
2Ordinary Differential Equations and Transport 
Equations 

We continue to consider a system of ordinary differential equations (1.1) , but we
are more interested in the map .X �→ x(t, X), which is often called a flow map 
generated by a vector field b. If the initial value problem for (1.1) admits a unique
local-in-time solution in a time interval .I = (0, a) with some .a > 0 independent 
of X, the flow map is well defined. In Sect. 1.1, we gave a few sufficient conditions 
so that the flow map is uniquely determined assuming the existence of solutions 
to (1.1) with a given initial datum. Roughly speaking, if the vector field b satisfies
the Lipschitz condition or a weaker condition called the Osgood condition, then the
flow map is well defined. Since the Lipschitz continuity of b in .RN is equivalent to 
saying that the first distributional derivative of b is in .L∞ (see [36, §5.8. b]), it can 
be written .b ∈ W 1,∞(RN), where the .Wm,p(�) denotes the Sobolev space of order 
.m = 0, 1, 2, . . . in .Lp(�). 

In this chapter, we are interested in the question of whether (1.2) can be replaced
by .‖b(·, t)‖W 1,p ≤ M , with finite .p ≥ 1. However, unfortunately, this does not 
guarantee uniqueness; this can be easily seen if one elaborates Example 1.5. This  
suggests that we need some extra conditions for b so that a flow map is well defined. 
It turns out that if .div b = 0 or at least .div b is bounded, this is the case (under some 
growth assumptions on b at the space infinity) provided that we regard the flow map 
.X �→ x(t, X) for almost all X (almost everywhere (a.e.) X) in  .RN not for all X. 
Such a theory was started by DiPerna and Lions [32] in the late 1980s. 

In this section, we explain the uniqueness part of the theory of autonomous 
equations, i.e., b is independent of time. To simplify the problem, we further assume 
that b is periodic in space variables. 
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2.1 Uniqueness of Flow Map 

We consider a vector field (or .RN -valued function) b on .TN = ∏N
i=1 (R/ωiZ), with 

.ωi > 0 (i = 1, . . . , N), i.e., 

. b(x) =
(
b1(x), . . . , bN(x)

)
for x ∈ TN.

In other words, we assume b is periodic in the ith variable with the period . ωi . In  
this section, we always assume that 

.bj ∈ W 1,1(TN) for 1 ≤ j ≤ N and div b = 0 in TN. (2.1) 

We simply write the first condition by .b ∈ W 1,1(TN) instead of writing . b ∈
(
W 1,1(TN)

)N
, though the latter is more precise notation. Here, .W 1,p(TN) is the 

.Lp-Sobolev space introduced in Sect. 1.2.5. We are interested in discussing the 
uniqueness of a solution to (1.1) with b independent of t , i.e.,

. ẋ = b(x)

or 

. 
dxi

dt
(t) = bi

(
x1(t), . . . , xN(t)

)

for .x(t) = (
x1(t), . . . , xN(t)

)
under condition (2.1) . However, under condition

(2.1), a flow map .X �→ x(t, X) (generated by b) for a fixed time t may not be 
integrable on . TN . In other words, each component of this map may not belong to 
.L1(TN). To overcome this difficulty, we introduce a space 

. M = M(TN) := {
φ : TN → R | (Lebesgue) measurable and

|φ| < ∞ a.e.
}
.

This space is metrizable. For example, if we define a metric d as 

. d(φ,ψ) = ‖min (|φ − ψ |, 1)‖L1(TN) for φ,ψ ∈ M,

then .(M, d) becomes a metric space. See Exercise 2.2 and 2.6. From this point 
forward, .‖ · ‖Lp(TN) (or .‖ · ‖Lp ) denotes the .Lp-norm in .Lp(TN). The convergence 
in this metric corresponds to the convergence in measure, i.e., .d(φj , ψ) → 0 as 
.j → ∞ implies for any . δ > 0

.LN
{
x ∈ TN

∣
∣ |φj − ψ |(x) > δ

}
→ 0 as j → ∞,
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where .LN denotes the N -dimensional Lebesgue measure; see Sect. 1.2.5 or 
Appendix 5.2 for a precise definition of a set in . TN . For fixed t , we expect each 
component . xi of a solution .x = x(t, X) belongs to . M as a function of X, i.e., the 
mapping 

. x[t] : X �→ x(t, X)

is expected to be in .MN . We also expect the mapping .x : t �→ x[t] to be defined for 
all .t ∈ R, and it is continuous from . R to .MN , i.e., .x ∈ C(R,MN). The reason we 
expect x to be defined for all t is that the value .x[t](X) = x(t, X) actually belongs 
to the compact space . TN , which prevents what is called blow-up phenomena. 

If b is divergence-free, i.e., solenoidal, then the flow map .x[t] must satisfy the 
volume-preserving property. In other words, for all .t ∈ R, 

.LN
({

z ∈ TN
∣
∣ x[t]z ∈ A

})
= LN(A) (2.2) 

for any (Lebesgue) measurable set A. More generally,

. 

∫

TN

ψ (x(t, X)) dX =
∫

TN

ψ(y) dy

for any measurable function . ψ on . TN . See Exercise 2.8. (In general, for a 
Lebesgue measurable set A, .f −1(A) = {

z ∈ TN
∣
∣ f (z) ∈ A

}
may not be Lebesgue 

measurable for a Lebesgue measurable function f . The volume-preserving property 
implicitly guarantees that .x[t]−1(A) will be Lebesgue measurable if A is Lebesgue 
measurable.) The property (2.2) is obtained by .div b = 0. Here is a formal argument 
assuming that x is . C1 in t and X. We set .F = (Fij ) = (

∂xi/∂Xj
)
for the flow map 

.x = x(t, X). (This is a Jacobi matrix of the flow map .X �→ x(t, X).) By the area 
formula (or change of variable of integration), to see (2.2) , it suffices to prove that
.detF = 1 for all t , where .detF denotes the determinant of F . Let  .trM denote the 
trace of .N × N metrics M , i.e., it is the sum of the diagonal components of M . By  
elementary calculus, we see that 

. 
d

dt
detF = detF tr

(
∂F

∂t
F−1

)

.

By Eq. (1.1) , we see that

. 
∂Fij

∂t
=

N∑

�=1

(∂�bi)(x)F�j .

Thus, .
d

dt
detF = tr(Db) detF . Here  Db denotes the Jacobian matrix . (Db)ij =

∂j bi , .1 ≤ i, j ≤ N . We note that .tr(Db) = div b. If  .div b = 0 so that .tr(Db) = 0,
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we now observe that .detF is time independent. Since .detF = 1 at .t = 0, we now  
conclude that .detF = 1 for all t . This formal argument is justified when the flow 
map .x[t] : X �→ x(t, X) is in .C1(TN,TN). This is indeed true if b is . C1, and it 
is known as . C1 dependence with respect to the initial data; See, for example, [52, 
Chapter 5]. 

We must consider a solution .x = x(t, X) of the ordinary differential equation 
(1.1), which is only continuous but may not be in . C1 in the time variable t . If  
one weakens the notion of a solution, there is a chance we lose the uniqueness. 
To keep the uniqueness, we consider a special class of a solution that is often called 

a renormalized solution. We consider a mapping .t �→ x(t, ·) from . R to .
(
M(TN)

)N
. 

If this mapping is continuous, we simply write .x ∈ C
(
R,

(
M(TN)

)N
)
. It is also  

possible to consider the mapping .X �→ x(·, X) from . TN to .(C(R))N . This mapping 
is often called a flow map. 

