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Preface 

It is of fundamental importance to study the uniqueness of a solution in the theory 
of partial differential equations, especially when the problem is nonlinear. Even if 
we focus on initial value problems for evolutionary differential equations, there is a 
large body of literature on fundamental equations. 

This book is intended to serve as a short introduction to uniqueness questions for 
initial value problems, especially when one considers generalized solutions that may 
not be differentiable. For this purpose, we discuss three typical equations – ordinary 
differential equations, scalar conservation laws, and Hamilton–Jacobi equations. 

Let us first consider the initial value problem of an autonomous system of 
ordinary differential equations of .x = x(t) ∈ RN of the form 

.
dx

dt
= b(x), x(0) = X ∈ RN, t ∈ I, (1) 

where .RN denotes the N -dimensional Euclidean space and I denotes a time interval 
containing 0. Although a local-in-time solution exists when b is continuous, it may 
not be unique. A conventional basic sufficient condition for uniqueness is that b 
is Lipschitz continuous near X. However, there is a weaker and useful sufficient 
condition for the uniqueness called the Osgood condition. This book begins with 
such a uniqueness issue when b is continuous. 

Even if b is discontinuous, it turns out that uniqueness for positive time holds 
when b is monotone nonincreasing when the notion of a solution is defined in a 
suitable way. Actually, this forward uniqueness has wide applications to the theory 
of partial differential equations by considering the ordinary differential equation (1) 
in an infinite-dimensional Hilbert space rather than . RN . This book only gives basic 
uniqueness issues for such problems. 

If b is neither monotone nonincreasing nor noncontinuous, in general, the 
solution may not be unique. However, if the derivative of b has some integrability 
and the divergence of b is zero, the solution operator 

. X �→ x(t, X)

can be uniquely determined to be almost all X. This type of theory was initiated 
by DiPerna and Lions [32] in the 1980s. It remains an active research area related

v



vi Preface

to fluid dynamics. This book provides an introduction to the theory by focusing on 
the uniqueness part in a periodic setting. It also relates to the uniqueness issue of a 
linear transport equation, 

. 
∂u

∂t
− b · ∇u = 0, x ∈ RN, t ∈ I,

when b is not regular. 
The uniqueness of a solution becomes more subtle for partial differential 

equations if a weak solution (a generalized solution that may not be differentiable) 
is considered. The first example is a scalar conservation law, 

. 
∂u

∂t
+ ∂

∂x
(f (u)) = 0, x ∈ R, t ∈ I,

when f is nonlinear. A typical example is the case where .f (u) = u2/2. In this case, 
the equation is called the Burgers equation. Even if the initial data are smooth, a 
solution may develop a jump discontinuity called a shock. A conventional notion 
of a weak solution may not guarantee uniqueness. An extra condition called the 
entropy condition guarantees its uniqueness. This book provides an introduction to 
the uniqueness of entropy solutions following the definition due to Kružkov [68]. 
A key idea of the uniqueness proof is doubling variables. Most of the discussion on 
conservation laws is taken from a book by Holden and Risebro [53]. 

The second example is a Hamilton–Jacobi equation: 

. 
∂u

∂t
+ H(x,∇u) = 0, x ∈ RN, t ∈ I,

where H is a continuous function called a Hamiltonian. In a spatially one-
dimensional case, if .H(x, p) = p2/2, then the Burgers equation is derived by 
differentiating the equation. Thus, it is expected that a smooth solution may be 
nondifferentiable in finite time. One should ask what the proper notion of a solution 
is. The notion of a viscosity solution introduced by Crandall and Lions [29] is a very  
suitable one to guarantee the uniqueness of a solution to an initial value problem for 
a Hamilton–Jacobi equation. A key idea is another version of “doubling variables.” 
This book is intended to serve as a short introduction to the theory. If H also depends 
on u itself, it covers a scalar conservation law, so one must consider a discontinuous 
viscosity solution. The book concludes by studying viscosity solutions with a shock 
following [46]. 

The book was written for upper-level undergraduate students who plan on a 
pursuing graduate-level studies on one of the important aspects of differential 
equations. Of course, the book will help researchers in various fields to understand 
problems that mathematical analysts are typically concerned with. Although some 
basic knowledge of Sobolev spaces is necessary for Sect. 1.2 and Chap. 2, the book 
will be accessible to those unfamiliar with the details of the theory of function



Preface vii

spaces. Basic terminology is listed in Appendix (Chap. 5). In principle, a basic 
mathematical term will appear for the first time in italics. If no explanation of the 
term appears in the nearby text, the reader is encouraged to consult the index to find 
the term on another page, where the term should be defined. For example, the word 
“measurable” first appears in Sect. 1.1.4, but its definition is given in Sects. 1.2.5 
and 5.2. The reference is not exhaustive. 

The book is organized as follows. Chapter 1 discusses the uniqueness problem 
for ordinary differential equations. Starting with the Lipschitz condition and the 
Oswood condition, Sect. 1.1 concludes by discussing equations with fractional time 
derivatives. Section 1.2 discussed the initial value problem for (1) where .−b is a 
maximal monotone operator in a Hilbert space. Chapter 2 discusses equation (1) 
for irregular divergence-free b and the transport equation. Chapter 3 is devoted to 
the uniqueness of entropy solutions for scalar conservation laws. Chapter 4 presents 
an introduction to the theory of viscosity solutions for Hamilton–Jacobi equations. 
Chapter 5 presents basic terminology. 

This book stems from course lectures by the second author given at the University 
of Tokyo for upper-level undergraduate students focusing on some uniqueness issues 
of solutions to differential equations. In nonlinear analysis, it often happens that it is 
more difficult to prove the uniqueness of a solution than the existence of a solution, 
especially when one considers a generalized solution. This is one reason why this 
topic was chosen. 

In course lectures, part of the scalar conservation law is explained based on an 
excellent book by Holden and Risebro [53]. Thus, this part follows that book very 
closely, although a few simplifications are made. 

The authors are grateful to Professor Nao Hamamuki, who gave us useful 
comments on the manuscript of this book. The authors thank Professor Hiroyoshi 
Mitake for providing some key references on Hamilton–Jacobi equations. The 
authors are also grateful to students who attended the course lectures at the 
University of Tokyo for their valuable comments. Last but not least, the authors 
would like to thank Ms. Satoko Kimura for preparing the final TeX file of this book. 

The work of the second author was partly supported by the Japan Society 
for the Promotion of Science (JSPS), through grants KAKENHI, No. 20K20342, 
No. 19H00639, No. 18H05323, and No. 17H01091, and by Arithmer Inc. Daikin 
Industries, Ltd. and Ebara Corporation, through collaborative grants. 

Tokyo, Japan Mi-Ho Giga 
March 2023 Yoshikazu Giga
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1Uniqueness of Solutions to Initial Value 
Problems for Ordinary Differential Equations 

In this chapter, we recall several types of sufficient conditions to guarantee the 
uniqueness of solutions to the initial value problem for ordinary differential equa-
tions. We first review classical Lipschitz- and Osgood-type uniqueness conditions. 
We then consider a gradient flow of a convex function that is not necessarily 
differentiable. This system may not satisfy the aforementioned uniqueness condition 
because the gradient of a convex function may not be continuous. Because of the 
monotonicity nature of the problem, we still find uniqueness. 

We shall use standard notations. For .m = 1, 2, 3, . . ., let  .Rm denote the m-
dimensional Euclidean space. In other words, 

. Rm :=
{
a = (a1, . . . , am)

∣∣ ai ∈ R for 1 ≤ i ≤ m
}

,

where . R denotes the set of all real numbers. Here .ai ∈ Rmeans that . ai is an element 
of the set . R, i.e., . ai is a real number in this case. By definition, .R1 = R. For  two  
vectors .a = (a, . . . , am) ∈ Rm and .b = (b1, . . . , bm) ∈ Rm, let  .〈a, b〉 denote the 
standard inner product in . Rm defined by 

. 〈a, b〉 :=
m∑

i=1

aibi .

We also denote .〈a, b〉 simply by .a · b. Let . |a| denote the Euclidean norm defined by 

. |a| := 〈a, a〉1/2 = √
a · a.

If .m = 1, then . |a| is simply the absolute value of a. For a vector .a ∈ Rm, the  
superscript i of . ai does not mean the power of a, unless .m = 1. It represents the ith 
component. 
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2 1 Uniqueness of Solutions to Initial Value Problems for Ordinary Differential. . .

1.1 Gronwall-Type Inequalities and Uniqueness of Solutions 

We now consider an N -system of ordinary differential equations for .x = x(t) of the 
form 

.ẋ = b(x, t), ẋ = dx/dt, (1.1) 

where .b = b(·, t) is a time-dependent vector field in . RN and .t ∈ R. This is a concise 
form of the system 

. 
dxi

dt
(t) = bi

(
x1(t), . . . , xN(t), t

)
, 1 ≤ i ≤ N,

where .xi(t) (.1 ≤ i ≤ N ) is an unknown function defined in some time interval 
containing the origin, and . bi is a function of .N + 1 variables. The concise form is 
obtained by setting vector-valued (.RN -valued) functions . x(t) = (

x1(t), . . . , xN(t)
)

and .b(x, t) = (
b1(x, t), . . . , bN(x, t)

)
. 

Our main concern is whether or not a solution x satisfying the initial condition, 
say, .x(0) = X for a given .X ∈ RN , is unique. 

1.1.1 Lipschitz Condition 

A standard sufficient condition is the Lipschitz condition. For a given vector-valued 
(.Rm-valued) function .f = f (x) = (

f 1(x), . . . , f m(x)
)
defined in a subset . � of 

. RN , we set  

. [f ]Lip(�) = sup
{
|f (x) − f (y)| /|x − y|

∣∣∣ x, y ∈ �, x �= y
}

.

If .[f ]Lip(�) is finite, then we say that f is Lipschitz (continuous) in . � and the 
quantity .[f ]Lip(�) is called the Lipschitz constant. If f is Lipschitz continuous in 
some neighborhood of each point of . �, then we say that f is locally Lipschitz in . �. 

Here and henceforth, we use standard notations for function spaces. Let . C(A,B)

denote the space of all continuous functions (mappings) from one metric space A to 
another metric space B. The space . RN is regarded as a metric space with the metric 
.d(z,w) = |z − w|. If  B is . R, then we simply write .C(A) instead of .C(A,R). For  
an open set A in .RN and for .k = 1, 2, . . ., by  .Ck(A,Rm) we mean the space of 
functions in .C(A,Rm) whose partial derivatives up to the kth order are continuous 
in A. For a general set A in . RN , by  .Ck(A,Rm) we mean the space of functions on 
A that are extendable as a function of .Ck(U,Rm) for some open set U containing 
A. If a function is in  .Ck(A,Rm) for all .k ≥ 1, it is said to be  smooth in A. The  set  
of all smooth functions in A with values in . Rm is denoted by .C∞(A,Rm). It is easy  
to see that a locally Lipschitz function is continuous (but may not be differentiable).
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By the fundamental theorem of calculus, it is well known that any . C1 function is 
locally Lipschitz. 

We begin by stating uniqueness of a solution when an .RN -valued function (a 
vector field) b is also continuous in time and (globally) Lipschitz in . RN . 

Proposition 1.1 
Let an .RN -valued function b be continuous in .RN × I with .I = [0, a], which  
is a given interval with .a > 0. Assume that b satisfies the Lipschitz condition 
of the form 

. [b(·, t)]Lip(RN ) ≤ M, (1.2) 

with some constant independent of .t ∈ I . Let .xi ∈ C1(I̊ ,RN) ∩ C(I,RN) be 
a solution of  (1.1), with initial datum .xi(0) = Xi ∈ RN for .i = 1, 2. Then 

. |x1(t) − x2(t)| ≤ |X1 − X2| exp(Mt), t ∈ I. (1.3) 

In particular, there is at most one solution x for (1.1) with a given initial
datum .x(0) = X ∈ RN . 

Here . ̊C or .intC denotes the interior of a set C, i.e., the largest open set contained 
in C. For  I , .I̊ = (0, a). We use standard notation of the intersection .V ∩ W of two 
sets V and W in a set  Z 

. V ∩ W = {z ∈ Z | z ∈ V and z ∈ W } .

The union .V ∪ W is defined as 

. V ∪ W = {z ∈ Z | z ∈ V or z ∈ W } .

In Proposition 1.1, Z is taken as the space of all .RN -valued functions on I and 
.V = C1(I̊ ,RN), .W = C(I, RN) to define .V ∩ W . We also define 

. 
⋃
λ∈�

Vλ = {z ∈ Z | z ∈ Vλ for some λ ∈ �} ,

⋂
λ∈�

Vλ = {z ∈ Z | z ∈ Vλ for all λ ∈ �} .

We shall often write the unique solution x of (1.1) with initial data .x(0) = X by 
.x = x(t, X). Proposition 1.1 follows easily from a simple version of Gronwall
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inequality in the next section. For more general Gronwall inequalities and their 
applications, see the book by Dragomir [33]. 

The existence of a solution .x = x(t, X) of (1.1) in Proposition 1.1 in a possibly 
shorter interval .[0, a′] for some .a′ ∈ (0, a] is standard and known as a local 
existence theorem. Moreover, the continuity of b alone is enough to guarantee such 
an existence, which is known as Peano’s theorem. See, for example, [52, Chapter 
2]. 

1.1.2 Gronwall Inequality 

Lemma 1.2 
Let ϕ be a nonnegative continuous function in [0, a], with a >  0. Assume that 

.ϕ(t) ≤ ϕ0 +
∫ t

0
Mϕ(s)ds, t ∈ [0, a], (1.4) 

with some nonnegative constant ϕ0 and M . Then

.ϕ(t) ≤ ϕ0 exp(Mt), t ∈ [0, a]. (1.5) 

Proof of Proposition 1.1 Integrating (1.1) on (0, t) with x = xi for i = 1, 2, we
see that xi satisfies the integral equation

. xi(t) = Xi +
∫ t

0
b (xi(s), s) ds, (i = 1, 2).

Thus, the difference x1 − x2 satisfies 

.x1(t) − x2(t) = X1 − X2 +
∫ t

0
(b (x1(s), s) − b (x2(s), s)) ds. (1.6) 

We estimate (1.6) and invoke (1.2) to get

. |x1(t) − x2(t)| ≤ |X1 − X2| +
∫ t

0
M |x1(s) − x2(s)| ds. (1.7) 

We now apply the Gronwall inequality with ϕ = |x1 − x2|, ϕ0 = |X1 − X2|. Since
(1.7) is simply (1.4), the estimate (1.5) in Lemma 2.1 yields (1.3) . �

There are several ways to prove Lemma 1.2. We here present two proofs.
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Proof of Lemma 1.2 (Proof by iteration) We simply plug the estimate (1.4) into
the right-hand side of (1.4) to get

. ϕ(t) ≤ ϕ0 + M

∫ t

0

(
ϕ0 + M

∫ s

0
ϕ(τ)dτ

)
ds

= (1 + Mt)ϕ0 + M2
∫ t

0
(t − s)ϕ(s)ds.

We repeat this procedure (a total of m times) to get 

. ϕ(t) ≤
m∑

j=0

(Mt)j

j ! ϕ0 + Mm+1

m!
∫ t

0
(t − s)mϕ(s)ds.

We now obtain (1.5) since

. 

∣∣∣∣
Mm+1

m!
∫ t

0
(t − s)mϕ(s)ds

∣∣∣∣ ≤ Mm+1tm+1

(m + 1)! sup
s∈(0,t)

ϕ → 0

as m → ∞  and 

. expMt =
∞∑

j=0

(Mt)j /j !

understanding that 0! =  1. �

Proof of Lemma 1.2 (Proof by a differential inequality) We set the right-hand 
side of (1.4) by y(t). Then (1.4) implies that ẏ ≤ My. If ϕ0 > 0, then y > 0 in
[0, a), which yields ẏ/y ≤ M . Integrate both sides on [0, t) to get

. log y(t) − logϕ0 ≤ Mt.

This implies y(t) ≤ ϕ0 exp(Mt), which yields (1.5) for ϕ0 > 0. In the case ϕ0 = 0,
we just let ϕ0 ↓ 0 (i.e., ϕ0 → 0, with ϕ0 > 0) in (1.5) to conclude that ϕ ≡ 0, which
clearly satisfies (1.5) with ϕ0 = 0. �

� Remark 1.3 Of course, Lemma 1.2 can be generalized in several ways. 

(1) We may allow ϕ just a nonnegative integrable function in [0, a), not necessarily 
continuous in (1.4).
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(2) The constant M in (1.4) is allowed to be merely an integrable (and nonnegative)
function of s in (0, a), retaining the continuity of ϕ. The estimate (1.4) should
be replaced by

.ϕ(t) ≤ ϕ0 exp

(∫ t

0
M(s)ds

)
.

� Remark 1.4 The assumption of the uniqueness statement of Proposition 1.1 can 
be weakened in several ways. For example, the uniqueness still holds if (1.2) is
replaced by

. [b(·, t)]Lip(BR) ≤ M(t)

for all BR , the closed ball of radius R <  ∞ centered at the origin, provided that 
M(t) is integrable in (0, a). The continuity of b in time is not assumed. 

1.1.3 Osgood Condition 

If the Lipschitz condition is not fulfilled, the solution to the initial value problem 
may not be unique, as the following simple example shows. 

Example 1.5 (Figure 1.1) 
Consider a scalar differential equation .ẋ = √|x| with initial data .x(0) = 0. Other than the solution 
.x ≡ 0, we see that .x(t) = t |t |/4 is a solution. The function .b(x) = √|x| does not satisfy the 
Lipschitz condition. In fact, .[b]Lip(BR) = ∞ no matter how small .R > 0 is. 

Fig. 1.1 Solutions
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However, the Lipschitz condition is not a necessary condition to guarantee the 
uniqueness of a solution. We consider a single ordinary equation 

.ẋ = f (x), t ∈ I = [0, a], (1.8) 

with a continuous function f such that .f (σ) > 0 for .σ > 0, .f (0) = 0. Assume 
that the initial data .x(0) = X0 > 0. We consider a positive solution in I . We divide  
(1.8) by f to get

. ẋ/f (x) = 1.

Integrating over .(0, t) we get 

. G(x(t)) − G(X0) = t

if G is a primitive (antiderivative) of . 1/f , for example, 

. G(σ) =
∫ σ

1

dσ

f (σ)
.

If .limX0→0 G(X0) = −∞, in other words, 

.

∫ δ

0

dσ

f (σ)
= ∞ (1.9) 

for some .δ > 0, there exists no nonnegative solution for (1.8) with .x(0) = 0 other 
than the trivial solution .x(t) ≡ 0 for .t ∈ I . Indeed, if there is another solution . x, 
then there is .t0 ∈ [0, a) such that .x(t) > 0 for .t ∈ (t0, t0 + ε) and .x(t0) = 0 for 
some .ε > 0 since . x is continuous on I . Integrating .ẋ/f (x) = 1 over .(t0 + ε1, t) for 
some .ε1 ∈ (0, ε) and .t ∈ (t0 + ε1, t0 + ε), we obtain 

. G(x(t)) − G(x(t0 + ε1)) = t.

We fix t and send .ε1 ↓ 0 in this setting. Since 

. lim
X0↓0

G(X0) = −∞

by (1.9) and .x(t0 + ε1) ↓ 0 as .ε1 → 0, we end up with 

. G(x(t)) + ∞ = t,

which is absurd. Thus, . x cannot be positive in I .



8 1 Uniqueness of Solutions to Initial Value Problems for Ordinary Differential. . .

If .f (σ) = σ , then condition (1.9) is fulfilled. Even if .f (σ) = σ | log σ | so that 
.f ′(0) = ∞, (1.9) is still fulfilled since

. 

∫ δ

0

dσ

σ | log σ | =
∫ log δ

−∞
dτ

|τ | = ∞

by setting .τ = log σ . For later convenience, we say that a continuous nondecreasing 
function f satisfying .f (σ) > 0 for .σ > 0, f (0) = 0 is simply a modulus. 

Theorem 1.6 
Let b be continuous in .RN × I , with .I = [0, a], with .a > 0. Assume that b 
satisfies the Osgood condition, i.e., there is a modulus f satisfying (1.9) (for
some .δ > 0) such that 

. |b(x, t) − b(y, t)| ≤ f (|x − y|) (1.10) 

for all .t ∈ I , .x, y ∈ RN . Then 

.G(|x1(t) − x2(t)|) ≤ t + G(|X1 − X2|) for t ∈ I (1.11) 

provided that .X1 �= X2. Here  .xi ∈ C1(I̊ ,RN) ∩ C(I,RN) is a solution of 
(1.1) with initial data .xi(0) = Xi for .i = 1, 2. In particular, there is at most 
one solution x for (1.1) with a given initial datum .x(0) = X ∈ RN . 

Theorem 1.6 follows from another version of the Gronwall inequality given in 
the next lemma. Condition (1.10) with (1.9) is often called the Osgood condition.

Lemma 1.7 
Let . ϕ be a nonnegative continuous function in .I = [0, a] with .a > 0. Assume 
that . ϕ0 is given nonnegative number and that . ϕ satisfies the inequality 

.ϕ ≤ ϕ0 +
∫ t

0
f (ϕ(s)) ds, t ∈ [0, a], (1.12) 

with a modulus f . Then

.G(ϕ) ≤ G(ϕ0) + t, (1.13) 

where G is a primitive of .1/f (σ ) provided that .ϕ > 0 on I . If  .ϕ0 = 0, then 
.ϕ ≡ 0 provided that f satisfies (1.9) for some .δ > 0.



1.1 Gronwall-Type Inequalities and Uniqueness of Solutions 9

Proof of Lemma 1.7 The proof is parallel to that using a differential inequality of 
Lemma 1.2. Assume that .ε > 0 on I . We set the right-hand side of (1.12) by y and
obtain .ẏ = f (ϕ) ≤ f (y), since .0 ≤ ϕ ≤ y and the modulus f is nondecreasing. 
Since .f (y) > 0 for .y > 0, we have .ẏ/f (y) ≤ 1. Integrating both sides of . ẏ/f (y) ≤
1 over .(0, t), we get (1.13) since .G(ϕ) ≤ G(y) by the monotonicity of G. 

We now discuss the case .ϕ0 = 0. Suppose that . ϕ were identically equal to zero. 
Then there would exist .t0 ≥ 0 (.t0 < a) such that .ϕ(t) = 0 for .t ∈ [0, t0] and 
.ϕ(tj ) > 0 and .tj ↓ t0 (i.e., .tj → t0 with .tj > t0) as  .j → ∞. This would imply 
.y(t) > 0 for .t > t0 and .y(t) = 0 for .t ≤ t0. By  (1.13) we see that

. G(ϕ(t)) ≤ G
(
ϕ(tj )

)+ t

for .t > tj . If the condition (1.9) is fulfilled, then . G
(
ϕ(tj )

) → G (ϕ(t0)) = −∞
since .ϕ(tj ) → 0 as .j → ∞. This yields a contradiction since .G(ϕ(t)) is finite and 
independent of j . We thus conclude that .ϕ ≡ 0 if .ϕ0 = 0. �

Proof of Theorem 1.6 We argue in the same way as in the proof of Proposition 1.1 
to get (1.6) , i.e.,

. x1(t) − x2(t) = X1 − X2 +
∫ t

0
(b (x1(s), s) − b (x2(s), s)) ds.

We estimate (1.6) and invoke (1.10) to get

. |x1(t) − x2(t)| ≤ |X1 − X2| +
∫ t

0
f (|x1(s) − x2(s)|) ds.

We now apply Lemma 1.7 with .ϕ = |x1 − x2| to get 

. G(|x1(t) − x2(t)|) ≤ G(|X1 − X2|) + t.

The uniqueness under (1.9) follows from the last statement of Lemma 1.7. �

� Remark 1.8 Theorem 1.6 and Proposition 1.1 are still valid when . RN is replaced 
by an infinite-dimensional Banach space. However, applications to partial differen-
tial equations are rather limited because a differential operator is often unbounded 
in a fixed Banach space; however, see Sect. 1.3.1 for Lipschitz semigroups. 
We also note that we can assert the same uniqueness for a negative interval . [−a, 0]
with .a > 0, which we call backward uniqueness under the same assumption. Our 
uniqueness results presented so far are for the forward uniqueness.
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1.1.4 A Solenoidal Vector Field Having Bounded Vorticity 

We shall give a class of examples of vector fields that satisfy the Osgood condition 
but may not satisfy the Lipschitz condition. This class of examples is important in 
hydrodynamics. 

We consider a solenoidal vector field .u = (u1, . . . , uN) in . RN . In other words, 
we assume .div u = 0 in . RN , where .div u = ∑N

i=1 ∂iu
i , .∂i = ∂/∂xi for .ui = ui(x), 

.x = (x1, . . . , xN). For a function f of x, we define its gradient .∇f by . ∇f =
(∂1f, . . . , ∂Nf ). We define the Laplace operator . � by .�f = div u, .u = ∇f . 
To derive the necessary formula, for a moment we assume that .u ∈ C1(RN), i.e., 
u is continuously differentiable, and that the support of u is compact, i.e., . supp u

is included in .BR for some .R > 0; here, .supp u is the closure of the set of x 
where .u(x) �= 0. The space .C1

c (RN) denotes the space of all . C1 functions such 
that its support is compact, in other words, the space of all compactly supported . C1

functions. 
We consider the case .N = 2 or 3 to simplify the notation. In hydrodynamics, we 

call .ω = curl u the vorticity (field) of the velocity vector field u, where 

. curl u =
(
∂2u

3 − ∂3u
2, ∂3u

1 − ∂1u
3, ∂1u

2 − ∂2u
1
)

, N = 3,

curl u = ∂1u
2 − ∂2u

1, N = 2.

We are interested in whether or not u is Lipschitz continuous when . ω is bounded, 
assuming, for example, u is continuous or, more generally, a Schwartz distribution. 
It turns out that .b(x, t) := u(x) satisfies a kind of Osgood condition (1.10) with
(1.9) but not Lipschitz continuous. In other words, a solenoidal velocity field with
bounded vorticity is continuous but may not be Lipschitz continuous.

To see this phenomenon, we recall the Biot-Savart law. For .N = 3, we notice 
that 

. − � = curl curl−∇ div, ∇ = (∂1, . . . , ∂N),

so that .−�u = curlω if .div u = 0. (The Laplace operator here acts on a vector 
field. More precisely, the ith component of . �u equals .�ui .) Thus, formally, 

.u = (−�)−1 curlω = curl(−�)−1ω. (1.14) 

Here .(−�)−1g denotes the Newton potential of g, i.e., .(−�)−1g = E ∗ g, where 
E is the fundamental solution of .−� and . ∗ denotes the convolution, i.e., 

.(E ∗ g)(x) =
∫

RN

E(x − y)g(y) dy

=
∫ ∞

−∞
· · ·
∫ ∞

−∞
E(x − y)g(y) dy1 · · · dyN .



1.1 Gronwall-Type Inequalities and Uniqueness of Solutions 11

In the case .N = 3, .E(x) = 1/ (4π |x|). Thus, relation (1.14) can be written

.u = curl(E ∗ ω) = K ∗ ω; (1.15) 

this relation is often called the Biot–Savart law. Here  .K = (Kij )1≤i,j≤3 is a . 3 × 3
matrix field when .N = 3. Its explicit form is 

. K =
⎛
⎝

0 −∂3E ∂2E

∂3E 0 −∂1E

−∂2E ∂1E 0

⎞
⎠ .

Each component of . K (denoted by K) satisfies 

. |K(x)| ≤ C1/|x|N−1, |∇K(x)| ≤ C2/|x|N (1.16) 

for all .x ∈ RN\{0} with . C1 and . C2 independent of x. 
In the case .N = 2, formula  (1.14) is still valid where the vorticity . ω is a scalar 

and the .curlϕ in (1.14) should be interpreted as .∇⊥ϕ (:= (∂2ϕ,−∂1ϕ)) for a scalar 
field . ϕ. This  (1.14) yields (1.15) with .K = curlE, .E(x) = − (log |x|) /2π ; here 
. K is a 2-vector field. In this case, each component of . K also satisfies (1.16) . The
derivation of the Biot–Savart law presented here is formal but can be justified; see,
for example, [45, Chapter 2] where .N = 2. 

The next general lemma in particular shows that a solenoidal velocity field 
u (with compact support) satisfies the Osgood condition (1.10) with (1.9) if its
vorticity . ω is bounded, i.e., .‖ω‖∞ < ∞, where 

. ‖ω‖∞ = sup
{
|ω(x)| , x ∈ RN

}

for a continuous function . ω. The norm .‖ · ‖∞ should be interpreted as an essential 
supremum norm for just a Lebesgue measurable function; see Sect. 1.2.5 for a 
rigorous definition. The notion of support should be generalized for such . ω. For  
a measurable function g, its support .supp g is the smallest closed set Z such that 
.g = 0 almost everywhere in .RN\Z. 

Lemma 1.9 
Assume that .supp g is included in .BR (.R > 1) and g is bounded and 
measurable in . RN . Let .K ∈ C1

(
RN\{0}) satisfy (1.16) with some positive

constants . C1 and . C2. Set .v = K ∗ g. Then v satisfies 

. |v(x) − v(y)| ≤ cN‖g‖∞|x − y| (C2 |log |x − y|| + L) , x, y ∈ RN,

(1.17) 

with .L = C2 logR + 2C1 and a constant . cN depending only on N .
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Since .f (σ) = σ (a1| log σ | + a2) satisfies (1.9) for .a1, a2 ≥ 0, (1.17) yields the
Osgood condition for a vector field u. We shall give a proof of Lemma 1.9. 

Proof. Since 

. |v(x) − v(y)| ≤ ‖g‖∞
∫

BR

|K(x − z) − K(y − z)| dz,

it suffices to prove that 

.

∫

BR

|K(x − z) − K(y − z)| dz ≤ cN |x − y| (C2 |log |x − y|| + L) , (1.18) 

with . cN depending only on N . By translation, we may assume that .x + y = 0, i.e., 
the middle point between x and y is the origin, so that .x = −y and .|x| = η/2. 

We set .|x − y| = η and observe that 

. 

∫

BR

|K(x − z) − K(y − z)| dz ≤
∫

BR∩{|z|≥η}
|K(x − z) − K(y − z)| dz

+
∫

BR∩{|z|≤η}
|K(x − z)| dz +

∫

BR∩{|z|≤η}
|K(y − z)| dz

= I + II + III.

To estimate I , we notice that .|z| ≥ η implies 

. |z − y − t (x − y)| ≥ |z| − |tx + (1 − t)y| ≥ |z| − η/2 ≥ |z|/2 (1.19) 

for .t ∈ [0, 1] since .|x| = |y| = η/2 (Fig. 1.2). Since 

. |K(x − z) − K(y − z)| =
∣∣∣∣
∫ 1

0
〈∇K ((x − y)t + y − z) , x − y〉dt

∣∣∣∣

≤ C2

∫ 1

0

dt

|(x − y)t + y − z|N |x − y|,

estimate (1.19) implies

.I ≤ C2|x − y|
∫

BR∩{|z|≥η}
dz

(|z|/2)N = C22
Nη

∫

η<r<R

(∫

|σ |=1

1

rN
rN−1dσ

)
dr

= C22
Nη

∫ R

η

1

r
dr
∣∣∣SN−1

∣∣∣ = C22
N
∣∣∣SN−1

∣∣∣ η (log(R/η)) ,
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Fig. 1.2 Location of z 

where .
∣∣SN−1

∣∣ denotes the surface area of the unit sphere .SN−1 in .RN and . dσ
denotes the surface element. (Here we invoke the Schwarz inequality . |〈x, y〉| ≤
|x||y| at the beginning.) The term . II is estimated as 

. II =
∫

BR∩{|z|≤η}
|K(x − z)| dz ≤

∫

{|z|≤2η}
|K(z)| dz

≤ C1

∫ 2η

0

(∫

|σ |=1

1

rN−1
rN−1dσ

)
dr = C1

∣∣∣SN−1
∣∣∣ 2η.

The same estimate holds for . III. We have thus proved that 

. I + II + III ≤ cN η {(C2 logR + 2C1) + C2| log η|} ,

which yields (1.18), where .cN = 2N
∣∣SN−1

∣∣. �

The function v may not be Lipschitz continuous in Lemma 1.9 even if g is 
continuous. Moreover, there is an explicit counterexample of a solenoidal vector 
field u in . R2 whose vorticity . ω is bounded, but u itself is not Lipschitz continuous, 
and its derivative .∂ju

i (.1 ≤ i, j ≤ 2) has a logarithmic singularity. In fact, if 
.ϕ ∈ C1

c (R2) ∩ C∞ (
R2\{0}) satisfies .ϕ(x1, x2) = x1x2 (− log |x|)α with . α ∈ (0, 1)

near .x = 0, then .u = ∇⊥ϕ satisfies .div u = 0 and .curl u = −�ϕ = ω is 
a continuous function with compact support, so that . ω is bounded. It is easy to 
prove that u is not Lipschitz continuous (Exercise 1.5). However, by Lemma 1.9, 
it satisfies the Osgood condition. Thus, there is at most one solution for the initial 
value problem for .ẋ = u(x).
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1.1.5 Equation with Fractional Time Derivative 

We next discuss the uniqueness problem for equations involving fractional time 
derivatives. A diffusion equation with a fractional time derivative is an interesting 
topic since it describes various interesting physical phenomena like anomalous 
diffusion. We here consider the case when it only depends on time. We recall a 
Caputo derivative with .α ∈ (0, 1) starting from .t = 0, i.e., 

.
(
∂α
t x
)
(t) = 1

�(1 − α)

∫ t

0
(t − s)−α∂tx(s)ds, (1.20) 

where .�(β) denotes the Gamma function, i.e., 

. �(β) =
∫ ∞

0
e−ssβ−1ds.

Instead of (1.1) , we consider

.∂α
t x = b(x, t), (1.21) 

where .b = b( , t) is a time-dependent vector field in .RN and .t > 0. We give a  
uniqueness result similar to Proposition 1.1. 

Proposition 1.10 
Assume that .α ∈ (0, 1). Let b be continuous in .RN × I , with .I = [0, a), 
which is a given interval with .a ∈ (0,∞]. Assume that b fulfills (1.2) . Then
the solution .x ∈ C1(I̊ ,RN) ∩ C(I,RN) of (1.21) in . ̊I with a given initial 
datum .x(0) = X is unique provided that .

∫
I
|ẋ|dt < ∞. 

We do not state the estimate of .x(t, X1)−x(t, X2) here. To prove this proposition, 
we need a slightly different type of Gronwall inequality. We just give the simplest 
version. 

Lemma 1.11 
Let . ϕ be a nonnegative continuous function in .[0, a], with .a > 0. Assume that 

.ϕ(t) ≤ M0

∫ t

0
(t − s)−βϕ(s)ds, t ∈ [0, a], (1.22) 

with some constant .M0 ≥ 0, .β ∈ (0, 1). Then .ϕ ≡ 0.
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We give here a proof by iteration since another one based on differential 
inequality is more involved. 

Proof of Lemma 1.11 Estimate (1.22) yields

. 0 ≤ ϕ(t) ≤ M0‖ϕ‖∞t1−β/(1 − β).

Plug this inequality into the right-hand side of (1.22) to get

. 0 ≤ ϕ(t) ≤ M2
0‖ϕ‖∞
1 − β

�(1 − β)�(2 − β)

�(3 − 2β)
t2−2β.

Here we notice that 

. 

∫ t

0
(t − s)p−1sq−1ds = tp+q−1B(p, q),

B(p, q) =
∫ 1

0
(1 − τ)p−1τq−1dτ ,

and we invoke the elementary formula indicating the relation with the beta and 
gamma functions 

. B(p, q) = �(p)�(q)

�(p + q)
.

Repeat the argument to get 

. 0 ≤ ϕ(t) ≤ Mk
0C

1 − β

�(1 − β)k−1�(2 − β)

�(k + 1 − kβ)
tk(1−β), k = 1, 2, . . . .

The right-hand side is dominated by 

. Mk
1M2/�(k + 1 − kβ)

for .t ∈ [0, a] by taking constants . M1, . M2 in a suitable way (which is independent of 
k). Since .β ∈ (0, 1), the asymptotic behavior of .�(k+1−kβ) as .k → ∞ (Stirling’s 
formula) yields that .Mk

1M2/�(k + 1 − kβ) → 0 as .k → ∞. Thus, we conclude 
that .ϕ ≡ 0. �
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Proof of Proposition 1.10 For .γ > 0, let  . Iγ denote the Riemann–Liouville 
operator, i.e., 

. (Iγ g)(t) = 1

�(γ )

∫ t

0
(t − s)γ−1g(s)ds

= 1

�(γ )
t
γ−1
+ ∗ g, t+ = max(t, 0).

By direct computation, we easily see that .Iγ1+γ2 = Iγ1Iγ2 for .γ1, γ2 > 0. Since 

. ∂α
t x = I1−αẋ,

we observe that .Iα∂α
t x = I1ẋ = x(t) − x(0). Here, we invoked the assumption 

.
∫
I
|ẋ| dt < ∞ to guarantee the integrability of the integrand in .I1−αẋ near .s = 0, 

so that .(I1−αẋ)(t) is finite for .t ∈ I . Applying . Iα to both sides of (1.21) we get

.x(t) = X + Iαb. (1.23) 

Let . x1 and . x2 be two solutions of (1.23) . Then the difference satisfies

. x1(t) − x2(t) = Iα (b(x1, t) − b(x2, t)) .

We set .ϕ = |x1(t) − x2(t)| and estimate the preceding inequality using (1.2) to get

. ϕ ≤ IαMϕ in [0, a].

We are now in a position to apply Lemma 1.11 with .β = 1 − α, .M0 = M/�(α) to 
conclude that .ϕ ≡ 0. �

� Remark 1.12 Unlike (1.1), the solution of (1.21) may be nondifferentiable at
.t = 0, even if  b is smooth. Indeed, if we consider .x = tα , then x is not differentiable 
at .t = 0 since .α ∈ (0, 1). A direct calculation shows that .∂α

t x = �(α+1), .x(0) = 0. 

1.2 Gradient Flow of a Convex Function 

As we observed in Example 1.5, the continuity of b in (1.1) is not enough to
guarantee the uniqueness of the solution for its initial value problem. On the
other hand, the existence of a local-in-time solution is known as Peano’s existence
theorem. If b loses the continuity in x, we expect to have neither existence nor
uniqueness in general. However, if .b(x) is a “monotone” decreasing function not 
necessarily continuous, we expect to have uniqueness for positive time. Such a 
situation typically arises when b is the negative of the gradient of a convex function. 
Since the argument still works in a Hilbert space, not just in . RN , we shall discuss
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(1.2) where x has values in a Hilbert space. This has wide application to partial
differential equations, which are regarded as the gradient flow of a convex function.

