
Chapter 4
Operators

4.1 Ore Algebras and Ore Actions

Chapters 2 and 3 have been written to highlight the parallels between differential
and recurrence equations. We have seen that most things (definitions, theorems,
algorithms, etc.) laid out in one chapter have a natural counterpart in the other
chapter. Our goal is now to develop a more general theory that includes both
differential equations and recurrence equations as special cases by adopting the
viewpoint of operators. In fact, we have already used differential operators and
recurrence operators without formally introducing them: they were viewed as
polynomials .p0 + p1X + · · · + prX

r , where X played the role of derivation
or shift, multiplied by coefficients .pi . In order to get the desired property that
.(LM) · f = L · (M · f), i.e., that the product of two operators acts on a function
in the same way as the two factors act in succession, we were forced to give up
commutativity of the multiplication. For example, if we write a function f very
explicitly in the form .(t �→ f (t)), then we have .x · (D · f) = (t �→ tf ′(t)) and
.D · (x · f) = (t �→ tf ′(t) + f (t)), so the operators xD and Dx cannot be equal.
Instead, we need that .Dx = xD+1. Similarly, we have .x ·(S ·f) = (t �→ tf (t+1))

and .S · (x ·f) = (t �→ (t +1)f (t +1)), so the operators xS and Sx cannot be equal
either. Instead, we need to have .Sx = (x + 1)S. These so-called commutation rules
motivate the following definition.

Definition 4.1 Let R be a ring.

1. If .σ : R → R is a ring endomorphism and .δ : R → R is such that .δ(a + b) =
δ(a)+ δ(b) and .δ(ab) = δ(a)b+ σ(a)δ(b) for all .a, b ∈ R, then .δ is called a .σ -
derivation. The subset .Const(R) = Constσ,δ(R) = {c ∈ R : σ(c) = c ∧ δ(c) =
0} of R is called the constant ring of R (with respect to .σ and .δ).

2. Suppose that a ring structure is defined on the set .R[X] of univariate polynomials
in X with coefficients in R, and suppose that its addition agrees with the usual
addition and its multiplication is such that .XiXj = Xi+j (.i, j ∈ N) and there

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Kauers, D-Finite Functions, Algorithms and Computation in Mathematics 30,
https://doi.org/10.1007/978-3-031-34652-1_4

287

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34652-1protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-3-031-34652-1_4
https://doi.org/10.1007/978-3-031-34652-1_4
https://doi.org/10.1007/978-3-031-34652-1_4
https://doi.org/10.1007/978-3-031-34652-1_4
https://doi.org/10.1007/978-3-031-34652-1_4
https://doi.org/10.1007/978-3-031-34652-1_4
https://doi.org/10.1007/978-3-031-34652-1_4
https://doi.org/10.1007/978-3-031-34652-1_4
https://doi.org/10.1007/978-3-031-34652-1_4
https://doi.org/10.1007/978-3-031-34652-1_4
https://doi.org/10.1007/978-3-031-34652-1_4

288 4 Operators

is an endomorphism .σ : R → R and a .σ -derivation .δ : R → R such that .Xa =
σ(a)X + δ(a) for all .a ∈ R. Suppose further that the multiplication in .R[X]
extends the multiplication of R in the sense that .R[X] is a left-R-module. Then
.R[X] is called an Ore algebra over R. ��
Since the multiplication in .R[X] need not be commutative, we should insist on

the convention that polynomials have the form .p0 + p1X + · · · + prX
r , i.e., the

coefficients .pi are placed on the left side of the terms .Xi . Note that whenever a
polynomial is given in some other form (e.g., with all coefficients on the left, or even
with mixed terms such as .pXiqXj r), a repeated application of the commutation
rules always allow us to bring them into the standard form where all coefficients are
on the left (see also Theorem 4.3 below). This form is unique because the powers of
X are understood to be linearly independent over R.

Example 4.2

1. The ring .C[x][D] of differential operators is an Ore algebra. This ring is known
as the first Weyl algebra. We have .σ = id and .δ = d

dx
. Also, the ring .C(x)[D] of

differential operators is an Ore algebra for which we have .σ = id and .δ = d
dx

.
Even more generally, if R is any differential ring, then .R[D] is an Ore algebra
with .σ = id and .δ being the derivation of R.
In .C[x][D] we have, for example,

(aD + b)(cD + d) = (aD + b)cD + (aD + b)d

= a(cD + c′)D + bcD + a(dD + d ′) + bd

= acD2 + (ac′ + bc + ad)D + (ad ′ + bd),

where .c′, d ′ refer to the derivatives of .c, d.
2. The Euler derivation is defined as .θ := x d

dx
. The ring .C[x][θ] of Euler-

differential operators is an Ore algebra with .σ = id and .δ = x d
dx

.
3. The ring .C[x][S] of recurrence operators is an Ore algebra. In this case, .σ is the

function that maps .p(x) ∈ C[x] to .p(x + 1), and .δ is identically zero. Again, we
may take .C(x) instead of .C[x], and, more generally, if R is any difference ring,
then .R[S] is an Ore algebra with .σ being the endomorphism of R and .δ being
identically zero.
For example, in .C[x][S] we have

(aS + b)(cS + d) = aScS + aSd + bcS + bd

= aσ(c)S2 + (aσ (d) + bc)S + bd.

4. Let .q ∈ C be fixed and define the q-shift .Sq by .(Sqf)(x) = f (qx). The set
.C[x][Sq] of all q-shift-recurrence operators .p0 + p1Sq + · · · + prS

r
q forms an

Ore algebra with .σ : C[x] → C[x] as the function that maps .p(x) to .p(qx)

and .δ being identically zero. Since .C[x] together with .σ is a difference ring,

4.1 Ore Algebras and Ore Actions 289

this example is just another special case of an Ore algebra .R[S] with R being a
difference ring.

5. Another special case is the Ore algebra .C[x][Mq] of Mahler operators. Here,
for a fixed .q ∈ N the operator .Mq is defined through .(Mqf)(x) = f (xq). The
corresponding ring of linear operators .p0 + p1Mq + · · · + prM

r
q forms an Ore

algebra with .σ : C[x] → C[x] being the function that maps .p(x) to .p(xq) and
with .δ being the zero function.

6. As an alternative to recurrence equations, we can consider difference equations,
which are expressed in terms of the forward difference operator .� defined via
.(�f)(x) = f (x + 1) − f (x). The ring .C[x][�] of all operators of the form
.p0 + p1�+ · · · + pr�

r is an Ore algebra with the shift as .σ (as in the previous
case) and the function that maps .p(x) ∈ C[x] to .p(x + 1)− p(x) as .δ. It can be
checked (Exercise 1) that this .δ is indeed a .σ -derivation.

7. Let .C = Q(α) be an algebraic number field and let .σ be an element of the Galois
group of C over .Q. Then there is an Ore algebra .C[X] with the commutation rule
.Xa = σ(a)X for all .a ∈ C.
More specifically, take .C = C and let .σ be the conjugation map, i.e., .σ(a+bi) =
a + bi = a − bi for any .a, b ∈ R. Then there is an Ore algebra .C[X] with the
commutation rule .Xa = āX for all .a ∈ C.

8. Let C be a field of characteristic .p > 0 and let .σ : C → C be the Frobenius
endomorphism defined by .σ(a) = ap for all .a ∈ C. Then there is an Ore algebra
.C[X] with the commutation rule .Xa = σ(a)X for all .a ∈ C.

9. It is not required that the ground ring R is commutative or free of zero divisors.
For example, let .R = C2×2, .A = (2 3

1 4

)
, and define .δ : R → R by .δ(M) =

MA−AM . Then .δ is a derivation on R and there is an Ore algebra .R[X] whose
commutation rule is .Xa = aX + δ(a). ��
Are all of the Ore algebras mentioned in the example above really well-defined?

On the one hand, it is easy to see that a commutation rule .Xa = σ(a)X + δ(a) can
only work if .σ is an endomorphism and .δ is a .σ -derivation. To see this, just observe
that

.Xab = (Xa)b = (σ (a)X + δ(a))b = σ(a)σ (b)X + (δ(a)b + σ(a)δ(b)),

Xab = X(ab) = σ(ab)X + δ(ab),

so .σ(ab) = σ(a)σ (b) and .δ(ab) = δ(a)b + σ(a)δ(b) for all .a, b ∈ R. So the
restrictions on .σ and .δ are necessary. On the other hand, it could be questioned
whether the conditions imposed on .σ and .δ are also sufficient, i.e., whether every
choice of .σ and .δ indeed gives rise to an Ore algebra. The following theorem asserts
that this is the case.

Theorem 4.3 Let R be a ring, .σ : R → R an endomorphism, and .δ : R → R a .σ -
derivation. Then there exists exactly one Ore algebra .R[X]with .Xa = σ(a)X+δ(a)

for all .a ∈ R. ��

290 4 Operators

Proof We already know that .R[X] together with the usual addition forms an abelian
group. We have to show that there is a unique way to define a multiplication on .R[X]
that is compatible with this addition and satisfies the required commutation rule. To
be compatible means that it should be associative and that it should satisfy the two
distributive laws.

Distributivity enforces

.

(n∑

i=0

aiX
i

)(m∑

j=0

bjX
j

)
=

n∑

i=0

m∑

j=0

(aiX
i)(bjX

j)

for any choice of .a0, . . . , an, b0, . . . , bm ∈ R. For each of the terms .(aiX
i)(bjX

j),
associativity enforces .(aiX

i)(bjX
j) = ai(X

ibj)X
j . The desired commutation rule

enforces .Xibj = Xi−1(Xbj) = Xi−1σ(bj)X +Xi−1δ(bj), and, by induction on i,
that there is at most one choice of .c0, . . . , ci ∈ R such that .Xibj = c0 + c1X +
· · ·+ciX

i . Since .XiXj = Xi+j for all .i, j ∈ N and the multiplication of coefficients
must agree with the multiplication of the ground ring, it follows that we must have
.(aiX

i)(bjX
j) = (aic0)X

j + (aic1)X
1+j + · · · + (aici)X

i+j . It is therefore shown
that there is at most one Ore algebra for a given pair .(σ, δ).

For the existence, first define inductively .γ (u, k, n) for every .u ∈ R, every .n ∈ N,
and every .k ∈ Z by .γ (u, 0, 0) = u, .γ (u, k, 0) = 0 for .k 	= 0, .γ (u, k, n) = 0 for
.k < 0, and .γ (u, k, n + 1) = σ(γ (u, k − 1, n)) + δ(γ (u, k, n)). Note that this
definition implies .γ (u, k, n) = 0 for .k > n. We define .Xnu := ∑

k γ (u, k, n)Xk

for every .n ∈ N and set

.

(n∑

i=0

aiX
i

)(m∑

j=0

bjX
j

)
:=

n∑

i=0

m∑

j=0

ai(X
ibj)X

j .

The distributive laws and the commutation rule .Xu = σ(u)X + δ(u) (.u ∈ R)
are then satisfied by construction, and it remains to check associativity. Because of
distributivity, it suffices to check that .((aXi)(bXj))(cXk) = (aXi)((bXj)(cXk))

for all .a, b, c ∈ R and .i, j, k ∈ N. In fact, it even suffices to check .(XbXk)c =
X(bXkc) for all .b, c ∈ R and all .k ∈ N, because the case .i > 1 can be treated by
induction, and multiplying with an element of R from the left or with a power of X

from the right is harmless. For all .b, c ∈ R and .k ∈ N we have

(XbXk)c = σ(b)Xk+1c + δ(b)Xkc

=
∑

j

(
σ(b)γ (c, j, k + 1) + δ(b)γ (c, j, k)

)
Xj

=
∑

j

(
σ(b)σ (γ (c, j − 1, k)) + σ(b)δ(γ (c, j, k)) + δ(b)γ (c, j, k)

)
Xj ,

4.1 Ore Algebras and Ore Actions 291

X(bXkc) =
∑

j

Xbγ (c, j, k)Xj

=
∑

j

σ (bγ (c, j, k))Xj+1 + δ(bγ (c, j, k))Xj

=
∑

j

(
σ(b)σ (γ (c, j − 1, k)) + δ(b)γ (c, j, k) + σ(b)δ(γ (c, j, k))

)
Xj ,

and since both quantities agree, the proof is complete. �

Implicit in the above proof is the following multiplication algorithm for elements
of Ore algebras.

Algorithm 4.4
Input: Two elements .P = p0 + p1X + · · · + prX

r and Q of an Ore algebra .R[X]
Output: The product .PQ ∈ R[X]
1 Set .R = 0.
2 for .i = 0, . . . , r do
3 .R = R + piQ (here .pi is multiplied to the left of each coefficient of Q).
4 .Q = σ(Q)X + δ(Q) (here the understanding is that .σ, δ are applied to the

coefficients of Q).
5 Return R.

Some authors use notations like .R〈X〉 to emphasize the non-commutativity of an
Ore algebra. Others write .R[X; σ, δ] in order to include the two functions governing
the commutation rules into the notation. We will stick to the common notation .R[X]
for univariate polynomials, but instead of X we will often use the symbol .∂ (not to
be confused with .δ) for denoting the indeterminate. With this notation, the elements
of .R[∂] look more like operators. Note however that the formal construction does
not require that the elements of .R[∂] are operators, we just use them primarily for
that purpose.

The commutation rule strongly restricts the non-commutativity of an Ore algebra,
to the effect that Ore algebras are more closely related to commutative polynomial
rings than to more general non-commutative rings.

Definition 4.5 Let .R[∂] be an Ore algebra.

1. The order of a nonzero element .L ∈ R[∂] is defined as the largest .r ∈ N such
that the coefficient .[∂r]L of .∂r in L is nonzero. It is denoted by .ord(L).We also
define .ord(0) = −∞.

2. For an element .L ∈ R[∂] \ {0}, the coefficient .lc(L) := [∂ord(L)]L is called the
leading coefficient, and .lt(L) = ∂ord(L) is called the leading term. .L ∈ R[∂] is
called monic if .lc(L) = 1.

3. A nonzero element L of a left ideal I of .R[∂] is called minimal if .ord(M) ≥
ord(L) for all nonzero elements M of I . ��

Proposition 4.6 Let .R[∂] be an Ore algebra.

292 4 Operators

1. We have .ord(ML) = ord(M) + ord(L) for all .M,L ∈ R[∂] if and only if .σ is
injective and R is an integral domain.

2. Suppose that .σ is injective and R is an integral domain. Then every left ideal
.I 	= {0} of .R[∂] has a unique monic minimal element if and only if R is in fact a
field. ��

Proof

1. “.⇒”: For .p ∈ ker σ \ {0}, we have .∂p = σ(p)∂ + δ(p) = δ(p), so .ord(∂p) <

ord(∂) + ord(p) in contradiction to the assumption. Also, for any .u, v ∈ R \
{0} with .uv = 0, we have .ord(uv) < ord(u) + ord(v) in contradiction to the
assumption.
“.⇐”: For any .L = 	n∂

n + · · · , .M = mk∂
k + · · · in .R[∂] we have .LM =

	nσ
n(mk)∂

n+k + · · · , and the assumptions guarantee that .	nσ
n(mk) is nonzero

if .	n and .mk are nonzero.
2. “.⇒”: If R is not a field, then it has some non-invertible element .p ∈ R. The left

ideal .〈p〉generated by p in .R[∂] contains an element of order 0 (namely p), but
no monic element of order 0 (i.e., it does not contain 1). To see this, observe that
every element of .〈p〉 has the form .Lp = (n∂

n+· · ·+	0)p = 	nσ
n(p)∂n+· · · ,

and by the assumptions on R and .σ , the coefficient .	nσ
n(p) is not zero when .	n

is not zero. So in order for Lp to have order 0, we must have .n = 0, but then
.Lp = 	0p cannot be 1 because p was assumed not to be invertible in R.
“.⇐”: If L is any element of I for which .ord(L) is minimal, then .lc(L)−1L

is a monic minimal element of I , so monic minimal elements always exist. If
.L1, L2 are two monic minimal elements of I , then .ord(L1) = ord(L2) and
.lc(L1) = lc(L2) = 1 implies that .ord(L1 − L2) < ord(L1) = ord(L2), which
by minimality of .L1, L2 implies that .L1 − L2 = 0, i.e., .L1 = L2. �

From a formal perspective, the elements of an Ore algebra .R[∂] become
operators as soon as we have a left-.R[∂]-module F on which they can act. In view
of the applications we have in mind, we call such modules function spaces. Recall
that to be a left-.R[∂]-module means that there is an addition .+: F ×F → F which
turns F into an abelian group and a multiplication .· : R[∂]×F → F which satisfies
the rules

1 · f = f,

(L +M) · f = (L · f) + (M · f),

L · (f + g) = (L · f) + (L · g),

(LM) · f = L · (M · f),

for all .L,M ∈ R[∂] and all .f, g ∈ F . For example, the ring .C[[x]] of formal power
series is a left-.C[x][D]-module if we define multiplication via

.(p0 + p1D + · · · + prD
r) · f = p0f + p1f

′ + · · · + prf
(r).

4.1 Ore Algebras and Ore Actions 293

Definition 4.7 Let .R[∂] be an Ore algebra and F be a left-.R[∂]-module.

1. For .f ∈ F , we call .ann(f) = {L ∈ R[∂] : L · f = 0 } the annihilator of f

(in .R[∂]).
2. .f ∈ F is D-finite (with respect to the action of .R[∂] on F) if .ann(f) 	= {0}.
3. For .L ∈ R[∂], we call .V (L) = { f ∈ F : L · f = 0 } the solution space of L

(in F). ��
Example 4.8

1. Taking .C[x][D] as .R[∂] and .C[[x]] as F , we have

.D − 1 ∈ ann(exp(x)) and exp(x) ∈ V (D − 1),

because .(D − 1) · exp(x) = 0. Note that we also have .5 exp(x) ∈ V (D − 1) and
.xD − x ∈ ann(exp(x)).

2. Taking .C[x][S] as .R[∂] and .CN as F , we have

.S − 2 ∈ ann((2n)∞n=0) and (2n)∞n=0 ∈ V (S − 2),

because .(S − 2) · (2n)∞n=0 = (0)∞n=0. We also have .(c 2n)∞n=0 ∈ V (S − 2) for any
.c ∈ C and .xS − 2x ∈ ann((2n)∞n=0), but, for example, .S − x 	∈ ann((2n)∞n=0),
because .(S − x) · (2n)∞n=0 = (2n+1 − n2n)∞n=0 = ((2 − n)2n)∞n=0 	= (0)∞n=0.

3. The definition of D-finiteness is compatible with the definitions we gave earlier
for the shift and differential case, and it covers other cases as well. For example,
if we let the Ore algebra .C(x)[M2] of Mahler operators act on .C((x)), we find
that .(xM2 − 1) · 1

x
= x 1

x2 − 1
x
= 0, so .

1
x

is D-finite. Other examples such as

.exp(x) are not D-finite in this setting (Exercise 13), and .
∑∞

n=0 x2n
is D-finite

with respect to .C(x)[M2] (an annihilating operator is .M2
2 − 2M2 + 1) but it is

not D-finite with respect to .C(x)[D] (Exercise 3 in Sect. 3.1).
4. If .R[∂] is an Ore algebra, then .R[∂] is naturally a left-module over itself. Also R

can be viewed as a left-.R[∂]-module. If we set .∂ ·1 := u for some element .u ∈ R

of our choice, then .∂ · r = (∂r) · 1 = (σ (r)∂ + δ(r)) = σ(r)u + δ(r) fixes the
action. As a concrete example, think of the natural action of .C[x][D] on .C[x].
Here we have .D · 1 = 0, which implies that .D · r = δ(r) for all .r ∈ C[x]. On the
other hand, for the natural action of .C[x][S] on .C[x], we have .S · 1 = 1, which
together with .δ = 0 implies .S · r = σ(r) for all .r ∈ C[x]. ��

Theorem 4.9 Let .R[∂] be an Ore algebra and F be a left-.R[∂]-module. Let .f ∈ F

and .L ∈ R[∂].
1. .ann(f) is a left ideal of .R[∂].
2. .V (L) is a .Const(R)-submodule of F . ��
Proof Both parts of the proof depend on the observation that .L · 0 = 0 for all
.L ∈ R[∂], which follows from the calculation .L ·0 = L ·(0+0) = (L ·0)+(L ·0).

294 4 Operators

1. Clearly .ann(f) is not empty because .0 · f = 0, so .0 ∈ ann(f). Let .L1, L2 ∈
ann(f) and .M1,M2 ∈ R[∂]. Then .(M1L1+M2L2)·f = ((M1L1)·f)+((M2L2)·
f) = (M1 · (L1 · f)) + (M2 · (L2 · f)) = (M1 · 0) + (M2 · 0) = 0 + 0 = 0, so
.M1L1 + M2L2 ∈ ann(f).

2. Clearly .V (L) is not empty because .L · 0 = 0, so .0 ∈ V (L). Let .f, g ∈ V (L)

and .α, β ∈ Const(R). Write .L = p0 + p1∂ + · · · + pr∂
r with .p0, . . . , pr ∈ R,

so that .L ·f = L ·g = 0. Then .L · ((α ·f)+ (β ·g)) = ((Lα) ·f)+ ((Lβ) ·g) =
(α ·(L·f))+(β ·(L·g)) = (α ·0)+(β ·0) = 0+0 = 0, so .(α ·f)+(β ·g) ∈ V (L).

�

The second part of the theorem looks more familiar if we apply it to the typical
situation where .R = C(x) or .R = C[x] and an Ore algebra .R[∂] where .∂ commutes
with all elements of C but not with x. If .∂ = D or .∂ = S, we have .Const(R) = C

and the statement reduces to the fact that .V (L) is a C-vector space. In general, the
solution space .V (L) is not closed under multiplication by x or under application
of .∂ .

For any element .f ∈ F , we can consider the left-.R[∂]-module generated by f

in F . This is the set of all elements of F which can be written in the form .L · f

for some .L ∈ R[∂]. Let us denote this submodule of F by .R[∂] · f . It is often the
case that we want to know something about this submodule, e.g., whether it contains
an element with a certain desired property. However, it is not particularly handy to
view it as a submodule of F , as the elements of F are typically inherently infinite
objects such as formal power series with which we cannot easily do computations.
We can fix this by considering the module homomorphism .φ : R[∂] → F defined
by .φ(L) = L · f . By the homomorphism theorem, we have .R[∂]/ ann(f) ∼=
R[∂] · f , and therefore, computations in .R[∂] · f are equivalent to computations
in .R[∂]/ ann(f). In most of what follows, we will be doing computations in an
Ore algebra .R[∂] or a quotient .R[∂]/I for some left-ideal I of .R[∂] rather than
computations with explicit “functions”.

Example 4.10 For .f = 1/(1 −√
x) ∈ C[[x]] we have

.(3f + x(x2 − 1)f ′)′ = − 1
2 (x + 1)f + 1

2 (x2 − 4x + 5)f ′.

The series f is annihilated by the operator .L = 2x(x − 1)D2 + (5x − 1)D + 1 ∈
C(x)[D], and in .C(x)[D]/〈L〉 we have

D · [3 + x(x2 + 1)D] = [− 1
2 (x + 1) + 1

2 (x2 − 4x + 5)D].

Note that the element .[1] ∈ C(x)[D]/〈L〉 plays the role of the function f which is
annihilated by L. ��

Left-.R[∂]-modules generalize the notion of D-modules introduced at the end
of Sect. 3.2 and are sometimes also called .∂-modules for short. Whenever we say
.R[∂]-module, we always mean a left module.

Proposition 4.6 suggests to restrict the attention to Ore algebras .K[∂] where K is
a field. While every Ore algebra .R[∂] where R is an integral domain can be uniquely

4.1 Ore Algebras and Ore Actions 295

extended to an Ore algebra .Quot(R)[∂] (Exercise 5), not every .R[∂]-module admits
a natural extension to a .Quot(R)[∂]-module, so while the theory and algorithms
are simpler for Ore algebras over fields, restricting the attention to these algebras is
“with loss of generality”.

Example 4.11

1. .C[[x]] is a .C[x][D]-module but not a .C(x)[D]-module, because not every
element of .C[[x]] can be multiplied with any element of .C(x). However, .C((x))

is a natural extension of .C[[x]] which is a .C(x)[D]-module, and whenever
.L ∈ C[x][D] is an annihilating operator of a series .f ∈ C[[x]] ⊆ C((x)), then
so is every element of the ideal generated by L in .C(x)[D]. There is therefore no
harm in working with .C(x)[D] instead of .C[x][D].

2. .CN is a .C[x][S]-module but not a .C(x)[S]-module, because we cannot meaning-
fully multiply a sequence with a rational function that has a pole at a nonnegative
integer. It can happen that an operator L annihilates a sequence f , but not every
.C(x)-multiple of L does. For example, .L = (x − 5) annihilates the sequence
.f : N → C with .f (5) = 1 and .f (n) = 0 for .n 	= 5, but .

1
x−5L = 1 ∈ C[x][S]

does not. So unlike in the first example, if .L ∈ C[x][S] annihilates a sequence
.f ∈ CN, the ideal generated by L in .C(x)[S] may contain operators that do not
annihilate f , and they may even belong to .C[x][S]. ��
When it is appropriate to work with a field, the arguments given in earlier

chapters for D-finite closure properties can be easily lifted to the general setting.
They reduce to linear algebra over K .

Theorem 4.12 Let .K[∂] be an Ore algebra over a field K , and let F be a .K[∂]-
module.

1. .f ∈ F is D-finite if and only if the dimension of .K[∂] · f as a K-vector space is
finite. If f is D-finite and L is a minimal element of .ann(f), then .dimK(K[∂] ·
f) = ord(L).

2. If .f ∈ F is D-finite with respect to .K[∂] and annihilated by an operator of order
at most r , then the same is true for .M · f ∈ F , for every .M ∈ K[∂].

3. If .f, g ∈ F are D-finite with respect to .K[∂] and annihilated by operators of
orders at most r and s, respectively, then .f +g is D-finite as well and annihilated
by an operator of order at most .r + s. ��

Proof

1. “.⇒”: Let L be the monic minimal element of .ann(f), and let .r = ord(L). We
show that .K[∂] · f is generated by .f, (∂ · f), . . . , (∂r−1 · f). It suffices to show
that every subspace generated by .f, (∂ · f), . . . , (∂k · f), for some .k ≥ r , is
generated by .f, (∂ · f), . . . , (∂r−1 · f), and this is easily seen by induction on k

using that .∂k · f = (∂k · f)− ∂k−r · (L · f) = (∂k − ∂k−rL) · f is contained in
the subspace generated by .f, (∂ · f), . . . , (∂k−1 · f), for any .k ≥ r .
“.⇐”: If the dimension of .K[∂]·f is r , then any .r+1 elements of .K[∂]·f must
be linearly dependent over K . In particular, there will be .	0, . . . , 	r ∈ K , not all

296 4 Operators

zero, such that .	0f + · · · + 	r(∂
r · f) = 0, i.e., .ann(f) contains the nonzero

element .L = 	0 + · · · + 	r∂
r and hence f is D-finite.

For the claim about the dimension, note that the argument given above for “.⇒”
already implies that .dimK(K[∂] · f) ≤ r . If the dimension were smaller, then
.f, . . . , (∂r−1 ·f) would be linearly dependent over K , and the linear dependence
would give rise to a nonzero annihilating operator of order less than r , in
contradiction to the minimality of L.

2. Let L be a minimal element of .ann(f), and let .r = ord(L). By part 1, the
submodule .K[∂] · f of F is a K-vector space of dimension r . Since it is
closed under .∂ , it contains .M · f and all its derivatives. Hence, the elements
.M · f, . . . , ∂r · (M · f) of .K[∂] · f are linearly dependent over K , i.e., there
are .p0, . . . , pr ∈ K , not all zero, such that .(p0 + · · · + pr∂

r) · (M · f) = 0, as
claimed.

3. .f + g is an element of the submodule .(K[∂] · f) + (K[∂] · g) ⊆ F . By part 1,
this submodule is a K-vector space of dimension at most .r + s, hence .(f +
g), . . . , ∂s+r · (f + s) must be linearly dependent, and the dependence gives rise
to an annihilating operator for .f + g. �

We have seen in the previous chapters that D-finiteness is also preserved under
multiplication (cf. Theorems 2.30 and 3.25). In order to lift this property to the
general realm of Ore algebras, we must consider function spaces F that have a
multiplication, and the multiplication must be compatible with the module structure.
By a multiplication we mean a K-bilinear function

.m : F × F → F, m(f, g) = fg,

i.e., a function which is additive in both arguments and satisfies .pm(f, g) =
m(pf, g) = m(f, pg) for all .f, g ∈ F and all .p ∈ K . It need not be commutative
or associative, nor is it necessary to have a neutral element in F . But we do want to
have a product rule that relates m to the action of .∂ . More precisely, we will assume
that there are .α, β, γ ∈ K such that for all .f, g ∈ F we have

.∂ ·m(f, g) = αm(f, g) + βm(∂ · f, g) + βm(f, ∂ · g) + γm(∂ · f, ∂ · g).

If .f, g are D-finite, say .L · f = M · g = 0 for some nonzero operators
.L,M ∈ K[∂], then every .∂n · m(f, g) (.n ∈ N) belongs to the K-vector space
generated by .m(∂i · f, ∂j · g) for .i = 0, . . . , ord(L) − 1 and .j = 0, . . . , ord(M) −
1 in F . As this subspace has dimension at most .ord(L) ord(M), we find that
.m(f, g), . . . , ∂ord(L) ord(M) ·m(f, g) are linearly dependent over K and thus .m(f, g)

is D-finite and annihilated by an operator of order at most .ord(L) ord(M). The
argument is always the same: a system of linear equations with more variables than
equations must have a nontrivial solution.

It is worth noting that in the case of addition, all we need to know for computing
an annihilating operator for .f +g are annihilating operators L and M of f and g. In
fact, we do not need any .f, g, F to begin with, but can start right away from an Ore

4.1 Ore Algebras and Ore Actions 297

algebra .K[∂] and two nonzero elements L and M . We can then choose the module
.F = (K[∂]/〈L〉) × (K[∂]/〈M〉) with the action .P · ([v], [w]) = ([Pv], [Pw]).
Then for .f = ([1], [0]) and .g = ([0], [1]) we have .L · f = M · g = 0, and since
.dimK(F) = ord(L) + ord(M), we find that .f + g = ([1], [1]) is annihilated by
an operator of order (at most) .ord(L) + ord(M). This operator will be such that for
every .K[∂]-module F and any elements .f, g ∈ F with .L · f = M · g = 0, it
annihilates .f + g.

Also for multiplication, we do not need to know much about the module F or
its multiplication function m. All that enters into the argument are the coefficients
.α, β, γ ∈ K that connect .∂ to m. Given two operators .L,M ∈ K[∂], we can use the
vector space tensor product .(K[∂]/〈L〉) ⊗K (K[∂]/〈M〉) as the function space F .
Recall from linear algebra that the tensor product of two K-vector spaces .V,W

consists of all finite K-linear combinations of the formal quantities .v⊗w with .v ∈ V

and .w ∈ W , which satisfy the laws .v⊗(w1+w2) = v⊗w1+v⊗w2, .(v1+v2)⊗w =
v1 ⊗ w + v2 ⊗ w and .p(v ⊗ w) = (pv) ⊗ w = v ⊗ (pw) for all .v, v1, v2 ∈ V ,
.w,w1, w2 ∈ W and .p ∈ K . With the help of .α, β, γ ∈ K , we can turn the K-
vector space .F = (K[∂]/〈L〉) ⊗K (K[∂]/〈M〉) into a .K[∂]-module, by defining
.∂ · ([v]⊗ [w]) = α([v]⊗ [w])+β([∂v]⊗ [w])+β([v]⊗ [∂w])+ γ ([∂v]⊗ [∂w]).
The coefficients .α, β, γ are not uniquely determined by .K[∂] (Exercise 19), but also
not completely arbitrary (Exercise 20).

Definition 4.13 Let .K[∂] be an Ore algebra and let .L,M ∈ K[∂] be nonzero.

1. Let .α, β, γ ∈ K be such that the definition

.∂ ·([v]⊗[w]) := α([v]⊗[w])+β([∂v]⊗[w])+β([v]⊗[∂w])+γ ([∂v]⊗[∂w])

for .v,w ∈ K[∂] turns .F = (K[∂]/〈L〉) ⊗K (K[∂]/〈M〉) into a .K[∂]-module.
Then the unique monic minimal element of .ann([1]⊗[1]) is called the symmetric
product of L and M with respect to .α, β, γ . It is denoted by .L⊗ M .

2. With .α, β, γ ∈ K as above we define .L⊗1 = L and .L⊗(n+1) = L ⊗ L⊗n for
.n ≥ 1, and call .L⊗n the nth symmetric power of L with respect to .α, β, γ .

3. Now let .F = (K[∂]/〈L〉) × (K[∂]/〈M〉) and turn F into a .K[∂]-module by
setting .∂ · ([v], [w]) := ([∂v], [∂w]) for all .v,w ∈ K[∂]. Let .s = ([1], [1]).
Then the unique monic minimal element of .ann(s) is called the symmetric sum
of L and M . It is denoted by .L ⊕ M . ��
It is not hard to see that the symmetric sum and the symmetric product are

commutative, i.e., we have .L ⊗ M = M ⊗ L and .L ⊕ M = M ⊕ L for all
.M,L ∈ K[∂]. Furthermore, we have .1⊗M = 1 and .1⊕M = M for all .M ∈ K[∂],
in agreement with the fact that we must have .0f = 0 and .0 + f = f for any
element f of any .K[∂]-module F . Finally, .⊗ and .⊕ are associative (Exercise 22),
and we have the distributive law .L ⊗ (M1 ⊕ M2) = (L ⊗ M1) ⊕ (L ⊗ M2)

for .L,M1,M2 ∈ K[∂] (Exercise 23). The Ore algebra .K[∂] together with the
operations .⊕ and .⊗ is a commutative semi-ring. It is not a ring because it lacks
a notion of subtraction.

298 4 Operators

Example 4.14 Symmetric sums and products can be computed by linear algebra.
For example, consider the Ore algebra .K[∂] with .K = C(x), and with .σ, δ : K →
K defined by .σ(p(x)) = p(x2) and .δ(p(x)) = 5p(x2) − 5p(x) for all .p(x) ∈ K .
Let .L = ∂ + x2 and .M = ∂2 − x.

1. We have

L ⊕M = ∂3 + x12+x11−4x10−4x9−9x8−9x7+16x6+16x5+26x4+26x3−25x2−25x+5
x4+x3−4x2−4x+1

∂2

− x2∂ + −x13−x12+4x11+4x10+9x9+9x8−16x7−21x6−26x5−x4+25x3

x4+x3−4x2−4x+1
.

This operator can be found as follows. First, apply successive powers of .∂ to
the element .([1], [1]) of the product space .K[∂]/〈L〉 × K[∂]/〈M〉. Note that
whenever an operator of order .≥ 1 appears in a first component, we can subtract
from it a suitable left-multiple of L and replace it by a representative of order .< 1.
For the second component, any representative of order .≥ 2 can be replaced by
a representative of order .< 2 by adding a suitable left-multiple of M . In other
words, every element of .K[∂]/〈L〉 × K[∂]/〈M〉 is a K-linear combination of
.([1], [0]), .([0], [1]), and .([0], [∂]). In particular,

([1], [1]) = ([1], [1]),
∂ · ([1], [1]) = ([−x2], [∂]),

∂2 · ([1], [1]) = ([x6 − 5x4 + 5x2], [x]),
∂3 · ([1], [1]) = ([−x14 + 5x12 + 5x10 − 25x8 − 10x6 + 50x4 − 25x2],

[x2∂ + 5x2 − 5x]).

Now we make an ansatz for an operator .P = p0 + p1∂ + p2∂
2 + p3∂

3 and set
up a linear system to enforce .P · ([1], [1]) = ([0], [0]). Coefficient comparison
leads to

⎛

⎜
⎝

1 −x2 x6−5x4+5x2 −x14+5x12+5x10−25x8−10x6+50x4−25x2

1 0 x 5x2 − 5x

0 1 0 x2

⎞

⎟
⎠

⎛

⎜
⎜
⎜
⎝

p0
p1
p2
p3

⎞

⎟
⎟
⎟
⎠
= 0

whose solution space is generated by the coefficient vector of the operator
announced above.

2. For the choice .α = 20, .β = 5, .γ = 1, we have

L⊗ M = ∂2 + 10(x4 − 4)∂

− (x7 − 25x6 − 5x5 + 75x4 − 5x3 + 125x2 + 25x − 400).

4.1 Ore Algebras and Ore Actions 299

In order to find this operator, we find a linear relation among the elements .∂n ·
(1 ⊗ 1) (.n = 0, 1, 2) of the tensor product space .K[∂]/〈L〉 ⊗K K[∂]/〈M〉. We
have

[1] ⊗ [1] = 1([1] ⊗ [1]) + 0([1] ⊗ [∂]),
∂ · ([1] ⊗ [1]) = 20([1] ⊗ [1]) + 5([−x2] ⊗ [1])

+ 5([1] ⊗ [∂])+ ([−x2] ⊗ [∂])
= (−5x2 + 20)([1] ⊗ [1]) + (5 − x2)([1] ⊗ [∂]),

∂2 · ([1] ⊗ [1]) = (x7 + 25x6 − 5x5 − 125x4 − 5x3

− 75x2 + 25x + 400)([1] ⊗ [1])
− (10x6 − 50x4 − 40x2 + 200)([1] ⊗ [∂]).