Definition 2.1 

Assume that .x ∈ C
(
I,

(
M(TN)

)N
)
. We say that x is a (renormalized) solution 

of (1.1) in . R if 

.
∂

∂t
(β ◦ x)(t, X) = Dβ (x(t, X)) b (x(t, X)) on R × TN, . (2.3) 

(β ◦ x)|t=0 (X) = β(X) on TN (2.4) 

for all .β ∈ C1(TN,TN) such that .β ◦ x ∈ L∞
(
R,

(
M(TN)

)N
)
, where .β ◦ x is 

a composite function defined by .(β ◦ x)(t, X) = β (x(t, X)). Here  .Dβ denotes 
the Jacobian matrix .(Dβ)ij = ∂βi/∂xj , 1 ≤ i, j ≤ N . 

The time variable in (2.3) should be interpreted in the sense of a distribution
whose variables are t and X. In other words, (2.3) means that

. −
∫

TN

∫ ∞

−∞
∂ϕ

∂t
(t, X)(β ◦ x)(t, X) dtdX

=
∫

TN

∫ ∞

−∞
ϕ(t,X)Dβ (x(t, X)) b (x(t, X)) dtdX

for all .ϕ ∈ C∞
c (T × TN). Of course, if x is . C1 in t , then x must satisfy (2.3) for all

. β and X if and only if x is a solution to (1.1) with .x(0, X) = X. 

We need to explain the space .L∞
(
R,

(
M(TN)

)N
)
. If  V is a Banach space V , 

then let .Lp(R, V ) be the space of all pth integrable functions on . R as defined in 
Appendix 5.2 (4) using a Bochner integral. Since .M(TN) is not a normed space 
but just a metric space, we must extend the definition. The space . L∞ (

R,M(TN)
)

is the space of all measurable functions f on . R with values in .M(TN) such that
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.d(f, 0) is in .L∞(R) as function of t . The space .L∞ (
R,M(TN)N

)
is defined as 

.
(
L∞ (

R,M(TN)
))N

. 
Finally, we expect that the flow map will satisfy the group property, i.e., for any 

.t, s ∈ R, 

.x(t + s,X) = x (t, x(s,X)) for a.e. X. (2.5) 

Theorem 2.2 
Assume that (2.1) holds.

(i) (Existence) Then there exists a unique .x = x(t, X), with 

. x ∈ C

(

R,
(
M(TN)

)N
)

satisfying (2.2) –(2.5) . In particular, there exists a renormalized solu-
tion to (1.1). Moreover, the mapping .X �→ (β ◦ x)(·, X) is in 
.L1

(
TN, (C(I))N

)
for . β given in (2.3) , (2.4) , where I is an arbitrary

closed bounded interval. Furthermore, for almost every .X ∈ TN the 

function .t �→ x(t, X) is in .
(
C1(R)

)N
and .

∂x

∂t
= b(x) on . R as a function 

of t . 
(ii) (Uniqueness) There is at most one (renormalized) solution x to (1.1) 

satisfying all properties in (i).

It is not difficult to see that the space .C(I) is regarded as a Banach space equipped 
with .‖ · ‖∞ norm since I is compact. 

We shall focus on the uniqueness part of the proof. The main idea to prove the 
uniqueness is to show that the function .u0 (x(t, X)) depends only on . u0 ∈ C∞(TN)

for any choice of a real-valued function . u0. Since .u(X, t) = u0 (x(t, X)) solves 
a transport equation .ut − b(X) · ∇Xu = 0 with initial datum .u0(X), the problem 
is reduced to the uniqueness of a (weak) solution to the transport equation with 
nonsmooth solenoidal coefficient b. Here, .ut = ∂u/∂t , and . ∇X denotes the spatial 
gradient in X. We shall postpone the uniqueness proof of Theorem 2.2 to the end of 
Chap. 2. 

For the reader’s convenience, we show that .u(X, t) solves 

.ut (X, t) − b(X) · ∇Xu(X, t) = 0 (2.6)
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Fig. 2.1 Characteristic curve 

at least if .b ∈ C1 and x is . C1 in its variables .(t, X) ∈ R × TN . We first prove that 
(2.6) at .t = 0. By direct calculation, 

. ut (X, t) =
N∑

i=1

∂u0

∂xi
(x(t, X))

dxi

dt
=

N∑

i=1

∂u0

∂xi
(x(t, X)) bi (x(t, X)) ,

∂u

∂Xj
(X, t) =

N∑

i=1

∂u0

∂xi
(x(t, X))

∂xi

∂Xj
(t, X).

At .t = 0, .ut (X, 0) = ∑N
j=1(∂ju0)(X)bj (X), .∂u/∂Xj

∣
∣
t=0 = (∂ju0)(X) since 

.
∂xi

∂Xj

∣
∣
∣
t=0

= δij (.δij = 1 if .i = j and .δij = 0 if .i �= j ), so we have (2.6) . We next set

.us(X) = u(X, s) for .s ∈ R. Then, by the group property, we see that 

. u(X, t + s) = u0 (x(t + s,X)) = u0 (x (s, x(t, X))) = us (x(t, X)) .

Applying the result for .t = 0, with .u0 = us , we have  

. ut (X, s) − b(X) · ∇Xu(X, s) = 0.

This yields (2.6). (The curve .x = x(t, X) is often called a characteristic curve of 
(2.6). It is easy to see that a solution u of (2.6) is constant along each characteristic
curve, i.e., for a fixed X, the function .u (x(−t, X), t) is constant in t ; see Fig. 2.1.) 

2.2 Transport Equations 

We are concerned with the uniqueness of a (weak) solution .u = u(x, t) to a transport 
equation 

.ut − b(x) · ∇xu = 0 (2.7)
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Fig. 2.2 Support of . φ

or 

. ut −
N∑

i=1

bi(x)
∂u

∂xi
= 0,

where .b = (b1, . . . , bN); here we denote the independent variables by x instead 
of X. A notion of the weak solution u for (2.7) with initial datum .u0 ∈ L1(TN) is 
obtained by multiplying .φ ∈ C∞

c

(
TN × [0, T )

)
(i.e., .suppφ is compact in . TN ×

[0, T )) (cf. Fig. 2.2) and integrating over .TN × [0, T ]. Indeed, we have 

. 

∫ T

0

∫

TN

{φut − φ (b(x) · ∇xu)} dxdt = 0.

Integrating by parts yields 

. −
∫ T

0

∫

TN

φtudxdt −
∫

TN

φu0dx +
∫ T

0

∫

TN

(div(bφ)) u dxdt = 0. (2.8) 

This formula leads to a definition of a weak solution to (2.7) . If .� = (0, T ), then 
we simply write .Lp(0, T ;V ) instead of .Lp(�, V ), the space of all pth integrable 
functions on . � with values in a Banach space V . 

