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Does the Evaluation of Ocular Blood 
Supply Play a Role in Glaucoma 
Diagnostics and Prognosis 
of Progression?

Natalia I. Kurysheva, Vitaliy Yu. Kim, and Valeria E. Kim

Abbreviations

ANS Autonomic nervous system
ARI Autonomic regulation index
BP Blood pressure
CDI Color Doppler imaging
CPT Cold provocation test
CRA Central retinal artery
CV Coefficients of variation
EPS Enhanced polarization-sensitive
FLV Focal loss volume
FR Functional reserves
FS Functional status
GCC Ganglion cell complex
GLV Global loss volume
GON Glaucomatous optic neuropathy
HF High-frequency range
HRV Heart rate variability
HTG High tension glaucoma
ILM Internal limiting membrane
IOP Intraocular pressure
IPL Inner plexiform layer
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LF Low-frequency range
MD Mean deviation
MOPP Mean ocular perfusion pressure
MvD Microvasculature dropout
NFI Nerve fiber indicator
NTG Normal tension glaucoma
OCTA Optic coherence tomography angiography
ONH Optic nerve head
OPP Ocular perfusion pressure
PACG Primary angle closure glaucoma
PERG Pattern electroretinogram
pfVD Perifoveal vessel density
POAG Primary open-angle glaucoma
PPPM Predictive preventive personalized medicine
PVD Primary vascular dysregulation
PVEP Pattern visual evoked potential
RGC Retinal ganglion cells
RI Resistivity index
RMSSD Parameter of parasympathetic autonomic regulation activity
RNFL Retinal nerve fiber layer
ROP Rate of progression
SAP Standard automated perimetry
SDNN Standard deviation of NN-interval
SD-OCT Spectral-domain optic coherence tomography
SNA Sympathetic neural activity
SPCA Short posterior ciliary artery
SSADA Split-spectrum amplitude-decorrelation angiography
TP Total spectral power
VD Vessel density
VF Visual fields
VFI Visual field index
wiVD Whole image vessel density

1  Introduction

Primary open-angle glaucoma (POAG) is a neurodegenerative disease characterized 
by a progressive course and an irreversible blindness worldwide.

Accurate prediction of optimal treatment beneficial and adverse effects could 
improve the results of therapy. The early detection of the specific features of the 
patient is a key point of the personalized approach in glaucoma treatment. 
Individualized patient profiling is an instrumental for implementing 3PM strategies 
in glaucoma management [1, 2].
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It is believed that there are two groups of factors responsible for the development 
of glaucomatous optic neuropathy (GON): (1) vascular dysregulation associated 
with the decrease of ocular blood flow of the optic nerve disc [3] and (2) mechanical 
dysregulation associated with the scleral membrane damage and infringement of the 
optic nerve axons. According to well-known Flammer syndrome, patients with an 
instable ocular blood flow respond stronger to psychological stress as it has been 
described in patients with primary vascular dysregulation (PVD) [4, 5]. It has also 
been emphasized that any psychological stress leads to vascular dysfunction [6]. 
PVD is believed to be a main cause of local vasospasm and impaired autoregulation 
as well as a possible contributing factor in glaucoma pathogenesis [7, 8]. It has been 
shown that PVD patients have stronger reaction to psychological stress than non- 
PVD subjects. It is known that any psychological stress leads to vascular dysfunc-
tion and may become a risk factor of glaucoma development and progression.

The small branches of the central retinal artery provide the blood supply of the 
superficial ONH layer. The prelaminar region (a small area anterior to the lamina 
cribrosa), however, is mainly supplied by branches from the choroidal arteries and 
directly from the short posterior ciliary arteries [9]. As the choroidal microcircula-
tion is regulated by the autonomic nervous system (ANS), the ANS dysfunction is 
involved in glaucoma pathogenesis.

Indeed, there is a growing body of evidence suggesting that glaucoma pathogen-
esis is related to vascular dysfunction [10–16]. The consensus on this issue, how-
ever, still has not been found due to the lack of adequate techniques for the study of 
ocular blood flow despite of different measurement tools [17–20]. Therefore, it 
highly recommended to search for new visualization methods of the vascular bed 
for early diagnosis and monitoring of glaucoma. Optical coherence tomography 
(OCT) is a common tool for diagnosis and treatment of glaucoma disease. Doppler 
OCT has been used to obtain precise measurements of total retinal blood flow [21]. 
Although Doppler OCT may be effectively used to detect blood flow in the large 
vessels around the optic disc, it is not sensitive enough for the accurate measure-
ment of low velocities in the small vessels forming the disc microcirculation. The 
same refers to the most widely used method—color Doppler imaging (CDI). A new 
method—OCT angiography (OCT-A)—has been recently introduced. This method 
allows measuring vessel density in the retina and choroid in the peripapillary and 
macular areas using high-speed OCT to perform quantitative angiography.

This book chapter will primarily discuss a role of heart rate variability (HRV) 
assessment and OCTA in glaucoma diagnostics and monitoring.

2  Heart Rate Variability in Glaucoma Patients

According to the literature sources, patients with cardiovascular diseases have 2.33 
times more rapid glaucoma progression despite significantly lower intraocular pres-
sure (IOP) values [22]. Moreover, the concept that vascular changes in the eye may 
be an early indicator of heart diseases is also discussed in literature [23].
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Recent studies have shown the role of vascular disturbances and vascular dys-
regulation in glaucoma [24–29]. This makes glaucoma common with such forms 
of pathology as arterial hypertension/hypotension, migraine, and vascular 
spasm [29].

