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Abstract In this article we describe an Agent-Based Model that extends the
Hegselmann-Krause model of opinion dynamics to study the role of social identity
in opinion polarization. In our model, an agent’s social identity is a function of two
things—the agent’s opinion in relation to those of the other agents, and the observer’s
sensitivity to the tightness of clustering. We implement this by first selecting a subset
of the agent population that are deemed to have close neighbors, and then using
Louvain community detection to find identity groups. At every time step, agents
only consider the opinions of other agents within their identity group that also fall
within their Hegselmann-Krause opinion boundary, ε. We show that our dynamic
implementation of social identity systematically modulates the relationship between
average ε and polarization.

Keywords Bounded confidence model · Dynamic identity · Polarization

1 Introduction

The process of consensus formation in public opinion is at least partially believed to
be impacted by social interactions. Individuals gather information about the world,
other individuals, and societal structures through conversations with each other. They
also learn about accepted norms and normative evaluations of individuals and situ-
ations through interactions with others. Through this process they ultimately form

F. Kalvas (B)
University of West Bohemia, Univerzitní 8, 301 00 Plzeň, Czech Republic
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their own beliefs and opinions about relevant issues using social information as one
of the inputs. People with differing points of view may reconcile their differences
through conversation by either learning to adopt the other’s views, or convincing the
other of one’s own or by resisting opinion change.

The Hegselmann-Krause (HK) model of opinion dynamics is a bounded-
confidence model with continuous real-valued opinions [1]. Classically, the HK
imposes a constraint that allows a listening agent to only consider other agents whose
opinion falls within a distance of a boundary parameter (commonly denoted by ε) of
the listening agent. The listening agent updates its opinion to the average value of
the opinions of all such agents. Different system parameters and initial conditions
can cause the HK system to produce consensus, polarization, or fractured states.

A number of theoretical properties of the HKmodel have been studied such as the
probability [2] and kinetics of consensus [3], the role of noise [4, 5], heterogeneity
in ε [6], adding more dimensions to the opinion space [3, 7], and how the presence of
social network constraints influences dynamics [8]. Someother studies have extended
the HK model by adding to the dynamics new features such as the presence of
agenda-setting ‘leaders’ [9] or extremists [10].

We took a slightly different approach to advancing the HK model, by intro-
ducing an additional component to the dynamics that simulates the role of social
identity groups on the asymptotic behavior of the system. Social Identity Theory
(SIT) proposes that pairwise inter-personal interactions are relevant but insufficient
to explaining the collective dynamics of a society, and that perceived group identi-
ties influence one’s behavior towards another [11]. Identities may help individuals
understand and approximate a complex landscape of public opinion and interests
by reducing nuances and variances into simplified labels. We aimed to study the
relevance of social identities to polarization—a qualitative state of the system where
the opinions of all agents tend to be split into two antagonistic camps—given its
sociological significance as a commonly occurring state of public opinion [12, 13].

Both assumed (by the self) and perceived (of others) identities are known to
influence one’s opinion. For example, a study by Wojcieszak and Garrett found that
priming national identity, and exposure to anti-immigration news increases reported
anti-immigration sentiment among anti-immigration participants [14].We follow the
Reinforcing Spirals Model [15, 16] in proposing that salience of social identity and
the degree to which there exists closed vs open communication norms are major
drivers of polarization in a dynamic model.

Consistent with SIT, we treat opinions and identities as interacting components
of social behavior that are both relevant for dynamics. Therefore, we model the
formation of social identities as an emergent process in the opinion space. Agents
look at the entire opinion space to find groups of agents that are well-clustered, and
assign identities to these clusters. Then they update their opinions using only the
inputs from agents that are both within their own identity group, and also satisfy
the HK opinion boundary. Our model thus assumes that social identity acts as an
additional filter for agents as they select other agents to seek consensus with at
each step. Therefore, an agent might ignore another’s opinion either because their
opinions are too far from each other, or because they perceive the other agent to be
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in a different identity group. Importantly, identities are not pre-assigned to agents—
rather they are inferred from the opinion positions of the entire population. Some
agents may “see” different identity groups than others. Moreover, identity groups
might evolve as opinions of agents evolve—as agents move through the opinion
space the groups might merge, shift and break up.

