
3Uniqueness of Solutions to Initial Value 
Problems for a Scalar Conversation Law 

In Chap. 2, we discussed the uniqueness of a weak solution to a transport equation, 
which is linear and of the first order. In this chapter, we consider scalar conservation 
laws, which are quasilinear but still of the first order. The major difference between 
the linear transport equations with a divergence-free (solenoidal) coefficient and a 
conservation law lies in the uniqueness problem of a weak solution. For the transport 
equation, it is unique under a very weak regularity assumption. However, for a 
conversation law, it may not be unique under a reasonable regularity assumption 
allowing discontinuities. To recover uniqueness, one must introduce an extra 
condition, called an entropy condition, that is not a regularity condition. Another 
difference is that the solution may develop singularity even if the initial datum are 
smooth for a conservation law but the solution is smooth for the transport equation 
if all data and coefficients are smooth. 

In this chapter, we introduce a scalar conservation law and observe that a 
discontinuity –called a shock– may develop in finite time. To track the whole 
evolution, we need to introduce a weak solution. However, unfortunately, weak 
solutions may not be unique. To recover uniqueness, we introduce the “entropy 
condition” and the notion of an “entropy solution.” After discussing the entropy 
condition, we prove the uniqueness of an entropy solution. To avoid technical 
complications, we discuss uniqueness in a periodic setting. A key idea in proving 
uniqueness is a method of doubling variables that is due to Kružkov [68]. The 
contents of this chapter are essentially taken from a book [53] by Holden and 
Risebro, with the modification that the uniqueness is discussed in a periodic setting. 
This topic is also discussed in [36, Chapter 11], with an emphasis on systems of 
conservation laws. 
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3.1 Entropy Condition 

In this section, we introduce a scalar conservation law and discuss the discontinuity 
of a solution. If initial datum are smooth, we are able to solve the equation locally 
in time, but it may develop discontinuity. To track evolution globally in time, we 
introduce the notion of a weak solution by integration by parts. We notice that 
uniqueness may be violated. There are several types of discontinuity. We only allow 
a particular type of discontinuity that satisfies the entropy condition. This eventually 
leads to the notion of an entropy solution. 

3.1.1 Examples 

We consider a flow map .x(t, X) generated by a vector field u on . RN , i.e., 

. ẋ(t, X) = u (x(t, X), t) for t > 0, x(0, X) = X,

where .ẋ(t, X) = ∂
∂t

x(t, X). The coordinate by X is often called the Lagrangian 
coordinate, while the coordinate by x is called the Euler coordinate. 

Assume that there is no acceleration. Physically speaking, there is no force by 
Newton’s law. Then 

. ẍ(t, X) = 0 or
∂2

∂t2
x(t, X) = 0,

where the partial derivative is taken in the Lagrangian coordinate. We shall write 
this law for .u(x, t) for the Euler coordinate. Since 

. ẍ = ∇xu · ẋ + ut with ẋ = u(x, t) or

ẍi =
N∑

j=1

∂xj
ui ẋi + ui

t with ẋi = ui(x, t),

where the partial derivative in the direction of .x, t of u is in the Euler coordinate, 
we see that .ẍ = 0 is equivalent to saying that 

. ut + u · ∇xu = 0 or ui
t +

N∑

j=1

uj∂xj
ui = 0, 1 ≤ i ≤ N.

If . N = 1, this is simply  

.ut + u ux = 0 or ut +
(

u2

2

)

x

= 0, (3.1)
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which is called the Burgers equation. Here .ux = ∂u/∂x. This equation is a typical 
example of a (scalar) conservation law 

.ut + f (u)x = 0, (3.2) 

where f is a function of u and .f (u)x = ∂
∂x

(f (u)) = ∂
∂x

(f ◦ u)(x). In  (3.1) ,
.f (u) = u2/2. 

We give another derivation of a conservation law modeling a traffic flow. We 
consider the simplest situation: a road having only one lane parameterized by a 
single coordinate x. All cars are assumed to move in only one direction, that of 
increasing x. Let .ρ(x, t) be the (number) density of cars at location x and time t . 
The number of cars in the interval .[a, b] at time t corresponds to .

∫ b

a
ρ(x, t)dx. Let  

.v(x, t) be the velocity of the car at x. The rate of cars passing a point x at some time 
t is given by .v(x, t)ρ(x, t). Thus, the change ratio of the number of cars in . [a, b]
should be 

. 
d

dt

∫ b

a

ρ(x, t)dx = − (v(b, t)ρ(b, t) − v(a, t)ρ(a, t)) .

Since the right-hand side equals .− ∫ b

a
(vρ)xdx and since .(a, b) is arbitrary, we get 

.ρt + (ρv)x = 0, (3.3) 

which is a typical mass conservation law, for example, in fluid mechanics. (In a
multidimensional setting, it must be that

. ρt + div(ρv) = 0,

which is the fundamental mass conservation law in science. Here v is a vector 
field.) In the simplest model, the velocity v is assumed to be a given function of 
the (number) density . ρ only. This one-dimensional model may approximate the 
situation where the road is uniform with no obstacles like signals, crossings, or 
curves forcing cars to slow down. We postulate that there is a uniform maximal 
speed .vmax for any car. If traffic is light, a car will approach this maximal speed, but 
the car will have to slow down if the number of cars increases. If . ρ reaches some 
value .ρmax, all cars must stop. Thus, it is reasonable to assume that v is a monotone 
decreasing function of . ρ such that .v(0) = vmax(> 0), .v(ρmax) = 0. The simplest 
function is a linear function, i.e., 

.v(ρ) = vmax(1 − ρ/ρmax) for ρ ∈ [0, ρmax] (3.4)
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Fig. 3.1 Profile of V 

(Figure 3.1). If .ũ = ρ/ρmax, .x̃ = vmaxx is normalized, the resulting normalized 
equation of (3.3) with (3.4) for .ũ = ũ(x̃, t) is of the form 

. ̃ut + (ũ(1 − ũ))x̃ = 0 for ũ ∈ [0, 1].

For further reference, we rewrite this equation as 

.ut + (u(1 − u))x = 0 (3.5) 

by writing .u = ũ, .x = x̃. The Burgers equation (3.1) is obtained by setting . ̃u =
1
2 (1 − u), .x̃ = x. 

3.1.2 Formation of Singularities and a Weak Solution 

An important feature of conservation law (3.1) is that the solution may become
singular in finite time.