Definition 2.3 

Let b be in .W 1,p′
(TN), and let . u0 be in .Lp(TN) (1 ≤ p ≤ ∞). If a function 

.u ∈ L∞ (
0, T ;Lp(TN)

)
fulfills (2.8) for all .φ ∈ C∞

c

(
TN × [0, T )

)
, then u is 

called a weak solution to (2.7) with initial datum . u0. The vector field b may not 
be divergence-free. Here . p′ is the conjugate exponent of p, i.e., .1/p + 1/p′ = 1. 
The integrability conditions guarantee that each term of (2.8) will be well defined
as a usual Lebesgue integral. We interpret .1/∞ = 0 so that .p = 1 (resp. .p = ∞) 
implies .p′ = ∞ (resp. .p′ = 1).
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Of course, it is straightforward to extend the definition of a weak solution to an 
inhomogeneous problem of the form 

. ut − b · ∇u = f

with initial datum . u0 and the inhomogeneous term .f ∈ L1
(
0, T ;L1(TN)

)
. We say  

that .u ∈ L∞ (
0, T ;Lp(TN)

)
is a weak solution with initial datum . u0 if 

. −
∫ T

0

∫

TN

φtu dxdt −
∫

TN

φtu0 dx +
∫ T

0

∫

TN

(div(bφ)) u dxdt =
∫ T

0

∫

TN

f ϕ dxdt

for all .ϕ ∈ C∞
c

(
TN × [0, T )

)
. 

In this section, we simply say that u is a solution to (2.7) if it is a weak solution
of (2.8) . We are now in a position to state our main uniqueness result.

Theorem 2.4 
Let .1 ≤ p ≤ ∞, and let .b ∈ W 1,p′

(TN) be solenoidal, i.e., .div b = 0 in . TN . 
Let .u ∈ L∞ (

0, T ;Lp(TN)
)
be a solution to (2.7) with initial datum .u0 ≡ 0. 

Then .u ≡ 0. (More precisely, .u(x, t) = 0, a.e.  .(x, t) ∈ TN × (0, T ).) In 
particular, if . u1 and . u2 are solutions to (2.7) with the same initial datum . u0, 
then .u1 ≡ u2 since (2.7) is a linear equation.

A key observation is that .θ ◦ u solves (2.7) with initial datum .θ ◦ u0 provided 
that .θ ∈ C1(R), with .θ ′ ∈ L∞(R). This is formally trivial since Eq. (2.7) is linear.
However, in our setting, this property is nontrivial. Such a fact is often called a
relabeling lemma. Here is a rigorous statement in this setting.

Lemma 2.5 
Let .1 ≤ p ≤ ∞, and let .b ∈ W 1,p′

(TN). Assume that . u ∈
L∞ (

0, T ;Lp(TN)
)
is a solution to (2.7) with initial datum .u0 ∈ Lp(TN). 

Then .θ ◦ u ∈ L∞ (
0, T ;Lp(TN)

)
is a solution to (2.7) with initial datum

.θ ◦ u0 provided that .θ ∈ C1(R), with .θ ′ ∈ L∞(R). 

Admitting Lemma 2.5, we give a proof of Theorem 2.4 for .1 ≤ p < ∞. The  
case .p = ∞ is postponed to the next section.
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Proof of Theorem 2.4 for .p < ∞ A heuristic idea is to take .θ(σ ) = |σ |p and 
observe that .|u|p = θ ◦ u is a solution to (2.7) so that

. 
d

dt

∫

TN

|u|p dx =
∫

TN

(|u|p)
t
dx =

∫

TN

div
(
b|u|p)

dx = 0

since .div b = 0 implies .div(bw) = b · ∇w for a function w. However, since this . θ
is not . C1 or .θ ′ ∈ L∞, we must circumvent it. 

We shall take a suitable . C1 function . θ . By Lemma 2.5, the function .θ ◦ u is a 
solution of (2.7). Assume that .θ(0) = 0. By taking .φ = φ(t) (spatially constant 
function) in (2.8) , we observe that

. −
∫ T

0
φt

(∫

TN

θ(u)dx

)

dt − 0 + 0 = 0

since .div(bφ) = 0. (This is the only place .div b = 0 is invoked.) This implies 

. 

∫ T

0
ψ(t)

(∫

TN

θ(u)dx

)

dt = 0

for any .ψ ∈ C∞
c ((0, T )) since we are able to take .φ ∈ C∞ ([0, T ]) with 

.suppφ ⊂ [0, T ) such that .φt = ψ . Indeed, it suffices to take .φ = − ∫ T

t
ψds. 

Thus a fundamental lemma of the calculus of variations (cf. Exercise 2.3 or [19, 
Corollary 4.24]) implies that 

.

∫

TN

θ(u)(x, t)dx = 0 for a.e. t ∈ (0, T ). (2.9) 

Since . θ is required to be . C1 with bounded first derivative, for a given positive 
constant M we take 

. g(σ ) := (|σ | ∧ M)p ,

θε(σ ) := (ρε ∗ g)(σ ) − (ρε ∗ g)(0) for σ ∈ R,

where .ρε ∈ C∞
c (R) is a Friedrichs’ mollifier in . R, i.e., 

. ρε(σ ) = 1

ε
ρ(σ/ε), ρ ≥ 0, supp ρ ∈ (−1, 1),

∫

R
ρdσ = 1

for .ε > 0; see Fig. 2.3. Here  .a1 ∧ a2 = min(a1, a2) for .a1, a2 ∈ R. Since . θε ∈ C∞
(Exercise 2.4), we plug such . θε into (2.9), and sending . ε to zero (Exercise 2.5) yields 

.

∫

TN

(|u| ∧ M)p (x, t)dx = 0
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Fig. 2.3 A typical graph of . ρ
and . ρε

for a.e. t by the (Lebesgue) dominated convergence theorem (Theorem 5.1) because 
.{|θε(u)|}0<ε<1 is bounded in .L

∞(TN). Since u is in .L∞ (
0, T ;Lp(TN)

)
, we send 

M to infinity and again use the dominated convergence theorem to conclude that 

. 

∫

TN

|u|p(x, t)dx = 0, a.e. t ∈ (0, T ).

Thus, we conclude that .u ≡ 0 in .L∞ (
0, T ;Lp(TN)

)
. By Fubini’s theorem, this is 

simply .u(x, t) = 0 for a.e. .(x, t) ∈ TN × (0, T ). ��

In the rest of this section, we shall prove the relabeling lemma (Lemma 2.5). A 
key idea is an approximation. From here, let . ρε be a Friedrichs’ mollifier in . RN , i.e., 
for . ε > 0

. ρε(x) = 1

εN
ρ

(x

ε

)
, ρ ∈ C∞

c (RN),

∫

RN

ρ dx = 1, ρ ≥ 0.

Lemma 2.6 
Let .1 ≤ p ≤ ∞, and let .b ∈ W 1,β(TN), with .β ≥ p′. Let . u ∈
L∞ (

0, T ;Lp(TN)
)
be a solution of (2.7) with initial datum .u0 ∈ Lp(TN). 

Let . ρε be a Friedrichs’ mollifier in space variables. Then .uε = u∗ρε satisfies 

. 
∂uε

∂t
− b · ∇uε = rε

with initial datum .u0ε = u0∗ρε, with some real-valued function . rε converging 
to zero in .L1

(
0, T ;Lα(TN)

)
as .ε → 0, where 

.1/α = 1/β + 1/p if β or p is finite,

1 ≤ α < ∞ is arbitrary if β = p = ∞.
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Proof of Lemma 2.5 admitting Lemma 2.6 By Lemma 2.6, we observe that 

. 
∂uε

∂t
− b · ∇uε = rε → 0 in L1

(
0, T ;L1(TN)

)
;

in other words, 

. lim
ε↓0

∫ T

0

∫

RN

|rε| dxdt = 0.

We take .θ ∈ C1(R), with .θ ′ ∈ L∞(R). Since . uε is smooth in space, we see that 

. 
∂

∂t
(θ ◦ uε) − b · ∇(θ ◦ uε) = rεθ

′ ◦ uε.