We needed a plausible algorithm to dynamically assign agents to identity groups
based on their opinion positions in the opinion space. For this, we needed to consider
what conditions must be satisfied for agents to be said to form an identity group
based on opinions. Firstly, for an identity group to be said to exist, there must be at
least a few agents showing a high degree of proximity to one another in the opinion
space. Secondly, for an agent to be considered as part of an identity group, she must
demonstrate sufficient similarity to the identity group’s ideology. Thirdly, the identity
group must not only be defined by the proximity of the opinions of its own members,
but must also be sufficiently far from agents it excludes. In other words an identity
group isn’t defined just by the oneness of its members, but must also take into account
the otherness of agents it excludes.

Our algorithm for identity group detection follows a similar logic as detailed
above. Identity groups are detected in the opinion space by considering only those
agents that have enough sufficiently like-minded agents in the opinion space. In this
subset of non-isolated agents, the detector applies a Louvain Community Detection
(LCD) [17] algorithm, which is our implementation of a general mechanism that lets
agents automatically detect the existence of identity groups from information about
the spread of opinions in the population.

An important parameter in the process above controls what we mean by “suf-
ficient like-mindedness” in the filtering step. We call this parameter “Salience of
Proximity in Identity-Relevant Opinions” (SPIRO), since it defines which pairs of
agents are close enough in opinion space to be relevant for LCD, and treat it as an
experimental variable. SPIRO is a property of the detector—as agents look around
in the opinion space and detect identity groups, they may be differentially sensitive
to agents clustering close together.

In this article we present five hierarchically related models, of which the last two
include social identity effects. We do this to introduce not only our implementation
of social identity, but also other model features and variables we believe may have
interesting effects alongside identity. In Sect. 2 we discuss our methods, including
their components (Sect. 2.1), the model variants (Sect. 2.2), and our variables of
interest (Sect. 2.3). In Sect. 3 we present evidence that the presence of identity drives
polarization, alongwith some preliminary results involving other variables. In Sect. 4
we interpret these data and present plans for future work with these models.
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2 Methods (Code and Data are Available [18])

2.1 Model Components

Hegselmann-KrauseDynamicswith conformity.Anagent’s opinion is represented
as a real number between − 1 and + 1, implemented at the resolution of 3 decimal
places. Opinions of all agents are updated at every time-step based on their previous
opinion and the opinions of influencers according to the rule:

oi (t) = oi (t − 1) + αi

⎡
⎣ 1

|Ni (t)|
∑

j∈Ni (t)

o j (t − 1) − oi (t − 1)

⎤
⎦ (1)

where,

oi (t) ∈ [−1,+1] is the opinion of agent i at time t .
αi ∈ [0, 1] is the conformity parameter, it controls how quickly agent i moves
towards the found consensus.
Ni (t) is the neighborhood of agent with index i at time t .

Ni (t) = { j : ∣∣o j (t − 1) − oi (t − 1)
∣∣ ≤ εi } (2)

εi ∈ [0, 1] is the boundary parameter and tells us the maximum dissimilarity in
opinion agent i can accommodate. Note that εi is normalized—it is measured as
a fraction of the maximum possible distance, i.e. εi = 1 means that agent i with
opinion oi = −1 also takes into account agent j with opinion o j = +1.

Thus Ni (t) is the set of all agents (including the listening agent itself) whose
opinion fall within a distance of the boundary parameter εi of the listening agent.

Social Identity Boundary. In the model with social identity, an agent only listens
to another agent who additionally also shares the same identity group as oneself at
each time step.

