5 Appendix: Basic Terminology

In this appendix, we present definitions of basic terminology used in the book for the reader's convenience. For a given set $W, x \in W$ means that *x* is an *element* of *W*.

5.1 Convergence

- (1) Let *M* be a set. A real-valued function *d* defined on $M \times M$ is said to be a *metric* if
	- (i) $d(x, y) = 0$ if and only if $x = y$ for $x, y \in M$;
	- (ii) (symmetry) $d(x, y) = d(y, x)$ for all $x, y \in M$;
	- (iii) (triangle inequality) $d(x, y) \leq d(x, z) + d(z, y)$ for all $x, y, z \in M$.

Here, $X_1 \times X_2$ denotes the *Cartesian product* of two sets X_1 and X_2 defined by

$$
X_1 \times X_2 := \{(x_1, x_2) \mid x_i \in X_i \text{ for } i = 1, 2\}.
$$

The set *M* equipped with a metric *d* is called a *metric space* and denoted by *(M, d)* if one needs to clarify the metric. Let *W* be a product of metric spaces of (M_i, d_i) $(i = 1, \ldots, m)$, i.e.,

$$
W = \prod_{i=1}^{m} M_i = M_1 \times \cdots \times M_m
$$

 := { $(x_1, ..., x_m)$ | $x_i \in M_i$ for $i = 1, ..., m$ }.

139

This *W* is metrizable, for example, with a metric

$$
d(x, y) = \left(\sum_{i=1}^{m} d_i(x_i, y_i)^2\right)^{1/2}
$$

for $x = (x_1, \ldots, x_m), y = (y_1, \ldots, y_m) \in W$. If M_i is independent of *i*, i.e., $M_i = M$, then we simply write *W* as M^m .

A subset *A* of *M* is said to be *open* if for any $x \in A$ there is $\varepsilon > 0$ such that the *ball* $B_{\varepsilon}(x) = \{y \in M \mid d(y, x) \leq \varepsilon\}$ is included in *A*. If the *complement* $\{f(x), f(x)\}$ A^c is open, then *A* is said to be *closed*. The complement A^c is defined by

$$
A^c = M \backslash A := \{ x \in M \mid x \notin A \}.
$$

For a set *A*, the smallest closed set including *A* is called the *closure* of *A* and denoted by *A*. Similarly, the largest open set included in *A* is called the *interior* of *A* and denoted by int *A* or simply by \AA . By definition, $A = \overline{A}$ if and only if *A* is closed, and $A = \mathring{A}$ if and only if *A* is open. The set $\overline{A} \setminus \mathring{A}$ is called the *boundary* of *A* and denoted by *∂A*. For a subset *B* of a set *A*, we say that *B* is *dense* in *A* if $\overline{B} = A$. A set *A* in *M* is *bounded* if there is $x_0 \in M$ and $R > 0$ such that *A* is included in $B_R(x_0)$. For a *mapping* f from a set *S* to *M* (i.e., an *M*-valued function defined on *S*), *f* is said to be *bounded* if its *image f (S)* is bounded in *M*, where

$$
f(S) = \{ f(x) \mid x \in S \}.
$$

- (2) Let *V* be a real vector space (a vector space over the field **R**). A nonnegative function $\| \cdot \|$ on *V* is said to be a *norm* if
	- (i) $||x|| = 0$ if and only if $x = 0$ for $x \in V$;
	- (ii) $\|cx\| = |c| \|x\|$ for all $x \in V$ and all $c \in \mathbb{R}$;
	- (iii) (triangle inequality) $\|x + y\| \le \|x\| + \|y\|$ for all $x, y \in V$.

The vector space *V* equipped with a norm $\|\cdot\|$ is called a *normed vector space* and denoted by $(V, \|\cdot\|)$ if one needs to clarify the norm. By definition,

$$
d(x, y) = \|x - y\|
$$

is a metric. A normed vector space is regarded as a metric space with the foregoing metric.

(3) Let $\{z_j\}_{j=1}^{\infty}$ be a sequence in a metric space (M, d) . We say that $\{z_j\}_{j=1}^{\infty}$ *converges* to $z \in M$ if for any $\varepsilon > 0$ there exists a natural number $n = n(\varepsilon)$ such that $j \geq n(\varepsilon)$ implies $d(z, z_i) < \varepsilon$. In other words,

$$
\lim_{j \to 0} d(z, z_j) = 0.
$$

We simply write $z_j \to z$ as $j \to \infty$, or $\lim_{j \to \infty} z_j = z$. If $\{z_j\}_{j=1}^{\infty}$ converges to some element, we say that $\{z_j\}_{j=1}^{\infty}$ is a *convergent sequence*.

