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Abstract. Autism spectrum disorders (ASD) are a collection of neurodevelop-
mental disorders. Even though ASD has no cure, early detection and interven-
tion can help developing language, behavior, and communication skills. Research
shows that ASD can be diagnosed from brain signals, particularly electroen-
cephalography (EEG) where the brain activity is recorded over time as an EEG
signal from humans’ scalp and then used to study neuropsychiatric disorders. This
study investigates the classification performance of the Neural Networks (NN)
model with Hjorth features namely activity, mobility, and complexity extracted
from EEG signals through selected channels using the XGBoost algorithm. The
classification accuracy is 80% using all 19 channels of EEG data whereas the
accuracy of the model using activity, mobility and complexity reached 100%
with selected channels. Hjorth parameter-based NNmodel with channel selection
seems to be promising that improves the computation complexity significantly.

Keywords: Autism Spectrum Disorders (ASD) · Electroencephalography
(EEG) · Hjorth Parameters · Neural Networks (NN)

1 Introduction

Autism spectrum disorders (ASD) [1] are a collection of neurological diseases marked
by a lack of verbal and nonverbal communication as well as repetitive stereotypical
behaviors. Children with ASD experience symptoms like social communication and
social interaction deficiencies. Very often autistic children show repetitive patterns of
behavior or activities [1]. Children with ASD may not look when someone points to
a thing like a flying airplane because they lack joint attention. Many autistic children
experience language difficulties and echolalia, in which they repeat words or phrases
instead of speaking normally [2].
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In roughly 20% of children with ASD, inattention, impulsivity, and hyperactivity
are important symptoms [3]. In South Asia, one out of every 160 children is thought to
have ASD [4]. ASD affects about 2 out of 1000 children in Bangladesh, according to
the Bangabandhu Sheikh Mujib Medical University (BSMMU). In metropolitan areas,
the disease is more prevalent than in rural areas. There is mounting evidence that these
early interventions can assist children with ASD in improving their living.

Nowadays, detecting ASD is a major consideration. There are various methods for
detecting ASD. A screening strategy [5] is ideal for ASD detection since it is a cost-
effective way for primary health care providers to identify patients that require additional
specialist treatment. Screening aids in determining whether further specialized study by
doctors is required. As ASD is a neurodevelopmental disorder usually reflected in brain
signals, therefore, detecting ASD directly from brain signals would be more authen-
tic. Among the widely used non-invasive neuroimaging techniques for brain function
analysis areMagnetic Resonance Imaging (MRI) [6], functionalMRI (fMRI) [6, 7], elec-
troencephalography (EEG) [8–10], and magnetoencephalography (MEG) [11]. Because
EEG has a high temporal resolution and is more accessible than other brain signals, it is
being identified as a potential diagnostic tool for assessing brain activity.

EEG [12] is regarded as a realistic and effective signal for ASD detection among
various brain signals since it has numerous advantages over other approaches for exam-
ining brain activity. They are also effective for diagnosing and monitoring brain activity
because they exhibit pathological, physiological, and metabolic alterations in the brain
and possibly other sections of the body, in addition to functional changes [13]. Therefore,
EEG is employed as a useful indicator of ASD.

Several studies reported in the literature used EEG signals for ASD detection [14–
16]. EEG signal was used as a clinical tool in assessing abnormal brain growth where an
SVM was deployed as a classifier [14]. The prognosis of the clinical diagnosis of ASD
using the EEG signals was accurate for children as early as 3 months old. Pearson’s
Correlation Coefficient (PCC) was used in [15] where EEG data from the 19 channels
were converted into two-dimensional images to employ CNN. An accuracy of 100%was
achieved using Resnet of CNN. Alturki et al. [16] employed discrete wavelet transform
to decompose EEG signal into its sub-bands, extracted five statistical features from the
sub-bands, and used four classifiers for diagnosing neurological disorders.

Research shows that the accuracy of classifiers largely depends on the quality of
the features extracted from the EEG signals. A brief account of feature descriptors
and extraction methods is provided in [17]. In pursuit of such quality features, new
feature descriptors based on Hjorth parameters to be extracted from EEG signals are
proposed [18]. The first three derivatives of EEG signal, i.e., mobility, activity, and
complexity, are the most commonly utilized Hjorth parameters. Banerjee et al. [19] used
the Hjorth parameters as features of electrooculogram signals and classified them with
ensemble classifiers, which achieved an average accuracy of 90.96%. Elamir et al. [20]
used Hjorth parameters as features extracted from three physiological signals, namely
EEG, EMG, and GSR, and employed three supervised classifiers (KNN, SVM, Decision
Tree) for emotion classification (arousal andvalence) that achieved an accuracyof 93.2%.
Mehmood et al.[21] used Hjorth parameters as features extracted from EEG signals and
classified them by SVM for emotion recognition. This method showed an accuracy
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of 70%. Prakash et al. [22] has also used Hjorth parameters as features for automatic
detection of sleep from single channel EEG signals. Bagging Classifier is used in this
work for classification.