1.2.1 Maximal Monotone Operator and Unique Existence of 
Solutions 

Let H be a real Hilbert space equipped with an inner product .〈 , 〉. The norm . ‖x‖
of x in H is defined by .‖x‖ = 〈x, x〉1/2. Let  A be a mapping from a given subset 
.D(A) of H to .2H \{∅}, the set of all nonempty subsets of H . The mapping A is often 
called a set-valued operator or a multivalued function. We say that A is monotone if 

. 〈x′ − y′, x − y〉 ≥ 0

for all .x, y ∈ D(A) and .x′ ∈ Ax, .y′ ∈ Ay, where Ax denotes the set .A(x) to 
simplify the notation (Fig. 1.3). The set .D(A) is often called the domain of A. Here  
is a trivial example. The space .RN is, of course, a real (finite-dimensional) Hilbert 
space equipped with a standard inner product 

. 〈x, y〉 =
N∑

i=1

xiyi

for .x = (x1, . . . , xN), .y = (y1, . . . , yN). In the case .H = R, .Ax = {f (x)} is 
monotone if and only if f is monotone nondecreasing. 

Example 1.13 (Figure 1.4) 
Let .H = R, and set .D(A) = H and .Ax = {+1} for .x > 0, .Ax = {−1} for .x < 0. A0 is a given  
subset in .[−1, 1]. This operator is a monotone operator in . R. 

The reason we allow “multivalued” is that the notion of a maximal monotone 
operator is important. We say that .A ⊂ B for two set-valued operators A and B in 
H if .D(A) ⊂ D(B) and .Ax ⊂ Bx for all .x ∈ D(A). By  .U ⊂ W we mean that 
U is included in W , i.e., an element of U is always an element of W . We say that 
a monotone operator A is maximal if A is maximal for the foregoing inclusion. In 
other words, if there is a monotone operator .B ⊃ A, then operator A agrees with B. 
One observes that in Example 1.13, operator A is a maximal monotone operator if 
and only if .A0 = [−1, 1]. 

Fig. 1.3 Monotonicity
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Fig. 1.4 The graph of 
operator A 

We shall consider an ordinary differential equation (inclusion) for .x = x(t) in H 
of the form 

.ẋ ∈ −Ax, (1.24) 

where .−Ax = {−y | y ∈ Ax}. Here is a fundamental unique existence theorem due 
to Kōmura [65]. 

Theorem 1.14 
Let A be a maximal monotone operator in a real Hilbert space H . Assume 
that .X ∈ D(A). Then there exists a unique .x ∈ C ([0,∞),H) that is Lipschitz 
continuous in .[0,∞) such that x solves (1.24) with .x(0) = X for almost every 
.t > 0. 

This is rather surprising because it asserts not only the existence of a global solu-
tion but also its (forward) uniqueness, i.e., uniqueness for .t ≥ 0 (cf. Remark 1.8). 
The Eq. (1.24) looks ambiguous because Ax is a set but the solutions “know” how
to evolve.

We do not intend to give a proof of its existence. Rather, in what follows, we give 
a proof for its uniqueness as a result of the contraction property. 

Theorem 1.15 (Stability and uniqueness) 
Let A be a monotone operator in H . Let .x(t, Xi) be a solution of  (1.24) with
initial datum .Xi ∈ D(A), .i = 1, 2, in the sense of Theorem 1.14. Then 

. ‖x(t, X1) − x(t, X2)‖ ≤ ‖X1 − X2‖ for all t ≥ 0.

(continued)
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Theorem 1.15 (continued) 
In other words, the mapping .X �→ x(t, X) for .t ≥ 0 (often called a flow map) 
is a contraction, and in particular, .x(t, X) is uniquely determined by X. 

Proof. We set .xi = x(t, Xi). The difference solves 

. 
d

dt
(x1 − x2) = −(y1 − y2) for a.e. t > 0,

with .yi ∈ Axi . Take the inner product of both sides with .x1 − x2 to get 

. 

〈
x1 − x2,

d

dt
(x1 − x2)

〉
= −〈x1 − x2, y1 − y2〉.

Since A is monotone, the right-hand side is always nonpositive, so that 

. 
1

2

d

dt
‖x1 − x2‖2 =

〈
x1 − x2,

d

dt
(x1 − x2)

〉
≤ 0.

This yields the desired contraction property. In particular, .x(t, X) is uniquely 
determined by taking .X1 = X2. (In this proof we do not invoke the maximality 
of A. The maximality is invoked to prove the existence of a solution.) �

By uniqueness the flow map .x(t, X) possesses the semigroup property . x(t +
s,X) = x (t, x(s,X)), .t, s ≥ 0, so this flow map is often called a contraction 
semigroup. 

1.2.2 Canonical Restriction 

We are interested in the velocity . ẋ because it looks ambiguous from (1.24) . To
characterize this, we recall the notion of a minimal section or canonical restriction.

For a given .x ∈ D(A), we take .yx ∈ Ax satisfying 

. ‖yx‖ = inf {‖y‖ | y ∈ Ax} .

This is an element of Ax closest to the origin. Here, .infS for a set S in . R denotes the 
infimum of a set S. If  A is maximal monotone, it is easy to see that Ax is a nontrivial 
closed convex set,1 so there exists . yx uniquely. The mapping .x �→ yx is called the

1 A set  C in a (real) vector space is said to be convex if the segment between arbitrary two points 
.x, y ∈ C is always cotained in C. 
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canonical restriction (or the minimal section) of A. This operator is often denoted 
by . A0, i.e., .yx = A0x. 

Theorem 1.16 
Let .x = x(t, X) be the solution of (1.24), with .x(0, X) = X given in 
Theorem 1.14. Then it is right differentiable in time for all .t ≥ 0. Moreover, 

. 
d+

dt
x = −A0x

for all .t ≥ 0, where .d+x/dt denotes the right derivative. 

We just provide a formal proof assuming that .d+x/dt exists at . t0 and .dx/dt is 
right continuous at . t0. 

Since .dx/dt ∈ −Ax, we see, by the monotonicity of A, that 

. 

〈
dx

dt
(t0 + s) − (−ζ ), x(t0 + s) − x(t0)

〉
≤ 0 (s > 0)

for any .ζ ∈ Ax(t0). Dividing by .s > 0 and letting .s ↓ 0, we see that 

. 

〈
dx

dt
(t0),

dx

dt
(t0)

〉
+
〈
ζ,

dx

dt
(t0)

〉
≤ 0.

Thus, by the Schwarz inequality (.|〈x, y〉| ≤ ‖x‖‖y‖ for all .x, y ∈ H ), we have 

. 

∥∥∥∥
dx

dt
(t0)

∥∥∥∥
2

≤ ‖ζ‖
∥∥∥∥
dx

dt
(t0)

∥∥∥∥ .

This implies 

. 

∥∥∥∥
dx

dt
(t0)

∥∥∥∥ ≤ ‖ζ‖.

We thus observe that .−dx

dt
(t0) = A0x(t0). 

We conclude this subsection by studying an implicit Euler scheme for (1.24) 
since it provides a method to deduce the canonical restriction. The scheme is of the
form

.

⎧
⎨
⎩

xk+1 − xk

τ
∈ −Axk+1 k = 1, 2, . . . ,

x1 = X,
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where .τ > 0 is a time grid size that is usually small. In each step, we must solve the 
resolvent equation 

. x − x0 ∈ −τAx or x + τAx � x0

for a given .x0 ∈ H . Here, as previously, we write 

. − τAx = {−τy | y ∈ Ax} and x + τAx = {x + τy | y ∈ Ax} .

The last operator .x �→ x+τAx is often written .I +τA, where I denotes the identity 
operator. 

The range (image) .R(I + τA) of the operator .I + τA is defined by 

. R(I + τA) = {x + τy | y ∈ Ax, x ∈ D(A)} .

Lemma 1.17 
Let A be a maximal monotone operator. Let . xτ be the solution of the resolvent 
equation .x+τAx � x0 for .x0 ∈ D(A) and .τ > 0. Then .(xτ −x0)/τ converges 
to .−A0x0 strongly in H as .τ ↓ 0.

� Remark 1.18 

(i) Minty’s theorem [73] states that a monotone operator is maximal if and only 
any of .x + τAx � x0 has a solution x for any .x0 ∈ H and any .τ > 0. One  may  
relax the condition for . τ just for some .τ > 0. The proof of the existence of a 
solution from maximality is nontrivial, and Hilbert space structure plays a key 
role. Indeed, there is a counterexample for a Banach space like . �p (.1 < p < ∞, 
.p �= 2) [27]; see also [74, Example 2.6]. 
It is easy to see that solution . xτ is unique. The proof of the uniqueness is 
parallel to that of Theorem 1.15. 

(ii) In the literature, the solvability of 

. x + τAx = x0 for arbitrary x0 ∈ H

is often written .R(I + τA) = H . The solution operator from .x0 �→ xτ is 
called the resolvent operator (often denoted by . Jτ ). The operator . Jτ is called 
the Yosida operator. 

(iii) Since .(xτ − x0)/τ = (Jτ x0 − x0)/τ = −AJτx0, the convergence result says 
that .AJτx0 → A0x0 if .x0 ∈ D(A). The operator .Aτ = AJτ is called the Yosida 
approximation of A.
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(iv) Although .xτ = Jτ x0 is defined for any .x0 ∈ H , the convergence .xτ → x0 in 
H as .τ → 0 does not hold for general . x0. For example, consider .Ax = 0 for 
.x ∈ (−1, 1) A(−1) = (−∞, 0], .A(+1) = [0,∞) for .x ∈ H = R. Then . xτ

does not converge to . x0 if .x0 �∈ [−1, 1]. 
Proof of Lemma 1.17 (based on properties of the weak convergence) We consider 
the equation 

. xτ + τAxτ � x0, τ > 0.

We first establish a bound for a difference quotient .ζτ = (xτ − x0)/τ , .τ > 0. We  
estimate the norm of . ζτ to get 

. ‖ζτ‖2 =
〈
−Axτ ,

xτ − x0

τ

〉

= −
〈
Axτ − η0,

xτ − x0

τ

〉
−
〈
η0,

xτ − x0

τ

〉
, η0 ∈ Ax0

= −1

τ
〈Axτ − η0, xτ − x0〉 − 〈η0, ζτ 〉

≤ −〈η0, ζτ 〉

by the monotonicity of A. Thus, 

. ‖ζτ‖2 ≤ ‖A0x0‖‖ζτ‖

by the Schwarz inequality. This yields 

.‖ζτ‖ ≤ ‖A0x0‖ or ‖Aτx0‖ ≤ ‖A0x0‖ (1.25) 

using the notation in Remark 1.18 (iii). In particular, we have .xτ → x0 in H as 
.τ ↓ 0. 

Because of this bound, . ζτk
weakly converges to some .ζ ∈ H by taking a 

subsequence as .τk ↓ 0 (.k → ∞) if necessary. Here, we invoked a weak compactness 
of a bounded set in a Hilbert space, that is, if .‖ym‖ is bounded, then there is a 
subsequence .ymk

and y such that 

. 〈ymk
, z〉 → 〈y, z〉 for all z ∈ H

as .k → ∞, i.e., .ymk
converges to y weakly in H , which is denoted by .ymk

⇀ y. 
For the proof, see [19, Theorem 3.16] and [90]. Since A is maximal, 

.xτk
→ x0, ζτk

⇀ ζ (weakly), −ζτk
∈ Axτk
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(as .k → ∞) implies that 

. − ζ ∈ Ax0.

Indeed, .〈−ζτk
−η, xτk

−u〉 → 〈−ζ −η, x0 −u〉 for any .u, η ∈ H as .τk ↓ 0 so that 
if .η ∈ Au, then .〈−ζ − η, x0 − u〉 ≥ 0 since .〈−ζτ − η, xτ − u〉 ≥ 0 by maximality 
of A. If  .−ζ �∈ Ax0, this would contradict the maximality of A. Thus, we conclude 
that .−ζ ∈ Ax0. 

By (1.25) we see that .−ζ = A0x0. Since any subsequence of .{ζτ } admits a 
weak convergent subsequence with the limit . ζ independently of the choice of a 
subsequence, . ζτ weakly converges to . ζ without taking a subsequence as .τ ↓ 0. 
Since .ζτ ⇀ ζ , we see that 

. ‖ζ‖ = sup
‖ϕ‖=1

〈ζ, ϕ〉 = sup
‖ϕ‖=1

lim
τ↓0〈ζτ , ϕ〉 ≤ lim inf

τ↓0 sup
‖ϕ‖=1

〈ζτ , ϕ〉 = lim inf
τ↓0 ‖ζτ‖.

(This property is known as a lower semicontinuity of norm under weak convergence; 
see [19, Proposition 3.5] and [90].) Since .‖ζτ‖ ≤ ‖ζ‖, we observe that . ‖ζτ‖ → ‖ζ‖
as .τ ↓ 0. Since .ζτ ⇀ ζ , this now implies the strong convergence of . ζτ to . ζ . Indeed, 

. ‖ζτ − ζ‖2 = ‖ζτ‖2 + ‖ζ‖2 − 2〈ζτ , ζ 〉 → ‖ζ‖2 + ‖ζ‖2 − 2‖ζ‖2 = 0

as .τ ↓ 0. �

1.2.3 Subdifferentials of Convex Functions 

A typical example of a maximal monotone operator is the subdifferential of a lower 
semicontinuous convex function. We first recall the definition of a subdifferential. 
Let E be a function in H with values in .R∪{+∞}. (If  H is of infinite dimension, we 
often call it a functional instead of a function.) We say that .ζ ∈ H is a subgradient 
of E at .x ∈ H if .E(x) < ∞ and 

. E(x + h) − E(x) ≥ 〈h, ζ 〉

holds for all .h ∈ H . The set of all subgradients of E at x is denoted by .∂E(x). The  
operator . ∂E, which corresponds x to the set of all subgradients of E at x, is called 
a subdifferential operator but is often called a subdifferential of E. The domain 
.D(∂E) of the subdifferential is defined as 

. D(∂E) = {x ∈ H | ∂E(x) is not empty} .

We are interested in the case where E is convex, i.e., 

.E (λx + (1 − λ)y) ≤ λE(x) + (1 − λ)E(y), for all λ ∈ [0, 1], x, y ∈ H
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with the interpretation that .∞+a = ∞, .a ≤ ∞ for any .a ∈ R∪{∞}. By definition, 
the domain 

. D(E) = {
x ∈ H

∣∣ E(x) < ∞}

must be convex. By definition, .D(∂E) ⊂ D(E). 
A simple example with a multivalued subdifferential is the subdifferential of 

a convex function .E(x) = |x| when .H = R. In this case, .∂E is simply A of 
Example 1.13, with .A0 = [−1, 1]. 

We say that E is lower semicontinuous if 

. E(x) ≤ lim inf
y→x

E(y), x ∈ H.

An indicator function . IK of a set K in H defined by 

. IK(x) =
{
0, x ∈ K,

∞, x ∈ H\K,

is lower semicontinuous if and only if K is closed. The function . IK is convex if and 
only if K is convex. See Figs. 1.5 and 1.6 when .H = R. 

Fig. 1.5 Convex and lower 
semicontinuous 

Fig. 1.6 Convex but not 
lower semicontinuous
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Lemma 1.19 
Let E be a convex, lower semicontinuous function in a Hilbert space H with 
values in .R ∪ {+∞}. Assume that .E �≡ ∞. Then .A = ∂E is a maximal 
monotone operator. 

Proof (Monotonicity) We take .ζi ∈ ∂E(xi) for .xi (i = 1, 2). By definition, we 
have 

. E(x1 + h) − E(x1) ≥ 〈ζ1, h〉, E(x2) − E(x2 − h) ≤ 〈ζ2, h〉.
Take .h = x2 − x1 and subtract the second inequality from the first. This yields 

. 〈ζ1 − ζ2, x2 − x1〉 ≤ 0,

which is the desired monotonicity. 
(Maximality). By Minty’s theorem (Remark 1.18 (i), Exercise 1.7), it suffices to 
prove that for any .x0 ∈ H there is a (unique) solution .x = x∗ of the equation 

. x + τ∂E(x) � x0

or 

. 
1

τ
(x − x0) + ∂E(x) � 0

for some .τ > 0. The left-hand side equals .∂Eτ (x) if we set 

. Eτ (x) = ‖x − x0‖2
2τ

+ E(x)

(see Exercise 1.10). Thus, .x + τ∂E(x) � x0 is equivalent to .∂Eτ (x) � 0. If we are  
able to find a minimizer . x∗ of . Eτ , then we have .Eτ (x∗ +h) ≥ Eτ (x∗) for all .h ∈ H . 
So we have .Eτ (x∗ +h)−Eτ (x∗) ≥ 〈0, h〉 for all .h ∈ H , so that .∂Eτ (x∗) � 0. Thus, 
it suffices to find a minimizer . x∗ of . Eτ . 

We shall prove that there exists a minimizer . x∗ of . Eτ for a fixed .τ > 0 by what is 
called a direct method. Since E is convex and lower semicontinuous, . E(x) + 〈a, x〉
is bounded from below (i.e., .inf (E(x) + 〈a, x〉) > −∞) with some .a ∈ H [19, 
Proposition 1.10]. This looks easy, but it is nontrivial and follows from the Hahn– 
Banach theorem on extension of linear functionals [19, Chapter 1], [90, Chapter 
IV]. We admit this fact and prove a kind of coercivity: .lim‖x‖→∞ Eτ (x) = ∞. In  
fact, we shall prove a stronger result of the form 

.Eτ (x) ≥ 1

4τ
‖x − x0‖2 − C for x ∈ H
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with some constant .C > 0 independent of x. By the Schwarz inequality, 

. |〈a, x − x0〉| ≤ ‖a‖‖x − x0‖ =
(
(2τ)1/2‖a‖

) (
(2τ)−1/2‖x − x0‖

)
.

Since .αβ ≤ (α2 + β2)
/
2 for .α, β ≥ 0, we conclude that 

. |〈a, x − x0〉| ≤ 1

4τ
‖x − x0‖2 + τ‖a‖2.

Thus, 

. |〈a, x〉| ≤ |〈a, x − x0〉| + |〈a, x0〉|

≤ 1

4τ
‖x − x0‖2 + C1

with .C1 = |〈a, x0〉| + τ‖a‖2. (This says that a linear function is estimated from 
above by .δ‖x − x0‖2 for sufficiently large x for any choice of .δ > 0.) Thus, we 
observe that 

. Eτ (x) = 1

2τ
‖x − x0‖2 − 〈a, x〉 + E(x) + 〈a, x〉

≥ 1

4τ
‖x − x0‖2 − C,

with .C = C1 − inf (E(x) + 〈a, x〉). Hence, we obtain .lim‖x‖→∞ Eτ (x) = ∞. 
We now prove the existence of a minimizer of . Eτ . Let  .{xj }∞j=1 be a minimizing 

sequence of . Eτ , i.e., .{xj }∞j=1 satisfies 

. lim
j→∞ Eτ (xj ) = infEτ := inf

{
Eτ (x)

∣∣ x ∈ H
}
.

(Our assumption .E �≡ ∞ evidently implies .infEτ < ∞.) By the definition of 
.{xj }∞j=1, there is a constant M such that .Eτ (xj ) ≤ M for all .j ≥ 1. Since 
.lim‖x‖→∞ Eτ (x) = ∞, we conclude that .{xj }∞j=1 is a bounded sequence in H . 
Since .{xj }∞j=1 is a bounded sequence, as in the proof of Lemma 1.17, .{xj } has a 
subsequence .{xj�

} converging weakly to some .x∗ ∈ H . In other words, . xj�
⇀ x∗

as .� → ∞. We shall prove that . x∗ is indeed a minimizer of . Eτ . We now recall 
Mazur’s theorem [19, Corollary 3.8] (see also [90]), which asserts that if . z� ⇀ z

(weakly), then some convex combination of .{z�}∞�=1 converges to z strongly in H . 
We apply Mazur’s theorem to conclude that for each .k = 0, 1, 2, . . ., there is a 

convex combination .

{
y

(k)
m

}
of .
{
xj�

}∞
�=k

such that .y(k)
m converges to . x∗ strongly in H
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as .m → ∞. In other words, there is an integer .n(k)
m ≥ k and real numbers . 

{
λ

k,m
j�

}n
(k)
m

�=k
satisfying 

. 

n
(k)
m∑

�=k

λ
k,m
j�

= 1 and λ
k,m
j�

≥ 0 for k ≤ � ≤ n(k)
m ,

y(k)
m =

n
(k)
m∑

�=k

λ
k,m
j�

xj�

such that .y(k)
m → x∗ as .m → ∞. (Note that Mazur’s theorem is another application 

of the Hahn–Banach theorem.) By a diagonal argument, there is .m(k) such that 
.yk = yk

m(k) converges to . x∗ as .k → ∞. By definition, 

. yk =
nk∑

�=k

λk
j�

xj�
with λk

j�
= λ

k,m(k)
j�

, nk = n(k)
m .

In other words, . yk is a convex combination of .
{
xj�

}∞
�=k

. Moreover, . ‖yk − x∗‖ → 0
as .k → ∞. 

Since . Eτ is convex, .{yk} is still a minimizing sequence. Indeed, by convexity, 

. Eτ (yk) = Eτ

(
nk∑

�=k

λk
j�

xj�

)
≤

nk∑
�=k

λk
j�

E(xj�
).

Since .{xj�
} is a minimizing sequence of . Eτ , for any .δ > 0 there is .k(δ) such that 

.Eτ (xj�
) ≤ infEτ + δ for .� ≥ k(δ). Thus, for .k ≥ k(δ), 

. Eτ (yk) ≤
nk∑

�=k

λk
j�

(infEτ + δ) = infEτ + δ

since .
∑nk

�=k λk
j�

= 1. Thus, .{yk} is a minimizing sequence of . Eτ . By the  lower  
semicontinuity of . Eτ , we see that 

. Eτ (x∗) ≤ lim inf
k→∞ Eτ (yk) = infEτ .

Thus, . x∗ is a minimizer of . Eτ . We have thus proved the existence of a minimizer of 
. Eτ , and the proof is now complete. �
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� Remark 1.20 

(i) By Lemma 1.19, we are able to apply Theorems 1.14–1.16 when A is the 
subdifferential . ∂E of a convex, lower semicontinuous function E (.E �≡ ∞). 
Moreover, the initial datum X is allowed to be in .D(∂E), the closure of the 
domain of . ∂E in H with necessary modifications. For example, the modified 
statement in Theorem 1.14 reads as follows. In the case .A = ∂E, for any 
.X ∈ H there exists a unique .x ∈ C ([0,∞),H), which is Lipschitz continuous 
in .[δ,∞) for any .δ > 0 such that x solves (1.24), with .x(0) = X for almost 
every .t > 0. (The right differentiability in Theorem 1.16 holds for .t > 0.) See 
[18] for further details. 

(ii) For .x0 ∈ H , let  . xτ be the solution of .x + τ∂E(x) � x0. This is a unique 
minimizer of . Eτ , as shown in the proof of Lemma 1.19. Thus, 

. sup
τ>0

Eτ (xτ ) ≤ Eτ (x0) = E(x0) < ∞.

If .x0 ∈ D(E), this bound implies .xτ → x0 in H . Since .xτ ∈ D(∂E), this  
implies that .D(E) ⊂ D(∂E). By definition, .D(E) ⊃ D(∂E). Thus, . D(E) =
D(∂E). Such a simple proof is given in [6, Chapter 2, p. 48]. 

1.2.4 Gradient Flow of a Convex Function-Energetic Variational 
Inequality 

The notion of the gradient flow of a convex function can be extended in a complete 
metric space, which is more general than a Hilbert space. We conclude Sect. 1.2 
by defining an evolutionary variational inequality, which is an extended notion of 
.ẋ ∈ −∂E(x), and by proving the uniqueness of a solution. 

We consider the gradient flow .ẋ ∈ −∂E(x), i.e., 

. E (x(t) + h) − E (x(t)) ≥ 〈h,−ẋ(t)〉

for all .h ∈ H . We set .h = z − x(t) and observe that 

. 
1

2

d

dt
‖x(t) − z‖2 = 〈x(t) − z, ẋ(t)〉 = 〈z − x(t),−ẋ〉

≤ E(z) − E (x(t)) , z ∈ H.

This leads the definition of the gradient flow .ẋ ∈ −∂E(x) in a general complete 
metric space M . We say a curve .x : (a, b) → M satisfies the evolutionary 
variational inequality for .ẋ ∈ −∂E(x) if 

.
1

2

d

dt
dist (x(t), z)2 ≤ E(z) − E (x(t)) for all z ∈ M, (1.26)
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where . dist denotes the distance in M . We may weaken this definition by considering 
its integral form 

. 
1

2

(
dist (x(t), z)2 − dist (x(s), z)2

)
≤
∫ t

s

(E(z) − E (x(τ))) dτ, z ∈ M,

where .t, s ∈ (a, b), .t ≥ s. The point is that a solution satisfying (1.26) is unique.
Indeed, let .xi = x(t, Xi) (i = 1, 2) be a solution satisfying (1.26) starting from . Xi . 
Then 

. 
1

2

d

dt
dist (x1(t), x2(t))

2

= 1

2

d

dt
dist (x1(t), x2(s))

2
∣∣∣∣
s=t

+ 1

2

d

dt
dist (x1(s), x2(t))

2
∣∣∣∣
s=t

≤ E (x2(t)) − E (x1(t)) + E (x1(t)) − E (x2(t)) = 0.

This implies that 

. dist (x1(t), x2(t)) ≤ dist(X1, X2).

In particular, the solution x satisfying (1.26) with .x|t=0 = X is unique. 
The notion of a solution of (1.26) can be extended to semiconvex functional E.

Instead of (1.26), for .λ-convex E, we still say that x is a solution of the evolutionary 
variational inequality for .ẋ ∈ −∂E(x) if 

. 
1

2

d

dt
dist (x(t), z)2 ≤ E(z) − E (x(t)) − λ

2
dist (x(t), z)2

for all .z ∈ X. This solution is also unique because 

. dist (x1(t), x2(t))
2 ≤ dist(X1 X2)

2 exp(−λt).

For a precise definition of an evolutionary variational inequality as well as .λ-
convexity, the reader is referred to the well-written book by [3]. There, the absolute 
continuity of the curve x is assumed, so that .dist (x(t), z) is differentiable for almost 
all .t > 0. 

1.2.5 Simple Examples 

The theory of gradient flow of a convex function has wide application to partial 
differential equations, and it gives a rigorous meaning to a solution. In this 
subsection, we present a few examples closely related to Sobolev spaces. For 
the basic properties of these spaces, the reader is referred to basic textbooks, for
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example, [19, Chapter 8, 9] and [36, Chapter 5]. To avoid discussing boundary 
conditions, we consider functionals defined on the space of periodic functions. 

By a function  f on .TN = ∏N
i=1 (R/ωiZ), with .ωi > 0 .(i = 1, . . . , N), we mean 

that f is a function on . RN satisfying 

. f (x + ωiei) = f (x) for all x ∈ RN,

where .{ei}Ni=1 is the standard basis of . R
N . In other words, .f (x1, . . . , xN) is periodic 

in . xi with period . ωi . Here, . Z denotes the set of all integers. For .p ∈ [1,∞], 
let .Lp(TN) denote the space of all real-valued pth integrable functions f on . TN

equipped with the norm 

. ‖f ‖p =
(∫

TN

|f (x)|p dx

)1/p

=
(∫ ω1

0
· · ·
∫ ωN

0
|f (x)|p dx

)1/p

, 1 ≤ p < ∞,

‖f ‖∞ = ess. sup
x∈TN

|f (x)| , p = ∞.

Here, .α = ess. supx∈TN |f (x)| (essential supremum of f on . TN ) is defined by 

. α = inf
{
β
∣∣ LN ({|f | > β})

}
,

where .LN denotes the N -dimensional Lebesgue measure in .RN and . {|f | > β}
denotes the set 

. 

{
x =

(
x1, . . . , xN

) ∣∣ 0 ≤ xi < ωi, i = 1, . . . , N, |f (x)| > β
}

.

When we write .Lp(TN), we always identify functions whose values agree with each 
other almost everywhere (a.e.) so that .Lp(TN) is a normed space. It is well known 
that .Lp(TN) is a Banach space. The space .L2(TN) is a Hilbert space equipped with 
the inner product 

. 〈f, g〉 =
∫

TN

f (x)g(x)dx, f, g ∈ L2(TN),

so that .‖f ‖2 = 〈f, f 〉1/2. 
Let .W 1,p(TN) denote the .Lp-Sobolev space of order 1. In other words, 

. W 1,p(TN) =
{
f ∈ Lp(TN)

∣∣ Djf ∈ Lp(TN), j = 1, . . . , N
}

,

where .gj = Djf denotes the distributional derivative of f in . xj , i.e., 

.

∫

TN

f
∂ϕ

∂xj

dx = −
∫

TN

gjϕdx
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for all .ϕ ∈ C∞
c (TN), where .C∞

c (�) denotes the space of all smooth functions in . �

with compact support in . �. Since . TN is compact, .C∞
c (TN) agrees with .C∞(TN), 

the space of all smooth functions in . TN . It is well known that .W 1,p(TN) is a Banach 
space equipped with the norm 

. ‖f ‖W 1,p =
⎛
⎝‖f ‖p

p +
N∑

j=1

‖Djf ‖p
p

⎞
⎠

1/p

, 1 ≤ p < ∞,

‖f ‖W 1,∞ = max
1≤j≤N

(‖f ‖∞, ‖Djf ‖∞
)
, p = ∞.

The space .W 1,∞(TN) can be identified with .Lip(TN), the space of all Lipschitz 
continuous functions equipped with the norm .‖f ‖∞ +[f ]Lip; see, for example, [36, 
§5.8. b]. 

We next consider a couple of functionals. 

A. p-Dirichlet energy for . 1 < p < ∞
As a Hilbert space, we set .H = L2(TN). Let  .Ep(u), .u ∈ H denote the p-

Dirichlet energy defined by 

. Ep(u) =
⎧⎨
⎩

1

p

∫

TN

|∇u|pdx, u ∈ W 1,p(TN) ∩ H,

∞, otherwise.

Here, . ∇u denotes the distributional gradient .∇u = (D1u, . . . , DNu) and . |∇u|2 =∑N
j=1 |Dju|2. 

Lemma 1.21 
Assume that .1 < p < ∞. The functional . Ep is lower semicontinuous in H 
and convex. 

Proof. The convexity is easy to prove since .|y|p is a convex function. It remains to 
prove the lower semicontinuity 

.Ep(u) ≤ lim inf
k→∞ Ep(uk) for uk → u (as k → ∞) in H. (1.27) 

We may assume that the right-hand side is finite so that .uk ∈ W 1,p(TN) and 
.supk≥1 Ep(uk) is finite by taking a suitable subsequence. We first prove that . Ep(u)

is finite. It suffices to prove that .u ∈ W 1,p(TN) if .supk≥1 ‖Djuk‖p < ∞ for all 
.j = 1, 2, . . . , N . By .∗-weak compactness, a bounded sequence .{fk} in .Lp(TN) has
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a .∗-weak convergent subsequence .{fkm

}
(Exercise 1.9, [19, Theorem 3.16], [90]). 

Since .Lp(TN) is the dual space of .Lp′
(TN) with .1/p + 1/p′ = 1 for . 1 < p ≤ ∞

(see [19, Section 4.3]), this means that there is some .f ∈ Lp(TN) such that 

. lim
m→∞

∫

TN

fkmϕ dx =
∫

TN

f ϕ dx

for all .ϕ ∈ Lp′
(TN). Since .

∥∥Djuk

∥∥
p
is bounded, we apply this property to the 

sequence .{Djuk} to get a subsequence .
{
Djukm

}
and .gj ∈ Lp(TN) such that 

. lim
m→∞

∫

TN

Djukmϕ dx =
∫

TN

gjϕ dx.

We take .ϕ ∈ C∞
c (TN) ⊂ Lp′

(TN) and observe that 

. lim
m→∞

(
−
∫

TN

ukm

∂ϕ

∂xj

dx

)
= −

∫

TN

u
∂ϕ

∂xj

dx

since .uk → u in .H = L2(TN). By the definition of .Djukm , 

. −
∫

TN

ukm

∂ϕ

∂xj

dx =
∫

TN

(
Djukm

)
ϕ dx.

Sending .k → ∞, we now observe that 

. −
∫

TN

u
∂ϕ

∂xj

dx =
∫

TN

gjϕ dx

for all .ϕ ∈ C∞
c (TN). In other words, .Dju = gj ∈ Lp(TN), so . gj is independent of 

the choice of a subsequence .
{
umk

}
. (Thus, .Djuk converges .∗-weakly to .Djuwithout 

taking a subsequence.) It remains to prove that .u ∈ Lp(TN). For .1 < p ≤ 2, this is  
trivial since .Lp(TN) ⊂ H = L2(TN). We first recall the Poincaré inequality [36, 
§5.8.1], 

. ‖uk − (uk)av‖p ≤ C
(
Ep(uk)

)1/p
,

where .(uk)av is the average of . uk over . TN , i.e., 

. (uk)av = 1

|TN |
∫

TN

uk dx, |TN | = ω1 · · · ωN.

Here, C is a constant depending only on p and .|TN |. (The Poincaré inequality is 
valid for .1 ≤ p < ∞, but we keep .1 < p < ∞ in the following argument.) By the
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Hölder inequality (which is called the Schwarz inequality in this case), we get 

. |(u)av| ≤ |TN |−1‖1‖2‖u‖2 = |TN |−1/2‖u‖2.

Thus, applying the Poincaré inequality yields 

. ‖uk‖p ≤ ‖uk − (uk)av‖p + ‖(uk)av‖p

≤ C
(
Ep(uk)

)1/p + |TN |− 1
2+ 1

p ‖uk‖2.

Since .uk → u in .L2(TN) as .k → ∞ so that .‖uk‖2 is bounded, we now conclude that 
.supk≥1 ‖uk‖p < ∞. By  .∗-weak compactness as previously, there is a subsequence 
.
{
ukm

}
of .{uk} and .w ∈ Lp(TN) such that 

. lim
m→∞

∫

TN

ukmϕ dx =
∫

TN

wϕ dx

for .ϕ ∈ Lp′
(TN). For .ϕ ∈ C∞

c (TN), 

. lim
k→∞

∫

TN

ukϕ dx =
∫

TN

uϕ dx

since .uk → u in .L2(TN) as .k → ∞. Thus, 

. 

∫

TN

(w − u)ϕ dx = 0

for all .ϕ ∈ C∞
c (TN). By the fundamental lemma of the calculus of variations (see 

Exercise 2.3 or [19, Corollary 4.24]), this implies .w = u almost everywhere (a.e.); 
in particular, .u ∈ Lp(TN). We thus conclude that .u ∈ W 1,p(TN). 

By the lower semicontinuity of .Lp-norm under .∗-weak convergence ( [19, 
Proposition 3.13], [90]), we conclude (1.27) . �

We thus apply Theorem 1.14 with .H = L2(TN) to solve .ut ∈ −∂Ep(u) for 
.1 < p < ∞. In the case .p = 2, the case of the Dirichlet energy is simply the heat 
equation. For general .p ∈ (1,∞), the equation .ut ∈ −∂Ep(u) is simply the p-
Laplace diffusion equation .ut = div

(|∇u|p−2∇u
)
. This can be seen easily at least 

formally as follows. We see 

. lim
ε↓0

(
Ep(u + εh) − Ep(u)

)
/ε =

∫

TN

|∇u|p−2∇u · ∇hdx

= −
∫

TN

(
div

(
|∇u|p−2∇u

))
hdx

by integration by parts.
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B. Total variation energy 
We next consider the total variation energy on .H = L2(TN): 

. E(u) =
⎧
⎨
⎩

∫

TN

|∇u|dx, Dju ∈ L1(TN) (j = 1, . . . , N),

∞, otherwise.

We note that this E is convex but not lower semicontinuous even for one-
dimensional problems. In fact, it suffices to construct a special sequence. We may 
assume that .N = 1 and .ω1 = 1. We consider the sequence 

. uk(x) =

⎧
⎪⎨
⎪⎩
1, |x| <

1

4
,

k

(
1

4
+ 1

k
− |x|

)

+
,
1

4
≤ |x| ≤ 1

2
.

This sequence converges to 

. u0(x) =

⎧⎪⎨
⎪⎩
1, |x| <

1

4
,

0,
1

4
≤ |x| ≤ 1

2
,

in .L2(T1) and .E(uk) = 2; see Fig. 1.7. However, the distributional derivative . D1u

does not belong to .L1(TN), i.e., .u0 �∈ W 1,1(T). In other words, .E(u0) = ∞. Thus, 
E is not lower semicontinuous. For a better formulation, we introduce total variation 
for more general functions than .W 1,1(TN). 

Fig. 1.7 Graphs of . u0 and . uk

(.k = 1, 2, . . .)
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For .f ∈ L1(TN), we define the (essential) total variation of f by 

. 

∫

TN

|∇f | := sup

{∫

TN

f divϕdx

∣∣∣∣ ‖ϕ‖∞ ≤ 1, ϕ ∈
(
C∞

c (TN)
)N
}

,

where .ϕ = (ϕ1, . . . , ϕN). The totality of .f ∈ L1(TN) having finite total variation 
is denoted by .BV (TN). If one interprets E by 

. E1(u) =
⎧
⎨
⎩

∫

TN

|∇u|, u ∈ BV (TN) ∩ H

∞, otherwise,

then this . E1 is a lower semicontinuous convex function. This gives a rigorous 
formulation of the total variation flow .ut = div (∇u/|∇u|) by .ut ∈ −∂E1(u). The  
total variation equation is quite different from the p-Laplace diffusion equation. 
The reader is referred to the textbook [5] for an analysis of the total variation 
equation. Our unique existence result (Theorem 1.14), together with Remark 1.20, 
guarantees the unique solvability for .ut ∈ −∂Ep(u) (.1 ≤ p < ∞) for any initial 
data .u0 ∈ L2(TN) since .D(Ep) is dense in H ; see, for example, [36, §5.3] for the 
density. 

1.3 Notes and Comments 

1.3.1 More on Uniqueness on Continuous Vector Field b 

Condition (1.10) was introduced by Osgood [80] in the nineteenth century. As noted 
in Remark 1.4, one can weaken the assumption in time in (1.10) . Indeed, the right-
hand side of (1.10) can be replaced by .M(t)f (|x − y|), where .M(t) is integrable 
on I . This type of uniqueness result is often called Motel–Tonelli’s uniqueness 
theorem, which went back to Tonelli [85]; see, for example, [1, Theorem 1.5.1] 
or [52, Theorem 6.1]. However, in this situation, .M(t) is not allowed to be equal 
to .1/t because .

∫ 1
0 dt/t = ∞. Nevertheless, there is a uniqueness criterion called 

Nagumo’s theorem [77], which asserts that uniqueness follows if one assumes 
.[b(·, t)]Lip(RN ) ≤ 1/t , .t ∈ I̊ ; note that .1/t cannot be replaced by .M/t . There 
are several generalizations of Nagumo’s theorem and Motel–Tonelli’s theorem. The 
reader is referred to [24], [23], [25] for a more recent development of this topic. 
In particular, in [25], a convex combination of Nagumo’s condition and Osgood’s 
condition is considered. 

So far we have discussed several sufficient conditions to guarantee uniqueness. 
There is an interesting necessary and sufficient condition for uniqueness discovered 
by Okamura [79].
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Theorem 1.22 
Assume that .b = b(x, t) is continuous in .BR × I , with .I = [0, a), .a > 0. For  
any .X ∈ B̊R there is at most one solution of (1.1) with initial datum X if and
only if there exists a nonnegative function .V ∈ C1(U) satisfying the following 
conditions: 

(i) For a given point .(x, y, t) ∈ U , .V (x, y, t) = 0 is equivalent to .x = y; 

(ii) .
∂V

∂t
+ b(x, t) · ∇xV + b(y, t) · ∇yV ≤ 0 in U , where .U = B̊R × B̊R × I̊ . 