(4) Let f be a mapping from a metric space (M_1, d_1) to another metric space (M_2, d_2) . We say that $f(y)$ *converges* to $a \in M_2$ as y tends to x if for any *ε >* 0 there exists *δ* = *δ(ε) >* 0 such that

$$
d_2(f(y),a) < \varepsilon \quad \text{if} \quad d_1(y,x) < \delta.
$$

We simply write $f(y) \to a$ as $y \to x$ or $\lim_{y \to x} f(y) = a$. If

$$
\lim_{y \to x} f(y) = f(x),
$$

then *f* is said to be *continuous* at $x \in M_1$. If *f* is continuous at all $x \in M_1$, then f is said to be *continuous* on M_1 (with values in M_2). The space of all continuous functions on M_1 with values in M_2 is denoted by $C(M_1, M_2)$.

- (5) Let $\{z_j\}_{j=1}^{\infty}$ be a sequence in a metric space (M, d) . We say that $\{z_j\}_{j=1}^{\infty}$ is a *Cauchy sequence* if for any $\varepsilon > 0$ there exists a natural number $n = n(\varepsilon)$ such that $j, k \geq n(\varepsilon)$ implies $d(z_j, z_k) < \varepsilon$. It is easy to see that a convergent sequence is always a Cauchy sequence, but the converse may not hold. We say that the metric space (M, d) is *complete* if any Cauchy sequence is a convergent sequence.
- (6) Let $(V, \|\cdot\|)$ be a normed vector space. We say that V is a *Banach space* if it is complete as a metric space. The norm $\|\cdot\|$ is often written as $\|\cdot\|_V$ to distinguish it from other norms if we use several norms. We simply write $z_j \to z$ in *V* (as $j \to \infty$) if $\lim_{j \to \infty} ||z_j - z||_V = 0$ and $z \in V$ for a sequence $\{z_j\}_{j=1}^{\infty}$. We often say that z_j converges to *z strongly* in *V* (as $j \to \infty$) to distinguish this convergence from other weaker convergences discussed later.
- (7) Let *V* be a real vector space. A real-valued function $\langle \cdot, \cdot \rangle$ defined on $V \times V$ is said to be an *inner product* if
	- (i) $\langle x, x \rangle \geq 0$ for all $x \in V$;
	- (ii) $\langle x, x \rangle = 0$ if and only if $x = 0$;
	- (iii) (symmetry) $\langle x, y \rangle = \langle y, x \rangle$ for all $x, y \in V$;
	- (iv) (linearity) $\langle c_1x_1 + c_2x_2, y \rangle = c_1 \langle x_1, y \rangle + c_2 \langle x_2, y \rangle$ for all $x_1, x_2, y \in V$, *c*₁*, c*₂ ∈ **R**.

By definition, it is easy to see that

$$
||z|| = \langle z, z \rangle^{1/2}
$$

is a norm. The space with an inner product is regarded as a normed vector space with the foregoing norm. If this space is complete as a metric space, we say that *V* is a *Hilbert space*. The Euclidean space \mathbb{R}^N is a finite-dimensional Hilbert space equipped with a standard inner product. It turns out that any finite-dimensional Hilbert space is "isomorphic" to **R***^N* . Of course, a Hilbert space is an example of a Banach space.

(8) Let *V* be a Banach space equipped with norm $\|\cdot\|$. Let V^* denote the totality of all continuous linear function(al)s on *V* with values in **R**. (By the Hahn–Banach theorem, the vector space V^* has at least one dimension. Incidentally, Mazur's theorem in the proof of Lemma 1.19 in Sect. 1.2.3 is another application of the Hahn–Banach theorem.)

