elevated detection performance.
Although there is a wide range of classification methods employed in API-
based malware research, SVM techniques still hold a prevalent position in
the field [22, 22, 45, 69].

Support vector machine [20] is a machine learning supervised algo-
rithm used widely for malware binary classification (malware/benign).
Its extensive use originates from the fact that it allows fine-tuning of its
parameters in order to avoid overfitting and underfitting; this makes SVM
advantageous over alternative machine learning algorithms for malware
detection. Representative frameworks that employ SVM include (i) n-gram
schemes on API call sequences [9, 59] where classification takes as input
vectors of sample extracted features, (ii) text-mining approaches on API
call sequences [58], and (iii) API call flow graph vectorization and feature
extraction schemes [18] where features are extracted using data mining
techniques and used for training.

We employ SVM for the classification part of our method after having
transformed the API call graph comparison into a feature vector through
use of an appropriate minimized random walk graph kernel; the kernel
serves as a similarity metric for two graphs.

The lack of available benchmark malware datasets, which contain both
malicious and benign executables, is a significant limitation in malware
analysis research and development. Available and recent malware datasets
typically contain extracted features of malicious and benign executa-
bles, but not the executable samples themselves. The main feature-based
benchmark datasets are summarized in Table 5.1. Although datasets with
extracted features enable analyses with machine learning frameworks, they
are inappropriate for methods that analyze software samples prior to clas-
sification. The unavailability of public and free datasets with samples is also
due to intellectual property constraints [29]. Specifically, the constraints are
for benign samples which may be parts of proprietary software. Malicious
executable samples can be collected from dedicated malware repositories,

EFFICIENTGRAPH-BASEDMALWAREDETECTIONUSINGMINIMIZEDKERNEL… 97

Table 5.1 Feature-based benchmark malware datasets
Executable samples

Dataset Size Feature extraction availability
Ember [14] 1.1M LIEF [60] None

SoReL-20M [29] 20M
Ember [14] 9, 919, 251
features and malware binary
PE metadata samples—No benign

BIG 2015 [49] . > 20k
Disassembly and Hexdump conversion
Bytecode necessary—No benign

such as VirusTotal [5] and VirusShare [2], using their hash. Due to
these limitations, most efforts that require the availability of executable
samples employ proprietary or privately collected datasets, and, thus,
their results are not reproducible, and there is no ability for independent
comparisons. Since our approach requires analysis of executable samples
prior to classification, we have created our own dataset, collecting benign
and malicious executable samples; to demonstrate the dissimilarity and
diversity of the collected samples, we provide a similarity metric for both
sets of samples as we describe in Sect. 5.4.

5.3 API CALL GRAPH-BASED ANALYSIS FRAMEWORK

We introduce a graph-based detection scheme based on static analysis
of executables and a machine learning technique, specifically support
vector machines (SVMs). Our scheme follows trends of recently proposed
schemes [21, 23, 43, 73] and differs from alternatives in the construction
of the final graph used for the classification which is based on SVM.

Our method is composed of four stages (steps), considering the exis-
tence of a labeled dataset DS of benign and malicious executables. When
a new sample (executable) S, not included in DS, is processed for classifi-
cation, the four processing stages are the following:

1. extraction of the API call graph of S;
2. extraction of an abstract API call graph of S;
3. for every executable D in DS, calculation and reduction of a graph

kernel
4. classification

The extraction of the API call graph (ACG) for an executable S is achieved
through disassembly of the executable, extraction of its API calls to the

98 B. TSOUVALAS AND D. SERPANOS

operating system, extraction of API call sequencing information, and
subsequent construction of the ACG based on the collected data. Then, in
the second step, the ACG is processed, reducing the ACG and calculating
an abstract API call graph (AACG) of S, which has a smaller size. In the
third step, the AACG is used to make pairwise comparisons of the AACG of
S with the AACGs of all the executables in DS. These pairwise comparisons
are calculations of an appropriate graph kernel [39], which effectively
vectorizes the AACGs and renders the comparison data appropriate for use
in classification. Finally, in the fourth step, SVM-based classification inputs
the vectorized comparisons to classify the sample S as malicious or benign.

In the following subsections, we detail our method based on the
implementation of our method, which focuses on Windows executables
and binary classification (malicious or benign).

5.3.1 Extraction of API Call Graph

We disassemble S using the open source program Ghidra [1]. Ghidra
provides a wide range of operations, such as disassembly and decompi-
lation while enabling scripting and graph representation of data related to
resources identified in the disassembled code. An important capability of
Ghidra is that its API can be used to develop custom code to perform
desired procedures, such as the resource extraction that is required in our
method. In our method implementation, we extract the API calls that S
makes and their connectivity information in order to construct API call
graphs.

A successful Ghidra analysis of S establishes that S is correctly disas-
sembled and its code can be represented in an assembly language. From
the assembly code, we extract basic information of the executable, such as
the used registers, the called functions, the included API calls, and other
relevant data. Based on the assembly code, Ghidra calculates codeblocks,
which are bundles of disassembled code that Ghidra relates distinct actions
to. Effectively, codeblocks are considered as internal functions of S.

5.3.2 Extraction of Abstract API Call Graph

Using the extracted codeblocks, we construct the control flow graph
(CFG) of S denoted as .G = (N,E), where N is the set of nodes and
E is the set of edges. G is a directed graph, where nodes correspond to

EFFICIENTGRAPH-BASEDMALWAREDETECTIONUSINGMINIMIZEDKERNEL… 99

Table 5.2 AACG size reduction
Sample Label ACG nodes AACG nodes Gain
VSd0595f53a68e289e55c9aa37546c6c89 Malware 956 5 191.2
VS27c17e3b1111fc5c3d4f6d779b15d4da Malware 911 5 182.2
VScc755bfe842d44f14d87b77848e4ed6d Malware 538 4 134.5
GitHub.Authentication.exe Benign 131 4 32.75
FlashPlayerApp.exe Benign 2688 206 13.05

S’s codeblocks and edges connect codeblocks in sequence to model the
possible execution paths. Thus, two nodes . ni and . nj represent two distinct
codeblocks, and an edge .(ni, nj) demonstrates that the execution of the
codeblock of . ni can be followed by the execution of the codeblock of . nj

in an execution path of S.
The API call graph (ACG) of sample S is the directed graph that is

extracted from the CFG of S, by replacing each node with the API calls that
the specific Codeblock leads to. For example, if the codeblock represented
with node . ni leads to API call . f1 and the codeblock of node . nj leads to
API call . f2, the ACG includes nodes .(ni, f1) and .(nj , f2), respectively. The
ACG is denoted as .GAPICall = (NAPI , EAPI). We reiterate that the nodes
of a CFG are codeblocks, which have been extracted by the disassembly
process. These codeblocks may lead to zero, one, or more API calls. Given
the fact that a single API call may be reached from several points during
the execution of the software, the size of the ACG may exceed the size
of the CFG in terms of nodes and edges. Furthermore, considering that
a codeblock of S may lead to several API calls, we expect the size of the
ACG to be greater than that of the CFG.

Our method targets to exploit pairwise comparisons of sample ACGs for
classification with SVM. The speed of pairwise calculations is critical and
depends on the size of the compared graphs. For this, considering that
ACGs have large sizes, we calculate a reduced size abstract API call graph
(AACG) to enable faster comparisons.

An AACG is an undirected graph that is constructed from an ACG by
merging all ACG nodes that correspond to the same API call. The AACG
nodes are connected with undirected links merging the corresponding links
in the ACG. Thus, the AACG’s node set is equal to the set of distinct API
calls that are used by the executable sample. In Table 5.2, we provide a few
examples of graph size reduction achieved by the AACG manipulation.

100 B. TSOUVALAS AND D. SERPANOS

In addition to the unweighted AACG described, we also consider the
case of a weighted AACG. The weights are the transition frequencies
between the connected API calls.

5.3.3 Calculation and Reduction of a Graph Kernel

Our method is based on pairwise comparisons of executable samples,
with the objective to calculate a measure of their similarity. We calculate
similarity exploiting a random walk graph kernel, which vectorizes graph
comparison and enables classification exploiting vector-based techniques,
such as SVM. Our choice for the kernel originates from the need to use
the similarity measure as input to the SVM for classification.

A graph kernel is a kernel function, i.e., a generalized dot product
function [54], that calculates the inner product of two graphs and provides
a measure of similarity between them [8, 15]. Thus, a graph kernel is
suitable for kernelized learning and classification algorithms such as SVMs.
In our method, we use a special case of graph kernels, a random walk graph
kernel.

Random walk graph kernels (RWGK) for two graphs . G1 and . G2
calculate random walks on the two graphs and count the number of
matching walks [66]. Importantly, it is proven that performing random
walks simultaneously on a pair of graphs . G1 and . G2 is equivalent to
performing a random walk on the direct product graph .G1 × G2 of the
two graphs [33].

Given two graphs .G1 = (N1, E1) and .G2 = (N2, E2), their direct
product graph .G× = (N×, E×) is a graph over all possible pairs of nodes
from . G1 and . G2, where two nodes of . G× are neighboring if and only if
the corresponding nodes in . G1 and . G2 are neighbors in both graphs.

In the following, we consider the representation of graphs with their
adjacency matrices: . A1 and . A2 are the adjacency matrices of . G1 and . G2,
respectively. The adjacency matrix of . G× is

.A× = A1 × A2 (5.1)

In order to calculate a random walk in a graph, we need to define distribu-
tion probabilities for the starting and stopping point of the random walk;
we denote these probabilities p and q, respectively [28, 66]. Considering
the two graphs, . G1 and . G2, their starting and stopping distributions are

EFFICIENTGRAPH-BASEDMALWAREDETECTIONUSINGMINIMIZEDKERNEL… 101

.p1, q1, and .p2, q2, respectively. Considering these distributions for . G1 and

. G2, the equivalent probability distributions of the direct product graph are

.p× = p1 ⊗ p2 and q× = q1 ⊗ q2 (5.2)

The Random walk graph kernel for the pair . G1 and . G2 is defined as

.κ(G1,G2) =
T∑

k=0

μ(k)q
ᵀ
×Ak×p× (5.3)

where:

– .A× is the adjacency matrix of . G×, and, thus, . Ak represents the
probability of simultaneous k-length random walks on . G1 and . G2;

– . p× and . q× are the initial and stopping probability distributions of . G×,
respectively (as described in . (2));

– T is the maximum length of a random walk;
– .μ(k) = λk ∈ [0,1] is a coefficient that controls the importance of

length in randomwalks which we use to ensure that the sum converges
and the kernel value is well defined [66].

In the implementation of our method, we use .p1 = q1 = 1/|N1| and
.p2 = q2 = 1/|N2|, i.e., uniform distributions over the nodes of . G1 and
. G2, as commonly used [21, 28]. For the extracted abstract API call graphs,
we note that:

– . A× in the kernel definition refers to an unweighted graph, while in the
case of weighted graph, . A× is replaced with matrix . W× which contains
the edge weights;

– the nodes of the graphs in our method are labeled, where the node
labels are the names of the corresponding distinct API calls. Thus,
.W× = A×, leading to Eq. (5.3) [28, 57, 66].

Based on the above, the kernel definition becomes

.κ(G1,G2) = q
ᵀ
×(I − λA×)−1p× (5.4)

In Eq. (5.4), we employ the generalized definition of the random walk
graph kernel for labeled graphs [28, 57, 66].

102 B. TSOUVALAS AND D. SERPANOS

The calculation of the kernel is equivalent to inverting . (I − λA×)

as derived from Eq. (5.4). Considering that the complexity to invert a
matrix is .O(n3), where n is the matrix dimension (rows/columns in the
adjacency matrix), the computation to invert .(I− λA×) is .O(n6) [36, 66].
In our method, we calculate the kernel with complexity of .O(n3) by pre-
processing the adjacency matrices and performing the kernel calculation
employing decomposition into Kronecker products and the Sylvester
method [65]. To achieve this, we exploit properties of the AACGs, elimi-
nating unnecessary nodes and reducing the adjacency matrices involved in
the kernel computation to equal sizes. Specifically, considering that AACGs
have uniquely labeled nodes (the labels are the API calls) and that only
common nodes contribute to the results, we can eliminate all the nodes
that are different between the two compared graphs. Thus, the resulting
matrices have the same dimension and the same labels. The employment
of equal size matrices in the kernel computation enables decomposition
into Kronecker products and adoption of the Sylvester method [65], which
leads to the lower complexity of .O(n3). Importantly, the elimination of the
unnecessary nodes from the direct product graph and the corresponding
costly computations reduce significantly the running time of the graph
comparison method [36].

The random walk graph kernel is a measure of similarity between two
graphs [8, 15]. We compute kernel values and evaluate the similarity of all
possible pairs of graphs. Thus, for every executable sample, we compute
a kernel value for every other executable sample in DS. For a dataset of
M executable samples, we have a total of .(M − 1)2 kernel values, overall.
Given these kernel values, which correspond to the all pairwise comparisons
of samples in a dataset, we can directly use the kernel, as input to the SVM
classifier. The principle of kernelization of the data is known as the kernel
trick [31, 53].

After their calculation, kernel values are normalized as follows:

.κ̂(G1,G2) = κ(G1,G2)

max(κ(G1,G1), κ(G2,G2))
(5.5)

Normalization leads to kernel values in the range .{0,1}, where 1 is the
result when a graph is compared to itself.

EFFICIENTGRAPH-BASEDMALWAREDETECTIONUSINGMINIMIZEDKERNEL… 103

5.3.4 Classification

Classification is performed using all kernel values of the executable pairs
.(S,Di), where .Di ∈ DS, as well as all kernel values of the executable pairs
.(Dk,Dl), where .Dk,Dl ∈ DS; these values are . M2, where .M = |DS|. These
kernel values are used for a support vector machine (SVM) classification
scheme.

The training of the SVM is performed using the set of the M vectors,
where each vector has the form . [(x11, y1), . . . , (x1n, y1)], [(x21, y2), . . . ,

.(x2n, y2)],, .[(xn1, yn), . . . , (xnn, yn)], where . xij represents the kernel
value of the comparison of samples . Si and . Sj , and . yi is the class label,
which is an integer value a with .a = −1 or .a = 1 for malicious and benign
executables, respectively.

5.4 EXPERIMENTS AND TESTING

We evaluate our method in two directions: (a) the effectiveness of the
kernel results and (b) the SVM classification.

In the first direction, we conduct experiments for both weighted and
unweighted AACGs, calculating and comparing kernel values for sample
pairs. We analyze separately benign and malware samples, to establish
metrics for each category, and then we compare the categories to evaluate
their effective separation using kernel values as a metric. Specifically, we
conduct the following measurements:

1. Benign-Benign: Since the kernel is a measure of similarity, we
demonstrate the extent to which the benign samples are similar
among them. In this context, a small kernel value demonstrates the
dissimilarity of the dataset and the reliability of the benign sample
collection.

2. Malware-Malware: In the same manner as for the benign samples, we
observe the kernel values (similarity measurements) of the malicious
executables and conclude on the reliability of the malicious sample
collection.

3. Benign-Malware: The kernel value of the comparison of benign
and malicious samples is a preliminary classification metric, which
demonstrates how similar or different the benign and malicious
samples are. In this context, we can observe the inner workings of
a classifier.

104 B. TSOUVALAS AND D. SERPANOS

Using the computed kernel values for the benign and the malicious
samples, we also evaluate binary classification using SVM. Considering
as baseline the case of the unweighted AACG, we evaluate the weighted
AACG approach.

5.4.1 Dataset

We have created our own dataset for the experimentation and testing of
our method, due to lack of appropriate public datasets. Focusing on the
Windows operating system, the dataset includes both benign and malicious
Windows executable files, containing only labeled executable samples. The
included benign samples are installation and support files and have been
collected from trusted sources such as Windows [3], Git [4], Cygwin [6],
and Codeblocks [7]. The dataset includes 567 benign executables, with
size ranging from several hundred KB to several MB. The malware samples
have been drawn from VirusShare [2], which is a website that provides
malware samples for academic and scientific purposes. We collected 827
malicious executables, with sizes ranging from several hundred KB to
several MB.

5.4.2 Evaluation of Kernel Effectiveness

We evaluate the effectiveness of the kernel use as a metric and the diversity
of the collected executable samples by analyzing the dissimilarity of benign
and malicious samples independently, as well as among these two sample
categories. Analyzing similarity of all benign samples and all malware
samples independently shows us that the samples of these two subsets of
the dataset are not similar; thus, the results of the method are reliable.

5.4.2.1 Unweighted API Call Graph
For the 567 benign dataset samples, we calculate the kernel values for
subsets of 50, 100, 150, 200, 250, and 300 benign samples; we perform
3 calculations per subset size, drawing samples with uniform probability
among the 567 benign samples for each calculation. Analogous calculations
are made for the 827 malware samples. The average kernel value for each
dataset size appears in Table 5.3. Furthermore, Fig. 5.1 plots all results
including a histogram of the kernel value distribution at the right of
each plot. As the results show, the maximum average kernel value, i.e.,

EFFICIENTGRAPH-BASEDMALWAREDETECTIONUSINGMINIMIZEDKERNEL… 105

Table 5.3 Benign-benign and malware-malware normalized kernel values aver-
age of unweighted API call graph for the different dataset sizes
Subset size 50 100 150 200 250 300
Benign—Benign 28.34 29.09 32 29.35 28.86 28.68
Malware—Malware 22.86 22.92 28.58 20.53 25.39 22.21

Fig. 5.1 Unweighted graph: benign-benign (top), malware-malware (bottom)
kernel values for dataset size: (from left to right) 50, 200, and 300

the maximum average similarity metric, is 32% for benign and 28.58%
for malware samples, respectively. This indicates that the similarity metric
between benign and malicious samples is sufficiently different.

5.4.2.2 Weighted API Call Graph
We perform the same procedure for the weighted graph approach, and we
demonstrate that the maximum average kernel value for benign and mal-
ware samples does not surpass 32%. We present these results in Table 5.4
and Fig. 5.2.

106 B. TSOUVALAS AND D. SERPANOS

Fig. 5.2 Weighted graph: benign-benign (top), malware-malware (bottom) ker-
nel values for dataset size: (from left to right) 50, 200, and 300

Table 5.4 Benign-benign and malware-malware normalized kernel values aver-
age of weighted API call graph for the different dataset sizes

50 100 150 200 250 300
Benign—Benign 30.78 34.10 30.37 30.50 29.36 31.41
Malware—Malware 31.43 28.20 25.52 27.20 24.26 23.54

5.4.2.3 Benign-Malware Kernel Results
Considering that the kernel values are a similarity metric between two
graphs, we present in Fig. 5.3 and Table 5.5 the kernel values from the
comparison of benign and malware samples. For the largest dataset of 300
benign and malware samples, the average similarity of graphs is 11.15%
and 12.21% for the unweighted and weighted graph approach, respectively.
This clearly demonstrates that the API call graphs are a very effective and
a significant feature for malware detection.

EFFICIENTGRAPH-BASEDMALWAREDETECTIONUSINGMINIMIZEDKERNEL… 107

Fig. 5.3 Benign-malware kernel values for dataset size: (from left to right) 50,
200, and 300, for unweighted graph (top) and weighted graph (bottom)

5.4.3 SVM Training and Classification

We test the trained SVM classifier by using nine different train-to-test
set splits, by randomly splitting the kernel values in a 10%–90% split
and arriving to 90%–10% train-to-test split in 10% intervals. The whole
procedure is repeated 100 times, and the resulting evaluation metrics
are the average metric values over the 100 repetitions. The kernel values
are split in groups containing an equal number of malware and benign
originating kernel values: sets of 50, 100, 150, 200, 250, and 300. We
evaluate the classification performance of the proposed framework using
the accuracy, precision, recall, and the ROC curve of the SVM testing
for the different train-to-test-splits (these evaluation metrics are elaborated
upon in Table 5.6).

In Tables 5.7 and 5.8, we present the experimental results of the
malware detection scheme for unweighted and weighted API call graphs,
respectively. The unweighted approach achieves a maximum accuracy of
98.62% for the largest dataset, which is comparable to the results attained

108 B. TSOUVALAS AND D. SERPANOS

Table 5.5 Benign-malware normalized kernel values average of unweighted and
weighted API call graph for the different dataset sizes

50 100 150 200 250 300
Unweighted graph 10.75 11.07 13.03 11.21 13.84 11.15
Weighted graph 13.37 12.32 11.63 12.35 11.93 12.21

Table 5.6 Evaluation metrics
Metric Equationa Definition

Accuracy .
T P + T N

T P + T N + FP + FN

The number of correct predictions
over the total number of
predictions.

Precision .
T P

T P + FP

The ratio of positive identifications
that were actually correct.

Recall .
T P

T P + FN

The ratio of actual positives that
were correctly identified.

TPR .
T P

T P + FN

The number of correct predictions
over the total number of
predictions

FPR .
FP

FP + T N

The number of correct predictions
over the total number of
predictions

ROC Curve-AUC -

A Receiver operating
characteristic (ROC)
curve shows the performance of a
classifier at all classification thresholds.
The ROC curve plots the TPR against
the FPR at different classification
thresholds. AUC measures the
accumulated performance across all
thresholds of classification.
The ROC-AUC measures the quality
of the classifier, no matter what
classification threshold is chosen.

[a] T P is the number of True Positives, T N is the number of True Negatives, FP is the
number of False Positives, and FN is the number of False Negatives

by similar attempts [21]; however, the dataset size we use is significantly
smaller, and the computational cost is substantially reduced. On the other
hand, the weighted graph approach surpasses 99.1% and almost reaches
perfect accuracy while still functioning with a small dataset and keeping
computational cost and operation time low.

EFFICIENTGRAPH-BASEDMALWAREDETECTIONUSINGMINIMIZEDKERNEL… 109

Table 5.7 SVM evaluation metrics for unweighted graph
Benign-Malware Accuracy Precision Recall ROC-AUC
50–50 89.43 90.50 88.55 89.58
100–100 98.55 97.22 99.93 98.57
150–150 97.43 97.59 97.57 97.48
200–200 97.05 96.09 98.82 97.07
250–250 98.14 98.19 98.12 98.16
300–300 98.62 98.03 99.26 98.59

Table 5.8 SVM evaluation metrics for weighted graph
Benign-Malware Accuracy Precision Recall ROC-AUC
50–50 90.58 90.50 88.56 89.58
100–100 94.73 97.22 99.92 98.57
150–150 96.33 97.59 97.57 97.48
200–200 97.47 96.09 98.83 97.07
250–250 98.99 98.03 98.12 98.16
300–300 99.15 98.88 99.26 98.58

It is worth mentioning that the SVM algorithm is fine-tuned so as to
avoid over- or underfitting and the dataset used has been examined and
evaluated as per its good standing, and thus the detection results are reliable
and robust. In Fig. 5.4, we present a comparison of our unweighted and
weighted graph approaches.

As shown in Tables 5.7 and 5.8, the best classification accuracy
is achieved by employing the SVM algorithm for weighted graphs.
In Table 5.9, we compare the accuracy of our malware classification
scheme against the accuracy achieved by similar state-of-the-art malware
classification schemes. We note that one of the compared approaches
employs an API call graph-based malware classification scheme which is
relatively analogous to our method [21]. However, as mentioned before, in
contrast to this conventional approach, we efficiently exploit the constraints
of the problem and achieve higher accuracy faster and with a smaller dataset
while also considering the case of weighted graphs. We also compare our
classification scheme with other state-of-the-art malware classification
approaches that employ API calls and/or graph-based solutions.

The comparison with state-of-the-art methods that employ API calls
as features for malware classification demonstrates that our approach
achieves higher accuracy than all static analysis approaches. Furthermore,

110 B. TSOUVALAS AND D. SERPANOS

Fig. 5.4 SVM accuracy for unweighted and weighted abstract API call graph for
the different dataset sizes and train-to-test splits

Table 5.9 Comparison with state-of-the-art malware classification approaches
Approach Accuracy Notes

[21] 98.91 Similar effort employing API calls on a
Random Walk Graph Kernel with unweighted graphs.

[9] 96.50 Obfuscated malware detection using API call features
and SVM to find optimal n-gram model

[11] 98.50 Extract API calls from disassembled executable
and classify based on frequency of API Call usage

[52] 98.31 API call categorization based on appearance
in benign or malicious executables

[46] 98.86 API call graphs transformed into low dimension
numeric vector feature set introduced to DNNs

[71] 93.67 LSTM language model calculates similarity score
based on Android system call sequences of executables

[22] 96.50 Android malware detection using
features based on system calls (MALINE)

[42] 69.00 CNN applied to raw opcode sequences

[48] 94.00 Deep learning approach using the raw bytes
of an executable file as input (MalConv)

[26] 98.30 HIN-embedding model metagraph2vec
representing relatedness over files

Our Approach 99.15 Efficient API call graph classification

EFFICIENTGRAPH-BASEDMALWAREDETECTIONUSINGMINIMIZEDKERNEL… 111

we observe that our proposed classification scheme outperforms both n-
gram and language-based models, as well as graph-based approaches.

5.5 CONCLUSIONS

We introduced an efficient and effective static method for malware detec-
tion, which employs API call graphs. Our method is based on the cal-
culation of an appropriate abstract API call graph, with reduced size
taking into account problem constraints. Furthermore, it includes efficient
calculation of a random walk graph kernel as a similarity metric. Through
experiments using an appropriate dataset, we show that the calculated
kernel constitutes an effective metric, which can be readily used for
malware classification with machine learning methodologies such as SVM.
Employing SVM and considering two different cases for the abstract API
call graph, an unweighted and a weighted one, we demonstrate that our
method is comparable to available alternatives when using unweighted
graphs, reaching more than 99% accuracy, and outperforms alternatives
when employing weighted graphs.

REFERENCES

1. (2019). https://ghidra-sre.org/ [Online; accessed 12-July-2022]
2. (2022). https://virusshare.com/, [Online; accessed 12-July-

2022]
3. (2022). https://www.microsoft.com/en-us/windows [Online;

accessed 12-July-2022]
4. (2022). https://git-scm.com/ [Online; accessed 12-July-2022]
5. (2022). https://www.virustotal.com/gui/home/upload [Online;

accessed 12-July-2022]
6. (2022). https://www.cygwin.com/ [Online; accessed 12-July-

2022]
7. (2022). https://www.codeblocks.org/ [Online; accessed 12-July-

2022]
8. Ah-Pine J (2010) Normalized kernels as similarity indices, pp 362–

373. https://doi.org/10.1007/978-3-642-13672-6_36
9. Alazab M, Layton R, Venkataraman S, Watters P (2010) Malware

detection based on structural and behavioural features of api calls
10. Alazab M, Venkataraman S, Watters P (2010) Towards understand-

ing malware behaviour by the extraction of api calls. In: 2010

https://ghidra-sre.org/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://virusshare.com/
https://virusshare.com/
https://virusshare.com/
https://www.microsoft.com/en-us/windows
https://www.microsoft.com/en-us/windows
https://www.microsoft.com/en-us/windows
https://www.microsoft.com/en-us/windows
https://www.microsoft.com/en-us/windows
https://www.microsoft.com/en-us/windows
https://www.microsoft.com/en-us/windows
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.cygwin.com/
https://www.cygwin.com/
https://www.cygwin.com/
https://www.cygwin.com/
https://www.codeblocks.org/
https://www.codeblocks.org/
https://www.codeblocks.org/
https://www.codeblocks.org/
https://doi.org/10.1007/978-3-642-13672-6_36
https://doi.org/10.1007/978-3-642-13672-6_36
https://doi.org/10.1007/978-3-642-13672-6_36
https://doi.org/10.1007/978-3-642-13672-6_36
https://doi.org/10.1007/978-3-642-13672-6_36
https://doi.org/10.1007/978-3-642-13672-6_36
https://doi.org/10.1007/978-3-642-13672-6_36
https://doi.org/10.1007/978-3-642-13672-6_36
https://doi.org/10.1007/978-3-642-13672-6_36
https://doi.org/10.1007/978-3-642-13672-6_36
https://doi.org/10.1007/978-3-642-13672-6_36

112 B. TSOUVALAS AND D. SERPANOS

second cybercrime and trustworthy computing workshop. IEEE,
New York, pp 52–59

11. Alazab M, Venkatraman S, Watters P, Alazab M, et al (2010) Zero-
day malware detection based on supervised learning algorithms of
API call signatures. AusDM 11:171–182

12. Alazab M, Alazab M, Shalaginov A, Mesleh A, Awajan A (2020)
Intelligent mobile malware detection using permission requests and
API calls. Futur Gener Comput Syst 107:509–521

13. Amer E, Zelinka I (2020) A dynamic windows malware detection
and prediction method based on contextual understanding of API
call sequence. Comput Secur 92:101760

14. Anderson HS, Roth P (2018) EMBER: an open dataset for train-
ing static PE malware machine learning models. ArXiv e-prints
1804.04637

15. Avrachenkov K, Chebotarev P, Rubanov D (2017) Kernels on
graphs as proximity measures, vol 10519, pp 27–41. https://doi.
org/10.1007/978-3-319-67810-8_3

16. Cai M, Jiang Y, Gao C, Li H, Yuan W (2021) Learning features
from enhanced function call graphs for android malware detection.
Neurocomputing 423:301–307

17. Canali D, Lanzi A, Balzarotti D, Kruegel C, Christodorescu M,
Kirda E (2012) A quantitative study of accuracy in system call-
based malware detection. In: Proceedings of the 2012 international
symposium on software testing and analysis, pp 122–132

18. Chen ZG, Kang HS, Yin SN, Kim SR (2017) Automatic ran-
somware detection and analysis based on dynamic API calls
flow graph. In: Proceedings of the International Conference on
Research in Adaptive and Convergent Systems, pp 196–201

19. Cho IK, Kim T, Shim YJ, Park H, Choi B, Im EG (2014) Malware
similarity analysis using api sequence alignments. J Internet Serv Inf
Secur 4(4):103–114

20. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn
20(3):273–297

21. Dam KHT, Touili T (2017) Malware detection based on graph
classification. In: Proceedings of the 3rd international conference
on information systems security and privacy. SCITEPRESS—
Science and Technology Publications. https://doi.org/10.5220/
0006209504550463

https://doi.org/10.1007/978-3-319-67810-8_3
https://doi.org/10.1007/978-3-319-67810-8_3
https://doi.org/10.1007/978-3-319-67810-8_3
https://doi.org/10.1007/978-3-319-67810-8_3
https://doi.org/10.1007/978-3-319-67810-8_3
https://doi.org/10.1007/978-3-319-67810-8_3
https://doi.org/10.1007/978-3-319-67810-8_3
https://doi.org/10.1007/978-3-319-67810-8_3
https://doi.org/10.1007/978-3-319-67810-8_3
https://doi.org/10.1007/978-3-319-67810-8_3
https://doi.org/10.1007/978-3-319-67810-8_3
https://doi.org/10.5220/0006209504550463
https://doi.org/10.5220/0006209504550463
https://doi.org/10.5220/0006209504550463
https://doi.org/10.5220/0006209504550463
https://doi.org/10.5220/0006209504550463
https://doi.org/10.5220/0006209504550463

EFFICIENTGRAPH-BASEDMALWAREDETECTIONUSINGMINIMIZEDKERNEL… 113

22. Dimjašević M, Atzeni S, Ugrina I, Rakamaric Z (2016) Evaluation
of androidmalware detection based on system calls. In: Proceedings
of the 2016 ACM on international workshop on security and
privacy analytics, pp 1–8

23. Ding Y, Zhu S, Xia X (2016) Android malware detection method
based on function call graphs. In: Neural information processing.
Springer International Publishing, Berlin, pp 70–77. https://doi.
org/10.1007/978-3-319-46681-1_9

24. Ducau FN, Rudd EM, Heppner TM, Long A, Berlin K (2020)
Automatic malware description via attribute tagging and similarity
embedding. arXiv preprint arXiv:1905.06262

25. Elkhawas AI, Abdelbaki N (2018)Malware detection using opcode
trigram sequence with SVM. In: 2018 26th International con-
ference on software, telecommunications and computer networks
(SoftCOM). IEEE, New York, pp 1–6

26. Fan Y, Hou S, Zhang Y, Ye Y, Abdulhayoglu M (2018) Gotcha-
sly malware! scorpion a metagraph2vec based malware detection
system. In: Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery and data mining, pp 253–262

27. Gandotra E, Bansal D, Sofat S (2014) Malware analysis and classi-
fication: a survey. J Inf Secur 5:56–64. https://doi.org/10.4236/
jis.2014.52006

28. Gärtner T, Flach P, Wrobel S (2003) On graph kernels: hard-
ness results and efficient alternatives, vol 129–143, pp 129–143.
https://doi.org/10.1007/978-3-540-45167-9_11

29. Harang R, Rudd EM (2020) Sorel-20M: a large scale
benchmark dataset for malicious PE detection. arXiv preprint
arXiv:2012.07634

30. Hassen M, Chan PK (2017) Scalable function call graph-based
malware classification. In: Proceedings of the seventh ACM on
conference on data and application security and privacy, pp 239–
248

31. Hofmann T, Schölkopf B, Smola A (2007) Kernel methods
in machine learning. Ann Stat 36. https://doi.org/10.1214/
009053607000000677

32. Hou S, Saas A, Chen L, Ye Y (2016) Deep4maldroid: a deep
learning framework for android malware detection based on linux

https://doi.org/10.1007/978-3-319-46681-1_9
https://doi.org/10.1007/978-3-319-46681-1_9
https://doi.org/10.1007/978-3-319-46681-1_9
https://doi.org/10.1007/978-3-319-46681-1_9
https://doi.org/10.1007/978-3-319-46681-1_9
https://doi.org/10.1007/978-3-319-46681-1_9
https://doi.org/10.1007/978-3-319-46681-1_9
https://doi.org/10.1007/978-3-319-46681-1_9
https://doi.org/10.1007/978-3-319-46681-1_9
https://doi.org/10.1007/978-3-319-46681-1_9
https://doi.org/10.1007/978-3-319-46681-1_9
https://doi.org/10.4236/jis.2014.52006
https://doi.org/10.4236/jis.2014.52006
https://doi.org/10.4236/jis.2014.52006
https://doi.org/10.4236/jis.2014.52006
https://doi.org/10.4236/jis.2014.52006
https://doi.org/10.4236/jis.2014.52006
https://doi.org/10.4236/jis.2014.52006
https://doi.org/10.4236/jis.2014.52006
https://doi.org/10.1007/978-3-540-45167-9_11
https://doi.org/10.1007/978-3-540-45167-9_11
https://doi.org/10.1007/978-3-540-45167-9_11
https://doi.org/10.1007/978-3-540-45167-9_11
https://doi.org/10.1007/978-3-540-45167-9_11
https://doi.org/10.1007/978-3-540-45167-9_11
https://doi.org/10.1007/978-3-540-45167-9_11
https://doi.org/10.1007/978-3-540-45167-9_11
https://doi.org/10.1007/978-3-540-45167-9_11
https://doi.org/10.1007/978-3-540-45167-9_11
https://doi.org/10.1007/978-3-540-45167-9_11
https://doi.org/10.1214/009053607000000677
https://doi.org/10.1214/009053607000000677
https://doi.org/10.1214/009053607000000677
https://doi.org/10.1214/009053607000000677
https://doi.org/10.1214/009053607000000677
https://doi.org/10.1214/009053607000000677

114 B. TSOUVALAS AND D. SERPANOS

kernel system call graphs. In: 2016 IEEE/WIC/ACM interna-
tional conference on Web Intelligence Workshops (WIW). IEEE,
New York, pp 104–111

33. Imrich W, Klavžar S, Hammack RH (2000) Product graphs: struc-
ture and recognition. Wiley, New York

34. Jerlin MA, Marimuthu K (2018) A new malware detection system
using machine learning techniques for api call sequences. Journal
of Applied Security Research 13(1):45–62

35. Jiang H, Turki T, Wang JT (2018) Dlgraph: malware detection
using deep learning and graph embedding. In: 2018 17th IEEE
international conference on machine learning and applications
(ICMLA). IEEE, New York, pp 1029–1033

36. Kang U, Tong H, Sun J (2012) Fast random walk graph kernel. In:
Proceedings of the 2012 SIAM international conference on data
mining. SIAM, New York, pp 828–838

37. Kelly Bissel PDC, LaSalle R (2019)Ninth annual cost of cybercrime
study: the cost of cybercrime. Ponemon Institue LLC, Accenture
plc

38. Ki Y, Kim E, Kim HK (2015) A novel approach to detect mal-
ware based on api call sequence analysis. Int J Distrib Sens Netw
11(6):659101

39. Kriege NM, Johansson FD, Morris C (2020) A survey on graph
kernels. Appl Network Sci 5(1):1–42. https://doi.org/10.1007/
s41109-019-0195-3

40. Kumar S, Singh CBB (2018) A zero-day resistant malware detec-
tion method for securing cloud using svm and sandboxing tech-
niques. In: 2018 Second International Conference on Inven-
tive Communication and Computational Technologies (ICICCT).
IEEE, New York, pp 1397–1402

41. Ma Z, Ge H, Liu Y, Zhao M, Ma J (2019) A combination method
for android malware detection based on control flow graphs and
machine learning algorithms. IEEE Access 7:21235–21245

42. McLaughlin N, Martinez del Rincon J, Kang B, Yerima S, Miller P,
Sezer S, Safaei Y, Trickel E, Zhao Z, Doupé A, et al (2017) Deep
android malware detection. In: Proceedings of the seventh ACM
on conference on data and application security and privacy, pp 301–
308

https://doi.org/10.1007/s41109-019-0195-3
https://doi.org/10.1007/s41109-019-0195-3
https://doi.org/10.1007/s41109-019-0195-3
https://doi.org/10.1007/s41109-019-0195-3
https://doi.org/10.1007/s41109-019-0195-3
https://doi.org/10.1007/s41109-019-0195-3
https://doi.org/10.1007/s41109-019-0195-3
https://doi.org/10.1007/s41109-019-0195-3
https://doi.org/10.1007/s41109-019-0195-3

EFFICIENTGRAPH-BASEDMALWAREDETECTIONUSINGMINIMIZEDKERNEL… 115

43. Merabet HE, Hajraoui A (2019) A survey of malware detection
techniques based on machine learning. Int J Adv Comput Sci Appl
10(1). https://doi.org/10.14569/ijacsa.2019.0100148

44. Nikolopoulos SD, Polenakis I (2017) A graph-based model for
malware detection and classification using system-call groups. J
Comput Virol Hacking Tech 13(1):29–46

45. Peiravian N, Zhu X (2013) Machine learning for android malware
detection using permission and api calls. In: 2013 IEEE 25th
international conference on tools with artificial intelligence. IEEE,
New York, pp 300–305

46. Pektaş A, Acarman T (2020) Deep learning for effective android
malware detection using api call graph embeddings. Soft Comput
24(2):1027–1043

47. Pluskal O (2015) Behavioural malware detection using efficient
SVM implementation. In: Proceedings of the 2015 conference on
research in adaptive and convergent systems, pp 296–301

48. Raff E, Barker J, Sylvester J, Brandon R, Catanzaro B, Nicholas CK
(2018) Malware detection by eating a whole EXE. In: Workshops
at the thirty-second AAAI conference on artificial intelligence

49. Ronen R, Radu M, Feuerstein C, Yom-Tov E, Ahmadi M (2018)
Microsoft malware classification challenge. https://doi.org/10.
48550/ARXIV.1802.10135. https://arxiv.org/abs/1802.10135

50. Salehi Z, Ghiasi M, Sami A (2012) A miner for malware detection
based on API function calls and their arguments. In: The 16th
CSI international symposium on artificial intelligence and signal
processing (AISP 2012). IEEE, New York, pp 563–568

51. Salehi Z, Sami A, Ghiasi M (2014) Using feature generation from
API calls for malware detection. Computer Fraud and Security
2014(9):9–18

52. Sami A, Yadegari B, Rahimi H, Peiravian N, Hashemi S, Hamze
A (2010) Malware detection based on mining api calls. In: Pro-
ceedings of the 2010 ACM symposium on applied computing,
pp 1020–1025

53. Schölkopf B (2000) The kernel trick for distances, vol 13, pp 301–
307

54. Schölkopf B, Smola AJ, Bach F, et al (2002) Learning with kernels:
support vector machines, regularization, optimization, and beyond.
MIT Press, New York

https://doi.org/10.14569/ijacsa.2019.0100148
https://doi.org/10.14569/ijacsa.2019.0100148
https://doi.org/10.14569/ijacsa.2019.0100148
https://doi.org/10.14569/ijacsa.2019.0100148
https://doi.org/10.14569/ijacsa.2019.0100148
https://doi.org/10.14569/ijacsa.2019.0100148
https://doi.org/10.14569/ijacsa.2019.0100148
https://doi.org/10.14569/ijacsa.2019.0100148
https://doi.org/10.48550/ARXIV.1802.10135
https://doi.org/10.48550/ARXIV.1802.10135
https://doi.org/10.48550/ARXIV.1802.10135
https://doi.org/10.48550/ARXIV.1802.10135
https://doi.org/10.48550/ARXIV.1802.10135
https://doi.org/10.48550/ARXIV.1802.10135
https://doi.org/10.48550/ARXIV.1802.10135
https://doi.org/10.48550/ARXIV.1802.10135
https://arxiv.org/abs/1802.10135
https://arxiv.org/abs/1802.10135
https://arxiv.org/abs/1802.10135
https://arxiv.org/abs/1802.10135
https://arxiv.org/abs/1802.10135
https://arxiv.org/abs/1802.10135

116 B. TSOUVALAS AND D. SERPANOS

55. Singh T, Di Troia F, Corrado VA, Austin TH, Stamp M (2016)
Support vector machines and malware detection. J Comput Virol
Hacking Tech 12(4):203–212

56. Souri A, Hosseini R (2018) A state-of-the-art survey of mal-
ware detection approaches using data mining techniques. Hum-
centric Comput Inf Sci 8(1). https://doi.org/10.1186/s13673-
018-0125-x

57. Sugiyama M, Borgwardt K (2015) Halting in random walk kernels.
In: NIPS

58. Sundarkumar GG, Ravi V, Nwogu I, Govindaraju V (2015) Mal-
ware detection via API calls, topic models and machine learning.
In: 2015 IEEE International Conference on Automation Science
and Engineering (CASE). IEEE, New York, pp 1212–1217

59. Takeuchi Y, Sakai K, Fukumoto S (2018) Detecting ransomware
using support vector machines. In: Proceedings of the 47th inter-
national conference on parallel processing companion, pp 1–6

60. Thomas R (2017) Lief—library to instrument executable formats.
https://lief.quarkslab.com/

61. Tian R, Islam R, Batten L, Versteeg S (2010) Differentiating
malware from cleanware using behavioural analysis. In: 2010 5th
international conference on malicious and unwanted software.
IEEE, New York, pp 23–30

62. Uppal D, Sinha R, Mehra V, Jain V (2014) Exploring behavioral
aspects of api calls for malware identification and categorization. In:
2014 International conference on computational intelligence and
communication networks. IEEE, New York, pp 824–828

63. Uppal D, Sinha R, Mehra V, Jain V (2014) Malware detection and
classification based on extraction of API sequences. In: 2014 Inter-
national conference on advances in computing, communications
and informatics (ICACCI). IEEE, New York, pp 2337–2342

64. Verizon (2020) Data breach investigations report 2020. https://
enterprise.verizon.com/resources/reports/dbir [Online; accessed
12-July-2022]

65. Vishwanathan S, Borgwardt KM, Schraudolph NN, et al (2006)
Fast computation of graph kernels. In: NIPS, vol 19, pp 131–138

