
5Appendix: Basic Terminology 

In this appendix, we present definitions of basic terminology used in the book for 
the reader’s convenience. For a given set W , .x ∈ W means that x is an element 
of W . 

5.1 Convergence 

(1) Let M be a set. A real-valued function d defined on M × M is said to be a 
metric if 
(i) d(x, y) = 0 if and only if x = y for x, y ∈ M; 
(ii) (symmetry) d(x, y) = d(y, x) for all x, y ∈ M; 
(iii) (triangle inequality) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ M . 
Here, X1×X2 denotes the Cartesian product of two sets X1 and X2 defined by 

. X1 × X2 := {
(x1, x2)

∣∣ xi ∈ Xi for i = 1, 2
}
.

The set M equipped with a metric d is called a metric space and denoted by 
(M, d) if one needs to clarify the metric. Let W be a product of metric spaces 
of (Mi, di) (i = 1, . . . , m), i.e., 

. W =
m∏

i=1

Mi = M1 × · · · × Mm

:= {
(x1, . . . , xm)

∣∣ xi ∈ Mi for i = 1, . . . , m
}
.
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This W is metrizable, for example, with a metric 

. d(x, y) =
(

m∑

i=1

di(xi, yi)
2

)1/2

for x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ W . If  Mi is independent of i, i.e., 
Mi = M , then we simply write W as Mm. 
A subset A of M is said to be open if for any x ∈ A there is ε >  0 such that 
the ball Bε(x) = {

y ∈ M
∣∣ d(y, x) ≤ ε

}
is included in A. If the  complement 

Ac is open, then A is said to be closed. The complement Ac is defined by 

. Ac = M\A := {
x ∈ M

∣∣ x �∈ A
}
.

For a set A, the smallest closed set including A is called the closure of A and 
denoted by A. Similarly, the largest open set included in A is called the interior 
of A and denoted by int A or simply by Å. By definition, A = A if and only 
if A is closed, and A = Å if and only if A is open. The set A\Å is called the 
boundary of A and denoted by ∂A. For a subset B of a set A, we say that B is 
dense in A if B = A. A set  A in M is bounded if there is x0 ∈ M and R >  0 
such that A is included in BR(x0). For  a  mapping f from a set S to M (i.e., an 
M-valued function defined on S), f is said to be bounded if its image f (S)  is 
bounded in M , where 

. f (S) = {
f (x)

∣∣ x ∈ S
}
.

(2) Let V be a real vector space (a vector space over the field R). A nonnegative 
function ‖ · ‖ on V is said to be a norm if 
(i) ‖x‖ = 0 if and only if x = 0 for  x ∈ V ; 
(ii) ‖cx‖ = |c|‖x‖ for all x ∈ V and all c ∈ R; 
(iii) (triangle inequality) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ V . 
The vector space V equipped with a norm ‖ · ‖ is called a normed vector space 
and denoted by (V , ‖ · ‖) if one needs to clarify the norm. By definition, 

. d(x, y) = ‖x − y‖

is a metric. A normed vector space is regarded as a metric space with the 
foregoing metric. 

(3) Let {zj }∞j=1 be a sequence in a metric space (M, d). We say that {zj }∞j=1 
converges to z ∈ M if for any ε >  0 there exists a natural number n = n(ε) 
such that j ≥ n(ε) implies d(z, zj ) < ε. In other words, 

. lim
j→0

d(z, zj ) = 0.
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We simply write zj → z as j → ∞, or limj→∞ zj = z. If {zj }∞j=1 converges 
to some element, we say that {zj }∞j=1 is a convergent sequence. 

(4) Let f be a mapping from a metric space (M1, d1) to another metric space 
(M2, d2). We say that f (y)  converges to a ∈ M2 as y tends to x if for any 
ε >  0 there exists δ = δ(ε) > 0 such that 

. d2 (f (y), a) < ε if d1(y, x) < δ.

We simply write f (y)  → a as y → x or limy→x f (y)  = a. If  

. lim
y→x

f (y) = f (x),

then f is said to be continuous at x ∈ M1. If  f is continuous at all x ∈ M1, 
then f is said to be continuous on M1 (with values in M2). The space of all 
continuous functions on M1 with values in M2 is denoted by C(M1,M2). 