Let I di (t) represent the index of the identity group of agent i at time t. Therefore,
the neighborhood of an agent Ni (t) is redefined as:

Ni (t) = { j : ∣∣o j (t − 1) − oi (t − 1)
∣∣ < εi } ∩ {

j : I d j (t) = I di (t)
}

(3)

Identity Group Assignment. The identity groups are dynamically updated at every
time step as follows:

Firstly, we convert the opinion space into an equivalent weighted full network
(the ‘Proximity Network’) by representing each agent by a node creating a weighted
link between every pair of agents. The weight of each link is given by:

wi, j (t) = 1 − d
(
oi (t), o j (t)

)
(4)
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where,

wi, j (t) ∈ [0, 1] is the weight of the link between nodes i and j at time t.
d(a, b) is the Euclidean distance between points a and b in the opinion space,

normalized by the maximum theoretical distance in the opinion space. Therefore,

d
(
oi (t), o j (t)

) =
∣∣oi (t) − o j (t)

∣∣
2

(5)

Thus a weight of 1 means the two linked agents have identical opinions, while a
weight of 0 means they are maximally dissimilar.

We then perform community detection on a subset of the Proximity Network,
keeping only edges of sufficient weight and nodes sufficiently connected by such
edges.We use a SPIRO-thresholded definition of which edges’ weights are sufficient,
and we keep only nodes connected by 2 or more such edges, along with only edges
of sufficient weight to these nodes. We then perform LCD on this sub-graph. In
practice, “sufficiently connected” edges are edges whose weight in the Proximity
Network equals or exceeds the perceiving agent’s SPIRO value. Thus, higher SPIRO
values would mean we tend to return fewer nodes and links after these reduction
steps.

In order to ensure every agent is assigned to an identity group, we follow up LCD
with k-means clustering as follows—we consider the number of detected communi-
ties after SPIRO-thresholding and LCD on the Proximity Network, and compute the
opinion centroid of the set of agents corresponding to each community. We use the
number of communities and the centroids thus found as initial values to the k-means
clustering algorithm which is performed on the entire agent population (including
those excluded before LCD). Every excluded agent is initially assigned to the cluster
whose centroid is closest to it. k-means clustering is repeated on the opinion space
thereafter until the centroids converge. Thus, every agent is assigned to an identity
group.

Global versus individual detection of identity groups. We wanted to simulate the
possibility of different agents being differently sensitive to identity-related informa-
tion from the opinion space—in our model this translates to agents having different
SPIRO values (see Sect. 2.2, model VBVI). Implementing this directly would mean
running theLouvain algorithm several times at every time step,making the simulation
computationally very expensive. To make the process more efficient, we segmented
the agent population into eight partitions, each having its own pre-defined SPIRO
value. Although the number and index of the agents assigned to each partition may
vary across simulations, every partition—and therefore every agent—can take on
SPIRO values only from the set: {0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85}.

To determine which agent gets assigned to which SPIRO value, we implemented
an approximation of a discrete normal SPIRO distribution as follows: During simu-
lation set up, every agent samples a value xi from a normal distribution with mean
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μSP I RO and standard deviation σSP I RO . If xi /∈ [0, 1], its sampling is repeated until
xi ∈ [0, 1]. The SPIRO of the agent i is given by the closest possible value to xi from
the set of valid SPIRO’s given above.

2.2 Model Variants

We ran 2,504,964 simulations in total spanning 5 variants of the HK model. The
models are described:

Deterministic Start HK Model (DHK): Initial opinions of agents are a set of evenly
spaced real numbers between [− 1,+ 1]. Agents have the same confidence boundary
ε.

Randomized Start HK Model (RHK): Initial opinions of agents are uniformly
distributed real values in the interval [− 1, + 1]. Agents have the same confidence
boundary ε.

Heterogeneous Boundary Model (VB): Agents have individualized confidence
boundaries and conformities. The confidence boundary εi of an agent is obtained
from a truncated normal distribution as follows: Every agent samples a value εi from
a normal distribution with mean με and standard deviation σε. If εi /∈ [0, 1], its
sampling is repeated until εi ∈ [0, 1]. αi is also sampled with an identical method as
εi , with mean μα and standard deviation σα .