According to the existing literature, POAG patients have significantly smaller 
diameter of the arterial and venous retinal vessels compared to the control subjects. 
Nevertheless, both venous and arterial dilatation was normal during the activation 
of neurons, despite their smaller diameter. The dilatation varied among patients and 
did not depend on the visual field deterioration. This fact was explained by chronic 
vasoconstriction leading to the limited energy flow to the retinal and brain neurons, 
followed by hypometabolism (so-called, silent neurons) and, finally, by the death of 
neurons [30].

Excessive activity of the sympathetic ANS is among the possible causes of ONH 
blood supply violation and decreased ocular perfusion pressure (OPP) in the optic 
nerve and choroidal vessels. Moreover, it has been demonstrated that excessive 
activity of the sympathetic link of the ANS is associated with glaucoma progression 
due to instability of the ocular blood flow [26].

Cold stimulation, or cold provocation test (CPT) is a well-established provoca-
tion test used for detecting abnormal vascular reactivity in patients with auto-
nomic failures [31]. The testing procedure is rather simple: a patient’s hand is 
dipped into cold water (+4 ° C) with small pieces of ice for 30 seconds and the 
cardiovascular response is registered (Fig. 1). It has been revealed that the cold 
provocation test (CPT) may increase the ET-1 level in plasma in glaucoma patients 
reflected their vascular dysregulation [22]. This phenomenon may also indicate 
the imbalance of ANS that is manifested mostly during provocation tests, includ-
ing CPT [33].

Altered ocular blood flow or reduced visual field sensitivity during sympathetic 
provocation tests has been demonstrated in POAG patients [34–36].

Fig. 1 Cold provocation test (CPT). Photoplethysmography with infrared sensor records from a 
phalanx with an infrared sensor, located in the microprocessor module of data on HRV and periph-
eral blood flow [32]
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2.1  HRV Assessment

HRV assessment is a standard method to evaluate ANS function. The lower the 
HRV, the more severe the ANS dysfunction with sympathetic predominance [37].

Compared with other methods of assessing autonomic dysfunction, which 
include cardiovascular reflex tests, sudomotor tests, Valsalva maneuver, the tilting 
test, HRV assessment is simpler and non-invasive. Numerous studies have validated 
HRV as a reliable measure of ANS function in cardiac and non-cardiac diseases. 
The studies showed that POAG patients had autonomic dysfunction characterized 
by a HRV drop [32, 38].

We have introduced a special hardware–software complex Rhythm-MET that is 
based on a comprehensive analysis of HRV, systemic hemodynamics, and vegeta-
tive regulation [32].

Photoplethysmograms showing the blood flow measurements in a phalanx were 
recorded using an infrared detector, located in the microprocessor module of data 
input and processing, and served as the source of HRV and supplemental blood 
inflow data. Cardiointervals obtained from photoplethysmograms is processed in 
accordance with the recommendations for the assessment of HRV parameters and 
their subsequent generalization, including hemodynamics parameters, and for 
assessment of the functional status (FS) and functional reserves (FR) of the cardio-
vascular system according to the results of the examination at rest and after CPT in 
order to form groups homogeneous in both FS and FR.

The ensuing characteristics should be considered in agreement with the transna-
tional standard:

• Standard divagation of NN-interval (SDNN) is the HRV parameter characteriz-
ing the total effect of autonomic blood circulation regulation. A reduction in 
SDNN reflects low HRV indicating a high tone of heart sympathetic exertion. 
The drop in SDNN reflects a drop in HRV, which indicates an increase in the 
heart sympathetic exertion tone.

• The parameter of parasympathetic autonomic regulation exertion (RMSSD).
• Total spectral power (TP) is the parameter of absolute exertion level of non- 

supervisory systems.
• Power in the high-frequency range (HF) is the parameter of the spectral power of 

heart rate respiratory undulations reflecting the exertion position of respiratory 
center. The high-frequency band reflects rapid changes in beat-to-beat variability 
due to parasympathetic exertion.

• Power in the low-frequency range (LF). The low-frequency band is considered to 
be a fair approximation of sympathetic exertion. The low-frequency band reflects 
substantially sympathetic stimulation.

• The low/high-frequency rate is a rate of low-frequency to high- frequency power 
(LF/HF). An advanced rate indicates increased sympathetic exertion or reduced 
parasympathetic exertion.

• The number of pairs of successive NN-intervals is the parameter of ascendance 
degree of parasympathetic regulation over sympathetic one (pNN50).
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• Autonomic regulation indicator (ARI) is the parameter for assessment and 
exertion of ANS. The increased ARI shows the activation of sympathetic regu-
lation, but the decreased ARI shows the activation of parasympathetic 
regulation.

• Variation range characterizing the degree of HRV (TINN).

SDNN is a representative parameter of HRV. The lower HRV is associated with 
enhanced SNS exertion, which may be characterized by ANS dysfunction [37].

2.2  The Results of HRV Assessment in High Tension Glaucoma 
(HTG) and Normal Tension (NTG) Glaucoma

The strict definition of POAG includes HTG and NTG. As far as HTG and NTG are 
concerned, they appear to be a continuum of glaucomatous process, in which the 
underlying mechanisms shifts from predominantly elevated IOP in HTG to hemo-
dynamic change in NTG. In other words, both HTG and NTG are related to hemo-
dynamics, but it was hypothesized that the evidence of vascular dysfunction would 
be more pronounced in NTG patients. One of the possible reasons for this is auto-
nomic dysfunction that may contribute to unstable or fluctuating blood pressure and 
thereby may induce the dysfunction of autoregulation leading to glaucoma develop-
ment and progression [3].

