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Abstract Microfluidics has enabled researchers to explore the physics of fluid in 
the regions of micro in size. Use of Machine Learning techniques in microfluidics to 
predict flow behavior and reduce time is an unexplored area. A Y-shaped micromixer 
was designed and its five design variables were identified. A sample size was designed 
by general factorial method and the simulation experiments were conducted using 
a CFD solver. The evaluation criteria was mixing index at the outlet of Y-shaped 
micromixer. Based on results of 1024 simulations, an Artificial Neural Network 
(ANN) metamodel was developed. Finally the metamodel was validated against the 
simulation results for the values of design variables outside the full factorial sample. 
The results show that the metamodel shows agreement with the simulation results 
with 0.6% difference. 

Keywords Machine learning · Neural networks · Microfluidics · Full factorial ·
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1 Introduction 

Microfluidics involve the study of transport of fluids in macro or nanoliters through 
the micro-components, e.g. micropumps, microchannels and microvalves [1]. It has 
revolutionized the miniaturization of various chemical, biological and pharmaceu-
tical laboratory tests, famously known as Lab-on-Chip (LOC). Micromixing is essen-
tial part of such LOC devices which are used for cell analysis, drug delivery and DNA 
sequencing [2]. The turbulent mixing is difficult at microscale due to low Reynold 
number (Re). Chaotic advection and molecular diffusion plays important role in 
mixing of two or more streams of fluid in such devices, called as Micromixers. The 
fabrication of these microfluidic devices is carried out by micro-fabrication tech-
niques such as soft lithography, laser engraving, photochemical machining and 3D 
printing on suitable materials [3]. While is the fabrication can be outsourced from
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developed laboratories, the design and optimization of these devices involves years 
of work until a workable prototype is not developed. 

Use of Machine Learning (ML) algorithms to develop statistical models that can 
recognize patterns and predict outcome is gaining importance nowadays [4]. Few 
examples are face recognition, speech-to-text, weather forecasting and autonomous 
vehicles. These models can be as easy as simple regression or difficult as Deep Neural 
Networks (DNN) [5]. The use of ML models in microfluidics has improved processes 
like cancer screening, cell counting, blood grouping and design of LOC devices. 

Numerical simulations has made it possible to study of complex geometries and 
physics involved in microfluidics. Various commercially available softwares like 
Fluent, COMSOL MP, etc. are used by researchers to design a microfluidic device 
before actual prototype [6, 7]. The chaotic mixing at low Reynolds numbers can be 
easily evaluated with the help of numerical simulations. 

The robustness of a numerical study increases if the factors affecting the response 
function are identified and included in study. Various Design of Experiment (DoE) 
techniques, viz. Taguchi, RSM, 2 factorial, etc. are used to design the sample size and 
accordingly experiments are carried out. Analysis of Variance (ANOVA) technique 
is then used to evaluate the effect of design variables on response function and their 
interdependence. 

The use of numerical simulations to train ML algorithms and develop a 
robust Metamodel has recently acquired attention of researchers. Wei et al. [8] 
trained an artificial neural network (ANN) metamodel by a series of CFD simu-
lations of peracetic acid (PAA) disinfection characteristics in a chemical treatment 
reactor. Naphon et al. [9] analyzed the micro-channel heat sink with nanofluids jet 
impingement by applying CFD and ANN. The ANN model was trained with the 
Levenberg–Marquardt Backward propagation (LMB) algorithm. 

In this paper, an effort is made to develop an ANN Metamodel on the basis 
of numerical simulations carried out for the sample size which is obtained by full 
factorial method. Five design variables of a Y-shaped micromixer were identified 
and varied at four different levels. The trained Metamodel is then validated for a 
new design of Y-shaped micromixer against its numerical simulation results. The 
flowchart of the methodology is represented in Fig. 1.

2 Micromixer Model 

Micromixers comes in various shapes and are classified as active and passive 
micromixers [10]. The active micromixers make use of external forces such as 
acoustic, mechanical, pneumatic for mixing while emphasis is given on geometric 
shapes and sizes to increase chaotic mixing in case of passive micromixers without 
the aid of external forces. Various forms of microchannels such as serpentine, 
parallel and with or without obstacles of different shapes have been a keen area of 
interest for researchers [11–13]. A commonly used Y-shaped serpentine micromixer 
is represented in Fig. 2 and meaning of abbreviations is shown in Table 1.
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Fig. 1 Flowchart for the CFD based ANN metamodel