The space *V*^{*} is called the *dual space* of *V*. Let $\{z_j\}_{j=1}^{\infty}$ be a sequence in *V*^{*}. We say that $\{z_j\}_{j=1}^{\infty}$ converges to $z \in V^*$ *∗*-*weakly* if

$$
\lim_{j \to \infty} z_j(x) = z(x)
$$

for any $x \in V$. We often write $z_j \stackrel{*}{\rightharpoonup} z$ in V^* as $j \to \infty$. Such a sequence {*zj* }[∞] *^j*=1 is called a [∗]-*weak convergent sequence*. The dual space *^V* [∗] is equipped with the norm

$$
||z||_{V^*} := \sup \{ z(x) \mid ||x|| = 1, \ x \in V \} = \sup_{||x|| = 1} z(x).
$$

The space V^* is also a Banach space with this norm. Here, for a subset A in **R**, by $a = \sup A$ we mean that *a* is the smallest real member that satisfies $a > x$ for any $a \in A$. In other words, it is the least upper bound of A. The notation sup is the abbreviation of the *supremum*. Similarly, inf *A* denotes the greatest lower bound of A, and it is the abbreviation of the *infimum*. If sup $A = a$ with $a \in A$, we write max *A* instead of sup *A*. The same convention applies to inf and min.

Since V^* is a Banach space, there is a notion of convergence in the metric defined by the norm. To distinguish this convergence from ∗-weak convergence, we say that $\{z_j\}_{j=1}^{\infty}$ converges to *z strongly* in V^* if

$$
\lim_{j \to \infty} \|z_j - z\|_{V^*} = 0,
$$

and it is simply written $z_j \to z$ in V^* as $j \to \infty$. By definition, $z_j \to z$ implies $z_j \stackrel{*}{\rightharpoonup} z$, but the converse may not hold.

(9) Let *A* be a subset of a metric space *M*. The set *A* is said to be (sequentially) *relatively compact* if any sequence $\{z_j\}_{j=1}^{\infty}$ in *A* has a convergent subsequence in *M*. If, moreover, *A* is closed, we simply say that *A* is *compact*. When *A* is compact, it is always bounded. When *A* is a subset of **R***^N* , it is well known as the Bolzano–Weierstrass theorem that *A* is compact if and only if *A* is bounded and closed. However, if *A* is a subset of a Banach space *V* , such an equivalence holds if and only if *V* is of finite dimension. In other words, a bounded sequence of an infinite-dimensional Banach space may not have a (strongly) convergent subsequence.

There is a compactness theorem (Banach–Alaoglu theorem) that says if ${z_j}_{j=1}^{\infty}$ in a dual Banach space V^* is bounded, i.e.,

$$
\sup_{j\geq 1}||z_j||_{V^*}<\infty,
$$

then it has a ∗-weak convergent subsequence (Exercise 1.9).

(10) Let *V* be a Banach space and *V*^{*} denote its dual space. Let $\{x_k\}_{k=1}^{\infty}$ be a convergence in *V*. We see that $\{x_k\}_{k=1}^{\infty}$ sequence in *V*. We say that $\{x_k\}_{k=1}^{\infty}$ converges to $x \in V$ *weakly* if

$$
\lim_{k \to \infty} z(x_k) = z(x)
$$

for all $z \in V^*$. We often write $x_k \to x$ in *V* as $k \to \infty$. Such a sequence is called a *weak convergent sequence*.

If a Banach space *W* is a dual space of some Banach space *V*, say, $W = V^*$, there are two notions, weak convergence and $*$ -weak convergence. Let $\{z_j\}_{j=1}^{\infty}$

be a sequence in *W*. By definition, $z_j \stackrel{*}{\rightharpoonup} z$ (in *W* as $j \to \infty$) means that lim_{*j*→∞} $z_j(x) = z(x)$ for all $x \in V$ while $z_j \to z$ (in *W* as $j \to \infty$) means that $\lim_{i\to\infty} y(z_i) = y(z)$ for all $y \in W^* = (V^*)^*$.

The space *V* can be continuously embedded in $V^{**} = (V^*)^*$. However, *V* may not be equal to V^{**} . Thus, weak convergence is stronger than $*$ -weak convergence. If $V = V^{**}$, then both notions are the same. The space V is called *reflexive* if $V = V^{**}$.

(11) If *V* is a Hilbert space, it is reflexive. More precisely, the mapping $x \in V$ to $z \in V^*$ defined by

$$
z(y) = \langle x, y \rangle, \quad y \in V
$$

is a linear isomorphism from V to V^* , which is also norm preserving, i.e., $||z||_{V^*} = ||x||$. This result is known as the Riesz–Fréchet theorem. Thus, the notions of weak convergence and ∗-weak convergence are the same.

