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Chapter 1
A Fresh Look at Conservation Genetics 
in the Neotropics

Pedro M. Galetti Jr.

1.1  Introduction

It has been more than a century since genetics was first used to interpret an ecologi-
cal response, when a mutant gene was reported to have been selectively eliminated 
by predation in caterpillars (Gerould 1921), thus founding what would later become 
known as ecological genetics. This discipline is defined by the study of the genetic 
bases of an organism’s adaptation, i.e., the adaptations of wild populations to their 
environment (Ford 1964). Since then, genetics, evolution, ecology and conservation 
have been continuously intertwined, motivating many researchers to think about 
new challenges and propose new disciplines. Thus, the last ten decades have been a 
period of great transformation of our knowledge about all kinds of living organisms 
and their persistence on Earth. However, human activities have led to severe changes 
on our planet, resulting in a rapid loss of species and populations, and characterizing 
a true global biodiversity crisis (Bellard et al. 2012; Dirzo et al. 2014; Haddad et al. 
2015). Many efforts have been made to mitigate the impacts of human activities on 
biodiversity, as it is a well-established fact that genetic diversity plays a crucial role 
in the long-term persistence of species and populations (Hoban et  al. 2023). 
Therefore, the use of genetics can provide important information and emerge as a 
powerful tool for conservation and effective decision-making (Torres-Florez 
et al. 2018).

In this scenario, conservation genetics emerged as an application of genetics in 
the scope of biological conservation, which later became a multidisciplinary field of 
study marked by the perception that the disorderly growth of human activities has a 
huge impact and jeopardizes local and global biodiversity. The birth of conservation 
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genetics dates back to the early 1970s, with the papers of Sir Otto Frankel (Frankel 
1970; Frankel 1974), a plant geneticist who first recognized the genetic importance 
for conservation. In the emblematic book Conservation and Evolution, Frankel and 
Soulé (1981) presented genetic problems associated with conservation, explored the 
meaning of genetic diversity for the maintenance of populations and ecosystems, 
and highlighted principles and practices of conservation genetics for the long-term 
conservation of nature. This established the foundations of conservation genetics. 
Later, Frankham et al. (2002) defined conservation genetics as a discipline that uses 
theoretical and methodological approaches of genetics to save species and popula-
tions facing the risk of extinction. A central idea in conservation genetics is that 
small, isolated populations can be threatened by the occurrence of random genetic 
drift and inbreeding (Ouborg et al. 2010). Genetic drift, defined as the random fluc-
tuation of allele frequencies across generations, can lead to the random loss or fixa-
tion of alleles when it occurs in small populations. This can result in the loss of 
adaptive alleles, or in the fixation of deleterious alleles. Inbreeding, on the other 
hand, increases the frequency of homozygotes, which can expose deleterious alleles 
and lead to inbreeding depression, i.e., a reduction in individual fitness on average. 
Although both genetic drift and inbreeding can occur in large populations, their 
effects are much more pronounced in small populations, and at least three important 
consequences can result from these effects. In small, inbred populations, the reduc-
tion of individual fitness can decrease their viability in the short term. In addition, 
the loss of genetic variants in a small population can compromise its evolutionary 
adaptive potential, and reduce its long-term viability in a changing environment. 
Finally, genetic drift, independently occurring in small and isolated populations, 
may promote genetic divergence between them, compromising the genetic unity of 
the species. This may also lead to outbreeding depression, if the gene flow between 
the groups is restored (Frankham et al. 2017; Frankham et al. 2002).

