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AIH	 Autoimmune hepatitis
ALD	 Alcohol-associated liver disease
AUD	 Alcohol use disorder
DAMPs	 Damage-associated molecular patterns
ERAS	 Early recovery after surgery
FFAR	 Free fatty acid receptor
FGF	 Fibroblast growth factor
FMT	 Fecal microbial transplantation
FOBT	 Fecal occult blood test
FXR	 Farnesoid-X-receptor
GPR	 G-protein-coupled receptor
GPS	 Global positioning system
LPS	 Lipopolysaccharide
MALT	 Mucosa-associated lymphatic tissue (in Gut referred to as GALT)
MAMPs	 Microbe-associated molecular patterns
MS	 Microbiome science
NAFLD	 Non-alcoholic fatty liver disease
PAMPs	 Pathogen-associated molecular patterns
PBC	 Primary biliary cholangitis
PPPM	 The predictive, preventive, and personalized medicine
PRR	 Pattern recognition receptor superfamily, including membrane and cyto-

solic receptors such as TLR, RLR, NOD, CLR
PSC	 Primary sclerosing cholangitis
RIP	 Receptor-interacting protein kinase family
SCFA	 Short-chain fatty acids
SIBO	 Small intestinal bacterial overgrowth
TGR5	 Takeda G-protein-coupled bile acid receptor

1	� Aim of the Chapter

Thanks to the exponential acceleration of a microbiome science (MS), in the near 
future we are about to witness the technological singularity. At the explosion, the 
realms of the predictive, preventive, and personalized medicine (3PM/PPPM) and 
microbiome research are bound to gravitate to the mysterium coniunctionis. Our 
chapter is aimed at providing the reader with an outlook on the particular topics 
related to the role of microbiome in liver diseases which belong to the top-ten causes 
of a global burden of morbidity, mortality, and cancer. And to emphasize until now 
hidden potential of microbiome analysis and healthy microbiome promotion in the 
practical application of 3PM as well as to stimulate further research expanding the 
visions of the next-generation healthcare.
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2	� Introduction

Microbes rule the world. It is that simple [1]

Microbial ecosystem is the oldest, richest, and most diverse living ecosystem on 
the planet hard-wired to all its vital processes [2, 3]. The approximately two-hundred 
thousand years old humankind of our kind with some 10,000 generations has 
evolved in an unimaginably diverse niche of microbes (our 719 billionth cousins-
predecessors)—whose presence around-, on-, and in the body has become the nec-
essary condition for survival [4]. Therefore, microbes in general are not to be 
considered enemies, but allies. Healthy microbiome implies healthy individual in 
the manner akin to the known statement “Mens sana in corpore sano” (originally 
from the first century AD, a Latin phrase by Roman poet Juvenal, translated in 
English as “a healthy mind in a healthy body”). Healthy microbiome is abundant, 
rich, diverse, and resilient—an ecosystem similar to a rainforest [5, 6]. Being at the 
same time an organ of the body and external environment, the microbiome of human 
being—holobiome, represents more than half the body’s cells and 99% of its 
DNA. The main difference from the human genome is that the microbiome can be 
changed—consciously for 3PM, or unconsciously by just living in the modern 
world. Manipulation of microbiome for prediction, prevention, and personalization 
has become the main area of interest of the modern hepatology. Inhabitants of the 
Western and westernized world are living amidst the microbiome diversity crisis. 
Their microbiome is like the ecosystem of a desert – deprived of diversity, richness, 
and resilience [5]. Human microbiome diversity  – the necessary condition for a 
good health – has co-evolved with humans over the same two hundred thousand 
years, but at a mutational pace of 20 min per one microbial generation. They were 
living in harmony with the human genome (open for a genetic change at a pace of 
20 years per one generation) until recently. The microbiome extinction coincides 
with the modernization of our society lasting roughly five human generations (but 
2.5 million microbial generations); therefore, it is of no surprise that human genome 
has been caught absolutely unprepared [5]. The resultant dysbiosis-associated 
microbiome/genome functional mismatch is the root cause behind the chronic endo-
toxemia and low-grade inflammation leading to a pandemic of a non-communicable 
diseases (NCD) including chronic liver diseases (CLD) [7]. Gut is by far the great-
est, the most diverse, and the most health-influential of the human body microbi-
omes and, if not stated otherwise, is referred to in this chapter. Provided healthy gut 
microbiome is the body’s intelligence agency responsible for peaceful handling of 
an external affairs (stressors and diet), liver - via the gut-liver axis - is its closest 
internal affairs proxy.

3	� Microbiome in Historical Context and State of the Art

Apart from the Ancient China’s Yellow soup for the soul—which was in all the 
probability the first mention of a fecal microbial transplantation (FMT) for the gut–
brain axis in the history of medicine, as well as of the Ancient Greece’s “Let your 
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food be thy medicine” (Rephrased by J. F. Cryan to “Let food for your microbes be 
your medicine“)—which was probably the first record on a prebiotic nature of the 
food, the modern microbiome science (MS) has begun with the technology: Antony 
van Loewenhoek’s first-ever use of the microscope in 1683 displayed his own oral 
microbes, some still moving (“animalcules were in such enormous numbers that all 
the water... seemed to be alive”). More recently, the Nobel laureate of 1908 Elie 
Metchnikoff (then at the Pasteur’s Institute), after leaving macrophages to their 
own, begun to study longevity and, as described in his book The Prolongation of 
Life, noticed that the oldest inhabitants of the Parsa consumed a noticeably more 
lactic bacteria from a fermented food. Strachan and Bloch have laid foundations to 
the hygienic hypothesis of a global tsunami of NCD’s but, the really new era of MS 
exploded (according to the PubMed statistics) some 15 years ago as a consequence 
of advances in molecular biology and computer science. An enormous speed of—as 
Susan D. Lynch put it – “the enabling tools to interrogate microbial dark matter,” 
begun with the discoveries of microbiome’s: (1) composition via its genetic struc-
ture sequenced by 16S sRNA technology, followed by microbiome’s, (2) functional 
capacity (by the shotgun metagenomics), (3) gene expression (metatranscrip-
tomics / RNA), (4) protein catalytic function (metaproteomics), and (5) metabolic 
activity of molecules (metabolomics) [4, 8–10]. Clearly, the real MS revolution is 
coming now—with the microbiome structure being currently linked with its func-
tion measured by molecular inputs and outputs. This has laid the foundations for 
brand-new areas of research such as foodomics, personalized diets, microbiome-
pharmacogenetics, phage therapy, etc. Microbiome output interacts with receptors 
on the nearby and distant host cells (such as GPR, FFAR, PRR, TLR, LRR, RIG-1, 
CTLR, CB1, FXR, TGR5), and with nerve-endings of (e.g.) vagus nerve, and create 
a communication web with the distant organs and systems of the body; Emeran 
Mayer coined the term connectome [11, 12]. Its various extensions are called gut–
liver axis, gut–brain axis, gut–muscle axis, etc. [13].

4	� Understanding Microbiome Taxonomy and Function

The term microbiome was introduced by Joshua Lederberg in 2001 as a community 
of commensal, symbiotic, and pathogenic microorganisms within a body space or 
other environment. In this chapter, we use it as an umbrella term.

