Appendix: Basic Terminology

In this appendix, we present definitions of basic terminology used in the book for the reader's convenience. For a given set $W, x \in W$ means that x is an *element* of W.

5.1 Convergence

- (1) Let M be a set. A real-valued function d defined on $M \times M$ is said to be a *metric* if
 - (i) d(x, y) = 0 if and only if x = y for $x, y \in M$;
 - (ii) (symmetry) d(x, y) = d(y, x) for all $x, y \in M$;
 - (iii) (triangle inequality) $d(x, y) \le d(x, z) + d(z, y)$ for all $x, y, z \in M$.

Here, $X_1 \times X_2$ denotes the *Cartesian product* of two sets X_1 and X_2 defined by

$$X_1 \times X_2 := \{ (x_1, x_2) \mid x_i \in X_i \text{ for } i = 1, 2 \}.$$

The set *M* equipped with a metric *d* is called a *metric space* and denoted by (M, d) if one needs to clarify the metric. Let *W* be a product of metric spaces of (M_i, d_i) (i = 1, ..., m), i.e.,

$$W = \prod_{i=1}^{m} M_i = M_1 \times \dots \times M_m$$
$$:= \{ (x_1, \dots, x_m) \mid x_i \in M_i \text{ for } i = 1, \dots, m \}.$$

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 M.-H. Giga, Y. Giga, *A Basic Guide to Uniqueness Problems for Evolutionary Differential Equations*, Compact Textbooks in Mathematics, https://doi.org/10.1007/978-3-031-34796-2_5 139

5

This W is metrizable, for example, with a metric

$$d(x, y) = \left(\sum_{i=1}^{m} d_i (x_i, y_i)^2\right)^{1/2}$$

for $x = (x_1, ..., x_m)$, $y = (y_1, ..., y_m) \in W$. If M_i is independent of *i*, i.e., $M_i = M$, then we simply write *W* as M^m .

A subset *A* of *M* is said to be *open* if for any $x \in A$ there is $\varepsilon > 0$ such that the *ball* $B_{\varepsilon}(x) = \{y \in M \mid d(y, x) \le \varepsilon\}$ is included in *A*. If the *complement* A^{ε} is open, then *A* is said to be *closed*. The complement A^{ε} is defined by

$$A^{c} = M \setminus A := \{ x \in M \mid x \notin A \}.$$

For a set *A*, the smallest closed set including *A* is called the *closure* of *A* and denoted by \overline{A} . Similarly, the largest open set included in *A* is called the *interior* of *A* and denoted by int *A* or simply by \mathring{A} . By definition, $A = \overline{A}$ if and only if *A* is closed, and $A = \mathring{A}$ if and only if *A* is open. The set $\overline{A} \setminus \mathring{A}$ is called the *boundary* of *A* and denoted by ∂A . For a subset *B* of a set *A*, we say that *B* is *dense* in *A* if $\overline{B} = A$. A set *A* in *M* is *bounded* if there is $x_0 \in M$ and R > 0 such that *A* is included in $B_R(x_0)$. For a *mapping f* from a set *S* to *M* (i.e., an *M*-valued function defined on *S*), *f* is said to be *bounded* if its *image* f(S) is bounded in *M*, where

$$f(S) = \left\{ f(x) \mid x \in S \right\}.$$

- (2) Let V be a real vector space (a vector space over the field **R**). A nonnegative function || · || on V is said to be a *norm* if
 - (i) ||x|| = 0 if and only if x = 0 for $x \in V$;
 - (ii) ||cx|| = |c|||x|| for all $x \in V$ and all $c \in \mathbf{R}$;
 - (iii) (triangle inequality) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in V$.

The vector space V equipped with a norm $\|\cdot\|$ is called a *normed vector space* and denoted by $(V, \|\cdot\|)$ if one needs to clarify the norm. By definition,

$$d(x, y) = \|x - y\|$$

is a metric. A normed vector space is regarded as a metric space with the foregoing metric.