(5) Let {zj }∞j=1 be a sequence in a metric space (M, d). We say that {zj }∞j=1 is 
a Cauchy sequence if for any ε >  0 there exists a natural number n = n(ε) 
such that j, k ≥ n(ε) implies d(zj , zk) < ε. It is easy to see that a convergent 
sequence is always a Cauchy sequence, but the converse may not hold. We 
say that the metric space (M, d) is complete if any Cauchy sequence is a 
convergent sequence. 

(6) Let (V , ‖ · ‖) be a normed vector space. We say that V is a Banach space 
if it is complete as a metric space. The norm ‖ · ‖ is often written as ‖ · ‖V 
to distinguish it from other norms if we use several norms. We simply write 
zj → z in V (as j → ∞) if limj→∞ ‖zj − z‖V = 0 and z ∈ V for a sequence 
{zj }∞j=1. We often say that zj converges to z strongly in V (as j → ∞) to  
distinguish this convergence from other weaker convergences discussed later. 

(7) Let V be a real vector space. A real-valued function 〈·, ·〉 defined on V × V is 
said to be an inner product if 
(i) 〈x, x〉 ≥ 0 for all x ∈ V ; 
(ii) 〈x, x〉 =  0 if and only if x = 0; 
(iii) (symmetry) 〈x, y〉 = 〈y, x〉 for all x, y ∈ V ; 
(iv) (linearity) 〈c1x1 + c2x2, y〉 = c1〈x1, y〉 +  c2〈x2, y〉 for all x1, x2, y  ∈ V , 

c1, c2 ∈ R. 
By definition, it is easy to see that 

. ‖z‖ = 〈z, z〉1/2

is a norm. The space with an inner product is regarded as a normed vector 
space with the foregoing norm. If this space is complete as a metric space, we 
say that V is a Hilbert space. The Euclidean space RN is a finite-dimensional 
Hilbert space equipped with a standard inner product. It turns out that any 
finite-dimensional Hilbert space is “isomorphic” to RN . Of course, a Hilbert 
space is an example of a Banach space.
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(8) Let V be a Banach space equipped with norm ‖ · ‖. Let  V ∗ denote the 
totality of all continuous linear function(al)s on V with values in R. (By  
the Hahn–Banach theorem, the vector space V ∗ has at least one dimension. 
Incidentally, Mazur’s theorem in the proof of Lemma 1.19 in Sect. 1.2.3 is 
another application of the Hahn–Banach theorem.) 
The space V ∗ is called the dual space of V . Let  {zj }∞j=1 be a sequence in V ∗. 
We say that {zj }∞j=1 converges to z ∈ V ∗ ∗-weakly if 

. lim
j→∞ zj (x) = z(x)

for any x ∈ V . We often write zj 
∗
⇀ z  in V ∗ as j → ∞. Such a sequence 

{zj }∞j=1 is called a ∗-weak convergent sequence. The dual space V ∗ is equipped 
with the norm 

. ‖z‖V ∗ := sup
{
z(x)

∣∣ ‖x‖ = 1, x ∈ V
} = sup

‖x‖=1
z(x).

The space V ∗ is also a Banach space with this norm. Here, for a subset A in R, 
by a = sup A we mean that a is the smallest real member that satisfies a ≥ x 
for any a ∈ A. In other words, it is the least upper bound of A. The notation 
sup is the abbreviation of the supremum. Similarly, infA denotes the greatest 
lower bound of A, and it is the abbreviation of the infimum. If sup  A = a with 
a ∈ A, we write max A instead of sup A. The same convention applies to inf 
and min. 
Since V ∗ is a Banach space, there is a notion of convergence in the metric 
defined by the norm. To distinguish this convergence from ∗-weak conver-
gence, we say that {zj }∞j=1 converges to z strongly in V ∗ if 

. lim
j→∞ ‖zj − z‖V ∗ = 0,

and it is simply written zj → z in V ∗ as j → ∞. By definition, zj → z 
implies zj 

∗
⇀ z, but the converse may not hold. 