Since .θ ′ ∈ L∞(R), the right-hand side .rεθ
′ ◦uε → 0 in .L1

(
0, T ;L1(RN)

)
as .ε ↓ 0, 

we formally conclude that .θ ◦ u is a solution to (2.7) with initial datum .θ ◦ u0. Of  
course, we must carry out these arguments in a weak form, (2.8) . In other words, we
send .ε ↓ 0 for 

. −
∫ T

0

∫

TN

φt (θ ◦ uε) dxdt −
∫

TN

φ(θ ◦ u0ε) dx +
∫ T

0

∫

TN

(div(bφ)) θ ◦ uε dxdt

=
∫ T

0

∫

TN

φrε(θ
′ ◦ uε) dxdt with u0ε = u0 ∗ ρε

to get 

. −
∫ T

0

∫

TN

φt (θ ◦ uε) dxdt −
∫

TN

φ(θ ◦ u0) dx +
∫ T

0

∫

TN

(div(bφ)) θ ◦ uε dxdt = 0

for .φ ∈ C∞
c

(
TN × [0, T )

)
. ��

It remains to prove Lemma 2.6. For this purpose, it suffices to prove the 
convergence of commutators. 

Lemma 2.7 
Let . ρε denote a Friedrichs’ mollifier in . RN . Let .1 ≤ p ≤ ∞, and let . b ∈
W 1,β(TN), with .β ≥ p′. If .w ∈ Lp(TN), then 

. Rε(w, b) = (b · ∇w) ∗ ρε − b · ∇(w ∗ ρε) → 0 in Lα(TN)

as .ε → 0, where . α is given as in Lemma 2.6; in particular, in the case 
.p = ∞ so that .p′ = 1, .α = β if .β < ∞. Moreover, . ‖Rε(w, b)‖Lα ≤
C‖w‖Lp‖Db‖Lβ with some .C > 0 independent of sufficiently small . ε.
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Proof of Lemma 2.6 admitting Lemma 2.7 Direct calculation shows that 

. 
∂

∂t
uε − b · ∇uε = Rε(u, b);

in other words, 

. −
∫ T

0

∫

TN

φtuε dxdt −
∫

TT

φu0ε dx +
∫ T

0

∫

TN

(div(bφ)) uε dxdt

=
∫ T

0

∫

TN

Rε(u, b)φ dxdt

for all .φ ∈ C∞
c

(
TN × [0, T )

)
. By the second statement of Lemma 2.7, we have  

. ‖Rε(u, b)‖Lα (t) ≤ C‖u‖Lp(t)‖Db‖Lβ .

The right-hand side is bounded in t , so Lemma 2.7 yields 

. lim
ε↓0

∫ T

0
‖Rε(w, b)‖Lα (t) dt =

∫ T

0
lim
ε↓0 ‖Rε(w, b)‖Lα (t) dt = 0

by a dominated convergence theorem. (One immediately observes that b is allowed 
to depend on time t if .b ∈ L1

(
0, T ;W 1,β(TN)

)
and .u ∈ L∞ (

0, T ;Lp(TN)
)
. ��

Proof of Lemma 2.7 We first observe that the term .(b · ∇w) ∗ ρε should be 
interpreted as 

. ((b · ∇w) ∗ ρε) (x) = −
∫

TN

w(y) divy {b(y)ρε(x − y)} dy

since .∇w is not an integrable function. This identity is easily obtained if w is smooth 
by integration by parts. We proceed with 

. (b · ∇w) ∗ ρε − b · ∇(w ∗ ρε) = ρε ∗ (b · ∇w) −
N∑

i=1

(
∂

∂xi

ρε ∗ w

)

bi

= −
∫

TN

w(y)
[
divy {b(y)ρε(x − y)} + b(x) · (∇ρε)(x − y)

]
dy

=
∫

TN

w(y) ((b(y) − b(x)) · (∇ρε)(x − y)) dy −
∫

TN

(w div b) ∗ ρε dy

= I + II.

Here, we use the relation .∇y (ρε(x − y)) = −(∇ρε)(x − y).
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We next estimate I . Since . ρ has compact support, .ρε(x) = 0 for .|x| ≥ Cε, with 
some C independent of . ε. By changing . ε by . c0ε with some .c0 > 0, we may assume 
that .C < mini ωi/2. This choice implies that the ball .BC(z) centered at .z ∈ TN with 
radius C is contained in one periodic cell. We shall assume that .ε < 1. By changing 
the variable of integration by .z = (y − x)/ε, we obtain 

. I (x) =
∫

|x−y|≤Cε

{(b(y) − b(x)) · (∇ρε)(x − y)w(y)} dy

=
∫

|z|≤C

{
b(x + εz) − b(x)

ε
· (∇ρ)(−z)w(x + εz)

}

dz.

Since . ∇ρ is bounded, i.e., .C0 := ‖∇ρ‖L∞(RN ) < ∞, we observe that 

. |I (x)| ≤ C0

∫

|z|≤C

kε(x, z) |w(x + εz)| dz

with .kε(x, z) = |b(x + εz) − b(x)| /ε. By the  Hölder inequality 

. ‖f · 1‖α
L1(BC)

≤ ‖f ‖α
Lα(BC)|BC |α−1,

we observe that 

. 
1

Cα
0

‖I‖α
Lα(TN)

=
∫

TN

{∫

|z|≤C

kε(x, z) |w(x + εz)| dz

}α

dx

≤
∫

TN

∫

|z|≤C

{kε(x, z) |w(x + εz)|}α dzdx|BC |α−1 =: Jα

for .α ∈ [1,∞]. Here, .|BC | = LN(BC) (i.e., the volume of a ball of radius C) 
and it equals .|SN−1|CN/N . Applying the Hölder inequality for . kα

ε and .|w|α with 
.1/α = 1/β + 1/p, we see that 

.J ≤ |BC |1−1/α
{∫

TN

∫

|z|≤C

kε(x, z)βdzdx

}1/β {∫

TN

∫

|z|≤C

|w(x + εz)|pdzdx
}1/p

= C1‖w‖Lp(TN )

{∫

TN

∫

|z|≤C

kε(x, z)βdzdx

}1/β
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with .C1 = |BC |1−1/α|BC |1/p = |BC |1−1/β . Since 

. |b(x + εz) − b(x)| =
{

N∑

i=1

∣
∣
∣
∣

∫ 1

0

〈
∇bi(x + εσz), εz

〉
dσ

∣
∣
∣
∣

2}1/2

≤ ε|z|
(

N∑

i=1

∣
∣
∣
∣

∫ 1

0

∣
∣
∣∇bi(x + εσz)

∣
∣
∣ dσ

∣
∣
∣
∣

2)1/2

≤ ε|z|
∫ 1

0
|Db(x + εσz)| dσ,

we see that 

. 

∫

TN

∫

|z|≤C

kε(x, z)βdzdx ≤
∫

TN

∫

|z|≤C

∫ 1

0
|Db(x + εσz)|β dσ |z|βdzdx

= C
β
2 ‖Db‖β

Lβ(TN )
with C2 =

(∫

|z|≤C

|z|βdz
)1/β

.

Here, .|Db(x)| denotes the Euclidean norm of the .N × N matrix .Db(x) in .RN×N . 
In other words, .|Db(x)|2 = tr

(
Db(x)Db(x)T

)
, where .MT denotes the transpose of 

a matrix  M . 
We now conclude that 

. ‖I‖Lα(TN) ≤ C0J ≤ C0C1‖w‖Lp(TN)

{∫

TN

∫

|z|≤C

kε(x, z)βdzdx

}1/β

≤ C0C1C2‖w‖Lp(TN)‖Db‖Lβ(TN ).

