
4Hamilton–Jacobi Equations 

In the last chapter, we discussed uniqueness in a special class of weak solutions 
called entropy solutions for scalar conservation laws, which are quasilinear first-
order equations. The notion of a weak solution and an entropy solution is based on 
integration by parts or a variational principle. 

In this chapter, we consider another class of nonlinear first-order equations whose 
nonlinearity is very strong and not quasilinear. Such an equation is often called the 
Hamilton–Jacobi equation. It is in general impossible to introduce the notion of a 
weak solution by integration by parts. Instead, we introduce a notion of a weak 
solution based on the maximum principle. Such a notion was first introduced by 
Crandall and Lions [29] in the early 1980s as a viscosity solution and has been 
extensively studied. 

In this chapter, we study uniqueness problems of viscosity solutions for several 
types of equations. We first observe that one-dimensional evolutionary Hamilton– 
Jacobi equations are formally an integration of a one-dimensional scalar conserva-
tion law. We then discuss the uniqueness issue for its stationary form, the eikonal 
equation, as well as evolutionary Hamilton–Jacobi equations. We also discuss a 
scalar conservation law and its generalization from the viewpoint of viscosity 
solutions to handle jump discontinuities. 

4.1 Hamilton–Jacobi Equations from Conservation Laws 

In this section, we derive a fully nonlinear equation of first order called a Hamilton– 
Jacobi equation from a conservation law. We shall give another interpretation of the 
entropy condition. We also derive a kind of stationary problem, the eikonal equation. 
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4.1.1 Interpretation of Entropy Solutions 

We consider a conservation law for a real-valued function .u = u(x, t), .x ∈ R, . t > 0
of the form 

.ut + (f (u))x = 0, (4.1) 

where f is a given real-valued continuous function on . R. We integrate from 0 to x 
to get 

.Ũt + f (Ũx) = f (u(0, t)) (4.2) 

if we set .Ũ (x, t) = ∫ x

0 u(y, t) dy. We set  

. U(x, t) = Ũ (x, t) −
∫ t

0
f (u(0, s)) ds

and obtain 

.Ut + f (Ux) = 0. (4.3) 

This equation is fully nonlinear and called an (evolutionary) Hamilton–Jacobi
equation. This is simply a formal procedure since u may jump at . x = 0, so the  
value .f (u(0, t)) is not well defined. 

We consider a Riemann problem for (4.1) with initial condition

.u(x, 0) = u0(x), (4.4) 

with

. u0(x) =
{−α, x < 0,

α, x > 0,

where .α ∈ R, .α �= 0. To simplify the presentation, we set .f (u) = u2/2, which 
corresponds to the case of the Burgers equation. As we already observed in Chap. 3, 

. u(x, t) = u0(x)

is an entropy solution to (4.1) with (4.4) if .α < 0. It is not an entropy solution when 
. α > 0. For .α > 0 the entropy solution is a rarefaction wave . uR of the form 

.uR(x, t) =

⎧
⎪⎨

⎪⎩

−α, x < x�(t),
x

t
, x�(t) < x < xr(t),

α, xr (t) < x,
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where .x�(t) = −αt and .xr(t) = αt . It is continuous for .t > 0. Thus, if .α > 0, then 
.U = UR with 

. UR =
∫ x

0
uR(y, t) dy

solves (4.3) since .uR(0, t) = 0. However, if .α < 0, then the term .f (u(0, t)) should 
be interpreted as .f (u(+0, t)) (.= f (u(−0, t)) = f (α). Thus, 

. Ũ (x, t) =
∫ x

0
u(y, t) dy =

∫ x

0
u0(y) dy

solves (4.2) with the right-hand side .f (u(0, t)) = f (α). We thus conclude that 

. V (x, t) =
∫ x

0
u(y, t)dy − f (α)t = v0(x) − f (α)t,

with 

. v0(x) =
{−αx, x < 0,

αx, x > 0,

solves (4.3) with initial datum .v0(x). Although V even “solves” (4.3) for .α > 0, its 
derivative u is not an entropy solution of (4.1). We have two solutions .UR and V 
with the same initial datum . v0 if .α > 0. We would like to choose a solution whose 
spatial derivative is an entropy solution. 

We recall that an entropy solution is obtained as a vanishing viscosity method. In 
other words, it is as a limit of the .ε-approximated equation 

. uε
t + f (uε)x = εuε

xx.

As previously, we set 

. Uε(x, t) =
∫ x

0
uε(y, t) dy −

∫ x

0
f

(
uε(0, s)

)
ds

and obtain 

. Uε
t + f (Uε

x ) = εUε
xx.

By the construction of an entropy solution, it is clear that our solutions .UR for . α > 0
and V for .α < 0 are obtained as a limit .limε↓0 Uε, at least formally.
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4.1.2 A Stationary Problem 

We continue to assume that .f (u) = u2/2. The solution V in Sect. 4.1.1 we found 
does not change its profile. It is a translative solution of (4.3) or a soliton-like
solution. If we consider .W = V + f (α)t , then W solves 

. − f (α) + f (Wx) = 0. (4.5) 

This is a stationary Hamilton–Jacobi equation. For .α < 0, this solution is obtained 
as a limit of aforementioned vanishing viscosity approach, while for . α > 0, it is not  
obtained as such a limit. 

Although so far we assume for simplicity that .f (u) = u2/2, all arguments in 
Sects. 4.1.1 and 4.1.2 work for a general convex function f with .f (σ) = f (−σ) for 
all .σ ∈ R and .f (0) = 0 with modification of the explicit formula of the rarefaction 
wave . uR . 

The equation .f (Ux) = g(x) is often called the eikonal equation. If .f (u) = u2/2, 
then this is of the form .|Ux | = √

2g. In multidimensional cases, it is of the form 

. |∇U | = G in �,

where G is a given function defined in a domain . � in . RN . 

4.2 Eikonal Equation 

In this section, we begin with a one-dimensional eikonal equation and then introduce 
a notion of viscosity solution to distinguish jumps of derivatives. We conclude this 
section by proving uniqueness (comparison principle) based on a kind of doubling-
variables argument, unlike in Chap. 3. 

4.2.1 Nonuniqueness of Solutions 

We consider a very simple example of the eikonal equation 

.

∣
∣
∣
∣
du

dx

∣
∣
∣
∣ − 1 = 0 in (−1, 1) (4.6) 

with the Dirichlet boundary condition

.u(±1) = 0. (4.7) 

Here, .u = u(x) is a real-valued function defined for .x ∈ (−1, 1). It is clear that there 
is no . C1 solution. If one allows continuous functions satisfying the equation except
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at finitely many points, there are infinitely many solutions (even if nonnegative 
solutions are considered). For example, 

. 
u0(x) = 1 − |x|, |x| ≤ 1,

uk(x) = 1

2k
a(2kx), k = 1, 2, . . . , |x| ≤ 1,

with 

. a(y) = max
{
1 − |y − (2m + 1)| ∣

∣ m ∈ Z
}
,

are such solutions (Fig. 4.1). One would like to choose a typical solution of (4.6) 
and (4.7). One natural solution is a distance function from the boundary . ±1, which 
corresponds to . u0. See Exercise 4.8. 

To conclude that a solution is unique, we must impose extra conditions like 
an entropy condition, which is obtained using a vanishing viscosity method. We 
consider for . ε > 0

.

∣
∣
∣
∣
du

dx

∣
∣
∣
∣ − 1 = ε

d2u

dx2 in (−1, 1). (4.8) 

Then it is easy to see that (4.8) under (4.7) admits a unique . C2 solution . uε. Indeed, 
it can be written as 

. uε(x) =
{

1 − x + ε(e−1/ε − e−x/ε), 0 ≤ x ≤ 1,

1 + x + ε(e−1/ε − ex/ε), −1 ≤ x < 0.

The uniqueness can be proved using the uniqueness of the initial value problem 
of ordinary differential equations in Sect. 1.1. (We do not give details here. The 
uniqueness can also be proved by the maximum principle for second-order ordinary 
differential equations; see, for example, [84].) If we take its limit as .ε → 0, then 

Fig. 4.1 Graphs of .uk



102 4 Hamilton–Jacobi Equations

evidently .uε(x) → u0(x). We would like to choose . u0 as a “reasonable” solution 
of (4.6) with (4.7) . It is desirable to check whether or not it is a reasonable solution
without approximation. In other words, we must find a suitable notion like entropy
solution to choose a reasonable solution.

4.2.2 Viscosity Solution 

We consider a general Hamilton–Jacobi equation in a domain (i.e., connected open 
set) . � in .RN of the form 

.H(x,∇u) = 0. (4.9) 

Here H is a (real-valued) continuous function in .�×RN , and . ∇u = (∂1u, . . . , ∂Nu)

is the gradient of a scalar function .u = u(x), .x ∈ �. To motivate the definition of a 
viscosity solution, we consider a . C2 solution u and consider .ϕ ∈ C2(�) such that 
.max�(u−ϕ) = (u−ϕ)(x̂) for some .x̂ ∈ �. We know that at the maximum point . x̂

. ∇(u − ϕ)(x̂) = 0, ∇2(u − ϕ)(x̂) ≤ O

or ∇u(x̂) = ∇ϕ(x̂), ∇2u(x̂) ≤ ∇2ϕ(x̂).

Here, .∇2u = (∂xi
∂xj

u) denotes the .N × N Hessian matrix of u and O denotes the 
.N × N zero matrix. For two symmetric matrices A and B, we say that .A ≤ B if the 
corresponding quadratic form for .B − A is nonnegative, i.e., 

. 〈η, (B − A)η〉 ≥ 0

for all .η ∈ RN . Let . 
 denote the Laplace operator, i.e., .
u = ∑N
i=1 ∂2

i u. Assume 
that a solution u of (4.9) is obtained as a vanishing viscosity approach, more
precisely u is given a limit of . uε as .ε ↓ 0, and . uε solves 

. H(x,∇uε) = ε
uε.

Let .xε ∈ � be a maximum point of .uε − ϕ in . �. Assume that .xε → x̂ as .ε ↓ 0. 
Then, 

. H (xε,∇ϕ(xε)) ≤ ε
ϕ(xε)

since .∇2u ≤ ∇2ϕ at .x = xε implies .
u ≤ 
ϕ at .x = xε; we here note that 
.
u = tr(∇2u) and .
ϕ = tr(∇2ϕ). Since u is a limit of . uε and .xε → x̂, we only 
obtain 

.H
(
x̂,∇ϕ(x̂)

) ≤ 0
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instead of .H
(
x̂,∇ϕ(x̂)

) = 0. Based on this observation, we arrive at the following 
definition of a viscosity solution. 

Definition 4.1 

A function .u ∈ C(�) is said to be a viscosity subsolution of (4.9) in . � if 

. H
(
x̂,∇ϕ(x̂)

) ≤ 0

whenever .(ϕ, x̂) ∈ C1(�) × � fulfills .max�(u − ϕ) = (u − ϕ)(x̂). A function 
.u ∈ C(�) is said to be a viscosity supersolution of (4.9) in . � if 

. H
(
x̂,∇ϕ(x̂)

) ≥ 0

whenever .(ϕ, x̂) ∈ C1(�) × � fulfills .min�(u − ϕ) = (u − ϕ)(x̂). If  u is a 
viscosity sub- and supersolution, then u is said to be a viscosity solution. 