All microorganisms are given a name based on taxonomical rank-based classifi-
cation. In the currently accepted scientific Classification of Life, there are three 
domains of microorganisms: the Eukaryotes, Bacteria, and Archaea. Within each 
domain, a several level species classifications can be found. Organized in a descend-
ing scale the domain level is followed by kingdom, division/phyla, class, subclass, 
order, suborder, family, genus, and species; in addition, species can involve several 
strains [14, 15]. In the scientific classification established by Carl von Linné, each 
distinct species is assigned to a genus using a two-part binary name (for example 
Escherichia coli). In 1987, Carl Woese divided the Eubacteria into 11 divisions 
based on 16S ribosomal RNA (SSU) sequences, which are—with several 
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additions—still used today [16]. In the gut so far, dozens of bacterial phyla have 
been identified of which Firmicutes, Bacteroidota, Proteobacteria, Actinobacteria, 
and Verrucomicrobia are the most abundant; from the perspective of abundance, the 
first two phyla represent 90% of the microbiome [15]. Other phyla include 
Fusobacteria, Chloroflexi, Flavobacteria, Sphingobacteria, Planctomycetes, 
Cyanobacteria, Thermomicrobia, Xenobacteria, Aquificae, Chlorobia, and 
Chrysogenetes. The most abundant of species are Enterobacterium rectale, 
Bacteroides vulgatus, and Escherichia coli. Beneficial are species known for their 
symbiotic metabolic properties (see below) such as Akkermansia muciniphila, 
Roseburia spp, short-chain fatty acids-producing Bifidobacteria, Lactobacillus spp., 
etc. [14, 17].

The gut microbiome contains all the genomes of microbes inhabiting the gut 
including bacteria, archaea, viruses, and fungi [18]. Spurious is the categorization 
of phages, viruses, plasmids, prions, viroids, and free DNA. The term microbiome, 
as it was originally postulated, includes not only the community of the microorgan-
isms, but also their “theater of activity” [19]. The latter involves the whole spectrum 
of molecules produced by the microorganisms, including their structural elements 
(nucleic acids, proteins, lipids, polysaccharides), metabolites (signaling molecules, 
toxins, organic, and inorganic molecules), and molecules produced by coexisting 
hosts and structured by the surrounding environmental conditions [20]. The term 
microbiome is also sometimes confused with the metagenome. Metagenome, how-
ever, is clearly defined as a collection of genomes and genes from the members of a 
microbiota. Microbiome  - personal like a fingerprint and in adulthood relatively 
stable - can be characterized by bacterial clusters, grouped by some (but not all) 
authors to a three enterotypes: I. dominated by Bacteroides, II. by Prevotella, 
III. by Ruminococcus [21, 22]. Microbial community composition defined by the 
metagenome of a single sample can be characterized by its alpha-diversity 
(α-diversity), a numeric value summarizing the structure of the community, with 
respect to its richness, evenness, or both. Alpha-diversity belongs to the most vali-
dated metagenomic marker of gastrointestinal health. The loss of diversity has been 
linked to severity of a multitude of diseases. There is not yet a gold standard regard-
ing α-diversity measures, even though the number of species (or Operational 
Taxonomic Units) and the Shannon diversity index are the two most widely used. 
The measure of similarity or dissimilarity of two communities is defined by beta 
diversity, which quantifies the (dis-)-similarities between communities or samples. 
Statistical or geometry approaches such as Bray-Curtis, Jaccard, and Jensen-
Shannon divergence calculate such distances by counting the overlapped compo-
nents, as well as an analysis of variance (PERMANOVA) or of similarity (ANOSIM). 
Finally, we can calculate gamma-diversity as the total observed richness of all 
samples within a habitat.

When reading MS literature in hepatology, it is of uppermost importance to be 
aware of which taxa are discussed or compared with which. Qin et al. (using HMP 
database) were the first to describe alterations in microbiome typical for liver cir-
rhosis, Bajaj et al. have created the numeric good–to–bad taxa ratio called cirrhosis 
dysbiosis ratio, and Schnabl et al. shifted the attention to the microbiome’s function 
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and precision phage therapy—all considered the pioneering endeavors opening 
hepatology for 3PM/PPPM [14, 23, 24].

A healthy microbiome–host interface as photographed by the group from the 
Stanford is associated with a several liver health-sustaining features [4, 25–30]. The 
first, as mentioned above, is that the microbiome is rich in the number and abun-
dance of symbiotic microbial species and has low proportion of pathogenic micro-
organisms; this should produce a health-sustaining metabolic output, leading to 
eubiosis, thick mucus, and tightly sealed epithelium not penetrable to bacteria and 
their products such as PAMPs and DAMPs (Pathogen-Associated Molecular 
Patterns, and Damage-Associated Molecullar Patterns) [11, 15, 23, 27, 31–44]. On 
the one side, the healthy microbiome’s output should be rich in the liver health-
sustaining molecules or microvesicles such as: short-chain fatty acids (SCFA, butyr-
ate, propionate, acetate); vitamins; secondary bile acids; endocannabinoids and 
other lipids; aryl-hydrocarbon receptor ligands such as tryptophan; psychoactive 
substances (called by Anderson, Cryan and Dinan psychobiotics); enterosynes; bio-
transformed medical drugs (PD 1—programmed cell death protein 1-based immu-
notherapy, digoxin, acetaminophen); etc. Of note, health-sustaining microbiome 
metabolic output includes also microbe-associated molecular patterns (MAMP) and 
pathogen-associated molecular patterns (PAMP), of which the lipopolysaccharide 
(LPS) is the prototype as it is needed in low levels for the proper immune function, 
but is harmful in higher levels. As regards the biotransformation of drugs by micro-
biome, relevant to hepatology are the microbiome-dependent liver toxicity of 
paracetamol and the possibility to overcome PD 1 resistance of tumors by FMT [45, 
46]. On the other hand, healthy microbiome metabolism keeps under control the 
levels of pro-inflammatory cytokines and toxins such as trimethylamine N-oxide 
(TMAO); fructoselysine; imidazole propionate (IMP); paracetamol; etc.

5	� Microbiome and the Liver

With its 10–100 trillion of symbiotic cells, up to 1500 species, dozens of millions of 
genes and weight up to 1.5–2 kg, gut microbiome is the richest, the most diverse and 
the most influential part of a holobiome [11]. Although we will not focus on the 
fungal microbiome and virome, their content of up to 1013 and 1015 microorganisms, 
respectively, is no less remarkable and certainly worth further research in hepatol-
ogy [24, 47, 48]. The vertical microbiome gradient mirrors the health-sustaining 
abundances of microbes down the gastrointestinal tract from an oral cavity which 
contains 1011 bacteria, through stomach with 107, jejunum 107, ileum 1011, up to 
colon with 1014 bacteria, respectively [49]. The other features connected with the 
vertical gradient are the luminal pH (relevant also in the horizontal gradient), transit-
time (more than ten-times longer in the colon than in the small intestine), oxygen 
pressure, etc. [11, 13]. The two most important examples of a vertical microbiome 
gradient breakdown in hepatology are a small intestinal bacterial overgrowth (SIBO) 
and oralization of gut microbiome [50–52]. Liver health-promoting horizontal 
microbiome gradient refers to the different concentrations of hydrogen (pH), 
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oxygen, and symbionts / pathogens close to the gut mucosa as compared to the cen-
ter of the gut lumen [53]. There is no doubt that a liver-health promoting microbi-
ome is an ecosystem rich, diverse, and resilient like a rainforest and CLD-associated 
dysbiosis is more like a desert with a low diversity, low abundance of symbiotic 
species, overgrowth of pathogens, distorted gradients, and low resilience to changes 
[54–57].