Proposition 3.1 
Assume that f is smooth in . R and that its second derivative .f ′′ is positive 
in an interval .[α, β], which is nontrivial, i.e., .α < β. Let .u0 ∈ C∞(R) be 
nonincreasing and .u0(x) = β for .x < −x0 and .u0(x) = α for .x > x0 with 
some .x0 > 0. Then there exists a unique smooth solution u of (3.2) , with
.u(0, x) = u0(x), for .x ∈ R satisfying .α ≤ u ≤ β in .R × (−T0, T1), with 
some .T0, T1 > 0, but the maximal (forward) existence time . T1 must be finite.
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Fig. 3.2 Graph of . u0

Proof. We consider the equation for .v ∈ R of the form 

.v = u0
(
x − f ′(v)t

)
(3.6) 

for a given .x, t ∈ R. Here, . f ′ denotes the derivative of f when f depends on just 
one variable. See Fig. 3.2 for the profile of . u0. This equation has a unique solution 
.v̄ ∈ [α, β] for all .x ∈ R provided that t is sufficiently small, say, .|t | < t0, with some 
.t0 > 0 by the implicit function theorem [67]. Indeed, differentiating 

. F(v, x, t) = v − u0
(
x − f ′(v)t

)

with respect to v we get 

. 
∂F

∂v
(v, x, t) = 1 + u0

′ (x − f ′(v)t
)
f ′′(v)t.

This is bounded away from zero uniformly in x and small t , allowing negative t , 
say, .|t | < t0 since . f ′′ is bounded in .[α, β] and . u0

′ is bounded. Then, by the implicit 
function theorem, we get a unique .v = v̄, solving (3.6) .

We shall write .v̄ = u(x, t) since . ̄v depends on .(x, t). Since . ̄v solves (3.6) , we see
that .F (u(x, t), x, t) = 0 for .x ∈ R, t , with .|t | < t0. Since F depends on .v, x and t 
smoothly, we conclude that u is smooth in .R× (−t0, t0) by the smooth dependence 
of parameters in the implicit function theorem. (The curve .z = x − f ′ (u0(z)) t in 
the xt-plane with a parameter .z ∈ R is often called a characteristic curve (Fig. 3.3). 
The value of u on each characteristic curve .z = x − f ′ (u0(z)) t equals the constant 
.u0(z) by (3.6). Unlike the linear equation (2.6) , the characteristic curve may depend
on the initial datum . u0.)
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Fig. 3.3 Characteristic 
curves 

Differentiating both sides of (3.6) by setting .v = u(x, t), we get 

. ut = u0
′ (x − f ′(u)t

) (−f ′′(u)ut t − f ′(u)
)
,

f ′(u)ux = u0
′ (x − f ′(u)t

) (−f ′′(u)uxt + 1
)
f ′(u).

Adding both sides we get 

. ut + f ′(u)ux = u0
′ (x − f ′(u)t

) (−f ′′(u)t
(
ut + f ′(u)ux

))
.

From this identity we see that u solves (3.2) in .R× (−t0, t1), with .u(x, 0) = u0(x), 
.x ∈ R, if we choose a sufficiently small .t1 ∈ (0, t0). Indeed, this identity implies 
.ut +f ′(u)ux = 0 unless .u′

0

(
u − f ′(u)t

) (−f ′′(u)t
) = 1. However, the last identity 

does not hold for .t < 0 since .u′
0 ≤ 0 and .f ′′(u) > 0, and also for small . t > 0

independent of x since . u′
0 and .f ′′ (u(x, t)) are bounded. Thus, we get (3.2) .

The uniqueness can be proved easily since the difference .w := u1 − u2 of two 
solutions . u1 and . u2 solves 

. wt + (pw)x = 0, w|t=0 = 0,

with 

. p(x, t) =
∫ 1

0
f ′ (u2 + θ(u1 − u2)) dθ,

which is smooth and bounded with its derivatives. Indeed, 

.f (u1) − f (u2) =
∫ 1

0

d

dθ
(f (u2 + θ(u1 − u2))) dθ = pw
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so we get the preceding w equation by subtracting equation (3.2) for . u2 from that for 
. u1. We next apply an idea of the method of characteristics (see Chap. 2, especially 
the paragraph including (2.6) ) to this w equation

. wt + pwx + pxw = 0.

In general, it is more involved since p depends on time t . Here we simply use it as a  
change of variables to remove the . wx term. Let .x = x(t, X) be the unique solution 
of 

. ẋ = p(x, t) for small |t |, x(0) = X.

We set 

. W(X, t) := w (x(t,X), t)

and observe that 

. 
∂W

∂t
= wt + pwx.

The w equation is transformed to 

. Wt + qW = 0, W |t=0 = 0

for small . |t |, where .q = px (x(t, X), t). This is a linear ordinary differential 
equation, so the uniqueness (Proposition 1.1) yields .W ≡ 0. Thus, .w ≡ 0 on 
.R × (−δ, δ) for small .δ > 0. A similar argument implies that the time interval 
.[t−, t+] where uniqueness .w = 0 holds is open. Thus, .w ≡ 0 on .(−t0, t1), i.e., 
.u1 ≡ u2 on .R × (−t0, t1). 

By (3.6) we see that

. u(x, t) = β for x − f ′(β)t < −x0,

u(x, t) = α for x − f ′(α)t > x0.

Since .α < β, for sufficiently large t the two characteristic curves . x0 = x −
f ′(α)t and .−x0 = x − f ′(β)t merge (Fig. 3.3). Let .t = t∗ be a number such 
that .f ′(α)t∗ + x0 < f ′(β)t∗ − x0. Then .u(·, t∗) has two values, . α and . β, 
on .

(
f ′(α)t∗ + x0, f

′(β)t∗ − x0
)
. Thus, .t1 < t∗. This implies that the (forward) 

maximal existence time for a smooth solution is finite. 
�
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We shall consider the initial value problem to (3.2) for .t > 0. By Proposition 3.1, 
we must introduce a notion of a weak solution as in Definition 2.3 to track the whole 
evolution of a solution. 

Definition 3.2 

Assume that .f ∈ C(R). For .u0 ∈ L∞(R), we say that .u ∈ L∞ (R × (0, T )) is a 
weak solution of (3.2) with initial datum . u0 if 

.

∫

R×(0,T )

{ϕtu + ϕxf (u)} dxdt +
∫

R
ϕ|t=0 u0dx = 0 (3.7) 

for all .ϕ ∈ C∞
c (R × [0, T )). If . u0 and u is periodic in x, i.e., a function on 

.T = R/ω1Z with some .ω1 > 0, then . ϕ should be taken from .C∞
c (T × [0, T )). 

We shall discuss the speed of jump discontinuity. Its speed is represented by the 
magnitude of the jump, and such a representation is called the Rankine–Hugoniot 
condition. Let .x(t) be a .C1 function defined on an interval .[t0, t1], with .t0 < t1, 
.t0, t1 ∈ R. Let .D = J × (t0, t1) be an open set containing the graph of .x(t) in 
.(t0, t1), where J is an open interval in . R. We set  

. Dr = {(x, t) ∈ D | x > x(t)} ,

D
 = {(x, t) ∈ D | x < x(t)} ,

� = Dr ∩ D
.

Here, . � is simply the graph of the curve .x = x(t). See Fig. 3.4. 