(9) Let A be a subset of a metric space M . The  set  A is said to be (sequentially) 
relatively compact if any sequence {zj }∞j=1 in A has a convergent subsequence 
in M . If, moreover, A is closed, we simply say that A is compact. When A is 
compact, it is always bounded. When A is a subset of RN , it is well known 
as the Bolzano–Weierstrass theorem that A is compact if and only if A is 
bounded and closed. However, if A is a subset of a Banach space V , such 
an equivalence holds if and only if V is of finite dimension. In other words, 
a bounded sequence of an infinite-dimensional Banach space may not have a 
(strongly) convergent subsequence.
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There is a compactness theorem (Banach–Alaoglu theorem) that says if 
{zj }∞j=1 in a dual Banach space V ∗ is bounded, i.e., 

. sup
j≥1

‖zj‖V ∗ < ∞,

then it has a ∗-weak convergent subsequence (Exercise 1.9). 
(10) Let V be a Banach space and V ∗ denote its dual space. Let {xk}∞k=1 be a 

sequence in V . We say that {xk}∞k=1 converges to x ∈ V weakly if 

. lim
k→∞ z(xk) = z(x)

for all z ∈ V ∗. We often write xk ⇀ x  in V as k → ∞. Such a sequence is 
called a weak convergent sequence. 
If a Banach space W is a dual space of some Banach space V , say,  W = V ∗, 
there are two notions, weak convergence and ∗-weak convergence. Let {zj }∞j=1 

be a sequence in W . By definition, zj 
∗
⇀ z  (in W as j → ∞) means that 

limj→∞ zj (x) = z(x) for all x ∈ V while zj ⇀ z  (in W as j → ∞) means 
that limj→∞ y(zj ) = y(z) for all y ∈ W ∗ = (V ∗)∗. 
The space V can be continuously embedded in V ∗∗ = (V ∗)∗. However, V 
may not be equal to V ∗∗. Thus, weak convergence is stronger than ∗-weak 
convergence. If V = V ∗∗, then both notions are the same. The space V is 
called reflexive if V = V ∗∗. 

(11) If V is a Hilbert space, it is reflexive. More precisely, the mapping x ∈ V to 
z ∈ V ∗ defined by 

. z(y) = 〈x, y〉, y ∈ V

is a linear isomorphism from V to V ∗, which is also norm preserving, i.e.,
‖z‖V ∗ = ‖x‖. This result is known as the Riesz–Fréchet theorem. Thus, the 
notions of weak convergence and ∗-weak convergence are the same. 

(12) Let f be a real-valued function in a metric space M . We say that f is lower 
semicontinuous at x ∈ M if 

. f (x) ≤ lim inf
y→x

f (y) := lim
δ↓0 inf

{
f (y)

∣∣ d(y, x) < δ
}
,

where limδ↓0 denotes the limit as δ → 0 but restricted to δ >  0. Even if f 
is allowed to take +∞, the definition of the lower semicontinuity will still be 
valid. If f is lower semicontinuous for all x ∈ M , we simply say that f is 
lower semicontinuous on M . If −f is lower semicontinuous, we say that f is 
upper semicontinuous.
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(13) Let f = f (t)  be a function of one variable in an interval I in R with values 
in a Banach space V . We say that f is right differentiable at t0 ∈ I if there is 
v ∈ V such that 

. lim
h↓0 ‖f (t0 + h) − f (t0) − vh‖ /

h = 0

provided that t0 + h ∈ I for sufficiently small h >  0. Such v is uniquely 
determined if it exists and is denoted by 

. v = d+f

dt
(t0).

This quantity is called the right differential of f at t0. The function t → d
+f 
dt (t) 

is called the right derivative of f . The left differentiability is defined in a 
symmetric way by replacing h ↓ 0 with h ↑ 0. Even if both right and left 
differentials exist, they may be different. For example, consider f (t)  = |t | at 
t0 = 0. The right differential at zero is 1, while the left differential at zero is 
−1. If the right and left differentials agree with each other at t = t0, we say that 
f is differentiable at t = t0, and its value is denoted by df 

dt (t0). The function 

t → df 
dt (t) is called the derivative of f . If  f depends on other variables, we 

write ∂f/∂t instead of df/dt and call the partial derivative of f with respect 
to t . 

5.2 Measures and Integrals 

(1) For a set M , let  2M denote the family of all subsets of H . We say that a function 
μ defined on 2M with values in [0,∞] is an (outer) measure if 
(i) μ(∅) = 0; 
(ii) (countable subadditivity) μ(A) ≤ ∑∞ 

j=1 μ(Aj ) if a countable family 

{Aj }∞j=1 covers A, where Aj ,A  ∈ 2M . In other words, A is included in 
a union of {Aj }∞j=1, i.e., a point of A must be an element of some Aj . 