The gut–liver axis originally introduced in the 80s has been recently recognized 
as the key pathogenetic component in-, and a potential therapeutic target of-, virtu-
ally all the liver diseases [13, 58–60]. The anatomy of the axis is composed of an 
afferent and efferent limb, represented by the portal vein, and biliary tree, respec-
tively. Between the two limbs lie the liver and the gut  - the latter composed of 
microbiome and the complex intestinal barrier [61]. The healthy microbiome helps 
to maintain an unimpeded integrity of a gut barrier which, above many other tasks 
protects its intimate anatomical and functional proxy—the liver [28, 62, 63]. The 
barrier is made up of several interacting layers: (1) luminal microbiome with patho-
gens located far from mucus/mucosa; (2) the tightly sealed intestinal epithelium 
with a protective layer of (3) mucus; and (4) the sub-mucosal cells of the immune, 
lymphatic, nervous and blood systems [64]. Via portal circulation of 1 L/min and 
connectome, liver is the proxy encountering all the microorganisms and molecules 
traversing the gut barrier [65]. Although microbiome is considered an organ of the 
body, it is also an ecosystem representing the outer environment. These Janus-like 
properties are crucial for leveraging microbiome potential for 3PM purposes in 
hepatology. To approximate the merit of a mucus layer—one of the sine qua non’s 
of gut barrier - Erica Sonnenburg uses the proverb “Good fences make good neigh-
bors.” Intestinal mucus prevents bacterial adhesion and translocation into the intes-
tine and is composed of two parts. One, adjacent to the intestinal mucosa and called 
“the de-militarized zone“ for its lack of bacteria, is rich in peptidoglycans produced 
by Paneth cells and immunoglobulin A (IgA) by plasmatic cells [13], [60]. The 
second, which is in the direct contact with the luminal microbiome, is the glycoca-
lyx produced by the goblet cells. Very rare exceptions notwithstanding, properly 
functioning mucus layer does not allow bacteria in the portal circulation and prop-
erly functioning microbiome governs the mucus barrier. Contact between the gut 
microbiome and the liver under physiological circumstances is thus relied only on 
the so-called postbiotics—products of microbiome. Any thinning and/or disturbed 
functionality of the mucus layer is the key component of the so-called leaky gut 
syndrome which has been proposed as the core pathophysiological mechanisms 
behind chronic liver diseases [66]. The most important global cause of thinning of a 
mucus layer is its consumption by dysbiotic bacteria; epitomized by Sonnenburgs 
as “hungry microbes eat you,” lack of dietary fiber which resists absorption in proxi-
mal gut causes starvation of colonic microbiome which then turns to mucus as the 
preferred source of substrates and energy [62]. Penetration of endotoxins such as 
LPS through the leaky gut results [67] in activation of the inflammatory process and 
inflammasomes. Moreover, dysbiosis induces MALT via regulatory T lymphocytes 
(Treg) and Th17 to the synthesis of transforming growth factor beta 1 (TGF β1), 
interleukin 17 (IL17), which regulate adipogenesis [35] and inflammation by 
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Foxp3+Tregs processes—thus contributing to the development of liver inflamma-
tion and steatosis. Tight junctions, integral part of the barrier can be loosened by 
direct effect of alcohol metabolism, high-fat diet, and dysbiosis, which further 
accentuate leaky gut syndrome and close-up the vicious circle leading to progres-
sive CLD [68]. Vertical microbiome gradient derangement, contributing to a leaky 
gut syndrome is characterized by the small intestinal bacterial overgrowth, and oral-
ization of gut microbiome – both driven majorly by changes in bile acids [50, 69–71].

In summary, the proposed cascade of events, leading to the tsunami of CLDs has 
been primarily driven by the Western lifestyle-induced extinction of microbiome 
diversity which has taken place over just the few last generations of human evolu-
tion and therefore could not be followed by an adaptation on the side of the human 
host genome [5]. This disequilibrium leads to the leaky gut, translocation of bacteria 
and toxins to the portal blood, creating an inflamed intrahepatic milieu leading to an 
attack to the liver parenchyma by the reactive oxygen species, inflammatory mole-
cules, and toxic metabolites; established is the state of chronic metabolic endotox-
emia, impaired metabolic homeostasis, liver steatosis, inflammation, and fibrosis 
[13, 60, 72].

6	� Liver Diseases and the Microbiome

6.1	� General Considerations

In the Western and westernized world, the burden of CLDs has been increasing and 
this trend is predicted to continue [73–75]. The main drivers behind the tsunami are 
how we move, eat, drink, think, feel, and what we consider important and true; with 
a resulting 1.5 billion global cases of CLD, caused in the West mostly by ALD and 
NAFLD, accompanied by an autoimmune syndromes and hepatitis C [69, 70, 76, 
77]. The individual and societal toll is mostly associated with the acute decompen-
sation of cirrhosis (AD) and the syndrome of an acute-on-chronic liver failure 
(ACLF) [78–80]. Before AD/ACLF, the usual timeframe of CLD’s progression 
spans over twenty plus years, leaving plenty of room for a 3PM intervention. Most, 
if not all, of the CLDs are to a certain extent pathogenetically linked with dysbiosis; 
however, in ALD, NAFLD, autoimmune etiologies, and in cirrhotic stage of all the 
etiologies, the dysbiosis is considered the key pathogenetic component [13, 80–84]. 
It is important to acknowledge that, the chicken-egg puzzle of what is damaged 
first—microbiome, or liver, has not yet been solved.

In any case, microbiome has become decimated and hostile by the lack of dietary 
fiber and gastric acid, long-term racism of sugar, tribism of ethanol, and genocide of 
antibiotics, xenobiotics, and psychopathic hygiene [5]. Deprived of a citizenship, 
multiculturalism, livelihood, manna and soma, microbiome fires weapons such as 
LPS, PAMPs, DAMPs, toxic bile acid cocktails, cytolysin, candidalysin, and kyn-
urenine [14, 70, 85]. The liver receives the blow and responds with an inflammatory 
cytokines and more toxic bile acid cocktails; it becomes stuffed by inflammatory 
cells and, as a consequence, hepatocytes cease to function or die [13, 59, 68].
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There is also a chaos on the border: The intestinal mucus layer has been demol-
ished by chemicals and eaten by gut bacteria - hungry due to the lack of dietary 
fiber; immune cells, mediators, and reactive oxygen species are scattered widely 
and gut pathogens have broken the gut barrier and translocate to the host portal 
blood to attack the liver. the liver is injured again and responds back again. And then 
the gut again. Up until cirrhosis stage of CLD will have evolved and, provided no 
effective therapy intervenes, cirrhosis decompensates, and other failing organs step 
in: kidneys; brain; coagulation; lungs. And, while before the decompensation 
patients might have had mild or no symptoms, at the stage of AD/ACLF, they are 
hospitalized, often on ICU with a dramatically reduced short-term survival [70, 78, 
80, 86]. The difficult task to predict and prevent decompensation or to personalize 
its management is being undertaken by the Microb-Predict and other consortia and 
laboratories and scientists; on the other hand, the core concept of 3PM/PPPM is to 
react to these trends and therefore, it has been integrating ACLD and MS to its 
nucleus for transcription, translation, and action.

6.2	� Alcohol-Associated Liver Disease

In addition to the general mechanisms behind the public health—scale domino of 
dysbiosis—leaky gut—risk of CLD, one in five people older than 15  years also 
drink alcohol [87, 88]. In the region of authors, the situation is even worse as the 
alcohol-associated liver disease (ALD; if not stated otherwise, ALD serves as an 
umbrella term, encompassing all the syndrome’s subtypes) is the leading cause of 
liver-related mortality, liver transplantation, liver morbidity, and cost to society [89, 
90]. Most of the heavy drinkers will develop steatosis and, in at least one-third of 
them, it will progress to steatohepatitis [91–93]. However, to explain that “only” 
8–20% of heavy drinkers will develop cirrhosis is the call for research into a genetic 
and enviromental (aggravating or protective) co-factors, of which one of the most 
promising is the microbiome [85, 94–96].