66. Vishwanathan SVN, Borgwardt KM, Kondor IR, Schraudolph NN
(2008) Graph kernels. CoRR abs/0807.0093. http://arxiv.org/
abs/0807.0093, 0807.0093

https://doi.org/10.1186/s13673-018-0125-x
https://doi.org/10.1186/s13673-018-0125-x
https://doi.org/10.1186/s13673-018-0125-x
https://doi.org/10.1186/s13673-018-0125-x
https://doi.org/10.1186/s13673-018-0125-x
https://doi.org/10.1186/s13673-018-0125-x
https://doi.org/10.1186/s13673-018-0125-x
https://doi.org/10.1186/s13673-018-0125-x
https://doi.org/10.1186/s13673-018-0125-x
https://lief.quarkslab.com/
https://lief.quarkslab.com/
https://lief.quarkslab.com/
https://lief.quarkslab.com/
https://enterprise.verizon.com/resources/reports/dbir
https://enterprise.verizon.com/resources/reports/dbir
https://enterprise.verizon.com/resources/reports/dbir
https://enterprise.verizon.com/resources/reports/dbir
https://enterprise.verizon.com/resources/reports/dbir
https://enterprise.verizon.com/resources/reports/dbir
https://enterprise.verizon.com/resources/reports/dbir
http://arxiv.org/abs/0807.0093
http://arxiv.org/abs/0807.0093
http://arxiv.org/abs/0807.0093
http://arxiv.org/abs/0807.0093
http://arxiv.org/abs/0807.0093
http://arxiv.org/abs/0807.0093

EFFICIENTGRAPH-BASEDMALWAREDETECTIONUSINGMINIMIZEDKERNEL… 117

67. Wang T, Xu N (2017) Malware variants detection based on opcode
image recognition in small training set. In: 2017 IEEE 2nd inter-
national conference on cloud computing and big data analysis
(ICCCBDA). IEEE, New York, pp 328–332

68. Wu DJ, Mao CH, Wei TE, Lee HM, Wu KP (2012) Droidmat:
android malware detection through manifest and API calls tracing.
In: 2012 Seventh Asia joint conference on information security.
IEEE, New York, pp 62–69

69. Wu WC, Hung SH (2014) Droiddolphin: a dynamic android
malware detection framework using big data and machine learning.
In: Proceedings of the 2014 conference on research in adaptive and
convergent systems, pp 247–252

70. Xiao F, Lin Z, Sun Y, Ma Y (2019) Malware detection based on
deep learning of behavior graphs. Math Probl Eng 2019:1–10

71. Xiao X, Zhang S, Mercaldo F, Hu G, Sangaiah AK (2019) Android
malware detection based on system call sequences and LSTM.
Multimed Tools Appl 78(4):3979–3999

72. Xiaofeng L, Xiao Z, Fangshuo J, Shengwei Y, Jing S (2018) ASSCA:
API based sequence and statistics features combined malware
detection architecture. Procedia Comput Sci 129:248–256

73. Ye Y, Hou S, Chen L, Lei J, Wan W, Wang J, Xiong Q, Shao
F (2019) Out-of-sample node representation learning for het-
erogeneous graph in real-time android malware detection. In:
Proceedings of the twenty-eighth international joint conference
on artificial intelligence, international joint conferences on artificial
intelligence organization. https://doi.org/10.24963/ijcai.2019/
576

74. Yeo M, Koo Y, Yoon Y, Hwang T, Ryu J, Song J, Park C (2018)
Flow-based malware detection using convolutional neural network.
In: 2018 International conference on information networking
(ICOIN). IEEE, New York, pp 910–913

https://doi.org/10.24963/ijcai.2019/576
https://doi.org/10.24963/ijcai.2019/576
https://doi.org/10.24963/ijcai.2019/576
https://doi.org/10.24963/ijcai.2019/576
https://doi.org/10.24963/ijcai.2019/576
https://doi.org/10.24963/ijcai.2019/576
https://doi.org/10.24963/ijcai.2019/576
https://doi.org/10.24963/ijcai.2019/576

CHAPTER 6

Deep Learning for Windows Malware
Analysis

Mohamed Belaoued, Abdelouahid Derhab, Nassira Chekkai,
Chikh Ramdane, Noureddine Seddari, Abdelghani Bouras,

and Zahia Guessoum

6.1 INTRODUCTION

The emergence of the Internet has provided a powerful means of com-
munication and data sharing, which has a huge impact on the worldwide
economic growth. However, systems and networks have become exposed

M. Belaoued • N. Chekkai
Caplogy, Velizy-Villacoublay, France
e-mail: m.belaoued@caplogy.com; n.chekkai@caplogy.com

A. Derhab (�)
Center of Excellence in Information Assurance (CoEIA), King Saud University,
Riyadh, Saudi Arabia
e-mail: abderhab@ksu.edu.sa

C. Ramdane
LICUS, University of 20 Aout 1955 Skikda, Skikda, Algeria
e-mail: r.chikh@univ-skikda.dz

© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2024
I. Almomani et al. (eds.), Cyber Malware, Security Informatics and
Law Enforcement, https://doi.org/10.1007/978-3-031-34969-0_6

119

 29185 -2241 a 29185
-2241 a

 1152
35390 a 1152 35390 a

mailto:m.belaoued@caplogy.com
mailto:m.belaoued@caplogy.com
mailto:m.belaoued@caplogy.com

 12615 35390 a 12615
35390 a

mailto:n.chekkai@caplogy.com
mailto:n.chekkai@caplogy.com
mailto:n.chekkai@caplogy.com

 1152 40875 a 1152 40875
a

mailto:abderhab@ksu.edu.sa
mailto:abderhab@ksu.edu.sa
mailto:abderhab@ksu.edu.sa

 1152 45696 a 1152 45696 a

mailto:r.chikh@univ-skikda.dz
mailto:r.chikh@univ-skikda.dz
mailto:r.chikh@univ-skikda.dz
mailto:r.chikh@univ-skikda.dz
https://doi.org/10.1007/978-3-031-34969-0_6
https://doi.org/10.1007/978-3-031-34969-0_6
https://doi.org/10.1007/978-3-031-34969-0_6
https://doi.org/10.1007/978-3-031-34969-0_6
https://doi.org/10.1007/978-3-031-34969-0_6
https://doi.org/10.1007/978-3-031-34969-0_6
https://doi.org/10.1007/978-3-031-34969-0_6
https://doi.org/10.1007/978-3-031-34969-0_6
https://doi.org/10.1007/978-3-031-34969-0_6
https://doi.org/10.1007/978-3-031-34969-0_6
https://doi.org/10.1007/978-3-031-34969-0_6

120 M. BELAOUED

to different types of cyberattacks, which are launched by cybercriminals
(i.e., Hackers) and could cause significant economic losses.1 Malware is the
suitable tool for hackers to launch cyberattacks. The term malware is used
to refer to any computer program that was developed in order to perform
malicious activities on computer systems. In the last 2 years, with the
COVID-19 pandemic, we have witnessed a very concerning and alarming
proliferation of Malware, with hundreds of thousands of malware samples
that are discovered every day.2 Moreover, the number of ransomware has
doubled during the same period.3 Therefore, deploying a robust anti-
malware solution is vital in order to deal with malware proliferation.

The signature-based malware detection techniques, which have been
widely used by the anti-virus vendors, are inefficient at detecting zero-
day malware. Therefore, malware analysts have shifted to machine learning
techniques in order to build intelligent and robust malware detection
systems [77], which are more effective compared to the signature-based
ones. However, they are facing several challenges. First, ML-based malware
detection systems require a pre-processing phase called feature engineer-
ing, which aims at extracting features that characterize the analyzed mal-
ware samples, and are used as inputs to train the detection or classification
model. Since these features are manually crafted by security researchers,
and since most of existing malware instances are obfuscated using different

1 https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/.
2 https://www.comparitech.com/antivirus/malware-statistics-facts/.
3 https://www.securitymagazine.com/articles/97166-ransomware-attacks-nearly-

doubled-in-2021.

N. Seddari
LIRE Laboratory, Abdelhamid Mehri-Constantine 2 University, Constantine,
Algeria
e-mail: noureddine.seddari@univ-constantine2.dz

A. Bouras
Department of Industrial Engineering, College of Engineering, Alfaisal
University, Riyadh, Saudi Arabia
e-mail: abouras@alfaisal.edu

Z. Guessoum
CReSTIC EA 3804, University of Reims Champagne Ardenne, Reims, France
e-mail: zahia.guessoum@univ-reims.fr

 -484 32153 a -484 32153 a

 -484 33282 a -484 33282 a

 -484 34411 a -484 34411 a

https://www.securitymagazine.com/articles/97166-ransomware-attacks-nearly-doubled-in-2021

 1152 41783 a 1152 41783 a

mailto:noureddine.seddari@univ-constantine2.dz
mailto:noureddine.seddari@univ-constantine2.dz
mailto:noureddine.seddari@univ-constantine2.dz
mailto:noureddine.seddari@univ-constantine2.dz

 1152 47268 a 1152 47268 a

mailto:abouras@alfaisal.edu
mailto:abouras@alfaisal.edu

 1152 51536 a 1152 51536 a

mailto:zahia.guessoum@univ-reims.fr
mailto:zahia.guessoum@univ-reims.fr
mailto:zahia.guessoum@univ-reims.fr
mailto:zahia.guessoum@univ-reims.fr

DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 121

techniques, such as packing, encryption, etc., the extraction of such
characteristics can be a tedious task.Moreover, the high dimensionality that
characterizes the extracted features requires a feature selection (reduction)
phase that aims at removing irrelevant features, and which can be a labor-
intensive task as well.

In the last decade, researchers have shifted to deep learning in order
to overcome the aforementioned limitations of conventional machine
learning approaches. Simply speaking, deep learning techniques can be
defined as as a neural network with a large number of parameters and
layers [70]. In fact, they are a subclass of machine learning algorithms
that use many nonlinear information processing layers for supervised
or unsupervised feature extraction, transformation, and classification, as
well as pattern analysis [24]. Deep learning has widely been investigated
in language processing [99] and have been extended to various fields,
including cybersecurity [11, 12], and more specifically in the context
of malware analysis and detection. In fact, deep learning has shown an
impressive potential for detecting malware. Indeed, it can identify patterns
in data that are too complex for traditional machine learning methods,
making it more accurate and efficient. Additionally, deep learning can be
used to detect new and unknown types of malware, making it an essential
tool in the fight against cyberattacks. Indeed, employing deep learning
techniques in the context of malware analysis and detection has various
advantages, such as:

• Automatic feature learning from data is possible with deep learning,
which can improve the detection accuracy.

• Deep learning can learn from data with different levels of abstraction,
which can improve detection of more sophisticated malware.

• Deep learning can identify patterns that are too difficult for humans
to discern.

• Deep learning can be used with unsupervised learning methods to
detect previously unknown malware.

This survey paper aims at providing the most recent and comprehensive
review of solutions that employ deep Learning for Windows malware
analysis. The main contributions of this paper are the following:

• We provide a content-rich background about malware and malware
analysis, as well as deep learning.

122 M. BELAOUED

• We provide a detailed taxonomy that covers various classification crite-
ria, namely, the analysis task, the type of extracted features, the feature
representation method, and finally the deep learning algorithm.

• We comprehensively present the deep learning malware detection
solutions for Windows malware and discuss them with regard to the
proposed taxonomy.

• Furthermore, we provide an insight regarding the limitations and
the challenges that face the existing deep learning malware analysis
solutions, as well as some recommendations for future research.

This survey is organized as follows: Sect. 6.2 presents background
concepts related to deep learning. Section 6.3 discusses the related surveys.
In Sect. 6.4, we present the adopted research methodology. Section 6.5
presents our proposed taxonomy for deep learning malware analysis. In
Sect. 6.6, we review, analyze, and discuss the current state-of-the-art mal-
ware detection solutions according to the proposed taxonomy. Section 6.7
highlights the open challenges for malware analysis using deep learning
and recommends future research directions. Finally, Sect. 6.8 concludes the
survey.

6.2 DEEP LEARNING: BACKGROUND AND BASIC
CONCEPTS

6.2.1 Definition

Nowadays, deep learning technique has attracted considerable attention
because of its efficiency and usages. It can solve complex problems whose
solutions did not exist before and even if they exist, they cannot achieve
good results. Indeed, the arrival of deep learning has overcome several
limitations of machine learning by dealing with high-dimensional data.

Deep learning (DL) is defined as a subfield of machine learning (ML)
and artificial intelligence (AI) based on the use of multiple processing lay-
ers, in order to effectively extract useful features from the raw input, which
can be used to handle multiple challenges in different application areas
(e.g., natural language processing, cybersecurity, recommender systems,
computer vision, healthcare, speech recognition, and many other fields)
[55]. Deep learning algorithms imitate the human brain structure and
function in order to compute information and then make decision to use
multiple layers of neurons. In fact, as indicated in the following figure, DL

DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 123

Input
layer L1

Hidden
layer L2

Hidden
layer L3

Hidden
layer L4

Hidden
layer L4

y0

x1

x2

x3

xp

W(1)

W(2)

W(3)
W(4)

a(2) a(3)

a(4)

a(5)

y0

y1

Fig. 6.1 General architecture of a deep neural network (source: towardsdata-
science.com)

is made up of an input layer, an output layer, and one or more hidden
layers, as shown in Fig. 6.1.

The input layer is made of one or more nodes that represent the
artificial input neurons which receive the input data from the external
environment. The inputs can, then, be normalized in ranges. The hidden
layer is composed of one or many layers; it is responsible for the global
processing of the network based on the data introduced by the input layer.
Hidden layer uses activation functions in order to produce the results, by
employing artificial neurons which calculate the weighted sum of the input
data. Finally, the output layer is the last layer, and it provides the output
data resulting from the processing of the hidden layer. More recently, a new
category of neural networks has emerged, which are called graph neural
networks (GNNs) [94]. GNNs are a powerful tool for learning on graph-
structured data. GNNs learn to map node features to a low-dimensional
representation and then use this representation to make predictions about

 27162
26694 a 27162 26694 a

www.towardsdatascience.com

124 M. BELAOUED

Deep Supervised
Learning

DNNS

CNNs

RNNs

GRUs LSTM

Deep Learning Techniques

Deep Semi-
Supervised Learning

GANs

Deep Unssupervised
Learning

RBMs

Autoencoders

Deep Reinforcement
Learning

Deep Q-Learning

Fig. 6.2 Deep learning techniques

the graph structure or node labels. GNNs have been applied to a variety of
tasks, including node classification, link prediction, and graph classification.

6.2.2 Deep Learning Techniques

Deep learning techniques are classified into four categories as shown in
Fig. 6.2.

6.2.2.1 Deep Supervised Learning
This technique feeds labeled data. The sets of input and that of the resulting
output are known and the deep learning model attempts to learn the
mapping function. We find in this category various techniques, such as
deep neural networks (DNNs)which are composed of three layers at least
(input, output, and hidden), convolutional neural networks (CNNs)
that are based on multiple multilayer perceptrons and hold one or many
convolutional layers that are completely linked or pooled, and recurrent
neural networks (RNNs) which successfully interpret temporal informa-
tion. RNN class includes gated recurrent units (GRUs) technique which
is based on particular memory elements that aim to quickly build recurrent
neural networks by using few network parameters and long short-term

DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 125

memory (LSTM) technique which is able to learn long-term dependencies
in complex problem behaviors such as sequence prediction.

The key advantage of deep supervised learning is its simplicity and
capacity of mapping data to produce known output results. Thus, we can
identify the number of classes we want to have, and the obtained results
are exact and credible. Hence, supervised learning algorithms were largely
applied in forecast sales and risk evaluation. Nevertheless, the drawback of
this technique is that the absence of some necessary samples can lead to
exceeding the decision boundaries [2].

6.2.2.2 Deep Semi-supervised Learning
This technique feeds semi-labeled data including both tagged and
untagged data which improves the learning performance. In this model,
the outputs are known, but not all of them are labeled as the input.
Generative Adversarial Networks (GANs) and RNNs are often
employed as semi-supervised learning. One efficient application of semi-
supervised learning is the text document classifier [35, 93]. The most
important advantage of semi-supervised technique is the minimization of
labeled data amount, whereas its disadvantage is the false output result
that can be generated using inappropriate input features.

6.2.2.3 Deep Unsupervised Learning
This technique uses unlabeled data where only the inputs are known.
Indeed, this model allows predicting the output results from incomplete
and predefined labels. Clustering is included in deep unsupervised tech-
nique and was largely applied in many fields such as social networks
analysis and anomaly detection. Among the most recent and efficient
unsupervised learning techniques, we find GANs, restricted Boltzmann
machines (RBMs) that use the connection between neurons of the same
layer in addition to their connection with neurons of other layers, and
auto-encoders which is capable of compressing and encoding data in
an unsupervised way [16, 83]. Unsupervised learning algorithms allow
discovering underlying patterns and effectively predicting relevant informa-
tion. However, they are less accurate and computationally more complex
compared to supervised learning.

126 M. BELAOUED

6.2.2.4 Deep Reinforcement Learning
The deep reinforcement learning algorithms learn to act and react in an
environment by using the most suitable actions. These algorithms use
reactive agents in order to minimize the risk and maximize the reward.
Deep Q-learning is a widely used reinforcement learning approach, which
is based on the use of a deep neural network to learn the Q value of
an action having a special state in its environment. The most advantage
of deep reinforcement learning is its high performance of exploitation or
exploration. It can also learn a set of action series. Thus, deep reinforcement
learning algorithms find large applications in games and health areas.
However, this technique requires a lot of computation due to the number
of parameters [15].

6.2.3 Deep Learning vs Machine Learning

As mentioned before, deep learning is a subclass of machine learning; these
two concepts are, hence, related to each other. The key differences between
DL and ML are illustrated in Table 6.1.

The most important difference between deep learning and machine
learning is the data dependency. As depicted in Table 6.1, deep learning
algorithms require huge data to achieve good results, while machine learn-
ing algorithms can reach successful results with small data. Furthermore,
ML needs structured data unlike DL that can work with both structured
and unstructured data.

In terms of execution time, machine learning algorithms take only
seconds or hours to train, while training a deep learning algorithm could
take more than 2 weeks due to the large number of its parameters.

Table 6.1 Comparison between deep learning and machine learning
Feature Machine learning Deep learning
Data amount Large Small
Execution time (training) Fast Slow
Execution time (testing) Slow Fast
Data structure Structured data Structured and

unstructured data
Hardware dependency CPUs CPUs and GPUs
Human intervention Considerable Little
Use Simple and bi-complex problems Complex problems

DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 127

However, during the testing step, deep learning algorithms are faster than
ML ones. Moreover, DL requires machines with significant computing
power and multiple GPUs due to its big data, whereas ML can function
on low-end machines with CPUs.

From Table 6.1, we can also observe that deep learning layers are
able to learn and solve problems without human intervention, while
machine learning model largely depends on the human intervention.
Finally, machine learning is suitable for simple applications such as pre-
diction and forecasting, while deep learning is used to solve complex
problems.

6.3 RELATED SURVEYS

In the literature, there are several surveys on malware analysis. As shown in
Table 6.2, we summarize the malware analysis surveys with respect to the
following criteria:

• Detection approach: It indicates themalware detection approaches that
are covered by the survey.

• Operating system platform: It indicates the targeted operating system
platforms that are covered by the survey.

• Outline and observations: It states the main outline of the survey and
any related observations.

From Table 6.2, we can observe that most of the surveys focused
on two detection approaches: machine learning and deep learning. The
surveys [45, 51, 58, 86] solely covered machine learning techniques. On
the other hand, surveys in deep learning [72, 75, 81] only considered
deep learning techniques. Other surveys covered both machine and deep
learning techniques [32, 87]. In addition to machine learning techniques,
Pan et al. [68] covered statistical detection models. Aslan et al. [5]
presented detection techniques belonging to three detection approaches,
including model checking, machine learning, and deep learning. Data
mining approaches were covered in [82, 98], whereas malware analysis
tools were presented in [26].

We can also observe that Windows and Android were the most inves-
tigated operating systems. The surveys [26, 32, 86, 98] and [45, 51, 58,
68, 72] only focused on Windows and Android OS, respectively. Other
surveys considered the two operating system platforms [75, 81, 82, 87]. In
addition to these two OS platforms, Aslan et al. [5] covered IoT malware.

128 M. BELAOUED

Table 6.2 Related surveys on malware analysis
Reference Year Detection

approach
OS
platform

Outline and observations

Egele et
al. [26]

2012 Malware analysis
tools

Windows Scope of the survey is restricted to dynamic
analysis

Ye et al.
[98]

2017 Data mining Windows Survey on malware detection using data
mining techniques

Souri et al.
[82]

2018 Data mining Windows
Android

Survey on malware detection using data
mining techniques

Ucci et al.
[86]

2019 Machine learning Windows Survey of machine learning techniques for
malware analysis

Pan et al.
[68]

2020 Statistical analysis Android Systematic literature review of Android
malware detection

Machine learning Scope of the survey is restricted to static
analysis

Aslan et al.
[5]

2020 Model checking Windows Comprehensive review on malware
detection approaches

Machine learning Android
Deep learning IoT

Liu et al.
[58]

2020 Machine learning Android Review of android malware detection
techniques using machine learning

Qiu et al.
[72]

2020 Deep neural
networks

Android Survey of android malware detection using
deep neural models

Sahin et al.
[75]

2020 Deep learning Windows
Android

Survey on malware detection using deep
learning techniques
No taxonomy is provided
Short survey

Gibert et
al. [32]

2020 Machine learning Windows Systematic review of malware detection and
classification techniques

Deep learning Taxonomy of features used by machine and
deep learning

Urooj et
al. [87]

2021 Machine learning Windows Scope of the survey is restricted to
ransomware and to dynamic analysis

Deep learning Android
Singh et
al. [81]

2021 Deep learning Windows Survey on machine learning-based malware
detection

Android No taxonomy is provided
Short survey

Kouliaridis
et al. [51]

2021 Machine learning Android Survey on machine learning techniques for
android malware detection

Kambar et
al. [45]

2022 Machine learning Android Survey on mobile malware detection
techniques using machine learning

Our work Deep learning Windows Survey on malware detection and
classification using deep learning
techniques

DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 129

Some surveys are short [75, 81] or restricted to some analysis type like
static analysis [68] or dynamic analysis [26]. Urooj et al. [87] only focused
on ransomware using dynamic analysis. Four surveys [5, 32, 75, 81] are the
closest to our work as they cover deep learning and target Windows oper-
ating system. However, our work differs from the four earlier-mentioned
surveys in the following points:

• Multiple detection approaches and multiple operating system plat-
forms are covered in [5]. In [75, 81], only deep learning approach
is considered, and two operating systems, i.e., Windows and Android
OS, are targeted. Differently, our work solely focuses on deep learning
and only considers Windows OS.

• No taxonomy is provided in [75, 81]. In [32], feature-based taxon-
omy is proposed. Differently, our work proposes a taxonomy that
classifies works with respect to different criteria.

6.4 RESEARCH METHODOLOGY

This section presents the adopted approach for selecting the reviewed
papers, and which consists of data sources, search criteria, as well as the
inclusion and exclusion criteria.

6.4.1 Data Sources and Search Criteria

In order to conduct a comprehensive literature coverage, and increasing
the likelihood of finding high-quality papers, we selected a set of highly
relevant databases, namely, ACM Digital Library, Springer Link, Science
Direct, IEEE eXplore, PubMed, Web of Science, and Google Scholar.

We conducted an exhaustive search on the aforementioned databases
using a search string that is based on various keywords such as “malware
analysis,” “malware detection,” “deep learning,” “Windows desktop,” and
“portable executable.” The use search string is the following: “deep learn-
ing” and (“malware” and (“analysis” or “detection” or “classification”)
and (“Windows” or “desktop” or “portable executable” or “PE”)).

6.4.2 Inclusion and Exclusion Criteria

In this survey paper, and in order to make the research more specific
and comprehensive, we conducted a qualitative and quantitative study

130 M. BELAOUED

Table 6.3 Inclusion and exclusion criteria
Criteria Description
Inclusion Papers that use deep learning techniques to detect malware

Papers that provide solutions designed for Microsoft Windows desktop
environment
Papers that were peer-reviewed (if not, they must be highly cited)

Exclusion Papers that use only traditional machine learning techniques
Papers that are designed for other environments (i.e., Android, IoT, etc.)
Papers that are not peer-reviewed (and with few citations) and short papers
Papers written in a language other than English
Papers that received less than five citations for the 3 years following their
publication

of published research papers from 2015 onward by considering various
inclusion and exclusion criteria, which are presented in Table 6.3.

6.5 PROPOSED TAXONOMY

In this section, we introduce the proposed taxonomy (see Fig. 6.3) on
how the existing solutions employ deep learning algorithms in malware
analysis. In this taxonomy, we consider four main criteria for classifying the
reviewed solutions, namely, the analysis task, the type of extracted features,
the used feature representation method, and finally the used deep learning
algorithm. These criteria are discussed in the rest of the section.

6.5.1 Malware Analysis Task

6.5.1.1 Detection
Malware detection is the process of identifying the presence of malware on
a computer or network. Malware detection is a binary classification issue,
where the outcome indicates whether the analyzed sample is malicious or
benign. The detection task is generally the primary step in the malware
analysis process. Indeed, once a sample is identified as malicious, it needs
to be assigned to a specific category or family. This is the role of the
classification task, and which is discussed in the following subsection. From
the total number of surveyed papers, we observed that the majority of
them (. ≈60%) propose malware classification solutions, while the rest of
the papers deal with the malware detection problematic.

DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 131

Fig. 6.3 Proposed taxonomy for malware analysis using deep learning

6.5.1.2 Classification
Malware classification is the process of categorizing malware according
to its type or function. Indeed, malware classification is a more gen-
eral approach to deal with malware. Rather than trying to detect every
individual piece of malware, malware classification focuses on identifying
and categorizing different types of malware. Indeed, it will assign the
malware to a category or a family of malware with which it shares specific
characteristics (e.g., target, behavior, etc.). This information can then be
used to develop better detection and removal methods.

6.5.2 The Used Features

Malware detection or classification requires a preliminary stage, which is
the analysis stage. The latter allows the extraction of the various attributes
(features) that will be used to classify a file. There are two types of analyses,

132 M. BELAOUED

namely, static analysis and dynamic analysis [26, 80]. Dynamic analysis
requires the execution of the program. This is carried out in a controlled
setting that is typically created using an emulator (virtual environment)
[26]. This can be useful for understanding how the malware interacts with
the system and what is its purpose is. On the other hand, static analysis
does not require the execution of the program; instead of that, the analyzed
program is disassembled. The disassembly, also called reverse engineering,
is the process of converting a compiled (machine code, bytecode) program
into a more human readable format (i.e., assembly code). There are pros
and cons to both static and dynamic malware analysis. For instance, static
analysis is suitable for getting a general overview of what a piece of malware
does (i.e., malicious or benign), but it can be limited in its ability to show
how the malware actually behaves when executed and may not be able to
uncover all of the malware’s functionality since most existing malware are
obfuscated. Dynamic analysis, on the other hand, is better for seeing how
the malware behaves when executed, but it can be more difficult to set up
and can be more time-consuming. Thus, these two types of analyses can be
combined together resulting in what we call hybrid analysis. Based on the
chosen analysis type, we can distinguish two main categories of features,
namely, static features and dynamic features.

6.5.2.1 Static Features

Bytecode Data
A bytecode is a low-level language that is just like a hardware processor’s
assembly language (such as the IA-32 assembly language) [27]. It is often
used to distribute programs or libraries in a platform-independent way. By
examining the bytecode of a program, it is possible to identify previously
seen patterns and thus efficiently determine if it contains a malicious code
and preventing its execution on the system. Bytecode data has been widely
investigated in the context of malware analysis and detection. The solutions
presented in [3, 4, 18, 19, 21, 23, 42, 44, 48, 52, 54, 61, 64, 65, 88, 97,
100, 101] used bytecode data as main features, which represents ≈35% of
the total number of the reviewed papers.

Operation Code
Operation code, also known as opcode, is a part of the assembly code
instructions that identifies the operation to be performed (e.g., Push,
Move, ADD, etc.) by the processor. Malware detection systems use

DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 133

Fig. 6.4 A general PE
file format structure

opcodes to identify malicious code. By analyzing the opcodes in a piece
of code, a malware detection system can determine whether the code
is malicious or not. In addition, by analyzing the opcodes, malware
detection systems can identify which type of malware a piece of code
is allowing to take the appropriate action. This is because different types
of malware have different opcodes. For example, a piece of code that
is designed to delete files will have different opcodes than a piece of
code that is designed to steal information. The solutions presented in
[21, 43, 46, 47, 50, 66, 67, 89, 97, 102, 103] employ opcodes as features,
which represents ≈20% of the reviewed solutions.

PE Metadata
PE (portable executable) is the common file format forMicrosoft Windows
executable files [71]. A PE file is composed of several parts including
headers (optional header, file header, etc.) as depicted in Fig. 6.4. The
latter contains rich metadata regarding the file. PE metadata has been
successfully leveraged in the context of malware analysis and detection,
allowing the design of lightweight and highly accurate malware detection
systems [7, 8, 78].

PE metadata has been also used to build deep learning-based malware
detection systems, such as in [50, 73, 76, 90, 97].

134 M. BELAOUED

PE Imports (APIs, DLLs)
Windows APIs (application programming interfaces) are a set of routines
that are stored in dedicated libraries (DLLs, for Dynamic Link Libraries),
and they provide a way for the program to request services from the
operating system or other programs and to pass information back to them.
In the case of malware detection, APIs are used as a mean to reflect the
programs behaviors (malicious or legitimate). During the static analysis
of the executable file, the APIs are extracted using the import address
table (IAT) [71]. In the case of DL-based malware detection, statically
extracted API calls have been used by [31, 36, 47, 50, 62, 76, 89]. The
main advantage of these kinds of features is that they are extracted with
minimum processing overhead. However, they are highly impacted with
code obfuscation techniques, especially packing.

6.5.2.2 Dynamic Features

API/System Calls
APIs calls can be also extracted dynamically and that by running the
program in a sandbox. APIs can request OS services through making
system calls. System calls are a low-level way for a program to request
a service from the kernel of the operating system it is running on. This
may include requesting more memory, doing input/output, or creating a
new process. In this case, API/system calls sequences are considered, since
they provide a better description of the programs behavior, based on their
chronological order. For instance, API/system call sequences have been
employed by [1, 6, 22, 40, 49, 53, 56, 60, 61, 69, 85, 92, 95]. Moreover,
the work of Huanfg at al. considers the API arguments as an additional
indicator [41].

Execution Traces
By execution traces, we mean every action that is accomplished by the
malware during its execution and that modifies the state of the system (i.e.,
host-based indicators). These can be file manipulations, registry updates,
etc. The solutions presented in [22, 30, 85] employed such type of features.

Network Traffic
By analyzing network traffic, it is possible to identify malicious activities
and take appropriate steps to mitigate the threat [9]. There is a variety of
techniques that can be used for network traffic analysis, including packet

DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 135

inspection, flow analysis, and log analysis. Packet inspection is the most
granular form of traffic analysis, as it allows analysts to examine each
individual packet of data that passes through the network. Flow analysis
groups together packets that are part of the same communication. Log
analysis relies on data that has already been collected by network devices.
The work of David et al. [22] and Shibahara et al. [79] employed network
traffic features.

6.5.3 Feature Representation Method

There are various ways of representing malware features for detection pur-
poses. Some common methods include using vectors, sequences, graphs,
n-grams, and more recently image representation.

6.5.3.1 Vectors
There are many ways to represent features for deep learning, but one of
the most popular is using a vector. A vector is simply a list of numbers,
and each number in it represents a particular feature. For example, a vector
might represent the set of features extracted from a malware sample. There
are many benefits for using vector representations for deep learning. First,
they are easy to work with and can be fed directly into most deep learning
algorithms. Second, vectors are often able to capture complex relationships
between features, which can be helpful for detecting patterns in data.
Finally, vectors can be easily extended to include additional features, which
can improve the accuracy of deep learning models. The solutions presented
in [20, 31, 36, 46, 47, 49, 50, 61, 62, 79, 85] employed vector-based
feature representation.

6.5.3.2 Sequences and n-Grams
There are many ways to represent sequence data for the purpose of malware
analysis and detection. One common approach is to use a bag-of-words
representation, where each instance is represented as a fixed-length vector
of counts of words in the sequence. Another approach is to use a sliding
window over the sequence, which results in what is called n-grams. An n-
gram can be defined as an n-character slice of a longer string [17]. They are
generated by shifting a windows of length l over that string. Formally, let
S be the set of . Mn distinct n-grams that can be formed from .

∑
. n-grams

are all substrings of a larger string with a length of n [10]. As an example,

136 M. BELAOUED

from the word “M A L W A R E” we can extract the following 4-grams:
“MALW,” “ALWA,”“LWAR,” and “WARE.” In the case of byte n-grams,
the string represents the byte sequence of the analyzed file, and the byte
n-grams are generated by shifting the window by n bytes. Opcode n-
grams, similarly to byte n-grams, are generated by shifting a window on an
opcode sequence. Ding and Siyi [25, 102] used that feature representation
method by the conversion of the generated and which will be generated and
concatenated to each other resulting in a unique opcode stream. Finally,
n-gram features (with .n = 3) are generated. For the reviewed solutions,
those presented in [21, 31, 43, 49, 50, 56, 64, 73, 102] used sequence-
based feature representation, while those presented in [1, 6, 30, 50, 53,
57, 60, 69, 84, 88, 92, 97] used n-gram-based feature representation.

6.5.3.3 Graphs
There are two main types of graphs that are frequently employed in
malware analysis, namely, the control flow graph (CFG) and the function
call graph (FCG). A control flow graph (CFG) is a graphical representation
of the sequence of operations in a program. It is a directed connected
graph, where each node represents an instruction of the file’s assembly
code and each edge represents an execution sequence [28]. A function
call graph (FCG), on the other hand, is a graphical representation of the
sequence of function calls in a program. Both CFGs and FCGs can be used
to visualize the behavior of a program and to help debug it. However, they
have different uses. CFGs are more useful for understanding the overall
flow of a program, while FCGs are more useful for understanding the
sequence of function calls.

In the case of DL-basedmalware detection, many researchers have opted
for behavior graphs as the main feature representation for the analyzed
samples. For instance, Ding and Siyi [25, 40, 102] opted for a CFG
representation, while [95] opted for FCG one. In these pervious solutions,
only the one of Hua et al. [40] used CFGs in its original from, since
the latter solution employed a graph neural network, namely, deep graph
convolutional network (DGCNN). For the rest of the solutions, they either
transformed it into n-grams like the work of [102] or vector [95].

6.5.3.4 Image Representation
By representing images of malware, one can more easily find similarities
and differences between samples. This helps to identify new malware and

DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 137

also to track the changes made to existing malware. There are various ways
of representing images for this purpose, including 2Dmatrices, histograms,
run-length encoding, and wavelets. In addition, images can be generated
from the entire file(i.e., bytecode) or specific parts of it. Each of these
approaches has benefits and drawbacks of its own, and the choice of
representation will depend on the specific application and the used DL
algorithms. Utilizing a convolutional neural network (CNN) is the most
popular approach. CNNs can automatically extract features from images
and learn to classify them. Other approaches include using a recurrent
neural network (RNN) or a long short-term memory (LSTM) network,
which can learn to detect patterns over time. Deep learning models can
also be combined with traditional machine learning methods to improve
the performance. There are a few potential advantages to this approach.
For instance, it can be much faster than traditional scanning methods. In
addition, it can be more accurate, since the entire file can be analyzed. The
solutions presented in [3, 5, 18, 19, 21, 23, 38, 42, 44, 48, 52, 54, 65–
67, 88–90, 97, 100, 101, 103] used image-based feature representation.

6.5.4 Used DL Algorithms

As presented in Sect. 6.2, there are many different DL algorithms that can
be used for malware detection, but some of the most popular ones include
convolutional neural networks (CNNs), which have been used by . ≈55%
of the reviewed solutions, and recurrent neural networks (RNNs), which
have been used by . ≈30% of the reviewed solutions. CNNs are often used
for image classification tasks, while RNNs are better suited for sequence
data. All of these algorithms have been used to build successful malware
detection systems. However, there is no perfect algorithm that can be used
for all tasks. It is important to choose the algorithm that is best suited for
the specific problem at hand.

6.6 DESCRIPTION OF SOLUTIONS

In this section, we discuss the reviewed solutions according to the proposed
taxonomy.We also describe the solutions with respect to the size and nature
(public or private) of the used datasets, the used performance evaluation
metrics, the achieved results, as well as their weaknesses and strengths.
The reviewed solutions have been grouped according the analysis task (i.e.,

138 M. BELAOUED

detection or classification) as well as the extracted features (i.e., static and
dynamic).

6.6.1 Malware Detection Solutions

6.6.1.1 Solutions that Employ Static Features
Saxe and Berlin [76] introduced a DL-based malware detection composed
of three different components. The first component is the feature extractor,
which allows extracting four types of features, namely, byte entropy his-
togram, string 2D histogram, PE imports, and PE metadata. The second
one is the classifier, which is a four-layer deep feed forward neural network,
with an input layer, two hidden layers, and an output layer. The input
layer consists of 1024 nodes representing the input feature vector. The
two hidden layers are also composed of 1024 nodes with a parametric
rectified linear unit (PReLU) activation function [37]. The output layer
predicts the output (malicious or benign) using the sigmoid function. The
last component is the score calibrator, which represents the probability that
a given file is malicious or not. Authors achieved 95% detection rate (DR)
with 0.1% false-positive rate (FPR).

Hardy et al. [36] introduced DL4MD (deep learning framework for
malware detection), which consists of two main modules, which are a
feature extractor and a deep learning-based classifier. The feature extractor
is used to extract API calls from the analyzed PE files using static analysis.
The DL-based classifier is composed of several stacked auto-encoders
(SAE). The authors evaluated DL4MD on a dataset containing 50K
samples (45k training, 5K testing), and the results showed that the best
configuration of the latter model (i.e., 3 hidden layers with 100 neurons
in each layer) was able to achieve 95.46% of accuracy, which is 2% higher
compared with the accuracy achieved by classical ML classifiers, namely,
artificial neural network (ANN), support vector machine (SVM), Naıve
Bayes (NB), and decision tree (DT).

Raff et al. [73] introduced an approach for efficient malware detec-
tion with minimum domain knowledge. Thus, the authors employ raw
features(i.e., byte sequences), on which they will apply the minimum of
pre-processing efforts. The authors introduced two baseline approaches as
well as a deep neural networks based one. The first baseline approach uses
PE metadata extracted using a third-party library called PortEX [34]. They
extracted 115 features, which were fed to twomachine learning algorithms,

DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 139

namely, random forest [14] and extra random trees [29]. The second
baseline approach generates byte n-grams from the first 328 bytes of the PE
file, which represent the location of the PE headers. These features are then
fed to logistic regression algorithm. The last approach consists of using two
types of neural networks, namely, fully connected neural networks (FCN)
and recurrent neural network (RNN), both fed with the aforementioned
raw byte region (328 bytes). Experimental results showed that the FCN
model outperforms the three others with regard to area under ROC curve
(AUC) and the balanced accuracy (BAC).

Choi et al. [18] introduced a malware detection approach that is based
on the grayscale image representation of malware and benign binaries.
They proposed a .256×256 images to represent the binaries, meaning that
they only consider the first 64KB of the analyzed binaries. These images are
then fed to a CNN composed of three convolutional layers, each followed
by a pooling layer, in addition to two fully connected layers. They evaluated
the model on a dataset composed of 10,000 benign and 2000 malware
samples and achieved an accuracy of 95.66%.

In [46], a lightweight deep convolutional neural network-based method
for detecting windows malware (CNN) is proposed. The proposed system
is composed of two main components, which are the instructions analyzer
and the classifier. The first components aims at disassembling the analyzed
binaries, extracting the set of opcodes, grouping them by functionalities,
and, finally, mapping them as 2D array. The results on the experiments of
the detection system, based on a dataset contains around 70,000 samples,
show an overall accuracy of 95% with a promising 10 hours as a training
time of the system with one convolutional layer.

The study in [97] introduced MalNet, a novel self-learner malware
detection approach, which uses CNN and LSTM networks. MalNet has
two stages; the first one aims at statically analyzing the binaries and gen-
erating three types of features, namely, the grayscale image representation
of bytecode, the opcode sequences, and various PE metadata. The second
one is the core process of MalNet, in which the CNN and LSTM networks
learn, respectively, from the grayscale images and the opcode sequences.
In addition, and in order to optimize the detection performance, the
authors used a stacking ensemble that integrates the two networks’ output
alongside with themetadata features and outputs the final prediction result.
The model was evaluated on more than 40,000 samples collected from
online software providers and Microsoft. The evaluation to an interesting

140 M. BELAOUED

achievement of the level of accuracy for malware detection measured at
99.88%. It also reached 99.14% of TPR with FPR of 0.1%.

Ding and Siyi [102] proposed a malware detection system composed of
three main modules: the PE parser, the feature extractor, and the decision
module. The PE parser aims at statically extracting the opcodes sequence
and generating a control flow graph (CFG) from the analyzed file using
IDA Pro tool [39]. The CFG is then converted into an opcode running tree
from which n-gram features (with .n = 3) are generated. In order to keep
only the most relevant n-gram features, the authors employed document
frequency, information gain, as well auto-encoder as feature selectors. The
decision module is DBN-based and is fed using the generated n-gram
feature vectors and is composed of three hidden layers each containing 200
units and an output layer that is composed of two units one for each output
label (malware, benign). The experimental results indicated that the DBN
model surpassed various “baseline classifiers,” namely, k-nearest neighbor
(KNN), decision tree(DT), and support vector machines (SVM).

A system that identifies malware programs using convolutional neural
networks (CNNs) built on the AlexNet, ResNet, and VGG16 bases was
proposed by Davuluru et al. [23]. This visualization is implemented by
converting bytecode into a 2D matrix then visualizing it as grayscale
images, which are then normalized for classification purposes. The restric-
tions of static and dynamic analysis can be circumvented by this form
of visualization because it doesn’t require any code disassembly and is
computationally cheap. According to validation results from BIG 2015,
CNN is a good feature extractor and classification tool. In Table 6.4,
we provide a summary of the discussed malware detection solutions that
employ static features.

6.6.1.2 Solutions that Employ Dynamic Features
In [69], Pascanu et al. proposed a method for malware detection that
combines RNNs with multilayer perceptron (MLP) and logistic regression
(LR). The RNN, which is trained in an unsupervised manner on dynam-
ically extracted API call sequences, aims at learning a language model for
the analyzed samples and constructing their feature representations. The
latter are fed to the MLP and the LR classifiers, which classify the samples
into either malicious or benign.

The work of Shibahara et al. [79] focuses on optimizing the analysis
process by determining when to suspend it. They rely on the analysis of
the network communications generated by the analyzed program with

DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 141

Table 6.4 Summary of malware detection solutions that employ static features
Ref. Year Features used Feature rep. Dataset

size
DL
Algo.

Results

[76] 2015 Byte/entropy,
PE imp meta

Histogram 431,926 DNN Acc: 95.6–96.85%

[36] 2016 API calls 1-hot vect 50k SAEs Acc: 95.64%
[18] 2017 Bytecode Image 12k CNN Acc: 91%
[102] 2017 Opcode CFG,

n-grams
4600 DBN Acc: . ≈98%

[97] 2018 Bytecode,
Opcodes, PE
Metadata

Images,
sequences

40k CNN,
LSTM

Acc: 99.88%

[46] 2018 Opcodes 2-D array 70k CNN Acc: 95%
[19] 2019 Bytecode Grayscale

image
5k CNN Acc: 91.9–97.6%

[23] 2019 Bytecode Grayscale
image

. ≈10,000 CNN Acc: 99.4 91.9–97.6%

a command and control server (C&C). To achieve this, the authors
considered different characteristics of malware communication (i.e., the
modified communication’s intent and its shared latent purpose). The
authors employed recursive tensor neural network (RSTNN) to decide
when to stop the analysis for each sample and were able to reduce the
total time taken by 67% compared with a conventional analyses methods.

