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Appendix: Basic Terminology 5

In this appendix, we present definitions of basic terminology used in the book for
the reader’s convenience. For a given set W, x € W means that x is an element
of W.

5.1 Convergence

(1) Let M be a set. A real-valued function d defined on M x M is said to be a
metric if
(1) d(x,y) =0ifandonly if x = y forx,y € M;
(i) (symmetry) d(x,y) =d(y,x) forallx,y € M;
(i) (triangle inequality) d(x,y) < d(x,z) +d(z,y) forallx,y,z € M.
Here, X1 x X» denotes the Cartesian product of two sets X1 and X, defined by

X1 X Xp = {(xl,xz) |x,~ e X; fori = 1,2}.

The set M equipped with a metric d is called a metric space and denoted by
(M, d) if one needs to clarify the metric. Let W be a product of metric spaces
of (M;,di) i =1,...,m),ie,

m
Wzl_[MiZMIX"'XMm
i=1

3={(x1,...,xm) |xieMif0ri=1,...,m}.
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2

3

This W is metrizable, for example, with a metric

m 1/2
d(x,y) = (Zd,-<x,-, y,->2)
i=1

forx = (x1, ..., xm), Yy = 1y ..., ym) € W.If M; is independent of i, i.e.,
M; = M, then we simply write W as M.

A subset A of M is said to be open if for any x € A there is ¢ > 0 such that
the ball Bs(x) = {y € M | d(y, x) < ¢} is included in A. If the complement
A€ is open, then A is said to be closed. The complement A€ is defined by

A=M\A:={xeM|x¢A}.

For a set A, the smallest closed set including A is called the closure of A and
denoted by A. Similarly, the largest open set included in A is called the interior
of A and denoted by int A or simply by A. By definition, A = A if and only
if A is closed, and A = A if and only if A is open. The set Z\A is called the
boundary of A and denoted by dA. For a subset B of a set A, we say that B is
dense in A if B = A. A set A in M is bounded if there is xo € M and R > 0
such that A is included in Bg(xp). For a mapping f from a set S to M (i.e., an
M-valued function defined on §), f is said to be bounded if its image f(S) is
bounded in M, where

f&={f|xes}.

Let V be a real vector space (a vector space over the field R). A nonnegative
function || - || on V is said to be a norm if

@) |lx]l =0ifand only if x =0 forx € V;

(i) |lex]l = |c]llx]| forall x € V and all ¢ € R;
(i) (triangle inequality) ||x + y|| < ||lx|| + ||y|| forallx,y € V.
The vector space V equipped with a norm || - || is called a normed vector space
and denoted by (V, || - ||) if one needs to clarify the norm. By definition,

d(x,y) = lx =yl

is a metric. A normed vector space is regarded as a metric space with the
foregoing metric.

Let {Zj}?il be a sequence in a metric space (M, d). We say that {zj}j?‘;l
converges to z € M if for any ¢ > 0 there exists a natural number n = n(¢g)
such that j > n(e) implies d(z, z;) < ¢. In other words,

lim d(z. z;) = 0.
j—0
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We simply write z; — z as j — 00, orlim; oo zj = z. If {z;}72 | converges

to some element, we say that {z; ?":] is a convergent sequence.

(4) Let f be a mapping from a metric space (M, d;) to another metric space
(M3, d»). We say that f(y) converges to a € M, as y tends to x if for any

& > 0 there exists § = §(¢) > 0 such that

d(f(y),a) <e if di(y,x) <38.

We simply write f(y) — aasy — x orlimy_ f(y) =a.If
lim f(y) = f(x),
y—x

then f is said to be continuous at x € M. If f is continuous at all x € My,
then f is said to be continuous on My (with values in M3). The space of all
continuous functions on M with values in M> is denoted by C (M1, M>).

(5) Let {zj};?ozl be a sequence in a metric space (M, d). We say that {zj};?‘;l is
a Cauchy sequence if for any ¢ > 0 there exists a natural number n = n(g)
such that j, k > n(e) implies d(z;, zx) < . Itis easy to see that a convergent
sequence is always a Cauchy sequence, but the converse may not hold. We
say that the metric space (M, d) is complete if any Cauchy sequence is a
convergent sequence.

(6) Let (V.| -||) be a normed vector space. We say that V is a Banach space
if it is complete as a metric space. The norm || - || is often written as || - ||y
to distinguish it from other norms if we use several norms. We simply write
zj = zinV (as j — oo)iflimj_, Iz —zllv = 0and z € V for a sequence
{z; }?021- We often say that z; converges to z strongly in V (as j — o0) to
distinguish this convergence from other weaker convergences discussed later.