The main research questions in this regard are (1) can microbiome explain the 
extreme spectrum of ALD phenotypes in comparable drinkers; (2) can microbiome 
be used for the prediction of prognosis; and (3) for preventive and/or therapeutic 
interventions? [97, 98]. The spectrum of ALD is extreme: on the one hand, there are 
individuals with alcohol use disorder (AUD) who drink regularly harmful doses and 
have steatosis with minimal or no liver disease; and, on the other hand, many indi-
viduals drinking the same daily doses will develop severe alcoholic hepatitis (SAH), 
progressive ALD, cirrhosis, AD/ACLF, hepatocellular carcinoma (HCC), and are 
transplanted or die [87]. The one special entity, SAH, can develop on the top of 
almost any stage of ALD (albeit most of patients have cirrhosis), has no durably 
effective therapy and up to 50% 90-day mortality [93, 99].

In the landmark study from the Perlemuter group, researchers were able to deter-
mine the specific dysbiosis which was associated with the severity of ALD and to 
transmit ALD by transplanting this microbiome to animals [100]. This was the 
proof-of-concept that alcohol drives liver disease by hijacking microbiome, its 
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metabolites (PAMPs, beta-glucan, bile acids, low indoles, and SCFA), and gut bar-
rier/tight junctions, as recently reviewed elsewhere [94, 101]. Alcohol-associated 
dysbiosis concerns all the main domains—bacteria, fungi, and viruses. As for the 
bacterial dysbiosis, it has been shown that, patients with AUD and AH have dysbio-
sis with gradually decreasing beta diversity and Shannon alpha-diversity as com-
pared to healthy non-alcohol-drinking controls [97, 102]. However, severity of AH 
was not predicted by microbiome analysis [103]. There were several taxa which 
were associated with the severity of SAH, prognosis, and response to therapy, e.g., 
increased Veillonella and decreased Prevotella. However, the most striking feature 
of AH-associated dysbiosis was orders-of-magnitude higher abundance of 
Enterococcus faecalis in AH as compared to both AUD and healthy controls; sur-
prisingly enough, this feature did not correlate with the clinical outcome until the 
subjects with E. faecalis were further analyzed for strains producing the toxin, cyto-
lysin. Then there was a gradual increase in cytolysin-positive strains along the 
cohorts (controls—AUD—AH) and this time the presence of cytolysin–positive 
E. faecalis was strongly associated with mortality (p<0.0001). Absolutely fascinat-
ing example of personalized/precision approach is to target these cytolysin-
producing strains with phages - as already shown with C. crescentus and E. faecalis 
phages in experiment [102].

Taking into account that the effective therapy for SAH is an unmet need, it is of 
little surprise that the clinical research focused on new therapies targeting microbi-
ome [98, 104, 105]. The first study by Philips et al. has shown improved survival in 
patients with SAH not previously responding to standard of care, if they were 
administered FMT from healthy donors via the upper gastrointestinal tract for eight 
days (p = 0.018 vs. historical controls) [106]. More studies with FMT are needed 
and, according to the clinicaltrials.gov, several are ongoing (one of them at the insti-
tutions of the authors—NCT58806). A cautionary note is needed regarding FMT, as 
drug-resistant bacteria such as E. coli and viruses such as Monkeypox can be trans-
mitted [107, 108]. Promising piece of evidence for a predictive, preventive and per-
sonalized potential of certain gut microbial taxa is the case of Akkermansia 
muciniphila as a marker, predictor and therapeutic agent in AH [109]. Yet another 
way of addressing microbiome in ALD and AH/SAH are antibiotics [98]. A recent 
study has shown a promising alleviation of dysbiosis after therapy with rifaximin 
[97]. Moreover, the interesting 3PM aspect of this multicentric study was that base-
line microbiome signature was able to predict prognosis and response to therapy 
with rifaximin.

Very recent research from the Schnabl group has shed light on up to now rarely 
scrutinized virome and fungal microbiome in three cohorts (non-alcoholic controls, 
patients with AUD, and patients with AH). In the study on virome, authors have 
shown graded alterations along the three cohorts, with the most remarkable increases 
in AH patients of the Shannon diversity and of mammalian viruses such as 
Parvoviridae, Circoviridae, and Herpesviridae (especially EBV); moreover, results 
were corelated with the severity of liver disease as reflected in the model for end-
stage liver disease (MELD) score [110]. In another set of three studies, they pro-
vided evidence of a graded fungal overgrowth in patients with AUD and AH as 
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compared to non-drinking controls [111–113]. The most significant overgrown fun-
gus was candida albicans. As to the fungal diversities, beta diversity was not able to 
discriminate between AUD and AH, but was clearly distinctive of healthy controls; 
Shannon alpha-diversity was highest in AH patients and lowest in controls (similar 
to viral-, and at a difference with bacterial diversity). One of the conclusions was 
that fungal overgrowth is more dependent on the alcohol intake than on the 
stage of ALD.

As the crucial determinants of pathogenesis and mortality in ALD are microbi-
ome and long-term abstinence, respectively, it is logical to attempt to address them 
simultaneously. This has been done by Bajaj et al. in their landmark phase 1 ran-
domized study on patients with AUD addressing craving and AUD outcomes by 
single-dose FMT [114]. The FMT enema was selected in the OpenBiome for enrich-
ment with Lachnospiraceae and Ruminococcaceae. Patients in active arm post-
FMT had increased Shannon diversity, increased abundance of SCFA-producing 
Roseburia, Alistipes, and Odoribacter—usually decreased in ALD and cirrhosis, 
and reduced craving and AUD-related events.

6.3	� Non-Alcoholic Fatty Liver Disease (NAFLD)

With the global prevalence of 25–30%, NAFLD (currently in the process of re-
naming to metabolic-associated fatty liver disease—MAFLD and, in 2023 to stea-
totic liver disease - MASLD) is the most common etiology of CLD and, as a 
consequence of a pandemic of diabesity, it is the fastest growing indication for 
liver transplantation [76, 115, 116]. Similar to ALD, NAFLD encompasses a 
spectrum with only 10–20% of patients progressing to cirrhosis via non-alcoholic 
steatohepatitis with fibrosis over at least 10  years—the interval open for 3PM 
intervention [117, 118]. And, also similar to ALD, microbiome is one of the prime 
suspects modulating the phenotype toward benign or progressive disease or HCC 
[101, 119, 120]. As NAFLD is considered the liver manifestation of metabolic 
syndrome, transfer of obesity by FMT in animals has been taken as a proof-of-
concept that NAFLD pathophysiology may be driven by dysbiosis [121, 122].

Obesity plus inactivity with sarcopenia, and insulin resistance-mediated delivery 
of free fatty acids from adipose tissue to the liver are the main factors leading to the 
first hit in the multiple-hit hypothesis of NAFLD. In the meantime, obesity is - 
according to some - associated with certain enterotypes, and certain microbiome 
signatures are associated with metabolic endotoxemia, low-grade inflammation, 
oxidative stress, endogenous alcohol production and various other “second and fur-
ther hits,” to the already steatotic liver; this cascade of events leads to a progression 
of NAFLD to NASH, cirrhosis, liver failure, and/or HCC [120, 123–125]. NAFLD-
associated dysbiosis is characterized by reduced SCFA producing Firmicutes, 
Ruminococcaceae, Prevotella, and Faecalibacterium and over-abundance of 
Bacteroides, Ruminococcus, Proteobacteria, and Enterobacteriaceae—the latter 
linked with the production of alcohol, the pathophysiological step toward NAFLD 
known as autobrewery [120, 126, 127].
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However, microbial and metabolical signatures typical for NAFLD and its pro-
gression are less well characterized and more controversial than in ALD[59, 101]. 
Apart from autobrewery mechanism of liver injury, over-abundant gram-negative 
bacteria increase levels of LPS which inflames the gut and makes it leaky, activates 
inflammasome in the liver and, recruit macrophages to the adipose tissue; at the 
same time, depleted taxa produce less SCFA with their positive functions left lack-
ing, which closes the vicious circle of a leaky gut, translocation, inflammation, 
metabolic derangement, and liver injury [128, 129]. Crucial in development and 
progression of NAFLD and NASH is the interplay between bile acids, FXR, FGF 
19, and microbiome; dysbiosis leads to a skewed bile acid signaling with down-
stream effect on fibrogenesis [130–132].