Now we make an ansatz for an operator .P = p0+p1∂+p2∂
2 and set up a linear

system to enforce .P · ([1]⊗ [1]) = ([0]⊗ [0]). Coefficient comparison leads to a
linear system for .p0, p1, p2 whose solution space is generated by the coefficient
vector of the operator announced above. ��
Typically, we will not have a natural interest in the modules .(K[∂]/〈L〉) ×

(K[∂]/〈M〉) or .(K[∂]/〈L〉)⊗K (K[∂]/〈M〉), but we want to reason about elements
of some other .K[∂]-modules F . For example, there might be two specific D-finite
elements .f, g of F for which we know annihilating operators .L,M ∈ K[∂], and we
might want to know an annihilating operator of their sum .f + g. The point is that
although .(K[∂]/〈L〉) × (K[∂]/〈M〉) may be different from F , we can be sure that
the symmetric sum .L ⊕ M will be an annihilating operator of .f + g. The reason is
that when L and M are annihilating operators of f and g, respectively, then we can
define a module homomorphism

.φ : (K[∂]/〈L〉)× (K[∂]/〈M〉) → F, φ([U], [V]) = (U · f) + (V · g),

and so if .P ∈ K[∂] is an annihilating operator for .([1], [1]), i.e., .P · ([1], [1]) = 0,
then also .φ(P · ([1], [1])) = P · φ([1], [1]) = P · (f + g) = 0. The reasoning
for multiplication is analogous, except that in this case F must also be a K-
algebra, and .α, β, γ must be chosen in such a way that they are compatible with
the multiplication of F .

The symmetric sum and the symmetric product can thus be used to work in
arbitrary .K[∂]-modules F , and they are oblivious to the particular F that we have in
mind. A price we have to pay for this generality is that in general we cannot preserve
minimality: even if L and M are the unique monic minimal operators annihilating
f and g, respectively, the operators .L ⊕ M and .L ⊗ M are in general not minimal
annihilating operators of .f +g and fg, respectively. As a counterexample, consider

300 4 Operators

the case .g = −f and .M = L. In this case, we have .L⊕L = L (Exercise 21) while
.f + g = 0 is also annihilated by .1 ∈ K[∂].

For the multiplication case, take for example .f = 1+ exp(x), .g = 1− exp(x) ∈
C((x)) and .L = M = D2 − D. Then we have .L ⊗ M = D3 − 3D2 + 2D but
.fg = 1 − exp(2x) is also annihilated by .D2 − 2D.

Exercises

1. Let .σ, δ : C[x] → C[x] be defined by .σ(p(x)) = p(x + 1) for .p ∈ C[x] and
.δ(p(x)) = p(x + 1) − p(x). Show that .δ is a .σ -derivation.

2. Write the elements .(x+∂2)(1−2∂+x∂2) and .1−∂(x+3x2)+(x+1)∂2(x−1)

of .K[∂] in the standard form .p0 + p1∂ + p2∂
2 + · · · , given that

a. .σ = id and .δ = d
dx

,
b. .σ(p(x)) = p(x + 1) and .δ = 0,
c. .σ(p(x)) = p(x2) and .δ(p(x)) = 5p(x2) − 5p(x).

3�. Show that .Dnxk = ∑
i≥0

(
n
i

)
kixk−iDn−i for all .n, k ∈ N.

4�. Let R be an integral domain, .σ : R → R be an endomorphism, and .δ : R → R

be a .σ -derivation. For .m ∈ N and .p ∈ R, we use the notation .σm(p) =
pσ(p) · · · σm−1(p). Show that we have

.δ(σm(p)) = δ
(
p + σ(p) + · · · + σm−1(p)

)
σm−1(σ (p))

for all .m ∈ N and all .p ∈ R. This formula generalizes the formula .D(an) =
nan−1D(a) from Exercise 9 in Sect. 3.2.

5. Let R be an integral domain, .σ : R → R be an injective endomorphism, and
.δ : R → R be a .σ -derivation. Show that for .K = Quot(R), there exists exactly one
endomorphism .σ̄ : K → K and exactly one .σ̄ -derivation .δ̄ : K → K with .σ̄ |R = σ

and .δ̄|R = δ.

6. Show that in a Laurent Ore polynomial ring .R[∂, ∂−1], we must have
.∂−1σ(p) = p∂−1 − ∂−1δ(p)∂−1 for all .p ∈ R.

7. Let .L ∈ K[∂] and .m, y ∈ K . Prove or disprove:
a. .L · y = m ⇒ (L −m) · y = 0.
b. .(L− m) · y = 0 ⇒ L · y = m.

8. Let .σ : K → K be an endomorphism and .δ : K → K be a .σ -derivation. Show:
a. If .σ 	= id, then there exists an element .u ∈ K such that .δ(q) = u(σ(q)−q)

for all .q ∈ K .
b. If .δ 	= 0, then there exists an element .u ∈ K such that .σ(q) = uδ(q) + q

for all .q ∈ K .

4.1 Ore Algebras and Ore Actions 301

9. Prove or disprove: If .σ : R → R is an endomorphism and .δ : R → R is a
.σ -derivation, then .σ ◦ δ = δ ◦ σ .

10. Let R be an integral domain, and .σ 	= id or .δ 	= 0. Suppose that .σ is injective.
Let .Z(R[∂]) = {p ∈ R[∂] | ∀ q ∈ R[∂] : pq = qp } be the centralizer of .R[∂], and
consider .Const(R) ⊆ R ⊆ R[∂]. Prove or disprove:

a. .Const(R) ⊆ Z(R[∂])
b. .Z(R[∂]) ⊆ Const(R)

11. Determine the unique monic minimal annihilating operator of .
x+1
x−1 ∈ C(x) a.

in .C(x)[D]; b. in .C(x)[S]; c. in .C(x)[M2].
12. Is the commutative polynomial ring .C(x)[Y] an Ore algebra? Can we view
.F = C((x)) as a .C(x)[Y]-module with the action .Y i · f = f i , so that a series is
D-finite with respect to .C(x)[Y] if and only if it is algebraic?

13�. Show that .exp(x) is not D-finite with respect to .C(x)[M2].
14. Show that .f (x) = ∑∞

n=0 qn2
xn with q not a root of unity is D-finite with

respect to the q-shift operator but not with respect to the usual derivation.
Hint: You may use without proof that for any pairwise distinct .φ1, . . . , φr ∈ C

the sequences .(φn
i)∞n=0 are linearly independent over .C(n).

15. Prove or disprove: For all .L,M ∈ C(x)[D] there exists .M̃ ∈ C(x)[D] such
that .LM = M̃L.

16. Show that a sequence is D-finite with respect to .C[x][S] if and only if it is
D-finite with respect to .C[x][�].
17�. Let .R[∂] be an Ore algebra over a commutative ring R. Show that for all
.L,M ∈ R[∂] \ {0} we have .ord(LM) = ord(L) + ord(M) if and only if R is an
integral domain and .σ is injective.

18�. For .F = C((x)), the Hadamard product .m : F × F → F , .m(f, g) = f � g

is a C-bilinear function. Show that there are no .α, β, γ ∈ C such that for all .f, g ∈
C((x)) we have .m(f, g)′ = αm(f, g) + βm(f ′, g) + βm(f, g′) + γ (f ′, g′).

19. Let F be a .K[∂]-module and .m : F×F → F a bilinear map such that there are
.α, β, γ ∈ K with .∂ ·m(f, g) = αm(f, g)+βm(∂ ·f, g)+βm(f, ∂ ·g)+γm(∂ ·f, ∂ ·g)

for all .f, g ∈ F . Let .q ∈ K\{0} and define .m̃ : F×F → F by .m̃(f, g) := qm(f, g).
Determine .α̃, β̃, γ̃ ∈ K such that .∂ ·m̃(f, g) = αm̃(f, g)+βm̃(∂ ·f, g)+βm̃(f, ∂ ·
g) + γ m̃(∂ · f, ∂ · g) for all .f, g ∈ F .

20��. Show that if .α, β, γ ∈ K are such that the symmetric product with respect to
.α, β, γ is well-defined for an Ore algebra .K[∂], then .(p−σ(p))α+ δ(p)(β− 1) =
(p − σ(p))β + δ(p) = 0 for all .p ∈ K.

21. Show that for all .M,L ∈ K[∂] we have .L ⊕ M ∈ 〈L〉 ∩ 〈M〉. Conclude that
.L ⊕ L = L for all monic .L ∈ K[∂].
22. Show that the operations .⊗,⊕: K[∂] × K[∂] → K[∂] are associative.

302 4 Operators

23. Let .α, β, γ ∈ K be such that the symmetric product with respect to .α, β, γ

is defined for an Ore algebra .K[∂]. Show that for all .M,L1, L2 ∈ K[∂] we have
.M ⊗ (L1 ⊕ L2) = (M ⊗ L1) ⊕ (M ⊗ L2).

24��. (Stavros Garoufalidis and Christoph Koutschan) Let .C(q) be a field of
rational functions over C, consider the Ore algebra .C(q)(x)[Q] with .σ(p(x)) =
p(qx) for .p ∈ C(q)(x) and .δ = 0, and let .F = C(q)N be the set of sequences
in .C(q). The set F becomes a .C(q)(x)[Q]-module by setting .x · (an(q))∞n=0 =
(qnan(q))∞n=0 and .Q · (an(q))∞n=0 = (an+1(q))∞n=0. Let .ω ∈ C be a root of unity.
Show that if .(an(q))∞n=0 is D-finite with respect to the action of .C(q)(x)[Q], then
so is .(an(ωq))∞n=0.

Hint: Show that for any integer .k ≥ 2, there is an annihilating operator of
.(an(q))∞n=0 with polynomial coefficients in which all exponents of x are divisible
by k.

25. Let the Ore algebra .C(x)[M2] act on .C((x)) via .M2 · f (x) = f (x2) for
.f ∈ C((x)). Suppose that .f, g ∈ C((x)) are such that .(M2

2 + xM2 + x2) · f =
(M2

2 − xM2 + x2) · g = 0. Compute annihilating operators for .f + g and fg.

26. Let .K[∂] be an Ore algebra and F be a .K[∂]-module. Let .L ∈ K[∂] \ {0} and
let .f, g ∈ F be such that .L · f = g. Prove or disprove:

a. If f is D-finite, then so is g.
b. If g is D-finite, then so is f .

27. (Clemens Raab) Let F be a .K[∂]-module and .m : F × F → F be a bilinear
map with .m(f, g) = m(g, f) for all .f, g ∈ F . Let .L,M ∈ K[∂] be such that
.L · f = 0 ⇒ M · m(f, f) = 0 for all .f ∈ F . Show that then we even have
.M ·m(f1, f2) = 0 for any two .f1, f2 ∈ F with .L · f1 = L · f2 = 0.

References

General expositions on the theory of noncommutative rings can be found in [186,
303, 316]. As remarked in the text, the rings we consider here are, in a way, only
slightly noncommutative, which makes it possible to handle them without first going
through a general course on noncommutative rings. Ore algebras were introduced
and first studied by Ore [344]. He already drew his motivation from differential
and recurrence operators. Bronstein and Petkovšek introduced Ore algebras into
computer algebra in their tutorial paper [115].

It has been remarked that the orders of .L⊕M and .L⊗M are in general larger than
necessary. At the same time, it can be shown that the orders do not overshoot if the
module F is sufficiently large, in the following sense: if .L,M ∈ C(x)[D] are such
that .dimC V (L) = ord(L) and .dimC V (M) = ord(M), then .dimC V (L ⊕ M) =
ord(L⊕M) and .V (L⊕M) = V (L)+ V (M). Moreover, if F is even a differential
ring, then .dimC V (L ⊗ M) = ord(L ⊗ M) and .V (L ⊗ M) is the C-vector space
generated by .{ fg : f ∈ V (L), g ∈ V (M)} in F . Proofs can be found in a paper of

4.2 Common Right Divisors and Left Multiples 303

Singer [406] or, using more abstract constructions, in the book of van der Put and
Singer [441].

The multiplication algorithm stated in this section is straightforward. More
sophisticated algorithms are known, at least for the differential case. Benoit,
Bostan, and van der Hoeven [54] showed that the product of two elements of
.C[x][D] whose degrees in x and D are d and r , respectively, can be computed
with .O∼(min(d, r)ω−2dr) operations in C, where .ω is the exponent of matrix
multiplication (cf. Sect. 1.4). Bostan, Chyzak, and Le Roux [84] showed some sort
of converse: the product of two .n× n matrices with coefficients C can be computed
with a number of operations in C that does not exceed the number of operations
in C needed to compute the a certain fixed number of products of two elements of
.C[x][D] whose degrees in both x and D are bounded by n.

4.2 Common Right Divisors and Left Multiples

In this section, we consider an arbitrary Ore algebra .K[∂] over a field K . We assume
throughout that .σ is injective. We have already observed that despite being non-
commutative, the Ore algebra .K[∂] has some similarities with the commutative
polynomial ring .C[x]. For example, the order in .K[∂] plays the role of the degree
in .C[x]. Thanks to the degree function, .C[x] is a Euclidean domain, and we will
now see that .K[∂] is a right-Euclidean domain.

Theorem 4.15 For every .U,V ∈ K[∂] with .v 	= 0 there exists a unique pair
.(Q,R) ∈ K[∂]2 such that .U = QV + R and .ord(R) < ord(V). ��
Proof There clearly exist .Q,R with .U = QV + R, for example .Q = 0, R = U

is a valid choice. Among all pairs .(Q,R) with .U = QV + R, select one for which
.ord(R) is minimal. We show that .ord(R) < ord(V). If we had .ord(R) ≥ ord(V),
there is a .c ∈ K such that .ord(R − c∂ord(R)−ord(V)V) < ord(R), and for .R′ =
R − c∂ord(R)−ord(V)V and .Q′ = Q + c∂ord(R)−ord(V) we have .U = Q′V + R′, in
contradiction to the minimality assumption on R.

We have thus shown that a pair .(Q,R) with .U = QV +R and .ord(R) < ord(V)

always exists. For the uniqueness, suppose there is another pair .(Q′, R′) with .U =
Q′V + R′ and .ord(R′) < ord(V). Then .(Q − Q′)V = R′ − R. The left hand side
has order .ord(Q − Q′) + ord(V), while the order of the right hand side is strictly
less than .ord(V). Therefore .ord(Q − Q′) < 0, which means .Q = Q′. But then
.0 = (Q −Q′)V = R′ − R also implies .R′ = R. �

Definition 4.16 Let .U,V ∈ K[∂], .V 	= 0, and let .Q,R ∈ K[∂] be as in Theo-
rem 4.15. Then .rquo(U, V) := Q is called the right quotientand .rrem(U, V) := R

is called the right remainder of U with respect to V . If .R = 0, we say that V is a
right factor or right divisor of U and that U is a left multiple of V . ��

304 4 Operators

Given two elements .U,V ∈ K[∂], we can compute the right quotient and the
right remainder in very much the same way as in the commutative case. The proof
of Theorem 4.15 translates into the following algorithm.

Algorithm 4.17
Input: .U,V ∈ K[∂] with .V 	= 0.
Output: .rquo(U, V) and .rrem(U, V).

1 Let .Q = 0 and .R = U .
2 while .ord(R) > ord(V), do
3 .c = lc(R)

σ ord(R)−ord(V)(lc(V))

4 .R = R − c∂ord(R)−ord(V)V

5 .Q = Q + c∂ord(R)−ord(V)

6 Return .(Q,R).

Example 4.18

1. For .U = (3x + 5)D3 − (2x + 1)D2 + (2x − 3)D + (3x + 1) and .V = (x +
2)D − (3x + 5) ∈ C(x)[D] the algorithm yields

rquo(U, V) = 3x + 5

x + 2
D2 + 7x2 + 19x + 13

(x + 2)2 D + 23x3 + 108x2 + 177x + 100

(x + 2)3 ,

rrem(U, V) = 72x4 + 479x3 + 1212x2 + 1374x + 586

(x + 2)3
.

It can be seen that .ord(rrem(U, V)) = 0 < 1 = ord(V), and it can be checked
that .U = rquo(U, V)V + rrem(U, V).

2. For .U = (3x + 5)S3 − (2x + 1)S2 + (2x − 3)S + (3x + 1) and .V = (x + 2)S −
(3x + 5) ∈ C(x)[S] the algorithm yields

rquo(U, V) = 3x + 5

x + 4
S2 + 7x2 + 39x + 51

(x + 3)(x + 4)
S + 23x3 + 184x2 + 468x + 372

(x + 2)(x + 3)(x + 4)
,

rrem(U, V) = 72x4 + 695x3 + 2411x2 + 3554x + 1884

(x + 2)(x + 3)(x + 4)
.

Again it can be seen that .ord(rrem(U, V)) = 0 < 1 = ord(V), and it can be
checked that .U = rquo(U, V)V + rrem(U, V). Note that although .U,V have
the same coefficients as before, the results are not the same. The coefficients of
.rquo(U, V), .rrem(U, V) depend on the arithmetic of .K[∂], which is governed by
.σ and .δ. ��

Definition 4.19 Let .U,V ∈ K[∂], not both zero.

1. If .G ∈ K[∂] is a right divisor of both U and V , it is called a common right divisor
of U and V .

4.2 Common Right Divisors and Left Multiples 305

2. A common right divisor G of U and V is called a greatest common right divisor
if it is monic and a right divisor of any other common right divisor.

3. If .M ∈ K[∂] is a left multiple of both U and V , it is called a common left multiple
of U and V .

4. A common left multiple M of U and V is called a least common left multiple if
it is monic and a right divisor of any other common left multiple. ��
It is easy to show that for any pair .(U, V) ∈ K[∂]2 \ {(0, 0)} there is at most

one greatest common right divisor and at most one least common left multiple
(Exercise 2). We denote these by .gcrd(U, V) and .lclm(U, V) , respectively. We
further define .gcrd(0, 0) = 0 and .lclm(0, 0) = 0.

Like in the commutative case, the existence of a greatest common right divisor
follows from the correctness of the Euclidean algorithm, which happens to apply
literally in the same way to Ore algebras. Also the extended Euclidean algorithm,
which in addition to .gcrd(U, V) computes .S, T ∈ K[∂] such that .gcrd(U, V) =
SU + T V , works for arbitrary Ore algebras .K[∂].
Algorithm 4.20 (Extended Euclidean Algorithm)
Input: .U,V ∈ K[∂], not both zero.
Output: .gcrd(U, V) and .S, T ∈ K[∂] such that .gcrd(U, V) = SU + T V .

1 Let .(G, S, T ,G′, S′, T ′) = (U, 1, 0, V , 0, 1).
2 while .G′ 	= 0 do
3 .Q = rquo(G,G′)
4 .(G, S, T ,G′, S′, T ′) = (G′, S′, T ′,G −QG′, S − QS′, T −QT ′)
5 Return .(lc(G)−1G, lc(G)−1S, lc(G)−1T).

Theorem 4.21 Algorithm 4.20 is correct and terminates. In particular:

1. Any two elements .U,V ∈ K[∂] with .(U, V) 	= (0, 0) have a greatest common
right divisor .gcrd(U, V).

2. For any .U,V ∈ K[∂] with .(U, V) 	= (0, 0) there exist .S, T ∈ K[∂] and
.gcrd(U, V) = SU + T V .

3. If .ord(U) ≥ ord(V) ≥ 0 and .lc(V)U 	= lc(U)V , then for the pair .(S, T) ∈
K[∂]2 computed by Algorithm 4.20 we have .ord(S) < ord(V) − ord(G) and
.ord(T) < ord(U) − ord(G).

4. For any .U,V ∈ K[∂] with .(U, V) 	= (0, 0) there exists at most one pair
.(S, T) ∈ K[∂]2 with .gcrd(U, V) = SU + T V and .ord(S) < ord(V) − ord(G)

and .ord(T) < ord(U) − ord(G). ��
Proof Termination is clear because .G−QG′ = rrem(G,G′) implies that the order
of .G′ decreases in every iteration, and since it is a natural number, it cannot decrease
infinitely often. For the correctness, let .C(A,B) ⊆ K[∂] denote the set of common
right divisors of .A,B ∈ K[∂]. We then have .C(A,B) = C(B,A − QB) for every
.Q ∈ K[∂], because if D is a common right divisor of A and B, say .A = ÃD and
.B = B̃D for some .Ã, B̃ ∈ K[∂], then .A−QB = (Q̃−QB̃)D, so D is a common

306 4 Operators

right divisor of B and .A − QB. This shows .C(A,B) ⊆ C(B,A − QB), and the
other inclusion follows by symmetry (replace Q by .−Q).

We have thus shown that .C(U, V) = C(G,G′) at the end of every iteration.
Upon termination, we have .G′ = 0, and since .C(G, 0) contains exactly the right
divisors of G, the monic element .lc(G)−1G must be the greatest common right
divisor of U and V . For the claim about S and T , observe first that we have .G =
SU + T V and .G′ = S′U + T ′V at the beginning, after every iteration of the while
loop, and therefore right after the while loop.

This proves the correctness of the algorithm. Parts 1 and 2 of the theorem follow
immediately. For part 3, consider first the case when .ord(U) > ord(V) and let
.S, T be as computed by Algorithm 4.20. Define .(G0, S0, T0) = (U, 1, 0), and let
.(Gk, Sk, Tk) be the values of .G, S, T at the end of the kth iteration (.k = 1, 2, . . .).
If .Qk denotes the value of Q in the kth iteration, we have .Qk = rquo(Gk−1,Gk)

for all .k ≥ 1, which implies .ord(Qk) = ord(Gk−1) − ord(Gk) for all .k ≥ 1.
Therefore .ord(Gk) = ord(G1) − ∑k

i=1 ord(Qi) for all .k ≥ 1. By the definition of
.Gk and the assumption .ord(U) > ord(V), we have .ord(Qk) > 0 for all .k ≥ 1.
Therefore, from .Sk+1 = Sk−1 − QkSk = Sk−1 − Qk(Sk−2 + Qk−1Sk−1) it follows
that .ord(Sk+1) = ord(Qk) + ord(Sk) for all .k ≥ 2. Taking also into account that
.S2 = S0 − Q1S1 = 1, we obtain .ord(Sk) = ∑k−1

i=2 ord(Qi).
Suppose now that the algorithm terminates after the kth iteration, so that .Gk =

G = gcrd(U, V), .Sk = S, .Tk = T . Because of the assumption .ord(U) > ord(V) ≥
0, we must have .k ≥ 2. Therefore, .ord(G) = ord(G1)−∑k

i=1 ord(Qi) < ord(V)−
∑k−1

i=2 ord(Qi) = ord(V)− ord(S), so .ord(S) < ord(V)− ord(G). Moreover, since
.ord(G) ≤ ord(V) < ord(U) and we must have .S 	= 0 when .k ≥ 2, the equation
.G = SU +T V implies .ord(S)+ord(U) = ord(T)+ord(V), from which we obtain
.ord(T) = ord(U)+ord(S)−ord(V) < ord(U)−ord(G). This completes the proof
of the order bounds for S and T in the case .ord(U) > ord(V).

For the case .ord(U) = ord(V), we have .G0 = U , .G1 = V , .G2 = V − lc(V)
lc(U)

U .
The assumption on U and V ensures .G2 	= 0 and .ord(G2) < ord(V). We can
therefore apply the previous argument with V and .G2 in place of U and V and
obtain .S′, T ′ ∈ K[∂] with .G = S′V + T ′G2 = S′V + T ′(V − lc(V)

lc(U)
U) = (S′ +

T ′)V −T ′ lc(U)
lc(V)

U and .ord(S′) < ord(V)−ord(G) and .ord(T ′) < ord(G2)−ord(G).

Algorithm 4.20 applied to U and V will therefore give .S = T ′ lc(U)
lc(V)

and .T = S′+T ′,
and for these we have .ord(S) = ord(T ′) < ord(G2) − ord(G) ≤ ord(V) − ord(G)

and .ord(T) ≤ max(ord(S′), ord(T ′)) < ord(V) − ord(G) = ord(U) − ord(G).
The proof of part 4 is Exercise 6. �

Example 4.22

1. In .C(x)[D], consider the operators

U = (x − 1)D5 + 5D4,

V = (x − 1)D3 + (6 − 3x)D2 + (27x2 + 9x − 42)D + (117 − 54x).

4.2 Common Right Divisors and Left Multiples 307

For the sequence of successive remainders, we have .G0 = U , .G1 = V and then

G2 = rrem(G0,G1) = −162(x2 − 1)D2 − 81(9x3 + 12x2 − 11x − 18)D

− 81(18x2 − 21x − 41),

G3= rrem(G1,G2)= 27

4
(3x+4)(x+2)(x−1)D− 27(3x+4)(2x2 − x − 7)

4(x+1)
,

G4 = rrem(G2,G3) = 0.

It follows that

. gcrd(U, V) = lc(G3)
−1G3 = D − 2x2 − x − 7

(x + 2)(x + 1)(x − 1)
.

2. In .C(x)[S], consider the operators

U = S7 + 5S6 + 9S5 + 5S4 − 5S3 − 9S2 − 5S − 1,

V = (x + 5)S5 + 6S4 − 6S3 − 2(x − 1)S2 − (x + 19)S + 2(x + 6).

For the sequence of successive remainders, we have .G0 = U , .G1 = V and then

G2 = rrem(G0,G1)

= + (x + 4)(7x + 27)

(x + 6)(x + 7)
S4 + 2(3x2 + 37x + 102)

(x + 6)(x + 7)
S3 + 2(x + 5)(6x + 1)

(x + 6)(x + 7)
S2

− 2(3x2 − 13x − 148)

(x + 6)(x + 7)
S − 19x + 103

x + 7
,

G3 = rrem(G1,G2)

= −16(x + 3)(x + 7)(3x + 11)

(7x + 27)(7x + 34)
S3 + 16(x + 7)(x2 − 12x − 58)

(7x + 27)(7x + 34)
S2

+ 16(x + 7)(3x2 + 40x + 103)

(7x + 27)(7x + 34)
S − 16(x + 2)(x + 6)(x + 7)

(7x + 27)(7x + 34)
,

G4 = rrem(G2,G3)

= 2(x + 2)(2x + 7)(7x + 27)(7x + 34)

(x + 6)(x + 7)(3x + 11)(3x + 14)
S2

+ 20(x+4)(7x+27)(7x+34)

(x+6)(x+7)(3x+11)(3x+14)
S− 2(2x + 9)(7x + 27)(7x + 34)

(x + 7)(3x + 11)(3x + 14)
,

G5 = rrem(G3,G4) = 0.

308 4 Operators

It follows that

. gcrd(U, V) = lc(g4)
−1g4 = S2 + 10(x + 4)

(x + 2)(2x + 7)
S − (2x + 9)(x + 6)

(2x + 7)(x + 2)
.

��
The example illustrates a phenomenon that also appears in the commutative case:

the intermediate successive remainders have much larger coefficients than the final
result. Since we need them only up to nonzero K-multiples, it is a good idea to
introduce an additional instruction .(G, S, T) = (lt(G)−1G, lt(G)−1S, lt(G)−1T) at
the end of the loop body in order to clear useless common K-factors that blow up
the coefficients.

The example also illustrates a phenomenon that does not appear in the commu-
tative case: the coefficients of the greatest common right divisor can be larger than
those of the input. In the case of integers or univariate commutative polynomial
rings over a field, there is a lemma by Gauss which says that this cannot happen, but
as the example above shows, there is no natural counterpart of this lemma for .K[∂].

In order to get a bound on the degree of the coefficients in the greatest common
right divisor, we translate the question into linear algebra. It suffices to consider
.U,V ∈ K[∂] which are both nonzero and such that .lc(V)U 	= lc(U)V (otherwise
the greatest common right divisor is obvious). Under these assumptions, we know
from Theorem 4.21 that .gcrd(U, V) can be written as .SU + T V for certain .S, T ∈
K[∂] with .ord(S) < ord(V) and .ord(T) < ord(U). Since we know .rV := ord(V)

and .rU := ord(U) when we know U and V , we can make an ansatz .S = s0 +
s1∂ + · · · + srV −1∂

rV −1 and .T = t0 + t1∂ + · · · + trU−1∂
rU−1 with undetermined

coefficients .s0, . . . , srV −1, t0, . . . , trU−1 ∈ K . If we write .gcrd(U, V) = g0 +g1∂ +
· · ·+grU+rV −1∂

rU+rV −1 for the coefficients of the greatest common right divisor of
U and V , then we have the equation

. Syl(U, V)

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜
⎝

s0

s1
...

srU−1

t0
...

trV −1

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟
⎠

=

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜
⎝

g0

g1
...
...
...
...

grU+rV −1

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟
⎠

where .Syl(U, V) ∈ K(rU+rV)×(rU+rV) is the matrix whose first .rV columns are
the coefficient vectors of .U, ∂U, . . . , ∂rV −1U and whose last .rU columns are
the coefficient vectors of .V, ∂V, . . . , ∂rU−1V . This matrix is called the Sylvester
matrix for .U,V ∈ K[∂]. Its determinant is called the resultant of .U,V ∈ K[∂]
and is denoted by .res(U, V). If the resultant is nonzero, we find a solution

4.2 Common Right Divisors and Left Multiples 309

.(s0, . . . , srU−1, t0, . . . , trV −1) for any right hand side .(g0, . . . , grU+rV −1), in par-
ticular for the right hand side .(1, 0, . . . , 0). This means that in this case, we have
.1 = SU + T V for some .S, T ∈ K[∂], which implies that .gcrd(U, V) = 1, because
every common right divisor of U and V must also be a right divisor of .SU+T V , no
matter what S and T are, and since 1 obviously does not have any nontrivial right
divisor, U and V cannot have a nontrivial common right divisor. We say that they
are right coprime.

Conversely, if U and V are right coprime, then .SU + T V = 1 for some
.S, T ∈ K[∂] with .ord(S) < rV and .ord(T) < rU , and consequently .∂iSU +
∂iT V = ∂i for every .i ∈ N. From Theorem 4.28 below, it follows that there
also are .S′, T ′ ∈ K[∂] with .ord(S′) ≤ rV and .S′U + T ′V = 0. Therefore,
.rrem(∂iS, S′)U+(∂iT − rquo(∂iS, S′)T ′)V = ∂i for every .i = 0, . . . , rV +rU −1.
Because of .ord(rrem(∂iS, S′)) < rV and .ord(∂i) < rV + rU , we must have
.ord(∂iT − rquo(∂iS, S′)T ′) < rU for all such i. This implies that the image of
the Sylvester matrix contains all unit vectors in .KrV +rU , and thus consists of the
full space. The kernel is therefore just .{0}, and this in turn implies that the resultant
is nonzero. We have thus shown that .gcrd(U, V) = 1 if and only if .res(U, V) 	= 0.

In the general case, suppose the greatest common right divisor of U and V has
order r . Then in the linear system above we have .gr = 1 and .gr+1 = · · · =
grU+rV −1 = 0, and if we cut away the rows corresponding to .g0, . . . , gr−1, we
obtain the following linear system for the coefficients of S and T :

Every solution vector .(s0, . . . , t0, . . .) ∈ Kru+rv of this system gives rise to
operators .S, T ∈ K[∂] such that .SU + T V = ∂r + · · · . The right hand side must in
fact be the greatest common right divisor of U and V , because the greatest common
right divisor of U and V must be a right divisor of the left hand side, hence also
of the right side, and since both the gcrd and the right hand side have order r , they
must be equal.

By part 3 of Theorem 4.21 we also know that we may assume .srV −i = 0 for
.i = 1, . . . , r and .trU−i = 0 for .i = 1, . . . , r , so we can remove these variables from
the linear system and delete the corresponding columns from the Sylvester matrix.
Since .[∂k]∂iU = 0 for .k > i + rU and .[∂k]∂iV = 0 for .k > i + rV , the Sylvester
matrix contains zeros in the areas indicated by the unshaded triangular regions in the
figure above. Removing the 2r unnecessary columns will therefore leave us with a
matrix that has at least r rows that only contain zeros, and we may drop these as
well. The situation then looks as follows:

310 4 Operators

As a result of this discussion, we get an alternative algorithm for computing
.gcrd(U, V): solve the above linear system in turn for .r = 0, 1, 2, The first r

for which the system has a solution gives us the cofactors .S, T from which we can
get the final result via .gcrd(U, V) = SU + T V . This algorithm has the nice feature
that it gives us access to a bound on the size of the coefficients that may appear in
the gcrd.

Theorem 4.23 Suppose that .K = C(x) and that .σ, δ : K → K map polynomials to
polynomials and do not increase degrees, i.e., .deg(σ (p)), deg(δ(p)) ≤ deg(p) for
all .p ∈ C[x]. Let .U,V ∈ C[x][∂] ⊆ K[∂] be such that .U,V 	= 0 and .lc(V)U 	=
lc(U)V . Let .rU = ord(U), .rV = ord(V), and let .dU , dV ∈ N be such that all
coefficients of U have degree at most .dU and all coefficients of V have degree at
most .dV . Let .G = gcrd(U, V) ∈ K[∂] and .r = ord(G). Then the coefficients of
G are elements of .C(x) whose numerators and denominators are polynomials of
degree at most .(rV − r)dU + (rU − r)dV . ��
Proof Continuing the preceding discussion, we find that the combined coefficient
vector

.(s0, . . . , srV −r−1, t0, . . . , trU−r−1)

of .S, T ∈ K[∂] such that .gcrd(U, V) = SU+T V is a solution of an inhomogeneous
linear system obtained from the Sylvester matrix by deleting 2r rows and 2r

columns. Because of the assumptions on .σ and .δ, we have .deg([∂k]∂iU) ≤ dU

and .deg([∂k]∂iV) ≤ dV for all i and k, so that the matrix has .rV − r columns
with entries of degree at most .dU and .rU − r columns with entries of degree at
most .dV . By Cramer’s rule, the denominator of the coefficients of S and T is the
determinant of this matrix, i.e., a polynomial of degree at most .(rV − r)dU + (rU −
r)dV , the numerators of the coefficients of S are polynomials of degree at most
.(rV − r)dU + (rU − r)dV − dU , and the numerators of the coefficients of T are
polynomials of degree at most .(rV − r)dU + (rU − r)dV − dV . The announced
bound for .G = SU + T V follows. �

In the setting of this theorem, a greatest common right divisor can be computed
in polynomial time, because it suffices to solve at most .rV linear systems of size

4.2 Common Right Divisors and Left Multiples 311

at most .(rU + rV) × (rU + rV) with polynomial entries of degree at most .dU , dV .
A naive implementation of Algorithm 4.20 will be slower, because the coefficients
of .G, S, T can grow dramatically during the execution of the loop, even though
Theorem 4.23 guarantees that the final result will be of reasonable size. What lets
the size drop in the end is the multiplication with .lc(G)−1 from the left, and for
an implementation of Algorithm 4.20 we reiterate the advice to introduce such a
normalization step in each iteration of the loop. In the case .K = C(x), an even
more careful implementation will avoid working with rational functions and ensure
that G belongs to .C[x][∂] at all times, and that the coefficients of G are coprime
(assuming, as usual, that they are written to the left of the powers of .∂).

The greatest common right divisor is useful for showing that every left ideal of
.K[∂] is generated by a single element. It is also useful for describing the intersection
of two solution spaces. The details are as follows.

Theorem 4.24 Let F be a .K[∂]-module and let .A,B ∈ K[∂]. Then
1. .V (A) ∩ V (B) = V (gcrd(A,B)).
2. .〈A,B〉 = 〈gcrd(A,B)〉. ��
Proof

1. “.⊆”: If .f ∈ V (A)∩V (B), then .A·f = B ·f = 0, and then .(SA+T B)·f = 0
for every .S, T ∈ K[∂]. Taking .S, T appropriately, we find .gcrd(A,B) · f = 0,
so .f ∈ V (gcrd(A,B)).
“.⊇”: Writing .G = gcrd(A,B), we have .A = ÃG and .B = B̃G for certain
.Ã, B̃ ∈ K[∂], so if .f ∈ V (gcrd(A,B)), then .G · f = 0 implies .A · f =
(ÃG) · f = Ã · (G · f) = Ã · 0 = 0 and similarly, .B · f = (B̃G) · f = 0, so
.f ∈ V (A) ∩ V (B).

2. “.⊆”: With .G = gcrd(A,B), we have .A = ÃG and .B = B̃G for certain
.Ã, B̃ ∈ K[∂]. Every .P ∈ 〈A,B〉 can be written as .P = UA + V B for certain
.U,V ∈ K[∂], and .P = UA+ V B = (UÃ+ V B̃)G shows .P ∈ 〈G〉.
“.⊇”: With .G = gcrd(A,B) and .S, T ∈ K[∂] such that .G = SA + T V ,
every element .P ∈ 〈G〉, say .P = P̃G for some .P̃ ∈ K[∂], can be written as
.P = P̃ SA + P̃ SB and therefore belongs to .〈A,B〉. �

Let us now turn from the greatest common right divisor to the least common left
multiple. In the commutative case, the greatest common divisor and the least com-
mon left multiple are related through the formula .lc(p) lc(q) gcd(p, q) lcm(p, q) =
pq (Exercise 11), which holds for all .p, q ∈ C[x] and allows us to compute either
one of .gcd(p, q), lcm(p, q) if we know how to compute the other. Unfortunately,
the formula does not hold in the general Ore setting. For example, for .U = xD − 1
and .V = D + 1, we have .UV = xD2 + (x − 1)D − 1, .gcrd(U, V) = 1, and
.lclm(U, V) = (x + 1)D2 + xD − 1. Also, .V U = xD2 + xD − 1 does not match.

Before we discuss the computation of least common left multiples, observe that
the least common left multiple of .U,V ∈ K[∂] in the sense of Definition 4.19 is at
the same time a common left multiple of minimal order. For if .P ∈ K[∂] \ {0} is a
common left multiple of .U,V of minimal order and .P ′ ∈ K[∂] is another common

312 4 Operators

left multiple of .U,V , then .rrem(P ′, P) = P ′P − rquo(P ′, P)P is also a common
left multiple of U and V , and since .ord(rrem(P ′, P)) < ord(P) and .ord(P) is
minimal, we must have .rrem(P ′, P) = 0, which is exactly the condition for P to
be a right divisor of P . With this knowledge, we can prove the following theorem,
which contains some counterparts of the previous theorem and reveals that we have
met the least common left multiple already in the previous section.

