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Abstract. Snow is a peculiar example of a granular and low density geomate-
rial that exists at environmental conditions very close to its melting point. Once
snowflakes deposit onto the ground, they start to evolve under the effect of both
temperature and stress conditions (i.e., snowmetamorphism): the result is therefore
a complex three-phasematerial where an ice skeleton (i.e., snowmicrostructure) is
encompassed by voids filled with air and liquid water. From a mechanical point of
view, seasonal snow is therefore characterized by bonding/degradation processes
between grains, large inelastic deformations and rate-sensitivity. Moreover, in
nature, snow can be found in different shapes and structures having significant
differences in terms of mechanical strength and physical properties. Therefore,
the need for a constitutive model that can be representative of different types and
conditions of snow is of paramount importance. Snowmechanics is indeed a topic
of wide interest for many application fields, such as: design and management
of structures and infrastructure in cold environments; study of new materials for
winter sports and leisure activities; avalanche forecast, release and propagation,
etc.

In this work, we report on some improvements to an existing constitutive
model for snow that was developed in the framework of the nonlinear theory of
elasto-visco-plasticity. The numerical implementation was achieved via a fully
implicit integration algorithm and a local nonlinear resolving scheme. Finally,
some preliminary results are described referring to literature experimental data on
snow.
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1 Introduction

Snow is a natural material composed of an ice skeleton encompassed by voids filled
with liquid water and water vapour [1]. The mechanical behaviour of this heterogeneous
material depends on a number of factors, such as: snow microstructure, thermal meta-
morphisms, water changes of phase, environmental conditions, loading rate, etc. [2, 3].
All these aspectsmake themodelling of themechanical behaviour of snow a complex and
difficult task. However, snow mechanics is crucial to address many interesting problems
such as the stability of mountain snowpacks, the design of structures and infrastruc-
tures in cold environments, the safety of humans and goods in snow covered areas, the
assessment of social and physical risk due to snow avalanches, etc. [4–6].
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In the framework of ContinuumMechanics, the available snowmodels are generally
developed with reference to the elasto-plastic (EP) theory to model both laboratory
experiments and, on some occasions, on-site tests [7]. Nevertheless, availablemodels are
generally tailored to some specific types of snow (i.e., rounded grains, faceted crystals,
etc.) and cannot be adopted for general purposes [8, 9]. Moreover, many models do
not consider the bonding and sintering effects, the viscosity of the ice skeleton, the
rate-sensitivity of the material, the volumetric collapse of the weak layer, etc.

In this work, we report on some significant improvements to the EP constitutive
model originally proposed by [10] and [11]. Therefore, the improved model is based
on: i) the framework and a new integration of the existing model [11], and ii) a new
flexible yield locus and visco-plastic strain potential. At the moment, the model is able to
quantitatively reproduce many experimental data available in the international scientific
literature for dry snow with rounded grains [12–14]. The main outcome of this work is
to build a solid basis for a new model that will be able to reproduce the behaviour of
different types of snow: rounded and cohesive snow (typical of the snow slab) as well
as faceted and low resistance snow (weak layer snow).

2 The Model

The improved model proposed in this work lies on the hypotheses of continuity,
homogeneity and isotropy, and is based on the following three key points:

• the general framework of the constitutive model for snow developed by [11] which
includes a valuable analytical law for sintering and degradation;

• the overstress theory of viscosity proposed by [15] and then modified by [10] to
account also for the presence of irrecoverable strains inside the elastic region;

• a new formulation for the yield locus and the visco-plastic strain potential.

The temperature is assumed to be constant during the simulations, therefore, the
model is purely mechanical. Here, we follow the small strain theory and the strain
rate tensor is additively decomposed to produce the following usual stress-strain vector
relationship:

σ̇ = Del
(
ε̇ − ε̇vp

)
(1)

where σ is the stress tensor (written in Voigt’s notation), ε̇ is the total strain rate vector,
ε̇vp is the visco-plastic strain rate vector, andDel is the elastic stiffnessmatrix. The elastic
matrix can be written with reference to the two Lamé coefficients A and B:

Del =

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

A B B
B A B
B B A

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

G 0 0
0 G 0
0 0 G

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

(2)

where: A = − vp
k + 4

3G, B = − vp
k − 2

3G, v is the specific volume, p is the mean
volumetric stress, k is the elastic compressibility, and G is the shear modulus. In the
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following subsections a brief description of the main theoretical aspects of the model is
presented.