(7) Let V be areal vector space. A real-valued function (-, -) definedon V x V is
said to be an inner product if

(i) (x,x) >0forallx € V;
(1) (x,x) = 0if and only if x = 0O;
(i) (symmetry) (x,y) = (y,x) forallx,y € V;
(iv) (linearity) (c1x1 + cax2,y) = c1{x1, y) + ca{x2, y) forall x1,x2,y € V,
c1,C € R.
By definition, it is easy to see that

Izl = (z, 2)'/?

is a norm. The space with an inner product is regarded as a normed vector
space with the foregoing norm. If this space is complete as a metric space, we
say that V is a Hilbert space. The Euclidean space R" is a finite-dimensional
Hilbert space equipped with a standard inner product. It turns out that any
finite-dimensional Hilbert space is “isomorphic” to RY. Of course, a Hilbert
space is an example of a Banach space.
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(8) Let V be a Banach space equipped with norm | - ||. Let V* denote the

totality of all continuous linear function(al)s on V with values in R. (By
the Hahn—-Banach theorem, the vector space V* has at least one dimension.
Incidentally, Mazur’s theorem in the proof of Lemma 1.19 in Sect. 1.2.3 is
another application of the Hahn—Banach theorem.)

The space V* is called the dual space of V. Let {z j}‘/?il be a sequence in V*.
We say that {z j}?ozl converges to z € V* s-weakly if

lim z;(x) =z(x)
j—o0o

for any x € V. We often write z; X zin V* as j — o0. Such a sequence
{z; }?O | is called a s-weak convergent sequence. The dual space V* is equipped

with the norm

lzllvs == sup{z(x) | Ixll =1, x € V} = sup z(x).

lxl=1

The space V* is also a Banach space with this norm. Here, for a subset A in R,
by a = sup A we mean that a is the smallest real member that satisfies a > x
for any a € A. In other words, it is the least upper bound of A. The notation
sup is the abbreviation of the supremum. Similarly, inf A denotes the greatest
lower bound of A, and it is the abbreviation of the infimum. If sup A = a with
a € A, we write max A instead of sup A. The same convention applies to inf
and min.

Since V* is a Banach space, there is a notion of convergence in the metric
defined by the norm. To distinguish this convergence from x-weak conver-
gence, we say that {z;} 72 converges to z strongly in V* if

lim |z; —zllv= =0,
j—oo

and it is simply written z; — z in V* as j — oo. By definition, z; — z

L *
implies z; — z, but the converse may not hold.

(9) Let A be a subset of a metric space M. The set A is said to be (sequentially)

relatively compact if any sequence {z }?‘;1 in A has a convergent subsequence
in M. If, moreover, A is closed, we simply say that A is compact. When A is
compact, it is always bounded. When A is a subset of RY, it is well known
as the Bolzano—Weierstrass theorem that A is compact if and only if A is
bounded and closed. However, if A is a subset of a Banach space V, such
an equivalence holds if and only if V is of finite dimension. In other words,
a bounded sequence of an infinite-dimensional Banach space may not have a
(strongly) convergent subsequence.



5.1

Convergence 143

(10)

an

12)

There is a compactness theorem (Banach—Alaoglu theorem) that says if
{zj}?o=1 in a dual Banach space V* is bounded, i.e.,

sup ||zj[lv+ < oo,
j=1

then it has a *-weak convergent subsequence (Exercise 1.9).
Let V be a Banach space and V* denote its dual space. Let {x;}2, be a
sequence in V. We say that {x;}7>; converges to x € V weakly if

klin;o z(xx) = z(x)

for all z € V*. We often write x; — x in V as k — o0. Such a sequence is
called a weak convergent sequence.

If a Banach space W is a dual space of some Banach space V, say, W = V*,
there are two notions, weak convergence and x-weak convergence. Let {z; };?‘;1

be a sequence in W. By definition, z; A z (in W as j — o00) means that
lim; o zj(x) = z(x) for all x € V while z; — z (in W as j — 00) means
that lim; 0 y(z;) = y(z) forally € W* = (V*)*.

The space V can be continuously embedded in V** = (V*)*. However, V
may not be equal to V**. Thus, weak convergence is stronger than x-weak
convergence. If V. = V**  then both notions are the same. The space V is
called reflexive if V. = V**,

If V is a Hilbert space, it is reflexive. More precisely, the mapping x € V to
z € V* defined by

z(y)=(x,y), yeV

is a linear isomorphism from V to V*, which is also norm preserving, i.e.,
llzllv+= = |lx||. This result is known as the Riesz—Fréchet theorem. Thus, the
notions of weak convergence and x-weak convergence are the same.