Tobiyama et al. [85] proposed an approach for host-based malicious
activity detection by monitoring and analyzing the processes’ behaviors.
The processes are represented by their ID, the executed operation (API),
its result (success, access denied, etc.), etc. These information are stored
in log files and will be used as raw features to train the feature extractor
module, which is recurrent neural network (RNN) with LSTM units. The
RNN then outputs a features vector, which will be then converted into
an image, which contains local features representing processes’ activities.
These images are then fed to a CNN, which is responsible for the
classification of the processes into malicious or benign.

Athiwaratkun et al. [6] proposed two deep learning models for malware
detection. In the first model, RNN with LSTM units and GRU (i.e., gated
recurrent unit) were investigated in order to build the features associated
with different API call traces. The latter features are then used to train a
fully connected layer and logistic regression algorithm. The second model,
which is a CNN with six convolutional layers and three fully connected

142 M. BELAOUED

one, is trained on character-level features of size 1024 representing various
events. Experimental results show that the LSTM-GRU model achieved a
higher accuracy than the CNN one.

Maniath et al. [60] proposed an approach for crypto-ransomware detec-
tion that consists of collecting three different dynamic features, namely,
API calls, file operations, and registry values. The aim is to be able to
capture crypto-ransomware behavior patterns (e.g., pre-encryption phase).
For this purpose, long short-term memory (LSTM) algorithm is used in
order to classify the API calls sequences. The proposed approach was able
to achieve good accuracy rate; however, the analysis phase took 20 minutes
to complete, which was the major limitation of this work.

In [61], a malware detection system based on hybrid features and deep
neural network is introduced. The authors did not implement any file
analysis step, and instead they used an existing dataset,4 which contains
both static (e.g., file sections, entropy, assembly n-grams, etc.) and dynamic
(e.g., contacted IP, DNS queries, execution processes, AV signatures, etc.)
features of four different malware families. The authors considered only
two malware families and trained a deep neural network to detect these
two families.

Xiao et al. [95] designed a new behavior-based deep learning framework
called BDLF. Instead of using API call sequences, the goal of BDLF is
to gain deeper semantics in behavior graphs (e.g., n-gram). The authors
investigated a deep learning model based on stacked auto-encoders (SAEs)
to automatically obtain high-level representations of malware behaviors.
In the proposed framework, they first constructed behavior graphs using
the extracted API calls. In order to extract high-level characteristics from
behavior graphs, authors used SAEs. The findings of the experiment show
that BDLF can extract more useful abstract features and increase the
accuracy of malware detection. Yakang et al. [40] directly fed the extracted
FCG to a deep graph convolutional network (DGCNN). Then they use
an algorithm to strip the subgraph that represents the unpack function call
in the function call graph of the malware’s packet. Authors then run the
expansion operation on the subgraph which only contains local function
call graph to get control flow graph of the packed malware. The features

4 https://marcoramilli.com/2016/12/16/malware-training-sets-a-machine-learning-
dataset-for-everyone/.

https://marcoramilli.com/2016/12/16/malware-training-sets-a-machine-learning-dataset-for-everyone/
https://marcoramilli.com/2016/12/16/malware-training-sets-a-machine-learning-dataset-for-everyone/
https://marcoramilli.com/2016/12/16/malware-training-sets-a-machine-learning-dataset-for-everyone/
https://marcoramilli.com/2016/12/16/malware-training-sets-a-machine-learning-dataset-for-everyone/
https://marcoramilli.com/2016/12/16/malware-training-sets-a-machine-learning-dataset-for-everyone/
https://marcoramilli.com/2016/12/16/malware-training-sets-a-machine-learning-dataset-for-everyone/
https://marcoramilli.com/2016/12/16/malware-training-sets-a-machine-learning-dataset-for-everyone/
https://marcoramilli.com/2016/12/16/malware-training-sets-a-machine-learning-dataset-for-everyone/
https://marcoramilli.com/2016/12/16/malware-training-sets-a-machine-learning-dataset-for-everyone/
https://marcoramilli.com/2016/12/16/malware-training-sets-a-machine-learning-dataset-for-everyone/
https://marcoramilli.com/2016/12/16/malware-training-sets-a-machine-learning-dataset-for-everyone/
https://marcoramilli.com/2016/12/16/malware-training-sets-a-machine-learning-dataset-for-everyone/
https://marcoramilli.com/2016/12/16/malware-training-sets-a-machine-learning-dataset-for-everyone/
https://marcoramilli.com/2016/12/16/malware-training-sets-a-machine-learning-dataset-for-everyone/
https://marcoramilli.com/2016/12/16/malware-training-sets-a-machine-learning-dataset-for-everyone/

DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 143

of the control flow graph are extracted as the input of the DGCNN for
training, and the classifier is obtained to detect the packed malware.

Ding and Zhu [102] focused on studying the following problems: (a)
how to build a malware detection system based on DBNs, (b) whether
the unlabeled data can be used to improve the accuracy of malware
classification, and (c) whether the deep representation generated using
DBNs is helpful for feature extraction and dimension reduction. Therefore,
authors represented the malware program as opcode sequences and extract
the opcode n-grams to specify the behavioral features of malware. The
architecture of proposed system consists of three main components: the
PE parser, the feature extractor, and the malware detection module. The
testing results show that the proposedmodel has better classification results
than other models: support vector machines, decision trees, and the k-
nearest.

Darabian et al. [20] studied the potential of applying deep learning
techniques to detect cryptomining malware by using both static and
dynamic analysis approaches. They used long short-term memory (LSTN)
and convolutional neural network (CNN) techniques to advance the
analysis of cryptomining malware. They considered a set of hybrid features
composed of the captured system call events and opcode sequences. The
proposed system achieved an accuracy rate of 95% using static features and
an accuracy rate of 99% using dynamic ones.

An effective approach based on deep learning analysis for malware
detection and explanation is proposed by Wang et al. in [91]; they used
a classifier to predict whether the sample is malicious and an interpreter
to explain the classifier result via a system call number sequence of the
target sample with instrumentation tools in an elaborated sandbox. The
approach just needs a small amount of feature data and can reduce the input
dimension of the training model. The authors also adopted the layer-wise
relevance propagation (LRP) algorithm to save the malware analyst time
and to find which slice of a sequence makes the greatest contribution in
the decision.

Aditya et al. [1] introduced an approach for detecting malware based
on deep neural network and utilized a API call sequences. The model is
implemented with two different recurrent neural network architectures
for comparison (LSTM and GRU). The classification model that has been
created employs the LSTM architecture with RMSProp optimizer, and a
learning rate parameter shows that LSTM is better than GRU, achieving
an accuracy of 97.3%.

144 M. BELAOUED

Table 6.5 Summary of malware detection solutions that employ dynamic features
Ref. Year Features used Feature rep. Dataset

size
DL Algo. Results

[69] 2015 API calls Sequences 500K RNN,ESN,MLP TPR:71%,
FPR:0.1%

[79] 2016 Network traffic 1-hot Vect 29,562 RSTNN F-score: 96.9%
[85] 2016 Process behavior 1-hot vect,

Image
26 RNN(LSTM),

CNN
AUC: 96%

[6] 2017 System Calls Sequence 75k LSTM, MLP Acc: 95.6%
[60] 2017 API Sequence 157 LSTM 96.67%
[61] 2018 PE, Bytec, APIs,

Net. traffic
Vector 3772 DNN Acc: 97%

[95] 2019 Call API graph 1760 SAE Acc: 98.6%
[20] 2020 Opcodes, system

calls
Scale values,
binary vectors

1500 LSTN,ATT-
LSTM,CNN

Acc: 95.99%

[40] 2020 Functions calls Graph 600 DGCNN Acc: 96.4%
[1] 2021 API calls Sequences 2210 LSTM Acc: 97.3%
[91] 2021 API calls Sequences 2950 M-Bi-LSTM Acc: 97.39%
[30] 2021 Execution traces Sequences 4000 CNN . + LSTM Acc: 91.63%
[56] 2022 API calls n-gram,

sequences
43,007 CNN . + LSTM Acc: 97.31%

Ghanei et al. [30] presented a dynamic malware analysis method which
utilizes hardware events as feature inputs to the classification model during
programs’ execution. They used hardware events-based features in three
ways. Firstly, the feature set of each period are given to the convolutional
neural network (CNN) separately. Secondly, a time series is formed and
is given to a long short-term memory (LSTM) network. Thirdly, a fully
connected network is used between the outputs of CNNs and the LSTM
network to model a voting classifier. The results showed that the combina-
tion of hardware events with voting network can be effective and can reach
91.63% of accuracy. In Table 6.5, we provide a summary of the discussed
malware detection solutions that employ dynamic features.

6.6.2 Malware Classification Solutions

6.6.2.1 Solutions that Employ Static Features
In [49], the authors proposed an approach for malware families identifica-
tion using system calls sequences. The latter are extracted by dynamically
analyzing malware and benign samples using Cuckoo Sandbox [33] and

DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 145

are used to construct the execution paths of the analyzed samples. The
redundant sequences are then removed, and the remaining ones are
represented as 1-hot vector of length 60 (i.e., the 60 documented system
calls) representing the presence or not of a specific kernel API call. These
feature vectors are then fed to a convolutional network as 3-grams (3x60).
The CNN will act as a feature extractor and will generate two features
vectors, which are forwarded to the RNN part of the neural network.
API traces dependencies are then modeled, and mean-pooling approach
is used to extract features of highest importance from the LSTM output,
which are forwarded to the Softmax layer that classifies each instance into a
family. The experimental results show that the combination of CNN-RNN
achieved better performances than the two models separately as well as
two machine learning classifiers, namely, hidden Markov model (HMM)
and support vector machine (SVM).

Zhang et al. [103] introduced IRMD, which is a malware families
classification method based on CNN and an image-based representation of
opcode sequences. In the proposed method, the authors first disassemble
binary executables and extract opcode sequences that are represented
as 2-D array, which is then converted to grayscale images. The authors
then applied image processing techniques on the generated images, such
as histogram normalization, dilation, and erosion. The resulting images
were then fed to a CNN. The latter has a baseline three-level archi-
tecture composed of a convolutional layer, a pooling layer, and a fully
connected layer. A softmax function is then used to classify malware variant
and benign images. IRMD was evaluated on a dataset collected from
VxHeavens repository and composed of 9168 malware samples from 10
distinct malware families and 8640 benign samples and was able to achieve
96.7% of accuracy. Mourtaji et al. [65] also used a CNN with image
representation of malware samples. They were able to achieve the highest
accuracy (i.e., 99.88%) on two distinct experiment settings on Microsoft
BIG15 dataset. Similarly, Kumari et al. [52] relied on image representation
of the analyzed binaries and CNN for malware families classification.
However, they introduced three different CNN architectures. The first one
has baseline architecture that is composed of three convolutional layers.
Each convolutional layer is followed by a max-pooling layer and a ReLU
activation layer. The second one is based on the VGG-16 architecture
which is pre-trained on the ImageNet dataset, which is composed of 1000
classes. In the last model, the authors fine-tuned the last convolutional
block of the VGG-16 model as well as the top-level classifier. Yue et al.

146 M. BELAOUED

[101] and Rahul et al. [74] also employed CNN for malware families
classification using image representation. In the first work [101], they
trained a very deep neural network (DNN) composed of ten layers and
a complex pre-processing method on the MalImg dataset and achieved
an accuracy of 97.32%, while in the second one [74], they trained a
baseline CNN architecture, two convolutional and two dense layers on
the BIG 2015 dataset Kalash et al. [44]. Hemalatha et al. [38] used a
pretrained densely connected convolutional network (DenseNet) model
with class-balanced loss function for reweighting the categorical cross-
entropy loss in the final classification layer. The DenseNet model uses fewer
parameters and ensures information flow by connecting all the layers in
the network with their feature maps. The performance of the proposed
model was evaluated on four malware datasets, namely,Malimg, BIG 2015,
Malicia, and Malvis, achieving, respectively, 98.23%, 98.46%, 89.48%, and
98.21% of accuracy. Zhihua et al. [19] developed an approach to advance
the detection of malicious programs using convolutional neural networks
(CNNs) and non-dominated sorting genetic algorithm II (NSGA-II). The
CNNs are used to identify and classify grayscale images converted from
executable files of malicious code. NSGA-II is then employed to deal
with the imbalanced data of malware families. A series of experiments are
performed for malware image data from Vision Research Lab, and the
results show that the proposed method is effective maintaining higher
accuracy. Ni et al. [67] considered opcode sequences instead of bytecode.
They encoded these sequences using SimHash, which they considered as
pixels and converts them to grayscale images. Kebede et al. [48] opted
for a deep learning architecture composed of multilayer neural network
with auto-encoders applied on malware images. An approach based on
visualization and fine-tuned CNN is proposed by Vasan et al. in [88]; they
used color instead of grayscale images generated from the malware binaries
to identify and detect both packed and unpacked malware. The proposed
method is called image-based malware classification using ensemble of
CNNs (IMCEC). According the experimental result on Malimg malware
benchmark, the proposed model demonstrated 99% accuracy for unpacked
malware and 98% accuracy for packed malware. The problem with this
approach is that it considers the entire program’s binary, which is very large
and takes considerable time to process.

Venkatraman et al. [89] presented a hybrid model by employing simi-
larity mining and deep learning architectures for accurately detecting and
classifying obfuscated malware into their malware families. The proposed

DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 147

model used two types of learning approaches: CNN and LSTM. The
objectives are (1) to describe the use of image-based techniques for
identifying suspicious system behavior and (2) to suggest and research the
use of hybrid image-based approaches with deep learning architectures for
an efficient malware detection. The performance of the models is evaluated
on the three datasets: VX Heavens, Malimg, and Microsoft. The model
accuracy achieved 96% on average and the advantage that it required less
computational cost as compared to the classical machine learning-based
methods.

The work of [100] introduces MDMC, a byte-level malware classifi-
cation approach based on Markov images and deep learning. In contrast
to grayscale images, the first phase of MDMC does not take the issue of
resizing into account and instead attempts to transform malware binaries
intoMarkov pictures according to the bytes transfer probability matrix. The
deep convolutional neural network is then used to classify Markov pictures.
In this procedure, only malware binaries were employed; dynamic and
reverse analysis were not used. On the Microsoft dataset and the Drebin
dataset, two malware datasets, the performance of the suggested model has
been assessed. On the two datasets, the average MDMC accuracy rates are
99.26% and 97.36%, respectively.

Lin and Yeh [57] presented an efficient one-dimensional convolutional
neural network CNN models for malware classification. The 1D CNN
models explore both bit-level and byte-level sequences extracted from
malware executables. The authors designed a simple architecture of 1D
CNN to learn the features from raw binary sequences and to convert
malware executables into images. The experiments show that the proposed
1D CNN model achieves better performance with smaller resizing byte
sequences with an accuracy of 96.32% and 98.70% using two benchmark
datasets.

The comparison of the classification capabilities of convolutional neural
networks (CNN) and extreme learning machines (ELM) for malware
images classification is the main objective of Jain et al.’s [42] work. They
used both two-dimensional images and one-dimensional vectors produced
from images to view malware samples as images and apply image analysis
algorithms. Results on the Malimg dataset showed that ELMs train faster
than CNNs and produce results with higher accuracy while processing 1D
data. The authors also noted that ELMs handle 2D data more quickly than
CNNs. Finally, authors concluded that ELMs are faster to train than CNNs,
but only by a relatively small factor as compared to image-based training.

148 M. BELAOUED

The deep learning approach in [54] is practical for real-life uses since
it has two interesting properties: it does not require neither feature
engineering nor a long time to classify the malware class of a binary
file. Indeed, the malware samples are converted into grayscale image
representation and then fed to different neural network models. The latter
are a combination of convolutional layers which process the input, with
RNN and LSTM layers. The test conducted on the malware data from the
Microsoft Malware Classification Challenge (i.e., BIG 2015) available on
Kaggle (10,868 samples) shows an accuracy of 98.2% in the cross-validation
procedure through the CNN bi-directional LSTM model.

In [66], authors proposed an ensemble learning-based classification
system comprised of convolutional network to classify malware programs.
In their research, they used the nine-class Microsoft Malware Classification
Challenge (BIG 2015) dataset. For each malware file in this dataset, there
is an assembly file and a compiled file. Convolutional neural networks
are used to classify compiled files and display them as images; then
convolutional neural networks (CNNs) are used to classify these images.
Long short-term memory (LSTM) networks are used to classify machine
language opcodes in assembly files after they have been converted into
sequences. When identifying assembly files using an LSTM network,
accuracy is 97.2 percent; when categorizing compiled files with a CNN
architecture, accuracy is 99.4 percent.

Darem et al. [21] suggested a semi-supervised method for detecting
obfuscated malware that combines opcode analysis, feature engineering,
image processing, and deep learning approaches. The proposed approach
transforms the malware binary into image for visual analysis of the malware
executable and contrasts with well-known grayscale image-based classifica-
tion methods. As a result, the approach identifies and predicts associated
malware families with minimal running time overhead. They validated
the proposed method through comprehensive experiments and compared
it with other methods. Experimental results proved that the proposed
approach achieved the highest performances with 99.12% of accuracy.

The work of [4] presents a new malware classification framework
based on a hybrid deep learning algorithm. The framework combines
two pretrained deep neural networks, namely, RestNet and Alexnet, in
order to learn features from malware samples, which are represented as
grayscale images, and classify them into different families. The framework

DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 149

is evaluated on a large dataset of malware samples and achieves state-of-
the-art performance.

Mohammed et al. [64] introduced a malware detection mechanism
based on convolutional neural networks (CNNs) and malware binaries
images in the frequency domain (“bigram-dct” images). The authors
proposed a joint feature metric that justifies the combination of two
different features from byteplot images and “bigram-dct” images to create
an accurate ensemble model for malware detection. They evaluated the
proposed model on large dataset called MaleX consisting of Windows
executable samples, obtaining an accuracy of 96%.

Meng et al. [62] introduced MCSMGS, which a malware classification
model based on deep learning and statically extracted API calls sequences.
The latter are considered malware gene sequences and are fed to a CNN.
MCSMGS was evaluated on dataset composed of 5647 samples, obtained
from VxHeavens repository, and it was able to achieve 98% of accuracy.

Kang et al. [47] introduced an approach for classifying malware
into different categories using opcode and API sequences fetaures with
word2vec and long short-term memory (LSTM) network. Moreover,
authors showed the possibility that word2vec can be applied to classify
malware and it can victorizes data using fewer dimensions than one-hot
encoding. According to the experimental results on using the Microsoft
Malware Classification dataset, the proposed model has 97.59% as accuracy
classification rate.

Gibert et al. [31] have designed a novel multimodal deep learning
framework named HYDRA, which is a network structure with multi-
ple inputs and single output, for malware classification. The suggested
approach combines end-to-end components with hand-engineered fea-
tures in a modular architecture to categorize malware using CNN, Deep-
Conv, and Malconv models. The features, which are learned via different
network architectures, are fed through byte opcodes and API calls. Finally,
all of the functions are connected seamlessly. Testing results show that the
model achieved 99.75% of accuracy on the Microsoft BIG 2015 dataset.

In [3], authors investigated that most large datasets that include mali-
cious and non-malicious programs are not public. To reduce this limitation,
first they developed a new large public dataset for malware classification
it called MC-dataset-multiclass (malware and clean ware in multiclass
scenario). This dataset was then used to train a multiclass classification
RNN, namely, an LSTM. Unknown programs were used to test this model
for interpreting unstructured data. Evaluation findings indicate that the

150 M. BELAOUED

accuracy was 67.60%, with six classes containing five separate malware
kinds.

A malware detection and family classification framework for malware
based on deep neural networks and visualization is proposed by Jian et al.
in [43]; they convert an executable file samples into asm files bytes files
by disassembly technology. As a result, a balanced experimental dataset
containing normal software samples and malware samples is constructed.
To this end, the authors designed a new data representation approach
based on the binaries and word vectors extracted from both asm files and
bytes files and combined visualization technology with data augmentation
to build an optimized deep neural network architecture, i.e., SERLA (
SER esNet50 . + Bi- L STM . + A ttention) for malware detection. The
experimental results show that proposed method is superior to the state-of-
the-art methods and can achieve 98.31% accuracy. Li et al. [56] proposed
a deep framework for malware detection using deep learning models,
which is based on multiple API sequence intrinsic features. The proposed
method is able to detect whether the software is malicious or not and to
distinguish between malware and goodware. The authors firstly applied
embedding and convolutional layers to well depict the actual software
behaviors. Secondly, they designed an encoder to represent the semantic
information of APIs and the relationship between API calls using the Bi-
LSTMmodule. The experiments show that the proposedmethod performs
better than all the baselines in using API sequence to detect the malware,
achieving an accuracy score of 97.31%. In Table 6.6, we provide a summary
of the discussed malware classification solutions that employ static features.

6.6.2.2 Solutions that Employ Dynamic Features
David and Netanyahu [22] introduced a malware classification approach
based on behavior signature generation and deep belief networks (DBNs).
The proposed approach uses a dynamic analysis technique to extract the
behavior of each analyzed file using cuckoo sandbox. The resulted log file
contains various information about the program’s behavior, such as API
calls, file manipulations, IP addresses, URLs, etc. The log file is then parsed
and converted into a fixed-sized binary vectors that will be provided as an
input to the DBN. The latter is composed of eight layers of auto-encoders,
and the output layer contains 30 neurons. The authors experimented their
approach on a dataset composed of 1800 samples and achieved an overall
accuracy of 98.6%.

DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 151

Table 6.6 Summary of malaware classification solutions that employ static fea-
tures
Ref. Year Features used Feature rep. Dataset

size
DL Algo. Results

[103] 2016 Opcode Image 17,808 CNN Acc: 96.7%
[101] 2017 Bytecode Image 9435 CNN Acc: 97/32%
[52] 2017 Bytecode Image 21,741 CNN Acc: 97.07%
[48] 2017 Bytecode Image 10,826 AE 99.15%
[62] 2017 API calls Word2Vect 5647 CNN Acc: 98%
[50] 2017 PE Meta,

imp, opcod
n-gram,
vector

22,757 FFNN, CNN F1S: 92%

[54] 2018 Bytecode Image 10,860 CNN . + biLSTM Acc: 98.2%
[44] 2018 Bytecode Image . ≈30k CNN Acc: 99.97%
[67] 2018 Opcode Image . ≈10k CNN Acc: 98.862%
[3] 2019 Bytecode Image 19,740 CNN Acc: 97.19%
[65] 2019 Bytecode Grayscale

image
. ≈30k LSTM Acc:

97.02–99.88%
[47] 2019 Opcode, API

calls
Binary
vectors

10,868 LSTM Acc: 97.59%

[89] 2019 Opcode, API
calls

Image . ≈30k CNN,LSTM Acc: 96%

[73] 2017 PE metadata n-gram . ≈95K CNN, RNN Acc: 90.8–97.7%
[31] 2020 APIs, Bytec,

Opcode
Binary
vectors,
n-gram

. ≈10K Multimodal CNN Acc: 99.75%

[88] 2020 Bytecode Sequence,
Image

. ≈10K CNN Acc: 98.99%

[66] 2020 Opcode Image . ≈10K LSTM,CNN,RNN Acc: 97.2, 99.4,
99.8%

[100] 2020 Bytecode Image . ≈15K CNN Acc: 99.26,
97.36%

[42] 2020 Bytecode Image 9300 CNN,ELM Acc: 96.3, 97.7%
[21] 2021 Opcode,

bytecode
n-gram,
image

10,868 CNN . + XGBoost Acc: 99.12%

[4] 2021 Bytecode Image . ≈40k Alexnet, restnet Acc: 97.78%
[43] 2021 Opcode n-gram 10,868 CNN . + RNN Acc: 98.31%
[64] 2021 Bytecode n-gram,

image
179,725 CNN Acc: 96.15%

[38] 2021 Bytecode Image 21,741 DenseNet Acc: 98.46%
[57] 2022 Bytecode Image 10,868 CNN Acc: 96.32%

152 M. BELAOUED

Huang and Stokes [41] introduced MtNet (i.e., multi-task neural
network), which is a system for malware detection and family classification.
The proposed system provides a lightweight emulation engine that aims
at extracting dynamic raw features, which are as follows: API calls, their
input arguments, in addition to null terminated objects, which are the
result of code unpacking process. During the preprocessing phase, which
is a manual feature engineering processes, the API calls that have the same
role are mapped into higher level concept, resulting in 114 API calls in
total. The latter are combined with n-gram (with .n = 3) features. In
order to reduce the number of generated features, and only keep the
most relevant ones, MtNet integrates a features selection method based
on mutual information and random projection. Finally, only 4k features
are kept and used for training a deep feed forward neural network. MtNet
has been evaluated on a dataset containing 6.5M samples (2.8Mmalicious
and 3.7 M benign) and was able to achieve a 0.36% and 2.94% error rates,
in the binary malware detection problem and the malware classification
problem, respectively.

In [50] a neural network architecture consisting of CNN and feed-
forward neural network (FFNN) for malware families classification is
proposed. In this work, they opted for a static analysis of executables,
more precisely the PE header metadata, the PE imports, and the opcode
sequences. The proposed system has been evaluated on a dataset composed
of 22,757 samples (22,694 malicious and 63 benign executables) and was
able to achieve an F-score of 92% of along with a precision and recall of
93%.

Kown et al. [53] employed RNN on API call sequences belonging
to nine (09) different malware families in order to generate behavioral
patterns that can allow to distinguish between these different families.
They used Jaccard similarity measure compared with the generated APIs
patterns with those of extracted from test samples. They achieved an
average classification accuracy of 71%.

With the aim of detecting and categorizing malware into their respective
families, Vinaykumar et al. [90] designed a scalable and hybrid approach
that combines visualization and deep learning architectures for static,
dynamic, and image processing-based. The proposed approach is called
ScaleMalNet and executes the task into two phases. In the first one, various
machine learning and deep learning algorithms are employed for static and
dynamic malware analysis. In addition, detection of malware from images
using deep learning is evaluated where the file is converted into an image.

DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 153

Table 6.7 Summary of malware classification solutions that employ dynamic
features
Ref. Year Features used Feature

representation
Dataset
size

DL Algo. Results

[22] 2015 API, exec
traces, net.
traffic

Vector 1800 DBN Acc: 98.6%

[49] 2016 APIs 1-hot vect,
n-gram,
sequences

4753 CNN . + LSTM Acc: 89.4%

[41] 2016 APIs . + Args
NullTerObj

n-grams,
sequences

6.5M FFN ER: 0.23%, 2.94%

[53] 2017 API calls Sequence 787 RNN, Similarity Acc: 71%
[90] 2019 PE Metadata,

bytecode
Image . ≈300K DNN, CNN,

LSTM
Acc: 98.9%

In the second stage, malware were grouped into corresponding malware
families using image-processing approaches. Various experimental tests
on both the publicly and privately collected datasets indicated that deep
learning-based methodologies outperformed classical machine learning
algorithms. In Table 6.7, we provide a summary of the discussed malware
classification solutions that employ dynamic features.

6.7 OPEN ISSUES AND FUTURE DIRECTIONS

In this section, we identify the following main open challenges and future
research directions with respect to malware analysis using deep learning:

• Concept drift problem and deep learning model update: Machine and
deep learning models assume that training data follow a stationary
distribution, and this distribution is valid for new data. However, mal-
ware are continuously evolving in order to evade detection, which is
known as “concept drift,” and defined as changing of relationships in
the data, and hence the performance of the learning models decreases
over time. Thus, the main challenge is how to define patterns from
malware that can resist to malware evolution for a long time. Also,
there is a need to continuously adapt the deep learningmodel through
full, partial, or incremental learning to detect new variants of known
malware or zero-day malware. In this case, the challenge is how to

154 M. BELAOUED

reduce the cost of continuous learning model update, especially if the
updated model needs to be transferred to machines at large-scale.

• Manual malware investigation: The high number of false positives
generated by deep learning malware detection systems can be a major
issue, as it imposes on security analysts spending time on investigating
false alarms.

• Comparison of anti-malware solutions using deep learning: In the liter-
ature, the deep learning models for malware analysis are tested under
different datasets and different validation and experimental settings.
Thus, it is not possible to provide a fair comparison among the state-
of-the-art solutions. To deal with this issue, researchers should share
their datasets or conduct experiments on common datasets, such as
Kaggle Microsoft Malware Prediction [63].

• Explainable deep learning model: The deep learning models are con-
sidered as black boxes and produce unexplainable predictions, which
limit their acceptability and their adoption in anti-malware products.
In order to make these models interpretable, few works that extract
rules from deep neural networks are proposed in the context of
malware analysis, which extract the embedded knowledge in the DNN
in the form of explainable rules [59, 96]. Further efforts could be
made to make to focus on explainable anti-malware deep learning
models.

• Adversarial learning: Malware developers could identify ways to
evade detection. To this end, they deceive the deep learning model
by injecting adversarial inputs, i.e., samples that are subject to feature
perturbations, which induce feature representations that are close to
benign samples and cause the deep learning model to make wrong
decisions. Future research should focus on fortifying and testing the
deep learning models against adversarial samples through different
techniques, such as data augmentation from Generative Adversarial
Networks (GANs).

• Collaborative anti-malware solutions using deep learning: Deep learn-
ing models require huge amount of data to train the model, and
they are generated in high-computing infrastructures like a cloud
or a server. Hence, there is a need for the server and the different
client machines to work in a collaborative manner through different
forms, such as sharing of pre-trained global model and sharing of
local model’s parameter between the client and the server. The above
collaborative forms raise privacy concerns like exposing the local data

DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 155

and models. To deal with this issue, it is recommended that future
research efforts on malware analysis using deep learning consider
some collaborative schemes, such as deep learning model splitting and
deferentially private model parameters [13].

6.8 CONCLUSION

In this paper, we surveyed the state-of-the-art solutions for Windows
malware analysis using deep learning. We first provided the necessary back-
ground information regarding malware analysis as well as deep learning.
We then introduced our proposed taxonomy, and we discussed the existing
solutions with regard to this taxonomy.

In conclusion, we believe that deep learning can be extremely effective
in malware analysis and detection, especially when dealing with obfuscated
and zero-daymalware. However, it is important to remember that no single
solution is perfect, and there are always trade-offs to be made. For example,
deep learning models may require more resources to train and deploy than
conventional machine learning solutions or signature-based approaches.
Additionally, deep learning models may be more susceptible to adversarial
attacks. Therefore, it is important to carefully consider the risks and benefits
of deploying a deep learning model for malware analysis.

REFERENCES

1. Aditya WR, Hadiprakoso RB, Waluyo A et al (2021) Deep
learning for malware classification platform using windows API
call sequence. In: 2021 international conference on informatics,
multimedia, cyber and information system (ICIMCIS). IEEE,
Piscataway, pp 25–29

2. Alzubaidi L, Zhang J, Humaidi AJ, Al-dujaili A, Duan Y, Al-
Shamma O, Santamaría J, Fadhel MA, Al-Amidie M, Farhan L
(2021) Review of deep learning: concepts, CNN architectures,
challenges, applications, future directions. J Big Data 8:1–74

3. Andrade EDO, Viterbo J, Vasconcelos CN, Guérin J, Bernardini
FC (2019) A model based on LSTM neural networks to identify
five different types of malware. Proc Comput Sci 159:182–191

4. Aslan Ö, Yilmaz AA (2021) A new malware classification frame-
work based on deep learning algorithms. IEEE Access 9:87936–
87951

156 M. BELAOUED

5. Aslan ÖA, Samet R (2020) A comprehensive review on malware
detection approaches. IEEE Access 8:6249–6271

6. Athiwaratkun B, Stokes JW (2017) Malware classification with
LSTM and GRU language models and a character-level CNN.
In: 2017 IEEE international conference on acoustics, speech and
signal processing (ICASSP). IEEE, Piscataway, pp 2482–2486

7. Belaoued M, Mazouzi S (2015) A real-time pe-malware detection
system based on chi-square test and pe-file features. In: IFIP
international conference on computer science and its applications.
Springer, Berlin, pp 416–425

8. Belaoued M, Mazouzi S (2016) A chi-square-based decision
for real-time malware detection using pe-file features. J Inform
Process Syst 12(4):644–660

9. Belaoued M, Boukellal A, Koalal MA, Derhab A, Mazouzi S,
Khan FA (2019) Combined dynamic multi-feature and rule-based
behavior for accurate malware detection. Int J Distrib Sensor
Netw 15(11):1550147719889907

10. Belaoued M, Derhab A, Mazouzi S, Khan FA (2020) Macomal:
a multi-agent based collaborative mechanism for anti-malware
assistance. IEEE Access 8:14329–14343

11. Berman DS, Buczak AL, Chavis JS, Corbett CL (2019) A sur-
vey of deep learning methods for cyber security. Information
10(4):122

12. Bougueroua N, Mazouzi S, Belaoued M, Seddari N, Derhab
A, Bouras A (2021) A survey on multi-agent based collabora-
tive intrusion detection systems. J Artif Intell Soft Comput Res
11(2):111–142

13. Boulemtafes A, Derhab A, Challal Y (2020) A review of
privacy-preserving techniques for deep learning. Neurocomput-
ing 384:21–45

14. Breiman L (2001) Random forests. Mach Learn 45(1):5–32
15. Cao L, ZhiMin (2019) An overview of deep reinforcement learn-

ing. In: Proceedings of the 2019 4th international conference on
automation, control and robotics engineering

16. Caron M, Bojanowski P, Joulin A, Douze M (2018) Deep
clustering for unsupervised learning of visual features. CoRR
abs/1807.05520

DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 157

17. Cavnar WB, Trenkle JM et al (1994) N-gram-based text catego-
rization. Ann Arbor MI 48113(2):161–175

18. Choi S, Jang S, Kim Y, Kim J (2017) Malware detection using
malware image and deep learning. In: 2017 international confer-
ence on information and communication technology convergence
(ICTC), IEEE, Piscataway, pp 1193–1195

19. Cui Z, Du L, Wang P, Cai X, Zhang W (2019) Malicious
code detection based on CNNs and multi-objective algorithm. J
Parallel Distrib Comput 129:50–58

20. Darabian H, Homayounoot S, Dehghantanha A, Hashemi S,
Karimipour H, Parizi RM, Choo KKR (2020) Detecting crypto-
mining malware: a deep learning approach for static and dynamic
analysis. J Grid Comput 18(2):293–303

21. Darem A, Abawajy J, Makkar A, Alhashmi A, Alanazi S (2021)
Visualization and deep-learning-based malware variant detection
using opcode-level features. Fut Gener Comput Syst 125:314–
323

22. David OE, Netanyahu NS (2015) Deepsign: deep learning for
automatic malware signature generation and classification. In:
2015 international joint conference on neural networks (IJCNN).
IEEE, Piscataway, pp 1–8

23. Davuluru VSP, Narayanan BN, Balster EJ (2019) Convolutional
neural networks as classification tools and feature extractors
for distinguishing malware programs. In: 2019 IEEE national
aerospace and electronics conference (NAECON). IEEE, Piscat-
away, pp 273–278

24. Deng L, Yu D et al (2014) Deep learning: methods and applica-
tions. Found Trends® Signal Process 7(3–4):197–387

25. Ding Y, Chen S, Xu J (2016) Application of deep belief networks
for opcode based malware detection. In: 2016 international joint
conference on neural networks (IJCNN). IEEE, Piscataway, pp
3901–3908

26. Egele M, Scholte T, Kirda E, Kruegel C (2012) A survey on
automated dynamic malware-analysis techniques and tools. ACM
Comput Surv 44(2):6

27. Eilam E (2011) Reversing: secrets of reverse engineering. Wiley,
New York

158 M. BELAOUED

28. Eskandari M, Hashemi S (2011) Metamorphic malware detection
using control flow graph mining. Int J Comput Sci Netw Secur
11(12):1–6

29. Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized
trees. Mach Learn 63(1):3–42

30. Ghanei H, Manavi F, Hamzeh A (2021) A novel method for
malware detection based on hardware events using deep neural
networks. J Comput Virol Hacking Tech 17(4):319–331

31. Gibert D, Mateu C, Planes J (2020) Hydra: a multimodal deep
learning framework for malware classification. Comput Secur
95:101873

32. Gibert D, Mateu C, Planes J (2020) The rise of machine learning
for detection and classification of malware: research develop-
ments, trends and challenges. J Netw Comput Appl 153:102526

33. Guarnieri C, Tanasi A, Bremer J, SchloesserM (2012) The cuckoo
sandbox

34. Hahn K (2014) Robust static analysis of portable executable
malware. HTWK Leipzig

35. Hailat Z, Komarichev A, Chen XW (2018) Deep semi-supervised
learning. In: 2018 24th international conference on pattern
recognition (ICPR), pp 2154–2159

36. Hardy W, Chen L, Hou S, Ye Y, Li X (2016) DL4MD: a deep
learning framework for intelligent malware detection. In: Pro-
ceedings of the international conference on data mining (DMIN),
The Steering Committee of The World Congress in Computer
Science, Computer Engineering and Applied Computing (World-
Comp), p 61

37. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers:
surpassing human-level performance on imagenet classification.
In: Proceedings of the IEEE international conference on com-
puter vision, pp 1026–1034

38. Hemalatha J, Roseline SA, Geetha S, Kadry S, Damaševičius
R (2021) An efficient densenet-based deep learning model for
malware detection. Entropy 23(3):344

39. Hex-Rays S (2008) Ida pro disassembler

DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 159

40. Hua Y, Du Y, He D (2020) Classifying packed malware rep-
resented as control flow graphs using deep graph convolutional
neural network. In: 2020 international conference on computer
engineering and application (ICCEA). IEEE, Piscataway, pp 254–
258

41. Huang W, Stokes JW (2016) Mtnet: a multi-task neural network
for dynamic malware classification. In: Detection of intrusions and
malware, and vulnerability assessment. Springer, Berlin, pp 399–
418

42. Jain M, Andreopoulos W, Stamp M (2020) Convolutional neural
networks and extreme learning machines for malware classifica-
tion. J Comput Virol Hacking Tech 16(3):229–244

43. Jian Y, Kuang H, Ren C, Ma Z, Wang H (2021) A novel
framework for image-based malware detection with a deep neural
network. Comput Secur 109:102400

44. Kalash M, Rochan M, Mohammed N, Bruce ND, Wang Y, Iqbal
F (2018) Malware classification with deep convolutional neural
networks. In: 2018 9th IFIP international conference on new
technologies, mobility and security (NTMS). IEEE, Piscataway,
pp 1–5

45. Kambar MEZN, Esmaeilzadeh A, Kim Y, Taghva K (2022) A
survey on mobile malware detection methods using machine
learning. In: 2022 IEEE 12th annual computing and communi-
cation workshop and conference (CCWC). IEEE, Piscataway, pp
0215–0221

46. Kan Z, Wang H, Xu G, Guo Y, Chen X (2018) Towards
light-weight deep learning based malware detection. In: 2018
IEEE 42nd annual computer software and applications conference
(COMPSAC), vol 1. IEEE, Piscataway, pp 600–609

47. Kang J, Jang S, Li S, Jeong YS, Sung Y (2019) Long short-term
memory-based malware classification method for information
security. Comput Electr Eng 77:366–375

48. Kebede TM, Djaneye-Boundjou O, Narayanan BN, Ralescu A,
Kapp D (2017) Classification of malware programs using autoen-
coders based deep learning architecture and its application to
the microsoft malware classification challenge (big 2015) dataset.
In: 2017 IEEE national aerospace and electronics conference
(NAECON). IEEE, Piscataway, pp 70–75

160 M. BELAOUED

49. Kolosnjaji B, Zarras A, Webster G, Eckert C (2016) Deep learning
for classification of malware system call sequences. In: Australasian
joint conference on artificial intelligence. Springer, Berlin, pp
137–149

50. Kolosnjaji B, Eraisha G, Webster G, Zarras A, Eckert C (2017)
Empowering convolutional networks for malware classification
and analysis. In: 2017 international joint conference on neural
networks (IJCNN). IEEE, Piscataway, pp 3838–3845

51. Kouliaridis V, Kambourakis G (2021) A comprehensive survey
on machine learning techniques for android malware detection.
Information 12(5):185

52. Kumari M, Hsieh G, Okonkwo CA (2017) Deep learning
approach to malware multi-class classification using image pro-
cessing techniques. In: 2017 international conference on com-
putational science and computational intelligence (CSCI). IEEE,
Piscataway, pp 13–18

53. Kwon I, Im EG (2017) Extracting the representative API call
patterns of malware families using recurrent neural network.
In: Proceedings of the international conference on research in
adaptive and convergent systems, pp 202–207

54. LeQ, Boydell O,Mac Namee B, ScanlonM (2018) Deep learning
at the shallow end: malware classification for non- domain experts.
Digit Invest 26:S118–S126

55. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature
521(7553):436

56. Li C, Lv Q, Li N, Wang Y, Sun D, Qiao Y (2022) A novel deep
framework for dynamic malware detection based on API sequence
intrinsic features. Comput Secur 116:102686

57. Lin WC, Yeh YR (2022) Efficient malware classification by binary
sequences with one-dimensional convolutional neural networks.
Mathematics 10(4):608

58. Liu K, Xu S, Xu G, Zhang M, Sun D, Liu H (2020) A review of
android malware detection approaches based on machine learn-
ing. IEEE Access 8:124579–124607

59. Mahdavifar S, Ghorbani AA (2020) Dennes: deep embedded
neural network expert system for detecting cyber attacks. Neural
Comput Appl 32(18):14753–14780

DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 161

60. Maniath S, Ashok A, Poornachandran P, Sujadevi V, AU PS,
Jan S (2017) Deep learning LSTM based ransomware detection.
In: 2017 recent developments in control, automation & power
engineering (RDCAPE). IEEE, Piscataway, pp 442–446

61. Masabo E, Kaawaase KS, Sansa-Otim J (2018) Big data: deep
learning for detecting malware. In: 2018 IEEE/ACM symposium
on software engineering in Africa (SEiA). IEEE, Piscataway, pp
20–26

62. Meng X, Shan Z, Liu F, Zhao B, Han J, Wang H, Wang J (2017)
Mcsmgs: malware classification model based on deep learning.
In: 2017 international conference on cyber-enabled distributed
computing and knowledge discovery (CyberC), pp 272–275

63. Microsoft malware prediction (2018). https://www.kaggle.
com/c/microsoft-malware-prediction

64. Mohammed TM, Nataraj L, Chikkagoudar S, Chandrasekaran S,
Manjunath B (2021) Malware detection using frequency domain-
based image visualization and deep learning. arXiv preprint
arXiv:210110578

65. Mourtaji Y, Bouhorma M, Alghazzawi D (2019) Intelligent
framework for malware detection with convolutional neural net-
work. In: Proceedings of the 2nd international conference on
networking, information systems & security, pp 1–6

66. Narayanan BN, Davuluru VSP (2020) Ensemble malware classi-
fication system using deep neural networks. Electronics 9(5):721

67. Ni S, Qian Q, Zhang R (2018) Malware identification using
visualization images and deep learning. Comput Secur 77:871–
885

68. Pan Y, Ge X, Fang C, Fan Y (2020) A systematic literature review
of android malware detection using static analysis. IEEE Access
8:116363–116379

69. Pascanu R, Stokes JW, Sanossian H, Marinescu M, Thomas A
(2015) Malware classification with recurrent networks. In: 2015
IEEE international conference on acoustics, speech and signal
processing (ICASSP). IEEE, Piscataway, pp 1916–1920