2.1 Yield Locus and Irreversible Strain Potential

In the present work, a new and unsymmetrical yield surface capable of changing its
shape in the meridian plane is proposed and tested. The need for such a surface is linked
to the generality that an arbitrary shape can provide to the model and the capability of
the surface to deform and change its shape following specific numerical requirements
and/or experimental findings. The starting point for the new surface is the snow version
of the Modified Cam Clay proposed by [10]:

fC(p, q) = 1

p2atm

{
q2 − M 2

[
p(p0 + pm − pt) + pt(p0 + pm) − p2

]}
(3)

where q is the equivalent Mises stress, p0 is the mean consolidation stress for unbonded
snow, patm is the mean atmospheric pressure, M is the slope of the critical state line,
pm and pt are the two additional strength parameters (always positive) measuring the
bonding of the snow in compression and tension, respectively. Following [8] and [11] we
assumed their ratio defined by a constant: pt = χpm. Following the theoretical procedure
proposed by [16], we introduced a function �(p) that modulates the invariant q of the
original surface allowing the locus to be flexible and obtaining shapes ranging from
bullet-like to drop-like ones:

f (p, q) = 1

p2atm

{
q2�(p) − M 2

[
p(p0 + pm − pt) + pt(p0 + pm) − p2

]}
(4)

Imposing that the apex of the curve has the coordinates (α(p0 + pm), αM (p0 + pm)),
the analytical expression of the new yield function f (p, q) is the following:

f (p, q) = 1

p2atm

{

q2 − 4α2M 2(p0 + pm)3
(α − 1)(p − pt)(p + p0 + pm)

[
pt + α(p0 + pm)

]

{−p(p0 + pm − pt) + 2p(p0 + pm)α + (p0 + pm)
[−(α − 2)pt + (p0 + pm)α

]}2

}

(5)

whereα andM are the only two shape parameters (Fig. 1). The former parameter governs
the symmetry of the curve around a vertical axis while the latter describes the slope of
the critical state line and therefore measures the size of the yield curve. Suggested values
for α are in the range [0.15, 0.75] whereas M will be between 0.50 and 3.00 [8, 13]. In
Fig. 2 a short parametric analysis of the effect of both α and M is reported.

From a mathematical point of view, the function f = 0 describes a curve which is
simply convex and smooth in any point of the p−q plane. The convexity could therefore
be lost for some value of f greater than 0. Thus, a similar expression for the visco-plastic
strain potential is used to obtain the direction of the visco-plastic strains:

g(p, q) = q2 − 4α2M 2p3g0
(α − 1)

(
p − pgt

)(
p + pg0

)[
pgt + αpg0

]

{−p
(
pg0 − pgt

) + 2αppg0 + pg0
[−(α − 2)pgt + αpg0

]}2

(6)

where pg0 = p0 + pm and pgt = pt. This definition ensures that g is null for any stress
state (p, q).
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Fig. 1. Sketch of the meridian section of the yield surface proposed in this work.

Fig. 2. Parametric analysis on the effect of the shape parameters on the meridian section of the
new yield function. a) Effect of α for constant M . The elliptical shape is obtained for α = 0.475
where, for different values, the surface progressively unsymmetric. b) Effect ofM for constant α.

2.2 Viscosity and Flow Rule

A non-associative flow rule of the Perzyna type was chosen [15]. The model is modified
from the original viscosity model to allow viscous-plastic irreversible strains to occur
both inside andoutside the yield locus. This allows to better reproduce someexperimental
findings where the viscous behaviour starts from the very beginning of the strain-stress
history. In detail, the flow rule can be written as:

ε̇vp = ψφ(f ) = ψ

√
p2 + q2√
3p0

eaf
∂g

∂σ

∣∣∣
∣
norm

(7)

whereψ is a constitutive parameter having the dimensions of a strain rate; f is the current

value of the yield function; ∂g
∂σ

∣∣∣
norm

is the normalized first derivative (unit vector) of

the visco-plastic potential g; ψ is the fluidity parameter defining the rate at which the
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irrecoverable strains occurs; φ(f ) is the viscous nucleus relating the strain amount to the
distance between the stress state and the yield surface f = 0. For the sake of conciseness,
the dimensionless parameter β is defined as follows [10]:

β = ψ

√
p2 + q2√
3p0

eaf (8)

2.3 Sintering and Hardening Laws

The sintering law adopted in this work is the same proposed by Cresseri (2005) based on
literature data, for which we refer to their work for further information [10]. The current
degree of sintering is given as:

S = S0

[
1 − tanh

(
C ∫t0

√(
ε̇
vp
v

)2 + (
ε̇
vp
d

)2
dt

)]
(9)

where S0 is the degree of sintering for the unbonded material, C is a material parameter,
ε̇
vp
v are ε̇

vp
d the volumetric and deviatoric parts of the strain rate tensor, respectively.