Some authors report on autonomic dysfunction in HTG with short term and daily 
analysis of heart rate variability [26, 34, 38–40]. However, the existing data on auto-
nomic dysfunction in HTG and HTG are contradictory. According to Riccadonna 
M. et al., HRV and nocturnal diastolic BP variability were reduced in NTG com-
pared to HTG [39]. Furthermore, these differences were more prominent in more 
severe clinical forms of NTG.  The authors suggested a correlation between the 
extent of autonomic dis-order and severity of glaucoma.

Brown et al. assessed the baroreflective control of the blood and heart vessels 
using sinusoidal cervical aspiration and showed that the ANS response in healthy 
subjects was significantly higher than in glaucoma patients. However, they did not 
detect any difference between NTG and HTG. According to their data, the decreased 
sympathetic and parasympathetic modulation during baroreceptor stimulation in the 
patients with HTG and NTG suggested that autonomic dysfunction that may con-
tribute to the pathogenesis of both diseases [40].

Mroczkowska et al. compared NTG and HTG patients with early glaucoma using 
24-h outpatient blood pressure monitoring and measurement of peripheral pulse- 
wave analysis and thickness of the intima-media complex of the carotid arteries. 
The authors also evaluated reactivity of retinal vessels to flickering of light. Similar 
changes in systemic and ocular circulation were observed in glaucoma patients of 
both groups compared to healthy subjects, but no significant differences were 
revealed in nocturnal blood pressure, arterial or venous retinal atrial fibrillation, 
systemic arterial stiffness, and intima-media thickness between patients with NTG 
and HTG [41].
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Bossuyt et al. reported on significantly reduced OPP in patients with HTG and 
NTG compared to the control healthy subjects. They suggested that perfusion- 
associated vascular changes play an important role in the pathogenesis of both con-
ditions [42].

On the other hand, there are some important differences between HTG and 
NTG. The nature of VF progression in HTG differs from other types of glaucoma 
[43]. It is worth noting that NTG of the eye usually progressed in the central region 
of the VF, and this response was associated with unstable or strong fluctuations in 
the average 24-h ocular perfusion pressure and excessive nocturnal drops in sys-
temic arterial blood pressure [26, 44]. Consequently, the division into NTG and 
HTG in clinical practice is still accepted [45].

A significant decrease in retrobulbar blood flow in HTG is described in the litera-
ture [46, 47]. Furthermore, Kaiser et  al. revealed that ocular blood flow was 
decreased both in patients with NTG and HTG who progressed despite normal IOP 
values [46].

Vascular risk factors varied in HTG and NTG [7, 23, 25]. It was hypothesized in 
the literature that the vascular dysfunction would be more pronounced in NTG 
patients compared to HTG [7, 31, 48]. However, some authors reported on similar 
changes in systemic and ocular circulation in the early stages of the disease in 
patients with HTG and NTG [41].

The decrease in arterial ocular blood flow was more significant in HTG than in 
NTG, while lower venous blood flow was detected in patients with NTG [47]. It was 
emphasized in the literature that decreased blood flow rates in the central retinal 
artery and central retinal vein were significantly associated with the glaucoma pro-
gression both in patients with NTG and HTG with well-controlled IOP (21 mmHg 
or less) [46]. Circulatory disorders can occur in both NTG and HTG, regardless of 
the IOP level. One of the reasons is increased sympathetic nervous activity (SNA). 
This leads to increased vascular resistance and, especially in conditions of endothe-
lial dysfunction, may have consequences for blood circulation related to the patho-
genesis of glaucoma. The SNA activation causes an increase in stroke volume, heart 
rate, and vasoconstriction, as well as regulates circadian blood pressure fluctuations, 
and it is closely related to night dives.

Recently, we compared the shift in HRV indicators in patients with NTG and 
HTG after a cold provocation test (CPT). MOPP, 24-h blood pressure and HRV 
were studied in 30 NTG, 30 patients with HTG and 28 healthy individuals. The 
cardiovascular system condition was assessed before and after CPT. We applied a 
method of comparing regression lines to identify the differences between groups. 
Minimum daily diastolic blood pressure and MOPP were reduced in patients with 
HTG and NTG in comparison with healthy subjects. There were no differences in 
MOPP between HTG and NTG before CPT.  However, all HRV parameters 
reflected the predominance of sympathetic innervation in glaucoma patients com-
pared to healthy subjects (p < 0.05). Up to CPT standard deviation of NN intervals 
(SDNN) HRV was lower at HTG compared to NTG, 27.2  ±  4.1  ms and 
35.33 ± 2.43 ms (P = 0.02), respectively. After CBT, SDNN decreased in NTG by 
1.7  ms and increased in HTG and healthy individuals by 5.0  ms and 7.09  ms, 
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respectively (P < 0.05). Analysis of the relative shift of other HRV parameters 
after CPT also revealed a significant difference between NTG and HTG in relation 
to the predominance of sympathetic innervation in NTG compared to HTG. The 
conclusion was made that NTG patients had a more pronounced violation of ANS 
than HTG patients, which was manifested by sympathetic nervous system activa-
tion in response to CPT. This discovery relates to the pathogenesis of NTG and 
suggests the use of HRV assessment in the diagnosis and monitoring of glau-
coma [32].