It is easy to see that the . C1 function u is a viscosity subsolution if and only if u 
is a subsolution, i.e., 

. H (x,∇u(x)) ≤ 0 in �.

We now check the example in the last subsection, where 

. H(x,∇u) =
∣
∣
∣
∣
du

dx

∣
∣
∣
∣ − 1.

It is easy to see that . uk is a viscosity subsolution in .(−1, 1), but it is not a viscosity 
supersolution in .(−1, 1), except .k = 0. Thus, among .{uk}, . u0 is the only viscosity 
solution. 

Note that the notion of viscosity solution for .
∣
∣
∣ du

dx

∣
∣
∣ − 1 = 0 and .1 −

∣
∣
∣ du

dx

∣
∣
∣ = 0 is 

different. In fact, .−u0 is a viscosity solution of .1 −
∣
∣
∣ du

dx

∣
∣
∣ = 0, but it is not a viscosity 

solution of .
∣
∣
∣ du

dx

∣
∣
∣ − 1 = 0 (Exercise 4.1). 

4.2.3 Uniqueness 

We now consider the uniqueness problem for the eikonal equation 

.|∇u| − f (x) = 0 in �. (4.10) 

Let .∂� denote the boundary of . �.
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Theorem 4.2 (Comparison principle) 
Let . � be a bounded domain in . RN . Assume that .f ∈ C(�) is positive in . �. 
Let .u ∈ C(�) and .v ∈ C(�) be a viscosity sub- and supersolution of (4.10) ,
respectively. If .u ≤ v on . ∂�, then .u ≤ v in . �. In particular, for a given 
continuous boundary value g on . ∂�, a viscosity solution u of (4.10) in . C(�)

with .u = g on . ∂� is unique. 

Proof. We shall prove that .u ≤ v in . �. Since . � is compact, by continuity, u and 
v are bounded (by Weierstrass’ theorem). By adding a suitable constant, we may 
assume that u and v are nonnegative, i.e., .u, v ≥ 0 in . �. 

It suffices to prove that .λu ≤ v in . � for all .λ ∈ (0, 1) since .limλ↑1 λu = u in . �. 
Note that .uλ = λu is a viscosity solution of 

.|∇u| − λf (x) = 0 in �. (4.11) 

We shall fix . λ in the sequel. 
Although it is logically unnecessary, we first prove that .uλ ≤ v in . � when . v ∈

C1(�) because it reveals the merit of using . uλ instead of u. If .uλ ≤ v were false, 
then the function .uλ − v would take a positive maximum at some . x∗ ∈ �. (The  
existence of a maximum follows from Weierstrass’ theorem since . � is compact.) On 
the boundary . ∂�, we know . uλ ≤ v, so .x∗ ∈ �. Since . uλ is a viscosity subsolution 
of (4.11) , by definition,

. |∇v(x∗)| − λf (x∗) ≤ 0.

Since v is a classical subsolution of (4.10) , we see that

. |∇v(x∗)| − f (x∗) ≥ 0.

Subtracting the second inequality from the first, we end up with . −λf (x∗)+f (x∗) ≤
0, which yields a contradiction since .λ < 1 and .f > 0 on . �. Unfortunately, this 
argument does not work if v is not . C1. 

To overcome this difficulty, we introduce a doubling-variables method (which 
is, of course, different from Kružkov’s for conservation law). We note that if . α is 
large, then .−�α is sufficiently large, i.e., .�α � 0 away from the diagonal set 
.
{
(x, x)

∣
∣ x ∈ �

}
. We consider 

.�α(x, y) = uλ(x) − v(y) − α|x − y|2
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for a large positive number .α > 0. Assume that .uλ ≤ v in . � would be false. Since 
we assume .u ≥ 0, we see that .uλ ≤ v on . ∂�. Thus, there would exist .x0 ∈ � such 
that .m = �α(x0, x0) > 0. This would imply 

. max
�×�

�α ≥ m > 0.

Let .(xα, yα) ∈ �×� be a maximizer of .�α over .�×�, i.e., .max �α = �α(xα, yα). 
Such .(xα, yα) exists because of Weierstrass’ theorem. Since .m > 0 and both u 
and v are bounded as .α → ∞, it is easy to see that .α|xα − yα|2 is bounded. In 
particular, .xα −yα → 0 as .α → ∞. Since . � is bounded so that .{xα} is bounded, by 
compactness (Bolzano–Weierstrass theorem), there is a subsequence .{xα′ } of . {xα}
converging to some .x̂ ∈ �. Similarly, .{yα′ } has a subsequence .{yα′′ } converging to 
some .ŷ ∈ �. Since .xα − yα → 0, we see that .x̂ = ŷ. We shall denote .{xα′′ }, . {yα′′ }
by .{xα′ }, .{yα′ } for simplicity. 

Since we have assumed that .uλ ≤ v on . ∂�, we see that . x̂ �∈ ∂�. In fact, if  
.xα′ , yα′ → x̂ ∈ ∂�, then, by the continuity of u and v, we see  

. m ≤ lim sup
α′→∞

�α′(xα′ , yα′) ≤ lim sup
α′→∞

(uλ(xα′) − v(yα′)) = uλ(x̂) − v(x̂) ≤ 0,

which is a contradiction (Fig. 4.2). 
We take . α sufficiently large so that .xα, yα ∈ �. Since . � is maximized at .xα, yα , 

we see that the function 

. x �→ uλ(x) − ϕα(x), ϕα(x) = v(yα) + α|x − yα|2

takes its maximum at . xα and the function 

. y �→ v(y) − ψα(y), ψα(y) = uλ(xα) − α|xα − y|2

Fig. 4.2 Values of .�α
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takes its minimum at . yα . By the definition of viscosity sub- and supersolutions, we 
conclude that 

. |∇ϕα(xα)| − λf (xα) ≤ 0,

|∇ψα(yα)| − f (yα) ≥ 0.

Subtracting the second inequality from the first and observing that . ∇xϕα(xα) =
∇yψα(yα), we now obtain 

. − λf (xα) + f (yα) ≤ 0.

Since .xα′ → x̂ and .yα′ → x̂, sending .α′ → ∞ yields 

. − λf (x̂) + f (x̂) ≤ 0.

If .f > 0 on . �, this leads to a contradiction since .λ < 1. We thus conclude that 
.λu ≤ v for all .λ ∈ (0, 1), which implies .u ≤ v in . �. 

Suppose that there are two solutions, . u1 and .u2 ∈ C(�), of  (4.10) with . u1 =
u2 = g on . ∂�. By the comparison just proved, we observe that .u1 ≤ u2 and 
.u2 ≤ u1 in . �. This implies .u1 = u2. The proof is now complete. ��

The assumption .f (x) > 0 for all .x ∈ � is essential. If f takes a zero at some 
point of . �, the uniqueness actually fails. In fact, if one considers 

. 

⎧
⎨

⎩

∣
∣
∣
∣
du

dx

∣
∣
∣
∣ − |x| = 0, |x| < 1

u(±1) = 0,

then 

. va(x) = min
{
(1 − x2)/2, a + x2/2

}

is a viscosity solution for all .a ∈ [−1/2, 1/2] (Fig. 4.3). It turns out that there is at 
most one solution if all its values on the set .

{
x

∣
∣ f (x) = 0

}
are prescribed; see the 

last paragraph of Sect. 4.5.1. 
Note also that there may be no solution for given boundary data. Indeed, if we 

consider (4.6) in .(−1, 1) with .u(−1) = 0, .u(1) = 3, then there is no viscosity 
solution .u ∈ C[−1, 1] satisfying this boundary value. One must interpret the 
boundary condition in some weak sense.
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Fig. 4.3 Graphs of . va

4.3 Viscosity Solutions of Evolutionary Hamilton–Jacobi 
Equations 

In this section, we consider an evolutionary Hamilton–Jacobi equation and discuss 
the uniqueness of viscosity solutions under the periodic boundary condition. The 
proof is similar to that in the last section. 

4.3.1 Definition of Viscosity Solutions 

We consider an evolutionary Hamilton–Jacobi equation of the form 

.ut + H(x,∇u) = 0 in � × (0, T ), (4.12) 

where . � is a domain in .RN or . TN , which imposes a periodic boundary condition. 
Here we continue to assume that H is a (real-valued) continuous function in . � ×
RN ; .∇u denotes the (spatial) gradient of a scalar function .u = u(x, t) defined on 
.� × (0, T ), i.e., .∇u = (∂1u, . . . , ∂Nu). 

Definition 4.3 

A function .u ∈ C(Q) with .Q = � × (0, T ) is said to be a viscosity subsolution 
of (4.12) in Q if

. ϕt (x̂, t̂ ) + H
(
x̂,∇ϕ(x̂, t̂)

) ≤ 0

whenever .
(
ϕ, (x̂, t̂)

) ∈ C1(Q) × Q fulfills .maxQ(u − ϕ) = (u − ϕ)(x̂, t̂). A  
function .u ∈ C(Q) is said to be a viscosity supersolution of (4.12) in Q if

. ϕt (x̂, t̂ ) + H
(
x̂,∇ϕ(x̂, t)

) ≥ 0

whenever .
(
ϕ, (x̂, t̂)

) ∈ C1(Q) × Q fulfills .minQ(u − ϕ) = (u − ϕ)(x̂, t̂). If  u is 
a viscosity sub- and supersolution, we say that u is a viscosity solution.
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4.3.2 Uniqueness 

We now present a comparison principle for (4.12) under the periodic boundary
condition to simplify the situation. We set .Q0 = � × [0, T ) for later convenience. 

Theorem 4.4 (Comparison principle) 
Let .� = TN . Assume that .H(x, p) is continuous in .TN × RN . Assume that 

. |H(x, p) − H(y, p)| ≤ η ((1 + |p|) |x − y|) for all (x, p) ∈ TN × RN,

where . η is a modulus, i.e., .η(s) > 0 for .s > 0 and .η(s) ↓ 0 as .s → 0. Let 
.u ∈ C(Q0) and .v ∈ C(Q0) be viscosity sub- and supersolutions of (4.12) ,
respectively. If .u ≤ v at .t = 0, then .u ≤ v in . Q0. In particular, a solution to 
(4.12) with given initial datum .g ∈ C(TN) is unique. 

Proof. As in the proof of Theorem 4.2, since the uniqueness (the second statement) 
easily follows from the comparison principle (the first statement), we just give a 
proof for the comparison principle. We may assume that .u, v ∈ C(Q) by taking T 
smaller. We consider 

. �(x, t, y, s) = u(x, t) − v(y, s) − α|x − y|2 − β|t − s|2 − γ /(T − t) − γ /(T − s)

for sufficiently large .α, β > 0 and sufficiently small .γ > 0. 
Assume that .u ≤ v in Q were false. Then for sufficiently small . γ , there exists 

.(x0, t0) ∈ Q such that .�(x0, t0, x0, t0) > 0. We shall fix such . γ . Then this would 
imply 

. max
Q×Q

� = mαβ > 0.