Here, .∇x (resp. . ∇y) denotes the gradient in variable x (resp. y), i.e., 
.∇x = (∂/∂x1, . . . , ∂/∂xN) (resp. .∇y = (∂/∂y1, . . . , ∂/∂yN)). The function 
.V = V (x, y, t) plays the role of a kind of Lyapunov function. The proof that 
the existence of V implies the uniqueness is easy. Indeed, let . xi = xi(t) (i = 1, 2)
be a solution of (1.1) with initial datum . Xi . We set  .�(t) = V (x1(t), x2(t), t) for 
.t ∈ I , and by (ii) we observe that 

. 
d�

dt
(t) = ∂V

∂t
+ b(x, t) · ∇xV + b(y, t) · ∇yV

∣∣∣∣
(x,y,t)=(x1(t),x2(t),t)

≤ 0, t ∈ I̊ .

Since .�(0) = V (X,X, 0) = 0 by (i), this implies .�(t) ≤ 0 for .t ∈ I . However, 
since .� ≥ 0, this implies that .� ≡ 0. By (i), this implies .x1(t) = x2(t) for .t ∈ I . 

The converse is more involved. Here, we only give an idea of a proof. We 
introduce a distance-like function .d(P,Q) defined for .P = (x0, y0, t0), . Q =
(x∗, y∗, t∗), with .t0 < t∗, where .P,Q ∈ U . We divide the interval .[t0, t∗] such 
that .t0 < t1 < . . . < tm = t∗. Let .� = {t0 < t1 < · · · < tm} denote its division. On 
each interval .[tk−1, tk] we consider a solution curve .(x, y) = (x(t), y(t)) of 

. 
dx

dt
= b(x, t),

dy

dt
= b(y, t).

We denote the left endpoint by .Pk = (x(tk−1 + 0), y(tk−1 + 0), tk−1) ∈ U and the 
right endpoint by .Qk = (x(tk − 0), y(tk − 0), tk) ∈ U (Fig. 1.8); here, . x(t ± 0) =
limε↓0 x(t ± ε). We then consider the sum of jumps, i.e., 

. S� =
m+1∑
j=1

|Pj − Qj−1|, Q0 = P, Pm+1 = Q.

Note that the value . S� may not be unique even if . � is fixed. For given .P,Q ∈ U , 
there is at least one division . � and .P1, . . . , Pm, .Q1, . . . ,Qm such that . Pk and . Qk

are connected by a solution curve on .[tk−1, tk]. Indeed, there always exists a local-
in-time solution to (1.1) when b is simply continuous, which is known as Peano’s
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Fig. 1.8 Location of . Pk and 
. Qk

existence theorem; for the proof, see [52, Chapter 2]. Checking an existence time 
estimate, we conclude that if all subintervals are sufficiently small uniformly and 
.Pk = (0, 0, tk−1) (.1 ≤ k ≤ m), then there is a solution curve . (x, y) = (x(t), y(t))

on .[tk−1, tk] starting from . Pk . We denote by . Qk the end point at . tk , i.e., . Qk =
(x(tk), y(tk), tk). We set  

. d(P,Q) = inf
{
S�

∣∣ choice of � and

a solution curve (x, y) = (x(t), y(t)) on each subinterval
}
.

For .t∗ < t0 we set .d(P,Q) = d(Q,P ). It turns out that this d satisfies . d(P,Q) ≤
d(P,R) + d(R,Q) provided that the t-coordinate . tP of P , . tQ of Q, . tR of R fulfills 
.tP < tR < tQ. Moreover, .d(P,Q) = 0 if and only if there is at least one solution 
curve connecting P and Q on .[t0, t∗]. In other words, there is a solution 

. 
dx

dt
= b(x, t),

dy

dt
= b(y, t) on [t0, t∗],

with .P = (x(t0), y(t0), t0) and .Q = (x(t∗), y(t∗), t∗). Furthermore, the value 
.d(P,Q) does not change even if Q is replaced by a point on a solution curve 
connecting Q. We set  

. Ṽ (x, y, t) = inf
{
d (P, (x, y, t))

∣∣ P = (X,X, s), s < t,X ∈ B̊R

}
.

This is close to what we would like to obtain; this . Ṽ is not . C1, so one must 
mollify to obtain the desired V . Property (ii) follows from the nonincreasing 
property of d along solution curves. Property (i) follows from the uniqueness of 
a solution. 

This is an argument of doubling variables that plays an important role in showing 
the uniqueness of an entropy solution as well as a viscosity solution for first-order 
partial differential equations. We shall discuss these topics in Chaps. 3 and 4. It  
is also interesting to relate to ordinary differential equations through the idea of 
characteristics.
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The Lyapunov-like function V in Theorem 1.22 is also important to characterize 
the infinitesimal generator (defined later) of a Lipschitz semigroup. Let W be a 
Banach space. We say that .{S(t) | t ≥ 0} is a Lipschitz semigroup on .Z ⊂ W if . S(t)

is a mapping from Z to Z satisfying the following conditions: 

(a) .S(0)x = x (x ∈ Z), .S(t + s)x = S(t)S(s)x, t ≥ 0, .x ∈ Z; 
(b) .S(t)x is continuous in time on .[0,∞) with values in W for each .x ∈ Z; 
(c) For each .t > 0, there is K such that 

. ‖S(t)x − S(t)y‖ ≤ K‖x − y‖, x, y ∈ Z, t ∈ [0, t).

Its infinitesimal generator .b(x) is defined by 

. b(x) = lim
h↓0 (S(h)x − x) /h

provided that the strong limit exists in W . Let  b be a given continuous operator 
from a closed set Z to W . In  [61], a necessary and sufficient condition that b is an 
infinitesimal generator of a Lipschitz semigroup is given by using a function like V 
in Theorem 1.22 with the semitangent condition of Z. In other words, their condition 
is a condition so that Eq. (1.1) , with b independent of t , is in some sense uniquely
solvable in a Banach space. This result is extended to the case where b depends also
on time, i.e., nonautonomous case [62]. 

We conclude this subsection by mentioning the uniqueness results for equations 
with fractional time derivatives. The uniqueness results are now available under 
the Osgood condition, even for a single higher-order equation; see the recent paper 
[82] for  .α > 1 and papers cited therein. However, compared with usual ordinary 
differential equations, our understanding remains limited. For example, Montel– 
Tonelli type results are not yet available. 

1.3.2 Forward Uniqueness on Discontinuous Vector Field b 

If we only consider forward uniqueness, our b is allowed to be discontinuous. The 
unique solvability result (Theorem 1.14) goes back to Kōmura [65] and was well 
developed by Brezis and others; see [6, 18], and [66]; see also [36, §9.6]. These 
books are general references for Sect. 1.2. From the point of forward uniqueness, 
the vector field b in (1.1) is allowed to have some discontinuity in x and t . Here is
a condition slightly weaker than monotonicity to guarantee uniqueness. Instead of
(1.24) , we consider the problem

.ẋ ∈ −A(t)x, (1.28) 

where .A(t) is a time-dependent set-valued operator in a Hilbert space H .
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Theorem 1.23 
Assume that there is a function .k = k(t) which is integrable on . I = [0, a)

satisfying 

.〈x′ − y′, x − y〉 + k(t)‖x − y‖2 ≥ 0 (1.29) 

for all .x′ ∈ A(t)x, .y′ ∈ A(t)y, .x, y ∈ D (A(t)), .t ∈ I . Then a solution 
.x ∈ C(I,H) (locally absolutely continuous in I with values in H ) of  (1.28) 
with initial data .X ∈ H is unique. 

The proof is very similar to that of Theorem 1.15. We set  .xi = x(t, Xi) with 
.Xi ∈ D (A(0)) for .i = 1, 2. We argue similarly to get 

. 
1

2

d

dt
‖x1 − x2‖2 ≤ k(t)‖x1 − x2‖2

for two solutions. By the Gronwall-type inequality (see Remark 2.10) this yields 

. ‖x1 − x2‖2(t) ≤ ‖X1 − X2‖2 exp
(
2
∫

I

k(t)dt

)
.

This implies uniqueness. Condition (1.29) is often called the one-sided Lipschitz
condition. For a general discontinuous right-hand side of (1.28) , the reader is
referred to the book by Deimling [31] and a more classical book by Filippov [40]. 
The latter already includes the one-sided Lipschitz condition when H is of finite 
dimension. 

The uniqueness issue remains of current interest. The reader is referred to the 
recent paper [13], where b is discontinuous in x (and also in t) across some 
interfaces. 

1.3.3 Estimates of Lipschitz Constant 

From Theorem 1.16 we expect that the solution x in (1.24) has a Lipschitz bound:

. ‖x(t, X) − x(s,X)‖ ≤ ‖A0X‖(t − s), t > s ≥ 0. (1.30) 

Here, A is as in Theorem 1.14. This is actually true. We give here an idea of the 
proof based on the construction of the solution. We admit the fact that the solution 
x is constructed as a limit of the solution . xλ of the approximate problem 

.ẋλ = Aλxλ, xλ(0) = X
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as .λ ↓ 0, where . Aλ is the Yosida approximation of A; see  Remark  1.18 (iii). 
Since .Aλ = AJλ is Lipschitz globally in time, this problem admits a globally-
in-time solution with values in H . The solution satisfies a contraction principle by 
Theorem 1.15, i.e., 

. ‖xλ(s,X) − xλ(s, Y )‖ ≤ ‖X − Y‖, t > s ≥ 0,

since . Aλ is a monotone operator. Setting .Y = xλ(t, X), .t > 0 and using the 
semigroup property .xλ (s, xλ(τ,X)) = xλ(s + τ,X) (s, τ ≥ 0), we see that 

. ‖xλ(s + τ,X) − xλ(τ,X)‖ ≤ ‖xλ(τ,X) − X‖ . (1.31) 

Since . xλ solves 

. 
xλ(τ ) − X

τ
= 1

τ

∫ τ

0
(Aλxλ)(σ )dσ,

sending .τ → 0 implies 

. lim inf
τ↓0

∥∥∥∥
xλ(τ ) − X

τ

∥∥∥∥ ≤ ‖AλX‖ ≤ ‖A0X‖;

the last inequality follows from (1.25). By (1.31) , we see that

. ‖ẋλ‖ ≤ ‖A0X‖.

Thus, 

. ‖xλ(t, X) − xλ(s,X)‖ ≤ ‖A0X‖(t − s), t, s > 0. (1.32) 

If we admit that x is given as a limit of . xλ (as .λ ↓ 0) in .C ([0, T ],H), .T ∈ (0,∞), 
i.e., 

. lim
λ↓0 sup

0<t<T

‖x(t) − xλ(t)‖ = 0,

then (1.32) implies (1.30) .

1.3.4 A Few Directions for Applications 

It is very popular to use ordinary differential equations (1.1) to describe time-
dependent phenomena in various areas of science and technology. In a planar
domain, a velocity field b of incompressible fluids with bounded vorticity satisfies
the Osgood condition but may not satisfy the Lipschitz condition. For the Euler
equation describing the motion of incompressible inviscid fluids, a global-in-time
(weak) unique solution was first constructed by Wolibner [89]. For this purpose, he
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solved (1.1) for a velocity field b satisfying the Osgood condition. In his setting, the
vorticity field is bounded and continuous. An elementary introduction to the Euler
equations is found in [78, Chapter 7]. For the Biot–Savart law and the vorticity, the 
reader is referred to [45, Chapter 2]. In [45, Chapter 2], answers are given in what 
follows to Exercises 1.3 and 1.4. The theory of DiPerna–Lions in Chap. 2 is also 
introduced for the study of three-dimensional Euler equations. 

Section 1.2 contains various applications to nonlinear partial differential equa-
tions, especially when the equation is quasi-linear, including the total variation flow 
equation. Total variation flow is used in image analysis; see [5]. 

The equations with fractional time derivatives discussed in Sect. 1.1.5 are 
fundamental to studying a diffusion equation with fractional time derivatives. Such 
an equation is useful for describing the anomalous diffusion found in contaminated 
water diffusing in soil. See the classic book on fractional differential equations by 
Podlubny [83]; see also the recent book by Kubica, Ryszewska, and Yamamoto [69] 
for the theory of diffusion equations with fractional time derivatives. It turns out that 
the equations with fractional time derivatives are actually derived as a kind of the 
Dirichlet-Neumann map of a diffusion equation as recently observed in [48]. 

1.4 Exercises 

1.1 Assume that a function b on RN is C1. Prove that b is locally Lipschitz, i.e., 
[b]Lip(BR) < ∞ for every R >  0. 

1.2 Prove Remark 1.4. For simplicity, assume that a continuous function b = 
b(x, t) satisfies 

. |b(x, t) − b(y, t)| ≤ M(t)|x − y|, t ∈ (0, a),

for x, y such that |x|, |y| < R, where R is a fixed positive number. Assume 
that M(t) is integrable on (0, a). Prove that a solution x of (1.1) with initial
datum X, with |X| < R in (0, a), is unique provided |x| < R in (0, a).

1.3 Let g be smooth in RN (with N = 2 or 3) and compactly supported. Show that 
E ∗ g is smooth, where E is the fundamental solution of −�. 

1.4 Under the same assumption made in Exercise 1.3, prove that −�(E ∗ g) = g. 
1.5 Consider ϕ = ϕ(x1, x2) such that 

. ϕ(x1, x2) = x1x2 (− log |x|)α , x = (x1, x2) ∈ B1 ⊂ R2,

with α ∈ (0, 1) in B1, and ϕ is smooth in R2 and compactly supported. 
Show that u = ∇⊥ϕ satisfies div u = 0. Show that curl u = −�ϕ = ω 
is continuous in B1. The derivative should be interpreted in the sense of a 
Schwartz distribution, i.e., 

. 

∫

R2
(curl u)ψ dx =

∫

R2
ω · ∇⊥ψ dx, ψ ∈ C∞

c (R2)

for a scalar function. Show that u is not Lipschitz continuous.
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1.6 Assume that A is a monotone operator in a Hilbert space H and τ >  0. Assume 
that x0 ∈ x + τAx  has a solution x ∈ H for all x0 ∈ H . Show that A is a 
maximal monotone operator. (This is an easy part of Minty’s theorem.) 

1.7 Show that Ax is a closed convex set if A is a maximal monotone operator in a 
Hilbert space. 

1.8 Set E(x) = |x| on H = R. Solve the initial value problem 

. ẋ ∈ −∂E(x), x(0) = X ∈ H.

1.9 Let X be a separable Banach space and X∗ its dual space. We say that xm ∈ X∗ 

converges to x ∈ X∗ ∗-weakly if 

. 〈xm − x, y〉 → 0

for all y ∈ X as m → ∞. Here 〈 , 〉 denotes a canonical pair. An element 
x∗ ∈ X∗ is a bounded linear functional x∗ : X → R and 〈x∗, y〉 :=  x∗(y) for 
y ∈ X. Show that if {xm} is bounded in X∗, then there is a ∗-weakly convergent 
subsequence of {xm}. See, for example, [19, Theorem 3.16]. 

1.10 Let E be a lower semicontinuous convex function in a Hilbert space H with 
values in R ∪ {+∞}. Assume that E �≡ ∞. For  τ >  0 and x0 ∈ H , let  Eτ be 

. Eτ (x) = E(x) + 1

2τ
‖x − x0‖2.

Then 

.∂Eτ (x) = ∂E(x) + 1

τ
(x − x0).



2Ordinary Differential Equations and Transport 
Equations 

We continue to consider a system of ordinary differential equations (1.1) , but we
are more interested in the map .X �→ x(t, X), which is often called a flow map 
generated by a vector field b. If the initial value problem for (1.1) admits a unique
local-in-time solution in a time interval .I = (0, a) with some .a > 0 independent 
of X, the flow map is well defined. In Sect. 1.1, we gave a few sufficient conditions 
so that the flow map is uniquely determined assuming the existence of solutions 
to (1.1) with a given initial datum. Roughly speaking, if the vector field b satisfies
the Lipschitz condition or a weaker condition called the Osgood condition, then the
flow map is well defined. Since the Lipschitz continuity of b in .RN is equivalent to 
saying that the first distributional derivative of b is in .L∞ (see [36, §5.8. b]), it can 
be written .b ∈ W 1,∞(RN), where the .Wm,p(�) denotes the Sobolev space of order 
.m = 0, 1, 2, . . . in .Lp(�). 

In this chapter, we are interested in the question of whether (1.2) can be replaced
by .‖b(·, t)‖W 1,p ≤ M , with finite .p ≥ 1. However, unfortunately, this does not 
guarantee uniqueness; this can be easily seen if one elaborates Example 1.5. This  
suggests that we need some extra conditions for b so that a flow map is well defined. 
It turns out that if .div b = 0 or at least .div b is bounded, this is the case (under some 
growth assumptions on b at the space infinity) provided that we regard the flow map 
.X �→ x(t, X) for almost all X (almost everywhere (a.e.) X) in  .RN not for all X. 
Such a theory was started by DiPerna and Lions [32] in the late 1980s. 

In this section, we explain the uniqueness part of the theory of autonomous 
equations, i.e., b is independent of time. To simplify the problem, we further assume 
that b is periodic in space variables. 
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2.1 Uniqueness of Flow Map 

We consider a vector field (or .RN -valued function) b on .TN = ∏N
i=1 (R/ωiZ), with 

.ωi > 0 (i = 1, . . . , N), i.e., 

. b(x) =
(
b1(x), . . . , bN(x)

)
for x ∈ TN.

In other words, we assume b is periodic in the ith variable with the period . ωi . In  
this section, we always assume that 

.bj ∈ W 1,1(TN) for 1 ≤ j ≤ N and div b = 0 in TN. (2.1) 

We simply write the first condition by .b ∈ W 1,1(TN) instead of writing . b ∈
(
W 1,1(TN)

)N
, though the latter is more precise notation. Here, .W 1,p(TN) is the 

.Lp-Sobolev space introduced in Sect. 1.2.5. We are interested in discussing the 
uniqueness of a solution to (1.1) with b independent of t , i.e.,

. ẋ = b(x)

or 

. 
dxi

dt
(t) = bi

(
x1(t), . . . , xN(t)

)

for .x(t) = (
x1(t), . . . , xN(t)

)
under condition (2.1) . However, under condition

(2.1), a flow map .X �→ x(t, X) (generated by b) for a fixed time t may not be 
integrable on . TN . In other words, each component of this map may not belong to 
.L1(TN). To overcome this difficulty, we introduce a space 

. M = M(TN) := {
φ : TN → R | (Lebesgue) measurable and

|φ| < ∞ a.e.
}
.

This space is metrizable. For example, if we define a metric d as 

. d(φ,ψ) = ‖min (|φ − ψ |, 1)‖L1(TN) for φ,ψ ∈ M,

then .(M, d) becomes a metric space. See Exercise 2.2 and 2.6. From this point 
forward, .‖ · ‖Lp(TN) (or .‖ · ‖Lp ) denotes the .Lp-norm in .Lp(TN). The convergence 
in this metric corresponds to the convergence in measure, i.e., .d(φj , ψ) → 0 as 
.j → ∞ implies for any . δ > 0

.LN
{
x ∈ TN

∣
∣ |φj − ψ |(x) > δ

}
→ 0 as j → ∞,
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where .LN denotes the N -dimensional Lebesgue measure; see Sect. 1.2.5 or 
Appendix 5.2 for a precise definition of a set in . TN . For fixed t , we expect each 
component . xi of a solution .x = x(t, X) belongs to . M as a function of X, i.e., the 
mapping 

. x[t] : X �→ x(t, X)

is expected to be in .MN . We also expect the mapping .x : t �→ x[t] to be defined for 
all .t ∈ R, and it is continuous from . R to .MN , i.e., .x ∈ C(R,MN). The reason we 
expect x to be defined for all t is that the value .x[t](X) = x(t, X) actually belongs 
to the compact space . TN , which prevents what is called blow-up phenomena. 

If b is divergence-free, i.e., solenoidal, then the flow map .x[t] must satisfy the 
volume-preserving property. In other words, for all .t ∈ R, 

.LN
({

z ∈ TN
∣
∣ x[t]z ∈ A

})
= LN(A) (2.2) 

for any (Lebesgue) measurable set A. More generally,

. 

∫

TN

ψ (x(t, X)) dX =
∫

TN

ψ(y) dy

for any measurable function . ψ on . TN . See Exercise 2.8. (In general, for a 
Lebesgue measurable set A, .f −1(A) = {

z ∈ TN
∣
∣ f (z) ∈ A

}
may not be Lebesgue 

measurable for a Lebesgue measurable function f . The volume-preserving property 
implicitly guarantees that .x[t]−1(A) will be Lebesgue measurable if A is Lebesgue 
measurable.) The property (2.2) is obtained by .div b = 0. Here is a formal argument 
assuming that x is . C1 in t and X. We set .F = (Fij ) = (

∂xi/∂Xj
)
for the flow map 

.x = x(t, X). (This is a Jacobi matrix of the flow map .X �→ x(t, X).) By the area 
formula (or change of variable of integration), to see (2.2) , it suffices to prove that
.detF = 1 for all t , where .detF denotes the determinant of F . Let  .trM denote the 
trace of .N × N metrics M , i.e., it is the sum of the diagonal components of M . By  
elementary calculus, we see that 

. 
d

dt
detF = detF tr

(
∂F

∂t
F−1

)

.

By Eq. (1.1) , we see that

. 
∂Fij

∂t
=

N∑

�=1

(∂�bi)(x)F�j .

Thus, .
d

dt
detF = tr(Db) detF . Here  Db denotes the Jacobian matrix . (Db)ij =

∂j bi , .1 ≤ i, j ≤ N . We note that .tr(Db) = div b. If  .div b = 0 so that .tr(Db) = 0,
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we now observe that .detF is time independent. Since .detF = 1 at .t = 0, we now  
conclude that .detF = 1 for all t . This formal argument is justified when the flow 
map .x[t] : X �→ x(t, X) is in .C1(TN,TN). This is indeed true if b is . C1, and it 
is known as . C1 dependence with respect to the initial data; See, for example, [52, 
Chapter 5]. 

We must consider a solution .x = x(t, X) of the ordinary differential equation 
(1.1), which is only continuous but may not be in . C1 in the time variable t . If  
one weakens the notion of a solution, there is a chance we lose the uniqueness. 
To keep the uniqueness, we consider a special class of a solution that is often called 

a renormalized solution. We consider a mapping .t �→ x(t, ·) from . R to .
(
M(TN)

)N
. 

If this mapping is continuous, we simply write .x ∈ C
(
R,

(
M(TN)

)N
)
. It is also  

possible to consider the mapping .X �→ x(·, X) from . TN to .(C(R))N . This mapping 
is often called a flow map. 

Definition 2.1 

Assume that .x ∈ C
(
I,

(
M(TN)

)N
)
. We say that x is a (renormalized) solution 

of (1.1) in . R if 

.
∂

∂t
(β ◦ x)(t, X) = Dβ (x(t, X)) b (x(t, X)) on R × TN, . (2.3) 

(β ◦ x)|t=0 (X) = β(X) on TN (2.4) 

for all .β ∈ C1(TN,TN) such that .β ◦ x ∈ L∞
(
R,

(
M(TN)

)N
)
, where .β ◦ x is 

a composite function defined by .(β ◦ x)(t, X) = β (x(t, X)). Here  .Dβ denotes 
the Jacobian matrix .(Dβ)ij = ∂βi/∂xj , 1 ≤ i, j ≤ N . 

The time variable in (2.3) should be interpreted in the sense of a distribution
whose variables are t and X. In other words, (2.3) means that

. −
∫

TN

∫ ∞

−∞
∂ϕ

∂t
(t, X)(β ◦ x)(t, X) dtdX

=
∫

TN

∫ ∞

−∞
ϕ(t,X)Dβ (x(t, X)) b (x(t, X)) dtdX

for all .ϕ ∈ C∞
c (T × TN). Of course, if x is . C1 in t , then x must satisfy (2.3) for all

. β and X if and only if x is a solution to (1.1) with .x(0, X) = X. 

We need to explain the space .L∞
(
R,

(
M(TN)

)N
)
. If  V is a Banach space V , 

then let .Lp(R, V ) be the space of all pth integrable functions on . R as defined in 
Appendix 5.2 (4) using a Bochner integral. Since .M(TN) is not a normed space 
but just a metric space, we must extend the definition. The space . L∞ (

R,M(TN)
)

is the space of all measurable functions f on . R with values in .M(TN) such that
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.d(f, 0) is in .L∞(R) as function of t . The space .L∞ (
R,M(TN)N

)
is defined as 

.
(
L∞ (

R,M(TN)
))N

. 
Finally, we expect that the flow map will satisfy the group property, i.e., for any 

.t, s ∈ R, 

.x(t + s,X) = x (t, x(s,X)) for a.e. X. (2.5) 

Theorem 2.2 
Assume that (2.1) holds.

(i) (Existence) Then there exists a unique .x = x(t, X), with 

. x ∈ C

(

R,
(
M(TN)

)N
)

satisfying (2.2) –(2.5) . In particular, there exists a renormalized solu-
tion to (1.1). Moreover, the mapping .X �→ (β ◦ x)(·, X) is in 
.L1

(
TN, (C(I))N

)
for . β given in (2.3) , (2.4) , where I is an arbitrary

closed bounded interval. Furthermore, for almost every .X ∈ TN the 

function .t �→ x(t, X) is in .
(
C1(R)

)N
and .

∂x

∂t
= b(x) on . R as a function 

of t . 
(ii) (Uniqueness) There is at most one (renormalized) solution x to (1.1) 

satisfying all properties in (i).

It is not difficult to see that the space .C(I) is regarded as a Banach space equipped 
with .‖ · ‖∞ norm since I is compact. 

We shall focus on the uniqueness part of the proof. The main idea to prove the 
uniqueness is to show that the function .u0 (x(t, X)) depends only on . u0 ∈ C∞(TN)

for any choice of a real-valued function . u0. Since .u(X, t) = u0 (x(t, X)) solves 
a transport equation .ut − b(X) · ∇Xu = 0 with initial datum .u0(X), the problem 
is reduced to the uniqueness of a (weak) solution to the transport equation with 
nonsmooth solenoidal coefficient b. Here, .ut = ∂u/∂t , and . ∇X denotes the spatial 
gradient in X. We shall postpone the uniqueness proof of Theorem 2.2 to the end of 
Chap. 2. 

For the reader’s convenience, we show that .u(X, t) solves 

.ut (X, t) − b(X) · ∇Xu(X, t) = 0 (2.6)
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Fig. 2.1 Characteristic curve 

at least if .b ∈ C1 and x is . C1 in its variables .(t, X) ∈ R × TN . We first prove that 
(2.6) at .t = 0. By direct calculation, 

. ut (X, t) =
N∑

i=1

∂u0

∂xi
(x(t, X))

dxi

dt
=

N∑

i=1

∂u0

∂xi
(x(t, X)) bi (x(t, X)) ,

∂u

∂Xj
(X, t) =

N∑

i=1

∂u0

∂xi
(x(t, X))

∂xi

∂Xj
(t, X).

At .t = 0, .ut (X, 0) = ∑N
j=1(∂ju0)(X)bj (X), .∂u/∂Xj

∣
∣
t=0 = (∂ju0)(X) since 

.
∂xi

∂Xj

∣
∣
∣
t=0

= δij (.δij = 1 if .i = j and .δij = 0 if .i �= j ), so we have (2.6) . We next set

.us(X) = u(X, s) for .s ∈ R. Then, by the group property, we see that 

. u(X, t + s) = u0 (x(t + s,X)) = u0 (x (s, x(t, X))) = us (x(t, X)) .

Applying the result for .t = 0, with .u0 = us , we have  

. ut (X, s) − b(X) · ∇Xu(X, s) = 0.

This yields (2.6). (The curve .x = x(t, X) is often called a characteristic curve of 
(2.6). It is easy to see that a solution u of (2.6) is constant along each characteristic
curve, i.e., for a fixed X, the function .u (x(−t, X), t) is constant in t ; see Fig. 2.1.) 

2.2 Transport Equations 

We are concerned with the uniqueness of a (weak) solution .u = u(x, t) to a transport 
equation 

.ut − b(x) · ∇xu = 0 (2.7)
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Fig. 2.2 Support of . φ

or 

. ut −
N∑

i=1

bi(x)
∂u

∂xi
= 0,

where .b = (b1, . . . , bN); here we denote the independent variables by x instead 
of X. A notion of the weak solution u for (2.7) with initial datum .u0 ∈ L1(TN) is 
obtained by multiplying .φ ∈ C∞

c

(
TN × [0, T )

)
(i.e., .suppφ is compact in . TN ×

[0, T )) (cf. Fig. 2.2) and integrating over .TN × [0, T ]. Indeed, we have 

. 

∫ T

0

∫

TN

{φut − φ (b(x) · ∇xu)} dxdt = 0.

Integrating by parts yields 

. −
∫ T

0

∫

TN

φtudxdt −
∫

TN

φu0dx +
∫ T

0

∫

TN

(div(bφ)) u dxdt = 0. (2.8) 

This formula leads to a definition of a weak solution to (2.7) . If .� = (0, T ), then 
we simply write .Lp(0, T ;V ) instead of .Lp(�, V ), the space of all pth integrable 
functions on . � with values in a Banach space V . 

Definition 2.3 

Let b be in .W 1,p′
(TN), and let . u0 be in .Lp(TN) (1 ≤ p ≤ ∞). If a function 

.u ∈ L∞ (
0, T ;Lp(TN)

)
fulfills (2.8) for all .φ ∈ C∞

c

(
TN × [0, T )

)
, then u is 

called a weak solution to (2.7) with initial datum . u0. The vector field b may not 
be divergence-free. Here . p′ is the conjugate exponent of p, i.e., .1/p + 1/p′ = 1. 
The integrability conditions guarantee that each term of (2.8) will be well defined
as a usual Lebesgue integral. We interpret .1/∞ = 0 so that .p = 1 (resp. .p = ∞) 
implies .p′ = ∞ (resp. .p′ = 1).
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Of course, it is straightforward to extend the definition of a weak solution to an 
inhomogeneous problem of the form 

. ut − b · ∇u = f

with initial datum . u0 and the inhomogeneous term .f ∈ L1
(
0, T ;L1(TN)

)
. We say  

that .u ∈ L∞ (
0, T ;Lp(TN)

)
is a weak solution with initial datum . u0 if 

. −
∫ T

0

∫

TN

φtu dxdt −
∫

TN

φtu0 dx +
∫ T

0

∫

TN

(div(bφ)) u dxdt =
∫ T

0

∫

TN

f ϕ dxdt

for all .ϕ ∈ C∞
c

(
TN × [0, T )

)
. 

In this section, we simply say that u is a solution to (2.7) if it is a weak solution
of (2.8) . We are now in a position to state our main uniqueness result.

Theorem 2.4 
Let .1 ≤ p ≤ ∞, and let .b ∈ W 1,p′

(TN) be solenoidal, i.e., .div b = 0 in . TN . 
Let .u ∈ L∞ (

0, T ;Lp(TN)
)
be a solution to (2.7) with initial datum .u0 ≡ 0. 

Then .u ≡ 0. (More precisely, .u(x, t) = 0, a.e.  .(x, t) ∈ TN × (0, T ).) In 
particular, if . u1 and . u2 are solutions to (2.7) with the same initial datum . u0, 
then .u1 ≡ u2 since (2.7) is a linear equation.

A key observation is that .θ ◦ u solves (2.7) with initial datum .θ ◦ u0 provided 
that .θ ∈ C1(R), with .θ ′ ∈ L∞(R). This is formally trivial since Eq. (2.7) is linear.
However, in our setting, this property is nontrivial. Such a fact is often called a
relabeling lemma. Here is a rigorous statement in this setting.

Lemma 2.5 
Let .1 ≤ p ≤ ∞, and let .b ∈ W 1,p′

(TN). Assume that . u ∈
L∞ (

0, T ;Lp(TN)
)
is a solution to (2.7) with initial datum .u0 ∈ Lp(TN). 

Then .θ ◦ u ∈ L∞ (
0, T ;Lp(TN)

)
is a solution to (2.7) with initial datum

.θ ◦ u0 provided that .θ ∈ C1(R), with .θ ′ ∈ L∞(R). 

Admitting Lemma 2.5, we give a proof of Theorem 2.4 for .1 ≤ p < ∞. The  
case .p = ∞ is postponed to the next section.
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Proof of Theorem 2.4 for .p < ∞ A heuristic idea is to take .θ(σ ) = |σ |p and 
observe that .|u|p = θ ◦ u is a solution to (2.7) so that

. 
d

dt

∫

TN

|u|p dx =
∫

TN

(|u|p)
t
dx =

∫

TN

div
(
b|u|p)

dx = 0

since .div b = 0 implies .div(bw) = b · ∇w for a function w. However, since this . θ
is not . C1 or .θ ′ ∈ L∞, we must circumvent it. 

We shall take a suitable . C1 function . θ . By Lemma 2.5, the function .θ ◦ u is a 
solution of (2.7). Assume that .θ(0) = 0. By taking .φ = φ(t) (spatially constant 
function) in (2.8) , we observe that

. −
∫ T

0
φt

(∫

TN

θ(u)dx

)

dt − 0 + 0 = 0

since .div(bφ) = 0. (This is the only place .div b = 0 is invoked.) This implies 

. 

∫ T

0
ψ(t)

(∫

TN

θ(u)dx

)

dt = 0

for any .ψ ∈ C∞
c ((0, T )) since we are able to take .φ ∈ C∞ ([0, T ]) with 

.suppφ ⊂ [0, T ) such that .φt = ψ . Indeed, it suffices to take .φ = − ∫ T

t
ψds. 

Thus a fundamental lemma of the calculus of variations (cf. Exercise 2.3 or [19, 
Corollary 4.24]) implies that 

.

∫

TN

θ(u)(x, t)dx = 0 for a.e. t ∈ (0, T ). (2.9) 

Since . θ is required to be . C1 with bounded first derivative, for a given positive 
constant M we take 

. g(σ ) := (|σ | ∧ M)p ,

θε(σ ) := (ρε ∗ g)(σ ) − (ρε ∗ g)(0) for σ ∈ R,

where .ρε ∈ C∞
c (R) is a Friedrichs’ mollifier in . R, i.e., 

. ρε(σ ) = 1

ε
ρ(σ/ε), ρ ≥ 0, supp ρ ∈ (−1, 1),

∫

R
ρdσ = 1

for .ε > 0; see Fig. 2.3. Here  .a1 ∧ a2 = min(a1, a2) for .a1, a2 ∈ R. Since . θε ∈ C∞
(Exercise 2.4), we plug such . θε into (2.9), and sending . ε to zero (Exercise 2.5) yields 

.

∫

TN

(|u| ∧ M)p (x, t)dx = 0
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Fig. 2.3 A typical graph of . ρ
and . ρε

for a.e. t by the (Lebesgue) dominated convergence theorem (Theorem 5.1) because 
.{|θε(u)|}0<ε<1 is bounded in .L

∞(TN). Since u is in .L∞ (
0, T ;Lp(TN)

)
, we send 

M to infinity and again use the dominated convergence theorem to conclude that 

. 

∫

TN

|u|p(x, t)dx = 0, a.e. t ∈ (0, T ).

Thus, we conclude that .u ≡ 0 in .L∞ (
0, T ;Lp(TN)

)
. By Fubini’s theorem, this is 

simply .u(x, t) = 0 for a.e. .(x, t) ∈ TN × (0, T ). ��

In the rest of this section, we shall prove the relabeling lemma (Lemma 2.5). A 
key idea is an approximation. From here, let . ρε be a Friedrichs’ mollifier in . RN , i.e., 
for . ε > 0

. ρε(x) = 1

εN
ρ

(x

ε

)
, ρ ∈ C∞

c (RN),

∫

RN

ρ dx = 1, ρ ≥ 0.

Lemma 2.6 
Let .1 ≤ p ≤ ∞, and let .b ∈ W 1,β(TN), with .β ≥ p′. Let . u ∈
L∞ (

0, T ;Lp(TN)
)
be a solution of (2.7) with initial datum .u0 ∈ Lp(TN). 

Let . ρε be a Friedrichs’ mollifier in space variables. Then .uε = u∗ρε satisfies 

. 
∂uε

∂t
− b · ∇uε = rε

with initial datum .u0ε = u0∗ρε, with some real-valued function . rε converging 
to zero in .L1

(
0, T ;Lα(TN)

)
as .ε → 0, where 

.1/α = 1/β + 1/p if β or p is finite,

1 ≤ α < ∞ is arbitrary if β = p = ∞.
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Proof of Lemma 2.5 admitting Lemma 2.6 By Lemma 2.6, we observe that 

. 
∂uε

∂t
− b · ∇uε = rε → 0 in L1

(
0, T ;L1(TN)

)
;

in other words, 

. lim
ε↓0

∫ T

0

∫

RN

|rε| dxdt = 0.

We take .θ ∈ C1(R), with .θ ′ ∈ L∞(R). Since . uε is smooth in space, we see that 

. 
∂

∂t
(θ ◦ uε) − b · ∇(θ ◦ uε) = rεθ

′ ◦ uε.

Since .θ ′ ∈ L∞(R), the right-hand side .rεθ
′ ◦uε → 0 in .L1

(
0, T ;L1(RN)

)
as .ε ↓ 0, 

we formally conclude that .θ ◦ u is a solution to (2.7) with initial datum .θ ◦ u0. Of  
course, we must carry out these arguments in a weak form, (2.8) . In other words, we
send .ε ↓ 0 for 

. −
∫ T

0

∫

TN

φt (θ ◦ uε) dxdt −
∫

TN

φ(θ ◦ u0ε) dx +
∫ T

0

∫

TN

(div(bφ)) θ ◦ uε dxdt

=
∫ T

0

∫

TN

φrε(θ
′ ◦ uε) dxdt with u0ε = u0 ∗ ρε

to get 

. −
∫ T

0

∫

TN

φt (θ ◦ uε) dxdt −
∫

TN

φ(θ ◦ u0) dx +
∫ T

0

∫

TN

(div(bφ)) θ ◦ uε dxdt = 0

for .φ ∈ C∞
c

(
TN × [0, T )

)
. ��

It remains to prove Lemma 2.6. For this purpose, it suffices to prove the 
convergence of commutators. 

Lemma 2.7 
Let . ρε denote a Friedrichs’ mollifier in . RN . Let .1 ≤ p ≤ ∞, and let . b ∈
W 1,β(TN), with .β ≥ p′. If .w ∈ Lp(TN), then 

. Rε(w, b) = (b · ∇w) ∗ ρε − b · ∇(w ∗ ρε) → 0 in Lα(TN)

as .ε → 0, where . α is given as in Lemma 2.6; in particular, in the case 
.p = ∞ so that .p′ = 1, .α = β if .β < ∞. Moreover, . ‖Rε(w, b)‖Lα ≤
C‖w‖Lp‖Db‖Lβ with some .C > 0 independent of sufficiently small . ε.
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Proof of Lemma 2.6 admitting Lemma 2.7 Direct calculation shows that 

. 
∂

∂t
uε − b · ∇uε = Rε(u, b);

in other words, 

. −
∫ T

0

∫

TN

φtuε dxdt −
∫

TT

φu0ε dx +
∫ T

0

∫

TN

(div(bφ)) uε dxdt

=
∫ T

0

∫

TN

Rε(u, b)φ dxdt

for all .φ ∈ C∞
c

(
TN × [0, T )

)
. By the second statement of Lemma 2.7, we have  

. ‖Rε(u, b)‖Lα (t) ≤ C‖u‖Lp(t)‖Db‖Lβ .