Heterogeneous Boundary with Identity (VBI): Agents only communicate within
their identity groups, which are assigned at the beginning at every time-step via
a common identity group assignment step as outlined in Sect. 2.1. This assignment
is parametrized by the common SPIRO value, which determines the tightness of
identity groups thus formed.

Heterogeneous Boundary with Heterogeneous Identity (VBVI):Agents only commu-
nicate within their perceived identity groups, but they may be inconsistent across
agents. This is done by relaxing the assumption of a single SPIRO value for the
entire population as follows:

1. At the beginning of the simulation all agents are assigned an individualized
SPIRO value as described in Sect. 2.1. This is done to allow for heterogeneous
identity effects while keeping the model computationally efficient.

2. At the beginning of every time step, one instance of the identity group assignment
step outlined in Sect. 2.1 is run for each partition.

3. The detected identity groups for each partition are then inherited by each agent
within the partition. Thus, all the agents in a partition perceive a common set of
identity groups.

The abovemodels are hierarchically related, in that every subsequent model in the
list above inherits features of the previous models (exception: RHK does not inherit
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the regularly-spaced initial opinion space condition fromDHK). Therefore, VBI and
VBVI both have normally distributed ε values for instance. We ran each simulation
for 365 time steps, or until consensus is reached, whichever is earlier.

2.3 Variables

Independent Variables. Besides με, σε, μα , σα , μSP I RO , and σSP I RO which are
defined in Sects. 2.1 and 2.2, we also included the following two variables in our
experimental design since we were also interested in studying some robustness
properties of the HK model for a related study:

Evenness or Oddness of population size: Population size is either N = 100 or N =
101.

Randomness of initial opinion distribution: The initial opinion of agents is either
drawn uniformly at random (Random_start?=TRUE), or can assume equally spaced
out values in the interval of [− 1, + 1] (Random_start? = FALSE).

Note: in models with no variability of some parameter p, μp stands in for the
common value of p.

Dependent Measure—Polarization. To measure polarization we adapt the Equal
Size Binary Grouping (ESBG) algorithm from Tang et al. [19], which gives a
continuous-valued metric we call ESBG Polarization, or just ESBG. The ESBG
measure is based on the ideal type of maximally polarized community. Such a
community is divided in two camps of equal size. These camps are very homoge-
nous, i.e. opinions of camp’s members are the same, but these camps are on opposite
poles of opinion scale, i.e. the distance of camps in opinion space is maximal. To
reflect this ideal type, ESBG firstly divides the population in two groups by a specific
version of k-means clustering algorithm. This algorithm divides the population in
two groups of equal size, but on the other hand it minimizes opinion heterogeneity
of these forcibly created groups. Then ESBG computes distance of group centroids
and mean deviation of groups’ members’ opinions around respective centroids. Then
ESBG value is computed as centroids’ distance divided by sum of 1 and mean devi-
ations of both clusters. Centroids’ distance and mean deviations of both clusters are
normalized by maximum possible distance which ensures that the resulting ESBG
is between 0 and 1, where 0 signifies perfect consensus and 1 signifies complete
polarization.

ESBG = Norm(B)

1 + Norm(w1) + Norm(w2)
(6)
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where,

Norm(x) = x√
4 × Number of Opinion Dimensions

= x

2
(7)

B = Absolute distance between the two cluster centroids

wi = Total mean deviation of agent opinions of cluster i from its centroid

Analysis:We performedmultiple regression for our dependentmeasure on the exper-
imental variables of interest: με, σε, μα , σα , μSP I RO , σSP I RO , Evenness of Popula-
tion Size, and Randomness of initial opinions. To avoid making assumptions about
linearity of relationships we treated each variable as a factor. In our results section we
report mean ESBG value of all simulations run for a given combination of variables.