Theorem 4.25 Let F be a .K[∂]-module and let .A,B ∈ K[∂]. Then
1. .V (A) + V (B) ⊆ V (lclm(A,B)).
2. .〈A〉 ∩ 〈B〉 = 〈lclm(A,B)〉.
3. .lclm(A,B) = A⊕ B. ��
Proof

1. Writing .m = lclm(u, v), we have .m = ũu = ṽv for certain .ũ, ṽ ∈ K[∂], so if
.f ∈ V (u) + V (v), say .f = fu + fv for some .fu ∈ V (u) and some .fv ∈ V (v),
then .m · f = m · (fu + fv) = (m · fu) + (m · fv) = (ũu · fu) + (ṽv · fv) = 0,
so .f ∈ V (m).

2. “.⊆”: If .P ∈ 〈A〉 ∩ 〈B〉, then .P = ÃA = B̃B for certain .Ã, B̃ ∈ K[∂], so P is
a common left multiple of A and B, and therefore a left multiple of .lclm(A,B),
and therefore an element of .〈lclm(A,B)〉.
“.⊇”: If .M = lclm(A,B), then .M = ÃA = B̃B for certain .Ã, B̃ ∈ K[∂], and
if .P ∈ 〈lclm(A,B)〉, then .P = M̃M for some .M̃ ∈ K[∂], and .P = M̃ÃA =
M̃B̃B shows that .P ∈ 〈A〉 ∩ 〈B〉.

3. Recall that .A ⊕ B was defined as the monic minimal annihilating operator of
.([1], [1]) ∈ K[∂]/〈A〉 × K[∂]/〈B〉. With the definition of the action of .K[∂] on
this module, we have .M · ([1], [1]) = ([M], [M]) = ([0], [0]) if and only if .M ∈
〈A〉 ∩ 〈B〉. It follows from the previous part that .〈lclm(A,B)〉 is the annihilator
of .([1], [1]). Since .lclm(A,B) is the unique monic element of minimal order in
this ideal, it must be equal to .A⊕ B. �

Observe that only one inclusion is claimed in part 1. The other inclusion is false in
general. Counterexamples can be constructed from elements of .K[∂]whose solution
space in F does not have the largest possible dimension.

Example 4.26 Consider the action of .C(x)[D] on .F = C(x) and let .A = xD2 +
D and .B = x(x + 1)D2 + D. We then have .lclm(A,B) = xD3 + 2D2, and it
can be checked that both .V (A) and .V (B) are C-vector spaces generated by 1, so
.V (A) + V (B) = V (A) = V (B). However, .V (lclm(A,B)) contains the additional
polynomial .x 	∈ V (A) + V (B).

It becomes more clear what is going on if we replace F by a larger differential
field. In .F = C(x, log(x)), the vector space .V (A) is generated by 1 and .log(x), and
the vector space .V (B) is generated by 1 and .x + log(x). We see that in this case,
.V (A) + V (B) contains the missing solution x of .lclm(A,B). ��

Part 3 of Theorem 4.25 motivates the following algorithm for computing the least
common left multiple of any two elements of .K[∂].

4.2 Common Right Divisors and Left Multiples 313

Algorithm 4.27 (Least common left multiple)
Input: .U,V ∈ K[∂].
Output: .lclm(U, V) ∈ K[∂].
1 if .U = 0 or .V = 0 then
2 Return 0.
3 Set .U0 = V0 = 1 ∈ K[∂].
4 for .r = 1, 2, . . . , do
5 Compute .Ur = rrem(∂Ur−1, U) ∈ K[∂].
6 Compute .Vr = rrem(∂Vr−1, V) ∈ K[∂].
7 Check whether there exists .(p0, . . . , pr) ∈ Kr+1 \ {0} with

.p0U0 + · · · + prUr = p0V0 + · · · + prVr = 0.

8 if yes then
9 Return .

p0
pr

+ p1
pr

∂ + · · · + pr−1
pr

∂r−1 + ∂r .

Theorem 4.28 Algorithm 4.27 is correct and terminates. In particular, we have

. ord(lclm(U, V)) ≤ ord(U)+ ord(V)

for all .U,V ∈ K[∂] \ {0}. ��
Proof First note that for all .i ∈ Nwe have .Ui = rrem(∂i, U) and .Vi = rrem(∂i, V),
so that line 7 ensures that

.rrem(p0 + p1∂ + · · · + pr∂
r , U) = rrem(p0 + p1∂ + · · · + pr∂

r , V) = 0,

which means that .P = p0 + p1∂ + · · · + pr∂
r is a common left multiple of U

and V . If we find a nonzero coefficient vector .(p0, . . . , pr) in this step, we must
have .pr 	= 0, for otherwise we would have found the solution already in an earlier
iteration. It is therefore safe to divide by .pr (from the left) and to return .p−1

r P as
the correct result.

For the termination, observe that every .Ui is a K-linear combination of
the powers .1, ∂, . . . , ∂ord(U)−1 and that each .Vi is a K-linear combination of
.1, ∂, . . . , ∂ord(V)−1. Therefore, the coefficient comparison with respect to powers
of .∂ done in line 7 leads to a linear system with .ord(U) + ord(V) equations and
.r + 1 equations, which must have a solution as soon as .r > ord(U)+ ord(V). This
proves termination as well as the claimed bound on the order of the output. �

Example 4.29

1. In .C(x)[D], consider .U = (2x + 3)xD2 + 2(4x2 + 3x − 3)D + 2(4x2 − 3),
.V = (x+1)(x−1)D2+2(2x2−x−2)D+2(2x2−2x−1). With .U0 = V0 = 1
and .U1 = V1 = D we obviously have no nontrivial solution yet. In the next step,
we get

314 4 Operators

U2 = rrem(D2, U) = 2(4x2 + 3x − 3)

x(2x + 3)
D − 2(4x2 − 3)

x(2x + 3)
,

V2 = rrem(D2, V) = 2(2x2 − x − 2)

(x + 1)(x − 1)
D − 2(2x2 − 2x − 1)

(x + 1)(x − 1)
,

and there could be .p0, p1, p2 ∈ K such that .p0U0 + p1U1 + p2U2 = p0V0 +
p1V1 + p2V2 = 0. Coefficient comparison leads to the linear system

.

⎛

⎜⎜⎜⎜
⎝

1 0 − 2(4x2−3)
x(2x+3)

0 1 2(4x2+3x−3)
x(2x+3)

1 0 − 2(2x2−2x−1)
(x+1)(x−1)

0 1 2(2x2−x−2)
(x+1)(x−1)

⎞

⎟⎟⎟⎟
⎠

⎛

⎝
p0

p1

p2

⎞

⎠ = 0,

whose only solution is zero. We continue with

U3 = 6(x − 1)(4x2 − 4x − 1)

x2(2x + 3)
D + 2(16x3 − 12x2 − 12x + 3)

x2(2x + 3)
,

V3 = 12(x2 − x − 1)

(x + 1)(x − 1)
D + 4(4x2 − 6x − 1)

(x + 1)(x − 1)
,

but will still not find a solution. In the next step, we have

U4 = 16(4x3 − 3x2 − 6x + 3)

x2(2x + 3)
D − 48(2x − 1)(x2 − x − 1)

x2(2x + 3)
,

V4 = 16(2x + 1)(x − 2)

(x + 1)(x − 1)
D − 48x(x − 2)

(x + 1)(x − 1)
,

and the corresponding linear system

.

⎛

⎜⎜⎜
⎜⎜
⎝

1 0 − 2(4x2−3)
x(2x+3)

2(16x3−12x2−12x+3)

x2(2x+3)
− 48(2x−1)(x2−x−1)

x2(2x+3)

0 1 2(4x2+3x−3)
x(2x+3)

6(x−1)(4x2−4x−1)

x2(2x+3)

16(4x3−3x2−6x+3)

x2(2x+3)

1 0 − 2(2x2−2x−1)
(x+1)(x−1)

4(4x2−6x−1)
(x+1)(x−1)

− 48x(x−2)
(x+1)(x−1)

0 1 2(2x2−x−2)
(x+1)(x−1)

12(x2−x−1)
(x+1)(x−1)

16(2x+1)(x−2)
(x+1)(x−1)

⎞

⎟⎟⎟
⎟⎟
⎠

⎛

⎜⎜⎜
⎜⎜
⎝

p0

p1

p2

p3

p4

⎞

⎟⎟⎟
⎟⎟
⎠
= 0

must have a nonzero solution because it has more variables than equations. A
basis vector of the solution space translates into the operator

. lclm(U, V) = D4 + 8D3 + 24D2 + 32D + 16.

This is really a common left multiple of U and V because we have

4.2 Common Right Divisors and Left Multiples 315

lclm(U, V) =
(

1

x(2x + 3)
D2 + 2(4x + 5)

x(2x + 3)2 D + 8(x + 1)

x(2x + 3)2

)
U

=
(

1

(x+1)(x−1)
D2+ 2(2x2−x−2)

(x+1)2(x−1)2
D+ 4(x2−x−1)

(x+1)2(x−1)2

)
V.

2. In .C(x)[S], consider .U = (x+2)(2x−1)S2−8(x2+3x−1)S+4(x+4)(2x+1)

and .V = (x+4)(x+3)S2−2(x+5)(2x+5)S+4(x+4)(x+5). An analogous
computation as above yields

. lclm(U, V) = S3 − 2(3x + 10)

x + 3
S2 + 4(3x + 11)

x + 3
S − 8(x + 4)

x + 3
,

and this is really a common left multiple because it can be written as

lclm(U, V) =
(1

(2x + 1)(x + 3)
S − 2

(2x + 1)(x + 3)

)
U

=
(1

(x + 5)(x + 3)
S − 2

(x + 5)(x + 3)

)
V.

��
Again, we observe a phenomenon that cannot happen in the commutative case:

the coefficients of the least common left multiple are smaller than those of the input.
This does not happen generically, but as the example shows, it can happen. What
happens generically though is that higher order common left multiples may have
lower degree than the least common left multiple.

Theorem 4.30 Suppose that .K = C(x) and that .σ, δ : K → K map polynomials
to polynomials and do not increase degrees, i.e., .deg(σ (p)), deg(δ(p)) ≤ deg(p)

for all .p ∈ C[x]. Let .U,V ∈ C[x][∂] ⊆ K[∂], .rU = ord(U), .rV = ord(V), and
let .dU , dV ∈ N be such that all coefficients of U have degree at most .dU and all
coefficients of V have degree at most .dV .

1. Let .P = lclm(U, V) ∈ K[∂] and .r = ord(P). Then the coefficients of P are
elements of .C(x) whose numerators and denominators are polynomials of degree
at most

.(r + 1 − rV)dU + (r + 1 − rU)dV .

2. For every .r ≥ rU + rV and every

.d > dU + dV − 1 + rV dU + rUdV

r − rU − rV + 1

there exists a common left multiple of U and V of order r with polynomial
coefficients of degree at most d. ��

316 4 Operators

Proof

1. If .S, T ∈ K[∂] are such that .P = SU = T V , then .ord(S) = r − rU and
.ord(T) = r − rV . Consider an ansatz

.(s0 + s1∂ + · · · + sr−rU ∂r−rU)U − (t0 + t1∂ + · · · + tr−rV ∂r−rV)V = 0

with undetermined coefficients .s0, . . . , sr−rU and .t0, . . . , tr−rV . Equating coef-
ficients of .∂i to zero, for .i = 0, . . . , r , leads to a linear system with .(r −
rU + 1) + (r − rV + 1) variables and .r + 1 equations. By assumption on
.σ and .δ, the corresponding matrix has .r − rU + 1 columns with entries of
degree at most .dU and .r − rV + 1 columns with entries of degree at most .dV .
Because of the uniqueness of .lclm(U, V), the linear system has a solution
space in .C(x)2r+2−rU−rV of dimension 1, so the corresponding matrix has rank
.2r + 1 − rU − rV . By Theorem 1.29, the solution space is generated by a vector
.(s0, . . . , sr−rU , t0, . . . , tr−rV) ∈ C[x]2r+2−rU−rV with

deg(si) ≤ (r + 1 − rV)dU + (r + 1 − rU)dV − dU and

deg(tj) ≤ (r + 1 − rV)dU + (r + 1 − rU)dV − dV

for all .i = 0, . . . , r − rU and .j = 0, . . . , r − rV . The announced degree bound
for .P = SU = T V follows.

2. Let .r ≥ rU + rV and .d > dU + dV − 1 + rV dU+rU dV

r−rU−rV +1 and make an ansatz

.S =
r−rU∑

i=0

d−dU∑

j=0

si,j x
j ∂i T =

r−rV∑

i=0

d−dV∑

j=0

ti,j x
j ∂i

with undetermined coefficients .si,j , ti,j ∈ C. We show that these coefficients
can be instantiated such that .SU = T V . Indeed, equating the coefficients of
.SU − T V with respect to .xj ∂i to zero gives a C-linear system with .(r − rU +
1)(d−dU+1)+(r−rV +1)(d−dV +1) variables and no more than .(r+1)(d+1)

equations. Because of the assumption on d, we have

(r − rU + 1)(d − dU + 1) + (r − rV + 1)(d − dV + 1) − (r + 1)(d + 1)

= (r + 1 − rU − rV)(d + 1 − dU − dV) − rV dU − rUdV

> (r + 1 − rU − rV)
(
dU + dV − 1 + rV dU + rUdV

r − rU − rV + 1
+ 1 − dU − dV

)

− rV dU − rUdV

= 0

and therefore more variables than equations. The nontrivial solution gives rise to
a common left multiple SU whose order may still be less than r , because some of

4.2 Common Right Divisors and Left Multiples 317

the coefficients .si,j of the nonzero solution may be zero. But since also .∂iSU is
a common left multiple for every choice of i, we can get a left multiple of order
exactly r with coefficients of degree at most d. �

Example 4.31 Consider the operators

U = (2x3 + 2x2 + 8)D2 + (7x2 + 5x + 3)D + (3x3 + x2 + x + 7),

V = (9x3 + 8x2 + 6x + 3)D2 + (3x3 + 2x2 + 7x + 5)D + (4x3 + x + 9).

In the following figure, the gray region marks all the points .(r, d) for which there
exists a common left multiple of U and V of order r and degree d. By the theorem
above, all points .(r, d) ∈ N2 satisfying .d ≥ 5 + 12

r−3 belong to this gray region.
As the white space between the curve and the gray region contains no points with
integer coordinates, the bounds provided by the theorem are sharp in this example.

��
Part 2 of Theorem 4.30 allows us to get common left multiples of smaller degree

if we allow for larger orders. If we allow a very large order, we can get the degree
down to .dU + dV . In general, there will not exist a common left multiple of lower
degree. Just consider two differential operators .U,V ∈ C[x][D] whose leading
coefficients are squarefree coprime polynomials of degree .dU and .dV , respectively,
with roots that are non-apparent singularities in the sense of Definition 3.17. Since
every solution of U or V must also be a solution of any common left multiple of
U and V , any such left multiple must have a leading coefficient that is a multiple
of .lcm(lc(U), lc(V)), and if .lc(U) and .lc(V) are coprime as elements of .C[x], the
degree of .lcm(lc(U), lc(V)) = lc(U) lc(V) is .dU + dV .

If there are apparent singularities, the degrees of the left multiples may be
smaller than the bound of Theorem 4.30. In fact, we can use left multiples to lift
the discussion of apparent singularities of Sect. 3.2 to arbitrary Ore algebras. We do
not even need to refer to solutions of an operator.

Definition 4.32 Let .P ∈ C[x][∂], .r = ord(P), and let .p ∈ C[x] be a factor of
.lc(P). Let .n ∈ N. We say that p is removable from P at cost n if there exists an

318 4 Operators

operator .Q ∈ C(x)[∂] such that .QP ∈ C[x][∂] and .lc(QP) | σn(lc(P)/p). In this
case, we say that Q is a p-removing operator for P . ��

For example, if .P = xD − 5 ∈ C[x][D], the factor .p = x is removable at cost
.n = 5 because for .Q = 1

x
D5 we have .QP = D6. This is in line with the examples

we discussed in Sect. 3.2, but removability as defined above is not restricted to the
differential case. For example, if .P = xS − (x + 3) ∈ C[x][S], the factor .p = x is
removable at cost .n = 3, because for .Q = 1

x+3 (S− 1)3 we have .QP = S4 − 4S3 +
6S2 − 4S + 1. One application of removing factors is that with a bit of luck it may
allow us to show that a D-finite sequence has only integer terms.

Example 4.33

1. Consider the D-finite sequence .(an)
∞
n=0 defined by .a0 = 2, .a1 = 3, .a3 = 14, and

.(n− 1)an+2 = (n2 + 3n− 2)an+1 − 2n(n + 1)an (n ∈ N).

Computing the nth term of the sequence with this recurrence requires a division
by .n−3, and there is no obvious reason why this division should always produce
integers. But in fact it does, because .x + 1 is removable for the operator .P =
(x − 1)S2 − (x2 + 3x − 2)S + 2x(x + 1) ∈ C[x][S]. More precisely, we have

.
1
x
(S − 2)P = S3 − (x + 7)S2 + 4(x + 3)S − 4(x + 1),

so the sequence .(an)
∞
n=0 also satisfies the recurrence

.an+3 = (n+ 7)an+2 − 4(n+ 3)an+1 − 4(n+ 1)an,

from which it can easily be seen that .an ∈ Z for all .n ∈ N.
2. An operator whose leading coefficient has non-removable factors may neverthe-

less have integer sequence solutions. For example .P = (x + 2)S − (4x + 2) ∈
C[x][S] is an annihilating operator for the sequence .(Cn)

∞
n=0 of Catalan numbers,

and while we clearly have .Cn ∈ Z for all .n ∈ N, the factor .x + 2 is not
removable. ��
If .p ∈ C[x] is irreducible and .k ∈ N, then according to Exercise 18 a .pk-

removing operator can be assumed to be of the form

.Q = 1

σn(p)en
∂n + qn−1

σn(p)en−1
∂n−1 + · · · + q0

σn(p)e0

for some .e0, . . . , en ∈ N and some .q0, . . . , qn−1 ∈ C[x] with .deg(qi) < ei deg(p)

(.i = 0, . . . , n − 1). If someone gives us suitable n and .e0, . . . , en, we can find
.q0, . . . , qn−1 by making an ansatz .qi = ∑ei deg(p)−1

j=0 qi,j x
j with undetermined

coefficients .qi,j , computing QP , and forcing its coefficients to be polynomials. A
priori, the coefficients of QP are rational functions whose numerators can be written

4.2 Common Right Divisors and Left Multiples 319

as a linear combination of the unknown coefficients, and they become polynomials
whenever the numerators are multiples of the denominators. We can enforce this
by computing the remainders of all numerators with respect to the corresponding
denominators and equate their coefficients to zero. This gives an inhomogeneous
linear system for the unknowns .qi,j , which may or may not have a solution. If it
has a solution and we instantiate .qi,j accordingly, then Q is a .pk-removing operator
for P .

The choice of n and .e0, . . . , en depends on the particular Ore algebra at hand. For
the differential case, desingularization is covered in Sect. 3.3. For other algebras,
bounds on n and .e0, . . . , en can be found in the literature.

There is another, more pragmatic, way to remove removable factors by comput-
ing a least common left multiple. In the proof of Theorem 4.30, we used an ansatz

.(s0 + s1∂ + · · · + srV ∂rV)U = (t0 + t1∂ + · · · + trU ∂rU)V

and compared coefficients to obtain a linear system of equations whose solution
vectors gave rise to the coefficients of operators .S, T that we can multiply from the
left to .U,V , respectively, to obtain a common left multiple of U and V . We have
some freedom to modify this ansatz. Suppose, for example, that .lc(U) contains an
irreducible factor .p ∈ C[x] which is removable at cost n, and that .Q ∈ C(x)[∂] is a
p-removing operator of order n. Consider the alternative ansatz

.(s0 + s1∂ + · · · + sn−1∂
n−1 + snQ)U = (t0 + t1∂ + · · · + trU ∂rU)V .

When .(s0, . . . , sn, t0, . . . , trU) ∈ C[x]n+rU+2 is a nonzero solution vector of the
resulting linear system, then .(s0 + s1∂ + · · · + sn−1∂

n−1 + snQ)U is a left multiple
of U whose leading coefficient is .sn lc(QU), which is not a multiple of .σn(p) unless
.σn(p) happens to be a factor of .sn. It can be shown that only for very few choices of
V will it happen that .σn(p) | sn, so if we randomly choose an operator .V ∈ C[x][∂]
of order n, we can expect that left-multiplying .lclm(U, V) ∈ C(x)[∂] with the
common denominator of its coefficients yields a left-multiple of U which lives in
.C[x][∂] and whose leading coefficient does not contain .σn(p) as a factor.

Note that although we assumed the knowledge about a p-removing operator Q in
the discussion above, we do not actually need to know Q for computing .lclm(U, V).

Note also that taking the least common left multiple of U with some other
operator V is not only likely to remove removable factors, but it is also likely
to introduce new factors. In general, the factor .sn of the new leading coefficient
is not just a constant. In order to get a left-multiple of U with a smaller leading
coefficient, we compute .g = gcd(lc(P), σn(lc(U))) and .s, t ∈ C[x] with .g =
s lc(P) + tσ n(lc(U)). Then .sP + t∂nU is a left-multiple of U whose leading
coefficient g contains neither .σn(p) nor the factors that have been introduced by
the lclm-computation.

320 4 Operators

Exercises

1�. Let .A,B,C ∈ K[∂], .C 	= 0. Prove or disprove:
a. .rrem(A,C) + rrem(B,C) = rrem(A+ B,C).
b. .rrem(Arrem(B,C), C) = rrem(AB,C).
c. .rrem(rrem(A,C)B,C) = rrem(AB,C).

2. Show that for any .U,V ∈ K[∂], there can be at most one greatest common
right divisor and at most one least common left multiple.

3. Show that .gcrd(U, gcrd(V ,W)) = gcrd(gcrd(U, V),W) for all .U,V,W ∈
K[∂].
4. Compute .gcrd(U, V) for .U = (x + 1)∂2 + (x2 + 2x − 1)∂ − x2(x + 1),
.V = (x + 1)∂2 + (3x + 1)∂ − 2x(x + 1) ∈ C(x)[∂] with .σ : C(x) → C(x) defined
by .σ(p(x)) = p(1−x

1+x
) for .p(x) ∈ C(x) and .δ = 0.

5. Compute .S, T such that .gcrd(U, V) = SU +T V for the two pairs of operators
.U,V considered in Example 4.22.

6�. Show part 4 of Theorem 4.21. Hint: First consider the case where .U,V are
coprime.

7. Let .U,V ∈ K[∂] \ {0} and .G = gcrd(U, V). Show that .S, T ∈ K[∂] with
.G = SU + T V and .ord(S) < ord(V)− ord(G) and .ord(T) < ord(U)− ord(G) do
not exist if .U = cV for some .c ∈ K \ {0}.
8�. Let .σ, δ : C[x] → C[x] be such that .deg(σ (p)), deg(δ(p)) < deg(p) for all
.p ∈ C[x]. Suppose that the application of .σ or .δ to a given polynomial .p ∈ C[x] of
degree at most d costs .O∼(d) operations in C. Let .r, d ∈ N , and let .U,V ∈ C[x][∂]
with .ord(V) < ord(U) ≤ r and with coefficients of degree at most d. Show that
.gcrd(U, V) ∈ C(x)[∂] can be computed using .O∼(rωd) operations in C.

9. Find all .α ∈ C for which .U = S2 + (1 + 2x − x2)S − x2(x − α) and .V =
S2 + αS − x(x + α − 1) have a nontrivial greatest common right divisor.

10�. A consequence of Theorem 4.24 is that .K[∂] is a principle left ideal domain,
i.e., every left ideal of .K[∂] is generated by a single element. In contrast, show that
.C[x][∂] is in general not a principle left ideal domain.

11�. Show that .lc(p) lc(q) gcd(p, q) lcm(p, q) = pq for all .p, q ∈ C[x]. Where
do you need commutativity?

12�. Let .a, b ∈ C(x) \ {0} and consider an algebraic function y with minimal
polynomial .y2 + ay+ b. Let .L ∈ C(x)[D] be the monic minimal order annihilating
operator of y (cf. Theorem 3.29). Show that L is a least common left multiple of
two first order operators.

13�. Show that we have .ord(U)+ ord(V) = ord(gcrd(U, V))+ ord(lclm(U, V))

for all .U,V ∈ K[∂] \ {0}.

4.2 Common Right Divisors and Left Multiples 321

14�. When the extended Euclidean algorithm terminates, the components of
.(G, S, T ,G′, S′, T ′) are such that .G = gcrd(U, V) = SU + T V and .G′ = 0.
Show that furthermore, .lclm(U, V) = aS′U = bT ′V for certain nonzero .a, b ∈ K .

Hint: Consider the .K[∂]-submodule of .K[∂]3 generated by .(U, 1, 0) and
.(V , 0, 1).

15. Compute .lclm(U, V) for .U,V from Exercise 4, for the following settings:
a. .σ(p(x)) = p(x−1

x+1) for all .p ∈ C(x), and .δ = 0;
b. .σ = id and .δ = 0;
c. .σ = id and .δ(p(x)) = x−1

x+1p′(x) for all .p ∈ C(x).

16. Find .A,B ∈ C(x)[S] and a .C(x)[S]-module F such that .V (A) + V (B) �

V (lclm(A,B)) in F (cf. Example 4.26).

17��. Let .σ, δ : C[x] → C[x] be as in Exercise 8. Let .r ∈ N, d ∈ N and .U,V ∈
C[x][∂] with .ord(U), ord(V) ≤ r and coefficients of degree at most d. Show that
computing .lclm(U, V) costs no more than .O∼(rωd) operations in C.

Hint: Analyze the algorithm implicit in the proof of Theorem 4.30.

18�. Let .P ∈ C[x][∂] and let .p ∈ C[x] be an irreducible factor of .lc(P) such
that .pk is removable at cost n from P , for some .k ∈ N. Show that there exist
.e0, . . . , en ∈ N and .q0, . . . , qn−1 ∈ C[x] with .deg qi < ei deg(p) (.i = 0, . . . , n)
such that

.Q = 1

σn(p)en
∂n + qn−1

σn(p)en−1
∂n−1 + · · · + q0

σn(p)e0

is a .pk-removing operator for P .

19�. Show that if .p1, p2 ∈ C[x] are removable at cost n from some operator
.P ∈ C[x][∂], then also .lcm(p1, p2) is removable at cost n from P .

20. Analogous to right quotients, right remainders, right divisors, and left
multiples, we can also define left quotients, left remainders, left divisors, and right
multiples. Let .U = D2 − (x2 + 1), V = xD2 + (x2 − 1)D − 2x ∈ C(x)[D].

a. Compute the greatest common left divisor of U and V .
b. Compute the least common right multiple of U and V .

21. Prove or disprove: .U,V ∈ K[∂] have a nontrivial greatest common right
divisor if and only if they have a nontrivial greatest common left divisor.

22. Can a recurrence have a d’Alembertian solution .
∑n

k=1 hk for some hyperge-
ometric term .hk without also having a hypergeometric solution similar to .hn?

References

Common right divisors and left multiples were already computed in the early days of
differential and difference operators and noncommutative polynomial rings. Bostan,

322 4 Operators

Chyzak, Li, and Salvy [88] trace back the history deeply into 19th century, so
that Ore’s paper from 1933 [344] almost seems recent. Even more recent is the
exposition in the tutorial paper of Bronstein and Petkovšek [115]. The paper [88]
contains a careful comparison of various algorithms for computing common left
multiples.

Although the Gauss lemma does not literally hold in the case of Ore algebras,
there is a theorem due to Kovacic [294, Proposition 2] which can be viewed as a
version of the statement for differential operators.

Surgery on the Sylvester matrix is known as subresultant theory and was
introduced into computer algebra by Collins [163] for improving the computation
of polynomial gcds in the commutative case. The theory was adapted to the case
of Ore polynomials by Li [308, 309]. Jaroschek [248, 249] uses Li’s subresultants
to speed up the computation of gcrd’s in .K[∂]. Grigoriev [226] points out that the
idea of subresultants can be extended to the case of more than two operators, and
proposes an algorithm for computing the greatest common right divisor of several
differential operators in polynomial time.

Part 2 of Theorem 4.30 belongs to a family of results concerning the more general
phenomenon that we can sometimes get lower degree coefficients by allowing
an operator to have higher degree. The relationships between orders and degrees
are expressed as order-degree curves. The phenomenon was observed for the first
time by Bostan, Chyzak, Salvy, Lecerf, and Schost for differential equations of
algebraic functions [83]. The result discussed in Theorem 4.30 is taken from a paper
of Kauers [265], which also contains results for other closure properties. Order-
degree curves in the context of summation and integration are discussed in Sect. 5.5.
A connection between order-degree curves and removability of singularities was
observed by Chen, Jaroschek, Kauers, and Singer [136].

Bounds on the order n and the exponents .ei of a p-removing operator have
been derived for the shift case by Abramov, Barkatou and van Hoeij [9, 24], and
for the q-shift case by Koutschan and Zhang [292]. The pragmatic way to remove
removable factors was studied by Chen, Kauers, and Singer [141], although it had
been used long before this paper in internal parts of the Maple library. A refined
version of removability, which also allows to remove constant factors, was proposed
by Zhang [473, 474].

4.3 Several Functions

We have seen in Exercise 26 of Sect. 4.1 that the solutions f of an inhomogeneous
equation .P ·f = g must be D-finite as soon as the inhomogeneous part g is D-finite.
In this case, we have an equation .Q · g = 0 for some nonzero operator Q, and we
can view the two equations .P · f − g = 0, .Q · g = 0 as a coupled system of two
equations for two unknown functions. Every pair .(f, g) of functions that forms a
solution of this system will be such that both f and g are D-finite.

4.3 Several Functions 323

In this section we consider coupled systems of functional equations more
systematically. For a fixed Ore algebra .K[∂] and a .K[∂]-module F , we consider
equations of the form

.Ir∂
m · f + Am−1∂

m−1 · f + · · · + A0 · f = 0

where .f = (f1, . . . , fr) ∈ F r is a vector of unknown functions, .∂ is understood
to act componentwise on such vectors, i.e., .∂ · f = (∂ · f1, . . . , ∂ · fr), and
.A0, . . . , Am−1 are given elements of .Kr×r .

The first observation about such equations is that it suffices to consider the case
.m = 1, because we can always reduce to this situation at the cost of increasing the
size of the matrices. An element f of .F r is a solution of the above equation if and
only if the element .f̃ = (f, ∂ · f, . . . , ∂m−1 · f)T of .Fmr is a solution of the matrix
equation

.∂ · f̃ =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

0 Ir 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 Ir

−A0 · · · · · · · · · −Am−1

⎞

⎟
⎟⎟⎟⎟⎟
⎠

f̃ .

The more interesting question concerns the opposite direction: instead of lowering
the order of the equation at the cost of increasing the size of the matrices, can we also
decrease the size of the matrices at the cost of increasing the order of the equations?
According to the following proposition, the answer is yes.

Proposition 4.34 Let .K[∂] be an Ore algebra and F be a .K[∂]-module. Let .A ∈
Kr×r and let .f = (f1, . . . , fr) ∈ F r be such that .(Ir∂ − A) · f = 0. Then each
component .fi of f is D-finite. ��
Proof We show that there is an operator .P ∈ K[∂] \ {0} such that .P · fi = 0 for
every i. Because of .∂ · f = Af , we have .∂M · f = (σ (M)A + δ(M)) · f for
every .M ∈ Kr×r (Exercise 1). Therefore, by induction, every vector .∂k · f (.k ∈ N)
belongs to the subspace .{Mf : M ∈ Kr×r} ⊆ F r , whose dimension is at most .r×r .
Consequently, the vectors .f, ∂ ·f, . . . , ∂r2 ·f ∈ F r are linearly dependent over K , so
there are .p0, . . . , pr2 ∈ K , not all zero, such that .(p0+p1∂+· · ·+pr2∂r2

) ·f = 0.
�

The argument used in the proof is somewhat brutal. It shows not only that each
component .fi of a solution of the system is D-finite, but it constructs a single
operator P that simultaneously annihilates every component .fi of any solution. This
is more than we asked for, and as a result, the implied bound .r2 on the order of P is
quite pessimistic. As we shall see later in this section, each component .fi is already
annihilated by an operator of order at most r . On the other hand, knowing that there
is an operator which annihilates all components of any solution of a coupled system
offers us a quick alternative proof for some D-finite closure properties. For example,

324 4 Operators

consider two D-finite functions .f, g ∈ F , and suppose that .P · f = Q · g = 0 for
some .P,Q ∈ K[∂] \ {0}. Let .CP ∈ Kr×r and .CQ ∈ Ks×s be the companion
matrices of P and Q, respectively, and consider the system

.∂ · h =
(

CP

CQ

)
h.

Its solution space contains the vector .(f, g) ∈ F 2, and so the operator which
annihilates all components of .(f, g) must annihilate both f and g. It must therefore
annihilate .f + g, thus showing that .f + g is D-finite.

In order to solve a given coupled system, it is not a good idea to work out the
argument in the proof of Proposition 4.34. We can get along with shorter equations
if we proceed more carefully.

Example 4.35 In order to solve the coupled system

f ′(x) = 3x2 + 4

x(3x + 2)
f (x) − 6(x − 2)

x(3x + 2)
g(x)

g′(x) = 3 − x

3x + 2
f (x) + 11

3x + 2
g(x),

we can differentiate the first equation to get

f ′′(x) = 3x2 + 4

x(3x + 2)
f ′(x) + 2(3x2 − 12x − 4)

x2(3x + 2)2 f (x)

− 6(x − 2)

x(3x + 2)
g′(x) + 6(3x2 − 12x − 4)

x2(3x + 2)2 g(x).

Then we can use the second equation to eliminate .g′(x). This gives

.f ′′(x)= 3x2+4

x(3x+2)
f ′(x)+ 2(3x3−12x2+6x − 4)

x2(3x + 2)2 f (x) − 12(4x2 − 5x + 2)

x2(3x + 2)2 g(x).

Finally, use the first equation to eliminate .g(x) and obtain

.f ′′(x) = x2 − 2

x(x − 2)
f ′(x) − 2(x − 1)

x(x − 2)
f (x).

This equation has a solution space generated by .x2 and .exp(x), and once we choose
a solution .f (x) = αx2 + β exp(x), the first equation forces us to set

g(x) =
(

3x2 + 4

x(3x + 2)
f (x) − f ′(x)

)
x(3x + 2)

6(x − 2)
= −1

2
αx3 − 1

3
β exp(x).

4.3 Several Functions 325

The solution space of the coupled system is therefore generated by .(2x2,−x3) and
.(3 exp(x),− exp(x)).

Note that we have found a second order equation for f and another equation
that we may regard as a zeroth order inhomogeneous equation for g. The smallest
operator that annihilates both f and g has order 3. ��

The procedure applied in the example above can be viewed as a kind of
Gaussian elimination applied to the matrix .Ir∂ −A ∈ K[∂]r×r . The usual Gaussian
elimination turns a linear system over a field K into an equivalent linear system over
K which has a particular structure, the essential property being that if the variables
are .x1, . . . , xr , then for every i there is at most one equation which contains .xi but
none of .x1, . . . , xi−1. Although .K[∂] is not a field but a non-commutative ring, we
can achieve the same structure for matrices with entries in .K[∂].
Definition 4.36

1. A matrix .A ∈ K[∂]r×r is called (left) unimodular if there exists a matrix .B ∈
K[∂]r×r such that .BA = Ir . Such a matrix B is then called a left inverse of A.

2. A matrix .A = ((ai,j))
r,s
i=1,j=1 ∈ K[∂]r×s is said to be in Hermite normal form

if

a. For every .j ∈ {1, . . . , s} there is at most one .i ∈ {1, . . . , r} such that .ai,j 	= 0
and .ai,1 = · · · = ai,j−1 = 0. For this i we have .lc∂ (ai,j) = 1.

b. For every .(i, j) ∈ {1, . . . , r} × {1, . . . , s} with .ai,j 	= 0 and .ai,1 = · · · =
ai,j−1 = 0 we have .au,v = 0 for all .(u, v) ∈ {i + 1, . . . , r} × {1, . . . , j − 1}.

c. For every .(i, j) ∈ {1, . . . , r} × {1, . . . , s} with .ai,j 	= 0 and .ai,1 = · · · =
ai,j−1 = 0 we have .ord(a1,j), . . . , ord(ai−1,j) < ord(ai,j).

3. A matrix .A ∈ K[∂]r×s has a matrix .H ∈ K[∂]r×s as Hermite normal form if
H is a Hermite normal form and there is a left unimodular matrix U such that
.UA = H . ��
The technical conditions in the definition of a Hermite normal form express that

the matrix should have a staircase shape with zeros below the staircase and with the
entries corresponding to a corner of the staircase having the largest order among all
entries in their respective column.

Whenever a linear system of operator equations is in Hermite normal form, we
can solve it from the bottom up, just like in linear algebra. For every corner position
.(i, j) in the staircase shape of the matrix, we have an inhomogeneous equation

326 4 Operators

.ai,j · fj = −ai,j+1 · fj+1 − · · · − ai,s · fs

whose inhomogeneous part depends on functions .fj+1, . . . , fs that either have
already been determined (if there is a corner position corresponding to their index),
or are “arbitrary functions” (if not).

Example 4.37

1. The matrix

.H =
(

D − 1 D

0 D2

)

is in Hermite normal form. To solve the system .H · (f1, f2)
T = 0, we first solve

.D2 · f2 = 0, which has a solution space generated by 1 and x. For a generic
element .f2 = c1 + c2x of the solution space, we next solve the first equation
.(D − 1) · f1 = −D · f2 = c2. The space of all triples .(f1, c1, c2) ∈ C[[x]] ×
C2 satisfying this equation is generated by .(1, 0, 1), .(0, 1, 0), and .(ex, 0, 0). It
follows that the solution space of the system .H · (f1, f2)

T = 0 is generated by
.(1, x), .(0, 1), and .(ex, 0).