(3) Let {z_j}[∞]_{j=1} be a sequence in a metric space (M, d). We say that {z_j}[∞]_{j=1} converges to z ∈ M if for any ε > 0 there exists a natural number n = n(ε) such that j ≥ n(ε) implies d(z, z_j) < ε. In other words,</p>

$$\lim_{j \to 0} d(z, z_j) = 0.$$

We simply write $z_j \to z$ as $j \to \infty$, or $\lim_{j\to\infty} z_j = z$. If $\{z_j\}_{j=1}^{\infty}$ converges to some element, we say that $\{z_j\}_{j=1}^{\infty}$ is a *convergent sequence*.

(4) Let f be a mapping from a metric space (M₁, d₁) to another metric space (M₂, d₂). We say that f(y) converges to a ∈ M₂ as y tends to x if for any ε > 0 there exists δ = δ(ε) > 0 such that

$$d_2(f(y), a) < \varepsilon$$
 if $d_1(y, x) < \delta$.

We simply write $f(y) \to a$ as $y \to x$ or $\lim_{y\to x} f(y) = a$. If

$$\lim_{y \to x} f(y) = f(x),$$

then f is said to be *continuous* at $x \in M_1$. If f is continuous at all $x \in M_1$, then f is said to be *continuous* on M_1 (with values in M_2). The space of all continuous functions on M_1 with values in M_2 is denoted by $C(M_1, M_2)$.

- (5) Let $\{z_j\}_{j=1}^{\infty}$ be a sequence in a metric space (M, d). We say that $\{z_j\}_{j=1}^{\infty}$ is a *Cauchy sequence* if for any $\varepsilon > 0$ there exists a natural number $n = n(\varepsilon)$ such that $j, k \ge n(\varepsilon)$ implies $d(z_j, z_k) < \varepsilon$. It is easy to see that a convergent sequence is always a Cauchy sequence, but the converse may not hold. We say that the metric space (M, d) is *complete* if any Cauchy sequence is a convergent sequence.
- (6) Let (V, || · ||) be a normed vector space. We say that V is a Banach space if it is complete as a metric space. The norm || · || is often written as || · ||_V to distinguish it from other norms if we use several norms. We simply write z_j → z in V (as j → ∞) if lim_{j→∞} ||z_j z||_V = 0 and z ∈ V for a sequence {z_j}_{j=1}[∞]. We often say that z_j converges to z strongly in V (as j → ∞) to distinguish this convergence from other weaker convergences discussed later.
- (7) Let V be a real vector space. A real-valued function $\langle \cdot, \cdot \rangle$ defined on $V \times V$ is said to be an *inner product* if
 - (i) $\langle x, x \rangle \ge 0$ for all $x \in V$;
 - (ii) $\langle x, x \rangle = 0$ if and only if x = 0;
 - (iii) (symmetry) $\langle x, y \rangle = \langle y, x \rangle$ for all $x, y \in V$;
 - (iv) (linearity) $\langle c_1 x_1 + c_2 x_2, y \rangle = c_1 \langle x_1, y \rangle + c_2 \langle x_2, y \rangle$ for all $x_1, x_2, y \in V$, $c_1, c_2 \in \mathbf{R}$.

By definition, it is easy to see that

$$||z|| = \langle z, z \rangle^{1/2}$$

is a norm. The space with an inner product is regarded as a normed vector space with the foregoing norm. If this space is complete as a metric space, we say that *V* is a *Hilbert space*. The Euclidean space \mathbf{R}^N is a finite-dimensional Hilbert space equipped with a standard inner product. It turns out that any finite-dimensional Hilbert space is "isomorphic" to \mathbf{R}^N . Of course, a Hilbert space is an example of a Banach space.

(8) Let V be a Banach space equipped with norm $\|\cdot\|$. Let V* denote the totality of all continuous linear function(al)s on V with values in **R**. (By the Hahn–Banach theorem, the vector space V* has at least one dimension. Incidentally, Mazur's theorem in the proof of Lemma 1.19 in Sect. 1.2.3 is another application of the Hahn–Banach theorem.)