Let .(xαβ, tαβ, yαβ, sαβ) ∈ Q × Q be a maximizer of . � over .Q × Q. As in the proof 
of Theorem 4.2, we see that .α|xαβ − yαβ |2 + β|tαβ − sαβ |2 is bounded as .α → ∞, 
.β → ∞. In particular, .xαβ − yαβ → 0, .tαβ − sαβ → 0 as .α → ∞, .β → ∞. 

As in the proof of Theorem 4.2, .tαβ, sαβ > 0 for sufficiently large .α, β because 
of the initial condition. 

We next observe that 

.α|xαβ − yαβ |2 + β|tαβ − sαβ |2 → 0 (4.13)
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as .α → ∞, .β → ∞. In fact, since .mαβ ≥ �(x, t, x, t), we see that 

. lim sup
x−y→0
t−s→0

(u(x, t) − v(y, s) − γ /(T − t) − γ /(T − s)) − mαβ ≤ 0.

Setting .(x, t, y, s) = (xαβ, tαβ, yαβ, sαβ), we obtain 

. lim sup
α,β→∞

{
�(xαβ, tαβ, yαβ, sαβ) + α|xαβ − yαβ |2 + β|tαβ − sαβ |2 − mαβ

}
≤ 0,

which yields (4.13) since .�(xαβ, tαβ, yαβ, sαβ) = mαβ . 
We take .α, β sufficiently large so that .tαβ, sαβ > 0. Since . � is maximized at 

.(xαβ, tαβ), (yαβ, sαβ), we see that 

. (x, t) �→ u(x, t) − ϕαβ(x, t),

ϕαβ(x, t) = v(yαβ, sαβ) + α|x − yαβ |2 + β|t − sαβ |2 + γ /(T − t)

takes its maximum at .(xαβ, tαβ). Similarly, 

. (y, s) �→ v(y, s) − ψαβ(y, s),

ψαβ(y, s) = u(xαβ, tαβ) − α|xαβ − y|2 − β|tαβ − s|2 − γ /(T − s)

takes its minimum at .(yαβ, sαβ). By the definition of viscosity sub- and supersolu-
tions, we conclude that 

. 2β(tαβ − sαβ) + γ /(T − tαβ)2 + H
(
xαβ, 2α(xαβ − yαβ)

) ≤ 0,

2β(tαβ − sαβ) − γ /(T − sαβ)2 + H
(
yαβ, 2α(xαβ − yαβ)

) ≥ 0.

Subtracting the second inequality from the first, we conclude that 

. γ /(T − tαβ)2 + γ /(T − sαβ)2 ≤ η
((

1 + 2α|xαβ − yαβ |) |xαβ − yαβ |)

by the assumption of continuity of H with respect to x. Since .α|xαβ − yαβ |2 → 0, 
.|xαβ − yαβ | → 0, and .T − tαβ ≤ T , we conclude that 

. γ /T 2 + γ /T 2 ≤ 0,

which yields a contradiction. We thus conclude that .u ≤ v in . Q0. ��
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In the proofs of both comparison principles (Theorems 4.2 and 4.4), a key 
property is that 

. ∇xϕα(xα) = ∇yψα(yα)

for Theorem 4.2 and 

. ∇xϕαβ(xαβ, tαβ) = ∇yψαβ(yαβ, sαβ), ∂tϕαβ(xαβ, tαβ) = ∂sψαβ(yαβ, sαβ)

for Theorem 4.4, which follow from 

. ∇x |x − y|2 = −∇y |x − y|2, ∂t (t − s)2 = −∂s(t − s)2.

For second derivatives, we have 

. ∇2
x |x − y|2 = ∇2

y |x − y|2 �= −∇2
y |x − y|2.

This prevents us from extending the foregoing proofs directly to the second-order 
problems. 

4.4 Viscosity Solutions with Shock 

In this section, we continue to study the uniqueness of a solution for an evolutionary 
Hamilton–Jacobi equation whose expected solution may develop jump discontinu-
ities called shocks like conservation laws. We first recall the notion of viscosity 
solutions for semicontinuous functions. 

4.4.1 Definition of Semicontinuous Functions 

We consider an evolutionary Hamilton–Jacobi equation of the form 

.ut + H(x, t, u,∇u) = 0 in Q = � × (0, T ), (4.14) 

where . � is a domain in .RN or .TN and H is a continuous function that may also 
depend on t and u. For a function .u : Q → R ∪ {±∞} (i.e., with values in . R ∪
{±∞}), let . u∗ denote the upper semicontinuous envelope, i.e., 

. u∗(x, t) = lim sup
ε↓0

{
u(y, s)

∣
∣ |y − s| < ε, |t − s| < ε, (y, s) ∈ Q

}

for .(x, t) ∈ Q. Similarly, .u∗(x, t) denotes the lower semicontinuous envelope, i.e., 
.u∗(x, t) = −(−u)∗(x, t) (Exercise 4.3).
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Definition 4.5 

A function .u : Q → R ∪ {±∞} is said to be a viscosity subsolution of (4.14) in
Q if .u∗ < ∞ on . Q and 

.ϕt (x̂, t̂ ) + H
(
x̂, t̂ , u∗(x̂, t̂ ),∇ϕ(x̂, t̂)

) ≤ 0 (4.15) 

whenever .
(
ϕ, (x̂, t̂ )

) ∈ C1(Q) × Q fulfills .maxQ(u∗ − ϕ) = (u∗ − ϕ)(x̂, t̂ ). A  
viscosity supersolution is defined by replacing . u∗, . ∞, .u∗(x̂, t̂ ), . ≤, .max by . u∗, 
.−∞, .u∗(x̂, t̂ ), . ≥, .min, respectively. If u is a viscosity sub- and supersolution, we 
say that u is a viscosity solution. 

It is easy to extend Theorem 4.4 to such a discontinuous solution. Moreover, if 
.r �→ H(x, t, r, p) is nondecreasing, then u dependence is also allowed. 

Theorem 4.6 (Comparison principle) 
Assume that .H = H(x, r, p) is continuous in .TN × R × RN . Assume that 
.r �→ H(x, r, p) is nondecreasing and satisfies 

. 
∣
∣H(x, r, p)−H(y, r, p)

∣
∣ ≤ η

(
(1 + |p|) |x−y|), p ∈ RN, x, y ∈ TN, r ∈ R

for some modulus . η. Let .u : Q → R ∪ {−∞} and .v : Q → R ∪ {+∞} be 
viscosity sub- and supersolutions of (4.14), respectively. If .u∗ ≤ v∗ at .t = 0, 
then .u∗ ≤ v∗ in .Q0 = � × [0, T ). In particular, a solution to (4.14) with
.u∗|t=0 = u∗|t=0 = g ∈ C(TN) is unique and continuous in . Q0. 

The proof of .u∗ ≤ v∗ in .Q0 is the same as that of Theorem 4.4, replacing u and 
v with . u∗ and . v∗, respectively, before comparing the inequalities 

. 2β(tαβ − sαβ) + γ /(T − tαβ)2 + H
(
xαβ, u∗(xαβ, tαβ), 2α(xαβ − yαβ)

) ≤ 0,

2β(tαβ − sαβ) − γ /(T − sαβ)2 + H
(
yαβ, v∗(yαβ, sαβ), 2α(xαβ − yαβ)

) ≥ 0.

By the choice of . xαβ , . tαβ , . yαβ , . sαβ , we know .u∗(xαβ, tαβ) > v∗(yαβ, sαβ). If . r �→
H(x, r, p) is nondecreasing, we may replace .v∗(yαβ, sαβ) with .u∗(xαβ, tαβ) so that 
both inequalities are comparable. The remaining part is the same. 

If . u1 and . u2 are solutions with initial datum g, the comparison principle implies 
.u∗

1 ≤ u2∗ and .u∗
2 ≤ u1∗. Thus, .u1 = u2 ∈ C(Q0). 

We may weaken the monotonicity assumption that .r �→ H(x, t, r, p) is nonde-
creasing by a weaker assumption such that .r �→ H(x, r, p)+λr is nondecreasing for 
some .λ ∈ R by modifying the structure assumption for H . The main idea to extend 
the proof is the change of dependent variables .u, v by .e−λtu, e−λtv. However, if 
H does not satisfy such monotonicity assumptions, the uniqueness may not hold in 
general.
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4.4.2 Example for Nonuniqueness 

We consider a scalar conservation law (3.2) . Here we assume that f is a given strict
convex . C1 function in the sense that .f ′ ∈ C(R) is (strictly) increasing. The equation 
can be written in the form of (4.14) , with

. H(x, t, r, p) = f ′(r)p.

For .ur < u�, we consider 

. us(x, t) =
{

u�, x < st,

ur , x ≥ st;

see Fig. 4.4. If the speed s satisfies .f ′(ur) ≤ s ≤ f ′(u�), then . us is a viscosity 
solution in .R × (0,∞). (However, it is not a weak solution unless s satisfies the 
Rankine–Hugoniot condition, i.e., .s = s∗, with 

. s∗ = f (u�) − f (ur)

u� − ur

;

see Lemma 3.8.) This shows the nonuniqueness of viscosity solutions. Of course, 
this is not a direct counterexample of the comparison principle discussed previously 
since these functions are neither periodic nor continuous up to initial data, but it is 
easy to construct such an example under the periodic conditions with continuous 
initial data. In Chap. 3, we introduced the notion of an entropy solution and proved 
that it was unique. In this example, .us∗ is an entropy solution, while . us with . s �= s∗
is not even a weak solution. We shall introduce a notion of a proper solution so 
that the speed of the jump satisfies the Rankine–Hugoniot condition and entropy 
condition. 

Fig. 4.4 Graph of . us at 
time t
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4.4.3 Test Surfaces for Shocks 

In the definitions of viscosity solutions, we test a possibly irregular function u by 
a smoother function . ϕ (called a test function) from both above and below; see, 
for example, Definition 4.5. If  u is allowed to be discontinuous, as we saw in 
Sect. 4.4.2, such tests are not enough. To overcome this difficulty, we also test 
shocks. For simplicity, we consider a one-dimensional setting. In the case where 
u is discontinuous at . �, as in the paragraph after Definition 3.2, but . � may not be 
smooth, we test the shock . � from both the right and left (or inside or outside with 
respect to the orientation . ν�) by a smoother curve called a test curve (Fig. 3.4). The 
speed of test curves (surfaces) will be given by the Rankine–Hugoniot condition or 
entropy condition. 

