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Abstract In the present scenario, glass fabric polymer is playing a significant role 
in the field of structural and aerospace industries due to its lightweight, high tensile 
strength, and corrosion resistance. The GFRP laminate composite is fabricated by 
hand lay-up process and subsequently submerged in a seawater bath at a certain time 
and temperature. We observed that tensile strength, flexural strength, and modulus 
have all properties decreased due to the absorption of water via capillary action inside 
the laminate composite. The development of mechanical and physical properties of 
nanofiller incorporated (with the help of mechanical stirring and prob ultrasonication) 
into polymer matrix composite strongly depends on the elemental composition of 
filler materials and the size of its particles. To increase the mechanical properties, 
varying quantities of TiO2 nanofiller were combined with the polymer epoxy matrix 
in the current study. The results demonstrated that the flexural and interlaminar shear 
strengths of water-aged nanocomposites are improved with the inclusion of a fraction 
weight percent of TiO2 nanofiller into the polymer epoxy matrix. 

Keywords Glass fiber · TiO2 filler · Glass fiber reinforced polymer (GFRP) 
composite ·Mechanical property ·Water absorption 

1 Introduction 

A composite material is created by a microscopic fusion of two or more mate-
rials having different physical and chemical properties. When they are combined, a 
brand-new substance is created that is specifically made to perform a given duty, like 
being stronger, lighter, or electrically resistant. They can also strengthen and stiffen 
things up [1]. Attraction toward GFRP composite is due to the advanced properties 
offered by reinforced polymer composite over traditional metallic materials because
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of lightweight, high tensile strength and low density, ease of processing, high tough-
ness, and damping. Composite materials have some crucial applications such as in 
racing car bodies, swimming pool panels, aircraft, marines, automobiles and sports 
industries, transportation and other infrastructures etc. [2]. Mechanical properties of 
laminate composite depend upon the strength, modulus, and chemical stability and 
depend upon the orientation of fibers, while in the case of matrix depend on the 
tensile, flexural strength, and interfacial bonding among matrix and fiber [3]. The 
characteristic of GFRP composite is equal to steel. Therefore, the strength and stiff-
ness of the constituent fibers govern the strength and stiffness of such composites 
[4]. The optimal properties of GFRP composite are depending on the character-
istic of the material’s ingredient (quantity, type, orientation, void content, and fiber 
distribution). As is well known, material anisotropy is mostly caused by complex 
fiber orientation distribution. Nanofillers were recognized as a viable remedy to 
enhance the mechanical characteristics of FRP composites. Investigations found that 
the type, size, form, and type of the link between the matrix and the fillers all affected 
how effective they were [5]. The preparation of GFPR composite without the use of 
nanofiller leads to delamination in composite because of indigent interfacial bonding 
among fiber and matrix. Due to this, restricts its structural applications such as sports 
industries, aerospace, automobile etc. [6]. Several researched have been carried out 
to resolve the delamination problem by the use of different types of nanofiller in 
pure epoxy resin for improving the mechanical and thermal properties. Finally, these 
difficulties are overcome by the introduction of organic or inorganic nanofiller in 
GFRP laminate composites. The various types of inorganic fillers such as Al2O3 

[7], SiO2 [8], TiO2 [9], ZrO2 [10], MWCNTs and clay [11] and graphene [12], 
etc. Among the most investigated metal-oxide, TiO2 presumably is very interesting 
because of its peerless properties such as Refractive index, Non-toxic, non-corrosive, 
low cost, Self-cleaning mechanism, anti-bacterial, Die electric and catalytic prop-
erties [13]. Nanofiller like TiO2 have also the capability to reduce the delamination 
in FRP composite if they are properly surface functionalized to enhance the interfa-
cial interaction with the matrix system, and ultimately reduce the cost of fabrication 
and production of composite [14]. The current research work attempted to discuss 
the effect of water absorption, especially for GFRP laminate composites at control. 
However, these types of composite deal with a lot of challenges and intimidation in 
various atmospheres like water, hydrothermal, low and high temperature, alkaline, 
corrosive, UV light, etc. In the case of a hydrothermal environment, glass fiber-
reinforced polymer composites typically absorb moisture. The polymer composites’ 
absorbed water molecules come in two ways: bound water and free water. Free water 
is typically gathered in the epoxy’s free volume/voids or at the matrix-fiber inter-
face, where bound water is typically chemically attached to the hydroxyl group of 
the epoxy [15, 16]. Composites that have absorbed moisture lose their properties. 
Chemical and physical changes in epoxy are mostly brought on by chain scission and 
hydrolysis, whereas physical changes are primarily brought on by plasticization and 
swelling [17, 18]. Observed that in a hydrothermal environment, osmotic cracking, 
differential swelling, and interfacial debonding caused matrix microcracks to occur at 
the interphase [19] observed that the damage at the matrix and fiber matrix interface
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is amplified by water temperature. This may be caused by either matrix plasticiza-
tion or polymer hydrolysis of the glass fiber interface layer. It has been found that 
the momentum of water absorption rises with increased immersion duration due to 
capillary action and the uptake of hydrophilic groups by unsaturated polyester and 
glass fiber [20]. It was mentioned that one of the likely options to seal holes and voids 
and improve interface and interphase strength in GFRP composites is adding TiO2 