The increasing development of molecular technologies has allowed researchers 
to evaluate these theoretical effects on small populations and confirm conservation 
genetics as a well-established, empirical discipline. However, despite the great 
expansion of conservation genetics worldwide, it remains disproportionately under-
studied in the Neotropics. The Neotropics harbor a huge biodiversity, with endemic 
species which have been increasingly threatened by habitat degradation and wild 
population decline, which could lead to high rates of extinction in the future (Dirzo 
et al. 2014). Despite all this, between 1992 and 2014, publications on conservation 
genetics from Latin America featured almost ten times less frequently in indexed 
journals than those from European countries (Torres-Florez et al. 2018), and there 
is no reason to believe that this scenario has changed in recent years. Many factors 
may be causing this disproportionality, but it is clear that conservation genetics in 
the Neotropics has much to contribute to the conservation of this important 
biodiversity.
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1.2  Conservation Genetics at the Species Level

Traditionally, conservation genetics has been focused on biological diversity at the 
species level, and, while its main goal is to save endangered species from the risk of 
extinction (Frankham et al. 2002), many studies published worldwide in the field of 
genetics applied to conservation have been targeting on non-threatened species 
(Torres-Florez et al. 2018). Genetics – applied to a species or its populations – has 
been utilized for a range of general topics in biodiversity conservation, from resolv-
ing taxonomic uncertainties to the long-term monitoring of populations. Genetics 
has been employed around the world to assist in various aspects of conservation, 
such as defining evolutionary significant units (ESUs) and/or management units, 
minimizing inbreeding and loss of genetic diversity in populations, managing cap-
tive populations for reintroduction, assessing invasive species and their impacts on 
threatened species, estimating sex ratio, population size and demographic history, 
contributing to management plans and forensic actions, and predicting extinction 
risk and responses to environmental changes (Frankham et al. 2017; Torres-Florez 
et al. 2018); more recently, the use of genetics in conservation has been increasing 
in the Neotropics as well.

Fish, for instance, are among the most diverse groups of neotropical vertebrates, 
and present several taxonomic challenges. Morphologically similar species often 
form what is known as a species complex, in which species are virtually indistin-
guishable through their morphology or color patterns. In these cases, genetic tools, 
such as DNA barcoding (using the COI gene) or other molecular gene identification 
techniques, have revealed a significant hidden biodiversity (Pires et  al. 2017; 
Ramírez et al. 2017a; Silva-Santos et al. 2018). Molecular analyses have been inte-
grated with chromosome and morphology studies to describe new species (Garavello 
et al. 2021) or even entirely new genera (e.g., Megaleporinus, Ramírez et al. 2017b).

Indeed, there is no major living taxon that has not received some contribution 
from genetic investigations for the identification of hidden biodiversity, either by 
chromosomal analyses, molecular methods, or both. Metagenomics has revealed to 
science numerous new bacteria and archaebacteria, most of which are known only 
as Operational Taxonomic Units (OTUs) and have been deposited in public data-
bases such as GenBank, but still require further biological characterization. Plants 
and animals have also benefited from the power of molecular tools to reveal their 
hidden biodiversity. Molecular phylogenies and species delimitation methods, as 
well as DNA barcoding, can be included in a growing body of methodologies which 
have proven to be useful in revealing hidden biodiversity in plants (Vijayan and 
Tsou 2010; Lima et al. 2018) and in most animal groups (Ahmed 2022; Fišer and 
Buzan 2014) all over the world, including the hyperdiverse Neotropics.

The number of genetic population studies that have contributed to the conserva-
tion of threatened species in the Neotropics has increased significantly. However, 
for various reasons, most studies are conducted on species of low conservation con-
cern. In a world increasingly devastated and fragmented by human actions, reduced 
gene flow and the loss of genetic variation have been described in several 
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populations of neotropical plants (Vitorino et al. 2020), fish (Machado et al. 2022), 
birds (Banhos et al. 2016), and mammals (Ayala-Burbano et al. 2017). Inbreeding 
in small populations has also been reported in fish (Langen et al. 2011; Coimbra 
et al. 2020), frogs (Nali et al. 2020), and mammals (Collevatti et al. 2007). It is 
worth noting that, until the last review in 2014, around 40% of the conservation 
genetic studies in Latin America had focused on population structure (Torres-Florez 
et al. 2018), highlighting the concern of researchers in clarifying the genetic conse-
quences of habitat fragmentation. There is no reason to believe that this concern will 
diminish in the near future. While ESUs have been suggested in fish species such as 
Pseudoplatystoma corruscans, which has a wide distribution in various hydro-
graphic basins (Carvalho et al. 2012), genetic analyses have recently been used to 
evaluate the translocation and reintroduction of a small endangered primate (Moraes 
et al. 2017), Leontopithecus rosalia, which was successfully done a few decades 
ago. Several other genetic studies have focused on ex situ populations, which can 
serve as an insurance policy for an endangered species by producing new individu-
als that can help in recovering wild populations at risk of extinction. However, ex 
situ populations are often comprised of a reduced number of individuals, and are 
prone to showing loss of genetic variation, inbreeding, and inbreeding depression, 
which have been investigated in primates (Ayala-Burbano et al. 2017, 2020), for 
instance, or hybridization, which has been investigated in birds (Costa et al. 2017).