Fig. 2 Y-shaped serpentine micromixer 

Table 1 Meaning of 
abbreviations Abbreviation Meaning 

w Channel width 

Le Entrance length 

θ Entrance angle 

L1 Opening length 

Lext Exit length 

Hv Planer height 

S Spacing between channels
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Table 2 Design parameters at different levels 

Levels Design parameters 

Channel Width 
(μm) 

Entrance angle Planer height 
(mm) 

Spacing (μm) Inlet velocity 
(m/s) 

Level 1 200 15° 4 200 0.05 

Level 2 400 30° 6 400 0.1 

Level 3 600 45° 8 600 0.15 

Level 4 800 60° 10 800 0.2 

3 Design of Simulation Experiments 

A general full factorial factorial design is used to measure responses at all combina-
tions of the design parameters. Five design parameters are considered; out of which 
channel width, entrance angle, planer height and spacing are geometric parameters 
while velocity at inlet is an operating parameter. These variables are varied at four 
different levels as shown in Table 2. For given five design parameters at four levels, 
the general factorial design gives 45, i.e. total 1024 experiments. 

4 Numerical Modeling 

4.1 Governing Equations 

Two-dimensional fluid flow of an incompressible viscous fluid was described by 
Navier–Stokes equations. For a fluid of density ρ and dynamic viscosity μ, flowing  
with velocity 

−→
V under fluid pressure of p, the continuity equation (Eq. 1) and the 

momentum equation (Eq. 2) is given by 

∇ ·  
→ 
V = 0 (1)  

ρ

|
∂V 

dt  
+ (V · ∇)V

|
= −∇  p + ρ 

→ 
g +μ∇2 → 

V (2) 

where is the density of fluid, is the velocity vector, represents fluid pressure, and 
represents dynamic viscosity of fluid. 

The microfluidic mixing phenomena is governed by combination of convection 
and diffusion processes and its general equation for non-reacting incompressible 
fluids is given by 

∂c 

∂t 
= D∇2 c − u · ∇c (3)
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Table 3 Properties of fluids 
Properties Water Ethanol 

Diffusivity, D (m2/s) 1.2e-09 1.2e-09 

Dynamic viscocity, μ (Pa.s) 0.9e-03 1.2e-03 

Density, ρ (kg/m3) 998 789 

Concentration, C (mol/m3) 0 1 

Fig. 3 Direction of flow in the micromixer 

where D is the diffusivity and c is the molar concentration. 

4.2 Material Properties and Boundary Conditions 

The two non-reacting incompressible fluids considered in this study are pure water 
and ethanol and their physical properties at 25 °C are given in Table 3. Pure Water 
enters through inlet 2 and ethanol through inlet 1 with concentration of 1 mol/m3, 
both at velocity of 0.1 m/s under steady state as shown in Fig. 3. Pressure at the 
outlet is assumed to be atmospheric, i.e. zero static pressure. No-slip wall condition 
is assigned to other remaining boundaries. 

4.3 Grid Test 

The numerical results vary upon how well the domain is discretized according to 
the physics involved. A grid independency test ensures that the model is robust for 
a certain mesh size and the results are independent of further discretization. For the 
Y-shaped micromixer, the grid test is carried out with 400 μm channel width, 45° 
entrance angle, 0.6 mm planer height and 600 μm channel spacing while the velocity
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Table 4 Grid test results 

Mesh No. Element size (μm) No of elements Outlet velocity (m/s) % error  

Max Min 

1 200 20 6814 0.2888 – 

2 120 10 9590 0.2912 0.85 

3 100 10 11,262 0.2931 0.63 

4 80 10 14,812 0.2944 0.47 

5 60 10 22,549 0.295 0.17 

at both inlets is 0.15 m/s. The velocity of mixture at the outlet is set as criteria for 
evaluation of grid independence. The mesh number 3 can be selected as optimum 
mesh size because the % error in outlet velocity further reduces below 0.5 as shown 
in Table 4. 

4.4 Mixing Index Calculation 

The Mixing Index (MI) represents the uniformity of mixing of fluids and a mixure 
with high MI values is desirable in LOC applications. Mass fractions at the nodes 
of outlet of Y-shaped micromixer are noted from the simulations and the variance of 
molar concentration in mixture is expressed as [7] 

σ = 

⎡ 

⎣1 − 
1 

N 

NE
i=1

/(
Ci − Cre  f  

Cre  f

)2
⎤ 

⎦ (4) 

where N, Ci and Cref are the total number of data points, the concentration of ith 

point and the concentration of a perfect mix (0.5 mol/m3), respectively. 
The Mixing Index is expressed as 

MI  =
|
1 − σ 

σmax

|
(5) 

The maximum variance (σmax ) of 0.5 represents completely unmixed fluids. 