nanofillers [21]. The dispersed nanofiller inside the resin matrix closed the pore/void 
inside the matrix and thus interfacial bonding is increased between fiber-matrix and 
reduces the swelling, osmotic cracking at the interface, and water absorption into 
composite materials [22]. In the current research work we discussed the influence of 
TiO2 nanofiller on tensile and flexural properties of polymer composite, when GFRP 
composite immerged in seawater as well as dry condition. 

2 Materials and Methods 

2.1 Fiber 

The fiber in the polymer matrix composite provides strength and stiffness to the 
matrix. In current research work selecting the reinforcement as a glass fiber because 
of the larger strength-to-weight ratio, high percentage strain, ease of handling and 
cost-effectiveness, good surface completion, and low cost, it gets extended when it 
breaks. 

2.2 Fillers 

When nanofiller is used in polymer matrix composite, enhances the crosslinking 
density of epoxy resin and also improved the mechanical properties of GFRP 
polymer composite, and reduces the expense of composite. It increased the stiff-
ness of the matrix, crack resistance, and fracture toughness of the matrix. But the 
degree of improvement due to the addition of nanofiller are depend on the type of 
filler, particle size, shape, amount of filler, dispersion characteristic, and compati-
bility with other components. The most important parameter is dispersion for good 
interfacial bonding between fiber reinforcement and matrix during the fabrication of 
GFRP composite [23].
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Table 1 Physical and mechanical properties of glass fibers, epoxy resin, and TiO2 nanofiller 

Materials Density 
(g/cm3) 

Tensile 
strength 
(GPa) 

Young’s 
modulus 
(GPa) 

Elongation 
(%) 

Coeff. of 
th. 
expansion 
(10–7/°C 

Poison’s 
ratio 

Refractive 
index 

References 

E-glass 2.58 3.445 72.3 4.8 54 0.2 1.558 [24] 

TiO2 4 51.6 288 – 0.85 0.27 2.7 [25] 

Epoxy 1.15 0.070 3.6 1.8 1.0–1.3 0.030 1.50–1.56 [26] 

2.3 Matrix 

The function of the matrix is to bond the fiber together and transfer the load between 
them. The role of the matrix is such as Protect the fiber from the environment, Improve 
the impact and fracture resistance of the composite. Matrix is a different type such 
as organic, metal, and ceramic matrix. Organic matrix composite was classified into 
polymer matrix composite (PMC). Polymer matrix composites are two types of ther-
mosetting polymer, a thermoplastic polymer. Examples of thermosetting—are epoxy, 
phenolic, polyester, polyimide, resin, etc., and e.g., of thermoplastic polypropylene, 
polyamide, polyethylene, nylon, polycarbonate, polystyrene, etc. (Table 1). 

3 Methods 

3.1 Preparation of Matrix Mixture with Nanofiller 
and Fabrication of GFRP Laminate Composite 

Preparation of the matrix mixture for making GFRP composite with TiO2 nanofiller, 
for these, were used as resin, hardener, and accelerator with stoichiometric ratio. The 
weight ratio of resin and hardener is 1:0.23 and the accelerator is taken as 2% of resin 
weight. After 20 min of mechanical stirring slurry of (resin +TiO2 nanoparticle) was 
processed by probe ultrasonication dual mixing process (UDM) with simultaneous 
stirring by impeller for up to 15 min with 10-s pules on and 30-s pules off. For 
effective nanoparticle prevalence into resin, followed by the addition of hardener 
plus accelerator again mechanical stirring at 3000 rpm for 10 min, after that finally 
we got a highly dispersed epoxy resin mixture [23]. During the probe ultrasonication 
process localized heat generated at the horn immersed into epoxy resin can impair 
the characteristics of based materials, to overcome this difficulty putting the ice cube 
surrounding the solution or recycling water from the chiller device because that 
temperature was maintained [6]. 