Fig. 3.4 Sets . D
, . Dr and .�
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Lemma 3.3 
Let .f ∈ C(R) be given. Let u be . C1 in . Dr and . D
, and let u satisfy (3.7) for
all .ϕ ∈ C∞

c (D × (t0, t1)). Then 

.ẋ(t)(u
 − ur) = f
 − fr (3.8) 

for .t ∈ (t0, t1), with 

. u
 = lim {u(y, s) | (y, s) → (x(t), t) , (y, s) ∈ D
} (left limit),

ur = lim {u(y, s) | (y, s) → (x(t), t) , (y, s) ∈ Dr} (right limit),

and .f
 = f (u
), .fr = f (ur). (The speed .s = ẋ(t) is called the speed of the 
shock.) Conversely, if u satisfies (3.2) in . Dr and . D
 and satisfies (3.8) , then u

satisfies (3.7) for all .ϕ ∈ C∞
c (D × (t0, t1)). 

Proof. Since u is a classical solution of (3.2) in each .Di (i = r, 
), integration by 
parts yields 

. 

∫

Di

{ϕtu + ϕxf (u)} dxdt =
∫

∂Di

(νtu + νxf (u)) ϕdH1

=
∫

�

(
νi
t ui + νi

xfi

)
ϕdH1,

where .(νi
x, ν

i
t ) is an external unit normal of .∂Di . Here, .dH1 denotes the line element 

of the curve .x = x(t). Since u is a “weak solution” of (3.2) in D (i.e., u satisfies
(3.7) for all .ϕ ∈ C∞

c (D × (t0, t1))), we see that 

. 

∫

�

{(
νr
t ur + ν


t u


)
+

(
νr
xfr + ν


xf


)}
ϕdH1 = 0.

Since .νr = −ν
 and . ϕ is arbitrary, we now conclude (cf. Exercise 2.3) that 

. ν

t (u
 − ur) + ν


x(f
 − fr) = 0.

Since 

. 

(
ν

x, ν



t

)
= (1,−ẋ(t)) /

(
1 + (ẋ(t))2

)1/2
,

the desired relation (3.8) follows. Checking this argument carefully, we see the
converse is easily obtained. The relation (3.8) is called the Rankine–Hugoniot
condition. 
�
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3.1.3 Riemann Problem 

We consider the following special initial value problem for (3.2) , which is called the
Riemann problem. The initial datum we consider are

.u0(x) =
{

u
, x < 0,

ur , x > 0,
(3.9) 

where . u
 and . ur are constants, i.e., .u
, ur ∈ R. 
For simplicity, we assume that .u
 > ur in this subsection. It is easy to see that 

.uS(x, t) =
{

u
, x < x(t),

ur , x > x(t)
(3.10) 

is a weak solution of (3.2) with (3.9) provided that .x(t) = t (f
 − fr)/(u
 − ur) by 
(3.8) . If .ur < u
 and f is convex, it turns out that this is the only weak solution. 
However, in the case where .ur < u
 and f is concave, there is another weak solution 
called a rarefaction wave. Instead of writing a general form of a solution, we just 
restrict ourselves to the traffic flow equation (3.5) where .f (u) = u(1 − u). In this  
case, the function 

.uR(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

u
, x < x
(t),
1

2
− x

2t
, x
(t) ≤ x ≤ xr(t),

ur , x > xr(t),

(3.11) 

with .x
(t) =
(

1
2 − u


)
2t , .xr(t) =

(
1
2 − ur

)
2t , is a weak solution of (3.2) with

(3.9) provided that .ur < u
 (Figs. 3.5 and 3.6). This is easy to check since there is 
no jump and .1/2 − x/(2t) solves equation (3.2) in the region .x
 < x < xr . The  
question is which is reasonable as a “solution.” Of course, it depends on the physics 
we consider. For the traffic flow problem, consider the case where .ur = 0 and 
.u
 = 1. The solution . uS in this case is time-independent since .f
(0) = f
(1) = 0, 

Fig. 3.5 A rarefaction wave 
. uR at time t
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Fig. 3.6 Characteristic 
curves 

so that .x(t) = 0. Is it natural to stop even if there are no cars in front of us? There is 
no signal. From our intuition, . uR looks like a more reasonable solution. The question 
is how we determine this. 

3.1.4 Entropy Condition on Shocks 

We consider the viscous regularization of (3.2) of the form

.uε
t + f (uε)x = εuε

xx (3.12) 

with initial datum . u0 of the form of (3.9) . We are interested in the case where the
limit tends to . uS as .ε → 0. We seek the solution . uε of the form 

.uε(x, t) = U

(
x − st

ε

)
, (3.13) 

where s is the shock wave speed .s = (f
−fr)/(u
−ur) determined by the Rankine– 
Hugoniot condition. The function .U = U(ξ) in (3.13) must satisfy

. − sUξ + (f (U))ξ = Uξξ

if . uε solves (3.12), where .Uξ = (d/dξ)U(ξ). Integrate both sides to get 

.Uξ = −sU + f (U) + C0, (3.14) 

where . C0 is a constant of integration. (We consider this equation assuming that f is 
. C1, so that its initial value problem admits only one . C1 solution (Proposition 1.1). 
If U is . C1, then the right-hand side of (3.14) is . C1, so that U is . C2.) We postulate
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that . uS is the limit of . uε as .ε ↓ 0; then we should have 

. uS(x, t) = lim
ε→0

U ((x − st)/ε) =
{

u
 for x < st,

ur for x > st,

so 

. lim
ξ→−∞ U(ξ) = u
, lim

ξ→∞ U(ξ) = ur .

If we postulate U is monotone, we have 

. lim
ξ→±∞ Uξ(ξ) = 0

since .limξ→±∞ Uξ always exists by (3.14) . (The monotonicity follows from the
maximum principle for the derivative of . uε.) Letting .ξ → ±∞ in (3.14) , we obtain

. C0 = su
 − f
 = sur − fr .

The last equality also gives the Rankine–Hugoniot condition. Thus, we obtain an 
ordinary differential equation for U with boundary condition at .±∞ of the form 

.
d

dξ
U(ξ) = −s (U(ξ) − u
) ,+ (f (U(ξ)) − f
) , (3.15) 

. U(∞) = ur, U(−∞) = u
.

Definition 3.4 

If there exists a solution U of (3.15) with .U(∞) = ur , .U(−∞) = u
 (.ur �= u
), 
we say that . uS in (3.10) with .x(t) = st , .s = (f
 − fr)/(u
 − ur) satisfies a 
traveling wave entropy condition. 

We shall derive an equivalent condition for . ur and . u
, so that . uS satisfies a 
traveling wave entropy condition. 

