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Novel view synthesis (NVS) solves the problem of generating new view images
of a scene or an object in the condition that one or more input views are given,
which can be used to generate all possible viewpoints of real-world scenes in
virtual reality (VR). As shown in Fig. 1, given one image of the chair, we generate
a new image of the same chair from a novel viewpoint (GT represents the real
target view image). However, traditional NVS methods often rely on parallax
plots or depth maps, which have the limitations of high computational costs.
With the development of neural networks, supervision-based learning methods
can synthesize high-quality novel views. NVS can be used in different application
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Abstract. Novel view synthesis is regarded as one of the efficient ways
to realize stereoscopic vision, which paves the way to virtual reality.
Image-based rendering (IBR) is one of the view synthesis strategies,
which warps pixels from source views to target views in order to pro-
tect low-level details. However, IBR methods predict the pixels corre-
spondence in an unsupervised way and have limits in getting accurate
pixels. In this paper, we propose Depth and Pose Net (DPNet) for novel
view synthesis via depth map estimation. We introduce two nearby views
as implicit supervision to improve the pixels correspondence accuracy.
Besides, the depth net firstly predicts the source depth map and then
the pose net transforms the source depth map to the target depth map
which is used to calculate pixels correspondence. Experimental results
show that DPNet generates accurate depth maps and thus synthesizes
novel views with higher quality than state-of-the-art methods on the
synthetic object and real scene datasets.
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Introduction

areas, including image editing, and animating still photographs.
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Fig. 1. With an input image, a novel view of the same object or scene is synthesized. It
shows the results of DPNet compared to other two methods and all of them synthesis
the target view by predicting target depth map. O and O prove that DPNet produces
more clear result than other two depth guided view synthesis methods (Color figure
online)

The NVS methods that have been approached in the last few years fall
into two main types: 3D geometry-based methods and IBR methods. For 3D
geometry-based methods, comprehensive 3D understanding is important so that
the first step is to get the approximate underlying 3D structure. Some methods
estimate the underlying 3D geometry in form of voxels [1] and mesh [2], and then
put the corresponding camera transformations to the pixels of the 3D structure
to produce the final output [3]. However, they not only require a commitment
of time and resources, but also produce holes where lack of a prior informa-
tion. In such conditions, hole-filling algorithms are needed but sometimes these
algorithms are not effective [4].

Unlike 3D geometry-based methods, IBR methods generate novel images
based on input images. The pixels from source views can be reprojected to the
target view, low-level details such as colors and textures are well-protected. Zhou
et al. [5] directly estimates the appearance flow and get final pixels value of target
views from input views, and Chen et al. [6] predicts the target depth map to
obtain the pixel-to-pixel correspondences with 3D warping. Hou et al. [7] also
predicts the depth map of target view, but warps feature maps to generate the
final target view image rather than directly warping pixels from source view.
These IBR methods all achieve great view synthesis quality.
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Fig. 2. Overview of the view synthesis pipeline. There are two main components: the
depth net and pose net. The depth net takes only the source view as input and generates
the depth map Ds. Moreover, D, and two nearby views are used to reconstruct source
view that the L1 loss between generated source view and real source view can be
alleviated to train the depth net. Then the pose net extracts the feature points of D,
to produce the depth map of target view D, Finally, the Dy is used to warp pixels of
source to the target view with bilinear interpolation.

In this paper, we design a reasonable frameworks to improve the view syn-
thesis quality. Motivated by the advantage of IBR method, we take the method
that it warps pixels from source view to target view with the help of target depth
map. More specifically, we propose the DPNet consisting of a depth net and a
pose net as shown in Fig.2. DPNet firstly predicts the source depth map and
subsequently deduces the target depth map rather than directly producing target
depth map. In such way, the short-connection structure can be introduced into
pose net. So multi-level feature maps extracted from source depth map can be
transferred to target depth map to improve the depth map accuracy. To further
improve the accuracy of predicted depth map of source view, two nearby view
images are reprojected to source view through predicted depth map of source
view. Then the camera transformation and the predicted source depth map are
put into pose net to generate the target depth map. Subsequently, the generated
target depth map is used to calculate the dense correspondences between the
source view and the target view via perspective projection. Finally, the final
output image is synthesized via pixel warping.
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To get clear and continuous synthesis results, four specially designed loss
functions are used to train the DPNet. The supervision loss is used to improve
the depth map estimation accuracy. And the L1 reconstruction loss and VGG
perceptual loss are used to generate realistic images. Moreover, the edge smooth-
ness loss can make the final target depth map more continuous in edge. Detailed
experiments are conducted on real scene [8] and synthetic object [9] datasets,
the depth estimation accuracy and image quality are evaluated qualitatively
and quantitatively. The experiment results demonstrate that DPNet actually
improves the depth estimation accuracy and image quality.