Genetics applied to conservation has already made meaningful contributions to 
the knowledge of species and their populations, and it has shown great potential to 
help monitor and manage the in situ and ex situ populations of threatened species. 
Expanding these studies could lead to significant progress, particularly for the per-
sistence of biodiversity in the hyperdiverse Neotropics.

1.3  Genetics for Studying Communities and Ecosystems

Biodiversity has long been recognized as encompassing not only the diversity of 
species, but also genetic and ecosystem diversity (Wilson 1988). While the primary 
goal of conservation genetics is to preserve endangered species and their genetic 
diversity, it is noteworthy how genetic and molecular tools can also aid in the con-
servation of communities and ecosystems, such as in identifying priority areas for 
community conservation. At least three important approaches – phylogenetic diver-
sity, comparative phylogeography, and environmental DNA – can illustrate the pow-
erful use of genetics and molecular information to contribute for a better 
understanding of structures and functions of the biological diversity present in 
diverse ecosystems.

P. M. Galetti Jr.
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1.3.1  Phylogenetic Diversity

Phylogenetic diversity (PD) was introduced by Faith (1992) to address the goal of 
conserving biodiversity at the environmental or community levels, rather than just 
assessing biodiversity at the species level. There are various metrics for estimating 
phylogenetic diversity, all of which are most frequently based on molecular data, 
making genetic information essential for these studies. The most commonly used 
metric, Faith’s phylogenetic diversity (PDFaith) (Faith 1992), is based on cladistic 
information, i.e., it is the sum of the lengths of all branches in a molecular phyloge-
netic tree containing a set of taxa from the entire community. PD is strongly corre-
lated with species richness (Tucker et al. 2017), whereas other metrics based on the 
average pairwise genetic distance of all species (MPD, Webb 2000), or on the aver-
age pairwise genetic distance between closely related species (MNTD, Webb et al. 
2002), are less dependent on species richness. Higher MPD (Mean Pairwise 
Distance) values indicate that the assessed set of species in the community are from 
a wide range of clades, whereas a high MNTD (Mean Nearest Taxon Distance) sug-
gests that closely related species do not co-occur in the community. Regardless of 
the metric used, a more complex and less redundant local community will show 
higher phylogenetic diversity, suggesting higher priority for the conservation of a 
broader biodiversity. In contrast, a local community showing lower phylogenetic 
diversity might indicate a local loss of species, and might be a measure of the impact 
of habitat loss.

Phylogenetic diversity has been assessed in several taxa in the Neotropics, such 
as in plants (Perea et al. 2022), bees (Antonini et al. 2017), birds (Hanz et al. 2019), 
and mammals (Gómez-Ortiz et al. 2017), but few studies have primarily focused on 
conservation. For example, PD was used to evaluate the impacts of habitat loss on 
the evolutionary diversity of snakes (Fenker et  al. 2014), the effects of oil palm 
management on bird communities (Prescott et al. 2016), spatial variation in com-
munities of Atlantic Forest opiliones (Nogueira et al. 2019), loss of phylogenetic 
diversity of bats across a habitat gradient in the Amazon (Aninta et al. 2019), the 
identification of areas of high mammalian phylogenetic diversity in order to suggest 
priority areas for conservation (Aguillar-Tomasini et  al. 2021), and to guide the 
conservation of crop wild relatives (González-Orozco et al. 2021).