Proposition 3.5 
Let .f ∈ C1(R). Assume .u
 < ur (resp. .ur < u
). Let . uS be of the form 
of (3.10), with .x = st , .s = (f
 − fr)/(u
 − ur), where .f
 = f (u
) and 
.fr = f (ur). Then . uS fulfills the traveling wave entropy condition if and only 

(continued)
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Proposition 3.5 (continued) 
if the graph of .f (u) lies above (resp. below) the straight line segment joining 
.(u
, f
) and .(ur , fr ), i.e., 

. f (u) > f
 + s(u − u
) = fr + s(u − ur)

(resp. f (u) < f
 + s(u − u
) = fr + s(u − ur))

for all .u ∈ (u
, ur) (resp. .u ∈ (ur , u
)). 

Proof. Assume that .u
 < ur . We first observe that . Uξ does not vanish. Indeed, if 
there were . ξ0 such that .Uξ(ξ0) = 0, then .a = U(ξ0) should satisfy 

. − s(a − u
) + (f (a) − f
) = 0.

Thus, .U ≡ a is a solution to (3.15), which is unique by Proposition 1.1. Thus, 
U must be a constant that cannot achieve at least one of the boundary conditions 
.U(∞) = ur , .U(−∞) = u
. Thus, .Uξ(ξ) > 0 for all . ξ . This implies 

. f
 + s(u − u
) < f (u)

for .u ∈ (u
, ur). Recalling the Rankine–Hugoniot condition, . s = (f
 − fr)/(u
 −
ur), we observe the desired condition (Fig. 3.7). The converse is easy. The case 
.ur < u
 is parallel. 
�

If f is convex, this condition is equivalent to saying that .f ′(ur) < s < f ′(u
) for 
.ur < u
. This is a classical entropy condition for convex f . In the case of concave f 

Fig. 3.7 Profile of f on 
.(u
, ur )
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like the traffic flow problem (3.5) , if .ur < u
, then . uS does NOT fulfill the traveling 
wave entropy condition. 

In the next section, we discuss the Kružkov entropy solution, which combines 
such an entropy condition and the notion of a weak solution, so that one can check 
the entropy condition for a general function whose jump (shock) curves are not 
regular. 

In Proposition 3.5, we discuss an equivalent condition when . uS satisfies the 
traveling wave entropy solution. One can write this equivalent condition in a 
synthetic way as 

. s|k − u
| < sgn(k − u
) (f (k) − f (u
))

for all k between . u
 and . ur . Here, .sgn denotes the sign function defined by 

. sgn x =
⎧
⎨

⎩

1, x > 0,

0, x = 0,

−1, x < 0.

(Of course, one may replace . u
 with . ur in the above inequality.) One may write this 
another way to express the condition similarly. Let .a = a(x, t) be a function defined 
in .D = J × (t0, t1), where J is an open interval in . R. Let .[[a]] denote the difference 
between the limit from . Dr and . D
, i.e., 

. [[a]](x, t) := ar(x, t) − a
(x, t), (x, t) ∈ � = Dr ∩ D
,

ar(x, t) = lim
{
a(y, s)

∣∣ (y, s) → (x, t), (y, s) ∈ Dr

}
,

a
(x, t) = lim
{
a(y, s)

∣∣ (y, s) → (x, t), (y, s) ∈ D


}
.

Proposition 3.6 
Let .f ∈ C1(R). Consider the Riemann problem. The function . uS in (3.10) 
satisfies the traveling wave entropy condition if and only if

. s[[|u − k|]] ≥ [[sgn(u − k) (f (u) − f (k))]] for all k ∈ (u
, ur) if u
 < ur

(resp. k ∈ (ur , u
) if ur < u
) and

s[[|u − k|]] = [[sgn(u − k) (f (u) − f (k))]] for all k �∈ (u
, ur) if u
 < ur

(resp. k �∈ (ur , u
) if ur < u
)

for .u = uS , where .x(t) = st with .s = (f
 − fr)/(u
 − ur), .f
 = f (u
), 
.fr = f (ur).
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Proof. We only give a proof when .u
 < ur since the proof for .u
 > ur is symmetric. 
“If” part. Choosing k between . u
 and . ur , we obtain 

. s (−(u
 − k) − (ur − k)) < − (fr − f (k)) − (f
 − f (k))

or 

. f + s(k − u) < f (k).

Here, .f = (fr + f
)/2, .u = (ur + u
)/2. This implies that the graph of .f (u) must 
lie above the straight line segment between .(u
, f
) and .(ur , fr ). Proposition 3.5 
now implies that . uS satisfies the traveling wave entropy condition. 

“Only if” part. Since the Rankine–Hugoniot condition holds, 

. s[[|u − k|]] = [[sgn(u − k) (f (u) − f (k))]]

for any constant k not between . u
 and . ur . For constants k between . u
 and . ur , if the  
traveling wave entropy condition holds, then, by Proposition 3.5, we have  

. f (k) > s(k − u
) + f (u
) and

f (k) > s(k − u
) + f (ur),

so that 

. f (k) − sk > f − su.

Then we obtain 

.s[[|u − k|]] > [[sgn(u − k) (f (u) − f (k))]].


�

� Remark 3.7 This proposition says that for the Riemann problem, the solution 
satisfying the traveling entropy condition is exactly the Kružkov entropy solution 
defined later. 

3.2 Uniqueness of Entropy Solutions 

We first derive two equivalent definitions of an entropy solution. One is based on 
what we call an entropy pair, and the other is its modification due to Kružkov. 
The first condition is easily motivated by a vanishing viscosity approximation. We 
derive this condition by a formal argument. Then we introduce Kružkov’s entropy 
condition and discuss the equivalence of both definitions. We conclude this section
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by proving the uniqueness of an entropy solution. The key idea is a kind of doubling 
variable argument. 

3.2.1 Vanishing Viscosity Approximations and Entropy Pairs 

We consider the initial value problem of a scalar conservation law of the form 

.ut + f (u)x = 0 in Q = T × (0, T ), . (3.16) 

u|t=0 = u0 on T. (3.17) 

Here .u = u(x, t) is a real-valued function on Q. In other words, to simplify the 
presentation, u is periodic in x. The flux function f is always assumed to be at least 
a locally Lipschitz (real-valued) function. 

To obtain a solution, we consider a parabolic approximation 

. uε
t + f (uε)x = εuε

xx, . (3.18) 

uε
∣∣
t=0 = u0 (3.19) 

for .ε > 0. We expect that a reasonable solution will be obtained as a limit of the 
solution of (3.18) , (3.19) as .ε → 0. Since . ε looks like a viscosity coefficient in fluid 
dynamics, this approximation is often called a vanishing viscosity approximation. 