2 Related Work

Study of novel view synthesis has a long history in computer vision and graphics.
These researches differ based on whether they use pure images or 3D geometry
structure and on whether a single view image or multiple view images are put
into neural network. Recently, neural radiance fields and generative models are
the new directions.

2.1 Geometric View Synthesis

If multiple images of a scene are provided, with the help of COLMAP [10,11], a
3D geometry scaffold can be constructed. Riegler et al. [3] firstly ran structure-
from-motion [10] to get camera intrinsic and camera poses, then ran multi-view
stereo [11] on the posed images to obtain per-image depth maps, and finally
fused these maps into a point cloud. Similarly, Penner et al. [12] warped the
extracted source feature maps into the target view using the depth map which
was derived from the 3D geometry scaffold. A confidence image and a color
image for each input image are obtained through these warped feature maps.
Then these confidence images and color images were aggregated to get a final
output. More recently, deep learning techniques created a new level of possibility
and flexibility. Lombardi et al. [13] learned an implicit voxel representation of
an object given many training views and generated a new view of that object
when tested.

2.2 3D from Single Image

Inference about 3D shapes can serve as an implicit step in view synthesis. Given
the serious inadequacy of recovering 3D shapes from a single image, recent work
deployed neural networks for this task. They could be categorized by their output
representation into mesh, point cloud, and voxel. With a single image as input,
Tatarchenko et al. [14] predicted many unseen views and their depth maps from
input, and these views were fused into a 3D point cloud which was later optimized
to obtain a mesh. In [4], the features extracted from single input and the depth
map estimated from the same input were used to create a point cloud carrying
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features. Many works explore using a DNN to predict 3D object shapes [15] or
the depth map of a scene given an image [16]. These works focus on the quality
of the 3D predictions as opposed to the view-synthesis task.

2.3 Image-Based Rendering Methods

Recently, many deep neural networks are developed to learn the image-to-image
mapping between source view and target view [5-7,17,18]. Zhou et al. [5] directly
estimated the appearance flow map in order to warp pixels of source view to their
position of target view, Sun et al. [17] further refined the output by fusing mul-
tiple views with confidence map. With the help of predicted target depth map,
Chen et al. [6] directly warped pixels of source view to target view and Hou et
al. [7] warped the multi-level feature map extracted from source view to synthe-
size the final output. To improve the quality of synthesized image, Park et al.
[18] used two consecutive encoder-decoder networks, firstly predicting a disoc-
clusion aware flow and then refining the transformed image with a completion
network. And in this paper, the target depth map couldn’t be predicted from
inputs directly, instead, the source depth map is firstly estimated by depth net
and then the source depth net is transformed to target depth map through pose
net.

2.4 Generative Models and Neural Radiance Fields

View synthesis can also be thought as an image generation task, and it has a lot
to do with the field of generative modeling of images [19,20]. In [21], explicit pose
control was allowed, they also used voxel. Although these methods can be used
for view synthesis, the resulting view lacks consistency and has no control over
the objects to be synthesized. The neural radiation field [22] produced impressive
results by training an multi-layer perception (MLP) to map 3D rays to occupancy
and color. Images are synthesized from this representation by volume rendering.
This approach has been extended to an unlimited collection of outdoor scenes
and crowdsourced images.

3 The Proposed Method for Novel View Synthesis

Figure 2 shows an overview of DPNet, it consists of two subnets: the depth net
¥p and the pose net ¥p. The depth net estimates the depth map of source view
firstly. For the depth net, we use the skip-connection structure with four down-
sampling and upsampling layers to give a final prediction of the same spatial
resolution with the input. This is followed by a sigmoid layer and a renormal-
ization step, so the depth of prediction falls within the minimum and maximum
values for each dataset. The predicted depth map is used to warp two nearby
view images to source view, and L1 distance between generated source view
and real source view is used to train the depth net. As for pose net, the given
transformation matrix is applied on the 3D feature points extracted from the
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Fig. 3. Illustration of the pixels warping process from source view to target view. For
each pixel point p.; in the target view, it is firstly reprojected onto the source view
based on the predicted depth map and camera pose transformation, and then the pixels
value in target view are obtained by bilinear interpolation.

predicted source depth map to obtain the 3D feature points of the target depth
map. Later, when the transformed 3D feature points are given, the depth map of
the target view is predicted. Then the estimated depth map is used to find dense
correspondences between target and source views. Finally, the source image is
warped into the target image via bilinear interpolation.