The amount of sintering is finally related to the additional pressure in compression (pm)
with the following rate relation, in which πm is a constitutive parameter and is bmax the
maximum ratio between the neck size and the radius of the snow grain:

ṗm = πmbmaxṠ (10)

The usual volumetric hardening law of the Modified Cam Clay is used to describe
the evolution of the mean consolidation stress:

ṗ0 = − v

λ − k
p0ε̇

vp
v (11)

3 Numerical Implementation and Results

The proposed model is composed of a system of 10 nonlinear differential equations to
be solved together at any time increment. The constitutive equations are the following:

1

Z1

(
σ̇ − Delε̇ + Delβ

∂g

∂σ

∣∣∣
∣
norm

)
= 0 (12)

1

Z2
g(σ ) = 0 (13)

1

Z1

(
ṗ0 + v

λ − k
p0ε̇

vp
v

)
= 0 (14)

ṗm − πmbmaxṠ = 0 (15)
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S − S0

[
1 − tanh

(
C ∫t0

√(
ε̇
vp
v

)2 + (
ε̇
vp
d

)2
dt

)]
= 0 (16)

where the Eq. (12) represents a vector relation of 6 component. Z0 and Z1 are two
normalizing parameters [11].

The equations were integrated over time by using a fully implicit backward Euler
method and the local problem of solving the nonlinear 10-dimension system was solved
with an iterative schemebased on thePowell’s hybridmethod (i.e., a generalizedNewton-
Raphson method) [17]. The solution of both the general and local problems has been
implemented into the UMAT format (written in Fortran 77) for the Abaqus/Standard
Finite Element code [18].

To test the capability of the model some numerical analyses were performed on a
single finite element with reference to creep tests (Fig. 3a), isotropic compression tests
(Fig. 3b) and triaxial compression tests (Fig. 4a and 4b). In general, the model seems
able to satisfactorily reproduce the experimental tests. Some issues (related to numerical
problems and lack of convergence) can be observed during the isotropic unloading
(Fig. 3b) and the triaxial relaxation, especially in quick-time tests (Fig. 4b), where the
numerical drop of tension is quicker than the one reported in the experimental findings.
In Tables 1 and 2 the model parameters and the initial conditions used in the numerical
simulations are reported, respectively.

Fig. 3. Comparison between the experimental results and the numerical prediction: a) results for
volumetric creep tests [12]; b) results for isotropic compression test [13].
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Fig. 4. Comparison between the experimental results and the numerical prediction: a) results for
triaxial test in case of long-time test [14]; b) results for triaxial test in case of quick-time test [14].

Table 1. Model parameters used in the simulations.

Test ID λ (-) k (-) G (kPa) ψ (-) a (-) πm (-) χ (-) C (-) M (-) α (-)

Test_01 0.35 0.02 2114 1.2e-4 16 40 0.05 0.01 2.88 0.475

Test_02 0.35 0.02 2114 1.2e-4 16 40 0.05 0.01 2.88 0.475

Test_03 0.35 0.02 12000 2.0e-7 16 40 0.05 0.01 2.88 0.475

Test_04 0.35 0.02 8000 4.2e-6 0.35 40 0.05 0.01 2.88 0.475

Test_05 0.35 0.02 20000 2.0e-5 0.35 40 0.05 0.01 2.88 0.475

Table 2. Initial conditions assumed in the simulations.