Outlier between the usual microbiome-based pathophysiological concepts is the 
relationship between SCFA-producing bacteria and progression of NAFLD [101]. 
While SCFA are in general, as well as in other liver diseases, considered beneficial 
molecules and their producers a beneficial members of microbiome—usually asso-
ciated with less inflammation, better energy metabolism, satiety, better gut barrier 
and a good liver prognosis, in NAFLD the associations tend to differ [103, 133]: 
Higher stool SCFA (and their producers, such as several Roseburia species and 
Faecalibacterium prausnitzii) of animals and patients with NAFLD associates with 
a more progressive disease, more inflammation, more fibrosis, and worse progno-
sis [134].

The foundations of a modern predictive and personalized medicine in a wider 
NAFLD realm were laid by the landmark study by Zeevi et al. [135]. Authors have 
shown that the main determinant of a metabolic response to a defined meal (the 
primordial pathomechanism in NAFLD) was the microbiome. They postulated the 
possibility of a microbiome analysis-based personalized nutritional intervention 
in a foreseeable future. A more recent follow-ups on this line of research are person-
alized approach to a weight loss, tailored according to host–microbiome character-
istics; and the meta-analysis showing that, Lactobacillus supplementation positively 
impacts on glycemic and lipid indices [136, 137].

Twenty-one studies (considerably heterogeneous) were scrutinized in a meta-
analysis of the first-generation probiotics and synbiotics in NAFLD patients; 
improvements in liver enzymes, steatosis, and liver stiffness were found but person-
alized recommendations on the certain type of biotic for certain patients/phenotypes 
of NAFLD could not be drawn [138]. As stated above, Lactobacillus supplementa-
tion had a positive impact on glycemic and lipid indices [136, 137]. Moreover, spe-
cific strains of Faecalibacterium prausnitzii were found to regulate microbiome and 
improve NAFLD in mice [139]. Currently, there are no ongoing studies with the 
next-generation biotics such as phages, or engineered bacteria in NAFLD/
NASH. One outstanding exception is the domain of microbiome-bile acid signaling, 
where the focus of recent interest has been the FXR/FGF-19 pathway; obeticholic 
acid and engineered FGF 19 analogue are the studied molecules, with biopsy-
proven NASH the indication. Of interest in this regard is as of now unpublished 
finding from GwangPyo Ko group of a reduced liver steatosis by a cell-free super-
natant (a postbiotic [P9]) of Akkermansia muciniphila via GLP-1 pathway.

L. Skladany et al.



153

FMT has been formally investigated in three studies on a metabolic syndrome 
and two in NAFLD; while awaiting more data, experts doubt that FMT without a 
causal long-term lifestyle intervention could lead to a sustained benefit [101, 
140, 141].

6.4	� Autoimmune Diseases and the Microbiome

Autoimmune diseases of the liver comprise three major diseases - autoimmune hep-
atitis (AIH) with a prevalence of 0.5–1 cases per 100,000 inhabitants [142], primary 
biliary cholangitis (PBC) occurring in 20–40 cases per 100,000, and primary scle-
rosing cholangitis (PSC) with 6–10 cases per 100,000  in the Caucasian 
population[143].

In general, the pathogenesis of autoimmune liver diseases is not completely 
understood. Recent data from the genome-wide association studies and the 
multi-omic (metagenomic and metabolomic) studies of the microbiome have 
underlined some potential mechanisms by which the microbiome could play a 
role in the development of autoimmunity [144, 145]: a unique pattern of genetic 
susceptibility to immune system recognition of antigens with various HLA hap-
lotypes, a unique succession of changes in the microbiome during immune sys-
tem maturation leading to selective immune tolerance to various antigens 
encountered in the environment, the state of mucosal homeostasis balancing a 
pro-inflammatory and gut barrier disturbing microbiota and their metabolites 
with anti-inflammatory and gut barrier promoting processes, a liver immune 
system homeostasis balancing the immune response to microbial antigens, 
metabolites, and signaling molecules reaching the liver from the gut by promot-
ing either anti-inflammatory or pro-inflammatory state, a toxic effect of various 
food additives, industrial or household pollutants disrupting the mucosal or liver 
immune system homeostasis.

6.5	� Autoimmune Hepatitis

Autoimmune hepatitis (AIH) is characterized by the natural history of successive 
bursts of varying intensity causing inflammatory destruction of hepatocytes. The 
actual trigger of the inflammation is unknown. The disease is not considered cur-
able, but the established treatment is effective in the great majority of cases[146]. 
For patients progressing to decompensated cirrhosis liver transplantation remains 
the therapy of choice.

Studies of the microbiome in AIH have revealed a consistently increased abun-
dance of Veillonella, Streptococcus, Lactobacilli, Lachnospiraceae, Bacteroides, 
Roseburia, Ruminococcacae, and Klebsiella. In contrast, the depletion of 
Bifidobacteria and Clostridiales has been reported [147]. The presence of a suffi-
cient abundance of Bifidobacteria could also increase the chances of disease remis-
sion after therapy [148].
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The mechanisms by which these bacteria might affect the pathogenesis of AIH 
are unknown. So far, there is no established cause and effect relationship. One 
hypothesis suggests that microbiota changes could lead to lower metabolic produc-
tion of SCFA, increased intestinal permeability resulting in innate immunity (by 
RIP3) activation of liver macrophages. [149–151]. Moreover, the spectrum of bile 
acids and their metabolites has also been implicated in the regulation of T cells 
balancing Th17 and Treg response. Some proof-of-concept studies in animal mod-
els have confirmed these proposed mechanisms. Improvement in AIH by dietary 
fiber, probiotics (including Bifidobacteria and Lactobacilli), or butyrate supplemen-
tation via increase in Treg/T17 ratio, expression of tight junction proteins, decreased 
LPS translocation/TLR activation, and a decreased E. coli protein in the liver were 
displayed [150, 152, 153]. Moreover, FMT attenuated liver injury, bacterial translo-
cation, and improved the imbalance between helper and regulatory splenic T 
cells [154].

6.6	� Primary Biliary Cholangitis

Primary biliary cholangitis (PBC) is characterized by inflammatory destruction of 
the ducts transporting bile from the liver to the digestive tract. The actual trigger of 
the inflammation is still unknown with autoimmunity likely involved in its patho-
genesis due to the frequent presence of anti-mitochondrial or specific anti-nuclear 
autoantibodies (anti-gp210 or anti-sp100) and the presence of lymphocytic infiltrate 
in the proximity of the bile ducts [155]. Without treatment, more than 50% of cases 
progress to cirrhosis and end-stage liver disease. Since 1987 [156], a naturally 
occurring secondary bile acid ursodeoxycholic acid (UDCA) has been successfully 
used for treatment. However, approximately 20–40% of cases do not respond to 
UDCA therapy [157, 158]. Second-line add-on therapy with obeticholic acid or 
fibrates has been used in these patients [159].

Several studies of microbiome, mainly in the Asian population, have reported an 
increased abundance of several species: Haemophilus, Veillonella, Clostridiales, 
Lactobacilli, Streptococci, Pseudomonas, Klebsiella, Bifidobacterium, and an 
unknown genus from the Enterobacteriaceae family [144]. In contrast, several spe-
cies have been reported reduced such as Bacteroidetes, Sutterella, Oscillospira, and 
Faecalibacterium. The common ground for these changes is not completely under-
stood but it could be associated with the decreased metabolic output of the butyric 
acid. In addition, the decrease in Faecalibacterium was associated with non-response 
to UDCA.  As stated above, Bacteroidetes and Faecalibacterium prausnitzi are 
known butyrate-producing bacteria and a sufficient butyrate concentration in the gut 
is indispensable for healthy mucin production ensuring a normal function of the 
intestinal barrier [139].