Besides, we observed a significant dipping of diastolic BP both in NTG and HTG 
patients compared to healthy subjects. Probably, this was a consequence of the sym-
pathetic innervation activation. There is evidence of the presence of a choroidal 
nerve plexus, represented by numerous internal autonomic ganglia forming an 
autonomous perivascular network around choroidal vessels [49]. It is considered 
that it plays a vasodilating function aimed at increasing ocular blood flow. 
Apparently, vascular mechanisms of optic nerve and retinal trophic disorders and 
their autonomic regulation play an important role in the ocular pathophysiology and 
physiology in general and in glaucoma. Vasoconstriction occurs against the back-
ground of the predominance of sympathoadrenal effects on arterioles and capillar-
ies, as well as due to a decrease in the activity of parasympathetic effects on retinal 
vessels.

The abovementioned study contained the evidence of altered MOPP both in 
HTG and NTG patients compared to healthy subjects. However, there were no dif-
ference in the MOPP between HTG and NTG that is consistent with the results of 
previous studies [35, 39, 41]. The obtained results demonstrate that there may be a 
significant overlap in the development of NTG and HTG, especially at early glau-
coma stage [41, 50]. From this point of view, it has been assumed that provocation 
tests may be used to reveal alterations in cardiovascular function in NTG patients 
[42]. Prior to CPT, there was a significant difference in all HRV parameters at rest 
both between glaucoma patient’s groups and between HTG patients and control 
subjects. CPT confirmed a significant difference between the control group and 
glaucoma patients. In the present study we described a significant increase in the 
activity of the sympathetic ANS in NTG patients in response to CPT. Changes in the 
main HRV parameters (SDNN, HF, LF, S, and ARI) after CPT emphasize a signifi-
cant difference between HTG and NTG patients. It is a well-known fact that PVD 
people have an increase in sympathetic ANS as a response to provocation tests. The 
NTG development is associated with the presence of PVD [7, 23]. But currently, 
this fact is not absolutely reliable, and therefore NTG is considered to be a form of 
open-angle glaucoma. Although the role of PVD in the pathogenesis of GON has 
been discussed for many years, only recent studies due to the use of modern tech-
nologies could prove that patients with NTG, but not healthy individuals, suffer 
from the retinal blood flow autoregulation failure in the conditions of provocation 
tests [51]. From this point of view, the dysfunction of the autonomic blood flow 
regulation seems to be of high importance and its study attracts attention of the 
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researches. Wierzbowska et al. revealed that the sympathovagal balance of ANS in 
NTG patients shifted towards sympathetic exertion with no change of 24-h pattern 
of BP variability as compared to the control healthy group [34]. Na et al. demon-
strated significantly reduced SDNN values in NTG [38].

There are new highly relevant data indicating the influence of vascular factors on 
the NTG development. It can be concluded that the disorders of autonomic innerva-
tion underlying PVD lead to the development of NTG, but not its specific feature. 
The presence of ANS imbalance in POAG patients, including HTG, can also be 
considered as a risk factor for an unfavorable course of GON.  In any case, the 
obtained results demonstrate the significant role of PVD in the pathogenesis of 
NTG. The results of our study demonstrating the ascendance of SNA in NTG can 
be useful for distinguishing HTG and NTG.

This conclusion has an important practical implication for detecting NTG (or if 
it is suspected), determining the prognosis and choosing more appropriate therapy, 
as well as making recommendations to patients concerning the proper lifestyle. 
Further studies are needed to verify our findings as well as studies on any therapies 
that favorably influence ANS activity in patients with glaucoma.

2.3  The Effect of Autonomic Nervous System Dysfunction 
on the Progression of Primary Open-Angle Glaucoma

Patients with systemic autonomic dysfunction might be at higher risk for glaucoma 
progression due to higher susceptibility of the optic nerve to fluctuations of IOP 
or MOPP.

Park et al. in their study described NTG patients with different types of HRV and 
reported on the fact that the VF progression in patients with sympathetic predomi-
nance occurs faster than in patients with higher HRV. The authors concluded that 
autonomic dysfunction, especially a decrease in SDNN, is a predictor of the pro-
gression of central VF in NTG [26]. This study concluded that IOP-independent risk 
factors, such as orthostatic hypotension, migraine, and autonomic dysfunction, are 
associated with the progression of central VF.

In another retrospective study of 40 cases of POAG patients who underwent 
regular reexamination with heart rate variability (HRV) assessment for more than 
3 years Liu and co-authors revealed that patients with POAG in the lowest HRV 
group showed a faster thinning rate of RNFL than those in the highest HRV 
group. The progression was accompanied by greater fluctuation of intraocular 
pressure and a decrease of blood pressure and ocular perfusion pressure. 
Moreover, thinning rate of RNLF was negatively correlated with SDNN values: 
the more severe the ANS dysfunction is, characterized, the faster the glaucoma 
progression in POAG patients. The authors explained this by the enhanced activ-
ity of the sympathetic tone and concluded that the treatment of ANS may be 
useful in glaucoma [37].
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3  Vascular, Structural, and Functional Deterioration 
in Glaucoma

3.1  The Association of Vascular, Structural, and Functional 
Parameters in Glaucoma

For many years, there has been a debate concerning the issue which parameters—
structural or functional—have the greatest diagnostic value in glaucoma [52]. 
Perimetry was considered a golden standard for the diagnosis of primary open-
angle glaucoma (POAG) for a long time. The peripapillary retinal nerve fiber layer 
(RNFL) and the layer of macular ganglion cells are described in the existing litera-
ture as the most significant structural markers for the glaucoma diagnosis [53]. 
Some authors also reported that the molecular parameters have a high discriminat-
ing ability and high reproducibility for the early detection of glaucoma compared to 
the parameters of the peripapillary RNFL [54].