Here, ∅ denotes the empty set. 
(2) A set  A ∈ 2M is said to be μ-measurable if 

. μ(S ∩ Ac) + μ(S ∩ A) = μ(S)

for any S ∈ 2M . Let  M0 be a metric space. A mapping f from M to M0 is 
said to be μ-measurable if the preimage f −1(U) of an open set U of M0 is 
μ-measurable. Here, 

.f −1(U) := {
x ∈ M

∣∣ f (x) ∈ U
}
.
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A set  A with μ(A) = 0 is called a μ-measure zero set. If a statement P(x)  
for x ∈ M holds for x ∈ M\A with μ(A) = 0, we say that P(x)  holds for 
μ-almost every x ∈ M or shortly a.e. x ∈ M . In other words, P holds in M 
outside a μ-measure zero set. In this case, we simply say that P holds almost 
everywhere in M . 
Let M be the set of all μ-measurable sets. If we restrict μ just to M, i.e., 
μ = μ|M, then μ becomes a measure on M. Since in this book we consider 
μ(A) for a μ-measurable set A, we often say simply a measure instead of an 
outer measure. 

(3) Let A be a subset of RN . Let C be a family of closed cubes in RN whose faces 
are orthogonal to the xi-axis for some i = 1, . . . , N . In other words, C ∈ C 
means 

. C =
{
(x1, . . . , xN) ∈ RN

∣∣ ai ≤ xi ≤ ai + � (i = 1, . . . , n)
}

for some ai , � ∈ R. Let |C| denote its volume, i.e., |C| = �N . We set  

. LN(A) = inf

⎧
⎨

⎩

∞∑

j=1

|Cj |
∣∣∣∣ {Cj }∞j=1 covers A with Cj ∈ C

⎫
⎬

⎭
.

It turns out that LN (C) = |C|; it is nontrivial to prove LN (C) ≥ |C|. It is  
easy to see that LN is an (outer) measure in RN . This measure is called the 
Lebesgue measure in RN . It can be regarded as a measure in the flat torus 
TN = ∏N 

i=1(R/ωiZ). For a subset A of TN , we regard this set as a subset 
A0 of the fundamental domain (i.e., the periodic cell [0, ω1) × · · · × [0, ωN)). 
The Lebesgue measure of A is defined by LN (A) = LN (A0). Evidently, 
LN (TN ) = ω1 · · ·  ωN , which is denoted by |TN | in the proof of Lemma 1.21 in 
Sect. 1.2.5. 

(4) In this book, we only use the Lebesgue measure. We simply say measurable 
when a mapping or a set is LN -measurable. Instead of writing LN -a.e., we 
simply write a.e. Let � be a measurable set in TN or RN , for example, � = TN . 
Let f be a measurable function on � with values in a Banach space V . Then 
one is able to define its integral over �. When V = Rm, this integral is called 
the Lebesgue integral. In general, it is called the Bochner integral of f over
�. Its value is denoted by

∫
�

f dLN or, simply,
∫
�

f dx; See, for example, [90, 
Chapter V, Section 5]. If� = TN and f is continuous, this agrees with the more 
conventional Riemann integral. For p ∈ [1,∞) and a general Banach space V , 
let L̃p (�, V ) denote the space of all measurable functions f with values in V 
such that 

.‖f ‖p =
(∫

�

‖f (x)‖p dx

)1/p
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is finite. If ‖f ‖p is finite, we say that f is pth integrable. If  p = 1, we simply 
say f is integrable. If f ∈ L̃1(�, V ), we say that f is integrable in �. We  
identify two functions f, g ∈ L̃p (�, V ) if f = g a.e. and define Lp (�, V ) 
from L̃p (�, V ) by this identification. It is a fundamental result that Lp (�, V ) 
is a Banach space equipped with the norm ‖·‖p. When V = R, we simply write 
Lp (�) instead of Lp (�, V ). The case p = ∞  should be handled separately. For 
a general Banach space V , let  L̃∞(�, V ) denote the space of all measurable 
functions f with values in V such that 

. ‖f ‖∞ = inf
{
α

∣∣∣ LN
({

x ∈ �
∣∣ ‖f (x)‖V > α

}) = 0
}

is finite. By the same identification, the space L∞(�, V ) can be defined. 
This space L∞(�, V ) is again a Banach space. Key theorems in the theory 
of Lebesgue integrals used in this book include the Lebesgue dominated 
convergence theorem and Fubini’s theorem. Here, we give a version of the 
dominated convergence theorem. 