After preparing the mixture of epoxy resin and TiO2 filler directly used for 
the fabrication of GFRP laminate composite by hand layup process. First of all, 
used peel ply for the easy removal of composite from steel plate at which stacking
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Table 2 Comparison of the mechanical properties of different types of neat epoxy polymer 
composite in seawater aging 

Materials 
type 

Aging situation Deterioration of properties References 

Glass/ 
polyester 

810 days of 
seawater aging at 
30 °C 

Modulus declined by 6% while flexural 
strength fell by 17% 

[27] 

Glass/vinyl 
ester 

810 days of 
seawater aging at 
30 °C 

Modulus declined by 10% and flexural strength 
fell by 15% 

[28] 

Glass/vinyl 
ester 

350 days of aging 
in a basic 
solution with a 
pH of 11.5 

Tensile modulus loss as temperature increases [19] 

E-glass/ 
epoxy 

300 days were 
spent submerged 
in seawater and 
(1.6% NaCl) at 
20 °C 

All the mechanical properties decreased as a 
result of seawater aging, decreasing by 13.6%, 
21.9%, and 8.9%, respectively. And by water 
aging by 39.8%, 36.1%, and 22.0%, 
respectively 

[29] 

Basalt/CNT/ 
epoxy 

Seawater aging 20% less fracture toughness now exists [30] 

Carbon/ 
epoxy 

Drenched with 
saltwater 

Failure strength is now 20–40% lower [28]

number of glass fiber with matrix materials as shown in Fig. 1. Then composite was 
put in a side air oven for pre-curing at 120 °C for 2 h. After that, the post-curing for 
6 h at 160 °C and finally obtained the desired size of the laminate composite [24] 
(Table 2). 

4 Result and Discussion 

4.1 Void Content 

Voids are nothing more than closed pores that are found in composite materials. 
They are crucial to first penetrate water inside the materials and the subsequent 
loss of mechanical qualities. It has been found that the percentage of voids rises as 
the weight percentage of nano-TiO2 content increases shown in Fig. 2a. Because the 
tendency of agglomeration of TiO2 nanoparticles is increased, it means that a stronger 
bond between particle-to-particle as compared to the matrix-to-particle forms larger 
air bubbles throughout the blending of matrix and filler. That is why, agglomeration of 
nano-TiO2 particles weakens the bond between the fiber-matrix interface, rising the 
amount of water absorbed by capillary action. When compared to pure epoxy matrix
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Fig. 1 Schematic diagram of fabrication of laminate composite by hand lay-up process [16]

polymer glass fiber reinforced polymer laminate composite, the seawater diffusivity 
of the nanocomposite at 0.1 wt.% of titanium dioxide nanofiller decreased by 15%. 
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Fig. 2 a Influence on the void concentration of TiO2 wt.% in composite b influence on seawater 
gain of the square root of time [16]
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4.2 Accelerated Seawater Aging 

Moisture absorption significantly contributes to the deterioration of the mechanical 
qualities of GFRP composites. Polymer Composite matrix materials frequently take 
in moisture inside the hydrothermal or hydrophilic atmosphere. The square root of 
seawater aging time and seawater gain weight percentage. The results showed that 
the percentage of water gain rises with time during the early stages of aging and 
then decreases as time goes on. It can be because the composite’s surface has voids 
or open pores that speed up the absorption tendency shown in Fig. 2a. However, 
when the amount of nano-TiO2 rises, it also increases water absorption. According 
to Fig. 2b minimum seawater absorption of nanocomposite at 0.1% of TiO2 filler. 
It could be beneficial interfacial bonding among the fiber and matrix at 0.1% filler 
which reduced the seawater diffusion in composite through capillary action and then 
the seawater diffusivity reduced by 15%. 

4.3 Mechanical Properties 

The mechanical qualities and durability of a product’s component should be devel-
oped and chosen in accordance with the design. To determine the materials’ reliability 
and durability, the mechanical properties must be assessed in various environments. 

The ILSS test can evaluate the strength of the interface, which is the core of GFRP 
composites. However, the flexural test may be able to detect bending and compressive 
stress [16]. 