By Young’s inequality for convolution, we have 

. ‖II‖Lα ≤ ‖ρε‖L1‖w div b‖Lα ≤ 1‖w div b‖Lα .

By the Hölder inequality, 

. ‖w div b‖Lα ≤ ‖w‖Lp‖Db‖Lβ .

Thus, the desired estimate .‖Rε(w, b)‖Lα ≤ C‖w‖Lp‖Db‖Lβ now follows. 
It remains to prove that .‖Rε(w, b)‖Lα → 0 as .ε → 0. This can be carried out by 

a density argument. 
If .w ∈ W 1,p(TN), then both .(b · ∇w) ∗ ρε and .(b · ∇)(w ∗ ρε) converge to 

.(b · ∇)w in .Lα(TN) as .ε → 0 since .f ∗ ρε → f in .Lα(TN) if .f ∈ Lα(TN); see  
[19, Section 4.4]. Here, we invoke the property .α < ∞. Thus, .Rε(w, b) → 0 in 
.Lα(TN) provided that .w ∈ W 1,p(TN).
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Suppose that .1 ≤ p < ∞. Since .W 1,p(TN) is dense in .Lp(TN) for .p < ∞, for  
.w ∈ Lp(TN) there is a sequence .{wm} ⊂ W 1,p(TN) converging to w in .Lp(TN). 
(This density follows from the fact that .f ∗ ρ1/m ∈ C∞(TN) and .f ∗ ρ1/m → f in 
.Lp(TN) as .m → ∞ for .p ∈ [1,∞). See [19, Section 4.4] and Appendix 5.2 (6).) 
Since 

. Rε(w, b) = Rε(w − wm, b) + Rε(wm, b),

we observe that 

. ‖Rε(w, b)‖Lα ≤ C3‖w − wm‖Lp‖Db‖Lβ + ‖Rε(wm, b)‖Lα

by the estimate of Lemma 2.7 proved earlier with some .C3 > 0 independent of 
sufficiently small .ε > 0. Sending .ε ↓ 0 yields 

. lim sup
ε↓0

‖Rε(w, b)‖Lα ≤ C3‖w − wm‖Lp‖Db‖Lβ + 0.

Letting .m → ∞ yields a desired conclusion, i.e., .Rε(w, b) → 0 as .ε → 0 in 
.Lα(TN). 

If .p = β = ∞, then, by our assumption, .α < ∞. This case is reduced to the 
case .α = p < ∞, .β = ∞. 

It remains to prove the case .β < ∞, but  .p = ∞. In this case, .α = β. 
Unfortunately, .w ∈ L∞(TN) cannot be approximated by an element of . W 1,∞(TN)

in the .L∞ sense. However, it is still possible to approximate in a weaker sense. That 
is, for any .w ∈ L∞(TN), there exists a sequence .wn ∈ L∞(TN) such that . wm → w

a.e. and .‖wm‖∞ ≤ ‖w‖∞. (For example, it is enough to take .wm = ρ1/m ∗ w. See 
Exercise 2.10.) We are able to estimate 

. lim sup
ε→0

‖Rε(v, b)‖α
Lα ≤ C

∫

TN

|Db(x)|α |v(x)|α dx (2.10) 

with some C independent of .v ∈ L∞(TN) and b. Indeed, from a similar argument 
as previously, the term corresponding to I is dominated by 

. 
1

Cα
0

‖I‖α
Lα(TN)

≤
∫

TN

∫

|z|≤C

{kε(x, z) |v(x + εz)|}α dzdx|BC |α−1

≤
∫

TN

∫

|z|≤C

|z|α
(∫ 1

0
|Db(x + εσz)|α |v(x + εz)|α dσ

)

dzdx|BC |α−1,

where .β = α. We change the variable of integration by .x = x + εσz to get 

. =
∫

TN

∫

|z|≤C

|z|α
∫ 1

0
|Db(x)|α |v (x + (1 − σ)εz)|α dσdzdx|BC |α−1.
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Since the shift operator is continuous in . Lα norm,1 we see that 

. v (x + (1 − σ)εz) → v(x)

for almost all .x ∈ TN as .ε → 0 by taking a subsequence if necessary.2 Since 
v is bounded and .|Db|α is integrable, by the dominated convergence theorem we 
conclude that the last term converges to 

. Cα
2 |BC |α−1

∫

TN

|Db(x)|α |v(x)|α dx as ε ↓ 0.

A similar but much easier observation yields a similar estimate for . II. We thus 
conclude (2.10) .

By (2.10) , we are able to estimate

. lim sup
ε↓0

‖Rε(w, b)‖Lα ≤ lim sup
ε↓0

‖Rε(w − wm, b)‖Lα

≤ C

∫

TN

|Db(x)|α |w(x) − wm(x)|α dx.

Since .‖wm‖∞ ≤ ‖w‖∞ and .wm → w a.e. as .m → ∞, by the dominated 
convergence theorem, we conclude that the right-hand side tends to zero. The proof 
for the convergence .limε↓0 ‖Rε(w, b)‖Lα = 0 is now complete. ��

2.3 Duality Argument 

In this section, we shall prove the uniqueness result (Theorem 2.4) of a solution 
to the transport equation (2.7) when it is bounded under the condition that the
coefficient b of the transport term is merely in .W 1,1(TN). The argument presented 
so far does not work for .p = ∞. We study the case where .p = ∞ by a duality 
argument. 

Let us explain a basic idea of the duality argument. This is a typical argument 
for uniqueness. Consider a linear operator S from . Rn to . Rm. Suppose that we are 
asked to check whether this mapping is injective or one to one. Since S is linear, it 
is enough to show the kernel of S is just . {0}. In other words, we are asked to prove 
that .Sx = 0 implies .x = 0. The main idea of the duality argument is to reduce the

1 This is one of the fundamental properties of the Lebesque measure. It states that . lim|y|→0 ‖τyf −
f ‖Lα(TN ) = 0 for .α ∈ [1,∞), where .(τyf )(x) = f (x + y). 
2 If .fε → f in .Lp(TN), there is a subsequence . fεk

that converges to f a.e. 



2.3 Duality Argument 59

problem to the solvability of its dual problem .S∗z = y for all .y ∈ Rn. If there is a 
solution z, then 

. x · y = x · S∗z = Sx · z = 0

for all .y ∈ Rn. This implies .x = 0. 
So to carry out this argument, we need some existence theorem for a dual 

problem. 

Proposition 2.8 
Let .1 ≤ p ≤ ∞, and let .u0 ∈ Lp(TN). Assume that . b ∈ W 1,1(TN) ∩
Lp′

(TN), with .div b = 0. Then there exists a solution . u ∈ L∞ (
0, T ;Lp(TN)

)

of (2.7) with initial datum . u0. Here, .1/p + 1/p′ = 1. 

Proof. A typical way to prove the existence of a solution under nonsmooth 
coefficients is as follows. We first approximate the problem by regularization, then 
take a limit of a solution to the approximate problem. We need a priori estimates to 
carry out the second step. 

We begin with an a priori estimate assuming that b and . u0 are smooth. Let 
.x = x(t, X) be the flow map generated by b, i.e., .ẋ = b(x), with .x(0) = X. 
If b is smooth, then by the smooth dependence of the initial data [52, Chapter 
5], x is smooth in t and X. Moreover, by the uniqueness of the solution of (1.1) 
(Proposition 1.1), the group property (2.5) holds. We first recall that . u(X, t) =
u0 (x(t, X)) (uniquely) solves (2.7) , i.e.,

. ut − b(X) · ∇Xu = 0

with smooth data 

. u|t=0 (X) = u0(X)

if b is smooth. By this solution formula, it is clear that 

. ‖u‖L∞(t) ≤ ‖u0‖L∞ .