The space V^* is called the *dual space* of V. Let $\{z_j\}_{j=1}^{\infty}$ be a sequence in V^* . We say that $\{z_j\}_{j=1}^{\infty}$ converges to $z \in V^*$ *-weakly if

$$\lim_{j \to \infty} z_j(x) = z(x)$$

for any $x \in V$. We often write $z_j \stackrel{*}{\rightharpoonup} z$ in V^* as $j \to \infty$. Such a sequence $\{z_j\}_{j=1}^{\infty}$ is called a *-*weak convergent sequence*. The dual space V^* is equipped with the norm

$$||z||_{V^*} := \sup \{ z(x) \mid ||x|| = 1, x \in V \} = \sup_{||x||=1} z(x).$$

The space V^* is also a Banach space with this norm. Here, for a subset A in **R**, by $a = \sup A$ we mean that a is the smallest real member that satisfies $a \ge x$ for any $a \in A$. In other words, it is the least upper bound of A. The notation sup is the abbreviation of the *supremum*. Similarly, inf A denotes the greatest lower bound of A, and it is the abbreviation of the *infimum*. If $\sup A = a$ with $a \in A$, we write max A instead of $\sup A$. The same convention applies to inf and min.

Since V^* is a Banach space, there is a notion of convergence in the metric defined by the norm. To distinguish this convergence from *-weak convergence, we say that $\{z_j\}_{j=1}^{\infty}$ converges to *z* strongly in V^* if

$$\lim_{j\to\infty}\|z_j-z\|_{V^*}=0,$$

and it is simply written $z_j \to z$ in V^* as $j \to \infty$. By definition, $z_j \to z$ implies $z_j \stackrel{*}{\longrightarrow} z$, but the converse may not hold.

(9) Let A be a subset of a metric space M. The set A is said to be (sequentially) relatively compact if any sequence $\{z_j\}_{j=1}^{\infty}$ in A has a convergent subsequence in M. If, moreover, A is closed, we simply say that A is compact. When A is compact, it is always bounded. When A is a subset of \mathbb{R}^N , it is well known as the Bolzano–Weierstrass theorem that A is compact if and only if A is bounded and closed. However, if A is a subset of a Banach space V, such an equivalence holds if and only if V is of finite dimension. In other words, a bounded sequence of an infinite-dimensional Banach space may not have a (strongly) convergent subsequence.

There is a compactness theorem (Banach–Alaoglu theorem) that says if $\{z_i\}_{i=1}^{\infty}$ in a dual Banach space V^* is bounded, i.e.,

$$\sup_{j\geq 1}\|z_j\|_{V^*}<\infty,$$

then it has a *-weak convergent subsequence (Exercise 1.9).

(10) Let V be a Banach space and V* denote its dual space. Let $\{x_k\}_{k=1}^{\infty}$ be a sequence in V. We say that $\{x_k\}_{k=1}^{\infty}$ converges to $x \in V$ weakly if

$$\lim_{k \to \infty} z(x_k) = z(x)$$

for all $z \in V^*$. We often write $x_k \rightharpoonup x$ in V as $k \rightarrow \infty$. Such a sequence is called a *weak convergent sequence*.

If a Banach space W is a dual space of some Banach space V, say, $W = V^*$, there are two notions, weak convergence and *-weak convergence. Let $\{z_j\}_{j=1}^{\infty}$

be a sequence in W. By definition, $z_j \stackrel{*}{\rightharpoonup} z$ (in W as $j \rightarrow \infty$) means that $\lim_{j\to\infty} z_j(x) = z(x)$ for all $x \in V$ while $z_j \rightharpoonup z$ (in W as $j \rightarrow \infty$) means that $\lim_{j\to\infty} y(z_j) = y(z)$ for all $y \in W^* = (V^*)^*$.

The space V can be continuously embedded in $V^{**} = (V^*)^*$. However, V may not be equal to V^{**} . Thus, weak convergence is stronger than *-weak convergence. If $V = V^{**}$, then both notions are the same. The space V is called *reflexive* if $V = V^{**}$.

(11) If V is a Hilbert space, it is reflexive. More precisely, the mapping $x \in V$ to $z \in V^*$ defined by

$$z(y) = \langle x, y \rangle, \quad y \in V$$

is a linear isomorphism from V to V^* , which is also norm preserving, i.e., $||z||_{V^*} = ||x||$. This result is known as the Riesz–Fréchet theorem. Thus, the notions of weak convergence and *-weak convergence are the same.