The right-hand side is bounded in t , so Lemma 2.7 yields 

. lim
ε↓0

∫ T

0
‖Rε(w, b)‖Lα (t) dt =

∫ T

0
lim
ε↓0 ‖Rε(w, b)‖Lα (t) dt = 0

by a dominated convergence theorem. (One immediately observes that b is allowed 
to depend on time t if .b ∈ L1

(
0, T ;W 1,β(TN)

)
and .u ∈ L∞ (

0, T ;Lp(TN)
)
. ��

Proof of Lemma 2.7 We first observe that the term .(b · ∇w) ∗ ρε should be 
interpreted as 

. ((b · ∇w) ∗ ρε) (x) = −
∫

TN

w(y) divy {b(y)ρε(x − y)} dy

since .∇w is not an integrable function. This identity is easily obtained if w is smooth 
by integration by parts. We proceed with 

. (b · ∇w) ∗ ρε − b · ∇(w ∗ ρε) = ρε ∗ (b · ∇w) −
N∑

i=1

(
∂

∂xi

ρε ∗ w

)

bi

= −
∫

TN

w(y)
[
divy {b(y)ρε(x − y)} + b(x) · (∇ρε)(x − y)

]
dy

=
∫

TN

w(y) ((b(y) − b(x)) · (∇ρε)(x − y)) dy −
∫

TN

(w div b) ∗ ρε dy

= I + II.

Here, we use the relation .∇y (ρε(x − y)) = −(∇ρε)(x − y).
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We next estimate I . Since . ρ has compact support, .ρε(x) = 0 for .|x| ≥ Cε, with 
some C independent of . ε. By changing . ε by . c0ε with some .c0 > 0, we may assume 
that .C < mini ωi/2. This choice implies that the ball .BC(z) centered at .z ∈ TN with 
radius C is contained in one periodic cell. We shall assume that .ε < 1. By changing 
the variable of integration by .z = (y − x)/ε, we obtain 

. I (x) =
∫

|x−y|≤Cε

{(b(y) − b(x)) · (∇ρε)(x − y)w(y)} dy

=
∫

|z|≤C

{
b(x + εz) − b(x)

ε
· (∇ρ)(−z)w(x + εz)

}

dz.

Since . ∇ρ is bounded, i.e., .C0 := ‖∇ρ‖L∞(RN ) < ∞, we observe that 

. |I (x)| ≤ C0

∫

|z|≤C

kε(x, z) |w(x + εz)| dz

with .kε(x, z) = |b(x + εz) − b(x)| /ε. By the  Hölder inequality 

. ‖f · 1‖α
L1(BC)

≤ ‖f ‖α
Lα(BC)|BC |α−1,

we observe that 

. 
1

Cα
0

‖I‖α
Lα(TN)

=
∫

TN

{∫

|z|≤C

kε(x, z) |w(x + εz)| dz

}α

dx

≤
∫

TN

∫

|z|≤C

{kε(x, z) |w(x + εz)|}α dzdx|BC |α−1 =: Jα

for .α ∈ [1,∞]. Here, .|BC | = LN(BC) (i.e., the volume of a ball of radius C) 
and it equals .|SN−1|CN/N . Applying the Hölder inequality for . kα

ε and .|w|α with 
.1/α = 1/β + 1/p, we see that 

.J ≤ |BC |1−1/α
{∫

TN

∫

|z|≤C

kε(x, z)βdzdx

}1/β {∫

TN

∫

|z|≤C

|w(x + εz)|pdzdx
}1/p

= C1‖w‖Lp(TN )

{∫

TN

∫

|z|≤C

kε(x, z)βdzdx

}1/β
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with .C1 = |BC |1−1/α|BC |1/p = |BC |1−1/β . Since 

. |b(x + εz) − b(x)| =
{

N∑

i=1

∣
∣
∣
∣

∫ 1

0

〈
∇bi(x + εσz), εz

〉
dσ

∣
∣
∣
∣

2}1/2

≤ ε|z|
(

N∑

i=1

∣
∣
∣
∣

∫ 1

0

∣
∣
∣∇bi(x + εσz)

∣
∣
∣ dσ

∣
∣
∣
∣

2)1/2

≤ ε|z|
∫ 1

0
|Db(x + εσz)| dσ,

we see that 

. 

∫

TN

∫

|z|≤C

kε(x, z)βdzdx ≤
∫

TN

∫

|z|≤C

∫ 1

0
|Db(x + εσz)|β dσ |z|βdzdx

= C
β
2 ‖Db‖β

Lβ(TN )
with C2 =

(∫

|z|≤C

|z|βdz
)1/β

.

Here, .|Db(x)| denotes the Euclidean norm of the .N × N matrix .Db(x) in .RN×N . 
In other words, .|Db(x)|2 = tr

(
Db(x)Db(x)T

)
, where .MT denotes the transpose of 

a matrix  M . 
We now conclude that 

. ‖I‖Lα(TN) ≤ C0J ≤ C0C1‖w‖Lp(TN)

{∫

TN

∫

|z|≤C

kε(x, z)βdzdx

}1/β

≤ C0C1C2‖w‖Lp(TN)‖Db‖Lβ(TN ).

By Young’s inequality for convolution, we have 

. ‖II‖Lα ≤ ‖ρε‖L1‖w div b‖Lα ≤ 1‖w div b‖Lα .

By the Hölder inequality, 

. ‖w div b‖Lα ≤ ‖w‖Lp‖Db‖Lβ .

Thus, the desired estimate .‖Rε(w, b)‖Lα ≤ C‖w‖Lp‖Db‖Lβ now follows. 
It remains to prove that .‖Rε(w, b)‖Lα → 0 as .ε → 0. This can be carried out by 

a density argument. 
If .w ∈ W 1,p(TN), then both .(b · ∇w) ∗ ρε and .(b · ∇)(w ∗ ρε) converge to 

.(b · ∇)w in .Lα(TN) as .ε → 0 since .f ∗ ρε → f in .Lα(TN) if .f ∈ Lα(TN); see  
[19, Section 4.4]. Here, we invoke the property .α < ∞. Thus, .Rε(w, b) → 0 in 
.Lα(TN) provided that .w ∈ W 1,p(TN).
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Suppose that .1 ≤ p < ∞. Since .W 1,p(TN) is dense in .Lp(TN) for .p < ∞, for  
.w ∈ Lp(TN) there is a sequence .{wm} ⊂ W 1,p(TN) converging to w in .Lp(TN). 
(This density follows from the fact that .f ∗ ρ1/m ∈ C∞(TN) and .f ∗ ρ1/m → f in 
.Lp(TN) as .m → ∞ for .p ∈ [1,∞). See [19, Section 4.4] and Appendix 5.2 (6).) 
Since 

. Rε(w, b) = Rε(w − wm, b) + Rε(wm, b),

we observe that 

. ‖Rε(w, b)‖Lα ≤ C3‖w − wm‖Lp‖Db‖Lβ + ‖Rε(wm, b)‖Lα

by the estimate of Lemma 2.7 proved earlier with some .C3 > 0 independent of 
sufficiently small .ε > 0. Sending .ε ↓ 0 yields 

. lim sup
ε↓0

‖Rε(w, b)‖Lα ≤ C3‖w − wm‖Lp‖Db‖Lβ + 0.

Letting .m → ∞ yields a desired conclusion, i.e., .Rε(w, b) → 0 as .ε → 0 in 
.Lα(TN). 

If .p = β = ∞, then, by our assumption, .α < ∞. This case is reduced to the 
case .α = p < ∞, .β = ∞. 

It remains to prove the case .β < ∞, but  .p = ∞. In this case, .α = β. 
Unfortunately, .w ∈ L∞(TN) cannot be approximated by an element of . W 1,∞(TN)

in the .L∞ sense. However, it is still possible to approximate in a weaker sense. That 
is, for any .w ∈ L∞(TN), there exists a sequence .wn ∈ L∞(TN) such that . wm → w

a.e. and .‖wm‖∞ ≤ ‖w‖∞. (For example, it is enough to take .wm = ρ1/m ∗ w. See 
Exercise 2.10.) We are able to estimate 

. lim sup
ε→0

‖Rε(v, b)‖α
Lα ≤ C

∫

TN

|Db(x)|α |v(x)|α dx (2.10) 

with some C independent of .v ∈ L∞(TN) and b. Indeed, from a similar argument 
as previously, the term corresponding to I is dominated by 

. 
1

Cα
0

‖I‖α
Lα(TN)

≤
∫

TN

∫

|z|≤C

{kε(x, z) |v(x + εz)|}α dzdx|BC |α−1

≤
∫

TN

∫

|z|≤C

|z|α
(∫ 1

0
|Db(x + εσz)|α |v(x + εz)|α dσ

)

dzdx|BC |α−1,

where .β = α. We change the variable of integration by .x = x + εσz to get 

. =
∫

TN

∫

|z|≤C

|z|α
∫ 1

0
|Db(x)|α |v (x + (1 − σ)εz)|α dσdzdx|BC |α−1.
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Since the shift operator is continuous in . Lα norm,1 we see that 

. v (x + (1 − σ)εz) → v(x)

for almost all .x ∈ TN as .ε → 0 by taking a subsequence if necessary.2 Since 
v is bounded and .|Db|α is integrable, by the dominated convergence theorem we 
conclude that the last term converges to 

. Cα
2 |BC |α−1

∫

TN

|Db(x)|α |v(x)|α dx as ε ↓ 0.

A similar but much easier observation yields a similar estimate for . II. We thus 
conclude (2.10) .

By (2.10) , we are able to estimate

. lim sup
ε↓0

‖Rε(w, b)‖Lα ≤ lim sup
ε↓0

‖Rε(w − wm, b)‖Lα

≤ C

∫

TN

|Db(x)|α |w(x) − wm(x)|α dx.

Since .‖wm‖∞ ≤ ‖w‖∞ and .wm → w a.e. as .m → ∞, by the dominated 
convergence theorem, we conclude that the right-hand side tends to zero. The proof 
for the convergence .limε↓0 ‖Rε(w, b)‖Lα = 0 is now complete. ��

2.3 Duality Argument 

In this section, we shall prove the uniqueness result (Theorem 2.4) of a solution 
to the transport equation (2.7) when it is bounded under the condition that the
coefficient b of the transport term is merely in .W 1,1(TN). The argument presented 
so far does not work for .p = ∞. We study the case where .p = ∞ by a duality 
argument. 

Let us explain a basic idea of the duality argument. This is a typical argument 
for uniqueness. Consider a linear operator S from . Rn to . Rm. Suppose that we are 
asked to check whether this mapping is injective or one to one. Since S is linear, it 
is enough to show the kernel of S is just . {0}. In other words, we are asked to prove 
that .Sx = 0 implies .x = 0. The main idea of the duality argument is to reduce the

1 This is one of the fundamental properties of the Lebesque measure. It states that . lim|y|→0 ‖τyf −
f ‖Lα(TN ) = 0 for .α ∈ [1,∞), where .(τyf )(x) = f (x + y). 
2 If .fε → f in .Lp(TN), there is a subsequence . fεk

that converges to f a.e. 
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problem to the solvability of its dual problem .S∗z = y for all .y ∈ Rn. If there is a 
solution z, then 

. x · y = x · S∗z = Sx · z = 0

for all .y ∈ Rn. This implies .x = 0. 
So to carry out this argument, we need some existence theorem for a dual 

problem. 

Proposition 2.8 
Let .1 ≤ p ≤ ∞, and let .u0 ∈ Lp(TN). Assume that . b ∈ W 1,1(TN) ∩
Lp′

(TN), with .div b = 0. Then there exists a solution . u ∈ L∞ (
0, T ;Lp(TN)

)

of (2.7) with initial datum . u0. Here, .1/p + 1/p′ = 1. 

Proof. A typical way to prove the existence of a solution under nonsmooth 
coefficients is as follows. We first approximate the problem by regularization, then 
take a limit of a solution to the approximate problem. We need a priori estimates to 
carry out the second step. 

We begin with an a priori estimate assuming that b and . u0 are smooth. Let 
.x = x(t, X) be the flow map generated by b, i.e., .ẋ = b(x), with .x(0) = X. 
If b is smooth, then by the smooth dependence of the initial data [52, Chapter 
5], x is smooth in t and X. Moreover, by the uniqueness of the solution of (1.1) 
(Proposition 1.1), the group property (2.5) holds. We first recall that . u(X, t) =
u0 (x(t, X)) (uniquely) solves (2.7) , i.e.,

. ut − b(X) · ∇Xu = 0

with smooth data 

. u|t=0 (X) = u0(X)

if b is smooth. By this solution formula, it is clear that 

. ‖u‖L∞(t) ≤ ‖u0‖L∞ .

By the group property (2.5), we have .u0(X) = u (x(−t, X), t). Thus, . ‖u0‖L∞ ≤
‖u‖L∞(t), so that 

. ‖u‖L∞(t) = ‖u0‖L∞ .

Here, .‖u‖Lq (t) denotes the norm of u in .Lq(TN) with a parameter t . By a formal 
argument, to obtain the volume-preserving property (2.2), we observed that the
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Jacobian .detF of the flow map equals one, where .F = (Fij ) = (∂xi/∂Xj ). Thus, 
by (2.2) , we see that

.‖u‖Lq (t) = ‖u0‖Lq (2.11) 

for .1 ≤ q < ∞. Combining the .L∞ estimate, we see (2.11) holds for all .q ∈ [1,∞]. 
We next approximate our original b by .bε = b ∗ ρε. Then there is a (unique) 

solution .uε(x, t) ∈ C∞ (
TN × [0, T )

)
of 

.ut − bε(x) · ∇xu = 0 (2.12) 

with initial datum .u0ε = u0 ∗ ρε for .u0 ∈ Lp(TN); the solution .uε(x, t) is given by 
.uε(x, t) = u0 (xε(t, x)). Here, . xε is the flow map generated by . bε, i.e., .ẋε = bε(xε), 
with .xε(0) = x ∈ TN . Since . uε solves (2.12) , it solves its weak form, i.e.,

. −
∫ T

0

∫

TN

φtuεdxdt −
∫

TN

φu0εdx +
∫ T

0

∫

TN

(div(bεφ)) uεdxdt = 0 (2.13) 

for all .φ ∈ C∞
c

(
TN × [0, T )

)
. We note that . uε and . u0ε satisfy the norm-preserving 

property (2.11) .
Case 1 (.1 < p ≤ ∞). Since (2.11) for . uε implies that .{uε}0<ε<1 is bounded 

in .L∞ (
0, T ;Lp(TN)

)
, by  .∗-weak compactness, there is a subsequence . {uε′ }

converging to some u .∗-weakly in .L∞ (
0, T ;Lp(TN)

)
for .p ∈ (1,∞]; see  

Appendix 5.2 (4) for .∗-weak convergence in .L∞ (
0, T ;Lp(TN)

)
. We now send 

. ε′ to zero in (2.13). It is easy to see that the first two terms of (2.13) converge to
the first two terms of (2.8) , respectively. The only difficulty lies in handling the last
term. We proceed with

.

∫ T

0

∫

TN

div(bε′φ)uε′dxdt =
∫ T

0

∫

TN

(bε′ · ∇φ)uε′dxdt (2.14) 

since .div bε = div(b ∗ ρε) = (div b) ∗ ρε = 0. By a standard property of the 
mollifier, we see that .bε → b in .Lp′

(TN) if .p ∈ (1,∞] (e.g., [19, Section 4.4]). 
Since .uε′ ⇀ u .∗-weakly in .L∞ (

0, T ;Lp(TN)
)
, this implies that (2.14) converges

to

. 

∫ T

0

∫

TN

(b · ∇φ)u dxdt =
∫ T

0

∫

TN

div(bφ)u dxdt

as .ε′ ↓ 0. Here, we invoked the property 

. lim
ε↓0

∫ T

0

∫

TN

fεgε dxdt =
∫ T

0

∫

TN

fg dxdt
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if .fε → f in .L1
(
0, T ;Lp(TN)

)
and .gε ⇀ g .∗-weakly in .L∞ (

0, T ;Lp(TN)
)
as 

.ε ↓ 0. To see this property, we notice 

. fεgε − fg = (fε − f )gε + f (gε − g)

so that 

. 

∣
∣
∣
∣

∫ T

0

∫

TN

fεgε dxdt −
∫ T

0

∫

TN

fg dxdt

∣
∣
∣
∣

≤‖fε − f ‖
L1

(
0,T ;Lp′

(TN)
)‖gε‖L∞(0,T ;Lp(TN ))

+
∣
∣
∣
∣

∫ T

0

∫

TN

f (gε − g) dxdt

∣
∣
∣
∣

by the Hölder inequality (cf. Exercise 2.9). The first term tends to zero as . ε ↓ 0

since .‖gε‖L∞(0,T ;Lp(TN)) is bounded and .fε → f in .L1
(
0, T ;Lp′

(TN)
)
. The  

second term tends to zero as .ε ↓ 0 since .gε ⇀ g .∗-weakly in .L∞ (
0, T ;Lp(TN)

)
. 

We thus obtain (2.8) when .p ∈ (1,∞]. 
Case 2 (.p = 1). In this case, boundedness in .L1(TN) does not imply weak 

compactness. We approximate .u0 ∈ L1(TN) by .u0m ∈ Lp̂(TN), .p̂ > 1 such that 

.‖u0 − u0m‖L1 → 0 as .m → ∞. Let  . uε
m be an .L∞

(
0, T ;Lp̂(TN)

)
solution with 

initial datum .u0m for (2.12) , which is given by

. uε
m(x, t) = u0m (xε(t, x)) .

Since (2.12) is linear, we apply (2.11) to .uε
m − uε

m+1 to get 

.‖uε
m − uε

m+1‖Lq (t) = ‖u0m − u0m+1‖Lq (2.15) 

for all .1 ≤ q ≤ p̂. For .m = 1, we take a subsequence as .ε → 0 to get . U1 satisfying 
(2.8) starting with . u01 by Case 1. For .m = 2, we take a further subsequence to get 
a . U2 satisfying (2.8) starting with . u02. We repeat the procedure and obtain . Um ∈
L∞

(
0, T ;Lp̂(TN)

)
satisfying (2.8) with initial datum .u0m and moreover satisfying 

. ‖Um − Um+1‖L1(t) = ‖u0m − u0m+1‖L1

by (2.15). This implies that .{Um} is a Cauchy sequence in .L∞ (
0, T ;L1(TN)

)
. 

Since .Um solves (2.8), letting .m → ∞ yields the desired solution . U =
limm→∞ Um ∈ L∞ (

0, T ;L1(TN)
)
of (2.7) with initial datum .u0 ∈ L1(TN). ��
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� Remark 2.9 

(i) The assumption .b ∈ W 1,1(TN) is used only to define .div b in .L1(TN). It is  
enough to assume that .b ∈ Lp′

(TN) with .div b = 0 in the distribution sense. 
(ii) Proposition 2.8 is still valid for a solution of .ut − b · ∇u = f (instead of 

(2.7)) provided that .f ∈ L1
(
0, T ;Lp(TN)

)
. Its weak form is given right after 

Definition 2.3. 

Proof of Theorem 2.4 for .p = ∞ We shall prove that 

. 

∫ T

0

∫

TN

uφdxdt = 0

for all .φ ∈ C∞
c

(
TN × (0, T )

)
. This implies .u = 0 a.e. in .TN × (0, T ) by a 

fundamental lemma of the calculus of variations (Exercise 2.3 and [19, Corollary 
4.24]). 

We first consider a dual problem, which is a backward problem: 

. 
∂�

∂t
− b · ∇� = φ in TN × (0, T ), �|t=T = 0 in TN.

By Proposition 2.8 and Remark 2.9 (ii), there exists a solution 

. �̃ ∈ L∞ (
0, T ;L∞(TN)

)

for .∂t �̃ + b · ∇�̃ = φ̃ with .�̃(x, 0) = 0 for .φ̃(x, t) = φ(x, T − t). Setting 
.�(x, t) = �̃(x, T −t), we find a solution .� ∈ L∞ (

0, T ;L∞(TN)
)
to the preceding 

backward problem. 
We regularized . � and u by .�ε = � ∗ ρε and .uε = u ∗ ρε, respectively. The 

resulting equation for . �ε and . uε is 

. 
∂�ε

∂t
− b · ∇�ε = φε + ψε in TN × (0, T ), �ε|t=T = 0 in TN,

∂uε

∂t
− b · ∇uε = rε in TN × (0, T ), uε|t=0 = 0 in TN

with .φε = φ ∗ ρε, .ψε = (b · ∇�) ∗ ρε − b · ((∇�) ∗ ρε) and 

.rε = (b · ∇u) ∗ ρε − b · ((∇u) ∗ ρε) .
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We have .rε, ψε → 0 (as .ε ↓ 0) in  .L1
(
0, T ;L1(TN)

)
by Lemma 2.6; the  

external term . φ is also allowed in Lemma 2.6. Multiply the second equation by 
. �ε; integrating parts yields 

. −
∫ T

0

∫

TN

{uε(φε + ψε) + rε�ε} dxdt = 0;

here we invoke the property that .div b = 0. The  term .
∫ T

0

∫
TN rε�ε dxdt tends to zero 

as .ε ↓ 0 since 

. 

∣
∣
∣
∣

∫ T

0

∫

TN

rε�ε dxdt

∣
∣
∣
∣ ≤ ‖�ε‖L∞(0,T ;L∞(TN ))

∫ T

0
‖rε‖L1(TN)(t) dt

and .‖�ε‖L∞(t) ≤ ‖�‖L∞(t) and .rε → 0 in .L1
(
0, T ;L1(TN)

)
. Similarly, the term 

.
∫ T

0

∫
TN uεψε dxdt tends to zero as .ε ↓ 0. Thus, sending . ε to zero, we deduce 

. 

∫ T

0

∫

TN

uφdxdt = 0.

��

2.4 Flow Map and Transport Equation 

In this section, we shall give the uniqueness of a flow map .X �→ x(t, X) stated in 
Theorem 2.2 (ii) using the transport equation. The following discussion admits the 
existence part (Theorem 2.2 (i)). 

Proof of Theorem 2.2 (ii) If there are two different flow maps .x1(t, X) and 
.x2(t, X), then there is at least one .u0 ∈ C∞(TN) such that . u0 (x1(t, X)) �=
u0 (x2(t, X)) for some t and a set of X of positive measure. 

For any .u0 ∈ C∞(TN), we must prove the uniqueness of .u0 (x(t, X)). Thanks 
to Theorem 2.4, it suffices to prove that .u(X, t) = u0 (x(t, X)) is the unique (weak) 
solution of (2.7) in .L∞ (

0, T ;L∞(TN)
)
. For notational convenience in the rest of 

the proof, we will write the flow map .x(t, X) by .ϕ(t, x), so that the variable in (2.7) 
becomes x rather than X and .u(x, t) = u0 (ϕ(t, x)). 

For each .ψ ∈ C∞(TN), .h > 0, .t ∈ R, we set  

.�h(t) =
∫

TN

1

h
{u(x, t + h) − u(x, t)} ψ(x)dx

=
∫

TN

1

h
{u0 (ϕ(t + h, x)) − u0 (ϕ(t, x))} ψ(x)dx.
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By the group property (2.5) , we see that

. �h(t) =
∫

TN

1

h
{u0 (ϕ (t, ϕ(h, x))) − u0 (ϕ(t, x))} ψ(x)dx.

By the volume-preserving property (2.2) , we see that

. 

∫

TN

u0 (ϕ (t, ϕ(h, x))) ψ(x)dx =
∫

TN

u0 (ϕ(t, z)) ψ (ϕ(−h, z)) dz,

where we take .z = ϕ(h, x). Thus, we observe that 

.�h(t) =
∫

TN

1

h
u(z, t) {ψ (ϕ(−h, z)) − ψ(z)} dz. (2.16) 

We next note that .(b ◦ ϕ) · (∇ψ ◦ ϕ) ∈ L∞ (
R, L1(TN)

)
since . ϕ has the volume-

preserving property (2.2) , which implies

. 

∫

TN

|b ◦ ϕ(x)| dx =
∫

TN

|b (ϕ(t, x))| dx =
∫

TN

|b(x)| dx,

∫

TN

|∇ψ ◦ ϕ(x)| dx =
∫

TN

|∇ψ (ϕ(t, x))| dx =
∫

TN

|∇ψ(x)| dx.

Moreover, 

. 
∂

∂t
(ψ ◦ ϕ) = (b ◦ ϕ) · (∇ψ ◦ ϕ)

since .∂tϕ(t, x) = b (ϕ(t, x)) for a.e. .x ∈ TN and for all .t ∈ R by (i). Thus, 

. ψ (ϕ(−h, z)) − ψ(z) = −
∫ h

0
b (ϕ(−σ, z)) · (∇ψ) (ϕ(−σ, z)) dσ.

We plug this formula into (2.16) to get

. �h(t) = −
∫

TN

1

h
u(z, t)

[∫ h

0
b (ϕ(−σ, z)) · (∇ψ) (ϕ(−σ, z)) dσ

]

dz.

As previously, we invoke the volume-preserving property (2.2) and the group
property (2.5) to get

.�h(t) = −
∫

TN

1

h
b(x) · ∇ψ(x)

∫ h

0
u (ϕ(σ, x), t) dσdx

= −
∫

TN

b(x) · ∇ψ(x)
1

h

∫ h

0
u0 (ϕ (t, ϕ(σ, x))) dσdx

= −
∫

TN

b(x) · ∇ψ(x)
1

h

∫ h

0
u(x, t + σ)dσdx.
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Since .ϕ = ϕ(t, x) is continuous in .t ∈ R for a.e. .x ∈ TN , 

. lim
h↓0

1

h

∫ h

0
u(x, t + σ) dσ = u(x, t) for all t

for a.e. .x ∈ TN . Since .b ·∇ψ ∈ L1
(
TN × (0, T )

)
and u is bounded on . TN × (0, T )

independent of h, by the dominated convergence theorem we conclude that 

.�h(t) → −
∫

TN

b(x) · (∇ψ)(x)u(x, t) dx as h ↓ 0; (2.17) 

this convergence is locally uniform in .(0, T ), i.e., 

. lim
h↓0 sup

a≤t≤b

|�h(t) − �(t)| = 0

for any .[a, b] ⊂ (0, T ), where . � denotes the right-hand side of (2.17) .
It is easy to see that

. �h(t) → ∂

∂t

∫

TN

u(x, t)ψ(x)dx as h ↓ 0

in the sense of distribution as a function of t . We thus conclude that u satisfies (2.8) 
for .φ(x, t) = ψ(x)η(t), with .η ∈ C∞

c ([0, T )). Thus, (2.8) is still valid for any
.φ ∈ C∞

c

(
TN × [0, T )

)
since the linear span of the product type is dense in the 

class of test functions .C∞
c

(
TN × [0, T )

)
. ��

� Remark 2.10 In the case of . TN , (2.3) for general . β is not invoked for the 
uniqueness proof; we only use .β = identity. However, if one considers the 
problem in .RN instead of . TN , it is important to approximate the identity since, in 
general, only bounded . β with bounded .|b(z)| / (1 + |z|) is allowed. This restriction 
is important to understand (2.3) in the distribution sense.

2.5 Notes and Comments 

Remarks on Flow Maps and Transport Equations 
The contents of Chap. 2 is an active area of current research. The construction of 
such a flow map .x = x(t, X) for non-Lipschitz vector field b is extended when b 
is just in BV spaces [2]. Although the flow map .x = x(t, X) is defined only for 
almost all .X ∈ TN , it is known that x is Lipschitz in X with a small exceptional set 
[4]. The estimate is now quantified by [30]. It is of the following form. For given 
.T > 0, .p > 1, and small .ε > 0 there is a compact set K such that . LN(TN\K) < ε

and 

. |x(t, X1) − x(t, X2)| ≤ exp
(
CNAp(x)/ε1/p

)
|X1−X2|, X1, X2 ∈ K, t ∈ [0, T ],
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with . CN depending only on the dimension. Here, 

. Ap(x) =
{ ∫

TN

(

sup
0≤t≤T

sup
0<r<2

1

LN (Br(X))

∫

Br(X)

log

( |x(t, X) − x(t, Y )|
r

+ 1

)

dY

)p

dX

}1/p

.

For simplicity, we assume that .B2(X) covers the fundamental domain . � of . TN . 
The quantity .Ap(x) is uniformly controlled by .‖Db‖L1 provided that .div b = 0. In  
[30], .div b may not be zero, but some uniform compressibility for the flow map is 
assumed. Moreover, in [30], the flow map itself is studied directly without using the 
transport equations. 

Our strategy for proving the uniqueness of the flow map in Chap. 2 is to reduce 
the uniqueness of the transport equation, as stated in Theorem 2.4. However, we 
warn the reader that the uniqueness of the transport equation fails if one considers a 
less regular vector field. In fact, if one relaxes the assumption 

. b ∈ W 1,p′
(TN), div b = 0

by 

. b ∈ Lp′
(TN), Db ∈ Lp̃(TN), div b = 0,

with .1/p + 1/p̃ > 1 − 1/(N − 1), then the assertion of Theorem 2.4 fails. In other 
words, there is a nontrivial weak solution u to (2.7) with zero initial data. This is
first proved by Modena and Székelyhidi, Jr. [75] using a convex integration method. 
A solution constructed there is not a renormalized solution, i.e., the assertion of 
Lemma 2.5 does not hold for their solution u. This can be understood as meaning 
there is a microscopic effect that cannot be captured by the macroscopic notion of 
a weak solution. Recently, a nonrenormalized weak solution was constructed by 
Drivas et al. [34] using a vanishing viscosity method with anomalous dissipation. 
As pointed out in [86], such a solution is produced by a microscopic effect. The 
notion of a weak solution is too weak to guarantee uniqueness even for linear 
transport equations. In a very recent preprint, Huysmans and Titi [55] proved that 
the uniqueness may fail even among renormalized solutions if one only assumes 
that .b = b(x, t) is bounded with .div b = 0. (Note that their b depends on time t .) 
They constructed two different solutions which are given as subsequential vanishing 
viscosity limits, of the same equation. 

In the next two chapters, we will discuss scalar conservation laws and the 
Hamilton–Jacobi equations, where a naive “weak solution” may not be unique. For 
these equations one is able to recover uniqueness by considering a special class of 
weak solutions. 

It is of current interest to show the nonuniqueness of weak solutions for various 
physically important nonlinear equations, even if the viscosity is included, for
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example, the Navier–Stokes equations [20]. However, it is not clear what kind of 
extra condition would guarantee uniqueness. 

The contents of Chap. 2 are taken from the paper [32], where the problem 
is studied on . RN . In this book, we consider the problem on .TN to simplify the 
situation. Lemma 2.7 is a crucial step of the argument and is often called DiPerna– 
Lion’s lemma. A variant of this lemma is called Friedrichs’ commutator lemma in 
[39, Section 11.19]. This type of lemma is useful for studying mass conservation 
laws for compressible flows. 

2.6 Exercises 

2.1 Give an example of the nonuniqueness of a solution to (1.1) with a given initial
datum when b ∈ ⋂

p≥1 W 1,p(RN).
2.2 Set 

. L = {
φ : TN → R

∣
∣ φ is Lebesgue measurable

and |φ| < ∞ a.e.
}
.

Set d(φ, ψ) = ‖min (|φ − ψ |, 1)‖L1(TN). Show that (L, d) is a metric space. 
2.3 Let f be a locally integrable function in (0, T  ). Assume that 

. 

∫ T

0
f (t)ψ(t) dt = 0

for all ψ ∈ C∞
c ((0, T  )). Show that f (t)  = 0 for almost all t ∈ (0, T  ). 

2.4 Let ρε be a Friedrichs’ mollifier. Let f be continuous on R. Show that ρε ∗ f 
is in C∞(R). 

2.5 In the context of Exercise 2.4, show that ρε∗f converges to f locally uniformly 
in R as ε tends to zero. 
See [45] for details of Exercises 2.3–2.5. 

2.6 Let L be the space defined in Exercise 2.2. Set 

. d(φ,ψ) =
∫

TN

|φ(x) − ψ(x)|
1 + |φ(x) − ψ(x)| dx.

Show that (L, d) is a metric space. 
2.7 Assume that {fm}∞m=1 is a sequence converging to f in L1(TN ) as m → ∞. 

In other words, 

. lim
m→∞

∫

TN

|fm(x) − f (x)| dx = 0.

Show that {fm} converges to f in measure.
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2.8 Assume that ϕ : TN → TN is a volume-preserving mapping. In other words, 
ϕ has the property that 

. LN
({

x ∈ TN
∣
∣ ϕ(x) ∈ A

})
= LN(A)

for any measurable set A. Show that 

. 

∫

TN

ψ (ϕ(x)) dx =
∫

TN

ψ(x) dx

for any measurable function ψ on TN . 
2.9 (i) For p ∈ [1,∞), let  p′ denote the conjugate exponent of p, i.e., 1/p + 

1/p′ = 1. Assume that a sequence {fm}∞m=1 converges to f in Lp (TN ) as 
m → ∞. In other words, 

. lim
m→∞

∫

TN

|fm(x) − f (x)|p dx = 0.

Assume that a sequence {gm}∞m=1 converges ∗-weakly to g in Lp′
(TN ) as 

m → ∞. In other words, 

. lim
m→∞

∫

TN

gm(x)ϕ(x) dx =
∫

TN

g(x)ϕ(x) dx

holds for all ϕ ∈ Lp (TN ). Show that 

. lim
m→∞

∫

TN

fm(x)gm(x) dx =
∫

TN

f (x)g(x) dx.

(ii) Set fm(x) = sinmx ∈ L2(T), where T = R/(2πZ). Show that {fm}∞m=1 
converges weakly to 0 in L2(T) but 

. lim
m→∞

∫

TN

fm(x)2 dx �= 0.

2.10 Let ρε be a Friedrichs’ mollifier. For f ∈ L∞(TN ), show that ρε ∗f converges 
to f a.e. as ε tends to zero. Moreover, show that 

.‖f ‖L∞(TN) = lim
ε↓0 ‖fε‖L∞(TN ), ‖fε‖L∞(TN) ≤ ‖f ‖L∞(TN).



3Uniqueness of Solutions to Initial Value 
Problems for a Scalar Conversation Law 

In Chap. 2, we discussed the uniqueness of a weak solution to a transport equation, 
which is linear and of the first order. In this chapter, we consider scalar conservation 
laws, which are quasilinear but still of the first order. The major difference between 
the linear transport equations with a divergence-free (solenoidal) coefficient and a 
conservation law lies in the uniqueness problem of a weak solution. For the transport 
equation, it is unique under a very weak regularity assumption. However, for a 
conversation law, it may not be unique under a reasonable regularity assumption 
allowing discontinuities. To recover uniqueness, one must introduce an extra 
condition, called an entropy condition, that is not a regularity condition. Another 
difference is that the solution may develop singularity even if the initial datum are 
smooth for a conservation law but the solution is smooth for the transport equation 
if all data and coefficients are smooth. 

In this chapter, we introduce a scalar conservation law and observe that a 
discontinuity –called a shock– may develop in finite time. To track the whole 
evolution, we need to introduce a weak solution. However, unfortunately, weak 
solutions may not be unique. To recover uniqueness, we introduce the “entropy 
condition” and the notion of an “entropy solution.” After discussing the entropy 
condition, we prove the uniqueness of an entropy solution. To avoid technical 
complications, we discuss uniqueness in a periodic setting. A key idea in proving 
uniqueness is a method of doubling variables that is due to Kružkov [68]. The 
contents of this chapter are essentially taken from a book [53] by Holden and 
Risebro, with the modification that the uniqueness is discussed in a periodic setting. 
This topic is also discussed in [36, Chapter 11], with an emphasis on systems of 
conservation laws. 
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3.1 Entropy Condition 

In this section, we introduce a scalar conservation law and discuss the discontinuity 
of a solution. If initial datum are smooth, we are able to solve the equation locally 
in time, but it may develop discontinuity. To track evolution globally in time, we 
introduce the notion of a weak solution by integration by parts. We notice that 
uniqueness may be violated. There are several types of discontinuity. We only allow 
a particular type of discontinuity that satisfies the entropy condition. This eventually 
leads to the notion of an entropy solution. 

3.1.1 Examples 

We consider a flow map .x(t, X) generated by a vector field u on . RN , i.e., 

. ẋ(t, X) = u (x(t, X), t) for t > 0, x(0, X) = X,

where .ẋ(t, X) = ∂
∂t

x(t, X). The coordinate by X is often called the Lagrangian 
coordinate, while the coordinate by x is called the Euler coordinate. 

Assume that there is no acceleration. Physically speaking, there is no force by 
Newton’s law. Then 

. ẍ(t, X) = 0 or
∂2

∂t2
x(t, X) = 0,

where the partial derivative is taken in the Lagrangian coordinate. We shall write 
this law for .u(x, t) for the Euler coordinate. Since 

. ẍ = ∇xu · ẋ + ut with ẋ = u(x, t) or

ẍi =
N∑

j=1

∂xj
ui ẋi + ui

t with ẋi = ui(x, t),

where the partial derivative in the direction of .x, t of u is in the Euler coordinate, 
we see that .ẍ = 0 is equivalent to saying that 

. ut + u · ∇xu = 0 or ui
t +

N∑

j=1

uj∂xj
ui = 0, 1 ≤ i ≤ N.

If . N = 1, this is simply  

.ut + u ux = 0 or ut +
(

u2

2

)

x

= 0, (3.1)
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which is called the Burgers equation. Here .ux = ∂u/∂x. This equation is a typical 
example of a (scalar) conservation law 

.ut + f (u)x = 0, (3.2) 

where f is a function of u and .f (u)x = ∂
∂x

(f (u)) = ∂
∂x

(f ◦ u)(x). In  (3.1) ,
.f (u) = u2/2. 

We give another derivation of a conservation law modeling a traffic flow. We 
consider the simplest situation: a road having only one lane parameterized by a 
single coordinate x. All cars are assumed to move in only one direction, that of 
increasing x. Let .ρ(x, t) be the (number) density of cars at location x and time t . 
The number of cars in the interval .[a, b] at time t corresponds to .

∫ b

a
ρ(x, t)dx. Let  

.v(x, t) be the velocity of the car at x. The rate of cars passing a point x at some time 
t is given by .v(x, t)ρ(x, t). Thus, the change ratio of the number of cars in . [a, b]
should be 

. 
d

dt

∫ b

a

ρ(x, t)dx = − (v(b, t)ρ(b, t) − v(a, t)ρ(a, t)) .