For a given point .(x0, t0) ∈ Q and .ρ > 0, . δ > 0, let .{St }t∈� be a smooth family 
of smooth hypersurfaces in .B̊ρ(x0) ⊂ � with .x0 ∈ St0 , where . � = �δ(t0) = (t0 −
δ, t0 + δ), and .Bρ(x0) denotes a closed ball of radius . ρ in .RN centered at .x0 ∈ RN . 
Let .n = n(·, t) denote the unit normal vector field of . St that gives the orientation of 
. St ; we assume that .n(·, t) depends on t at least continuously. Assume that . ̊Bρ(x0)\St

consists of two domains. Let . Dt denote one of these domains such that .∂Dt = St in 
.B̊ρ(x0) and its inward normal agrees with .n = n(·, t) for .t ∈ �δ(t0). We call . Dt a 
region associated with .(St ,n(·, t)). It is uniquely determined for given . ρ and . δ. 

We simply say that .{(St ,n(·, t))} is an evolving hypersurface through .(x0, t0). 

Definition 4.7 

(i) Let .u : Q → R ∪ {−∞} be upper semicontinuous and .(x0, t0) ∈ Q. For  
.μ < u(x0, t0), we say that an evolving hypersurface .{(St ,n(·, t))} through 
.(x0, t0) is an upper test surface of u at .(x0, t0) with level . μ if 

. u(x, t) ≤ μ in Dt × {t}

for some .ρ > 0 and .δ > 0, where . Dt denotes the region associated with 
.(St ,n(·, t)). 

(ii) Let .v : Q → R ∪ {+∞} be lower semicontinuous and .(x0, t0) ∈ Q. For  
.μ > v(x0, t0), we say that an evolving hypersurface .{(St ,n(·, t))} at . (x0, t0)

is a lower test surface of v at .(x0, t0) with level . μ if 

. v(x, t) ≥ μ in Dt × {t}

for some .ρ > 0, and .δ > 0, where . Dt denotes the region associated with 
.(St ,n(·, t)). See Fig. 4.5. 

If .u(·, t) jumps across a hypersurface . �t , such a surface . �t is often called a shock 
surface. In this case, one may take . �t as a test surface if . �t is regular enough.
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Fig. 4.5 Upper test surface 

Fig. 4.6 Convexification 

4.4.4 Convexification 

To give a rigorous definition of solutions, we recall a few properties of convexifi-
cation. Let f be a function defined on . R. Let  I be a bounded closed interval. Let 
.fI : I → R denote the convex hull (convexification) of  f in I , i.e., . fI is the greatest 
convex function on I less than or equal to I (Fig. 4.6). By definition, .fI = f in I if 
I is a singleton.
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Lemma 4.8 
(i) If f is continuous in I , then .fI = f on . ∂I and . fI is continuous in I . 
(ii) If f is . C1, then . fI is . C1 in I . 
(iii) For .f ∈ C1[a, d] (−∞ < a < d < ∞), 

. f ′
I (x) ≥ f ′

J (x) for x ∈ I ∩ J,

with .I = [a, b], .J = [c, d], .a ≤ c ≤ b ≤ d, where . ′ denotes the 
derivative. (At the boundary, the derivative is interpreted as the right or 
left derivative.) 

(iv) For .f ∈ C1(R), the function .F(a, b, x) = f ′[a,b](x) is continuous in 

. 
{
(p, q, x) ∈ R3

∣
∣ p ≤ q, p ≤ x ≤ q

}
.

The proofs are elementary. They are safely left to the reader; see [46, Lemma 
2.1]. 

4.4.5 Proper Solutions 

To define a proper solution, we recall a recession function of .p = ∇u variable for 
the Hamiltonian .H : Q × R × RN → R, i.e., 

. H∞(x, t, r, p) = lim
λ↓0

λH(x, t, r, p/λ).

See Exercise 4.2. We always assume that .H∞ exists and is continuous in its 
variables. By definition, .H∞(x, t, r, σp) = σH∞(x, t, r, p) for .σ > 0, i.e., 
positively homogeneous of degree one in p. Indeed, 

. H∞(x, t, r, σp) = lim
λ↓0

λH (x, t, r, σp/λ) = lim
λ′↓0

σλ′H
(
x, t, r, p/λ′) .

Let .f (r) = f (r; x, t, p) be a primitive of .H∞(x, t, r, p) as a function of r . For a  
closed interval I , let . fI denote the convexification of f in I . Since . fI is . C1 in I by 
Lemma 4.8 (ii), so that . f ′

I is continuous on I , we set  

. HI (x, t, r, p) := f ′
I (r; x, t, p), r ∈ I, (x, t) ∈ Q, p ∈ RN

and call .HI a relaxed Hamiltonian in I . This is independent of the choice of a 
primitive f , so it is well defined. Since .H∞ is positively homogeneous of degree
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one, so is . HI , i.e., 

. HI (x, t, r, σp) = σHI (x, t, r, p)

for all .σ > 0, .(x, t) ∈ Q, .r ∈ I , .p ∈ RN . If .r �→ H(x, t, r, p) is nondecreasing so 
that .f (r) is convex, then the relaxed .HI agrees with .H∞ for any choice of I . 

Definition 4.9 

(i) Let .u : Q → R ∪ {−∞} be a viscosity subsolution of (4.14) in Q. We say
that u is proper subsolution of (4.14) if the inequality

.V (x0, t0) + HI
(
x0, t0, u

∗(x0, t0),−n(x0, t0)
) ≤ 0 (4.16) 

holds whenever .(x0, t0) ∈ Q admits an upper test surface .{(St ,n(·, t))} of 
. u∗ at .(x0, t0) with the level .μ (< u∗(x0, t0)), where .I = [

μ, u∗(x0, t0)
]
. 

Here, .V = V (x0, t0) denotes the normal velocity of .{St } at .(x0, t0) in the 
direction of .n(x0, t0), and .HI denotes the relaxed Hamiltonian. 

(ii) For a viscosity supersolution .v : Q → R ∪ {+∞} of (4.14) in Q, we say
that v is a proper supersolution of (4.14) if the inequality

. − V (x0, t0) + HI (x0, t0, v∗(x0, t0),n(x0, t0)) ≥ 0 (4.17) 

holds whenever .(x0, t0) ∈ Q admits a lower test surface .{(St ,n(·, t))} of . v∗
at .(x0, t0) with level .μ (> v∗(x0, t0)), where .I = [v∗(x0, t0), u]. 

(iii) If u is a proper sub- and supersolution, we say that u is a proper solution. 
The notion of proper sub- and supersolution is reduced to classical viscosity 
sub- and supersolutions respectively if the function is continuous.

� Remark 4.10 

(i) If (4.16) is fulfilled with .I = [
μ, u∗(x0, t0)

]
, then (4.16) holds for all . I ′ =

[μ, σ ] provided that .σ ≥ u∗(x0, t0) by Lemma 4.8 (iii). 
(ii) If .{(St ,n(·, t))} is an upper test surface of . u∗ at .(x0, t0) with level . μ, then it is 

also an upper test surface with level . μ′ for any .μ′ ∈ [
μ, u∗(x0, t0)

]
. Thus, for 

a proper subsolution, the inequality 

. V (x0, t0) + HJ
(
x0, t0, u

∗(x0, t0),−n(x0, t0)
) ≤ 0

with .J = [
μ′, u∗(x0, t0)

]
is valid. By Lemma 4.8 (iv), letting . μ′ ↑ u∗(x0, t0)

yields 

.V (x0, t0) + H∞
(
x0, t0, u

∗(x0, t0),−n(x0, t0)
) ≤ 0, (4.18)
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since .HJ = H∞ if J is a singleton. This inequality holds for any upper test 
surfaces .{(St ,n(·, t))} at .(x0, t0). 

(iii) Suppose that .r �→ H(x, t, r, p) is nondecreasing so that .HI = H∞ for any 
I . If  (4.18) holds for any upper test surface .{(St ,n(·, t))} at .(x0, t0) with level 
.μ < u∗(x0, t0), then (4.16) holds for . μ by the monotonicity of H in r . Thus, 
u is a proper subsolution if u is a viscosity subsolution and (4.18) holds for
any upper test surface .{(St ,n(·, t))} at .(x0, t0) with level .μ < u∗(x0, t0). In  
fact, if .r �→ H(x, t, r, p) is nondecreasing, then every subsolution is a proper 
subsolution, as stated subsequently in Theorem 4.11. 

(iv) For a semiclosed interval .(0, T ], it is possible to define a proper solution in 
.Q′ = �×(0, T ]. For .u : Q′ → R∪{±∞}, we say that u is a proper subsolution 
of (4.14) in . Q′ if it is a viscosity subsolution of (4.14) in . Q′ (i.e., (4.15) holds
for .

(
ϕ, (x̂, t̂)

) ∈ C1(Q′) × Q′ satisfying . maxQ(u∗ − ϕ) = (u∗ − ϕ)(x̂, t̂ )

with Q replaced by . Q′) and (4.16) holds for upper test surface .{(St ,n(·, t))} at 
.(x0, t0) ∈ Q′ with level .μ (< u∗(x0, t0)). If .t0 = T , the family . {(St ,n(·, t))}
should be interpreted as being smooth in .(T − δ, T ]. 

If .r �→ H(x, t, r, p) is nondecreasing, then a proper subsolution is a conventional 
viscosity subsolution under an asymptotic homogeneity assumption on H as 
.|p| → ∞. 

Theorem 4.11 (Consistency) 
For .H ∈ C(Q × R × RN), assume that .r �→ H(x, t, r, p) is nondecreasing 
in . R for all .(x, t) ∈ Q, .p ∈ RN . Assume that .λH(x, t, r, p/λ) converges to 
.H∞ locally uniformly in .Q × R × RN as .λ ↓ 0. In other words, 

. lim
λ↓0

sup
(x,t,r,p)∈K

∣
∣
∣λH

(
x, t, r,

p

λ

)
− H∞(x, t, r, p)

∣
∣
∣ = 0 (4.19) 

for every compact set K in .Q × R × RN . If  u and v are viscosity sub- and 
supersolutions of (4.14) in Q, then u and v are respectively proper sub- and
supersolutions of (4.14) in Q.

� Remark 4.12 By (4.19), the function .H∞ is continuous in its variables. In 
particular, by the homogeneity of .H∞, 

. H∞(x, t, r, 0) = lim
σ↓0

H∞(x, t, r, σ ) = lim
σ↓0

H∞(x, t, r, 1) = 0.

By definition, 

. HI (x, t, r, 0) = 0

for any closed interval I .
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Proof. The proof of a viscosity supersolution is similar to that of a viscosity 
subsolution, so we only present the proof of a viscosity subsolution. By Remark 4.10 
(iii), it suffices to prove (4.18). Let .{(St ,n(·, t))} be an upper test surface at 
.(x0, t0) ∈ Q of . u∗ with level .μ (< u∗(x0, t0)). Let . Dt be a region associated with 
.(St ,n(·, t)). We set  

. D =
⋃

t∈�

Dt × {t} ⊂ B̊ρ(x0) × �, � = (t0 − δ, t0 + δ).

We take another upper test function .
{(

S′
t ,n

′(·, t))} with level . μ at .(x0, t0) and 
.n(x0, t0) = n′(x0, t0) such that 

. (x0, t0) ∈ S′ and S′\ {(x0, t0)} ⊂ D with S′ =
⋃

t∈�

S′
t × {t}.