This research will investigate the pertinence of Hjorth parameters as features to be
used for ASD detection from EEG signals. EEG data were collected from 19 channels
for 25 patients at resting-state. The three main Hjorth parameters, i.e., activity, mobility,
and complexity, values were calculated for all channels of EEG signals. The feature
extracted from EEG data were fed into the Neural Network (NN) model, which allowed
classification for ASD and control participants. A channel selection has been applied
using XGBoost algorithm to select a subset of channels with higher information content
suitable for classification. Finally obtained classification accuracies ofHjorth parameters
were compared with and without channel selection.

The remaining part of the paper is structured as follows: The methodology is
described in detail in Sect. 2. Sections 3 and 4 present the experimental outcomes and
discussion, respectively. The conclusion is presented in Section 5.

2 ASD Diagnosis Using Hjorth Parameters from EEG

This study aims to investigate NN based ASD detection method from EEG signals.
Hjorth parameter-based feature extraction is employed in this research to exploit the
performance of the NN-model. Three features defined by activity, mobility, and com-
plexity are extracted from EEG signals. Another facet of the EEG signal-based ASD
detection method is channel selection. Hence, the XGBoost algorithm is used to select
the information-rich channels out of 19 channels. The proposed methodology is pre-
sented in Fig. 1. The different steps in the methodology are described in the following
sections.

Fig. 1. Proposed ASD diagnosis system through Hjorth parameters and NN.



34 Z. J. Peya et al.

2.1 EEG Data Preparation

EEG is a powerful modality representing brain signals corresponding to various mental
states and activities. Therefore, EEG signals are used for the diagnosis and monitoring
of neuropsychiatric disorders. The standard 10–20 scheme of electrode placement on the
scalp is used for EEG signal recording [23]. The layout of the standard 10–20 electrode
placement is shown in Fig. 2.

2.2 Feature Extraction Using Hjorth Parameters

Hjorth parameters are time-domain parameters that are often utilized to construct feature
descriptors from physiological signals such as EEG. It was first introduced by Hjorth
[18]. The Hjorth Parameters are called activity, mobility, and complexity. Since they
may be specified using first and second derivatives, these are also known as normalized
slope descriptors.

Activity: Activity is the first parameter of the Hjorth parameter set. It is a measurement
of the mean power of the signal that also represents the frequency domain surface of the
power spectrum. Activity is defined by the following equation:

Activity = var (y (t)) (1)

where y(t) is the signal itself, activity is the variance (mean power) of that signal and
var(y(t)) denotes the biased variance of signal y(t) of length N with the mean value of t
and it is given by

var (y (t)) =
∑N

t=1 (y (t)− y )

N
(2)

Mobility: The second parameter mobility is an estimate of the mean frequency repre-
senting the proportion of standard deviation of the power spectrum. Mobility is defined
by the following equation.

Mobility =
√
var ( dy(t)dt )

var (y(t))
(3)

Complexity: The third parameter of the Hjorth parameter set is complexity. It provides
an estimate of the signal’s bandwidth. The value of complexity converges to 1 if the
signal is similar. Complexity is defined by the following equation:

Mobility (
dy(t)
dt )

Mobility (y(t))
(4)

These three parameters are calculated for the dataset. Each channel contains one
value of activity, mobility, and complexity individually. So, each subject has 19 values
of activity, 19 values of mobility, and 19 values of complexity.
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Fig. 2. Standard 10–20 system of electrode placement on the scalp for EEG recording.

2.3 Channel Selection Using XGboost Algorithm

XGBoost [24] stands for extreme Gradient Boosting and represents the premier machine
learning toolkit for regression, classification, and ranking tasks. In this research,
XGBoost is used to select the more information-rich channels from 19 channels of
the dataset. At first, XGBoost is applied to the activity feature set. After applying this
channel number is reduced to 10 channels from 19 channels. Similarly, after applying
XGBoost to the mobility and complexity feature sets, 14 channels and 12 channels are
selected respectively.

Table 1. The architecture of the neural network used for classification

Layer (Type) Output Shape Param#

dense (Dense) (None, 15) 300

dense_1 (Dense) (None, 4) 64

dense_2 (Dense) (None, 2) 10

2.4 Classification Using Neural Network

Neural networks (NN) [25, 26] are layered interconnected neural computing models that
function similarly to neurons in the human brain.AnNNmodelwith a single hidden layer
with a sufficient number of neurons is capable of modeling any non-linear system. In this
study, a simple three layered NN is considered for classification. Extracted features from
EEG signals (i.e., activity, mobility, and complexity) with and without selected channels
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are passed into the NNmodel. Table 1 shows the parameters of the NN architecture used
in this study.

3 Experimental Studies

The experimental results of the proposed ASD detection system are presented here.
Classification performance was analyzed with and without channel selection.

3.1 Experimental Data

This study uses an EEG dataset collected from Villa Santa Maria Institute, Italy [27].
The 19-channel EEG data system was used to collect EEG signals from 15 (3 female,
12 male) ASD subjects and 10 (6 female, 4 male) controlled subjects. The age ranges
of the subjects were 7 to 14 years and 7 to 12 years for the ASD and control subjects
respectively. A bandpass filter of 0.3–70 Hz was applied to filter the EEG signals.