2. The matrix

.H =
(

D − 1 x D

0 D D2

)

is also in Hermite normal form. We want to solve the system .H · (f1, f2, f3)
T =

0. In this case, the matrix provides no equation for .f3, so we can let .f3 be an
arbitrary element of .C[[x]]. Let .a ∈ C[[x]] be arbitrary. For the choice .f3 = a,
the component .f2 is determined through the inhomogeneous equation .D · f2 =
−D2 · a, whose general solution has the form .f2 = c − a′ for an arbitrary
constant .c ∈ C. Next we consider the equation .(D − 1) · f1 + xf2 +D · f3 = 0.
Plugging the general form of .f2 and the choice .f3 = a into the equation leads to
.(D−1) ·f1 = −cx− (x+1)a′. The homogeneous/parametric part .(D−1) ·f =
−cx has a solution space generated by .(ex, 0) and .(x + 1, 1) in .C[[x]] ×C. The
solutions of the inhomogeneous equation depend on the choice a and cannot be
easily expressed in other terms. We can say however that for every choice a there
is a certain .b ∈ C[[x]] such that the solution of the inhomogeneous equation is
.f1 = b + c1ex + c2(x + 1) for certain constants .c1, c2 ∈ C. The solution set in
.C[[x]]3 of the entire system .H · (f1, f2, f3)

T = 0 can be described as

{
(b, a′, a) + c1(e

x, 0, 0) + c2(x + 1, 1, 0) :
c1, c2 ∈ C, a ∈ C[[x]], and b is such that (D − 1) · b = (x + 1)a′

}
.

Note that as a C-vector space, this solution set has infinite dimension. ��

4.3 Several Functions 327

Faced with a system .A · f = 0 where .A ∈ K[∂]r×s is not in Hermite normal
form, we can exploit that for any unimodular matrix .U ∈ K[∂]r×r we have .A · f =
0 ⇐⇒ UA · f = 0. The idea is thus to successively multiply A by a sequence
of unimodular matrices so as to turn A into a Hermite normal form, and then solve
the system as illustrated in the example above. This is of course the same general
idea as in Gaussian elimination, where the elementary row operations play the role
of the unimodular matrices, the only difference being that since .K[∂] is not a field,
we cannot simply divide a row by a nonzero matrix entry to produce an element by
which all other elements of the column can be eliminated. But we can do division
with remainder. If a column contains two nonzero entries, say .a, a′ ∈ K[∂] with
.ord(a) ≤ ord(a′), we can add the .−rquo(a′, a)-fold of the row containing a to the
row containing .a′. This has the effect that .a′ gets replaced by .rrem(a′, a), which
must have smaller order than .a′. Doing the same computation for all rows in place
of the row containing .a′, we can arrange that a becomes the element of largest
order in the column under consideration. Now letting another nonzero entry of the
column play the role of a (if there still is one), we can repeat the procedure to ensure
that all other entries have strictly lower order. Since orders are natural numbers, we
cannot observe infinitely many descents of the maximal order, so after finitely many
repetitions we will reach a situation in which there is at most one nonzero entry
left in the column. We have then found the first corner of the staircase. We then
treat each of the remaining columns in the same way, except that the choice for a is
limited to such rows which have no nonzero entries to the left of a. This leads to the
following algorithm.

Algorithm 4.38
Input: .A = ((ai,j))

r,s
i=1,j=1 ∈ K[∂]r×s .

Output: A Hermite normal form for A.

1 Set .k = 1.
2 for .j = 1, . . . , s do
3 while there are .i1, i2 ∈ {k, . . . , r} with .i1 	= i2 and .ai1,j , ai2,j 	= 0 do
4 Choose .i1, i2 with .ai1,j , ai2,j 	= 0 and .ord(ai1,j) ≤ ord(ai2,j).
5 for .	 = s, s − 1, . . . , j do
6 .ai2,	 = ai2,	 − rquo(ai2,j , ai1,j)ai1,	.
7 if there is an .i ∈ {k, . . . , r} with .ai,j 	= 0 then
8 Choose such an i and swap the ith and kth row of A.
9 for .	 = s, s − 1, . . . , j do
10 .ak,	 = lc(ak,j)

−1ak,	.
11 for .i = 1, . . . , k − 1 and .	 = j, . . . , s do
12 .ai,	 = ai,	 − rquo(ai,j , ak,j)ak,	.
13 Set .k = k + 1.
14 Return A.

Theorem 4.39 Algorithm 4.38 is correct and terminates. ��

328 4 Operators

Proof For the termination, the only critical issue is the while loop starting in
line 3. Within this loop, .ai2,j gets replaced by .ai2,j − rquo(ai2,j , ai1,j)ai1,j =
rrem(ai2,j , ai1,j), whose order is strictly smaller than that of .ai1,j . No entry of the
j th column can get replaced by an element of higher order. The sum of the orders of
the entries of the j th column is a natural number which decreases in every iteration.
Since this cannot happen infinitely often, the loop must terminate.

For the correctness, note first that there is a unimodular matrix U such that
multiplying U from the left to the input matrix produces the output matrix. This
is because the matrix is only modified in lines 6, 8, 10 and 12, and the operations
performed there correspond to left-multiplications by certain unimodular matrices
(Exercise 7). The effect of the entire algorithm corresponds to the product of these
matrices.

To show, secondly, that the output is a Hermite normal form, we show by
induction on j that at the end of the j th iteration of the loop starting in line 2,
the first j columns of A form a Hermite normal form whose first .k − 1 rows are
nonzero. For the induction base .j = 1 there is nothing to show. Suppose the claims
are true for some .j − 1 and consider the j th iteration. As the while loop starting
in line 3 only affects rows that have only zeros in the first .j − 1 columns, these
operations do not affect any entries of these columns. In particular, the Hermite
normal form structure of the first .j − 1 columns is preserved. After the while loop,
the j th column contains at most one nonzero entry in rows .k, . . . , r . If it has none,
the first j columns form a Hermite normal form with .k − 1 nonzero rows. If there
is a nonzero entry, then after executing lines 8–12, the nonzero entry is in row k and
monic, and all entries above have lower order. We have thus again a Hermite normal
form with k nonzero rows. After updating the counter k in step 13, we have reached
the claimed situation. �

Example 4.40 Consider the matrix

.A =
(

D − 3x2+4
x(3x+2)

6(x−2)
x(3x+2)

− 3−x
3x+2 D − 11

3x+2

)

∈ C(x)[D]2×2,

which corresponds to the system already considered in Example 4.35. We compute
a Hermite normal form of A using Algorithm 4.38. The first column is cleaned up by

adding the .(D− 3x2+4
x(3x+2)

) 3x+2
3−x

-fold of the second row to the first (line 6), exchanging

the two rows (line 8), and multiplying the second row by .− 3x+2
3−x

(line 10). The result
is

.

(
1 3x+2

x−3 D − 11
x−3

0 −3x−2
x−3 D2 + (3x+2)(x2−6)

x(x−3)2 D − 3(x−2)(3x+2)

x(x−3)2

)

.

After multiplying the second row by .
x−3

−3x−2 , we obtain a Hermite normal form of A:

4.3 Several Functions 329

.

(
1 3x+2

x−3 D − 11
x−3

0 D2 + 6−x2

x(x−3)
D + 3(x−2)

x(x−3)

)

.
��

According to its specification, Algorithm 4.38 computes “a” Hermite normal
form for a given matrix in .K[∂]r×s . We show next that for every matrix in .K[∂]r×s

there is at most one Hermite normal form, so that we can meaningfully speak about
“the” Hermite normal form of a matrix.

Proposition 4.41 Let .H1,H2 ∈ K[∂]r×s be two matrices in Hermite normal form,
and suppose that there is a unimodular matrix .U ∈ K[∂]r×r such that .UH1 = H2.
Then .H1 = H2. ��
Proof We have to show that if there is a U such that .UH1 = H2, we can choose
.U = Ir as well. We proceed inductively along the structure of a Hermite normal
form.

For the base case, note that .H1 = 0 if and only if .H2 = 0. More generally, the
first column of .H1 is zero if and only if the first column of .H2 is. For the induction
step, it therefore suffices to consider

.H1 =
(

L1 P1

0 Q1

)
and H2 =

(
L2 P2

0 Q2

)
,

with .L1, L2 ∈ K[∂] \ {0}, .P1, P2 ∈ K[∂]1×(s−1), and .Q1,Q2 ∈ K[∂](r−1)×(s−1).
By the induction hypothesis, we have .Q1 = Q2. From .UH1 = H2 we get
.u1L1 = e1L2, where .u1 is the first column of U and .e1 is the first unit vector.
Coefficient comparison implies in succesion: all components of .u1 except for the
first are zero, the first component of .u1 has order zero (otherwise U can’t be
invertible in .K[∂]r×r), .u1 = e1 (using .lc(L1) = lc(L2)), and finally .L1 = L2.

We can thus conclude that .U =
(

1 A

0 Ir−1

)
for some .A = (a2, . . . , ar) ∈ K[∂]r−1

and it remains to show that we can take .A = 0. Let .i ∈ {2, . . . , r}.
Case 1: The ith row of .H1 is nonzero—say the first nonzero element is .M ∈ K[∂]

and appears in column j . Let .h1, h2 be the j th columns of .H1,H2, respectively.
By the induction hypothesis, the vectors .h1, h2 can only differ in their first
components .h1,1, .h2,1. More precisely, we have .h1,1+aiM = h2,1, and since the
structural requirements for a Hermite normal form require .ord(h1,1), ord(h2,1) <

ord(M), it follows that .ai = 0.
Case 2: The ith row of .H1 is zero. In this case, let j be arbitrary let .h1, h2 be the

j th columns of .H1,H2 with .h1,1, h2,1 as their (respective) first components. We
then have .h1,1 + ai0 = h2,1, so .h1,1 and .h2,1 agree regardless of the choice of .ai

and we may take .ai = 0. �

Like for matrices over a field, we can draw some useful conclusions from
Proposition 4.41. First of all, a matrix .A ∈ K[∂]r×r is unimodular if and only
if its Hermite normal form is .Ir . Next, a matrix is unimodular if and only if it

330 4 Operators

can be written as a product of elementary matrices (matrices corresponding to
elementary row operations). Finally, since elementary matrices are both left and
right unimodular, we find that every left-unimodular matrix is right-unimodular and
vice versa, so there is no need to distinguish these notions.

The Hermite normal form has the advantage that we can solve higher order
coupled linear systems directly, without having to translate them into first order
systems with larger matrices. A disadvantage of the approach is that it is somewhat
expensive. There is also an approach for solving linear systems of operator equations
without increasing the order or the matrix sizes. Starting from a first order system
.(Ir∂ − A) · f = 0 with .A ∈ Kr×r , the idea is to find a basis change that turns A

into a companion matrix. If this can be done, the system naturally translates into an
equation of order r with coefficients in K , and any solution of this equation can be
translated back into a solution of the original system.

It must not be overlooked that the action of .∂ interferes with a basis change. If
.P ∈ Kr×r is an invertible matrix and we set .g = Pf , then

∂ · g = ∂ · Pf = σ(P)(∂ · f) + δ(P)f = σ(P)Af + δ(P)f = (σ (P)A+ δ(P))P−1g

so the basis change matrix P transforms the system .(Ir∂ − A) · f = 0 into the
system .(Ir∂ − B) · g = 0 where .B = (σ (P)A+ δ(P))P−1 ∈ Kr×r . The matrix B

is called the gauge transform of A with respect to P .

Definition 4.42 Let .K[∂] be an Ore algebra and .P ∈ Kr×r be an invertible matrix.
For .A ∈ Kr×r , the matrix .P [A] := (σ (P)A + δ(P))P−1 is called the gauge
transform of A with respect to P . Two matrices .A,B ∈ Kr×r are gauge equivalent
if there exists an invertible matrix .P ∈ Kr×r such that .P [A] = B. ��
Example 4.43

1. Continuing the previous example, let

.A =
(

3x2+4
x(3x+2)

− 6(x−2)
x(3x+2)

3−x
3x+2

11
3x+2

)

∈ C(x)2×2

and consider the system .(I2D − A) · f = 0. With

.P =
(

1 0
3x2+4

x(3x+2)
− 6(x−2)

x(3x+2)

)

∈ C(x)2×2

we have

.P [A] =
(

0 1

− 3(x−2)
x(x−3)

− 6−x2

x(x−3)

)

.

4.3 Several Functions 331

The matrix .P [A] is the companion matrix of the operator .D2 + 6−x2

x(x−3)
D +

3(x−2)
x(x−3)

∈ C(x)[D]. The solution .x2 of this operator gives rise to the solution

.(x2, 2x) of the coupled system .(I2D−P [A]) · f = 0, which in turn gives rise to
the solution .P−1(x2, 2x) = (x2, x3/2) of the original system .(I2D − A) · f =
0. Likewise, the solution .exp(x) of the operator translates into the solution
.P−1(exp(x), exp(x)) = (exp(x),− exp(x)/3).

2. For .L = D2 − x ∈ C(x)[D], the module .C(x)[D]/〈L〉 is a .C(x)-vector space
of dimension 2. The sets .B1 = {1,D} and .B2 = {x + D, x − D} are bases
of this vector space. For transforming a .B1-representation of some element of
.C(x)[D]/〈L〉 into a .B2-representation of the same element, we do not need a
gauge transform. Instead, this is a matter of the usual matrix-vector multiplication
from linear algebra. ��
Given an arbitrary matrix .A ∈ Kr×r , our goal is to find an invertible matrix

.P ∈ Kr×r such that .P [A] has the form of a companion matrix. Suppose .P ∈ Kr×r

is such a matrix, i.e., such that .P [A] = (σ (P)A+ δ(P))P−1 = CL, where

.CL =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1
∗ · · · · · · · · · ∗

⎞

⎟
⎟⎟⎟⎟⎟
⎠

∈ Kr×r

is the companion matrix of some operator .L ∈ K[∂]. We then have .σ(P)A+δ(P) =
CLP , and by the shape of a companion matrix, the ith row of .CLP is equal to the
.(i + 1)st row of P , for .i = 1, . . . , r − 1. At the same time, if we know the ith
row of P , we can compute from it the ith row of .σ(P)A + δ(P), so if we have
.σ(P)A + δ(P) = CLP , we can compute the .(i + 1)st row of P from the ith row
of P , for every .i = 1, . . . , r − 1. In other words, it suffices to determine the first
row of a suitable transformation matrix P . The remaining rows of P are uniquely
determined.

Conversely, let .p ∈ Kr be any vector (viewed as a row vector) and consider
the matrix .P ∈ Kr×r whose rows are .p1, . . . , pr ∈ Kr defined by .p1 = p and
.pi+1 = σ(pi)A+ δ(pi) (.i = 1, . . . , r − 1). We then have

.

⎛

⎜
⎜⎜⎜
⎝

σ(p1)
...
...

σ (pr−1)

⎞

⎟
⎟⎟⎟
⎠

A+

⎛

⎜
⎜⎜⎜
⎝

δ(p1)
...
...

δ(pr−1)

⎞

⎟
⎟⎟⎟
⎠
=

⎛

⎜
⎜⎜⎜
⎝

0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1

⎞

⎟
⎟⎟⎟
⎠

︸ ︷︷ ︸
∈K(r−1)×r

⎛

⎜⎜
⎜⎜⎜⎜
⎝

p1

p2
...
...

pr

⎞

⎟⎟
⎟⎟⎟⎟
⎠

,

332 4 Operators

and it remains to check whether there is some vector .u ∈ Kr which we can use as
an additional rth row in the first matrix on the right so that the left hand side gains
.σ(pr)A + δ(pr) as an rth row. The question amounts to an inhomogeneous linear
system for the unknown vector u, and since we are only interested in situations
where P is invertible, we can be sure that a unique vector u exists.

Whether P is invertible depends on the choice of its first row p. A vector .p ∈ Kr

is called cyclic (with respect to .A, σ, δ) if the matrix .P ∈ Kr×r constructed as
described above is invertible. Equivalently, p is cyclic if and only if the vectors
.p1, . . . , pr ∈ Kr form a basis of .Kr . We could now proceed to argue that almost
all vectors are cyclic and propose a randomized algorithm that picks candidates
at random until a cyclic vector is encountered. Some implementations proceed
like this. In fact, it is not really so dramatic if we accidentally encounter a non-
cyclic vector. If p is not cyclic, i.e., if .p1, . . . , pr ∈ Kr do not form a basis
of .Kr , then there is some .i < r such that .p1, . . . , pi are linearly independent
but .pi+1 = σ(pi)A + δ(pi) is a K-linear combination of .p1, . . . , pi . We can
adjust the definition of the vectors .p1, p2, . . . by setting .pi+1 = σ(pi)A + δ(pi)

only if this vector does not belong to the K-linear subspace of .Kr generated by
.p1, . . . , pi , and otherwise setting .pi+1 to an arbitrary vector that does not belong
to the subspace generated by .p1, . . . , pi . With this definition, it is clear that the
resulting vectors .p1, . . . , pr will be a basis of .Kr , and if .P ∈ Kr×r is the matrix
which has .p1, . . . , pr as rows, then we have .σ(P)A+δ(P) = A′P for some matrix
.A′ ∈ Kr×r which has the form

This is in general not a companion matrix, but it is close enough. If there are m

companion-like blocks in .A′ of respective sizes .r1, . . . , rm, then the system .(Ir∂ −
A′) · f = 0 translates into a system

L1 · f1 = 0

L2 · f2 = M2,1 · f1

...

4.3 Several Functions 333

Lm · fm = Mm,1 · f1 + · · · + Mm,m−1 · fm−1

in which .L1, . . . , Lm ∈ K[∂] are known operators of respective orders .r1, . . . , rm,
the .Mi,j ∈ K[∂] are known operators of order .< rj , and .f1, . . . , fm are unknown
scalar functions. The system is uncoupled in the sense that we can solve it if we
know how to solve (inhomogeneous) scalar equations.

If we choose the kth unit vector as the first p, then the resulting operator
.L1 corresponding to the first block will be an annihilating operator for the kth
component of any solution vector .f ∈ Kr of the original system .(Ir∂ −A) · f = 0.
Since .ord(L1) ≤ r , we see that each component of a solution vector of such a system
is D-finite of order at most r . This refines the bound obtained in Proposition 4.34.

The uncoupling algorithm described above can be summarized as follows:

Algorithm 4.44
Input: .A ∈ Kr×r , an endomorphism .σ : K → K , and a .σ -derivation .δ : K → K .
Output: An invertible matrix .P ∈ Kr×r such that .P [A] has the shape described
above.

1 Set .P = 0 ∈ Kr×r and .k = 0.
2 while .k < r do
3 Choose a vector .p ∈ Kr×r \ {0} and set the .(k + 1)st row of P to p.
4 for .i = 2, . . . , r − k do
5 Set .p = σ(p)A+ δ(p) and set the .(k + i)th row of P to p.
6 Set k to be the largest number such that the first k rows of P are linearly

independent over K .
7 Return P .

Theorem 4.45

1. Algorithm 4.44 is correct.
2. Suppose that .K = C(x) and .σ, δ map polynomials to polynomials with

.deg σ(p), deg δ(p) < deg p for all .p ∈ C[x], and suppose that the application
of .σ and .δ to a polynomial of degree d costs no more than .O∼(d) operations inC.
For this setting, Algorithm 4.44 can be implemented in such a way that whenever
it is applied to any matrix .A ∈ C[x]r×r with entries of degree at most d, it
performs no more than .O∼(rω+2d) operations in C. ��

Proof

1. That P is invertible follows from the choice of k in line 6 and the termination
condition in line 2. That .P [A] has the required form follows from the discussion
above. This implies the correctness of the algorithm.

2. We need to be more specific about the implementation of lines 3 and 6. If in line 3
we always choose a vector with entries in C, then P will always be a matrix with
entries of degree at most rd.
For line 6, we can apply a bisection search to find k such that the top k rows
of P form a matrix of rank k. This takes at most .log(k) rank computations,

334 4 Operators

each of which can be done with at most .O∼(rωrd) operations in C according
to Theorem 1.28. Since .log(k) ≤ log(r), identifying k also costs .O∼(rωrd)

operations. If k increases in each iteration of the loop, the total cost contributed
by line 6 amounts to .O∼(rω+2d) operations.
In order to ensure that k increases in each loop iteration, we should choose in
line 3 a vector p which does not belong to the vector space generated by the first
k rows of P . One way of doing so is to maintain a pool of candidates, which is
initially set to the set of all the unit vectors .e1, . . . , er . In line 3, we select an
element from the pool and test whether it is linearly independent with the first
k rows of P . This costs .O∼(rωrd) operations. If it is linearly dependent, it will
always be, so we can safely remove it from the pool and try another element.
Once we find an element that is linearly independent, we take it as p and remove
it from the pool. Since the r vectors initially in the pool form a basis of .Kr , we
will never run out of candidates. Moreover, we will altogether at most r times
check whether a pool element is suitable, so the total number of operations spent
in line 3 can be limited to .O∼(rω+2d).
With the assumptions on .σ and .δ, each execution of line 5 costs .O∼(r2d)

operations, so each execution of the loop in lines 4 and 5 amounts to .O∼(r3d)

operations, and the total cost to .O∼(r4d). Since .ω ≥ 2, this is bounded by
.O∼(rω+2d) operations. �

Algorithm 4.44 pays a price for being a deterministic algorithm. If we are willing
to turn it into a randomized algorithm, we could simply let it choose a random
element of .Kr as p, build a candidate transformation matrix P from it, and check
whether it is invertible. With high probability, this will be the case. If it is not the
case, we can either return “failed” or try again, depending on whether we prefer a
Monte Carlo or a Las Vegas style randomized algorithm. Either way, the expected
runtime drops to .O∼(rω+1d) for the setting described in part 2 of Theorem 4.45.

Being deterministic, Algorithm 4.44 has the feature that we can also choose
simple vectors as p in line 3, which might not qualify as honest random elements
of .Kr . This way, we can keep the degrees of the entries in P low.

Coupled systems of functional equations arise naturally in a number of contexts.
As an example, let .K[∂] be an operator and .L1, L2 ∈ K[∂] be two elements of
some order r , and consider the corresponding quotient modules .M1 = K[∂]/〈L1〉
and .M2 = K[∂]/〈L2〉. Given .L1, L2, how can we decide whether .M1 and .M2 are
isomorphic as .K[∂]-modules? Since the module .M1 is generated by .[1], a module
homomorphism .h : M1 → M2 is uniquely determined by an operator .U ∈ K[∂]
such that .h([1]) = [U] ∈ M2. For more clarity, instead of the generic equivalence
class notation .[P], we will write .[P]Li

for the class of P modulo .Li , so that .[P]Li

is more easily recognized as an element of .Mi (.i = 1, 2). For any other operator
.P ∈ K[∂] we have

.[PU]L2 = P · [U]L2 = P · h([1]L1) = h(P · [1]L1) = h([P]L1).

4.3 Several Functions 335

In order for h to be well-defined, we must ensure that the zero of .M1 is mapped to the
zero of .M2, i.e., that .h([0]L1) = h([L1]L1) = [L1U]L2 = [0]L2 , i.e., that .L1U =
V L2 for some .V ∈ K[∂]. We can search for U and V simultaneously by making an
ansatz .U = u0+· · ·+ur−1∂

r−1, .V = v0+· · ·+vr−1∂
r−1 and equate the coefficients

of .L1U − V L2 to zero. This looks similar to the computation of least common left
multiples, but observe that U is now to the right of .L1 rather than to the left. By
commuting the powers of .∂ appearing in .L1 with the undetermined coefficients
of U , we introduce derivations of these, so that the coefficient comparison does not
simply result in a linear system over K but in a system of functional equations.

The solutions of the functional equations give rise to the choices of U that lead to
well-defined homomorphisms from .M1 to .M2. In order to decide the isomorphism
question, it remains to check whether any of these homomorphisms is surjective.
For a specific choice U , this is the case if and only if the elements .[∂iU]L2 (.i =
0, . . . , r − 1) are linearly independent over K , which is easy to check with linear
algebra. The set of all possible choices U forms a finite-dimensional C-vector space,
generated by .U1, . . . , Um. In order to check whether this space contains an element
that corresponds to an isomorphism, consider a linear combination .U = c1U1 +
· · ·+cmUm with undetermined coefficients .c1, . . . , cm and use linear algebra to find
out whether the elements .[∂iU]L2 (.i = 1, . . . , r − 1) are linearly dependent for
every choice of .c1, . . . , cm. This is the case if and only if there is no isomorphism.

Example 4.46

1. Let .L1 = D2 − x and .L2 = (1 − x)D2 + D + (x2 − x − 1), and consider the
modules .M1 = C(x)[D]/〈L1〉 and .M2 = C(x)[D]/〈L2〉. For deciding whether
.M1 ∼= M2 as .C(x)[D]-modules, we make an ansatz

.(D2 − x)(u0 + u1D) − (v0 + v1D)((1 − x)D2 +D + (x2 − x − 1)) = 0

with undetermined coefficients .u0, u1, v0, v1 ∈ C(x). Expanding and collecting
terms gives

(
u′′0 − xu0 + (−x2 + x + 1)v0 + (1 − 2x)v1

)

+ (
2u′0 + u′′1 − xu1 − v0 + (−x2 + x + 1)v1

)
D

+ (
u0 + 2u′1 + (x − 1)v0

)
D2 + (

u1 + (x − 1)v1
)
D3 = 0.

By equating the coefficients of .D2 and .D3 to zero, we can solve for .v0, v1 in
terms of .u0, u1, u

′
1, and plugging these expressions into the coefficients of .D0

and .D1 gives a coupled system of differential equations for .u0 and .u1:

(x − 1)u′′0 + 2(x2 − x − 1)u′1 − u0 + (2x − 1)u1 = 0,

(x − 1)u′′1 + 2(x − 1)u′0 + u0 + 2u′1 − u1 = 0.

336 4 Operators

With the methods described in this section, we can determine the solution space
of this system. It turns out to be generated by .(u0, u1) = (1

1−x
, 1

1−x
) ∈ C(x)2.

It remains to check whether for .U = 1
1−x

(1+D) the operators .rrem(U,L2) and
.rrem(DU,L2) are linearly independent over .C(x). Since they are, it follows that
.M1 and .M2 are isomorphic.

2. Now let .L1 = D2 − (x + 1)D + x and .L2 = (2 − x2)D2 + 2xD + (x2 − 6),
and consider the modules .M1 = C(x)[D]/〈L1〉 and .M2 = C(x)[D]/〈L2〉. In
this case, the ansatz .L1(u0 + u1D) − (v0 + v1D)L2 = 0 leads to a system of
equations which, after eliminating .v0 and .v1, reads

(x2 − 2)u′′0 − (x + 1)(x2 − 2)u′0 + (x3 + x2 − 2x − 6)u0

+ (2x2 − 6)u′1 − (x + 3)(x2 − 2x − 2)u1 = 0,

(2x2 − 2)u′0 + (−x3 − x2 + 4x + 2)u0

+ (x2 − 2)u′′1 + (−x3 − x2 + 6x + 2)u′1 + (x3 − x2 − 4x − 4)u1 = 0.

Its solution space is generated by .(u0, u1) = (x−2
x2−2

, x−1
x2−2

), but for .U = x−2
x2−2

+
x−1
x2−2

D we have .rrem(DU,L2) = U , which is obviously linearly dependent
with U . It follows that although there is a nontrivial homomorphism from .M1
to .M2, the modules are not isomorphic.

3. For .L1 = D2 − x and .L2 = D2 + x the resulting coupled system has only the
solution .(u0, u1) = (0, 0), so in this case, there is no nontrivial homomorphism
from .C(x)[D]/〈L1〉 to .C(x)[D]/〈L2〉. ��
In order to solve a coupled system, we uncouple it so that algorithms from earlier

chapters become applicable. We have seen that one way of uncoupling is to apply
a suitable gauge transformation to the system. Gauge transformations are not only
useful for uncoupling, but they can also be used to study other aspects of the system
at hand. For example, gauge transformations are used for extending the definition
of removable singularities to systems, and for detecting them. For simplicity, let us
restrict to the shift case. In this case, an element of .C/Z is called a singularity of a
system .(IrS − A) · f = 0 with .A ∈ C(x)r×r if it contains a pole of an entry of A.
A singularity is called removable if there is a polynomial matrix .P ∈ C[x]r×r with
nonzero determinant (so that it is invertible as element of .C(x)r×r) such that .P [A]
does not have this singularity.

Example 4.47 Let

.A =
(

3x3−4x2−2x−2
x(x+1)

− x3−7x2−2x−2
2x(x+1)

2(3x3−4x2−x−1)
x(x+1)

− 2x3−6x2−x−1
x(x+1)

)

∈ C(x)2×2

and consider the system .(I2S−A) ·f = 0. Its only singularity is the class .Z ∈ C/Z.
To see whether it is removable, we first try to eliminate the factors .x+1 and then the

4.3 Several Functions 337

factors x from the denominators. Useful gauge transforms to this end are constant
matrices and diagonal matrices with polynomial entries. Using constant matrices,
we can try to remove poles by applying suitable linear combinations to the rows and
columns of the matrix at hand. For example, since

.[(x + 1)−1]A =
(

7 −4
14 −8

)
,

we can make some progress by adding the .(−2)-fold of the first row to the second.
Note that this has the side effect that the 2-fold of second column gets added to the
first, but this will not spoil the desired elimination effect.

P1 =
(

1 0
−2 1

)
⇒ A1 := σ(P1)AP−1

1 =
(

x(2x+3)
x+1 − x3−7x2−2x−2

2x(x+1)

−2x − x2+1
x

)

.

We have successfully removed the factor .x + 1 from the denominators of the
second row. To remove them also from the first row, we can simply multiply this
row by .x + 1. This has the side effect that the first column will be divided by x,
but we are lucky that x appears in all numerators of the first column, so that no
new denominators get introduced. If this were not the case, we would nevertheless
proceed in the same way, because we will also have to deal with the denominators
x in the second column.

P2 =
(

x 0
0 1

)
⇒ A2 := σ(P2)A1P

−1
2 =

(
2x + 3 − x3−7x2−2x−2

2x

−2 − x2+1
x

)

.

To get rid of the remaining denominators, considering

.[x−1]A2 =
(

0 1
0 −1

)

suggests adding the first column to the second. This gives

P3 =
(

1 0
1 1

)
⇒ A3 := σ(P3)A2P

−1
3 =

(
(x−1)(x2−2x+2)

2x
− x3−7x2−2x−2

2x
1
2 (x − 1)x 1

2 (−x2 + 5x + 2)

)

,

from which we clear denominators by multiplying the first row with x:

P4 =
(

x − 1 0
0 1

)

⇒ A4 := σ(P4)A3P
−1
4 =

(1
2 (x2 − 2x + 2) 1

2 (−x3 + 7x2 + 2x + 2)
x
2

1
2 (−x2 + 5x + 2)

)
.

338 4 Operators

Since we have reached a matrix with polynomial entries, the singularity .Z of A is
removable. The matrix .P = P4P3P2P1 ∈ C[x]2×2 is a gauge transform which
removes the singularity from A. ��

Exercises

1. Let .K[∂] be an Ore algebra. Show that .Kr×r [∂] is an Ore algebra if .σ and .δ

are defined entry-wise by the .σ and .δ of .K[∂].
2. Let .K[∂] be an Ore algebra and .A ∈ Kr×r be invertible. Show: a. .σ(A−1) =
σ(A)−1; b. .δ(A−1) = −σ(A−1)δ(A)A−1.

3. Consider the Ore algebra .C[∂] (i.e., .σ = id and .δ = 0). Show that for every .A ∈
Cr×r there is an operator .L ∈ C[∂] of order at most r such that every component of
a solution .f ∈ F r of the system .(Ir∂ −A) · f = 0 is annihilated by L. This refines
the bound of Proposition 4.34 for this particular situation.

4. Show that for every .r ∈ N there exists a matrix .A ∈ C(x)r×r such that every
operator .L ∈ C(x)[D]\{0} which annihilates each component of a solution .f ∈ F r

of the system .(IrD − A) · f = 0 has order at least .r2.

5�. In the shift case, reprove that D-finiteness is preserved under multiplication
using Proposition 4.34.

6. Show that .

(
S + 1 S2 − x(x + 2)S + x

1 S − x2

)
∈ C(x)[S]2×2 is unimodular.

7. a. Show that every invertible matrix .A ∈ Kr×r is unimodular as an element of
.K[∂]r×r .

b. Let .r ∈ N, .u, v ∈ {1, . . . , r}, .u 	= v, and let .L ∈ K[∂]. Let .A =
((ai,j))

r
i,j=1 ∈ K[∂]r×r be defined by .au,v = L and .ai,j = δi,j when

.(i, j) 	= (u, v). Show that A is unimodular.

8. Find all solutions in .C(x)3 of the following systems:

a. .(I3S − 1
2x(1+x)

⎛

⎝
x(2x + 1) −4x(x + 1) −1

0 −2x(x + 1) 0
−x(x + 1) 4x(x + 1)2 (x + 1)(2x + 1)

⎞

⎠) · f = 0

b. .(I3D − 1
2x2

⎛

⎝
−x x2 −1
0 2x2 0

−x2 −x3 x

⎞

⎠) · f = 0

9. Construct a matrix .A ∈ C(x)3×3 so that the solution space of the system .(I3D−

A) · f = 0 in .C(x)3 is generated by .

⎛

⎝
1
x

x2

⎞

⎠ ,

⎛

⎝
1

x + 1
(x + 1)2

⎞

⎠ ,

⎛

⎝
1

x + 2
(x + 2)2

⎞

⎠.

4.3 Several Functions 339

10. Let .A ∈ K[∂]r×1 \ {0} and let H be the Hermite normal form of A. Show that
.H = (G, 0, . . . , 0)T where .G ∈ K[∂] is the greatest common right divisor of the
entries of A.

11. In this section, we have only discussed homogeneous systems .(Ir∂−A) ·f =
0. We want to adapt the methods to solve parameterized inhomogeneous systems
.(Ir∂ − A) · f = c1g1 + · · · + cmgm where .A ∈ Kr×r and .g1, . . . , gm ∈ Kr are
given and .f ∈ Kr and .c1, . . . , cm ∈ C are unknown. How can we do this a. using
the Hermite normal form; b. using Algorithm 4.44?

12�. Show that gauge equivalence is an equivalence relation.

13. Design an algorithm for the differential case with .K = C(x) that decides
whether two given matrices .A,B are gauge equivalent.

14��. Prove or disprove:
a. Any two gauge equivalent systems have the same solution space.
b. Any two companion matrices which are gauge equivalent are in fact equal.
c. For .A = Ir there is no cyclic vector when .r ≥ 2.

15. Show that whenever .A ∈ Kr×r is a companion matrix, .e1 is a cyclic vector.
Find a matrix .A ∈ Kr×r which is not a companion matrix but for which .e1 is
nevertheless a cyclic vector.

16. Let .L ∈ K[∂] with .r = ord(L) > 0 and let .CL ∈ Kr×r be the companion
matrix of L. Show that the definition .∂ · p := σ(p)CL + δ(p) turns the K-vector
space .Kr into a .K[∂]-module which is isomorphic to .K[∂]/〈L〉.
17�. Let .K[∂] be an Ore algebra and F be a .K[∂]-module such that for every
.L ∈ K[∂] of order r the solution space .V (L) has dimension at most r (as vector
space over C). Show that for every .A ∈ Kr×r the solution space of the system
.(Ir∂ − A) · f = 0 in .F r has dimension at most r (as vector space over C).

18�. Show that for every .A ∈ C[[x]]r×r the system .(IrD − A) · f = 0 has r

linearly independent solutions in .C[[x]]r .

19�. Let .A =
(

0 1/x

0 0

)
∈ C(x)2×2. Show that 0 is not a removable singularity in

the differential case.
Hint: Consider the solutions of the system .(I2D−A) · f = 0 and use the results

of the previous two exercises.

20��. Gauge transformations can be defined not only for matrices, but also
for operators. For .P,A ∈ K[∂] with .lc(P) = 1, the operator .P [A] :=
rquo(lclm(P,A), P) ∈ K[∂] is called the gauge transform of A with respect to P .
Suppose that .K[∂] acts on a module F such that .dim V (L) = ord(L) for every
.L ∈ K[∂]. Show the following properties of the gauge transform:

a. .V (P [A]) = P · V (A) (in other words, P acts as a C-vector space
isomorphism from .V (A) to .V (P [A])).
b. .P [lclm(A,B)] = lclm(P [A], P [B]).
c. .gcrd(P,A) = 1 ⇐⇒ ord(A) = ord(P [A]).

340 4 Operators

21��. The Bessel function .Jν(x) satisfies the differential equation .x2J ′′
ν (x) +

xJ ′
ν(x) + (x2 − ν2)Jν(x) = 0. Solve the differential equation

.x(2x−1)(10x+9)f ′′(x)+2(50x2+39x−18)f ′(x)+(20x3+8x2−3x+99)f (x) = 0

in terms of Bessel functions. More precisely, find .u, v ∈ C(x) such that .f (x) =
u(x)J2(x) + v(x)J ′

2(x) is a solution.

22. Design an integration algorithm for algebraic functions. More precisely, for a
given algebraic extension .K = C(x)[y]/〈m〉 of .C(x) and a given element .f ∈ K ,
the algorithm shall decide whether there exists a .g ∈ K such that .g′ = f (i.e.,
.
∫

f = g).
Hint: Recall that K is a finite-dimensional .C(x)-vector space.

23. A sequence .(pn)
∞
n=0 is called a quasi-polynomial if there is a root of unity

.ω ∈ C, say of order .k ∈ N, and polynomials .p0, . . . , pk−1 ∈ C[x] such that .pn =
p0(n)+ωnp1(n)+· · ·+ω(k−1)npk−1(n) for all .n ∈ N. Let .(p(0)

n)∞n=0, . . . , (p
(r)
n)∞n=0

be quasi-polynomials and suppose that the sequence .(an)
∞
n=0 satisfies the recurrence

.p(0)
n an + p(1)

n an+1 + · · · + p(r)
n an+r = 0

for all .n ∈ N. Show that .(an)
∞
n=0 is D-finite.