3.1 Pixels Warping

The reprojection process and the bilinear interpolation process are shown in
Fig. 3. For the reprojection process, the per-pixel correspondence C is obtained
from the target depth map D, by converting from a depth map to 3D coordinates
[X, Y, Z] and perspective projections:

[X7 Y, Z]T = Dct(xct7yct)K71[$ct,yct7 1]T7 (13)
[Zess Yes: 1] ~ Tor—es X, Y, 2,17, (1b)

where each pixel (z.,yet) in the target view corresponds to the pixel position
(Zes, Yes) in the source view. Moreover, K is the camera intrinsic matrix and
Tet—cs represents the transformation matrix from target view to source view. For
the bilinear interpolation process, with the obtained per-pixel correspondences
Cet—cs, the pixels in the correspondences source view can be warped to the
correspondences target view:

[ct(xctv yct) = Z Z masc(O, 1- ‘mcs - Cct—»cs(xctv yct)D
Zes Yes (2)

max(O, 1— |ycs - Cct—»cs(ajcta yct)|)Ics (mcs; ycs)-
Introducing the intermediate step of predicting depth map enforces the network

to adhere to geometric constraints, resolving ambiguous correspondences. This
process is substituted by Iy = PW (I.s, Det, Tet—es)-
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Fig. 4. Network architecture of the depth and pose modules. The width and height of
each blue/red rectangular block respectively represent the output channel and spatial
dimension of the feature map at the corresponding layer, and each decrease/increase
in width and height size represents a change by the factor of 2 (the last conv layer is
the output, it does not obey the rules). For depth net, it consists of 4 downsampling
lawyers and 4 upsampling lawyers with the skip-connection structure. For pose net,
inspired by [6], we also extract the latent code (3D feature points) to inject the camera
transformation and predict the target depth map. (Color figure online)

3.2 Depth Map Estimation

The depth net takes a single input image to get the source depth map Dy =
Up(Is). Moreover, two additional nearby view images I,,1 and I, plus their cam-
era transformation Ts_.,,; and Ts_, 2 are introduced to warp their pixels to source
view to improve the depth estimation accuracy. fsl = PW(I,1,Ds,Ts—n1) and
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Fig. 5. Results on ShapeNet chair and car datasets. DPNet generates more structure-
consistent predictions than [6] (for example, it can’t generate a distorted leg in line 5);
on the other hand, the generated images of the DPNet are more clear than [7] that it
can rebuild rich low-level details (for example, it generates more clear chair surface in
line 2).
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I = PW(I,2,Ds,Ts—pn2). And the two L1 distance between I, and I and
between I, and I o are the important part of final training loss function. The
specific structure is described in Fig. 4(a), it consists of four downsampling layers
and four upsampling layers, and the skip-connection structure transfers multi-
level feature maps to create more stable predictions.

3.3 Depth Map Transformation and Target View Generation

In pose net, transformation matrix are applied to latent code to predict depth
map of the target view, and the pose network is used to learn compact latent rep-
resentations that are transformation equivariant. Given the source depth map,
the 3D feature points zs extracted from predicted source depth map can be
regarded as a set of points z, € R™*3. Then the 3D feature points are multiplied
with the given transformation Ts_,; = [R]t],_,, to get the transformed 3D feature
points for the target view:

s—t

zs = s—»t'és (3)
where Z; is the homogeneous representation of z;. Then the target depth map
Dy is created through z,. With the generated target depth map D; and cor-
responding camera transformation Ts_,;, the target view image is synthesized
I, = PW (I, Dy, Ti—). Because the input to pose net is a source depth map
and not a source view image, the skip-connection structure can be introduced to
transfer multi-level feature maps to make the pose net more effective (as shown
in Fig. 4(b)).

3.4 Training Loss Functions

The framework can be trained in an end-to-end manner. For each input sam-
ple, a single source image, two nearby view images, one target view image and
their relative transformation are provided. The depth net and the pose net are
optimized jointly. To train the depth net in an implicit supervised manner, the
supervision loss is used to improve the depth map estimation accuracy. For pix-
els regression, the L1 reconstruction loss and VGG perceptual loss are used to

Table 1. Results on ShapeNet objects. DPNet performs better than [6,7] for both
chair and car objects, showing that it can deal with complex shape of chairs and rich
colors and textures of cars (| suggests the smaller the better, T suggests the larger the
better).