(By construction . S′
t touches . St only at time . t0 at point . x0.) Let . D′

t denote a region 
associated with .

(
S′

t ,n
′(·, t)). To construct an appropriate test function1 for . u∗, we  

use a signed distance function of .D′ = ⋃
t∈� D′

t × {t} ⊂ B̊ρ(x0) × � defined by 

. d(x, t) =
{

dist
(
(x, t), ∂D′) , x ∈ D′,

− dist
(
(x, t), ∂D′) , x /∈ D′.

From this point forward, by .∂D′ we mean the boundary of . D′ in .B̊ρ(x0) × �. Since 
.∂D′ is smooth, so is d in .B̊ρ(x0) × � for sufficiently small .δ > 0 and .ρ > 0; see, 
for example, [67]. We fix .μ′ ∈ (μ, u∗(x0, t0)) and define 

. ϕL(x, t) = max
(−Ld(x, t) + u∗(x0, t0), μ

′)

for .L > 0 (Fig. 4.7). The function .ϕL(x, t) is smooth outside .D′ in a small 
neighborhood of .(x0, t0). Since . u∗ is upper semicontinuous, there is a maximizer 
.(xL, tL) of .u∗ −ϕL in .Bρ(x0)×�, where .� = [t0 − δ, t0 + δ]. Sending .L → ∞ we 
see that .0 ≤ max(u∗ −ϕL) → 0 and .dist

(
(xL, tL), ∂D′) → 0. Since .(xL, tL) /∈ D′, 

this implies .(xL, tL) → (x0, t0). Moreover, .u∗(xL, tL) → u∗(x0, t0) since . u∗ is 
upper semicontinuous and .u∗(xL, tL) ≥ u∗(x0, t0). Thus, for sufficiently large L 
the function .u∗ − ϕL takes its local maximum at .(xL, tL) ∈ B̊ρ(x0) × �, and at 
.(xL, tL) the function . ϕL is smooth. 

1 For a subset A in a metric space M equipped with distance d, the distance function . dist(x,A)

from A is defined by 

. dist(x,A) := inf
{
d(x, y)

∣
∣ y ∈ A

}
.
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Fig. 4.7 Graph of . ϕL at 
. t = t0

If u is a viscosity subsolution, then 

. ∂tϕL(xL, tL) + H
(
xL, tL, u∗(xL, tL),∇ϕL(xL, tL)

) ≤ 0.

Dividing by .|∇ϕ(xL, tL)| = L and sending .L → ∞ yields 

. V + H∞
(
x0, t0, u

∗(x0, t0),−n(x0, t0)
) ≤ 0

since the convergence .λH(x, t, r, p/λ) → H∞(x, t, r, p) is locally uniform in 
.(x, t, r, p) as .λ ↓ 0 and 

. 

∇ϕL(xL, tL)

|∇ϕL(xL, tL)| →−n(x0, t0), (xL, tL) →(x0, t0),

u∗(xL, tL) →u∗(x0, t0),
∂tϕ(xL, tL)

|∇ϕ(xL, tL)| →V (x0, t0)

as λ ↓ 0.

We have thus proved (4.18) . ��

4.4.6 Examples of Viscosity Solutions with Shocks 

We consider a scalar conservation law (3.2), where f is a given strict convex . C1

function. For .a < b we set 

. uN(x, t) =
{

a, x < st,

b, x ≥ st,

.uS(x, t) =
{

b, x ≤ st,

a, x > st.
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If the speed s satisfies the Rankine–Hugoniot condition, i.e., 

. s = f (b) − f (a)

b − a
,

then . uS is a viscosity solution, while . uN is not a viscosity solution even if s satisfies 
the Rankine–Hugoniot condition. If s satisfies the Rankine–Hugoniot condition, 
then .uN is still a weak solution (defined in Definition 3.2) of  (3.2) .

Proposition 4.13 
Assume that .f ′ ∈ C(R) is (strictly) increasing and .a < b. If  . s =
(f (b) − f (a)) /(b − a), then . uS is a proper solution of (3.2) . If .s < f ′(b), 
then . uN is not even a viscosity supersolution of (3.2) . If .s > f ′(a), then . uN

is not even a viscosity subsolution of (3.2) .

Proof. It is easy to see that . uS is a viscosity solution. Thus, it suffices to check 
the speed of a test surface for shocks. Let .(x0, t0) be a point on a shock, i.e., 
.x0 = st0, t0 > 0. The line .St = {x = st} itself is a test surface of . uS and . uN

at .(x0, t0) with level a. All other test surfaces at .(x0, t0) are tangent to . {St }, so by  
Remark 4.10 (ii) it suffices to estimate the normal velocity of .{St }. Equation (3.2) 
can be written

. ut + H(u,∇u) = 0

if we set .H(r, p) = f ′(r)p. If we consider . uE , then .n = 1, so that 

. H(r,n) = −f ′(r).

Since .−f is concave, 

. 
d

dr
(−f )I (r) = −f (b) − f (a)

b − a
, r ∈ I = [a, b],

which yields .HI (r,−1) = −s by the definition of s. Since .V (x0, t0) = c, we now  
observe that 

. V (x0, t0) + HI (b,−1) = 0.

Thus, . uS is a proper subsolution. A symmetric argument shows that .(uS)∗ is a proper 
supersolution. 

It is easy to see that . uN is not a viscosity subsolution or a viscosity supersolution 
for the range indicated in the statement. ��
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It is well known (Exercise 3.6) that the entropy solution u with initial datum 
.u|t=0 = uN |t=0 is a rarefaction wave solution 

. uR(x, t) =
⎧
⎨

⎩

a, x < f ′(a)t,

(f ′)−1(x/t), f ′(a)t ≤ x < f ′(b)t,

b, x ≥ f ′(b)t,

where .f ′−1 denotes the inverse function of . f ′. This function u is a continuous 
viscosity solution, so there are no jumps. Consequently, there are no test surfaces for 
shocks. Thus, . uR is automatically a proper solution. For . uR and . uS , the notions of 
proper and entropy solutions agree with each other. More generally, it turns out that 
notions of proper and entropy solutions essentially agree for initial-value problems 
[46]. We do not touch on this problem in this book. 

4.4.7 Properties of Graphs 

To derive some comparison principle, it is convenient to consider graphs of proper 
solutions. For a function .u : Q → R ∪ {±∞}, we associate a function on . � × R ×
(0, T ) of the form 

. iu(x, z, t) =
{

0, z ≤ u(x, t),

−∞, z > u(x, t).

The set 

. {iu = 0} := {
(x, z, t) ∈ � × R × (0, T )

∣
∣ iu(x, z, t) = 0

}

is called the subgraph of u and denoted by .sg u. Similarly, we set 

. Iu(x, z, t) =
{

0, z ≥ u(x, t),

∞ z < u(x, t).

The set 

. {Iu = 0} := {
(x, z, t) ∈ � × R × (0, T )

∣
∣ Iu(x, z, t) = 0

}

is called the supergraph of u and denoted by .Sg u. This set .{Iu = 0} is usually called 
the epigraph of u, and . Iu is called the indicator function of .Sg u in convex analysis. 
By definition, .sg u is closed if and only if u is upper semicontinuous. The closure 
of .sg u equals the subgraph of . u∗, i.e., .sg u = sg u∗. Similarly, .Sg u = Sg u∗. By  
definition, for a function .u : Q → R ∪ {±∞}, we see that .iu∗ = (iu)

∗, so . iu∗ is 
always upper semicontinuous. Similarly, . Iu∗ is always lower semicontinuous.
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For later convenience, we first recall the (left) accessibility of a viscosity solution 
of (4.14) .

Proposition 4.14 
Assume that H in (4.14) is continuous. Let u be a viscosity subsolution of
(4.14) in .Q = � × (0, T ). Then . u∗ is left accessible at each .(x0, t0) ∈ Q, 
i.e., there is a sequence .

{
(xj , tj )

}∞
j=1 ⊂ Q such that .xj → x0, .tj ↑ t0, 

.u∗(xj , tj ) → u∗(x0, t0) as .j → ∞. 

This follows from the fact that u is a viscosity subsolution of (4.14) in . �×(0, T ′]
for any .T ′ < T and that such a u is left accessible at .t = T ′. We do not give the 
proof here. For the complete proof, see [22]; see also [47, §3.2.2]. 

As an application, we obtain some information of functions testing . iu∗ . 

Lemma 4.15 
Assume the same hypothesis as that of Proposition 4.14. Then . iu∗ is left 
accessible in .Q̂ = � × R × (0, T ). 

Proof. Assume that .iu∗(x0, z0, t0) = 0 at .(x0, z0, t0) ∈ Q̂, so that . u∗(x0, t0) >

−∞. Since . u∗ is left accessible at .(x0, t0) by Proposition 4.14, there is a sequence 
.
{
(xj , tj )

}∞
j=1 ⊂ Q such that .xj → x0, .tj ↑ t0, .u∗(xj , tj ) → u∗(x0, t0) as .j → ∞. 

Since .iu∗(x0, z0, t0) = 0, we see .z0 ≤ u∗(x0, t0). If .u∗(x0, t0) ∈ R, then we take 

. zj = u∗(xj , tj ) − (
u∗(x0, t0) − z0

) ≤ u∗(xj , tj )

and observe that .iu∗(xj , zj , tj ) = 0 and .zj → z0. If .u∗(x0, t0) = ∞, then . z0 ≤
u∗(xj , tj ) for sufficiently large j . In this case, we set .zj = z0. We thus conclude 
that 

. iu∗(xj , zj , tj ) = 0, xj → x0, zj → x0, tj ↑ t0

as .j → ∞. If .iu∗(x0, z0, t0) = −∞ so that .z0 > u∗(x0, t0), then . z0 > u∗(xj , tj )

for sufficiently large j . Thus, taking .zj = z0, we see that .iu∗(xj , zj , tj ) = −∞. We  
now conclude that . iu∗ is left accessible in . Q̂. ��

We next check what kind of equations a test function of . iu∗ satisfies.
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Lemma 4.16 
Assume that H is continuous and .H∞ exists. Let u be a proper subsolution 
of (4.14) in .Q = � × (0, T ). For  .� ∈ C1(Q) assume that .iu∗ − � takes its 
maximum over . Q̂ at .(x̂, ẑ, t̂ ), i.e., 

. max
Q̂

(iu∗ − �) = (iu∗ − �)(x̂, ẑ, t̂ ).

Then .∂z�(x̂, ẑ, t̂ ) ≤ 0 holds. 

(A) Assume that .∇̂�(x̂, ẑ, t̂ ) �= 0, where .∇̂� = (∇x�, ∂z�). Then . ̂z ≤
u∗(x̂, t̂ ). Moreover, 
(i) If .∂z�(x̂, ẑ, t̂ ) �= 0, then .ẑ = u∗(x̂, t̂ ) and .∂z�(x̂, ẑ, t̂ ) < 0. 