It is well known that (3.18) and (3.19) admit a global solution . uε that is smooth 
for .t > 0 for any given .u0 ∈ L∞(T) provided that f is smooth. For a moment 
we assume that f is smooth, so that . uε is smooth for .t > 0 (the initial condition 
should be understood in a weak sense); see, for example, standard monographs on 
parabolic equations [70,72]. We take a real-valued smooth function . η defined on . R, 
and consider a composite function .η(uε) = η ◦ uε. Since . uε satisfies (3.18) , . η(uε)

must solve 

.η(uε)t + η′(uε)f ′(uε)uε
x = εη′(uε)uε

xx. (3.20) 

Since .η(uε)xx = η′(uε)uε
xx + η′′(uε)(uε

x)
2, we observe that . η(uε)xx ≥ η′(uε)uε

xx

provided that . η is convex. 
Assume that . η is now convex, and take a function q such that .q ′ = η′f ′. Then 

(3.20) yields

.η(uε)t + q(uε)x = εη′(uε)uε
xx ≤ εη(uε)xx. (3.21) 

We multiply (3.21) by a nonnegative function .ϕ ∈ C∞
c (Q0) on . Q0 = T × [0, T )

and integrate by parts to get 

.

∫

Q

{
ϕtη(uε) + ϕxq(uε)

}
dxdt +

∫

T
ϕ|t=0 η(u0)dx ≥ −ε

∫

Q

ϕxxη(uε)dxdt.
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Here, we present a formal argument. The following argument can be justified if, for 
example, .supQ |uε| is bounded in . ε and if . uε tends to u almost everywhere (a.e.) in 
Q as .ε ↓ 0. Sending . ε to zero we get 

.

∫

Q

{ϕtη(u) + ϕxq(u)} dxdt +
∫

T
ϕ|t=0 η(u0)dx ≥ 0 (3.22) 

for any .ϕ ∈ C∞
c (Q0) with . ϕ ≥ 0. In  Q this condition implies 

.η(u)t + q(u)x ≤ 0 (3.23) 

in a distribution sense, which means .−η(u)t−q(u)x is a nonnegative Radon measure 
in Q. 

This argument can be extended when . η is merely convex by an approximation 
for (3.22). (Incidentally, the inequality for taking .η(n)xx ≥ η′(u)uxx for . η(u) = |u|
is known as the Kato inequality .�|w| ≥ (sgn w)�w in a distribution sense. This 
inequality is also obtained by approximately . |u|, by, for example, .

√|u|2 + δ, .δ > 0. 
See Exercise 3.8.) 

Inequality (3.23) is trivially fulfilled if u solves (3.16) and u is smooth. However,
it will turn out that this inequality distinguishes admissible jumps and nonadmissible
jumps when u is discontinuous. We thus reach the following definition.

Definition 3.8

Let f be a locally Lipschitz function on . R. 

(1) A pair of functions .(η, q) is an entropy pair for (3.16) if . η is convex and q is 
a primitive (antiderivative) of .η′f ′, i.e., .q ′ = η′f ′. 

(2) Let .u ∈ L∞(Q) be a weak solution of (3.16) , (3.17) with initial datum . u0 ∈
L∞(T). Let .(η, q) be an entropy pair for (3.16) . We say that u is an entropy
solution of (3.16) , (3.17) if u satisfies (3.22) for all .ϕ ∈ C∞

c (Q0), with .ϕ ≥ 0, 
where .Q0 = T × [0, T ). 

3.2.2 Equivalent Definition of Entropy Solution 

For a convex function . η on . R, .(η, q) is an entropy pair (for (3.16) ) if we set

. q(w) =
∫ w

k

η′(τ )f ′(τ )dτ.

The function q is uniquely determined by . η up to an additive constant. If we take 
.η(w) = |w − k| for .k ∈ R, then we have 

.q(w) = sgn(w − k) (f (w) − f (k)) .
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It is clear that if u is an entropy solution, then it must satisfy 

. 

∫

Q

{ϕt |u − k| + ϕx (sgn(u − k) (f (u) − f (k)))} dxdt +
∫

T
ϕ|t=0 |u0 − k|dx ≥ 0

(3.24) 

for all .k ∈ R and all .ϕ ∈ C∞
c (Q0), with .ϕ ≥ 0. This condition is often called the 

Kružkov entropy condition. It is equivalent to the definition of an entropy solution. 

Proposition 3.9 
Let f be a locally Lipschitz function. Let .u ∈ L∞(Q) be a weak solution of 
(3.16) , (3.17) with initial datum .u0 ∈ L∞(T). Then u is an entropy solution if 
and only if u satisfies the Kružkov entropy condition, i.e., (3.24) for all . k ∈ R
and for all .ϕ ∈ C∞

c (Q0), with .ϕ ≥ 0. 

Proof. Since the “only if” part is trivial, we shall prove the “if” part. For . η we set a 
linear functional 

. �(η) =
∫

Q

{ϕtη(u) + ϕxq(u)} dxdt +
∫

T
ϕ|t=0 η(u0)dx

for a fixed .ϕ ∈ C∞
c (Q0) and . u0. This quantity .�(η) is determined by . η and is 

independent of the choice of q provided that .(η, q) is an entropy pair. The Kružkov 
entropy condition (3.24) implies

. �(ηi) ≥ 0

for all .ηi(w) = αi |w − ki |, .ki ∈ R, .αi ≥ 0, .i = 1, · · · ,m. Thus, 

. �

(
m∑

i=1

ηi

)
=

m∑

i=1

�(ηi) ≥ 0

since .(
∑m

i=1 ηi,
∑m

i=1 qi) is an entropy pair if .(ηi, qi) is an entropy pair. Since u is 
a weak solution, we see that .�(η) = 0 if .η(w) = αw + β, .α, β ∈ R. Thus, the 
convex piecewise linear function . η of the form 

.η(w) = αw + β +
m∑

i=1

ηi(w) (3.25) 

satisfies .�(η) ≥ 0.
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As stated at the end of this subsection (Lemma 3.10), we notice that any 
piecewise linear convex function is of the form (3.25) provided that there is only
a finite number of nondifferentiable points. We thus conclude that .�(η) ≥ 0 for 
any piecewise linear convex function . η. Since a convex function . η is approximable 
(Exercise 3.5) by a piecewise linear convex function .{ζj }∞j=1 (having finitely many 
nondifferentiable points) locally uniformly in . R, we conclude that 

. �(η) = lim
j→∞ �(ζj ) ≥ 0

since u is bounded. 
�

Lemma 3.10 
Let . η be a piecewise linear convex function in . R with m nondifferentiable 
points. Then there are .αi ≥ 0, . αi , . βi , .ki ∈ R for .1 ≤ i ≤ m such that 

. η(w) = αw + β +
m∑

i=1

ηi(w), ηi(w) = αi |w − ki | + βi.

Proof. This can be easily proved by induction of numbers m of nondifferentiable 
points of a piecewise linear convex function . ξm. If . m = 0, it is trivial. Let .{ki}mi=1 be 
the set of all nondifferentiable points of . ξm. We may assume that . k1 < k2 < · · · <

km. Assume that .m ≥ 1. Taking . α, . β, and . α1 in a suitable way, we see that 

. ξm(w) = αw + β + η1(w) for − ∞ < w < k2,

where . k2 is the second smallest nondifferentiable point of . ξm; .k2 = ∞ if there is no 
such point (Fig. 3.8). 