References

Algorithm 4.38 is perhaps the most straightforward algorithm for computing the
Hermite normal form, but it is certainly not the most efficient one. A less straight-
forward but more efficient algorithm was proposed by Giesbrecht and Kim [215].
Their algorithm only requires a polynomial number of operations in the constant
field C.

Churchill and Kovacic [152] prove in a fairly general setting that cyclic vectors
always exist, and that in fact almost every vector is cyclic. Their paper contains
references to several earlier proofs. While the cyclic vector method is the oldest way
to uncouple systems, it was long considered not satisfactory, so alternative methods
were developed, for example by Barkatou [41], by Zürcher [477] and by Abramov
and Zima [20]. Bostan, Chyzak and de Panafieu [92] somewhat rehabilitated the
cyclic vector approach by a careful complexity analysis.

Our main motivation for uncoupling algorithms is that we want to apply the
algorithms from Chaps. 2 and 3 to find the solution of systems. It is also possible
to compute such solutions directly, without first transforming the given system
into a scalar equation. Such algorithms were developed by Barkatou [42] for the
differential case and by Abramov and Barkatou [8] for the recurrence case. These
algorithms have been implemented as Maple package ISOLDE by Barkatou and

4.4 Factorization 341

Pflügel. The analysis of removable singularities sketched at the end of the section
is another example for a problem that can be solved without uncoupling. Complete
desingularization algorithms for systems were given by Barkatou and Maddah [45]
for the differential case, and by Barkatou and Jaroschek [43, 44] for the shift case.

4.4 Factorization

If .f ∈ F is annihilated by some operator .L ∈ K[∂], then it is also annihilated by
every left multiple ML of L, because .(ML)·f = M·(L·f) = M·0 = 0. Conversely,
if we are interested in “simple” solutions of a given operator .L ∈ K[∂], we could
try to write the operator as a product .L = L1L2 of two operators .L1, L2 ∈ K[∂],
because every solution of .L2 will also be a solution of L. We have already done
so in Sects. 2.6 and 3.6, when we searched for hypergeometric or hyperexponential
solutions of a given equation. We have seen that such solutions correspond to right
factors of order 1. If there are no hypergeometric or hyperexponential solutions, i.e.,
no right factors of order 1, the next natural question is whether there are right factors
of higher order. In the present section we discuss how this question can be answered.

Definition 4.48 An operator .L ∈ K[∂] \ K is called irreducible if for any .P,Q ∈
K[∂] with .L = PQ we have .ord(P) = 0 or .ord(Q) = 0. If it is not irreducible, it
is called reducible. ��

As in the case of commutative polynomial rings, every operator .L ∈ K[∂] \ K

can be written as a product of finitely many irreducible factors. However, unlike in
the commutative case, the factorization is in general not unique. In fact, there may
be infinitely many different factorizations, and it is not hard to see why. Consider
for example the operator .L = D2 ∈ C(x)[D]. Every polynomial .α + x ∈ C[x] is
annihilated by .D2, and since .α + x is also annihilated by .D − 1

α+x
, the operator

.gcrd(D2,D − 1
α+x

) = D − 1
α+x

must be a nontrivial right factor of .D2, for every
choice .α ∈ C. Another factorization is of course .L = DD.

Although this example seems to indicate the opposite, it turns out that the
factorization of an operator is essentially unique. In order to see in which sense,
we will view the factorization of operators as structural properties of modules.
For a given operator .L ∈ K[∂], consider the module .K[∂]/〈L〉. If L admits
a nontrivial factorization .L = AB, then the equivalence class .[B] generates
a nontrivial submodule of .K[∂]/〈L〉: it is the K-vector space generated by
.[B], [∂B], . . . , [∂ord(A)−1B]. Conversely, suppose that .K[∂]/〈L〉 has a nontrivial
submodule (i.e., a submodule other than .{0} and .K[∂]/〈L〉), and let .B ∈ K[∂] be
such that .[B] is one of its elements. Then .[B], [∂B], . . . generate a K-subspace of
.K[∂]/〈L〉 of dimension less than .ord(L), say of dimension s. This means that the
elements .[B], . . . , [∂sB] of .K[∂]/〈L〉 are linearly dependent over K , so there is an
operator .A ∈ K[∂] of order s with .A ·[B] = 0. In other words, .rrem(AB,L) = 0, or
.AB = QL for yet another operator .Q ∈ K[∂]. Because of .ord(A) = s < ord(L),

342 4 Operators

we have .ord lclm(B,L) < ord(B) + ord(L), which by Exercise 13 of Sect. 4.2
implies that .ord gcrd(B,L) > 0, so L has a nontrivial right factor.

In summary, we have shown that .L ∈ K[∂] \ K is irreducible if and only if the
module .K[∂]/〈L〉 is simple, meaning its only submodules are .{0} and .K[∂]/〈L〉.
Finding a right factor of .L ∈ K[∂] \K is therefore equivalent to finding a nontrivial
submodule of .K[∂]/〈L〉. More generally, a factorization of L into k irreducible
factors translates into a chain of submodules

.{0} =: M0 � · · · � Mk := K[∂]/〈L〉

such that each of the quotient modules .Mi/Mi−1 (.i = 1, . . . , k) is simple. The
Jordan-Hölder theorem implies that if we have another chain

.{0} =: N0 � · · · � N	 := K[∂]/〈L〉

with .Ni/Ni−1 simple (.i = 0, . . . ,), then .k = 	 and there is a permutation
.π : {1, . . . , k} → {1, . . . , k} such that .Mi/Mi−1 ∼= Nπ(i)/Nπ(i)−1 for .i = 1, . . . , k.
In this sense, the factorization of an operator is unique.

Example 4.49

1. The operator .L = D2 ∈ C(x)[D] admits, among others, two factorizations
.L = DD and .L = (D + 1

x−1)(D − 1
x−1). Let .M1, .N1 be the submodules of

.C(x)[D]/〈L〉 generated by .[D] and .[D − 1
x−1], respectively. We then have

.0 � M1 � C(x)[D]/〈L〉 and 0 � N1 � C(x)[D]/〈L〉.

Moreover, according to the discussion above, we should have .M1 ∼= N1 and

.(C(x)[D]/〈L〉)/M1 ∼= (C(x)[D]/〈L〉)/N1.

Indeed, it can be checked (Exercise 3) that automorphisms are given by

M1 → N1 [qD] �→ [(x − 1)qD − q],

(C(x)[D]/〈L〉)/M1 → (C(x)[D]/〈L〉)/N1 [q] �→ [1

x − 1
q],

for .q ∈ C(x).
2. The operator .L = S2 − x ∈ C(x)[S] is irreducible, because if it were reducible,

it would have a right factor of order 1, and the algorithms of Sect. 2.6 can be
used to check that this is not the case. It follows that .C(x)[S]/〈S2 − x〉 has
no nontrivial submodules, i.e., none of the one-dimensional .C(x)-subspaces of
.C(x)[S]/〈S2 − x〉 are closed under application of S. ��
In the commutative case, we have the relation .pq = lcm(p, q) gcd(p, q) for

any two monic polynomials .p, q ∈ C[x]. Since two distinct monic irreducible

4.4 Factorization 343

polynomials .p, q ∈ C[x] cannot have a common factor, we have .pq = lcm(p, q)

for such polynomials. The situation in the noncommutative case is different. Here,
we must distinguish the question of whether an operator .L = K[∂] can be written
as the product of two smaller operators from the question of whether we can write
it as the least common left multiple of two smaller operators. Of course, the latter
implies the former, since .L = lclm(A1, A2) implies the existence of .B1, B2 such
that .L = B1A1 = B2A2. The converse, however, is not true.

Example 4.50 The operator .L = (xD + 1)D ∈ C(x)[D] is evidently the product
of two first order operators. However, it cannot be written as a least common left
multiple of two first order operators. To see why, note that .log(x) is a solution
of L. If we had .L = lclm(D − a,D − b) for some .a, b ∈ C(x), then L

would have two C-linearly independent hyperexponential solutions. In a differential
field containing these solutions as well as .log(x), there would be three linearly
independent solutions, which by Theorem 3.20 is impossible if .ord(L) = 2. ��

For a given operator, we can ask whether it can be written as a least common left
multiple of smaller operators. As we have seen in the example above, this may not
be the case even if the operator is not irreducible. If it is the case that the operator can
be broken into a least common left multiple of one or more irreducible operators,
we call it completely reducible.

Definition 4.51 An operator .L ∈ K[∂] \ {0} is called completely reducible if there
are irreducible operators .P1, . . . , Pk ∈ K[∂] such that .L = lc(L) lclm(P1, . . . , Pk).

��
Note that the case .k = 1 is not excluded, so that the terminology as introduced

in Definition 4.51 has the somewhat odd-looking side effect that every operator
which is irreducible in the sense of Definition 4.48 is completely reducible in the
sense of Definition 4.51. In the language of modules, we have seen above that L

is irreducible if and only if .K[∂]/〈L〉 is a simple module, i.e., one that has no
submodules other than .{0} and .K[∂]/〈L〉. Complete reducibility of an operator also
translates into a classical notion of module theory: L is completely reducible if and
only if .K[∂]/〈L〉 is semisimple. A module M is called semisimple if it is a direct
sum of simple submodules, or, equivalently, if for every submodule U of M there is
another submodule W of M such that .M = U ⊕ W . The connection is established
in the following proposition.

Proposition 4.52 .L ∈ K[∂] \ K is completely reducible if and only if .K[∂]/〈L〉 is
semisimple. ��
Proof “.⇒”: Let .L = lclm(P1, . . . , Pk) for some monic and pairwise distinct
irreducible operators .P1, . . . , Pk ∈ K[∂]. We can assume that the set of these
operators is chosen minimally in the sense that no .Pi is a right divisor of
.lclm(P1, . . . , Pi−1, Pi+1, . . . , Pk). Since the .Pi are irreducible, we then have
.ord(L) = ord(P1) + · · · + ord(Pk).

Consider the natural module homomorphism

344 4 Operators

.h : K[∂]/〈L〉 → K[∂]/〈P1〉 × · · · ×K[∂]/〈Pk〉.

Because .〈L〉 = 〈P1〉 ∩ · · · ∩ 〈Pk〉, the map h is injective. Since h is also a K-
linear map between two K-vector spaces of the same dimension, it is even an
isomorphism. We therefore have

.K[∂]/〈L〉 = h−1(K[∂]/〈P1〉 × {0}k−1) ⊕ · · · ⊕ h−1({0}k−1 × K[∂]/〈Pk〉).

Since the .Pi are irreducible, the .K[∂]/〈Pi〉 are simple, and since h is an isomor-
phism, their preimages are simple as well. We have therefore written .K[∂]/〈L〉 as a
direct sum of simple submodules, so .K[∂]/〈L〉 is semisimple.

“.⇐”: For every submodule M of .K[∂]/〈L〉 there is a .Q ∈ K[∂] \ {0} of
minimal order such that M is generated by .[Q] (Exercise 10). It is then generated
as a K-vector space by .[Q], . . . , [∂ord(L)−ord(Q)−1Q], and the linear dependence of
.[Q], . . . , [∂ord(L)−ord(Q)Q] ∈ K[∂]/〈L〉 over K shows that there is a .P ∈ K[∂]with
.ord(P) = ord(L) − ord(Q) such that .PQ = L. This implies that .M ∼= K[∂]/〈P 〉,
and if M is simple, P is irreducible.

Suppose that .M1, . . . ,Mk ⊆ K[∂]/〈L〉 are simple submodules such that

.K[∂]/〈L〉 = M1 ⊕ · · · ⊕ Mk,

and let .P1, . . . , Pk be irreducible such that .Mi
∼= K[∂]/〈Pi〉 for .i = 1, . . . , m.

Writing .[1] = m1 + · · · + mk with .m1 ∈ M1, . . . , mk ∈ Mk shows that
.lclm(P1, . . . , Pk) annihilates .[1] and is thus a left multiple of L. Since .ord(Pi) =
dimK(Mi) for .i = 1, . . . , k and .ord(L) = dimK K[∂]/〈L〉 = dimK(M1) + · · · +
dimK(Mk), the order of .lclm(P1, . . . , Pk) cannot exceed .ord(L). We must therefore
have .L = lc(L) lclm(P1, . . . , Pk), as claimed. �

So far, we have only discussed general properties of factorization in .K[∂] but no
algorithms for finding factors. In Sect. 1.4, we have remarked that there is no general
factorization algorithm for the commutative ring .C[x] of univariate polynomials
over a field C. Instead, the ground field C determines if and how we can factor
polynomials. As the commutative case is a special case of the factorization problem
in an Ore algebra .K[∂], it is clear that we can also not expect a uniform factorization
algorithm applicable to all Ore algebras. We must make certain assumptions on
.K[∂], some of which will be “with loss of generality”.

Without loss of generality, it suffices to focus on right factors. The reason is that
if .K[∂] is an Ore algebra with certain maps .σ, δ : K → K , we can associate to it
the Ore algebra .K[∂∗] with .σ ∗ : K → K defined by .σ ∗ = σ−1 and .δ∗ : K → K

defined by .δ∗ = −δ ◦ σ−1. For every .P = p0 + p1∂ + · · · + pr∂
r ∈ K[∂] we can

then define .P ∗ = p0 + ∂∗p1 + · · ·+ (∂∗)rpr ∈ K[∂∗]. The operator .P ∗ ∈ K[∂∗] is
called the adjoint of .P ∈ K[∂]. A key feature of the adjoint is that .(PQ)∗ = Q∗P ∗,
so it translates right factors to left factors and vice versa.

It is also without loss of generality that we can restrict our attention to Ore
algebras with .σ = id or .δ = 0. The reason is that if .K[∂] is an Ore algebra with

4.4 Factorization 345

certain maps .σ, δ : K → K with .σ 	= id, it is isomorphic to the Ore algebra .K[∂̃]
with .σ and 0. As shown in Exercise 14, any choice .α ∈ K with .σ(α) 	= α gives rise
to an isomorphism .h : K[∂̃] → K[∂] defined by

.h(∂̃) = α∂ − ∂α.

This operation is known as the Hilbert twist.
For an Ore algebra .K[∂] with .σ = id or .δ = 0, let .θ : K → K be equal to

.σ if .σ 	= id, and equal to .δ otherwise. We will make the following assumptions
throughout the rest of this section:

Assumption 4.53

1. .σ = id or .δ = 0.
2. C is an algebraically closed field and for every .p ∈ C[x] with .deg p > 0 we can

compute a root.
3. There is an algorithm which for given .p0, . . . , pr ∈ K , .pr 	= 0, computes a basis

of the C-vector space of all .y ∈ K with .p0y + p1θ(y) + · · · + prθ
r(y) = 0.

4. For any .L ∈ K[∂] there is a module F such that L admits a solution space .V (L)

in F with .dimC V (L) = ord(L) and no operator has a solution space whose
dimension exceeds its order.

The first assumption is justified by the Hilbert twist. The second assumption saves
us from the trouble related to factorization in .C[x] which technically is included as
a special case, but which is not really our business here. The third assumption is
justified at least in the cases .C(x)[S] and .C(x)[D], by the techniques discussed in
Sects. 2.5 and 3.5. The fourth assumption can also be justified for these algebras,
using the Picard-Vessiot theory briefly sketched at the ends of Sects. 2.2 and 3.2.
Note that the assumption is only that an appropriate module F exists, not that we
can actually construct it or compute the solutions it is supposed to contain.

We first describe an algorithm which is relatively easy but is only guaranteed
to succeed for completely reducible operators. This algorithm is known as the
eigenring method. Let .L ∈ K[∂] and .r = ord(L). The idea of the eigenring method
is to search for operators .P ∈ K[∂] which commute with .∂ modulo L in the sense
that we have .[P∂] = [∂P] in .K[∂]/〈L〉. The commutation with .∂ ensures that any
such operator P acts as a C-linear map on the solution space .V (L). Eigenvectors
of this C-linear map are elements of .V (L) on which P acts like a multiplication
by a constant .λ, the corresponding eigenvalue. This means that .P − λ annihilates
the eigenvectors, so these eigenvectors are common solutions of .P − λ and L and
hence of .gcrd(P −λ,L). If we arrange that .0 < ord(P) < ord(L), then this greatest
common right divisor will be a nontrivial right factor of L.

An operator P which commutes with .∂ modulo L amounts to a C-linear map
from .V (L) to itself. It is clear that every element of the class .[P] ∈ K[∂]/〈L〉
amounts to the same map. In particular, P commutes with .∂ modulo L if and only if
.rrem(P,L) commutes with .∂ modulo L. Moreoever, the set of all operators P which
commute with .∂ modulo L is closed under addition and multiplication (Exercise 12)

346 4 Operators

and therefore forms a subring of .K[∂]. Then the subset of .K[∂]/〈L〉 consisting of
all classes .[P] with .[P∂] = [∂P] also forms a ring together with the operations
.[P] + [Q] := [P +Q] and .[P][Q] := [PQ]. This ring is called the eigenring of L

and denoted by .EL.
Since an operator P which commutes with .∂ modulo L maps solutions of L

to solutions of L, we must have .rrem(LP,L) = 0 for any such P . Conversely, if
P is such that .rrem(LP,L) = 0, then LP annihilates all elements of .V (L), so
P maps solutions of L to solutions of L. It is thus a C-linear map from .V (L) to
itself and therefore commutes with .∂ modulo L. We have now shown that .[P] is
an element of the eigenring of L if and only if .rrem(LP,L) = 0, and we can use
the latter condition to find elements of the eigenring by making an ansatz .P =
p0 + p1∂ + · · · + pr−1∂

r−1 with undetermined coefficients .p0, . . . , pr−1 ∈ K ,
computing .rrem(LP,L) and equating the coefficients of powers of .∂ to zero. This
leads to a coupled system of functional equations for the undetermined coefficients,
whose solution space can be computed.

Once we have found an element .[P] of the eigenring, we have to find an
eigenvalue of the corresponding linear map .V (L) → V (L). This can be done in two
ways. We can either construct the minimal polynomial of .[P] by finding a C-linear
dependence between .[1], [P], [P 2], . . . and compute a root of this polynomial.
Alternatively, we can exploit the fact that the resultant of two operators is zero if and
only if the operators have a nontrivial greatest common right divisor (cf. Sect. 4.2).
For an indeterminate z, the resultant .res(L, P − z) is an element of .K[z] whose
roots in C are exactly the eigenvalues of P .

Algorithm 4.54 (Eigenring method)
Input: .L ∈ K[∂] for an Ore algebra meeting the requirements specified in
Assumption 4.53.
Output: A proper right factor of L, or an error message.

1 Compute a C-vector space basis .{[P1], . . . , [Pd]} of the eigenring .EL.
2 If .d = 1, return “failed”.
3 Choose a basis element .[Pi] with .0 < ord(Pi) < ord(L).
4 Compute an eigenvalue .λ of .[Pi].
5 Return .gcrd(L, Pi − λ).

Concerning lines 2 and 3, note that the eigenring always contains .[1], but that this
element is not useful because its eigenvalue is 1, so we would only get .gcrd(L, 0) =
L in step 5. As soon as .d > 1, there must be a basis element with .0 < ord(Pi) <

ord(L).

Example 4.55

1. Consider .L = (x − 1)D2 − x2D + (x2 − x − 1) ∈ C(x)[D]. For computing the
eigenring, we make an ansatz .P = p0 + p1D and enforce .rrem(LP,L) = 0.

rrem(LP,L) =
(
− (x − 2)xp1

x − 1
− x2p′

0 − 2(1 − x + x2)p′
1 + (x − 1)p′′

0

)

4.4 Factorization 347

+
((x − 2)xp1

x − 1
+ 2(x − 1)p′

0 + x2p′
1 + (x − 1)p′′

1

)
D,

and equating the coefficients of .D0 and .D1 to zero gives a system of two
functional equations for the two unknowns .p0, p1. This system has the two
linearly independent solutions .(1, 0) and .(− 1

x−1 , 1
x−1). They give rise to the

basis .{[1], [− 1
x−1 + 1

x−1D]} of the eigenring .EL. We choose .P = − 1
x−1 (1−D)

and compute an eigenvalue. Since .rrem(P 2, L) = P , the minimal polynomial is
.z2 − z = (z− 1)z, so the eigenvalues are 0 and 1. Either of them leads to a right
factor of L:

. gcrd(L, P − 0) = D − 1, gcrd(L, P − 1) = D − x.

In fact, we have .L = lclm(D − 1,D − x).
2. Consider .L = D2 − (x + 1)D + (x − 1) ∈ C(x)[D]. In this case, the ansatz

.P = p0 + p1D leads to

rrem(LP,L) = (−p1 + (−1 − x)p′
0 − 2(−1 + x)p′

1 + p′′
0)

+ (p1 + 2p′
0 + (1 + x)p′

1 + p′′
1)D,

and equating the coefficients of .D0 and .D1 to zero gives a coupled system
whose solution space turns out to be generated by .(p0, p1) = (1, 0). Therefore,
the algorithm aborts in line 2 with a failure. Note however that L admits the
factorization .L = (D − 1)(D − x). ��
As long as no claim is made about the situations in which Algorithm 4.54 fails

in finding a factor, it is obvious that the algorithm works as specified. Even an
algorithm that trivially reports a failure for every input would be correct for this
specification. The interesting feature of Algorithm 4.54 is that it is guaranteed to
find a right factor whenever it is applied to an operator L which can be written as
the least common left multiple of smaller operators.

Theorem 4.56 Let .U,W ∈ K[∂] be such that .ord(U), ord(W) ≥ 1 and
.grcd(U,W) = 1. Then Algorithm 4.54 applied to .L = lclm(U,W) succeeds in
finding a right factor. ��
Proof The algorithm only fails if the eigenring of L is generated by the class .[1] ∈
K[∂]/〈L〉. (Keep in mind that we are assuming that C is algebraically closed, so
there is no danger that there might not be any eigenvalue in line 4.) We show that
this is not the case by exhibiting another element of the eigenring. By Theorem 4.21,
there are .S, T ∈ K[∂] such that .1 = SU + T W and .ord(S) < ord(W), .ord(T) <

ord(U). For .P = SU we have .0 < ord(P) < ord(U)+ord(W) = ord(L). We show
that .[P] is an element of the eigenring. Indeed, .rrem(UP,U) = rrem(USU,U) =
0 and .rrem(WP,W) = rrem(WSU,W) = rrem(W(1 − T W),W) = 0, so .LP =

348 4 Operators

lclm(U,W)P contains both U and W as right factors. It therefore contains .L =
lclm(U,W) as a right factor, and we have shown .rrem(LP,L) = 0, as required. �

As a corollary, if we know that L is completely reducible, then we can use
Algorithm 4.54 to decide whether L is irreducible. This will be the case if and
only if it fails to find a right factor. Algorithm 4.54 may also succeed with input
that cannot be written as a least common left multiple. An example is the operator
.(xD+1)D ∈ C(x)[D] from Example 4.50, for which it does find the right factor D

although this operator is not a least common left multiple. In general, given an
operator .L ∈ K[∂] and a right factor U , it is not so obvious whether there is an
operator .W ∈ K[∂] with .gcrd(U,W) = 1 and .lclm(U,W) = L. If L is completely
reducible, then the fact that .K[∂]/〈L〉 is semisimple implies that for every right
factor U of L there exists a suitable W . In general, it can happen that some right
factors of L are part of an lclm and others are not. By the following theorem,
whenever .L = AU , then there exist .B,W with .L = BW and .gcrd(U,W) = 1
if and only if there exists an S with .rrem(US,A) = 1. Testing this condition is
similar to computing the eigenring.

Theorem 4.57

1. If .U,W, S, T ,A,B ∈ K[∂] are such that .SU + T W = 1 and .AU − BW = 0,
then .rrem(US,A) = 1.

2. If .U, S,A ∈ K[∂] are monic and such that .rrem(US,A) = 1, and if .W ∈ K[∂]
is such that .S · y is a solution of W if and only if y is a solution of A, then
.AU = lclm(U,W). ��

Proof

1. Let .L = AU = BW . We consider the various operators as linear maps between
solution spaces. The map .SU + T W = 1 acts as identity on .V (L) and the map
T W is the zero map on .V (W) ⊆ V (L), so SU is a projection of .V (L) onto
.V (W) and acts as the identity on the image .V (W). The operator U maps .V (L)

to .V (A) and has .V (U) ⊆ V (L) as the kernel. It is surjective because .dim im R =
dim V (L)/ ker R = ord(L) − ord(U) = ord(A) = dim V (A). Because of .SU +
T W = 1 we have .V (L) = V (U) ⊕ V (W), hence U is an isomorphism from
.V (W) ⊆ V (L) to .V (A). Since SU acts as the identity on .V (W), it follows
that S is an isomorphism from .V (A) to .V (W). But then US acts as the identity
on .V (A), so .US − 1 maps .V (A) to zero, so .US − 1 is a left multiple of A. It
follows that .rrem(US,A) = 1.

2. If .rrem(US,A) = 1, then US acts on .V (A) as the identity, and S is an
isomorphism from .V (A) to .S · V (A). By assumption, .S · V (A) = V (W). As
US acts on .V (A) as the identity, U is an isomorphism from .V (W) to .V (A)

and SU acts as the identity on .V (W). We therefore have .SU + T W = 1 for
a certain .T ∈ K[∂], and hence .gcrd(U,W) = 1. It also follows that for every
.y ∈ V (W) we have .U · y ∈ V (A), i.e., .AU · y = 0. This means that W is
a right factor of AU . Obviously, U is also a right factor of AU , so altogether
.lclm(U,W) is a right factor of AU . Since .V (W) and .V (A) are isomorphic,

4.4 Factorization 349

we have .ord(W) = ord(A), and taking also .gcrd(U,W) = 1 into account, we
have .ord lclm(U,W) = ord(U) + ord(W) = ord(U) + ord(A) = ord(AU).
Therefore, .lclm(U,W) = pAU for some .p ∈ K , but since A and U are monic
by assumption, .p = 1. �

Unless we know that the input is completely reducible, the eigenring method
cannot be used for deciding whether a given operator is irreducible or not. The
algorithm explained next, which is known as Beke’s algorithm, can solve the
factorization problem completely. In addition to the assumptions on .K[∂] imposed
in Assumption 4.53, we now include the following further assumptions:

Assumption 4.58

1. There is an algorithm which for any given .L ∈ K[∂] finds all of its first order
right factors.

2. There is an algorithm for solving systems of polynomial equations in C.
3. If .σ = id, δ 	= 0, then for every operator .L ∈ K[∂] there is an extension field E

of K with .Const(E) = Const(K) such that .V (L) ⊆ E has dimension .ord(L).
4. If .σ 	= id, δ = 0, then for every operator .L ∈ K[∂] which is not a left multiple

of .∂ there is an extension ring E of K like in Theorem 2.27, with .Const(E) =
Const(K), and such that .V (L) ⊆ E has dimension .ord(L).

The last two assumptions allow us to formulate Wronskians. Recall that we defined
.θ = σ if .δ = 0 and .θ = δ if .σ = id. The Wronskian of some elements
.y0, . . . , yr−1 ∈ E is defined as the determinant

.W(y0, . . . , yr−1) :=

∣∣∣∣∣
∣∣∣∣

y0 y1 · · · yr−1

θ(y0) θ(y1) · · · θ(yr−1)
...

...
. . .

...

θ r−1(y0) θr−1(y1) · · · θr−1(yr−1)

∣∣∣∣∣
∣∣∣∣

.

Since .θ is C-linear, it is clear that .W(y0, . . . , yr−1) is zero whenever .y0, . . . , yr−1
are C-linearly dependent. Conversely, if .y0, . . . , yr−1 are linearly independent over
C and belong to the solution space .V (L) ⊆ E of some operator .L ∈ K[∂], then
.W(y0, . . . , yr−1) is nonzero. In this case, the Wronskian additionally satisfies a first
order equation with coefficients in K . For differential equations, all of these facts are
commonly covered in introductory courses, and the general assumptions declared
above are chosen in such a way that the facts extend to the more general situation
we consider here (Exercise 21).

Consider an operator .L = 	0 +· · ·+ 	r−1∂
r−1 + ∂r ∈ K[∂] and let .y0, . . . , yr−1

be a basis of its solution space .V (L) ⊆ E. If y is any element of .V (L), the elements
.y, y0, . . . , yr−1 are linearly dependent, so their Wronskian is zero. Expanding the
determinant along the first column, we get the equation

.W0y −W1θ(y) ± · · · + (−1)rWrθ
r(y) = 0,

with

350 4 Operators

.Wi =

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣

y0 y1 · · · yr−1
...

...
. . .

...

θ i−1(y0) θ i−1(y1) · · · θi−1(yr−1)

θ i+1(y0) θ i+1(y1) · · · θi+1(yr−1)
...

...
. . .

...

θ r (y0) θr−1(y1) · · · θr(yr−1)

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣

(i = 0, . . . , r).

Since .Wr is the Wronskian, which is not zero, we can divide the equation by
.(−1)rWr to obtain a monic operator in .E[∂] of order r whose solution space is equal
to .V (L). If this operator were different from L, its greatest common right divisor
with L would be an operator of order less than r with an r-dimensional solution
space. Since this is impossible, we must have .	i = (−1)r−i Wi

Wr
for .i = 0, . . . , r −1.

In particular, the .Wi are certain K-multiples of the Wronskian, and as such, they
also satisfy certain first order equations.

If .L ∈ K[∂] has a nontrivial right factor, then the coefficients of the right factor
can also be expressed in terms of Wronskians. In particular, they satisfy certain
first order equations. The key idea of the factorization algorithm is to generate
from the input operator L some auxiliary equations which have these Wronskians
as solutions. Since we assume that there is a way to find first order right factors,
we can then determine candidates for the coefficients. Like in Sects. 2.6 and 3.6,
these candidates will in general involve some undetermined constant parameters.
By dividing L by such a parameterized candidate and forcing the remainder to zero,
we finally get a system of polynomial equations for the parameters, which we can
solve by assumption. The solutions give rise to the desired right factors.

It remains to be explained how to find suitable auxiliary equations. Suppose the
input operator is .L = 	0 + · · · + 	r−1∂

r−1 + ∂r ∈ K[∂], and let .s ∈ {2, . . . , r − 1}.
We seek right factors of order s, i.e., a factorization

.L = Q(p0 + · · · + ps−1∂
s−1 + ∂s)

︸ ︷︷ ︸
:=P

with .Q ∈ K[∂] and .p0, . . . , ps−1 ∈ K . Let .y0, . . . , ys−1 be a basis of .V (P) and
.W0, . . . ,Ws ∈ E be the corresponding determinants as introduced above (with P

playing the role of L). As determinants depend polynomially on their entries and the
entries are defined in terms of L, we could use closure properties to construct for
each of the determinants an annihilating operator. This would be a brutal approach.
A somewhat less brutal way (but still quite costly) is to also exploit in the search that
we need the .W0, . . . ,Ws ∈ E to be pairwise similar in the sense that .Wi/Ws ∈ K

for all i. This can be done by considering the K-subspace of E generated by all .s×s

determinants

4.4 Factorization 351

.

∣∣∣
∣∣∣∣

θi1(y0) · · · θi1(ys−1)
...

. . .
...

θ is (y0) · · · θis (ys−1)

∣∣∣
∣∣∣∣
∈ E

with .0 ≤ i1 < · · · < is < r . There are .n := (
r
s

)
many of these; let us call

them Wronskian-type determinants and denote them by .�1, . . . ,�n. Note that they
include the determinants .W0, . . . ,Ws−1 we are interested in. It turns out that the
K-vector space generated by .�1, . . . ,�n is closed under .θ (Exercise 23), so there
is a matrix .A ∈ Kn×n with

.

⎛

⎜
⎝

θ(�1)
...

θ(�n)

⎞

⎟
⎠ = A

⎛

⎜
⎝

�1
...

�n

⎞

⎟
⎠ .

This matrix can be determined using only the input operator L, and the system can
be solved using the techniques developed in the previous section.

Example 4.59

1. Consider .L = (x− 1)+ (x2 − 1)S− xS2 − (x− 3)S3 +S4 ∈ C(x)[S]. We want
to decide if L has a right factor P of order .s = 2. For a basis .y0, y1 of .V (P), we
consider the .

(4
2

) = 6 determinants

�1 =
∣∣∣
∣

y0 y1

θ(y0) θ(y1)

∣∣∣
∣ , �2 =

∣∣∣
∣

y0 y1

θ2(y0) θ2(y1)

∣∣∣
∣ , �3 =

∣∣∣
∣

y0 y1

θ3(y0) θ3(y1)

∣∣∣
∣ ,

�4 =
∣∣∣
∣
θ(y0) θ(y1)

θ2(y0) θ2(y1)

∣∣∣
∣ , �5 =

∣∣∣
∣
θ(y0) θ(y1)

θ3(y0) θ3(y1)

∣∣∣
∣ , �6 =

∣∣∣
∣
θ2(y0) θ2(y1)

θ3(y0) θ3(y1)

∣∣∣
∣ .

The potential factor P has the form .P = �4
�1

− �2
�1

S + S2. Since .θ is an
automorphism, it commutes with the determinant, so we get .θ(�1) = �4,
.θ(�2) = �5, and .θ(�4) = �6 for free. For the remaining .�i , we first apply
.θ and then use .θ4(yi) = (x + 3)θ3(yi) + xθ2(yi) − (x2 − 1)θ(yi) + (1 − x)yi

to obtain .θ(�3) = (x + 3)�5 + x�4 − (1− x)�1, .θ(�5) = (x + 3)�6 + (x2 −
1)�4 − (1−x)�2, .θ(�6) = −x�6 + (x2 −1)�5 − (1−x)�3. We can put these
relations together into the system

.

⎛

⎜⎜⎜⎜⎜
⎜⎜
⎝

θ(�1)

θ(�2)

θ(�3)

θ(�4)

θ(�5)

θ(�6)

⎞

⎟⎟⎟⎟⎟
⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜
⎜⎜
⎝

0 0 0 1 0 0
0 0 0 0 1 0

1 − x 0 0 x x + 3 0
0 0 0 0 0 1
0 1 − x 0 x2 − 1 0 x + 3
0 0 1 − x 0 x2 − 1 −x

⎞

⎟⎟⎟⎟⎟
⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜
⎜⎜
⎝

�1

�2

�3

�4

�5

�6

⎞

⎟⎟⎟⎟⎟
⎟⎟
⎠

.

352 4 Operators

Up to constant multiples, this system has exactly one solution whose components
.�1,�2,�4 are pairwise similar hypergeometric terms. This solution is

.(�1, . . . ,�6) = (−1)x (1, x + 1, x2 + 3x + 3,−1,−x − 2, 1)

and gives rise to the candidate .P = �4
�1

− �2
�1

S + S2 = −1 − (x + 1)S + S2,
which indeed is a right factor of L.

2. Now consider .L = S4 − 2(x + 1)S3 + (x2 + x − 2)S2 + 2xS + 1 ∈ C(x)[S].
With .�1, . . . , �6 defined as before, we now get the system

.

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎝

θ(�1)

θ(�2)

θ(�3)

θ(�4)

θ(�5)

θ(�6)

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎝

0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 −x2 − x + 2 2(x + 1) 0
0 0 0 0 0 1
0 1 0 2x 0 2(x + 1)

0 0 1 0 2x x2 + x − 2

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎝

�1

�2

�3

�4

�5

�6

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎠

.

In this case, the solutions with hypergeometric components form a three-
dimensional vector space generated by

b1 = (−1)x (0,−1,−2x, 0, 1, 0),

b2 = (−1)x (1, x, x2 + x + 1,−1,−x − 1, 1),

b3 = (−1)x (x, x2, x3 + x2 + x + 1,−x − 1,−x2 − 2x − 1, x + 2).

These solutions give rise to the parameterized family

.P = S2 − c3x
2 + xc2 − c1

c2 + c3x
S − c3x + c3 + c2

c2 + c3x

of candidates, where .c1, c2, c3 are undetermined elements of C. In order to find
out which elements of the family really are right factors, we compute

rrem(L, P) = c2
1 − c2c1 − c3c1 − c2

3

(c3x + c2)(c3x + c2 + 2c3)

− (c2
1 − c2c1 − c3c1 − c2

3)(−c3x
2 − c2x + c1)

(c3x + c2)(c3x + c2 + c3)(c3x + c2 + 2c3)
S.

Since P is a right factor of L if and only if this expression is zero, the right factors
are those with .c2

1 − c2c1 − c3c1 − c2
3 = 0 and .(c2, c3) 	= (0, 0). ��

Beke’s factorization algorithm can be summarized as follows.

4.4 Factorization 353

Algorithm 4.60 (Beke)
Input: .L ∈ K[∂] \ {0}, .s ∈ {2, . . . , ord(L) − 1}, for an Ore algebra meeting the
requirements of Assumptions 4.53 and 4.58.
Output: All right factors of L of order s.

1 Let .n = (ord(L)
s

)
and write .�1, . . . ,�n for the .s × s minors of the matrix

.((θ i(yj)))
r−1,s−1
i=0,j=0, where .y0, . . . , ys−1 are place holders for some C-linearly

independent solutions of L. Let .i0, . . . , is ∈ {1, . . . , r} be the indices such that
.�ik is the minor obtained from the rows .0, . . . , k − 1, k + 1, . . . , s.

2 Construct a matrix .A ∈ Kn×n such that .(θ(�i))
n
i=1 = A(�i)

n
i=1.

3 Find all solutions of the system from line 2 for which .�is 	= 0 and the quotients
.�ij /�is (.j = 0, . . . , s) are in K .

4 The result of line 3 is a finite union of finite dimensional C-vector spaces. For
each of these spaces, do the following:

5 Let .b1, . . . , bd be a basis and consider a generic element .c1b1 + · · · + cdbd

with undetermined coefficients .c1, . . . , cd .