Theorem 5.1 
Let V be a Banach space. Let {fm}∞m=1 be a sequence in L

1(�, V ). Assume 
that there is a nonnegative function ϕ ∈ L1(�) independent of m such that
‖fm(x)‖V ≤ ϕ(x) for a.e. x ∈ �. If  limm→∞ fm(x) = f (x)  for a.e. x ∈ �, 
then 

. lim
m→∞

∫

�

fm(x) dx =
∫

f (x) dx.

In other words, limm→∞
∥∥∫

�
fm dx − ∫

�
f (x) dx

∥∥
V = 0. 

Usually, V is taken as R or RN , but it is easy to extend to this setting. For basic 
properties of the Lebesgue measure and integrals, see for example a classical 
book of Folland [42]. We take this opportunity to clarify ∗-weak convergence 
in Lp space. A basic fact is that (Lp (�))∗ = Lp′

(�) for 1 ≤ p <  ∞, where 
1/p + 1/p′ = 1. Note that p = ∞  is excluded, but (L1)∗ = L∞. Since Lp 

is reflexive for 1 < p  <  ∞, weak convergence and ∗-weak convergence agree 
with each other. Let us write a ∗-weak convergence in L∞ explicitly. A sequence 
{fm} in L∞(�) ∗-weakly converges to f ∈ L∞(�) as m → ∞ if and only if 

. lim
m→∞

∫

�

fmϕ dx =
∫

�

f ϕ dx
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for all ϕ ∈ L1(�). For detailed properties of Lp spaces, see, for example, [19, 
Chapter 4]. 
For a Banach space V -valued Lp function, we also consider its dual space. That 
is, we have 

. 
(
Lp(�, V )

)∗ = Lp′
(�, V ∗) for 1 ≤ p < ∞

with 1/p + 1/p′ = 1. (This duality—at least for reflexive V—can be proved 
along the same line as in [19, Chapter 4], where V is assumed to be R. For  
a general Banach space V , see, for example, [35, Chapter IV].) We consider 
∗-weak convergence in L∞(�, V ) with V = Lq (U), 1  < q  ≤ ∞, where �

is an open interval (0, T  )  and U is an open set in TN or RN since this case 
is explicitly used in Chap. 2. A sequence {fm} in L∞ (�, Lq (U)) ∗-weakly 
converges to f ∈ L∞ (�, Lq (U)) as m → ∞  if and only if 

. lim
m→∞

∫ T

0

∫

U

fm(x, t)ϕ(x, t)dx dt =
∫ T

0

∫

U

f (x, t)ϕ(x, t)dx dt

for ϕ ∈ L1
(
�, Lq ′

(U)
)
. (Note that the space Lp (�, Lq (U)) is identified with 

the space of all measurable functions ϕ on�×U such that
∫ T 
0 ‖ϕ‖p 

Lq(U)(t) dt <  
∞ or

∫ T 
0

(∫
U |ϕ(x, t)|q dx

)p/q dt <  ∞ for 1 ≤ p, q < ∞.) 
(5) Besides the basic properties of the Lebesgue integrals, we frequently use a few 

estimates involving Lp-norms. These properties are by now standard and found 
in many books, including [19]. For example, we frequently use the Hölder 
inequality 

. ‖fg‖p ≤ ‖f ‖r‖g‖q

with 1/p = 1/r + 1/q for f ∈ Lr (�), g ∈ Lq (�), where p, q, r ∈ [1,∞]. 
Here, we interpret 1/∞ =  0. In the case p = 1, r = q = 2, this inequality 
is called the Schwarz inequality. As an application, we have Young’s inequality 
for a convolution 

. ‖f ∗ g‖p ≤ ‖f ‖q‖g‖r

for f ∈ Lq (RN ), g ∈ Lr (RN ) with 1/p = 1/q +1/r −1 and p, q, r ∈ [1,∞]; 
see, for example, [45, Chapter 4]. In this book, we use this inequality when RN 

is replaced by TN . 
(6) In analysis, we often need an approximation of a function by smooth functions. 

We only recall an elementary fact. The space C∞
c (�) is dense in Lp (�) for 

p ∈ [1,∞); see, for example, [19, Corollary 4.23]. However, it is not dense in 
L∞(�).
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