Since the right-hand side equals .− ∫ b

a
(vρ)xdx and since .(a, b) is arbitrary, we get 

.ρt + (ρv)x = 0, (3.3) 

which is a typical mass conservation law, for example, in fluid mechanics. (In a
multidimensional setting, it must be that

. ρt + div(ρv) = 0,

which is the fundamental mass conservation law in science. Here v is a vector 
field.) In the simplest model, the velocity v is assumed to be a given function of 
the (number) density . ρ only. This one-dimensional model may approximate the 
situation where the road is uniform with no obstacles like signals, crossings, or 
curves forcing cars to slow down. We postulate that there is a uniform maximal 
speed .vmax for any car. If traffic is light, a car will approach this maximal speed, but 
the car will have to slow down if the number of cars increases. If . ρ reaches some 
value .ρmax, all cars must stop. Thus, it is reasonable to assume that v is a monotone 
decreasing function of . ρ such that .v(0) = vmax(> 0), .v(ρmax) = 0. The simplest 
function is a linear function, i.e., 

.v(ρ) = vmax(1 − ρ/ρmax) for ρ ∈ [0, ρmax] (3.4)
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Fig. 3.1 Profile of V 

(Figure 3.1). If .ũ = ρ/ρmax, .x̃ = vmaxx is normalized, the resulting normalized 
equation of (3.3) with (3.4) for .ũ = ũ(x̃, t) is of the form 

. ̃ut + (ũ(1 − ũ))x̃ = 0 for ũ ∈ [0, 1].

For further reference, we rewrite this equation as 

.ut + (u(1 − u))x = 0 (3.5) 

by writing .u = ũ, .x = x̃. The Burgers equation (3.1) is obtained by setting . ̃u =
1
2 (1 − u), .x̃ = x. 

3.1.2 Formation of Singularities and a Weak Solution 

An important feature of conservation law (3.1) is that the solution may become
singular in finite time.

Proposition 3.1 
Assume that f is smooth in . R and that its second derivative .f ′′ is positive 
in an interval .[α, β], which is nontrivial, i.e., .α < β. Let .u0 ∈ C∞(R) be 
nonincreasing and .u0(x) = β for .x < −x0 and .u0(x) = α for .x > x0 with 
some .x0 > 0. Then there exists a unique smooth solution u of (3.2) , with
.u(0, x) = u0(x), for .x ∈ R satisfying .α ≤ u ≤ β in .R × (−T0, T1), with 
some .T0, T1 > 0, but the maximal (forward) existence time . T1 must be finite.
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Fig. 3.2 Graph of . u0

Proof. We consider the equation for .v ∈ R of the form 

.v = u0
(
x − f ′(v)t

)
(3.6) 

for a given .x, t ∈ R. Here, . f ′ denotes the derivative of f when f depends on just 
one variable. See Fig. 3.2 for the profile of . u0. This equation has a unique solution 
.v̄ ∈ [α, β] for all .x ∈ R provided that t is sufficiently small, say, .|t | < t0, with some 
.t0 > 0 by the implicit function theorem [67]. Indeed, differentiating 

. F(v, x, t) = v − u0
(
x − f ′(v)t

)

with respect to v we get 

. 
∂F

∂v
(v, x, t) = 1 + u0

′ (x − f ′(v)t
)
f ′′(v)t.

This is bounded away from zero uniformly in x and small t , allowing negative t , 
say, .|t | < t0 since . f ′′ is bounded in .[α, β] and . u0

′ is bounded. Then, by the implicit 
function theorem, we get a unique .v = v̄, solving (3.6) .

We shall write .v̄ = u(x, t) since . ̄v depends on .(x, t). Since . ̄v solves (3.6) , we see
that .F (u(x, t), x, t) = 0 for .x ∈ R, t , with .|t | < t0. Since F depends on .v, x and t 
smoothly, we conclude that u is smooth in .R× (−t0, t0) by the smooth dependence 
of parameters in the implicit function theorem. (The curve .z = x − f ′ (u0(z)) t in 
the xt-plane with a parameter .z ∈ R is often called a characteristic curve (Fig. 3.3). 
The value of u on each characteristic curve .z = x − f ′ (u0(z)) t equals the constant 
.u0(z) by (3.6). Unlike the linear equation (2.6) , the characteristic curve may depend
on the initial datum . u0.)
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Fig. 3.3 Characteristic 
curves 

Differentiating both sides of (3.6) by setting .v = u(x, t), we get 

. ut = u0
′ (x − f ′(u)t

) (−f ′′(u)ut t − f ′(u)
)
,

f ′(u)ux = u0
′ (x − f ′(u)t

) (−f ′′(u)uxt + 1
)
f ′(u).

Adding both sides we get 

. ut + f ′(u)ux = u0
′ (x − f ′(u)t

) (−f ′′(u)t
(
ut + f ′(u)ux

))
.

From this identity we see that u solves (3.2) in .R× (−t0, t1), with .u(x, 0) = u0(x), 
.x ∈ R, if we choose a sufficiently small .t1 ∈ (0, t0). Indeed, this identity implies 
.ut +f ′(u)ux = 0 unless .u′

0

(
u − f ′(u)t

) (−f ′′(u)t
) = 1. However, the last identity 

does not hold for .t < 0 since .u′
0 ≤ 0 and .f ′′(u) > 0, and also for small . t > 0

independent of x since . u′
0 and .f ′′ (u(x, t)) are bounded. Thus, we get (3.2) .

The uniqueness can be proved easily since the difference .w := u1 − u2 of two 
solutions . u1 and . u2 solves 

. wt + (pw)x = 0, w|t=0 = 0,

with 

. p(x, t) =
∫ 1

0
f ′ (u2 + θ(u1 − u2)) dθ,

which is smooth and bounded with its derivatives. Indeed, 

.f (u1) − f (u2) =
∫ 1

0

d

dθ
(f (u2 + θ(u1 − u2))) dθ = pw
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so we get the preceding w equation by subtracting equation (3.2) for . u2 from that for 
. u1. We next apply an idea of the method of characteristics (see Chap. 2, especially 
the paragraph including (2.6) ) to this w equation

. wt + pwx + pxw = 0.

In general, it is more involved since p depends on time t . Here we simply use it as a  
change of variables to remove the . wx term. Let .x = x(t, X) be the unique solution 
of 

. ẋ = p(x, t) for small |t |, x(0) = X.

We set 

. W(X, t) := w (x(t,X), t)

and observe that 

. 
∂W

∂t
= wt + pwx.

The w equation is transformed to 

. Wt + qW = 0, W |t=0 = 0

for small . |t |, where .q = px (x(t, X), t). This is a linear ordinary differential 
equation, so the uniqueness (Proposition 1.1) yields .W ≡ 0. Thus, .w ≡ 0 on 
.R × (−δ, δ) for small .δ > 0. A similar argument implies that the time interval 
.[t−, t+] where uniqueness .w = 0 holds is open. Thus, .w ≡ 0 on .(−t0, t1), i.e., 
.u1 ≡ u2 on .R × (−t0, t1). 

By (3.6) we see that

. u(x, t) = β for x − f ′(β)t < −x0,

u(x, t) = α for x − f ′(α)t > x0.

Since .α < β, for sufficiently large t the two characteristic curves . x0 = x −
f ′(α)t and .−x0 = x − f ′(β)t merge (Fig. 3.3). Let .t = t∗ be a number such 
that .f ′(α)t∗ + x0 < f ′(β)t∗ − x0. Then .u(·, t∗) has two values, . α and . β, 
on .

(
f ′(α)t∗ + x0, f

′(β)t∗ − x0
)
. Thus, .t1 < t∗. This implies that the (forward) 

maximal existence time for a smooth solution is finite. 
�
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We shall consider the initial value problem to (3.2) for .t > 0. By Proposition 3.1, 
we must introduce a notion of a weak solution as in Definition 2.3 to track the whole 
evolution of a solution. 

Definition 3.2 

Assume that .f ∈ C(R). For .u0 ∈ L∞(R), we say that .u ∈ L∞ (R × (0, T )) is a 
weak solution of (3.2) with initial datum . u0 if 

.

∫

R×(0,T )

{ϕtu + ϕxf (u)} dxdt +
∫

R
ϕ|t=0 u0dx = 0 (3.7) 

for all .ϕ ∈ C∞
c (R × [0, T )). If . u0 and u is periodic in x, i.e., a function on 

.T = R/ω1Z with some .ω1 > 0, then . ϕ should be taken from .C∞
c (T × [0, T )). 

We shall discuss the speed of jump discontinuity. Its speed is represented by the 
magnitude of the jump, and such a representation is called the Rankine–Hugoniot 
condition. Let .x(t) be a .C1 function defined on an interval .[t0, t1], with .t0 < t1, 
.t0, t1 ∈ R. Let .D = J × (t0, t1) be an open set containing the graph of .x(t) in 
.(t0, t1), where J is an open interval in . R. We set  

. Dr = {(x, t) ∈ D | x > x(t)} ,

D
 = {(x, t) ∈ D | x < x(t)} ,

� = Dr ∩ D
.

Here, . � is simply the graph of the curve .x = x(t). See Fig. 3.4. 

Fig. 3.4 Sets . D
, . Dr and .�
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Lemma 3.3 
Let .f ∈ C(R) be given. Let u be . C1 in . Dr and . D
, and let u satisfy (3.7) for
all .ϕ ∈ C∞

c (D × (t0, t1)). Then 

.ẋ(t)(u
 − ur) = f
 − fr (3.8) 

for .t ∈ (t0, t1), with 

. u
 = lim {u(y, s) | (y, s) → (x(t), t) , (y, s) ∈ D
} (left limit),

ur = lim {u(y, s) | (y, s) → (x(t), t) , (y, s) ∈ Dr} (right limit),

and .f
 = f (u
), .fr = f (ur). (The speed .s = ẋ(t) is called the speed of the 
shock.) Conversely, if u satisfies (3.2) in . Dr and . D
 and satisfies (3.8) , then u

satisfies (3.7) for all .ϕ ∈ C∞
c (D × (t0, t1)). 

Proof. Since u is a classical solution of (3.2) in each .Di (i = r, 
), integration by 
parts yields 

. 

∫

Di

{ϕtu + ϕxf (u)} dxdt =
∫

∂Di

(νtu + νxf (u)) ϕdH1

=
∫

�

(
νi
t ui + νi

xfi

)
ϕdH1,

where .(νi
x, ν

i
t ) is an external unit normal of .∂Di . Here, .dH1 denotes the line element 

of the curve .x = x(t). Since u is a “weak solution” of (3.2) in D (i.e., u satisfies
(3.7) for all .ϕ ∈ C∞

c (D × (t0, t1))), we see that 

. 

∫

�

{(
νr
t ur + ν


t u


)
+

(
νr
xfr + ν


xf


)}
ϕdH1 = 0.

Since .νr = −ν
 and . ϕ is arbitrary, we now conclude (cf. Exercise 2.3) that 

. ν

t (u
 − ur) + ν


x(f
 − fr) = 0.

Since 

. 

(
ν

x, ν



t

)
= (1,−ẋ(t)) /

(
1 + (ẋ(t))2

)1/2
,

the desired relation (3.8) follows. Checking this argument carefully, we see the
converse is easily obtained. The relation (3.8) is called the Rankine–Hugoniot
condition. 
�
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3.1.3 Riemann Problem 

We consider the following special initial value problem for (3.2) , which is called the
Riemann problem. The initial datum we consider are

.u0(x) =
{

u
, x < 0,

ur , x > 0,
(3.9) 

where . u
 and . ur are constants, i.e., .u
, ur ∈ R. 
For simplicity, we assume that .u
 > ur in this subsection. It is easy to see that 

.uS(x, t) =
{

u
, x < x(t),

ur , x > x(t)
(3.10) 

is a weak solution of (3.2) with (3.9) provided that .x(t) = t (f
 − fr)/(u
 − ur) by 
(3.8) . If .ur < u
 and f is convex, it turns out that this is the only weak solution. 
However, in the case where .ur < u
 and f is concave, there is another weak solution 
called a rarefaction wave. Instead of writing a general form of a solution, we just 
restrict ourselves to the traffic flow equation (3.5) where .f (u) = u(1 − u). In this  
case, the function 

.uR(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

u
, x < x
(t),
1

2
− x

2t
, x
(t) ≤ x ≤ xr(t),

ur , x > xr(t),

(3.11) 

with .x
(t) =
(

1
2 − u


)
2t , .xr(t) =

(
1
2 − ur

)
2t , is a weak solution of (3.2) with

(3.9) provided that .ur < u
 (Figs. 3.5 and 3.6). This is easy to check since there is 
no jump and .1/2 − x/(2t) solves equation (3.2) in the region .x
 < x < xr . The  
question is which is reasonable as a “solution.” Of course, it depends on the physics 
we consider. For the traffic flow problem, consider the case where .ur = 0 and 
.u
 = 1. The solution . uS in this case is time-independent since .f
(0) = f
(1) = 0, 

Fig. 3.5 A rarefaction wave 
. uR at time t
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Fig. 3.6 Characteristic 
curves 

so that .x(t) = 0. Is it natural to stop even if there are no cars in front of us? There is 
no signal. From our intuition, . uR looks like a more reasonable solution. The question 
is how we determine this. 

3.1.4 Entropy Condition on Shocks 

We consider the viscous regularization of (3.2) of the form

.uε
t + f (uε)x = εuε

xx (3.12) 

with initial datum . u0 of the form of (3.9) . We are interested in the case where the
limit tends to . uS as .ε → 0. We seek the solution . uε of the form 

.uε(x, t) = U

(
x − st

ε

)
, (3.13) 

where s is the shock wave speed .s = (f
−fr)/(u
−ur) determined by the Rankine– 
Hugoniot condition. The function .U = U(ξ) in (3.13) must satisfy

. − sUξ + (f (U))ξ = Uξξ

if . uε solves (3.12), where .Uξ = (d/dξ)U(ξ). Integrate both sides to get 

.Uξ = −sU + f (U) + C0, (3.14) 

where . C0 is a constant of integration. (We consider this equation assuming that f is 
. C1, so that its initial value problem admits only one . C1 solution (Proposition 1.1). 
If U is . C1, then the right-hand side of (3.14) is . C1, so that U is . C2.) We postulate
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that . uS is the limit of . uε as .ε ↓ 0; then we should have 

. uS(x, t) = lim
ε→0

U ((x − st)/ε) =
{

u
 for x < st,

ur for x > st,

so 

. lim
ξ→−∞ U(ξ) = u
, lim

ξ→∞ U(ξ) = ur .

If we postulate U is monotone, we have 

. lim
ξ→±∞ Uξ(ξ) = 0

since .limξ→±∞ Uξ always exists by (3.14) . (The monotonicity follows from the
maximum principle for the derivative of . uε.) Letting .ξ → ±∞ in (3.14) , we obtain

. C0 = su
 − f
 = sur − fr .

The last equality also gives the Rankine–Hugoniot condition. Thus, we obtain an 
ordinary differential equation for U with boundary condition at .±∞ of the form 

.
d

dξ
U(ξ) = −s (U(ξ) − u
) ,+ (f (U(ξ)) − f
) , (3.15) 

. U(∞) = ur, U(−∞) = u
.

Definition 3.4 

If there exists a solution U of (3.15) with .U(∞) = ur , .U(−∞) = u
 (.ur �= u
), 
we say that . uS in (3.10) with .x(t) = st , .s = (f
 − fr)/(u
 − ur) satisfies a 
traveling wave entropy condition. 

We shall derive an equivalent condition for . ur and . u
, so that . uS satisfies a 
traveling wave entropy condition. 

Proposition 3.5 
Let .f ∈ C1(R). Assume .u
 < ur (resp. .ur < u
). Let . uS be of the form 
of (3.10), with .x = st , .s = (f
 − fr)/(u
 − ur), where .f
 = f (u
) and 
.fr = f (ur). Then . uS fulfills the traveling wave entropy condition if and only 

(continued)
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Proposition 3.5 (continued) 
if the graph of .f (u) lies above (resp. below) the straight line segment joining 
.(u
, f
) and .(ur , fr ), i.e., 

. f (u) > f
 + s(u − u
) = fr + s(u − ur)

(resp. f (u) < f
 + s(u − u
) = fr + s(u − ur))

for all .u ∈ (u
, ur) (resp. .u ∈ (ur , u
)). 

Proof. Assume that .u
 < ur . We first observe that . Uξ does not vanish. Indeed, if 
there were . ξ0 such that .Uξ(ξ0) = 0, then .a = U(ξ0) should satisfy 

. − s(a − u
) + (f (a) − f
) = 0.

Thus, .U ≡ a is a solution to (3.15), which is unique by Proposition 1.1. Thus, 
U must be a constant that cannot achieve at least one of the boundary conditions 
.U(∞) = ur , .U(−∞) = u
. Thus, .Uξ(ξ) > 0 for all . ξ . This implies 

. f
 + s(u − u
) < f (u)

for .u ∈ (u
, ur). Recalling the Rankine–Hugoniot condition, . s = (f
 − fr)/(u
 −
ur), we observe the desired condition (Fig. 3.7). The converse is easy. The case 
.ur < u
 is parallel. 
�

If f is convex, this condition is equivalent to saying that .f ′(ur) < s < f ′(u
) for 
.ur < u
. This is a classical entropy condition for convex f . In the case of concave f 

Fig. 3.7 Profile of f on 
.(u
, ur )
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like the traffic flow problem (3.5) , if .ur < u
, then . uS does NOT fulfill the traveling 
wave entropy condition. 

In the next section, we discuss the Kružkov entropy solution, which combines 
such an entropy condition and the notion of a weak solution, so that one can check 
the entropy condition for a general function whose jump (shock) curves are not 
regular. 

In Proposition 3.5, we discuss an equivalent condition when . uS satisfies the 
traveling wave entropy solution. One can write this equivalent condition in a 
synthetic way as 

. s|k − u
| < sgn(k − u
) (f (k) − f (u
))

for all k between . u
 and . ur . Here, .sgn denotes the sign function defined by 

. sgn x =
⎧
⎨

⎩

1, x > 0,

0, x = 0,

−1, x < 0.

(Of course, one may replace . u
 with . ur in the above inequality.) One may write this 
another way to express the condition similarly. Let .a = a(x, t) be a function defined 
in .D = J × (t0, t1), where J is an open interval in . R. Let .[[a]] denote the difference 
between the limit from . Dr and . D
, i.e., 

. [[a]](x, t) := ar(x, t) − a
(x, t), (x, t) ∈ � = Dr ∩ D
,

ar(x, t) = lim
{
a(y, s)

∣∣ (y, s) → (x, t), (y, s) ∈ Dr

}
,

a
(x, t) = lim
{
a(y, s)

∣∣ (y, s) → (x, t), (y, s) ∈ D


}
.

Proposition 3.6 
Let .f ∈ C1(R). Consider the Riemann problem. The function . uS in (3.10) 
satisfies the traveling wave entropy condition if and only if

. s[[|u − k|]] ≥ [[sgn(u − k) (f (u) − f (k))]] for all k ∈ (u
, ur) if u
 < ur

(resp. k ∈ (ur , u
) if ur < u
) and

s[[|u − k|]] = [[sgn(u − k) (f (u) − f (k))]] for all k �∈ (u
, ur) if u
 < ur

(resp. k �∈ (ur , u
) if ur < u
)

for .u = uS , where .x(t) = st with .s = (f
 − fr)/(u
 − ur), .f
 = f (u
), 
.fr = f (ur).
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Proof. We only give a proof when .u
 < ur since the proof for .u
 > ur is symmetric. 
“If” part. Choosing k between . u
 and . ur , we obtain 

. s (−(u
 − k) − (ur − k)) < − (fr − f (k)) − (f
 − f (k))

or 

. f + s(k − u) < f (k).

Here, .f = (fr + f
)/2, .u = (ur + u
)/2. This implies that the graph of .f (u) must 
lie above the straight line segment between .(u
, f
) and .(ur , fr ). Proposition 3.5 
now implies that . uS satisfies the traveling wave entropy condition. 

“Only if” part. Since the Rankine–Hugoniot condition holds, 

. s[[|u − k|]] = [[sgn(u − k) (f (u) − f (k))]]

for any constant k not between . u
 and . ur . For constants k between . u
 and . ur , if the  
traveling wave entropy condition holds, then, by Proposition 3.5, we have  

. f (k) > s(k − u
) + f (u
) and

f (k) > s(k − u
) + f (ur),

so that 

. f (k) − sk > f − su.

Then we obtain 

.s[[|u − k|]] > [[sgn(u − k) (f (u) − f (k))]].


�

� Remark 3.7 This proposition says that for the Riemann problem, the solution 
satisfying the traveling entropy condition is exactly the Kružkov entropy solution 
defined later. 

3.2 Uniqueness of Entropy Solutions 

We first derive two equivalent definitions of an entropy solution. One is based on 
what we call an entropy pair, and the other is its modification due to Kružkov. 
The first condition is easily motivated by a vanishing viscosity approximation. We 
derive this condition by a formal argument. Then we introduce Kružkov’s entropy 
condition and discuss the equivalence of both definitions. We conclude this section
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by proving the uniqueness of an entropy solution. The key idea is a kind of doubling 
variable argument. 

3.2.1 Vanishing Viscosity Approximations and Entropy Pairs 

We consider the initial value problem of a scalar conservation law of the form 

.ut + f (u)x = 0 in Q = T × (0, T ), . (3.16) 

u|t=0 = u0 on T. (3.17) 

Here .u = u(x, t) is a real-valued function on Q. In other words, to simplify the 
presentation, u is periodic in x. The flux function f is always assumed to be at least 
a locally Lipschitz (real-valued) function. 

To obtain a solution, we consider a parabolic approximation 

. uε
t + f (uε)x = εuε

xx, . (3.18) 

uε
∣∣
t=0 = u0 (3.19) 

for .ε > 0. We expect that a reasonable solution will be obtained as a limit of the 
solution of (3.18) , (3.19) as .ε → 0. Since . ε looks like a viscosity coefficient in fluid 
dynamics, this approximation is often called a vanishing viscosity approximation. 

It is well known that (3.18) and (3.19) admit a global solution . uε that is smooth 
for .t > 0 for any given .u0 ∈ L∞(T) provided that f is smooth. For a moment 
we assume that f is smooth, so that . uε is smooth for .t > 0 (the initial condition 
should be understood in a weak sense); see, for example, standard monographs on 
parabolic equations [70,72]. We take a real-valued smooth function . η defined on . R, 
and consider a composite function .η(uε) = η ◦ uε. Since . uε satisfies (3.18) , . η(uε)

must solve 

.η(uε)t + η′(uε)f ′(uε)uε
x = εη′(uε)uε

xx. (3.20) 

Since .η(uε)xx = η′(uε)uε
xx + η′′(uε)(uε

x)
2, we observe that . η(uε)xx ≥ η′(uε)uε

xx

provided that . η is convex. 
Assume that . η is now convex, and take a function q such that .q ′ = η′f ′. Then 

(3.20) yields

.η(uε)t + q(uε)x = εη′(uε)uε
xx ≤ εη(uε)xx. (3.21) 

We multiply (3.21) by a nonnegative function .ϕ ∈ C∞
c (Q0) on . Q0 = T × [0, T )

and integrate by parts to get 

.

∫

Q

{
ϕtη(uε) + ϕxq(uε)

}
dxdt +

∫

T
ϕ|t=0 η(u0)dx ≥ −ε

∫

Q

ϕxxη(uε)dxdt.
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Here, we present a formal argument. The following argument can be justified if, for 
example, .supQ |uε| is bounded in . ε and if . uε tends to u almost everywhere (a.e.) in 
Q as .ε ↓ 0. Sending . ε to zero we get 

.

∫

Q

{ϕtη(u) + ϕxq(u)} dxdt +
∫

T
ϕ|t=0 η(u0)dx ≥ 0 (3.22) 

for any .ϕ ∈ C∞
c (Q0) with . ϕ ≥ 0. In  Q this condition implies 

.η(u)t + q(u)x ≤ 0 (3.23) 

in a distribution sense, which means .−η(u)t−q(u)x is a nonnegative Radon measure 
in Q. 

This argument can be extended when . η is merely convex by an approximation 
for (3.22). (Incidentally, the inequality for taking .η(n)xx ≥ η′(u)uxx for . η(u) = |u|
is known as the Kato inequality .�|w| ≥ (sgn w)�w in a distribution sense. This 
inequality is also obtained by approximately . |u|, by, for example, .

√|u|2 + δ, .δ > 0. 
See Exercise 3.8.) 

Inequality (3.23) is trivially fulfilled if u solves (3.16) and u is smooth. However,
it will turn out that this inequality distinguishes admissible jumps and nonadmissible
jumps when u is discontinuous. We thus reach the following definition.

Definition 3.8

Let f be a locally Lipschitz function on . R. 

(1) A pair of functions .(η, q) is an entropy pair for (3.16) if . η is convex and q is 
a primitive (antiderivative) of .η′f ′, i.e., .q ′ = η′f ′. 

(2) Let .u ∈ L∞(Q) be a weak solution of (3.16) , (3.17) with initial datum . u0 ∈
L∞(T). Let .(η, q) be an entropy pair for (3.16) . We say that u is an entropy
solution of (3.16) , (3.17) if u satisfies (3.22) for all .ϕ ∈ C∞

c (Q0), with .ϕ ≥ 0, 
where .Q0 = T × [0, T ). 

3.2.2 Equivalent Definition of Entropy Solution 

For a convex function . η on . R, .(η, q) is an entropy pair (for (3.16) ) if we set

. q(w) =
∫ w

k

η′(τ )f ′(τ )dτ.

The function q is uniquely determined by . η up to an additive constant. If we take 
.η(w) = |w − k| for .k ∈ R, then we have 

.q(w) = sgn(w − k) (f (w) − f (k)) .
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It is clear that if u is an entropy solution, then it must satisfy 

. 

∫

Q

{ϕt |u − k| + ϕx (sgn(u − k) (f (u) − f (k)))} dxdt +
∫

T
ϕ|t=0 |u0 − k|dx ≥ 0

(3.24) 

for all .k ∈ R and all .ϕ ∈ C∞
c (Q0), with .ϕ ≥ 0. This condition is often called the 

Kružkov entropy condition. It is equivalent to the definition of an entropy solution. 

Proposition 3.9 
Let f be a locally Lipschitz function. Let .u ∈ L∞(Q) be a weak solution of 
(3.16) , (3.17) with initial datum .u0 ∈ L∞(T). Then u is an entropy solution if 
and only if u satisfies the Kružkov entropy condition, i.e., (3.24) for all . k ∈ R
and for all .ϕ ∈ C∞

c (Q0), with .ϕ ≥ 0. 

Proof. Since the “only if” part is trivial, we shall prove the “if” part. For . η we set a 
linear functional 

. �(η) =
∫

Q

{ϕtη(u) + ϕxq(u)} dxdt +
∫

T
ϕ|t=0 η(u0)dx

for a fixed .ϕ ∈ C∞
c (Q0) and . u0. This quantity .�(η) is determined by . η and is 

independent of the choice of q provided that .(η, q) is an entropy pair. The Kružkov 
entropy condition (3.24) implies

. �(ηi) ≥ 0

for all .ηi(w) = αi |w − ki |, .ki ∈ R, .αi ≥ 0, .i = 1, · · · ,m. Thus, 

. �

(
m∑

i=1

ηi

)
=

m∑

i=1

�(ηi) ≥ 0

since .(
∑m

i=1 ηi,
∑m

i=1 qi) is an entropy pair if .(ηi, qi) is an entropy pair. Since u is 
a weak solution, we see that .�(η) = 0 if .η(w) = αw + β, .α, β ∈ R. Thus, the 
convex piecewise linear function . η of the form 

.η(w) = αw + β +
m∑

i=1

ηi(w) (3.25) 

satisfies .�(η) ≥ 0.
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As stated at the end of this subsection (Lemma 3.10), we notice that any 
piecewise linear convex function is of the form (3.25) provided that there is only
a finite number of nondifferentiable points. We thus conclude that .�(η) ≥ 0 for 
any piecewise linear convex function . η. Since a convex function . η is approximable 
(Exercise 3.5) by a piecewise linear convex function .{ζj }∞j=1 (having finitely many 
nondifferentiable points) locally uniformly in . R, we conclude that 

. �(η) = lim
j→∞ �(ζj ) ≥ 0

since u is bounded. 
�

Lemma 3.10 
Let . η be a piecewise linear convex function in . R with m nondifferentiable 
points. Then there are .αi ≥ 0, . αi , . βi , .ki ∈ R for .1 ≤ i ≤ m such that 

. η(w) = αw + β +
m∑

i=1

ηi(w), ηi(w) = αi |w − ki | + βi.

Proof. This can be easily proved by induction of numbers m of nondifferentiable 
points of a piecewise linear convex function . ξm. If . m = 0, it is trivial. Let .{ki}mi=1 be 
the set of all nondifferentiable points of . ξm. We may assume that . k1 < k2 < · · · <

km. Assume that .m ≥ 1. Taking . α, . β, and . α1 in a suitable way, we see that 

. ξm(w) = αw + β + η1(w) for − ∞ < w < k2,

where . k2 is the second smallest nondifferentiable point of . ξm; .k2 = ∞ if there is no 
such point (Fig. 3.8). 

Fig. 3.8 Profile of graphs
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We set 

. ξ(w) = αw + β + η1(w) for w ∈ R.

Since . ξm is convex and . ξ is linear for .s > k1, .ξm − ξ is still convex and nonnegative 
and .ξm − ξ = 0 on .(−∞, k2). Moreover, the number of nondifferentiable points of 
.ξm − ξ is .m − 1, so by induction we conclude that . ξm is of the form of (3.25) . 
�

3.2.3 Uniqueness 

We are now in a position to state our main uniqueness result as an application of the 
.L1-contraction property. 

Theorem 3.11 
Assume that f is locally Lipschitz. Let u and .v(∈ L∞(Q)) be an entropy 
solution of (3.16) , (3.17) with initial datum . u0 and . v0, respectively. Assume 
that .u(·, t) → u0 and .v( , t) → v0 as .t → 0 in the sense of .L1-convergence. 
Then 

.‖u − v‖L1(T)(t) ≤ ‖u0 − v0‖L1(T). (3.26) 

In particular, a bounded entropy solution of (3.16) , (3.17) is unique. (The
assumption of .L1-continuity as .t ↓ 0 is unnecessary but we assume it to 
simplify the proof.) 

Proof. We double the variables of a test function . ϕ. Let .φ = φ(x, t, y, s) be a 
nonnegative function such that .φ ∈ C∞

c (Q0 × Q0). Since u is an entropy solution 
of (3.16) , (3.17) , the Kružkov entropy condition implies

. 

∫

Q

{|u − k|φt + q(u, k)φx} dxdt +
∫

T
φ(x, 0, y, s)|u0 − k|dx ≥ 0

when .q(u, k) = sgn(u − k) (f (u) − f (k)). Plugging in .k = v(y, s) and integrating 
in .(y, s), we get 

.

∫

Q

∫

Q

{|u(x, t) − v(y, s)| φt + q (u(x, t), v(y, s)) φx} dxdtdyds

+
∫

Q

∫

T
φ(x, 0, y, s) |u0(x) − v(y, s)| dxdyds ≥ 0.
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The same inequality holds for v; in other words, we have 

. 

∫

Q

∫

Q

{|u(x, t) − v(y, s)| φs + q (u(x, t), v(y, s)) φy

}
dxdtdyds

+
∫

T

∫

Q

φ(x, 0, y, 0) |v0(y) − u(x, t)| dxdtdy ≥ 0.

Adding these two inequalities yields 

. 

∫

Q

∫

Q

{|u(x, t) − v(y, s)| (φt + φs) + q(u, v)(φx + φy)
}

dxdtdyds

+
∫

Q

∫

T
|u0(x) − v(y, s)| φ(x, 0, y, s) dxdyds

+
∫

T

∫

Q

|u(x, t) − v0(y)| φ(x, t, y, 0) dxdtdy ≥ 0. (3.27) 

Our strategy is as follows. We set

. J1 :=
∫

Q

∫

Q

{|u(x, t) − v(y, s)| (φt + φs) + q(u, v)(φx + φy)
}

dxdtdyds

J2 :=
∫

Q

∫

T
|u0(x) − v(y, s)| φ(x, 0, y, s) dxdyds

J3 :=
∫

T

∫

Q

|u(x, t) − v0(y)| φ(x, t, y, 0) dxdtdy.

For a given .t0 ∈ (0, T ), we would like to take a suitable . φ so that . Ji equals . Ii

(.i = 1, 2, 3), with 

. I1 := −
∫

T
|u(x, t0) − v(x, t0)| dx

I2 := 1

2

∫

T
|u0(x) − v0(x)| dx, I3 := I2.

Since (3.27) says .J1 + J2 + J3 ≥ 0, we have  

. I1 + I2 + I3 ≥ 0, i.e.,

. −
∫

T
|u(x, t0) − v(x, t0)| dx + 1

2

∫

T
|u0(x) − v0(x)| dx

+ 1

2

∫

T
|u0(x) − v0(x)| dx ≥ 0. (3.28)
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This is simply the desired contraction property (3.26) . Unfortunately, there is no
good function . φ. We need a sequence .φ = φε,ε′,ε′′ depending on three parameters 
.ε, ε′, ε′′ > 0. Let . ρε be a Friedrichs’ mollifier . ρε defined in §2.2 (see also 
Lemma 3.12 in what follows). We further assume symmetry, i.e., . ρε(−σ) = ρε(σ )

for all . σ ∈ R. We set  

. φ(x, t, y, s) = ρε(x − y)ρε′(t − s)χε′′
(

t + s

2
− t0

)
,

with .χε′′(τ ) = ∫ ∞
τ

ρε′′(σ )dσ . (We shall give a heuristic explanation as to why this 
choice is good after the proof.) It suffices to prove 

. lim
ε′′↓0

(
lim
ε′↓0

(
lim
ε↓0

Ji(ε, ε
′, ε′′)

))
= Ii for i = 1, 2, 3,

to get (3.28) since .J1 + J2 + J3 ≥ 0. 
Since .φx + φy = 0 and 

. φt + φs = ρε(x − y)ρε′(t − s)χ ′
ε′′

(
t + s

2
− t0

)
,

we observe that 

. J1 = J1(ε, ε
′, ε′′)

= −
∫

Q

∫

Q

|u(x, t) − v(y, s)| ρε(x − y)ρε′(t − s)ρε′′
(

t + s

2
− t0

)
dxdtdyds.

We apply the approximation lemma (Lemma 3.12 below) to conclude that 

. lim
ε′′↓0

(
lim
ε′↓0

(
lim
ε↓0

J1

))
= I1.

Similarly, 

. lim
ε↓0

J2 =
∫ T

0

∫

T
|u0(x) − v(x, s)| ρε′(s)χε′′

( s

2
− t0

)
dxds.

For a given .t0 ∈ (0, T ), we take .ε′′ > 0 small, say, .ε′′ < ε′′
0 , for some . ε′′

0 > 0, so  
that .χε′′

(
s
2 − t0

) = 1 for all .s ∈ [0, t0/2], .ε′′ < ε′′
0 . We take .ε′ > 0 sufficiently 

small so that .supp ρε′ ⊂ [0, t0/2] to get 

. lim
ε↓0

J2 =
∫ T

0

{∫

T
|u0(x) − v(x, s)| dx

}
ρε′(s) ds.
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Since we have assumed that .v(·, t) → v0 in .L1(T), 

. h(s) =
∫

T
|u0(x) − v(x, s)| dx = ‖u0 − v(·, s)‖L1(T)

is continuous at .s = 0. We now apply Lemma 3.12 (ii) to conclude that 

. lim
ε′↓0

(
lim
ε↓0

J2

)
= 1

2
h(0) = I1

for .ε′′ < ε′′
0 . The proof for . J3 is the same. We now conclude that 

. lim
ε′′↓0

(
lim
ε′↓0

(
lim
ε↓0

Ji

))
= Ii

so that .J1 + J2 + J3 ≥ 0 implies (3.28) . The proof is now complete. 
�

Let us say a few words about why we choose . φ as earlier. It is convenient to 
use what is called a delta function . δ. It is defined as a distributional derivative of a 
Heaviside function .1>0, i.e., 

. δ = Dx1>0,

where .1>0(x) = 1 if .x > 0 and .1>0(x) = 0 if .x ≤ 0. In other words, 

. δ(ϕ) = −
∫

R

dϕ

dx
1>0 dx for ϕ ∈ C∞

c (R).

By definition, .δ(ϕ) = − ∫ ∞
0

dϕ
dx

dx = ϕ(0). We often write .δ(ϕ) by .
∫
R δ(x)ϕ(x)dx, 

though . δ cannot be identified with any integrable function. We would like to take 

. φ(x, t, y, s) = δ(x − y)δ(t − s)1>0

(
t0 − t + s

2

)
.

Since .φx + φy = 0, .φt + φs = −δ(x − y)δ(t − s)δ(t − t0), we see that 

. J1 = −
∫

R
|u(x, t0) − v(x, t0)| dx = I1.

Since u and v are not necessarily continuous, we must approximate . δ by mollifiers. 
For .J2 + J3, we have  

.J1 + J2 =
∫ t0

0

{∫

T
|u0(x) − v(x, s)| dx

}
δ(−s)ds
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+
∫ t0 

0

{∫

T 
|v0(x) − u(x, s)| dx

}
δ(t) dt 

=
∫ t0 

−t0 

k(t)δ(t) dt = k(0), 

with 

. k(t) =

⎧
⎪⎪⎨

⎪⎪⎩

∫

T
|v0(x) − u(x, t)| dx for t > 0,

∫

T

|u0(x) − v(x,−t)| dx for t ≤ 0.

Since k is continuous at .t = 0 and .k(0) = ‖u0 − v0‖L1(T), we observe that 

. I1 + ‖u0 − v0‖L1(T) ≥ 0.

In our proof, we discuss . J1 and . J2 separately, so we use symmetry to simplify the 
argument. 

Lemma 3.12 
Let . ρε be a Friedrichs’ mollifier on . R defined in Sect. 2.2. In other words, 
.ρε(σ ) = ε−1ρ(σ/ε), where .ρ ∈ C∞

c (R) satisfies .ρ ≥ 0 and .
∫
R ρdx = 1. 

(i) Let .h ∈ L∞(T2) and .h(x, x − z) → h(x, x) as .|z| → 0 for a.e. x. Then 

. lim
ε↓0

∫

T

∫

T
h(x, y)ρε(x − y) dxdy =

∫

T
h(x, x) dx.

Let .h ∈ L∞(R) be compactly supported. Assume that . h(x, x − z) →
h(x, x) as .|z| → 0 for a.e. x. Then 

. lim
ε↓0

∫

R

∫

R
h(x, y)ρε(x − y) dxdy =

∫

R
h(x, x) dx.

(ii) Assume further that .ρ(−σ) = ρ(σ) for . σ ∈ R. For .h ∈ L∞(0, T ), 

. lim
ε↓0

∫ T

0
h(s)ρε(s)ds = 1

2
h(0)

provided that h is continuous at .s = 0.
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Proof of Lemma 3.12 

(i) We may assume .supp ρ ⊂ (−1, 1) by replacing . σ with .σ/ε′ for small .ε′ > 0. 
We recall .T = R/ω1Z. We take .ε < ω1/4, so that .supp ρ ⊂ (−ω1

4ε
, ω1

4ε

)
. By this  

choice, the support of .ρε(x − y) as a function of .x, y is contained in a periodic 
cell .C = [−ω1/2, ω1/2) × [−ω1/2, ω1/2) of .T2 = (R/ω1Z)2. In particular, 

. 

∫ ω1/2

−ω1/2
ρε(x − y) dy = 1 for x ∈ (−ω1/2, ω1/2) .