(12) Let f be a real-valued function in a metric space M. We say that f is *lower* semicontinuous at $x \in M$ if

$$f(x) \le \liminf_{y \to x} f(y) := \liminf_{\delta \downarrow 0} \left\{ f(y) \mid d(y, x) < \delta \right\},\$$

where $\lim_{\delta \downarrow 0}$ denotes the limit as $\delta \to 0$ but restricted to $\delta > 0$. Even if f is allowed to take $+\infty$, the definition of the lower semicontinuity will still be valid. If f is lower semicontinuous for all $x \in M$, we simply say that f is lower semicontinuous on M. If -f is lower semicontinuous, we say that f is *upper semicontinuous*.

(13) Let f = f(t) be a function of one variable in an interval I in **R** with values in a Banach space V. We say that f is *right differentiable* at $t_0 \in I$ if there is $v \in V$ such that

$$\lim_{h \downarrow 0} \|f(t_0 + h) - f(t_0) - vh\| / h = 0$$

provided that $t_0 + h \in I$ for sufficiently small h > 0. Such v is uniquely determined if it exists and is denoted by

$$v = \frac{\mathrm{d}^+ f}{\mathrm{d}t}(t_0).$$

This quantity is called the *right differential* of f at t_0 . The function $t \mapsto \frac{d^+f}{dt}(t)$ is called the *right derivative* of f. The left differentiability is defined in a symmetric way by replacing $h \downarrow 0$ with $h \uparrow 0$. Even if both right and left differentials exist, they may be different. For example, consider f(t) = |t| at $t_0 = 0$. The right differential at zero is 1, while the left differential at zero is -1. If the right and left differentials agree with each other at $t = t_0$, we say that f is *differentiable* at $t = t_0$, and its value is denoted by $\frac{df}{dt}(t_0)$. The function $t \mapsto \frac{df}{dt}(t)$ is called the *derivative* of f. If f depends on other variables, we write $\partial f/\partial t$ instead of df/dt and call the *partial derivative* of f with respect to t.

5.2 Measures and Integrals

- (1) For a set M, let 2^M denote the family of all subsets of H. We say that a function μ defined on 2^M with values in $[0, \infty]$ is an (outer) *measure* if
 - (i) $\mu(\emptyset) = 0;$
 - (ii) (countable subadditivity) $\mu(A) \leq \sum_{j=1}^{\infty} \mu(A_j)$ if a countable family $\{A_j\}_{j=1}^{\infty}$ covers A, where $A_j, A \in 2^M$. In other words, A is included in a union of $\{A_j\}_{j=1}^{\infty}$, i.e., a point of A must be an element of some A_j . Here, \emptyset denotes the empty set.
- (2) A set $A \in 2^M$ is said to be μ -measurable if

$$\mu(S \cap A^c) + \mu(S \cap A) = \mu(S)$$

for any $S \in 2^M$. Let M_0 be a metric space. A mapping f from M to M_0 is said to be μ -measurable if the preimage $f^{-1}(U)$ of an open set U of M_0 is μ -measurable. Here,

$$f^{-1}(U) := \{x \in M \mid f(x) \in U\}.$$

A set A with $\mu(A) = 0$ is called a μ -measure zero set. If a statement P(x) for $x \in M$ holds for $x \in M \setminus A$ with $\mu(A) = 0$, we say that P(x) holds for μ -almost every $x \in M$ or shortly a.e. $x \in M$. In other words, P holds in M outside a μ -measure zero set. In this case, we simply say that P holds almost everywhere in M.

Let \mathcal{M} be the set of all μ -measurable sets. If we restrict μ just to \mathcal{M} , i.e., $\overline{\mu} = \mu|_{\mathcal{M}}$, then $\overline{\mu}$ becomes a measure on \mathcal{M} . Since in this book we consider $\mu(A)$ for a μ -measurable set A, we often say simply a measure instead of an outer measure.

(3) Let A be a subset of \mathbb{R}^N . Let C be a family of closed cubes in \mathbb{R}^N whose faces are orthogonal to the x_i -axis for some i = 1, ..., N. In other words, $C \in C$ means

$$C = \left\{ (x_1, \ldots, x_N) \in \mathbf{R}^N \mid a_i \le x_i \le a_i + \ell \ (i = 1, \ldots, n) \right\}$$

for some $a_i, \ell \in \mathbf{R}$. Let |C| denote its volume, i.e., $|C| = \ell^N$. We set

$$\mathcal{L}^{N}(A) = \inf \left\{ \sum_{j=1}^{\infty} |C_{j}| \; \middle| \; \{C_{j}\}_{j=1}^{\infty} \text{ covers } A \text{ with } C_{j} \in \mathcal{C} \right\}.$$