METHODS | CHAIR CAR

L1] [SSIM7 'L1| |SsSiMp
Chen et al. [6] 0.0559 | 0.9224 |0.0338 | 0.9424
Hou et al. [7] |0.0583 | 0.9237 | 0.0346 | 0.9392
DPNet 0.0413 | 0.9381|0.0295 | 0.9491
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generate realistic images. Moreover, the edge smoothness loss can make the final
target depth map more continuous in edge.

L1 Reconstruction Los§. The L1 reconstruction loss is the L1 loss between
the predicted target view I; and the ground truth I;. Described as:

Lrecon - ||ft - It” (4)

To minimize this reconstruction loss, the network learns to produce realistic new
views by predicting the necessary depth maps.

Supervision Loss. The supervision loss consists of two parts, both of them
are the L1 distance between the ground truth source view I; and the generated
source view Ig:

Lsup = ”jsl - ISH + ||js2 - ISH (5)

To minimize this supervision loss, the depth net learns to produce more accurate
source depth map.

VGG Perceptual Loss. In addition to the L1 reconstruction loss, we also
employ VGG perceptual loss to obtain realistic synthesis results. The pre-trained
VGG16 network is used to extract features from the generated fake results and
ground-truth images, and the perceptual loss is the sum of feature distances (L1
distance) calculated from multiple layers.

Edge Smoothness Loss. The edge smoothness loss encourages local smoothing
of the predicted depth map. The loss is weighted because depth discontinuities
usually occur at the edges of the image:
1 ~ii ij ~aal
Leage = % > 10D e 197100 4 |ay Dy e~ 19V

2%}

2l

(6)

where Bt is the predicted depth map of the target view and I; is the ground-truth
target view.
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Input GT DPNet [6]

Fig. 6. Qualitative results of KITTI. DPNet produces clear and structurally consistent
predictions, while the depth guided pixels warping [6] method produces distortion and
the depth guided multi-level feature map warping method [7] produces blurry .
In summary, the final loss function of the joint training framework will be:
L= >\7“Lrecon + )‘sLsup + /\vagg + /\eLedge (7)

where the A\, s, Ay, and A, are weights for different loss functions.
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Table 2. Results on KITTI. DPNet achieves the best SSIM results, with L1 perfor-
mance outperforming both Chen et al. [6] and Hou et al. [7]. (| suggests the smaller
the better, T suggests the larger the better).

METHODS KITTI

L1| SSIMT
Chen et al. [6] | 0.1803 |0.6751
Hou et al. [7] |0.1635 |0.7253
DPNet 0.1634 | 0.7273

4 Experiment Results and Analysis

In this section, experiments are conduct on public datasets, ShapeNet dataset
[8] and KITTI dataset [9]. DPNet is compared with state-of-the-art algorithms
to evaluate the performance qualitatively and quantitatively. Further ablation
studies verify the effectiveness of the different modules of DPNet.

4.1 Dataset and Experiment Setup

For datasets, two different types of datasets are used for experiment: ShapeNet
dataset [8] is used for synthetic objects and KITTI dataset [9] is used for real-
world scene. More specifically, cars and chairs in the ShapeNet dataset are
selected. 3D understanding of datasets with complex structures and camera
transformations are a great challenge (e.g. depth estimation) and datasets with
rich textures will show whether these methods preserve fine-grained detail well.
In these selected datasets, the chairs have more complex shapes and structures,
but there will be more colorful patterns for the cars. For KITTI, the scene
contains more objects, and translation is the primary transformation between
frames, unlike ShapeNet, where rotation is the key transformation. In this case,
there is less need for accurate depth estimation, and the ability to recover low-
level detail is more important for performance.

ShapeNet. Rendered images are used with the dimension of 256 x 256 from
54 viewpoints (the azimuth from 0° to 360° with 20° increments, and the ele-
vation of 0°, 10°, and 20°) for each object. The training and test pairs are two
views with the azimuth difference within the range [—40°, 40°]. For ShapeNet
chairs, there are 558 chair objects in the training set and 140 chair objects in
the test set; For ShapeNet cars, there are 5,997 car objects in the training set
and 1,500 car objects in the test set.