We proceed with 

. I (ε) :=
∫

T

∫

T
h(x, y)ρε(x − y) dxdy −

∫

T
h(x, x) dx

=
∫∫

C

(h(x, y) − h(x, x)) ρε(x − y) dxdy.

Changing the variables of integration from .(x, y) to .(x, z) with .z = (x − y)/ε, 
we obtain, by Fubini’s theorem, that 

. |I (ε)| ≤
∫∫

C

|h(x, y) − h(x, x)| ρε(x − y) dxdy

=
∫

|x|≤ω1/2

{∫

|x−εz|≤ω1/2
|h(x, x − εz) − h(x, x)| ρ(z) dx

}
dz

≤
∫

|x|≤ω1/2

{∫

|z|≤1
|h(x, x − εz) − h(x, x)| ρ(z) dx

}
dz.

Since the integrand is bounded by .2‖h‖∞ (independent of .ε > 0) and . h(x, x −
εz) → h(x, x) for a.e. .x, z ∈ R as .ε ↓ 0, we conclude that .I (ε) → 0 as . ε → 0
by the dominated convergence theorem. We thus obtained the first statement. 
The proof for the second statement is parallel. 

(ii) By a change of the variable of integration, we see that 

. 

∫ T

0
h(s)ρε(s)ds =

∫

0≤z≤1
h(εz)ρ(z)dz

for sufficiently small .ε > 0. Since .h(z) → h(0) as .z → 0, we now obtain 

. lim
ε↓0

∫ T

0
h(s)ρε(s)ds = lim

ε↓0

∫

0≤z≤1
h(εz)ρ(z)dz = h(0)

∫

0≤z≤1
ρ(z)dz
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by the bounded convergence theorem. The result follows if we note that 
.
∫ ∞

0 ρ(z)dz = 1/2 by symmetry. 
�

� Remark 3.13 

(i) The definition of the entropy solution extends to a bounded function in . R not 
necessarily periodic. Although the uniqueness result still holds provided that . u0
is in .L1(R) ∩ L∞(R), the proof is more involved. For example, we must take . φ

to have compact support in the space direction; See, for example, [53] and [68]. 
(ii) All results here can be extended to multidimensional space. The conservation 

law for a real-valued function .u = u(x, t) is of the form 

. ut + div f (u) = 0 in TN × (0, T ) = Q̃,

with .f (u) = (
f 1(u), . . . , f N(u)

)
. A pair of real-valued functions . (η, q)

defined on . R is said to be an entropy pair for this equation if it satisfies 
.q ′ = η′f ′ (i = 1, . . . , N), .q = (q1, . . . , qN) and . η is a convex function. 
A function .u ∈ L∞(Q̃) is said to be an entropy solution with initial datum 
.u0 ∈ L∞(TN) if 

. 

∫ T

0

∫

Q̃

(
ϕtη(u) +

N∑

i=1

qi(u)ϕxi

)
dxdt +

∫

TN

ϕ|t=0 η(u0) dx ≥ 0

holds for all .ϕ ∈ C∞
c (Q̃0), with .ϕ ≥ 0, and all entropy pairs. Here . Q̃0 =

TN × [0, T ) and .ϕxi
= ∂ϕ

∂xi
. The Kružkov entropy condition is of the form 

. 

∫ T

0

∫

Q̃

(
ϕt |u − k| +

N∑

i=1

sgn(u − k)
(
f i(u) − f i(k)

)
ϕxi

)
dxdt

+
∫

TN

ϕ|t=0 |u − k| dx ≥ 0

for all .ϕ ∈ C∞
c (Q̃0) with .ϕ ≥ 0 and .k ∈ R; see, for example, [68]. 

3.3 Notes and Comments 

Most of the contents in this chapter are taken from Holden and Risebro’s book 
[53], where . T is replaced by . R. The theory of conservation laws has a long 
history. A weak formulation for the Burgers equation traces back to Hopf [54], 
where a parabolic approximation was studied. The literature on the topic has grown 
considerably since then. The reader is referred to the book [53].
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There are several ways to construct an entropy solution, for example, [53]. Of 
course, parabolic approximation is one way. Other methods are based on the finite 
difference method. A front tracking method was studied extensively by Holden and 
Risebro [53]; it approximates f by a piecewise function; this seems to be very 
effective even for systems of conservation laws. A completely different approach, 
called a kinetic construction (not contained in [53]), traces back to Brenier [14], 
as well as the second author and others [49], [50]. The idea involves introducing 
an extra variable, which may be interpreted as a microscopic variable. All the 
aforementioned methods work for scalar conservation laws in multidimensional 
spaces. Note that there is a very accessible introduction to conservation laws in 
the book [36, Chapter 11]. In [36], systems of conservation laws are discussed. 

If one considers systems of conservation laws, the uniqueness of entropy 
solutions is difficult because there are interactions of waves. Neverthless, there are 
now several uniqueness results that go back to Bressan’s seminal works [16], [17], 
where the main assumption is that the spatial total variation of a solution is small. 
The reader is referred to [17] or  [53] for this topic. 

3.4 Exercises 

3.1 (Hopf–Cole transformation) Let u be a solution of the (viscous) Burgers 
equation ut + (u2/2)x = uxx . Let  w(x, t) be defined as 

. w(x, t) =
∫ x

0
u(y, t)dy +

∫ t

0

(
ux(0, τ ) − u(0, t)2/2

)
dτ.

Show that w satisfies 

. wt + (wx)
2/2 = wxx

in R × (0,∞). Show that v = exp(−w/2) solves the heat equation vt = vxx . 
3.2 Let u be a solution of ut + (u2/2)x = uxx in R × (0,∞). Set uλ(x, t) = 

λu(λx, λ2t)  for λ >  0. Show that uλ solves the same equation as u. Set 
vε(x, t) = v(εx, εt). Show that vε solves vt + (v2/2)x = ε−1vxx for ε >  0. 

3.3 Consider (3.2) , with f (u) = u2/
(
u2 + (1 − u)2

)
. Find the entropy solution to

the Riemann problem with initial datum (3.9) , where u
 = 0, ur = 1. In this
case, the equation is called the Buckley–Leverett equation. It is a simple model
of two-phase fluid flow in a porous medium. The unknown u represents a ratio
of saturation of one of the phases. It varies from zero to one. Note that f is
neither convex nor concave. The expected solution has a rarefaction and shock
simultaneously. Note that there is a numerical method based on the level-set
approach [88] discussed in Sect. 4.5.2. 

3.4 Consider an equation for u = u(x, t) in R × (0,∞) of the form 

.ut + (u2/2)x = −u
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with initial datum u0 in (3.9) . Find the entropy solution when u
 = 1, ur = 0.
Consider the case where u
 = 0, ur = 1. Find the entropy solution in this case.

3.5 Let ξ be a real-valued convex function on R. Prove that there exists a sequence 
of piecewise linear convex functions {ηj }∞j=1 such that 
(i) ηj converges to ξ locally uniformly in R as j → ∞  and 

(ii) ηj has at most finitely many nondifferentiable points. 
3.6 Let f be a strictly convex C1 function in the sense that f ′ ∈ C(R) is (strictly) 

increasing. We set 

. uR(x, t) =
⎧
⎨

⎩

u
, x < f ′(u
)t

(f ′)−1(x/t), f ′(u
)t ≤ x < f ′(ur)t

ur , x ≥ f ′(ur)t

for u
 < ur . Show that this is a weak solution of the Riemann problem to (3.2) 
with initial datum u0 defined in (3.9) . This solution is called a rarefaction wave
solution. Show that uR is indeed an entropy solution by checking the Kružkov
entropy condition.

3.7 Let ξ be a real-valued convex function on R. Prove that ξ is Lipschitz 
continuous in any bounded interval (a, b). 

3.8 Let u be a real-valued C2 function on RN . 
(i) Let η be a real-valued C2 convex function on R. Show that 

. �η(u) ≥ η′(u)�u in RN.

(ii) Show that 

. 

∫

RN

(�ϕ)|u| dx ≥
∫

RN

ϕ(sgn u)�u dx

for any ϕ ∈ C∞
c (RN ) and ϕ ≥ 0. 

3.9 Let ξ be a real-valued C2 function on RN . Show that ξ is convex in RN if and 

only if its Hessian matrix
(

∂2ξ 
∂xi∂xj 

(x)
)

1≤i,j≤N 
is nonnegative definite for all 

x ∈ RN , i.e., 

. 
∑

1≤i,j≤N

∂2ξ

∂xi∂xj

(x)zizj ≥ 0

for all z = (z1, . . . , zN) ∈ RN . 
3.10 Give an example of a function f ∈ C

(
R2\{0}) such that 

. a := lim
x→0

(
lim
y→0

f (x, y)

)
and b := lim

y→0

(
lim
x→0

f (x, y)

)

exists but a �= b.



4Hamilton–Jacobi Equations 

In the last chapter, we discussed uniqueness in a special class of weak solutions 
called entropy solutions for scalar conservation laws, which are quasilinear first-
order equations. The notion of a weak solution and an entropy solution is based on 
integration by parts or a variational principle. 

In this chapter, we consider another class of nonlinear first-order equations whose 
nonlinearity is very strong and not quasilinear. Such an equation is often called the 
Hamilton–Jacobi equation. It is in general impossible to introduce the notion of a 
weak solution by integration by parts. Instead, we introduce a notion of a weak 
solution based on the maximum principle. Such a notion was first introduced by 
Crandall and Lions [29] in the early 1980s as a viscosity solution and has been 
extensively studied. 

In this chapter, we study uniqueness problems of viscosity solutions for several 
types of equations. We first observe that one-dimensional evolutionary Hamilton– 
Jacobi equations are formally an integration of a one-dimensional scalar conserva-
tion law. We then discuss the uniqueness issue for its stationary form, the eikonal 
equation, as well as evolutionary Hamilton–Jacobi equations. We also discuss a 
scalar conservation law and its generalization from the viewpoint of viscosity 
solutions to handle jump discontinuities. 

4.1 Hamilton–Jacobi Equations from Conservation Laws 

In this section, we derive a fully nonlinear equation of first order called a Hamilton– 
Jacobi equation from a conservation law. We shall give another interpretation of the 
entropy condition. We also derive a kind of stationary problem, the eikonal equation. 
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4.1.1 Interpretation of Entropy Solutions 

We consider a conservation law for a real-valued function .u = u(x, t), .x ∈ R, . t > 0
of the form 

.ut + (f (u))x = 0, (4.1) 

where f is a given real-valued continuous function on . R. We integrate from 0 to x 
to get 

.Ũt + f (Ũx) = f (u(0, t)) (4.2) 

if we set .Ũ (x, t) = ∫ x

0 u(y, t) dy. We set  

. U(x, t) = Ũ (x, t) −
∫ t

0
f (u(0, s)) ds

and obtain 

.Ut + f (Ux) = 0. (4.3) 

This equation is fully nonlinear and called an (evolutionary) Hamilton–Jacobi
equation. This is simply a formal procedure since u may jump at . x = 0, so the  
value .f (u(0, t)) is not well defined. 

We consider a Riemann problem for (4.1) with initial condition

.u(x, 0) = u0(x), (4.4) 

with

. u0(x) =
{−α, x < 0,

α, x > 0,

where .α ∈ R, .α �= 0. To simplify the presentation, we set .f (u) = u2/2, which 
corresponds to the case of the Burgers equation. As we already observed in Chap. 3, 

. u(x, t) = u0(x)

is an entropy solution to (4.1) with (4.4) if .α < 0. It is not an entropy solution when 
. α > 0. For .α > 0 the entropy solution is a rarefaction wave . uR of the form 

.uR(x, t) =

⎧
⎪⎨

⎪⎩

−α, x < x�(t),
x

t
, x�(t) < x < xr(t),

α, xr (t) < x,
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where .x�(t) = −αt and .xr(t) = αt . It is continuous for .t > 0. Thus, if .α > 0, then 
.U = UR with 

. UR =
∫ x

0
uR(y, t) dy

solves (4.3) since .uR(0, t) = 0. However, if .α < 0, then the term .f (u(0, t)) should 
be interpreted as .f (u(+0, t)) (.= f (u(−0, t)) = f (α). Thus, 

. Ũ (x, t) =
∫ x

0
u(y, t) dy =

∫ x

0
u0(y) dy

solves (4.2) with the right-hand side .f (u(0, t)) = f (α). We thus conclude that 

. V (x, t) =
∫ x

0
u(y, t)dy − f (α)t = v0(x) − f (α)t,

with 

. v0(x) =
{−αx, x < 0,

αx, x > 0,

solves (4.3) with initial datum .v0(x). Although V even “solves” (4.3) for .α > 0, its 
derivative u is not an entropy solution of (4.1). We have two solutions .UR and V 
with the same initial datum . v0 if .α > 0. We would like to choose a solution whose 
spatial derivative is an entropy solution. 

We recall that an entropy solution is obtained as a vanishing viscosity method. In 
other words, it is as a limit of the .ε-approximated equation 

. uε
t + f (uε)x = εuε

xx.

As previously, we set 

. Uε(x, t) =
∫ x

0
uε(y, t) dy −

∫ x

0
f

(
uε(0, s)

)
ds

and obtain 

. Uε
t + f (Uε

x ) = εUε
xx.

By the construction of an entropy solution, it is clear that our solutions .UR for . α > 0
and V for .α < 0 are obtained as a limit .limε↓0 Uε, at least formally.
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4.1.2 A Stationary Problem 

We continue to assume that .f (u) = u2/2. The solution V in Sect. 4.1.1 we found 
does not change its profile. It is a translative solution of (4.3) or a soliton-like
solution. If we consider .W = V + f (α)t , then W solves 

. − f (α) + f (Wx) = 0. (4.5) 

This is a stationary Hamilton–Jacobi equation. For .α < 0, this solution is obtained 
as a limit of aforementioned vanishing viscosity approach, while for . α > 0, it is not  
obtained as such a limit. 

Although so far we assume for simplicity that .f (u) = u2/2, all arguments in 
Sects. 4.1.1 and 4.1.2 work for a general convex function f with .f (σ) = f (−σ) for 
all .σ ∈ R and .f (0) = 0 with modification of the explicit formula of the rarefaction 
wave . uR . 

The equation .f (Ux) = g(x) is often called the eikonal equation. If .f (u) = u2/2, 
then this is of the form .|Ux | = √

2g. In multidimensional cases, it is of the form 

. |∇U | = G in �,

where G is a given function defined in a domain . � in . RN . 

4.2 Eikonal Equation 

In this section, we begin with a one-dimensional eikonal equation and then introduce 
a notion of viscosity solution to distinguish jumps of derivatives. We conclude this 
section by proving uniqueness (comparison principle) based on a kind of doubling-
variables argument, unlike in Chap. 3. 

4.2.1 Nonuniqueness of Solutions 

We consider a very simple example of the eikonal equation 

.

∣
∣
∣
∣
du

dx

∣
∣
∣
∣ − 1 = 0 in (−1, 1) (4.6) 

with the Dirichlet boundary condition

.u(±1) = 0. (4.7) 

Here, .u = u(x) is a real-valued function defined for .x ∈ (−1, 1). It is clear that there 
is no . C1 solution. If one allows continuous functions satisfying the equation except
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at finitely many points, there are infinitely many solutions (even if nonnegative 
solutions are considered). For example, 

. 
u0(x) = 1 − |x|, |x| ≤ 1,

uk(x) = 1

2k
a(2kx), k = 1, 2, . . . , |x| ≤ 1,

with 

. a(y) = max
{
1 − |y − (2m + 1)| ∣

∣ m ∈ Z
}
,

are such solutions (Fig. 4.1). One would like to choose a typical solution of (4.6) 
and (4.7). One natural solution is a distance function from the boundary . ±1, which 
corresponds to . u0. See Exercise 4.8. 

To conclude that a solution is unique, we must impose extra conditions like 
an entropy condition, which is obtained using a vanishing viscosity method. We 
consider for . ε > 0

.

∣
∣
∣
∣
du

dx

∣
∣
∣
∣ − 1 = ε

d2u

dx2 in (−1, 1). (4.8) 

Then it is easy to see that (4.8) under (4.7) admits a unique . C2 solution . uε. Indeed, 
it can be written as 

. uε(x) =
{

1 − x + ε(e−1/ε − e−x/ε), 0 ≤ x ≤ 1,

1 + x + ε(e−1/ε − ex/ε), −1 ≤ x < 0.

The uniqueness can be proved using the uniqueness of the initial value problem 
of ordinary differential equations in Sect. 1.1. (We do not give details here. The 
uniqueness can also be proved by the maximum principle for second-order ordinary 
differential equations; see, for example, [84].) If we take its limit as .ε → 0, then 

Fig. 4.1 Graphs of .uk
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evidently .uε(x) → u0(x). We would like to choose . u0 as a “reasonable” solution 
of (4.6) with (4.7) . It is desirable to check whether or not it is a reasonable solution
without approximation. In other words, we must find a suitable notion like entropy
solution to choose a reasonable solution.

4.2.2 Viscosity Solution 

We consider a general Hamilton–Jacobi equation in a domain (i.e., connected open 
set) . � in .RN of the form 

.H(x,∇u) = 0. (4.9) 

Here H is a (real-valued) continuous function in .�×RN , and . ∇u = (∂1u, . . . , ∂Nu)

is the gradient of a scalar function .u = u(x), .x ∈ �. To motivate the definition of a 
viscosity solution, we consider a . C2 solution u and consider .ϕ ∈ C2(�) such that 
.max�(u−ϕ) = (u−ϕ)(x̂) for some .x̂ ∈ �. We know that at the maximum point . x̂

. ∇(u − ϕ)(x̂) = 0, ∇2(u − ϕ)(x̂) ≤ O

or ∇u(x̂) = ∇ϕ(x̂), ∇2u(x̂) ≤ ∇2ϕ(x̂).

Here, .∇2u = (∂xi
∂xj

u) denotes the .N × N Hessian matrix of u and O denotes the 
.N × N zero matrix. For two symmetric matrices A and B, we say that .A ≤ B if the 
corresponding quadratic form for .B − A is nonnegative, i.e., 

. 〈η, (B − A)η〉 ≥ 0

for all .η ∈ RN . Let . 
 denote the Laplace operator, i.e., .
u = ∑N
i=1 ∂2

i u. Assume 
that a solution u of (4.9) is obtained as a vanishing viscosity approach, more
precisely u is given a limit of . uε as .ε ↓ 0, and . uε solves 

. H(x,∇uε) = ε
uε.

Let .xε ∈ � be a maximum point of .uε − ϕ in . �. Assume that .xε → x̂ as .ε ↓ 0. 
Then, 

. H (xε,∇ϕ(xε)) ≤ ε
ϕ(xε)

since .∇2u ≤ ∇2ϕ at .x = xε implies .
u ≤ 
ϕ at .x = xε; we here note that 
.
u = tr(∇2u) and .
ϕ = tr(∇2ϕ). Since u is a limit of . uε and .xε → x̂, we only 
obtain 

.H
(
x̂,∇ϕ(x̂)

) ≤ 0
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instead of .H
(
x̂,∇ϕ(x̂)

) = 0. Based on this observation, we arrive at the following 
definition of a viscosity solution. 

Definition 4.1 

A function .u ∈ C(�) is said to be a viscosity subsolution of (4.9) in . � if 

. H
(
x̂,∇ϕ(x̂)

) ≤ 0

whenever .(ϕ, x̂) ∈ C1(�) × � fulfills .max�(u − ϕ) = (u − ϕ)(x̂). A function 
.u ∈ C(�) is said to be a viscosity supersolution of (4.9) in . � if 

. H
(
x̂,∇ϕ(x̂)

) ≥ 0

whenever .(ϕ, x̂) ∈ C1(�) × � fulfills .min�(u − ϕ) = (u − ϕ)(x̂). If  u is a 
viscosity sub- and supersolution, then u is said to be a viscosity solution. 

It is easy to see that the . C1 function u is a viscosity subsolution if and only if u 
is a subsolution, i.e., 

. H (x,∇u(x)) ≤ 0 in �.

We now check the example in the last subsection, where 

. H(x,∇u) =
∣
∣
∣
∣
du

dx

∣
∣
∣
∣ − 1.

It is easy to see that . uk is a viscosity subsolution in .(−1, 1), but it is not a viscosity 
supersolution in .(−1, 1), except .k = 0. Thus, among .{uk}, . u0 is the only viscosity 
solution. 

Note that the notion of viscosity solution for .
∣
∣
∣ du

dx

∣
∣
∣ − 1 = 0 and .1 −

∣
∣
∣ du

dx

∣
∣
∣ = 0 is 

different. In fact, .−u0 is a viscosity solution of .1 −
∣
∣
∣ du

dx

∣
∣
∣ = 0, but it is not a viscosity 

solution of .
∣
∣
∣ du

dx

∣
∣
∣ − 1 = 0 (Exercise 4.1). 

4.2.3 Uniqueness 

We now consider the uniqueness problem for the eikonal equation 

.|∇u| − f (x) = 0 in �. (4.10) 

Let .∂� denote the boundary of . �.
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Theorem 4.2 (Comparison principle) 
Let . � be a bounded domain in . RN . Assume that .f ∈ C(�) is positive in . �. 
Let .u ∈ C(�) and .v ∈ C(�) be a viscosity sub- and supersolution of (4.10) ,
respectively. If .u ≤ v on . ∂�, then .u ≤ v in . �. In particular, for a given 
continuous boundary value g on . ∂�, a viscosity solution u of (4.10) in . C(�)

with .u = g on . ∂� is unique. 

Proof. We shall prove that .u ≤ v in . �. Since . � is compact, by continuity, u and 
v are bounded (by Weierstrass’ theorem). By adding a suitable constant, we may 
assume that u and v are nonnegative, i.e., .u, v ≥ 0 in . �. 

It suffices to prove that .λu ≤ v in . � for all .λ ∈ (0, 1) since .limλ↑1 λu = u in . �. 
Note that .uλ = λu is a viscosity solution of 

.|∇u| − λf (x) = 0 in �. (4.11) 

We shall fix . λ in the sequel. 
Although it is logically unnecessary, we first prove that .uλ ≤ v in . � when . v ∈

C1(�) because it reveals the merit of using . uλ instead of u. If .uλ ≤ v were false, 
then the function .uλ − v would take a positive maximum at some . x∗ ∈ �. (The  
existence of a maximum follows from Weierstrass’ theorem since . � is compact.) On 
the boundary . ∂�, we know . uλ ≤ v, so .x∗ ∈ �. Since . uλ is a viscosity subsolution 
of (4.11) , by definition,

. |∇v(x∗)| − λf (x∗) ≤ 0.

Since v is a classical subsolution of (4.10) , we see that

. |∇v(x∗)| − f (x∗) ≥ 0.

Subtracting the second inequality from the first, we end up with . −λf (x∗)+f (x∗) ≤
0, which yields a contradiction since .λ < 1 and .f > 0 on . �. Unfortunately, this 
argument does not work if v is not . C1. 

To overcome this difficulty, we introduce a doubling-variables method (which 
is, of course, different from Kružkov’s for conservation law). We note that if . α is 
large, then .−�α is sufficiently large, i.e., .�α � 0 away from the diagonal set 
.
{
(x, x)

∣
∣ x ∈ �

}
. We consider 

.�α(x, y) = uλ(x) − v(y) − α|x − y|2
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for a large positive number .α > 0. Assume that .uλ ≤ v in . � would be false. Since 
we assume .u ≥ 0, we see that .uλ ≤ v on . ∂�. Thus, there would exist .x0 ∈ � such 
that .m = �α(x0, x0) > 0. This would imply 

. max
�×�

�α ≥ m > 0.

Let .(xα, yα) ∈ �×� be a maximizer of .�α over .�×�, i.e., .max �α = �α(xα, yα). 
Such .(xα, yα) exists because of Weierstrass’ theorem. Since .m > 0 and both u 
and v are bounded as .α → ∞, it is easy to see that .α|xα − yα|2 is bounded. In 
particular, .xα −yα → 0 as .α → ∞. Since . � is bounded so that .{xα} is bounded, by 
compactness (Bolzano–Weierstrass theorem), there is a subsequence .{xα′ } of . {xα}
converging to some .x̂ ∈ �. Similarly, .{yα′ } has a subsequence .{yα′′ } converging to 
some .ŷ ∈ �. Since .xα − yα → 0, we see that .x̂ = ŷ. We shall denote .{xα′′ }, . {yα′′ }
by .{xα′ }, .{yα′ } for simplicity. 

Since we have assumed that .uλ ≤ v on . ∂�, we see that . x̂ �∈ ∂�. In fact, if  
.xα′ , yα′ → x̂ ∈ ∂�, then, by the continuity of u and v, we see  

. m ≤ lim sup
α′→∞

�α′(xα′ , yα′) ≤ lim sup
α′→∞

(uλ(xα′) − v(yα′)) = uλ(x̂) − v(x̂) ≤ 0,

which is a contradiction (Fig. 4.2). 
We take . α sufficiently large so that .xα, yα ∈ �. Since . � is maximized at .xα, yα , 

we see that the function 

. x �→ uλ(x) − ϕα(x), ϕα(x) = v(yα) + α|x − yα|2

takes its maximum at . xα and the function 

. y �→ v(y) − ψα(y), ψα(y) = uλ(xα) − α|xα − y|2

Fig. 4.2 Values of .�α
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takes its minimum at . yα . By the definition of viscosity sub- and supersolutions, we 
conclude that 

. |∇ϕα(xα)| − λf (xα) ≤ 0,

|∇ψα(yα)| − f (yα) ≥ 0.

Subtracting the second inequality from the first and observing that . ∇xϕα(xα) =
∇yψα(yα), we now obtain 

. − λf (xα) + f (yα) ≤ 0.

Since .xα′ → x̂ and .yα′ → x̂, sending .α′ → ∞ yields 

. − λf (x̂) + f (x̂) ≤ 0.

If .f > 0 on . �, this leads to a contradiction since .λ < 1. We thus conclude that 
.λu ≤ v for all .λ ∈ (0, 1), which implies .u ≤ v in . �. 

Suppose that there are two solutions, . u1 and .u2 ∈ C(�), of  (4.10) with . u1 =
u2 = g on . ∂�. By the comparison just proved, we observe that .u1 ≤ u2 and 
.u2 ≤ u1 in . �. This implies .u1 = u2. The proof is now complete. ��

The assumption .f (x) > 0 for all .x ∈ � is essential. If f takes a zero at some 
point of . �, the uniqueness actually fails. In fact, if one considers 

. 

⎧
⎨

⎩

∣
∣
∣
∣
du

dx

∣
∣
∣
∣ − |x| = 0, |x| < 1

u(±1) = 0,

then 

. va(x) = min
{
(1 − x2)/2, a + x2/2

}

is a viscosity solution for all .a ∈ [−1/2, 1/2] (Fig. 4.3). It turns out that there is at 
most one solution if all its values on the set .

{
x

∣
∣ f (x) = 0

}
are prescribed; see the 

last paragraph of Sect. 4.5.1. 
Note also that there may be no solution for given boundary data. Indeed, if we 

consider (4.6) in .(−1, 1) with .u(−1) = 0, .u(1) = 3, then there is no viscosity 
solution .u ∈ C[−1, 1] satisfying this boundary value. One must interpret the 
boundary condition in some weak sense.
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Fig. 4.3 Graphs of . va

4.3 Viscosity Solutions of Evolutionary Hamilton–Jacobi 
Equations 

In this section, we consider an evolutionary Hamilton–Jacobi equation and discuss 
the uniqueness of viscosity solutions under the periodic boundary condition. The 
proof is similar to that in the last section. 

4.3.1 Definition of Viscosity Solutions 

We consider an evolutionary Hamilton–Jacobi equation of the form 

.ut + H(x,∇u) = 0 in � × (0, T ), (4.12) 

where . � is a domain in .RN or . TN , which imposes a periodic boundary condition. 
Here we continue to assume that H is a (real-valued) continuous function in . � ×
RN ; .∇u denotes the (spatial) gradient of a scalar function .u = u(x, t) defined on 
.� × (0, T ), i.e., .∇u = (∂1u, . . . , ∂Nu). 

Definition 4.3 

A function .u ∈ C(Q) with .Q = � × (0, T ) is said to be a viscosity subsolution 
of (4.12) in Q if

. ϕt (x̂, t̂ ) + H
(
x̂,∇ϕ(x̂, t̂)

) ≤ 0

whenever .
(
ϕ, (x̂, t̂)

) ∈ C1(Q) × Q fulfills .maxQ(u − ϕ) = (u − ϕ)(x̂, t̂). A  
function .u ∈ C(Q) is said to be a viscosity supersolution of (4.12) in Q if

. ϕt (x̂, t̂ ) + H
(
x̂,∇ϕ(x̂, t)

) ≥ 0

whenever .
(
ϕ, (x̂, t̂)

) ∈ C1(Q) × Q fulfills .minQ(u − ϕ) = (u − ϕ)(x̂, t̂). If  u is 
a viscosity sub- and supersolution, we say that u is a viscosity solution.
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4.3.2 Uniqueness 

We now present a comparison principle for (4.12) under the periodic boundary
condition to simplify the situation. We set .Q0 = � × [0, T ) for later convenience. 

Theorem 4.4 (Comparison principle) 
Let .� = TN . Assume that .H(x, p) is continuous in .TN × RN . Assume that 

. |H(x, p) − H(y, p)| ≤ η ((1 + |p|) |x − y|) for all (x, p) ∈ TN × RN,

where . η is a modulus, i.e., .η(s) > 0 for .s > 0 and .η(s) ↓ 0 as .s → 0. Let 
.u ∈ C(Q0) and .v ∈ C(Q0) be viscosity sub- and supersolutions of (4.12) ,
respectively. If .u ≤ v at .t = 0, then .u ≤ v in . Q0. In particular, a solution to 
(4.12) with given initial datum .g ∈ C(TN) is unique. 

Proof. As in the proof of Theorem 4.2, since the uniqueness (the second statement) 
easily follows from the comparison principle (the first statement), we just give a 
proof for the comparison principle. We may assume that .u, v ∈ C(Q) by taking T 
smaller. We consider 

. �(x, t, y, s) = u(x, t) − v(y, s) − α|x − y|2 − β|t − s|2 − γ /(T − t) − γ /(T − s)

for sufficiently large .α, β > 0 and sufficiently small .γ > 0. 
Assume that .u ≤ v in Q were false. Then for sufficiently small . γ , there exists 

.(x0, t0) ∈ Q such that .�(x0, t0, x0, t0) > 0. We shall fix such . γ . Then this would 
imply 

. max
Q×Q

� = mαβ > 0.

Let .(xαβ, tαβ, yαβ, sαβ) ∈ Q × Q be a maximizer of . � over .Q × Q. As in the proof 
of Theorem 4.2, we see that .α|xαβ − yαβ |2 + β|tαβ − sαβ |2 is bounded as .α → ∞, 
.β → ∞. In particular, .xαβ − yαβ → 0, .tαβ − sαβ → 0 as .α → ∞, .β → ∞. 

As in the proof of Theorem 4.2, .tαβ, sαβ > 0 for sufficiently large .α, β because 
of the initial condition. 

We next observe that 

.α|xαβ − yαβ |2 + β|tαβ − sαβ |2 → 0 (4.13)
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as .α → ∞, .β → ∞. In fact, since .mαβ ≥ �(x, t, x, t), we see that 

. lim sup
x−y→0
t−s→0

(u(x, t) − v(y, s) − γ /(T − t) − γ /(T − s)) − mαβ ≤ 0.

Setting .(x, t, y, s) = (xαβ, tαβ, yαβ, sαβ), we obtain 

. lim sup
α,β→∞

{
�(xαβ, tαβ, yαβ, sαβ) + α|xαβ − yαβ |2 + β|tαβ − sαβ |2 − mαβ

}
≤ 0,

which yields (4.13) since .�(xαβ, tαβ, yαβ, sαβ) = mαβ . 
We take .α, β sufficiently large so that .tαβ, sαβ > 0. Since . � is maximized at 

.(xαβ, tαβ), (yαβ, sαβ), we see that 

. (x, t) �→ u(x, t) − ϕαβ(x, t),

ϕαβ(x, t) = v(yαβ, sαβ) + α|x − yαβ |2 + β|t − sαβ |2 + γ /(T − t)

takes its maximum at .(xαβ, tαβ). Similarly, 

. (y, s) �→ v(y, s) − ψαβ(y, s),

ψαβ(y, s) = u(xαβ, tαβ) − α|xαβ − y|2 − β|tαβ − s|2 − γ /(T − s)

takes its minimum at .(yαβ, sαβ). By the definition of viscosity sub- and supersolu-
tions, we conclude that 

. 2β(tαβ − sαβ) + γ /(T − tαβ)2 + H
(
xαβ, 2α(xαβ − yαβ)

) ≤ 0,

2β(tαβ − sαβ) − γ /(T − sαβ)2 + H
(
yαβ, 2α(xαβ − yαβ)

) ≥ 0.

Subtracting the second inequality from the first, we conclude that 

. γ /(T − tαβ)2 + γ /(T − sαβ)2 ≤ η
((

1 + 2α|xαβ − yαβ |) |xαβ − yαβ |)

by the assumption of continuity of H with respect to x. Since .α|xαβ − yαβ |2 → 0, 
.|xαβ − yαβ | → 0, and .T − tαβ ≤ T , we conclude that 

. γ /T 2 + γ /T 2 ≤ 0,

which yields a contradiction. We thus conclude that .u ≤ v in . Q0. ��
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In the proofs of both comparison principles (Theorems 4.2 and 4.4), a key 
property is that 

. ∇xϕα(xα) = ∇yψα(yα)

for Theorem 4.2 and 

. ∇xϕαβ(xαβ, tαβ) = ∇yψαβ(yαβ, sαβ), ∂tϕαβ(xαβ, tαβ) = ∂sψαβ(yαβ, sαβ)

for Theorem 4.4, which follow from 

. ∇x |x − y|2 = −∇y |x − y|2, ∂t (t − s)2 = −∂s(t − s)2.

For second derivatives, we have 

. ∇2
x |x − y|2 = ∇2

y |x − y|2 �= −∇2
y |x − y|2.

This prevents us from extending the foregoing proofs directly to the second-order 
problems. 

4.4 Viscosity Solutions with Shock 

In this section, we continue to study the uniqueness of a solution for an evolutionary 
Hamilton–Jacobi equation whose expected solution may develop jump discontinu-
ities called shocks like conservation laws. We first recall the notion of viscosity 
solutions for semicontinuous functions. 

4.4.1 Definition of Semicontinuous Functions 

We consider an evolutionary Hamilton–Jacobi equation of the form 

.ut + H(x, t, u,∇u) = 0 in Q = � × (0, T ), (4.14) 

where . � is a domain in .RN or .TN and H is a continuous function that may also 
depend on t and u. For a function .u : Q → R ∪ {±∞} (i.e., with values in . R ∪
{±∞}), let . u∗ denote the upper semicontinuous envelope, i.e., 

. u∗(x, t) = lim sup
ε↓0

{
u(y, s)

∣
∣ |y − s| < ε, |t − s| < ε, (y, s) ∈ Q

}

for .(x, t) ∈ Q. Similarly, .u∗(x, t) denotes the lower semicontinuous envelope, i.e., 
.u∗(x, t) = −(−u)∗(x, t) (Exercise 4.3).
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Definition 4.5 

A function .u : Q → R ∪ {±∞} is said to be a viscosity subsolution of (4.14) in
Q if .u∗ < ∞ on . Q and 

.ϕt (x̂, t̂ ) + H
(
x̂, t̂ , u∗(x̂, t̂ ),∇ϕ(x̂, t̂)

) ≤ 0 (4.15) 

whenever .
(
ϕ, (x̂, t̂ )

) ∈ C1(Q) × Q fulfills .maxQ(u∗ − ϕ) = (u∗ − ϕ)(x̂, t̂ ). A  
viscosity supersolution is defined by replacing . u∗, . ∞, .u∗(x̂, t̂ ), . ≤, .max by . u∗, 
.−∞, .u∗(x̂, t̂ ), . ≥, .min, respectively. If u is a viscosity sub- and supersolution, we 
say that u is a viscosity solution. 

It is easy to extend Theorem 4.4 to such a discontinuous solution. Moreover, if 
.r �→ H(x, t, r, p) is nondecreasing, then u dependence is also allowed. 

Theorem 4.6 (Comparison principle) 
Assume that .H = H(x, r, p) is continuous in .TN × R × RN . Assume that 
.r �→ H(x, r, p) is nondecreasing and satisfies 

. 
∣
∣H(x, r, p)−H(y, r, p)

∣
∣ ≤ η

(
(1 + |p|) |x−y|), p ∈ RN, x, y ∈ TN, r ∈ R

for some modulus . η. Let .u : Q → R ∪ {−∞} and .v : Q → R ∪ {+∞} be 
viscosity sub- and supersolutions of (4.14), respectively. If .u∗ ≤ v∗ at .t = 0, 
then .u∗ ≤ v∗ in .Q0 = � × [0, T ). In particular, a solution to (4.14) with
.u∗|t=0 = u∗|t=0 = g ∈ C(TN) is unique and continuous in . Q0. 

The proof of .u∗ ≤ v∗ in .Q0 is the same as that of Theorem 4.4, replacing u and 
v with . u∗ and . v∗, respectively, before comparing the inequalities 

. 2β(tαβ − sαβ) + γ /(T − tαβ)2 + H
(
xαβ, u∗(xαβ, tαβ), 2α(xαβ − yαβ)

) ≤ 0,

2β(tαβ − sαβ) − γ /(T − sαβ)2 + H
(
yαβ, v∗(yαβ, sαβ), 2α(xαβ − yαβ)

) ≥ 0.

By the choice of . xαβ , . tαβ , . yαβ , . sαβ , we know .u∗(xαβ, tαβ) > v∗(yαβ, sαβ). If . r �→
H(x, r, p) is nondecreasing, we may replace .v∗(yαβ, sαβ) with .u∗(xαβ, tαβ) so that 
both inequalities are comparable. The remaining part is the same. 

If . u1 and . u2 are solutions with initial datum g, the comparison principle implies 
.u∗

1 ≤ u2∗ and .u∗
2 ≤ u1∗. Thus, .u1 = u2 ∈ C(Q0). 

We may weaken the monotonicity assumption that .r �→ H(x, t, r, p) is nonde-
creasing by a weaker assumption such that .r �→ H(x, r, p)+λr is nondecreasing for 
some .λ ∈ R by modifying the structure assumption for H . The main idea to extend 
the proof is the change of dependent variables .u, v by .e−λtu, e−λtv. However, if 
H does not satisfy such monotonicity assumptions, the uniqueness may not hold in 
general.
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4.4.2 Example for Nonuniqueness 

We consider a scalar conservation law (3.2) . Here we assume that f is a given strict
convex . C1 function in the sense that .f ′ ∈ C(R) is (strictly) increasing. The equation 
can be written in the form of (4.14) , with

. H(x, t, r, p) = f ′(r)p.