It turns out that $\mathcal{L}^{N}(C) = |C|$; it is nontrivial to prove $\mathcal{L}^{N}(C) \geq |C|$. It is easy to see that \mathcal{L}^{N} is an (outer) measure in \mathbf{R}^{N} . This measure is called the *Lebesgue measure* in \mathbf{R}^{N} . It can be regarded as a measure in the flat torus $\mathbf{T}^{N} = \prod_{i=1}^{N} (\mathbf{R}/\omega_{i}\mathbf{Z})$. For a subset A of \mathbf{T}^{N} , we regard this set as a subset A_{0} of the *fundamental domain* (i.e., the *periodic cell* $[0, \omega_{1}) \times \cdots \times [0, \omega_{N})$). The Lebesgue measure of A is defined by $\mathcal{L}^{N}(A) = \mathcal{L}^{N}(A_{0})$. Evidently, $\mathcal{L}^{N}(\mathbf{T}^{N}) = \omega_{1} \cdots \omega_{N}$, which is denoted by $|\mathbf{T}^{N}|$ in the proof of Lemma 1.21 in Sect. 1.2.5.

(4) In this book, we only use the Lebesgue measure. We simply say measurable when a mapping or a set is *L^N*-measurable. Instead of writing *L^N*-a.e., we simply write a.e. Let Ω be a measurable set in **T**^N or **R**^N, for example, Ω = **T**^N. Let *f* be a measurable function on Ω with values in a Banach space *V*. Then one is able to define its integral over Ω. When *V* = **R**^m, this integral is called the Lebesgue integral. In general, it is called the Bochner integral of *f* over Ω. Its value is denoted by *f*_Ω *f* d*L^N* or, simply, *f*_Ω *f* d*x*; See, for example, [90, Chapter V, Section 5]. If Ω = **T**^N and *f* is continuous, this agrees with the more conventional Riemann integral. For *p* ∈ [1, ∞) and a general Banach space *V*, let *L^P*(Ω, *V*) denote the space of all measurable functions *f* with values in *V* such that

$$||f||_p = \left(\int_{\Omega} ||f(x)||^p \,\mathrm{d}x\right)^{1/p}$$

is finite. If $||f||_p$ is finite, we say that f is pth *integrable*. If p = 1, we simply say f is integrable. If $f \in \tilde{L}^1(\Omega, V)$, we say that f is *integrable* in Ω . We identify two functions $f, g \in \tilde{L}^p(\Omega, V)$ if f = g a.e. and define $L^p(\Omega, V)$ from $\tilde{L}^p(\Omega, V)$ by this identification. It is a fundamental result that $L^p(\Omega, V)$ is a Banach space equipped with the norm $||\cdot||_p$. When $V = \mathbf{R}$, we simply write $L^p(\Omega)$ instead of $L^p(\Omega, V)$. The case $p = \infty$ should be handled separately. For a general Banach space V, let $\tilde{L}^{\infty}(\Omega, V)$ denote the space of all measurable functions f with values in V such that

$$\|f\|_{\infty} = \inf \left\{ \alpha \mid \mathcal{L}^{N} \left(\left\{ x \in \Omega \mid \|f(x)\|_{V} > \alpha \right\} \right) = 0 \right\}$$

is finite. By the same identification, the space $L^{\infty}(\Omega, V)$ can be defined. This space $L^{\infty}(\Omega, V)$ is again a Banach space. Key theorems in the theory of Lebesgue integrals used in this book include the Lebesgue dominated convergence theorem and Fubini's theorem. Here, we give a version of the *dominated convergence theorem*.