Indeed, by assessing biological diversity at the community level (Faith 1992), 
phylogenetic diversity can provide a good picture of the evolutionary history of 
communities, and how they might respond temporally and spatially to a range of 
stressors, such as habitat loss and fragmentation. Phylogenetic diversity can also be 
used to guide large-scale conservation approaches, particularly for protecting the 
megadiversity of the Neotropics.
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1.3.2  Comparative Phylogeography

Phylogeography can be a powerful tool for conservation. This field of study, which 
aims at understanding the geographic arrangement of genotypes, was first proposed 
by Avise et al. (1987), and was rapidly recognized as an important approach for 
inferring population evolutionary history. Phylogeography focuses heavily on 
describing population relationships within a single species, and has been widely 
used to study almost all living groups. In plants and animals, phylogeography has 
revealed several cases of spatial genetic differentiation among populations, poten-
tially contributing to the conservation of these populations. More information on 
this topic can be found in Chaps. 6 and 21.

With the expansion of these studies, comparative phylogeography (CP) emerged 
with the aim of understanding the evolutionary and biogeographical history of spe-
cies that are co-distributed in space. In an integrative work, comparative phylogeog-
raphy among resident vertebrates in the wet tropical rainforests identified genetically 
divergent areas important for conservation (Moritz and Faith 1998). The authors 
concluded that combining comparative phylogeography (population level) with 
phylogenetic diversity (species level) could improve biodiversity conservation plan-
ning. It is impressive to observe how much comparative phylogeography applied to 
conservation studies has advanced in the few decades since its birth. A quick search 
on Web of Science, using the terms “comparative phylogenetic*” AND “conserva-
tion”, revealed almost four hundred papers published from 1997 to 2023. In general, 
these works combined the phylogeographies of two or more co-distributed species 
to infer areas of highest priority for conservation. For instance, comparative phylo-
geography within a crustacean group (Excirolana) highlighted the importance of 
this molecular approach in supporting conservation actions on sandy beaches, an 
ecosystem highly impacted by anthropogenic stressors (von der Heyden et al. 2020). 
Similarly, a study involving tree species was used to investigate large-scale conser-
vation corridors in subtropical shrublands, and to support planning decisions for 
their conservation (Potts et al. 2013).

Comparative phylogeography is still in its infancy in the Neotropics, and has 
primarily been used to investigate the association between the evolutionary histories 
of two or more species, and to understand the dynamics of their evolution in differ-
ent habitats or biomes. For instance, CP has been used in birds and bats to evaluate 
whether the presence of barriers can promote different phylogeographic patterns 
among ecologically diverse species (Matos et al. 2016; Loureiro et al. 2020, respec-
tively), to test biogeographic hypotheses in river otters (Ruiz-García et al. 2018), 
and to investigate the impact of the climate change which occurred in the Pleistocene 
on orchid bees (López-Uribe et al. 2014). To our knowledge, there are still no com-
parative phylogenetic studies primarily designed to answer questions on conserva-
tion in the Neotropics. Considering the aforementioned potential, the use of CP to 
identify priority areas in the Neotropics could be valuable for the conservation of its 
megadiversity.
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1.3.3  Environmental DNA and Invertebrate-Derived DNA 
and Conservation

The use of environmental DNA (eDNA) and invertebrate-derived DNA or ingested 
DNA (iDNA), in association with modern sequencing technologies, has been 
increasingly recognized as a powerful tool for biodiversity assessment and conser-
vation (Carvalho et al. 2022; see Chap. 18 for more details). Human-promoted habi-
tat loss and climate change have led to a true global biodiversity crisis (Bellard et al. 
2012; Dirzo et  al. 2014; Haddad et  al. 2015), and a more comprehensive under-
standing of biodiversity is critical for nature conservation. Traditional methods for 
surveying species are generally limited to sampling at a local scale and with a sub-
stantial effort. New technologies, such as metabarcoding using eDNA and iDNA, 
can be powerful tools for biodiversity surveys, and for supporting the conservation 
of natural ecosystems (Carvalho et al. 2022).