According to our recent studies, the circulatory parameters serve as diagnostic 
glaucoma markers [55]. Reduction of retinal hemoperfusion in glaucoma has been 
repeatedly mentioned in the literature [10, 11]. Nowadays, there is much data on 
hemodynamic disorders in retina, ONH, and retrobulbar circulation in glaucoma 
[49, 56–58]. Moreover, several authors have concluded that color Doppler imaging 
is associated with a prognostic value for damage to visual function in glaucoma 
patients [59, 60].

However, it is not clear yet if reduced blood flow is the cause or the consequence 
of glaucoma damage secondary to retinal ganglion cell (RGC) death. This issue can 
be solved only due to long-term observation of patients by using available methods 
of clinical examination of retinal vessels, optic nerve, and choriocapillaris. One of 
the candidates for this method is optical coherence tomography angiography.

3.2  Optical Coherence Tomography Angiography in Glaucoma 
Diagnostics and Monitoring

Optical coherence tomographic angiography (OCTA) is a new non-invasive diag-
nostic technique to study the microcirculation in optic nerve, retina, and choroid. 
OCTA opens up new prospects for examining the blood supply to main structures 
usually affected by glaucoma (peripapillary retina, optic disc, and internal macular 
layers) [61]. The studies have consistently demonstrated reduced ONH [61, 62], 
peripapillary [63], and macular [63–67] perfusion in glaucoma patients using OCTA.

The cross coefficients of variation (CV) range from 3.2% to 9.0% for the global 
OCT-A parameters of the macular and peripapillary regions [62] and from 5.0% to 
6.9% for the peripapillary region [68]. According to the results of some studies, 
OCTA measurements of vascular density may complement the existing structural 
parameters for glaucoma detection and its progression by detecting changes in the 
microcirculatory bed supplying ganglion cells and axons before changes in struc-
tural thickness measurements [12, 65–67, 69–71]. OCTA has opened the prospects 
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for novel imaging of retinal and ONH microcirculation [72]. OCTA is based on a 
new three-dimensional angiography algorithm called amplitude-decorrelation angi-
ography with a split spectrum (SSADA), comparing successive B-scans at the same 
location to detect blood flow using motion contrast. The reproducibility of OCTA 
has been reported in several studies [61, 73, 74].

Reduced ONH and peripapillary perfusion parameters have been reported by 
different authors in subjects with glaucoma measured by OCTA [61, 64, 72–75]. 
The decreased vessel density (VD) was significantly associated with the severity of 
visual field damage independent of the structural loss [76, 77].

Different authors have found a significant decrease in IOP in patients with glau-
coma compared with healthy people. Wang et al. reported reduced blood flow index 
in the entire optic disc and inferotemporal segment of the optic disc [73]. The study 
by Chichara et al. demonstrated the priority of detecting superficial peripapillary 
retinal VD to differentiate between glaucoma and ophthalmic hypertension and 
healthy eyes [78]. Liu et  al. in their study revealed that there was a significant 
decrease in peripapillary VD in glaucoma patients compared to healthy subjects of 
the same age [74]. According to the authors, this indicator had a high diagnostic 
value for the early detection of glaucoma. Some other studies reported that quantita-
tive OCT-A analysis made it possible to distinguish eyes with glaucoma from 
healthy eyes by evaluating the entire peripapillary vascular network, from the ILM 
to the Bruch membrane [76]. According to Yarmohammadi et al., the decreased VD 
was significantly associated with the severity of visual field damage independent of 
the structural loss, and whole image vessel density (wiVD) of the disc scan showed 
the best AUC in their study (AUC: 0.94) [77].

Previously, we have reported better diagnostic accuracy by using capillary den-
sity in the macular area over the peripapillary area and the optic disc in the early 
glaucoma detection [64]. These data are consistent with the literature data on early 
macular lesions with a high concentration of RGC in glaucoma and explain the 
localization of the vulnerable area of the retina affected at the very beginning of 
glaucoma [79, 80].

The functional activity of retinal ganglion cells can be measured using a pattern 
electroretinogram (PERG). The other objective method of checking visual function 
is the pattern of visual evoked potentials (PVEP). Glaucomatous changes in PVEP 
and PERG were reported before the appearance of anomalies in the peripapillary 
retina and ONH [80–86]. Moreover, PVEPs were used to assess reversible ganglion 
cell damage in the studies of neuroprotective agents for glaucoma treatment [87, 88].

Having compared the diagnostic ability of the vascular, structural, and functional 
parameters in differentiation between the normal eyes, early glaucoma, and moder-
ate to severe glaucoma, we have revealed that the results of the electrophysiological 
testing along with the retinal microcirculation measured by OCTA demonstrated 
superiority over the structural variables in early glaucoma detection (Fig. 2) [89].