(12) Let *f* be a real-valued function in a metric space *M*. We say that *f* is *lower semicontinuous* at $x \in M$ if

$$
f(x) \le \liminf_{y \to x} f(y) := \lim_{\delta \downarrow 0} \inf \left\{ f(y) \mid d(y, x) < \delta \right\},\,
$$

where $\lim_{\delta \downarrow 0}$ denotes the limit as $\delta \to 0$ but restricted to $\delta > 0$. Even if *f* is allowed to take $+\infty$, the definition of the lower semicontinuity will still be valid. If *f* is lower semicontinuous for all $x \in M$, we simply say that *f* is lower semicontinuous on *M*. If −*f* is lower semicontinuous, we say that *f* is *upper semicontinuous*.

(13) Let $f = f(t)$ be a function of one variable in an interval *I* in **R** with values in a Banach space *V*. We say that *f* is *right differentiable* at $t_0 \in I$ if there is $v \in V$ such that

$$
\lim_{h \downarrow 0} \| f(t_0 + h) - f(t_0) - v h \| / h = 0
$$

provided that $t_0 + h \in I$ for sufficiently small $h > 0$. Such v is uniquely determined if it exists and is denoted by

$$
v = \frac{\mathrm{d}^+ f}{\mathrm{d}t}(t_0).
$$

This quantity is called the *right differential* of *f* at *t*₀. The function $t \mapsto \frac{d^+ f}{dt}(t)$ is called the *right derivative* of *f* . The left differentiability is defined in a symmetric way by replacing $h \downarrow 0$ with $h \uparrow 0$. Even if both right and left differentials exist, they may be different. For example, consider $f(t) = |t|$ at $t_0 = 0$. The right differential at zero is 1, while the left differential at zero is -1 . If the right and left differentials agree with each other at $t = t_0$, we say that *f* is *differentiable* at $t = t_0$, and its value is denoted by $\frac{df}{dt}(t_0)$. The function $t \mapsto \frac{df}{dt}(t)$ is called the *derivative* of *f*. If *f* depends on other variables, we write *∂f/∂t* instead of d*f/*d*t* and call the *partial derivative* of *f* with respect to *t*.

5.2 Measures and Integrals

- (1) For a set *M*, let 2^M denote the family of all subsets of *H*. We say that a function μ defined on 2^{*M*} with values in [0, ∞] is an (outer) *measure* if
	- (i) $\mu(\emptyset) = 0;$
	- (ii) (countable subadditivity) $\mu(A) \leq \sum_{j=1}^{\infty} \mu(A_j)$ if a countable family ${A_j}_{j=1}^{\infty}$ *covers A*, where *A_j*, *A* ∈ 2^{*M*}. In other words, *A* is included in a union of $\{A_j\}_{j=1}^{\infty}$, i.e., a point of *A* must be an element of some A_j . Here, \emptyset denotes the empty set.

(2) A set $A \in 2^M$ is said to be *μ*-measurable if

$$
\mu(S \cap A^c) + \mu(S \cap A) = \mu(S)
$$

for any $S \in 2^M$. Let M_0 be a metric space. A mapping f from M to M_0 is said to be *μ*-*measurable* if the *preimage* $f^{-1}(U)$ of an open set *U* of M_0 is *μ*-measurable. Here,

$$
f^{-1}(U) := \{ x \in M \mid f(x) \in U \}.
$$

A set *A* with $\mu(A) = 0$ is called a *u*-*measure zero set*. If a statement $P(x)$ for $x \in M$ holds for $x \in M \backslash A$ with $\mu(A) = 0$, we say that $P(x)$ holds for μ -*almost every* $x \in M$ or shortly a.e. $x \in M$. In other words, P holds in M outside a *μ*-measure zero set. In this case, we simply say that *P* holds *almost everywhere* in *M*.

Let M be the set of all μ -measurable sets. If we restrict μ just to M, i.e., $\bar{\mu} = \mu|_M$, then $\bar{\mu}$ becomes a measure on M. Since in this book we consider $\mu(A)$ for a μ -measurable set A, we often say simply a measure instead of an outer measure.