6 Make an ansatz .P = ∑s
j=0(−1)j

�ij

�is
∂j with the .�i’s replaced by the

respective component of the generic element from line 5.
7 Compute .rrem(L, P) and compute all .(c1, . . . , cd) ∈ Cd for which this

remainder becomes zero. This may require solving a system of nonlinear
equations. For every solution (or for an appropriate description of the
solution set, if it is infinite), report the right factor P .

Observe that in the computations for finding right factors, we never need to
know any of the solutions .y0, y1, . . . explicitly. All we really need is that they
are solutions and that they are linearly independent over C. Instead of assuming
certain particular solutions, we may as well do the computations with appropriate
formal objects. Multilinear algebra offers such formal objects. Consider the module
.M = K[∂]/〈L〉 and recall that finding a right factor of L of order s is the same as
finding a submodule N of M with .dimK(N) = s. The exterior power .

∧s
V of a K-

vector space V is a construction similar to the tensor product. It consists of formal
objects that are written .v1 ∧ · · ·∧ vs with .v1, . . . , vs ∈ V , and of finite sums of such
objects. Like the tensor product, these objects satisfy the rule

v1 ∧ · · · ∧ vi−1 ∧ (pvi + qv′i) ∧ vi+1 ∧ · · · ∧ vs

= p (v1 ∧ · · · ∧ vi−1 ∧ vi ∧ vi+1 ∧ · · · ∧ vs)

+ q (v1 ∧ · · · ∧ vi−1 ∧ v′i ∧ vi+1 ∧ · · · ∧ vs)

for any .v1, . . . , vs ∈ V and .p, q ∈ K , and unlike tensor products, they satisfy the
additional rule

.v1 ∧ · · · ∧ vs = sgn(π)(vπ(1) ∧ · · · ∧ vπ(s))

354 4 Operators

for any .v1, . . . , vs ∈ V and any permutation .π ∈ Ss . If .b1, . . . , br form a basis
of V , then a basis of .

∧s
V is given by the objects .bi1 ∧ · · · ∧ bis for all choices

.i1, . . . , is ∈ {1, . . . , r} with .i1 < · · · < is . In particular, .dimK

∧s
V = (dim(V)

s

)
.

The axioms for the exterior power .
∧s

V are chosen in such a way that for any
.P1, . . . , Ps ∈ K[∂], the object .[P1] ∧ · · · ∧ [Ps] ∈ ∧s

K[∂]/〈L〉 can be interpreted
as a determinant

.

∣
∣∣∣∣∣∣

P1 · y1 · · · P1 · ys

...
. . .

...

Ps · y1 · · · Ps · ys

∣
∣∣∣∣∣∣

where .y1, . . . , ys are C-linearly independent solutions of L in some extension
E of K . In accordance with this interpretation, we turn the K-vector space
.
∧s

K[∂]/〈L〉 into a .K[∂]-module. Depending on whether .θ = σ or .θ = δ, the
action of .∂ is defined through

δ(v1 ∧ · · · ∧ vs) =
s∑

i=1

(v1 ∧ · · · ∧ vi−1 ∧ δ(vi) ∧ vi+1 ∧ · · · ∧ vs),

or σ(v1 ∧ · · · ∧ vs) = σ(v1) ∧ · · · ∧ σ(vs).

Then .
∧s

K[∂]/〈L〉 corresponds to the K-vector space generated by all Wronskian-
type determinants considered in Beke’s algorithm, and the module structure
imposed on it reflects the fact that this space is closed under applying .θ .

It can be checked that whenever N is a submodule of .K[∂]/〈L〉 with
.dimK N = s, then .

∧s
N is (isomorphic to) a submodule of .

∧s
K[∂]/〈L〉. Since

.dimK(
∧s

N) = (
s
s

) = 1, we are interested in the one-dimensional submodules
of .

∧s
K[∂]/〈L〉. The search for such submodules corresponds to the search

for solution vectors with hyperexponential/hypergeometric components of the
coupled system in Beke’s algorithm. Not every one-dimensional submodule of
.
∧s

K[∂]/〈L〉 must be of the form .
∧s

N for some submodule N of .K[∂]/〈L〉.
The one-dimensional submodules of interest are those which are generated by an
element of the form .v1 ∧ · · · ∧ vs (rather than by a certain K-linear combination of
such terms). Searching within the set of all one-dimensional submodules for those
of the required form corresponds to line 7 in Beke’s algorithm where we compute
the right remainder of L by a generic element involving parameters and solve a
system of nonlinear equations in order to force the remainder to zero.

In conclusion, we do not lose anything by considering exterior powers instead
of Wronskian-type determinants. We can however gain something by importing
some general knowledge about exterior powers. In particular, the so-called Plücker
relations can be used to substantially reduce the computational complexity of the
algorithm. We do not discuss this here but refer to the literature for this optimization
and other improvements.

4.4 Factorization 355

Even when all known optimizations are applied, factorization of operators is
extremely expensive. We have seen in Sects. 2.6 and 3.6 that finding hypergeometric
and hyperexponential solutions involves a combinatorial search which may take an
exponential amount of time. Here we apply these algorithms to operators of order
.
(
r
s

)
, and this binomial is itself exponential when r grows and .r/s is approximately

constant. In practice, this can mean that checking whether an operator of order 10 is
irreducible might well be infeasible.

In order to show that a given operator of order r is irreducible, we can apply
Beke’s algorithm to search for right factors of order s, for any .s < r . It is irreducible
if and only if this search yields no results. In order to write a given operator of order r

as a product of irreducible operators, we can use Beke’s algorithm to find some right
factor and then apply it recursively to factor the factors. To keep the growth of .

(
r
s

)

under control, it is a good idea to start with small factors, and to also exploit that
finding a right factor of order s is the same as finding a left factor of order .r − s. An
implementation will roughly look as follows.

Algorithm 4.61
Input: .L ∈ K[∂] \ {0} satisfying Assumptions 4.53 and 4.58.
Output: A list .(P1, . . . , Pm) of irreducible elements of .K[∂] such that .L =
P1 · · ·Pm.

1 if .ord(L) = 1 then
2 Return .(L).
3 Use the eigenring method (Algorithm 4.54) to search for a right factor P . If it

succeeds, apply the algorithm recursively to .rquo(L, P) as well as to P , and
return the concatenation of the resulting lists. Otherwise, continue as follows.

4 for .s = 1, . . . , �ord(L)/2� do
5 Search for a right factor P of L of order s.
6 if there is one then
7 Recursively compute a factorization .(P1, . . . , Pm−1) of the right quotient

.rquo(L, P) and return .(P1, . . . , Pm−1, P).
8 else if .s 	= ord(L)/2 then
9 Using the adjoint, search for a left factor P of L of order s.
10 if there is one then
11 Recursively compute a factorization .(P2, . . . , Pm) of the left quotient

.lquo(L, P).
12 Return .(P, P2, . . . , Pm).
13 Return .(P).

One reason why factorization of operators is more difficult than factorization
in commutative polynomial rings .C[x] is that the solution set of an operator is a
C-vector space while the roots of a polynomial .p ∈ C[x] are only finitely many.
Since every root of .p ∈ C[x] must be a root of one of its factors, it is possible to
design factorization algorithms for .C[x] based on the idea of approximating a root
(for instance numerically) and then constructing a polynomial q of degree less than

356 4 Operators

.deg(p) that has, up to the approximation error, the same root. Then .gcd(p, q) is
a factor of p, and by making the approximation accuracy sufficiently high and the
coefficients of q sufficiently small (in a suitable measure), it can be ensured that
.gcd(p, q) = 1 implies that p is irreducible.

For an operator L, say in the differential case, we can also select a solution,
say in .C[[x]], compute it to a high accuracy, then use guessing (Sect. 1.5) to find
a candidate for a lower order annihilating operator P of the solution, and, if we
find one, compute .gcrd(P,L) to obtain a right factor of L. The problem is that it
is not obvious how to select the solution in the first place. The solutions that are
annihilated by a right factor of L belong to a subspace of .V (L), and if we take an
arbitrary element of .V (L), it is very unlikely that this element belongs to such a
subspace.

We can increase our chances a bit by considering generalized series solutions at
a singularity rather than power series solutions at an ordinary point. Suppose that
.L = lclm(P,Q) for some .P,Q and assume that .ξ is a non-apparent singularity of
P but not of Q. Then every generalized series solution of Q at .ξ is in fact a power
series, but P must have at least one generalized series solution at .ξ which is not a
power series. Since the solutions of P are also solutions of L, we can take one of the
generalized series solutions of L at .ξ which is not a power series and use guessing to
find an annihilating operator of order less than .ord(L) for it. If we take sufficiently
many terms of the generalized series into account, this computation is guaranteed
to find an operator which has a nontrivial greatest common right divisor with L.
Similarly, if .L = QP and there is a singularity .ξ at which there are generalized
series solutions with more than .ord(Q) many different types, then there must be one
type for which all generalized series solutions of L are already annihilated by P ,
because Q cannot have more than .ord(Q) many linearly independent solutions.

Example 4.62 The operator

.L = 36x2D4 + 144xD3 + (36x3 − 36x2 + 9x + 80)D2

+ 18D + (x − 1)(9x + 8) ∈ C(x)[D]

has no first order right factors, and we want to know if there are any second order
factors. The indicial polynomial of L at .ξ = 0 is .η = 4x(x − 1)(3x − 2)(3x − 1),
its roots .0, 1/3, 2/3, 1 belong to three different .Z-equivalence classes. Therefore,
if there is a factorization .L = QP with .ord(Q) = ord(P) = 2, then for at least
one of these classes, all of its corresponding generalized series solutions must be
annihilated by P . For the exponent .1/3, the only generalized series solution (up to
constant multiples) is

.x1/3(1 − 3
8x + 9

320x2 − 9
10240x3 + 27

1802240x4 + · · ·).

With a few more terms, guessing can find the candidate annihilating operator .P =
36x2D2 + (9x + 8), and we can easily check that P is indeed a right factor of L

by computing .rrem(L, P) = 0. On the other hand, for the exponent 1, we have the

4.4 Factorization 357

solution

.x1(1 − 9
80x + 563

53760x2 − 40907
23654400x3 + 1945123

17220403200x4 + · · ·),

and even with hundreds of additional terms, we do not find any plausible candidates
for annihilating operators of order 2. ��

Exercises

1. Fix a .c ∈ C and let .L = (S − c)2 ∈ C(x)[S]. Determine all first order right
factors of L.

2. The minimal polynomial of an algebraic function or algebraic number is always
irreducible. Is it also true that the minimal order annihilating operator of a D-finite
function is always irreducible?

3�. Check that the maps in Example 4.49 are indeed module isomorphisms.

4�. Let .L ∈ K[∂] and .r = ord(L). Show that L is irreducible if and only if every
nonzero vector .p ∈ Kr is cyclic for the companion matrix .CL.

Hint: Use the isomorphism of Exercise 16 of Sect. 4.3.

5. Find an operator .L ∈ C(x)[S] which is reducible but not completely reducible.

6. Let K be a differential field and .L ∈ K[D]. Let E be an extension of K such
that .V (L) ⊆ E has dimension .ord(L). Show that L is completely reducible when
viewed as an element of .E[D].
7. Let M be a .K[∂]-module and consider a chain of submodules .{0} = M0 �

· · · � Mk = M such that .Mi/Mi−1 is simple for every .i = 1, . . . , k. Prove or
disprove: For every permutation .π ∈ Sk there exists a chain of submodules .{0} =
N0 � · · · � Nk = M such that .Ni/Ni−1 is simple for every .i = 1, . . . , k and
.Nπ(i)

∼= Mi for every .i = 1, . . . , k.

8�. Prove or disprove:
a. If .L1, L2 ∈ K[∂] are irreducible, then so is .L1 ⊗ L2.
b. If .P1, P2, P3 ∈ K[∂] are monic, irreducible, and pairwise distinct, then .P3
cannot be a right factor of .lclm(P1, P2).
c. If .L ∈ C(x)[D] is completely reducible, then every formal power series
solution of L is a C-linear combination of certain formal power series solutions
of the right factors of L.

9. Show that .L ∈ C[∂] is completely reducible if and only if it is squarefree.

10. Show that for every .M ⊆ K[∂]/〈L〉 there is a .P ∈ K[∂] such that M is
generated by .[P].
11�. Write .C(x)[S]/〈lclm(S − x, S − x2)〉 as a direct sum of two submodules.

358 4 Operators

12��. Show that the eigenring of an operator is indeed a ring.

13. (Manfred Buchacher) Show that if L is completely reducible and U is a right
divisor of L, then U is completely reducible.

14�. Check that the Hilbert twist is an algebra isomorphism and that it turns .δ into
zero.

15�. Show that .(PQ)∗ = Q∗P ∗ and .P ∗∗ = P for all .P,Q ∈ K[∂].
16��. Show that an irreducible operator .P ∈ C(x)[D] has either only algebraic
solutions or only transcendental solutions (except 0).

Hint: First show that every algebraic function has an annihilating operator in
.C(x)[D] which only has algebraic solutions.

17. Show that .gcld(A,B) = gcrd(A∗, B∗)∗ for all .A,B ∈ K[∂]. Here, .gcld refers
to the greatest common left divisor, whose definition is analogous to Definition 4.19.

18. In the case .σ 	= id, δ = 0, show that every factorization of a monic operator
.L ∈ K[∂] with .rrem(L, ∂) = 0 into irreducible factors contains one factor .∂ . Show
also that the corresponding statement is false in the case .σ = id, δ 	= 0.

19. In the proof of Theorem 4.56 we used the fact that whenever .L = AU = BV

for some operators .L,A,U,B, V ∈ K[∂], then .lclm(U, V) is a right divisor of L.
Why is this true?

20. Write the following operators as least common left multiples:
a. .(1− x3)D5 + 3x2D4 + (x4 − 7x)D3 + 3D2 + (2x5 − 2x2)D + 2x4 − 8x;
b. .(x3 − 3x − 2)D4 + (−x4 + x3 − x + 1)D3 + (−2x4 + 2x3 + 3x2 + 4x −
1)D2 + (x5 − 2x2 + 3x)D − x4 + 2x − 3;
c. .(x3 + x2 − 4x − 4)S4 + (−x4 − 2x3 + 3x2 + 3x − 1)S3 + (−2x4 − 5x3 +
8x2 + 20x + 5)S2 + (x5 + 4x4 + 2x3 − 5x2 − 9x − 9)S − x4 − 4x3 − x2 + 6x;
d. .S4 − S2 + (2x + 3)S − x2 − 2x.

21�. Let .L = ∂r − 	r−1∂
r−1 − · · · − 	0 ∈ K[∂] and let .y0, . . . , yr−1 ∈ E be a set

of solutions.
a. Assuming .σ 	= id, δ = 0, show that

.θ(W(y0, . . . , yr−1)) = 	0W(y0, . . . , yr−1).

b. Assuming .σ = id, δ 	= 0, show that

.θ(W(y0, . . . , yr−1)) = 	r−1W(y0, . . . , yr−1).

c. Show that .W(y0, . . . , yr−1) is nonzero whenever .y0, . . . , yr−1 are C-
linearly independent.

22. Let .L ∈ C(x)[D], let g be an algebraic function, and let .M ∈ C(x)[D] be the
minimal order operator such that for every solution f of L, the composition .f ◦ g

is a solution of M (cf. Theorem 3.29). Does irreducibility of L imply irreducibility
of M?

4.4 Factorization 359

23�. Show that the K-vector space generated by .�i is closed under .θ .

24. Write the following operators as product of irreducible operators:
a. .D4 − xD3 + (2 − x)D2 + (x2 − x − 5)D − x2 + 4x + 1;
b. .D5 + D4 − xD3 + (x − 4)D2 + (2x − 1)D − x2 + x + 1;
c. .S4 − 3S2 + (2x + 1)S − x2;
d. .S4 − xS3 − xS2 + (x2 − 2)S − x2 + 3x.

25. Determine all second order right factors of .D5 −D3 ∈ C(x)[D].
26. In Algorithm 4.61, we assume that the subroutine for finding right factors just
delivers one factor, but we have seen that we may find a parameterized family of
factors in one stroke. How can Algorithm 4.61 be modified so as to take advantage
of such a situation?

27. In view of .
(
r
s

) = (
r

r−s

)
, what is the point of using adjoints in Algorithm 4.61

for finding left factors?

28. (Maximilian Jaroschek) Let .L ∈ K[∂] and suppose there is a .P ∈ K[∂] and a
.k ∈ N such that .L = P k .

a. In the case .σ = id, show that there exists a .p ∈ K with .p = lc(P)k .
b. In the case .δ = 0, show that there exists a .p ∈ K with .p = ([∂0]P)k .

29�. In this section, we have discussed the factorization problem for Ore algebras
.K[∂] over a field K . The factorization problem also makes sense in Ore algebras
.R[∂] where R is just a ring, for example in .C[x][D]. Show that .L = (4x − 4)D2 +
(6x − 4)D− 9 is irreducible as element of .C[x][D] but not as element of .C(x)[D].
30�. In this section, we have discussed the factorization problem with respect
to the multiplication of an Ore algebra. Alternatively, we could also consider the
factorization problem with respect to the symmetric product, i.e., we could ask
whether a given operator .L ∈ K[∂] can be written as the symmetric product of some
operators of lower order. Show that the operator .L = D4 − 6D3 + 11D2 − 6D ∈
C(x)[D] can be factored in this sense.

References

The Jordan-Hölder theorem is more widely known for groups, a proof for its
module version can be found in the book of Anderson and Fuller [31]. The
connection between the Jordan-Hölder theorem and factorization of operators is
nicely explained in a tutorial paper of Gomez-Torrecillas [219]. The discussion at
the beginning of this section was inspired by this paper. A more direct proof of
the essential uniqueness of a factorization is given in Ore’s paper [344] (Thm. 1 in
Chapter II). He also discusses complete reducibility (Sect. 2 of Chapter II), a concept
that was first introduced by Loewy [315]. Loewy further showed that every operator
can be written as a product of completely reducible operators. Such a factorization

360 4 Operators

is called a Loewy decomposition. Loewy decompositions in the case of several
variables were studied by Schwarz [400].

Giesbrecht [213, 214] introduced the eigenring method to factor elements of the
Ore algebra .K[∂] with .δ = 0 and K a finite field. In a sense, it is an adaption of
Berlekamp’s factorization algorithm for .Zp[x] [204] to the noncommutative setting.
The approach was extended to arbitrary Ore algebras .C(t)[∂] over a finite constant
field C by Giesbrecht and Zhang [216]. Caruso and Le Borgne [123] propose
a faster version of the algorithm. Singer [409] applies the eigenring method in
characteristic zero for determining, without factoring, whether or not a differential
operator is irreducible. At the end of this paper, Singer gives an account on the
historical development of the ideas. Van Hoeij [442] proposes an efficient algorithm
for finding elements of the eigenring.

The eigenring method is also sketched in Sect. 4.2.2 of the book by van der Put
and Singer [441], and in some lecture notes of Li [310]. These two sources also
discuss Beke’s algorithm, and were a great help for preparing this section.

Beke’s algorithm is due to Beke [52] and was first formulated for differential
operators. It was improved by various people, including Schwarz [399], Grig-
oriev [226], Wolf [460], Bronstein [112], and Tsarev [429, 430]. For general Ore
algebras, the algorithm was described by Bronstein and Petkovšek [115].

The idea to separate factors by analyzing local solutions at the singularities
has been turned into a complete factorization algorithm by van Hoeij [443]. As
this algorithm is more heavily based on the notion of solutions than the eigenring
method or Beke’s algorithm, it does not directly extend to other Ore algebras. Only
very recently, some progress on an analogous algorithm for the shift case has been
reported [475].

Another recent result which is useful for both theory and algorithm development
is an explicit degree bound for the right factors a linear differential operator can
have [98].

4.5 Several Variables

For an Ore algebra .K[∂] acting on a module F , it is natural to think of .∂ as
something like a derivation, and to view the elements of F as univariate objects with
a variable on which the derivation acts. If there are several variables, we may want
to use several derivations. For instance, we could associate one partial derivative to
each variable. Definition 4.1 already offers this freedom, because it starts from an
arbitrary ring R and declares what it means for .R[∂] to be an Ore algebra. If R itself
is already an Ore algebra, the construction yields an Ore algebra with two .∂’s, and if
we want, we can iterate further to obtain an Ore algebra with as many .∂’s as we like.
In this way we can construct, for example, an Ore algebra .C[x, y][∂1][∂2] which
acts on the ring .C[[x, y]] of formal power series in two variables .x, y, with .∂1, ∂2
acting as the partial derivations in .x, y, respectively. We could also consider an Ore

4.5 Several Variables 361

algebra .C[n, k][∂1][∂2] acting on the space .CN×N of sequences .((an,k))
∞
n,k=0 in two

variables, with .∂1, ∂2 acting as shift operators with respect to .n, k, respectively. It is
also possible to construct Ore algebras with different types of operators, for instance
letting .∂1 be a derivation and .∂2 be a shift operator gives an Ore algebra that acts on
sequences of power series.

In general, two generators .∂1, ∂2 of an Ore algebra .R[∂1][∂2] need not commute.
For example, if .R = C[x], .σ1 = id, .δ1 = d

dx
, .σ2(f (x)) = f (qx), .δ2 = 0, where q is

a nonzero constant, we have .∂1∂2 = q∂2∂1. This situation is not typical, and by using
the notation .R[∂1, . . . , ∂n] instead of .R[∂1] · · · [∂n], we shall indicate that the .∂i do
commute with each other. Although this commutativity is not a formal requirement
of the theory, it represents the most relevant situation in applications, and we will
mostly restrict our attention to this case. The arithmetic of such a multivariate Ore
algebra .R[∂1, . . . , ∂n] can be described by n endomorphisms .σ1, . . . , σn : R → R

and n maps .δ1, . . . , δn : R → R such that .δi is a .σi-derivation for every i. We have
the commutation rules .∂i∂j = ∂j ∂i and .∂iu = σi(u)∂i+δi(u) for all .i, j = 1, . . . , n.

For better readability, we will write .Dx,Dy,Dz, . . . for the elements of Ore
algebras that behave like partial derivations with respect to .x, y, z, We shall
assume that these commute with each other (e.g., .DxDy = DyDx) and that
partial derivations commute with all of the variables they are not responsible for
(e.g., .Dxy = yDx). Similarly, we will write .Sx, Sy, Sz, . . . for the shift operators
that map .x, y, z, . . . to .x + 1, y + 1, z + 1, . . . , respectively. Also in this case,
we have commutation rules like .SxSy = SySx and .Sxy = ySx . Using this
notation, the Ore algebras suggested above would be written as .C[x, y][Dx,Dy],
.C[n, k][Sn, Sk], .C[x, n][Dx, Sn], respectively. Typically, we will consider Ore
algebras .R[∂1, . . . , ∂n] with .R = C[x1, . . . , xn] or .R = C(x1, . . . , xn) where
each .∂i commutes with every .xj (.i 	= j). An example not matching this common
pattern is the algebra .C(x)[Dx, Sx], in which we can shift as well as differentiate
the variable.

In the univariate case, we have defined a function as D-finite if it has a nonzero
annihilating operator. This definition is no longer useful in the multivariate setting.
We use instead the criterion appearing in part 1 of Theorem 4.12 as a definition.

Definition 4.63 Let .A = K[∂1, . . . , ∂n] be an Ore algebra over a field K and let F

be an A-module.

1. For .f ∈ F , we call .ann(f) = {L ∈ A : L · f = 0 } the annihilator of f (in A).
2. .f ∈ F is called D-finite (with respect to the action of A on F) if the K-vector

space .A · f = {L · f : L ∈ A } ⊆ F has finite dimension. ��
Example 4.64

1. If .Q(x, y)[Dx,Dy] acts on the function space F of all bivariate meromorphic
functions, then the element .exp(x + y) ∈ F is D-finite. Its annihilator contains
the operators .Dx−1 and .Dy−1, so the vector space .Q(x, y)[Dx,Dy]·exp(x+y)

consists of all .Q(x, y)-multiples of .exp(x + y) and thus has dimension 1.

362 4 Operators

The element .f = x+exp(x+y) ∈ F is also D-finite. Its annihilator contains the
operators .(1− x)D2

x + xDx − 1 and .D2
y −Dy , which can be used to rewrite each

derivative .Di
xD

j
y ·f as a .Q(x, y)-linear combination of .f,Dx ·f,Dy ·f,DxDy ·f .

We therefore have .dimQ(x,y) Q(x, y)[Dx,Dy] · f ≤ 4. The actual dimension is
smaller because there are additional relations. Another element of the annihilator
is .xDx + (1 − x)Dy − 1, and this element can be used to rewrite .Dx · f and
.DxDy · f as linear combinations of f and .Dy · f , so these two functions also
generate the .Q(x, y)-vector space .Q(x, y)[Dx,Dy] · f . In fact, they form a basis
and the dimension of the space is 2.

2. Let F be the set of germs of bivariate sequences, i.e., the set of all equivalence
classes of sequences .a : N × N → C modulo the equivalence relation that
identifies all sequences that differ on the vanishing set of a nonzero bivariate
polynomial (cf. Definition 1.13). If we let the Ore algebra .C(n, k)[Sn, Sk] act
on F , then the binomial coefficient .

(
n
k

)
, viewed as an element of F , is D-finite.

Its annihilator contains the operators .(1+n)−(1−k+n)Sn and .(k−n)+(k+1)Sk ,
reflecting the identities

.

(
n+ 1

k

)
= n+ 1

n − k + 1

(
n

k

)
and

(
n

k + 1

)
= n− k

k + 1

(
n

k

)
.

These identities show that for each .i, j ∈ N, we can rewrite .Si
nS

j
k · (

n
k

)
as a

.C(n, k)-multiple of .
(
n
k

)
. Hence .dimC(n,k) C(n, k)[Sn, Sk] ·

(
n
k

) = 1.
The element .f = 1 + (

n
k

) ∈ F is also D-finite. Its annihilator contains the
operators

(n− k + 2)S2
n − (2n− k + 3)Sn + (n+ 1) and

(k + 2)(1 + 2k − n)S2
k − (2k + 2 − n)(n + 1)Sk − (k − n)(3 + 2k − n).

With these operators, every term .Si
nS

j
k ·f can be rewritten as a linear combination

of .f, Sn · f, Sk · f, SnSk · f , so .dimC(n,k) C(n, k)[Sn, Sk] · f ≤ 4. Like in the
previous example, the dimension is actually smaller. Because of the additional
annihilating operator

.(n− k + 1)(1 + 2k − n)Sn + k(k + 1)Sk + (n2 − 3kn+ k2 − 2k − 1),

the vector space .C(n, k)[Sn, Sk] · f is already generated by f and .Sk · f . In fact
they form a basis.
The Stirling numbers of the second kind .S2(n, k) are annihilated by the operator
.SnSk − (k+1)Sk −1 ∈ C(n, k)[Sn, Sk]. With this operator, every element .Si

nS
j
k ·

S2(n, k) can be rewritten as a .C(n, k)-linear combination of terms .S
p
n · S2(n, k)

and .S
q
k ·S2(n, k) for various .p, q ∈ N, but these terms can be shown to be linearly

independent, and since there are infinitely many, the Stirling numbers are not D-
finite even though their annihilator is not empty.

4.5 Several Variables 363

3. Let F be the set of all germs of univariate sequences in .C(x), and let
.C(x, n)[Dx, Sn] act on F . The sequence .(Pn(x))∞n=0 of Legendre polynomials,
viewed as an element of F , is D-finite. This sequence is defined recursively by
.P0(x) = 1, .P1(x) = x, and

.(n+ 2)Pn+2(x) − (2n + 3)xPn+1(x) + Pn(x) = 0 (n ∈ N).

This recurrence alone implies that the sequence .(Pn(x))∞n=0 is D-finite with
respect to the action of .C(x, n)[Sn], in other words, it is D-finite in the sense of
Chap. 2. With respect to the action of .C(x, n)[Dx, Sn], the recurrence only allows
us to rewrite any term .Di

xS
j
n · Pn(x) as a linear combination of terms .Dk

x · Pn(x)

and .D	
xSn · Pn(x) for various .k, 	 ∈ N. There are infinitely many of these terms,

but there is an additional annihilating operator .(1−x2)Dx+(n+1)Sn−(n+1)x

of .Pn(x), so .Pn(x) and .Sn · Pn(x) already generate the whole .C(x, n)-vector
space .C(x, n)[Dx, Sn] · Pn(x). ��
In these examples, we can see that the dimension of .K[∂1, . . . , ∂n] · f is finite

by finding, for each i, an annihilating operator containing .∂i but none of the other
generators. The following proposition says that this works in general. Informally
speaking, a multivariate object is D-finite if and only if it is D-finite as a univariate
object for each of the variables.

Proposition 4.65 Let .A = K[∂1, . . . , ∂n] be an Ore algebra over a field K and let
F be an A-module. An element .f ∈ F is D-finite if and only if .ann(f)∩K[∂i] 	= {0}
for all .i = 1, . . . , n. ��
Proof “.⇒”: If f is D-finite, then .dimK(A · f) =: d < ∞, so for every .i =
1, . . . , n, the elements .f, ∂i · f, · · · , ∂d

i · f ∈ F are linearly dependent over K . The
linear dependence corresponds to a nonzero element of .ann(f) ∩ K[∂i].

“.⇐”: If .ann(f) ∩ K[∂i] 	= {0} for all .i = 1, . . . , n, we can let .ri ∈ N (.i =
1, . . . , n) be such that .ann(f) ∩ K[∂i] contains an operator of order .ri . Using these
operators, every term .∂

p1
1 · · · ∂pn

n · f (.p1, . . . , pn ∈ N) can be rewritten into a K-
linear combination of terms .∂

q1
1 · · · ∂qn

n · f with .0 ≤ qi < ri (.i = 1, . . . , n). Since
there are only finitely many of such terms, it follows that .dimK(A · f) < ∞, so f

is D-finite. �

In the univariate case, a D-finite series or sequence is uniquely determined by an
annihilating operator and a finite number of initial terms. One of the motivations
behind Definition 4.63 is to have the same feature also in the case of several
variables. Indeed, as long as no trouble is caused by singularities, the generalization
is very natural. For notational simplicity, let us consider the case of two variables.
In the differential case, consider a left ideal .I ⊆ C(x, y)[Dx,Dy] such that
.dimC(x,y) C(x, y)[Dx,Dy]/I is finite, and let .B1, . . . , Br ∈ C(x, y)[Dx,Dy] be
such that their equivalence classes form a vector space basis of .C(x, y)[Dx,Dy]/I .
A bivariate formal power series .a(x, y) = ∑∞

n,k=0 an,kx
nyk ∈ C[x, y] is called a

solution of I if .I ⊆ ann a(x, y). For every .i, j ∈ N, there are .u1, . . . , ur ∈ C(x, y)

364 4 Operators

such that .Di
xD

j
y is equivalent modulo I to .u1B1 + · · · + urBr . For any coefficient

.ai,j of a solution .a(x, y) of I , we must therefore have

ai,j = [xiyj]a(x, y) = 1

i!j !
(
Di

xD
j
y · a(x, y)

)∣∣
x=y=0

= 1

i!j !
(
(u1B1 + · · · + urBr) · a(x, y)

)∣∣
x=y=0.

As long as the denominators of the .u	 or the .B	 do not vanish for .x = y = 0,
all of these coefficients are uniquely determined once we know the finitely many
values .(B	 · a(x, y))|x=0,y=0 (.	 = 1, . . . , r). Conversely, every choice of constants
.(B	 · a(x, y))|x=0,y=0 (.	 = 1, . . . , r) gives rise to a solution of I .

If some of the .B	 have denominators that vanish for .x = y = 0 or there are
some .i, j ∈ N for which the corresponding .u	 have denominators that vanish for
.x = y = 0, then we say that .(0, 0) is a singular point of I . In this case, it can be
difficult to determine which initial values give rise to power series solutions. Note
that whether .(0, 0) is a singularity or not depends not only on the ideal I , but also
on the choice of the basis .B1, . . . , B	.

In the shift case, the situation is similar. Given a left ideal .I ⊆ C(n, k)[Sn, Sk]
for which the dimension of .C(n, k)[Sn, Sk]/I is finite, and operators .B1, . . . , Br ∈
C(n, k)[Sn, Sk] whose equivalence classes form a basis of .C(n, k)[Sn, Sk]/I , a
bivariate sequence .(an,k)

∞
n,k=0 is a solution of I if .I ⊆ ann(an,k)

∞
n,k=0. For every

.i, j ∈ N, there are .u1, . . . , ur ∈ C(n, k) such that .Si
nS

j
k is equivalent modulo I to

.u1B1 + · · · + urBr , so for any solution .(an,k)
∞
n,k=0 we must have

ai,j = (an,k)
∞
n,k=0

∣∣
n=i,k=j

= (an+i,k+j)
∞
n,k=0

∣∣
n=k=0

= (
Si

nS
j
k · (an,k)

∞
n,k=0

)∣∣
n=k=0 =

(
(u1B1 + · · · + urBr) · (an,k)

∞
n,k=0

)∣∣
n=k=0.

Like before, trouble arises only if the .u	 or the .B	 cannot be evaluated at .n = k = 0
because of vanishing denominators. Such trouble is not uncommon.

Example 4.66

1. Consider the ideal

.I = 〈nSn − (n+ k), Sk − (n+ k)〉 ⊆ C(n, k)[Sn, Sk].

The vector space .C(n, k)[Sn, Sk]/I is generated by the equivalence class of
.B = 1 = S0

nS0
k . If there is no singularity trouble, every choice .a0,0 ∈ C can

be uniquely extended to a solution .(an,k)
∞
n,k=0 of I . However, there is singularity

trouble: for every .i, j ∈ N, we have

4.5 Several Variables 365

.Si
nS

j
k −

(n + k)(n+ k + 1) · · · (n+ k + i + j − 1)

n(n+ 1) · · · (n+ i − 1)
∈ I,

and an attempt to evaluate

.ai,j =
((n+ k)(n+ k + 1) · · · (n+ k + i + j − 1)

n(n + 1) · · · (n+ i − 1)
an,k

)∣∣∣
n=k=0

for some .i, j ∈ N with .i > 0 leads to a division by zero. We can only conclude
that .a0,j = 0 for all .j > 0. More generally, if we know all terms .ai,0 (.i ∈ N)
of a solution, the formula above lets us compute all other terms. But there are
infinitely many initial values.
The equivalence class of the operator .Sn is also a basis of the vector space
.C(n, k)[Sn, Sk]/I . For every .i, j ∈ N with .i > 0 we have .Si

nS
j
k − ri,j Sn ∈ I ,

where

.ri,j =

⎧
⎪⎨

⎪⎩

(n+k+1)(n+k+2)···(n+k+i+j−1)
(n+1)(n+2)···(n+i−1)

if i > 0,

n(n+ k + 1)(n+ k + 2) · · · (n + k + i + j − 1) if i = 0 and j > 0,
n

k+n
if i = j = 0.

The attempt to evaluate .ai,j = (ri,j an+1,k)|n=k=0 will succeed for every .i, j ∈
N except for .(i, j) = (0, 0). Therefore, a sequence solution of I is uniquely
determined by the single initial value .a1,0 and the isolated exceptional term .a0,0.

2. Consider the ideal .I = 〈(k − n)Sn + (n − k + 1), (k − n)Sk + (n − k − 1)〉 ⊆
C(n, k)[Sn, Sk]. Again the vector space .C(n, k)[Sn, Sk]/I has dimension 1 and
every nonzero element of it can serve as a basis. Again, some bases are better
than others.
Taking .B = 1, we find that .Si

nS
j
k − k+j−n−i

k−n
∈ I , but evaluating .ai,j =

(
k+j−n−i

k−n
an,k)|n=k=0 fails for every choice .i, j ∈ N with .i 	= j . Taking

any other monomial .Su
nSv

k with .u 	= v as B solves the problem, because

.Si
nS

j
k − k+j−n−i

k+v−n−u
Su

nSv
k ∈ I leads to evaluating .ai,j = (

k+j−n−i
k+v−n−u

an+u,k+v)n=k=0,
which succeeds when .u 	= v. ��

The examples above were chosen so that it was possible to resolve the problems
caused by singularities. This is not always possible, and it is not always easy to
decide whether it is possible or not, especially if the vector space dimension is
greater than one. Such issues are part of the price we have to pay for working with an
Ore algebra .K[∂1, . . . , ∂n] defined over a field K . If we are in a situation where we
are not willing to pay this price, we are led to the notion of holonomy (also known
as holonomicity), a concept closely related but not equivalent to D-finiteness. Its
definition is motivated by Proposition 4.65.

Definition 4.67 Let .A = C[x1, . . . , xn][∂1, . . . , ∂n] be an Ore algebra, let I be a
left ideal of A, and let f be an element of an A-module F .

366 4 Operators

1. I is called holonomic if for every subset .U ⊆ {x1, . . . , xn, ∂1, . . . , ∂n} with
.|U | = n+ 1 we have .I ∩ C[U] 	= {0}.

2. f is called holonomic if the ideal .ann(f) = {L ∈ A : L · f = 0 } ⊆ A is
holonomic. ��
One feature of holonomy is that it can also describe “functions” that are zero

almost everywhere. For example, an object .δ(x, y) which is zero except when
.x = y is annihilated by the operator .x − y ∈ C[x, y][Dx,Dy]. A meromorphic
function cannot be of this form, but suitably generalized notions of functions such
as distributions may be. Note that we cannot formulate the annihilation of a nonzero
object by .x−y in the Ore algebra .C(x, y)[Dx,Dy] because .x−y ∈ ann(f) implies
.

1
x−y

(x − y) = 1 ∈ ann(f), which means .1 · f = f = 0.

Example 4.68

1. .x + exp(xy2) ∈ C[[x, y]] is holonomic with respect to the algebra
.C[x, y][Dx,Dy] because its annihilator contains the operators

L1 = xy2D2
x −D2

x − xy4Dx + y4 ∈ C[x, y][Dx] ⊆ C[x, y][Dx,Dy],
L2 = yD2

y −Dy − 2xy2Dy ∈ C[x, y][Dy] ⊆ C[x, y][Dx,Dy],
L3 = D3

y − 4x2DxDy − 2xDy ∈ C[x][Dx,Dy] ⊆ C[x, y][Dx,Dy],
L4 = D3

x − y2D2
x ∈ C[y][Dx,Dy] ⊆ C[x, y][Dx,Dy].