According to our study, a strong correlation between the amplitude of the P100 
PVVP and the density of vessels in the ZEN and peripapillary retina, on the one 
hand, and a correlation between the density of vessels in the superficial macular 
plexus and the GCC thickness in inferior hemisphere, on the other hand, were 
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Fig. 2 Clinical examples of the normal controls, early glaucoma, and severe glaucoma. GCC map 
and RNFL thickness map (a), SAP visual field results showing corresponding visual field defects 
(c), PVEP-protocols (d), PERG-protocols (e). Figure b show a stepwise decrease of vessel density 
both in the circumpapillary VD map and Fovea and circum parafovea VD map (wiVD Disc is 
reduced from 54.25% (normal eye) to 52.26% (early glaucoma) to 42.17% (severe glaucoma); 
wiVD Macula Superficial is reduced from 52.56% (normal eye) to 41.95% (early glaucoma) to 
41.29% (severe glaucoma). Figure d show a stepwise decrease of the amplitude and prolonged 
latency of P100 component of PVEP and e show a decrease of the amplitude and prolonged latency 
of N95 component of PERG in glaucoma eyes compared to normal eye. (Modified from the 
National Journal of Glaucoma (RUS), 2019 with permission)

revealed. It can be concluded that the damage of ganglion cells may be associated 
with decreased blood supply to the retina. It was shown that the macular capillary 
vessel area density strongly correlated with inferior hemimacula or structural dam-
age [65]. Inferior hemimacular retinal structure is subject to a decrease in the area 
of the capillary vessels of the retina in eyes with glaucoma. Moreover, the blood 
flow parameters in ophthalmic artery, central retinal artery, and short posterior cili-
ary arteries in early glaucoma significantly correlate with the retinal thickness in the 
inferior hemisphere [90].
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The existing results of studies demonstrate the importance of microcirculation 
parameters of the peripapillary retinal and macular region, PERGs and PVEPs, for 
early detection and monitoring of glaucoma.

3.3  The Detection of Glaucoma Progression Using OCTA

Successful monitoring of POAG depends on early detection of the disease progres-
sion. An individual treatment plan should be based on the risk factors and specific 
clinical markers that allow predicting the rate of disease progression and avoiding 
unreasonable prescriptions.

Increased intraocular pressure (IOP) [91–95] and its fluctuations [96] are com-
monly considered to be the main recognized factors for POAG progression. 
However, there is an increasing interest in the influence of other factors as it is 
known that the disease can progress at normal IOP [27, 97, 98]. These factors 
include a thin cornea [93, 99], low corneal hysteresis [100], optic disc hemorrhages 
[95, 101], peripapillary atrophy of the choroid [91, 100], age of patients [91, 95, 
102], female sex [95, 103], presence of pseudoexfoliation [92], late detection of 
glaucoma [93], and arterial hypotension [104, 105] or/and hypertension [103, 106]. 
Nevertheless, researchers disagree on many issues regarding progression risk fac-
tors and recommend to take into account only highly reliable results concerning 
significant parameters [95, 107].

A number of studies demonstrate the importance of using OCT angiography for 
the detection of glaucoma progression. Moghimi S et al. showed that a higher rate 
of RNFL thinning was associated with an initially reduced density of macular and 
peripapillary vessels in glaucoma patients [70]. An increase in the area of depletion 
of vascular macular blood flow, according to the literature, significantly correlates 
with the presence of structural and functional markers of glaucoma progression, 
such as the appearance of visual field defects and thinning of the RNFL [69]. 
According to literature, there is a direct relationship between the vascular, struc-
tural, and functional changes in patients with advanced glaucoma [108]. Figure 3 
demonstrates a clinical example of the structural and vascular loss that is accompa-
nied by the functional deterioration.

Retinal microvascular loss may be detected more often than structural ones due 
to the presence of the so-called floor effect in the late stages of the disease, which 
certainly puts the use of OCT angiography in the forefront in assessing progression 
of glaucomatous optic neuropathy [109]. Thus, in advanced glaucoma, the measure-
ment of parameters of the microvascular superficial parafoveal vessel density is 
more prognostic due to the lack of “floor effect” [110].

According to Kwon and co-authors, the visual field progression rate was signifi-
cantly faster in eyes with parapapillary deep layer microvasculature dropout detected 
by OCT-A than in those without dropout, and the location of dropout and VF pro-
gression was spatially correlated. These findings implicate dropout as a structural 
parameter suggestive of past glaucomatous VF progression [111].
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a b c

d e

f g

Fig. 3 Association of structural, functional progression with the decrease of microvascularity in 
the patient with early glaucoma. (a) Progressive RNFL and GCC loss; (b, c) A decrease of vessel 
density in the circumpapillary VD map; (d) A decrease of thickness of GCC and ONH correspond-
ing to the loss of vessel density; (e) Fundus visualization of ONH; (f, g) SAP visual field results

An analysis of FAZ in glaucoma monitoring revealed that, as it manifested, there 
was a significant thinning of the RNFL and GC-IPL, while no changes in perimetric 
data were observed [112].

3.4  Role of the Peripapillary Choriocapillaris Loss in Glaucoma 
Development and Progression

Choroid is another important structure for OCTA assessment. It has the highest 
blood flow compared to any other tissue in the body [113]. The choriocapillary layer 
is formed from small arteries and veins, which then break up into many capillaries, 
passing several red blood cells in one row, which allows more oxygen to enter the 
retina. The choriocapillary layer of the choroid plays a crucial role in supplying 
oxygen and nutrition to the outer cells of the retina, especially the retinal pigment 
epithelium [114]. It should be emphasized that a lesion of blood flow in the chorio-
capillary layer in the area of the peripapillary retina leads to damage to the lamina 
cribrosa of sclerae, resulting in a weakening of the structures of the latter.