3 Results

The relationships between polarization and με of each of our models show qualita-
tive differences (Fig. 1). Firstly, we observe that the two models with dynamically
updated identity groups (VBI and VBVI) maintain polarized states for much higher
values of με than the other models. Secondly, we observe the lowest polarization in
the Heterogeneous Boundary Model (VB), the difference in polarization is striking
and significant especially for lower values of με (approximately in interval 0.10–
0.23). Thirdly, we observe the effect of deterministic starting conditions: polariza-
tion produced by the DHK model in response to με values qualitatively dramati-
cally differs from all other models based on or employing random start conditions.
Fourthly, we observe that σSP I RO has a negligible effect—models VBI and VBVI
differ just slightly and they reachmaximal difference only for the highest investigated
value of με. Fifthly, we observe that μα and Size of Population (N) have effect on
models not employing heterogenous Boundary (DHK and RHK), models VB, VBI
and VBVI seem to qualitatively keep their behavior despite the values of μα and N.

Here we report that evenness appears to drive a qualitative change in the
Polarization-Boundary relationship only when the initial condition is not random-
ized (DHK).We originally investigated the effect of population size.We surprisingly
found that size itself does not matter much, but what matters for DHK was whether
the population size is even or odd. For example, even for DHK it had almost no effect
whether the size of population was 20, 100, or 256 agents, but it had a substantive
effect whether the size was 21 instead of 20, or 101 instead of 100, or 257 instead
of 256 agents. For the final presentation of our analyses in this paper we chose N
= {100, 101}, since these sizes spot the effect of evenness and are heavily used in
the canon of literature. We intend to explore this methodological issue further in a
subsequent paper (in preparation).



Identity Drives Polarization: Advancing the Hegselmann-Krause Model … 257

Fig. 1 ESBG-με relationship for each model. Panels represent different conditions of population
evenness and conformity. Ordinate in each panel is the Mean ESBG at the end of all simulations
with the given parameter combination

Mean ESBG polarization differs across our models in the following way: VB
< DHK < RHK < VBVI < VBI (Table 1). The two models with identity in them
have the highest mean polarization—showing that identity drives polarization and
impedes consensus. In all the models, με is negatively associated with polarization
as expected (Table 2).

A consistent finding throughout our analyses is that higher σε brings down polar-
ization dramatically (Table 2), and its influence is stronger than that of the mean
boundary. This is also evident in Figs. 2 and 3. We interpret this as an unbalanced
mitigating influence of agents with higher-than-average boundaries (see discussion).
σSP I RO also lowers polarization, although far not as strongly as σε.

The main drivers of polarization are μSP I RO , σε, and με. This can also be seen
in Figs. 2 and 3 for a model with heterogeneous identity (VBVI). Interestingly
however,μSP I RO systematicallymodulates the relationship betweenμε andpolariza-
tion (Fig. 3). For μSP I RO values from 0.25 to 0.61, μSP I RO is positively associated

Table 1 Summary statistics for ESBG in different models

Model N Min Max IQR Median Mean SD SE CI

DHK 84 0 0.419 0.361 0.282 0.199 0.177 0.019 0.038

RHK 5040 0 0.534 0.371 0.304 0.242 0.167 0.002 0.005

VB 80,640 0 0.872 0.251 0.026 0.114 0.157 0.001 0.001

VBI 483,840 0 0.937 0.154 0.408 0.378 0.177 0.000 0.000

VBVI 1,935,360 0 0.940 0.208 0.405 0.354 0.195 0.000 0.000
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Table 2 Regression on ESBG in model VBVI. (N = 460,800)

Estimate Std. Error t value Pr(>|t|)

Intercept 0.401 0.001 354.267 0.000

σSPIRO (contrast: 0)

0.05 − 0.015 0.001 − 21.450 0.000

0.10 − 0.027 0.001 − 38.374 0.000

0.15 − 0.036 0.001 − 50.784 0.000

μSPIRO (contrast: 0.25)