Test ID p0 (kPa) p0 (kPa) v0 (-) T (°C) r0 (mm)

Test_01 0.0 2 4.58 -5 0.2

Test_02 0.0 2 4.58 -5 0.2

Test_03 -60.0 77 2.28 -5 0.2

Test_04 0.0 25 2.90 -12 0.118

Test_05 -5.0 100 2.44 -12 0.118

4 Discussion and Conclusions

In thisworkwe describe an improved nonlinear visco-plasticmodel for snow, based on an
improved version of the existing framework of themodel by [11] and a new unsymmetric
yield surface and irreversible strain potential. The new yield locus will be tested in the
future to check its reliability and flexibility with respect to a larger collection of data.
The model was implemented into the UMAT format for the FE code ABAQUS/Standard
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and both a fully implicit method and a local iterative algorithm were introduced in the
code. The model can reproduce satisfactorily many different laboratory findings as can
be deduced in Figs. 3 and 4. Some convergence issues can be found during the unloading
isotropic phase (strain control). We are planning in the next future to update the model in
order to avoid numerical issues and improve its stability even in these cases. In general,
the model is able to replicate both qualitatively and quantitatively the actual behavior of
the snow under different stress and strain conditions. This is a significant step towards the
complete development of a viscous rate-dependent model with sintering that could be
used in the future to model real scale phenomena linked to snow (avalanche triggering,
weak layer collapse, etc.).

References

1. Mellor, M.: Engineering properties of snow. J. Glaciol. 19(81), 15–66 (1977)
2. Petrovic, J.J.: Review mechanical properties of ice and snow. J. Mater. Sci. 38, 1–6 (2003)
3. Blackford, J.R.: Sintering and microstructure of ice: a review. J. Phys. D Appl. Phys. 40(21),

355–385 (2007)
4. Mellor, M.: A review of basic snow mechanics. In: IAHS Publ. (eds.) Snow Mechanics.

Proceedings of the Grindelwald Symposium April 1974, vol. 114, pp. 251–291 (1975)
5. McCallum, A., White, G.W.: Engineered pavement of snow and ice. In: 8th International

Conference on Snow Engineering (2016)
6. Vallero, G., et al.: Experimental study of the shear strength of a snow-mortar interface. Cold

Reg. Sci. Technol. 193, 103430 (2022)
7. Podolskiy, E.A., Chambon, G., Naaim, M., Gaume, J.: A review of finite-element modelling

in snow mechanics. J. Glaciol. 59(218), 1189–1201 (2013)
8. Gaume, J., Gast, T., Teran, J., van Herwijnen, A., Jiang, C.: Dynamic anticrack propagation

in snow. Nat. Commun. 9(1), 3047 (2018)
9. Vallero, G., Barbero, M., Barpi, F., Borri-Brunetto, M., Biagi, V.: Some computational issues

in the elasto-plastic modelling of snow. In: 16th Edition of the International Conference on
Computational Plasticity (2021)

10. Cresseri, S.: Constitutive modelling of dry granular snow at low strain rates. PhD thesis.
Politecnico di Milano, Milano (2005)

11. Cresseri, S., Genna, F., Jommi, C.: Numerical integration of an elastic–viscoplastic consti-
tutive model for dry metamorphosed snow. Int. J. Num. Anal. Methods Geomech. 34(12),
1271–1296 (2010)

12. Desrues, J., Darve, F., Flavigny, E., Navarre, J., Taillefer, A.: An incremental formulation of
constitutive equations for deposited snow. J. Glaciol. 25(92), 289–307 (1980)

13. Meschke, G., Liu, C., Mang, H.A.: Large strain finite-element analysis of snow. J. Eng.Mech.
122(7), 591–602 (1996)

14. von Moos, M., Bartelt, P., Zweidler, A., Bleiker, E.: Triaxial tests on snow at low strain rate.
Part I. Experimental device. J. Glaciol. 49(164), 81–90 (2003)

15. Perzyna, P.: The constitutive equations for rate sensitive plastic materials. Q. Appl. Math. 20,
321–332 (1963)

16. Panteghini, A., Lagioia, R.: An extendedmodifiedCam-Clay yield surface for arbitrarymerid-
ional and deviatoric shapes retaining full convexity and double homothety. Geotechnique
68(7), 590–601 (2018)

17. Powell, M.J.D.: A Fortran Subroutine for Solving Systems of Nonlinear Algebraic Equations.
United Kingdom (1968)

18. Abaqus, G.: AA.VV. Abaqus 6.11. Dassault Systemes Simulia Corporation, Providence, RI,
USA (2011)


	Some Improvements of a Visco-Plastic Constitutive Model for Snow
	1 Introduction
	2 The Model
	2.1 Yield Locus and Irreversible Strain Potential
	2.2 Viscosity and Flow Rule
	2.3 Sintering and Hardening Laws

	3 Numerical Implementation and Results
	4 Discussion and Conclusions
	References