Optical coherence tomography and angiography mode have opened up new pros-
pects in the study of choriocapillaris blood flow, or rather, the loss of choriocapil-
laris of the peripapillary retina in glaucoma (Fig. 4).

According to literature, more than the half of patients with primary open-angle 
glaucoma have a choriocapillary dropout in the beta zone of the ONH [115].

Also, during the examination of 118 patients, scientists revealed that with pri-
mary open-angle glaucoma and the presence of defects in the lamina cribrosa 
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a b c

Fig. 4 (a, b, c). Determination of the area and localization of choriocapillary dropout within the 
beta zone on the density map using RTVue XR Avanti («Optovue», USA). On scans of 4.5 × 4.5 mm 
of ONH (a) at the level of the choroid inside the beta zone, the total dropout of choriocapillaris is 
determined (b: red arrows), with the help of ImageJ program, the area of choriocapillaris dropout 
in mm2 inside the beta zone is calculated by pixels (c: red areas)
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Fig. 5 Peripapillary microvasculature dropout area as a reflection of glaucoma severity

sclerae (59 patients), the frequency of detection of choriocapillary dropout was 
more frequent than in patients with glaucoma without defects in the lamina cribrosa 
sclerae (59 patients) [116].

The study by Eun Ji Lee et al. found out that larger lamina cribrosa curvature 
index (LCCI), disc hemorrhage, and the presence of cMvD were associated with 
faster global RNFL thinning in multivariate regression analysis. The regression tree 
analysis revealed three stratified groups based on the RNFL thinning rate divided 
into LCCI and the presence of cMvD. Eyes with LCCI ≥11.87 had the fastest RNFL 
thinning (−2.4 ± 0.8 microns/year). Among the eyes with LCCI <11.87, the pres-
ence of cMvD was the strongest factor influencing the faster thinning of RNFL 
(−1.5 ± 0.8 microns/year). Eyes with LCCI <11.87 and without cMvD showed the 
lowest RNFL thinning (−0.8 ± 0.9 μm/year) [117].

In a recent study, we also showed that the higher the stage of glaucoma, the larger 
the area of loss of choriocapillaris measured in mm2 (Fig. 5).

Youn Hye Jo in their study showed that the initial parameters of choroidal micro-
vasculature dropout (CMvD) can be predictors of the rapid development of visual 
field defects [118].
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We have been obtaining glaucoma patients with the fast thinning of choroid that 
was associated with the rapid visual field deterioration despite the normal IOP 
(Fig. 6).

A thin peripapillary choroid is also considered a predictor of glaucoma progres-
sion [119]. The study by Kim et al. reported that the eyes with the loss of capillaries 
in the lower temporal quadrant of the peripapillary vasculature have more pro-
nounced visual field damage compared to the eyes with preserved peripapillary cho-
roidal microcirculation. Kim et al. noted an inverse relation between the VD in the 
peripapillary vasculature and the SNVS thickness [120]. The data of the present 
study on the prognostic role of the thickness of the peripapillary vasculature are 
consistent with these results.

Two-year observational study by Park H. et al. revealed the prolapse of peripapil-
lary choroidal microvessels (MvD) in glaucomatous eyes with or without disc hem-
orrhage (DH). The authors demonstrated that MvD was significantly higher in 
patients with progressive glaucoma than in stable patients in both the DH and 
no-DH groups. Park H. et al. concluded that MvD is associated with progressive 
RNFL thinning. They suggested that OCTA was a new biological marker for glau-
coma progression, and this biomarker is a peripapillary choroidal microvascular 
system [69]. The authors explained this phenomenon is caused by choroidal vascu-
lar insufficiency, which may play a significant role in the lack of prelaminar nutri-
tion of the optic nerve during the progression of glaucoma.
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Fig. 6 Clinical example of the choroidal thinning in correspondence with structural, functional 
and vascular deterioration. (a) A decrease of thickness of RNFL and GCC; (b) A decrease of 
amplitude of PVEP; (c) A decrease of end-diastolic velocity in the short posterior artery; (d) A 
deep layer microvasculature dropout; (e) Decrease of the peripapillary choroidal thickness
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3.5  The Prognosis of Glaucoma Progression on the Basis 
of Functional, Structural, and Circulatory Data

It is rather complicated to define glaucoma progression, since many various factors 
influence the course of glaucoma [92, 103]. The study by De Moraes reported on the 
fact that combining data can be useful when discussing risks and treatment options 
with individual patients, as well as when standardizing the quantitative assessment 
of the risk of progression in treated patients with glaucoma [100]. From this point 
of view, the application of new biomarkers as the vessel density, measured by 
OCTA, may improve the prediction of glaucoma progression.

We conducted a comparative study of microcirculation parameters, predictors of 
glaucoma progression, and other clinical data [121]. The following results were 
obtained: decreased blood circulation, including regional microcirculation and ret-
robulbar blood flow, is associated with the progression of glaucoma. According to 
the multilevel analysis of models of mixed effects, four predictors were revealed: 
parafoveal superficial plexus vessel density, the end-diastolic velocity of the central 
retinal artery, the volume of focal loss of the ganglion cell complex and the peak 
follow-up IOP. The rate of disease progression expressed as a change of perimetric 
index MD of visual field and RNFL thinning correlated with the peak follow-up 
IOP and the end-diastolic velocity in posterior ciliary arteries. A positive correlation 
was also observed between the thickness of the retinal inner layers in parafovea and 
the parafovea vessel density in superficial layer. Mean ocular perfusion pressure 
(MOPP) correlated with the average ganglion cells complex thickness and its focal 
loss volume [121].