0.37 0.057 0.001 65.217 0.000

0.49 0.110 0.001 125.936 0.000

0.61 0.150 0.001 171.538 0.000

0.73 0.076 0.001 86.889 0.000

0.85 0.091 0.001 103.378 0.000

σε (contrast: 0)

0.05 − 0.021 0.001 − 28.738 0.000

0.10 − 0.129 0.001 − 180.832 0.000

0.15 − 0.151 0.001 − 210.761 0.000

με (contrast: 0.10)

0.15 − 0.004 0.001 − 5.087 0.000

0.20 − 0.029 0.001 − 36.039 0.000

0.25 − 0.063 0.001 − 78.256 0.000

0.30 − 0.112 0.001 − 139.412 0.000

Random_start? (contrast: TRUE)

FALSE 0.022 0.001 43.744 0.000

σα (contrast: 0)

0.10 − 0.001 0.001 − 1.230 0.219

μα (contrast: 0.20)

0.80 − 0.005 0.001 − 9.537 0.000

Population size (contrast: 100)

101 − 0.008 0.001 − 15.579 0.000

with polarization across boundary values. However, polarization decreases when
μSP I RO is raised from 0.61 to 0.73 and 0.85. We interpret this as a consequence of
the dominant system dynamics transitioning from polarized state to fractured state
for the highest μSP I RO values (see Sect. 4).
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Fig. 2 ESBG-με relationship for model VBVI for different values of μSP I RO . Panels represent
different values of σε

Fig. 3 ESBG-μSP I RO relationship for model VBVI for different values of με . Panels represent
different values of σε
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4 Discussion and Future Work

In this work we implemented a novel algorithm for dynamic detection of identity
groups based on their opinions. In recognition of the common observation that people
differ in their judgements on how many partisan groups there are in a society, and
which individual belongs to which group, we parameterized our implementation of
identity with the variable we call SPIRO.

SPIRO determines how closely a pair of agents must be to be considered for
identity group detection. Through visual inspection of the course of the models’
runs, it appears that higher SPIRO values (0.73 and 0.85) causes the opinion space to
be split into more identity groups. The effects of these parameters will be explored
in detail elsewhere (in preparation). In our last model we allow SPIRO to vary across
agents to account for people perceiving different sets of identity groups around them.
This makes our model more realistic, while being computationally efficient due to
our method of partitioning.

Through our analysis of the behaviors of our models, we are able to determine
which experimental variables in our different models are the most relevant for polar-
ization.We find that models with identity exhibit a higher average polarization across
their different experimental conditions than models without identity. We also find
that introducing heterogeneity in both Boundary and SPIRO in our model lowers
polarization overall. This is admittedly a simplistic way of analyzing the effects of
identity and heterogeneity. We will dive deeper into the role of these model features
in a future article.

We also observe that the influence of identity on polarization depends on the
SPIRO value of the agents. For moderate values of mean SPIRO, polarization
monotonically increases with SPIRO. However, the highest two SPIRO values we
have considered here show a deviation from this trend and show reduced polariza-
tion. Since the ESBG algorithm privileges bi-polarization over fractured states with
multiple tight clusters, this can be explained by a fracturing of the agent population
into several opinion camps. This is another aspect of our analysis that we will discuss
in more detail in a future work.

Going forward, we will also be looking at the effect of heterogeneity of boundary
and SPIRO on the behavior of the system. Previous studies have looked at the influ-
ence of boundary heterogeneity on consensus [20] and the number and size of opinion
clusters [6, 21]. Consistent with these studies we find that heterogeneous ε causes
the system to tend towards less polarized states, possibly towards consensus. This is
likely due to the possibility that agents with above-average ε act as bridging agents
due to their openness to a wider range of opinions, while the agents with below-
average εmight not have much of an influence on the system dynamics. We purport a
similar mechanismmight be at play in the case of the heterogeneous SPIROmodel—
variance in group classification might lead to less clearly defined identity bubbles,
which would allow some agents to act as bridges between clusters that emerge due
to identity effects.
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