70. Patterson J, Gibson A (2017) Deep Learning: a practitioner’s
approach. O’Reilly Media

https://www.kaggle.com/c/microsoft-malware-prediction
https://www.kaggle.com/c/microsoft-malware-prediction
https://www.kaggle.com/c/microsoft-malware-prediction
https://www.kaggle.com/c/microsoft-malware-prediction
https://www.kaggle.com/c/microsoft-malware-prediction
https://www.kaggle.com/c/microsoft-malware-prediction
https://www.kaggle.com/c/microsoft-malware-prediction
https://www.kaggle.com/c/microsoft-malware-prediction

162 M. BELAOUED

71. Pietrek M (1994) Peering inside the pe: a tour of the win32 (r)
portable executable file format. Microsoft Systems Journal-US
Edition, pp 15–38

72. Qiu J, Zhang J, Luo W, Pan L, Nepal S, Xiang Y (2020) A survey
of android malware detection with deep neural models. ACM
Comput Surv 53(6):1–36

73. Raff E, Sylvester J, Nicholas C (2017) Learning the PE
header, malware detection withminimal domain knowledge. arXiv
preprint arXiv:170901471

74. Rahul R, Anjali T, Menon VK, Soman K (2017) Deep learning
for network flow analysis and malware classification. In: Interna-
tional symposium on security in computing and communication.
Springer, Berlin, pp 226–235

75. Sahin M, Bahtiyar S (2020) A survey on malware detection with
deep learning. In: 13th international conference on security of
information and networks, pp 1–6

76. Saxe J, Berlin K (2015) Deep neural network based malware
detection using two dimensional binary program features. In:
2015 10th international conference on malicious and unwanted
software (MALWARE). IEEE, Piscataway, pp 11–20

77. Schultz MG, Eskin E, Zadok E, Stolfo SJ (2001) Data mining
methods for detection of new malicious executables. In: Security
and privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Sympo-
sium on. IEEE, Piscataway, pp 38–49

78. Shafiq MZ, Tabish SM, Mirza F, Farooq M (2009) Pe-miner:
mining structural information to detect malicious executables
in realtime. In: International workshop on recent advances in
intrusion detection. Springer, Berlin, pp 121–141

79. Shibahara T, Yagi T, Akiyama M, Chiba D, Yada T (2016) Effi-
cient dynamic malware analysis based on network behavior using
deep learning. In: 2016 IEEE global communications conference
(GLOBECOM). IEEE, Piscataway, pp 1–7

80. Siddiqui M, Wang MC, Lee J (2008) A survey of data mining
techniques for malware detection using file features. In: Proceed-
ings of the 46th annual southeast regional conference on xx.
ACM, New York, pp 509–510

DEEP LEARNING FOR WINDOWS MALWARE ANALYSIS 163

81. Singh J, Singh J (2021) A survey on machine learning-based
malware detection in executable files. J Syst Archit 112:101861

82. Souri A, Hosseini R (2018) A state-of-the-art survey of mal-
ware detection approaches using data mining techniques. Hum.-
Centric Comput Inform Sci 8(1):1–22

83. Stevenson M, Mues C, Bravo C (2021) Deep residential repre-
sentations: using unsupervised learning to unlock elevation data
for geo-demographic prediction. CoRR abs/2112.01421

84. Tian D, Ying Q, Jia X, Ma R, Hu C, Liu W (2021) Mdchd: a
novel malware detection method in cloud using hardware trace
and deep learning. Comput Netw 198:108394

85. Tobiyama S, Yamaguchi Y, Shimada H, Ikuse T, Yagi T (2016)
Malware detection with deep neural network using process behav-
ior. In: 2016 IEEE 40th annual computer software and appli-
cations conference (COMPSAC), vol 2. IEEE, Piscataway, pp
577–582

86. Ucci D, Aniello L, Baldoni R (2019) Survey of machine learning
techniques for malware analysis. Comput Secur 81:123–147

87. Urooj U, Al-rimy BAS, Zainal A, Ghaleb FA, Rassam MA (2021)
Ransomware detection using the dynamic analysis and machine
learning: a survey and research directions. Appl Sci 12(1):172

88. Vasan D, Alazab M, Wassan S, Safaei B, Zheng Q (2020) Image-
based malware classification using ensemble of CNN architectures
(IMCEC). Comput Secur 92:101748

89. Venkatraman S, Alazab M, Vinayakumar R (2019) A hybrid deep
learning image-based analysis for effective malware detection. J
Inform Secur Appl 47:377–389

90. Vinayakumar R, Alazab M, Soman K, Poornachandran P, Venka-
traman S (2019) Robust intelligent malware detection using deep
learning. IEEE Access 7:46717–46738

91. Wang H, Zhu Z, Tong Z, Yin X, Feng Y, Shi G, Meng D (2021)
An effective approach for malware detection and explanation via
deep learning analysis. In: 2021 international joint conference on
neural networks (IJCNN). IEEE, Piscataway, pp 1–10

92. Wang X, Yiu SM (2016) A multi-task learning model for malware
classification with useful file access pattern from API call sequence.
arXiv preprint arXiv:161005945

164 M. BELAOUED

93. Weston J, Ratle F, Mobahi H, Collobert R (2012) Deep learning
via semi-supervised embedding. Springer, Berlin, pp 639–655

94. Wu Z, Pan S, Chen F, Long G, Zhang C, Philip SY (2020)
A comprehensive survey on graph neural networks. IEEE Trans
Neural Netw Learn Syst 32(1):4–24

95. Xiao F, Lin Z, Sun Y, Ma Y (2019) Malware detection based on
deep learning of behavior graphs. Math Probl Eng 2019:1–10

96. Yan A, Chen Z, Zhang H, Peng L, Yan Q, Hassan MU, Zhao
C, Yang B (2021) Effective detection of mobile malware behav-
ior based on explainable deep neural network. Neurocomputing
453:482–492

97. Yan J, Qi Y, Rao Q (2018) Detecting malware with an ensemble
method based on deep neural network. Security and Communi-
cation Networks 2018

98. Ye Y, Li T, Adjeroh D, Iyengar SS (2017) A survey on malware
detection using data mining techniques. ACM Comput Surv
50(3):41

99. Yu D, Deng L (2016) Automatic speech recognition. Springer,
Berlin

100. Yuan B, Wang J, Liu D, Guo W, Wu P, Bao X (2020) Byte-level
malware classification based on Markov images and deep learning.
Comput Secur 92:101740

101. Yue S (2017) Imbalanced malware images classification: a CNN
based approach. arXiv preprint arXiv:170808042

102. Yuxin D, Siyi Z (2019) Malware detection based on deep learning
algorithm. Neural Comput Appl 31(2):461–472

103. Zhang J, Qin Z, Yin H, Ou L, Hu Y (2016) Irmd: malware
variant detection using opcode image recognition. In: 2016 IEEE
22nd international conference on parallel and distributed systems
(ICPADS). IEEE, Piscataway, pp 1175–1180

CHAPTER 7

Malware Analysis for IoT and Smart AI-Based
Applications

Syed Emad ud Din Arshad, Moustafa M. Nasralla, Sohaib Bin
Altaf Khattak, Taqwa Ahmed Alhaj, and Ikram ur Rehman

7.1 INTRODUCTION

Recent years have seen a sharp rise in the usage of Internet of Things (IoT)
devices in a number of industries, including industry, health, automation,

S. E. ud Din Arshad
National University of Sciences and Technology, Islamabad, Pakistan
e-mail: 14mseesarshad@seecs.edu.pk

M. M. Nasralla (�) • S. B. A. Khattak
Smart Systems Engineering Lab, Department of Communications and Networks
Engineering, Prince Sultan University, Riyadh, Saudi Arabia
e-mail: skhattak@psu.edu.sa; mnasralla@psu.edu.sa

T. A. Alhaj
Information Assurance and Security Research Group, Faculty of Computing,
Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia

I. ur Rehman
School of Computing and Engineering, University of West London, London, UK
e-mail: ikram.rehman@uwl.ac.uk

© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2024
I. Almomani et al. (eds.), Cyber Malware, Security Informatics and
Law Enforcement, https://doi.org/10.1007/978-3-031-34969-0_7

165

 29185 -2241 a 29185
-2241 a

 1152
33509 a 1152 33509 a

mailto:14mseesarshad@seecs.edu.pk
mailto:14mseesarshad@seecs.edu.pk
mailto:14mseesarshad@seecs.edu.pk

 1152 38993 a 1152 38993 a

mailto:skhattak@psu.edu.sa
mailto:skhattak@psu.edu.sa
mailto:skhattak@psu.edu.sa

 10258 38993 a 10258 38993
a

mailto:mnasralla@psu.edu.sa
mailto:mnasralla@psu.edu.sa
mailto:mnasralla@psu.edu.sa

 1152
47528 a 1152 47528 a

mailto:ikram.rehman@uwl.ac.uk
mailto:ikram.rehman@uwl.ac.uk
mailto:ikram.rehman@uwl.ac.uk
mailto:ikram.rehman@uwl.ac.uk
https://doi.org/10.1007/978-3-031-34969-0_7
https://doi.org/10.1007/978-3-031-34969-0_7
https://doi.org/10.1007/978-3-031-34969-0_7
https://doi.org/10.1007/978-3-031-34969-0_7
https://doi.org/10.1007/978-3-031-34969-0_7
https://doi.org/10.1007/978-3-031-34969-0_7
https://doi.org/10.1007/978-3-031-34969-0_7
https://doi.org/10.1007/978-3-031-34969-0_7
https://doi.org/10.1007/978-3-031-34969-0_7
https://doi.org/10.1007/978-3-031-34969-0_7
https://doi.org/10.1007/978-3-031-34969-0_7

166 S. E. UD DIN ARSHAD ET AL.

and education, as well as smart homes and smart cities [1, 2]. According
to current estimates, there will be 75.44 billion connected IoT devices
worldwide by 2025 [3]. According to another study, the next significant
step in achieving the Internet’s goal of linking the entire world is the
network of connected “smart” products [3]. The IoT technology is closely
related to our daily life and is applied in several real-life related applications.
It has evolved rapidly and now has covered almost every aspect of modern
life, with its applications ranging from home-based services to emergency
management services and from societal and environmental applications to
industrial and technological applications [4]. Under the umbrella of each
of these domains lie thousands of use cases and applications, for example,
smart living rooms, smart kitchens, smart garages, smart doors, smart
cooling, and refrigerating systems, healthcare applications for older people,
or any other monitoring, tracking, or reporting systems [2, 5]. Intelligent
transportation and traffic management is another example of IoT, which
has a significant effect on our lives. The societal applications improve the
lifestyle of the general public and bring a lot of services at the tip of their
fingers. Security and surveillance have been revolutionized with the advent
of IoT, like intrusion detection systems, and smart surveillance systems.
Wildlife monitoring, environmental monitoring, smart farming, observing
energy consumption patterns, electricity management, water distribution,
waste management, smart marketing, and many similar applications are
an essential part of our society now. IoT devices are usually connected
through the wireless channel because of their flexibility and mobility.
Several wireless communication technologies are used for IoT deployment,
depending upon the application requirements [4]. These communication
technologies can also be classified as long and short range. The most
commonly used short-range communication technologies are RFID, Wi-
Fi, ZigBee, and Bluetooth. The widely used long-range communication
technologies for IoT are Sigfox, LoRaWAN,Weightless, Narrow Band IoT,
and Enhanced Machine Type Communication (eMTC) (Fig. 7.1).

The common features among most applications are low cost, low
processing, low power, low storage, and low bit rate. Computers, smart-
phones, communication interfaces, RFID tags, actuators, readers, cameras,
controllers, GPS, sensors, operating systems, lightweight services, and
preloaded apps generally make the IoT infrastructure. This technology is
not as secure as it seems, and it also raises additional security and privacy
issues. IoT networks have weak or no security since they rely on inexpensive
devices (such temperature sensors, security cameras, etc.) with constrained

MALWARE ANALYSIS FOR IOT AND SMART AI-BASED APPLICATIONS 167

Fig. 7.1 Cyberattacks in IoT

resources (such as low-power sources, limited memory, and computing
power) [6]. Due to these restrictions, it is challenging to perform complex
security tasks on those devices, making it simple for malicious actors
to compromise them and engage in a number of illegal activities that
jeopardize the security and integrity of the devices and network [7, 8]. As
IoT and artificial intelligence (AI) are enabling a wide range of services
across several sectors [9, 10], it makes all these sectors also vulnerable
to cyberattacks as shown in Fig. 7.1. Malware encompasses all types of
malicious software, such as data theft, snooping, and so on as shown in
Fig. 7.2. According to Kaspersky Lab, the virus is a “computer software
designed to infect and increase harm to a genuine user’s PC” [11].

If the cybersecurity issues are not effectively controlled, hackers will
exploit the flaws and vulnerabilities of devices or objects and subsequently

168 S. E. UD DIN ARSHAD ET AL.

Fig. 7.2 Cyberattacks
in IoT

manipulate data or disrupt systems over the global IoT network. IoT
faults and assaults may overshadow its benefits. In addition, standard
security methods and mechanisms are inadequate due to the low scalability,
integrity, and interoperability of existing devices. To address the security,
privacy, and dependability requirements of IoT, new approaches and
technologies should be created. The topic of cybersecurity challenges on
IoT platforms and AI-based applications is a big global concern that neces-
sitates a comprehensive evaluation from both the research and industrial
groups. This chapter evaluates security issues that are expected to limit IoT
deployment and intends to explore different methods for the detection and
evasion of cybersecurity threats in IoT domain. The chapter is structured
as follows: Sect. 7.2 discusses the work related to IoT cybersecurity. In
Sect. 7.3, the potential threat challenges in relation to IoT applications and
services are assessed. In Sect. 7.4 malware attacks and threats are discussed.
In Sect. 7.5 malware detection and evasion approaches are presented, and
the final section concludes the chapter.

7.2 RELATED WORKS

A large number of researchers have discussed the network vulnerabilities
and their potential solutions for cyber physical systems. This section covers

MALWARE ANALYSIS FOR IOT AND SMART AI-BASED APPLICATIONS 169

some of these researches and provide a brief overview of the existing work
in this domain.

The authors of [12] examined home automation systems, such as mag-
netic sensors, motion sensors, and industrial IoT devices, and discovered
that smart meters are susceptible to a number of assaults because of the
inadequate security measures used during their development and deploy-
ment. These gadgets advocate using an encrypted channel as a security
mechanism while communicating via an RF (radio frequency) channel.
Mutual authentication, the physically unclonable function, finite resources,
side-channel analysis, and cloning attacks were all topics covered in the
research in [13]. In their article, security mechanisms for protocol verifica-
tion, session key formation, and mutual authentication are given. Mutual
authentication offers useful information about key distribution between
devices and during sessions. The suggested remedy lessens the danger of
replay and man-in-the-middle attacks. The author of [14] discussed several
security difficulties and threats, privacy worries, IoT device integration
with the blockchain, and various security research fields. One of the most
critical problems in Android/iOS applications is application repackaging.
The authors of [15] presented their research on repackaged software. They
addressed five issues: (1) the current unfavorable repackaging practices,
(2) the way adware is embedded in the code, (3) the kinds of apps used
to repackage, (4) the motivations behind people downloading repackaged
software, and (5) the way an app’s characteristics change in the repackaged
version. The drawback of static malware detection techniques, such as
TinyDroid, DroidFDR [16], DroidEnsemble, and NsDroid, is that they
are not appropriate for dynamic analysis. A quick and efficient Android
malware detection tool is NsDroid. NsDroid is 20 times faster than
previous graph-based techniques [17, 18] since it is built on a local function
graph [19]. The author of [20] cited a dispute between various sensors
managed by a smartphone and offered a LOD-based solution (Linked
Open Data). LOD makes it possible to more effectively utilize the services
and features of the resident’s profile while also defining the connections
between the various services and items in the home. The authors of the
article [21] provided useful insight into the use of signature- and anomaly-
based methods for detecting mobile malware.

Authors in [22] discuss the cybersecurity threats in Mobile Adhoc
Networks (MANETS), which plays a key function in many IoT settings.
MANETS are vulnerable to numerous packet-drop attacks, including as
gray- and black-hole attacks. The authors looked at numerous black-

170 S. E. UD DIN ARSHAD ET AL.

hole attack types and employed learning, cooperative, and other detection
strategies. Their study concludes that trust-based scheme performs better
when compared to other schemes. For availability, security, and reliability
of MANETS, the threat of botnets must be taken care of. The newly
developed botnets are designed to dodge the detection systems. Large
amounts of data processing are required for high computational require-
ments to differentiate between normal and botnet traffic. The authors in
[23] proposed a system to address this problem by developing a scalable
and decentralized framework, based on characterization of the behavior of
legitimate hosts, and detect unseen botnet traffic.

Cross-architecture detection of IoT malware is a very challenging task
because these IoT devices are very heterogeneous. A solution to this
problem is proposed by using graph-based malware detection methods
to detect malware in IoT devices [24]. Graph-based techniques detected
complicated and zero-day malicious codes with greater accuracy. MalIn-
sight, [25] a malware detection system, breaks down malware into three
categories: basic structure, low-level behavior, and high-level behavior.
Operations were carried out based on the three elements on files, structural
features, networks, and registries. The framework might quickly identify
malware that hasn’t been seen and make it simple for future researchers to
find spyware.

Wang et al. [26] utilized lightweight network analysis and machine
learning to develop a framework for malware identification in Android
devices. In this work, authors combine machine learning with network
traffic analysis on the server-side, with minimum resource consumption
and minimum impact on the user experience. For the purpose of identi-
fying cyber vulnerabilities and threats, a unique machine learning-based
methodology was put forth by [27] to identify cyber threats using novel
machine learning-based framework. This framework used observed attack
patterns, and in result it was able to identify and detect cyberattacks.
Another machine learning technique based on hamming distance is used
for malware detection [28]. This method made use of k-medoid-based
nearest neighbors (KMNN), weighted all nearest neighbors (WANN),
and first nearest neighbors (FNN). These algorithms, which have high
recall and precision rates, were employed to identify malicious software.
A classification model is proposed to detect mobile malware attacks in
IoT systems [29]. Mobile malware attacks are mainly caused because of
fraudulent mobile applications and injected malicious applications. Other
machine learning techniques for malware detection adopted in IoT and

MALWARE ANALYSIS FOR IOT AND SMART AI-BASED APPLICATIONS 171

AI-based smart systems are decision tree, SVM, random forest, and logistic
regression [30, 31].

Other popular techniques for malware detection are sandbox envi-
ronment techniques, blockchain technology, and deep learning. Sandbox
is a testing environment used to investigate malware behaviors [32].
Kachare et al. [33] propose a concept for a sandbox environment that
analyzes malware, produces reports automatically, and fixes issues. In
order to study malware at three different levels–static malware analysis,
real-time malware analysis, and network analysis–the suggested model
employs multiple machine learning algorithms. Advanced persistent threats
(APTs) are immune to anti-malware and anti-virus systems along with
other conventional security systems. Advanced evasive techniques are used
to tackle these malwares. The work in [34] measures the divergence
from a program’s typical behavior utilizing Analysis Evasion Malware
Sandbox to discover malware evasive behavior (AEMS). Blockchain uses its
principles of cryptography, decentralization, and consensus for security. In
[35], a blockchain-based malware detection technique leveraging shared
signatures of suspicious malware files is put out. With the help of this
technique, users can quickly respond to the growing threat of malware
by sharing the signatures of dubious files. Deep learning is a part of
machine learning family and has been widely used recently in wide range of
applications including cybersecurity [36]. Authors in [37] develop a tool
to detect IoT-malware infections in smart home networks. It analyzes IoT
traffic as captured by means of a spoofing technique.

7.3 CYBERSECURITY THREATS FOR IOT AND SMART
AI APPLICATIONS

The rise of smart cities is made possible by the hyper-connectivity and
constant availability of IoT technologies, but they also raise cybersecurity
threats and attacks [38]. Approximately 300 percent more cyberattacks on
IoT devices were reported in 2019 according to a Forbes review of security
incidents [39]. The following are some examples of cyberattacks that could
occur in a smart city:

• Traffic light control: because wireless networks have made traffic
signals more susceptible to attack, attackers are now able to modify
traffic lights and cause accidents [40].

172 S. E. UD DIN ARSHAD ET AL.

• Attacks on smart vehicles: Attackers can simulate other vehicles in
the environment or insert bogus routes into smart vehicles to induce
crashes [41].

• Power grid collapse: Attackers might knock out the city’s electricity
through a power grid collapse [42].

• Water supply:Attackers may alter the concentrations of chemical
additives in the water, endangering the public’s health [43].

• Surveillance cameras: Attackers can eavesdrop on people and steal
personal information via surveillance cameras [44].

Furthermore, based on Hassija [45], the development of IoT solutions
raised concerns about data privacy.Data consent is linked to data privacy.
Devices or sensors, such cameras on the street or motion sensors under
a patient’s bed, may capture people’s data without their permission. In
other words, it’s possible that people aren’t aware that their data is
being gathered. They might also have a vague idea of what information
is gathered, how it is kept and processed, and who gains from it. The
ambiguity in data gathering and use may jeopardize people’s privacy and
confidence [46]. The problem of data ownership and the benefits gained
through the chain of IoT applications is also related to the data privacy
issue [47].
For several years, cities have been the target of security attacks all over the
world. For example, in 2015, cyberattacks caused a power outage in Kyiv (a
Ukrainian city), depriving residents of electricity for 1 hour [39]. In 2019,
ransomware infected the computers of the city administration in Baltimore,
USA, and demanded 13 bitcoins in compensation for the decryption of
files [48]. Cyberattacks have a negative effect on the technical axis, the
city’s economy, the quality of life, and more. When cities lose control of
their systems, people’s lives could also be in danger.

7.4 MALWARE ATTACKS IN IOT
Software that assists malicious attackers in achieving their objectives is
known as malware [49]. It was developed to aid attackers in achieving
their goals. These goals include interfering with system operations, gaining
access to computer system and network resources, and gathering private
information about users without their consent [50]. As a result, malware
regularly puts users’ privacy, the integrity of the hosts, and the availability
of the Internet at danger. Based on the program’s execution characteristics,

MALWARE ANALYSIS FOR IOT AND SMART AI-BASED APPLICATIONS 173

malware is categorized. Additionally, malware is categorized according to
its payload, how it exposes or exploits the system, and how it spreads. As
a result, malware can be classified into different types, as shown in Fig. 7.2
and discussed below.

7.4.1 Malware Threats in Software

The most dangerous threat to IoT systems is malware since it can either
damage the device or, in some situations, change its state to one where the
attacker has full control [51]. According to cyberattack statistics, the most
well-known malware in IoT software are [52]:

• A rootkit: One of the most deadly kinds of malicious software is a
rootkit. With the aid of a rootkit, hackers can get remote access to (and
control over) a computer or IoT device without being noticed by the
user or security devices. Without the user or security devices realizing
it, hackers can use rootkit to remotely access (manage) a machine (i.e.,
an IoT device). Once installed, the hacker has the ability to remotely
execute files, steal important information, modify system settings, and
alter the functionality of security software [53].Its stealthiness makes
it incredibly challenging to identify and prevent. A rootkit will always
attempt to conceal its existence, making security tools incapable of
finding and eliminating it. Due to this, it is detected manually using
techniques including static analysis, signature scanning, and machine
behavior (behavior-based detection) [53].

• Viruses: This harmful software can reproduce itself and infect other
systems. By affixing itself to different programs, it spreads to other
computers by running the code when a user launches one of the
infected apps [53].Because they need their “host” programs to be
activated in order to function, viruses cannot run independently.
The experimental self-replicating programs known as Bob Thoma’s
Creeper virus was first identified in the early 1970s [50].

• Worm:An autonomous computer software is called a “worm.” A
worm may transfer a completely functional clone of itself to other
devices, which is important to know. The Morris worm was the first
program reported to exhibit worm-like behavior [50].

• Spyware: A form of software known as spyware tracks user behavior
without their consent. It integrates itself into a conventional program

174 S. E. UD DIN ARSHAD ET AL.

by taking advantage of software weaknesses. It might also change the
security preferences of the software [53].

• Ransomware: One of the most prevalent types of malware in recent
years is ransomware. It’s a different kind of virus that controls a gadget
(in this case, an IoT device) and demands money from its owner
(ransom). By locking the system or encrypting contents on the hard
drive, it stops users from accessing the computer. Messages asking the
user to pay the ransom to the malware’s owner are then displayed by
the infection. The key to unlock the hard drive’s encrypted files is
then given by the ransomware’s creator. Typically, it spreads through
downloaded files or other network or system software bugs [53].

• Trojan horse: To trick users into downloading and installing it, this
spyware impersonates a trustworthy program. It makes it possible for a
hacker to get approved remote access to a compromised system. Once
a hacker has access to a compromised system, they can take valuable
data (e.g., financial information such as account numbers and credit
card numbers). To perform even more nefarious actions, it has the
ability to install more malicious software on the system.

• Keylogger: A keylogger allows a hacker to monitor a user’s keystrokes.
Passwords, IDs, and other login details are all logged along with
anything else a user puts on the keyboard. A dictionary or brute force
assault cannot compete with a key logger attack. By tricking users
into downloading the malicious application by clicking on a link in an
email, this dangerous program tries to access their device. It is one of
the most serious malwares, and you cannot avoid it even with a strong
password [53].

• Scareware: Scareware is a new breed of malicious software that tries
to convince users to purchase and download pointless and potentially
harmful software, including phoney antivirus protection, endangering
their financial and personal information [50].

7.4.2 Malware Threats in Hardware

Attackers have learned how to operate at the chip level, a crucial part of
any system, when it comes to malware in hardware. A device or system can
be exposed through a variety of methods. Multiple attacks could be caused
by minor modifications to a chip [51].Furthermore, IoT devices are visible
in public due to their clear structure. As a result, the system is exposed to

MALWARE ANALYSIS FOR IOT AND SMART AI-BASED APPLICATIONS 175

multiple threats, including the device ID or serial number of IoT devices
being exposed. Meanwhile, the majority of IoT devices are linked to cloud
infrastructure, which raises serious security concerns. Therefore, it’s very
likely that an attacker could compromise the cloud by sending a single piece
of malware to multiple IoT devices at the same time [54]. Accordingly, an
example of malware-affected hardware is listed below:

• Rowhammer: Rowhammer enables hostile actors to manipulate mem-
ory in order to steal information from weak systems, including
passwords. The issue has been identified in DDR3 and DDR4 DRAM
chips and, when used in conjunction with other attacks, allows users
of systems employing the chips to access the data stored in memory.

7.4.3 Malware Threats in Network Communication

Network services are one of the platforms that IoT devices may be attacked
over [54]. IoT systems are more susceptible to data leakage attacks as a
result of complex encryption algorithms’ inability to function on these
platforms. A system may be vulnerable to malware infection through
distributed denial of service (DDoS) attacks if normal data traffic is not
recognized [55]. Additionally, IoT devices are not required to perform
payload verification or integrity checks due to resource limitations like
computational power and data storage capacity, which encourages IoT
device security issues. The most well-known malware in IoT network
communication are:

• Bots: A bot is a malicious application that gives its owner remote
access to an infected system. Bots are frequently distributed by taking
advantage of software bugs and other social engineering techniques.
Once a system is compromised, the bot master can utilize Trojans,
malware, and worms to turn the affected systems into a botnet.
Botnets are frequently used in DDoS assaults, the distribution of spam
emails, and phishing scams. Agobot and Sdbot are two of the most
well-known bots [50].

• Mirai:Mirai creates a botnet out of networked devices running Linux
in order to launch extensive network attacks. Mirai-infected devices
are constantly searching the Internet for the common IP addresses of
IoT devices. In order to connect into vulnerable IoT devices and infect
them with its malware once it has detected them, Mirai employs a
collection of common factory default passwords and usernames [56].

176 S. E. UD DIN ARSHAD ET AL.

• Hajime: Hajime and Mirai are comparable in that both use username
and password tables to spread via unsecured open Telnet ports. Unlike
Mirai, Hajime is a part of a peer-to-peer network. The controller
issues commands to its peer network, and over time, the peer network
spreads the message to all other peers. This has a strong design,
making it more challenging to knock it over. Aside from design,
Hajime has a few other benefits over Mirai. Hajime takes several steps
to conceal its operating processes and data on file systems, making it
more stealthy [56].

7.5 MALWARE DETECTION AND EVASION
APPROACHES

The process of evaluating the program’s content to determine if the
assessed software is malicious or benign is known as malware detec-
tion. Three phases are used to detect malware:malware analysis, feature
extraction, and classifying malware [57]. In recent years, data mining and
machine learning methods have been widely used for malware detection
[58]. Data mining is the process of obtaining new andmeaningful informa-
tion from massive datasets or databases and is used for extracting malware
characteristics. Machine learning (ML) is a collection of algorithms that
effectively predicts application outcomes without being explicitly pro-
grammed. The objective of machine learning is to transform the input data
into acceptable value intervals via statistical analysis. Machine learning can
be used to performmany operations on linked data, including classification,
regression, and grouping.

As it is necessary to ensure that only authorized users can access
system services, authentication is a key requirement for many layers of
a smart system. Particularly in smart cities, IoT devices can authenticate
communications from control stations, other nodes, and the network itself.
Furthermore, new technologies must be developed to guarantee real-time
and trustworthy authentication because the amount of authentication data
in smart cities is growing quickly.

7.5.1 Major Malware Detection Approaches in IoT

According to the vulnerabilities explained in the previous section, an IoT
based smart system must be capable of detecting abnormal events in a real-

MALWARE ANALYSIS FOR IOT AND SMART AI-BASED APPLICATIONS 177

time manner. Predicting about the upcoming cyber threats is important
and is better than recovery after the attack. Therefore it is crucial to
develop intelligent malware detection and evasion approaches in order
to achieve cybersecurity awareness and automatically predict attacks on
smart applications [58]. This section describes several defenses for IoT
and smart cities applications against cyber malware attacks. The shared
defense strategies will help to advance the security measures for facilitating
future commercializing of smart city services. Different malware detection
approaches are proposed recently as shown in Fig. 7.3; below we present
an overview of these malware detection approaches:

• Signature-based malware detection: Signature is a characteristic of
malware that consists of the structure of the malware and uniquely
identifies it. This detection method is prevalent in commercial
antivirus software and is quick and effective at detecting known
malwares, but is ineffective for detecting a novel malware. Using
obfuscation techniques, malware belonging to the same family can
also readily evade signature-based detection. General functionality of
this detection method can be seen in Fig. 7.4.

• Behavior-based malware detection: These approaches analyzes the
behavior of the program using monitoring tools and identify whether
the program is a malware or not. Even if the program codes are

Heuristic
Based

Model
Checking

Based

Deep
Learning
Based

IoT Based

Malware
Detection

Techniques

Behavior
Based

Signature
Based

Mobile
Devices
Based

Fig. 7.3 Major malware detection approaches in IoT

178 S. E. UD DIN ARSHAD ET AL.

Fig. 7.4
Signature-based malware
detection

different, still this detection approach can make identification on the
basis of behavior making it an efficient method of malware detection.
Figure 7.5 shows the working of this malware detection method.

• Heuristic-based detection: These approaches have become increas-
ingly popular in recent years. It’s a complicated detection method that
relies on past experiences as well as various strategies based on as rules
andmachine learning [59]. It can detect zero-day malware with a high

MALWARE ANALYSIS FOR IOT AND SMART AI-BASED APPLICATIONS 179

Fig. 7.5
Behavior-based malware
detection

180 S. E. UD DIN ARSHAD ET AL.

degree of accuracy; however, it cannot detect sophisticated malware.
Figure 7.6 shows the visual illustration of this method.

• Model checking-based detection: Model checking has been used to
identify malware even though its original purpose was to evaluate
a system’s compliance with standards. In this detection method,
malware behaviors are manually extracted, and behavior groups are

Fig. 7.6 Heuristic-based detection

MALWARE ANALYSIS FOR IOT AND SMART AI-BASED APPLICATIONS 181

linear temporal logic (LTL) coded to exhibit a particular trait. CTL
and CTPL are two other typical formulas. By examining the flow
relationship between one or more system calls and using character-
istics like hiding, spreading, and injecting to identify them, program
behaviors can be identified. By contrasting these actions, it is possible
to tell if the application is malicious or benign. Some new malware
can be partially detected using this method, but not all new malware
generations. This method is illustrated in Fig. 7.7.

Fig. 7.7 Model checking-based detection

182 S. E. UD DIN ARSHAD ET AL.

• Deep learning-based detection: Artificial neural networks (ANNs),
which learn from examples, are a subset of machine learning (ML)
that gave rise to deep learning. Although it is a cutting-edge method
that is frequently used for image processing, autonomous driving,
and voice control, malware detection rarely makes use of it. It greatly
minimizes feature space and is extremely effective, although it is not
evasion attack resistant. This approach can be seen in Fig. 7.8.

• Cloud-based detection: Cloud computing is quickly taking off
because it has so many advantages, like simple access and on-demand
storage. The cloud has been used to detect viruses because of its
widespread use. With much larger malware database volumes and
intensive computational resources, cloud-based malware detection
enhances the performance of desktops and mobile devices in malware
detection. Cloud-based detection offers security as a service and
makes use of a range of detection agents on cloud servers. Any type
of file can be submitted, and the user will get a report stating whether
or not the file includes malware.

• Mobile device-based detection: In the realm of mobile devices,
Android has become the dominant platform. According to recent
studies, a new malicious Android app is released every 10 seconds. In
light of this, researchers have prioritized Android over other platforms
for malware detection. Numerous virus detection approaches,
particularly for the Android platform, have been proposed for mobile
devices. In general, these technologies identify malware using data
mining and machine learning algorithms. Various aspects, including
system calls, security-sensitive APIs, information flows, and control
flow architectures, are utilized. Even though current research has
made progress in detecting old and next-generation malware for
mobile devices, detecting complicated malware and scalability of
detection algorithms for a big bundle of apps remain formidable
challenges.

• IoT-based detection: IoT architecture often consists of a variety of
Internet-connected smart devices, such as network cameras, house-
hold appliances, and sensors. IoT technology and mobile devices
have begun to dominate the Internet more than personal comput-
ers. Since mobile and IoT devices are becoming increasingly popu-
lar among consumers, they are also becoming increasingly popular
among attackers. As a result, the landscape of malware detection
schemas is shifting from desktops to IoT and mobile devices.

MALWARE ANALYSIS FOR IOT AND SMART AI-BASED APPLICATIONS 183

Fig. 7.8 Deep
learning-based detection

184 S. E. UD DIN ARSHAD ET AL.

7.5.2 Machine Learning Techniques for Malware Detection in IoT

This section covers learning-based IoT security approaches to detect irreg-
ularities in the IoT device activities. In such detection approaches, machine
learning (ML) models are trained to identify malicious behavior and then
respond accordingly [60]. ML-based approaches outperformed signature-
based systems because a minor modification in an attack pattern can readily
circumvent a signature-based detection system. However, ML-based sys-
tems learn from traffic patterns. They can detect the attack versions with
ease [61]. In addition, the CPU load of ML-based systems ranges from low
to high because they do not analyze all database signatures. In addition to
superior performance in terms of accuracy and speed, ML-based systems
capture and reveal the intricate features of attack behavior [62]. These tech-
niques are mainly divided into supervised, unsupervised, and deep learning
methods [63]. Supervised ML methods are extensively applied to ensure
accuracy and efficiency, whereas unsupervised methods are less common in
IoT networks for intrusion detection. Meanwhile, deep learning systems
face challenges such as higher computational resource requirements and
longer prediction response times. In supervised learning, models are fed
with labeled data samples in order to identify the corresponding input-
output pattern.

If we have unlabeled data, unsupervised learning techniques are applied.
These approaches are predominantly employed for clustering and dimen-
sion reduction. Here a quick overview of the aforementioned learning
paradigms of ML in the context of IoT security is provided.

7.5.2.1 Brief Description of Commonly Used ML Techniques
• The most extensively used and successful machine learning tech-
nology for cybersecurity applications is the support vector machine
(SVM). Based on a reference to the margin on either side of the
hyperplane, SVM categorizes and separates the two data groups.
The margin and separation between hyperplanes can be increased
to increase the accuracy of data point detection. SVM needs a lot
of memory to operate on data and takes a long time to train. For
improved results, SVM should be trained repeatedly to learn the
dynamic user’s behavior. SVMs were first used in IoT security to
distinguish between typical and anomalous behavior. The SVM is
used for real-time intrusion detection, with its training pattern being
continuously updated, due to its stability, measures, and eligibility.

MALWARE ANALYSIS FOR IOT AND SMART AI-BASED APPLICATIONS 185

• Decision tree (DT) is a supervised machine learning technique that
utilizes a recursive tree topology. It consists of three compontents:
a root or intermediate node, a path, and a leaf node. A tree’s root
or intermediate node represents an object or property. Each branch
of the tree indicates the possible values of the parent node (object).
The predicted category or categorized characteristic corresponds to
the leaf node. The generated tree is additionally represented as if-
then rules. Entropy and information gain metrics are used to choose
the ideal intermediate node for further processing as a tree grows. It
functions as a classifier either directly or indirectly in IoT intrusion
detection techniques.

• K-nearest neighbor (kNN) is an unsupervised learning algorithm.
It uses a distance function to calculate the difference/dissimilarity
between two data instances. It requires less training time than other
classifiers. However, throughout the classification process, its compu-
tation time is an overhead. This classifier is based on the concept that
data points in the same area that are similar will be closer together than
data points that are dissimilar. Based on anomaly scores, there are two
primary groups of kNN. The anomaly scores are determined in one of
two ways: (1) based on the difference between the kth neighbor and
the data point and (2) the density of each data instance that is used to
calculate it. The kth data point’s value has an impact on the classifier’s
overall performance.Using KNN, an intrusion detection model for
IoT security can be constructed to categorize the normal and abnor-
mal behavior of wireless network sensors in the IoT environment.

• Random forest: An ensemble learning technique called random forest
(RF) combines a number of classifiers to produce a problem hypothe-
sis and a typical outcome. It is used to categorize and predict data
and is also referred to as a random decision forest. The majority
of the time, RF is a collection of predictions from various decision
trees. The random forest has been employed in the literature to gauge
spam production and identify intrusions. During the model’s training
phase, it uses less computational power and performs better on
nonlinear issues. The decision trees that will be reviewed throughout
the prediction process must be picked though, as the random forest
combines the predictions of several decision trees.

• The Bayes theorem, which is frequently applied in supervised clas-
sification, is the foundation of a Naive Bayes approach. The Bayes
theorem uses prior knowledge to describe an incident that might

186 S. E. UD DIN ARSHAD ET AL.

happen soon. Using previous data, Bayes’ technique can identify
potential harmful network traffic. In order to show the possibility that
a specific characteristic of an unlabeled example matches the labeled
feature set under the assumption of feature uniqueness, NB computes
the likelihood of specific events using the Bayes’ method. NB classifies
the properties that may be used during connection protocols and
measures the connection status flag in intrusion detection techniques.
These traits can be utilized to distinguish between normal and abnor-
mal network behavior.

• Through a series of forward and backpropagation cycles, ANNs are
trained. In feedforward, information is supplied into each node of a
hidden layer. The activation value of each node in a hidden layer and
output layer is established. A classifier’s activation function affects how
well it performs. Error is calculated using the discrepancy between the
network output and the desired value. Using the Guardian Descent
method, backpropagation modifies the weights between hidden and
output nodes based on this disparity. Up until the necessary level is
reached, this process is repeated. Although ANN is easy to use, noise-
resistant, and a nonlinear model, it has one drawback in that it requires
a lot of training time.

• Forward-looking convolutional neural networks aremulti-layer neural
networks that are created by extending ANN (CNN). It consists of
one or more convolutional layers, one or more fully connected layers,
and pooling layers, which are three different types of layers. In order
to utilize them at the coarser resolution, it transforms the higher-
resolution features into more complex features. CNN is frequently
employed in the identification of anomalies and the classification of
malicious traffic.

7.5.2.2 Detection and Mitigation Using ML
In order to protect IoT smart furniture from perception-layer assaults,
Nasralla et.al [7] have presented a novel security technique. In this method,
input time series from different sensors are compared using dynamic time
warping (DTW) similarity in order to discover anomalies using a novelty
detector that was previously trained with genuine, normal data as well as
some realistic potential perception-layer attacks. They used the example
of a smart cupboard (SC) with door magnetic sensors being subjected to
magnetic field fluctuations in order to change how door events were per-
ceived to exemplify this method. The experimental findings demonstrated

MALWARE ANALYSIS FOR IOT AND SMART AI-BASED APPLICATIONS 187

the performance in detecting perception layer attacks without needlessly
alerting the user during normal SC usage. More specifically, in the studies,
3.5% of the typical usages could not be authenticated, yet none of them
were identified as attacks. Additionally, 95.5% of attacks on the perception
layer were correctly detected, 4.20% of attacks were not classified, and only
0.30% of attacks were incorrectly labeled as common usages. Every one of
these statistics was run on every analysis day. If they are not discovered
on the first day, all attacks will likely be found in a few days. Figure 7.9
illustrates a block diagram for safeguarding a smart furniture item from
perception-layer attacks.

To identify aberrant traffic and distinguish DDoS attacks from the flash
crowd (FC), a unique detection and classification mechanism is introduced
in [8] work. In general, both types of traffic share similar characteristics,
although they can be distinguished from one another by a few crucial
differences. To get the desired result, numerous steps are taken in this
system, and the analysis data from the traffic analysis is then processed
further. The number of packets, size of the payload, and inter-packet arrival
time variations are the main factors taken into account. Ultimately, FC
traffic is identified and distinguished from DDoS attacks using a Naive
Bayesian model. Their proposed model is shown in Fig. 7.10. To confirm
the system’s performance, various simulations are created and compared
with some existing methods. Their experimental and simulation findings
demonstrate that their proposed detection system can distinguish DDoS
attack traffic from FC with more than 93% accuracy (CAIDA–DDoS
Attack 2007 and FIFA World Cup are two real-world datasets used in this
research.)

7.6 CONCLUSIONS

Cybersecurity has become a global concern for establishing improved secu-
rity mechanisms to investigate and react to cyberattacks. In this chapter,
we identify several application and service domain vulnerabilities inherent
to the IoT and smart systems. The ineffectiveness of conventional security
solutions in detecting novel cyberattacks renders them insufficient. Numer-
ous applications of cybersecurity systems make use of machine learning
techniques. In this chapter, we’ve covered threats to IoT and smart systems,
as well as a quick overview of malware detection and evasion approaches. It
is essential to investigate novel cyberattacks while simultaneously building

188 S. E. UD DIN ARSHAD ET AL.

Train the System?

Door events are collected from a SC
for each hour of a day

Represent each data case as
a time series

Finish Training?

Conform the reliable prototype
series as a corpus

Establish the similarity function
between cases based on DTW

Develop the novelty detector

Calculate distances for normal cases
and perception-layer attacked SCs

Adjust the thresholds for distinguising
normal cases, attack cases and

unknown cases

Classify new Series of SC
with Novelty Detector

Assess whether the result is correct

Finish Validation?

Yes

No

Validation Phases

Training Phase

No

No

Yes

Yes

Fig. 7.9 Block diagram for securing an SC against magnetic perception-layer
attacks [7]

MALWARE ANALYSIS FOR IOT AND SMART AI-BASED APPLICATIONS 189

Fig. 7.10 Bayesian model to detect abnormal data traffic and discriminate DDoS
attacks from FC [8]

and executing solutions to resist these cyberattacks, so the IoT and smart
systems could be utilized to their full potential.