(3) Let *A* be a subset of \mathbb{R}^N . Let *C* be a family of closed cubes in \mathbb{R}^N whose faces are orthogonal to the x_i -axis for some $i = 1, \ldots, N$. In other words, $C \in \mathcal{C}$ means

$$
C = \left\{ (x_1, \ldots, x_N) \in \mathbf{R}^N \mid a_i \le x_i \le a_i + \ell \ (i = 1, \ldots, n) \right\}
$$

for some $a_i, \ell \in \mathbf{R}$. Let |*C*| denote its volume, i.e., $|C| = \ell^N$. We set

$$
\mathcal{L}^N(A) = \inf \left\{ \sum_{j=1}^{\infty} |C_j| \mid \{C_j\}_{j=1}^{\infty} \text{ covers } A \text{ with } C_j \in \mathcal{C} \right\}.
$$

It turns out that $\mathcal{L}^N(C) = |C|$; it is nontrivial to prove $\mathcal{L}^N(C) \geq |C|$. It is easy to see that \mathcal{L}^N is an (outer) measure in \mathbf{R}^N . This measure is called the *Lebesgue measure* in \mathbb{R}^N . It can be regarded as a measure in the flat torus $\mathbf{T}^{N} = \prod_{i=1}^{N} (\mathbf{R}/\omega_{i} \mathbf{Z})$. For a subset *A* of \mathbf{T}^{N} , we regard this set as a subset *A*⁰ of the *fundamental domain* (i.e., the *periodic cell* $[0, \omega_1) \times \cdots \times [0, \omega_N)$). The Lebesgue measure of *A* is defined by $\mathcal{L}^N(A) = \mathcal{L}^N(A_0)$. Evidently, $\mathcal{L}^N(\mathbf{T}^N) = \omega_1 \cdots \omega_N$, which is denoted by $|\mathbf{T}^N|$ in the proof of Lemma 1.21 in Sect. 1.2.5.

(4) In this book, we only use the Lebesgue measure. We simply say measurable when a mapping or a set is \mathcal{L}^N -measurable. Instead of writing \mathcal{L}^N -a.e., we simply write a.e. Let Ω be a measurable set in \mathbf{T}^N or \mathbf{R}^N , for example, $\Omega = \mathbf{T}^N$. Let *f* be a measurable function on Ω with values in a Banach space *V*. Then one is able to define its integral over Ω . When $V = \mathbb{R}^m$, this integral is called the Lebesgue integral. In general, it is called the Bochner integral of *f* over Ω . Its value is denoted by $\int_{\Omega} f d\mathcal{L}^{N}$ or, simply, $\int_{\Omega} f dx$; See, for example, [90, Chapter V, Section 5]. If $\Omega = \mathbf{T}^N$ and f is continuous, this agrees with the more conventional Riemann integral. For $p \in [1, \infty)$ and a general Banach space *V*, let $\hat{L}^p(\Omega, V)$ denote the space of all measurable functions f with values in *V* such that

$$
||f||_p = \left(\int_{\Omega} ||f(x)||^p dx\right)^{1/p}
$$

is finite. If $||f||_p$ is finite, we say that *f* is *p*th *integrable*. If $p = 1$, we simply say *f* is integrable. If $f \in \tilde{L}^1(\Omega, V)$, we say that *f* is *integrable* in Ω . We identify two functions $f, g \in \tilde{L}^p(\Omega, V)$ if $f = g$ a.e. and define $L^p(\Omega, V)$ from $\tilde{L}^p(\Omega, V)$ by this identification. It is a fundamental result that $L^p(\Omega, V)$ is a Banach space equipped with the norm $\|\cdot\|_p$. When $V = \mathbf{R}$, we simply write $L^p(\Omega)$ instead of $L^p(\Omega, V)$. The case $p = \infty$ should be handled separately. For a general Banach space *V*, let $\tilde{L}^{\infty}(\Omega, V)$ denote the space of all measurable functions *f* with values in *V* such that

$$
\|f\|_{\infty} = \inf \left\{ \alpha \mid \mathcal{L}^N \left(\left\{ x \in \Omega \mid \|f(x)\|_V > \alpha \right\} \right) = 0 \right\}
$$

is finite. By the same identification, the space $L^{\infty}(\Omega, V)$ can be defined. This space $L^{\infty}(\Omega, V)$ is again a Banach space. Key theorems in the theory of Lebesgue integrals used in this book include the Lebesgue dominated convergence theorem and Fubini's theorem. Here, we give a version of the *dominated convergence theorem*.