Fig. 3.8 Profile of graphs
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We set 

. ξ(w) = αw + β + η1(w) for w ∈ R.

Since . ξm is convex and . ξ is linear for .s > k1, .ξm − ξ is still convex and nonnegative 
and .ξm − ξ = 0 on .(−∞, k2). Moreover, the number of nondifferentiable points of 
.ξm − ξ is .m − 1, so by induction we conclude that . ξm is of the form of (3.25) . 
�

3.2.3 Uniqueness 

We are now in a position to state our main uniqueness result as an application of the 
.L1-contraction property. 

Theorem 3.11 
Assume that f is locally Lipschitz. Let u and .v(∈ L∞(Q)) be an entropy 
solution of (3.16) , (3.17) with initial datum . u0 and . v0, respectively. Assume 
that .u(·, t) → u0 and .v( , t) → v0 as .t → 0 in the sense of .L1-convergence. 
Then 

.‖u − v‖L1(T)(t) ≤ ‖u0 − v0‖L1(T). (3.26) 

In particular, a bounded entropy solution of (3.16) , (3.17) is unique. (The
assumption of .L1-continuity as .t ↓ 0 is unnecessary but we assume it to 
simplify the proof.) 

Proof. We double the variables of a test function . ϕ. Let .φ = φ(x, t, y, s) be a 
nonnegative function such that .φ ∈ C∞

c (Q0 × Q0). Since u is an entropy solution 
of (3.16) , (3.17) , the Kružkov entropy condition implies

. 

∫

Q

{|u − k|φt + q(u, k)φx} dxdt +
∫

T
φ(x, 0, y, s)|u0 − k|dx ≥ 0

when .q(u, k) = sgn(u − k) (f (u) − f (k)). Plugging in .k = v(y, s) and integrating 
in .(y, s), we get 

.

∫

Q

∫

Q

{|u(x, t) − v(y, s)| φt + q (u(x, t), v(y, s)) φx} dxdtdyds

+
∫

Q

∫

T
φ(x, 0, y, s) |u0(x) − v(y, s)| dxdyds ≥ 0.
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The same inequality holds for v; in other words, we have 

. 

∫

Q

∫

Q

{|u(x, t) − v(y, s)| φs + q (u(x, t), v(y, s)) φy

}
dxdtdyds

+
∫

T

∫

Q

φ(x, 0, y, 0) |v0(y) − u(x, t)| dxdtdy ≥ 0.

Adding these two inequalities yields 

. 

∫

Q

∫

Q

{|u(x, t) − v(y, s)| (φt + φs) + q(u, v)(φx + φy)
}

dxdtdyds

+
∫

Q

∫

T
|u0(x) − v(y, s)| φ(x, 0, y, s) dxdyds

+
∫

T

∫

Q

|u(x, t) − v0(y)| φ(x, t, y, 0) dxdtdy ≥ 0. (3.27) 

Our strategy is as follows. We set

. J1 :=
∫

Q

∫

Q

{|u(x, t) − v(y, s)| (φt + φs) + q(u, v)(φx + φy)
}

dxdtdyds

J2 :=
∫

Q

∫

T
|u0(x) − v(y, s)| φ(x, 0, y, s) dxdyds

J3 :=
∫

T

∫

Q

|u(x, t) − v0(y)| φ(x, t, y, 0) dxdtdy.

For a given .t0 ∈ (0, T ), we would like to take a suitable . φ so that . Ji equals . Ii

(.i = 1, 2, 3), with 

. I1 := −
∫

T
|u(x, t0) − v(x, t0)| dx

I2 := 1

2

∫

T
|u0(x) − v0(x)| dx, I3 := I2.

Since (3.27) says .J1 + J2 + J3 ≥ 0, we have  

. I1 + I2 + I3 ≥ 0, i.e.,

. −
∫

T
|u(x, t0) − v(x, t0)| dx + 1

2

∫

T
|u0(x) − v0(x)| dx

+ 1

2

∫

T
|u0(x) − v0(x)| dx ≥ 0. (3.28)
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This is simply the desired contraction property (3.26) . Unfortunately, there is no
good function . φ. We need a sequence .φ = φε,ε′,ε′′ depending on three parameters 
.ε, ε′, ε′′ > 0. Let . ρε be a Friedrichs’ mollifier . ρε defined in §2.2 (see also 
Lemma 3.12 in what follows). We further assume symmetry, i.e., . ρε(−σ) = ρε(σ )

for all . σ ∈ R. We set  

. φ(x, t, y, s) = ρε(x − y)ρε′(t − s)χε′′
(

t + s

2
− t0

)
,

with .χε′′(τ ) = ∫ ∞
τ

ρε′′(σ )dσ . (We shall give a heuristic explanation as to why this 
choice is good after the proof.) It suffices to prove 

. lim
ε′′↓0

(
lim
ε′↓0

(
lim
ε↓0

Ji(ε, ε
′, ε′′)

))
= Ii for i = 1, 2, 3,

to get (3.28) since .J1 + J2 + J3 ≥ 0. 
Since .φx + φy = 0 and 

. φt + φs = ρε(x − y)ρε′(t − s)χ ′
ε′′

(
t + s

2
− t0

)
,

we observe that 

. J1 = J1(ε, ε
′, ε′′)

= −
∫

Q

∫

Q

|u(x, t) − v(y, s)| ρε(x − y)ρε′(t − s)ρε′′
(

t + s

2
− t0

)
dxdtdyds.

We apply the approximation lemma (Lemma 3.12 below) to conclude that 

. lim
ε′′↓0

(
lim
ε′↓0

(
lim
ε↓0

J1

))
= I1.

Similarly, 

. lim
ε↓0

J2 =
∫ T

0

∫

T
|u0(x) − v(x, s)| ρε′(s)χε′′

( s

2
− t0

)
dxds.