By the group property (2.5), we have .u0(X) = u (x(−t, X), t). Thus, . ‖u0‖L∞ ≤
‖u‖L∞(t), so that 

. ‖u‖L∞(t) = ‖u0‖L∞ .

Here, .‖u‖Lq (t) denotes the norm of u in .Lq(TN) with a parameter t . By a formal 
argument, to obtain the volume-preserving property (2.2), we observed that the
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Jacobian .detF of the flow map equals one, where .F = (Fij ) = (∂xi/∂Xj ). Thus, 
by (2.2) , we see that

.‖u‖Lq (t) = ‖u0‖Lq (2.11) 

for .1 ≤ q < ∞. Combining the .L∞ estimate, we see (2.11) holds for all .q ∈ [1,∞]. 
We next approximate our original b by .bε = b ∗ ρε. Then there is a (unique) 

solution .uε(x, t) ∈ C∞ (
TN × [0, T )

)
of 

.ut − bε(x) · ∇xu = 0 (2.12) 

with initial datum .u0ε = u0 ∗ ρε for .u0 ∈ Lp(TN); the solution .uε(x, t) is given by 
.uε(x, t) = u0 (xε(t, x)). Here, . xε is the flow map generated by . bε, i.e., .ẋε = bε(xε), 
with .xε(0) = x ∈ TN . Since . uε solves (2.12) , it solves its weak form, i.e.,

. −
∫ T

0

∫

TN

φtuεdxdt −
∫

TN

φu0εdx +
∫ T

0

∫

TN

(div(bεφ)) uεdxdt = 0 (2.13) 

for all .φ ∈ C∞
c

(
TN × [0, T )

)
. We note that . uε and . u0ε satisfy the norm-preserving 

property (2.11) .
Case 1 (.1 < p ≤ ∞). Since (2.11) for . uε implies that .{uε}0<ε<1 is bounded 

in .L∞ (
0, T ;Lp(TN)

)
, by  .∗-weak compactness, there is a subsequence . {uε′ }

converging to some u .∗-weakly in .L∞ (
0, T ;Lp(TN)

)
for .p ∈ (1,∞]; see  

Appendix 5.2 (4) for .∗-weak convergence in .L∞ (
0, T ;Lp(TN)

)
. We now send 

. ε′ to zero in (2.13). It is easy to see that the first two terms of (2.13) converge to
the first two terms of (2.8) , respectively. The only difficulty lies in handling the last
term. We proceed with

.

∫ T

0

∫

TN

div(bε′φ)uε′dxdt =
∫ T

0

∫

TN

(bε′ · ∇φ)uε′dxdt (2.14) 

since .div bε = div(b ∗ ρε) = (div b) ∗ ρε = 0. By a standard property of the 
mollifier, we see that .bε → b in .Lp′

(TN) if .p ∈ (1,∞] (e.g., [19, Section 4.4]). 
Since .uε′ ⇀ u .∗-weakly in .L∞ (

0, T ;Lp(TN)
)
, this implies that (2.14) converges

to

. 

∫ T

0

∫

TN

(b · ∇φ)u dxdt =
∫ T

0

∫

TN

div(bφ)u dxdt

as .ε′ ↓ 0. Here, we invoked the property 

. lim
ε↓0

∫ T

0

∫

TN

fεgε dxdt =
∫ T

0

∫

TN

fg dxdt
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if .fε → f in .L1
(
0, T ;Lp(TN)

)
and .gε ⇀ g .∗-weakly in .L∞ (

0, T ;Lp(TN)
)
as 

.ε ↓ 0. To see this property, we notice 

. fεgε − fg = (fε − f )gε + f (gε − g)

so that 

. 

∣
∣
∣
∣

∫ T

0

∫

TN

fεgε dxdt −
∫ T

0

∫

TN

fg dxdt

∣
∣
∣
∣

≤‖fε − f ‖
L1

(
0,T ;Lp′

(TN)
)‖gε‖L∞(0,T ;Lp(TN ))

+
∣
∣
∣
∣

∫ T

0

∫

TN

f (gε − g) dxdt

∣
∣
∣
∣

by the Hölder inequality (cf. Exercise 2.9). The first term tends to zero as . ε ↓ 0

since .‖gε‖L∞(0,T ;Lp(TN)) is bounded and .fε → f in .L1
(
0, T ;Lp′

(TN)
)
. The  

second term tends to zero as .ε ↓ 0 since .gε ⇀ g .∗-weakly in .L∞ (
0, T ;Lp(TN)

)
. 

We thus obtain (2.8) when .p ∈ (1,∞]. 
Case 2 (.p = 1). In this case, boundedness in .L1(TN) does not imply weak 

compactness. We approximate .u0 ∈ L1(TN) by .u0m ∈ Lp̂(TN), .p̂ > 1 such that 

.‖u0 − u0m‖L1 → 0 as .m → ∞. Let  . uε
m be an .L∞

(
0, T ;Lp̂(TN)

)
solution with 

initial datum .u0m for (2.12) , which is given by

. uε
m(x, t) = u0m (xε(t, x)) .

Since (2.12) is linear, we apply (2.11) to .uε
m − uε

m+1 to get 

.‖uε
m − uε

m+1‖Lq (t) = ‖u0m − u0m+1‖Lq (2.15) 

for all .1 ≤ q ≤ p̂. For .m = 1, we take a subsequence as .ε → 0 to get . U1 satisfying 
(2.8) starting with . u01 by Case 1. For .m = 2, we take a further subsequence to get 
a . U2 satisfying (2.8) starting with . u02. We repeat the procedure and obtain . Um ∈
L∞

(
0, T ;Lp̂(TN)

)
satisfying (2.8) with initial datum .u0m and moreover satisfying 

. ‖Um − Um+1‖L1(t) = ‖u0m − u0m+1‖L1

by (2.15). This implies that .{Um} is a Cauchy sequence in .L∞ (
0, T ;L1(TN)

)
. 

Since .Um solves (2.8), letting .m → ∞ yields the desired solution . U =
limm→∞ Um ∈ L∞ (

0, T ;L1(TN)
)
of (2.7) with initial datum .u0 ∈ L1(TN). ��
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� Remark 2.9 

(i) The assumption .b ∈ W 1,1(TN) is used only to define .div b in .L1(TN). It is  
enough to assume that .b ∈ Lp′

(TN) with .div b = 0 in the distribution sense. 
(ii) Proposition 2.8 is still valid for a solution of .ut − b · ∇u = f (instead of 

(2.7)) provided that .f ∈ L1
(
0, T ;Lp(TN)

)
. Its weak form is given right after 

Definition 2.3. 

Proof of Theorem 2.4 for .p = ∞ We shall prove that 

. 

∫ T

0

∫

TN

uφdxdt = 0

for all .φ ∈ C∞
c

(
TN × (0, T )

)
. This implies .u = 0 a.e. in .TN × (0, T ) by a 

fundamental lemma of the calculus of variations (Exercise 2.3 and [19, Corollary 
4.24]). 

We first consider a dual problem, which is a backward problem: 

. 
∂�

∂t
− b · ∇� = φ in TN × (0, T ), �|t=T = 0 in TN.