REFERENCES

1. Nobakht M, Sivaraman V, Boreli R (2016) A host-based intrusion
detection and mitigation framework for smart home IoT using
openflow. In: 2016 11th International conference on availability,
reliability and security (ARES). IEEE, pp 147–156

2. Nasralla MM (2021) Sustainable virtual reality patient rehabilita-
tion systems with iot sensors using virtual smart cities. Sustainability
13(9):4716

3. Bendiab G, Shiaeles S, Alruban A, Kolokotronis N, IoT malware
network traffic classification using visual representation and deep
learning. In: 2020 6th IEEE Conference on Network Softwariza-
tion (NetSoft). IEEE, pp 444–449

4. Khattak SBA, Jia M, Marey M, Nasralla MM, Guo Q, Gu X (2022)
A novel single anchor localizationmethod for wireless sensors in 5G
satellite-terrestrial network. Alexandria Eng J 61(7):5595–5606

190 S. E. UD DIN ARSHAD ET AL.

5. Sobnath D, Rehman IU, Nasralla MM (2020) Smart cities to
improve mobility and quality of life of the visually impaired. In:
Technological trends in improved mobility of the visually impaired,
pp 3–28

6. Keegan N, Ji S-Y, Chaudhary A, Concolato C, Yu B, Jeong
DH (2016) A survey of cloud-based network intrusion detection
analysis. Human-centric Comput Inf Sci 6(1):1–16

7. Nasralla MM, García-Magariño I, Lloret J (2020) Defenses against
perception-layer attacks on IoT smart furniture for impaired peo-
ple. IEEE Access 8:119795–119805

8. Khan MA, Nasralla MM, Umar MM, Khan S, Choudhury N et al
(2022) An efficient multilevel probabilistic model for abnormal
traffic detection in wireless sensor networks. Sensors 22(2):410

9. Saki H, Khan N, Martini MG, Nasralla MM (2019) Machine
learning based frame classification for videos transmitted over
mobile networks. In: 2019 IEEE 24th International Workshop on
Computer Aided Modeling and Design of Communication Links
and Networks (CAMAD). IEEE, pp 1–6

10. Sobnath D, Isiaq SO, Rehman IU, Nasralla MM (2020) Using
machine learning advances to unravel patterns in subject areas and
performances of university students with special educational needs
and disabilities (MALSEND): a conceptual approach. In: Fourth
International Congress on Information and Communication Tech-
nology. Springer, pp 509–517

11. Pachhala N, Jothilakshmi S, Battula BP (2021) A comprehensive
survey on identification of malware types and malware classification
using machine learning techniques. In: 2021 2nd International
Conference on Smart Electronics and Communication (ICOSEC).
IEEE, pp 1207–1214

12. Wurm J, Hoang K, Arias O, Sadeghi A-R, Jin Y (2016) Security
analysis on consumer and industrial IoT devices. In: 2016 21st
Asia and South Pacific design automation conference (ASP-DAC).
IEEE, pp 519–524

13. Aman MN, Chua KC, Sikdar B (2017) A light-weight mutual
authentication protocol for IoT systems. In: GLOBECOM 2017-
2017 IEEE Global Communications Conference. IEEE, pp 1–6

MALWARE ANALYSIS FOR IOT AND SMART AI-BASED APPLICATIONS 191

14. Sengupta J, Ruj S, Bit SD (2020) A comprehensive survey on
attacks, security issues and blockchain solutions for IoT and IIot. J
Netw Comput Appl 149:102481

15. Khanmohammadi K, Ebrahimi N, Hamou-Lhadj A, Khoury R
(2019) Empirical study of android repackaged applications. Empir
Softw Eng 24(6):3587–3629

16. Yang Z, Chao F, Chen X, Jin S, Sun L, Du X (2022) DroidFDR:
automatic classification of android malware using model checking.
Electronics 11(11):1798

17. Yadav CS, Sharan A (2018) Automatic text document summariza-
tion using graph based centrality measures on lexical network. Int
J Inf Retr Res (IJIRR) 8(3):14–32

18. Yadav CS, Sharan A, Joshi ML (2014) Semantic graph based
approach for text mining. In: 2014 International Conference
on Issues and Challenges in Intelligent Computing Techniques
(ICICT). IEEE, pp 596–601

19. Yang Y, Du X, Yang Z, Liu X (2021) Android malware detection
based on structural features of the function call graph. Electronics
10(2):186

20. Guebli W, Belkhir A (2021) Inconsistency detection-based LOD in
smart homes. Int J Semant Web Inf Syst (IJSWIS) 17(4):56–75

21. Kouliaridis V, Barmpatsalou K, Kambourakis G, Chen S (2020) A
survey on mobile malware detection techniques. IEICE Trans Inf
Syst 103(2):204–211

22. Khanna N, Sachdeva M (2019) A comprehensive taxonomy of
schemes to detect and mitigate blackhole attack and its variants in
MANETs. Comput Sci Rev 32:24–44

23. Cid-Fuentes JÁ, Szabo C, Falkner K (2018) An adaptive framework
for the detection of novel botnets. Comput Secur 79:148–161

24. Ngo Q-D, Nguyen H-T, Le V-H, Nguyen D-H (2020) A survey of
IoT malware and detection methods based on static features. ICT
Express 6(4):280–286

25. Han W, Xue J, Wang Y, Liu Z, Kong Z (2019) MalInsight: a
systematic profiling based malware detection framework. J Netw
Comput Appl 125:236–250

192 S. E. UD DIN ARSHAD ET AL.

26. Wang S, Chen Z, Yan Q, Yang B, Peng L, Jia Z (2019) A mobile
malware detection method using behavior features in network
traffic. J Netw Comput Appl 133:15–25

27. NoorU, Anwar Z,Malik AW, Khan S, Saleem S, Amachine learning
framework for investigating data breaches based on semantic anal-
ysis of adversary’s attack patterns in threat intelligence repositories.
Futur Gener Comput Syst 95:467–487

28. Taheri R, Ghahramani M, Javidan R, Shojafar M, Pooranian Z,
Conti M (2020) Similarity-based android malware detection using
hamming distance of static binary features. Futur Gener Comput
Syst 105:230–247

29. Alazab M, Alazab M, Shalaginov A, Mesleh A, Awajan A (2020)
Intelligent mobile malware detection using permission requests and
API calls. Futur Gener Comput Syst 107:509–521

30. Borchani Y (2020) Advanced malicious beaconing detection
through AI. Netw Secur 2020(3):8–14

31. Visu P, Lakshmanan L, Murugananthan V, Cruz MV (2019)
Software-defined forensic framework for malware disaster manage-
ment in internet of thing devices for extreme surveillance. Comput
Commun 147:14–20

32. Yonamine S, Taenaka Y, Kadobayashi Y (2022) Tamer: a sandbox
for facilitating and automating IoT malware analysis with tech-
niques to elicit malicious behavior. In: ICISSP, pp 677–687

33. Kachare GP, Choudhary G, Shandilya SK, Sihag V (2022) Sandbox
environment for real time malware analysis of IoT devices. In:
International Conference on Computing Science, Communication
and Security. Springer, pp 169–183

34. Noor M, Abbas H, Shahid WB Countering cyber threats for
industrial applications: an automated approach for malware evasion
detection and analysis. J Netw Comput Appl 103:249–261

35. Fuji R, Usuzaki S, Aburada K, Yamaba H, Katayama T, Park M,
Shiratori N, Okazaki N (2019) Blockchain-based malware detec-
tion method using shared signatures of suspected malware files. In:
International Conference on Network-Based Information Systems.
Springer, pp 305–316

MALWARE ANALYSIS FOR IOT AND SMART AI-BASED APPLICATIONS 193

36. Jian Y, KuangH, Ren C,Ma Z,WangH (2021) A novel framework
for image-based malware detection with a deep neural network.
Comput Secur 109:102400

37. d’Estalenx A, Gañán C (2021) Nurse: end-user IoT malware
detection tool for smart homes. In: 11th International Conference
on the Internet of Things, pp 134–142

38. Ullah F, Naeem H, Jabbar S, Khalid S, Latif MA, Al-Turjman F,
Mostarda L (2019) Cyber security threats detection in internet
of things using deep learning approach. IEEE Access 7:124379–
124389

39. Andrade RO, Yoo SG, Tello-Oquendo L, Ortiz-Garcés I (2020) A
comprehensive study of the IoT cybersecurity in smart cities. IEEE
Access 8:228922–228941

40. Laszka A, Potteiger B, Vor obeychik Y, Amin S, Koutsoukos X
(2016) Vulnerability of transportation networks to traffic-signal
tampering. In: 2016 ACM/IEEE 7th International Conference on
Cyber-Physical Systems (ICCPS). IEEE, pp 1–10

41. Bagga P, Das AK, Wazid M, Rodrigues JJ, Park Y (2020) Authen-
tication protocols in internet of vehicles: taxonomy, analysis, and
challenges. IEEE Access 8:54314–54344

42. Soltan S, Yannakakis M, Zussman G, React to cyber attacks on
power grids. IEEE Trans Netw Sci Eng 6(3):459–473

43. Taormina R, Galelli S, Tippenhauer NO, Salomons E, Ostfeld A
(2017) Characterizing cyber-physical attacks on water distribution
systems. J Water Resour Plan Manag 143(5):04017009

44. Butun I, Österberg P, Song H (2019) Security of the internet of
things: vulnerabilities, attacks, and countermeasures. IEEE Com-
mun Surv Tutor 22(1):616–644

45. Hassija V, Chamola V, Saxena V, Jain D, Goyal P, Sikdar B (2019)
A survey on IoT security: application areas, security threats, and
solution architectures. IEEE Access 7:82721–82743

46. Kankanhalli A, Charalabidis Y, Mellouli S (2019.) IoT and AI for
smart government: a research agenda. Gov Inf Q 36(2):304–309

47. Bailey D, Coleman Y (2018) Urban IoT and AI: how can cities
successfully leverage this synergy? Retrieved Feb, vol 23, p 2019

194 S. E. UD DIN ARSHAD ET AL.

48. Ozer M, Varlioglu S, Gonen B, Bastug M (2019) A prevention and
a traction system for ransomware attacks. In: 2019 International
Conference on Computational Science and Computational Intelli-
gence (CSCI). IEEE, pp 150–154

49. Bayer U, Moser A, Kruegel C, Kirda E (2006) Dynamic analysis of
malicious code. J Comput Virol 2(1):67–77

50. Ye Y, Li T, Adjeroh D, Iyengar SS (2017) A survey on mal-
ware detection using data mining techniques. ACM Comput Surv
(CSUR) 50(3):1–40

51. Milosevic J, Sklavos N, Koutsikou K (2016) Malware in IoT
software and hardware

52. Milosevic J, Regazzoni F, Malek M (2017) Malware threats and
solutions for trustworthy mobile systems design. In: Hardware
security and trust. Springer, pp 149–167

53. Wazid M, Das AK, Rodrigues JJ, Shetty S, Park Y (2019) IoMT
malware detection approaches: analysis and research challenges.
IEEE Access 7:182459–182476

54. Uchenna CC, Jamil N, Ismail R, Yan LK, Mohamed MA (2021)
Malware threat analysis techniques and approaches for iot applica-
tions: a review. Bull Electr Eng Inf 10(3):1558–1571

55. Ahamed J, Rajan AV (2016) Internet of things (IoT): applica-
tion systems and security vulnerabilities. In: 2016 5th Interna-
tional Conference on Electronic Devices, Systems and Applications
(ICEDSA). IEEE, pp 1–5

56. Clincy V, Shahriar H (2019) IoT malware analysis. In: 2019 IEEE
43rd Annual Computer Software and Applications Conference
(COMPSAC), vol 1. IEEE, pp 920–921

57. Aslan ÖA, Samet R (2020) A comprehensive review on malware
detection approaches. IEEE Access 8:6249–6271

58. Cui L, Xie G, Qu Y, Gao L, Yang Y (2018) Security and privacy in
smart cities: Challenges and opportunities. IEEE Access 6:46134–
46145

59. Adkins F, Jones L, Carlisle M, Upchurch J (2013) Heuristic
malware detection via basic block comparison. In: 2013 8th Inter-
national Conference on Malicious and Unwanted Software: The
Americas (MALWARE). IEEE, pp 11–18

MALWARE ANALYSIS FOR IOT AND SMART AI-BASED APPLICATIONS 195

60. Barriga JJ, Yoo SG (2017) Malware detection and evasion with
machine learning techniques: a survey. Int J Appl Eng Res
12(18):7207–7214

61. Shaukat K, Luo S, Varadharajan V, Hameed IA, Xu M (2020) A
survey on machine learning techniques for cyber security in the last
decade. IEEE Access 8:222310–222354

62. Patel C, Vyas S, Saikia P et al (2022) A futuristic survey on learning
techniques for internet of things (IoT) security: developments,
applications, and challenges.

63. Chen Z, Liu J, Shen Y, Simsek M, Kantarci B, Mouftah HT, Djukic
P (2022) Machine learning-enabled IoT security: open issues and
challenges under advanced persistent threats. ACM Comput Surv
(CSUR) 55(5):1–37

CHAPTER 8

A Multiclass Classification Approach for IoT
Intrusion Detection Based on Feature

Selection and Oversampling

Zayna Amierh, Lina Hammad, Raneem Qaddoura ,
Huthaifa Al-Omari, and Hossam Faris

8.1 INTRODUCTION

The concept Internet of Things (IoT) revolves around a time when there
will be more objects linked to the Internet than there will be humans.
Under the current Internet infrastructure, the Internet of Things refers to

Z. Amierh • L. Hammad • R. Qaddoura (�) • H. Al-Omari
School of Computing and Informatics, Al Hussein Technical University, Amman,
Jordan
e-mail: Zayna.amierh@htu.edu.jo; Lina.Hammad@htu.edu.jo;
raneem.qaddoura@htu.edu.jo; Huthaifa.AlOmari@htu.edu.jo

H. Faris
Altibbi, Amman, Jordan

Information Technology Department, The University of Jordan, Amman, Jordan

Research Centre for Information and Communications Technologies of the
University of Granada (CITIC-UGR), University of Granada, Granada, Spain
e-mail: hossam.faris@ju.edu.jo

© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2024
I. Almomani et al. (eds.), Cyber Malware, Security Informatics and
Law Enforcement, https://doi.org/10.1007/978-3-031-34969-0_8

197

 29185 -2241 a 29185
-2241 a

https://orcid.org/0000-0003-4093-9349

 1152 36361 a 1152 36361 a

mailto:Zayna.amierh@htu.edu.jo
mailto:Zayna.amierh@htu.edu.jo
mailto:Zayna.amierh@htu.edu.jo
mailto:Zayna.amierh@htu.edu.jo

 12589
36361 a 12589 36361 a

mailto:Lina.Hammad@htu.edu.jo
mailto:Lina.Hammad@htu.edu.jo
mailto:Lina.Hammad@htu.edu.jo
mailto:Lina.Hammad@htu.edu.jo

 -2016 37579 a -2016 37579 a

mailto:raneem.qaddoura@htu.edu.jo
mailto:raneem.qaddoura@htu.edu.jo
mailto:raneem.qaddoura@htu.edu.jo
mailto:raneem.qaddoura@htu.edu.jo

 11055 37579 a 11055 37579 a

mailto:Huthaifa.AlOmari@htu.edu.jo
mailto:Huthaifa.AlOmari@htu.edu.jo
mailto:Huthaifa.AlOmari@htu.edu.jo
mailto:Huthaifa.AlOmari@htu.edu.jo

 1152 46606 a 1152 46606
a

mailto:hossam.faris@ju.edu.jo
mailto:hossam.faris@ju.edu.jo
mailto:hossam.faris@ju.edu.jo
mailto:hossam.faris@ju.edu.jo
https://doi.org/10.1007/978-3-031-34969-0_8
https://doi.org/10.1007/978-3-031-34969-0_8
https://doi.org/10.1007/978-3-031-34969-0_8
https://doi.org/10.1007/978-3-031-34969-0_8
https://doi.org/10.1007/978-3-031-34969-0_8
https://doi.org/10.1007/978-3-031-34969-0_8
https://doi.org/10.1007/978-3-031-34969-0_8
https://doi.org/10.1007/978-3-031-34969-0_8
https://doi.org/10.1007/978-3-031-34969-0_8
https://doi.org/10.1007/978-3-031-34969-0_8
https://doi.org/10.1007/978-3-031-34969-0_8

198 Z. AMIERH ET AL.

the interconnection of recognizable embedded computing devices [1]. The
simple idea behind the Internet of Things is to enable autonomous and safe
data exchange and connection between applications and real-world devices
in addition to connecting the physical and virtual worlds through personal
devices, servers, smart cities, and anything connected to the Internet [2].
IoT is the next evolution of the Internet, and its effect on education,
communication, enterprise, research, government, and industry has made
it one of humanity’s most significant and influential creations [1].

The Internet of Things has advanced exponentially in recent years.
Yet, IoT is not a new concept; it was initially presented in 1999 by
Kevin Ashton, co-founder and executive director of the Auto-ID Center,
who suggested that computers, and hence the Internet, are completely
reliant on human understanding [3]. Despite this, in 2003, IoT did not
exist yet due to the limited number of connected things and also since
omnipresent devices such as smartphones were just being introduced. With
time that has passed by, IoT came out of the shadows in 2009 when actual
implementation started [4].

IoT has been applied in many fields that we would not have expected
such as in agriculture and predicting the occurrence of natural calami-
ties [5]. Furthermore, the Internet of Things has been used in health
monitoring systems [6], surveillance monitoring systems [7], autonomous
vehicles [8], smart cities [9], and a variety of other applications where all
information can be used. With the help of Big Data, IoT has now become
extremely powerful, allowing us to collect and analyze large amounts of
data in a variety of ways, assisting in the transformation of businesses,
industries, government services, and people’s lives [10].

As the number of Internet-connected devices and new IoT applications
increases, security threats in each device/network develop as a result of
network intrusions attacks that can occur as a result of various security
vulnerabilities that allow this, as well as IoT devices that do not recognize
and consider all security flaws [11]. As an example, in a survey on real IoT
devices having security flaws, commercial “smart” services and products
(smart appliances, smart watches, smart TVs, and so on) are provided with
insufficient, incomplete, and ill-designed security mechanisms, resulting in
numerous risks relating to access to sensitive information or critical controls
[12]. Having said that, intrusion detection systems (IDS) are a security
mechanism that can detect anomalies and malicious activities in a network
and protect against three types of attacks: anomaly-based attacks, signature-

A MULTICLASS CLASSIFICATION APPROACH FOR IOT INTRUSION… 199

based attacks, and even a mixture known as hybrid attacks. Signature-based
techniques identify attacks based on their signatures. However, due to
the evolution of intrusion attacks, this technique is not always capable of
detecting zero-day or newly evolved attacks. Anomaly-based attacks, on
the other hand, can attempt to detect attacks based on abnormal network
behavior. In hybrid techniques, it is a mixture of both previous detection
techniques [13]. Machine learning techniques (both unsupervised and
supervised learning methods) have been used with these techniques to
improve by automatically creating unique rules for signature-based IDS
or adapting the detection patterns of anomaly-based IDS for creating
predictions and analysis based on the data given to detect patterns [14].

With all the existing techniques for intrusion detection, a substantial
amount of data is generated from IoT devices, and this can be quite an
issue for the methods for detection in terms of collecting, storing, and
processing the data in addition to the delay in prediction and actions [15].
Due to the production of all this data, it is known that it could be associated
with an imbalance of this data. An imbalanced dataset has non-uniformly
distributed instances with regard to their corresponding labels [16]. The
problem of the imbalanced dataset in machine learning applications is the
tendency to aggressively identify the instances with the minority labels as
instances of the majority class, which degrades the quality of the machine
learning outcomes [17]. This is a problem since it can compromise the real
performance of the machine learning techniques and algorithms that are
used in the detection and classification sincemost standardmethods assume
balanced class distribution and mis-classification costs as equal leading
to inaccuracies and weak representations and results for the distributive
characteristics [18]. Most machine learning techniques face challenging
the imbalanced nature of the data generated especially in the multiclass
problem found in the dataset. So far, this issue could be overcome with
the many different solutions such as oversampling, undersampling, and
cost-sensitive learning methods [19]. If not resolved, they can lead to
a low predictive performance in detection and identification of normal
activity vs intrusion to classify them based on normal and types of attacks
[20]. For detection and classification in the IDS, many approaches were
combined to gain different results and accuracy whether with the use
of supervised or unsupervised learning. Classification based on multiclass
problems is accompanied with oversampling techniques specific for the
adjustment of the data distribution in the multiclass problem for detection
and classification of the intrusions in spite of the change of percentages of

200 Z. AMIERH ET AL.

the normal and attack traffic [21]. With the datasets used for the detection
of intrusions, the multiclasses must have identified feature variables that
could influence and play a big role in the prediction of this class to adopt
valid test and evaluation to reflect the trends and evident diversity [22].

Putting all these stages together, it forms a pipeline for the classification
of IoT intrusion detection with the use of feature selection, oversampling,
and feature importance. Although this research has been adopted before,
it has not been considered on one of the most recent imbalanced datasets
using new popular classification techniques. Hence, in this chapter, the
main contributions are as follows:

• Develop the multiclass classification to classify the category label for
IoT intrusion attacks.

• Application of heuristic approach for feature selection to adopt valid
predictions for detection of IoT intrusion attacks.

• Application of oversampling technique to use for themulticlass dataset
problem to solve imbalance distribution.

• Specify the influencing feature variables that play a big role in the
prediction power.

• Application of pipeline on recent dataset IoTID2020 using new
popular algorithms.

The rest of this chapter is organized by discussing the literature review,
security system framework, background, research methodology, experi-
mental results, and discussions along with the conclusion and future works
of this research.

8.2 LITERATURE REVIEW

As IoT is evolving drastically over the years, it can be seen that a massive
amount of data is being produced by all the IoT devices and it is very hard
to detect the intrusion activities using proper mechanism even with the
use of machine learning techniques (whether supervised or unsupervised
learning techniques). To detect the intrusions and normal activities for
classification, Qaddoura et al. [23] proposed an entire approach in multi-
stages for the classification based on clustering, performing reduction
along with oversampling and classification methods, as well as working
on the IoT training data with undersampling, while the dataset is still left
representative for training by using the unique reduction and clustering
approach. Oversampling was also done to solve the imbalanced distribution

A MULTICLASS CLASSIFICATION APPROACH FOR IOT INTRUSION… 201

of the data in the classes. With all the procedures done, it was experimented
on the IoTID2020 dataset by dividing the training data into three clusters
with the use of k-means clustering which were then reduced by 10%
before aggregating them to the three reduced clusters. SVM-SMOTE was
furtherly used with an oversampling ratio of 0.9 and then aggregated
into an enlarged one for supplementarily producing the oversampled
data classification model using the single-hidden layer feed-forward neural
network (SLFN) classification method. When evaluated, it was shown to
be exceeding other approaches based on the G-mean (GM), precision
(PREC), accuracy (ACC), and recall (REC) [23]. The same authors also
proposed a multi-layer approach for the IoT intrusion detection using the
IoTID2020 dataset to predict the intrusion identification and the category
label using SLFN and long short-termmemory (LSTM)with oversampling
[17].

With the ongoing research on detecting IoT intrusions, there are many
aspects and pathways to follow with many theories and techniques to
investigate. Finding approaches for the classification of IoT intrusions
can be quite challenging especially due to the many issues and obstacles
surrounding it. For example, it has been studied that class imbalance is a
big type of issue in classification since there are classes that are marginalized
when compared to others. This raises an effectiveness conflict particularly
in minority class prediction when using algorithms of machine learning.
There are different numerous approaches to tackling this matter although
the majority focus on bi-class scenarios in the imbalance problems. There-
fore, it has been proved that dealing with multiclass problems based on
these algorithms is less efficient and has negative consequences. With this
said, Wang and Yao [21] have addressed this point by considering why
addressing multiclass problems tends to be difficult using these approaches.
It was concluded unsatisfactory of strategizing the effect of the multiclass
on the random and undersampling execution processes in the multi-
majority and multi-minority class cases. Due to this, they proposed their
developed ensemble algorithm named AdaBoost. NC [21] along with
oversampling to resolve the multiclass problem and improve the balance
and recognition of minority classes that can improve the performance in
classification [21].

Furthermore, Abdi and Hashemi [20] worked on opposing the mul-
ticlass imbalance problem using Mahalanobis distance-based oversampling
technique (MDO) to minimize the consequential challenge of the overlap-
ping risk that can occur between regions of different classes in the detection

202 Z. AMIERH ET AL.

of IoT intrusions using model-based solutions such as ensemble learning
to address these issues. With the application of the simple oversampling
techniqueMDO, it overcomes the multiclass problems by considering each
class candidate and oversampling the minority class and inventing a synthe-
sis instance that can be useful for maintaining the covariance data structure
for the minority classes that can help the prevalent issue of overlaps. The
MDO strategy was compared with many existing oversampling techniques
and tested across 20 multiclass UCI and KEEL benchmark datasets with
a few classifiers that are different. It shows that this technique works great
in multiclass imbalance problems due to higher capability of learning the
boundaries of different classes such as feature space similarities that are hard
to learn by other methods. Additionally, not only has the MDO reduced
the oversampling risk by sampling the minority classes and creating samples
in dense feature space areas, but it has also outperformed other data-level
solution algorithms based on the precision of minority classes and MAUC
in classification [20].

However, the MDO [20] has demonstrated that it is only applicable to
numerical attributes in datasets and can ruin the majority class accuracy due
to the generation of unrealistic samples and immoderate synthetic samples
for the minority classes. Thus, Yang et al. [24] put forward the extension
of the study and adapted it to propose the adaptive Mahalanobis distance-
based oversampling (AMDO) [24] which handles not only the mixed-type
attributes inmulticlass imbalanced datasets effectively but also improves the
MDO performance using a partially stabilized re-sampling method using
a strategy to gain the adaptive samples. Based on comparison and testing,
AMDO shows outperforms MDO in terms of numeric datasets and mixed-
typed datasets and concluded higher accuracy of the minority classes and
classifiers performance in most datasets as promising results of precision
and AUC [24].

As many other new techniques arise to detect IoT intrusions, many
of these machine learning models assume that each of the classes to
detect from contains an equal number of samples. Yet, with the imbalance
data nature in IoT security, a very poor performance of predicting and
identifying anomalies is observed. This has made it very difficult to attempt
to design a model for detecting anomalies using the machine learning
models. Based on this, Dash et al. [15] initiated a different technique
for anomaly prediction with a synthetic minority oversampling technique
(SMOTE) with a multiclass adaptive boosting ensemble learning-based
model to be tested on DSOS data in comparison and other machine

A MULTICLASS CLASSIFICATION APPROACH FOR IOT INTRUSION… 203

learning approaches in handling this issue. It was concluded by the authors
[15] that the imbalanced multiclass nature was handled successfully and
effectively in identifying the normal activities vs abnormal activity along
with the anomaly types. Moreover, it surely shows that based on evalua-
tion metrics and performance indexes, greater efficiency was achieved in
contrast to other approaches [15].

Finding a procedure to detect and classify network attacks in multiclass
problems is used in intrusion detection systems (IDS), and they use
machine learning models to handle whether based on anomaly behavior or
signatures that are known to the systems. Many techniques could be used
for detection whether based on patterns or rules for multiclass problems.
Alaiz-Moreton et al. [14] did research on three methods in machine
learning to decide on the normal vs abnormal activity within the same
time period. Many modes such as LSTM, GRU, and XGBoost were used.
Models based on recurrent neural networks have high accuracy due to their
time and sequence importance in the attacks, while the XGBoost was used
for its beneficial structure. Based on usage, ensemble techniques had the
best results overall, followed by deep learning techniques, having the worst
results for linear models [14].

Furtherly, knowing there are many techniques for classification based on
rules and patterns of the attacks knowledge, it is quite prone to errors in the
intrusion detection system due to the presence of the class-imbalance data.
Owing to this, Panigrahi et al. [25] looked into this issue and introduced a
C4.5-based detector in the system with the consolidated tree construction
algorithm along with Supervised Relative Random Sampling (SRRS) and
multiclass feature selection for efficient intrusion detection. This system
was evaluated on the NSL-KDD dataset and the CICIDS2017 dataset
using 34 features showing the accuracy of 99.96% and 99.95% [25].

Although this approach discussed by Panigrahi et al. [25] could be a
solution. Yet, many other researchers have other techniques to suggest.
Iwendi et al. [26] proposed an improvement to the system for bi-class and
multiclass data by the use of CFS + Ensemble Classifiers (Bagging and
Adaboost) with base classifiers (J48, RandomForest, and Reptree). This
was tested on KDD99 and NSL-KDD datasets for binary and multiclass
classification resulting in 99.90% and 98.60% detection rates and 0 and
0.5% false alarm rates correspondingly [26].

In the classification of intrusion attacks, a large quantity of data is
processed, and the detection rate is quite low as a default especially if
data is highly imbalanced. Thus, Miah et al. [27] proposed a multi-layer

204 Z. AMIERH ET AL.

classification approach using cluster-based undersampling with a random
forest classifier to improve the detection rate to classify minority-class
intrusions addressing imbalanced and overfitting problems. The KDD99
dataset was used in the experiment showing that the proposed method
raises detection rates and abates false-positive rates compared to other
classifiers with 87% achievement as other algorithms can achieve less than
30% [27].

Due to the rise of applications of IoT, they have become more subjected
to attacks that are malicious, and now most mechanisms are unable
to overcome and protect against completely even if they try to defend
against the majority types of attacks, despite that the systems for detecting
traditionally havemany flaws in their detection and time efficiency. Yet, they
can identify suspicious attacks based on the behavior which is abnormal in
the IoT devices. Now timely response and implementation of measure to
protect effecting is essential and is done based on the collecting of data
from the network to view the behavior although the data contains many
features, featural dimensions that are high with complex structures to deal
with, so this is an issue for the performance of detecting in the existing
algorithms used. This was addressed by Zheng et al. [28] that came up with
a better version detection algorithm based on the LDA ELM classification
to fulfill efficient and timely detection by the use of improving the linear
discriminant analysis LDA and adding similarity functions that are special
to achieve better spatial separation after the reduction of the dimensions of
the data. In addition to this, the paper used the extreme learning machine
(ELM) classifier with this speedy classification for better decisions, with
further experimentation and processes that managed to test this on the
NSL-KDD dataset and compare it against other algorithms concluding the
highest accuracy and detection rate [28].

All in all, it can be viewed that there are many different ways researchers
view and think about solving these problems with various approaches
using different algorithms and techniques accompanied by considering
different factors. Based on the different views, each concludes different
results in their papers giving a bigger reason to work on this topic further
since comparing the results together and implementing different multiple
methodologies to classify intrusion attacks in multiclass problems can
propose a whole new hypothesis to investigate and build on next, especially
in IoT.

A MULTICLASS CLASSIFICATION APPROACH FOR IOT INTRUSION… 205

8.3 SECURITY SYSTEM FRAMEWORK

The intrusion detection prevention system (IDPS) is a mechanism that
focuses on the security of the network layer of an IoT system. The way this
systemworks is by analyzing the packets of data and generating responses in
real time with fast responses and high-volume data processing capabilities.
In the analysis process, the data is collected into a monitored environment
and preprocessed. Beyond this, it is fed through the classification model
to predict whether the data from the network attack matches an intrusion
attack or not. If it is a normal packet, no alarm is given, and the packet
passes through the network. Yet, if the data is malicious, it predicts which
type of attack this packet matches (e.g., DoS, Mirai, MITM, Scan) and
alerts the system to take action to prevent potential harm to the IoT
network [29]. An interpretation of this system framework is shown in
Fig. 8.1.

8.4 BACKGROUND

This section discusses the preliminary information needed to understand
the main parts of the proposed methodology. It mainly includes a discus-
sion on the XGBoost and CatBoost classifier algorithms.

8.4.1 XGBoost

XGBoost algorithm, like many other ensemble learning algorithms, is used
for regression and classification for supervised learning problems and large
datasets where there is multiple features in the training data to predict a
target variable. This algorithm was developed by Chen and Guestrin [30]
and was optimized with the structure of gradient boosting. The XGBoost
is a regression tree that is popular for its scalability in all scenarios as it
can allow the system to run ten times faster than any solution on a single
machine. This is due to its algorithmic optimizations as sparse data is han-
dled by a novel tree learning procedure; instance weights in approximation
tree learning is handled by a theoretically justified weighted quantile sketch
procedure, and this helps in the split finding algorithms [31]. Learning is
sped up with the use of parallel and distributed computing. This helps in
solving complex problems in machine learning allowing for more rapid
model generation in a fast and accurate way [32]. It works by integrating
the estimates of several simpler, weaker models to try to accurately predict

206 Z. AMIERH ET AL.

Fig. 8.1 Security system framework to classify and alert IoT intrusion attacks

A MULTICLASS CLASSIFICATION APPROACH FOR IOT INTRUSION… 207

Fig. 8.2 Representation of decision trees in XGBoost

a target variable. A convex loss function (determined from the anticipated
and target outputs difference) is combined with a penalty term in XGBoost
for model complexity to diminish a regularized regression tree function
(objective function). The training process is repetitious, with new trees
being included that forecast the errors or residuals of prior trees, which
are then integrated with previous trees to provide the final prediction
as shown in Fig. 8.2. Gradient boosting in the XGBoost uses a gradient
descent approach to reduce loss when newmodels are added. Yet, XGBoost
cannot handle categorical features so one-hot-encoding must be used to
transform the categorical features into numerical values for the algorithm.
As a whole, the XGBoost algorithm is used as it is a recent and popular
strong algorithm that supports numerous objective functions, such as
regression, classification, and ranking with a fast execution speed and a
highly accurate model performance [33].

8.4.2 CatBoost

CatBoost is a depth-wise gradient boosting algorithm that was developed
by Yandex. Within gradient boosting, the trees are made one after the
present one where the previous trees can’t be altered, but the results
are used to improve the next trees. The CatBoost algorithm uses past

208 Z. AMIERH ET AL.

Fig. 8.3 Representation of decision trees in CatBoost

decision trees to grow a balanced tree where the left and right splits
for each level of the tree are made from the same features as shown in
Fig. 8.3. This algorithm can handle categorical features and numerical
values and reduce overfitting with very less prediction time at a high
accuracy giving the advantage that it can be used in complex problems with
large datasets for classification and regression. CatBoost has the flexibility
of giving categorical columns indices so one-got encoding can be used
using one-hot-max-size. The CatBoost utilizes an encoding method to
reduce the overfitting by permuting the set of inputs in an irregular order
and converting label values from floating point or category to integer in
addition to transforming the categorical feature values to numeric values
using the formula:

.Avg_target = countInClass + prior

totalCount + 1
(8.1)

where the countInClass is number of times the label value was equal to
1 for the present categorical feature value objects. Prior is the preliminary
value for the numerator and is determined by the parameters at the start.
The total count is the objects total number to the current that has the
categorical value feature matching. Furthermore, minimal variance sample
(MVS) is a stochastic gradient boosting weighted sampling form that
CatBoost employs. Weighted sampling happens at the tree level instead
of the split level in this technique. Each boosting tree’s observations are
sampled in such a way that split scoring accuracy is maximized. The reason

A MULTICLASS CLASSIFICATION APPROACH FOR IOT INTRUSION… 209

why CatBoost is popular and in demand for usage is that great results are
provided with the default parameters; thus, less time is needed for tuning
parameters, and it reduces overfitting due to improved accuracy, and the
usage of the CatBoost model applier allows fast prediction [34].

8.5 METHODOLOGY

In the multiclass perspective approach for detecting intrusion attacks in this
research, the primary quantitative research method is used as a model for
the experiments as it is developed to analyze specific data from a dataset by
using sets of variables setting one as constant and measuring the differences
against the other (training and testing sets), and this means that the
information is gathered through the self-conducted research methods. The
secondary research was used in the literature review, and the information
was taken from different studies. This supports the proposed research.
Moreover, as quantitative research has other approaches such as using
surveys, they are not used, and neither is the qualitative research (e.g.,
interviews) be used as they are not necessary for this project and do
not meet our objectives. The reason behind it is that both mentioned
techniques focus on human experiences, behavior, and opinions, while
this experiment looks at the home network’s traffic and corresponding
connected devices for malicious activities, and this is not associated with any
known ethical issues due to no human participation in research as the data
is readily available online with no human data [35]. Thus, the quantitative
experimental research approach is themost effective to reach the objectives.
Yet, caution must be taken upon working on quantitative research as
it involves limitations and drawbacks of difficulty in understanding the
context of the phenomenon and explaining complex issues due to data not
being robust enough and requires time and cost which is expensive [36].

Furthermore, in this methodology, the main focus is on the following
aspects as shown in Fig. 8.4:

• Problem understanding and formulation
• Data collection
• Data preprocessing
• Model development
• Evaluation and assessment

210 Z. AMIERH ET AL.

Fig. 8.4 Multiclass
classification research
methodology

8.5.1 Problem Understanding and Formulation

Intrusion detection and classification have risen in importance as the
use and development of IoT devices and applications have increased. As
technology advances, it creates new vulnerabilities and weaknesses in the
system, network, and device itself. With all of the vulnerabilities, more

A MULTICLASS CLASSIFICATION APPROACH FOR IOT INTRUSION… 211

network intrusion attacks can target these vulnerabilities, causing adverse
consequences.

With the intrusion detection methods available today, detection algo-
rithms are required to detect all types of attacks. Because the devices
generate a large amount of data, not all machine learning algorithms are
capable of detecting accurately and having less prediction time. Further-
more, the data collected may have an imbalanced distribution and contain
multiclasses, therefore less likely and accuracy in detection of the attacks.
As a result, a solution must be found. Many researchers have addressed
this issue on old datasets yet using the basic known classifiers such as
random forest, decision trees, logistic regression, KNN, and others. Due
to this, a multiclass classification is implemented with feature selection
and oversampling on a recent imbalanced dataset using recent popular
classifiers.

8.5.2 Data Collection

To bring the research to light, the data needed for the experiment is
completely taken from an online dataset called IoTID2020 [37] that
includes 80 features and 625,783 instances. This dataset is a recent
and imbalanced dataset that contains extensive network and flow-based
features based on home environments with three main labels, the intrusion
identification label, the category label, and the subcategory label (Shown in
Table 8.1). The category label contains five different categories each with
a different number of instances (Shown in Table 8.2). This dataset was also
used in different new studies such as Qaddoura et al. [23] paper during the
experiment implementation.

This data was obtained from a smart home environment that has a
combination of IoT devices and interconnecting structures consisting of
smart home device SKTNGU and EZVIZ Wi-Fi camera connected to the
smart home Wi-Fi-router as it is connected to devices such as laptops,
tablets, smartphones, and others. The data for IoTID2020 dataset was
obtained as a result [38]. Although this dataset has the limitation of taking
from the smart home environment, it is enough to test the methodology
and gain results where it can be further improved and tested on other
datasets.

 21871 23642 a 21871 23642
a

212 Z. AMIERH ET AL.

Table 8.1 IoTID2020
taxonomy in terms of
binary, category, and
subcategory labels

Label Category Subcategory
Normal Normal Normal
Anomaly DoS Synflooding

Mirai Brute Force
HTTP Flooding
UDP Flooding

MITM ARP Spoofing
Scan Host Port

OS

Table 8.2 Distribution
of data instances based
on category label

Category Number of instances
DoS 59,391
Mirai 415,677
MITM 35,377
Scan 75,265
Normal 40,073
Total 625,783 instances

8.5.3 Data Preprocessing

The fundamental step after collecting the data is to manipulate and
transform the data to increase the quality and enhance the performance
of the experiment. To do so, unwanted columns shall be removed from
the dataset along with nan values. The target column category is encoded
using the label encoder to transform the column data into a numeric form
to convert them into the machine-readable form [39]. Beyond this, the
dataset is separated into features and the label where the label contains the
feature category while the features contain all other column features. These
are then used to split the data by 50% into training and testing set to be
used in the rest of the procedure. Beyond this, feature selection using the
variance threshold technique is implemented to remove the features with
low variances (features with the same values in all samples) that does not
meet the threshold (Shown in Table 8.3). This is done to decrease training
time and reduce the risk of overfitting. Oversampling to theminority classes
is next applied to the training set using the SVM-SMOTE to address the
imbalance distribution of the classes of the dataset by using the SVM
algorithm to detect samples to use for new synthetic samples generation.
The data preprocessing stage can need quite a heavy capacity in terms of
time and power, but it is essential to ensure the quality of the data for the
experiment.

A MULTICLASS CLASSIFICATION APPROACH FOR IOT INTRUSION… 213

Table 8.3 Number of features selected and not selected based on the variance
threshold technique

Feature selection (overall 80)/0.8 variance threshold
of features selected # of features not selected
60 20

Table 8.4
Representation of metric
evaluation

Actual
Positive Negative

Predicted Positive TP FP
Negative FN TN

Table 8.5 XGBoost
experiment algorithm

Algorithm: SVM-SMOTE-XGBoost-classification
Input: dataset
Output: ACC, PREC, REC, GM, F1
1 train, test = split(dataset)
2 feature-selection-dataset= variance threshold
3 oversampled-dataset =
SVM-SMOTE(feature-selection-dataset)
4 model = XGBoost(oversampled-dataset)
5 predicted-labels = predict(model, test)
6 ACC, PREC, REC, GM, F1 = evaluate(predicted-labels)
7 feature-importance = shap.summary.plot(model)

8.5.4 Model Development

After data preprocessing, the data is then passed into different classification
models. The testing set of the data is the input for the model, which results
in producing classified instances into the categories (DoS, MITM ARP
Spoofing, Mirai, Scan, Normal). The main objective of classification is to
build a model from items categorized to classify instances as correctly as
possible by having many True positives (TPs) and True negatives (TNs)
presented in Table 8.4. Such that data is fed into the models representing
different classifiers specifically XGBoost and CatBoost since they are recent
powerful algorithms with high prediction accuracy in short prediction
timing that have strong potential in intrusion detection classification. Each
classifier predicts the instances category as accurately as possible. It is
essential to have high accuracy models to detect new changing attacks since
most existing machine learning models are unable to identify some new
attack patterns. Tables 8.5 and 8.6 refer to the algorithms for XGBoost
and Catboost for model development, respectively.

214 Z. AMIERH ET AL.

Table 8.6 CatBoost
experiment algorithm

Algorithm: SVM-SMOTE-CatBoost-classification
Input: dataset
Output: ACC, PREC, REC, GM, F1
1 train, test = split(dataset)
2 feature-selection-dataset= variance threshold
3 oversampled-dataset =
SVM-SMOTE(feature-selection-dataset)
4 model = CatBoost(oversampled-dataset)
5 predicted-labels = predict(model, test)
6 ACC, PREC, REC, GM, F1 = evaluate(predicted-labels)
7 feature-importance = shap.summary.plot(model)

8.5.5 Evaluation and Assessment

The evaluation and analysis of the results are done by the following
points.

• Measure the performance by calculating metrics GM, PREC, ACC,
REC, and F1-score (F1) for each model using the Equations (8.2),
(8.3), (8.4), (8.5), and (8.6) [23, 40].

• Compare XGBoost and CatBoost classifiers with random forest clas-
sifier, KNeighbors classifier, GaussianNB, logistic regression, decision
tree classifier.

.Accuracy = T P + T N

T P + T N + FP + FN
(8.2)

.Precision = T P

T P + FP
(8.3)

.Recall = T P

T P + FN
(8.4)

.F − measure = 2Precision × Recall

P recision + Recall
(8.5)

.G − Mean = n
√

x1, x2, . . . xn (8.6)

The experiment is repeated three times where each has a scenario as
follows:

A MULTICLASS CLASSIFICATION APPROACH FOR IOT INTRUSION… 215

• Scenario (1): Classification using XGBoost and CatBoost without data
preprocessing.

• Scenario (2): Classification using XGBoost and CatBoost with feature
selection.

• Scenario (3): Classification using XGBoost and CatBoost with feature
selection and oversampling.