For a given .t0 ∈ (0, T ), we take .ε′′ > 0 small, say, .ε′′ < ε′′
0 , for some . ε′′

0 > 0, so  
that .χε′′

(
s
2 − t0

) = 1 for all .s ∈ [0, t0/2], .ε′′ < ε′′
0 . We take .ε′ > 0 sufficiently 

small so that .supp ρε′ ⊂ [0, t0/2] to get 

. lim
ε↓0

J2 =
∫ T

0

{∫

T
|u0(x) − v(x, s)| dx

}
ρε′(s) ds.
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Since we have assumed that .v(·, t) → v0 in .L1(T), 

. h(s) =
∫

T
|u0(x) − v(x, s)| dx = ‖u0 − v(·, s)‖L1(T)

is continuous at .s = 0. We now apply Lemma 3.12 (ii) to conclude that 

. lim
ε′↓0

(
lim
ε↓0

J2

)
= 1

2
h(0) = I1

for .ε′′ < ε′′
0 . The proof for . J3 is the same. We now conclude that 

. lim
ε′′↓0

(
lim
ε′↓0

(
lim
ε↓0

Ji

))
= Ii

so that .J1 + J2 + J3 ≥ 0 implies (3.28) . The proof is now complete. 
�

Let us say a few words about why we choose . φ as earlier. It is convenient to 
use what is called a delta function . δ. It is defined as a distributional derivative of a 
Heaviside function .1>0, i.e., 

. δ = Dx1>0,

where .1>0(x) = 1 if .x > 0 and .1>0(x) = 0 if .x ≤ 0. In other words, 

. δ(ϕ) = −
∫

R

dϕ

dx
1>0 dx for ϕ ∈ C∞

c (R).

By definition, .δ(ϕ) = − ∫ ∞
0

dϕ
dx

dx = ϕ(0). We often write .δ(ϕ) by .
∫
R δ(x)ϕ(x)dx, 

though . δ cannot be identified with any integrable function. We would like to take 

. φ(x, t, y, s) = δ(x − y)δ(t − s)1>0

(
t0 − t + s

2

)
.

Since .φx + φy = 0, .φt + φs = −δ(x − y)δ(t − s)δ(t − t0), we see that 

. J1 = −
∫

R
|u(x, t0) − v(x, t0)| dx = I1.

Since u and v are not necessarily continuous, we must approximate . δ by mollifiers. 
For .J2 + J3, we have  

.J1 + J2 =
∫ t0

0

{∫

T
|u0(x) − v(x, s)| dx

}
δ(−s)ds
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+
∫ t0 

0

{∫

T 
|v0(x) − u(x, s)| dx

}
δ(t) dt 

=
∫ t0 

−t0 

k(t)δ(t) dt = k(0), 

with 

. k(t) =

⎧
⎪⎪⎨

⎪⎪⎩

∫

T
|v0(x) − u(x, t)| dx for t > 0,

∫

T

|u0(x) − v(x,−t)| dx for t ≤ 0.

Since k is continuous at .t = 0 and .k(0) = ‖u0 − v0‖L1(T), we observe that 

. I1 + ‖u0 − v0‖L1(T) ≥ 0.

In our proof, we discuss . J1 and . J2 separately, so we use symmetry to simplify the 
argument. 

Lemma 3.12 
Let . ρε be a Friedrichs’ mollifier on . R defined in Sect. 2.2. In other words, 
.ρε(σ ) = ε−1ρ(σ/ε), where .ρ ∈ C∞

c (R) satisfies .ρ ≥ 0 and .
∫
R ρdx = 1. 

(i) Let .h ∈ L∞(T2) and .h(x, x − z) → h(x, x) as .|z| → 0 for a.e. x. Then 

. lim
ε↓0

∫

T

∫

T
h(x, y)ρε(x − y) dxdy =

∫

T
h(x, x) dx.

Let .h ∈ L∞(R) be compactly supported. Assume that . h(x, x − z) →
h(x, x) as .|z| → 0 for a.e. x. Then 

. lim
ε↓0

∫

R

∫

R
h(x, y)ρε(x − y) dxdy =

∫

R
h(x, x) dx.

(ii) Assume further that .ρ(−σ) = ρ(σ) for . σ ∈ R. For .h ∈ L∞(0, T ), 

. lim
ε↓0

∫ T

0
h(s)ρε(s)ds = 1

2
h(0)

provided that h is continuous at .s = 0.
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Proof of Lemma 3.12 

(i) We may assume .supp ρ ⊂ (−1, 1) by replacing . σ with .σ/ε′ for small .ε′ > 0. 
We recall .T = R/ω1Z. We take .ε < ω1/4, so that .supp ρ ⊂ (−ω1

4ε
, ω1

4ε

)
. By this  

choice, the support of .ρε(x − y) as a function of .x, y is contained in a periodic 
cell .C = [−ω1/2, ω1/2) × [−ω1/2, ω1/2) of .T2 = (R/ω1Z)2. In particular, 

. 

∫ ω1/2

−ω1/2
ρε(x − y) dy = 1 for x ∈ (−ω1/2, ω1/2) .

We proceed with 

. I (ε) :=
∫

T

∫

T
h(x, y)ρε(x − y) dxdy −

∫

T
h(x, x) dx

=
∫∫

C

(h(x, y) − h(x, x)) ρε(x − y) dxdy.

Changing the variables of integration from .(x, y) to .(x, z) with .z = (x − y)/ε, 
we obtain, by Fubini’s theorem, that 

. |I (ε)| ≤
∫∫

C

|h(x, y) − h(x, x)| ρε(x − y) dxdy

=
∫

|x|≤ω1/2

{∫

|x−εz|≤ω1/2
|h(x, x − εz) − h(x, x)| ρ(z) dx

}
dz

≤
∫

|x|≤ω1/2

{∫

|z|≤1
|h(x, x − εz) − h(x, x)| ρ(z) dx

}
dz.

Since the integrand is bounded by .2‖h‖∞ (independent of .ε > 0) and . h(x, x −
εz) → h(x, x) for a.e. .x, z ∈ R as .ε ↓ 0, we conclude that .I (ε) → 0 as . ε → 0
by the dominated convergence theorem. We thus obtained the first statement. 
The proof for the second statement is parallel. 

(ii) By a change of the variable of integration, we see that 

. 

∫ T

0
h(s)ρε(s)ds =

∫

0≤z≤1
h(εz)ρ(z)dz

for sufficiently small .ε > 0. Since .h(z) → h(0) as .z → 0, we now obtain 

. lim
ε↓0

∫ T

0
h(s)ρε(s)ds = lim

ε↓0

∫

0≤z≤1
h(εz)ρ(z)dz = h(0)

∫

0≤z≤1
ρ(z)dz
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by the bounded convergence theorem. The result follows if we note that 
.
∫ ∞

0 ρ(z)dz = 1/2 by symmetry. 
�

� Remark 3.13 

(i) The definition of the entropy solution extends to a bounded function in . R not 
necessarily periodic. Although the uniqueness result still holds provided that . u0
is in .L1(R) ∩ L∞(R), the proof is more involved. For example, we must take . φ

to have compact support in the space direction; See, for example, [53] and [68]. 
(ii) All results here can be extended to multidimensional space. The conservation 

law for a real-valued function .u = u(x, t) is of the form 

. ut + div f (u) = 0 in TN × (0, T ) = Q̃,

with .f (u) = (
f 1(u), . . . , f N(u)

)
. A pair of real-valued functions . (η, q)

defined on . R is said to be an entropy pair for this equation if it satisfies 
.q ′ = η′f ′ (i = 1, . . . , N), .q = (q1, . . . , qN) and . η is a convex function. 
A function .u ∈ L∞(Q̃) is said to be an entropy solution with initial datum 
.u0 ∈ L∞(TN) if 

. 