2. .
(
n
k

)
is holonomic with respect to .C[n, k][Sn, Sk] because its annihilator contains

the operators

L1 = (n− k + 1)Sn − (n + 1) ∈ C[n, k][Sn],
L2 = (k + 1)Sk − (k − n) ∈ C[n, k][Sk],
L3 = SnSk − Sk − 1 ∈ C[n][Sn, Sk],
L4 = SnSk − Sk − 1 ∈ C[k][Sn, Sk].

��
According to Proposition 4.65, an object is already D-finite if it has annihilating

operators like the operators .L1 and .L2 in the examples above, and since holonomic
objects must in addition have annihilating operators like .L3 and .L4, it seems
that holonomy is a stronger requirement than D-finiteness. However, this is not
necessarily the case. We will show next that if the Ore algebra is such that all .σi are
equal to .id (like for example in the differential case), holonomy is in fact equivalent
to D-finiteness. In the proof, we will construct the required operators by setting up
a linear system with more variables than equations, as we have already done many
times. This time however, we will use a linear system over C rather than over K .

4.5 Several Variables 367

Theorem 4.69 Let .A = C[x1, . . . , xn][∂1, . . . , ∂n] be an Ore algebra with .σ1 =
· · · = σn = id. Let F be a .C[x1, . . . , xn][∂1, . . . , ∂n]-module which can also be
viewed as a .C(x1, . . . , xn)[∂1, . . . , ∂n]-module, and let .f ∈ F . Then f is holonomic
if and only if it is D-finite. ��
Proof “.⇒”: If f is holonomic, then for every .i = 1, . . . , n there exists a
nonzero annihilating operator in .C[x1, . . . , xn][∂i] ⊆ C(x1, . . . , xn)[∂i]. From
Proposition 4.65 it follows that f is D-finite.

“.⇐”: Write .K = C(x1, . . . , xn) and let .B = {b1, . . . , br } be a basis of the
K-vector space .V = K[∂1, . . . , ∂n] · f ⊆ F . Without loss of generality, we may
assume .b1 = f . To every element .g = u1b1 + · · · + urbr of V we associate the
coefficient vector .ĝ = (u1, . . . , ur) ∈ Kr with respect to B. There are matrices
.A1, . . . , An ∈ Kr×r such that the coefficient vector of .∂i · g is .Aiĝ + δi(ĝ) (.i =
1, . . . , n), where .δi(ĝ) means componentwise application of .δi .

Let q be a common denominator of all entries of all .Ai (.i = 1, . . . , n), and
let .d ≥ 1 be such that the total degree of q as well as the entries of the .qAi (.i =
1, . . . , n) are less than d. For an element .g ∈ V with .ĝ = q−k(p1, . . . , pr) for some
.k ∈ N, and certain polynomials .p1, . . . , pr ∈ C[x1, . . . , xn] of total degree at most
.u ∈ N, the coefficient vector of any .∂i ·g will have the form .q−(k+1)(p̃1, . . . , p̃r) for
certain polynomials .p̃1, . . . , p̃r ∈ C[x1, . . . , xn] of total degree at most .u+d. (Here
we used that .σi = id.) Also the coefficient vector of any .xi · g has this format. By
induction, it follows that for every .k ∈ N and every choice .i1, . . . , in, j1, . . . , jn ∈ N
with .i1 + · · · + in + j1 + · · · + jn ≤ k, the coefficient vector of

.x
i1
1 · · · xin

n ∂
j1
1 · · · ∂jn

n · f ∈ V

has the form .q−k(p1, . . . , pr) for certain polynomials .p1, . . . , pr ∈ C[x1, . . . , xn]
of total degree at most kd.

Now let .U ⊆ {x1, . . . , xn, ∂1, . . . , ∂n} with .|U | = n + 1. We have to show
that f has an annihilating operator in .C[U]. For a .k ∈ N, consider an ansatz .L =∑

τ cτ τ for such an operator, where .τ ranges over all terms .x
i1
1 · · · xin

n ∂
j1
1 · · · ∂jn

n

with .i1 + · · · + in + j1 + · · · + jn ≤ k but only involving variables from U (i.e.,
.i	 = 0 if .x	 	∈ U and .j	 = 0 if .∂	 	∈ U). Because of .|U | = n + 1, the ansatz for
L contains .

(
n+1+k

k

)
undetermined coefficients .cτ . By the analysis in the previous

paragraph, the coefficient vector of .L · f with respect to the basis B has the form
.q−k(p1, . . . , pr) for certain .p1, . . . , pr ∈ C[x1, . . . , xn] of total degree at most kd.
Equating the coefficients of all the .pi (.i = 1, . . . , r) with respect to the variables
.x1, . . . , xn to zero yields a linear system over C with at most .r

(
n+kd
kd

)
equations.

For sufficiently large k, we have .
(
n+1+k

k

)
> r

(
n+kd
kd

)
, because the left hand side

is a polynomial in k of degree .n + 1 (with a positive leading coefficient) while the
right hand side is a polynomial in k of degree n. Therefore, when k is sufficiently
large, the linear system will have a nonzero solution. This solution gives rise to the
required nonzero operator L. �

368 4 Operators

The restriction on the .σi in the theorem above ensures that the rational functions
appearing in the proof have a small common denominator. If the common denom-
inator is small, the corresponding numerators are also small, and this means that
coefficient comparison does not lead to too many equations. If some .σi are different
from .id, as for example in the shift case, holonomy and D-finiteness are not the
same.

Example 4.70 The rational function .a(n, k) = 1/(n2 + k2) is D-finite because it
satisfies the recurrence equations

(n2 + (k + 1)2)a(n, k + 1) − (n2 + k2)a(n, k) = 0,

((n+ 1)2 + k2)a(n + 1, k) − (n2 + k2)a(n, k) = 0.

It is however not holonomic, because in order for .a(n, k) to be holonomic, we would
also need an annihilating operator only containing .n, Sk, Sn, i.e., a relation of the
form

.

∑

u,v

pu,v(n)

(n+ u)2 + (k + v)2
= 0

for certain polynomials .pu,v , not all zero. Such a relation does not exist. To see why,
suppose there is a pair .(i, j) for which .pi,j is not the zero polynomial. Then there is
an .m ∈ Q \ Z such that .pi,j (m) 	= 0, so setting n to m in the relation above yields a
C-linear dependence among the rational functions .1/((m+u)2 + (k+ v)2) ∈ C(k).
But these rational functions are C-linearly independent because their denominators
are pairwise coprime. See Exercise 8 for some more details. ��

The lack of equivalence between holonomy and D-finiteness in the shift case
can be a source of annoyance. For example, it can be shown (Exercise 5) that a
sequence .(an,k)

∞
n,k=0 is holonomic with respect to .C[n, k][Sn, Sk] if and only if

its generating function .a(x, y) = ∑∞
n,k=0 an,kx

nyk is holonomic with respect to
.C[x, y][Dx,Dy]. The latter is equivalent to D-finiteness but, as we have just seen,
the former is not. This means that Theorem 2.33 for translating recurrence equations
to differential equations does not carry over to multivariate D-finite functions.
Summation and integration also do not preserve D-finiteness in the case of several
variables. For example, . 1

n+x
is D-finite with respect to .C(n, x)[Sn,Dx] but .

∫ 1
n+x

dx

and .
∑n

k=1
1

k+x
are not (Exercises 2 and 12).

Summation and integration are the subject of the next chapter. Other closure
properties are less problematic. In particular, addition and (if meaningful) multipli-
cation preserve D-finiteness.

Theorem 4.71 Let .A = K[∂1, . . . , ∂n] be an Ore algebra and F be an A-module.
Let .f, g ∈ F be D-finite.

1. .L · f is D-finite for every .L ∈ A.
2. .f + g is D-finite.

4.5 Several Variables 369

3. If .m : F ×F → F is a K-bilinear function such that for every .i = 1, . . . , n there
are .αi, βi, γi ∈ K with

.∂i · m(u, v) = αim(u, v) + βim(∂i · u, v) + βim(u, ∂i · v) + γim(∂i · u, ∂i · v)

for all .u, v ∈ F . Then .m(f, g) is D-finite. ��
Proof

1. Since f is D-finite, .dimK(A · f) < ∞. .A · (L · f) is a subspace of .A · f and
therefore also has finite dimension. The claim follows.

2. Since .f, g are D-finite, we have .dimK(A · f), dimK(A · g) < ∞. Consequently,
.dimK(A · f + A · g) < ∞. The K-vector space .A · (f + g) is a subspace of
.A · f + A · g and therefore also has a finite dimension. The claim follows.

3. Since .f, g are D-finite, we have .dimK(A · f), dimK(A · g) < ∞. Consequently,
.dimK((A · f) ⊗K (A · g)) < ∞. By the assumption on m, the K-vector space
.A ·m(f, g) is isomorphic to (a subspace of) .(A ·f)⊗K (A ·g) and therefore also
has a finite dimension. The claim follows. �

Theorem 4.72

1. Let .f ∈ C[[x1, . . . , xn]] be D-finite (with respect to the algebra .C(x1, . . . , xn)

[Dx1, . . . , Dxn]) and suppose that elements .g1, . . . , gn ∈ C[[z1, . . . , zm]] are
algebraic over .C(z1, . . . , zm) but algebraically independent over C. If the
composition .f (g1, . . . , gn) is a well-defined element of .C[[z1, . . . , zm]], then it
is D-finite (w.r.t. .C(z1, . . . , zm)[Dz1, . . . , Dzm]).

2. Let .f : Cn → C be a meromorphic D-finite function (with respect to the algebra
.C(x1, . . . , xn)[Sx1, . . . , Sxn]). Suppose that linear functions .g1, . . . , gn : Qm →
Q are linearly independent over .C. Then the composition .f (g1, . . . , gn) is D-
finite (w.r.t. .C(z1, . . . , zm)[Sz1 , . . . , Szm]). ��

Proof

1. The field .C(z1, . . . , zm)(g1, . . . , gn) is closed under application of .Dzi
for every

.i = 1, . . . , m (for the same reason as in the univariate case), and it is a finite-
dimensional .C(z1, . . . , zm)-vector space (also for the same reason as in the
univariate case).
Since f is D-finite, the functions .D

e1
x1 · · ·Den

xn
· f form a finite-dimensional

.C(x1, . . . , xn)-vector space. The substitution .xi �→ gi (.i = 1, . . . , n) is
well-defined on this space, because .g1, . . . , gn are assumed to be algebraically
independent over C, so plugging them into the denominator of an element
of .C(x1, . . . , xn) cannot produce a division by zero. Therefore, the functions
.(D

e1
x1 · · ·Den

xn
· f)(g1, . . . , gn) form a finite-dimensional .C(g1, . . . , gn)-vector

space, which we may also view as a .C(z1, . . . , zm)(g1, . . . , gn)-vector space.
Call this space V .
For .h = f (g1, . . . , gn), we have

370 4 Operators

.Dzi
· h =

n∑

j=1

(
(Dxj

· f)(g1, . . . , gn)
)

︸ ︷︷ ︸
∈V

∈C(z1,...,zm)(g1,...,gn)
︷ ︸︸ ︷
(Dzi

· gj)

︸ ︷︷ ︸
∈V

∈ V

for every .i = 1, . . . , m, by the chain rule. By induction, it follows that
every .D

e1
z1 · · ·Dem

zm
· h belongs to V . Since V is a finite-dimensional vector

space over .C(z1, . . . , zm)(g1, . . . , gn) and .C(z1, . . . , zm)(g1, . . . , gn) is a
finite-dimensional vector space over .C(z1, . . . , zm), V is a finite-dimensional
.C(z1, . . . , zm)-vector space, and since V contains .C(z1, . . . , zm)[Dz1, . . . , Dzm]·
h as a subspace, we have shown that h is D-finite.

2. Using vector notation .z = (z1, . . . , zm), .g = (g1, . . . , gn), etc., we can write

.Szi
· f (g(z)) = f (g(z) + g(ei)) (i = 1, . . . , m),

where .ei is the ith unit vector in .C
n. More generally, for every choice

.	1, . . . , 	m ∈ N we have

.S	1
z1
· · · S	m

zm
· f (g(z)) = f (g(z) + 	1g(e1) + · · · + 	mg(em)).

If .d ∈ N is the common denominator of the entries of .g(e1), . . . , g(em) ∈ Qn,
we find that each .S

	1
z1 · · · S	m

zm
·f (g(z)) belongs to the .C(x1, . . . , xn)-vector space

generated by .f (g(z) + u/d), where u runs through .N
n. Since f is D-finite, this

space is also generated by .f (g(z) + u/d) where u runs through .{0, . . . , r}n for
some sufficiently large .r ∈ N. Hence, its dimension is finite.
The substitution .xi �→ gi (.i = 1, . . . , n) is well-defined on this space, because
the assumption on .g1, . . . , gn implies that these functions are algebraically
independent over C (Exercise 14), so plugging them into the denominator of
an element of .C(x1, . . . , xn) cannot produce a division by zero. Therefore,
the .C(z1, . . . , zm)-vector space .C(z1, . . . , zm)[Sz1 , . . . , Szm] · f (g) has finite
dimension, which proves that .f (g) is D-finite. �

The condition of algebraic independence on the substitution arguments is
required only for ensuring that there is no division by zero. If there is a dependence
between the arguments, there is a good chance that the computation succeeds
nevertheless, and it is worth giving it a try. If it fails, more advanced techniques
discussed in the next chapter can be applied (cf. Theorems 5.30 and 5.36). In
particular, these more advanced techniques are often needed when one of the
arguments is set to a constant, e.g., when we want to compute a differential equation
in x for .f (x, 0) from a system of differential equations in .x, y for .f (x, y).

For the shift case, we have formulated the closure under substitution for
meromorphic functions rather than sequences because this case can be formulated
more conveniently. For sequences, we would have to restrict to substitutions
that map (nonnegative) integer arguments to (nonnegative) integer arguments,

4.5 Several Variables 371

but the proof is otherwise the same. We have furthermore simplified matters by
considering only the pure differential case and the pure shift case, respectively.
The result can be extended to the mixed case, as long as it is ensured that
the substitution only affects variables on which only derivations or shifts act.
For example, given a D-finite element .f (x1, x2, n1, n2, u1, u2) of a module on
which an Ore algebra .C(x1, x2, n1, n2, u1, u2)[Dx1,Dx2 , Sn1 , Sn2 , ∂u1 , ∂u2] acts, a
substitution .x1 = g1(z1, z2), .x2 = g2(z1, z2), .n1 = h1(k1, k2), .n2 = h2(k1, k2)

with .g1, g2 algebraic and algebraically independent and .h1, h2 linear and linearly
independent yields a result which is D-finite with respect to the Ore algebra
.C(z1, z2, k1, k2, u1, u2)[Dz1,Dz2 , Sk1 , Sk2 , ∂u1 , ∂u2].

Closure properties are easy to program if we do not represent a D-finite
function f using annihilating operators but instead exploit that the K-vector space
.K[∂1, . . . , ∂n] · f has finite dimension. To have a finite dimension means that for
some .r ∈ N there is a K-vector space embedding .φ : K[∂1, . . . , ∂n] ·f → Kr . Like
in the proof of Theorem 4.69, we can turn .Kr into a .K[∂1, . . . , ∂n]-module and .φ

into a module homomorphism by choosing matrices .A1, . . . , An ∈ Kr×r such that

.φ(∂i · u) = Aiσi(φ(u))+ δi(φ(u))

for .i = 1, . . . , n and every .u ∈ K[∂1, . . . , ∂n] · f , where the applications of the .σi

and .δi are meant componentwise. We call these matrices companion matrices for
.∂1, . . . , ∂n. Depending on the circumstances, it may be fair to say that we know the
D-finite function f once we know the vector .φ(f) ∈ Kr , the companion matrices,
and the functions .σ1, . . . , σn, δ1, . . . , δn defining the Ore algebra.

With this point of view, if .f, g are two D-finite functions and we have module
embeddings .φ : K[∂1, . . . , ∂n] · f → Kr and .ψ : K[∂1, . . . , ∂n] · g → Ks with
companion matrices .A1, . . . , An ∈ Kr×r and .B1, . . . , Bn ∈ Ks×s , then we can
encode .h := f + g by the embedding .χ : K[∂1, . . . , ∂n] · h → Kr+s defined by
.χ(h) = (

φ(f)
ψ(g)

) ∈ Kr+s and the companion matrices

.

(
A1

B1

)
, . . . ,

(
An

Bn

)
∈ K(r+s)×(r+s).

This takes literally no computation time. For other closure properties, the construc-
tion is only slightly more involved.

If a D-finite function f is given in the sense outlined above, i.e., if for a certain
module embedding .φ : K[∂1, . . . , ∂n] · f → Kr we know the vector .φ(f) ∈ Kr

and the companion matrices .A1, . . . , An ∈ Kr×r describing the action of .∂1, . . . , ∂n

on .Kr , we can also compute generators of the ideal .ann(f) ⊆ K[∂1, . . . , ∂n]. This
works as follows. First observe that for any given term .∂

e1
1 · · · ∂en

n we can use .φ(f)

as well as the companion matrices .A1, . . . , An to compute the vector .φ(∂
e1
1 · · · ∂en

n ·
f) ∈ Kr . Therefore, given any finite number of such terms, say .τ1, . . . , τm, we can
decide whether f has an annihilating operator consisting of these terms by checking
whether the vectors .φ(τ1 · f), . . . , φ(τm · f) ∈ Kr are linearly dependent over K .

372 4 Operators

Clearly, for any .p1, . . . , pm ∈ K we have .p1τ1 + · · · + pmτm ∈ ann(f) if and only
if .(p1τ1 +· · ·+pmτm) ·f = 0 if and only if .φ((p1τ1 +· · ·+pmτm) ·f) = 0 (since
.φ is supposed to be injective) if and only if .p1φ(τ1 · f) + · · · + pmφ(τm · f) = 0.

Secondly, we need a systematic way to choose candidate terms .τ1, . . . , τm.
On the set of all terms .∂

e1
1 · · · ∂en

n , we define an ordering .≤ with the property
that .1 = ∂0

1 · · · ∂0
n is the smallest element and .τ1 ≤ τ2 ⇒ στ1 ≤ στ2 for

all terms .σ, τ1, τ2. Such an order is called a term order. With respect to a term
order, every nonzero operator .L ∈ K[∂1, . . . , ∂n] has a maximal term, called the
leading term of the operator and denoted by .lt(L). By the second defining property
of term orders, we have .lt(τL) = τ lt(L) for every term .τ and every nonzero
operator .L ∈ K[∂1, . . . , ∂n]. Moreover, it follows from the theory of Gröbner bases
(discussed more deeply in the next section) that if I is an ideal, then a basis of the
K-vector space .K[∂1, . . . , ∂n]/I is given by the equivalence classes of all terms .τ

that are not the leading term of an element of I . These observations give rise to the
following general procedure for finding generators of an ideal.

Algorithm 4.73 (FGLM)
Input: A term order and a method to determine the set of all K-linear combinations
of a given finite set of terms .τ1, . . . , τm that belong to I, for a certain ideal .I ⊆
K[∂1, . . . , ∂n].
Output: An ideal basis of I and a K-vector space basis of .K[∂1, . . . , ∂n]/I .

1 Set .B = ∅ and .G = ∅.
2 while there exist terms .∂

e1
1 · · · ∂en

n which are not in B and not a multiple of some
.lt(g) for .g ∈ G do

3 Let .τ be the smallest such term (with respect to the given term order).
4 Search for a nontrivial K-linear combination of .B ∪ {τ } that belongs to I .
5 if there is one then
6 Add this relation to G.
7 otherwise
8 Add .τ to B.
9 Return G and .{ [b] : b ∈ B }.
Example 4.74 Here is a possible trace of the algorithm. We choose the term order
defined by .∂

u1
1 ∂

u2
2 < ∂

v1
1 ∂

v2
2 if .u1 < v1 ∨ (u1 = v1 ∧ u2 < v2). In the figures below,

a term .∂
u1
1 ∂

u2
2 corresponds to a point .(u1, u2) ∈ N2. Terms in B are depicted as open

circles, the term .τ chosen in line 3 of the algorithm is depicted as a filled-in circle,
and the terms in the shaded area are multiples of leading terms of elements of G.
The nth figure (.n = 1, . . . , 8) shows the situation right after the nth execution of
line 3. The last figure shows the situation when the while loop has terminated.

4.5 Several Variables 373

��
We have to explain why Algorithm 4.73 terminates and why its output is indeed

an ideal basis. For the termination, we need to show that both branches of the if
statement in lines 6 and 8 can only be executed a finite number of times. For the
statement in line 8, this is easy to see when .K[∂1, . . . , ∂n]/I is a finite dimensional
K-vector space, because the equivalence classes of the elements of B are by
construction always linearly independent over K . If the quotient .K[∂1, . . . , ∂n]/I
has infinite dimension, then the algorithm does not terminate. Regardless of whether
the dimension of .K[∂1, . . . , ∂n]/I is finite or not, the statement in line 6 can only be
executed a finite number of times, although this is not totally obvious. The reason
is the so-called Dickson’s lemma, which says that every sequence .τ1, τ2, τ3, . . . of
terms such that no term .τi is a multiple of any of its predecessors .τ1, . . . , τi−1 must
be finite. Note that this condition applies to the sequence of leading terms .lt(g)

added to G by the second part of the termination condition of the while loop.

Theorem 4.75 Algorithm 4.73 is correct. ��
Proof We have to show that G is a basis of the ideal and that .{ [b] : b ∈ B } is a
vector space basis of the quotient.

It is clear that every element of G belongs to I , because only elements of I

are added to G during the algorithm. It is also clear that .{ [b] : b ∈ B } is
linearly independent, because only terms are added to B that do not produce a linear
dependence.

In order to show that G generates I and that .{ [b] : b ∈ B } generates
.K[∂1, . . . , ∂n]/I , we show that every element L of .K[∂1, . . . , ∂n] is equivalent
modulo .〈G〉 to a linear combination of elements of B. By the linear independence

374 4 Operators

of B modulo I if and only if this linear combination is zero, this implies that L

belongs to I . It also implies that B generates the quotient as a K-vector space,
because any element of the quotient which was not in the (sub)space generated by
the equivalence classes of elements of B would give rise to a counterexample.

Suppose the contrary, that there are elements of .K[∂1, . . . , ∂n] that are not
equivalent modulo .〈G〉 to a linear combination of elements of B, and among them,
let L be one that is minimal in the sense that its largest term .τ not contained in B is
as small as possible with respect to the term order. By the termination condition
of the while loop, any term not contained in B is a multiple of .lt(g) for some
.g ∈ G. Therefore, there are .p ∈ K , a term .σ , and a .g ∈ G such that .L − pσg

does not contain .τ . Since L is by assumption not equivalent modulo .〈G〉 to a linear
combination of elements of B, and L is equivalent modulo .〈G〉 to .L − pσg, the
operator .L − pσg must still contain some term that is not in B. However, all
such terms must be smaller than .τ = σ lt(g), in contradiction to the minimality
assumption on L. �

Exercises

1. Show that .dimC(x,y) C(x, y)[Dx,Dy]/ ann(x + exp(x + y)) = 2.

2�. Show that .xn is D-finite and that .log(n+ x) is not.

3. For every .α ∈ Q, determine a basis of the annihilator of .(x3(x + y)y2)α with
respect to .C(x, y)[Dx,Dy].
4. In the proof of Theorem 4.69 we assumed that f belongs to the basis. What if
.f = 0?

5�. Show that a sequence .(ak1,...,kn)
∞
k1,...,kn=0 is holonomic with respect to the

algebra .C[k1, . . . , kn][Sk1 , . . . , Skn] if and only if its generating function

.

∞∑

k1,...,kn=0

ak1,...,knx
k1
1 · · · xkn

n ∈ C[[x1, . . . , xn]]

is holonomic w.r.t. .C[x1, . . . , xn][Dx1, . . . , Dxn].
Hint: First show that both statements are equivalent to holonomy of the generat-

ing function with respect to .C[x1, . . . , xn][θx1, . . . , θxn], where .θxi
acts as the Euler

derivation .xiDxi
(.i = 1, . . . , n).

6. The goal of this exercise is to show that a D-finite object depending on n

variables can always be viewed as a D-finite object in .n+ 1 variables. To set things

4.5 Several Variables 375

up, consider an Ore algebra .K[∂1, . . . , ∂n, ∂n+1] and let F be a module for the
subalgebra .K[∂1, . . . , ∂n].

a. Show that F becomes a .K[∂1, . . . , ∂n, ∂n+1]-module by defining .∂n+1 ·f =
0 for every .f ∈ F .
b. Show that if .f ∈ F is D-finite with respect to .K[∂1, . . . , ∂n], it is also
D-finite with respect to .K[∂1, . . . , ∂n, ∂n+1].

7. Prove or disprove: If a sequence .(an,k)
∞
n,k=0 is such that for every fixed .k ∈

N the univariate sequence .(an,k)
∞
n=0 is D-finite, then .(an,k)

∞
n,k=0 is D-finite as a

bivariate sequence.

8�. a. Let .r1, . . . , rn ∈ C(x) be such that their denominators are pairwise
coprime. Show that .r1, . . . , rn are linearly independent over C.

b. Let .m ∈ Q \Z. Show that the polynomials .(m+u)2 + (x+ v)2 for .u, v ∈ Z
are pairwise coprime.

9. Prove or disprove: .1/(n2 − k2) is holonomic.

10�. Prove or disprove: .1/(nk + 1) is holonomic.

11. Prove or disprove: If .I, J ⊆ C[x1, . . . , xn, ∂x1 , . . . , ∂xn] are nontrivial (i.e.,
different from .〈1〉) and holonomic, then .I ⊆ J implies .I = J .

12���. Show that .
∑n

k=1
1

x+k
is not D-finite.

13. Show that the Legendre polynomials are holonomic in n and x. Hint: Guess
and prove appropriate annihilating operators.

14. Let the linear functions .g1, . . . , gn : Qm → Q be linearly independent over C.
Show that .g1, . . . , gn are algebraically independent.

15�. We have seen that if a multivariate sequence is D-finite, its generating
function need not be D-finite. How about the converse: If a multivariate power series
is D-finite, does its coefficient sequence have to be D-finite?

16��. Let F be a .C(x, y)[Dx,Dy]-module and .f ∈ F .
a. Show that .ann(f) = 〈Dx − x,Dy − x〉 implies .f = 0.
b. Suppose that there is an embedding .φ : C(x, y)[Dx,Dy] · f → C(x, y)2

with the companion matrices .Ax =
(

1 0
0 −1

)
and .Ay =

(
0 1
1 0

)
. Show that .f = 0.

17�. Let .A = K[∂1, . . . , ∂n] be an Ore algebra, F be an A-module and let .m : F ×
F → F be a bilinear map. Let .f, g ∈ F be D-finite. Suppose there is an embedding
.φ : A · f → K2 with .φ(f) = (1, 0) ∈ K2 and companion matrices .A1, . . . , An ∈
K2×2 and an embedding .ψ : A · g → K2 with .ψ(g) = (1, 0) ∈ K2 and companion
matrices .B1, . . . , Bn ∈ K2×2. We want to construct an embedding .χ : A·m(f, g) →
K4 with .χ(m(f, g)) = (1, 0, 0, 0). Find a companion matrix for the action of .∂i

a. if .∂i ·m(a, b) = m(∂i · a, ∂i · b) for all .a, b ∈ F ,
b. if .∂i ·m(a, b) = m(∂i · a, b) +m(a, ∂i · b) for all .a, b ∈ F .

18. Suppose that .f : Z2 → C[[x, y]] is D-finite. Show that .f (3n + 5k, 2n −
k,
√

1 − xy, x2 + y2) is D-finite as well.

376 4 Operators

19�. Let .u, v ∈ Qn and define .f : Zn → C by

.f (k1, . . . , kn) =
{

1 if
(
(k1, . . . , kn) − u

) · v ≥ 0,

0 otherwise,

so that f is 1 for the points in a certain halfspace defined by u and v, and 0 outside
of this halfspace. Show that f is holonomic.

20. Let .I = 〈(1 − xy)Dx + y2Dy − y, (1 − xy)D2
y + x2yDy − x2〉 ⊆

C(x, y)[Dx,Dy]. Construct an embedding .φ : C(x, y)[Dx,Dy]/I → C(x, y)2.

21. For a certain D-finite sequence f we have an embedding .φ : C(n, k)[Sn, Sk] ·
f → C(n, k)2 with .φ(f) = (1

1

)
and the companion matrices

.An =
(

2(n+1)(2n+1)
(n+k+1)(n−k+1)

0

0 1

)

, Ak =
(

n−k
n+k+1 0

0 1

)

describing the action of .Sn, Sk , respectively. Compute a basis of an ideal .I ⊆
C(n, k)[Sn, Sk] with .dimC(n,k) C(n, k)[Sn, Sk]/I = 2 and .I ⊆ ann(f). Can we
tell whether .I = ann(f)?

22�. For the Legendre polynomials .Pn(x) we have .ann(Pn(x)) = 〈(n + 1)Sn −
(x2−1)Dx−(n+1)x, (x2−1)D2

x+2xDx−n(n+1)〉 ⊆ C(n, x)[Sn,Dx]. Compute
an ideal basis of .ann(Pn(x)2).

23. Let .a(x, y) be an algebraic function satisfying the polynomial equation
.a(x, y)4 − xa(x, y)2 + y = 0. Find an ideal .I ⊆ C(x, y)[Dx,Dy] with
.ann a(x, y) ⊆ I and .dimC(x,y) C(x, y)[Dx,Dy]/I = 2.

24. Show that the sum of two holonomic sequences is holonomic.

25�. Let .a(x, y) ∈ C[[x, y]] be D-finite and such that .a(x, y) = a(y, x).
a. Show that there are nonzero annihilating operators of .a(x, y) which are
invariant under exchanging x with y and .Dx with .Dy .
b. Show that not all annihilating operators of .a(x, y) have this property.

26�. (Shaoshi Chen)
a. If .a ∈ C[[t]] is such that .a(xy) ∈ C[[x, y]] is D-finite, then a is D-finite in
the sense of Chap. 3.
b. If .a ∈ C[[x, y]] is such that .(xDx − yDy)

s · a = 0 for some .s ∈ N, then
there exists .b ∈ C[[t]] such that .a(x, y) = b(xy).

27��. Show that there is no algorithm which for any given

.L ∈ C[x1, . . . , xn][Dx1, . . . , Dxn]

decides whether there exists a nonzero polynomial .p ∈ C[x1, . . . , xn] such that
.L · p = 0.

4.6 Gröbner Bases 377

Hint: You may use Matiyasevich’s theorem, which says that there is no algorithm
which for any given polynomial .p ∈ Z[x1, . . . , xn] decides whether there is a tuple
.(ξ1, . . . , ξn) ∈ Nn such that .p(ξ1, . . . , ξn) = 0.

References

Multivariate D-finite functions were first considered by Zeilberger [466]. He calls
them multi-D-finite in the differential case and multi-P-recursive in the shift
case. Ore algebras were first used to describe multivariate objects by Chyzak
and Salvy [157]. They propose the notion .∂-finite for what we call D-finite
in Definition 4.67. Lipshitz [314] observed that generating functions of D-finite
sequences need not be D-finite, which led Zeilberger to use holonomy instead of
D-finiteness in his paper [468].

Holonomy was introduced by Bernstein [58] and has developed into a rather
sophisticated theory [69, 166, 260, 377], of which we hardly make any use here.
A fundamental result of the theory, known as Bernstein’s inequality, is that for
a proper left ideal .I � C[x1, . . . , xn][Dx1, . . . , Dxn], it cannot happen that .I ∩
C[U] 	= {0} for every subset .U ⊆ {x1, . . . , xn,Dx1 , . . . , Dxn} with .|U | = n + 2.
Algebraically speaking, this means that the dimension of any proper left ideal of
.C[x1, . . . , xn][Dx1, . . . , Dxn] is at least n. In view of this result, a proper ideal
is holonomic if it has smallest possible dimension. Another peculiar fact due to
Stafford [307, 411] is that every left ideal of .C[x1, . . . , xn][Dx1, . . . , Dxn] can be
generated by only two elements.

We have seen in Sect. 2.2 that the dimension of the solution space of a linear
recurrence with polynomial coefficients may exceed the order of the equation. The
same is true in the multivariate case. Abramov and Petkovšek show that the solution
space of a system of recurrences of first order can have any dimension [19].

Algorithm 4.73 is named after the initials of Faugère, Gianni, Lazard, and Mora,
who propose this technique in [191] for changing the term order of a Gröbner basis.
Essentially the same idea was already used a decade earlier by Buchberger and
Möller for constructing Gröbner bases of ideals with finitely many solutions [118].
Dickson’s lemma comes from [171].

4.6 Gröbner Bases

The annihilating operators of a D-finite object form a left ideal of the operator
algebra. In the univariate case, the operator algebra is typically an Ore algebra of the
form .K[∂], which is a principal left ideal domain, so every ideal can be described
by a single generator. It consists of all the left multiples of such a generator. In
the case of several variables, an ideal is not necessarily generated by a single
operator, but it remains true that every ideal can be described by a finite set of

378 4 Operators

generators. This is Hilbert’s basis theorem, which was originally formulated for
commutative polynomial rings .C[x1, . . . , xn] over a field but also holds for Ore
algebras .K[∂1, . . . , ∂n].

If we are given a finite set .B ⊆ K[∂1, . . . , ∂n], it is not necessarily easy to answer
questions about the left ideal .〈B〉 it generates. Even the answer to the question of
whether or not the ideal contains 1 may not be obvious at first glance. Gröbner
bases theory gives a finite set G of generators for an ideal .I ⊆ K[∂1, . . . , ∂n] such
that many questions about I can be easily answered by looking at G. The theory
is rich and has many applications, especially in the commutative case, for which
it was first developed. There are several excellent textbooks exclusively devoted
to Gröbner bases for commutative polynomial rings, and since the theory extends
almost literally to the case of Ore algebras, we only give a minimal discussion here.

We are primarily interested in two kinds of noncommutative polynomial rings:
Ore algebras .C(x1, . . . , xm)[∂1, . . . , ∂k] in which .x1, . . . , xm belong to the ground
field, and Ore algebras .C[x1, . . . , xm][∂1, . . . , ∂k] in which .x1, . . . , xm are also
considered as polynomial variables. In order to cover both cases with a common
notation, let us write .K[X1, . . . , Xn] for the rings under consideration, where K

may refer to either .C(x1, . . . , xm) or C, and the variables .X1, . . . , Xn may refer
either just to .∂1, . . . , ∂k or to .x1, . . . , xm, ∂1, . . . , ∂k .

It remains true that every element of .K[X1, . . . , Xn] can be written as a (left-)
K-linear combination of terms of the form .X

e1
1 · · ·Xen

n with .e1, . . . , en ∈ N, but we
may no longer assume that the product of two terms is again a term. For example,
in .C[x, y][Dx,Dy] we have .Dxx = xDx + 1. We therefore need to refine the
definition of term orders used in the previous section. Like before, if .≤ is a total
order on the set of all terms, we call the largest term with respect to .≤ appearing in
an element .p ∈ K[X1, . . . , Xn] \ {0} the leading term of p and denote it by .lt(p).
We also define the leading coefficient .lc(p) := [lt(p)]p and the leading monomial
.lm(p) := lc(p) lt(p) of p. The leading exponent .lexp(p) of p is defined as the
vector .(e1, . . . , en) such that .lt(p) = X

e1
1 · · ·Xen

n . Note that all of these notions
depend on the choice of the order .≤.

A total order .≤ on the set of terms is now called a term order (or monomial order
or admissible order) if (i) .1 = X0

1 · · ·X0
n is the minimal element with respect to .≤;

(ii) .τ ≤ σ ⇒ lt(ρτ) ≤ lt(ρσ) for all terms .τ, σ, ρ; (iii) for all .i, j with .i < j

there exist .u ∈ K \ {0} and .v ∈ K[X1, . . . , Xn] with .v = 0 or .lt(v) < XiXj such
that .XjXi = uXiXj + v. This definition differs from the commutative case, where
condition (iii) is not needed because it follows from (ii), and where on the right hand
side of the implication in (ii) it suffices to say .ρτ ≤ ρσ because products of terms
are terms. The adjustments are made in such a way that the rest of the theory carries
over seamlessly to the present setting.

We assume from now on that the ring .K[X1, . . . , Xn] is endowed with a certain
fixed term order .≤. Once a term order is fixed, we can perform division with
remainder. In the commutative case, the algorithm for division with remainder is
based on divisibility properties of leading terms. In .K[X1, . . . , Xn], we cannot
easily say that one term is a divisor of another term because products of terms

4.6 Gröbner Bases 379

need not be terms. But we can talk about exponent vectors instead. For two vectors
.(e1, . . . , en), (e

′
1, . . . , e

′
n) ∈ Nn, we write .(e1, . . . , en) ≤ (e′1, . . . , e′n) if .∀ i : ei ≤

e′i . Then the divisibility .lt(p) | lt(q) used in the commutative case translates into
the relation .lexp(p) ≤ lexp(q). With this notation, the division algorithm can be
formulated as follows.

Algorithm 4.76 (Reduction)
Input: .p ∈ K[X1, . . . , Xn], .G ⊆ K[X1, . . . , Xn], a term order .≤.
Output: .r ∈ K[X1, . . . , Xn] such that .p − r ∈ 〈G〉 and r contains no terms .τ with
.lexp(g) ≤ lexp(τ) for some .g ∈ G.

1 Set .r = 0.
2 while .p 	= 0 do
3 if there is a .g ∈ G and a term .τ in p such that .lexp(g) ≤ lexp(τ) then
4 Let .g ∈ G and .σ = X

e1
1 · · ·Xen

n be such that .lt(σ lc(g)−1g) = τ .