The present study concluded that only a decrease in parafoveal VD in the 
superficial layer was associated with the glaucoma progression, which was con-
firmed by both functional and structural disorders in all statistical models. Several 
existing studies have shown that OCTA makes it possible to detect the disease at 
the preperimetric stage, and OCTA parameters correlate better with functional 
parameters, including electrophysiological parameters, than with structural ones 
[61, 77, 89].

Some authors have reviled that the disease progression is mainly associated with 
low end-diastolic velocity in short posterior ciliary arteries [59] and the high resis-
tive index in central retinal artery [122].

A decrease in OCTA VD may actually precede both structural and functional 
losses and, therefore, may be useful in the diagnosis and monitoring of glaucoma at 
the earliest stages [123, 124]. This decrease detected at early glaucoma stages may 
be used as a glaucoma progression predictor.

Generally speaking, the role of OCTA in identifying glaucoma progression pre-
dictors and the dynamic range of vascular density is insignificant. Moreover, the 
study conducted by Moghimi and co-authors also has underlined that the correlation 
between the rate of RNFL loss and VD measurements was not strong. However, 
Moghimi et al. concluded that the OCTA parameters can predict RNFL loss during 
the long-term follow-up. The authors reported that OCTA may provide the data 
concerning early RGCs dysfunction with lower metabolic needs.
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According to our study, a decrease in parafoveal vessel density can serve as a 
predictor of death of cells and subsequent tissue thinning with functional loss. The 
inferior sector of the macula as a vulnerable region for glaucoma damage makes 
sense, since most of the nerve fibers of the lower macula are projected into the lower 
quadrant of the optic disc, an area that is particularly susceptible to glaucomatous 
damage. Hood et al. described that thinning of RGC and the nerve fiber layer is 
already present in preperimetric glaucoma patients and progresses with increasing 
loss of mean deviation (MD) [79]. Lommatzsch et al. confirmed first that the VD of 
the inferior perimacular sector is lower than in all other sectors, and that this value 
decreases in early forms of glaucoma with progressive losses with worsening of 
progressive losses with deteriorating MD [125]. The recent study showed that a 
decrease in VF MD for every 1 dB was associated with a decrease in macular wiVD 
by 0.43% and pfVD by 0.46%. According to their study, the correlation between 
macular vessel density and MD of the visual field in the whole image was stronger 
than ONH whole image capillary density and GCC and RNFL thicknesses [108]. 
However, the authors did not sufficiently study the reasons for early macula damage 
in glaucoma. This fact is probably due to retinal ischemia with increased metabolic 
needs of the area with the highest concentration of RGC. According to the results of 
our study, the thickness of the RGC and its characteristics (GLV and FLV) corre-
lated with the average ocular perfusion pressure.

The assessment of macular VD in glaucoma monitoring also makes it possible to 
determine the disease progression in such cases when structural parameters are 
unacceptable due to the presence of floor effect. According to Moghimi, even a 
pronounced loss of visual function (MD reached −19 dB) did not result in the “floor 
effect” of VD [126]. Similar results were obtained by Rao [127] who demonstrated 
that the floor effect for the specified parameter did not occur at MD -15 dB. Other 
authors reported that the floor effect in the peripapillary retinal VD occurs some-
what earlier, which is observed at MP < −14.0 dB, but at the same time later than 
for such morphometric parameters as RGC thickness and RNFL [79, 128]. 
According to Hood et al., this effect for RNFL is already visible at MD of −10 dB 
[79]. Other authors have also noted the advantages of studying GCC thickness com-
pared to RNFL [129]. Furthermore, the importance of assessing peripapillary VD in 
the late glaucoma stages has been described in the recent studies [130]. It has been 
revealed that the detection of glaucoma progression at early stages is more reliable 
with the use of SD-OCT, while functional deterioration is more visible in the middle 
and late stages. In our previous studies we reported that the structural parameters (in 
particular, retinal GCС) have priority over functional ones in early glaucoma com-
pared to advanced stage of the disease [89]. However, peripapillary VD had the 
highest diagnostic accuracy to distinguish between early, middle and late stages, 
while parafoveal VD in the surface layer had the highest diagnostic accuracy to 
distinguish between early glaucoma and healthy eyes. In general, the diagnostic 
ability of the OCTA parameters in early glaucoma was higher compared to GCC 
and RNFL thickness.

According to some studies, a decrease in macula VD, OHN, and the peripapillary 
retina is associated with a higher rate of progression of RNFL loss in mild and 
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moderate glaucoma, suggesting that a VD decrease may be a predictor of progres-
sion risk [126]. Their results have shown that vessel density measures tend to be 
more strongly associated with severity of visual field damage than thickness mea-
sures and may be an additional tool to monitor progression in advanced disease. 
These data are consistent with our results, according to which OCTA parameters 
serve as predictors of glaucoma progression [121].

There is a lack of information on the influence of lowering IOP on retinal micro-
circulation. The experimental studies have reported that microcirculation in the 
retina, choriocapillaris, sclera, and lattice plate remains unchanged even with sig-
nificant IOP fluctuations [91]. On the other hand, according to some clinical studies, 
OCTA vessel density strongly correlates with IOP [131–133].

In conclusion, OCTA may significantly improve the early detection of glaucoma 
progression, as formerly OCT has provided more precise diagnostics in regard to 
this detection.
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