∫ T

0

∫

Q̃

(
ϕtη(u) +

N∑

i=1

qi(u)ϕxi

)
dxdt +

∫

TN

ϕ|t=0 η(u0) dx ≥ 0

holds for all .ϕ ∈ C∞
c (Q̃0), with .ϕ ≥ 0, and all entropy pairs. Here . Q̃0 =

TN × [0, T ) and .ϕxi
= ∂ϕ

∂xi
. The Kružkov entropy condition is of the form 

. 

∫ T

0

∫

Q̃

(
ϕt |u − k| +

N∑

i=1

sgn(u − k)
(
f i(u) − f i(k)

)
ϕxi

)
dxdt

+
∫

TN

ϕ|t=0 |u − k| dx ≥ 0

for all .ϕ ∈ C∞
c (Q̃0) with .ϕ ≥ 0 and .k ∈ R; see, for example, [68]. 

3.3 Notes and Comments 

Most of the contents in this chapter are taken from Holden and Risebro’s book 
[53], where . T is replaced by . R. The theory of conservation laws has a long 
history. A weak formulation for the Burgers equation traces back to Hopf [54], 
where a parabolic approximation was studied. The literature on the topic has grown 
considerably since then. The reader is referred to the book [53].
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There are several ways to construct an entropy solution, for example, [53]. Of 
course, parabolic approximation is one way. Other methods are based on the finite 
difference method. A front tracking method was studied extensively by Holden and 
Risebro [53]; it approximates f by a piecewise function; this seems to be very 
effective even for systems of conservation laws. A completely different approach, 
called a kinetic construction (not contained in [53]), traces back to Brenier [14], 
as well as the second author and others [49], [50]. The idea involves introducing 
an extra variable, which may be interpreted as a microscopic variable. All the 
aforementioned methods work for scalar conservation laws in multidimensional 
spaces. Note that there is a very accessible introduction to conservation laws in 
the book [36, Chapter 11]. In [36], systems of conservation laws are discussed. 

If one considers systems of conservation laws, the uniqueness of entropy 
solutions is difficult because there are interactions of waves. Neverthless, there are 
now several uniqueness results that go back to Bressan’s seminal works [16], [17], 
where the main assumption is that the spatial total variation of a solution is small. 
The reader is referred to [17] or  [53] for this topic. 

3.4 Exercises 

3.1 (Hopf–Cole transformation) Let u be a solution of the (viscous) Burgers 
equation ut + (u2/2)x = uxx . Let  w(x, t) be defined as 

. w(x, t) =
∫ x

0
u(y, t)dy +

∫ t

0

(
ux(0, τ ) − u(0, t)2/2

)
dτ.

Show that w satisfies 

. wt + (wx)
2/2 = wxx

in R × (0,∞). Show that v = exp(−w/2) solves the heat equation vt = vxx . 
3.2 Let u be a solution of ut + (u2/2)x = uxx in R × (0,∞). Set uλ(x, t) = 

λu(λx, λ2t)  for λ >  0. Show that uλ solves the same equation as u. Set 
vε(x, t) = v(εx, εt). Show that vε solves vt + (v2/2)x = ε−1vxx for ε >  0. 

3.3 Consider (3.2) , with f (u) = u2/
(
u2 + (1 − u)2

)
. Find the entropy solution to

the Riemann problem with initial datum (3.9) , where u
 = 0, ur = 1. In this
case, the equation is called the Buckley–Leverett equation. It is a simple model
of two-phase fluid flow in a porous medium. The unknown u represents a ratio
of saturation of one of the phases. It varies from zero to one. Note that f is
neither convex nor concave. The expected solution has a rarefaction and shock
simultaneously. Note that there is a numerical method based on the level-set
approach [88] discussed in Sect. 4.5.2. 

3.4 Consider an equation for u = u(x, t) in R × (0,∞) of the form 

.ut + (u2/2)x = −u
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with initial datum u0 in (3.9) . Find the entropy solution when u
 = 1, ur = 0.
Consider the case where u
 = 0, ur = 1. Find the entropy solution in this case.

3.5 Let ξ be a real-valued convex function on R. Prove that there exists a sequence 
of piecewise linear convex functions {ηj }∞j=1 such that 
(i) ηj converges to ξ locally uniformly in R as j → ∞  and 

(ii) ηj has at most finitely many nondifferentiable points. 
3.6 Let f be a strictly convex C1 function in the sense that f ′ ∈ C(R) is (strictly) 

increasing. We set 

. uR(x, t) =
⎧
⎨

⎩

u
, x < f ′(u
)t

(f ′)−1(x/t), f ′(u
)t ≤ x < f ′(ur)t

ur , x ≥ f ′(ur)t

for u
 < ur . Show that this is a weak solution of the Riemann problem to (3.2) 
with initial datum u0 defined in (3.9) . This solution is called a rarefaction wave
solution. Show that uR is indeed an entropy solution by checking the Kružkov
entropy condition.

3.7 Let ξ be a real-valued convex function on R. Prove that ξ is Lipschitz 
continuous in any bounded interval (a, b). 

3.8 Let u be a real-valued C2 function on RN . 
(i) Let η be a real-valued C2 convex function on R. Show that 

. �η(u) ≥ η′(u)�u in RN.

(ii) Show that 

. 

∫

RN

(�ϕ)|u| dx ≥
∫

RN

ϕ(sgn u)�u dx

for any ϕ ∈ C∞
c (RN ) and ϕ ≥ 0. 

3.9 Let ξ be a real-valued C2 function on RN . Show that ξ is convex in RN if and 

only if its Hessian matrix
(

∂2ξ 
∂xi∂xj 

(x)
)

1≤i,j≤N 
is nonnegative definite for all 

x ∈ RN , i.e., 

. 
∑

1≤i,j≤N

∂2ξ

∂xi∂xj

(x)zizj ≥ 0

for all z = (z1, . . . , zN) ∈ RN . 
3.10 Give an example of a function f ∈ C

(
R2\{0}) such that 

. a := lim
x→0

(
lim
y→0

f (x, y)

)
and b := lim

y→0

(
lim
x→0

f (x, y)

)

exists but a �= b.


	3 Uniqueness of Solutions to Initial Value Problems for a Scalar Conversation Law 
	3.1 Entropy Condition
	3.1.1 Examples
	3.1.2 Formation of Singularities and a Weak Solution
	3.1.3 Riemann Problem
	3.1.4 Entropy Condition on Shocks

	3.2 Uniqueness of Entropy Solutions
	3.2.1 Vanishing Viscosity Approximations and Entropy Pairs
	3.2.2 Equivalent Definition of Entropy Solution
	3.2.3 Uniqueness

	3.3 Notes and Comments
	3.4 Exercises