5 Set .p = p − ([τ]p)σ lc(g)−1g.
6 else
7 Set .p = p − ([τ]p)τ and .r = r + ([τ]p)τ .
8 Return r .

It is easy to see that the algorithm is correct. Indeed, we obviously have .p − r ∈
〈G〉 in the beginning, and the property is preserved in every iteration of the loop,
regardless of whether line 5 or line 7 is executed. So .p − r ∈ 〈G〉 is true in the end.
Moreoever, in line 7 we only introduce monomials into r whose exponent vectors
are not above the leading exponent of any element of G, so this is also true at the
end.

It is less clear that the algorithm terminates. Lines 5 and 7 are designed to cancel
a term from p, but line 5 may introduce many other terms, which will be smaller
in term order than the eliminated term. From a hypothetical infinite run of the
algorithm, it can be deduced that there is an infinite strictly descending sequence
of terms. Since such a sequence does not exist by Dickson’s lemma, the algorithm
terminates.

It is also not clear why the output of the algorithm is independent of the choice
of g made in line 4, if there are several options. In fact, no claim is made that the
output is unique, and in general, different choices of g in line 4 do lead to different
output. A starting point of the theory of Gröbner bases is the desire to make the
output unique by imposing appropriate restrictions on G. In view of this goal, let
us use the notation .red(p,G) for any possible outcome of Algorithm 4.76 when
applied to .p ∈ K[X1, . . . , Xn] and .G ⊆ K[X1, . . . , Xn]. Note that in view of the
non-uniqueness, .red(·,G) is not a function, and .red(p,G) = r1 and .red(p,G) = r2
does not imply .r1 = r2. This is similar to the big-O notation. If the term order is not
clear from context, we write .red≤(p,G) instead of .red(p,G).

The definition of Gröbner bases is motivated by the following theorem.

Theorem 4.77 Let .G ⊆ K[X1, . . . , Xn]. Then the following are equivalent:

380 4 Operators

1. For all .p ∈ K[X1, . . . , Xn] there exists exactly one .r ∈ K[X1, . . . , Xn] with
.red(p,G) = r .

2. For all .p ∈ 〈G〉 we have .red(p,G) = 0.
3. For all .p ∈ 〈G〉 \ {0} there exists a .g ∈ G with .lexp(g) ≤ lexp(p).
4. The set of all equivalence classes of terms .τ = X

e1
1 · · ·Xen

n with .red(τ,G) = τ

forms a K-vector space basis of .K[X1, . . . , Xn]/〈G〉. ��
Proof 1. .⇒ 2.: Let .p ∈ 〈G〉 and let .r = red(p,G). We have to show that .r = 0.

First observe that for every .u ∈ K[X1, . . . , Xn], every .c ∈ K , every term .τ =
X

e1
1 · · ·Xen

n , and every .g ∈ G we have .red(u + cτ lc(g)−1g,G) = red(u,G). This
is a consequence of assuming 1. (See Exercise 7 for a detailed argument.)

Since .p ∈ 〈G〉, there is a way to write .p = ∑m
i=1 ciτi lc(gi)

−1gi with certain
ground field elements .ci ∈ K , certain terms .τi , and certain elements .gi of G (not
necessarily pairwise distinct). Applying the observation m times, we find that .0 =
red(0,G) = red(p − ∑m

i=1 ciτi lc(gi)
−1gi,G) = r , as required.

2. .⇒ 3.: If .p 	= 0 reduces to zero, the reduction process must have at least one
step. The reduction process as formulated in Algorithm 4.76 is not forced to start
with eliminating the leading term of p, but as long as it keeps eliminating smaller
terms, the leading term of p will remain unchanged. In order to eventually reach
zero, it must at some point choose a g with .lexp(g) ≤ lexp(p) in order to also
eliminate the leading term. Therefore, such a g must exist.

3. .⇒ 4.: Let B be the set of equivalence classes defined in the statement. It is
clear that B generates .K[X1, . . . , Xn]/〈G〉 because for every .p ∈ K[X1, . . . , Xn]
we have .[p] = [red(p,G)] and .red(p,G) only contains terms .τ with .red(τ,G) = τ ,
so .[p] is a K-linear combination of elements of B. The set B is also K-linearly
independent, for if .[p] is a K-linear combination of elements of B, we may assume
that p is a K-linear combination of terms .τ with .red(τ,G) = τ . The class .[p] is
zero if and only if .p ∈ 〈G〉, which by assumption implies .red(p,G) = 0. But since
p does not contain any terms that can be reduced, it cannot contain any terms at all.
From .p = 0 follows the linear independence of B.

4. .⇒ 1.: Let .p ∈ K[X1, . . . , Xn] and let .r1, r2 ∈ K[X1, . . . , Xn] be such that
.red(p,G) = r1 and .red(p,G) = r2. Then .r1 and .r2 contain only terms .τ with
.red(τ,G) = τ . Moreover, .r1 − r2 is an element of the ideal, so .[r1 − r2] = 0.
Since the set B in statement 4 is linearly independent by assumption, it follows that
.r1 = r2. �

Definition 4.78 A set .G ⊆ K[X1, . . . , Xn] is called a Gröbner basis (of the left
ideal .〈G〉) if it satisfies any of the equivalent conditions of Theorem 4.77. ��

Every left ideal I of .K[X1, . . . , Xn] is a Gröbner basis (of itself). The reason is
that every .p ∈ I can be reduced to zero in one step. It is also not hard to see that
for every left ideal I of .K[X1, . . . , Xn], there exists a finite Gröbner basis G with
.〈G〉 = I . The reason is Dickson’s lemma: start with an arbitrary element .g1 ∈ I\{0},
then, if possible, choose an element .g2 ∈ I \ {0} with .red(lt(g2), {g1}) = lt(g2),
then, if possible, an element .g3 ∈ I with .red(lt(g3), {g1, g2}) = lt(g3), and so on.
Because of .lexp(g1) > lexp(g2) > lexp(g3) > · · · , the process must come to an

4.6 Gröbner Bases 381

end after finitely many steps. The resulting set .{g1, . . . , gk} is the desired Gröbner
basis.

This argument is not constructive. If we want to compute a Gröbner basis for
a given ideal I , we first have to agree what it means for I to be “given”. One
situation is that we know some finite set .B ⊆ K[X1, . . . , Xn] such that .I = 〈B〉
and want to know a Gröbner basis G with .I = 〈G〉. This problem is solved by
Buchberger’s algorithm, which is explained below. Another typical situation is if
we can apply Algorithm 4.73 with our knowledge about I . Observe that the ideal
basis returned by Algorithm 4.73 is always a Gröbner basis, which can be seen using
characterization 4 of Theorem 4.77.

Knowing a Gröbner basis, we can also meet the input requirements of Algo-
rithm 4.73. Namely, in order to find K-linear combinations modulo .〈G〉 among
some given terms .τ1, . . . , τm, we can make an ansatz .u1τ1 + · · · + umτm for
undetermined .ui ∈ K and force .red(u1τ1 + · · · + umτm,G) = u1 red(τ1,G) +
· · · + um red(τm,G) = 0 by equating coefficients of like terms. But why would
we want to compute a Gröbner basis if we already have one? One reason could
be that we only know a Gröbner basis with respect to a certain term order .≤1 but
we would need a Gröbner basis for the same ideal with respect to some other term
order .≤2. Another situation is when we know a Gröbner basis for some ideal(s)
but would like to compute a (Gröbner) basis for a different ideal. For example,
suppose we already know Gröbner bases .G1,G2 of .ann(f1) and .ann(f2) for two
D-finite functions .f1 and .f2. Then .ann(f1) ∩ ann(f2) is an ideal of annihilating
operators for .f1 + f2, and we can use Algorithm 4.73 to compute generators for it.
As input to the algorithm, we can use a procedure which for given terms .τ1, . . . , τm

computes .u1, . . . , um ∈ K such that .u1 red(τ1,G1) + · · · + um red(τm,G1) = 0
and .u1 red(τ1,G2) + · · · + um red(τm,G2) = 0. Other closure properties can be
executed in a similar fashion.

Of particular interest in the context of D-finite functions is characterization 4 of
Theorem 4.77. Suppose we have a function f for which we know a Gröbner basis G

of the ideal .ann(f) ⊆ K[∂1, . . . , ∂n]. By Definition 4.63, f is D-finite if and only
if .dimK K[∂1, . . . , ∂n]/ ann(f) < ∞. According to Exercise 9, this is the case if
and only if for every .i ∈ {1, . . . , n} there exists a .g ∈ G whose leading term is a
power of .∂i , a condition that can easily be checked by inspection. Gröbner bases can
also be used for checking whether an ideal is holonomic. Suppose we know a basis
B of the ideal .I ⊆ C[x1, . . . , xn, ∂1, . . . , ∂n]. According to Definition 4.67, I is
holonomic if and only if .I ∩ C[U] 	= {0} for every .U ⊆ {x1, . . . , xn, ∂1, . . . , ∂n}
with .|U | = n + 1. For each such U , select a term order for which terms consisting
only of variables from U are smaller than terms containing other variables. Such a
term order is called an elimination order (for U). It follows easily from the defining
properties of Theorem 4.77 that the ideal .I ∩ C[U] is generated by .G ∩ C[U]
whenever G is a Gröbner basis with respect to an elimination order for U . In
particular, .I ∩ C[U] 	= {0} if and only if .G ∩ C[U] 	= ∅.

For computing a Gröbner basis from an arbitrary (but finite) given ideal basis,
none of the conditions of Theorem 4.77 are particularly useful, because all are
statements about infinitely many cases that cannot simply be checked one by one.

382 4 Operators

Buchberger’s algorithm is based on a different characterization which only affects
finitely many cases. In the commutative case, the S-polynomial of two polynomials
.p, q ∈ C[x1, . . . , xn] \ {0} is defined as

spol(p, q) = lcm(lt(p), lt(q))

lm(p)
p − lcm(lt(p), lt(q))

lm(q)
q.

In a sense, this is the smallest possible linear combination of p and q which induces
a cancellation of the leading monomials of p and q. Note that both summands
on the right have the leading term .lcm(lt(p), lt(q)). The same idea is used in the
non-commutative case, but we should adapt the notation a bit, because speaking
of the “least common multiple” of terms does not seem appropriate if the product
of two terms is not necessarily again a term. It is safer to talk about exponent
vectors. For two vectors .u = (u1, . . . , un), .v = (v1, . . . , vn) ∈ Nn, define
.max(u, v) = (max(u1, v1), . . . , max(un, vn)) and write .Xu for .X

u1
1 · · ·Xun

n . Then
the S-polynomial of .p, q ∈ K[X1, . . . , Xn] \ {0} is defined as

spol(p, q) = Xmax(lexp(p),lexp(q))−lexp(p) lc(p)−1p

−Xmax(lexp(p),lexp(q))−lexp(q) lc(q)−1q.

Again, this is the smallest possible way to let the leading monomials of p and
q cancel. With this definition of S-polynomials, Buchberger’s characterization of
Gröbner bases and his algorithm for computing Gröbner bases carry over literally
from the commutative case.

Theorem 4.79 A set .G ⊆ K[X1, . . . , Xn] is a Gröbner basis if and only if
.red(spol(p, q),G) = 0 for all .p, q ∈ G. ��
Proof The direction “.⇒” follows directly from Definition 4.78. To show “.⇐”, let
.p ∈ 〈G〉 be such that .red(p,G) = p, i.e., no term appearing in p can be matched
with the leading term of a multiple of an element of G. We show that .p = 0.

Since .p ∈ 〈G〉, there are .g1, . . . , gm ∈ G and .p1, . . . , pm ∈ K[X1, . . . , Xn]
such that .p = p1g1 + · · · + pmgm. Since p cannot be reduced, the leading terms
.lt(pigi) do not occur in p, so there must be some cancellation on the right hand side.
We show that in fact the entire right hand side cancels.

Suppose otherwise. Let .τi = lt(pigi) for .i = 1, . . . , m and assume without loss
of generality that the indexing is such that .τ1 ≥ τ2 ≥ · · · ≥ τm. We may further
assume, also without loss of generality, that the coefficients .p1, . . . , pm are chosen
in such a way that .τ1 is as small as possible.

In view of the required cancellation, we must have .τ1 = τ2 = · · · = τk > τk+1
for some .k ≥ 2. We may further assume, again without loss of generality, that among
all possible choices .p1, . . . , pm that yield the minimal .τ1, our choice is made such
that k is minimal.

We have

4.6 Gröbner Bases 383

. lm(pk)gk = lm(pk) lc(gk) lc(gk)
−1gk = (u lt(pk) + v) lc(gk)

−1gk

for some .u ∈ K and some .v ∈ K[X1, . . . , Xn] with .v = 0 or .lt(v) < lt(pk). There
are also terms .σ,μ such that

. lt(pk) lc(gk)
−1gk − σ lc(gk−1)

−1gk−1 = μ spol(gk, gk−1).

Since .red(spol(gk, gk−1),G) = 0 by assumption, there exist polynomials
.q1, . . . , qm with

.uμ spol(gk, gk−1) = q1g1 + · · · + qmgm

and .lt(qigi) < μXmax(lexp(gk),lexp(gk−1)) = τ1 for .i = 1, . . . , m. Using .lm(pk) −
v lc(gk)

−1 = u lt(pk) lt(gk)
−1, we get

p = (
p1 + q1

)
g1

...

+ (
pk−2 + qk−2

)
gk−2

+ (
pk−1 + uσ lc(gk−1)

−1 + qk−1
)
gk−1

+ (
pk − (lm(pk) − v lc(gk)

−1) + qk

)
gk

+ (
pk+1 + qk+1)gk+1

...

+ (
pm ︸ ︷︷ ︸

=0

+ qm

)
gm.

This new representation of p violates the minimality assumption on k, or, if .k = 2,
the minimality assumption of .τ1. �

Algorithm 4.80 (Buchberger)
Input: A finite set .B ⊆ K[X1, . . . , Xn] \ {0} and a term order .≤.
Output: A finite Gröbner basis .G ⊆ K[X1, . . . , Xn] with respect to .≤ such that
.〈B〉 = 〈G〉.
1 Set .G = B = {b1, . . . , bm}.
2 Set .P = {(bi, bj) : 1 ≤ i < j ≤ m}.
3 while .P 	= ∅ do
4 Choose a pair .(p, q) ∈ P and set .P = P \ {(p, q)}.
5 Compute .h = red(spol(p, q),G).
6 if .h 	= 0 then

384 4 Operators

7 Set .P = P ∪ {(p, h) : p ∈ G} and .G = G ∪ {h}.
8 Return G.

Theorem 4.81 Algorithm 4.80 is correct and terminates. ��
Proof Correctness follows from Theorem 4.79, because the algorithm terminates if
G is such that all S-polynomials reduce to zero. Whenever the algorithm encounters
an S-polynomial that does not reduce to zero, it adds the remainder h to G, so that
h can then be reduced further to zero in one step. Recall that the notation .red(·,G)

refers to any possible output of the reduction procedure and is not unique as long
as G is not a Gröbner basis. However, if there is some way to reduce a certain S-
polynomial .spol(p, q) to zero at a given stage of the algorithm, then this feature is
not harmed if we add further elements to G later during the computation. Therefore,
when G gets updated, it is not necessary to reconsider the S-polynomials that have
been handled up to that point.

For the termination, it suffices to show that line 7 cannot be executed infinitely
often. At every execution of line 7, consider the vector .min{lexp(g) : g ∈ G} ∈ Nn.
Since h cannot be reduced any further by G, we have .lexp(g) 	≤ lexp(h) for all
.g ∈ G. This does not necessarily mean that adding h to G leads to a drop in one
of the coordinates of .min{lexp(g) : g ∈ G}, but since there are only finitely many
points above .min{lexp(g) : g ∈ G} and below the .lexp(g) (.g ∈ G), the vector can
cease to change only finitely many times. Hence, at least every now and then during
a long execution, we must observe that at least one coordinate of .min{lexp(g) : g ∈
G} strictly decreases. Since no coordinate of the vector can ever increase, we must
reach .(0, . . . , 0) after finitely many steps, unless the algorithm terminates before.
At this point, it terminates in any case. �

Example 4.82 Consider the ideal .I = 〈b1, b2, b3〉 ⊆ C(n, k)[Sn, Sk] with

b1 = S2
nSk + SnS

2
k − 3SnSk − Sn − S2

k + Sk + 2,

b2 = 5(k − n− 2)S2
n − (2n− 7)SnSk − (9k − 14n − 19)Sn

+ (k + 2)S2
k + (2k + n − 5)Sk + k − 8n− 16,

4.6 Gröbner Bases 385

b3 = (5k − 3n− 2)SnSk − (k − n− 1)Sn − (k + 2)S2
k

− (2k − 4n− 5)Sk − k − 2n + 1.

We want to compute a Gröbner basis with respect to the term order .≤ defined by
.Sa

nSb
k ≤ Su

nSv
k if .a < u or .a = u and .b ≤ v. The terms in .b1, b2, b3 are already

sorted according to this order.
We set .P = {(b1, b2), (b1, b3), (b2, b3)} and select .(b1, b2) as the first pair. Its

S-polynomial has the form

b1 − Sk
1

5(k−n−2)
b2 = (. . .)S2

n + (. . .)SnS
2
k + (. . .)SnSk + (. . .)Sn

+ (. . .)S3
k + (. . .)S2

k + (. . .)Sk + (. . .),

where the are certain elements of .C(n, k) that we suppress here. Using
Algorithm 4.76, the S-polynomial can be reduced to an operator of the form

.(. . .)Sn + (. . .)S3
k + (. . .)S2

k + (. . .)Sk + (. . .).

As it is nonzero, we call it .b4 and add it to the basis. We also add the pairs .(b1, b4),
.(b2, b4), .(b3, b4) to P .

For the next pair, .(b1, b3), the reduction of the S-polynomial produces an operator
of the form

.(. . .)S3
k + (. . .)S2

k + (. . .)Sk + (. . .),

and since it is nonzero, we call it .b5 and add it to the basis. We also add the pairs
.(b1, b5), .(b2, b5), .(b3, b5), .(b4, b5) to P .

For the next pair, .(b2, b3), the S-polynomial reduces to zero, so we get nothing
new.

Next, .(b1, b4) has an S-polynomial which reduces to an operator of the form

.(. . .)S2
k + (· · ·)Sk + (· · ·),

which we add as .b6 to the basis. We also add the pairs .(b1, b6), . . . , (b5, b6) to P .
At this point, P contains 12 pairs, but it turns out that all corresponding

S-polynomials reduce to zero, so we are done. The resulting Gröbner basis is
.{b1, . . . , b6}. ��

Algorithm 4.80 is not explicit about how to make the choice of .(p, q) ∈ P in
line 4. Indeed, a different choice can lead to a different output. Every ideal I of
.K[X1, . . . , Xn] has many different Gröbner bases (even for a fixed term order), and
the only assertion about Algorithm 4.80 is that it will find one of them. We can
eliminate this redundancy by imposing further constraints. A Gröbner basis G is
called reduced if its elements are monic and we have .red(g,G \ {g}) = g for all
.g ∈ G. It can be shown like in the commutative case that every ideal has exactly

386 4 Operators

one reduced Gröbner basis (for a prescribed term order). Starting from any finite
Gröbner basis, e.g., some output of Algorithm 4.80, we can find the reduced Gröbner
basis by first replacing every element g by .red(g,G \ {g}) and afterwards dividing
every element from the left by its leading coefficient.

While the choices made in line 4 are irrelevant for the correctness and termination
of the algorithm, they can have a strong influence on the runtime. Many people
have thought about these choices, and have proposed several selection strategies.
Common strategies select the next pair .(p, q) based on .max(lexp(p), lexp(q))

(preferring lower ones), on the age (preferring older ones), or on the number of
terms (preferring smaller ones). More sophisticated strategies compute a certain
score for each pair in P and select the pair with the highest score. Another way
to improve the performance is to identify useless pairs. There are certain criteria
by which it is possible to detect at low cost whether a given pair .(p, q) ∈ P can
be discarded without harming the correctness. Some of the criteria known from the
commutative theory carry over to the noncommutative setting (Exercise 17), others
don’t (Exercise 16).

Yet another way to improve the performance is to handle several pairs at the
same time. Instead of a single pair .(p, q) in line 4, we can select a subset .S ⊆ P

with .|S| ≥ 1 and set .P = P \ S. In a preprocessing step, we then determine
all the term-multiples of elements of B that may occur during the reduction of S-
polynomials of the selected pairs. By a term-multiple we mean an operator of the
form .τb with .τ being a term and .b ∈ B. These term-multiples can be found by
doing a “dry-run” of the reduction algorithm with coefficients replaced by Booleans
that signal the potential nonzeroness of a coefficient. When a suitable collection
of term-multiples has been constructed, we can determine all terms appearing in
these term-multiples or the S-polynomials of the selected pairs. We then set up a
matrix in which the columns are labeled by these terms, in decreasing order from
left to right, and with two rows per selected pair and one row for each determined
term-multiple. For each pair .(p, q), we fill the row for p with the coefficients
of .Xmax(lexp(p),lexp(q))−lexp(p) lc(p)−1p and the row for q with the coefficients of
.Xmax(lexp(p),lexp(q))−lexp(q) lc(q)−1q. For each term-multiple, we put its coefficients
into the corresponding row. The resulting matrix is then brought into echelon form
using Gaussian elimination, and we select all rows whose left-most nonzero entry
is in a column that corresponds to a term which cannot be reduced by any element
of B. There may be zero, one, or several such rows. For each of them, let h be the
element of .K[X1, . . . , Xn] whose coefficient vector is the row and execute line 7 of
Algorithm 4.80. Then continue with a new selection .S ⊆ P and repeat the procedure
until .P = ∅.

Example 4.83 Considering the same input as in the previous example, let
us take as S the whole initial set .P = {(b1, b2), (b1, b3), (b2, b3)}. The
three S-polynomials corresponding to these pairs are differences of .b1,
.Sk lc(b2)

−1b2, and .Sn lc(b3)
−1b3, and the terms occurring in these operators are

.S2
nSk, S

2
n, SnS

2
k , SnSk, Sn, S

3
k , S2

k , Sk, 1. For reducing polynomials involving these
terms, we determine multiples of .b1, b2, b3 whose leading terms appear in this list.

4.6 Gröbner Bases 387

They are .Skb3 (with leading term .SnS
2
k), and .b1, b2, b3 themselves. These operators

contain only terms that are already in the list, so we can form the matrix

⎛

⎜
⎜⎜⎜⎜⎜
⎝

S2
nSk S2

n SnS
2
k SnSk Sn S3

k S2
k Sk 1

b1 ∗ 0 ∗ ∗ ∗ 0 ∗ ∗ ∗
Sk lc(b2)

−1b2 ∗ 0 ∗ ∗ 0 ∗ ∗ ∗ 0
Sn lc(b3)

−1b3 ∗ ∗ ∗ ∗ ∗ 0 0 0 0
Skb3 0 0 ∗ ∗ 0 ∗ ∗ ∗ 0

b2 0 ∗ 0 ∗ ∗ 0 ∗ ∗ ∗
b3 0 0 0 ∗ ∗ 0 ∗ ∗ ∗

⎞

⎟
⎟⎟⎟⎟⎟
⎠

.

Row reduction turns this matrix into

⎛

⎜⎜⎜⎜⎜⎜
⎝

S2
nSk S2

n SnS
2
k SnSk Sn S3

k S2
k Sk 1

1 0 0 0 0 0 ∗ ∗ ∗
0 1 0 0 0 0 ∗ ∗ ∗
0 0 1 0 0 0 ∗ ∗ ∗
0 0 0 1 0 0 ∗ ∗ ∗

→ 0 0 0 0 1 0 ∗ ∗ ∗
→ 0 0 0 0 0 1 ∗ ∗ ∗

⎞

⎟⎟⎟⎟⎟⎟
⎠

,

which has two rows (indicated by the arrows) that correspond to operators with
new leading terms. The new leading terms are .Sn and .S3

k , respectively, like for the
operators .b4 and .b5 we found in the previous example. ��

The theory of Gröbner bases can be generalized from ideals of .K[X1, . . . , Xn]
to submodules of .K[X1, . . . , Xn]d . Elements of .K[X1, . . . , Xn]d are K-linear
combinations of module terms, a module term being an element of the form
.X

u1
1 · · ·Xun

n ei with .u1, . . . , un ∈ N and .ei the ith unit vector. Term orders,
reduction, the notion of Gröbner bases, and Buchberger’s algorithm extend literally
if we simply regard the unit vectors .e1, . . . , ed as additional variables subject to
the constraints .eiej = 0 for .i, j = 1, . . . , d. Of particular interest are term orders
which first compare the index of the unit vector and then use a term order for the
polynomials .X1, . . . , Xn for breaking ties. Such a term order is called a POT order
(position over term), as opposed to a TOP order (term over position) which first
looks at .X1, . . . , Xn and then uses the index of the unit vector to break ties.

One application of Gröbner bases for modules is the computation of syzygies and
cofactors. A syzygy of .b1, . . . , bm ∈ K[X1, . . . , Xm] is a vector .(p1, . . . , pm) ∈
K[X1, . . . , Xn]m with .p1b1 + · · · + pmbm = 0. The set of all syzygies for a
fixed choice of .b1, . . . , bm forms a (left-)submodule of .K[X1, . . . , Xn]m, denoted
by .Syz(b1, . . . , bm). Cofactors are the coefficients which are used in order to express
an ideal element in terms of generators of an ideal: .f ∈ 〈b1, . . . , bm〉 means that
there are .q1, . . . , qm ∈ K[X1, . . . , Xn] with .f = q1b1 + · · · + qmbm, and these
.q1, . . . , qm are called cofactors of f with respect to .b1, . . . , bm. They are in general
not unique, but any two vectors of cofactors differ by a syzygy.

388 4 Operators

If .{b1, . . . , bm} is a Gröbner basis, we can easily compute cofactors for any given
.f ∈ 〈b1, . . . , bm〉 by an extended version of the reduction algorithm (Exercise 6).
If it is not, we can compute a Gröbner basis .{g1, . . . , gk} using Buchberger’s
algorithm. It is then easy to compute cofactors with respect to .g1, . . . , gk , but if
we want cofactors with respect to the original basis, then we need to know how
the elements of the Gröbner basis can be expressed in terms of the original basis
elements. This information can be obtained by computing a Gröbner basis with
respect to a POT order of the submodule generated by

.

⎛

⎜⎜
⎜⎜⎜
⎝

b1

1
0
...

0

⎞

⎟⎟
⎟⎟⎟
⎠

,

⎛

⎜⎜
⎜⎜⎜
⎝

b2

0
1
...

0

⎞

⎟⎟
⎟⎟⎟
⎠

, ,

⎛

⎜⎜
⎜⎜⎜
⎝

bm

0
0
...

1

⎞

⎟⎟
⎟⎟⎟
⎠

.

The Gröbner basis will have the form

.

⎛

⎜⎜
⎜⎜⎜
⎝

g1

q1,1

q2,1
...

qm,1

⎞

⎟⎟
⎟⎟⎟
⎠

, . . . ,

⎛

⎜⎜
⎜⎜⎜
⎝

gk

q1,k

q2,k

...

qm,k

⎞

⎟⎟
⎟⎟⎟
⎠

,

⎛

⎜⎜
⎜⎜⎜
⎝

0
p1,1

p2,1
...

pm,1

⎞

⎟⎟
⎟⎟⎟
⎠

, . . . ,

⎛

⎜⎜
⎜⎜⎜
⎝

0
p1,	

p2,	

...

pm,	

⎞

⎟⎟
⎟⎟⎟
⎠

,

where .{g1, . . . , gk} is a Gröbner basis of .〈b1, . . . , bm〉 and the matrix
.((qi,j))

m,k
i=1,j=1 ∈ K[X1, . . . , Xn] is the basis change matrix that translates linear

combinations of .g1, . . . , gk into linear combinations of .b1, . . . , bm. Moreover, the
vectors

.(p1,j , . . . , pm,j) ∈ K[X1, . . . , Xn]m

form a basis of the syzygy module of .b1, . . . , bm.
With the help of the syzygy module, we can make the intersection of ideals

constructive. Given two ideals .I = 〈b1, . . . , bm〉, .J = 〈d1, . . . , dk〉, an operator
belongs to the intersection .I ∩ J if and only if it can be written as a linear
combination of the .bi and as a linear combination of the .dj . The search for operators
.p1, . . . , pm and .q1, . . . , qk with .p1b1+· · ·+pmbm = q1d1+· · ·+qkdk is the same
as the search for the syzygy module of .b1, . . . , bm,−d1, . . . ,−dk . Once we have a
basis of the syzygy module, we can take the first m coordinates of each basis element
and combine them with .b1, . . . , bm. The resulting operators are generators of the
intersection ideal. This approach generalizes the idea of Exercise 14 in Sect. 4.2
to the case of several variables and provides an alternative way to compute an
annihilating ideal for the sum of two D-finite objects from given annihilating ideals
of the summands.

4.6 Gröbner Bases 389

Gröbner bases for modules can also be used to uncouple systems of operator
equations. Given a system .A · f = 0 with a known .A ∈ K[∂]r×r and an unknown
.f ∈ F r , we can consider the module generated in .K[∂]r by the rows of A.
Computing a Gröbner basis of this module with respect to a POT order is equivalent
to computing a Hermite normal form of A.

Exercises

1. Show that Hilbert’s basis theorem, which says that every ideal of an Ore algebra
.K[X1, . . . , Xn] has a finite basis, is equivalent to the ascending chain condition,
which says that for every chain .I1 ⊆ I2 ⊆ I3 ⊆ · · · of ideals of .K[X1, . . . , Xn]
there exists an .m ∈ N such that .Im = Im+1 = · · · .
2. Let .≤ be a term order for the commutative polynomial ring .C[x1, . . . , xn].
Consider an Ore algebra .K[∂1, . . . , ∂n]. Show that .≤ is also a valid term order for
.K[∂1, . . . , ∂n] if we set .∂

u1
1 · · · ∂un

n ≤ ∂
v1
1 · · · ∂vn

n ⇐⇒ x
u1
1 · · · xun

n ≤ x
v1
1 · · · xvn

n .

3. Let .≤ be a term order for the commutative ring .C[x1, . . . , xn, y1, . . . , yn].
a. Show that .≤ is also a valid term order for .C[x1, . . . , xn,D1, . . . , Dn] (with
the .Di being compared like the .yi).
b. Show that .≤ is also a valid term order for .C[x1, . . . , xn, S1, . . . , Sn] (with
the .Si being compared like the .yi).

4. Consider the Ore algebra .C[x,M5] with the commutation rule .M5x = x5M5.
Show that there is no term order for .C[x,M5].
5. Show by an example that condition (iii) in the definition of term orders does
not follow from conditions (i) and (ii) in general.

6. Extend Algorithm 4.76 so that it returns not only the remainder r but also
cofactors .q1, . . . , qm ∈ K[X1, . . . , Xn] such that .p − r = q1g1 + · · · + qmgm

when applied to p and .G = {g1, . . . , gm}.
7�. Fill the gap in the proof of the implication 1 .⇒ 2 of Theorem 4.77, i.e., show
that if .G ⊆ K[X1, . . . , Xn] is such that every .u ∈ K[X1, . . . , Xn] has a unique
remainder .red(u,G), then we have .red(u,G) = red(u + cτ lt(g)−1g,G) for every
.c ∈ K , every term .τ , and every .g ∈ G.

8. The set .G = {D3
x − 5D2

x + 8Dx − 4, (4y + 1)D2
x − (16y + 4)Dx − yDy +

(15y + 4)} ⊆ C(x, y)[Dx,Dy] is a Gröbner basis with respect to the lexicographic
term order with .Dx < Dy . Use Algorithm 4.73 to compute a Gröbner basis of .〈G〉
with respect to the lexicographic term order with .Dx > Dy .

9�. Let .I ⊆ K[X1, . . . , Xn] be an ideal and G be a Gröbner basis of I . Show that
the dimension of .K[X1, . . . , Xn]/I as a K-vector space is finite if and only if for
every i there exists a .g ∈ G such that .lt(g) is a power of .Xi .

390 4 Operators

10. Let .I ⊆ K[X1, . . . , Xn] be an ideal and G be a Gröbner basis of I . Show that
.1 ∈ I if and only if G contains an element of the form .uX0

1 · · ·X0
n with .u ∈ K \ {0}.

11�. Let .I ⊆ K[X1, . . . , Xn], let .≤1,≤2 be two term orders, and let .G1,G2
be Gröbner bases of I with respect to .≤1,≤2, respectively. Show that the number
of terms .τ with .red≤1(τ,G1) = τ is equal to the number of terms .τ with
.red≤2(τ,G2) = τ . Must the sets of these terms also be equal?

12�. Show that .{(1− k+n)Sn+ (1+n), (1+ k)Sk +2(k−n)} ⊆ C(n, k)[Sn, Sk]
is a Gröbner basis and that .{(1− k+n)Sn + (1+n), (1+ k)Sk + 2(k+n)} is not.

13. In line 2 of Algorithm 4.80, we do not initialize P with all pairs, as
Theorem 4.79 suggests. Why is this okay?

14. A power series .a(x, y) ∈ C[[x, y]] has the annihilating ideal

I = 〈(x − 2)xDxDy + (2y + 1)D2
y + (x + 2)Dy, 4xD2

xDy − (x + 4y + 4)DxD
2
y

+ (y + 1)D3
y − 2xDxDy + (4y + 7)D2

y − 4xDx + 4(y + 3)Dy〉
⊆ C(x, y)[Dx,Dy].

Show that the series is D-finite.

15. A sequence .(an,k)
∞
n,k=0 has the annihilating ideal

I = 〈(1 + k)(k + n)Sk + (k − n)(1 + k + n),

(1 − k + n)(k + n)Sn − (1 + n)(1 + k + n)〉 ⊆ C[n, k][Sn, Sk].

Show that the sequence is holonomic.

16. In the commutative case, we have

. min(lexp(p), lexp(q)) = 0 ⇒ red(spol(p, q), {p, q}) = 0.

Show that this does not work in the noncommutative case.

17��. In the commutative case, we have the following criterion: whenever .B =
{b1, . . . , bm} ⊆ C[x1, . . . , xn] and .p, u, v ∈ C[x1, . . . , xn] are such that

1. there exist .q1, . . . , qm ∈ C[x1, . . . , xn] such that .spol(u, p) = q1b1+· · ·+qmbm

and .lt(qibi) < Xmax(lexp(u),lexp(p)) for all i,
2. there exist .q1, . . . , qm ∈ C[x1, . . . , xn] such that .spol(p, v) = q1b1+· · ·+qmbm

and .lt(qibi) < Xmax(lexp(p),lexp(v)) for all i, and
3. .lexp(p) ≤ max(lexp(u), lexp(v)),

then there also exist .q1, . . . , qm ∈ C[x1, . . . , xn] such that .spol(u, v) = q1b1 +
· · · + qmbm and .lt(qibi) < Xmax(lexp(u),lexp(v)) for all i.

Show that this also works in the noncommutative case.

4.6 Gröbner Bases 391

18. Let .G ⊆ K[X1, . . . , Xn] be a Gröbner basis and .g, h ∈ G with .g 	= h. Show
that .lexp(g) ≤ lexp(h) implies that also .G \ {h} is a Gröbner basis of .〈G〉.
19. In the ideal

I = 〈(x − 1)DxSn + (x − 1)Dx − (1 + n)Sn + (1 + n),

(x − 1)2(x + 1)D2
x + (x − 1)(n + 2x + nx)Dx − n(1 + n)Sn + n(1 + n)〉

⊆ C(n, x)[Sn,Dx],

find an element which is a .C(n, x)-linear combination of powers of .SnDx .

20. In the commutative case, an alternative way to compute the intersection of
two ideals .I = 〈b1, . . . , bm〉 and .J = 〈d1, . . . , dk〉 of .C[x1, . . . , xn] is to compute
the elimination ideal

.〈tb1, . . . , tbm, (1 − t)d1, . . . , (1 − t)dk〉 ∩ C[x1, . . . , xn],

where t is an additional variable. Does this also work in the noncommutative case?

References

Gröbner bases for ideals of a commutative polynomial ring .C[x1, . . . , xn] were
introduced by Buchberger in his Ph.D. thesis [117]. They play a central role in
computer algebra. Introductory texts on the subject include [29, 47, 167].

A starting point for the development of Gröbner bases for non-commutative rings
was the influential paper of Bergman from 1978 [56], who considered the case of a
free algebra. In general, an ideal in such a ring need not have a finite Gröbner basis,
so that during the 1980s, various people have investigated theories for Gröbner bases
in more special non-commutative settings, including Galligo [200], Mora [332],
Apel and Lassner [37], Takayama [422], Kandri-Rody and Weispfenning [256]. An
introductory article of Mora [333] contains a proof of the non-commutative chain
criterion (Exercise 17).

Zeilberger did not use Gröbner basis in his landmark paper [468], but suggested
the use of Gröbner bases in this context. Chyzak and Salvy took up this suggestion
and introduced Gröbner bases for Ore algebras [153, 154, 157].

The idea to view the reduction process from the perspective of linear algebra
goes back to Lazard [305] and culminated in Faugère’s F4 algorithm [189]. These
techniques were developed for the commutative case but the extension to the non-
commutative setting is straightforward. Less straightforward is the extension of
another idea for speeding up Gröbner basis computation, which was introduced
by Faugère under the name F5 [190] and has led to the development of so-called
signature-based Gröbner bases algorithms [182]. A signature-based Gröbner bases
algorithm for the non-commutative case was worked out by Sun, Wang, Ma, and
Zhang [420].

	4 Operators
	4.1 Ore Algebras and Ore Actions
	Exercises
	References
	4.2 Common Right Divisors and Left Multiples
	Exercises
	References
	4.3 Several Functions
	Exercises
	References
	4.4 Factorization
	Exercises
	References
	4.5 Several Variables
	Exercises
	References
	4.6 Gröbner Bases
	Exercises
	References