8.5.6 Post Analysis

To improve the predictive model performance and simplify and speed up
the modeling process, feature importance is an essential technique to apply
to the experiment. Feature importance techniques assign a specific score to
each of the input features based on how useful they are in the prediction
and classification of the target variables, and this as a result gives very useful
insights about the data giving a better understanding of which features
are relevant (highest scores) and irrelevant (lowest scores), thus reducing
the number of input features to increase predictive model performance.
Feature importance is used in the experiment for the analysis of which
features are the most relevant in the prediction of the target variable in
the XGBoost and CatBoost models. This is applied by finding the top
important features using a different technique for each model [41].

XGBoost Feature Importance In the XGBoost, the general way to calculate
the feature importance is with the boosted trees that are constructed and
are used to extract each feature attribute importance scores based on the
indication of how valuable each feature is in the boosted decision trees
construction in the model. The more the feature has been used to make key
decisions, the higher its relative importance [41]. Yet, another technique is
called Shap which is model-agnostic and uses the Shapley values to estimate
how does each feature contribute to the prediction for overall prediction
[42].

CatBoost Feature Importance In the CatBoost, the known method for the
feature importance is calculated by taking the difference between the loss
functionmetric obtained using the original model with the feature and with
the feature removed from all the trees in the model. The higher the value,
the higher its importance and relevance in the prediction of the target value
[41]. But SHAP is a technique that can be used to measure the impact

216 Z. AMIERH ET AL.

of a feature on a single prediction value compared to baseline predictions
whether the case is object-level contributions of features overall feature
importance of the entire dataset [42].

The reason why the SHAP is the chosen technique for feature impor-
tance is because it calculates the impact of each feature on the model output
magnitude and it shows the impact of having a certain value for a given
feature in comparison to the prediction made if that feature took some
baseline value [42].

8.6 EXPERIMENTAL RESULTS AND DISCUSSIONS

This section presents the environmental settings and experimental results
based on three scenarios and as an overall feature importance and cost
analysis.

8.6.1 Environmental Settings

For the implementation of the experiments, an HP personal computer with
Intel(R) Core i7-8850U CPU @ 1.80GHz 1.99GHz 16GB RAM was
used for running the experiments on the Command Prompt on Microsoft
Windows 10 Pro. The imbalanced-learn and Scikit Learn Python libraries
with Python 3.9 were used to run SVM-SMOTE, variance threshold fea-
ture selection, RandomForest Classifier, GuassianNB, KNeighborsClassi-
fier, Logistic Regression, and DecisionTreeClassifier techniques. XGBoost
and CatBoost libraries were used to run the classifier models. Also,
Matplotlib and Seaborn libraries were used to assist in plotting the feature
importance barplots for XGBoost and CatBoost models. The value 0.8
threshold was used in the variance threshold technique in feature selection.
The RandomForest Classifier, GuassianNB, KNeighborsClassifier, Logistic
Regression, and DecisionTreeClassifier techniques were used for compar-
ison with proposed framework models. Finally, the category label of the
IoTID2020 dataset was considered as the target variable in the experiment
for the proposed framework.

8.6.2 Experimental Results

For the proposed framework, the experiment was divided into three
experiments, with each aspect considered one at a time as an additional

A MULTICLASS CLASSIFICATION APPROACH FOR IOT INTRUSION… 217

step in each experiment. The analysis is based on G-mean, precision, recall,
and F1-Score. The overall accuracy was not a priority metric as the data is
imbalanced and the focus is on classification; therefore accuracy is not a
valid metric to conclude from.

Experiment Without Data Preprocessing In this experiment, the data was
fed directly to the classification models XGBoost and CatBoost to produce
the results for the specified metrics and compare them against the other
classifiers. As seen in Table 8.7, it has been analyzed that the XGBoost had
the best performance compared to all other classifiers as it had the highest
G-mean of 0.943 meaning it gave the most true results among the total
number of cases examined and in the classification of the positive cases
and ensures that the lack of minority classes does not affect the quality of
results produced by the classifiers. Also, XGBoost had the highest precision
of predicting true positives in the majority of category labels and the recall
in the prediction of actual positives classified correctly. With this said, the
F1-score is relatively the highest due to the high precision and recall results
for the category labels. The decision tree classifier had the second best
performance with a difference of 0.01 in terms of G-mean, and it had the
second highest precision and recall in the majority of category labels thus
second highest F1-score when compared to all other classifiers as CatBoost
performance came third best with a difference between XGBoost of 0.022.
Figure 8.5 shows the metric results for the top 3 performing models.

Experiment with Feature Selection In the second experiment, the same
experiment was executed with the addition of the variance threshold feature
selection of 0.8 to select the best features for the classification of category
labels.

Results show in Table 8.8 that XGBoost also outperforms all other clas-
sifiers as it had the highest G-mean of 0.944 and also the highest precision,
recall, and F1-score in the prediction and classification of the category
labels for the intrusion attacks. The decision tree classifier outperformed all
other classifiers in terms of precision, recall, and F1-score in the prediction
of the category labels as they were comparatively high with a G-mean
difference of only 0.013. CatBoost came best third as it did have quite
high prediction and classification results for the category labels in terms of
precision, recall, and F1-score with a G-mean difference from XGBoost of

218 Z. AMIERH ET AL.

T
ab

le
 8
.7

E
xp

er
im

en
t p

er
fo
rm

an
ce

 re
su
lts

 w
ith

ou
t d

at
a
pr
ep

ro
ce
ss
in
g

X
G
B
oo
st

C
at
B
oo
st

R
an
do
m
Fo
re
st

 C
la
ssi
fie
r

K
N
N

G
au
ssi
an
N
B

Lo
gi
st
ic
R
eg
re
ssi
on

D
ec
isi
on
Tr
ee
C
la
ssi
fie
r

A
C
C

0.
97

6
A
C
C

0.
97

0
A
C
C

0.
93

1
A
C
C

0.
83

5
A
C
C

0.
55

9
A
C
C

0.
79

3
A
C
C

0.
96

5
G
M

0.
94

3
G
M

0.
92

1
G
M

0.
83

4
G
M

0.
69

1
G
M

0.
60

9
G
M

0.
21

7
G
M

0.
93

3
PR

E
C

R
E
C

F1

PR
E
C

R
E
C

F1

PR
E
C

R
E
C

F1

PR
E
C

R
E
C

F1

PR
E
C

R
E
C

F1

PR
E
C

R
E
C

F1

PR
E
C

R
E
C

F1

D
oS

1.
00

0
0.
99

8
0.
99

9
1.
00

0
0.
99

0
0.
99

0
1.
00

0
0.
99

5
0.
99

8
0.
99

8
0.
98

3
0.
99

1.
00

0
0.
99

3
0.
99

6
0.
99

3
0.
99

5
0.
99

4
1.
00

0
0.
99

8
0.
99

9

M
IT

M

A
R
P

Sp
oo

fin
g

0.
86

3
0.
82

4
0.
84

3
0.
87

0
0.
76

0
0.
81

0
0.
71

2
0.
52

9
0.
60

7
0.
47

6
0.
42

4
0.
44

9
0.
15

8
0.
94

1
0.
27

1
0.
50

0
0.
00

8
0.
01

7
0.
81

0
0.
78

6
0.
79

7

M
ir
ai

0.
97

8
0.
99

1
0.
98

6
0.
97

0
0.
99

0
0.
98

0
0.
94

2
0.
96

5
0.
95

4
0.
89

5
0.
89

2
0.
89

3
0.
98

7
0.
50

2
0.
66

6
0.
78

4
0.
97

1
0.
86

7
0.
97

5
0.
97

8
0.
97

7
Sc
an

0.
98

0
0.
94

7
0.
96

3
0.
90

0
0.
93

0
0.
95

0
0.
86

7
0.
89

2
0.
87

9
0.
62

3
0.
71

4
0.
66

5
0.
19

0
0.
21

4
0.
20

1
0.
38

4
0.
11

4
0.
17

5
0.
93

4
0.
94

5
0.
94

0
N
or
m
al

1.
00

0
0.
96

8
0.
98

3
1.
00

0
0.
96

0
0.
98

0
0.
96

9
0.
89

2
0.
92

9
0.
66

9
0.
59

2
0.
62

8
0.
47

3
0.
83

8
0.
60

4
0.
89

0
0.
52

3
0.
65

9
0.
99

3
0.
97

5
0.
98

4

A MULTICLASS CLASSIFICATION APPROACH FOR IOT INTRUSION… 219

Fig. 8.5 Experiment (1): G-mean, precision, recall, and F1-score

0.025. Figure 8.6 shows the metric results for the top 3 performing models
for this experiment.

Experiment with Feature Selection and Oversampling In the last experi-
ment, the SVM-SMOTE oversampling was added. Table 8.9 displays the
fact that XGBoost still outperforms all classifiers with the highest G-mean
of 0.932 along with the best results for the precision, recall, and F1-score
in the majority of the category labels. CatBoost classifier came second
best in performance in terms of precision, recall, and F1-score with a G-
mean difference of 0.008. Decision tree classifier was the third in best
performance after the CatBoost classifier. Figure 8.7 shows the evaluation
results for the highest three performing models.

Overall Experimental Results As a whole, the XGBoost algorithm had
outperformed all other classification algorithms in the three experiments
with the highest metric results for precision, recall, f1-score, and G-mean
although its G-mean stayed comparatively similar with a slight increase and
decrease in the experiments. Yet, it can be analyzed in the second and third
experiments that the recall has been improved for the basic classifiers KNN
and random forest due to the presence of oversampling.

220 Z. AMIERH ET AL.

T
ab

le
 8
.8

E
xp

er
im

en
t p

er
fo
rm

an
ce

 re
su
lts

 w
ith

 fe
at
ur
e
se
le
ct
io
n

X
G
B
oo
st

C
at
B
oo
st

R
an
do
m
Fo
re
st

 C
la
ssi
fie
r

K
N
N

G
au
ssi
an
N
B

Lo
gi
st
ic
R
eg
re
ssi
on

D
ec
isi
on
Tr
ee
C
la
ssi
fie
r

A
C
C

0.
97

7
A
C
C

0.
97

0
A
C
C

0.
93

4
A
C
C

0.
83

5
A
C
C

0.
55

9
A
C
C

0.
79

3
A
C
C

0.
96

6
G
M

0.
94

4
G
M

0.
91

9
G
M

0.
83

5
G
M

0.
69

1
G
M

0.
60

9
G
M

0.
21

6
G
M

0.
93

1
PR

E
C

R
E
C

F1

PR
E
C

R
E
C

F1

PR
E
C

R
E
C

F1

PR
E
C

R
E
C

F1

PR
E
C

R
E
C

F1

PR
E
C

R
E
C

F1

PR
E
C

R
E
C

F1

D
oS

1.
00

0
0.
99

8
0.
99

9
1.
00

0
0.
99

0
1.
00

0
1.
00

0
0.
99

5
0.
99

8
0.
99

8
0.
98

3
0.
99

0
1.
00

0
0.
99

3
0.
99

6
0.
99

3
0.
99

5
0.
99

4
1.
00

0
0.
99

8
0.
99

9

M
IT

M

A
R
P

Sp
oo

fin
g

0.
89

1
0.
82

4
0.
85

6
0.
87

0
0.
76

0
0.
81

0
0.
71

8
0.
53

4
0.
61

2
0.
47

6
0.
42

4
0.
44

9
0.
15

8
0.
94

1
0.
27

1
0.
40

0
0.
00

8
0.
01

6
0.
81

1
0.
77

7
0.
79

4

M
ir
ai

0.
97

7
0.
99

2
0.
98

5
0.
97

0
0.
99

0
0.
98

0
0.
94

4
0.
97

0
0.
95

7
0.
89

5
0.
89

2
0.
89

3
0.
98

7
0.
50

2
0.
66

5
0.
78

5
0.
97

0
0.
86

8
0.
97

6
0.
98

0
0.
97

8
Sc
an

0.
98

4
0.
94

9
0.
96

6
0.
97

0
0.
93

0
0.
95

0
0.
88

0
0.
89

0
0.
88

5
0.
62

3
0.
71

4
0.
66

5
0.
19

0
0.
21

4
0.
20

1
0.
37

2
0.
10

6
0.
16

5
0.
93

8
0.
94

9
0.
94

3
N
or
m
al

1.
00

0
0.
96

8
0.
98

3
1.
00

0
0.
96

0
0.
98

0
0.
97

6
0.
88

4
0.
92

8
0.
66

9
0.
59

2
0.
62

8
0.
47

3
0.
83

8
0.
60

4
0.
86

0
0.
55

2
0.
67

3
0.
98

9
0.
97

1
0.
98

0

A MULTICLASS CLASSIFICATION APPROACH FOR IOT INTRUSION… 221

Fig. 8.6 Experiment (2): G-mean, precision, recall, and F1-score

8.6.3 Feature Importance Results

The effect of the classifiers XGBoost and CatBoost in different condition
experiments has played a role in identifying the influential features that
improve the prediction power of classification of the category type of
intrusion attack. Based on each of the three experiments, each had different
results for each classifier algorithm. The feature importance SHAP focused
on the impact of the highest ten influential feature variables.

Experiment (1) No heavy data preprocessing was added to this experiment,
and the data was fed to the classifiers directly. Based on the bar plot shown
in Fig. 8.8 for XGBoost, it can be analyzed that the feature Flow_Duration
showed to have the highest impact on the model output for classification
of all the category types where the Dst_Port feature was the second most
important variable for all category types except the DoS although it also
had less prediction impact for predicting the scan class yet higher impact
in predicting the normal class. The prediction impact for Mirai and MITM
was similar for both features.

For the CatBoost feature importance in Fig. 8.9, it is concluded that
the Src_Port feature had the highest impact on the prediction of the
category type classification for category labels. Flow_Duration was the
second most important variable for detection although it has less impact

222 Z. AMIERH ET AL.

T
ab

le
 8
.9

E
xp

er
im

en
t p

er
fo
rm

an
ce

 re
su
lts

 w
ith

 fe
at
ur
e
se
le
ct
io
n
an

d
ov

er
sa
m
pl
in
g

X
G
B
oo
st

C
at
B
oo
st

R
an
do
m
Fo
re
st

 C
la
ssi
fie
r

K
N
N

G
au
ssi
an
N
B

Lo
gi
st
ic
R
eg
re
ssi
on

D
ec
isi
on
Tr
ee
C
la
ssi
fie
r

A
C
C

0.
96

6
A
C
C

0.
95

0
A
C
C

0.
91

9
A
C
C

0.
81

4
A
C
C

0.
58

7
A
C
C

0.
74

2
A
C
C

0.
94

6
G
M

0.
93

2
G
M

0.
92

4
G
M

0.
85

0
G
M

0.
73

3
G
M

0.
62

5
G
M

0.
72

1
G
M

0.
91

1
PR

E
C

R
E
C

F1

PR
E
C

R
E
C

F1

PR
E
C

R
E
C

F1

PR
E
C

R
E
C

F1

PR
E
C

R
E
C

F1

PR
E
C

R
E
C

F1

PR
E
C

R
E
C

F1

D
oS

1.
00

0
1.
00

0
1.
00

0
1.
00

0
0.
99

0
1.
00

0
1.
00

0
0.
99

5
0.
99

8
0.
99

8
0.
98

5
0.
99

1
1.
00

0
0.
96

6
0.
98

2
0.
99

3
0.
99

5
0.
99

4
1.
00

0
0.
99

8
0.
99

9

M
IT

M

A
R
P

Sp
oo

fin
g

0.
78

1
0.
79

4
0.
78

8
0.
71

0
0.
78

0
0.
75

0
0.
57

5
0.
58

0
0.
57

7
0.
38

7
0.
52

5
0.
44

6
0.
16

2
0.
92

0
0.
27

5
0.
19

9
0.
39

5
0.
26

4
0.
64

5
0.
73

9
0.
68

9

M
ir
ai

0.
97

8
0.
98

0
0.
97

9
0.
97

0
0.
96

0
0.
97

0
0.
94

8
0.
94

0
0.
94

4
0.
91

2
0.
84

3
0.
87

6
0.
98

0
0.
54

7
0.
70

2
0.
96

1
0.
70

9
0.
81

6
0.
97

2
0.
95

5
0.
96

4
Sc
an

0.
94

5
0.
93

9
0.
94

2
0.
92

0
0.
94

0
0.
93

0
0.
84

6
0.
89

4
0.
86

9
0.
59

0
0.
72

4
0.
65

0
0.
20

7
0.
24

1
0.
22

3
0.
44

1
0.
84

7
0.
58

0
0.
91

5
0.
94

9
0.
93

2
N
or
m
al

0.
98

9
0.
96

0
0.
97

4
0.
98

0
0.
96

0
0.
97

0
0.
93

4
0.
91

3
0.
92

3
0.
61

2
0.
67

1
0.
64

0
0.
56

5
0.
81

2
0.
66

7
0.
65

7
0.
82

3
0.
73

1
0.
94

2
0.
93

9
0.
94

0

A MULTICLASS CLASSIFICATION APPROACH FOR IOT INTRUSION… 223

Fig. 8.7 Experiment (3): G-mean, precision, recall, and F1-score

Fig. 8.8 Experiment(1): Highest ten ranked features in XGboost

224 Z. AMIERH ET AL.

Fig. 8.9 Experiment(1): Highest ten ranked features in CatBoost

than the Src_Port for each of the classes but was quite similar in predicting
the DoS category.

Experiment (2) Feature selection was added to the procedure, and the fea-
ture variables that influenced and impacted the prediction power differed.
For XGBoost, Fig. 8.10 shows that the most influential feature variable is
the Flow_Duration as it has the highest impact on the prediction of the
category type classes, while the second most influential is the Src_Port
feature although it did not have much impact on the prediction of the
DoS class.

CatBoost differs slightly when compared to XGBoost as in Fig. 8.11
displaying the Src_Port feature variable as the highest impact on detec-
tion prediction of the category types, while Flow_Duration came second
highest for the prediction although it can be noticed that it had a higher
impact on predicting the DoS class than Src_Port. Yet, Src_Port was more
impactful on the other classes in comparison.

Experiment (3) As the feature selection and oversampling techniques
were added to the experiments, the change of effect on the influential
features for a prediction made different impacts on classification for the

A MULTICLASS CLASSIFICATION APPROACH FOR IOT INTRUSION… 225

Fig. 8.10 Experiment(2): Highest ten ranked features in XGboost

Fig. 8.11 Experiment(2): Highest ten ranked features in CatBoost

226 Z. AMIERH ET AL.

Fig. 8.12 Experiment(3): Highest ten ranked features in XGBoost

category type classes. Figure 8.12 reveals for the XGBoost that the feature
Flow_Duration ranked the highest impact for prediction of all category
classes, while the Src_Port had the second highest impact on the prediction
although not much impact on predicting the DoS category.

Figure 8.13 that represents the feature importance for CatBoost indi-
cates that Src_Port had the highest impact on the prediction of the category
type classes classification for all types, whereas the Flow_Duration had the
next highest impact and importance with a higher impact on detecting DoS
in comparison, while Src_Port predicted all other categories better.

In general, feature importance interpretations in all three experiments
show that the two highest influential feature variables for the prediction
power in both XGBoost and CatBoost are Src_Port and Flow_Duration.
The reason for this is that the source port identifies the process that sent
the data to the network, so it could indicate if the packets came from
a malicious source or not since it shows the origin and destination of
a given flow in the network, while the flow duration feature shows the
total duration of a flow in seconds indicating whether the flow pattern is
suspicious or not.

A MULTICLASS CLASSIFICATION APPROACH FOR IOT INTRUSION… 227

Fig. 8.13 Experiment(3): Highest ten ranked features in CatBoost

Table 8.10 Time taken
for each classification
model in seconds

Time taken for each model/s
XGBoost CatBoost

Experiment (1) 2.50 24.93
Experiment (2) 2.25 23.31
Experiment (3) 7.16 40.11

8.6.4 Cost Analysis

For the detection and classification of IoT intrusion attacks from an IoT
network, it requires many crucial steps along with specific resources for its
process. All 625783 samples from the IoT home environment were needed
for the experiments for reliable prediction. Thus, it was very time- and
power-consuming due to the power and time needed for the heavy data
preprocessing, training, and testing of data in classification prediction and
evaluation in the procedure along with feature importance. In addition
to this, the experiment was repeated three times as mentioned. Thus, the
power and time needed were tripled. Based on the environmental settings,
Table 8.10 shows the time taken for each classifier model separately without
the rest of the experiment time taken into consideration.

228 Z. AMIERH ET AL.

8.6.5 Discussion

In summary, the classification of the category label was tested on the
IoTID2020 dataset with the classifiers XGBoost and CatBoost and com-
pared with the other basic classifiers. The effect of the addition of over-
sampling and feature selection using variance threshold was experimented
in two experiments concluding that the XGBoost and CatBoost classifiers
have only made a small improvement in presence of the oversampling
and feature selection, yet the results stayed approximately the same in
all experiments stating that these two algorithms can get high accurate
results without heavy data preprocessing. Also, XGBoost has automatic
feature selection; it has internal features that address imbalance distri-
bution. Yet, the oversampling and feature selection are needed for the
simple classifiers as the oversampling especially helps improve the recall.
Furthermore, although all features are important to detect and prevent
IoT intrusions, it is essential knowing which features have the highest
influential impact on predicting the category types to get accurate results
fast, and in the experiments, it was shown how the two features Src_Port
and Flow_Duration play a fundamental role in prediction. As an overall, the
XGBoost performed best in all conditions in experiments validating how
powerful and reliable the algorithm is in predicting the category labels of
the intrusion attacks.

The experiments were limited to the classification of the category labels,
which could extend to the subcategory labels for the IoTID2020 dataset.
Also, the SVMSMOTE oversampling was only considered and was not
compared with other oversampling methods with different ratios. It also
did not consider automatic clustering and data reduction although it
could provide more insight toward the consumption behavior on different
regions of the data distribution and undersample the data. Additionally, dif-
ferent feature selection techniques and techniques for predicting the most
important feature variables were not taken into account. Moreover, it is
noted the specific distribution of the activities for the IoTID20 dataset, and
this should be tested on different datasets having a different distribution of
activities for validation. Another limitation to the experiments is the lack
of prior experience and repetition of the experiment as the experiments
should be run repeatedly on an average of 30 times to get the mean and
standard deviation for reliable results.

A MULTICLASS CLASSIFICATION APPROACH FOR IOT INTRUSION… 229

8.7 CONCLUSIONS AND FUTURE WORKS

This chapter proposes an approach for intrusion detection for the recent
IoTID2020 dataset. The proposed approach includes:

• Variance threshold feature selection of 0.8 threshold applied on data
• SVM-SMOTE oversampling technique applied on feature selected
data.

• Generate a multiclass classification model of the feature selected and
oversampled data by the XGBoost classification algorithm.

• Generate a multiclass classification model of the feature selected and
oversampled data by the CatBoost classification algorithm.

• Evaluating the models using the testing data in terms of accuracy,
precision, recall, f1-score, and G-mean.

• Compare the evaluated models with other basic classifiers (logistic
regression, knn, decision tree, and random forest).

• Select the most important features that influence prediction power.

The aim of the proposed approach was to develop a recent multiclass
classification to classify the category type labels of IoT intrusion attacks
with the application of the feature selection method variance threshold to
adopt valid predictions with solving imbalanced distribution with SVM-
SMOTE oversampling based on XGBoost and CatBoost algorithms to
view their performance against basic classifiers in addition to specifying
the influencing feature variables that play a big role in the prediction
power which are Src_Port and Flow_Duration. Results show that XGBoost
outperformed CatBoost along with all other algorithms on the selected
IoTID2020 dataset for producing high-quality results for IoT intrusion
detection and classification.

For future work and the engagement in the resource process leading
to recommended actions for future improvement and research, multiple
aspects can be considered such as data preprocessing in terms of auto-
matic clustering and data reduction, along with different oversampling
techniques (with different parameters) and feature selection methods. The
subcategory label from the dataset can be used to detect and classify the
intrusion attacks subcategory. In addition, the proposed approach can be
applied and tested on different IoT intrusion attack datasets.

230 Z. AMIERH ET AL.

REFERENCES

1. Ezechina M, Okwara K, Ugboaja C (2015) The internet of things
(IoT): a scalable approach to connecting everything. Int J Eng Sci
4(1):09–12

2. Khan R, Khan SU, Zaheer R, Khan S (2012) Future internet:
the internet of things architecture, possible applications and key
challenges. In: 2012 10th International Conference on Frontiers
of Information Technology, pp 257–260

3. Ashton K et al (2009) That ‘internet of things’ thing. RFID J
22(7):97–114

4. Evans D (2011) How the next evolution of the internet is changing
everything, p 11

5. Chaudhary S, Johari R, Bhatia R, Gupta K, Bhatnagar A (2019)
Craiot: concept, review and application(s) of IoT. In: 2019 4th
International Conference on Internet of Things: Smart Innovation
and Usages (IoT-SIU), pp 1–4

6. Reddy AN, Marks AM, Prabaharan SRS, Muthulakshmi S (2017)
IoT augmented health monitoring system. In: 2017 International
Conference on Nextgen Electronic Technologies: Silicon to Soft-
ware (ICNETS2), pp 251–254

7. Razalli H, Alkawaz MH, Suhemi AS (2019) Smart IoT surveillance
multi-camera monitoring system. In: 2019 IEEE 7th Conference
on Systems, Process and Control (ICSPC), pp 167–171

8. Krasniqi X, Hajrizi E (2016) Use of IoT technology to drive the
automotive industry from connected to full autonomous vehicles.
IFAC-PapersOnLine 49(29):269–274

9. Kim T-H, Ramos C, Mohammed S (2017) Smart city and IoT
10. Kumar CS (2017) Correlating internet of things. Int J Manag

(IJM) 8(2):68–76
11. Williams R, McMahon E, Samtani S, Patton MW, Chen H (2017)

Identifying vulnerabilities of consumer internet of things (IoT)
devices: a scalable approach. In: 2017 IEEE International Confer-
ence on Intelligence and Security Informatics (ISI), pp 179–181

12. Meneghello F, CaloreM, ZucchettoD, PoleseM, Zanella A (2019)
IoT: Internet of threats? A survey of practical security vulnerabilities
in real IoT devices. IEEE Internet Things J 6(5):8182–8201

A MULTICLASS CLASSIFICATION APPROACH FOR IOT INTRUSION… 231

13. Shojafar M, Taheri R, Pooranian Z, Javidan R, Miri A, Jararweh
Y (2019) Automatic clustering of attacks in intrusion detection
systems. In: 2019 IEEE/ACS 16th International Conference on
Computer Systems and Applications (AICCSA), pp 1–8

14. Alaiz-Moreton H, Aveleira-Mata J, Ondicol-Garcia J, Muñoz-
Castañeda AL, García I, Benavides C (2019) Multiclass classifi-
cation procedure for detecting attacks on MQTT-IoT protocol.
Complexity 2019:1–11

15. Dash PB, Nayak J, Naik B, Oram E, Islam SH (2020) Model based
IoT security framework using multiclass adaptive boosting with
smote. Secur Privacy 3(5):e112

16. Tarekegn AN, Giacobini M, Michalak K (2021) A review of
methods for imbalanced multi-label classification. Pattern Recogn
118:107965

17. Qaddoura R, Al-Zoubi AM, Faris H, Almomani I (2021) A multi-
layer classification approach for intrusion detection in IoT networks
based on deep learning. Sensors 21(9):2987

18. He H, Garcia EA (2009) Learning from imbalanced data. IEEE
Trans Knowl Data Eng 21(9):1263–1284

19. Weiss GM, McCarthy K, Zabar B (2007) Cost-sensitive learning
vs. sampling: which is best for handling unbalanced classes with
unequal error costs? Dmin 7(35–41):24

20. Abdi L, Hashemi S (2015) To combat multi-class imbalanced prob-
lems by means of over-sampling techniques. IEEE Trans Knowl
Data Eng 28(1):238–251

21. Wang S, Yao X (2012) Multiclass imbalance problems: analysis
and potential solutions. IEEE Trans Syst Man Cybern Part B
(Cybernetics) 42(4):1119–1130

22. Sharafaldin I, Lashkari AH, Ghorbani AA (2018) Toward gen-
erating a new intrusion detection dataset and intrusion traffic
characterization. In: ICISSp, pp 108–116

23. Qaddoura R, Al-Zoubi A, Almomani I, Faris H (2021) A multi-
stage classification approach for IoT intrusion detection based on
clustering with oversampling. Appl Sci 11(7):3022

24. Yang X, Kuang Q, Zhang W, Zhang G (2018) AMDO: an over-
sampling technique for multi-class imbalanced problems. IEEE
Trans Knowl Data Eng 30(9):1672–1685

232 Z. AMIERH ET AL.

25. Panigrahi R, Borah S, Bhoi AK, Ijaz MF, Pramanik M, Kumar Y,
Jhaveri RH (2021) A consolidated decision tree-based intrusion
detection system for binary and multiclass imbalanced datasets.
Mathematics 9(7):751

26. Iwendi C, Khan S, Anajemba JH, Mittal M, Alenezi M, Alazab
M (2020) The use of ensemble models for multiple class and
binary class classification for improving intrusion detection systems.
Sensors 20(9):2559

27. MiahMO, Shahriar Khan S, Shatabda S, Farid DM (2019) Improv-
ing detection accuracy for imbalanced network intrusion classi-
fication using cluster-based under-sampling with random forests.
In: 2019 1st International Conference on Advances in Science,
Engineering and Robotics Technology (ICASERT), pp 1–5

28. Zheng D, Hong Z, Wang N, Chen P (2020) An improved LDA-
based ELM classification for intrusion detection algorithm in IoT
application. Sensors 20(6):1706

29. Elrawy MF, Awad AI, Hamed HF (2018) Intrusion detection sys-
tems for IoT-based smart environments: a survey. J Cloud Comput
7(1):1–20

30. Chen T, Guestrin C (2016) Xgboost: a scalable tree boost-
ing system. In: Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Min-
ing, KDD’16. Association for Computing Machinery, New
York, pp 785–794 [Online]. Available: https://doi.org/10.1145/
2939672.2939785

31. Chen T, Guestrin C (2016) Xgboost: a scalable tree boosting
system. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp 785–
794

32. Chen M, Liu Q, Chen S, Liu Y, Zhang C-H, Liu R (2019)
XGBOOST-based algorithm interpretation and application on
post-fault transient stability status prediction of power system.
IEEE Access 7:713149–13158

33. Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H et al
(2015) XGBoost: extreme gradient boosting. R package version
0.4-2 1(4):1–4

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785

A MULTICLASS CLASSIFICATION APPROACH FOR IOT INTRUSION… 233

34. Huang G, Wu L, Ma X, Zhang W, Fan J, Yu X, Zeng W,
Zhou H (2019) Evaluation of CatBoost method for predic-
tion of reference evapotranspiration in humid regions. J Hydrol
574:1029–1041 [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0022169419304251

35. Zyphur MJ, Pierides DC (2017) Is quantitative research ethical?
Tools for ethically practicing, evaluating, and using quantitative
research. J Bus Ethics 143(1):1–16

36. Queirós A, Faria D, Almeida F (2017) Strengths and limitations
of qualitative and quantitative research methods. Eur J Educ Stud
3:369–387

37. Ullah I, Mahmoud QH (2020) A scheme for generating a dataset
for anomalous activity detection in IoT networks. In: Canadian
Conference on Artificial Intelligence. Springer, pp 508–520

38. Corchado Rodríguez J (2013) Advances in Artificial Intelligence
39. García S, Luengo J, Herrera F (2015) Data preprocessing in data

mining. Springer, Cham, Switzerland vol 72
40. Obiedat R, Qaddoura R, Ala’M A-Z, Al-Qaisi L, Harfoushi O,

Alrefai M, Faris H (2022) Sentiment analysis of customers’ reviews
using a hybrid evolutionary SVM-based approach in an imbalanced
data distribution. IEEE Access 10:22260–22273

41. Meidan Y, Bohadana M, Shabtai A, Ochoa M, Tippenhauer
NO, Guarnizo JD, Elovici Y (2017) Detection of unauthorized
IoT devices using machine learning techniques, arXiv preprint
arXiv:1709.04647

42. Parsa AB, Movahedi A, Taghipour H, Derrible S, Mohammadian
AK (2020) Toward safer highways, application of XGBoost and
SHAP for real-time accident detection and feature analysis. Acci-
dent Anal Prevent 136:105405

https://www.sciencedirect.com/science/article/pii/S0022169419304251
https://www.sciencedirect.com/science/article/pii/S0022169419304251
https://www.sciencedirect.com/science/article/pii/S0022169419304251
https://www.sciencedirect.com/science/article/pii/S0022169419304251
https://www.sciencedirect.com/science/article/pii/S0022169419304251
https://www.sciencedirect.com/science/article/pii/S0022169419304251
https://www.sciencedirect.com/science/article/pii/S0022169419304251
https://www.sciencedirect.com/science/article/pii/S0022169419304251

CHAPTER 9

Malware Mitigation in Cloud Computing
Architecture

Sai Kumar Medaram and Leandros Maglaras

9.1 INTRODUCTION

Cloud computing is one of the decade’s most trending discussions in
information technology (IT). A preponderant of IT either has integrated
or has plans to adopt products and services around the cloud computing
paradigm. Cloud computing is defined as a model for providing on-
demand, convenient and ubiquitous network access to a shared pool of
computing resources that can be configured (such as storage, networks,
servers, services and applications) and may be provisioned rapidly and
released with little interaction with the service provider or little manage-
ment effort. “Cloud” itself is a shared resource which is widely influential
since it is not merely shared among a large volume of users but offers

S. K. Medaram
CTI, De Montfort University, Leicester, UK
e-mail: Sai.Kumar@dmu.ac.uk

L. Maglaras (�)
School of Computing, Edinburgh Napier University, Edinburgh, Scotland
e-mail: l.maglaras@napier.ac.uk

© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2024
I. Almomani et al. (eds.), Cyber Malware, Security Informatics and
Law Enforcement, https://doi.org/10.1007/978-3-031-34969-0_9

235

 29185 -2241 a 29185
-2241 a

 1152 43261 a 1152 43261 a

mailto:Sai.Kumar@dmu.ac.uk
mailto:Sai.Kumar@dmu.ac.uk
mailto:Sai.Kumar@dmu.ac.uk
mailto:Sai.Kumar@dmu.ac.uk

 1152 47528 a 1152 47528 a

mailto:l.maglaras@napier.ac.uk
mailto:l.maglaras@napier.ac.uk
mailto:l.maglaras@napier.ac.uk
mailto:l.maglaras@napier.ac.uk
https://doi.org/10.1007/978-3-031-34969-0_9
https://doi.org/10.1007/978-3-031-34969-0_9
https://doi.org/10.1007/978-3-031-34969-0_9
https://doi.org/10.1007/978-3-031-34969-0_9
https://doi.org/10.1007/978-3-031-34969-0_9
https://doi.org/10.1007/978-3-031-34969-0_9
https://doi.org/10.1007/978-3-031-34969-0_9
https://doi.org/10.1007/978-3-031-34969-0_9
https://doi.org/10.1007/978-3-031-34969-0_9
https://doi.org/10.1007/978-3-031-34969-0_9
https://doi.org/10.1007/978-3-031-34969-0_9

236 S. K. MEDARAM AND L. MAGLARAS

dynamic access which is dependent on the demands (Ou, 2015). The cloud
is not an array of software, hardware or services. It is an integration and
combination of vast provisions in information technologies. In the cloud
environment, users do not need to possess the infrastructure enabling
various computing services. But muchmore, the services become accessible
to a computer from any location in the world. The features integrated
into the environment include those offering support multi-tenancy and
high scalability and enhanced flexibility compared to older methodologies
for computing. It can be used to allocate, reallocate or deploy resources
dynamically while being able to monitor their performance continuously.
Cloud computing has four deployment models (public, private, hybrid
and community), and three service models (infrastructure as a service,
IaaS; software as a service, SaaS; and platform as a service, PaaS), which
provides a description of the relationship that exists between cloud service
producers and cloud service consumers. Thus, a user can access one or
multiple cloud deployment models. However, the increased adoption of
cloud services and products has met a growth of malicious activities, codes
and programs targeted at the infrastructure. Even though the potentials of
cloud computing are yet to be fully tapped, public consent already reveals
security as its most critical flaw at the moment. Many of these activities
and attacks are generically described as security threats that dissuade
users from exploring these benefits. Nowadays, the number and severity
of cyber-related attacks are on a drastic increase. Commonly reported
security threats in cloud computing (CC) infrastructure include data loss
and breaches, malicious insiders, account or service hijacking, identity
theft, phishing attacks, man-in-the-middle attacks, denial of service (DOS),
distributed denial of service (DDOS) attacks, cookie poisoning attacks,
wrapping attacks, etc. [1]. In general, several variants of malware are the
reason for these attacks. Malware is any type of software which put harmful
and malicious effects on the OS (operating system), software or other
components. It is designed with the intention to cause harm or damage
to its target system. Trojan horses, worms, backdoors, viruses, spyware,
rootkits, ransomware and botnet are typical examples of malware [2].
Each variant and family of the malicious code is designed for peculiar
purposes. While some variants of malware steal sensitive data, many others
initiate DDoS attacks and give room for remote code execution [3]. Highly
sophisticated attacks employ more than one type and family of malware.
The amount of malware samples has increased rapidly over the years.

MALWARE MITIGATION IN CLOUD COMPUTING ARCHITECTURE 237

According to scientific and business reports, about one million variants
of malicious software are generated on a daily basis [2]. The majority
of these surfacing variants of malware are evolving/modified versions of
malware previously in existence. The number of malware-related attacks
has increased tangibly due to the addition of new devices, e.g. IoT devices
to the

computer networks daily, the volume of data generated daily on social
as well as the number of applications built in a compressed period of
time. The complexity of malware attacks, strategies for spreading as well
as economic damage to economies across the globe have recently hit a
peak. Research has it that these attacks cause damage in trillion dollars to
the world economies [2]. Malware detection is, therefore, the procedure
for specifying whether a particular program or code is benign or malware.
The massive and continuously growing ecosystem of malicious tools
and software constitutes a daunting challenge for IT administrators and
network operators. Various methods exist for the detection of malware and
may be broadly categorised as traditional and new approaches. Traditional
methods include heuristic-, behaviour-, signature- and model checking-
based, while the new methods include mobile device-based and deep-
learning detection [4–6]. Some of these existing techniques are precise with
detecting specific kinds of malware while being unable to identify other
types, or even new variants of the same type. For example, the signature-
based method works optimally with known and various versions of the
same malware, while it fails in detecting unknown malware that possesses
a totally different signature. Heuristic-, behaviour- and model checking-
based methods of detection can help in detecting a reasonable part of the
zero-day malware. Unfortunately, they are unable to detect new malware
that employs advanced packing techniques [2].

It was posited over a decade ago that we can expect to experience
several security exploitations with cloud service providers as well as users,
which will shift research focus to fixing these loopholes. Hence, we are
experiencing a drastic evolution in the CC discipline with underlying efforts
to address the security and privacy issues raised by this paradigm. Therefore,
research towards detecting these malware as well as safeguarding the cloud
architecture against malware attacks are increasing. This necessitates this
research which seeks to analyse malware mitigation strategies in cloud
computing architecture.

The contributions of this chapter are:

• systematically analyse the security and malware threats in cloud com-
puting architecture.

238 S. K. MEDARAM AND L. MAGLARAS

• examine malware detection methods in cloud computing infrastruc-
tures.

• examine the techniques for safeguarding against malware challenges
in cloud computing infrastructure.

• make recommendations on the applicability of these techniques.

This research work will be beneficial for both corporate/institutional
and individual parties who provide or utilise cloud services, as well as those
considering adopting cloud computing provisions. It will also help service
providers, engineers and professionals to be abreast with malware chal-
lenges in cloud computing as well as the techniques for safeguarding this
architecture against malware challenges. Cloud security service providers
would find immense treasure in this research. The recommendations that
will follow the findings will help facilitate the activities of these security
providers, security analysts and threat intelligence professionals.

This chapter comprises five sections. Section 9.1 (introduction) contains
an overview of the study, as well as its aim and objectives, the expected
impacts of the project and a brief of the whole project’s structure. Sec-
tion 9.2 contains the examination of the relevant literature, especially on
security threats in cloud computing infrastructure. Section 9.3 contains the
malware detection methods in cloud computing infrastructure. Section 9.4
contains the techniques for safeguarding against the malware challenges
in cloud computing. Section 9.5 contains discussion and analysis, while
Sect. 9.6 comprise the conclusion and recommendations.

9.2 CLOUD COMPUTING STRUCTURE AND
DEPLOYMENT

“Cloud” is a shared resource which is widely influential since it is notmerely
shared among a large volume of users but offers dynamic access which is
dependent on the demands (Ou, 2015). The term “Cloud” stems from
the fact that there is an abstract boundary, dynamic change of scale and
ambiguous location, which mimics an actual natural cloud (Ou, 2015),
even though there is no such existence in the actual world. The cloud
is not an array of software, hardware or services. It is an integration and
combination of vast provisions in information technologies. Furthermore,
because of the continuous introduction of new technologies to the cloud,
the cloud size keeps increasing. Apart from this, the US Department of
Commerce describes “Cloud computing as a model for providing on-

MALWARE MITIGATION IN CLOUD COMPUTING ARCHITECTURE 239

demand, convenient and ubiquitous network access to a shared pool of
computing resources that can be configured (such as storage, networks,
servers, services and applications) may be provisioned rapidly and released
with little interaction with the service provider or little management effort.
Cloud Computing is simply the combination of a platform technology
that offers storage and hosting and service. It is comprised of five major
features, four deployment models and three service models”. Users in
this environment do not need to possess their peculiar infrastructure
to carry out various computing services. In fact, any user can have
access to these from any computer from any location in the world. This
integrates characteristics facilitating high multitenancy and scalability and
providing increased flexibility when compared to conventional comput-
ing methodologies. It can be used to allocate or reallocate and deploy
resources dynamically with the provision for continuous monitoring of
their performance. Although the definitions of cloud computing (CC) have
a lot of variations, certain fundamental principles underline this trending
computing paradigm. CC has provisions for technological capabilities – for
off-premises maintenance – which are to be delivered on-demand through
the Internet [7]. Users of resources in the cloud do not own the resources
but only pay for the resources on a pro-rata basis since the party public
cloud services and resources are owned and managed by a third party,
therefore virtualisation of a principal concept. Also, the cloud services and
architecture comprise certain functionalities which are key in defining the
features of cloud architecture. According to an article by NIST’s Cloud
Computing Standards Roadmap [8], which states typical features of a cloud
infrastructure to include:

(i) self-service-on-demand: an individualistic and automatic offering of
computing capabilities (server time and network storage) while elim-
inating the intervention of human agency.

(ii) Broad network access, cloud offering capabilities and features available
across the network by the use of tools which facilitate use by diverse
clients (e.g. desktops, tabs, mobile devices).

(iii) Resource pooling. Cloud computing resources are open to the service
of multiple users on a need basis. These various virtual and physical
resources (storage, processing, memory, and network bandwidth) are
assigned actively according to the demands of the consumer.

240 S. K. MEDARAM AND L. MAGLARAS

(iv) Location independence: The location of the service is virtually out of
the authority of the customer. The consumer may only have an idea of
possible locations of the infrastructure.

(v) Rapid elasticity. The capabilities and services provided and released are
automatic and elastic in some cases. Also, based on the demand for
resources, the infrastructure should be able to scale rapidly and be
appropriated dynamically.

(vi) Measured service. The cloud service ensured optimised resource utili-
sation through leverage of measuring capability of service type at some
level.