Moreover, 

.τ + H
(
x̂, t̂ , u∗(x̂, t̂ ), p

) ≤ 0, (4.20) 

with .τ = −(∂t�/∂z�)(x̂, ẑ, t̂ ) ∈ R, . p = −(∇x�/∂z�)(x̂, ẑ, t̂ ) ∈
RN . 

(ii) If .∂z�(x̂, ẑ, t̂ ) = 0 and .ẑ < u∗(x̂, t̂ ), then 

.∂t�(x̂, ẑ, t̂ ) + HI
(
x̂, t̂ , u∗(x̂, t̂ ),∇x�(x̂, ẑ, t̂ )

) ≤ 0, (4.21) 

with .I = [
ẑ, u∗(x̂, t̂ )

]
. 

(iii) Assume (4.19). Assume that .∂z�(x̂, ẑ, t̂ ) = 0 and .ẑ = u∗(x̂, t̂ ). Then 
inequality (4.21) holds.

(B) Assume (4.19) . If .∇̂�(x̂, ẑ, t̂ ) = 0, then .∂t�(x̂, ẑ, t̂ ) ≤ 0. 

Symmetric statements hold for proper supersolutions. 

Proof. Since .iu∗(x, z, t) is nonincreasing in z, .(iu∗ − �)(x̂, z, t̂) cannot take its 
maximum at . ̂z if .∂z�(x̂, ẑ, t̂ ) > 0. Thus, .∂z�(x̂, ẑ, t̂ ) ≤ 0. 

(A) The point .(x̂, ẑ, t̂ ) belongs to the boundary of the subgraph .sg u∗ since 
.∇̂�(x̂, ẑ, t̂ ) �= 0. For .� = �(x̂, ẑ, t̂ ) the .�-level set of . � touches . sg u∗
at .(x̂, ẑ, t̂ ), and the sublevel set .{� < �} does not intersect .sg u∗. Thus, 
.ẑ ≤ u∗(x̂, t̂ ). From this point forward, for a function F defined in . Q̂, by  
.{F < �} (resp. .{F ≤ �}) we mean the set 

.

{
w ∈ Q̂

∣
∣ F(w) < �

}
(resp.

{
w ∈ Q̂

∣
∣ F(w) ≤ �

}
).
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(i) By the definition of .sg u∗, the first statement is clear. Since 

. ∂z�(x̂, ẑ, t̂ ) < 0,

the .�-level set of . � can be written as the graph of an implicit function . Z =
Z(x, t) near .(x̂, ẑ, t̂ ). By the geometry of the .�-level set of . � and .sg u∗, 
.u∗ − Z takes its local maximum at .(x̂, t̂ ). Since Z is an implicit function 
satisfying .�(x,Z(x, t), t) = �, we see .∂tZ(x̂, t̂) = τ and .∇Z(x̂, t̂) = p. 
Since . u∗ is a subsolution, we get (4.20) .

(ii) This is a crucial part of this lemma. We may assume that . �(x̂, ẑ, t̂ ) = 0
and .x̂ = 0 without loss of generality. Since .∇x�(0, ẑ, t̂ ) �= 0, by rotation 
we may assume that 

. ∇x�/|∇x�| = (−1, 0, . . . , 0) at (0, ẑ, t̂ ).

We set 

. �(x, z, t) := (x1−R)2+x2
2 +· · ·+x2

N +(z−ẑ)2+(t− t̂ )2+A(t− t̂ )−R2.

For a suitable choice of .R > 0 and .A ∈ R, a ball .B = {� ≤ 0} touches 
.sg u∗ only at .(0, ẑ, t̂ ) i.e., .sg u∗ ∩ B = {

(0, ẑ, t̂ )
}

and .B ⊂ {� ≤ 0}; see  
Fig. 4.8. Thus, 

.∂t�/|∇x�| = ∂t�/|∇x�| at (0, ẑ, t̂ ). (4.22) 

By the choice of B we observe that

. u(x, t) ≤ ẑ

Fig. 4.8 Ball .
{
(x, z) ∈ � × R

∣
∣ �(x, z, t̂) < 0

}
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for .x ∈ Dt = {
x ∈ �

∣
∣ �(x, ẑ, t) < 0

}
. We take . St as the boundary of 

. Dt and . n is the inward normal of . Dt . By definition, .{(St ,n(·, t))} is an 
evolving hypersurface through .(0, t̂ ), and . Dt is a region associated with 
.{(St ,n(·, t))}. Then .{(St ,n(·, t))} is an upper test surface with level . ̂z of . u∗
at .(0, t̂) and .n(·, t̂) at 0 equals .(1, 0, . . . , 0). By  (4.22) , the normal velocity
(in the direction of .n(·, t̂ )) V of . St̂ at .x̂ = 0 equals 

. V = ∂t�/|∇x�| = ∂t�/|∇x�| at (0, ẑ, t̂ ).

By the definition of a proper subsolution, we see that 

.V + HI
(
0, t̂ , u∗(0, t̂ ),−n

) ≤ 0, (4.23) 

with .I = [
ẑ, u∗(0, t̂ )

]
. Since 

. V = ∂t�

|∇x�| (0, ẑ, t̂ ), n = − ∇x�

|∇x�| (0, ẑ, t̂ ),

we conclude that (4.23) yields (4.21) ; here we invoke the homogeneity of
.HI (x, t, r, p) in p, i.e., .HI (x, t, r, σp) = σHI (x, t, r, p) for .σ > 0. 

(iii) We modify . �. Let . �̃ be a . C1 function defined by 

. �̃(x, z, t) :=
{

�(x, z, t), if z ≤ ẑ

�(x, z, t) − (z − ẑ)2, if z > ẑ,

so that .∂z�̃ ≤ 0. Since .sg u∗ is a subgraph, the set .{�̃ ≤ 0} still touches 
.sg u∗ only at .(0, ẑ, t̂ ). For .ε > 0 we set 

. �ε(x, z, t) = �̃(x, z, t) − ε(z − ẑ).

Let .(xε, zε, tε) be a maximizer of .iu∗ − �ε. Since .iu∗ − �̃ takes a strict 
maximum at .(0, ẑ, t̂ ), by a convergence of maximum points (e.g., [47, 
Lemma 2.2.5] and Exercise 4.4) .(xε, zε, tε) → (0, ẑ, t̂ ) as .ε → 0. Since 

. ∂z�ε(x, z, t) = 2 min(z − ẑ, 0) − ε < 0,

we apply (i) to get .zε = u∗(xε, tε) and 

.∂t�ε(xε, zε, tε) + λεH

(

xε, zε, tε,
∇x�ε(xε, zε, tε)

λε

)

≤ 0,
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with .λε = −∂z�ε(xε, zε, tε) for small . ε > 0. By  (4.19), letting . ε → 0
yields 

. ∂t�(0, ẑ, t̂ ) + H∞
(
0, t̂ , ẑ,∇x�(0, ẑ, t̂ )

) ≤ 0

since .λε ↓ 0. The desired inequality follows from (4.22) and
.∇x�/|∇x�| = ∇x�/|∇x�| at .(0, ẑ, t̂ ) since .H∞ is positively 
homogeneous in the variable .∇x�. 

(B) We may assume that . � is a separable type of the form 

. �(x, z, t) = ψ(x, z) + a(t), (x, z, t) ∈ Q̂.

We may assume that .iu∗ − � takes its strict maximum at .(x̂, ẑ, t̂ ) by replacing 
. � by 

. � + |x − x̂|2 + (z − ẑ)2 + (t − t̂ )2.

We consider a shift .�ζ of . � by defining 

. �ζ (x, z, t) = �(x − ξ, z − η, t),

with .ζ = (ξ, η) ∈ RN × R. By the convergence of maximum points, there is a 
sequence .(xζ , zζ , tζ ) converging to .(x̂, ẑ, t̂ ) as .ζ → 0 such that 

. max
Q̂

(iu∗ − �ζ ) = (iu∗ − �ζ )(xζ , zζ , tζ ).

Suppose that there is a sequence .ζj → 0 such that 

. ∇̂�ζj
(xζj

, zζj
, tζj

) �= 0.

Since .(xζj
, zζj

, tζj
) → (x̂, ẑ, t̂ ), we see  

. lim
j→∞ ∇̂�ζj

(xζj
, zζj

, tζj
) = ∇̂�(x̂, ẑ, t̂ ) = 0.

If there is a subsequence . ζjk
such that 

. ∂z�ζjk
(xζjk

, zζjk
, tζjk

) < 0,

we apply (A) (i) with .�ζjk
at .(xζjk

, zζjk
, tζjk

) to get .zζj
= u∗(xζj

, tζj
) and 

.τk + H(xζjk
, tζjk

, zζjk
, pk) ≤ 0,
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with 

. τk = ∂t�ζjk
(xζjk

, zζjk
, tζjk

)
/

λk,

pk = ∇x�ζjk
(xζjk

, zζjk
, tζjk

)
/

λk,

λk = −∂z�ζjk
(xζjk

, zζjk
, tζjk

) (> 0).

In other words, 

. ∂t�ζjk
(xζjk

, zζjk
, tζjk

)

+ λkH
(
xζjk

, tζjk
, zζjk

,∇x�ζjk
(xζjk

, zζjk
, tζjk

)
/

λk

)
≤ 0.

By (4.19), sending .k → ∞, we obtain 

. ∂t�(x̂, ẑ, t̂ ) + H∞
(
x̂, t̂ , ẑ,∇x�(x̂, ẑ, t̂ )

) ≤ 0

since 

. ∂t�(x̂, ẑ, t̂ ) = lim
j→∞ ∂t�ζj

(xζj
, zζj

, tζj
),

∇x�(x̂, ẑ, t̂ ) = lim
j→∞ ∇x�ζj

(xζj
, zζj

, tζj
) = 0,

∂z�(x̂, ẑ, t̂ ) = lim
j→∞ ∂z�ζj

(xζj
, zζj

, tζj
) = 0.

Since .H∞(x̂, t̂ , ẑ, 0) = 0 by Remark 4.12, we now conclude that . ∂t�(x̂, ẑ, t̂ ) ≤
0. 

If .∂z�ζj
(xζj

, zζj
, tζj

) = 0 for sufficiently large j , we apply (A) (ii) and (iii) 
to conclude that .∂t�(x̂, ẑ, t̂ ) ≤ 0 since .HI (x̂, t̂ , ẑ, 0) = 0 by Remark 4.12. 