In PBC, the autoantigen of anti-mitochondrial antibodies displays structural sim-
ilarities with the human E2 component of the mitochondrial pyruvate dehydroge-
nase complex (PDC-E2). Since PDC-E2 is also a commonly occurring enzyme 
among the various bacterial species, exposition to this antigen through the disrupted 
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intestinal barrier in a genetically susceptible individual may explain the origin of 
autoimmunity in PBC [160].

6.7	� Primary Sclerosing Cholangitis

Primary sclerosing cholangitis (PSC) is characterized by the progressive fibrosing 
damage of the intrahepatic and extrahepatic bile ducts leading to impairment of bile 
flow and eventually biliary cirrhosis.

Natural history is marked by variable progression rate toward end-stage liver 
disease and less frequently to cholangiocarcinoma [155]. The trigger of the inflam-
mation is not known, but autoimmunity is suspected due to its association with 
inflammatory bowel disease in 60–80% of cases, and frequent detection of autoan-
tibodies against the cytoplasm of neutrophils.

Currently, there is no established treatment with liver transplantation remaining 
the only curative option. UDCA therapy is recommended by some authorities for its 
proven effect in lowering the markers of cholestasis and improving the quality of life. 
The studies have explored the mechanisms linking the genetic predisposition with 
the immune system and the microbiome. The microbial composition can influence 
the balance of the immune system directly when microbes or their fragments cross 
the dysfunctional intestinal barrier. Moreover, products of bacterial metabolism also 
influence the host immune system, as some are being absorbed into the bloodstream.

Current understanding of the pathogenesis of PSC highlights the central role of 
the microbiome in the maintenance of chronic inflammation by shifting the 
mucosal homeostasis toward intestinal barrier dysfunction, activation of several lin-
eages of the immune system, and homing of gut-tropic lymphocytes in the liver 
endothelium [161]. Studies have reported compositional changes of the gut micro-
biome in PSC compared with healthy controls and newer studies are emerging with 
data on the functional differences.

Microbiome studies in patients with PSC have revealed consistent enrichment in 
various taxa including Clostridiales, Streptococcus salivarius, Veillonella dispar, 
Ruminococcus gnavus, Bacteroides fragilis, Enterobacteriaceae, Lactobacilli, 
Blautia, Enterococcus, Rothia. A shotgun metagenomic sequencing of the fecal 
microbiome also showed a markedly reduced gene richness compared to healthy 
controls [144]. Authors have concluded that Veillonella species were more preva-
lent, with decreased abundance after UDCA therapy; however, the mechanisms by 
which Veillonella is more abundant and how it may affect the natural history of the 
disease have not yet been deciphered [144].

Interestingly, patients with associated inflammatory bowel disease have a dis-
tinct profile of the microbiome compared to patients with pure PSC or healthy con-
trols [162, 163]. A recent study of the fungal microbiota in PSC patients reported 
increased diversity with increased abundance of Exophiala genus and 
Sordariomycetes class and a decrease in Sacharomycetacae [164]. Bile microbiota 
has also been studied in PSC patients, but the results are not consistently different 
from healthy controls [144].
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In contrast, oral microbiome changes copied those of the fecal microbiota dis-
playing an increased abundance of Streptococcus salivarius, Veillonella parvula, 
Actinomyces, and Bifidobacterium in PSC patients compared to healthy con-
trols [165].

Functional studies have revealed lowered content of the butyrate, a different 
metabolite content, and a decreased total bile acid pool with a lower conversion 
from primary to secondary bile acids [166]. Increased concentration of secondary 
bile acids in the liver bile has been linked to inflammation, cholestasis, gallstone 
formation, and carcinogenesis, as well as to modulation of FXR or TGR5 receptors 
on the natural killer cells, liver or intestinal macrophages, or intestinal dendritic 
cells. Bile acids acting on both receptors modulate the immune response against 
inflammation by suppressing the nuclear factor NF-kB signaling pathways and 
modulating the balance between the Treg and Th17 cells in the gut-liver axis.

Data from the studies with vancomycin have suggested that the observed 
increased conversion of primary to secondary bile acids can be reversed. Treatment 
with vancomycin resulted in depletion of the Gram-positive Firmicutes including 
the Clostridium species, which are known for their dehydroxylation activity. Indeed, 
vancomycin decreased fecal secondary bile acids and their postprandial plasma 
concentration [167, 168]. This concept has been clinically tested in small trials of 
patients with refractory PSC receiving oral vancomycin demonstrating a positive 
effect while larger randomized trials are warranted [169, 170]. Other antibiotics or 
fecal microbial transplantation [171] have so far reported less promising results in 
comparison with vancomycin alone [161, 172].

6.8	� Liver Cirrhosis, Acute Decompensation and Acute-On 
Chronic Liver Failure

Cirrhosis is the final stage of the sufficiently long-lasting chronic liver diseases of 
various etiologies, characterized by an increased collagen deposition, distorted 
architecture and, gradually decreasing volume of hepatocytes despite their intensive 
regeneration [70, 173]. Being the increasing cause of morbidity and mortality glob-
ally, the prevalence of cirrhosis in Slovakia is highest in the world and, liver-related 
mortality is the number-one cause of death in 25–45 years old [7, 174].

Recently, dysbiosis has been proposed as the key factor associated with the transi-
tion from a pre-cirrhotic stage of CLD to cirrhosis, and from compensated to decom-
pensated cirrhosis with the time-to-decompensation of 10  years, time-to-ACLF 
2 years, and time-to-death 2 months [80, 86, 175]. Gut microbiome signatures could 
thus become the biomarkers discriminating asymptomatic-stage cirrhosis in popula-
tion for prevention, for prediction of decompensation in diagnosed yet stable/asymp-
tomatic cirrhosis, as well as for prediction of prognosis after decompensation.

After first defining the metagenomic signature for non-invasive detection of 
advanced fibrosis (pre-cirrhotic stage of CLD), Loomba et al. have also detected a 
19–microbes-containing signature, distinguishing cirrhosis—with an unprece-
dented area under receiver operating characteristic (AUROC) of 0.91 and validated 
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it against various geographical regions and degrees of fibrosis [32, 176]. Moreover, 
with the 7% of adults (not aware of any liver disease) having fibrosis, this direction 
of research is absolutely crucial for a modern 3PM hepatology for several other 
reasons [177]: First, cirrhosis fulfills all the WHO criteria for screening except 
one—the widely available, affordable, and patient-acceptable diagnostic marker of 
pre-clinical stage of disease, malleable by the recall policy (median time-to decom-
pensation 10 years); second, current two sets of non-invasive diagnostic modalities 
(serological and imaging) are either not universally available, or not affordable; 
third, to collect a stool sample and store/transport it for examination is conceivable 
in a mass context akin to a colorectal cancer screening; and, fourth, the only impedi-
ment (cost) is falling exponentially over the last 15 years. Our SIRIUS Microbiome 
Study has been designed to detect fibrosis in community and to try to find a link 
with a region-relevant microbiome signature (NCT05486767).

In a more advanced stage of cirrhosis, i.e., after a decompensating event has 
materialized (decompensated cirrhosis, median time-to-ACLF 2 years), microbi-
ome and gut microbial metabolome can serve as a predictive biomarkers and thera-
peutic targets [63, 83].