Generally, CC combines traditional networking technologies and com-
puting methods, e.g. parallel computing, distributed computing, network
storage technologies, utility computing, virtualisation, high available, load
balance, etc. [9]. For example, distributed computing is aimed at breaking
down large computations into little segments and allocating multiple
computers to do the calculation, collection and assembling of all results
(Ou, 2015). Meanwhile, parallel computing brings together a large volume
of computational resources in order to process a particular task, which
constitutes an effective solution to parallel problems [10]. Moreover,
technologies for network-attached storage (NAS) link storage devices with
a set of computers through the standard network topology. This network-
attached storage meets the requirement for rapidly increasing storage
volumes and offering adequate space for storage for the connected hosts.
Meanwhile, storage area network (SAN) is another technology for network
storage, which uses a Fibre Channel to link a group of computers without
standard topology, which is often used in an environment with high-
volume storage. However, the technologies mentioned above are just part
of cloud computing, which indirectly indicates the massive scale of CC.
Until now, several prominent information technology firms have used
and deployed CC development because of its potential for revolutionary
technology and commercial value.

9.2.1 Historical Perspective

The concept “Cloud” can be traced to the 1950s; at a time, the mainframe
computer was gaining acceptance in the area of computation, deemed to
be the future of computing, and was becoming attractive in corporations
as well as academia. Nevertheless, as a result of the lack of capacities for

MALWARE MITIGATION IN CLOUD COMPUTING ARCHITECTURE 241

internal processing as well as access by client computers, a proposal was put
forward to support the idea that many users be allowed physical sharing and
access to the computer as well as CPU time from more than one (many)
terminals. It was popularly regarded across the industry as time-sharing
[11]. Therefore, the “Cloud” rudiment was built. Sun Microsystems,
in 1983, brought in the concept of “the network is the Computer”,
which transcends the conventional boundary of the computer. Amazon, in
2006, released its Elastic Computer Cloud service, which enables resizable
computing capacity, which developers were excited about because the web-
scale cloud computing was optimised. Apart from this, the computing
resources can be totally controlled with a high capacity for scalability
with an adjustment of computing demands. On August 9, 2006, Google
CEO, Eric Schmidt, brought in the idea of “cloud computing”, which was
premised on “Google 101”, a project by Christophe Bisciglia. In 2007,
IBM and Google began to promote CC in universities across the United
States, such as Massachusetts Institute of Technology; Carnegie Mellon
University; Maryland University; University of California, Berkeley; and
Stanford University. The project was targeted at lessening distributed
computing’s cost in academic investigations and also offered support for
software, hardware and technique. In 2008, Google, in collaboration with
National Chiao Tung University and National Taiwan University, launched
“The Cloud Computing Project” in Taiwan for a massive campaign of this
technology on campus. In 2008, IBM launched its’ first-ever centre for
cloud computing in Wuxi, China. On July 29, 2008, Intel, HP and Yahoo
disclosed an associated research program in Singapore, Germany and the
United States, which was targeted at establishing six data centres, with each
data centre designed with 1400 to 4000 processors. On the same 2008,
on August 3, Dell was enforcing the trademark right, which was targeted
at reinvigorating the fact that the control power may remodel the technical
architecture. Still, in 2008, Microsoft introduced Microsoft Azure which
is an infrastructure and platform for cloud computing, providing services
and applications establishment, managing and implementation through the
Microsoft data centre [12]. In 2010, Rackspace, NASA, Dell, Intel and
AMD announced an open-source project, described as “OpenStack”, with
the control for a large pool of computer, networking and storage resources
across a data centre, which is used in the building of public and private
clouds. Not long after, Oracle and IBM declared the “Oracle Cloud” and
“IBM Smart Cloud” in 2012 and 2011, respectively. Judging from the

242 S. K. MEDARAM AND L. MAGLARAS

above evolution and history, it is clear that cloud technology developed
rapidly after 2000, and its embrace and application are increasing till today.

9.2.2 Advantages of Cloud Computing

Cloud computing is a technology experiencing rapid growth and is deliv-
ering attractive and amazing measurable services offering enterprises the
opportunity to monetise their business and grow their productivity and
profit level while simultaneously saving costs. It is keeping up to pace
with the delivery of virtual, secure and economically viable solutions
[1]. According to [13], cloud computing present a plethora of benefits
and advantages; some of which include the following: scalability, the
cloud allows enterprises to bring in computing resources whenever they
are needed; masked complexity, without the users’ awareness [14] and
participation, maintenance and upgrades of the service or product can
be carried out; ecosystem connectivity, the cloud promotes external col-
laboration between partners and consumers which brings about increased
innovation and improvements in productivity; cost flexibility, with cloud
computing, the requirement to pay license fees for software, or to finance
the installation of software or building of hardware, is eliminated; and
adaptability, cloud computing affords enterprises the opportunity to adjust
and accommodate several user groups that comprise several assortments of
devices.

In conventional computing, there is a requirement to duplicate the
lessons learnt in one environment in the other. However, in CC, the
improvement of some parts covers all users [13]. In CC, there is a provision
to automatically scale up and down resources, whereas, in traditional
computing, there is a need for the intervention of humans in order to
add software and hardware. CC environments are commonly virtualised;
meanwhile, traditional environments are primarily physical [13].

CC is changing the platform for service delivery and consumption, even
the approach with which users and businesses interact with IT resources.
The interest in the topic of cloud computing is growing across the industry.
Transaction on Services Computing of IEEE, in 2008, adopted that
CC be introduced into the taxonomy as an area in computing services
[13]. The European Commission 2012 outlined a computing strategy to
facilitate the drastic embrace of CC in every sector of the economy. Because
several pieces of research in CC were funded, e.g. ARTIST, CLOUDMIG,

MALWARE MITIGATION IN CLOUD COMPUTING ARCHITECTURE 243

REMICS, etc. [13], many companies since then have beenmigrating to the
CC model, while others are evaluating their transition. In collaboration
with Economist Intelligence Unit 2011, IBM carried out a survey which
engaged 572 business as well as technology executives from all over the
world to identify how establishments utilise CC today and what their plans
for the future are [13]. Nearly 75% of establishments had adopted, piloted
or substantially implemented CC in their operations (while the remaining
proposed their adoption within 3 years). This survey also demonstrated
that the adoption of cloud is not exclusive to big companies, as 67% of
organisations with revenues lower than US1$ billion and 76% of companies
with revenues between 1 and 20 billion US dollars have at some point
adopted cloud computing. As it relates to quality attributes, over 31% of
executives replied that cost flexibility was a strong justification for

their adoption of cloud computing. Following cost flexibility are secu-
rity, scalability, masked complexity and adaptability [13]. According to
Pathak et al., in [15], the primary goal of CC is to enable inexpensive and
scalable on-demand computing infrastructure that presents high service
levels.

9.2.3 Classification of Cloud Computing Architecture

CC may be classified on the basis of deployment models and services
offered. Based on the service models, they can be categorised into three,
namely, (i) software as a service (SaaS), platform as a service (PaaS) and
infrastructure as a service (IaaS) [16]. IaaS is the lowest layer with the
offering of service for basic infrastructural support. Meanwhile, PaaS is the
middle layer, with the provision of services that are platform-oriented, apart
from the provision of the environment for user applications’ hosting. SaaS
is the top layer with the provision of a complete application that is made
available as a service on demand. The following services are enumerated
[8].

(a) Software as a Service (SaaS) SaaS are apps that operate within the
infrastructure that is provided to be used by the service user. These
apps are provided from the IT resources of different clients through a
thick client or web browser. Software as a Service ensures that complete
apps are hosted on the web and that consumers utilise them. Payment is
done on a pay-per-use approach. This eradicates the demand to install
and execute the app on the local computer of the customer, thereby

244 S. K. MEDARAM AND L. MAGLARAS

taking off the burden for software maintenance from the customer. In
software as a service, there is the convergence coherence mechanism
and the divided cloud by which all data items have either the “Write
Lock” or “Read Lock” [17]. Two kinds of servers are adopted by SaaS:
the domain consistence server (DCS) and the main consistence server
(MCS). Cache coherence is actualised by the agreement between DCS
and MCS [18]. In this infrastructure, if the main consistence server is
compromised or damaged, there is a consequential loss of control over
the cloud environment. Therefore, the security of the MCS is a vital
requirement.

(b) Platform as a Service (PaaS) This enables the user of the service
to deploy apps on the cloud infrastructure, apps built using libraries,
tools, languages and services of the service provider. The provision
also comprises an environment for software execution. For instance,
there can be a Platform as a Service app server which affords the lone
developers to deploy applications based on the web without the need
to buy actual servers and carry out set-up. This model targets the
protection of data, which is very paramount, especially in storage as
a service. In the event of congestion, there can be the challenge of
cloud environment outage. Therefore, the requirement of security to
prevent outages is vital in ensuring load-balanced service. For security
reasons, the data is required to be encrypted whenever it is hosted
on a platform. There has been the proposition of CC architectures
that employ multiple techniques for cryptography in order to provide
cryptographic cloud storage.

(c) Infrastructure as a Service (IaaS) This is concerned with hard-
ware resources’ sharing for services execution, typically by the use
of virtualisation technology. Potentially, by the use of IaaS, several
consumers utilise available resources. These resources may be scaled
up easily depending on the user’s demand, and payments are ideally
on a pay-per-use basis. These all require management since they are
virtual machines. Therefore, there is a requirement for a governance
framework to regulate the creation as well as the usage of virtual
machines. This helps to also prevent unsanctioned access to sensitive
information of users [19]. This is a provision that affords access to the
platform to give room for the consumer to access services of networks,
storage, processing, etc., to enable the consumer to access applications
and operating systems that necessitate service provision through the
provision of the infrastructure [20].

MALWARE MITIGATION IN CLOUD COMPUTING ARCHITECTURE 245

In the enumerated services model, cloud infrastructure’s management
transcends the control of the service user. For example, in SaaS (application
configuration settings, network, operating systems, storage, servers, etc.),
in PaaS (network, storage, servers, operating systems, with the exemption
of deployed apps) many components are beyond the management and
control of the user, while in IaaS, operating systems, applications and
storage do not have adequate control over the network’s components,
which lies within the consumer’s control.

According to [1], the primary deployment models of the cloud com-
puting architecture can be described as represented below:

(a) Private Cloud This infrastructure is found on a private network and
is regularly managed by the cloud provider or internal enterprise data
centre of the organisation and may reside either off-premises or on-
premises. The private cloud is more secure since only the organisation
that owns the resources has access to the operation and control of
environments for service delivery. It is targeted at addressing the
concerns or bothers in data security and provides higher control, but
does not offer advantages such as reducing operational and capital costs.

(b) Public Cloud This is designed for a range of groups or the public,
and it is owned and controlled by a cloud provider. The resources
hosted on this infrastructure are dynamically provided on a pay-per-use
and on-demand approach. It is, however, more vulnerable to malicious
attacks and constitutes the reason for its not being so secure. It offers
several advantages to its users, such as location independence, flexibility,
scalability and no initial capital investment [1].

(c) Hybrid Cloud This particular infrastructure combines different clouds
that are linked by standardised technology to share applications and
data irrespective of location and ownership. It provides greater control
and more flexibility over the application by combining the benefits of
each other and as well addressing their limitations [21].

(d) Community Cloud This cloud infrastructure is made for use by several
establishments that have common interests in a single community.
Every participant in the community cloud has access, freely, to appli-
cations and data. Several other models of cloud deployment are being
built due to the varied needs of different users. For instance, the virtual
private cloud is a means of using the public cloud in a private way
and using a virtual private network (VPN) to inter-connecting the
resources.

246 S. K. MEDARAM AND L. MAGLARAS

9.2.4 Areas of Application of Cloud Computing

The industrial systems of today are typified by a strong reliance on
comprehensive IT infrastructure at the site of the customer [22]. During
the entire system’s lifecycle, the costs of IT infrastructure, hardware and
cost of maintenance are quite high. CC offers a new means of providing
services and delivering industrial software to customers on demand. There
are main opportunities for companies as it relates to the provision of cloud
services, which turns out to heighten the competitiveness by the offering
of cutting-edge cloud solutions which is to be utilised in controlling and
interacting with complex industrial systems [13]. A few examples of CC in
the application space include:

• Web-based email or online email: any email client accessed through
the Internet and implemented as a web app. Examples include
Google, Yahoo and Microsoft mails).

• Online storage services: These provide services for storing e-data using
third-party services that can be accessed through the Internet (e.g.
Microsoft’s SkyDrive, ZumoDrive and Humyo)

• Online collaboration tools: this refers to software, social andWeb tools
that are used to promote website customer communication in order to
attract more sales and real-time satisfaction across the Internet. These
include Stixy, Google Wave, Mikogo and Spicebird

• Online office suite: this refers to a set of programs that are imple-
mented as web-based apps used to automate conventional office tasks,
such as Microsoft Office Live, ThinkFree, Ajax13 and Google Drive).

9.2.5 Security Expectations in Cloud Computing

Also, according to [23], the security expectations can be discussed as
described below:

(a) Data Security Fittingly verifying data from the outside world is very
vital to assure that data is ensured and has a low propensity for
damage. With the uptrend in cloud computing, several vulnerabilities
may surface when the information is shared in an unprecise manner
within the fluctuated frameworks in CC [23]. Guaranteeing the privacy
and security of data in CC implies the ability to assure the standard
key security facets, namely, accessibility, integrity and confidentiality.
The most vital prerequisites for the security of data are data integrity

MALWARE MITIGATION IN CLOUD COMPUTING ARCHITECTURE 247

which alludes to the guaranteeing that the data of clients are not
changed outside their consent or approval. In order to guarantee data
integrity, from the perspectives of both the supporter and supplier,
secure encryption algorithms are most often adopted. Nevertheless,
mere encryption does not absolutely guarantee noxious alteration of
data [24]. As a result of the circulated as well as dynamic shared nature
of the cloud, privacy is another fundamental requirement for cloud
clients. This alludes to exactness and data security which gives room
for ensuring delicate and private information is kept so. This means
that the framework of the cloud framework is expected to be made
available to approved, validated clients anywhere, at any time and across
any platform. There are some threats in cybersecurity that cloud service
availability may be faced with and are majorly network-based attacks,
e.g. DDoS attacks [25]. Meanwhile, cloud suppliers should maintain a
befitting activity plan in order to handle these threats and dangers.

(b) Cloud Network Infrastructure Security A provider of cloud service
must accept trustful network traffic and have provisions for blocking
malicious ones [23]. The security infrastructure of the cloud network
should be able to identify and prevent intrusions, deny and protect
against DoS attacks, to enable notification and logging. Denial of
service defences is anchored on network security, which must efficiently
filter queries and recognise attackers in order to prevent harmful attacks
[23]. The intrusion prevention and detection systems IPS and IDS,
respectively, block or detect malware attacks, spam signatures and virus
signatures, but some also report positive results. Moreover, logging and
notification create the avenue for cloud users to have certain hints into
the cybersecurity health of the network.

(c) Cloud Applications Security Companies are expected to protect
their cloud-based apps against a vast array of cybersecurity attacks
and threats. Additionally, the security of cloud apps resembles the
security of web applications when they are hosted in server centres.
Several businesses put out a single sign-on (SSO) which is to allow
clients to have access to different individual cloud administrations
[26]. In an overview, it is hard to accurately update SSO arrange-
ments since it is anchored on a safe programming layer, which is a
requirement for different confirmation strategies. The International
Standards Organization gave a definition of information security as
concerns or bothers, which may also be guided as it relates to the CC
principal security requirements for a secure and effective technology

248 S. K. MEDARAM AND L. MAGLARAS

solution. According to [1], these primary requirements include the
following: (i) confidentiality, this implies keeping the data of the users
and only granting access to privileged entities, (ii) integrity implies the
assuring of nomodification or alteration in data while being transported
or stored, and access is granted to only the authorised modification,
change, delete or copy data; (iii) availability implies the assurance that
the services needed or the data in request by the user are steadily
accessible anywhere and at any time [27]; (iv) authentication implies the
verification of the user’s identity before access is granted to data, which
may be carried out by utilising certain protections to their profiles; and
v) authorisation implies the assurance that the user that made a request
to the particular data has the right of access to it [28].

9.2.6 Security Threats in Cloud Computing

Despite the massive adoption of CC so far, there still exist some aspects
of these cloud computing that make several organisations not confident
and excited about migrating to the cloud. As some of the characteristics
of CC enable attacks and malware that is novel in nature. Also, it has
been stated that malware developers has made the cloud their major
target. Furthermore, certain architectural loopholes made CC vulnerable
to several privacy and security threats. Despite the numerous advantages
CC has introduced by its service-oriented-multi-tenancy approach, it has
also opened up a worm of effect as well as issues to security and privacy
of user information, as well as in seeking to improve the efficiency of asset
protection [29]. For instance, the virtualisation of the software layer could
lead to a vulnerability of shared physical resources within the regulation of
the server, which also includes virtual machines (VMs), data and memory.
In CC, the service user does not manage or control the underlying cloud
infrastructure. The service provider would normally have the authority of
the infrastructure. Therefore, several security risks exist in the usage of the
cloud infrastructure, some at the provider and others at the consumer [29].

Generally, the threats that CC platforms encounter are very similar to
those of other computing platforms. Suryateja (2020) recognised several
major threats that cloud computing environments are exposed to, such as
unethical and abused usage of cloud resources, shared technology vulnera-
bilities, application programming interface (API) vulnerability, malicious
insiders, accounts, data leakage/loss service, unknown risk profile and

MALWARE MITIGATION IN CLOUD COMPUTING ARCHITECTURE 249

traffic hijacking. Although several vulnerabilities and risks exist, the threats
listed are popular in the CC environment; the environment also has risk
factors. Tang in [16] reported these risks: inherent platform, virtualisation,
storage data sharing, human resources management, security, operational
management, misuse, network security, interoperability, multi-directional
audit and multiparty audit. Security risks and threats are major sources of
concern in cloud computing for many organisations, largely because of
the physical infrastructure location dispersal as well as the data’s residency,
which is geographically spread. The laws for data protection are general
dependent on country; therefore, data location is an issue: where data
residents in a country without adequate laws to protect sensitive data,
therefore making user data vulnerable [30].

9.2.6.1 Malware Threats
In the last couple of years, society is becoming increasingly reliant on
technology. Computers and various devices are used for receiving emails,
news and online shipping. These systems’ availability and integrity are to be
protected deliberately against threats [31]. Terrorists, rival corporations,
amateur hackers and even foreign governments launch complex attacks
against these systems. Crucial to these attacks is the use of malicious codes
ormalware. The word “malware” is gotten from twowords, “malicious and
software”. This makes malware software which put harmful and malicious
effects on the OS (operating system), software or other components.
According to [31], various classes of malware exist, which include ordinary
malware attacks and network-based malware attacks. Malware such as
spyware is used to cause damage to the user’s machine, in network
malware, while in ordinary malware attacks, malware such as inf system.inf
or like autorun is used to constitute harm to the user. Various kinds of
malware exist in the cloud, namely, Trojan horses, worms, backdoors,
viruses, spyware, rootkits, ransomware and botnet, plus several other kinds
of software with undesirable behaviour. These malwares used various
approaches to afflict the user machine. They cause damages that may range
from modification of files to a denial of service or a complete shutdown
of the system or service [32]. Although there are several efforts towards
the prevention and detection of this malware in cloud infrastructure,
the results have not been absolutely effective, even as these attacks are
metamorphosing and modifying their codes, allowing them to constitute
another malware that the system will be naïve towards. This is beckoning

250 S. K. MEDARAM AND L. MAGLARAS

on increased research into how this malware detection and prevention or
resolution in cloud computing may be enhanced.

9.2.7 Security Attacks in CC Architecture (Including Mitigation
Strategies)

In this section, some malicious attacks on CC infrastructure, with sug-
gested mitigation strategies are presented;

(a) Cross-Site Scripting (XSS) Attacks – The eavesdropper inserts mali-
cious code into the web page of the user in order to redirect him to the
website of the attacker and thereby secure access to the sensitive data
of the user. According to [1], there are two ways this is being carried
out, which include either the use of stored XSS (which stores malicious
code permanently into a resource that is managed by the website app)
or reflected XSS (which does not permanently store the malicious
code, but instantly reflect it back to the user) [33]. The technique
of sanitisation or content filtering employs filter functionalities to
eliminate malicious data from the data of the user. These filter abilities
are activated for operation after the web application has read the user
input. Nevertheless, following content filtering, it is hard for some
applications to remove untrusted content scripts whenever there is the
allowance for HTML markup in user input. By the employment of
advanced content filtering, the web browser parser of the users can
anticipate untrusted content. However, there have been the discussion
of some other approaches that may be employed to analyse and expose
vulnerabilities in web applications [1].

(b) Structured Query Language (SQL) Injection Attacks – In the
standard SQL code, the malicious agent uses malicious code to secure
unsanctioned access to the database in order to obtain the user’s
sensitive data. Here, the web gives way for the SQL Server to access
the hacker’s data by perceiving it to be the user’s data, which helps the
attacker to have information about the functioning of the website and
then be able to effect changes therein. Owing to the insufficiency of
structural knowledge of queries generated, it has been hard to imple-
ment the various measures proposed for the filter or validation of user
input. In the instances where the source code of applications is available,
static analysis may be employed to validate the user input before
integration into the query. Some measures, such as dynamic prevention

MALWARE MITIGATION IN CLOUD COMPUTING ARCHITECTURE 251

by the integration of extra meta data, require less human interaction to
enforce a limit on user input which also has the propensity to alter the
semantics of the original code. However, in these techniques, there is a
requirement for additional effort to separate the application code from
the user input. Using an architecture based on proxy to dynamically
recognise user’s input from the application-generated query has a high
detection rate as well as poses no requirement of access to the source
code or database of the web application.

(c) Man-in-the-Middle Attacks (MITM) – MITM attacks is said to
happen whenever an assaulter seek to intrude into a conversation that
is ongoing with the goal of injecting false information that will help
to gain access to sensitive shared information. Secure Socket Layer
(SSL) offers security for applications based on the web. Secure Socket
Layer employs TCP to build end-to-end services that are reliable
and secured by the use of three fundamental protocols, namely, alert
protocol, change cipher spec and handshake. It targets the provision
of authentication, message integrity and confidentiality to the users,
etc., by the use of digital signatures, certificates and cryptography. By
a thorough configuration, SSL attacks, e.g. Wrapping attacks, MITM,
XSS etc., may be eliminated.

(d) Phishing Attacks – Here, the attacker takes advantage of cloud service
and compromises a web link and causes the redirection of the user
to a false link, and by hacking, the user’s account secures access to
sensitive data. This attack can be eliminated by detecting spam pop-
ups or emails, which may be carried out by the use of anti-spam tools.

(e) Denial of Service (DOS) Attacks – Here, the attacker seeks to
deny authorised users of services by launching ICMP flooding, UDP
flooding, SYN flooding attacks, etc. on the server. This attacker seeks to
disable services or break the network provided by the server by contin-
uously sending data packets across to the desired server without data
packets, changing nodes or decrypting encrypted data. The network
bandwidth is occupied by the data packets, which also consume the
server’s resources [34].

(f) Distributed Denial of Service Attacks – DDOS is a higher kind of
denial of service attack as it relates to bombarding the target server
with a vast bulk of packets from several networks which have been
earlier manipulated so as to disable the target server’s services while
also creating more traffic than what is found in DOS in a manner that
will render it difficult for the targeted server to handle the requests.

252 S. K. MEDARAM AND L. MAGLARAS

An intrusion detection system is a program adopted to gather network
traffic and analyse them and then generate alarms or alerts regarding
identified intrusions (any malicious activities or violations of security
policies) for the system to carry out every necessary action. This
intrusion prevention software has the capability to detect an intrusion
detection system and can take possible steps towards preventing likely
counterattacks.

(g) Sniffer Attacks – The malicious agent uses programs to launch these
attacks to enable a host use an Ethernet network to capture flowing
packets by the insertion of the network interface card (NIC) of the host
into the malicious code. If the transferred information in these packets
is not encrypted, these programs can easily compromise it. There are
two techniques that are reportedly used to identify sniffer programs.
First, address resolution protocol (ARP) identify sniffer attacks by
relaying trap address resolution protocol packets which include false
hardware addresses to a host that is suspicious. Then, on the ground
of the response of address resolution protocol reply packets, decision is
carried out whether or not a suspicious host is using a sniffer. Second,
round-trip time (RTT) takes advantage of RTT evaluation of ICMP
packet samples and thereafter makes a probabilistic decision by the use
of a statistical model.

(h) Google Hacking Attacks – This is otherwise regarded as Google
dorking and is a method of hacking which uses Google search engine
to identify loopholes in the security configuration. Taking advantage of
search queries, these hackers can pinpoint vulnerabilities in security and
can then gather information about their desired targets [35].

(i) Cookie Poisoning Attacks – Here, the cookie’s contents are manip-
ulated in order to secure access to an unauthorised web page or
application [1]. The cookie comprises sensitive credentials regarding
the data of the user, and the moment the hacker secures access to these
contents, he also invariably secures access to the content therein and
may not carry out illicit activities.

(j) Malware – this being an acronym for malicious software, its threat and
detection are the top two challenges in the CC environment [36]. The
developers of malware are attempting/trying to interfere or impede
with the integrity, confidentiality and/or the accessibility of data and
the systems in which they are processed, transmitted and stored [37].
Also, statistics have shown, based on a study, that there was a notable
increase in the total volume of malware between the period of 2011 and

MALWARE MITIGATION IN CLOUD COMPUTING ARCHITECTURE 253

2019 [37]. Types of malware which include worms, Trojans, spyware,
rootkits, bots and backdoor are usually shared by hackers in a way
that makes their variants have little differences [36]. According to
Rains [37], one way to aid the detection of malware attacks is by
being knowledgeable about it and use of anti-malware, realising that
one malware can have multi-malware characteristics. Also, focusing on
cybersecurity fundamentals will aid the mitigation of malware threats,
and blocking access to Internet regions without legitimate business
purposes can reduce exposure to malware.

(k) CAPTCHA Breaking Attacks – this is used to detect if the user
is a human or a malicious program [1]. CAPTCHAs are, therefore,
standard strategies for security which is employed to identify malicious
software such as botnets, worms, Trojan, etc. The attacker may employ
an audio system to break the CAPTCHAs and may use software for
speech-to-text conversion to read the CAPTCHAs and can also break
video-based and break image-based schemes. Letter overlap may be
employed in order to prevent vertical segmentation attacks. Connected
letters will render it very difficult for OCR to separate the words.
Using various random alphabets and various fonts makes it difficult to
break down CAPTCHAs. Moreover, it will be harder to break down
CAPTCHA if the string length can be made long. The perturbative
background can be made to have colours, lines, dots, rectangles,
circles, etc., which will be quite hard to break down [38]. Some other
attacks on cloud computing include attacks on domain name server
(DNS), wrapping attacks, reused IP address attacks, zombie attacks and
hypervisor attacks [1].

9.3 MALWARE DETECTION METHODS IN CLOUD
COMPUTING INFRASTRUCTURES

9.3.1 Overview of Malware in Cloud

The word “malware” is gotten from two words, “malicious and software”.
Therefore, malware is software which put harmful and malicious effects
on the OS (operating system), software or other components. Malware is
malicious software that is designed with the intention to cause harm or
damage to its target system. These are creating huge challenges in today’s
technology world. There are various kinds of malware: Trojan horses,

254 S. K. MEDARAM AND L. MAGLARAS

worms, backdoors, viruses, spyware, rootkits, ransomware and botnet, plus
several other kinds of software with undesirable behaviour. Considering
the exponential growth of the Internet, malware has also grown to be one
of the primary cyber threats encountered today. Any program or product
that executes malicious actions, including information theft, spying, etc.,
is malware. A highlight of the various families of these malware is given
below:

Worm This is a program with features similar to the viruses but rather
affects the network instead of the host machine. It is designed to infect
another machine after reproducing itself [39]. They are spread across a
computer network and depend on security failures for the penetration
of their target machine. The majority of worms are designed to steal
data, delete data and ultimately have them spread to other systems. Virus:
The major characteristic of a virus is malware built by cybercriminals by
infecting the target machine’s file [39]. This sort of program self-replicates
on the host machine and then connects to documents that eventually turn
out to be their carriers. The design of a virus is such that it would spread
from one machine to another.

Trojan horses This is a harmful code masquerade as legal software or
useful code. Cybercriminals employ it to land access to the system of the
user. It’s a highly distinct malware type that appears useful at first glance,
but has an embedded malicious code concealed and runs alongside when
the program is run on the system. The provisions of social engineering
are employed to deceive users and cause them to execute Trojans in their
systems.

Rootkits These are a group of software tools built to provide an unsanc-
tioned user with administrator privileges access to a system. Once the
software has been installed, it may execute files or change system settings
remotely [39]. They are advanced malware since they deal directly at the
kernel level, a dangerous process that may result in the crash of the entire
machine. They create direct harm to the victim’s infrastructure. However,
these programs cannot self-propagate but must be installed on a host
system. Backdoors: These are the loopholes the cyber attacker uses the
program to exploit, and these loopholes are created by the attacker to access
to steal the victim’s information.

MALWARE MITIGATION IN CLOUD COMPUTING ARCHITECTURE 255

Adware Unlike Trojan and many others, adware is not a direct harmful
code but slows down the host machine’s functioning by consistently
displaying ads that land users on harmful pages or sources. Adware is
targeted at displaying advertisements and redirecting search requests to
other websites being advertised. Adware can explore functions like cookies
to collect information about the user, e.g. the websites visited. Taking
advantage of the information, customised ads are then displayed.

Ransomware This malicious code is relatively newer. It encrypts all the
files or data of the user and then asks for ransom in order to decrypt the
vital user’s data. It also shows a warning alert requesting that Bitcoin be
decrypted and the files or data be recovered.

Bots and botnets These are harmful codes designed to invade a computer
and carry out instruction the moment it receives instruction from a
remotely controlled server. Just like viruses and Trojans, bots can replicate
itself. An array of bots described as botnets may be employed in launching
DDoS (distributed denial of service) attacks to render the communication
across a network temporarily inaccessible.

Key logger This malware tool takes a record of all the activities carried
out on a monitoring tool similar to a machine. It regularly bypasses the
permission of the user to execute. A key logger is predominantly utilised
in obtaining confidential data, security phrases, passwords and usernames.

9.3.2 Overview of Anomaly Detection in Clouds

For several years, anomaly detection has remained an active area of research.
Several techniques for various application domains and scenarios have been
developed. The authors in [40] demonstrated through a survey across a
number of disciplines the prediction, detection as well as estimated anomaly
detection accuracy. Meanwhile, a thorough survey of the deployment
of different schemes for anomaly detection in the area of IP backbone
networks is found in the work of Marnerides in [41]. The production of
the EbAT system a while ago gave room to the online analysis of a couple
of metrics obtained from components at the system-level (such as memory
utilisation, CPU utilisation on rack servers, operating system’s read/write
counts, etc.). The proposed system demonstrated potential in the aspect of

256 S. K. MEDARAM AND L. MAGLARAS

monitoring scalability and detection accuracy; however, pragmatic cloud
scenarios were not adequately emphasised in its evaluation [42]. The CP
intrusion detection system proposed in [43] for detecting intrusions and
attacks at different cloud layers was deficient for use in dynamic cloud
environments because of the flexibility required. About a decade ago, Lee
et al. [44] brought forward a multi-level approach, which offers rapid
detection of anomalies found in the system logs of the operating system
of each guest. One of the primary demerits of the approach is its lack of
scalability since there is a requirement for higher resources under heavy
system workload. Also, it is made to assort text-based log data, where
the effects of the malware may not be manifested. In [45] the authors
made a new prototype which supported an online spatiotemporal scheme
of anomaly detection in a cloud setting. From there, the researchers had
the ability to formulate and as well implement a wavelet-based multi-
scale system for anomaly detection. The system is anchored on measured
cloud performance metrics such as memory or CPU utilisation, which is
gathered by several components such as system, software and hardware
within the institution-wide cloud setting under examination. The findings
were promising as the proposed method attained a sensitivity of 93.3%
in the detection of anomalous events, even as merely 6.1% of the entire
events reported were false alarms. However, just before this time, the
work of Pannu et al. in [46] brought in a framework of online adaptive
anomaly detection that could identify failures by the analysis of runtime
and execution metrics where the conventional two-class support vector
machine (SVM) algorithmwas used. In an actual practical employing above
362-node CC environment in a university setting, the findings revealed an
efficient proposed system that had an overall sensitivity of 87% in anomaly
detection. However, the primary challenge with this work was that the
conceptualisation of the two-class algorithm of the support vector machine
(SVM) suffered the problem of data imbalance [41], which impacted the
training phase, and ultimately led to various mis-groupings of newly tested
anomalies.

The work of Watson et al. in [42] on the online anomaly detection
approach applicable at the cloud infrastructure’s hypervisor level covered
the area of early detection of an attack and confronted the algorithmic
constraint usually acquired in a majority of the conventional two-class on
n-class techniques based on machine learning (e.g. Bayesian classifiers,
artificial neural networks, two-class SVMs) whenever they are applied to
cloud environments. The work, which emulated “static” detection and

MALWARE MITIGATION IN CLOUD COMPUTING ARCHITECTURE 257

even detection in VM “live” migration scenarios, was said to have stemmed
from suggestions from cloud operators. By the exploration of features
collected at the system and at a cloud node’s network levels, it was
demonstrated that the scheme could attain a high accuracy of detection
of over 90% in the detection of various kinds of DoS attacks and malware.
It was thereafter reported that the extracted features aided in detecting
anomalies throughout the testing at a minimal time cost. Watson et al.
in [42] recommended that this work can be furthered by expanding the
feature reset to incorporate statistics obtained from the usage of vCPU and
a more thorough investigation of process handles, which may help greatly
in detecting very stealthy malware. However, this is expected to instigate a
computational trade-off, considering that a more thorough introspection
will demand more system resources.

9.3.3 Malware Detection in Cloud Infrastructures

In CC, there are three modules, and malware detection (and prevention)
systems operate on these module’s databases, virtual machines and net-
works for different attacks:

1. Malware Injection: This attack targets mainly servers and is designed
such that whenever data is sent from the server, it contains embedded
malicious code automatically, which will negatively impact all the
server’s clients.

2. MITM: These modes of attacks are utilised primarily for stealing users’
data.

3. DDoS: These attacks are executed to disrupt the entire network by
using useless traffic to jam the network traffic.

One of the most fundamental challenges with the development of secure
cloud-oriented and resilient mechanisms is around the adequate detection
and identification of malware. This is because, in the predominant of cases,
malware is the initiation point for large-scale email spamming and phishing,
DDoS attacks, primarily through botware deployment.

Malware detection and prevention systems (MDPS) help in the detec-
tion of malware by the use of signatures or several other heuristics tech-
niques or other string-based or rule-based pattern machine. Antivirus are
also typical examples of malware detectors. The majority of malware writers
are accustomed to these methods used by antivirus, so they devise new
means of evading these techniques by making modifications to the malware

258 S. K. MEDARAM AND L. MAGLARAS

code, or they input junk data, which changes the file’s hash and then
renders it undetectable. These agents use password-protected approaches
or encryption tools to escape detection. Conventional approaches for the
detection of attacks on cloud infrastructures or the virtual machines they
host are insufficient in addressing cloud-related issues, in spite of the great
efforts put into previous studies as regard the behaviour of some kinds of
malicious programs on the Internet [42].

Techniques for malware detection basically utilise two inputs for detec-
tion: (i) malware signature, rules or behaviour from the database and (ii)
the target program to be evaluated for malicious intent. For higher security
in the cloud, MDPS also employ real-time malware analysis. This real-time
technique for prevention is very vital in dealing with the daily growing array
of malware since it shields the user from unknown attacks and malware that
may compromise the host machine and affect the user. The following is a
detailed description of various approaches employed in malware detection
in cloud infrastructures today.

9.3.3.1 General Malware Detection Approach
In the most basic malware detection, two methods are employed: shallow
analysis and deep analysis. In the shallow method, the process parameters
on the victim machine are checked. The check takes place prior to and
following the malware execution. This is to diagnose the events the
malware initiated and their effect on the machine. The following are the
compromise to the machine instigated by malware: (i) update or change in
key or windows registry entries; (ii) unexpected/unanticipated raise in the
number of running processes on the system; (iii) file deletion, creation or
modification. In the shallow analysis, these parameters mentioned above
are explored to develop a profile of the machine. Different snapshots
were done before the analysis and after the analysis, and both categories
were compared to detect if there were unexpected changes that may
be attributed to malware. The shallow analysis considers the following
parameters: memory usage, CPU speed and usage, number of users,
process state, and number of processes. However, in deep analysis, the file’s
hash is calculated, and the file is checked for malware patterns and strings,
for accurate detection of malware.

MALWARE MITIGATION IN CLOUD COMPUTING ARCHITECTURE 259

9.3.3.2 Signature-Based Detection
This approach seeks to define a hash file set that can be employed in
deciding that a particular pattern belongs to the malware. Because of
this characteristic, the signature-based system may attain high detection
speed since there’s less size, accuracy as well as the minimal rate of false-
positive results in the identification of intrusions in the system. The major
challenge of this system is that if a minor modification is made to the file,
it changes the entire signature, and the signature-based detection becomes
inefficient. Thus, this technique may generate false-positive results or be
unable to detect unknown attacks. Despite these drawbacks, signature-
based detection is being employed due to the ease of updating and
maintaining signatures. The signatures comprise various elements used in
identifying the traffic. The parts of a signature include the header (e.g.
ports, destination address, source address) and its options (e.g. metadata,
payload), which are explored in determining if the network tallies with a
known signature or not. Malware signature-based detection is adopted in
cloud platforms for detecting samples that already exist in the database. The
techniquemay be employed at a cloud gateway to detect external intrusions
after a cloud firewall detects internal/external intrusion.

Signature Optimising Pattern Matching These methods depend on the
signatures stored in the database. Here, a string matching algorithm is used
for detecting intrusion. This is often employed in the analysis of DNA
and different protein sequences. This approach is important for malware
detection because of its provision of basic ground level for the detection of
viruses. With the availability of a database of viruses, the method secures
the system against almost all known types of malware. Whenever unknown
malware samples are detected, there is a need for them to be added to the
database. Therefore, when there’s the detection of virus using the signature
match, the signature of the virus is temporarily stored [32]. This is to
ensure that other replicas have no need to match against the vast signatures
in the actual database of signatures. This technique of pre-comparison will
ensure that the signature matching times are drastically reduced.

9.3.3.3 Heuristic Detection
This method may be used in dealing with certain parts of the file where
there is a maximum probability of finding the malware and thereafter
calculating a hash of the specific byte of strings. Here, several signatures can

260 S. K. MEDARAM AND L. MAGLARAS

be generated from the file. This is an advancement over the conventional
signature-based approach since the whole file signature is estimated, which
may not be effective when the signature changes when junk data is added
or there’s a modification to a little part of the code. But in this fuzzy
logic, contrary to the calculation of the signature of the entire file, only a
certain part of the signature is calculated, which will have a straightforward
approach and will build more efficiency for the system. The method is also
capable of detecting unknown samples of malicious code. It minimises the
false-positive rates and increases the scanning speed. This method is also
used for real-time detection of intrusion. The parameters to be compared
are extracted from the network packet header. This method is employed in
large-scale network attacks.

9.3.3.4 Automatic Signature Extraction
Traditional methods of signatures extraction depend mostly on the manual
extraction by an expert of a sequence of bytes. The byte sequence is
embedded in the unknown file’s executable part, and there’s a high degree
of unlikeliness that these kinds of a string are seen in normal files. This
process is carried outmanually for the detection of a string of bytes, which is
time-consuming and renders signature extraction quite tedious. Therefore,
there’s a need for a system that will be used to extract signatures from
malware samples automatically.

One may use any byte sequence from a malware executable portion
for the signature detection of that malware. Sometimes, the generated
malware signatures can match some malicious contents and thus stimulate
a high rate of false-positive results. Therefore, avoiding or reducing the
rate of false-positive tests demands crucial consideration for the extraction
of malware signatures. Another major factor to be considered is the time
required to detect the malicious program in the network traffic. To reduce
malware signatures’ scanning time, there’s a need to restrict the signature
length. Also, the time to scan is reduced by the reduction of the signature
of the malware and just those that may detect the majority of the samples
of the malware. It is thus recognised that several malware samples comprise
these popular executable parts. Since the concerned activity here is to
reduce the total number of signatures and raise the efficiency of the
signatures, there’s a need for researchers to seek a minimum cover set
of signatures that can effectively detect all the samples. This will bring
about increased scanning speed, as these signatures have a high likeliness

MALWARE MITIGATION IN CLOUD COMPUTING ARCHITECTURE 261

of detecting already existing malware variants. However, it is difficult to
reduce the scanning time as well as the false-positive rate at the same
time while still maintaining the program’s efficiency and identifying the
optimised set of malware signatures automatically [47].

9.3.3.5 Anomaly-Based Intrusion Detection
This malware detection method is as well referred to as behavioural-based
detection. Here, the events are the major objects of monitoring at regular
intervals, and the events are then covered for analysis. The analysis is
carried out according to the behaviour change in the machine following
the introduction of the malware. The events preceding and following the
injection of malware are compared, and then the code may be declared
malicious or not. Comparatively, unlike in the signature-based approach,
this system can be used to detect unknown malware samples [48]. The key
feature of this method is the efficient generation of rules that lowers the
rate of false-positive results for both known and unknown attacks.

9.3.3.6 Association Rule-Based IDS
As malware and even virus samples are easily found on the Internet,
malware attacks are quite popular now as one doesn’t have to be an expert
to launch a malware attack, as the code is readily available, and the attack
may be launched after some modification. In order to detect such malware
attacks, one may use the signature a priori algorithm, which sorts common
subsets containing elements of original attacks of a particular attack set.
This method employs signature-based algorithm for the generation of
signatures for detection ofmisuse.Meanwhile, the primary challenge of this
algorithm is the time taken in generating signatures. A scanning reduction
algorithm was proposed for the reduction of the number of database scans
for an efficient generation of signatures from formerly identified attacks.
However, this raises the rate of false-positive results since there’s a pro-
duction of unwanted patterns. Cloud attacks can occur at different levels.
There are four basic types of intrusion detection systems used in the cloud:
network-based intrusion detection system (NIDS), host-based intrusion
detection system (HIDS), distributed intrusion detection system (DIDS)
and hypervisor-based intrusion detection system. Some studies have given
various viewpoints to their address of cloud security (e.g. hypervisor, the
network, operating system and guest VM) under different approaches that

262 S. K. MEDARAM AND L. MAGLARAS

are derived from either statistical anomaly detection models or traditional
rule-based intrusion detection systems (IDSs).

9.3.3.7 Convolutional Neural Network (CNN)
Convolutional neural network is a kind of deep learning that has been
applied in the analysis and classification of images [49]. One comparative
benefit of this method is that only little pre-processing is required, as
opposed to similar algorithms for image classification, even as it works on
unprocessed data. It serves as a feature extractor, a provision that is very
convenient sincemost cases of feature selection requires the input of human
experts. The test is carried out by executing different malware (espe-
cially rootkits and Trojans) on virtual machines. Abdelsalam introduced
a detection method for virtual machines which engaged a 2D CNN model
by taking advantage of the performance metrics. On the testing dataset,
the findings demonstrated an appreciable accuracy of around 79%. The
challenge ofmislabelling was noted and improved on by the introduction of
the 3DCNNmodel, which utilises samples over a specified time window. A
3rd dimension was added to the 2D input matrix. A large improvement was
recorded, and an accuracy of around 90%, which is practically acceptable,
for the 3d CNN 2 classifier was shown.

9.3.4 Challenges of Malware Detection in CC Infrastructure

Some of the challenges encountered in the area of malware detection in
the cloud are presented; thus, in the area of data collection, only a few
of the methods used give consideration to feature selection in the process
of classification towards increasing result accuracy [50]. There is also the
challenge of the continued surfacing of malware. In terms of analysis, many
of the techniques, such as the anomaly-based approach, are restricted to a
particular amount of malware. Also, many of the approaches are unable
to unravel the topmost number of features required to train a classifier. In
the area of response, there are a high number of false-negative and false-
positive results. Also, there are scalability challenges in the handling of a
massive number of malware samples. Also, there is the challenge of limited
storage and computing resources. Also, the demand to gather newmalware
and continually make it benign is very tasking.