Environmental DNA obtained from water, soil, or air can provide more accurate 
and less time-consuming biodiversity surveys, as it is capable of assessing the spe-
cies diversity – including rare and elusive species – from a large number of samples 
and in large-scale surveys, notably reducing labor costs (Bohmann et al. 2014; Rees 
et al. 2014). In addition, the community of vertebrates can also be assessed through 
the iDNA obtained from the guts of invertebrates such as flies, mosquitoes, leeches, 
and beetles (Calvignac-Spencer et al. 2013; Schnell et al. 2015; Kocher et al. 2017a), 
as easily and efficiently as with eDNA.

According to Taberlet et al. (2012), the term “environmental DNA” first appeared 
at the beginning of the 2000s, coinciding with the emergence of the earliest metage-
nomic studies (Rondon et al. 2000; Gillespie et al. 2002). However, the first refer-
ence to an eDNA extraction method is credited to Ogram et al. (1987), who described 
a method for extracting microbial DNA from sediments. Since then, the application 
of metagenomics to conservation has become a feasible and convenient task. For 
example, a combination of metagenomics, microscopy, microbe cultivation, and 
water chemistry, was used to characterize microbial communities in coral atolls, 
furthering the scientific understanding of the association of microbes with the deg-
radation of coral reef ecosystems across the globe (Dinsdale et al. 2008). Soon after, 
eDNA began to be used to assess eukaryote communities on a global scale (e.g., 
Bhadury et al. 2006), mainly through next-generation sequencing and metabarcod-
ing for taxon identification (e.g., Chariton et al. 2010).

Few studies have utilized eDNA or iDNA to evaluate eukaryotic communities in 
the Neotropics. The first study using eDNA in the Neotropics assessed amphibian 
communities in Brazilian Atlantic Forest streams, and compared the results with 
conventional field surveys (Sasso et al. 2017). Of the ten species that had been pre-
viously identified – over a five-year period – through visual-acoustic methods, being 
thus linked with the streams at least during one of their life stages (i.e., egg, tadpole 
or post-metamorphic), the authors were able to detect nine of them through eDNA 
metabarcoding from water samples collected over 4 days. This result illustrates how 
the eDNA method can be beneficial in supporting the conservation of neotropical 
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amphibians. In the same year, Kocher et al. (2017b) reported short mitochondrial 
sequences for the identification of Amazon mammals through metabarcoding.

Subsequently, eDNA from water samples and metabarcoding were successfully 
employed to assess the mammalian communities in two highly biodiverse regions 
of Brazil, the Amazon and the Atlantic Forest (Sales et al. 2020). To our knowledge, 
this was the first study aimed at detecting neotropical mammals using DNA extracted 
from water, an effort in which the potential and challenges of eDNA monitoring for 
mammals were highlighted. Indeed, eDNA from water bodies has predominantly 
been used to detect fish communities around the world (for a review, see Carvalho 
et al. 2022), and this has also been observed in the Neotropics (Cantera et al. 2019; 
Milan et al. 2020; Sales et al. 2021; Santana et al. 2021; Carvalho and Leal 2023).

On the other hand, iDNA obtained from the guts of insects (either hematopha-
gous, saprophagous, or coprophagous ones) has been predominantly used to assess 
mammal communities (Calvignac-Spencer et al. 2013; Schnell et al. 2015; Rodgers 
et al. 2017; Saranholi et al. 2023), although other vertebrates have also been identi-
fied (Calvignac-Spencer et  al. 2013; Saranholi et  al. 2023). iDNA has also been 
used in ecological investigations, such as dietary studies focused on disease trans-
mission by hematophagous insects (Bitome-Essono et  al. 2017), pathogen and 
virome assessment (Bass et al. 2023), trophic interactions (Paula et al. 2016), and 
biological control (Paula and Andow 2022). In the Neotropics, the use of iDNA to 
assess animal communities is still very incipient, and it is mostly dedicated to test-
ing and comparing different insect groups, mainly for surveys focused on mammals 
(Massey et al. 2022; Saranholi et al. 2023).