Cirrhosis is among diseases with the most profound dysbiosis (as compared to 
AUROCs in obesity, colorectal cancer, inflammatory bowel diseases, type 2 diabe-
tes mellitus) [178].

Dysbiosis in cirrhosis is characterized by a reduction in Bacteroidetes, 
Lachnospiraceae, Ruminococcaceae, and Clostridium incertae sedis XIV; and 
increase in Proteobacteria, Fusobacteria, Clostridium cluster XI, Streptococcaceae, 
Streptecoccus spp., Veilonella spp., Enterobacteriaceae, Enterococcaceae, 
Lactobacillaceae, Alcaligenaceae, etc., which were derived from a stool samples, 
mucosal biopsies, salivary samples, etc. [14, 23, 59, 71, 80, 179–181].

Based on deviations of cirrhotic microbiome, the cirrhosis dysbiosis ratio (CDR) 
was developed by Bajaj et al. and has become the prime example of how to utilize a 
complex microbiome output in a user-friendly way to personalize risk of patients 
with cirrhosis and to predict outcome—especially hepatic encephalopathy, and 
rehospitalizations; however, CDR requires wider external validation. Taxa selected 
in abovementioned studies are being scrutinized as signature predictors of a response 
to therapy or outcome, with the European Microb-PREDICT being the eponymous 
example-endeavor in the field, whose results are expected shortly. An absolute 3PM 
match is the sum of a microbiome-based tools to (1) predict the risk of ACLF; (2) 
predict therapeutic benefit and personalize it; 3) monitor effect of therapy, with the 
cautionary note concerning the effect size and drug treatment confounders [80].

7	� Microbiome as a Therapeutic Target in Cirrhosis 
and AD/ACLF

Of the three next-generation therapeutic domains defined by Schnabl and described 
below, most are being scrutinized against liver syndromes at the right side of CLD 
spectrum—i.e., in cirrhosis, AD, and ACLF. Diets have been shown to modulate 
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microbiome and outcome in cirrhotics differently if of Turkish (vegetables, fer-
mented milk) and American (typical Western diet) type [57]. Probiotics clearly 
need a more precision and personalization in cirrhosis but have already shown a 
potential in encephalopathy and hospitalization-rate [182, 183] . The so-called next-
generation probiotics are being awaited by the community with much hope. Of 
quite a few antibiotics studied in cirrhosis, rifaximin has received the most focused 
attention with a clear effect in hepatic encephalopathy but with, as of now, contra-
dictory performances in other indications [80]. Fecal microbial transplantation 
has been shown to be safe and improve encephalopathy, rehospitalizations, and 
ACLF, with a proven safety even over the long-term follow-up [114, 184–186]. Less 
odious/more acceptable capsule formulations of FMT have been introduced by a 
Bajaj’s group and at least six more studies, registered in ClinicalTrials.gov are 
underway [187].

8	� Hepatocellular Carcinoma and Microbiome

Ever since the landmark antibiotic study by Schwabe’s group confirmed the role of 
microbiome in the evolution of liver cancer (HCC, hepatocellular carcinoma), the 
field has been the focus of much interest in hepatology [188, 189]). The microbiome-
HCC pathogenetic pathways have been summarized recently and are the next-step 
evolution of the same mechanisms which lead to CLDs and cirrhosis [190–192]. At 
present, however, rough-level microbiome analyses based on diversity and phyla 
have not found a differences between cirrhosis with- and without HCC; and, 
although the deeper-level granularity analyses revealed small differences, predict-
ing HCC in cirrhosis based on gut microbiome analysis remains an unmet need 
[193–196].

One promising direction of investigation in the predictive arm of 3PM is the 
intratumoral (and liver parenchymal) microbiome analysis, but the field is in its 
statu nascendi and more studies are needed [197, 198]. As for the other areas of 
3PM, a microbiome-targeted prevention (primary and secondary) of HCC is scruti-
nized widely via all the above-mentioned pathways but, the real-life output is still to 
be awaited from more than forty NCT-registered studies with rifaximin, nine with 
norfloxacin, and one with probiotic; no HCC preventive studies with FXR agonists 
are underway as of 2021. As stated above, an absolutely new 3PM direction touch-
ing indirectly the HCC arena is the prediction of a microbiome-dependent effectiv-
ity of the new anti-tumor therapies such as PD-1-based immunotherapy [199–201].

9	� Predictive Potential of Microbiome Analysis 
in Liver Diseases

Currently, there is ample evidence to suggest a predictive potential of a microbiome 
analysis in many liver diseases. Akin to a FOBT for colorectal cancer screening, 
microbiome signature can pick up cirrhosis in a general population with AUROC of 
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0.91. The above-mentioned associations of CLDs with microbiome / metabolome 
signatures notwithstanding, predicting early stage CLDs is as of now an unmet 
need, however. In a more advanced stages of CLD, such as in compensated cirrho-
sis, microbiome analysis can predict deterioration (decompensation) and, in decom-
pensated cirrhosis, it can predict outcome.

10	� Microbiome as a Target for Preventive and Personalized 
Medicine in Liver Diseases

Naturally, the most efficient primary prevention in this regard in hepatology is to 
aim at a healthy microbiome. As to ascertain healthy microbiome by daily living is 
often beyond the reach of the common people of the Western and westernized 
world, 3PM-aware medicine can step in with the region- and/or person-appropriate 
selection of measures from the three domains of Bugs as drugs, Drug the bug, and 
Drugs from bugs. The spectrum of modalities is wide, spanning from the dietary 
intervention to FMT and engineered phage therapy for cytolysin-positive 
Enterococcus faecalis. Of course, ideal prevention is as far left in this spectrum as 
possible but, thanks to the research done it is now clear that to claim diet and probi-
otics effective, it must be personalized and precise. There is accumulating evidence 
to suggest that the personalized diet designed according to the microbiome pattern 
of an individual, as well as the effectivity of probiotics predicted according to the 
microbiome of the recipient are the directions to be taken. As hepatology—for its 
inherent tight junction of liver with gut - is the area of research contributing vastly 
to the microbiome movement, we can expect a real-life prediction, prevention, and 
personalization shortly.

11	� Technological Challenges of Microbiome Analysis

Once the diversity of the microbial world is catalogued, it will make astronomy look like a 
pitiful science—(Julian Davies)

As to MS being the biggest data challenge ever (bigger than astrophysics), a 
teaspoon of a stool contains the data filling the memory of a ton of DVD’s [16]. 
Conceiving of the handling these data with respect to an evolution of patient’s 
microbiome over time or its comparisons between individuals, diseases, popula-
tions and of modeling the outcomes, a hundreds-to-thousands of years of computing 
time would be necessary. Not to speak of a microbiome metabolomics combined 
with a foodomics—the next steps of MS and 3PM. With the groundbreaking accrual 
of the NIH’s Human Microbiome Project (HMP) 4.5 trillion bases freely available 
for analysis, MS got the necessary first impetus [10]. Then the QIIME produced an 
unprecedented half a million of catalogued sequences for a reasonable computing 
time and money (QIIME—Quantitative Insight into Microbial Ecology, pro-
nounced chime) [202, 203]. This fascinating translation of teradata to the point on a 
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graph—the distance metric of an evolutionary history - was described by Lozupone 
of Knight’s then Colorado lab under the name UniFrac [56, 204] (Fig. 1).