For .ur < u�, we consider 

. us(x, t) =
{

u�, x < st,

ur , x ≥ st;

see Fig. 4.4. If the speed s satisfies .f ′(ur) ≤ s ≤ f ′(u�), then . us is a viscosity 
solution in .R × (0,∞). (However, it is not a weak solution unless s satisfies the 
Rankine–Hugoniot condition, i.e., .s = s∗, with 

. s∗ = f (u�) − f (ur)

u� − ur

;

see Lemma 3.8.) This shows the nonuniqueness of viscosity solutions. Of course, 
this is not a direct counterexample of the comparison principle discussed previously 
since these functions are neither periodic nor continuous up to initial data, but it is 
easy to construct such an example under the periodic conditions with continuous 
initial data. In Chap. 3, we introduced the notion of an entropy solution and proved 
that it was unique. In this example, .us∗ is an entropy solution, while . us with . s �= s∗
is not even a weak solution. We shall introduce a notion of a proper solution so 
that the speed of the jump satisfies the Rankine–Hugoniot condition and entropy 
condition. 

Fig. 4.4 Graph of . us at 
time t
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4.4.3 Test Surfaces for Shocks 

In the definitions of viscosity solutions, we test a possibly irregular function u by 
a smoother function . ϕ (called a test function) from both above and below; see, 
for example, Definition 4.5. If  u is allowed to be discontinuous, as we saw in 
Sect. 4.4.2, such tests are not enough. To overcome this difficulty, we also test 
shocks. For simplicity, we consider a one-dimensional setting. In the case where 
u is discontinuous at . �, as in the paragraph after Definition 3.2, but . � may not be 
smooth, we test the shock . � from both the right and left (or inside or outside with 
respect to the orientation . ν�) by a smoother curve called a test curve (Fig. 3.4). The 
speed of test curves (surfaces) will be given by the Rankine–Hugoniot condition or 
entropy condition. 

For a given point .(x0, t0) ∈ Q and .ρ > 0, . δ > 0, let .{St }t∈� be a smooth family 
of smooth hypersurfaces in .B̊ρ(x0) ⊂ � with .x0 ∈ St0 , where . � = �δ(t0) = (t0 −
δ, t0 + δ), and .Bρ(x0) denotes a closed ball of radius . ρ in .RN centered at .x0 ∈ RN . 
Let .n = n(·, t) denote the unit normal vector field of . St that gives the orientation of 
. St ; we assume that .n(·, t) depends on t at least continuously. Assume that . ̊Bρ(x0)\St

consists of two domains. Let . Dt denote one of these domains such that .∂Dt = St in 
.B̊ρ(x0) and its inward normal agrees with .n = n(·, t) for .t ∈ �δ(t0). We call . Dt a 
region associated with .(St ,n(·, t)). It is uniquely determined for given . ρ and . δ. 

We simply say that .{(St ,n(·, t))} is an evolving hypersurface through .(x0, t0). 

Definition 4.7 

(i) Let .u : Q → R ∪ {−∞} be upper semicontinuous and .(x0, t0) ∈ Q. For  
.μ < u(x0, t0), we say that an evolving hypersurface .{(St ,n(·, t))} through 
.(x0, t0) is an upper test surface of u at .(x0, t0) with level . μ if 

. u(x, t) ≤ μ in Dt × {t}

for some .ρ > 0 and .δ > 0, where . Dt denotes the region associated with 
.(St ,n(·, t)). 

(ii) Let .v : Q → R ∪ {+∞} be lower semicontinuous and .(x0, t0) ∈ Q. For  
.μ > v(x0, t0), we say that an evolving hypersurface .{(St ,n(·, t))} at . (x0, t0)

is a lower test surface of v at .(x0, t0) with level . μ if 

. v(x, t) ≥ μ in Dt × {t}

for some .ρ > 0, and .δ > 0, where . Dt denotes the region associated with 
.(St ,n(·, t)). See Fig. 4.5. 

If .u(·, t) jumps across a hypersurface . �t , such a surface . �t is often called a shock 
surface. In this case, one may take . �t as a test surface if . �t is regular enough.
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Fig. 4.5 Upper test surface 

Fig. 4.6 Convexification 

4.4.4 Convexification 

To give a rigorous definition of solutions, we recall a few properties of convexifi-
cation. Let f be a function defined on . R. Let  I be a bounded closed interval. Let 
.fI : I → R denote the convex hull (convexification) of  f in I , i.e., . fI is the greatest 
convex function on I less than or equal to I (Fig. 4.6). By definition, .fI = f in I if 
I is a singleton.



4.4 Viscosity Solutions with Shock 115

Lemma 4.8 
(i) If f is continuous in I , then .fI = f on . ∂I and . fI is continuous in I . 
(ii) If f is . C1, then . fI is . C1 in I . 
(iii) For .f ∈ C1[a, d] (−∞ < a < d < ∞), 

. f ′
I (x) ≥ f ′

J (x) for x ∈ I ∩ J,

with .I = [a, b], .J = [c, d], .a ≤ c ≤ b ≤ d, where . ′ denotes the 
derivative. (At the boundary, the derivative is interpreted as the right or 
left derivative.) 

(iv) For .f ∈ C1(R), the function .F(a, b, x) = f ′[a,b](x) is continuous in 

. 
{
(p, q, x) ∈ R3

∣
∣ p ≤ q, p ≤ x ≤ q

}
.

The proofs are elementary. They are safely left to the reader; see [46, Lemma 
2.1]. 

4.4.5 Proper Solutions 

To define a proper solution, we recall a recession function of .p = ∇u variable for 
the Hamiltonian .H : Q × R × RN → R, i.e., 

. H∞(x, t, r, p) = lim
λ↓0

λH(x, t, r, p/λ).

See Exercise 4.2. We always assume that .H∞ exists and is continuous in its 
variables. By definition, .H∞(x, t, r, σp) = σH∞(x, t, r, p) for .σ > 0, i.e., 
positively homogeneous of degree one in p. Indeed, 

. H∞(x, t, r, σp) = lim
λ↓0

λH (x, t, r, σp/λ) = lim
λ′↓0

σλ′H
(
x, t, r, p/λ′) .

Let .f (r) = f (r; x, t, p) be a primitive of .H∞(x, t, r, p) as a function of r . For a  
closed interval I , let . fI denote the convexification of f in I . Since . fI is . C1 in I by 
Lemma 4.8 (ii), so that . f ′

I is continuous on I , we set  

. HI (x, t, r, p) := f ′
I (r; x, t, p), r ∈ I, (x, t) ∈ Q, p ∈ RN

and call .HI a relaxed Hamiltonian in I . This is independent of the choice of a 
primitive f , so it is well defined. Since .H∞ is positively homogeneous of degree
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one, so is . HI , i.e., 

. HI (x, t, r, σp) = σHI (x, t, r, p)

for all .σ > 0, .(x, t) ∈ Q, .r ∈ I , .p ∈ RN . If .r �→ H(x, t, r, p) is nondecreasing so 
that .f (r) is convex, then the relaxed .HI agrees with .H∞ for any choice of I . 

Definition 4.9 

(i) Let .u : Q → R ∪ {−∞} be a viscosity subsolution of (4.14) in Q. We say
that u is proper subsolution of (4.14) if the inequality

.V (x0, t0) + HI
(
x0, t0, u

∗(x0, t0),−n(x0, t0)
) ≤ 0 (4.16) 

holds whenever .(x0, t0) ∈ Q admits an upper test surface .{(St ,n(·, t))} of 
. u∗ at .(x0, t0) with the level .μ (< u∗(x0, t0)), where .I = [

μ, u∗(x0, t0)
]
. 

Here, .V = V (x0, t0) denotes the normal velocity of .{St } at .(x0, t0) in the 
direction of .n(x0, t0), and .HI denotes the relaxed Hamiltonian. 

(ii) For a viscosity supersolution .v : Q → R ∪ {+∞} of (4.14) in Q, we say
that v is a proper supersolution of (4.14) if the inequality

. − V (x0, t0) + HI (x0, t0, v∗(x0, t0),n(x0, t0)) ≥ 0 (4.17) 

holds whenever .(x0, t0) ∈ Q admits a lower test surface .{(St ,n(·, t))} of . v∗
at .(x0, t0) with level .μ (> v∗(x0, t0)), where .I = [v∗(x0, t0), u]. 

(iii) If u is a proper sub- and supersolution, we say that u is a proper solution. 
The notion of proper sub- and supersolution is reduced to classical viscosity 
sub- and supersolutions respectively if the function is continuous.

� Remark 4.10 

(i) If (4.16) is fulfilled with .I = [
μ, u∗(x0, t0)

]
, then (4.16) holds for all . I ′ =

[μ, σ ] provided that .σ ≥ u∗(x0, t0) by Lemma 4.8 (iii). 
(ii) If .{(St ,n(·, t))} is an upper test surface of . u∗ at .(x0, t0) with level . μ, then it is 

also an upper test surface with level . μ′ for any .μ′ ∈ [
μ, u∗(x0, t0)

]
. Thus, for 

a proper subsolution, the inequality 

. V (x0, t0) + HJ
(
x0, t0, u

∗(x0, t0),−n(x0, t0)
) ≤ 0

with .J = [
μ′, u∗(x0, t0)

]
is valid. By Lemma 4.8 (iv), letting . μ′ ↑ u∗(x0, t0)

yields 

.V (x0, t0) + H∞
(
x0, t0, u

∗(x0, t0),−n(x0, t0)
) ≤ 0, (4.18)
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since .HJ = H∞ if J is a singleton. This inequality holds for any upper test 
surfaces .{(St ,n(·, t))} at .(x0, t0). 

(iii) Suppose that .r �→ H(x, t, r, p) is nondecreasing so that .HI = H∞ for any 
I . If  (4.18) holds for any upper test surface .{(St ,n(·, t))} at .(x0, t0) with level 
.μ < u∗(x0, t0), then (4.16) holds for . μ by the monotonicity of H in r . Thus, 
u is a proper subsolution if u is a viscosity subsolution and (4.18) holds for
any upper test surface .{(St ,n(·, t))} at .(x0, t0) with level .μ < u∗(x0, t0). In  
fact, if .r �→ H(x, t, r, p) is nondecreasing, then every subsolution is a proper 
subsolution, as stated subsequently in Theorem 4.11. 

(iv) For a semiclosed interval .(0, T ], it is possible to define a proper solution in 
.Q′ = �×(0, T ]. For .u : Q′ → R∪{±∞}, we say that u is a proper subsolution 
of (4.14) in . Q′ if it is a viscosity subsolution of (4.14) in . Q′ (i.e., (4.15) holds
for .

(
ϕ, (x̂, t̂)

) ∈ C1(Q′) × Q′ satisfying . maxQ(u∗ − ϕ) = (u∗ − ϕ)(x̂, t̂ )

with Q replaced by . Q′) and (4.16) holds for upper test surface .{(St ,n(·, t))} at 
.(x0, t0) ∈ Q′ with level .μ (< u∗(x0, t0)). If .t0 = T , the family . {(St ,n(·, t))}
should be interpreted as being smooth in .(T − δ, T ]. 

If .r �→ H(x, t, r, p) is nondecreasing, then a proper subsolution is a conventional 
viscosity subsolution under an asymptotic homogeneity assumption on H as 
.|p| → ∞. 

Theorem 4.11 (Consistency) 
For .H ∈ C(Q × R × RN), assume that .r �→ H(x, t, r, p) is nondecreasing 
in . R for all .(x, t) ∈ Q, .p ∈ RN . Assume that .λH(x, t, r, p/λ) converges to 
.H∞ locally uniformly in .Q × R × RN as .λ ↓ 0. In other words, 

. lim
λ↓0

sup
(x,t,r,p)∈K

∣
∣
∣λH

(
x, t, r,

p

λ

)
− H∞(x, t, r, p)

∣
∣
∣ = 0 (4.19) 

for every compact set K in .Q × R × RN . If  u and v are viscosity sub- and 
supersolutions of (4.14) in Q, then u and v are respectively proper sub- and
supersolutions of (4.14) in Q.

� Remark 4.12 By (4.19), the function .H∞ is continuous in its variables. In 
particular, by the homogeneity of .H∞, 

. H∞(x, t, r, 0) = lim
σ↓0

H∞(x, t, r, σ ) = lim
σ↓0

H∞(x, t, r, 1) = 0.

By definition, 

. HI (x, t, r, 0) = 0

for any closed interval I .
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Proof. The proof of a viscosity supersolution is similar to that of a viscosity 
subsolution, so we only present the proof of a viscosity subsolution. By Remark 4.10 
(iii), it suffices to prove (4.18). Let .{(St ,n(·, t))} be an upper test surface at 
.(x0, t0) ∈ Q of . u∗ with level .μ (< u∗(x0, t0)). Let . Dt be a region associated with 
.(St ,n(·, t)). We set  

. D =
⋃

t∈�

Dt × {t} ⊂ B̊ρ(x0) × �, � = (t0 − δ, t0 + δ).

We take another upper test function .
{(

S′
t ,n

′(·, t))} with level . μ at .(x0, t0) and 
.n(x0, t0) = n′(x0, t0) such that 

. (x0, t0) ∈ S′ and S′\ {(x0, t0)} ⊂ D with S′ =
⋃

t∈�

S′
t × {t}.

(By construction . S′
t touches . St only at time . t0 at point . x0.) Let . D′

t denote a region 
associated with .

(
S′

t ,n
′(·, t)). To construct an appropriate test function1 for . u∗, we  

use a signed distance function of .D′ = ⋃
t∈� D′

t × {t} ⊂ B̊ρ(x0) × � defined by 

. d(x, t) =
{

dist
(
(x, t), ∂D′) , x ∈ D′,

− dist
(
(x, t), ∂D′) , x /∈ D′.

From this point forward, by .∂D′ we mean the boundary of . D′ in .B̊ρ(x0) × �. Since 
.∂D′ is smooth, so is d in .B̊ρ(x0) × � for sufficiently small .δ > 0 and .ρ > 0; see, 
for example, [67]. We fix .μ′ ∈ (μ, u∗(x0, t0)) and define 

. ϕL(x, t) = max
(−Ld(x, t) + u∗(x0, t0), μ

′)

for .L > 0 (Fig. 4.7). The function .ϕL(x, t) is smooth outside .D′ in a small 
neighborhood of .(x0, t0). Since . u∗ is upper semicontinuous, there is a maximizer 
.(xL, tL) of .u∗ −ϕL in .Bρ(x0)×�, where .� = [t0 − δ, t0 + δ]. Sending .L → ∞ we 
see that .0 ≤ max(u∗ −ϕL) → 0 and .dist

(
(xL, tL), ∂D′) → 0. Since .(xL, tL) /∈ D′, 

this implies .(xL, tL) → (x0, t0). Moreover, .u∗(xL, tL) → u∗(x0, t0) since . u∗ is 
upper semicontinuous and .u∗(xL, tL) ≥ u∗(x0, t0). Thus, for sufficiently large L 
the function .u∗ − ϕL takes its local maximum at .(xL, tL) ∈ B̊ρ(x0) × �, and at 
.(xL, tL) the function . ϕL is smooth. 

1 For a subset A in a metric space M equipped with distance d, the distance function . dist(x,A)

from A is defined by 

. dist(x,A) := inf
{
d(x, y)

∣
∣ y ∈ A

}
.
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Fig. 4.7 Graph of . ϕL at 
. t = t0

If u is a viscosity subsolution, then 

. ∂tϕL(xL, tL) + H
(
xL, tL, u∗(xL, tL),∇ϕL(xL, tL)

) ≤ 0.

Dividing by .|∇ϕ(xL, tL)| = L and sending .L → ∞ yields 

. V + H∞
(
x0, t0, u

∗(x0, t0),−n(x0, t0)
) ≤ 0

since the convergence .λH(x, t, r, p/λ) → H∞(x, t, r, p) is locally uniform in 
.(x, t, r, p) as .λ ↓ 0 and 

. 

∇ϕL(xL, tL)

|∇ϕL(xL, tL)| →−n(x0, t0), (xL, tL) →(x0, t0),

u∗(xL, tL) →u∗(x0, t0),
∂tϕ(xL, tL)

|∇ϕ(xL, tL)| →V (x0, t0)

as λ ↓ 0.

We have thus proved (4.18) . ��

4.4.6 Examples of Viscosity Solutions with Shocks 

We consider a scalar conservation law (3.2), where f is a given strict convex . C1

function. For .a < b we set 

. uN(x, t) =
{

a, x < st,

b, x ≥ st,

.uS(x, t) =
{

b, x ≤ st,

a, x > st.
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If the speed s satisfies the Rankine–Hugoniot condition, i.e., 

. s = f (b) − f (a)

b − a
,

then . uS is a viscosity solution, while . uN is not a viscosity solution even if s satisfies 
the Rankine–Hugoniot condition. If s satisfies the Rankine–Hugoniot condition, 
then .uN is still a weak solution (defined in Definition 3.2) of  (3.2) .

Proposition 4.13 
Assume that .f ′ ∈ C(R) is (strictly) increasing and .a < b. If  . s =
(f (b) − f (a)) /(b − a), then . uS is a proper solution of (3.2) . If .s < f ′(b), 
then . uN is not even a viscosity supersolution of (3.2) . If .s > f ′(a), then . uN

is not even a viscosity subsolution of (3.2) .

Proof. It is easy to see that . uS is a viscosity solution. Thus, it suffices to check 
the speed of a test surface for shocks. Let .(x0, t0) be a point on a shock, i.e., 
.x0 = st0, t0 > 0. The line .St = {x = st} itself is a test surface of . uS and . uN

at .(x0, t0) with level a. All other test surfaces at .(x0, t0) are tangent to . {St }, so by  
Remark 4.10 (ii) it suffices to estimate the normal velocity of .{St }. Equation (3.2) 
can be written

. ut + H(u,∇u) = 0

if we set .H(r, p) = f ′(r)p. If we consider . uE , then .n = 1, so that 

. H(r,n) = −f ′(r).

Since .−f is concave, 

. 
d

dr
(−f )I (r) = −f (b) − f (a)

b − a
, r ∈ I = [a, b],

which yields .HI (r,−1) = −s by the definition of s. Since .V (x0, t0) = c, we now  
observe that 

. V (x0, t0) + HI (b,−1) = 0.

Thus, . uS is a proper subsolution. A symmetric argument shows that .(uS)∗ is a proper 
supersolution. 

It is easy to see that . uN is not a viscosity subsolution or a viscosity supersolution 
for the range indicated in the statement. ��
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It is well known (Exercise 3.6) that the entropy solution u with initial datum 
.u|t=0 = uN |t=0 is a rarefaction wave solution 

. uR(x, t) =
⎧
⎨

⎩

a, x < f ′(a)t,

(f ′)−1(x/t), f ′(a)t ≤ x < f ′(b)t,

b, x ≥ f ′(b)t,

where .f ′−1 denotes the inverse function of . f ′. This function u is a continuous 
viscosity solution, so there are no jumps. Consequently, there are no test surfaces for 
shocks. Thus, . uR is automatically a proper solution. For . uR and . uS , the notions of 
proper and entropy solutions agree with each other. More generally, it turns out that 
notions of proper and entropy solutions essentially agree for initial-value problems 
[46]. We do not touch on this problem in this book. 

4.4.7 Properties of Graphs 

To derive some comparison principle, it is convenient to consider graphs of proper 
solutions. For a function .u : Q → R ∪ {±∞}, we associate a function on . � × R ×
(0, T ) of the form 

. iu(x, z, t) =
{

0, z ≤ u(x, t),

−∞, z > u(x, t).

The set 

. {iu = 0} := {
(x, z, t) ∈ � × R × (0, T )

∣
∣ iu(x, z, t) = 0

}

is called the subgraph of u and denoted by .sg u. Similarly, we set 

. Iu(x, z, t) =
{

0, z ≥ u(x, t),

∞ z < u(x, t).

The set 

. {Iu = 0} := {
(x, z, t) ∈ � × R × (0, T )

∣
∣ Iu(x, z, t) = 0

}

is called the supergraph of u and denoted by .Sg u. This set .{Iu = 0} is usually called 
the epigraph of u, and . Iu is called the indicator function of .Sg u in convex analysis. 
By definition, .sg u is closed if and only if u is upper semicontinuous. The closure 
of .sg u equals the subgraph of . u∗, i.e., .sg u = sg u∗. Similarly, .Sg u = Sg u∗. By  
definition, for a function .u : Q → R ∪ {±∞}, we see that .iu∗ = (iu)

∗, so . iu∗ is 
always upper semicontinuous. Similarly, . Iu∗ is always lower semicontinuous.
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For later convenience, we first recall the (left) accessibility of a viscosity solution 
of (4.14) .

Proposition 4.14 
Assume that H in (4.14) is continuous. Let u be a viscosity subsolution of
(4.14) in .Q = � × (0, T ). Then . u∗ is left accessible at each .(x0, t0) ∈ Q, 
i.e., there is a sequence .

{
(xj , tj )

}∞
j=1 ⊂ Q such that .xj → x0, .tj ↑ t0, 

.u∗(xj , tj ) → u∗(x0, t0) as .j → ∞. 

This follows from the fact that u is a viscosity subsolution of (4.14) in . �×(0, T ′]
for any .T ′ < T and that such a u is left accessible at .t = T ′. We do not give the 
proof here. For the complete proof, see [22]; see also [47, §3.2.2]. 

As an application, we obtain some information of functions testing . iu∗ . 

Lemma 4.15 
Assume the same hypothesis as that of Proposition 4.14. Then . iu∗ is left 
accessible in .Q̂ = � × R × (0, T ). 

Proof. Assume that .iu∗(x0, z0, t0) = 0 at .(x0, z0, t0) ∈ Q̂, so that . u∗(x0, t0) >

−∞. Since . u∗ is left accessible at .(x0, t0) by Proposition 4.14, there is a sequence 
.
{
(xj , tj )

}∞
j=1 ⊂ Q such that .xj → x0, .tj ↑ t0, .u∗(xj , tj ) → u∗(x0, t0) as .j → ∞. 

Since .iu∗(x0, z0, t0) = 0, we see .z0 ≤ u∗(x0, t0). If .u∗(x0, t0) ∈ R, then we take 

. zj = u∗(xj , tj ) − (
u∗(x0, t0) − z0

) ≤ u∗(xj , tj )

and observe that .iu∗(xj , zj , tj ) = 0 and .zj → z0. If .u∗(x0, t0) = ∞, then . z0 ≤
u∗(xj , tj ) for sufficiently large j . In this case, we set .zj = z0. We thus conclude 
that 

. iu∗(xj , zj , tj ) = 0, xj → x0, zj → x0, tj ↑ t0

as .j → ∞. If .iu∗(x0, z0, t0) = −∞ so that .z0 > u∗(x0, t0), then . z0 > u∗(xj , tj )

for sufficiently large j . Thus, taking .zj = z0, we see that .iu∗(xj , zj , tj ) = −∞. We  
now conclude that . iu∗ is left accessible in . Q̂. ��

We next check what kind of equations a test function of . iu∗ satisfies.
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Lemma 4.16 
Assume that H is continuous and .H∞ exists. Let u be a proper subsolution 
of (4.14) in .Q = � × (0, T ). For  .� ∈ C1(Q) assume that .iu∗ − � takes its 
maximum over . Q̂ at .(x̂, ẑ, t̂ ), i.e., 

. max
Q̂

(iu∗ − �) = (iu∗ − �)(x̂, ẑ, t̂ ).

Then .∂z�(x̂, ẑ, t̂ ) ≤ 0 holds. 

(A) Assume that .∇̂�(x̂, ẑ, t̂ ) �= 0, where .∇̂� = (∇x�, ∂z�). Then . ̂z ≤
u∗(x̂, t̂ ). Moreover, 
(i) If .∂z�(x̂, ẑ, t̂ ) �= 0, then .ẑ = u∗(x̂, t̂ ) and .∂z�(x̂, ẑ, t̂ ) < 0. 

Moreover, 

.τ + H
(
x̂, t̂ , u∗(x̂, t̂ ), p

) ≤ 0, (4.20) 

with .τ = −(∂t�/∂z�)(x̂, ẑ, t̂ ) ∈ R, . p = −(∇x�/∂z�)(x̂, ẑ, t̂ ) ∈
RN . 

(ii) If .∂z�(x̂, ẑ, t̂ ) = 0 and .ẑ < u∗(x̂, t̂ ), then 

.∂t�(x̂, ẑ, t̂ ) + HI
(
x̂, t̂ , u∗(x̂, t̂ ),∇x�(x̂, ẑ, t̂ )

) ≤ 0, (4.21) 

with .I = [
ẑ, u∗(x̂, t̂ )

]
. 

(iii) Assume (4.19). Assume that .∂z�(x̂, ẑ, t̂ ) = 0 and .ẑ = u∗(x̂, t̂ ). Then 
inequality (4.21) holds.

(B) Assume (4.19) . If .∇̂�(x̂, ẑ, t̂ ) = 0, then .∂t�(x̂, ẑ, t̂ ) ≤ 0. 

Symmetric statements hold for proper supersolutions. 

Proof. Since .iu∗(x, z, t) is nonincreasing in z, .(iu∗ − �)(x̂, z, t̂) cannot take its 
maximum at . ̂z if .∂z�(x̂, ẑ, t̂ ) > 0. Thus, .∂z�(x̂, ẑ, t̂ ) ≤ 0. 

(A) The point .(x̂, ẑ, t̂ ) belongs to the boundary of the subgraph .sg u∗ since 
.∇̂�(x̂, ẑ, t̂ ) �= 0. For .� = �(x̂, ẑ, t̂ ) the .�-level set of . � touches . sg u∗
at .(x̂, ẑ, t̂ ), and the sublevel set .{� < �} does not intersect .sg u∗. Thus, 
.ẑ ≤ u∗(x̂, t̂ ). From this point forward, for a function F defined in . Q̂, by  
.{F < �} (resp. .{F ≤ �}) we mean the set 

.

{
w ∈ Q̂

∣
∣ F(w) < �

}
(resp.

{
w ∈ Q̂

∣
∣ F(w) ≤ �

}
).
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(i) By the definition of .sg u∗, the first statement is clear. Since 

. ∂z�(x̂, ẑ, t̂ ) < 0,

the .�-level set of . � can be written as the graph of an implicit function . Z =
Z(x, t) near .(x̂, ẑ, t̂ ). By the geometry of the .�-level set of . � and .sg u∗, 
.u∗ − Z takes its local maximum at .(x̂, t̂ ). Since Z is an implicit function 
satisfying .�(x,Z(x, t), t) = �, we see .∂tZ(x̂, t̂) = τ and .∇Z(x̂, t̂) = p. 
Since . u∗ is a subsolution, we get (4.20) .

(ii) This is a crucial part of this lemma. We may assume that . �(x̂, ẑ, t̂ ) = 0
and .x̂ = 0 without loss of generality. Since .∇x�(0, ẑ, t̂ ) �= 0, by rotation 
we may assume that 

. ∇x�/|∇x�| = (−1, 0, . . . , 0) at (0, ẑ, t̂ ).

We set 

. �(x, z, t) := (x1−R)2+x2
2 +· · ·+x2

N +(z−ẑ)2+(t− t̂ )2+A(t− t̂ )−R2.

For a suitable choice of .R > 0 and .A ∈ R, a ball .B = {� ≤ 0} touches 
.sg u∗ only at .(0, ẑ, t̂ ) i.e., .sg u∗ ∩ B = {

(0, ẑ, t̂ )
}

and .B ⊂ {� ≤ 0}; see  
Fig. 4.8. Thus, 

.∂t�/|∇x�| = ∂t�/|∇x�| at (0, ẑ, t̂ ). (4.22) 

By the choice of B we observe that

. u(x, t) ≤ ẑ

Fig. 4.8 Ball .
{
(x, z) ∈ � × R

∣
∣ �(x, z, t̂) < 0

}
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for .x ∈ Dt = {
x ∈ �

∣
∣ �(x, ẑ, t) < 0

}
. We take . St as the boundary of 

. Dt and . n is the inward normal of . Dt . By definition, .{(St ,n(·, t))} is an 
evolving hypersurface through .(0, t̂ ), and . Dt is a region associated with 
.{(St ,n(·, t))}. Then .{(St ,n(·, t))} is an upper test surface with level . ̂z of . u∗
at .(0, t̂) and .n(·, t̂) at 0 equals .(1, 0, . . . , 0). By  (4.22) , the normal velocity
(in the direction of .n(·, t̂ )) V of . St̂ at .x̂ = 0 equals 

. V = ∂t�/|∇x�| = ∂t�/|∇x�| at (0, ẑ, t̂ ).

By the definition of a proper subsolution, we see that 

.V + HI
(
0, t̂ , u∗(0, t̂ ),−n

) ≤ 0, (4.23) 

with .I = [
ẑ, u∗(0, t̂ )

]
. Since 

. V = ∂t�

|∇x�| (0, ẑ, t̂ ), n = − ∇x�

|∇x�| (0, ẑ, t̂ ),

we conclude that (4.23) yields (4.21) ; here we invoke the homogeneity of
.HI (x, t, r, p) in p, i.e., .HI (x, t, r, σp) = σHI (x, t, r, p) for .σ > 0. 

(iii) We modify . �. Let . �̃ be a . C1 function defined by 

. �̃(x, z, t) :=
{

�(x, z, t), if z ≤ ẑ

�(x, z, t) − (z − ẑ)2, if z > ẑ,

so that .∂z�̃ ≤ 0. Since .sg u∗ is a subgraph, the set .{�̃ ≤ 0} still touches 
.sg u∗ only at .(0, ẑ, t̂ ). For .ε > 0 we set 

. �ε(x, z, t) = �̃(x, z, t) − ε(z − ẑ).

Let .(xε, zε, tε) be a maximizer of .iu∗ − �ε. Since .iu∗ − �̃ takes a strict 
maximum at .(0, ẑ, t̂ ), by a convergence of maximum points (e.g., [47, 
Lemma 2.2.5] and Exercise 4.4) .(xε, zε, tε) → (0, ẑ, t̂ ) as .ε → 0. Since 

. ∂z�ε(x, z, t) = 2 min(z − ẑ, 0) − ε < 0,

we apply (i) to get .zε = u∗(xε, tε) and 

.∂t�ε(xε, zε, tε) + λεH

(

xε, zε, tε,
∇x�ε(xε, zε, tε)

λε

)

≤ 0,
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with .λε = −∂z�ε(xε, zε, tε) for small . ε > 0. By  (4.19), letting . ε → 0
yields 

. ∂t�(0, ẑ, t̂ ) + H∞
(
0, t̂ , ẑ,∇x�(0, ẑ, t̂ )

) ≤ 0

since .λε ↓ 0. The desired inequality follows from (4.22) and
.∇x�/|∇x�| = ∇x�/|∇x�| at .(0, ẑ, t̂ ) since .H∞ is positively 
homogeneous in the variable .∇x�. 

(B) We may assume that . � is a separable type of the form 

. �(x, z, t) = ψ(x, z) + a(t), (x, z, t) ∈ Q̂.

We may assume that .iu∗ − � takes its strict maximum at .(x̂, ẑ, t̂ ) by replacing 
. � by 

. � + |x − x̂|2 + (z − ẑ)2 + (t − t̂ )2.

We consider a shift .�ζ of . � by defining 

. �ζ (x, z, t) = �(x − ξ, z − η, t),

with .ζ = (ξ, η) ∈ RN × R. By the convergence of maximum points, there is a 
sequence .(xζ , zζ , tζ ) converging to .(x̂, ẑ, t̂ ) as .ζ → 0 such that 

. max
Q̂

(iu∗ − �ζ ) = (iu∗ − �ζ )(xζ , zζ , tζ ).

Suppose that there is a sequence .ζj → 0 such that 

. ∇̂�ζj
(xζj

, zζj
, tζj

) �= 0.

Since .(xζj
, zζj

, tζj
) → (x̂, ẑ, t̂ ), we see  

. lim
j→∞ ∇̂�ζj

(xζj
, zζj

, tζj
) = ∇̂�(x̂, ẑ, t̂ ) = 0.

If there is a subsequence . ζjk
such that 

. ∂z�ζjk
(xζjk

, zζjk
, tζjk

) < 0,

we apply (A) (i) with .�ζjk
at .(xζjk

, zζjk
, tζjk

) to get .zζj
= u∗(xζj

, tζj
) and 

.τk + H(xζjk
, tζjk

, zζjk
, pk) ≤ 0,
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with 

. τk = ∂t�ζjk
(xζjk

, zζjk
, tζjk

)
/

λk,

pk = ∇x�ζjk
(xζjk

, zζjk
, tζjk

)
/

λk,

λk = −∂z�ζjk
(xζjk

, zζjk
, tζjk

) (> 0).

In other words, 

. ∂t�ζjk
(xζjk

, zζjk
, tζjk

)

+ λkH
(
xζjk

, tζjk
, zζjk

,∇x�ζjk
(xζjk

, zζjk
, tζjk

)
/

λk

)
≤ 0.

By (4.19), sending .k → ∞, we obtain 

. ∂t�(x̂, ẑ, t̂ ) + H∞
(
x̂, t̂ , ẑ,∇x�(x̂, ẑ, t̂ )

) ≤ 0

since 

. ∂t�(x̂, ẑ, t̂ ) = lim
j→∞ ∂t�ζj

(xζj
, zζj

, tζj
),

∇x�(x̂, ẑ, t̂ ) = lim
j→∞ ∇x�ζj

(xζj
, zζj

, tζj
) = 0,

∂z�(x̂, ẑ, t̂ ) = lim
j→∞ ∂z�ζj

(xζj
, zζj

, tζj
) = 0.

Since .H∞(x̂, t̂ , ẑ, 0) = 0 by Remark 4.12, we now conclude that . ∂t�(x̂, ẑ, t̂ ) ≤
0. 

If .∂z�ζj
(xζj

, zζj
, tζj

) = 0 for sufficiently large j , we apply (A) (ii) and (iii) 
to conclude that .∂t�(x̂, ẑ, t̂ ) ≤ 0 since .HI (x̂, t̂ , ẑ, 0) = 0 by Remark 4.12. 

It remains to discuss the case where 

. ∇̂�ζ (xζ , zζ , tζ ) = 0

for sufficiently small . ζ . We shall prove that . � is independent of x and z near 
.(x̂, ẑ, t̂ ). In other words, . ψ is constant near .(x̂, ẑ). If so, we are able to conclude 
that 

. ∂t�(x̂, ẑ, t̂ ) = ∂ta(t̂) ≤ 0

since otherwise it would contradict the left accessibility of . iu∗ in Lemma 4.15. 
To show that . � is spatially constant near .(x̂, ẑ, t̂ ), we invoke the following 

constancy lemma; see [43, Lemma 7.5], where . C2 regularity of . φ is assumed. 
This lemma is implicitly used in [21].
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Lemma 4.17 
Let K be a compact set in .Rm (.m ≥ 2), and let h be a real-valued upper 
semicontinuous function on K . Let . φ be a . C1 function on . Rd with .1 ≤ d < m. 
Let G be a bounded domain in . Rd . For each .ζ ∈ G assume that there is a 
maximizer .(rζ , ρζ ) ∈ K of 

. Hζ (r, ρ) = h(r, ρ) − φ(r − ζ )

over K such that .∇φ(rζ − ζ ) = 0. Then 

. hφ(ζ ) = sup
{
Hζ (r, ρ)

∣
∣ (r, ρ) ∈ K

}

is constant in G. 

We set .m = N + 2, .d = N + 1, and 

. K = {
(x, z, t) ∈ Rm

∣
∣ |x − x̂| + |z − ẑ| + |t − t̂ | ≤ δ, iu∗(x, z, t) = 0

} ⊂ Q̂

for some . δ > 0. We take .ε > 0 small so that .|ζ | < ε implies 

. ∇̂�ζ (xζ , zζ , tζ ) = 0.

We then set 

. G = {
ζ ∈ Rd

∣
∣ |ζ | < ε

}

and take 

. h(r, ρ) = iu∗(r, ρ) − a(ρ) = −a(ρ) on K

φ(r) = ψ(r) on RN+1,

with .r = (x, z), .ρ = t . Here, we extend . ψ outside .� × (0, T ) so that the extended 
function is . C1 in .RN+1. Since .(rζ , ρζ ) = (xζ , zζ , tζ ) is a minimizer of 

. Hζ (r, ρ) = h(r, ρ) − φ(r − ζ )

over K , with .∇φ(rζ − ζ ) = 0, applying Lemma 4.17 implies that 

.hφ(ζ ) = sup
{
Hζ (r, ρ)

∣
∣ (r, ρ) ∈ K

}
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is constant in G. This implies that . ψ is constant for r such that .|r − r̂| < ε, i.e., 
.|x − x̂|2 + |z − ẑ|2 < ε. The proof of Lemma 4.16 is now complete. ��

Proof of Lemma 4.17 By definition, 

. Hζ (rη, ρη) ≤ hφ(ζ ) = h(rζ , ρζ ) − φ(rζ − ζ ) for ζ, η ∈ G.

Since 

. hφ(η) = Hη(rη, ρη) = h(rη, ρη)−φ(rη −η) = Hζ (rη, ρη)+φ(rη −ζ )−φ(rη −η),

we observe that 

. hφ(η) ≤ hφ(ζ ) + φ(rη − ζ ) − φ(rη − η).

Since .∇φ(rη − η) = 0 and . φ is . C1, 

. 
∣
∣φ(rη − η) − φ(rη − ζ )

∣
∣ ≤ ω (|η − ζ |) |η − ζ |

with some modulus . ω, i.e., .ω(0) = 0, .ω ≥ 0, .ω(σ) → 0 as .σ → 0. Here, . ω can be 
taken to be independent of . η since .∇φ is uniformly continuous on any bounded set. 
We thus observe that 

. hφ(η) − hφ(ζ ) ≤ ω (|η − ζ |) |η − ζ |.

Changing the role of . η and . ζ , we end up with 

. 
∣
∣hφ(η) − hφ(ζ )

∣
∣ ≤ ω (|η − ζ |) |η − ζ |

for all .η, ζ ∈ G. We now conclude that . hφ is constant on G. ��

4.4.8 Weak Comparison Principle 

As an application of Lemmas 4.15 and 4.16, we present here a version of a 
comparison principle for periodic functions. Unlike the earlier comparison principle 
(Theorem 4.4), the following comparison principle does not imply the uniqueness 
of a solution. We consider (4.14) with .� = TN and H independently of . x, t , i.e., 

.∂tu + H(u,∇u) = 0 in Q = TN × (0, T ). (4.24)



130 4 Hamilton–Jacobi Equations

Theorem 4.18 (Weak comparison principle) 
Assume that .H = H(r, p) is continuous and for .M > 0 there exists a constant 
. CM

. 
∣
∣H(r, p) − H(r ′, p)

∣
∣ ≤ CM |r − r ′| (|p| + 1)

for .r, r ′ ∈ R, with .|r|, |r ′| ≤ M , .p ∈ RN . Assume that (4.19) holds for every
compact set K in .Q × R × RN . Let u and v be bounded proper sub- and 
supersolutions of (4.24), respectively. If .u∗(x, 0) < v∗(x, 0) for all .x ∈ TN , 
then .u∗ < v∗ in Q. 

The proof is rather involved compared with that of Theorem 4.4. We present here 
only the idea of the proof. 
The Idea of the Proof. We may assume that .u = u∗, .v = v∗. Instead of considering 
u and v, we consider . iu and . Iv defined in Sect. 4.4.7. We consider 

. �(x, z, t, y,w, s) := iu(x, z, t) − Iv(y,w, s) − �(x, z, t, y,w, s),

�(x, z, t, y,w, s) := α|x − y|2 + α|z − w|2 + α(t − s)2 + σ/(T − t),

where .(x, z), (y,w) ∈ TN × R and .t, s ∈ (0, T ); here, . α and . σ are positive 
parameters. We argue by contradiction. We fix .σ > 0. We argue in the same 
way as in the proof of Theorem 4.4 and conclude that a maximizer of . � is away 
from .t = 0, .s = 0 for sufficiently large . α since initially .iu(x, z, 0) ≤ Iv(x, z, 0), 
.(x, z) ∈ TN × R. We divide the situation into two cases. 