KITTI. There are 11 sequences and each sequence contains around 2,000
frames on average. The training pairs are restricted to be separated by at most
7 frames.
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Fig. 7. Ablation studies results. We compare the performance of the full model with
its variants. The results show that the lack of Lyecon leads to incomplete objects (like
the chair in the 5th column). The lack of skip-connection structure in depth net and
pose net results in the chair leg shortage (like the chair in the 5th column). The Lygq
makes the results sharper. And the Lgyp and the Legqe leads to more accurate depth
map estimation that it makes the results more stable.

For experiment setup, the depth net and the pose net are jointly trained
using the Adam solver same with [7] that §; = 0.9 and 82 = 0.99, and learning
rate of 6 x 107°.

4.2 Evaluation Metrics and Evaluation Results

For evaluation metrics, Mean Absolute Error (L; error) and Structural SIMilar-
ity (SSIM) Index are used as metrics to evaluate the synthetic results. For L1
metric, smaller is better; for the SSIM metric, larger is better. For image syn-
thesis quality, DPNet is compared with two state-of-the-art depth map guided
methods: one pixels warping method proposed by [6] and one multi-level feature
map warping method proposed by [7]. For depth map estimation, DPNet is com-
pared with one source depth map estimation method [4] and one target depth
map estimation method [6]. Table 1 shows the results on test set of ShapeNet
objects. DPNet performs best for both the chair and the car objects, showing
that it can handle both the complex 3D structure of the chair and the rich tex-
ture of the car. Fig.5 shows the qualitative results for all methods. The depth
map guided pixels warping method [6] suffers from distortion and the depth map
guided multi-level feature maps warping method [7] leads to blurry results. Two
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Table 3. Results of ablation studies. All designed modules and loss functions help
improve performance. (] suggests the smaller the better, | suggests the larger the
better).

METHODS |L1] | SSIMt
DPNet 0.0414 | 0.9381
no skip 0.0609 | 0.9199
10 Lrecon | 0.1261 | 0.8786
10 Loup 0.0538 | 0.9295
10 Legge | 0.0437 | 0.9360
10 Lugg 0.0423 | 0.9361

Table 4. Depth estimation results on ShapeNet chairs.

METHODS |L1-ALL | L1-REL LI-INV | SC-INV
DPNet-source | 0.0576 |0.0286  0.0145 0.0501
Wiles et al. [4] | 0.0699 | 0.0354 |0.0184 | 0.0583
DPNet-target | 0.0598 |0.0294 0.155 | 0.0516
Hou et al. [7] |0.0610 |0.0305 |0.161 | 0.0523

nearby views are introduced to improve the accuracy of depth map estimation
so that more impressive results are generated (e.g., more complete chair leg and
more detailed car roof are generated in line 5). All the methods are also evalu-
ated on KITTI. Table 2 shows the quantitative results. DPNet performs better
than [6] and obtains comparable results to [7]. Figure6 shows the qualitative
results, it can be seen that DPNet produces more clear predictions and better
preserves the structure (check the bottom part of row 1, manhole cover in row
5). In a conclusion, DPNet can achieve high image synthesis quality.

4.3 Ablation Studies and Depth Estimation Results

To understand how the different modules of the framework work, we conduct an
ablation study on ShapeNet chair as it is the most challenging dataset for 3D
structures. Figure 7 and Table 3 show the performance of the different variants.
No skip stands for removing the skip-connection structure in depth net and
pose net. No Lyecon, DO Lgyp, N0 Legge, N0 Lygq separately represents removing
corresponding loss function from total loss function. The results show that the
lack of Lyccon leads to incomplete objects (like the chair in the 5th column). The
lack of skip-connection structure in depth net and pose net leads to the chair leg
shortage (like the chair in the 5th column). The L,,, makes the results sharper.
And the Ly, and the Legqge leads to more accurate depth map estimation that
it makes the results more stable.
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Moreover, to prove that more accurate depth maps are predicted, four met-
rics are used to evaluate depth map quality [7]. L1-all compute the mean abso-
lute difference. L1l-rel compute the mean absolute relative difference Ll-rel =
L5 |gt; — pred;|/gt;, and L1-inv metric is mean absolute difference in inverse
depth L1-inv =2 3~/ |gt; ! — pred;'|. Except L1 metrics, we also utilize sc-inv =

1
(% 22— L 21)2) * where z; = Ig (pred,) —1g (gt,). The source depth map
estimation is compared with [4] and the target depth map estimation is com-
pared with [6]. Table4 shows that our predicted depth is more accurate, which

can explain why the DPNet can achieve better results than other methods.