Let f be a real-valued function in a metric space M. We say that f is lower
semicontinuous at x € M if

f&) <liminf £() := liminf {f () [ d(v. ) <4},

where lims ¢ denotes the limit as § — O but restricted to § > 0. Even if f
is allowed to take 400, the definition of the lower semicontinuity will still be
valid. If f is lower semicontinuous for all x € M, we simply say that f is
lower semicontinuous on M. If — f is lower semicontinuous, we say that f is
upper semicontinuous.
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(13) Let f = f(¢) be a function of one variable in an interval / in R with values
in a Banach space V. We say that f is right differentiable at t( € I if there is
v € V such that

Lilg”f(tO'}_h)_f(tO)_vh”/h:()

provided that o + & € [ for sufficiently small 2 > 0. Such v is uniquely
determined if it exists and is denoted by

dt
v = d—tf(l‘o)-

This quantity is called the right differential of f at tg. The function ¢ d:lr—tf ()
is called the right derivative of f. The left differentiability is defined in a
symmetric way by replacing & | O with 2 4 0. Even if both right and left
differentials exist, they may be different. For example, consider f(¢) = || at
to = 0. The right differential at zero is 1, while the left differential at zero is
—1. If the right and left differentials agree with each other at t = £y, we say that
f is differentiable at t = tg, and its value is denoted by %(to). The function
t — %(t) is called the derivative of f.If f depends on other variables, we

write df/0t instead of d f/dr and call the partial derivative of f with respect
tor.

5.2  Measures and Integrals

(1) For aset M, let 2 denote the family of all subsets of H. We say that a function
w defined on 2™ with values in [0, oo] is an (outer) measure if
1) w(®) =0;
(ii) (countable subadditivity) w(A) < Z;’il n(Aj) if a countable family
{Aj}i'il covers A, where Aj, A € 2M Tn other words, A is included in
a union of {Aj}§°=1, i.e., a point of A must be an element of some A ;.
Here, ¥ denotes the empty set.
(2) Aset A € 2™ is said to be pu-measurable if

p(S NAS) + (SN A) = u(S)
for any S € 2M. Let My be a metric space. A mapping f from M to My is
said to be p-measurable if the preimage f~'(U) of an open set U of My is

u-measurable. Here,

iUy ={xeM| fix) eU}.
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A set A with uw(A) = 0 is called a pu-measure zero set. If a statement P (x)
for x € M holds for x € M\A with u(A) = 0, we say that P(x) holds for
u-almost every x € M or shortly a.e. x € M. In other words, P holds in M
outside a p-measure zero set. In this case, we simply say that P holds almost
everywhere in M.
Let M be the set of all u-measurable sets. If we restrict u just to M, i.e.,
o = wlag, then @ becomes a measure on M. Since in this book we consider
w(A) for a p-measurable set A, we often say simply a measure instead of an
outer measure.

(3) Let A be a subset of RV. Let C be a family of closed cubes in R whose faces
are orthogonal to the x;-axis for some i = 1, ..., N. In other words, C € C
means

C

{(xl,...,xN)eRN |al- fx,-fai+€(i:1,...,n)}

for some a;, £ € R. Let |C| denote its volume, i.e., |C| = ¢V. We set

o
LNy =inf ) |Cjl
=1

{C;}5Z, covers Awith C; € C

It turns out that LY (C) = |C|; it is nontrivial to prove £V (C) > |C|. It is
easy to see that LN is an (outer) measure in RV . This measure is called the
Lebesgue measure in RY . Tt can be regarded as a measure in the flat torus
TV = ]_[fvzl(R/a),-Z). For a subset A of TV, we regard this set as a subset
Ay of the fundamental domain (i.e., the periodic cell [0, w1) X --- X [0, wN)).
The Lebesgue measure of A is defined by £V(A) = £N(Ap). Evidently,
LN(TV) = w; - - - wy, which is denoted by |T¥| in the proof of Lemma 1.21 in
Sect. 1.2.5.