An important limitation in the use of eDNA/iDNA and metabarcoding is the 
availability (or rather, the lack thereof) of reference barcoding sequences, especially 
when working in the Neotropics. Further efforts are still required to obtain good sets 
of these sequences. However, due to the relative ease of collecting insects or envi-
ronmental samples from different biomes, as well as the cost-effectiveness and 
time-saving benefits of eDNA/iDNA analyses, and their potential for future techno-
logical and methodological advancements, these approaches may still become the 
primary tools for conducting easy and efficient biodiversity surveys worldwide, par-
ticularly in the hyperdiverse Neotropics.

1.4  Conservation Genomics in Neotropics

Conservation genomics can be defined similarly to conservation genetics, with the 
difference being the amount of molecular information available from genomic stud-
ies (Avise 2010). Thus, conservation genomics refers to the use of genomic tech-
niques to address problems in conservation biology (Allendorf et  al. 2010). The 
number of genomes sequenced is rapidly increasing and, while the first reported 
eukaryotic genome sequences were from model species (e.g., Caenorhabditis ele-
gans, Arabidopsis thaliana, Drosophila melanogaster), most of the currently 
sequenced species are non-model organisms, indicating a growing availability of 
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genomic information from an ever-expanding number of plants and animals 
(Ellegren 2014; for more on this, see Chaps. 19, 20, and 21).

Genomic techniques can be categorized into three basic classes (Allendorf et al. 
2010). The first one consists of SNP (Single Nucleotide Polymorphism) genotyping 
microarrays, which are used to detect single-base polymorphisms across the DNA 
of a population. However, using SNP microarrays or SNP chips suffers from an 
important limitation. Because an SNP chip is built to be species-specific, its use is 
often limited to the target species. Thus, considering the high costs associated with 
their development and construction, SNP microarrays are most commonly designed 
for either model species or species of great economic interest. For instance, SNP 
microarrays are used in human genetics, from detecting single-gene mutations 
(Bruno et al. 2011) to forensic investigations (Voskoboinik et al. 2015). They have 
also been used for genotyping in animal breeding, such as in alpacas (Vicugna 
pacos) (Calderon et al. 2021). The second class of genomic techniques is reduced- 
genome representation sequencing  – or GBS (Genotyping-by-Sequencing), with 
methods such as RADseq (Restriction-site Associated DNA sequencing) and 
ddRADseq (Double-digested Restriction-site Associated DNA sequencing), which 
employ next-generation sequencing technology to target orthologous regions across 
the genome of different individuals. For example, ddRADseq has been used to 
develop a panel of SNPs to investigate population polymorphisms in migratory 
birds (Larison et al. 2021). A similar approach has been used to investigate diversi-
fication within a neotropical toad species, and to test a set of hypotheses concerning 
reduced gene flow among populations (Thomé et al. 2021). Finally, whole-genome 
sequencing, which was initially used for describing the genomes of various organ-
isms, from viruses and bacteria to plants and animals, has now been increasingly 
used in population genomic studies. Public databases (e.g., GenBank) already make 
a considerable number of genomes available, which have been studied in order to 
answer a wide variety of questions. It is noteworthy that all these genomic tech-
niques produce vast amounts of data, requiring the critical use of bioinformatics for 
their analyses (Allendorf et al. 2010).