It remains to discuss the case where 

. ∇̂�ζ (xζ , zζ , tζ ) = 0

for sufficiently small . ζ . We shall prove that . � is independent of x and z near 
.(x̂, ẑ, t̂ ). In other words, . ψ is constant near .(x̂, ẑ). If so, we are able to conclude 
that 

. ∂t�(x̂, ẑ, t̂ ) = ∂ta(t̂) ≤ 0

since otherwise it would contradict the left accessibility of . iu∗ in Lemma 4.15. 
To show that . � is spatially constant near .(x̂, ẑ, t̂ ), we invoke the following 

constancy lemma; see [43, Lemma 7.5], where . C2 regularity of . φ is assumed. 
This lemma is implicitly used in [21].
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Lemma 4.17 
Let K be a compact set in .Rm (.m ≥ 2), and let h be a real-valued upper 
semicontinuous function on K . Let . φ be a . C1 function on . Rd with .1 ≤ d < m. 
Let G be a bounded domain in . Rd . For each .ζ ∈ G assume that there is a 
maximizer .(rζ , ρζ ) ∈ K of 

. Hζ (r, ρ) = h(r, ρ) − φ(r − ζ )

over K such that .∇φ(rζ − ζ ) = 0. Then 

. hφ(ζ ) = sup
{
Hζ (r, ρ)

∣
∣ (r, ρ) ∈ K

}

is constant in G. 

We set .m = N + 2, .d = N + 1, and 

. K = {
(x, z, t) ∈ Rm

∣
∣ |x − x̂| + |z − ẑ| + |t − t̂ | ≤ δ, iu∗(x, z, t) = 0

} ⊂ Q̂

for some . δ > 0. We take .ε > 0 small so that .|ζ | < ε implies 

. ∇̂�ζ (xζ , zζ , tζ ) = 0.

We then set 

. G = {
ζ ∈ Rd

∣
∣ |ζ | < ε

}

and take 

. h(r, ρ) = iu∗(r, ρ) − a(ρ) = −a(ρ) on K

φ(r) = ψ(r) on RN+1,

with .r = (x, z), .ρ = t . Here, we extend . ψ outside .� × (0, T ) so that the extended 
function is . C1 in .RN+1. Since .(rζ , ρζ ) = (xζ , zζ , tζ ) is a minimizer of 

. Hζ (r, ρ) = h(r, ρ) − φ(r − ζ )

over K , with .∇φ(rζ − ζ ) = 0, applying Lemma 4.17 implies that 

.hφ(ζ ) = sup
{
Hζ (r, ρ)

∣
∣ (r, ρ) ∈ K

}
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is constant in G. This implies that . ψ is constant for r such that .|r − r̂| < ε, i.e., 
.|x − x̂|2 + |z − ẑ|2 < ε. The proof of Lemma 4.16 is now complete. ��

Proof of Lemma 4.17 By definition, 

. Hζ (rη, ρη) ≤ hφ(ζ ) = h(rζ , ρζ ) − φ(rζ − ζ ) for ζ, η ∈ G.

Since 

. hφ(η) = Hη(rη, ρη) = h(rη, ρη)−φ(rη −η) = Hζ (rη, ρη)+φ(rη −ζ )−φ(rη −η),

we observe that 

. hφ(η) ≤ hφ(ζ ) + φ(rη − ζ ) − φ(rη − η).

Since .∇φ(rη − η) = 0 and . φ is . C1, 

. 
∣
∣φ(rη − η) − φ(rη − ζ )

∣
∣ ≤ ω (|η − ζ |) |η − ζ |

with some modulus . ω, i.e., .ω(0) = 0, .ω ≥ 0, .ω(σ) → 0 as .σ → 0. Here, . ω can be 
taken to be independent of . η since .∇φ is uniformly continuous on any bounded set. 
We thus observe that 

. hφ(η) − hφ(ζ ) ≤ ω (|η − ζ |) |η − ζ |.

Changing the role of . η and . ζ , we end up with 

. 
∣
∣hφ(η) − hφ(ζ )

∣
∣ ≤ ω (|η − ζ |) |η − ζ |

for all .η, ζ ∈ G. We now conclude that . hφ is constant on G. ��

4.4.8 Weak Comparison Principle 

As an application of Lemmas 4.15 and 4.16, we present here a version of a 
comparison principle for periodic functions. Unlike the earlier comparison principle 
(Theorem 4.4), the following comparison principle does not imply the uniqueness 
of a solution. We consider (4.14) with .� = TN and H independently of . x, t , i.e., 

.∂tu + H(u,∇u) = 0 in Q = TN × (0, T ). (4.24)
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Theorem 4.18 (Weak comparison principle) 
Assume that .H = H(r, p) is continuous and for .M > 0 there exists a constant 
. CM

. 
∣
∣H(r, p) − H(r ′, p)

∣
∣ ≤ CM |r − r ′| (|p| + 1)

for .r, r ′ ∈ R, with .|r|, |r ′| ≤ M , .p ∈ RN . Assume that (4.19) holds for every
compact set K in .Q × R × RN . Let u and v be bounded proper sub- and 
supersolutions of (4.24), respectively. If .u∗(x, 0) < v∗(x, 0) for all .x ∈ TN , 
then .u∗ < v∗ in Q. 

The proof is rather involved compared with that of Theorem 4.4. We present here 
only the idea of the proof. 
The Idea of the Proof. We may assume that .u = u∗, .v = v∗. Instead of considering 
u and v, we consider . iu and . Iv defined in Sect. 4.4.7. We consider 

. �(x, z, t, y,w, s) := iu(x, z, t) − Iv(y,w, s) − �(x, z, t, y,w, s),

�(x, z, t, y,w, s) := α|x − y|2 + α|z − w|2 + α(t − s)2 + σ/(T − t),

where .(x, z), (y,w) ∈ TN × R and .t, s ∈ (0, T ); here, . α and . σ are positive 
parameters. We argue by contradiction. We fix .σ > 0. We argue in the same 
way as in the proof of Theorem 4.4 and conclude that a maximizer of . � is away 
from .t = 0, .s = 0 for sufficiently large . α since initially .iu(x, z, 0) ≤ Iv(x, z, 0), 
.(x, z) ∈ TN × R. We divide the situation into two cases. 

Case 1. There is a sequence .αj → ∞ such that at a maximum of . � in 

.
(
TN × R × (0, T )

)2
the gradient .(∇x�, ∂z�) = 0. 

Case 2. For sufficiently large . α, .(∇x�, ∂z�) �= 0 at a maximizer of . �. 

In the first case, one gets a contradiction by Lemma 4.16 (B). The second case is 
itself further subdivided into two cases. 

Case 2A. For sufficiently large . α, .∂z� �= 0 at a maximizer of . �. 
Case 2B. There is a sequence .αj → ∞ such that .∂z� = 0 at a maximizer of . �. 

To derive a contradiction in Case 2A, we use Lemma 4.16 (A) (i). 
In Case 2B, we invoke the property of proper solutions. We provide a detailed 

proof in this case. Let .(x̂, ẑ, t̂ , ŷ, ŵ, ŝ) be a maximizer of . �, with .t̂ , ŝ > 0. We have  
.∂z�(x̂, ẑ, t̂ , ŷ, ŵ, ŝ) = 0, so that . ̂z must agree with . ŵ. By Lemma 4.16, .ẑ ≤ u(x̂, t̂), 
.ŵ ≥ v(ŷ, ŝ), so that .v(ŷ, ŝ) ≤ u(x̂, t̂). 

We shall fix . α so that .t̂ , ŝ > 0. We first note that 

.a0 = (x̂, v̂, t̂ , ŷ, v̂, ŝ) and a1 = (x̂, û, t̂ , ŷ, û, ŝ),
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with 

. ̂u = u(x̂, t̂), v̂ = v(ŷ, ŝ),

are also maximizers of . �. Indeed, since .iu(x̂, z, t̂) = 0 for all .z ≤ û and 
.Iv(ŷ, w, ŝ) = 0 for all .w ≥ v̂, . � must take the same value for .z,w ∈ R satisfying 
.z ≤ û, .w ≥ v̂, and .z = w. In particular, . a0 and . a1 are maximizers of . � since .v̂ ≤ û. 

Since . � is maximized at . a0, we apply Lemma 4.16 (A) (ii) and (iii) to a function 

. (x, z, t) �→ iu(x, z, t) − �(x, z, t, ŷ, ŵ, ŝ) − Iv(ŷ, ŵ, ŝ)

to conclude 

.∂t� + HI (û,∇x�) ≤ 0 at a0, (4.25) 

with .I = [v̂, û]. Similarly, we have 

. − ∂s� + HI (v̂,−∇y�) ≥ 0 at a1. (4.26) 

Note that .∇x�(a0) = −∇y�(a1), .∂t�(a0) + ∂s�(a1) = σ/(T − t̂ )2. Thus, 
subtracting (4.26) from (4.25) yields

. σ/(T − t̂ )2 ≤ 0

since .HI (r, p) is nondecreasing in r and .v̂ ≤ û. This yields a contradiction to 
.σ > 0. This is the end of the idea of the proof. 

4.4.9 Comparison Principle and Uniqueness 

In general, the uniqueness of a solution does not hold even if H is independent of u 
for discontinuous solutions. As shown in [10], a solution of 

. ut + (x − t)|ux | = 0,

starting with a characteristic function . 1I of some closed interval I , is not unique, 
where .1I (x) = 1 for .x ∈ I and .1I (x) = 0 for .x �∈ I . This is related to fattening 
phenomena for a level-set flow of a curvature flow equation; see, for example, [47]. 
Some additional condition is necessary to guarantee the uniqueness of the initial 
value problem for (4.24).
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Theorem 4.19 (Strong comparison principle) 
Assume the same hypothesis as that of Theorem 4.18 concerning u, v, and H . 
Assume furthermore that 

. − H(r, p) ≥ c

√
1 + p2 with some c > 0 for all p ∈ RN r ∈ R.

If .u∗(x, 0) ≤ (v∗)∗(x, 0) for all .x ∈ TN , then .u∗ ≤ (v∗)∗ in . Q0 = TN ×
[0, T ). If .(u∗)∗(x, 0) ≤ v∗(x, 0) for all .x ∈ TN , then .(u∗)∗ ≤ v∗ in . Q0. 