By Proposition 2.8 and Remark 2.9 (ii), there exists a solution 

. �̃ ∈ L∞ (
0, T ;L∞(TN)

)

for .∂t �̃ + b · ∇�̃ = φ̃ with .�̃(x, 0) = 0 for .φ̃(x, t) = φ(x, T − t). Setting 
.�(x, t) = �̃(x, T −t), we find a solution .� ∈ L∞ (

0, T ;L∞(TN)
)
to the preceding 

backward problem. 
We regularized . � and u by .�ε = � ∗ ρε and .uε = u ∗ ρε, respectively. The 

resulting equation for . �ε and . uε is 

. 
∂�ε

∂t
− b · ∇�ε = φε + ψε in TN × (0, T ), �ε|t=T = 0 in TN,

∂uε

∂t
− b · ∇uε = rε in TN × (0, T ), uε|t=0 = 0 in TN

with .φε = φ ∗ ρε, .ψε = (b · ∇�) ∗ ρε − b · ((∇�) ∗ ρε) and 

.rε = (b · ∇u) ∗ ρε − b · ((∇u) ∗ ρε) .
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We have .rε, ψε → 0 (as .ε ↓ 0) in  .L1
(
0, T ;L1(TN)

)
by Lemma 2.6; the  

external term . φ is also allowed in Lemma 2.6. Multiply the second equation by 
. �ε; integrating parts yields 

. −
∫ T

0

∫

TN

{uε(φε + ψε) + rε�ε} dxdt = 0;

here we invoke the property that .div b = 0. The  term .
∫ T

0

∫
TN rε�ε dxdt tends to zero 

as .ε ↓ 0 since 

. 

∣
∣
∣
∣

∫ T

0

∫

TN

rε�ε dxdt

∣
∣
∣
∣ ≤ ‖�ε‖L∞(0,T ;L∞(TN ))

∫ T

0
‖rε‖L1(TN)(t) dt

and .‖�ε‖L∞(t) ≤ ‖�‖L∞(t) and .rε → 0 in .L1
(
0, T ;L1(TN)

)
. Similarly, the term 

.
∫ T

0

∫
TN uεψε dxdt tends to zero as .ε ↓ 0. Thus, sending . ε to zero, we deduce 

. 

∫ T

0

∫

TN

uφdxdt = 0.

��

2.4 Flow Map and Transport Equation 

In this section, we shall give the uniqueness of a flow map .X �→ x(t, X) stated in 
Theorem 2.2 (ii) using the transport equation. The following discussion admits the 
existence part (Theorem 2.2 (i)). 

Proof of Theorem 2.2 (ii) If there are two different flow maps .x1(t, X) and 
.x2(t, X), then there is at least one .u0 ∈ C∞(TN) such that . u0 (x1(t, X)) �=
u0 (x2(t, X)) for some t and a set of X of positive measure. 

For any .u0 ∈ C∞(TN), we must prove the uniqueness of .u0 (x(t, X)). Thanks 
to Theorem 2.4, it suffices to prove that .u(X, t) = u0 (x(t, X)) is the unique (weak) 
solution of (2.7) in .L∞ (

0, T ;L∞(TN)
)
. For notational convenience in the rest of 

the proof, we will write the flow map .x(t, X) by .ϕ(t, x), so that the variable in (2.7) 
becomes x rather than X and .u(x, t) = u0 (ϕ(t, x)). 

For each .ψ ∈ C∞(TN), .h > 0, .t ∈ R, we set  

.�h(t) =
∫

TN

1

h
{u(x, t + h) − u(x, t)} ψ(x)dx

=
∫

TN

1

h
{u0 (ϕ(t + h, x)) − u0 (ϕ(t, x))} ψ(x)dx.
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By the group property (2.5) , we see that

. �h(t) =
∫

TN

1

h
{u0 (ϕ (t, ϕ(h, x))) − u0 (ϕ(t, x))} ψ(x)dx.

By the volume-preserving property (2.2) , we see that

. 

∫

TN

u0 (ϕ (t, ϕ(h, x))) ψ(x)dx =
∫

TN

u0 (ϕ(t, z)) ψ (ϕ(−h, z)) dz,

where we take .z = ϕ(h, x). Thus, we observe that 

.�h(t) =
∫

TN

1

h
u(z, t) {ψ (ϕ(−h, z)) − ψ(z)} dz. (2.16) 

We next note that .(b ◦ ϕ) · (∇ψ ◦ ϕ) ∈ L∞ (
R, L1(TN)

)
since . ϕ has the volume-

preserving property (2.2) , which implies

. 

∫

TN

|b ◦ ϕ(x)| dx =
∫

TN

|b (ϕ(t, x))| dx =
∫

TN

|b(x)| dx,

∫

TN

|∇ψ ◦ ϕ(x)| dx =
∫

TN

|∇ψ (ϕ(t, x))| dx =
∫

TN

|∇ψ(x)| dx.

Moreover, 

. 
∂

∂t
(ψ ◦ ϕ) = (b ◦ ϕ) · (∇ψ ◦ ϕ)

since .∂tϕ(t, x) = b (ϕ(t, x)) for a.e. .x ∈ TN and for all .t ∈ R by (i). Thus, 

. ψ (ϕ(−h, z)) − ψ(z) = −
∫ h

0
b (ϕ(−σ, z)) · (∇ψ) (ϕ(−σ, z)) dσ.

We plug this formula into (2.16) to get

. �h(t) = −
∫

TN

1

h
u(z, t)

[∫ h

0
b (ϕ(−σ, z)) · (∇ψ) (ϕ(−σ, z)) dσ

]

dz.

As previously, we invoke the volume-preserving property (2.2) and the group
property (2.5) to get

.�h(t) = −
∫

TN

1

h
b(x) · ∇ψ(x)

∫ h

0
u (ϕ(σ, x), t) dσdx

= −
∫

TN

b(x) · ∇ψ(x)
1

h

∫ h

0
u0 (ϕ (t, ϕ(σ, x))) dσdx

= −
∫

TN

b(x) · ∇ψ(x)
1

h

∫ h

0
u(x, t + σ)dσdx.
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Since .ϕ = ϕ(t, x) is continuous in .t ∈ R for a.e. .x ∈ TN , 

. lim
h↓0

1

h

∫ h

0
u(x, t + σ) dσ = u(x, t) for all t

for a.e. .x ∈ TN . Since .b ·∇ψ ∈ L1
(
TN × (0, T )

)
and u is bounded on . TN × (0, T )

independent of h, by the dominated convergence theorem we conclude that 

.�h(t) → −
∫

TN

b(x) · (∇ψ)(x)u(x, t) dx as h ↓ 0; (2.17) 

this convergence is locally uniform in .(0, T ), i.e., 

. lim
h↓0 sup

a≤t≤b

|�h(t) − �(t)| = 0

for any .[a, b] ⊂ (0, T ), where . � denotes the right-hand side of (2.17) .
It is easy to see that

. �h(t) → ∂

∂t

∫

TN

u(x, t)ψ(x)dx as h ↓ 0

in the sense of distribution as a function of t . We thus conclude that u satisfies (2.8) 
for .φ(x, t) = ψ(x)η(t), with .η ∈ C∞

c ([0, T )). Thus, (2.8) is still valid for any
.φ ∈ C∞

c

(
TN × [0, T )

)
since the linear span of the product type is dense in the 

class of test functions .C∞
c

(
TN × [0, T )

)
. ��

� Remark 2.10 In the case of . TN , (2.3) for general . β is not invoked for the 
uniqueness proof; we only use .β = identity. However, if one considers the 
problem in .RN instead of . TN , it is important to approximate the identity since, in 
general, only bounded . β with bounded .|b(z)| / (1 + |z|) is allowed. This restriction 
is important to understand (2.3) in the distribution sense.