Population genomics focuses on the variations between genomes and popula-
tions (Luikart et al. 2003), and the large-scale resequencing of genomes from vari-
ous populations could lead to the identification of genes and genomic regions linked 
to fitness-related traits (Ellegren 2014). Conservation genomics may take advantage 
of this approach to study the genetic bases of local adaptations, or inbreeding 
depression (Allendorf et al. 2010). On the other hand, with the use of neutral mark-
ers, conservation genomics can also estimate population parameters such as genetic 
diversity, gene flow, and effective population size, which may be employed to sup-
port species management and conservation. Thus, genomic tools have great poten-
tial to improve the management of populations for conservation, from estimating 
the genetic parameters of populations with basis on a large number of neutral mark-
ers, to identifying loci linked to local adaptations (Allendorf et al. 2010).

In the Neotropics, genomic tools have been increasingly used for the conserva-
tion of plants and animals. For example, landscape genomic analyses have been 
used to produce insights on the negative consequences of habitat loss, and to 
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recommend gene flow restoration among populations of endangered turtles 
(Gallego-García et al. 2019). Fish are among the groups that have been most exten-
sively assessed by genomic approaches in the Neotropics, likely due to the expan-
sion of aquaculture of native species, and to the importance of conserving these 
resources. Indeed, genomic tools have greatly enhanced our understanding of neo-
tropical fish, and can aid in their conservation. For example, the development of 
SNP panels for population genetics (Martínez et  al. 2016, 2017; Mastrochirico- 
Filho et al. 2016; Delord et al. 2018), the assessment of genetic diversity in breeding 
species (Mastrochirico-Filho et al. 2019), and the investigation of hybrid zones in 
an annual fish genus (García et al. 2019) have provided valuable insights. In addi-
tion, the production of linkage maps and the utilization of genome-wide association 
studies to investigate pathogen resistance (Mastrochirico-Filho et al. 2020; Ariede 
et al. 2022) and genes linked with the absence of intermuscular bones (Nunes et al. 
2020) demonstrate the potential of genomic tools for supporting both aquaculture 
and conservation efforts.

The Neotropics are primarily composed of low- and middle-income countries 
that lack the infrastructure to manufacture equipment and chemicals for next- 
generation sequencing, which has made genomic research in the region difficult due 
to the high costs involved. Nevertheless, the lowering costs of these technologies 
have made them more accessible globally, which should have a significant impact 
on future biodiversity conservation studies in the Neotropics. (For more informa-
tion, see Chaps. 19, 20, and 21).

1.5  Final Considerations

Conservation genetics is a well-established field of study around the world, includ-
ing in the hyperdiverse Neotropics. From DNA barcoding to genomics, conserva-
tion genetic approaches have been widely used to address a variety of conservation 
questions in plants and animals, and to offer management actions for target species 
(Torres-Florez et al. 2018). Still, despite the many achievements of the past decades, 
several important questions related to selectively important genetic variation, fitness 
and adaptation, as well as genetic and environmental interactions, continue to chal-
lenge conservation geneticists. Most inferences on conservation genetics are 
obtained from microsatellite-based population studies, but the true value of neutral 
genetic diversity for species conservation is still under debate (García-Dorado & 
Caballero 2021; Teixeira & Huber 2021; Hoban et al. 2023). In this context, conser-
vation genomics can offer new opportunities for monitoring changes in allele fre-
quency (both neutral and non-neutral), and for evaluating the effects of genetic drift 
and natural selection within and between populations (Allendorf et  al. 2010), in 
addition to identifying genes and genomic regions involved in adaptation 
(Ellegren 2014).

Expanding from the species level to the community or ecosystem levels can help 
address broader conservation concerns, and using techniques such as phylogenetic 
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diversity, comparative phylogeography, and eDNA/iDNA can promote new para-
digms in conservation genetics. Regardless of the questions being asked, it appears 
that the importance of conservation genetics and genomics is still poorly understood 
by decision makers. In their review, Torres-Florez et al. (2018) found few cases of 
improvements in species protection resulting from published research on conserva-
tion genetics. Applying conservation genetics and genomics information to policy 
and decision making, as well as to the planning and implementation of conservation 
practices, remains a significant challenge. This is particularly true in the Neotropics, 
where biodiversity is vast and includes strategic biomes such as the Amazon Forest, 
which is crucial for global sustainability.
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