These endeavors have enabled opening the current chapter of MS which gave 
birth to such projects as The American Gut, The Microsetta Initiative, The Earth 
Microbiome Project, The FoodOmics, The Microb-Predict and our SIRIUS 
Microbiome Project (NCT05486767) [205, 206]. However, to really understand a 
microbiome means to understand its function rather than the composition. And, if a 
dynamic mapping of a microbiome with a GPS navigation can be considered a real-
ity around the corner, understanding and leveraging the host–microbiome interac-
tions is as of yet an unmet need. The metabolomic pathway of microbiome → 
protein sequence → protein structure → protein function → molecular interactions 
→ therapies, is just being scrutinized against the computing capacity of today’s 
machines and community grids [20]. Over the last decade, the size of a dataset of a 
sequenced proteins has grown exponentially (from <10M to 175M by UniProt.org), 
and the size of the database of protein structures started to move (from 60K to 160K, 
by PDB) [207, 208]. However, even before the technology will have allowed us to 
leverage microbiome in our real-life 3PM clinical practice by the user-friendly gad-
gets, we could and should take the pains to understand more of the predictive 
power of this “dark matter” of our patient’s personal universes [209, 210]. 
Because, it is quite safe to assume that most of our patients suffer chronic dys-
biosis. And we can provide them with a general advice with a subsequent more and 
more personalized stewardship based on a lifestyle analysis and possibly repeated 
sequencing of a gut microbiome  - as eponymously exemplified by Larry Smarr 

Fig. 1  The Healthy Microbiome Map. This schematic drawing has been derived from the land-
mark US National Institute of Health’s Human Microbiome Project (HMP). By subsequently 
applying of certain reductive tools to the big data provided by HMP, it was possible to get output 
which was understandable to a non-experts, even to a lay public: Each dot represents the microbi-
ome of one person from one body site. It can be seen that in these meticulously selected healthy 
people, dots tend to gravitate together to form the “continents” of the healthy microbiome map
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[211–213]. Subsequently, real-life MS will translate to the lifelong endeavor of 
monitoring, understanding and manipulating microbiome for a better health—
which is the 3PM at its best.

12	� Visions and Perspectives of Microbiome Analysis in 3PM

From the teleological perspective, MS and 3PM are the perfect match. The reason 
for 3PM to act is the technological singularity we live on the brink of: Not much 
more than a decade-long revolution brought about by MS has provided a new mean-
ing to the Heidegger‘s Question Concerning Technology, as well as to the 
Technological Singularity theory. Pausing over the meaning of a personalized medi-
cine’s person, one recalls the famous “When I think of it I know but when you ask 
me I do not know.” If sobering before, talking the Person in the era of MS has 
become the experience outright humbling: Some thirty trillion human-person cells 
and 20,000 genes make but a 43% and 1% of the individual, respectively [47]. What 
are the remaining 39–100 trillion cells and 99% genes of the “human” body? Yes. 
They are the the human microbiota and microbiome, respectively. However, it is a 
holobiome’s feature other than a mere quantity that makes it the prime ally for the 
next-generation 3PM. After the last major hurdles of price and computing time will 
have been overcame shortly a lay, user-friendly output will become one of the most 
if not The Most personal and predictive tools for an unprecedently dynamic and 
targeted disease prevention and therapy ever. Because, at a variance with the human 
genome, microbiome is malleable.

What Elon Musk said to world leaders at their summit about the artificial intel-
ligence (AI) in politics, Rob Kight conveyed to the medical community about AI in 
MS: “Do not think of it as of a science fiction. Think of it as of a science fact.” 
Imagine it is morning. You have just flushed your smart toilet and now you are look-
ing at your face in a smart mirror. The mirror is mass-spectrometering your exhaled 
oral microbiome metabolic output and displays the result in a lay language and 
pictures. A smart toilet has already sequenced your microbiome’s terrabites and sent 
the result to your smart-phone app called by Rob Knight the microbiome GPS 
which will help you by QR to choose the right yogurt [10] (Fig. 2).

If your “GPS”- “You are here“ position has moved away from the healthy area of 
the map, you are informed about the ensuing health risks and advised what to do to 
compensate for it (e.g., “Exercise 20 minutes more,” or “Try probiotic Lactobacillus,“ 
or “Consult your gastroenterologist for FMT”) (Fig. 3).

The current price is prohibitive but, as a DNA sequencing is a million-times 
cheaper than 15  years ago, this technology is thought to be around the corner 
(genome.gov/ sequencing costs). Naturally, expected revolution in microbiome-
based prediction, prevention, and personalization in medicine will inevitably con-
cern all its areas, hepatology included [57, 60, 80, 101, 175]. After all, it has been in 
the realm of hepatology where Schnabl et al. proposed the next-generation approach 
summing the otherwise difficult-to-grasp plethora of microbiome-directed thera-
peutics (such as fermented foods/prebiotics, probiotics, synbiotics, postbiotics, and 
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Fig. 2  The healthy microbiome map as a template against which new samples can be scrutinized. 
This schematic drawing has been derived from the landmark US National Institute of Health’s 
Human Microbiome Project (HMP). Here you can see the example of a result from a stool sample 
(fecal microbiome) of a hypothetical healthy individual: the dot fits inside its respective healthy 
area (this time the “stool continent”). This reassuring result is clearly understandable to a layper-
son and it can be used for predictive and preventive purposes

Fig. 3  The microbiome “GPS.” This schematic drawing has been derived from the landmark US 
National Institute of Health’s Human Microbiome Project (HMP). The healthy microbiome map 
serves as a template against which samples from individuals and patients can be scrutinized. Here 
is the example of result from stool sample (fecal microbiome) of a hypothetical patient with liver 
cirrhosis: the (red) dot is located outside the healthy area. This particular dislocation of fecal 
microbiome is typical for cirrhosis and is called "oralization." As it is potentially malleable, the 
so-called microbiome GPS can drive patient back to the healthy area (“continent”) by specific 
measures (“What To Do To Get Back Here?”) from lifestyle changes through pre–pro–post-biotics 
to fecal microbial transplantation. Microbiome GPS for various diseases provides the opportunity 
to be leveraged by predictive–preventive–personalized medicine
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parabiotics) to three domains, mentioned above: “Bug as Drug,” “Drug the Bug,” 
and “Drugs from Bugs”; these next-generation microbiome-directed approaches 
have specific precision and 3PM as the leading principles [101, 214–218].

13	� Conclusions and Recommendations

Considering the modest cumulative effect of past microbiome-based therapies in 
liver diseases, the next-generation approach is being launched, based on the corner-
stones of prediction, prevention, and personalization as well as very specific preci-
sion, in all the three newly delineated therapeutic domains (Drugs for Bugs, Bugs as 
Drugs, and Drugs from Bugs). Moreover, shifts from rough-level analysis of micro-
biome composition to an ultimate granularity of strains are expected and, most 
importantly, focus on metabolic aspects will prevail. Based on a pre-emptive analy-
sis of a functional potential of a donor stool, ideal FMT donors will be determined 
for particular liver diseases together with a more acceptable FMT delivery 
modalities.

According to the accumulated knowledge to date by the scientific research in the 
field of human microbiome we can undoubtedly assume that the predictive poten-
tial, potential for prevention and potential for personalization in liver diseases is 
simply enormous. 3PM/PPPM must essentially get ready to use this potential for the 
patients as well as for those who want to avoid a health deterioration. We suggest, 
from the point of view of liver diseases to:

•	 start education activities of the population in order to increase the knowledge 
about liver diseases in relation to microbiome, lifestyle, and healthy diet;

•	 start preventive and predictive monitoring of the population willing to implement 
particular suggestions for supporting their health;

•	 include the knowledge on microbiome health into the routine processes of health-
care education in the specific context of liver diseases (prehabilitation, ERAS 
protocols, pain chronification prediction, suboptimal health monitoring as men-
tioned and discussed in the other chapters of this publication);

•	 extend the potential of laboratory diagnostics in order to be able to provide the 
patient with concrete information on his/her microbiome—patterns, of dysbio-
sis, nutritional status, fitness status, immunity/autoimmunity status, inflamma-
tion markers monitoring, and other related factors.
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