4.4 Flexural Strength 

The figure shows the relation between flexural strength and modulus versus Weight 
percentage of titanium dioxide filler content in composite. The result reveals that 
increase in the wt.% of TiO2 filler decrease the flexural strength of nanocomposite. 
According to Fig. 3a maximum increment in flexural strength was seen for nanocom-
posites containing 0.1 wt.% of TiO2 nanofiller from 330 to 366 MPa. After that 
further addition of Titanium dioxide nanofiller, then decrease the flexural strength 
of seawater as well as dry nanocomposite. For a composite with a 0.1 wt.% nano-
TiO2 content, the enhancement in flexural strength following wet condition is about 
15% while 11% is in dry condition [31]. However, furthermore added TiO2 filler 
content, then agglomeration has been occurring in matrix materials, and the van der 
Waal’s force of attraction between particle to the particle is larger as compared to 
the particle-to-matrix interface shown in Fig. 3a. The agglomeration of nanoparticles 
in polymer composite reduces the mechanical properties due to the decrease in the 
dynamic specific surface area which interacts with the polymer matrix. Because of
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Fig. 3 Graph between flexural strength vs TiO2 wt.% (a) and flexural modulus vs TiO2 wt.% (b) in  
composite [19] 

that insufficient load transfer between the fiber and matrix interphase of the nanocom-
posite. Void concentration in the composite is nearby responsible for decreasing 
flexural strength. The mechanical characteristic of composites that have undergone 
hydrothermal aging has decreased because of the fiber, epoxy, and nanoparticles’ 
uneven thermal expansion, which results in interface swelling and the hydrolysis of 
the epoxy matrix [19]. 

Figure 3b demonstrated the relation between flexural modulus and titanium 
dioxide nanofiller content in composite. With an increase in TiO2 nanofiller content 
in dry conditions, the flexural modulus rises. It might be caused by the compos-
ites’ high modulus TiO2 nanofiller content. But as the amount of TiO2 nanofiller in 
seawater-aged composites rises, the flexural modulus of those materials decreases. 

4.5 Interlaminar Shear Strength (ILSS) 

The result reveals that Comparing the TiO2 nanofiller content in polymer composite to 
other nanocomposites and pure epoxy composites in both (water and dry) conditions, 
the greatest ILSS is discovered to be at 0.1 wt.%. The addition of 0.1 wt.% ILSS has 
enhanced by 19% and 23% in dry and seawater aging, respectively, following the 
incorporation of TiO2 nanofiller into the epoxy matrix. 

The improvement or decline of mechanical characteristics may be connected to 
the fracture surface’s structure analysis to back up the discoveries. Show in Fig. 4a the  
strengthening mechanism of nanocomposite at 0.1 wt.% of TiO2 filler. It observed 
an effective interfacial bonding between fiber and matrix, because of the proper 
dispersion of TiO2 nanofiller in an epoxy slurry with the help of Ultrasonication. Good 
dispersion means bonding between particle to matrix/fibers is stronger than particle 
to particle, which enhances the mechanical quality of both dry and wet conditions
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Fig. 4 FESEM picture of the bond interface at 0.1 wt.% of TiO2 filler (a), Dispersion of TiO2 
(b) agglomeration at 0.9 wt.% of TiO2 filler (c) [21] 

[21]. However, Fig. 4c demonstrated the agglomeration of 0.9 wt.% nanofiller content 
in the composite which reduced the mechanical properties in dry as well as seawater 
conditions because of higher weight percentage of nanofillers is typically associated 
with the creation of voids during matrix modification and the agglomeration of TiO2 

nanofiller above a certain wt.% [13]. 

5 Conclusion 

This current research work discussed the mechanical properties and water absorp-
tion of GFRP laminate composite with or without filler matrix. In the case of 
pure epoxy resin matrix had been reducing the mechanical properties due to the 
delamination of composite, these difficulties were overcome by the introduction of 
TiO2 nanofiller into the polymer matrix. Surface modification of TiO2 nanoparticles 
is also possible which allowed enhancing the interface region properties, disper-
sion, homogeneity with ultrasonic dual mixing (UDM), and mechanical properties. 
Maximum improvement of flexural strength at the addition of a certain amount of 
nanofiller in seawater condition, whereas further increase nanofiller then fall down 
the flexural strength. When compared to control GFRP composites, the ILSS of the 
nanocomposite with a certain weight percentage of TiO2 nanofiller enhances under 
both dry and seawater-aged conditions. When the addition of TiO2 nano-filler in 
composite, initially increases the flexural modulus. Aging matrix stiffening compo-
nents in seawater and improved interfacial adhesion between the matrix and fiber are 
to blame. After that further increase the TiO2 nanofiller in the composite, an adverse 
effect on mechanical properties.
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