5 Conclusion and Discussion

In this paper, DPNet is put forth to solve the novel view synthesis task. And it
consists of two subnets: depth net and pose net. The depth net predicts the depth
map of the source view from a single input view and two nearby view images
are introduced to improve the accuracy of predicted depth map. Then the pose
net is used for transformation between source depth map and target depth map.
Moreover, the warping from source view pixels to target view pixels enables
the preservation of low-level details, so more clear predictions are produced.
Experimental results show that compared with above depth map guided warping
methods, the performance of DPNet is better.

References

1. Choy, C.B., Xu, D., Gwak, J., Chen, K., Savarese, S.: A unified approach for single
and multi-view 3d object reconstruction. In: European Conference on Computer
Vision, pp. 628-644(2016)

2. Kato, H., Ushiku, Y., Harada, T.: Neural 3d mesh renderer. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3907—
3916(2018)

3. Riegler, G., Koltun, V.: Stable view synthesis. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12216-12225 (2021)

4. Wiles, O., Gkioxari, G., Szeliski, R., Johnson, J.: Synsin: End-to-end view synthesis
from a single image. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7467-7477 (2020)

5. Zhou, T., Tulsiani, S., Sun, W., et al.: View synthesis by appearance flow. In:
European Conference on Computer Vision, pp. 286-301 (2016)

6. Chen, X., Song, J., Hilliges, O.: Monocular neural image based rendering with con-
tinuous view control. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 4090-4100 (2019)

7. Hou, Y., Solin, A., Kannala, J.: Novel view synthesis via depth-guided skip con-
nections. In: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pp. 3119-3128 (2021)

8. Chang, A., X., Funkhouser, T., Guibas, L., et al. Shapenet: An information-rich 3d
model repository. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 1512-3012 (2015)



308

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

G. Zhu et al.

Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The
KITTI vision benchmark suite. In: IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3354-3361 (2012)

Schonberger, J.L., Frahm, M.: Structure-from-motion revisited. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 41044113
(2016)

Schonberger, J.L., Zheng, E., Frahm, J.M., et al.: Pixelwise view selection for
unstructured multi-view stereo. In: European Conference on Computer Vision, pp.
501-518 (2016)

Penner, E., Zhang, L.: Soft 3D reconstruction for view synthesis. In: ACM Trans-
actions on Graphics, pp. 1-11 (2017)

Lombardi, S., Simon, T., Saragih, J., et al.: Neural volumes: Learning dynamic
renderable volumes from images. arXiv preprint 2019)

Tatarchenko, M., Dosovitskiy, A., Brox, T.: Multi-view 3d models from single
images with a convolutional network. In: European Conference on Computer
Vision, pp. 322-337 (2016)

Insafutdinov, E., Dosovitskiy, A.: Unsupervised learning of shape and pose with
differentiable point clouds. In: Proceedings of the 32nd International Conference
on Neural Information Processing Systems, pp. 2807-2817 (2018)

Li, Z., Snavely, N.: Megadepth: Learning single-view depth prediction from internet
photos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2041-2050 (2018)

Sun, S.H., Huh, M., Liao, Y.H., et al.:Multi-view to novel view: Synthesizing novel
views with self-learned confidence. In: Proceedings of the European Conference on
Computer Vision, pp. 155-171(2018)

Park, E., Yang, J., Yumer, E., et al.:Transformation-grounded image generation
network for novel 3d view synthesis. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3500-3509 (2017)

Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets.
Commun. ACM 63(11), 139-144 (2020)

Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity
natural image synthesis. arXiv preprint (2018)

Nguyen-Phuoc, T., Li, C., Theis, L., et al.:Hologan: Unsupervised learning of 3d
representations from natural images. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 7588-7597 (2019)

Niemeyer, M., Mescheder, L., Oechsle, M., et al.: Differentiable volumetric render-
ing: Learning implicit 3d representations without 3d supervision. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3504-3515 (2020)



	DPNet: Depth and Pose Net for Novel View Synthesis via Depth Map Estimation
	1 Introduction
	2 Related Work
	2.1 Geometric View Synthesis
	2.2 3D from Single Image
	2.3 Image-Based Rendering Methods
	2.4 Generative Models and Neural Radiance Fields

	3 The Proposed Method for Novel View Synthesis
	3.1 Pixels Warping
	3.2 Depth Map Estimation
	3.3 Depth Map Transformation and Target View Generation
	3.4 Training Loss Functions

	4 Experiment Results and Analysis
	4.1 Dataset and Experiment Setup
	4.2 Evaluation Metrics and Evaluation Results
	4.3 Ablation Studies and Depth Estimation Results

	5 Conclusion and Discussion
	References