(4) In this book, we only use the Lebesgue measure. We simply say measurable
when a mapping or a set is £V -measurable. Instead of writing £V -a.e., we
simply write a.e. Let € be a measurable set in TV or RV, for example, @ = TV.
Let f be a measurable function on 2 with values in a Banach space V. Then
one is able to define its integral over 2. When V = R, this integral is called
the Lebesgue integral. In general, it is called the Bochner integral of f over
Q. Its value is denoted by fQ fdcN or, simply, fQ f dx; See, for example, [90,
Chapter V, Section 5]. If 2 = TV and f is continuous, this agrees with the more
conventional Riemann integral. For p € [1, oo) and a general Banach space V,
let LP($2, V) denote the space of all measurable functions f with values in V

such that
l/p
£l = (/Q IIf(x)II”dx>
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is finite. If || f'|| , is finite, we say that f is pth integrable. If p = 1, we simply
say f is integrable. If f € LY(Q,V), we say that f is integrable in 2. We
identify two functions f,g € LP(Q, V) if f = g ae. and define L”(Q, V)
from LP (2, V) by this identification. It is a fundamental result that L (2, V)
is a Banach space equipped with the norm | - || ,. When V' = R, we simply write
L?(L2) instead of L” (€2, V). The case p = oo should be handled separately. For
a general Banach space V, let L>®(2, V) denote the space of all measurable
functions f with values in V such that

1 £l =intfo | £¥ ({x e @ |17 @y > a}) =0]

is finite. By the same identification, the space L°°(£2, V) can be defined.
This space L*>°(£2, V) is again a Banach space. Key theorems in the theory
of Lebesgue integrals used in this book include the Lebesgue dominated
convergence theorem and Fubini’s theorem. Here, we give a version of the
dominated convergence theorem.

Theorem 5.1
Let V be a Banach space. Let { fu}°_| be a sequence in LY(2, V). Assume
that there is a nonnegative function ¢ € L'(Q) independent of m such that

| fn )y < @) fora.e. x € Q. Iflimy, 0 fin(x) = f(x) fora.e. x € Q,
then

lim fm(x)dx=ff(x) dx.
m—00 Q

In other words, limy o0 | [ fin dx — [ f(x) dx|| v =0.

Usually, V is taken as R or RY, but it is easy to extend to this setting. For basic
properties of the Lebesgue measure and integrals, see for example a classical
book of Folland [42]. We take this opportunity to clarify *-weak convergence
in L? space. A basic fact is that (L?(Q))* = Lpl(Q) for 1 < p < oo, where
1/p +1/p’ = 1. Note that p = oo is excluded, but (L')* = L. Since L?”
is reflexive for 1 < p < oo, weak convergence and *-weak convergence agree
with each other. Let us write a x-weak convergence in L explicitly. A sequence
{fin} in L*°(2) x-weakly converges to f € L°°(2) as m — oo if and only if

lim /fmwdx:/fgadx
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for all ¢ € Ll(Q). For detailed properties of L? spaces, see, for example, [19,
Chapter 4].
For a Banach space V-valued L? function, we also consider its dual space. That
is, we have

(LP(Q,V)) = L7 (Q,V*) for 1<p<oo

with 1/p + 1/p’ = 1. (This duality—at least for reflexive V—can be proved
along the same line as in [19, Chapter 4], where V is assumed to be R. For
a general Banach space V, see, for example, [35, Chapter IV].) We consider
x-weak convergence in L*®°(Q2, V) with V = LI(U), 1 < g < oo, where Q2
is an open interval (0, T) and U is an open set in TV or RV since this case
is explicitly used in Chap. 2. A sequence {f,,} in L* (2, L1(U)) *-weakly
converges to f € L*° (2, LY(U)) as m — oo if and only if

T T
lim // fm(x,t)<p(x,t)dxdt=// F(x, Dex, Hdx dr

forp € L! (Q, Lq,(U)). (Note that the space L? (2, L4(U)) is identified with
the space of all measurable functions ¢ on Q2 x U such that fOT lle ||€q ) ()ydr <

00 or fOT (fy lox, 0|4 dx)p/q dt <ocoforl < p,q < 00.)

(5) Besides the basic properties of the Lebesgue integrals, we frequently use a few
estimates involving L?-norms. These properties are by now standard and found
in many books, including [19]. For example, we frequently use the Holder
inequality

1fgllp = I fIIrllgly

with 1/p = 1/r + 1/q for f € L"(Q), g € L1(RQ), where p,q,r € [1, o0].
Here, we interpret 1/co = 0. In the case p = 1, r = g = 2, this inequality
is called the Schwarz inequality. As an application, we have Young’s inequality
for a convolution

ILf*gllp < I fllqligl

for f e LIRN), g e L"RY) with 1/p =1/g+1/r —1land p,q,r € [1, 0);
see, for example, [45, Chapter 4]. In this book, we use this inequality when RY
is replaced by TV .

(6) In analysis, we often need an approximation of a function by smooth functions.
We only recall an elementary fact. The space C2°(S2) is dense in L”(2) for
p € [1, 00); see, for example, [19, Corollary 4.23]. However, it is not dense in
L*®(Q).
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