3.2 Experimental Setup

The algorithm is implemented using Anaconda. A Windows 10 OS platform-based PC
(Processor of 8th Generation Intel® Core™ i5 – 8265U CPU @ 1.60 GHz, 1.80 GHz,
4 GB RAM) was used for the simulation experiments. For the training-testing proto-
col, 20 cases were used for the training set and 5 cases were used for the testing set.
The available set of libraries such as Keras, Pandas, Sklearn, NumPy, Os, Tesorflow,
Matplotlib and pyplot was used for the Neural Networks.

3.3 Experimental Result and Analysis

For each participant’s channels, activity, mobility, and complexity features were calcu-
lated. Then feature extracted EEG data was passed to NN for classifying the ASD and
control subjects. XGBoost algorithm was applied to the features for selecting the impor-
tant channels individually. From 19 channels, it selects10 channels for activity features.
Similarly, 14 channels and 12 channels are picked separately after applying XGBoost
for the mobility and complexity feature sets. Figure 3 shows the accuracy compari-
son between activity, mobility, and complexity before channel selection. According to
the figure, for activity, train accuracy reached 95% after 400 epochs and test accuracy
reached 80% after 100 epochs. For mobility, train accuracy fluctuates up to 200 epochs
and then reached 100%. On the other hand, test accuracy reached 80% after 200 epochs.
For complexity, train accuracy reached 95% after 400 epochs and test accuracy reached
80% after 200 epochs. So, the performance of mobility feature is better than activity
and complexity. Figure 4 shows the accuracy comparison of activity, mobility and com-
plexity after channel selection. After performing channel selection using XGBoost, 10
channels are selected for activity, 14 channels are selected for mobility and similarly, 12
channels are selected for complexity. For activity, test accuracy reaches to 100% with
10 channels since it was 80% before. For mobility and complexity test accuracy reaches
100% with 14 channels and 12 channels respectively since it was 80% before for both
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Fig. 3. Accuracy curve of activity, mobility, and complexity of 19-channel EEG data for epoch
varying up to 800.
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Fig. 4. Accuracy curve of activity, mobility, and complexity of selected channel EEG data (10
channels for activity, 14 channels for mobility, 12 channels for complexity) for epoch varying up
to 800.
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cases. So, the accuracy is increased with a reduced number of channels for activity,
mobility, and complexity. So, the channel selection method seems to be promising.

Accuracy comparison of activity, mobility and complexity before and after channel
selection is shown in Table 2. At first accuracy for 19 channels is computed individually
for activity, mobility, and complexity. After channel selection using XGBoost, accuracy
is again computed to make a comparison. For activity, using 19 channels the accuracy is
80% and the F1 score is 86%. After channel selection, 10 channels are selected and the
accuracy is 100% with F1 score of 86%. Again, for mobility, the accuracy is 80% using
19 channels with F1 score of 86%. After channel selection, 14 channels are picked for
accuracy and this time the accuracy is 100% with an F1 score of 100%. So, the accuracy
is increased. Then for complexity, the accuracy is gained at 80% using 19 channels with
F1 score of 86%. After channel selection, 12 channels are selected and the accuracy is
100%with an F1 score of 100%. This time also, the accuracy is increased. The number of
channels and overall data decreased significantly after the channel selection is applied.

4 Discussion

The proposed method detects ASD using the Hjorth parameter and NN. Along with this
method, XGBoost is used to reduce the number of channels of EEG data. By using the
channel selection method, a significant reduction of number of channels, i.e., approxi-
mately 50%–66% is achieved. This method selects 10 channels for activity, 14 channels
for mobility, and 12 channels for complexity. The amount of data is huge for 19 channels
contributing to the features set with high computational cost. The reduction of the num-
ber of channels has direct impact on the data reduction leading to significant reduction of
computational cost. This will enable designing a simple and efficient EEG-based ASD
detection system. It also ensures an accuracy of 100%. This is a relatively high accuracy
for early detection of ASD.

Table 2. Accuracy comparison of activity, mobility, and complexity before and after channel
selection.

Feature Without Channel Selection (i.e.,
19 Channels)

With Selected Channels

Train Set
Accuracy

Test Set
Accuracy

F1 Score No. of
Channels

Train. Set
Accuracy

Test Set
Accuracy

F1 Score

Activity 95% 80% 86% 10 95% 100% 86%

Mobility 100% 80% 86% 14 100% 100% 100%

Complexity 95% 80% 86% 12 100% 100% 100%
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5 Conclusion

The performance of machine learning model-based detection of ASD depends on the
technique used for feature extraction from EEG signals. This research presents the use
of Hjorth parameters employed for feature extraction from EEG signals, which are used
in the machine learning model for ASD detection. Another facet of the EEG signal-
based ASD detection approach is channel selection. This research also reports a channel
reduction method using XGBoost after feature extraction. Neural Network is used as a
classifier in this research. Channel reduction is performed for activity, mobility, and com-
plexity individually. Application of both Hjorth parameters and XGBoost has resulted
in channel reduction and accuracy improvement as well as a reduced amount of data,
which again improves the overall computational complexity. A future extension of this
research would be to apply this approach to large data sets.
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