Some studies, such as Watson et al. in [42], criticised signature-based
approaches such as intrusion detection systems (IDSs), on network packets,

MALWARE MITIGATION IN CLOUD COMPUTING ARCHITECTURE 263

or the use of virtual machine introspection (VMI) for the detection of
threats in a particular operating system of a virtual machine, saying that
these purely signature-based approaches do not have the capability for a
robust scheme that covers for future threats from novel strains of malware,
as a result of its simplistic rule-based nature.

A number of techniques for anomaly detection are designed to reactively
and proactively detect threats that are cloud-specific. Nevertheless, as a
result of their complex statistical measures, they frequently demand prior
knowledge and majorly lack scalability, therefore rendering them unfit for
online detection in cloud infrastructures [45, 51].

9.4 SAFEGUARDING AGAINST ATTACKS IN CLOUD
INFRASTRUCTURE

This section addresses measures or tools that are either being implemented
or have been proposed for implementation in safeguarding against attacks
in cloud infrastructure. The primary challenge in cloud environments is the
provision of security that touches the area of isolation and multi-tenancy,
which guarantees the customers more confidence beyond just the “trust
us” mantra of clouds. Nevertheless, a holistic approach is sacrosanct to
achieve a comprehensive level of security. Securing the infrastructure at
various levels, such as the application level, host level and network level,
is important for the continuous running of the cloud. To protect the
cloud against various malware and security threats, e.g. backdoor, bots
and botnets, SQL injection, DoS and DDoS attacks, cross-site scripting
(XSS) and forced and Google hacking, various cloud service providers
may implement various security techniques. Different kinds of security
breaches, as well as the implemented or proposed safeguards, are discussed
in the following section.

9.4.1 Host Level Security

This describes how the server prevents threats or mitigates the impact of an
invasive attack and what response is designed for emerging threats. In the
evaluation of host security as well as risk management, attention is given
to the delivery models for cloud service, e.g. IaaS, PaaS, PaaS and private,
public and hybrid implementation models. However, the duties for host
security in PaaS and SaaS services are committed to the provider of cloud

264 S. K. MEDARAM AND L. MAGLARAS

infrastructure. The hosts that the cloud system supports are supported
by the IaaS clients [52]. A vital technology-Web 2.0, which enables the
utilisation of SaaS, takes away tasks such as installation and maintenance of
software from users. With the increase in the use of Web 2.0, there’s an
urgent need for the environment now more than ever [53].

SQL Injection Attacks This involves the insertion of a malware code into
a standard SQL code. By this, malicious persons secure unsanctioned access
to the database and are then able to penetrate sensitive information [54].
Different techniques, such as preventing the use of SQL that is dynamically
generated in the code or the use of filtering techniques, help in sanitising
the input of the user, etc. and consequently help to mitigate SQL injection
attacks. There has been a proposal for an architecture that is based on a
proxy which dynamically detects and extracts the input of the users for
SQL control sequences [52].

Cross-site scripting (XSS) attacks Since the introduction of Web 2.0.,
these attacks involving the injection of scripts into web contents (either
by reflected XSS or stored XSS) have grown in popularity. We may classify
a website as dynamic or static according to the kind of services provided.
Dynamic websites, because of the multi-fold services they provide to users,
are more vulnerable to attacks, e.g. XSS attacks, than static websites.
Out of curiosity or even unknowingly, users click on pop-ups and links
orchestrated by malicious programs, which allows the intruder to have
control over the private information of the user, which may then be used
to hack their accounts. Several techniques, such as active content filtering,
technology for preventing content-based data leakage, for detecting web
application vulnerability, have been developed to safeguard against XSS
attacks. Also, an approach which is blueprint-based has been proposed that
reduces the reliance on a web browser for the identification of untrusted
content.

Man-in-the-middle attacks (MITM) In this kind of attack, a certain
entity makes an attempt to create an intrusion into a conversation that
is ongoing between a client and a sender in order to know of vital data
being shared or to inject fake information. Different tools that implement
hard encryption technologies, such as Ettercap, Cain, Dsniff, Airjack,
Wsniff, etc., have been designed to safeguard against these attacks [52].

MALWARE MITIGATION IN CLOUD COMPUTING ARCHITECTURE 265

Also, test of data communication between license parties and proper SSL
configuration has been found helpful in mitigating the risk of MITM
attacks [55].

9.4.2 Network-Level Security

Several security threats are recorded in different types of networks, whether
private or public, shared and non-shared, large or small area networks.
However, different levels of security are faced by private and public clouds.
The private cloud is said to be less vulnerable compared to the public
cloud. This justifies the preference for private cloud by organisations for
the migration of their sensitive data [52].

However, even in the public cloud, strong methods for network traffic
encryption can be employed to safeguard against the breach of confiden-
tial data, including Transport Layer Security (TLS) and Secure Socket
Layer (SSL). Also, there is a recommendation for the implementation of
protection features like user authentication [56], data integrity, privacy
protection, data security, virtual machines accessibility, web server security,
recovery and compatibility. There’s also a need for research efforts towards
maintaining the consistent and smooth operations of the cloud [52]).
The issues found in network-level security that demands preventive or
management measures include sniffer attacks, DNS attacks, DDoS and
DoS attacks, reused IP address, etc. [57].

Domain Name Server Attacks For easy remembrance, DNS helps to
translate the domain name to an IP address. However, in some cases where
after the user has called the server by name, the user is routed to a different
malicious cloud different from the one they intended, where the use of IP
addresses is therefore not feasible every time. Measures of reducing the
impact of DNS threats include DNSSEC (Domain Name System Security
Extensions). Nevertheless, there are reports of the inadequacy of these
measures when a malicious connection is used to reroute the path between
a receiver and a sender.

Sniffer Attacks These attacks are achieved using malicious software that
is able to capture a network’s packets, and without encryption of the data
transferred across the packets, vital data can be traced, read or captured.
A platform anchored on address resolution protocol (ARP) and round

266 S. K. MEDARAM AND L. MAGLARAS

trip time (RTT) for malicious sniffing detection can be employed on the
network for detecting running sniffing systems [52].

BGP Prefix Hijacking This kind of attack at the network level involves
making a false announcement concerning the IP addresses that are linked
to an autonomous system (AS). Therefore, malicious attackers are able to
get into untraceable IP addresses. An AS can do an information broadcast
of an IP within its regime across its entire neighbours [53].

9.4.3 Application Level Security

This security level describes the use of hardware and software resources to
secure applications in a manner that malicious parties are unable to make
illicit changes or exercise control over the applications. A lot of platforms
are safeguarded at the network level, although certain application level
issues can grant access to unsanctioned users [52]). In recent times, attacks
are being camouflaged as trusted users, and the system addresses them as
trusted users, which allows infiltration of victim platforms and stealthily
corrupts the victim’s entire data.

There is, therefore, urgency for the installation of a more sophisticated
level of security checks to mitigate these risks. The conventional approaches
for handling security challenges have involved the use of task-oriented
ASIC devices that can address a certain task that offers higher security
levels with high performance [58]. However, because of the adaptable and
dynamic nature of application-level threats, these approaches have been
found to act comparatively slow. The adaptability of open-ended systems, as
well as the capabilities of a closed system, have been combined in develop-
ing security avenues that are anchored on Check Point Open Performance
Architecture by the use of Quad-Core Intel Xeon Processors [53]. Moreso,
in the virtual environment, institutions such as VMware use the technology
of Intel Virtualization for better security bases and performance. The
issues found in application level security which demands preventive or
management measures include SQL injection attacks, cookie poisoning,
CAPTCHA breaking, backdoor and debug options, DoS attacks, etc. [28].

Denial of Service (DoS) Attacks This kind of attack, besides creating
congestion, raises the bandwidth being consumed and thereby renders
particular parts inaccessible to the users of the cloud. The use of an

MALWARE MITIGATION IN CLOUD COMPUTING ARCHITECTURE 267

intrusion detection system is a common technique for safeguarding against
these attacks [57], and separate IDS is loaded in each cloud. Also, the
defence federation has been employed for protecting the cloud against DoS
attacks [59], although the extent of its use is not well documented. The
various IDS systems function on the group of information exchange. A co-
operative IDS also has the ability to alert the entire system on the occasion
of an attack on a particular cloud.

DDoS Attacks Distributed denial of service functions like an advanced
DoS attack in denying users of the availability of the server’s services
by bombarding the destination server with large packet numbers that
overwhelm the ability of the server. However, unlike in DoS attacks, the
attack in DDoS is distributed from different already compromised dynamic
networks. The attackers then make certain information to be accessible
at particular times. Therefore, the attacker has control over the type and
amount of information available for consumption [58].

Cookie Poisoning This involves a change or modification of the cookie’s
content to gain unsanctioned access to a web page or application. The
cloud infrastructure can be safeguarded against cookie poisoning by the
implementation encryption scheme or by carrying out regular cleanup of
cookie data.

CAPTCHA Breaking CAPTCHA itself is designed to prevent computers
or bots from using the resources on the Internet, thereby preventing over-
exploitation and spam of resources on the network by bots. CAPTCHA
has suffered breaking from spammers who have developed strategies to
defeat the test. A method of attack involving static OCR (optical character
recognition) can be addressed by the use of CAPTCHA design principles
of single-frame zero knowledge. Hardware and software tools can also be
employed to protect applications against CAPTCHA breaking [52].

Rootkit in Hypervisor Concerns The overall concept of cloud comput-
ing is anchored primarily on the idea of virtualisation. In this virtual setting,
a hypervisor allows a system to simultaneously runmultiple OS and provide
resources distinctly to each OS to avoid interference with one another.
Various components of the hypervisor can be the subject of different
kinds of attacks [53]. By majoring on an advanced comprehension of the

268 S. K. MEDARAM AND L. MAGLARAS

behaviour of the different components of the hypervisor architecture, the
use of intrusion prevention system and instruction detection system and
firewall implementation, and inter-communication between the different
components of the infrastructure, can be used to monitor the actions of
the guest virtual machines [60].

Backdoor and Debug Options This attack is relatively passive, which
affords the malicious party’s penetration into compromised systems and, by
the use of backdoor channels, gains access and control to the confidential
data and resources of the victims and even turns it into a subject of DDoS
attack. Advanced authentication and isolation methodologies between
virtual machines can help to safeguard against these attacks.

9.5 DISCUSSION AND ANALYSIS

This chapter aims to systematically analyse malware attacks and the tech-
niques for safeguarding against malware challenges in cloud computing
architecture. The research will also seek to make recommendations on the
applicability of these techniques. Cloud computing is one of the decade’s
most trending discussions in information technology. It is described as
a model for providing on-demand, convenient and ubiquitous network
access to a shared pool of computing resources that can be configured
(such as storage, networks, servers, services and applications) and may be
provisioned rapidly and released with little interaction with the service
provider or little management effort. The cloud itself is not an array of
software, hardware or services but a vast shared resource that accommo-
dates a large volume of users and offers dynamic access that is dependent
on the demands. This in itself implies that cloud users have no need to
possess the infrastructure enabling various computing services. But much
more, the services become accessible to a computer from any location in
the world.

This research found that some of the greatest selling points of cloud
computing include its inherent features of multi-tenancy and, high scal-
ability, enhanced flexibility, which transcends the provisions of previous
computing methodologies. The provisions in cloud computing will enable
the society to handle future challenges in quality assurance, informa-
tion security and big data management. Furthermore, its possibilities of
accessing new innovations like decentralised ledger technology, artificial

MALWARE MITIGATION IN CLOUD COMPUTING ARCHITECTURE 269

intelligence, etc., as cloud computing services, are increasing. Despite all
these benefits and potentials, the cloud is found to be highly vulnerable to
a lot of security challenges, including malware. Thus, security is a major
concern in cloud computing and a subject of discussion in several quarters.
Therefore, research towards detecting this malware as well as safeguarding
the cloud architecture against malware attacks is increasing.

As a fundamental objective of this research, security and malware threats
in cloud computing architecture were analysed. The study identified that
despite the huge benefits of cloud computing, it has met a growth of
malicious activities, codes and programs targeted at the infrastructure.
Reports that date back to over a decade ago have it that with the teeming
adoption of cloud computing, one can expect to experience several security
exploitations with cloud service providers as well as users, which will shift
research focus to fixing these loopholes. In this study, some of the most
commonly reported security threats identified in cloud computing (CC)
infrastructure include data loss and breaches, malicious insiders, account
or service hijacking, identity theft, phishing attacks, man-in-the-middle
attacks, denial of service (DOS), distributed denial of service (DDOS)
attacks, cookie poisoning attacks, wrapping attacks, etc. The study also
recognised that as much as these all could employ different approaches
and be launched against certain components of the infrastructure per time,
several variants of malware are the reason for these attacks.

Therefore, there is a need for security at various levels towards the
appropriate implementation of CC environment, e.g. Internet access secu-
rity, server access security, program access security, data privacy security
and database access security. Also, security needs to be guaranteed at the
host, network and application layer for the smooth running of the cloud.
Therefore, the issues around the security of cloud infrastructure are found
in the description as well as the implementation of security implications
that are provided by every relevant party in the process.

In this study, we found that with the exponential growth of the Internet,
malware has also grown to be one of the primary cyber threats encountered
today. The malware identified includes Trojan horses, worms, backdoors,
viruses, spyware, rootkits, ransomware and botnet, plus several other
kinds of software with undesirable behaviour. This study identified various
malware detection techniques adopted in the cloud, e.g. malware detec-
tion and prevention systems (MDPS), antiviruses, use of virtual machine
introspection (VMI), etc. The broad approaches used include automatic
signature extraction, anomaly-based intrusion detection, association rule-

270 S. K. MEDARAM AND L. MAGLARAS

based IDS and convolutional neural network (CNN). Nevertheless, these
methods do not perform satisfactorily, perhaps because of the continued
surfacing of malware. Also, in the aspect of data collection, very few
measures employed consider feature selection in the classification that is
aimed at enhancing the accuracy of the result. Also, strategies like the
anomaly-based approach are limited to a certain number of malware. The
systems encounter scalability issues in their attempts to handle big amount
of malware samples. Also, because of the complex nature of anomaly detec-
tion, they frequently demand prior knowledge and majorly lack scalability,
rendering them unfit for online detection in cloud infrastructures.

However, it was identified that in spite of all these measures, malware
writers never cease to devise new means of evading these techniques by a
change of file’s hash, modifications to the malware code, etc. In spite of
the great efforts put into previous studies as regards the behaviour of some
kinds of malicious programs, conventional approaches for the detection
of attacks on cloud infrastructures or the virtual machines they host are
insufficient in addressing cloud-related issues. Even though new provisions
have been laid down by the various malware detection and protection
techniques, there are no methods with the ability to detect and safe-
guard against all sophisticated and new-generation malware. Organisations
embracing cloud computing and enlarging their on-premise infrastructure
must be abreast with the security burdens of cloud computing.

Also, beyond the detection of malware, to achieve a comprehensive
level of security in the cloud, a holistic approach is sacrosanct. Various
methods have been proposed for safeguarding the cloud against security
attacks. However, this study found the safeguarding from the perspectives
of application level, host level and network level to be more serviceable
for the continuous running of the cloud. In the host level security, which
involves paying attention to the delivery models for cloud service, various
attacks such as SQL injection attacks, man-in-the-middle attacks (MITM)
and cross-site scripting (XSS) attacks were identified. This study found
such approaches as active content filtering, proper SSL configuration
as well as data communication between license parties to be helpful in
mitigating these attacks. At the network level, various kinds of threats
identified include DNS attacks, sniffer attacks and BGP prefix hijacking.
Measures such as Domain Name System Security Extensions, use of plat-
form anchored on address resolution protocol (ARP) and round trip time
(RTT) can be advantageous for malicious sniffing detection. Meanwhile, in
application level security which involves the use of hardware and software

MALWARE MITIGATION IN CLOUD COMPUTING ARCHITECTURE 271

for securing applications, the identified attacks include SQL injection
attacks, cookie poisoning, CAPTCHA breaking, backdoor and debug
options and DoS attacks. Several mitigation measures that can be employed
in safeguarding against these attacks include the intrusion prevention
system and intrusion detection system, regular cookie cleanup, firewall
implementation and advanced authentication and isolation methodologies
between virtual machines.

Although this study identified through the analytical study of several
materials and previous works that there are several malware detection
approaches as well as measures for safeguarding the cloud against various
attacks, most of these measures are targeted at specific attacks or threats.
This causes cloud service providers and several organisations and businesses
with activities on the cloud to incur huge expenses in defending their
systems against various forms of attacks they are vulnerable to. Also, these
approaches will be incapable of handling multiple attacks simultaneously
launched by attackers. But a generic/comprehensive framework is sug-
gested to enhance the cost-performance ratio and offer multi-dimensional
and multi-layer security. The primary criteria to be met in this comprehen-
sive security framework are its interface with any cloud environment and
its capacity to detect and address predefined and tailored security threats.

9.6 CONCLUSION AND RECOMMENDATION

Considering the rate at which the cloud has taken over the information
technology market, a more drastic shift to the cloud is anticipated in these
coming years. When we consider the several benefits and potentials of cloud
computing to organisations and individuals, it’s succinct to say that cloud
computing is a rapid revolutionary technology. Despite all the advantages,
the cloud is found to be highly vulnerable to a lot of security challenges,
includingmalware. Even the data in the cloud is vulnerable to various issues
like integrity and confidentiality. To protect the cloud and utilise its full
potential, there’s a need to address these security challenges. This research
is another development in the analysis of these security and malware
attacks, with the potential to influence individual and corporate decisions
in their adoption and maintenance of cloud computing infrastructure. The
primary goal of this chapter is to systematically analyse malware attacks
and the techniques for safeguarding against malware challenges in cloud
computing architecture. Recommendations are also made concerning the

272 S. K. MEDARAM AND L. MAGLARAS

applicability of these techniques. This research has analysed several security
and malware issues found in cloud infrastructure, as well as the techniques
for detection. The research also analysed measures for safeguarding cloud
infrastructure against these attacks. The merits and demerits of some of
these measures were also documented.

Even though new provisions have been laid down by the various mal-
ware detection and protection techniques, there are no methods with the
ability to detect and safeguard against all sophisticated and new-generation
malware. Organisations embracing cloud computing and enlarging their
on-premise infrastructure must be abreast with the security burdens of
cloud computing, as well as the available solutions for ensuring appreciable
security in the cloud.

Cloud service providers and proactive organisations should invest in
security and implement these measures in their infrastructure to ensure
security and be able to explore cloud computing ahead of their enemies.
Although the trends in malware generation and detection are dynamic
and constantly changing, this research is a great guide for the activities
of developers and computer scientists with security responsibilities in the
cloud.

9.6.1 Recommendations

From our findings, various recommendations that may be considered for
further studies or help to guide the decision and activities of stakeholders
are presented below:

• There is a need to design a comprehensive framework for mitigating
multiple malware and other security attacks in the cloud. This frame-
work will be able to interface with any kind of cloud environment
and have the capacity to detect and address predefined and tailored
security threats. This will be a cost-effective approach and will help
to secure the system against attackers who launch multiple attacks
simultaneously, which would otherwise have overwhelmed the cloud
and hurt the services provided.

• Since there is yet no omnibus approach to all security challenges, this
study recommends that approaches that implement the combination
of multiple detectors and/or mitigation approaches can be consid-
ered.

MALWARE MITIGATION IN CLOUD COMPUTING ARCHITECTURE 273

• In order to protect the cloud against external threats, there is a need
for regular auditing of the cloud.

• Also, cloud service providers need to ascertain that all the service-level
agreements are met, while human errors are appreciably minimised.

• Since several of the existing detection and prevention approaches
require prior knowledge, there is a need for stakeholders, engineers,
etc., to build sophisticated skills and competencies that put them
ahead of the attackers.

REFERENCES

1. Amara N, Zhiqui H, Ali A (2017) Cloud computing security threats
and attacks with their mitigation techniques. In: 2017 International
Conference on Cyber-EnabledDistributed Computing and Knowl-
edge Discovery (CyberC). IEEE, pp 244–251

2. Aslan V, Ozkan-Okay M, Gupta D (2021) Intelligent behavior-
based malware detection system on cloud computing environment.
IEEE Access 9:83,252–83,271

3. Aslan Ö, Samet R (2017) Investigation of possibilities to detect
malware using existing tools. In: 2017 IEEE/ACS 14th Inter-
national Conference on Computer Systems and Applications
(AICCSA). IEEE, pp 1277–1284

4. Aslan ÖA, Samet R (2020) A comprehensive review on malware
detection approaches. IEEE Access 8:6249–6271

5. Ferrag MA, Friha O, Maglaras L, Janicke H, Shu L (2021) Fed-
erated deep learning for cyber security in the internet of things:
concepts, applications, and experimental analysis. IEEE Access
9:138,509–138,542

6. Ferrag MA, Maglaras L, Moschoyiannis S, Janicke H (2020)
Deep learning for cyber security intrusion detection: approaches,
datasets, and comparative study. J Inf Secur Appl 50:102419

7. Mazumdar A, Alharahsheh H (2019) Insights of trends and devel-
opments in cloud computing. South Asian Res J Eng Tech 1(3):98–
107

8. NIST Cloud Computing Security Working Group et al (2013)
NIST cloud computing security reference architecture, National
Institute of Standards and Technology, Technical Report

274 S. K. MEDARAM AND L. MAGLARAS

9. Golightly L, Chang V, Xu QA, Gao X, Liu BS (2022) Adoption of
cloud computing as innovation in the organization. Int J Eng Bus
Manag 14:18479790221093992

10. Zhao L, Zhou Y, Lu H, Fujita H (2019) Parallel computing
method of deep belief networks and its application to traffic flow
prediction. Knowl-Based Syst 163:972–987

11. Bullynck M (2018) What is an operating system? a historical inves-
tigation (1954–1964). In: Reflections on programming systems.
Springer, pp 49–79

12. Qarkaxhija J (2020) Using cloud computing as an infrastructure
case study-microsoft azure

13. Balatinac I, Radosevic I (2014) Architecting for the cloud
14. Cook A, Smith RG, Maglaras L, Janicke H (2017) SCIPS: using

experiential learning to raise cyber situational awareness in indus-
trial control system. Int J Cyber Warfare Terrorism (IJCWT)
7(2):1–15

15. PathakN, Anwar S, Singhal V, SharmaN, Shukla AK (2019) Trends
and augmentations of cloud computing. In: 2019 6th International
Conference on Computing for Sustainable Global Development
(INDIACom). IEEE, pp 373–377

16. Tang JG (2014) The research on cloud computing security
model and countermeasures. In: Applied mechanics and materials,
vol 511. Trans Tech Publications, pp 1196–1200

17. Zhang N (2021) An overview of advantages and security challenges
of cloud computing. Int J Comput Sci Mob Comput 10(1):76–85

18. Sen S, Chaki R (2011) Handling write lock assignment in cloud
computing environment. In: Computer information systems–
analysis and technologies. Springer, Berlin, pp 221–230

19. Dasari Y, Dondeti V, Kalluri HK (2022) An effective framework for
ensuring data privacy in private cloud. In: Smart data intelligence.
Springer, Singapore, pp 535–547

20. CompastiéM, Badonnel R, Festor O,He R (2020) From virtualiza-
tion security issues to cloud protection opportunities: an in-depth
analysis of system virtualization models. Comput Secur 97:101905

21. Deb M, Choudhury A (2021) Hybrid cloud: a new paradigm in
cloud computing. In: Machine learning techniques and analytics
for cloud security, pp 1–23

MALWARE MITIGATION IN CLOUD COMPUTING ARCHITECTURE 275

22. Maglaras L, Shu L, Maglaras A, Jiang J, Janicke H, Katsaros D,
Cruz TJ (2018) Industrial internet of things (IIot). Mob Netw
Appl 23(4):806–808

23. Bennasar H, Essaaidi M, Bendahmane A, Ben-Othman J (2021) A
systematic literature review of cloud computing cybersecurity. In:
Adv Dyn Syst Appl 16(2):1883–1919

24. Wei L, Zhu H, Cao Z, Dong X, Jia W, Chen Y, Vasilakos AV
(2014) Security and privacy for storage and computation in cloud
computing. Inf Sci 258:371–386

25. Shaar F, Ahmet E (2018) DDoS attacks and impacts on various
cloud computing components. Int J Inf Secur Sci 7(1):26–48

26. Mladenov V, Mainka C, Schwenk J (2015) On the security of
modern single sign-on protocols: second-order vulnerabilities in
openid connect. arXiv preprint arXiv:1508.04324

27. Ramgovind S, Eloff MM, Smith E (2010) The management of
security in cloud computing. In: 2010 Information Security for
South Africa. IEEE, pp 1–7

28. Cook A, Robinson M, Ferrag MA, Maglaras LA, He Y, Jones K,
Janicke H (2018) Internet of cloud: security and privacy issues. In:
Cloud computing for optimization: foundations, applications, and
challenges. Springer, pp 271–301

29. Hussin H, Salleh NA, Suhaimi MA, Ali AM (2019) Cloud com-
puting practices and perceived benefits by SMEs in Malaysia: some
empirical evidence. J Inf Syst Digit Tech 1(2):1–15

30. Suryateja P (2018) Threats and vulnerabilities of cloud computing:
a review. Int J Comput Sci Eng 6(3):297–302

31. Vishnoi A, Mishra P, Negi C, Peddoju SK (2021) Android malware
detection techniques in traditional and cloud computing platforms:
a state-of-the-art survey. Int J Cloud Appl Comput (IJCAC)
11(4):113–135

32. Abdelsalam M, Krishnan R, Sandhu R (2019) Online malware
detection in cloud auto-scaling systems using shallow convolutional
neural networks. In: IFIP Annual Conference on Data and Appli-
cations Security and Privacy. Springer, pp 381–397

33. Papaspirou V, Maglaras L, Ferrag MA (2021) A tutorial on cross-
site scripting attack: defense against online social networks. In:

276 S. K. MEDARAM AND L. MAGLARAS

Securing social networks in cyberspace, CRC Press, Boca Raton,
FL, pp 277–296

34. JensenM, Schwenk J, Gruschka N, Iacono LL (2009) On technical
security issues in cloud computing. In: 2009 IEEE international
conference on cloud computing. IEEE, pp 109–116

35. Jangjou M, Sohrabi MK (2022) A comprehensive survey on secu-
rity challenges in different network layers in cloud computing. Arch
Comput Methods Eng 29(1):1–22

36. Gao X, Hu C, Shan C, Liu B, Niu Z, Xie H (2020) Malware
classification for the cloud via semi-supervised transfer learning. J
Inf Secur Appl 55:102661

37. Rains T (2020) Cybersecurity threats, malware trends, and strate-
gies: learn to mitigate exploits, malware, phishing, and other social
engineering attacks. Packt Publishing Ltd, Birmingham, UK

38. Jeng AB, Tseng C-C, Tseng D-F, Wang J-C (2010) A study of
captcha and its application to user authentication. In: International
Conference on Computational Collective Intelligence. Springer,
pp 433–440

39. Fui NLY, Asmawi A, Hussin M (2020) A dynamic malware detec-
tion in cloud platform. Int J Diff Equ (IJDE) 15(2):243–258

40. Dewa Z, Maglaras LA (2016) Data mining and intrusion detection
systems. Int J Adv Comput Sci Appl 7(1):62–71

41. Marnerides AK, Malinowski S, Morla R, Kim HS (2015) Fault
diagnosis in dsl networks using support vector machines. Comput
Commun 62:72–84

42. Watson MR, Marnerides AK, Mauthe A, Hutchison D et al (2015)
Malware detection in cloud computing infrastructures. IEEE Trans
Dependable Secure Comput 13(2):192–205

43. Guan Y, Bao J (2009) A CP intrusion detection strategy on cloud
computing. In: Proceedings. The 2009 International Symposium
on Web Information Systems and Applications (WISA 2009).
Citeseer, p 84

44. Lee J-H, Park M-W, Eom J-H, Chung T-M (2011) Multi-level
intrusion detection system and log management in cloud comput-
ing. In: 13th International Conference on Advanced Communica-
tion Technology (ICACT2011). IEEE, pp 552–555

MALWARE MITIGATION IN CLOUD COMPUTING ARCHITECTURE 277

45. Guan Q, Fu S (2013) Adaptive anomaly identification by exploring
metric subspace in cloud computing infrastructures. In: 2013 IEEE
32nd International Symposium on Reliable Distributed Systems.
IEEE, pp 205–214

46. Pannu HS, Liu J, Fu S (2012) AAD: adaptive anomaly detection
system for cloud computing infrastructures. In: 2012 IEEE 31st
Symposium on Reliable Distributed Systems. IEEE, pp 396–397

47. Choo K-KR, Rana OF, Rajarajan M (2017) Cloud security engi-
neering: theory, practice and future research. IEEE Trans Cloud
Comput 5(3):372–374

48. AhmimA, FerragMA,Maglaras L, DerdourM, JanickeH (2020) A
detailed analysis of using supervised machine learning for intrusion
detection. In: Strategic innovativemarketing and tourism. Springer,
pp 629–639

49. Abdelsalam M, Krishnan R, Huang Y, Sandhu R (2018) Malware
detection in cloud infrastructures using convolutional neural net-
works. In: 2018 IEEE 11th International conference on cloud
computing (CLOUD). IEEE, pp 162–169

50. Naseer M, Rusdi JF, Shanono NM, Salam S, Muslim ZB, Abu NA,
Abadi I (2021) Malware detection: issues and challenges. J Phys:
Conf Ser 1807(1):012011. IOP Publishing

51. Guan Q, Fu S, DeBardeleben N, Blanchard S (2013) Exploring
time and frequency domains for accurate and automated anomaly
detection in cloud computing systems. In: 2013 IEEE 19th Pacific
Rim International Symposium on Dependable Computing. IEEE,
pp 196–205

52. Alenezi M (2021) Safeguarding cloud computing infrastructure: a
security analysis. Comput Syst Sci Eng 37(2):159–167

53. Bhadauria R, Sanyal S (2012) Survey on security issues in cloud
computing and associated mitigation techniques. arXiv preprint
arXiv:1204.0764

54. Nasereddin M, ALKhamaiseh A, Qasaimeh M, Al-Qassas R (2021)
A systematic review of detection and prevention techniques of sql
injection attacks. Inf Secur J: Glob Perspect 32(4):1–14

55. Munir K, Palaniappan S (2013) Secure cloud architecture. Adv
Comput 4(1):9

278 S. K. MEDARAM AND L. MAGLARAS

56. Papaspirou V, Maglaras L, Ferrag MA, Kantzavelou I, Janicke H,
Douligeris C (2021) A novel two-factor honeytoken authentica-
tion mechanism. In: 2021 International Conference on Computer
Communications and Networks (ICCCN). IEEE, pp 1–7

57. Singh G, Sharma A, Lehal MS (2011) Security apprehensions in
different regions of cloud captious grounds. Int J Netw Secur Appl
3(4):48–57

58. Lua R, Yow KC (2011) Mitigating ddos attacks with transparent
and intelligent fast-flux swarm network. IEEE Netw 25(4):28–33

59. Lo C-C, Huang C-C, Ku J (2010) A cooperative intrusion detec-
tion system framework for cloud computing networks. In: 2010
39th International Conference on Parallel Processing Workshops.
IEEE, pp 280–284

60. Lombardi F, Di Pietro R (2011) Secure virtualization for cloud
computing. J Netw Comput Appl 34(4):1113–1122

INDEX

A
Android malware, vi, 1–18, 23–37,

45, 110, 128, 169
API calls, vii, 5, 45, 46, 55, 92–102,

104–111, 134, 138, 140–145,
149–153

Artificial intelligence (AI), v, vi,
xxii, xxiv, xxvi–xxix, 3, 6, 122,
165–189

Automated classification, 41

C
CatBoost, vii, 205, 207–209,

213–222, 224–229
Classification, vii, 1–18, 26, 33, 42, 81,

82, 91–100, 103, 104, 107–111,
120–122, 124, 128–131, 137,
138, 140, 143–153, 170, 176,
185–187, 197–229, 243, 262,
270

Cloud computing, vii, xxvi, 182,
235–273

Cloud servers, 182

Cybersecurity, v, vii, x–xiii, xvi, xxii,
xxiv–xxvi, xxviii, xxix, 41, 64,
121, 122, 167–169, 171–172,
177, 187, 247, 253

Cybersecurity applications, 184

D
DDoS attacks, vii, xxvi, 75, 175,

187, 189, 236, 247, 257, 263,
267–269, 271

Deep learning (DL), vi, vii, xxvii,
xxviii, 3, 5–7, 10, 12, 25–28,
30, 35, 36, 43, 46, 58, 96, 110,
119–155, 171, 177, 183, 184,
203, 262

Detection, 2, 23, 42, 63, 91, 120,
166, 199, 237

Detection mechanisms, vi, 5, 63–86,
92, 149

E
Evasion techniques, vii, xxiv

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2024
I. Almomani et al. (eds.), Cyber Malware, Security Informatics and
Law Enforcement, https://doi.org/10.1007/978-3-031-34969-0

279

https://doi.org/10.1007/978-3-031-34969-0
https://doi.org/10.1007/978-3-031-34969-0
https://doi.org/10.1007/978-3-031-34969-0
https://doi.org/10.1007/978-3-031-34969-0
https://doi.org/10.1007/978-3-031-34969-0
https://doi.org/10.1007/978-3-031-34969-0
https://doi.org/10.1007/978-3-031-34969-0
https://doi.org/10.1007/978-3-031-34969-0
https://doi.org/10.1007/978-3-031-34969-0
https://doi.org/10.1007/978-3-031-34969-0

280 INDEX

F
Feature analysis and classification, vi,

vii, 24, 26, 81, 96, 109, 120, 122,
140, 150, 153, 197–229, 270

Feature extraction, vi, 5, 6, 24, 46, 94,
96, 97, 121, 143, 176

Feature representation, 122, 130,
135–137, 140, 154

Federated learning, vi, 23–37
Flux architecture, vi

G
Graph-based analysis, 95, 97–103

I
Imbalanced, 146, 199, 200, 202–204,

211, 217, 229
Internet of Things (IoT), v–vii, xxii,

xxiii, xxiv, xxvi, xxix, 23, 25, 27,
43, 127, 128, 130, 165–189,
197–230, 237

Intrusion detection, 166, 184–186,
197–229, 252, 256, 261, 267,
269, 271

M
Machine learning (ML), v, vi, xxiv,

xxvi–xxix, 2–6, 25–27, 29, 42,
43, 46, 58, 59, 81–83, 92, 96,
97, 111, 120–122, 126–128,
130, 137, 138, 145, 147, 152,
153, 155, 170, 171, 176, 178,
182, 184–187, 199–203, 205,
211, 213, 256

Malicious services, 86
Malware analysis, vi, vii, xiv–xviii, 3, 4,

6, 18, 24, 26, 27, 43, 58, 92, 95,
96, 119–155, 165–189, 258

Malware detection (MD), 2, 23, 42,
91, 120, 168, 237

Malware detection and prevention
systems (MDPS), 257, 258, 269

Malware mitigation, 235–273
Multi-classification, vi, 6, 17
Multiclass problem, 199, 201–204

P
Performance analysis, 10, 12, 14, 15

S
Security and privacy, 166, 168, 237,

248
Security applications, xxi, 198, 247,

251, 266–268, 270
Service networks, 77, 244, 251
Static-based analysis, 4
Static parsing, 43–46
Support vector machine (SVM), vii, 6,

82, 83, 91–111, 138, 140, 143,
145, 171, 184, 212, 256

SVM-SMOTE oversampling, 201,
219, 229

V
Variance threshold feature selection,

214, 216, 217, 229
Virtual machine introspection (VMI),

263, 269
Vision-based analysis, 10, 12, 18

W
Windows malware, 119–155

X
XGBoost, 151, 203, 205–207,

213–226, 228, 229

	Preface
	Introduction: Emerging Trends in Cyber-Malware
	Malware Analysis Techniques
	Common Types of Cyber-Malware
	Dynamic and Static Analysis
	Malware Debugging Techniques
	Identifying Malware Behavior

	Malware Distribution Methods
	Malware Prevention and Mitigation Strategies
	Future of Cyber-Malware
	Trends and Predictions for Future Malware Development
	Emerging Threats and Attack Vectors
	The Role of Artificial Intelligence in Malware Development and Detection

	Conclusions and Future Work
	References
	Contents

	1 A Deep-Vision-Based Multi-class Classification System of Android Malware Apps
	1.1 Introduction
	1.2 Related Works
	1.3 Proposed Deep-Vision-Based Multi-class Classification System
	1.4 Evaluations and Discussions
	1.4.1 Datasets Description
	1.4.2 Security Detection Metrics
	1.4.3 Results Analysis

	1.5 Conclusions and Future Work
	References

	2 Android Malware Detection Based on Network Analysis and Federated Learning
	2.1 Introduction
	2.2 Related Studies
	2.3 Methodology
	2.3.1 Federated Learning Paradigm
	2.3.2 Our Proposed Detection Methodology
	Dataset Processing
	FDL-Based Model Training

	2.4 Result and Discussion
	2.5 Conclusion
	References

	3 ASParseV3: Auto-Static Parser and Customizable Visualizer
	3.1 Introduction
	3.2 Related Works
	3.3 Proposed System
	3.3.1 System Overview
	3.3.2 Features and User Interfaces
	3.3.2.1 Uploading Files Window
	3.3.2.2 Selecting File Types Window
	3.3.2.3 Selecting Keywords Window
	3.3.2.4 Scanning Window
	3.3.2.5 Visualizing Results and Dashboard Window

	3.3.3 Use Case
	3.3.3.1 Data Collection
	3.3.3.2 Tests and Results
	3.3.3.3 Validation

	3.4 Conclusion and Future Work
	References

	4 Fast-Flux Service Networks: Architecture, Characteristics, and Detection Mechanisms
	4.1 Introduction
	4.2 Fast-Flux Service Networks
	4.3 Characteristics of Fast-Flux Service Networks
	4.3.1 Fast-Flux Domain Names Versus CDN-Hosted Domain Names
	4.3.2 Main Characteristics of Fast-Flux Service Networks

	4.4 FFSNs Feature Set Collection
	4.4.1 Domain Name System-Based Features
	4.4.2 IP Geolocation-Based Features
	4.4.3 Internet-Wide Scanning-Based Features
	4.4.4 Active Delay Measurement-Based Features

	4.5 Fast-Flux Detection
	4.6 Conclusion
	References

	5 Efficient Graph-Based Malware Detection Using Minimized Kernel and SVM
	5.1 Introduction
	5.2 Related Work
	5.3 API Call Graph-Based Analysis Framework
	5.3.1 Extraction of API Call Graph
	5.3.2 Extraction of Abstract API Call Graph
	5.3.3 Calculation and Reduction of a Graph Kernel
	5.3.4 Classification

	5.4 Experiments and Testing
	5.4.1 Dataset
	5.4.2 Evaluation of Kernel Effectiveness
	5.4.2.1 Unweighted API Call Graph
	5.4.2.2 Weighted API Call Graph
	5.4.2.3 Benign-Malware Kernel Results

	5.4.3 SVM Training and Classification

	5.5 Conclusions
	References

	6 Deep Learning for Windows Malware Analysis
	6.1 Introduction
	6.2 Deep Learning: Background and Basic Concepts
	6.2.1 Definition
	6.2.2 Deep Learning Techniques
	6.2.2.1 Deep Supervised Learning
	6.2.2.2 Deep Semi-supervised Learning
	6.2.2.3 Deep Unsupervised Learning
	6.2.2.4 Deep Reinforcement Learning

	6.2.3 Deep Learning vs Machine Learning

	6.3 Related Surveys
	6.4 Research Methodology
	6.4.1 Data Sources and Search Criteria
	6.4.2 Inclusion and Exclusion Criteria

	6.5 Proposed Taxonomy
	6.5.1 Malware Analysis Task
	6.5.1.1 Detection
	6.5.1.2 Classification

	6.5.2 The Used Features
	6.5.2.1 Static Features
	6.5.2.2 Dynamic Features

	6.5.3 Feature Representation Method
	6.5.3.1 Vectors
	6.5.3.2 Sequences and n-Grams
	6.5.3.3 Graphs
	6.5.3.4 Image Representation

	6.5.4 Used DL Algorithms

	6.6 Description of Solutions
	6.6.1 Malware Detection Solutions
	6.6.1.1 Solutions that Employ Static Features
	6.6.1.2 Solutions that Employ Dynamic Features

	6.6.2 Malware Classification Solutions
	6.6.2.1 Solutions that Employ Static Features
	6.6.2.2 Solutions that Employ Dynamic Features

	6.7 Open Issues and Future Directions
	6.8 Conclusion
	References

	7 Malware Analysis for IoT and Smart AI-Based Applications
	7.1 Introduction
	7.2 Related Works
	7.3 Cybersecurity Threats for IoT and Smart AI Applications
	7.4 Malware Attacks in IoT
	7.4.1 Malware Threats in Software
	7.4.2 Malware Threats in Hardware
	7.4.3 Malware Threats in Network Communication

	7.5 Malware Detection and Evasion Approaches
	7.5.1 Major Malware Detection Approaches in IoT
	7.5.2 Machine Learning Techniques for Malware Detection in IoT
	7.5.2.1 Brief Description of Commonly Used ML Techniques
	7.5.2.2 Detection and Mitigation Using ML

	7.6 Conclusions
	References

	8 A Multiclass Classification Approach for IoT Intrusion Detection Based on Feature Selection and Oversampling
	8.1 Introduction
	8.2 Literature Review
	8.3 Security System Framework
	8.4 Background
	8.4.1 XGBoost
	8.4.2 CatBoost

	8.5 Methodology
	8.5.1 Problem Understanding and Formulation
	8.5.2 Data Collection
	8.5.3 Data Preprocessing
	8.5.4 Model Development
	8.5.5 Evaluation and Assessment
	8.5.6 Post Analysis

	8.6 Experimental Results and Discussions
	8.6.1 Environmental Settings
	8.6.2 Experimental Results
	8.6.3 Feature Importance Results
	8.6.4 Cost Analysis
	8.6.5 Discussion

	8.7 Conclusions and Future Works
	References

	9 Malware Mitigation in Cloud Computing Architecture
	9.1 Introduction
	9.2 Cloud Computing Structure and Deployment
	9.2.1 Historical Perspective
	9.2.2 Advantages of Cloud Computing
	9.2.3 Classification of Cloud Computing Architecture
	9.2.4 Areas of Application of Cloud Computing
	9.2.5 Security Expectations in Cloud Computing
	9.2.6 Security Threats in Cloud Computing
	9.2.6.1 Malware Threats

	9.2.7 Security Attacks in CC Architecture (Including Mitigation Strategies)

	9.3 Malware Detection Methods in Cloud Computing Infrastructures
	9.3.1 Overview of Malware in Cloud
	9.3.2 Overview of Anomaly Detection in Clouds
	9.3.3 Malware Detection in Cloud Infrastructures
	9.3.3.1 General Malware Detection Approach
	9.3.3.2 Signature-Based Detection
	9.3.3.3 Heuristic Detection
	9.3.3.4 Automatic Signature Extraction
	9.3.3.5 Anomaly-Based Intrusion Detection
	9.3.3.6 Association Rule-Based IDS
	9.3.3.7 Convolutional Neural Network (CNN)

	9.3.4 Challenges of Malware Detection in CC Infrastructure

	9.4 Safeguarding Against Attacks in Cloud Infrastructure
	9.4.1 Host Level Security
	9.4.2 Network-Level Security
	9.4.3 Application Level Security

	9.5 Discussion and Analysis
	9.6 Conclusion and Recommendation
	9.6.1 Recommendations

	References

	Index