2.5 Notes and Comments 

Remarks on Flow Maps and Transport Equations 
The contents of Chap. 2 is an active area of current research. The construction of 
such a flow map .x = x(t, X) for non-Lipschitz vector field b is extended when b 
is just in BV spaces [2]. Although the flow map .x = x(t, X) is defined only for 
almost all .X ∈ TN , it is known that x is Lipschitz in X with a small exceptional set 
[4]. The estimate is now quantified by [30]. It is of the following form. For given 
.T > 0, .p > 1, and small .ε > 0 there is a compact set K such that . LN(TN\K) < ε

and 

. |x(t, X1) − x(t, X2)| ≤ exp
(
CNAp(x)/ε1/p

)
|X1−X2|, X1, X2 ∈ K, t ∈ [0, T ],
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with . CN depending only on the dimension. Here, 

. Ap(x) =
{ ∫

TN

(

sup
0≤t≤T

sup
0<r<2

1

LN (Br(X))

∫

Br(X)

log

( |x(t, X) − x(t, Y )|
r

+ 1

)

dY

)p

dX

}1/p

.

For simplicity, we assume that .B2(X) covers the fundamental domain . � of . TN . 
The quantity .Ap(x) is uniformly controlled by .‖Db‖L1 provided that .div b = 0. In  
[30], .div b may not be zero, but some uniform compressibility for the flow map is 
assumed. Moreover, in [30], the flow map itself is studied directly without using the 
transport equations. 

Our strategy for proving the uniqueness of the flow map in Chap. 2 is to reduce 
the uniqueness of the transport equation, as stated in Theorem 2.4. However, we 
warn the reader that the uniqueness of the transport equation fails if one considers a 
less regular vector field. In fact, if one relaxes the assumption 

. b ∈ W 1,p′
(TN), div b = 0

by 

. b ∈ Lp′
(TN), Db ∈ Lp̃(TN), div b = 0,

with .1/p + 1/p̃ > 1 − 1/(N − 1), then the assertion of Theorem 2.4 fails. In other 
words, there is a nontrivial weak solution u to (2.7) with zero initial data. This is
first proved by Modena and Székelyhidi, Jr. [75] using a convex integration method. 
A solution constructed there is not a renormalized solution, i.e., the assertion of 
Lemma 2.5 does not hold for their solution u. This can be understood as meaning 
there is a microscopic effect that cannot be captured by the macroscopic notion of 
a weak solution. Recently, a nonrenormalized weak solution was constructed by 
Drivas et al. [34] using a vanishing viscosity method with anomalous dissipation. 
As pointed out in [86], such a solution is produced by a microscopic effect. The 
notion of a weak solution is too weak to guarantee uniqueness even for linear 
transport equations. In a very recent preprint, Huysmans and Titi [55] proved that 
the uniqueness may fail even among renormalized solutions if one only assumes 
that .b = b(x, t) is bounded with .div b = 0. (Note that their b depends on time t .) 
They constructed two different solutions which are given as subsequential vanishing 
viscosity limits, of the same equation. 

In the next two chapters, we will discuss scalar conservation laws and the 
Hamilton–Jacobi equations, where a naive “weak solution” may not be unique. For 
these equations one is able to recover uniqueness by considering a special class of 
weak solutions. 

It is of current interest to show the nonuniqueness of weak solutions for various 
physically important nonlinear equations, even if the viscosity is included, for
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example, the Navier–Stokes equations [20]. However, it is not clear what kind of 
extra condition would guarantee uniqueness. 

The contents of Chap. 2 are taken from the paper [32], where the problem 
is studied on . RN . In this book, we consider the problem on .TN to simplify the 
situation. Lemma 2.7 is a crucial step of the argument and is often called DiPerna– 
Lion’s lemma. A variant of this lemma is called Friedrichs’ commutator lemma in 
[39, Section 11.19]. This type of lemma is useful for studying mass conservation 
laws for compressible flows. 

2.6 Exercises 

2.1 Give an example of the nonuniqueness of a solution to (1.1) with a given initial
datum when b ∈ ⋂

p≥1 W 1,p(RN).
2.2 Set 

. L = {
φ : TN → R

∣
∣ φ is Lebesgue measurable

and |φ| < ∞ a.e.
}
.

Set d(φ, ψ) = ‖min (|φ − ψ |, 1)‖L1(TN). Show that (L, d) is a metric space. 
2.3 Let f be a locally integrable function in (0, T  ). Assume that 

. 

∫ T

0
f (t)ψ(t) dt = 0

for all ψ ∈ C∞
c ((0, T  )). Show that f (t)  = 0 for almost all t ∈ (0, T  ). 

2.4 Let ρε be a Friedrichs’ mollifier. Let f be continuous on R. Show that ρε ∗ f 
is in C∞(R). 

2.5 In the context of Exercise 2.4, show that ρε∗f converges to f locally uniformly 
in R as ε tends to zero. 
See [45] for details of Exercises 2.3–2.5. 

2.6 Let L be the space defined in Exercise 2.2. Set 

. d(φ,ψ) =
∫

TN

|φ(x) − ψ(x)|
1 + |φ(x) − ψ(x)| dx.

Show that (L, d) is a metric space. 
2.7 Assume that {fm}∞m=1 is a sequence converging to f in L1(TN ) as m → ∞. 

In other words, 

. lim
m→∞

∫

TN

|fm(x) − f (x)| dx = 0.

Show that {fm} converges to f in measure.
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2.8 Assume that ϕ : TN → TN is a volume-preserving mapping. In other words, 
ϕ has the property that 

. LN
({

x ∈ TN
∣
∣ ϕ(x) ∈ A

})
= LN(A)

for any measurable set A. Show that 

. 

∫

TN

ψ (ϕ(x)) dx =
∫

TN

ψ(x) dx

for any measurable function ψ on TN . 
2.9 (i) For p ∈ [1,∞), let  p′ denote the conjugate exponent of p, i.e., 1/p + 

1/p′ = 1. Assume that a sequence {fm}∞m=1 converges to f in Lp (TN ) as 
m → ∞. In other words, 

. lim
m→∞

∫

TN

|fm(x) − f (x)|p dx = 0.

Assume that a sequence {gm}∞m=1 converges ∗-weakly to g in Lp′
(TN ) as 

m → ∞. In other words, 

. lim
m→∞

∫

TN

gm(x)ϕ(x) dx =
∫

TN

g(x)ϕ(x) dx

holds for all ϕ ∈ Lp (TN ). Show that 

. lim
m→∞

∫

TN

fm(x)gm(x) dx =
∫

TN

f (x)g(x) dx.

(ii) Set fm(x) = sinmx ∈ L2(T), where T = R/(2πZ). Show that {fm}∞m=1 
converges weakly to 0 in L2(T) but 

. lim
m→∞

∫

TN

fm(x)2 dx �= 0.

2.10 Let ρε be a Friedrichs’ mollifier. For f ∈ L∞(TN ), show that ρε ∗f converges 
to f a.e. as ε tends to zero. Moreover, show that 

.‖f ‖L∞(TN) = lim
ε↓0 ‖fε‖L∞(TN ), ‖fε‖L∞(TN) ≤ ‖f ‖L∞(TN).
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