The proof requires several fundamental properties of viscosity solutions, so we 
provide only a sketch of the proof. 
Sketch of the Proof. We provide the proof only where .u∗ ≤ (v∗)∗ at . t = 0
since the proof for the remaining case is symmetric. Again we may assume that 
.u = u∗ and .v = v∗. Since v is a viscosity supersolution of (4.24) , it is a viscosity
supersolution of

. wt − c

√
1 + |∇w|2 = 0

by our assumption. This equation has a strong comparison principle (e.g., [10]), so 
the solution is unique even among semicontinuous functions; see, for example, [51]. 
The unique upper semicontinuous solution of the w equation with initial datum . w0
is given by 

. w(x, t) = sup
{
x ∈ R | d

(
(x, z), sg w0

) ≤ ct
}
,

where .sg w0 denotes the closure of the subgraph .sg w0 of . w0 defined in Sect. 4.4.7. 
Heuristically, this is easy to observe since our w equation requires that the graph 
of w moves with upward normal velocity .V = c. If one interprets this equation 
as a surface evolution equation or front propagation of a set . E0, then the set . Et at 
time t is the set of all points whose distance from . E0 is less than or equal to ct . 
For more details, see [46]. Since v is a viscosity supersolution of the w equation, 
the comparison principle for the w equation with initial datum . w0(x) = v∗(x, 0)

implies that .v ≥ w in .TN × (0, T ). This implies that for .δ ∈ (0, T ) there is . ρ > 0
that satisfies 

.v(x, t) ≥ v∗(x, 0) + ρ for all x ∈ TN, t ≥ δ. (4.27) 

We shift v in time and set

.vδ(x, t) = v(x, t + δ), t > 0.
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Evidently, . vδ is a proper supersolution of (4.24) in .TN × (0, T − δ). Assume that 
.u ≤ v∗ at . t = 0. By  (4.27), we see that .u ≤ v∗ ≤ vδ − ρ at .t = 0. Since . vδ is lower 
semicontinuous up to .t = 0, applying weak comparison Theorem 4.18, we obtain 
.u < vδ in .TN × [0, T − δ). Sending . δ to zero, we conclude that .u ≤ v∗ in .Q0 since 
.lim inf

δ↓0
vδ ≤ v∗ by the definition of upper semicontinuous function. This is the end 

of the sketch of the proof. 
For a given function .u0 : TN → R ∪ {±∞} we say that . u : TN × (0, T ) →

R ∪ {±∞} is a solution of (4.24) with initial datum . u0 if u is a proper solution of 
(4.24) and

. u∗(x, 0) = (u∗)∗(x, 0) = (u0)
∗(x),

u∗(x, 0) = (u∗)∗(x, 0) = (u0)∗(x).

Our comparison principle implies the uniqueness of a solution. 

Theorem 4.20 
Assume the same hypothesis as that of Theorem 4.19 concerning H . Let u be a 
bounded solution of (4.24) with initial datum . u0. Then . u∗ and . u∗ are unique. 
Moreover, .(u∗)∗ = u∗, and .(u∗)∗ = u∗. 

Proof. Let v be another solution. Since .u∗ ≤ (v∗)∗ at .t = 0, the strong comparison 
principle (Theorem 4.19) implies that .u∗ ≤ (v∗)∗ (. ≤ v∗) in .TN × (0, T ). Replacing 
the roles of v and u yields .v∗ ≤ u∗. We thus conclude that .v∗ = u∗. Moreover, . u∗ ≤
(u∗)∗ ≤ u∗ implies .(u∗)∗ = u∗. A symmetric argument implies the uniqueness of 
. u∗ and .(u∗)∗ = u∗. ��

There are several other situations in which the conclusion of the comparison 
principle holds. For example, it applies to a conservation law starting with a special 
class of initial data. The reader is referred to [46] for further examples. 

4.5 Notes and Comments 

4.5.1 A Few References on Viscosity Solutions 

The theory of viscosity solutions is by now a standard tool to study nonlinear 
(degenerate) elliptic parabolic partial differential equations of second order as well 
as first-order equations like Hamilton–Jacobi equations, where expected solutions 
are not smooth. The notion of a viscosity solution was first introduced by [29] 
(see also [28]) in a different way for first-order Hamilton–Jacobi equations with a 
nonconvex Hamiltonian. See the book by Lions [71] for the early stage and the one
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by Barles [9] for the development of the theory. One of the original applications of 
the theory is to characterize the value function of control theory and differential 
games for ordinary differential equations as a unique nondifferentiable solution 
of Hamilton–Jacobi equations. The reader is referred to the book by Bardi and 
Capuzzo-Dolcetta [7] as well as  [36, Chapter 10]. 

The extension to second-order equations is not straightforward. It takes several 
years to overcome the substantial difficulty of obtaining the key comparison 
principle. The reader is referred to the well-written review article of Crandall, Ishii, 
and Lions [26] and a shorter review by Ishii [59] for the development of the 
theory. There are accessible textbooks by Koike [63,64]. The second-order problem 
relates to stochastic controls. For this type of application see the books by Fleming 
and Soner [41] and Morimoto [76]. The theory of viscosity solution also gives a 
mathematical foundation [21, 37] for a level-set flow of the mean curvature flow 
equations, which was introduced numerically by [81]. For this topic the reader is 
referred to the book [47], which includes a necessary survey of viscosity solutions. 
See also the lecture notes of Bardi et al. [8], where various applications, including 
a level-set method, are presented. 

In Sect. 4.2.3, we provide an example of where uniqueness fails for the eikonal 
equation. For the eikonal equation (4.10) , uniqueness with given boundary data is
valid provided that the value of a solution on the set .{x | f (x) = 0} is prescribed. 
This has its origins in the book [71, Section 5.5]. This type of uniqueness and 
comparison principle is generalized by [38] and [60] for various Hamilton–Jacobi 
equations with convex Hamiltonians; see also the recent book [87]. This type 
of comparison principle is roughly stated as follows. If a subsolution u and a 
supersolution v have an order .u ≤ v on the (projected) Aubry set . A other than 
on boundaries, then .u ≤ v in a whole domain. The Aubry set is a notion related to 
the Hamilton system corresponding to the Hamilton–Jacobi equation. It consists of 
an equilibrium set and a point having a sequence of closed curves converging at this 
point whose Euclidean length is bounded from below, but the corresponding action 
integral converges to zero. For the eikonal equation (4.10) , the Aubry set is simply
the equilibrium set .{x | f (x) = 0}. 

4.5.2 Discontinuous Viscosity Solutions 

The contents up to Sect. 4.3 are basic materials on viscosity solutions. An elegant 
proof of the uniqueness of the eikonal equation (Sect. 4.2.3) is due to [58]. 

Definition 4.5 of the viscosity solution for a semicontinuous function was 
introduced by [56, 57]. Although this notion is very convenient when it comes 
to constructing a continuous solution by Perron’s method [57], it is not enough 
to establish the uniqueness of a solution for discontinuous initial data even if 
the Hamiltonian .H = H(x, t, r, p) is independent of r , i.e., independent of 
the value of the unknown function. There are several approaches to recovering 
uniqueness among semicontinuous functions. When .H = H(x, t, p) is convex 
or concave with respect to p, a notion of solutions is introduced by [11] and
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[12], so that the solution is unique among semicontinuous functions. For a general 
.H = H(x, t, p), uniqueness was established in [51] based on a level-set method; 
the main assumption in [51] is that the recession function .H∞ exists. 

A proper viscosity solution to handle solution with shock is introduced by [46] 
to describe a kind of bunching phenomenon of growing crystals on a surface. The 
contents of Sect. 4.4 are essentially taken from [46]. Since there are many errors 
in [46], we take this opportunity to correct them. For example, in [46, Proposition 
2.5], it was claimed that . uN is a viscosity solution when the speed of a shock comes 
from the Rankine–Hugoniot condition. However, this statement is wrong. As in 
Proposition 4.13, this .uN is not even a conditional viscosity solution. Also, “left 
accessibility” in Proposition 4.14 was written as “right accessibility” in [46]. We 
also give a detailed proof of Lemma 4.15 (ii) in this book. 

There is an interesting way to interpret a proper viscosity solution as an evolution 
of its graph. If we rewrite the equation for the evolution of the graph, then the graph 
may not stay as the graph of a function, and the function becomes multivalued. It is 
natural to think that there is a very singular vertical diffusion that prevents such a 
phenomenon and causes shocks. This idea is useful for the formulation of a proper 
viscosity solution [88]. A discussion of the theoretical background of the topic can 
be found in [44]. There is another approach to interpreting a solution with a shock by 
introducing an obstacle to prevent overturn [15]. An extension of proper solutions 
to second-order problems is not yet available. 

4.6 Exercises 

4.1 Find the unique viscosity solution of 

. 

⎧
⎨

⎩

∣
∣
∣
∣
du

dx

∣
∣
∣
∣ − 1 = 0 in (−1, 1),

u(±1) = 0

and 

. 

⎧
⎨

⎩
1 −

∣
∣
∣
∣
du

dx

∣
∣
∣
∣ = 0 in (−1, 1),

u(±1) = 0.

4.2 For a function f (p)  = √
1 + |p|2 (p ∈ RN ) calculate the recession function 

f∞(p). 
4.3 Prove that the upper semicontinuous envelope f ∗ of a real-valued function f 

in an open set � ⊂ RN is actually upper semicontinuous and that it is smallest 
among all upper semicontinuous functions greater than or equal to f . 

4.4 Let {fm} be a sequence of real-valued continuous functions in �, where �

is an open set in RN . Assume that fm converges to a continuous function f
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uniformly in � as m → ∞, i.e., 

. lim
m→∞ sup

x∈�

|fm(x) − f (x)| = 0.

Assume that there is x̂ such that f (x)  ≤ f (x̂) for all x ∈ � and that f (x)  = 
f (x̂) if and only if x = x̂. In other words, f takes its strict maximum at x̂. 
Then there is a point xm ∈ � that converges to x̂ such that max

�

fm = fm(xm) 

and limm→∞ fm(xm) = f (x̂). 
4.5 Let � be a domain in RN . Assume that um ∈ C(�) converges to u ∈ C(�) 

locally uniformly in � as m → ∞. Let  um be a viscosity subsolution of (4.9) .
Show that u is a viscosity subsolution of (4.9) .

4.6 Assume that fm ∈ C ([0, 1]) converges to f uniformly in [0, 1] as m → ∞, 
i.e., 

. lim
m→∞ sup

0≤x≤1
|fm(x) − f (x)| = 0.

Let {xj }∞j=1 be a sequence in [0, 1] converging to x̂ as j → ∞. Show that 

. lim
m→∞
j→∞

fm(xj ) = f (x̂).

In other words, show that for any ε >  0, there are numbers m0 and j0 such that 

. 
∣
∣fm(xj ) − f (x̂)

∣
∣ < ε

for all m ≥ m0, j ≥ j0. 
4.7 Let P1 be the space of all affine functions on RN , i.e., 

. P1 =
{
a · x + b | a ∈ RN, b ∈ R

}
.

Let M be a nonempty subset of P1. Set 

.f (x) = sup
{
p(x)

∣
∣ p ∈ M

}
, x ∈ RN, (4.28) 

and assume that f (x) is finite. Show that f is a convex function. Show that
any real-valued convex function on RN is of the form (4.28) , with a suitable
choice of M .

4.8 Let � be a bounded domain in RN . Let  d be the distance function from the 
boundary ∂�, i.e., 

.d(x) = inf
{|x − y| ∣

∣ y ∈ ∂�
}
.
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Show that d ∈ C(�) is the unique viscosity solution of |∇u| = 1 in � with 
u = 0 on  ∂�. 

4.9 Let g ∈ C(RN ) ∩ L∞(RN ) be a given function. Show that 

. u(x, t) = inf

{

g(y) + |x − y|2
2t

∣
∣
∣
∣ y ∈ RN

}

is a viscosity solution of 

. vt + 1

2
|∇v|2 = 0

in RN × (0,∞). The function u is often called an inf-convolution of g. 
4.10 Show that 

. u(x, t) = t − |x|, x ∈ R, t > 0,

is not a viscosity solution of 

.vt − |∂xv| = 0 (4.29) 

in R × (0,∞), although u satisfies (4.29) outside x = 0.
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