Theorem 5.1

Let V be a Banach space. Let $\{f_m\}_{m=1}^{\infty}$ be a sequence in $L^1(\Omega, V)$. Assume that there is a nonnegative function $\varphi \in L^1(\Omega)$ independent of m such that $\|f_m(x)\|_V \leq \varphi(x)$ for a.e. $x \in \Omega$. If $\lim_{m\to\infty} f_m(x) = f(x)$ for a.e. $x \in \Omega$, then

$$\lim_{m\to\infty}\int_{\Omega}f_m(x)\,\mathrm{d}x=\int f(x)\,\mathrm{d}x.$$

In other words, $\lim_{m\to\infty} \left\| \int_{\Omega} f_m \, dx - \int_{\Omega} f(x) \, dx \right\|_V = 0.$

Usually, *V* is taken as **R** or **R**^{*N*}, but it is easy to extend to this setting. For basic properties of the Lebesgue measure and integrals, see for example a classical book of Folland [42]. We take this opportunity to clarify *-weak convergence in L^p space. A basic fact is that $(L^p(\Omega))^* = L^{p'}(\Omega)$ for $1 \le p < \infty$, where 1/p + 1/p' = 1. Note that $p = \infty$ is excluded, but $(L^1)^* = L^\infty$. Since L^p is reflexive for 1 , weak convergence and *-weak convergence agree $with each other. Let us write a *-weak convergence in <math>L^\infty$ explicitly. A sequence $\{f_m\}$ in $L^\infty(\Omega)$ *-weakly converges to $f \in L^\infty(\Omega)$ as $m \to \infty$ if and only if

$$\lim_{m \to \infty} \int_{\Omega} f_m \varphi \, \mathrm{d}x = \int_{\Omega} f \varphi \, \mathrm{d}x$$

for all $\varphi \in L^1(\Omega)$. For detailed properties of L^p spaces, see, for example, [19, Chapter 4].

For a Banach space V-valued L^p function, we also consider its dual space. That is, we have

$$(L^p(\Omega, V))^* = L^{p'}(\Omega, V^*)$$
 for $1 \le p < \infty$

with 1/p + 1/p' = 1. (This duality—at least for reflexive *V*—can be proved along the same line as in [19, Chapter 4], where *V* is assumed to be **R**. For a general Banach space *V*, see, for example, [35, Chapter IV].) We consider *-weak convergence in $L^{\infty}(\Omega, V)$ with $V = L^q(U)$, $1 < q \leq \infty$, where Ω is an open interval (0, T) and *U* is an open set in \mathbf{T}^N or \mathbf{R}^N since this case is explicitly used in Chap. 2. A sequence $\{f_m\}$ in $L^{\infty}(\Omega, L^q(U))$ *-weakly converges to $f \in L^{\infty}(\Omega, L^q(U))$ as $m \to \infty$ if and only if

$$\lim_{m \to \infty} \int_0^T \int_U f_m(x, t)\varphi(x, t) dx dt = \int_0^T \int_U f(x, t)\varphi(x, t) dx dt$$

for $\varphi \in L^1(\Omega, L^{q'}(U))$. (Note that the space $L^p(\Omega, L^q(U))$ is identified with the space of all measurable functions φ on $\Omega \times U$ such that $\int_0^T \|\varphi\|_{L^q(U)}^p(t) dt < \infty$ or $\int_0^T (\int_U |\varphi(x, t)|^q dx)^{p/q} dt < \infty$ for $1 \le p, q < \infty$.)

(5) Besides the basic properties of the Lebesgue integrals, we frequently use a few estimates involving L^p-norms. These properties are by now standard and found in many books, including [19]. For example, we frequently use the *Hölder inequality*

$$||fg||_p \leq ||f||_r ||g||_q$$

with 1/p = 1/r + 1/q for $f \in L^r(\Omega)$, $g \in L^q(\Omega)$, where $p, q, r \in [1, \infty]$. Here, we interpret $1/\infty = 0$. In the case p = 1, r = q = 2, this inequality is called the *Schwarz inequality*. As an application, we have *Young's inequality* for a convolution

$$||f * g||_p \le ||f||_q ||g||_p$$

for $f \in L^q(\mathbf{R}^N)$, $g \in L^r(\mathbf{R}^N)$ with 1/p = 1/q + 1/r - 1 and $p, q, r \in [1, \infty]$; see, for example, [45, Chapter 4]. In this book, we use this inequality when \mathbf{R}^N is replaced by \mathbf{T}^N .

(6) In analysis, we often need an approximation of a function by smooth functions. We only recall an elementary fact. The space C[∞]_c(Ω) is dense in L^p(Ω) for p ∈ [1,∞); see, for example, [19, Corollary 4.23]. However, it is not dense in L[∞](Ω).