Theorem 5.1

Let V be a Banach space. Let $\{f_m\}_{m=1}^{\infty}$ *be a sequence in L*¹(Ω , *V*)*. Assume that there is a nonnegative function* $\varphi \in L^1(\Omega)$ *independent of m such that* $|| f_m(x) ||_V \leq \varphi(x)$ *for a.e.* $x \in \Omega$. If $\lim_{m \to \infty} f_m(x) = f(x)$ *for a.e.* $x \in \Omega$, *then*

$$
\lim_{m \to \infty} \int_{\Omega} f_m(x) \, \mathrm{d}x = \int f(x) \, \mathrm{d}x.
$$

In other words, $\lim_{m\to\infty} \left\| \int_{\Omega} f_m \, dx - \int_{\Omega} f(x) \, dx \right\|_{V} = 0.$

Usually, *V* is taken as **R** or \mathbb{R}^N , but it is easy to extend to this setting. For basic properties of the Lebesgue measure and integrals, see for example a classical book of Folland [42]. We take this opportunity to clarify ∗-weak convergence in L^p space. A basic fact is that $(L^p(\Omega))^* = L^{p'}(\Omega)$ for $1 \leq p < \infty$, where $1/p + 1/p' = 1$. Note that $p = \infty$ is excluded, but $(L^1)^* = L^{\infty}$. Since L^p is reflexive for $1 < p < \infty$, weak convergence and $*$ -weak convergence agree with each other. Let us write a $*$ -weak convergence in L^{∞} explicitly. A sequence ${f_m}$ in $L^{\infty}(\Omega)$ *-weakly converges to $f \in L^{\infty}(\Omega)$ as $m \to \infty$ if and only if

$$
\lim_{m \to \infty} \int_{\Omega} f_m \varphi \, \mathrm{d}x = \int_{\Omega} f \varphi \, \mathrm{d}x
$$

for all $\varphi \in L^1(\Omega)$. For detailed properties of L^p spaces, see, for example, [19, Chapter 4].

For a Banach space *V*-valued L^p function, we also consider its dual space. That is, we have

$$
\left(L^p(\Omega, V)\right)^* = L^{p'}(\Omega, V^*) \quad \text{for} \quad 1 \le p < \infty
$$

with $1/p + 1/p' = 1$. (This duality—at least for reflexive *V*—can be proved along the same line as in $[19, Chapter 4]$, where *V* is assumed to be **R**. For a general Banach space *V* , see, for example, [35, Chapter IV].) We consider \ast -weak convergence in *L*[∞](Ω, *V*) with *V* = *L*^{*q*}(*U*), 1 < *q* ≤ ∞, where Ω is an open interval $(0, T)$ and *U* is an open set in T^N or \mathbb{R}^N since this case is explicitly used in Chap. 2. A sequence ${f_m}$ in $L^{\infty}(\Omega, L^q(U))$ *-weakly converges to $f \in L^{\infty}(\Omega, L^q(U))$ as $m \to \infty$ if and only if

$$
\lim_{m \to \infty} \int_0^T \int_U f_m(x, t)\varphi(x, t) dx dt = \int_0^T \int_U f(x, t)\varphi(x, t) dx dt
$$

for $\varphi \in L^1(\Omega, L^{q'}(U))$. (Note that the space $L^p(\Omega, L^q(U))$ is identified with the space of all measurable functions φ on $\Omega \times U$ such that $\int_0^T \|\varphi\|_{L^q(U)}^p(t) dt < \infty$ ∞ or $\int_0^T \left(\int_U |\varphi(x, t)|^q dx \right)^{p/q} dt < \infty$ for $1 \le p, q < \infty$.)

(5) Besides the basic properties of the Lebesgue integrals, we frequently use a few estimates involving *Lp*-norms. These properties are by now standard and found in many books, including [19]. For example, we frequently use the *Hölder inequality*

$$
||fg||_p \leq ||f||_r ||g||_q
$$

with $1/p = 1/r + 1/q$ for $f \in L^r(\Omega)$, $g \in L^q(\Omega)$, where $p, q, r \in [1, \infty]$. Here, we interpret $1/\infty = 0$. In the case $p = 1$, $r = q = 2$, this inequality is called the *Schwarz inequality*. As an application, we have *Young's inequality* for a convolution

$$
||f * g||_p \le ||f||_q ||g||_r
$$

for *f* ∈ *L*^{*q*} (**R**^{*N*}), *g* ∈ *L^{<i>r*} (**R**^{*N*}) with $1/p = 1/q + 1/r - 1$ and $p, q, r \in [1, \infty]$; see, for example, [45, Chapter 4]. In this book, we use this inequality when \mathbb{R}^N is replaced by T^N .

(6) In analysis, we often need an approximation of a function by smooth functions. We only recall an elementary fact. The space $C_c^{\infty}(\Omega)$ is dense in $L^p(\Omega)$ for $p \in [1, \infty)$; see, for example, [19, Corollary 4.23]. However, it is not dense in $L^{\infty}(\Omega)$.