5 Development of ANN Metamodel 

The simplicity and flexibility in Artificial Neural Network (ANN) has made it popular 
among researchers for analysis and prediction of events [9, 14, 15]. In ANN, the 
information is given to input nodes which is feed forwarded to the network with
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Fig. 4 General structure of ANN 

sigmoid activation function and finally to output nodes as shown in Fig. 4. In the  
present work, five input parameters, viz. width, entrance angle, planer height, spacing 
and velocity at inlet and an output parameter, Mixing Index are specified across 
the test section. In the development of ANN, 20% of simulation data is used for 
testing and remaining 80% to verify it. The Levenberg–Marquardt backpropagation 
algorithm with changing weights and biases is used to minimize the error between 
the test data and predicted results. The ANN model was developed in MATLAB 
software. 

6 Results 

Total 1024 simulation experiments were performed for the given sample size from 
general factorial method. The mixing index at the outlet was calculated in each case 
and this data was used as input to the ANN model. The highest mixing index of 99.9% 
was obtained from simulation no. 190 for 200 μm channel width, 45° entrance angle, 
10 mm planer height, 800 μm spacing and at 0.1 m/s inlet velocity. On the other 
hand, the lowest mixing index of 81.41% was obtained from simulation no. 905 for 
800 μm channel width, 45° entrance angle, 4 mm planer height, 600 μm spacing 
and at 0.05 m/s inlet velocity. Small channel width and large mixing length along the 
direction of flow increase the surface-to-volume ratio and thus mixing performance. 
While large channel widths and short mixing length along the direction of flow 
are inefficient for mixing between the fluids. The concentration contours for both 
cases are shown in Fig. 5a and b respectively. However the pressure drop for the 
simulation experiment with highest mixing index is 3943.9 Pa and pressure drop 
for the simulation experiment with lowest mixing index is 100.82 Pa. The mixing 
performance becomes better at the expense of pressure drop.
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Fig. 5 Concentration (mol/m3) contour plots for simulation experiments with a highest MI, and 
b lowest MI 

Using Levenberg–Marquardt backpropagation algorithm, the ANN model was 
developed with five input nodes, five hidden layers and one output layer. The accuracy 
of the ANN model is explained in terms of correlation coefficient (R) and the mean 
square error (MSE). As shown in Fig. 6, the MSE and R values converge within 87 
iterations training.

Figure 7 shows the comparison between the values of Mixing Index across the 
test section, which were obtained from the ANN model and simulation data set. It 
can be seen that the ANN model prediction for the Mixing Index yields R = 0.97366 
for the training data set and R = 0.97468 for testing data set. The Mixing Index from 
simulation and ANN show good agreement and falls within ± 0.1%.
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Fig. 6 Variation of MSE with epochs for the ANN model

Fig. 7 Comparison of Mixing Index from simulation and ANN for a training set, and b testing set 

7 Validation of Model 

The trained ANN Metamodel is then validated against simulation results. A new 
combination of parameters was designed which was not included in the design sample 
of general factorial. The Y-shaped micromixer for validation was designed with a 
channel width of 500 μm, entrance angle of 50°, a planer height of 5 mm and channel 
spacing of 500 μm. The inlet velocity is 0.12 m/s and other boundary conditions were
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kept similar as before. The mesh size from the grid test was selected for simulation. 
Similarly the trained ANN Metamodel was test with these new parameters. The 
mixing index from simulation is calculated and is equal to 94.17%. The trained 
ANN Metamodel gives the value of mixing index as 94.85%. The ANN Metamodel 
shows good agreement with the simulation with 0.6% difference, which is acceptable. 

8 Conclusion 

The mixing performance of a Y-shaped micromixer from numerical simulation and 
artificial neural network model is presented for mixing two fluids, viz. water and 
ethanol. The general factorial method was used to design experiments with five design 
parameters at four different levels. The mixing performance in each simulation exper-
iment was evaluated and this data was used to train the ANN model. It is seen from 
the validation study that the ANN metamodel with Levenberg–Marquardt backprop-
agation algorithm showed good agreement with the simulation results. Therefore, 
the proposed ANN metamodel can contribute in evaluating mixing performance of 
micromixers with various configurations. 
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