Case 1. There is a sequence .αj → ∞ such that at a maximum of . � in 

.
(
TN × R × (0, T )

)2
the gradient .(∇x�, ∂z�) = 0. 

Case 2. For sufficiently large . α, .(∇x�, ∂z�) �= 0 at a maximizer of . �. 

In the first case, one gets a contradiction by Lemma 4.16 (B). The second case is 
itself further subdivided into two cases. 

Case 2A. For sufficiently large . α, .∂z� �= 0 at a maximizer of . �. 
Case 2B. There is a sequence .αj → ∞ such that .∂z� = 0 at a maximizer of . �. 

To derive a contradiction in Case 2A, we use Lemma 4.16 (A) (i). 
In Case 2B, we invoke the property of proper solutions. We provide a detailed 

proof in this case. Let .(x̂, ẑ, t̂ , ŷ, ŵ, ŝ) be a maximizer of . �, with .t̂ , ŝ > 0. We have  
.∂z�(x̂, ẑ, t̂ , ŷ, ŵ, ŝ) = 0, so that . ̂z must agree with . ŵ. By Lemma 4.16, .ẑ ≤ u(x̂, t̂), 
.ŵ ≥ v(ŷ, ŝ), so that .v(ŷ, ŝ) ≤ u(x̂, t̂). 

We shall fix . α so that .t̂ , ŝ > 0. We first note that 

.a0 = (x̂, v̂, t̂ , ŷ, v̂, ŝ) and a1 = (x̂, û, t̂ , ŷ, û, ŝ),
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with 

. ̂u = u(x̂, t̂), v̂ = v(ŷ, ŝ),

are also maximizers of . �. Indeed, since .iu(x̂, z, t̂) = 0 for all .z ≤ û and 
.Iv(ŷ, w, ŝ) = 0 for all .w ≥ v̂, . � must take the same value for .z,w ∈ R satisfying 
.z ≤ û, .w ≥ v̂, and .z = w. In particular, . a0 and . a1 are maximizers of . � since .v̂ ≤ û. 

Since . � is maximized at . a0, we apply Lemma 4.16 (A) (ii) and (iii) to a function 

. (x, z, t) �→ iu(x, z, t) − �(x, z, t, ŷ, ŵ, ŝ) − Iv(ŷ, ŵ, ŝ)

to conclude 

.∂t� + HI (û,∇x�) ≤ 0 at a0, (4.25) 

with .I = [v̂, û]. Similarly, we have 

. − ∂s� + HI (v̂,−∇y�) ≥ 0 at a1. (4.26) 

Note that .∇x�(a0) = −∇y�(a1), .∂t�(a0) + ∂s�(a1) = σ/(T − t̂ )2. Thus, 
subtracting (4.26) from (4.25) yields

. σ/(T − t̂ )2 ≤ 0

since .HI (r, p) is nondecreasing in r and .v̂ ≤ û. This yields a contradiction to 
.σ > 0. This is the end of the idea of the proof. 

4.4.9 Comparison Principle and Uniqueness 

In general, the uniqueness of a solution does not hold even if H is independent of u 
for discontinuous solutions. As shown in [10], a solution of 

. ut + (x − t)|ux | = 0,

starting with a characteristic function . 1I of some closed interval I , is not unique, 
where .1I (x) = 1 for .x ∈ I and .1I (x) = 0 for .x �∈ I . This is related to fattening 
phenomena for a level-set flow of a curvature flow equation; see, for example, [47]. 
Some additional condition is necessary to guarantee the uniqueness of the initial 
value problem for (4.24).
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Theorem 4.19 (Strong comparison principle) 
Assume the same hypothesis as that of Theorem 4.18 concerning u, v, and H . 
Assume furthermore that 

. − H(r, p) ≥ c

√
1 + p2 with some c > 0 for all p ∈ RN r ∈ R.

If .u∗(x, 0) ≤ (v∗)∗(x, 0) for all .x ∈ TN , then .u∗ ≤ (v∗)∗ in . Q0 = TN ×
[0, T ). If .(u∗)∗(x, 0) ≤ v∗(x, 0) for all .x ∈ TN , then .(u∗)∗ ≤ v∗ in . Q0. 

The proof requires several fundamental properties of viscosity solutions, so we 
provide only a sketch of the proof. 
Sketch of the Proof. We provide the proof only where .u∗ ≤ (v∗)∗ at . t = 0
since the proof for the remaining case is symmetric. Again we may assume that 
.u = u∗ and .v = v∗. Since v is a viscosity supersolution of (4.24) , it is a viscosity
supersolution of

. wt − c

√
1 + |∇w|2 = 0

by our assumption. This equation has a strong comparison principle (e.g., [10]), so 
the solution is unique even among semicontinuous functions; see, for example, [51]. 
The unique upper semicontinuous solution of the w equation with initial datum . w0
is given by 

. w(x, t) = sup
{
x ∈ R | d

(
(x, z), sg w0

) ≤ ct
}
,

where .sg w0 denotes the closure of the subgraph .sg w0 of . w0 defined in Sect. 4.4.7. 
Heuristically, this is easy to observe since our w equation requires that the graph 
of w moves with upward normal velocity .V = c. If one interprets this equation 
as a surface evolution equation or front propagation of a set . E0, then the set . Et at 
time t is the set of all points whose distance from . E0 is less than or equal to ct . 
For more details, see [46]. Since v is a viscosity supersolution of the w equation, 
the comparison principle for the w equation with initial datum . w0(x) = v∗(x, 0)

implies that .v ≥ w in .TN × (0, T ). This implies that for .δ ∈ (0, T ) there is . ρ > 0
that satisfies 

.v(x, t) ≥ v∗(x, 0) + ρ for all x ∈ TN, t ≥ δ. (4.27) 

We shift v in time and set

.vδ(x, t) = v(x, t + δ), t > 0.
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Evidently, . vδ is a proper supersolution of (4.24) in .TN × (0, T − δ). Assume that 
.u ≤ v∗ at . t = 0. By  (4.27), we see that .u ≤ v∗ ≤ vδ − ρ at .t = 0. Since . vδ is lower 
semicontinuous up to .t = 0, applying weak comparison Theorem 4.18, we obtain 
.u < vδ in .TN × [0, T − δ). Sending . δ to zero, we conclude that .u ≤ v∗ in .Q0 since 
.lim inf

δ↓0
vδ ≤ v∗ by the definition of upper semicontinuous function. This is the end 

of the sketch of the proof. 
For a given function .u0 : TN → R ∪ {±∞} we say that . u : TN × (0, T ) →

R ∪ {±∞} is a solution of (4.24) with initial datum . u0 if u is a proper solution of 
(4.24) and

. u∗(x, 0) = (u∗)∗(x, 0) = (u0)
∗(x),

u∗(x, 0) = (u∗)∗(x, 0) = (u0)∗(x).

Our comparison principle implies the uniqueness of a solution. 

Theorem 4.20 
Assume the same hypothesis as that of Theorem 4.19 concerning H . Let u be a 
bounded solution of (4.24) with initial datum . u0. Then . u∗ and . u∗ are unique. 
Moreover, .(u∗)∗ = u∗, and .(u∗)∗ = u∗. 

Proof. Let v be another solution. Since .u∗ ≤ (v∗)∗ at .t = 0, the strong comparison 
principle (Theorem 4.19) implies that .u∗ ≤ (v∗)∗ (. ≤ v∗) in .TN × (0, T ). Replacing 
the roles of v and u yields .v∗ ≤ u∗. We thus conclude that .v∗ = u∗. Moreover, . u∗ ≤
(u∗)∗ ≤ u∗ implies .(u∗)∗ = u∗. A symmetric argument implies the uniqueness of 
. u∗ and .(u∗)∗ = u∗. ��

There are several other situations in which the conclusion of the comparison 
principle holds. For example, it applies to a conservation law starting with a special 
class of initial data. The reader is referred to [46] for further examples. 

4.5 Notes and Comments 

4.5.1 A Few References on Viscosity Solutions 

The theory of viscosity solutions is by now a standard tool to study nonlinear 
(degenerate) elliptic parabolic partial differential equations of second order as well 
as first-order equations like Hamilton–Jacobi equations, where expected solutions 
are not smooth. The notion of a viscosity solution was first introduced by [29] 
(see also [28]) in a different way for first-order Hamilton–Jacobi equations with a 
nonconvex Hamiltonian. See the book by Lions [71] for the early stage and the one
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by Barles [9] for the development of the theory. One of the original applications of 
the theory is to characterize the value function of control theory and differential 
games for ordinary differential equations as a unique nondifferentiable solution 
of Hamilton–Jacobi equations. The reader is referred to the book by Bardi and 
Capuzzo-Dolcetta [7] as well as  [36, Chapter 10]. 

The extension to second-order equations is not straightforward. It takes several 
years to overcome the substantial difficulty of obtaining the key comparison 
principle. The reader is referred to the well-written review article of Crandall, Ishii, 
and Lions [26] and a shorter review by Ishii [59] for the development of the 
theory. There are accessible textbooks by Koike [63,64]. The second-order problem 
relates to stochastic controls. For this type of application see the books by Fleming 
and Soner [41] and Morimoto [76]. The theory of viscosity solution also gives a 
mathematical foundation [21, 37] for a level-set flow of the mean curvature flow 
equations, which was introduced numerically by [81]. For this topic the reader is 
referred to the book [47], which includes a necessary survey of viscosity solutions. 
See also the lecture notes of Bardi et al. [8], where various applications, including 
a level-set method, are presented. 

In Sect. 4.2.3, we provide an example of where uniqueness fails for the eikonal 
equation. For the eikonal equation (4.10) , uniqueness with given boundary data is
valid provided that the value of a solution on the set .{x | f (x) = 0} is prescribed. 
This has its origins in the book [71, Section 5.5]. This type of uniqueness and 
comparison principle is generalized by [38] and [60] for various Hamilton–Jacobi 
equations with convex Hamiltonians; see also the recent book [87]. This type 
of comparison principle is roughly stated as follows. If a subsolution u and a 
supersolution v have an order .u ≤ v on the (projected) Aubry set . A other than 
on boundaries, then .u ≤ v in a whole domain. The Aubry set is a notion related to 
the Hamilton system corresponding to the Hamilton–Jacobi equation. It consists of 
an equilibrium set and a point having a sequence of closed curves converging at this 
point whose Euclidean length is bounded from below, but the corresponding action 
integral converges to zero. For the eikonal equation (4.10) , the Aubry set is simply
the equilibrium set .{x | f (x) = 0}. 

4.5.2 Discontinuous Viscosity Solutions 

The contents up to Sect. 4.3 are basic materials on viscosity solutions. An elegant 
proof of the uniqueness of the eikonal equation (Sect. 4.2.3) is due to [58]. 

Definition 4.5 of the viscosity solution for a semicontinuous function was 
introduced by [56, 57]. Although this notion is very convenient when it comes 
to constructing a continuous solution by Perron’s method [57], it is not enough 
to establish the uniqueness of a solution for discontinuous initial data even if 
the Hamiltonian .H = H(x, t, r, p) is independent of r , i.e., independent of 
the value of the unknown function. There are several approaches to recovering 
uniqueness among semicontinuous functions. When .H = H(x, t, p) is convex 
or concave with respect to p, a notion of solutions is introduced by [11] and
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[12], so that the solution is unique among semicontinuous functions. For a general 
.H = H(x, t, p), uniqueness was established in [51] based on a level-set method; 
the main assumption in [51] is that the recession function .H∞ exists. 

A proper viscosity solution to handle solution with shock is introduced by [46] 
to describe a kind of bunching phenomenon of growing crystals on a surface. The 
contents of Sect. 4.4 are essentially taken from [46]. Since there are many errors 
in [46], we take this opportunity to correct them. For example, in [46, Proposition 
2.5], it was claimed that . uN is a viscosity solution when the speed of a shock comes 
from the Rankine–Hugoniot condition. However, this statement is wrong. As in 
Proposition 4.13, this .uN is not even a conditional viscosity solution. Also, “left 
accessibility” in Proposition 4.14 was written as “right accessibility” in [46]. We 
also give a detailed proof of Lemma 4.15 (ii) in this book. 

There is an interesting way to interpret a proper viscosity solution as an evolution 
of its graph. If we rewrite the equation for the evolution of the graph, then the graph 
may not stay as the graph of a function, and the function becomes multivalued. It is 
natural to think that there is a very singular vertical diffusion that prevents such a 
phenomenon and causes shocks. This idea is useful for the formulation of a proper 
viscosity solution [88]. A discussion of the theoretical background of the topic can 
be found in [44]. There is another approach to interpreting a solution with a shock by 
introducing an obstacle to prevent overturn [15]. An extension of proper solutions 
to second-order problems is not yet available. 

4.6 Exercises 

4.1 Find the unique viscosity solution of 

. 

⎧
⎨

⎩

∣
∣
∣
∣
du

dx

∣
∣
∣
∣ − 1 = 0 in (−1, 1),

u(±1) = 0

and 

. 

⎧
⎨

⎩
1 −

∣
∣
∣
∣
du

dx

∣
∣
∣
∣ = 0 in (−1, 1),

u(±1) = 0.

4.2 For a function f (p)  = √
1 + |p|2 (p ∈ RN ) calculate the recession function 

f∞(p). 
4.3 Prove that the upper semicontinuous envelope f ∗ of a real-valued function f 

in an open set � ⊂ RN is actually upper semicontinuous and that it is smallest 
among all upper semicontinuous functions greater than or equal to f . 

4.4 Let {fm} be a sequence of real-valued continuous functions in �, where �

is an open set in RN . Assume that fm converges to a continuous function f
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uniformly in � as m → ∞, i.e., 

. lim
m→∞ sup

x∈�

|fm(x) − f (x)| = 0.

Assume that there is x̂ such that f (x)  ≤ f (x̂) for all x ∈ � and that f (x)  = 
f (x̂) if and only if x = x̂. In other words, f takes its strict maximum at x̂. 
Then there is a point xm ∈ � that converges to x̂ such that max

�

fm = fm(xm) 

and limm→∞ fm(xm) = f (x̂). 
4.5 Let � be a domain in RN . Assume that um ∈ C(�) converges to u ∈ C(�) 

locally uniformly in � as m → ∞. Let  um be a viscosity subsolution of (4.9) .
Show that u is a viscosity subsolution of (4.9) .

4.6 Assume that fm ∈ C ([0, 1]) converges to f uniformly in [0, 1] as m → ∞, 
i.e., 

. lim
m→∞ sup

0≤x≤1
|fm(x) − f (x)| = 0.

Let {xj }∞j=1 be a sequence in [0, 1] converging to x̂ as j → ∞. Show that 

. lim
m→∞
j→∞

fm(xj ) = f (x̂).

In other words, show that for any ε >  0, there are numbers m0 and j0 such that 

. 
∣
∣fm(xj ) − f (x̂)

∣
∣ < ε

for all m ≥ m0, j ≥ j0. 
4.7 Let P1 be the space of all affine functions on RN , i.e., 

. P1 =
{
a · x + b | a ∈ RN, b ∈ R

}
.

Let M be a nonempty subset of P1. Set 

.f (x) = sup
{
p(x)

∣
∣ p ∈ M

}
, x ∈ RN, (4.28) 

and assume that f (x) is finite. Show that f is a convex function. Show that
any real-valued convex function on RN is of the form (4.28) , with a suitable
choice of M .

4.8 Let � be a bounded domain in RN . Let  d be the distance function from the 
boundary ∂�, i.e., 

.d(x) = inf
{|x − y| ∣

∣ y ∈ ∂�
}
.
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Show that d ∈ C(�) is the unique viscosity solution of |∇u| = 1 in � with 
u = 0 on  ∂�. 

4.9 Let g ∈ C(RN ) ∩ L∞(RN ) be a given function. Show that 

. u(x, t) = inf

{

g(y) + |x − y|2
2t

∣
∣
∣
∣ y ∈ RN

}

is a viscosity solution of 

. vt + 1

2
|∇v|2 = 0

in RN × (0,∞). The function u is often called an inf-convolution of g. 
4.10 Show that 

. u(x, t) = t − |x|, x ∈ R, t > 0,

is not a viscosity solution of 

.vt − |∂xv| = 0 (4.29) 

in R × (0,∞), although u satisfies (4.29) outside x = 0.
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In this appendix, we present definitions of basic terminology used in the book for 
the reader’s convenience. For a given set W , .x ∈ W means that x is an element 
of W . 

5.1 Convergence 

(1) Let M be a set. A real-valued function d defined on M × M is said to be a 
metric if 
(i) d(x, y) = 0 if and only if x = y for x, y ∈ M; 
(ii) (symmetry) d(x, y) = d(y, x) for all x, y ∈ M; 
(iii) (triangle inequality) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ M . 
Here, X1×X2 denotes the Cartesian product of two sets X1 and X2 defined by 

. X1 × X2 := {
(x1, x2)

∣∣ xi ∈ Xi for i = 1, 2
}
.

The set M equipped with a metric d is called a metric space and denoted by 
(M, d) if one needs to clarify the metric. Let W be a product of metric spaces 
of (Mi, di) (i = 1, . . . , m), i.e., 

. W =
m∏

i=1

Mi = M1 × · · · × Mm

:= {
(x1, . . . , xm)

∣∣ xi ∈ Mi for i = 1, . . . , m
}
.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
M.-H. Giga, Y. Giga, A Basic Guide to Uniqueness Problems for Evolutionary 
Differential Equations, Compact Textbooks in Mathematics, 
https://doi.org/10.1007/978-3-031-34796-2_5

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34796-2protect T1	extunderscore 5&domain=pdf
https://doi.org/10.1007/978-3-031-34796-2_5
https://doi.org/10.1007/978-3-031-34796-2_5
https://doi.org/10.1007/978-3-031-34796-2_5
https://doi.org/10.1007/978-3-031-34796-2_5
https://doi.org/10.1007/978-3-031-34796-2_5
https://doi.org/10.1007/978-3-031-34796-2_5
https://doi.org/10.1007/978-3-031-34796-2_5
https://doi.org/10.1007/978-3-031-34796-2_5
https://doi.org/10.1007/978-3-031-34796-2_5
https://doi.org/10.1007/978-3-031-34796-2_5
https://doi.org/10.1007/978-3-031-34796-2_5


140 5 Appendix: Basic Terminology

This W is metrizable, for example, with a metric 

. d(x, y) =
(

m∑

i=1

di(xi, yi)
2

)1/2

for x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ W . If  Mi is independent of i, i.e., 
Mi = M , then we simply write W as Mm. 
A subset A of M is said to be open if for any x ∈ A there is ε >  0 such that 
the ball Bε(x) = {

y ∈ M
∣∣ d(y, x) ≤ ε

}
is included in A. If the  complement 

Ac is open, then A is said to be closed. The complement Ac is defined by 

. Ac = M\A := {
x ∈ M

∣∣ x �∈ A
}
.

For a set A, the smallest closed set including A is called the closure of A and 
denoted by A. Similarly, the largest open set included in A is called the interior 
of A and denoted by int A or simply by Å. By definition, A = A if and only 
if A is closed, and A = Å if and only if A is open. The set A\Å is called the 
boundary of A and denoted by ∂A. For a subset B of a set A, we say that B is 
dense in A if B = A. A set  A in M is bounded if there is x0 ∈ M and R >  0 
such that A is included in BR(x0). For  a  mapping f from a set S to M (i.e., an 
M-valued function defined on S), f is said to be bounded if its image f (S)  is 
bounded in M , where 

. f (S) = {
f (x)

∣∣ x ∈ S
}
.

(2) Let V be a real vector space (a vector space over the field R). A nonnegative 
function ‖ · ‖ on V is said to be a norm if 
(i) ‖x‖ = 0 if and only if x = 0 for  x ∈ V ; 
(ii) ‖cx‖ = |c|‖x‖ for all x ∈ V and all c ∈ R; 
(iii) (triangle inequality) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ V . 
The vector space V equipped with a norm ‖ · ‖ is called a normed vector space 
and denoted by (V , ‖ · ‖) if one needs to clarify the norm. By definition, 

. d(x, y) = ‖x − y‖

is a metric. A normed vector space is regarded as a metric space with the 
foregoing metric. 

(3) Let {zj }∞j=1 be a sequence in a metric space (M, d). We say that {zj }∞j=1 
converges to z ∈ M if for any ε >  0 there exists a natural number n = n(ε) 
such that j ≥ n(ε) implies d(z, zj ) < ε. In other words, 

. lim
j→0

d(z, zj ) = 0.
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We simply write zj → z as j → ∞, or limj→∞ zj = z. If {zj }∞j=1 converges 
to some element, we say that {zj }∞j=1 is a convergent sequence. 

(4) Let f be a mapping from a metric space (M1, d1) to another metric space 
(M2, d2). We say that f (y)  converges to a ∈ M2 as y tends to x if for any 
ε >  0 there exists δ = δ(ε) > 0 such that 

. d2 (f (y), a) < ε if d1(y, x) < δ.

We simply write f (y)  → a as y → x or limy→x f (y)  = a. If  

. lim
y→x

f (y) = f (x),

then f is said to be continuous at x ∈ M1. If  f is continuous at all x ∈ M1, 
then f is said to be continuous on M1 (with values in M2). The space of all 
continuous functions on M1 with values in M2 is denoted by C(M1,M2). 

(5) Let {zj }∞j=1 be a sequence in a metric space (M, d). We say that {zj }∞j=1 is 
a Cauchy sequence if for any ε >  0 there exists a natural number n = n(ε) 
such that j, k ≥ n(ε) implies d(zj , zk) < ε. It is easy to see that a convergent 
sequence is always a Cauchy sequence, but the converse may not hold. We 
say that the metric space (M, d) is complete if any Cauchy sequence is a 
convergent sequence. 

(6) Let (V , ‖ · ‖) be a normed vector space. We say that V is a Banach space 
if it is complete as a metric space. The norm ‖ · ‖ is often written as ‖ · ‖V 
to distinguish it from other norms if we use several norms. We simply write 
zj → z in V (as j → ∞) if limj→∞ ‖zj − z‖V = 0 and z ∈ V for a sequence 
{zj }∞j=1. We often say that zj converges to z strongly in V (as j → ∞) to  
distinguish this convergence from other weaker convergences discussed later. 

(7) Let V be a real vector space. A real-valued function 〈·, ·〉 defined on V × V is 
said to be an inner product if 
(i) 〈x, x〉 ≥ 0 for all x ∈ V ; 
(ii) 〈x, x〉 =  0 if and only if x = 0; 
(iii) (symmetry) 〈x, y〉 = 〈y, x〉 for all x, y ∈ V ; 
(iv) (linearity) 〈c1x1 + c2x2, y〉 = c1〈x1, y〉 +  c2〈x2, y〉 for all x1, x2, y  ∈ V , 

c1, c2 ∈ R. 
By definition, it is easy to see that 

. ‖z‖ = 〈z, z〉1/2

is a norm. The space with an inner product is regarded as a normed vector 
space with the foregoing norm. If this space is complete as a metric space, we 
say that V is a Hilbert space. The Euclidean space RN is a finite-dimensional 
Hilbert space equipped with a standard inner product. It turns out that any 
finite-dimensional Hilbert space is “isomorphic” to RN . Of course, a Hilbert 
space is an example of a Banach space.
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(8) Let V be a Banach space equipped with norm ‖ · ‖. Let  V ∗ denote the 
totality of all continuous linear function(al)s on V with values in R. (By  
the Hahn–Banach theorem, the vector space V ∗ has at least one dimension. 
Incidentally, Mazur’s theorem in the proof of Lemma 1.19 in Sect. 1.2.3 is 
another application of the Hahn–Banach theorem.) 
The space V ∗ is called the dual space of V . Let  {zj }∞j=1 be a sequence in V ∗. 
We say that {zj }∞j=1 converges to z ∈ V ∗ ∗-weakly if 

. lim
j→∞ zj (x) = z(x)

for any x ∈ V . We often write zj 
∗
⇀ z  in V ∗ as j → ∞. Such a sequence 

{zj }∞j=1 is called a ∗-weak convergent sequence. The dual space V ∗ is equipped 
with the norm 

. ‖z‖V ∗ := sup
{
z(x)

∣∣ ‖x‖ = 1, x ∈ V
} = sup

‖x‖=1
z(x).

The space V ∗ is also a Banach space with this norm. Here, for a subset A in R, 
by a = sup A we mean that a is the smallest real member that satisfies a ≥ x 
for any a ∈ A. In other words, it is the least upper bound of A. The notation 
sup is the abbreviation of the supremum. Similarly, infA denotes the greatest 
lower bound of A, and it is the abbreviation of the infimum. If sup  A = a with 
a ∈ A, we write max A instead of sup A. The same convention applies to inf 
and min. 
Since V ∗ is a Banach space, there is a notion of convergence in the metric 
defined by the norm. To distinguish this convergence from ∗-weak conver-
gence, we say that {zj }∞j=1 converges to z strongly in V ∗ if 

. lim
j→∞ ‖zj − z‖V ∗ = 0,

and it is simply written zj → z in V ∗ as j → ∞. By definition, zj → z 
implies zj 

∗
⇀ z, but the converse may not hold. 

(9) Let A be a subset of a metric space M . The  set  A is said to be (sequentially) 
relatively compact if any sequence {zj }∞j=1 in A has a convergent subsequence 
in M . If, moreover, A is closed, we simply say that A is compact. When A is 
compact, it is always bounded. When A is a subset of RN , it is well known 
as the Bolzano–Weierstrass theorem that A is compact if and only if A is 
bounded and closed. However, if A is a subset of a Banach space V , such 
an equivalence holds if and only if V is of finite dimension. In other words, 
a bounded sequence of an infinite-dimensional Banach space may not have a 
(strongly) convergent subsequence.
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There is a compactness theorem (Banach–Alaoglu theorem) that says if 
{zj }∞j=1 in a dual Banach space V ∗ is bounded, i.e., 

. sup
j≥1

‖zj‖V ∗ < ∞,

then it has a ∗-weak convergent subsequence (Exercise 1.9). 
(10) Let V be a Banach space and V ∗ denote its dual space. Let {xk}∞k=1 be a 

sequence in V . We say that {xk}∞k=1 converges to x ∈ V weakly if 

. lim
k→∞ z(xk) = z(x)

for all z ∈ V ∗. We often write xk ⇀ x  in V as k → ∞. Such a sequence is 
called a weak convergent sequence. 
If a Banach space W is a dual space of some Banach space V , say,  W = V ∗, 
there are two notions, weak convergence and ∗-weak convergence. Let {zj }∞j=1 

be a sequence in W . By definition, zj 
∗
⇀ z  (in W as j → ∞) means that 

limj→∞ zj (x) = z(x) for all x ∈ V while zj ⇀ z  (in W as j → ∞) means 
that limj→∞ y(zj ) = y(z) for all y ∈ W ∗ = (V ∗)∗. 
The space V can be continuously embedded in V ∗∗ = (V ∗)∗. However, V 
may not be equal to V ∗∗. Thus, weak convergence is stronger than ∗-weak 
convergence. If V = V ∗∗, then both notions are the same. The space V is 
called reflexive if V = V ∗∗. 

(11) If V is a Hilbert space, it is reflexive. More precisely, the mapping x ∈ V to 
z ∈ V ∗ defined by 

. z(y) = 〈x, y〉, y ∈ V

is a linear isomorphism from V to V ∗, which is also norm preserving, i.e.,
‖z‖V ∗ = ‖x‖. This result is known as the Riesz–Fréchet theorem. Thus, the 
notions of weak convergence and ∗-weak convergence are the same. 

(12) Let f be a real-valued function in a metric space M . We say that f is lower 
semicontinuous at x ∈ M if 

. f (x) ≤ lim inf
y→x

f (y) := lim
δ↓0 inf

{
f (y)

∣∣ d(y, x) < δ
}
,

where limδ↓0 denotes the limit as δ → 0 but restricted to δ >  0. Even if f 
is allowed to take +∞, the definition of the lower semicontinuity will still be 
valid. If f is lower semicontinuous for all x ∈ M , we simply say that f is 
lower semicontinuous on M . If −f is lower semicontinuous, we say that f is 
upper semicontinuous.



144 5 Appendix: Basic Terminology

(13) Let f = f (t)  be a function of one variable in an interval I in R with values 
in a Banach space V . We say that f is right differentiable at t0 ∈ I if there is 
v ∈ V such that 

. lim
h↓0 ‖f (t0 + h) − f (t0) − vh‖ /

h = 0

provided that t0 + h ∈ I for sufficiently small h >  0. Such v is uniquely 
determined if it exists and is denoted by 

. v = d+f

dt
(t0).

This quantity is called the right differential of f at t0. The function t → d
+f 
dt (t) 

is called the right derivative of f . The left differentiability is defined in a 
symmetric way by replacing h ↓ 0 with h ↑ 0. Even if both right and left 
differentials exist, they may be different. For example, consider f (t)  = |t | at 
t0 = 0. The right differential at zero is 1, while the left differential at zero is 
−1. If the right and left differentials agree with each other at t = t0, we say that 
f is differentiable at t = t0, and its value is denoted by df 

dt (t0). The function 

t → df 
dt (t) is called the derivative of f . If  f depends on other variables, we 

write ∂f/∂t instead of df/dt and call the partial derivative of f with respect 
to t . 

5.2 Measures and Integrals 

(1) For a set M , let  2M denote the family of all subsets of H . We say that a function 
μ defined on 2M with values in [0,∞] is an (outer) measure if 
(i) μ(∅) = 0; 
(ii) (countable subadditivity) μ(A) ≤ ∑∞ 

j=1 μ(Aj ) if a countable family 

{Aj }∞j=1 covers A, where Aj ,A  ∈ 2M . In other words, A is included in 
a union of {Aj }∞j=1, i.e., a point of A must be an element of some Aj . 

Here, ∅ denotes the empty set. 
(2) A set  A ∈ 2M is said to be μ-measurable if 

. μ(S ∩ Ac) + μ(S ∩ A) = μ(S)

for any S ∈ 2M . Let  M0 be a metric space. A mapping f from M to M0 is 
said to be μ-measurable if the preimage f −1(U) of an open set U of M0 is 
μ-measurable. Here, 

.f −1(U) := {
x ∈ M

∣∣ f (x) ∈ U
}
.
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A set  A with μ(A) = 0 is called a μ-measure zero set. If a statement P(x)  
for x ∈ M holds for x ∈ M\A with μ(A) = 0, we say that P(x)  holds for 
μ-almost every x ∈ M or shortly a.e. x ∈ M . In other words, P holds in M 
outside a μ-measure zero set. In this case, we simply say that P holds almost 
everywhere in M . 
Let M be the set of all μ-measurable sets. If we restrict μ just to M, i.e., 
μ = μ|M, then μ becomes a measure on M. Since in this book we consider 
μ(A) for a μ-measurable set A, we often say simply a measure instead of an 
outer measure. 

(3) Let A be a subset of RN . Let C be a family of closed cubes in RN whose faces 
are orthogonal to the xi-axis for some i = 1, . . . , N . In other words, C ∈ C 
means 

. C =
{
(x1, . . . , xN) ∈ RN

∣∣ ai ≤ xi ≤ ai + � (i = 1, . . . , n)
}

for some ai , � ∈ R. Let |C| denote its volume, i.e., |C| = �N . We set  

. LN(A) = inf

⎧
⎨

⎩

∞∑

j=1

|Cj |
∣∣∣∣ {Cj }∞j=1 covers A with Cj ∈ C

⎫
⎬

⎭
.

It turns out that LN (C) = |C|; it is nontrivial to prove LN (C) ≥ |C|. It is  
easy to see that LN is an (outer) measure in RN . This measure is called the 
Lebesgue measure in RN . It can be regarded as a measure in the flat torus 
TN = ∏N 

i=1(R/ωiZ). For a subset A of TN , we regard this set as a subset 
A0 of the fundamental domain (i.e., the periodic cell [0, ω1) × · · · × [0, ωN)). 
The Lebesgue measure of A is defined by LN (A) = LN (A0). Evidently, 
LN (TN ) = ω1 · · ·  ωN , which is denoted by |TN | in the proof of Lemma 1.21 in 
Sect. 1.2.5. 

(4) In this book, we only use the Lebesgue measure. We simply say measurable 
when a mapping or a set is LN -measurable. Instead of writing LN -a.e., we 
simply write a.e. Let � be a measurable set in TN or RN , for example, � = TN . 
Let f be a measurable function on � with values in a Banach space V . Then 
one is able to define its integral over �. When V = Rm, this integral is called 
the Lebesgue integral. In general, it is called the Bochner integral of f over
�. Its value is denoted by

∫
�

f dLN or, simply,
∫
�

f dx; See, for example, [90, 
Chapter V, Section 5]. If� = TN and f is continuous, this agrees with the more 
conventional Riemann integral. For p ∈ [1,∞) and a general Banach space V , 
let L̃p (�, V ) denote the space of all measurable functions f with values in V 
such that 

.‖f ‖p =
(∫

�

‖f (x)‖p dx

)1/p
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is finite. If ‖f ‖p is finite, we say that f is pth integrable. If  p = 1, we simply 
say f is integrable. If f ∈ L̃1(�, V ), we say that f is integrable in �. We  
identify two functions f, g ∈ L̃p (�, V ) if f = g a.e. and define Lp (�, V ) 
from L̃p (�, V ) by this identification. It is a fundamental result that Lp (�, V ) 
is a Banach space equipped with the norm ‖·‖p. When V = R, we simply write 
Lp (�) instead of Lp (�, V ). The case p = ∞  should be handled separately. For 
a general Banach space V , let  L̃∞(�, V ) denote the space of all measurable 
functions f with values in V such that 

. ‖f ‖∞ = inf
{
α

∣∣∣ LN
({

x ∈ �
∣∣ ‖f (x)‖V > α

}) = 0
}

is finite. By the same identification, the space L∞(�, V ) can be defined. 
This space L∞(�, V ) is again a Banach space. Key theorems in the theory 
of Lebesgue integrals used in this book include the Lebesgue dominated 
convergence theorem and Fubini’s theorem. Here, we give a version of the 
dominated convergence theorem. 

Theorem 5.1 
Let V be a Banach space. Let {fm}∞m=1 be a sequence in L

1(�, V ). Assume 
that there is a nonnegative function ϕ ∈ L1(�) independent of m such that
‖fm(x)‖V ≤ ϕ(x) for a.e. x ∈ �. If  limm→∞ fm(x) = f (x)  for a.e. x ∈ �, 
then 

. lim
m→∞

∫

�

fm(x) dx =
∫

f (x) dx.

In other words, limm→∞
∥∥∫

�
fm dx − ∫

�
f (x) dx

∥∥
V = 0. 

Usually, V is taken as R or RN , but it is easy to extend to this setting. For basic 
properties of the Lebesgue measure and integrals, see for example a classical 
book of Folland [42]. We take this opportunity to clarify ∗-weak convergence 
in Lp space. A basic fact is that (Lp (�))∗ = Lp′

(�) for 1 ≤ p <  ∞, where 
1/p + 1/p′ = 1. Note that p = ∞  is excluded, but (L1)∗ = L∞. Since Lp 

is reflexive for 1 < p  <  ∞, weak convergence and ∗-weak convergence agree 
with each other. Let us write a ∗-weak convergence in L∞ explicitly. A sequence 
{fm} in L∞(�) ∗-weakly converges to f ∈ L∞(�) as m → ∞ if and only if 

. lim
m→∞

∫

�

fmϕ dx =
∫

�

f ϕ dx
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for all ϕ ∈ L1(�). For detailed properties of Lp spaces, see, for example, [19, 
Chapter 4]. 
For a Banach space V -valued Lp function, we also consider its dual space. That 
is, we have 

. 
(
Lp(�, V )

)∗ = Lp′
(�, V ∗) for 1 ≤ p < ∞

with 1/p + 1/p′ = 1. (This duality—at least for reflexive V—can be proved 
along the same line as in [19, Chapter 4], where V is assumed to be R. For  
a general Banach space V , see, for example, [35, Chapter IV].) We consider 
∗-weak convergence in L∞(�, V ) with V = Lq (U), 1  < q  ≤ ∞, where �

is an open interval (0, T  )  and U is an open set in TN or RN since this case 
is explicitly used in Chap. 2. A sequence {fm} in L∞ (�, Lq (U)) ∗-weakly 
converges to f ∈ L∞ (�, Lq (U)) as m → ∞  if and only if 

. lim
m→∞

∫ T

0

∫

U

fm(x, t)ϕ(x, t)dx dt =
∫ T

0

∫

U

f (x, t)ϕ(x, t)dx dt

for ϕ ∈ L1
(
�, Lq ′

(U)
)
. (Note that the space Lp (�, Lq (U)) is identified with 

the space of all measurable functions ϕ on�×U such that
∫ T 
0 ‖ϕ‖p 

Lq(U)(t) dt <  
∞ or

∫ T 
0

(∫
U |ϕ(x, t)|q dx

)p/q dt <  ∞ for 1 ≤ p, q < ∞.) 
(5) Besides the basic properties of the Lebesgue integrals, we frequently use a few 

estimates involving Lp-norms. These properties are by now standard and found 
in many books, including [19]. For example, we frequently use the Hölder 
inequality 

. ‖fg‖p ≤ ‖f ‖r‖g‖q

with 1/p = 1/r + 1/q for f ∈ Lr (�), g ∈ Lq (�), where p, q, r ∈ [1,∞]. 
Here, we interpret 1/∞ =  0. In the case p = 1, r = q = 2, this inequality 
is called the Schwarz inequality. As an application, we have Young’s inequality 
for a convolution 

. ‖f ∗ g‖p ≤ ‖f ‖q‖g‖r

for f ∈ Lq (RN ), g ∈ Lr (RN ) with 1/p = 1/q +1/r −1 and p, q, r ∈ [1,∞]; 
see, for example, [45, Chapter 4]. In this book, we use this inequality when RN 

is replaced by TN . 
(6) In analysis, we often need an approximation of a function by smooth functions. 

We only recall an elementary fact. The space C∞
c (�) is dense in Lp (�) for 

p ∈ [1,∞); see, for example, [19, Corollary 4.23]. However, it is not dense in 
L∞(�).
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Derivative, 144 
Differentiable, 144 
Domain, 17, 102 
Dominated convergence theorem, 52, 146 
Dual space, 32, 142 

E 
Eikonal equation, 100 
Element, 1, 139 
Entropy pair, 85, 94 
Entropy solution, 85 
Essential supremum, 11, 30 
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Lebesgue measure, 30, 145 
Left accessible, 122 
Lipschitz (continuous), 2 
Lipschitz semigroup, 38 
Locally Lipschitz, 2 
Locally uniform, 65, 117 
Lower semicontinuous, 24, 143 
Lower semicontinuous envelope, 110 
Lower test surface, 113 

M 
Mapping, 140 
Maximal, 17 
Measurable, 11, 44, 144 
Measure, 144 
Measure zero set, 145 
Metric, 44, 139 
Metric space, 2, 44, 139 
Modulus, 8 
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Total variation, 35 
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